
MacDonald

US $49.99

Shelve in
Web Design / General

User level:
Intermediate–Advanced

www.apress.com

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Pro Silverlight 5 in C#
Silverlight is a revolutionary browser plug-in. Using it, you can create rich client appli-
cations that run inside the browser. Impressively, Silverlight applications have cross-
platform reach—they run seamlessly in non-Microsoft browsers (like Firefox, Safari,
and Chrome) and work on both the Windows and Mac OS operating systems. And
best of all, Silverlight applications support pure C# code and use a streamlined version
of the .NET Framework.

In this book, you’ll learn to:

• Develop rich applications that work on all desktop browsers
• Design modern user interfaces with Silverlight’s layout tools and fully-stocked
 control toolkit
• Create cutting-edge effects with 2D drawing, 3D drawing, and animation
• Incorporate sound and video
• Query a database through an ASP.NET web service, and display the records
 with data binding
• Master advanced features like multithreading and networking
• Create desktop-like applications that run in their own windows

This book is for .NET developers encountering Silverlight for the first time. No Silverlight
experience is required—but if you’ve worked with earlier Silverlight versions, you’ll
appreciate the “What’s New” boxes that point out new features at the start of every
chapter. By the end of this book, you’ll have a solid understanding of the complete
Silverlight platform, and you’ll be able to build anything from a slick business front-end
to a browser-based game.

RELATED

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

iv

Contents at a Glance

 About the Author... xxvii
 About the Technical Reviewer ... xxviii
 Acknowledgments ... xxix
 Introduction .. xxx
 Chapter 1: Introducing Silverlight ..1
 Chapter 2: XAML ...33
 Chapter 3: Layout..61
 Chapter 4: Dependency Properties and Routed Events107
 Chapter 5: Elements..143
 Chapter 6: The Application Model...203
 Chapter 7: Navigation ...233
 Chapter 8: Shapes and Transforms ..263
 Chapter 9: Brushes, Bitmaps, and Printing ..315
 Chapter 10: Animation Basics ..351
 Chapter 11: Advanced Animation ...379
 Chapter 12: Sound, Video, and Deep Zoom...413
 Chapter 13: Silverlight 3D...469
 Chapter 14: Styles and Behaviors...513
 Chapter 15: Control Templates ...541
 Chapter 16: Multithreading...585
 Chapter 17: Browser Integration ..607
 Chapter 18: Out-of-Browser Applications...633
 Chapter 19: ASP.NET Web Services ..683

www.allitebooks.com

http://www.allitebooks.org

 CONTENTS

v

 Chapter 20: Data Binding..715
 Chapter 21: Data Controls...769
 Chapter 22: File Access ..829
 Chapter 23: Networking..863
 Index ...913

www.allitebooks.com

http://www.allitebooks.org

xxx

Introduction

Silverlight is a framework for building rich, browser-hosted applications that run on a variety of
operating systems. Silverlight works its magic through a browser plug-in. When you surf to a web page
that includes Silverlight content, this browser plug-in runs, executes the code, and renders that content
in a specifically designated region of the page. The important part is that the Silverlight plug-in provides
a richer environment than the traditional blend of HTML and JavaScript that powers ordinary web
pages. Used carefully and artfully, you can create Silverlight pages that play video, have hardware-
accelerated 3D graphics, and use vector animations.

Understanding Silverlight
Silverlight uses a familiar technique to go beyond the capabilities of standard web pages: a lightweight
browser plug-in.

The advantage of the plug-in model is that the user needs to install just a single component to see
content created by a range of different people and companies. Installing the plug-in requires a small
download and forces the user to confirm the operation in at least one security dialog box. It takes a short
but definite amount of time, and it’s an obvious inconvenience. However, once the plug-in is installed,
the browser can process any content that uses the plug-in seamlessly, with no further prompting.

Figure 1 shows two views of a page with Silverlight content. At the top is the page you’ll see if you
don’t have the Silverlight plug-in installed. At this point, you can click the Get Microsoft Silverlight
picture to be taken to Microsoft’s website, where you’ll be prompted to install the plug-in and then sent
back to the original page. On the bottom is the page you’ll see once the Silverlight plug-in is installed.

www.allitebooks.com

http://www.allitebooks.org

 INTRODUCTION

xxxi

Figure 1. Installing the Silverlight plug-in

www.allitebooks.com

http://www.allitebooks.org

 INTRODUCTION

xxxii

 Note At the time of this writing, Silverlight 4 is installed on an estimated 75% of Internet-connected computers
(including desktop and mobile devices). The share is higher if you consider only Windows operating systems or
Interent Explorer browsers. Although this is impressive, it pales in comparison to Flash, which has version 10 or
better installed on a staggering 96% of all web devices. (To get up-to-date statistics, refer to www.riastats.com.)

Silverlight System Requirements
With any Web-centric technology, it’s keenly important to have compatibility with the widest possible
range of computers and devices. And although Silverlight isn’t completely cross-platform, its
compatibility stacks up well on the majority of desktop computers.

Currently, Silverlight supports:

• Windows computers: Silverlight works on PCs with Windows 7, Windows Vista,
and Windows XP. The minimum browser versions that Silverlight supports are
Internet Explorer 6, Firefox 1.5, and Google Chrome 4.0. Silverlight will also work
in Windows 2000, but only with Internet Explorer 6. Other browsers, such as
Opera and Safari (for Windows), aren’t currently supported.

• Mac computers: Silverlight works on Mac computers with OS X 10.4.8 or later,
provided they have Intel hardware (as opposed to the older PowerPC hardware).
The minimum browser versions that Silverlight supports are Firefox 2 and Safari 3.
Silverlight does not run on mobile Apple devices, which includes the iPhone, iPod
Touch, and iPad.

• Linux computers: Although Silverlight 5 doesn’t work on Linux, the Mono team
has created an open-source Linux implementation called Moonlight. The last
officially released version supports Silverlight 2 applications, although there is also
a released preview version that supports Silverlight 4. Progress is slow, and it’s
uncertain when (and if) there will be a Moonlight that supports Silverlight 5.

• Windows Phone: Silverlight is also one of two development frameworks for
Windows Phone 7 (the other being the game-focussed Microsoft XNA). However,
developing for Windows Phone raises some unique considerations, and there are
some subtle feature differences. To learn more about WP7 development, you can
refer to a dedicated book, like Pro Windows Phone 7 Development.

Installing Silverlight requires a small-sized setup (around 6MB) that’s easy to download. That allows
it to provide an all-important “frictionless” setup experience, much like Flash.

Silverlight vs. Flash
The most successful browser plug-in is Adobe Flash, which is installed on over 90 percent of the world’s
web browsers. Flash has a long history that spans more than ten years, beginning as a straightforward
tool for adding animated graphics and gradually evolving into a platform for developing interactive
content.

www.allitebooks.com

http://www.riastats.com
http://www.allitebooks.org

 INTRODUCTION

xxxiii

It’s perfectly reasonable for .NET developers to create websites that use Flash content. However,
doing so requires a separate design tool, and a completely different programming language
(ActionScript) and programming environment (Flex). Furthermore, there’s no straightforward way to
integrate Flash content with server-side .NET code. For example, creating Flash applications that call
.NET components is awkward at best. Using server-side .NET code to render Flash content (for example,
a custom ASP.NET control that spits out a Flash content region) is far more difficult.

That’s where Silverlight fits into the picture. Silverlight aims to combine the raw power and cross-
platform support of Flash with a first-class programming platform that incorporates the fundamental
concepts of .NET. As a result, developers can write client-side code for Silverlight in the same language
they use for server-side code (such as C# and VB), and use many of the same abstractions (including
streams, controls, collections, generics, and LINQ). In short, for .NET developers Silverlight is both a
more convenient and a more powerful choice for rich Internet applications.

Silverlight vs. HTML5
When Silverlight was first created, it was intended as an all-purpose way to build rich web pages, and a
competitor to Adobe Flash. However, in the several Silverlight versions since, the world has changed.
Although Adobe Flash is still supported by virtually every desktop computer, it’s been locked out of
popular Apple products like the iPhone and iPad. As a result, the mobile world is gravitating to different
solutions, including native applications (which are limited to just one operating system) or HTML5.

A broad consensus exists that HTML5 is the future of the Web, someday. However, the features that
HTML5 promises (when it’s fully adopted) still fall far short of the features that are available today in
Flash and Silverlight. For some applications, these shortcomings don’t matter. And, without doubt, the
capabilities of HTML5 will strengthen in the future. But in the meantime, developers are forced choosing
between features now, if they need them (in which case they’re likely to pick Silverlight) and the
broadest possible compatibility for all computers and mobile devices (in which case they’ll probably
prefer HTML5). This dilemma is also described as rich versus reach. Silverlight is the rich side of this
equation—it gives applications the most powerful and mature feature set. HTML5 is the reach, because
it embraces every modern desktop browser.

Because of this upheaval, many Silverlight developers are uncertain about exactly where their
favorite technology fits into the world of web development. And while the future is far from certain, here
are a few points to keep in mind:

HTML5 isn’t quite here yet: HTML5 support lags in in Internet Explorer. Many HTML5 features are
promised for the not-yet-released IE 10, some features are available in the relatively recent IE 9, but
IE 8 has no HTML5 smarts. This is a problem, because IE 8 is the best version of IE that can run on
the still-widespread Windows XP platform. For all these reasons, HTML5 remains currently has less
support than Silverlight, and this situation may take years to change.

Silverlight has features that have no HTML5 equivalent: Even in the browsers that offer the best
possible HTML5 support fall behind Silverlight in a few key ares. They can’t offer the same video
streaming features, the same hardware-accelerated graphics, or the same deep networking support.
Nor do they support file access, out-of-browser applications, or the ability to call Windows system
components. And it’s hard to imagine HTML5 ever duplicating some of Silverlight’s more
specialized features, like the PivotViewer control that fuses together data filtering, fluid animations,
and image scaling in one easy-to-use package (Chapter 21).

Silverlight has a higher-level programming API: Features like data binding, styles, and templates
may not be essential for building an application, but they are important for building one quickly

www.allitebooks.com

http://www.allitebooks.org

 INTRODUCTION

xxxiv

and efficiently. Many things that are possible in HTML5 are a managibility nightmare in all but the
most disciplined hands. The JavaScript language is notoriously lax in letting syntax errors slide, all
animation routines must be written by hand, and multithreading support is clumsy at best.

Silverlight has top-tier development tools: Thanks to Visual Studio, you can build a Silverlight
application just as easily as you build a desktop program. Add Expression Blend to the picture, and
you also have a way to define and customize rich graphical effects, like animations.

Silverlight offers ASP.NET integration: In particular, Silverlight makes it easy to query server-side
databases through a web service. This state of affairs has led some developers to speculate that even
when HTML5 does finally conquer the world, Silverlight will remain as a first choice for line-of-
business development inside closed company networks.

No one’s quite sure of Silverlight’s future. It may continue on as a first-choice platform for .NET
developers creating business applications, or it may gradually transition into a more specialized tool for
cutting-edge games and video players. One thing is settled, however—Silverlight will never replace
HTML as the main language for creating traditional, public websites—nor does it intend to.

Silverlight vs. Metro (and Windows 8)
When Microsoft announced Windows 8, complete with yet another programming model for rich client
applications, Silverlight developers paused. Some wondered if that technology—named Metro—would
be an eventual Silverlight replacement.

The answer is clearly “no.” Metro is designed to facilitate an entirely different sort of application: a
lightweight, touch-centric, data-consuming application that can run on the future generation of
Windows 8-powered tablets. In a very real sense, Metro is a competitor to native apps on the iPad, as
well as a potential successor to Microsoft’s other rich desktop programming framework, WPF (see the
next section). However, Metro applications have no ability to run on non-Microsoft platforms—or any
version of Windows other than Windows 8. For that reason, they are of little interest to Silverlight
developers.

In the future, the range of Silverlight applications may narrow, squeezed between cross-platform
HTML5 applications that are gradually growing more sophisticated, and native Metro or iPad
applications for mobile devices. However, today Silverlight still occupies the very important space
between these other technologies.

Silverlight and WPF
One of the most interesting aspects of Silverlight is the fact that it borrows the model WPF uses for rich,
client-side user interfaces.

WPF is a toolkit for building rich Windows applications. WPF is notable because it not only
simplifies development with a powerful set of high-level features, it also increases performance by
rendering everything through the DirectX pipeline. To learn about WPF, you can refer to Pro WPF in C#
2010 (Apress).

Silverlight obviously can’t duplicate the features of WPF, because many of them rely deeply on the
capabilities of the operating system, including Windows-specific display drivers and DirectX technology.
However, rather than invent an entirely new set of controls and classes for client-side development,
Silverlight uses a subset of the WPF model. If you’ve had any experience with WPF, you’ll be surprised to
see how closely Silverlight resembles its big brother. Here are a few common details:

www.allitebooks.com

http://www.allitebooks.org

 INTRODUCTION

xxxv

• To define a Silverlight user interface (the collection of elements that makes up a
Silverlight content region), you use XAML markup, just as you do with WPF. You
can even map data to your display using the same data-binding syntax.

• Silverlight borrows many of the same basic controls from WPF, along with the
same styling system (for standardizing and reusing formatting), and a similar
templating mechanism (for changing the appearance of standard controls).

• To draw 2D graphics in Silverlight, you use shapes, paths, transforms, geometries,
and brushes, all of which closely match their WPF equivalents.

• Silverlight provides a declarative animation model that’s based on storyboards,
and works in the same way as WPF’s animation system.

• To show video or play audio files, you use the MediaElement class, as you do in
WPF.

 Note WPF is not completely cut off from the easy deployment world of the Web. WPF allows developers to
create browser-hosted applications called XBAPs (XAML Browser Applications). These applications are downloaded
seamlessly, cached locally, and run directly inside the browser window, all without security prompts. However,
although XBAPs run in Internet Explorer and Firefox, they are still a Windows-only technology, unlike Silverlight.

The Evolution of Silverlight
Silverlight 1 was a relatively modest technology. It included 2D drawing features and media playback
support. However, it didn’t include the CLR engine or support for .NET languages, so developers were
forced to code in JavaScript.

Silverlight 2 was a dramatic change. It added the CLR, a subset of .NET Framework classes, and a
user interface model based on WPF. As a result, Silverlight 2 was one of the most hotly anticipated
releases in Microsoft’s history.

The versions of Silverlight since haven’t been as ambitious. Silverligh 5 keeps the same development
model that was established in Silverlight 2, but adds a carefully selected group of features and
performance enhancements. They highlights include:

• Performance improvements: Silverlight 5 starts faster, supports 64-bit browsers,
and provides cleaner, crisper text rendering at small sizes.

• Vector printing: Silverlight improves its printing model to use vector printing,
when possible (namely, if the print driver supports PostScript). The result is faster
printing with less memory overhead (Chapter 9).

• Hardware-accelerated 3D graphics: Silverlight ports over a portion of the Microsoft
XNA framework used for building Xbox games. With it comes a powerful but very
low-level interface for rendering 3D scenes. Best of all, the video card does all the
work, ensuring blistering performance (Chapter 13).

www.allitebooks.com

http://www.allitebooks.org

 INTRODUCTION

xxxvi

• Low-latency sound: Another benefit from Microsoft XNA is Silverlight’s new
support for low-latency sound playback. This is particularly useful for games that
can’t afford the slightest bit of lag (Chapter 12).

• Trick play: A new frill lets you play videos faster or slower, without changing the
pitch of the audio. This allows users to get their content (for example, watch a
video of a lecture) at their preferred speed (Chapter 12).

• Double-click and triple-click: A minor enhancement solves a long-standind
Silverlight annoyance. You can now easily distinguish between a single click and
the two clicks in quick succession that represent a double-click. Silverlight even
lets you look for triple-clicks (Chapter 4).

• Remote media control support: It’s now possible to react to playback commands
sent from a remote control or enhanced keyboard with media control buttons,
provided your application is running in full-screen mode (Chapter 12).

• Pivot viewer: This all-in-one control gives you a unique new way to present huge
collections of data. It combines scalable pictures, data filtering, and fluid
animations to create a seamless viewing experience. And best of all, you need to
add hardly a line of your own code (Chapter 21).

• XAML debugging: You can now troubleshoot data binding errors by placing a
breakpoint in your data binding expression (Chapter 20).

• Child windows: Out-of-browser applications can now show secondary windows,
just like real Windows applications. They don’t even need elevated trust (Chapter
18).

• Full file access and P/Invoke: Applications that run with elevated trust can now
easily access any file on the hard drive that the user can access (except for those
that require administrator privileges). They can also use P/Invoke on Windows
computer to call legacy C functions or the Windows API (Chapter 18).

• Elevated-trust in-browser applications: This new sort of application combines the
benefits of elevated trust with the streamlined no-install deployment of an
ordinary Silverlight application. But there’s a significant catch—this option’s only
feasible in a controlled environment (say, inside a company network), where you
can configure the certificates on all your clients (Chapter 18).

 Note This book contains everything you need to master Silverlight 5. You don’t need any experience with
previous versions of Silverlight. However, if you have developed with Silverlight 4, you’ll appreciate the “What’s
New” tip boxes that follow the introduction in each chapter. They point out features that are new to Silverlight 5,
so you can home in on its changes and enhancements.

 INTRODUCTION

xxxvii

BACKWARD COMPATIBILITY IN SILVERLIGHT 5

At this point, you might be wondering if older Silverlight applications can run on a computer that has only
the latest version of the Silverlight plugin (version 5) installed. It’s a reasonable question, as Silverlight 5
introduces some subtle changes and bug fixes that can influence the way applications work—and even
change its behavior.

However, Silverlight 5 prevents these differences from causing problems by using its quirks mode feature.
When the Silverlight 5 plugin loads an application that was compiled for an earlier version of Silverlight, it
automatically switches into a quirks mode that attempts to emulate the behavior of the appropriate
Silverlight runtime environment.

For more detailed information about breaking changes between Silverlight 5 and Silverlight 4, you can
refer to http://tinyurl.com/6hkgtmp.

About This Book
This book is an in-depth exploration of Silverlight for professional developers. You don’t need any
experience with WPF or previous versions of Silverlight, but you do need to know the .NET platform, the
C# language, and the Visual Studio development environment.

What You Need to Use This Book
In order to run Silverlight applications, you simply need the Silverlight browser plug-in, which is
available at http://silverlight.net. In order to create Silverlight applications (and open the sample
projects included with this book), you need Visual Studio 2010 and the Silverlight 5 Tools for Visual
Studio 2010. Although they’re in beta at the time of this writing, you can download the latest versions by
searching for “Silverlight 5 tools” at the Microsoft Download Center, www.microsoft.com/download.

Alternatively, you can use Expression Blend—a graphically oriented design tool—to create, build,
and test Silverlight applications. Overall, Expression Blend is intended for graphic designers who spend
their time creating serious eye candy, while Visual Studio is ideal for code-heavy application
programmers. This book assumes you’re using Visual Studio. If you’d like to learn more about
Expression Blend, you can consult one of many dedicated books on the subject.

The Silverlight Toolkit
To keep in touch with Silverlight’s latest developments, you should also download Microsoft’s
impressive Silverlight Toolkit, which provides a set of controls and components that extend the features
of Silverlight. You can use them in your Silverlight applications simply by adding an assembly reference.

The Silverlight Toolkit isn’t just a package of useful tools. It’s also a development process that
gradually brings new controls into the Silverlight platform. Many new controls appear first in the

http://tinyurl.com/6hkgtmp
http://silverlight.net
http://www.microsoft.com/download

 INTRODUCTION

xxxviii

Silverlight Toolkit, are gradually refined, and then migrate to the core platform. Examples of controls
that have made the jump from the Silverlight Toolkit to the core Silverlight plugin include the
AutoCompleteBox, TreeView, and Viewbox.

To understand how this process works, you need to understand a bit more about the Silverlight
Toolkit’s quality bands—groups of controls at a particular evolutionary stage. The Silverlight Toolkit
divides its features into four quality bands:

• Mature: The mature band has controls that are unlikely to change. Usually, these
are controls that are already included with the core Silverlight plugin. However,
the Silverlight Toolkit gives you access to their complete source code, which opens
up customization possibilities.

• Stable: The stable band includes controls that are ready for inclusion in just about
any application—however, there may be further tweaks and fixes in the future that
subtly change behavior. This book describes many of the stable controls,
including the DockPanel, WrapPanel, and Expander.

• Preview: The preview band includes controls that are reliable enough for most
applications, but are likely to change in response to developer comments, so you
expect to change your code before using newer versions.

• Experimental: The experimental band includes new controls that are intended to
solicit developer feedback. Feel free to play with these, but include them in an
application at your own risk.

To learn more about the different quality bands, try out the controls with live demos, or download
the Silverlight Toolkit for yourself, go to http://silverlight.codeplex.com. At the time of this writing,
the current version of the Silverlight Toolkit is called the “Silverlight 4 Toolkit”, but it works equally well
with Silverlight 5.

Code Samples
It’s a good idea to check the Apress website or www.apress.com to download the up-to-date code samples.
You’ll need to do this to test most of the more sophisticated code examples described in this book
because the less significant details are usually left out. This book focuses on the most important sections
so that you don’t need to wade through needless extra pages to understand a concept.

Feedback
This book has the ambitious goal of being the best tutorial and reference for programming Silverlight.
Toward that end, your comments and suggestions are extremely helpful. You can send complaints,
adulation, and everything in between directly to apress@prosetech.com. I can’t solve your Silverlight
problems or critique your code, but I will benefit from information about what this book did right and
wrong (or what it may have done in an utterly confusing way).

http://silverlight.codeplex.com
http://www.apress.com
mailto:apress@prosetech.com

 INTRODUCTION

xxxix

The Last Word
As you’ve seen, Silverlight 5 is the latest iteration of Microsoft’s .NET-based, plug-in-powered web
programming environment. Silverlight began its life as a Flash competitor. It continues today as a
platform for building rich applications that need high-powerforming graphics, animations, video. For
some, it’s a lightweight version of .NET that you can deploy use without installation headaches. For
others, it’s a way to get hardware-accelerated 3D games running right inside a browser. For still others,
it’s a most mature, productive, cross-platform framework for business applications—provided you don’t
need to support mobile devices. And no matter where the Web goes over the next few years, Silverlight
will continue to power some of the most impressive rich Internet applications.

C H A P T E R 1

1

Introducing Silverlight

In the introduction, you learned about the design philosophy that underpins Silverlight. Now, you’re
ready to get your hands dirty and create your first Silverlight application.

The best starting point for coding a Silverlight application is Visual Studio, Microsoft’s premiere
development tool. In this chapter, you’ll see how to create, compile, and deploy a Silverlight application
using Visual Studio. Along the way, you’ll get a quick look at how Silverlight controls respond to events,
you’ll see how Silverlight applications are compiled and packaged for the Web, and you’ll consider the
two options for hosting Silverlight content: either in an ordinary HTML web page or in an ASP.NET web
form.

Silverlight Design Tools
Although it’s technically possible to create the files you need for a Silverlight application by hand,
professional developers always use a development tool. If you’re a graphic designer, that tool is likely to
be Microsoft Expression Blend, which provides a full complement of features for designing visually rich
user interfaces. If you’re a developer, you’ll probably use Visual Studio, which includes well-rounded
tools for coding, testing, and debugging.

Because both tools are equally at home with the Silverlight application model, you can easily create
a workflow that incorporates both of them. For example, a developer could create a basic user interface
with Visual Studio and then hand it off to a crack design team, which would polish it up with custom
graphics in Expression Blend. When the face-lift is finished, the designers deliver the project to the
developers, who continue writing and refining its code in Visual Studio.

Many developers go a step further: they install both applications on their computer, load them
simultaneously, and switch between them as they go. They use Visual Studio for core programming tasks
such as code-writing and debugging and switch to Expression Blend to enhance the user interface—for
example, to edit control templates, pick colors, refine animations, and draw simple vector art. (This
back-and-forth process works because once you save the changes in one program, the other program
notices. When you switch back, it will prompt you to perform a quick refresh that loads the new version.
The only trick is that you need to remember to save before switching.) Whether you use this approach is
up to you—but even if you do, Visual Studio will be the starting point and central hub for your
development.

Finally, it’s worth noting that Microsoft is hard at work designing another development tool that
uses Silverlight, called Visual Studio LightSwitch. With LightSwitch, the emphasis is on using templates
and code generation to quickly build sophisticated applications. The ideal LightSwitch user is a business
developer who wants to quickly create a data-driven application with a Silverlight front end. However,
LightSwitch can also be a starting point to build more sophisticated projects that will be further refined
and customized in Visual Studio. LightSwitch isn’t covered in this book, but you can learn more about it

4

CHAPTER 1  INTRODUCING SILVERLIGHT

2

(and download a beta) from www.microsoft.com/visualstudio/lightswitch. Or, check out Pro Business
Applications with Silverlight 5 (Apress, 2011), which has a dedicated chapter on the subject.

Visual Studio vs. Expression Blend
If you’re still trying to understand how Visual Studio and Expression Blend stack up, here’s a quick
overview:

• Visual Studio: It has everything you need to develop Silverlight applications, with a
visual designer for Silverlight pages. Using this designer, you can drag, drop, and
draw your user interface into existence (which isn’t always the best idea), and you
can get a live preview of what it looks like (which is terrifically useful).

• Expression Blend: It provides the rich support for creating Silverlight user
interface, with visual tools that surpass Visual Studio. For certain types of user
interface grunt work (for example, creating a nice gradient fill), it’s a tremendous
help. Expression Blend also supports a fun application prototyping tool called
SketchFlow and includes a decent coding editor that’s designed to look like Visual
Studio. However, it lacks many advanced and important development tools, such
as debugging, code refactoring, and project source control.

 Note Visual Studio 2010 includes full support for creating Silverlight 3 projects. But to create Silverlight 5
projects, you need the Silverlight 5 Tools for Visual Studio 2010. And if you plan to use Expression Blend with
Silverlight 5, you’ll (currently) need to use a beta version called the Expression Blend Preview for Silverlight 5. You
can download both tools from the Microsoft Download Center (search for Silverlight 5 at
www.microsoft.com/download).

This book assumes you’re working primarily with Visual Studio. You’ll get occasional tips for
Expression Blend (and other Expression products that work with Silverlight, including the Expression
Design drawing tool and Expression Encoder video encoding tool). But if you really want to master
Expression Blend, you should consider a dedicated book on the subject, spend an afternoon
experimenting, or take a look through Microsoft’s Expression Blend training videos at
http://expression.microsoft.com/cc136535.aspx.

Understanding Silverlight Websites
You can create two types of Silverlight websites in Visual Studio or Expression Blend:

• An ordinary website with HTML pages: In this case, the entry point to your
Silverlight application is a basic HTML file that includes a Silverlight content
region.

http://www.microsoft.com/visualstudio/lightswitch
http://www.microsoft.com/download
http://expression.microsoft.com/cc136535.aspx

CHAPTER 1  INTRODUCING SILVERLIGHT

3

• ASP.NET website: In this case, Visual Studio creates two projects—one to contain
the Silverlight application files and one to hold the server-side ASP.NET website
that will be deployed alongside your Silverlight files. The entry point to your
Silverlight application can be an ordinary HTML file, or it can be an ASP.NET web
page that includes server-generated content.

So, which approach is best? No matter which option you choose, your Silverlight application will
run the same way—the client browser will receive an HTML document, which will include a Silverlight
content region, and the Silverlight code will run on the local computer, not the web server. However, the
ASP.NET web approach makes it easier to mix ASP.NET and Silverlight content. This is usually a better
approach in the following cases:

• You want to create a website that contains both ASP.NET web pages and
Silverlight-enhanced pages.

• You want to create a Silverlight application that calls a web service, and you want
to design the web service at the same time (and deploy it to the same web server).

• You want to generate Silverlight content indirectly, using specialized ASP.NET
web controls.

On the other hand, if you don’t need to write any server-side code, there’s little point in creating a
full-fledged ASP.NET website. Many of the Silverlight applications you’ll see in this book use basic
HTML-only websites. The examples only include ASP.NET websites when they need specific server-side
features. For example, the examples in Chapter 20 use an ASP.NET website that includes a web service.
This web service allows the Silverlight application to retrieve data from a database on the web server, a
feat that would be impossible without server-side code. You’ll learn how to design an ASP.NET web
service for Silverlight in Chapter 19.

ADDING SILVERLIGHT CONTENT TO AN EXISTING WEBSITE

A key point to keep in mind when considering the Silverlight development model is that in many cases
you’ll use Silverlight to augment the existing content of your website, which will still include generous
amounts of HTML, CSS, and JavaScript. For example, you might add a Silverlight content region that
shows an advertisement or allows an enhanced experience for a portion of a website (such as playing a
game, completing a survey, interacting with a product, or taking a virtual tour). You may use Silverlight-
enhanced pages to present content that’s already available in your website in a more engaging way or to
provide a value-added feature for users who have the Silverlight plug-in.

Of course, it’s also possible to create a Silverlight-only website, which is a somewhat more daring
approach. The key drawback is that Silverlight isn’t installed as widely as other web technologies such as
Flash, and doesn’t support legacy clients such as those running the Windows ME or Windows 2000
operating system. As a result, Silverlight doesn’t have nearly the same reach as ordinary HTML. Many
businesses that are adopting Silverlight are using it to distinguish themselves from other online
competitors with cutting-edge content, but they aren’t abandoning their traditional websites.

CHAPTER 1  INTRODUCING SILVERLIGHT

4

Creating a Stand-Alone Silverlight Project
The easiest way to start using Silverlight is to create an ordinary website with HTML pages and no server-
side code. Here’s how:

1. Select File  New  Project in Visual Studio, choose the Visual C#  Silverlight
group of project types, and then select the Silverlight Application template. As
usual, you need to pick a project name and a location on your hard drive
before clicking OK to create the project.

2. At this point, Visual Studio will prompt you to choose whether you want to
create a full-fledged ASP.NET website that can run server-side code along with
your Silverlight project (see Figure 1-1). Uncheck the “Host the Silverlight
application in a new Web site” option to keep things simple.

3. Underneath, choose the version of Silverlight application that you want to
create. If you aren’t using any of the new features in Silverlight 5, you’ll get
slightly more reach with Silverlight 4 (which, at the time of this writing, is still
installed on more computers). If you haven’t installed the Silverlight 5 Tools
for Visual Studio 2010, you won’t get an option for creating Silverlight 5
applications.

 Tip You can change the version of Silverlight that you’re targeting at any point after you’ve created it. To do so,
just double-click the Properties node in the Solution Explorer, and change the selection in the Target Silverlight
Version list.

4. Click OK to continue and create the project.

CHAPTER 1  INTRODUCING SILVERLIGHT

5

Figure 1-1. Choosing not to include an ASP.NET website

Every Silverlight project starts with a small set of essential files, as shown in Figure 1-2. All the files
that end with the extension .xaml use a flexible markup standard called XAML, which you’ll dissect in the
next chapter. All the files that end with the extension .cs hold the C# source code that powers your
application.

Figure 1-2. A Silverlight project

Here’s a rundown of the files shown in Figure 1-2:

CHAPTER 1  INTRODUCING SILVERLIGHT

6

• App.xaml and App.xaml.cs: These files configure your Silverlight application. They
allow you to define resources that will be made available to all the pages in your
application (see Chapter 2), and they allow you react to application events such as
startup, shutdown, and error conditions (see Chapter 6). In a newly generated
project, the startup code in the App.xaml.cs file specifies that your application
should begin by showing MainPage.xaml.

• MainPage.xaml: This file defines the user interface (the collection of controls,
images, and text) that will be shown for your first page. Technically, Silverlight
pages are user controls—custom classes that derive from UserControl. A Silverlight
application can contain as many pages as you need—to add more, simply choose
Project  Add New Item, pick the Silverlight User Control template, choose a file
name, and click Add.

• MainPage.xaml.cs: This file includes the code that underpins your first page,
including the event handlers that react to user actions.

 Note For the first few chapters of this book, you’ll create applications that have just a single page. In Chapter 6,
you’ll take a closer look at the application logic that sets your initial page. In Chapter 7, you’ll break free of this
constraint altogether and learn the techniques you need to combine pages and navigate from one to another.

Along with these four essential files, there are a few more ingredients that you’ll find only if you dig
around. Under the Properties node in the Solution Explorer, you’ll find a file named AppManifest.xml,
which lists the assemblies that your application uses. You’ll also find a file named AssemblyInfo.cs,
which contains information about your project (such as its name, version, and publisher) that’s
embedded into your Silverlight assembly when it’s compiled. Neither of these files should be edited by
hand—instead, they’re modified by Visual Studio when you add references or set project properties.

Last, the gateway to your Silverlight application is an automatically generated but hidden HTML test
page named ProjectNameTestPage.html. So if your project is SilverlightApplication1, that page is named
SilverlightApplication1TestPage.html (see Figure 1-3). To see this file, make sure you’ve compiled your
application at least once. Then, click the Show All Files button at the top of the Solution Explorer, and
expand the Bin\Debug folder (which is where your application is compiled). The test page file includes
an <object> element that creates the Silverlight content area. You’ll take a closer look at it later in this
chapter.

CHAPTER 1  INTRODUCING SILVERLIGHT

7

Figure 1-3. The HTML test page

Creating a Simple Silverlight Page
As you’ve already learned, every Silverlight page includes a markup portion that defines the visual
appearance (the XAML file) and a source code file that contains event handlers. To customize your first
Silverlight application, you simply need to open the MainPage.xaml file and begin adding markup.

Visual Studio gives you two ways to look at every XAML file—as a visual preview (known as the
design surface) or the underlying markup (known as the XAML view). By default, Visual Studio shows
both parts, stacked one on the other. Figure 1-4 shows this view and points out the buttons you can use
to change your vantage point.

CHAPTER 1  INTRODUCING SILVERLIGHT

8

Figure 1-4. Viewing XAML pages

You can start designing a XAML page by selecting a control in the Toolbox and then “drawing” it
onto the design surface. However, this convenience won’t save you from learning the full intricacies of
XAML. To organize your elements into the right layout containers, change their properties, wire up event
handlers, and use Silverlight features such as animation, styles, templates, and data binding, you’ll need
to edit the XAML markup by hand. In fact, in many cases, you’ll find that the markup Visual Studio
generates when you drag and drop a page into existence might not be what you really want.

 Note In Silverlight terminology, each graphical widget that meets these criteria (appears in a window and is
represented by a .NET class) is called an element. The term control is generally reserved for elements that receive
focus and allow user interaction. For example, a TextBox is a control, but the TextBlock is not.

To get started, you can try creating the page shown in the following example, which defines a block
of text and a button. The portions in bold have been added to the basic page template that Visual Studio
generated when you created the project.

<UserControl x:Class="SilverlightApplication1.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d" d:DesignWidth="300" d:DesignHeight="400">

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 1  INTRODUCING SILVERLIGHT

9

 <Grid x:Name="LayoutRoot" Background="White">
 <StackPanel>
 <TextBlock x:Name="lblMessage" Text="Hello world."
 Margin="5"></TextBlock>
 <Button x:Name="cmdClickMe" Content="Click Me!" Margin="5"></Button>
 </StackPanel>
 </Grid>
</UserControl>

This creates a page that has a stacked arrangement of two elements. On the top is a block of text
with a simple message. Underneath it is a button.

Adding Event-Handling Code
You attach event handlers to the elements in your page using attributes, which is the same approach
that developers take in WPF, ASP.NET, and JavaScript. For example, the Button element exposes an
event named Click that fires when the button is triggered with the mouse or keyboard. To react to this
event, you add the Click attribute to the Button element and set it to the name of a method in your code:

<Button x:Name="cmdClickMe" Click="cmdClickMe_Click" Content="Click Me!"
 Margin="5"></Button>

 Tip Although it’s not required, it’s a common convention to name event handler methods in the form
ElementName_EventName. If the element doesn’t have a defined name (presumably because you don’t need to
interact with it in any other place in your code), consider using the name it would have.

This example assumes that you’ve created an event-handling method named cmdClickMe_Click.
Here’s what it looks like in the MainPage.xaml.cs file:

private void cmdClickMe_Click(object sender, RoutedEventArgs e)
{
 lblMessage.Text = "Goodbye, cruel world.";
}

You can add an event handler by double-clicking an element on the design surface or by clicking the
Events button in the Properties window and then double-clicking the appropriate event.

If you’ve already coded the event handler you need, you can use IntelliSense to quickly attach it to
the right event. Begin by typing in the attribute name, followed by the equals sign. At this point, Visual
Studio will pop up a menu that lists all the methods that have the right syntax to handle this event and
currently exist in your code-behind class, as shown in Figure 1-5. Simply choose the right event-
handling method.

CHAPTER 1  INTRODUCING SILVERLIGHT

10

Figure 1-5. Attaching an event handler

It’s possible to use Visual Studio (either version) to create and assign an event handler in one step by
adding an event attribute and choosing the <New Event Handler> option in the menu.

 Tip To jump quickly from the XAML to your event-handling code, right-click the appropriate event attribute in
your markup and choose Navigate to Event Handler.

You can also connect an event with code. The place to do it is the constructor for your page, after the
call to InitializeComponent(), which initializes all your controls. Here’s the code equivalent of the XAML
markup shown previously:

public MainPage()
{
 InitializeComponent();
 cmdClickMe.Click += cmdClickMe_Click;
}

The code approach is useful if you need to dynamically create a control and attach an event handler
at some point during the lifetime of your window. By comparison, the events you hook up in XAML are
always attached when the window object is first instantiated. The code approach also allows you to keep
your XAML simpler and more streamlined, which is perfect if you plan to share it with nonprogrammers,
such as a design artist. The drawback is a significant amount of boilerplate code that will clutter up your
code files.

CHAPTER 1  INTRODUCING SILVERLIGHT

11

If you want to detach an event handler, code is your only option. You can use the -= operator, as
shown here:

cmdClickMe.Click -= cmdClickMe_Click;

It is technically possible to connect the same event handler to the same event more than once, but
this is almost always the result of a coding mistake. (In this case, the event handler will be triggered
multiple times.) If you attempt to remove an event handler that’s been connected twice, the event will
still trigger the event handler, but just once.

THE SILVERLIGHT CLASS LIBRARIES

To write practical code, you need to know quite a bit about the classes you have to work with. That means
acquiring a thorough knowledge of the core class libraries that ship with Silverlight.

The Silverlight version of the .NET Framework is simplified in two ways. First, it doesn’t provide the sheer
number of types you’ll find in the full .NET Framework. Second, the classes that it does include often don’t
provide the full complement of constructors, methods, properties, and events. Instead, Silverlight keeps
only the most practical members of the most important classes, which leaves it with enough functionality
to create surprisingly compelling code.

You’ll find that many of the Silverlight classes have public interfaces that resemble their full-fledged
counterparts in the .NET Framework. However, the actual plumbing of these classes is quite different. All
the Silverlight classes have been rewritten from the ground up to be as streamlined and efficient as
possible.

Testing a Silverlight Application
You now have enough to test your Silverlight project. When you run a Silverlight application, Visual
Studio launches your default web browser and navigates to the hidden browser test page, named
ProjectNameTestPage.html. The test page creates a new Silverlight control and initializes it using the
markup in MainPage.xaml.

 Note Visual Studio sets the test page to be the start page for your project. As a result, when you launch your
project, this page will be loaded in the browser. You can choose a different start page by right-clicking another
HTML file in the Solution Explorer and choosing Set As Start Page.

Figure 1-6 shows the previous example at work. When you click the button, the event-handling code
runs, and the text changes. This process happens entirely on the client—there is no need to contact the
server or post back the page, as there is in a server-side programming framework such as ASP.NET. All
the Silverlight code is executed on the client side by the scaled-down version of .NET that’s embedded in
the Silverlight plug-in.

CHAPTER 1  INTRODUCING SILVERLIGHT

12

Figure 1-6. Running a Silverlight application (in Firefox)

If you’re hosting your host Silverlight content in an ordinary website (with no server-side ASP.NET),
Visual Studio won’t use its integrated web server during the testing process. Instead, it simply opens the
HTML test page directly from the file system. (You can see this in the address bar in Figure 1-6.)

In some situations, this behavior could cause discrepancies between your test environment and
your deployed environment, which will use a full-fledged web server that serves pages over HTTP. The
most obvious difference is the security context—in other words, you could configure your web browser
to allow local web pages to perform actions that remote web content can’t. In practice, this isn’t often a
problem, because Silverlight always executes in a stripped-down security context and doesn’t include
any extra functionality for trusted locations. This simplifies the Silverlight development model and
ensures that features won’t work in certain environments and break in others. However, when
production testing a Silverlight application, it’s a good idea to create an ASP.NET test website (as
described in the next section) or—even better—deploy your Silverlight application to a test web server.

Creating an ASP.NET-Hosted Silverlight Project
Although Silverlight does perfectly well on its own, you can also develop, test, and deploy a Silverlight
application as part of an ASP.NET website. You’ll need to take this route if you want your Silverlight
application to interact with server-based features, such as web services, file uploads, TCP
communication, and so on. You’ll also need to use this approach to test certain features, such as custom
startup pages and the setup process for out-of-browser applications.

CHAPTER 1  INTRODUCING SILVERLIGHT

13

 Note The examples included with this book usually use stand-alone Silverlight applications. The solutions
include an ASP.NET website only when it’s required (for example, to supply server-side functionality or to allow
testing of a specific feature that requires it).

Here’s how to create a Silverlight project and an ASP.NET website that uses it in the same solution:

1. Select File  New  Project in Visual Studio, choose the Visual C# • Silverlight
group of project types, and then select the Silverlight Application template. It’s
a good idea to use the “Create directory for solution” option so you can group
together the two projects that Visual Studio will create—one for the Silverlight
assembly and one for ASP.NET website.

2. Ordinarily, Visual Studio assumes you want to use the latest and greatest
version of .NET for the server-side portion of any web applications you create.
If this isn’t what you want, you can pick a different version of .NET from the
drop-down list at the top of the New Project window. For example, if you pick
.NET Framework 3.5, your ASP.NET website will be configured to use this
slightly older version of .NET.

3. Once you’ve picked the solution name and project name, click OK to create it.

4. Make sure the option “Host the Silverlight application in a new website” is
checked.

5. Supply a project name for the ASP.NET website. By default, it’s your project
name with the added text .Web at the end, as shown in Figure 1-7.

6. In the drop-down list underneath, choose the way you want Visual Studio to
manage your project—as a ASP.NET web application project, a ASP.NET
website, or as an ASP.NET MVC project. The choice has no effect on how
Silverlight works, but the examples in this book use ASP.NET websites.

ASP.NET WEB PROJECTS VS. ASP.NET WEBSITES

When you create a Silverlight project with an ASP.NET application, Visual Studio lets you choose between
three different project options. Your choice won’t affect your Silverlight coding, but it may alter the way you
work with the ASP.NET parts of your website.

If you choose ASP.NET Web Application Project, Visual Studio uses a project file to track the contents of
your web application. It also compiles all the ASP.NET code in your web pages into a single assembly
before running your site.

If you choose ASP.NET Web Site, Visual Studio simply assumes everything in the application folder is part
of your web application. Your web page code will be compiled the first time a user requests a page (or
when you use the precompilation tool aspnet_compiler.exe).

CHAPTER 1  INTRODUCING SILVERLIGHT

14

If you choose ASP.NET MVC Web Project, you’ll get the same compilation model as ASP.NET Web
Application Project. However, your site will be configured to use the streamlined ASP.NET MVC
development pattern instead of the classic (and still more popular) web forms model.

For more information about the difference between web projects and projectless websites, as well as
information about ASP.NET MVC, refer to Pro ASP.NET 4 in C# 2010.

7. Choose whether you want to create a Silverlight 5 or Silverlight 4 application in
the Silverlight Version list.

8. You can also choose to enable WCF RIA services, which are a set of web
services that help you bridge the gap between the client-side world of
Silverlight and the server-side world of ASP.NET. For a basic Silverlight
website, leave this option unchecked.

 Note WCF RIA Services require a separate download (www.silverlight.net/getstarted/riaservices) and
aren’t discussed in this book. However, you’ll get an introduction to web services, their foundational technology, in
Chapter 19. For more information, check out the download site or read Pro Business Applications with Silverlight 5.

9. Finally, click OK to create the solution.

Figure 1-7. Creating an ASP.NET website to host Silverlight content

http://www.silverlight.net/getstarted/riaservices

CHAPTER 1  INTRODUCING SILVERLIGHT

15

 Note If you create an ordinary HTML-only website, you can host it on any web server. In this scenario, the web
server has an easy job—it simply needs to send along your HTML files when a browser requests them. If you
decide to create an ASP.NET website, your application’s requirements change. Although the Silverlight portion of
your application will still run on the client, any ASP.NET content you include will run on the web server, which must
have the ASP.NET engine installed.

There are two ways to integrate Silverlight content into an ASP.NET application:

• Create HTML files with Silverlight content: You place these files in your ASP.NET
website folder, just as you would with any other ordinary HTML file. The only
limitation of this approach is that your HTML file obviously can’t include ASP.NET
controls, because it won’t be processed on the server.

• Place Silverlight content inside an ASP.NET web page: In this case, the <object>
element that loads the Silverlight plug-in is inserted into a dynamic .aspx page.
You can add other ASP.NET controls to different regions of this page. The only
disadvantage to this approach is that the page is always processed on the server. If
you aren’t actually using any server-side ASP.NET content, this creates an extra bit
of overhead that you don’t need when the page is first requested.

Of course, you’re also free to mingle both of these approaches and use Silverlight content in
dedicated HTML pages and inside ASP.NET web pages in the same site. When you create a Silverlight
project with an ASP.NET website in Visual Studio, you’ll start with both. For example, if your Silverlight
project is named SilverlightApplication1, you can use SilverlightApplication1TestPage.html or
SilverlightApplication1TestPage.aspx.

Figure 1-8 shows how a Silverlight and ASP.NET solution starts. Along with the two test pages, the
ASP.NET website also includes a Default.aspx page (which can be used as the entry point to your
ASP.NET website), a web.config file (which allows you to configure various website settings), and a
Silverlight.js file (which has JavaScript helper functions for creating and initializing the Silverlight
content region).

CHAPTER 1  INTRODUCING SILVERLIGHT

16

Figure 1-8. Creating an ASP.NET website to host Silverlight content

The Silverlight and ASP.NET option provides essentially the same debugging experience as a
Silverlight-only solution. When you run the solution, Visual Studio compiles both projects and copies
the Silverlight assembly to the ClientBin folder in the ASP.NET website. (This is similar to assembly
references—if an ASP.NET website references a private DLL, Visual Studio automatically copies this DLL
to the Bin folder.)

Once both projects are compiled, Visual Studio looks to the startup project (which is the ASP.NET
website) and looks for the currently selected page. It then launches the default browser and navigates to
that page. The difference is that it doesn’t request the start page directly from the file system. Instead, it
communicates with its built-in test web server. This web server automatically loads on a randomly
chosen port. It acts like a scaled-down version of IIS but accepts requests only from the local computer.
This gives you the ease of debugging without needing to configure IIS virtual directories. Figure 1-9
shows the same Silverlight application you considered earlier but hosted by ASP.NET.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1  INTRODUCING SILVERLIGHT

17

Figure 1-9. An ASP.NET page with Silverlight content

To navigate to a different page from the ASP.NET project, you can type in the address bar of the
browser.

 Note Remember, when building a Silverlight and ASP.NET solution, you add all your Silverlight files and code to
the Silverlight project. The ASP.NET website consumes the final, compiled Silverlight assembly and makes it
available through one or more of its web pages.

ASP.NET Controls That Render Silverlight Content
In the past, ASP.NET developers who wanted to incorporate Silverlight content often relied on a
specially designed ASP.NET web control named Silverlight.

Like all ASP.NET controls, the Silverlight control is processed on the server. When the ASP.NET
engine renders the page into HTML, the Silverlight control emits the <object> element that defines the
Silverlight content region. The end result is that the client gets the same content as in a normal, non-
ASP.NET-hosted Silverlight application. However, the server-side programming model is a bit different.

The advantage of using a web control to generate the Silverlight content region is that it opens up
possibilities for server-side interaction. For example, server-side code can dynamically set the Source
property of the Silverlight control to point to a different application. However, the ASP.NET Silverlight
control provided few openings for real interaction with server code. In the end, it was rarely more than a
glorified wrapper for the <object> element. If you do want to use the Silverlight and MediaPlayer
controls in new projects, you can download the source code for them from
http://code.msdn.microsoft.com/aspnetprojects.

Mixing ASP.NET Controls and Silverlight Content
Almost all the examples you’ll see in this book use HTML test pages. However, more ambitious ASP.NET
developers may use Silverlight to add new functionality to (or just sugarcoat) existing ASP.NET pages.
Examples include Silverlight-powered ad content, menu systems, and embedded applets (such as
calculators or games). When creating pages like this, a few considerations apply.

http://code.msdn.microsoft.com/aspnetprojects

CHAPTER 1  INTRODUCING SILVERLIGHT

18

As you know, all ASP.NET code runs on the web server. To get server-side code to run, ASP.NET
controls use a postback mechanism that sends the current page back to the server. For example, this
happens when you click an ASP.NET button. The problem is that when the page is posted back, the
current Silverlight application ends. The web server code runs, a new version of the page is sent to the
browser, and the browser loads this new page, at which point your Silverlight application restarts. Not
only does this send the user back to the starting point, but it also takes additional time because the
Silverlight environment must be initialized all over again.

If you want to avoid this disruption, you can use ASP.NET AJAX techniques. A particularly useful tool
is the UpdatePanel. The basic technique is to wrap the controls that would ordinarily trigger a postback
and any other controls that they modify into one or more UpdatePanel controls. Then, when the user
clicks a button, an asynchronous request is sent to the web server instead of a full postback. When the
browser receives the reply, it updates the corresponding portions of the page without disrupting the
Silverlight content.

 Tip For a much more detailed exploration of the UpdatePanel control, refer to Pro ASP.NET 4 in C# 2010.

Silverlight Compilation and Deployment
Now that you’ve seen how to create a basic Silverlight project, add a page with elements and code, and
run your application, it’s time to dig a bit deeper. In this section, you’ll see how your Silverlight is
transformed from a collection of XAML files and source code into a rich browser-based application.

Compiling a Silverlight Application
When you compile a Silverlight project, Visual Studio uses the same csc.exe compiler that you use for
full-fledged .NET applications. However, it references a different set of assemblies, and it passes in the
command-line argument nostdlib, which prevents the C# compiler from using the standard library (the
core parts of the .NET Framework that are defined in mscorlib.dll). In other words, Silverlight
applications can be compiled like normal .NET applications written in standard C#, just with a more
limited set of class libraries to draw on. The Silverlight compilation model has a number of advantages,
including easy deployment and vastly improved performance when compared to ordinary JavaScript.

Your compiled Silverlight assembly includes the compiled code and the XAML documents for every
page in your application, which are embedded in the assembly as resources. This ensures that there’s no
way for your event-handling code to become separated from the user interface markup it needs.
Incidentally, the XAML is not compiled in any way (unlike WPF, which converts it into a more optimized
format called BAML).

Your Silverlight project is compiled into a DLL file named after your project. For example, if you
have a project named SilverlightApplication1, the csc.exe compiler will create the file
SilverlightApplication1.dll. The project assembly is dumped into a Bin\Debug folder in your project
directory, along with a few other important files:

• A PDB file: This file contains information required for Visual Studio debugging. It’s
named after your project assembly (for example, SilverlightApplication1.pdb).

• AppManifest.xaml: This file lists assembly dependencies.

CHAPTER 1  INTRODUCING SILVERLIGHT

19

• Dependent assemblies: The Bin\Debug folder contains the assemblies that your
Silverlight project uses, provided these assemblies have the Copy Local property
set to True. Assemblies that are a core part of Silverlight have Copy Local set to
False, because they don’t need to be deployed with your application (you can
change the Copy Local setting by expanding the References node in the Solution
Explorer, selecting the assembly, and using the Properties window).

• The test page: This is the entry page that the user requests to start your Silverlight
application.

• A XAP file: This is a Silverlight package that contains everything you need to
deploy your Silverlight application, including the application manifest, the project
assembly, and any other assemblies that your application uses. If you’re
developing an ASP.NET-hosted Silverlight application, Visual Studio will also copy
the XAP file to the ClientBin folder in the test website.

Of course, you can change the assembly name, the default namespace (which is used when you add
new code files), and the XAP file name using the Visual Studio project properties (Figure 1-10). Just
double-click the Properties node in the Solution Explorer.

Figure 1-10. Silverlight project properties

CHAPTER 1  INTRODUCING SILVERLIGHT

20

Deploying a Silverlight Application
Once you understand the Silverlight compilation model, it’s a short step to understanding the
deployment model. The XAP file is the key piece. It wraps the units of your application (the application
manifest and the assemblies) into one neat container.

Technically, the XAP file is a ZIP archive. To verify this, rename a XAP file like
SilverlightApplication1.xap to SilverlightApplication1.xap.zip. You can then open the archive and view
the files inside. Figure 1-11 shows the contents of the XAP file for the simple example shown earlier in
this chapter. Currently, it includes the application manifest and the application assembly. If your
application uses add-on assemblies such as System.Windows.Controls.dll, you’ll find them in the XAP
file as well.

Figure 1-11. The contents of a XAP file

The XAP file system has two obvious benefits:

• It compresses your content: Because this content isn’t decompressed until it
reaches the client, it reduces the time required to download your application. This
is particularly important if your application contains large static resources (see
Chapter 6), such as images or blocks of text.

• It simplifies deployment: When you’re ready to take your Silverlight application
live, you simply need to copy the XAP file to the web server, along with the test
page or a similar HTML file (or ASP.NET web page) that includes a Silverlight
content region. You don’t need to worry about keeping track of the assemblies and
resources.

Thanks to the XAP model, there’s not much to think about when deploying a simple Silverlight
application. Hosting a Silverlight application simply involves making the appropriate XAP file available
so the clients can download it through the browser and run it on their local machines.

CHAPTER 1  INTRODUCING SILVERLIGHT

21

SILVERLIGHT DECOMPILATION

Now that you understand the infrastructure that underpins a Silverlight project, it’s easy to see how you
can decompile any existing application to learn more about how it works. Here’s how:

1. Surf to the HTML test page.

2. View the source for the web page, and look for the <param> element that points
to the XAP file.

3. Type a request for the XAP file into your browser’s address bar. (Keep the same
domain, but replace the page name with the partial path that points to the XAP
file.)

4. Choose Save As to save the XAP file locally.

5. Rename the XAP file to add the .zip extension. Then, open it and extract the
project assembly. This assembly is essentially the same as the assemblies you
build for ordinary .NET applications. Like ordinary .NET assemblies, it contains
Intermediate Language (IL) code.

6. Open the project assembly in a tool such as Reflector (www.red-
gate.com/products/reflector) to view the IL and embedded resources. Using
the right plug-in, you can even decompile the IL to C# syntax.

Of course, many Silverlight developers don’t condone this sort of behavior (much as many .NET developers
don’t encourage end users to decompile their rich client applications). However, it’s an unavoidable side
effect of the Silverlight compilation model.

Because IL code can be easily decompiled or reverse engineered, it’s not an appropriate place to store
secrets (such as encryption keys, proprietary algorithms, and so on). If you need to perform a task that
uses sensitive code, consider calling a web service from your Silverlight application. If you just want to
prevent other hotshots from reading your code and copying your style, you may be interested in raising the
bar with an obfuscation tool, which uses a number of tricks to scramble the structure and names in your
compiled code without changing its behavior. Visual Studio ships with a scaled-down obfuscation tool
named Dotfuscator, and many more are available commercially.

Silverlight Core Assemblies
Silverlight includes a subset of the classes from the full .NET Framework. Although it would be
impossible to cram the entire .NET Framework into Silverlight—after all, it’s a 5MB download that needs
to support a variety of browsers and operating systems—Silverlight includes a remarkable amount of
functionality.

Every Silverlight project starts with references to the following assemblies. All of these assemblies
are part of the Silverlight runtime, so they don’t need to be deployed with your application.

http://www.red-gate.com/products/reflector
http://www.red-gate.com/products/reflector
http://www.red-gate.com/products/reflector

CHAPTER 1  INTRODUCING SILVERLIGHT

22

• mscorlib.dll: This assembly is the Silverlight equivalent of the mscorlib.dll
assembly that includes the most fundamental parts of the .NET Framework. The
Silverlight version includes core data types, exceptions, and interfaces in the
System namespace; ordinary and generic collections; file management classes;
and support for globalization, reflection, resources, debugging, and
multithreading.

• System.dll: This assembly contains additional generic collections, classes for
dealing with URIs, and classes for dealing with regular expressions.

• System.Core.dll: This assembly contains support for LINQ. The name of the
assembly matches the full .NET Framework.

• System.Net.dll: This assembly contains classes that support networking, allowing
you to download web pages and create socket-based connections.

• System.Windows.dll: This assembly includes many of the classes for building
Silverlight user interfaces, including basic elements, shapes and brushes, classes
that support animation and data binding, and a version of the OpenFileDialog
that works with isolated storage.

• System.Windows.Browser.dll: This assembly contains classes for interacting with
HTML elements.

• System.Xml.dll: This assembly includes the bare minimum classes you need for
XML processing: XmlReader and XmlWriter.

 Note Some of the members in the Silverlight assemblies are available only to .NET Framework code and aren’t
callable from your code. These members are marked with the SecurityCritical attribute. However, this attribute
does not appear in the Object Browser, so you won’t be able to determine whether a specific feature is usable in a
Silverlight application until you try to use it. (If you attempt to use a member that has the SecurityCritical attribute,
you’ll get a SecurityException.) For example, Silverlight applications are allowed to access the file system only
through the isolated storage API or the OpenFileDialog class. For that reason, the constructor for the FileStream
class is decorated with the SecurityCritical attribute.

Silverlight Add-on Assemblies
The architects of Silverlight have set out to keep the core framework as small as possible. This design
makes the initial Silverlight plug-in small to download and quick to install—an obvious selling point to
web surfers everywhere.

To achieve this lean-and-mean goal, the Silverlight designers have removed some functionality
from the core Silverlight runtime and placed it in separate add-on assemblies. These assemblies are still
considered to be part of the Silverlight platform, but if you want to use them, you’ll need to package
them with your application. This is an obvious trade-off, because it will increase the download size of
your application. (The effect is mitigated by Silverlight’s built-in compression, which you’ll learn about
later in this chapter.)

CHAPTER 1  INTRODUCING SILVERLIGHT

23

You’ll learn about Silverlight’s add-on assemblies throughout this book. The most commonly used
ones follow:

• System.Windows.Controls.dll: This assembly contains many valuable but more
specialized controls, including a TreeView, a TabControl, two date controls (the
DatePicker and Calendar), and the GridSplitter.

• System.Windows.Controls.Data.dll: This assembly has Silverlight’s built-from-
scratch DataGrid, which is an ideal tool for showing dense grids of data, and the
DataPager, which gives it the ability to split results into separately viewable groups
called pages.

• System.Windows.Controls.Data.Input.dll: This assembly holds a few controls that
are helpful when building data-bound forms, including a Label,
DescriptionViewer, and ValidationSummary.

• System.Windows.Controls.Input.dll: This assembly includes the
AutoCompleteBox—a text box that drops down a list of suggestions as the user
types.

• System.Windows.Controls.Navigation.dll: This assembly contains the Frame and
Page controls that are the basis of Silverlight’s navigation system.

All of these assemblies add new controls to your Silverlight Toolkit. Microsoft also makes many
more add-in controls available through the Silverlight Toolkit, which you can download at
www.codeplex.com/Silverlight.

When you add a control from an add-on assembly onto a Silverlight page, Visual Studio
automatically adds the assembly reference you need. If you select that reference and look in the
Properties window, you’ll see that the Copy Local property is set to True, which is different from the
other assemblies that make up the core Silverlight runtime. As a result, when you compile your
application, the assembly will be embedded in the final package. Visual Studio is intelligent enough to
recognize assemblies that aren’t part of the core Silverlight runtime—even if you add them by hand, it
automatically sets Copy Local to True.

Assembly Caching
Assembly caching is a deployment technique that allows you to leave dependent assemblies out of your
XAP file. Instead, you deploy dependent assemblies alongside your XAP file, placing them in separate ZIP
files in the same folder. The goal is to reduce application startup time by letting clients keep cached
copies of frequently used assemblies.

By default, the Silverlight applications you create in Visual Studio are not configured to use
assembly caching. To turn this feature on, double-click the Properties node in the Solution Explorer.
Then, in the project properties window shown in Figure 1-10, switch on the setting “Reduce XAP size by
using application library caching.” To see the results, recompile your application, click the Show All Files
button at the top of the Solution Explorer, and expand the Bin\Debug folder. You’ll see a ZIP file for each
cacheable assembly. For example, if your application uses System.Windows.Controls.dll, you’ll see a file
named System.Windows.Controls.zip next to your XAP file. This file holds a compressed copy of the
System.Windows.Controls.dll assembly. The XAP, which held this assembly before you enabled
assembly caching, no longer has a copy of it.

If you’re using an ASP.NET test website, Visual Studio copies the XAP file and all the cacheable
assemblies to the ClientBin folder in the website. Figure 1-12 shows the result after compiling an

http://www.codeplex.com/Silverlight

CHAPTER 1  INTRODUCING SILVERLIGHT

24

application that uses the System.Windows.Controls.dll and System.Windows.Controls.Navigation.dll
assemblies.

Figure 1-12. Dependent assemblies that support assembly caching

Assembly caching decreases the size of your XAP file. Smaller files can be downloaded more quickly,
so shrinking the XAP file improves application startup time. But initially, assembly caching won’t
produce any performance improvement. That’s because the first time clients run your Silverlight
application, they’ll need to download both the slimmed-down XAP and the separate ZIP files with the
dependent assemblies. The total amount of downloaded data is the same.

However, the benefit appears when the user returns to run the application a second time. Once
again, the browser will download the application XAP file. However, because the dependent assemblies
are still in the browser cache, the client won’t need to download them.

Here are a few considerations to help you get the most out of assembly caching:

• The downloaded assembly only lasts as long as the browser cache. If the user
explicitly clears the cache, all the cached assemblies will be removed.

• Every time the client runs the application, the application checks for new versions
of the cached assembly. If it spots a new version, it downloads it and replaces the
previously cached version.

• If one application downloads an assembly and places it in the browser cache,
another application that uses assembly caching can use it.

CHAPTER 1  INTRODUCING SILVERLIGHT

25

• The benefits of assembly caching are greatest for large, infrequently changed
assemblies. Many assemblies aren’t that big, and the cost of downloading them
each time the application starts isn’t significant. In this case, using assembly
caching will simply complicate the deployment of your application.

• With a bit of work, you can use assembly caching with your own class library
assemblies. Once again, this makes most sense if your assemblies are large and
you don’t change them frequently. You’ll learn how to create assemblies that
support assembly caching in Chapter 6.

The HTML Test Page
The last ingredient in the deployment picture is the HTML test page. This page is the entry point into
your Silverlight content—in other words, the page the user requests in the web browser. Visual Studio
names this file to match your project name (like SilverlightApplication1TestPage.html), but you’ll
probably want to rename it to something more appropriate.

The HTML test page doesn’t actually contain Silverlight markup or code. Instead, it simply sets up
the content region for the Silverlight plug-in, using a small amount of JavaScript. (For this reason,
browsers that have JavaScript disabled won’t be able to see Silverlight content.) Here’s a slightly
shortened version of the HTML test page that preserves the key details:

<html xmlns="http://www.w3.org/1999/xhtml">
<!-- saved from url=(0014)about:internet -->
<head>
 <title>SilverlightApplication1</title>

 <style type="text/css">
 ...
 </style>

 <script type="text/javascript">
 ...
 </script>
</head>

<body>
 <form id="form1" runat="server" style="height:100%">

 <!-- Silverlight content will be displayed here. -->
 <div id="silverlightControlHost">
 <object data="data:application/x-silverlight-2,"
 type="application/x-silverlight-2" width="100%" height="100%">
 <param name="source" value="SilverlightApplication1.xap" />
 <param name="onError" value="onSilverlightError" />
 <param name="background" value="white" />
 <param name="minRuntimeVersion" value="5.0.61118.0" />
 <param name="autoUpgrade" value="true" />

 <a href="http://go.microsoft.com/fwlink/?LinkID=149156&v=5.0.61118.0"
 style="text-decoration:none">
 <img src=" http://go.microsoft.com/fwlink/?LinkId=161376"

http://www.w3.org/1999/xhtml
http://go.microsoft.com/fwlink/?LinkID=149156&v=5.0.61118.0
http://go.microsoft.com/fwlink/?LinkId=161376

CHAPTER 1  INTRODUCING SILVERLIGHT

26

 alt="Get Microsoft Silverlight" style="border-style:none"/>

 </object>
 <iframe id="_sl_historyFrame"
 style="visibility:hidden;height:0px;width:0px;border:0px"></iframe>
 </div>
</body>
</html>

The key detail is the <div> element that represents the Silverlight content region. It contains an
<object> element that loads the Silverlight plug-in. The <object> element includes four key attributes.
You won’t change the data and type attributes—they indicate that the <object> element represents a
Silverlight content region using version 2 or later. However, you may want to modify the height and
width attributes, which determine the dimensions of the Silverlight content region, as described next.

 Note Be cautious about changing seemingly trivial details in the HTML test page. Some minor quirks are
required to ensure compatibility with certain browsers. For example, the comma at the end of the data attribute in
the <object> element ensures Firefox support. The invisible <iframe> at the bottom of the Silverlight <div> allows
navigation to work with Safari. As a general guideline, the only test page content you should change are the width
and height settings, the list of parameters, and the alternate content.

CHANGING THE TEST PAGE

If you’re using an ASP.NET website, the test page is generated once, when the ASP.NET website is first
created. As a result, you can modify the HTML page without worrying that your changes will be
overwritten.

If you’re using a stand-alone project without an ASP.NET website, Visual Studio generates the test page
each time you run the project. As a result, any changes you make to it will be discarded. If you want to
customize the test page, the easiest solution is to create a new test page for your project. Here’s how:

Run your project at least once to create the test page.

1. Click the Show All Files icon at the top of the Solution Explorer.

2. Expand the Bin\Debug folder in the Solution Explorer.

3. Find the test page file, right-click it, and choose Copy. Then right-click the
Bin\Debug folder and choose Paste. This duplicate will be your custom test page.
Right-click the new file and choose Rename to give it a better name.

4. To make the custom test page part of your project, right-click it and choose
Include in Project.

5. To tell Visual Studio to navigate to your test page when you run the project, right-
click your test page, and choose Set As Start Page.

CHAPTER 1  INTRODUCING SILVERLIGHT

27

Sizing the Silverlight Content Region
By default, the Silverlight content region is given a width and height of 100 percent, so the Silverlight
content can consume all the available space in the browser window. You can constrain the size of
Silverlight content region by hard-coding pixel sizes for the height and width (which is limiting and
usually avoided). Or, you can place the <div> element that holds the Silverlight content region in a more
restrictive place on the page—for example, in a cell in a table, in another fixed-sized element, or between
other <div> elements in a multicolumn layout.

Even though the default test page sizes the Silverlight content region to fit the available space in the
browser window, your XAML pages may include hard-coded dimensions. You set these by adding the
Height and Width attributes to the root UserControl element and specifying a size in pixels. If the
browser window is larger than the hard-coded page size, the extra space won’t be used. If the browser
window is smaller than the hard-coded page size, part of the page may fall outside the visible area of the
window.

Hard-coded sizes make sense when you have a graphically rich layout with absolute positioning and
little flexibility. If you don’t, you might prefer to remove the Width and Height attributes from the
<UserControl> start tag. That way, the page will be sized to match the Silverlight content region, which
in turn is sized to fit the browser window, and your Silverlight content will always fit itself into the
currently available space.

To get a better understanding of the actual dimensions of the Silverlight content region, you can add
a border around it by adding a simple style rule to the <div>, like this:

<div id="silverlightControlHost" style="border: 1px red solid">

You’ll create resizable and scalable Silverlight pages in Chapter 3, when you explore layout in more
detail.

Silverlight Parameters
The <object> element contains a series of <param> elements that specify additional options to the
Silverlight plug-in.

Table 1-1 lists some of basic the parameters that you can use. You’ll learn about many other
specialized parameters in examples throughout this book, as you delve into features such as HTML
access, splash screens, transparency, and animation.

Table 1-1. Basic Parameters for the Silverlight Plug-In

Name Value

source A URI that points to the XAP file for your Silverlight application.
This parameter is required.

onError A JavaScript event handler that’s triggered when a unhandled
error occurs in the Silverlight plug-in or in your code. The
onError event handler is also called if the user has Silverlight
installed but doesn’t meet the minRuntimeVersion parameter.

CHAPTER 1  INTRODUCING SILVERLIGHT

28

Name Value

background The color that’s used to paint the background of the Silverlight
content region, behind any content that you display (but in
front of any HTML content that occupies the same space). If you
set the Background property of a page, it’s painted over this
background.

minRuntimeVersion This is the minimum version of Silverlight that the client must
have in order to run your application. If you need the features of
Silverlight 5, set this to 5.0.61118.0 (because slightly earlier
versions may correspond to beta builds). If Silverlight 4 is
sufficient, set this to 4.0.50401.0. If Silverlight 3 is sufficient, use
3.0.40624.0. Make sure this matches the version of Silverlight
you use to compile your application.

autoUpgrade A Boolean that specifies whether Silverlight should (if it’s
installed and has an insufficient version number) attempt to
update itself. The default is true. You may choose to set this to
false to deal with version problems on your own using the
onError event, as described in the “Creating a Friendly Install
Experience” section.

enableHtmlAccess A Boolean that specifies whether the Silverlight plug-in has
access to the HTML object model. Use true if you want to be
able to interact with the HTML elements on the test page
through your Silverlight code (as demonstrated in Chapter 17).

initParams A string that you can use to pass custom initialization
information. This technique (which is described in Chapter 6) is
useful if you plan to use the same Silverlight application in
different ways on different pages.

splashScreenSource The location of a XAML splash screen to show while the XAP file
is downloading. You’ll learn how to use this technique in
Chapter 6.

windowless A Boolean that specifies whether the plug-in renders in
windowed mode (the default) or windowless mode. If you set
this true, the HTML content underneath your Silverlight content
region can show through. This is ideal if you’re planning to
create a shaped Silverlight control that integrates with HTML
content, and you’ll see how to use it in Chapter 17.

onSourceDownloadProgressChanged A JavaScript event handler that’s triggered when a piece of the
XAP file has been downloaded. You can use this event handler to
build a startup progress bar, as in Chapter 6.

CHAPTER 1  INTRODUCING SILVERLIGHT

29

Name Value

onSourceDownloadComplete A JavaScript event handler that’s triggered when the entire XAP
file has been downloaded.

onLoad A JavaScript event handler that’s triggered when the markup in
the XAP file has been processed and your first page has been
loaded.

onResize A JavaScript event handler that’s triggered when the size of a
Silverlight content region has changed.

Alternate Content
The <div> element also has some HTML markup that will be shown if the <object> tag isn’t understood
or the plug-in isn’t available. In the standard test page, this markup consists of a Get Silverlight picture,
which is wrapped in a hyperlink that, when clicked, takes the user to the Silverlight download page.

<a href="http://go.microsoft.com/fwlink/?LinkID=149156&v=5.0.61118.0"
 style="text-decoration:none">
 <img src=" http://go.microsoft.com/fwlink/?LinkId=161376"
 alt="Get Microsoft Silverlight" style="border-style:none"/>

Creating a Friendly Install Experience
Some of the users who reach your test page will not have Silverlight installed, or they won’t have the
correct version. The standard behavior is for the Silverlight test page to detect the problem and notify the
user. However, this may not be enough to get the user to take the correct action.

For example, consider a user who arrives at your website for the first time and sees a small graphic
asking them to install Silverlight. That user may be reluctant to install an unfamiliar program, confused
about why it’s needed, and intimidated by the installation terminology. Even if they do click ahead to
install Silverlight, they’ll face still more prompts asking them to download the Silverlight installation
package and then run an executable. At any point, they might get second thoughts and surf somewhere
else.

 Tip Studies show that web surfers are far more likely to make it through an installation process on the Web if
they’re guided to do it as part of an application, rather than prompted to install it as a technology.

To give your users a friendlier install experience, begin by customizing the alternate content. As you
learned in the previous section, if the user doesn’t have any version of Silverlight installed, the browser
shows the Silverlight badge—essentially, a small banner with a logo and a Get Silverlight button. This
indicator is obvious to developers but has little meaning to end users. To make it more relevant, add a
custom graphic that clearly has the name and logo of your application, include some text underneath

http://go.microsoft.com/fwlink/?LinkID=149156&v=5.0.61118.0
http://go.microsoft.com/fwlink/?LinkId=161376

CHAPTER 1  INTRODUCING SILVERLIGHT

30

that explaining that the Silverlight plug-in is required to power your application, and then include the
download button.

The second area to address is versioning issues. If the user has Silverlight, but it doesn’t meet the
minimum version requirement, the alternate content isn’t shown. Instead, the Silverlight plug-in
triggers the onError event with args.ErrorCode set to 8001 (upgrade required) or 8002 (restart required)
and then displays a dialog box prompting the user to get the updated version. A better, clearer approach
is to handle this problem yourself.

First, disable the automatic upgrading process by setting the autoUpgrade parameter to false:

<param name="autoUpgrade" value="false" />

Then, check for the version error code in the onSilverlightError function in the test page. If you
detect a version problem, you can then use JavaScript to alter the content of the <div> element that
holds the Silverlight plug-in. Swap in a more meaningful graphic that clearly advertises your application,
along with the download link for the correct version of Silverlight.

function onSilverlightError(sender, args) {
 if (args.ErrorCode == 8001)
 {
 // Find the Silverlight content region.
 var hostContainer = document.getElementById("silverlightControlHost");

 // Change the content. You can supply any HTML here.
 hostContainer.innerHTML = "...";
 }
 // (Deal with other types of errors here.)
}

To test your code, just set the minRuntimeVersion parameter absurdly high:

<param name="minRuntimeVersion" value="6" />

MATCHING THE MINIMUM RUNTIME WITH THE TARGET VERSION

As you learned earlier, you can change the version of Silverlight that your application targets at any time
(just double-click the Properties node in the Solution Explorer and pick a new version in the Target
Silverlight Version list). However, it’s important to understand what happens to the test page when you
make a change.

If you’re using a stand-alone Silverlight application with an automatically generated test page, Visual
Studio sets the minRuntimeVersion attribute to match the target version the next time it generates the
HTML test page. This behavior is what you want.

If you’re using an ASP.NET-hosted Silverlight application or a custom HTML test page, Visual Studio won’t
make any changes to the minRuntimeVersion attribute. This is a problem, because it can lead to a situation
where your application is compiled with a later version of Silverlight than indicated by the
minRuntimeVersion attribute. In this situation, a user might meet the minRuntimeVersion requirement
without having the version of Silverlight that’s actually needed to run the application. In this case, the user
won’t see the alternate content with the link to the install site. Instead, the user will receive a less helpful
error in a message box when the browser plug-in attempts to start the Silverlight application.

CHAPTER 1  INTRODUCING SILVERLIGHT

31

Thus, if you change the target version of your Silverlight application, it’s always a good idea to make sure
the minRuntimeVersion attribute matches.

The Mark of the Web
One of the stranger details in the HTML test page is the following comment, which appears in the second
line:

<!-- saved from url=(0014)about:internet -->

Although this comment appears to be little more than an automatically generated stamp that the
browser ignores, it actually has an effect on the way you debug your application. This comment is known
as the mark of the Web, and it’s a specialized flag that forces Internet Explorer to run pages in a more
restrictive security zone than it would normally use.

Ordinarily, the mark of the Web indicates the website from which a locally stored page was
originally downloaded. But in this case, Visual Studio has no way of knowing where your Silverlight
application will eventually be deployed. It falls back on the URL about:internet, which simply signals
that the page is from some arbitrary location on the public Internet. The number (14) simply indicates
the number of characters in this URL. For a more detailed description of the mark of the Web and its
standard uses, see http://tinyurl.com/2ctnsj9.

All of this raises an obvious question—namely, why is Visual Studio adding a marker that’s typically
reserved for downloaded pages? The reason is that without the mark of the Web, Internet Explorer will
load your page with the relaxed security settings of the local machine zone. This wouldn’t cause a
problem, except that Internet Explorer also includes a safeguard that disables scripts and ActiveX
controls in this situation. As a result, if you run a test page that’s stored on your local hard drive and this
test page doesn’t have the mark of the Web, you’ll see the irritating warning message shown in Figure 1-
13, and you’ll need to explicitly allow the blocked content. Worst of all, you’ll need to repeat this process
every time you open the page.

http://tinyurl.com/2ctnsj9

CHAPTER 1  INTRODUCING SILVERLIGHT

32

Figure 1-13. A page with disabled Silverlight content

This problem will disappear when you deploy the web page to a real website, but it’s a significant
inconvenience while testing. To avoid headaches such as these, make sure you add a similar mark of the
Web comment if you design your own custom test pages.

The Last Word
In this chapter, you took your first look at the Silverlight application model. You saw how to create a
Silverlight project in Visual Studio, add a simple event handler, and test it. You also peered behind the
scenes to explore how a Silverlight application is compiled and deployed.

In the following chapters, you’ll learn much more about the full capabilities of the Silverlight
platform. Sometimes, you might need to remind yourself that you’re coding inside a lightweight
browser-hosted framework, because much of Silverlight coding feels like the full .NET platform, despite
that it’s built on only a few megabytes of compressed code. Out of all of Silverlight’s many features, its
ability to pack a miniature modern programming framework into a slim download is surely its most
impressive.

C H A P T E R 2

33

XAML

XAML (short for Extensible Application Markup Language and pronounced zammel) is a markup
language used to instantiate .NET objects. Although XAML is a technology that can be applied to many
different problem domains, it was initially designed as part of Windows Presentation Foundation (WPF),
where it allows Windows developers to construct rich user interfaces. You use the same standard to
build user interfaces for Silverlight applications.

Conceptually, XAML plays a role that’s a lot like HTML and is even closer to its stricter cousin,
XHTML. XHTML allows you to define the elements that make up an ordinary web page. Similarly, XAML
allows you to define the elements that make up a XAML content region. To manipulate XHTML
elements, you can use client-side JavaScript. To manipulate XAML elements, you write client-side C#
code. Finally, XAML and XHTML share many of the same syntax conventions. Like XHTML, XAML is an
XML-based language that consists of elements that can be nested in any arrangement you like.

In this chapter, you’ll get a detailed introduction to XAML and consider a simple single-page
application. Once you understand the broad rules of XAML, you’ll know what is and isn’t possible in a
Silverlight user interface—and how to make changes by hand. By exploring the tags in a Silverlight XAML
document, you’ll also learn more about the object model that underpins Silverlight user interfaces and
get ready for the deeper exploration to come.

Finally, at the end of this chapter, you’ll consider two markup extensions that extend XAML with
Silverlight-specific features. First, you’ll see how you can streamline code and reuse markup with XAML
resources and the StaticResource extension. Next, you’ll learn how to link two elements together with
the Binding extension. Both techniques are a core part of Silverlight development, and you’ll see them at
work throughout this book.

XAML Basics
The XAML standard is quite straightforward once you understand a few ground rules:

• Every element in a XAML document maps to an instance of a Silverlight class. The
name of the element matches the name of the class exactly. For example, the
element <Button> instructs Silverlight to create a Button object.

• As with any XML document, you can nest one element inside another. As you’ll
see, XAML gives every class the flexibility to decide how it handles this situation.
However, nesting is usually a way to express containment—in other words, if you
find a Button element inside a Grid element, your user interface probably includes
a Grid that contains a Button inside.

CHAPTER 2  XAML

34

• You can set the properties of each class through attributes. However, in some
situations, an attribute isn’t powerful enough to handle the job. In these cases,
you’ll use nested tags with a special syntax.

 Tip If you’re completely new to XML, you’ll probably find it easier to review the basics before you tackle XAML.
To get up to speed quickly, try the free tutorial at www.w3schools.com/xml.

Before continuing, take a look at this bare-bones XAML document, which represents a blank page
(as created by Visual Studio). The lines have been numbered for easy reference:

1 <UserControl x:Class="SilverlightApplication1.MainPage"
2 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
3 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
4 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
5 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
6 mc:Ignorable="d" d:DesignWidth="640" d:DesignHeight="480">
7
8 <Grid x:Name="LayoutRoot">
9 </Grid>
10 </UserControl>

This document includes only two elements—the top-level UserControl element, which wraps all the
Silverlight content on the page, and the Grid, in which you can place all your elements.

As in all XML documents, there can only be one top-level element. In the previous example, that
means that as soon as you close the UserControl element with the </UserControl> tag, you end the
document. No more content can follow.

XAML Namespaces
When you use an element like <UserControl> in a XAML file, the Silverlight parser recognizes that you
want to create an instance of the UserControl class. However, it doesn’t necessarily know what
UserControl class to use. After all, even if the Silverlight namespaces include only a single class with that
name, there’s no guarantee that you won’t create a similarly named class of your own. Clearly, you need
a way to indicate the Silverlight namespace information in order to use an element.

In Silverlight, classes are resolved by mapping XML namespaces to Silverlight namespaces. In the
sample document shown earlier, four namespaces are defined:

2 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
3 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
4 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
5 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

The xmlns attribute is a specialized attribute in the world of XML, and it’s reserved for declaring
namespaces. This snippet of markup declares four namespaces that you’ll find in every page you create
with Visual Studio or Expression Blend.

http://www.w3schools.com/xml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 2  XAML

35

 Note XML namespaces are declared using attributes. These attributes can be placed inside any element start
tag. However, convention dictates that all the namespaces you need to use in a document should be declared in
the very first tag, as they are in this example. Once a namespace is declared, it can be used anywhere in the
document.

Core Silverlight Namespaces
The first two namespaces are the most important. You’ll need them to access essential parts of the
Silverlight runtime:

• http://schemas.microsoft.com/winfx/2006/xaml/presentation is the core Silverlight
namespace. It encompasses all the essential Silverlight classes, including the
UserControl and Grid. Ordinarily, this namespace is declared without a
namespace prefix, so it becomes the default namespace for the entire document.
In other words, every element is automatically placed in this namespace unless
you specify otherwise.

• http://schemas.microsoft.com/winfx/2006/xaml is the XAML namespace. It includes
various XAML utility features that allow you to influence how your document is
interpreted. This namespace is mapped to the prefix x. That means you can apply
it by placing the namespace prefix before the name of an XML element or
attribute (as in <x:ElementName> and x:Class="ClassName").

The namespace information allows the XAML parser to find the right class. For example, when it
looks at the UserControl and Grid elements, it sees that they are placed in the default
http://schemas.microsoft.com/winfx/2006/xaml/presentation namespace. It then searches the
corresponding Silverlight namespaces, until it finds the matching classes System.Windows.UserControl
and System.Windows.Controls.Grid.

XML NAMESPACES AND SILVERLIGHT NAMESPACES

The XML namespace name doesn’t correspond to a single Silverlight namespace. Instead, all the
Silverlight namespaces share the same XML namespace. There are a couple of reasons the creators of
XAML chose this design. By convention, XML namespaces are often URIs (as they are here). These URIs
look like they point to a location on the Web, but they don’t. The URI format is used because it makes it
unlikely that different organizations will inadvertently create different XML-based languages with the same
namespace. Because the domain schemas.microsoft.com is owned by Microsoft, only Microsoft will use it
in an XML namespace name.

The other reason that there isn’t a one-to-one mapping between the XML namespaces used in XAML and
Silverlight namespaces is because it would significantly complicate your XAML documents. If each
Silverlight namespace had a different XML namespace, you’d need to specify the right namespace for each
and every control you use, which would quickly get messy. Instead, the creators of Silverlight chose to

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation

CHAPTER 2  XAML

36

map all the Silverlight namespaces that include user interface elements to a single XML namespace. This
works because within the different Silverlight namespaces, no two classes share the same name.

Design Namespaces
Along with these core namespaces are too more specialized namespaces, neither of which is essential:

• xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006 is the
XAML compatibility namespace. You can use it to tell the XAML parser what
information must to process and what information to ignore.

• http://schemas.microsoft.com/expression/blend/2008 is a namespace reserved for
design-specific XAML features that are supported in Expression Blend (and now
Visual Studio 2010). It’s used primarily to set the size of the design surface for a
page.

Both of these namespaces are used in the single line shown here:

6 mc:Ignorable="d" d:DesignWidth="640" d:DesignHeight="480">

The DesignWidthi and DesignHeight properties are part of the
http://schemas.microsoft.com/expression/blend/2008 namespace. They tell the design tool to make the
page 640480 pixels large at design time. Without this detail, you would be forced to work with a
squashed-up design surface that doesn’t give a realistic preview of your user interface or set a hard-
coded size using the Width and Height properties (which isn’t ideal, because it prevents your page from
resizing to fit the browser window at runtime).

The Ignorable property is part of the http://schemas.openxmlformats.org/markup-
compatibility/2006 namespace. It tells the XAML design tool that it’s safe to ignore the parts of the
document that are prefixed with a d and placed in the
http://schemas.microsoft.com/expression/blend/2008. In other words, if the XAML parser doesn’t
understand the DesignWidth and DesignHeight details, it’s safe to continue because they aren’t critical.

 Note In the examples in this book, you’ll rarely see either of these namespaces, because they aren’t terribly
important. They’re intended for design tools and XAML readers only, not the Silverlight runtime.

Custom Namespaces
In many situations, you’ll want to have access to your own namespaces in a XAML file. The most
common example is if you want to use a custom Silverlight control that you (or another developer) have
created. In this case, you need to define a new XML namespace prefix and map it to your assembly.
Here’s the syntax you need:

<UserControl x:Class="SilverlightApplication1.MainPage"
 xmlns:w="clr-namespace:Widgets;assembly=WidgetLibrary"
 ... >

The XML namespace declaration sets three pieces of information:

www.allitebooks.com

http://schemas.openxmlformats.org/markup-compatibility/2006istheXAMLcompatibilitynamespace.YoucanuseittotelltheXAMLparserwhatinformationmusttoprocessandwhatinformationtoignore.%E2%80%A2
http://schemas.openxmlformats.org/markup-compatibility/2006istheXAMLcompatibilitynamespace.YoucanuseittotelltheXAMLparserwhatinformationmusttoprocessandwhatinformationtoignore.%E2%80%A2
http://schemas.openxmlformats.org/markup-compatibility/2006istheXAMLcompatibilitynamespace.YoucanuseittotelltheXAMLparserwhatinformationmusttoprocessandwhatinformationtoignore.%E2%80%A2
http://schemas.openxmlformats.org/markup-compatibility/2006istheXAMLcompatibilitynamespace.YoucanuseittotelltheXAMLparserwhatinformationmusttoprocessandwhatinformationtoignore.%E2%80%A2
http://schemas.microsoft.com/expression/blend/2008isanamespacereservedfordesign-specificXAMLfeaturesthataresupportedinExpressionBlend
http://schemas.microsoft.com/expression/blend/2008isanamespacereservedfordesign-specificXAMLfeaturesthataresupportedinExpressionBlend
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006
http://schemas.openxmlformats.org/markup-compatibility/2006
http://schemas.openxmlformats.org/markup-compatibility/2006
http://schemas.microsoft.com/expression/blend/2008
http://www.allitebooks.org

CHAPTER 2  XAML

37

• The XML namespace prefix: You’ll use the namespace prefix to refer to the
namespace in your XAML page. In this example, that’s w, although you can
choose anything you want that doesn’t conflict with another namespace prefix.

• The .NET namespace: In this case, the classes are located in the Widgets
namespace. If you have classes that you want to use in multiple namespaces, you
can map them to different XML namespaces or to the same XML namespace (as
long as there aren’t any conflicting class names).

• The assembly: In this case, the classes are part of the WidgetLibrary.dll assembly.
(You don’t include the .dll extension when naming the assembly.) Silverlight will
look for that assembly in the same XAP package where your project assembly is
placed.

 Note Remember, Silverlight uses a lean, stripped-down version of the CLR. For that reason, a Silverlight
application can’t use a full .NET class library assembly. Instead, it needs to use a Silverlight class library. You can
easily create a Silverlight class library in Visual Studio by choosing the Silverlight Class Library project template.

If you want to use a custom control that’s located in the current application, you can omit the
assembly part of the namespace mapping, as shown here:

 xmlns:w="clr-namespace:Widgets"

Once you’ve mapped your .NET namespace to an XML namespace, you can use it anywhere in your
XAML document. For example, if the Widgets namespace contains a control named HotButton, you
could create an instance like this:

<w:HotButton Content="Click Me!" Click="DoSomething"></w:HotButton>

You’ll use this technique throughout this book to access controls in the Silverlight add-on
assemblies and the Silverlight Toolkit.

The Code-Behind Class
XAML allows you to construct a user interface, but in order to make a functioning application, you need
a way to connect the event handlers that contain your application code. XAML makes this easy using the
Class attribute that’s shown here:

1 <UserControl x:Class="SilverlightApplication1.MainPage"

The x namespace prefix places the Class attribute in the XAML namespace, which means this is a
more general part of the XAML language, not a specific Silverlight ingredient.

In fact, the Class attribute tells the Silverlight parser to generate a new class with the specified name.
That class derives from the class that’s named by the XML element. In other words, this example creates
a new class named SilverlightProject1.MainPage, which derives from the UserControl class. The
automatically generated portion of this class is merged with the code you’ve supplied in the code-
behind file.

CHAPTER 2  XAML

38

Usually, every XAML file will have a corresponding code-behind class with client-side C# code.
Visual Studio creates a code-behind class for the MainPage.xaml file named MainPage.xaml.cs. Here’s
what you’ll see in the MainPage.xaml.cs file:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Animation;
using System.Windows.Shapes;

namespace SilverlightApplication1
{
 public partial class MainPage : UserControl
 {
 public MainPage()
 {
 InitializeComponent();
 }
 }
}

Currently, the MainPage class code doesn’t include any real functionality. However, it does include
one important detail—the default constructor, which calls InitializeComponent() when you create an
instance of the class. This parses your markup, creates the corresponding objects, sets their properties,
and attaches any event handlers you’ve defined.

 Note The InitializeComponent() method plays a key role in Silverlight content. For that reason, you should never
delete the InitializeComponent() call from the constructor. Similarly, if you add another constructor to your page,
make sure it also calls InitializeComponent().

Naming Elements
There’s one more detail to consider. In your code-behind class, you’ll often want to manipulate
elements programmatically. For example, you might want to read or change properties or attach and
detach event handlers on the fly. To make this possible, the control must include a XAML Name
attribute. In the previous example, the Grid control already includes the Name attribute, so you can
manipulate it in your code-behind file.

6 <Grid x:Name="LayoutRoot">
7 </Grid>

CHAPTER 2  XAML

39

The Name attribute tells the XAML parser to add a field like this to the automatically generated
portion of the MainPage class:

private System.Windows.Controls.Grid LayoutRoot;

Now you can interact with the grid in your page class code by using the name LayoutRoot.

 Tip In a traditional Windows Forms application, every control has a name. In a Silverlight application, there’s no
such requirement. If you don’t want to interact with an element in your code, you’re free to remove its Name
attribute from the markup. The examples in this book usually omit element names when they aren’t needed, which
makes the markup more concise.

Properties and Events in XAML
So far, you’ve considered a relatively unexciting example—a blank page that hosts an empty Grid
control. Before going any further, it’s worth introducing a more realistic page that includes several
elements. Figure 2-1 shows an example with an automatic question answerer.

Figure 2-1. Ask the eight ball, and all will be revealed.

The eight ball page includes four elements: a Grid (the most common tool for arranging layout in
Silverlight), two TextBox objects, and a Button. The markup that’s required to arrange and configure
these elements is significantly longer than the previous examples. Here’s an abbreviated listing that
replaces some of the details with an ellipsis (. . .) to expose the overall structure:

CHAPTER 2  XAML

40

<UserControl x:Class="EightBall.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">
 <Grid x:Name="grid1">
 <Grid.Background>
 ...
 </Grid.Background>
 <Grid.RowDefinitions>
 ...
 </Grid.RowDefinitions>

 <TextBox x:Name="txtQuestion" ... >
 </TextBox>

 <Button x:Name="cmdAnswer" ... >
 </Button>

 <TextBox x:Name="txtAnswer" ... >
 </TextBox>
 </Grid>
</UserControl>

In the following sections, you’ll explore the parts of this document—and learn the syntax of XAML
along the way.

Simple Properties and Type Converters
As you’ve already seen, the attributes of an XML element set the properties of the corresponding
Silverlight object. For example, the text boxes in the eight ball example configure the alignment, margin,
and font:

<TextBox x:Name="txtQuestion"
 VerticalAlignment="Stretch" HorizontalAlignment="Stretch"
 FontFamily="Verdana" FontSize="24" Foreground="Green" ... >

For this to work, the System.Windows.Controls.TextBox class must provide the following properties:
VerticalAlignment, HorizontalAlignment, FontFamily, FontSize, and Foreground. You’ll learn the
specific meaning for each of these properties in the following chapters.

 Tip Several special characters can’t be entered directly into an attribute string, including the quotation mark,
the ampersand (&), and the two angle brackets. To use these values, you must replace them with the equivalent
XML character entity. That’s " for a quotation mark, & for the ampersand, < for the < (less than)
character, and > for the > (greater than) character. Of course, this limitation is an XML detail, and it won’t
affect you if you set a property in code.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 2  XAML

41

To make the property system work, the XAML parser needs to perform a bit more work than you
might initially realize. The value in an XML attribute is always a plain-text string. However, object
properties can be any .NET type. In the previous example, there are two properties that use
enumerations (VerticalAlignment and HorizontalAlignment), one string (FontFamily), one integer
(FontSize), and one Brush object (Foreground).

To bridge the gap between string values and nonstring properties, the XAML parser needs to
perform a conversion. The conversion is performed by type converters, a basic piece of infrastructure
that’s borrowed from the full .NET Framework.

Essentially, a type converter has one role in life—it provides utility methods that can convert a
specific .NET data type to and from any other .NET type, such as a string representation in this case. The
XAML parser follows two steps to find a type converter:

1. It examines the property declaration, looking for a TypeConverter attribute. (If
present, the TypeConverter attribute indicates what class can perform the
conversion.) For example, when you use a property such as Foreground, .NET
checks the declaration of the Foreground property.

2. If there’s no TypeConverter attribute on the property declaration, the XAML
parser checks the class declaration of the corresponding data type. For
example, the Foreground property uses a Brush object. The Brush class (and
its derivatives) uses the BrushConverter because the Brush class is decorated
with the TypeConverter(typeof(BrushConverter)) attribute declaration.

If there’s no associated type converter on the property declaration or the class declaration, the
XAML parser generates an error.

This system is simple but flexible. If you set a type converter at the class level, that converter applies
to every property that uses that class. On the other hand, if you want to fine-tune the way type
conversion works for a particular property, you can use the TypeConverter attribute on the property
declaration instead.

It’s technically possible to use type converters in code, but the syntax is a bit convoluted. It’s almost
always better to set a property directly—not only is it faster, but it also avoids potential errors from
mistyping strings, which won’t be caught until runtime. This problem doesn’t affect XAML, because the
XAML is parsed and validated at compile time.

 Note XAML, like all XML-based languages, is case-sensitive. That means you can’t substitute <button> for
<Button>. However, type converters usually aren’t case-sensitive, which means both Foreground="White" and
Foreground="white" have the same result.

Some classes define a content property, which allows you to provide the property value between the
start and end tags. For example, the Button class designates Content as its content property, meaning
this markup:

<Button>Click Me!</Button>

is equivalent to this:

<Button Content="Click Me!"></Button>

CHAPTER 2  XAML

42

Despite this convenience, you’re more likely to see the second approach in markup. Not only is it
the standard Visual Studio uses when you configure elements with the Properties window, it was also the
only supported option for many controls in older versions of Silverlight (up until Silverlight 4).

Complex Properties
As handy as type converters are, they aren’t practical for all scenarios. For example, some properties are
full-fledged objects with their own set of properties. Although it’s possible to create a string
representation that the type converter could use, that syntax might be difficult to use and prone to error.

Fortunately, XAML provides another option: property-element syntax. With property-element
syntax, you add a child element with a name in the form Parent.PropertyName. For example, the Grid
has a Background property that allows you to supply a brush that’s used to paint the area behind the
elements. If you want to use a complex brush—one more advanced than a solid color fill—you’ll need to
add a child tag named Grid.Background, as shown here:

<Grid x:Name="grid1">
 <Grid.Background>
 ...
 </Grid.Background>
 ...
</Grid>

The key detail that makes this work is the period (.) in the element name. This distinguishes
properties from other types of nested content.

This still leaves one detail—namely, once you’ve identified the complex property you want to
configure, how do you set it? Here’s the trick. Inside the nested element, you can add another tag to
instantiate a specific class. In the eight ball example (shown in Figure 2-1), the background is filled with
a gradient. To define the gradient you want, you need to create a LinearGradientBrush object.

Using the rules of XAML, you can create the LinearGradientBrush object using an element with the
name LinearGradientBrush:

<Grid x:Name="grid1">
 <Grid.Background>
 <LinearGradientBrush>
 </LinearGradientBrush>
 </Grid.Background>
 ...
</Grid>

The LinearGradientBrush is part of the Silverlight set of namespaces, so you can keep using the
default XML namespace for your tags.

However, it’s not enough to simply create the LinearGradientBrush—you also need to specify the
colors in that gradient. You do this by filling the LinearGradientBrush.GradientStops property with a
collection of GradientStop objects. Once again, the GradientStops property is too complex to be set with
an attribute value alone. Instead, you need to rely on the property-element syntax:

<Grid x:Name="grid1">
 <Grid.Background>
 <LinearGradientBrush>
 <LinearGradientBrush.GradientStops>
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Grid.Background>

CHAPTER 2  XAML

43

 ...
</Grid>

Finally, you can fill the GradientStops collection with a series of GradientStop objects. Each
GradientStop object has an Offset and Color property. You can supply these two values using the
ordinary property-attribute syntax:

<Grid x:Name="grid1">
 <Grid.Background>
 <LinearGradientBrush>
 <LinearGradientBrush.GradientStops>
 <GradientStop Offset="0.00" Color="Yellow" />
 <GradientStop Offset="0.50" Color="White" />
 <GradientStop Offset="1.00" Color="Purple" />
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Grid.Background>
 ...
</Grid>

 Note You can use property-element syntax for any property. But usually you’ll use the simpler property-
attribute approach if the property has a suitable type converter. Doing so results in more compact code.

Any set of XAML tags can be replaced with a set of code statements that performs the same task. The
tags shown previously, which fill the background with a gradient of your choice, are equivalent to the
following code:

LinearGradientBrush brush = new LinearGradientBrush();

GradientStop gradientStop1 = new GradientStop();
gradientStop1.Offset = 0;
gradientStop1.Color = Colors.Yellow;
brush.GradientStops.Add(gradientStop1);

GradientStop gradientStop2 = new GradientStop();
gradientStop2.Offset = 0.5;
gradientStop2.Color = Colors.White;
brush.GradientStops.Add(gradientStop2);

GradientStop gradientStop3 = new GradientStop();
gradientStop3.Offset = 1;
gradientStop3.Color = Colors.Purple;
brush.GradientStops.Add(gradientStop3);

grid1.Background = brush;

CHAPTER 2  XAML

44

Attached Properties
Along with ordinary properties, XAML also includes the concept of attached properties—properties that
may apply to several elements but are defined in a different class. In Silverlight, attached properties are
frequently used to control layout.

Here’s how it works. Every control has its own set of intrinsic properties. For example, a text box has
a specific font, text color, and text content as dictated by properties such as FontFamily, Foreground,
and Text. When you place a control inside a container, it gains additional features, depending on the
type of container. For example, if you place a text box inside a grid, you need to be able to choose the
grid cell where it’s positioned. These additional details are set using attached properties.

Attached properties always use a two-part name in this form: DefiningType.PropertyName. This
two-part naming syntax allows the XAML parser to distinguish between a normal property and an
attached property.

In the eight ball example, attached properties allow the individual elements to place themselves on
separate rows in the (invisible) grid:

<TextBox ... Grid.Row="0">
</TextBox>

<Button ... Grid.Row="1">
</Button>

<TextBox ... Grid.Row="2">
</TextBox>

Attached properties aren’t really properties at all. They’re actually translated into method calls. The
XAML parser calls the static method that has this form: DefiningType.SetPropertyName(). For example,
in the previous XAML snippet, the defining type is the Grid class, and the property is Row, so the parser
calls Grid.SetRow().

When calling SetPropertyName(), the parser passes two parameters: the object that’s being
modified and the property value that’s specified. For example, when you set the Grid.Row property on
the TextBox control, the XAML parser executes this code:

Grid.SetRow(txtQuestion, 0);

This pattern (calling a static method of the defining type) is a convenience that conceals what’s
really taking place. To the casual eye, this code implies that the row number is stored in the Grid object.
However, the row number is actually stored in the object that it applies to—in this case, the TextBox
object.

This sleight of hand works because the TextBox derives from the DependencyObject base class, as
do all Silverlight elements. The DependencyObject is designed to store a virtually unlimited collection of
dependency properties (and attached properties are one type of dependency property).

In fact, the Grid.SetRow() method is actually a shortcut that’s equivalent to calling the
DependencyObject.SetValue() method, as shown here:

txtQuestion.SetValue(Grid.RowProperty, 0);

Attached properties are a core ingredient of Silverlight. They act as an all-purpose extensibility
system. For example, by defining the Row property as an attached property, you guarantee that it’s
usable with any control. The other option, making it part of a base class such as FrameworkElement,
complicates life. Not only would it clutter the public interface with properties that have meaning only in
certain circumstances (in this case, when an element is being used inside a Grid), it also makes it
impossible to add new types of containers that require new properties.

CHAPTER 2  XAML

45

Nesting Elements
As you’ve seen, XAML documents are arranged as a heavily nested tree of elements. In the current
example, a UserControl element contains a Grid element, which contains TextBox and Button elements.

XAML allows each element to decide how it deals with nested elements. This interaction is mediated
through one of three mechanisms that are evaluated in this order:

• If the parent implements IList<T>, the parser calls the IList<T>.Add() method and
passes in the child.

• If the parent implements IDictionary<T>, the parser calls IDictionary<T>.Add()
and passes in the child. When using a dictionary collection, you must also set the
x:Key attribute to give a key name to each item.

• If the parent is decorated with the ContentProperty attribute, the parser uses the
child to set that property.

For example, earlier in this chapter you saw how a LinearGradientBrush can hold a collection of
GradientStop objects using syntax like this:

<LinearGradientBrush>
 <LinearGradientBrush.GradientStops>
 <GradientStop Offset="0.00" Color="Yellow" />
 <GradientStop Offset="0.50" Color="White" />
 <GradientStop Offset="1.00" Color="Purple" />
 </LinearGradientBrush.GradientStops>
</LinearGradientBrush>

The XAML parser recognizes the LinearGradientBrush.GradientStops element is a complex property
because it includes a period. However, it needs to process the tags inside (the three GradientStop
elements) a little differently. In this case, the parser recognizes that the GradientStops property returns a
GradientStopCollection object, and the GradientStopCollection implements the IList interface. Thus, it
assumes (quite rightly) that each GradientStop should be added to the collection using the IList.Add()
method:

GradientStop gradientStop1 = new GradientStop();
gradientStop1.Offset = 0;
gradientStop1.Color = Colors.Yellow;
IList list = brush.GradientStops;
list.Add(gradientStop1);

Some properties might support more than one type of collection. In this case, you need to add a tag
that specifies the collection class, like this:

<LinearGradientBrush>
 <LinearGradientBrush.GradientStops>
 <GradientStopCollection>
 <GradientStop Offset="0.00" Color="Yellow" />
 <GradientStop Offset="0.50" Color="White" />
 <GradientStop Offset="1.00" Color="Purple" />
 </GradientStopCollection>
 </LinearGradientBrush.GradientStops>
</LinearGradientBrush>

CHAPTER 2  XAML

46

 Note If the collection defaults to null, you need to include the tag that specifies the collection class, thereby
creating the collection object. If there’s a default instance of the collection and you simply need to fill it, you can
omit that part.

Nested content doesn’t always indicate a collection. For example, consider the Grid element, which
contains several other elements:

<Grid x:Name="grid1">
 ...
 <TextBox x:Name="txtQuestion" ... >
 </TextBox>

 <Button x:Name="cmdAnswer" ... >
 </Button>

 <TextBox x:Name="txtAnswer" ... >
 </TextBox>
</Grid>

These nested tags don’t correspond to complex properties, because they don’t include the period.
Furthermore, the Grid control isn’t a collection and so it doesn’t implement IList or IDictionary. What
the Grid does support is the ContentProperty attribute, which indicates the property that should receive
any nested content. Technically, the ContentProperty attribute is applied to the Panel class, from which
the Grid derives, and looks like this:

[ContentPropertyAttribute("Children")]
public abstract class Panel : FrameworkElement

This indicates that any nested elements should be used to set the Children property. The XAML
parser treats the content property differently depending on whether it’s a collection property (in which
case it implements the IList or IDictionary interface). Because the Panel.Children property returns a
UIElementCollection and because UIElementCollection implements IList, the parser uses the IList.Add()
method to add nested content to the grid.

In other words, when the XAML parser meets the previous markup, it creates an instance of each
nested element and passes it to the Grid using the Grid.Children.Add() method:

txtQuestion = new TextBox();
...
grid1.Children.Add(txtQuestion);

cmdAnswer = new Button();
...
grid1.Children.Add(cmdAnswer);

txtAnswer = new TextBox();
...
grid1.Children.Add(txtAnswer);

What happens next depends entirely on how the control implements the content property. The Grid
displays all the elements it holds in an invisible layout of rows and columns, as you’ll see in Chapter 3.

CHAPTER 2  XAML

47

BROWSING NESTED ELEMENTS WITH VISUALTREEHELPER

Silverlight provides a VisualTreeHelper class that allows you to walk through the hierarchy elements. The
VisualTreeHelper class provides three static methods for this purpose: GetParent(), which returns the
element that contains a specified element; GetChildrenCount(), which indicates how many elements are
nested inside the specified element; and GetChild(),which retrieves one of the nested elements, by its index
number position.

The advantage of VisualTreeHelper is that it works in a generic way that supports all Silverlight elements,
no matter what content model they use. For example, you may know that list controls expose items
through an Items property, layout containers provide their children through a Children property, and
content controls expose the nested content element through a Content property, but only the
VisualTreeHelper can dig through all three with the same seamless code.

The disadvantage to using the VisualTreeHelper is that it gets every detail of an element’s visual
composition, including some that aren’t important to its function. For example, when you use
VisualTreeHelper to browse through a ListBox, you’ll come across a few low-level details that probably
don’t interest you, such as the Border that outlines it, the ScrollViewer that makes it scrollable, and the
Grid that lays out items in discrete rows. For this reason, the only practical way to use the VisualTreeHelper
is with recursive code—in essence, you keep digging through the tree until you find the type of element
you’re interested in, and then you act on it. The following example uses this technique to clear all the text
boxes in a hierarchy of elements:

private void Clear(DependencyObject element)
{
 // If this is a text box, clear the text.
 TextBox txt = element as TextBox;
 if (txt != null) txt.Text = "";

 // Check for nested children.
 int children = VisualTreeHelper.GetChildrenCount(element);

 for (int i = 0; i < children; i++)
 {
 DependencyObject child = VisualTreeHelper.GetChild(element, i);
 Clear(child);
 }
}

To set it in motion, call the Clear() method with the topmost object you want to examine. Here’s how to
dissect the entire current page:

Clear(this);

Events
So far, all the attributes you’ve seen map to properties. However, attributes can also be used to attach
event handlers. The syntax for this is EventName="EventHandlerMethodName".

For example, the Button control provides a Click event. You can attach an event handler like this:

CHAPTER 2  XAML

48

<Button ... Click="cmdAnswer_Click">

This assumes that there is a method with the name cmdAnswer_Click in the code-behind class. The
event handler must have the correct signature (that is, it must match the delegate for the Click event).
Here’s the method that does the trick:

private void cmdAnswer_Click(object sender, RoutedEventArgs e)
{
 AnswerGenerator generator = new AnswerGenerator();
 txtAnswer.Text = generator.GetRandomAnswer(txtQuestion.Text);
}

In many situations, you’ll use attributes to set properties and attach event handlers on the same
element. Silverlight always follows the same sequence: first it sets the Name property (if set), then it
attaches any event handlers, and lastly it sets the properties. This means that any event handlers that
respond to property changes will fire when the property is set for the first time.

The Full Eight Ball Example
Now that you’ve considered the fundamentals of XAML, you know enough to walk through the
definition for the page in Figure 2-1. Here’s the complete XAML markup:

<UserControl x:Class="EightBall.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Grid x:Name="grid1">
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <TextBox VerticalAlignment="Stretch" HorizontalAlignment="Stretch"
 Margin="10,10,13,10" x:Name="txtQuestion"
 TextWrapping="Wrap" FontFamily="Verdana" FontSize="24"
 Grid.Row="0" Text="[Place question here.]">
 </TextBox>
 <Button VerticalAlignment="Top" HorizontalAlignment="Left"
 Margin="10,0,0,20" Width="127" Height="23" x:Name="cmdAnswer"
 Click="cmdAnswer_Click" Grid.Row="1" Content="Ask the Eight Ball">
 </Button>
 <TextBox VerticalAlignment="Stretch" HorizontalAlignment="Stretch"
 Margin="10,10,13,10" x:Name="txtAnswer" TextWrapping="Wrap"
 IsReadOnly="True" FontFamily="Verdana" FontSize="24" Foreground="Green"
 Grid.Row="2" Text="[Answer will appear here.]">
 </TextBox>

 <Grid.Background>
 <LinearGradientBrush>
 <LinearGradientBrush.GradientStops>
 <GradientStop Offset="0.00" Color="Yellow" />
 <GradientStop Offset="0.50" Color="White" />
 <GradientStop Offset="1.00" Color="Purple" />

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 2  XAML

49

 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Grid.Background>
 </Grid>
</Window>

Remember, you probably won’t write the XAML for a graphically rich user interface by hand—doing
so would be unbearably tedious. However, you might have good reason to edit the XAML code to make a
change that would be awkward to accomplish in the designer. You might also find yourself reviewing
XAML to get a better idea of how a page works.

XAML Resources
Silverlight includes a resource system that integrates closely with XAML. Using resources, you can do the
following:

• Create nonvisual objects: This is useful if other elements use these objects. For
example, you could create a data object as a resource and then use data binding to
display its information in several elements.

• Reuse objects: Once you define a resource, several elements can draw on it. For
example, you can define a single brush that’s used to color in several shapes. Later
in this book, you’ll use resources to define styles and templates that are reused
among elements.

• Centralize details: Sometimes, it’s easier to pull frequently changed information
into one place (a resources section) rather than scatter it through a complex
markup file, where it’s more difficult to track down and change.

The resource system shouldn’t be confused with assembly resources, which are blocks of data that
you can embed in your compiled Silverlight assembly. For example, the XAML files you add to your
project are embedded as assembly resources. You’ll learn more about assembly resources in Chapter 6.

The Resources Collection
Every element includes a Resources property, which stores a dictionary collection of resources. The
resources collection can hold any type of object, indexed by string.

Although every element includes the Resources property, the most common way to define resources
is at the page level. That’s because every element has access to the resources in its own resource
collection and the resources in all of its parents’ resource collections. So if you define a resource in the
page, all the elements on the page can use it.

For example, consider the eight ball example. Currently, the GradientBrush that paints the
background of the Grid is defined inline (in other words, it’s defined and set in the same place).
However, you might choose to pull the brush out of the Grid markup and place it in the resources
collection instead:

<UserControl x:Class="EightBall.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <UserControl.Resources>
 <LinearGradientBrush x:Key="BackgroundBrush">
 <LinearGradientBrush.GradientStops>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 2  XAML

50

 <GradientStop Offset="0.00" Color="Yellow" />
 <GradientStop Offset="0.50" Color="White" />
 <GradientStop Offset="1.00" Color="Purple" />
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </UserControl.Resources>
 ...
</UserControl>

The only important new detail is the Key attribute that’s been added to the brush (and preceded by
the x: namespace prefix, which puts it in the XAML namespace rather than the Silverlight namespace).
The Key attribute assigns the name under which the brush will be indexed in the resources collection.
You can use whatever you want, so long as you use the same name when you need to retrieve the
resource. It’s a good idea to name resources based on their functions (which won’t change) rather than
the specific details of their implementations (which might). For that reason, BackgroundBrush is a better
name than LinearGradientBrush or ThreeColorBrush.

 Note You can instantiate any .NET class in the resources section (including your own custom classes), as long
as it’s XAML-friendly. That means it needs to have a few basic characteristics, such as a public zero-argument
constructor and writeable properties.

To use a resource in your XAML markup, you need a way to refer to it. This is accomplished using a
markup extension—a specialized type of syntax that sets a property in a nonstandard way. Markup
extensions extend the XAML language and can be recognized by their curly braces. To use a resource,
you use a markup extension named StaticResource:

<Grid x:Name="grid1" Background="{StaticResource BackgroundBrush}">

This refactoring doesn’t shorten the markup you need for the eight ball example. However, if you
need to use the same brush in multiple elements, the resource approach is the best way to avoid
duplicating the same details. And even if you don’t use the brush more than once, you might still prefer
this approach if your user interface includes a number of graphical details that are likely to change. For
example, by placing all the brushes front and center in the resources collection, you’ll have an easier
time finding them and changing them. Some developers use the resources collection for virtually every
complex object they create to set a property in XAML.

 Note The word static stems from the fact that WPF has two types of resources, static and dynamic. However,
Silverlight includes only static resources.

CHAPTER 2  XAML

51

CUSTOM MARKUP EXTENSIONS

Silverlight 5 opens the door to custom markup extensions, which can extend the XAML language with your
custom shortcuts. Custom markup extensions are particularly useful for people building add-on
frameworks that extend Silverlight.

To make a custom markup extension, you create a class that derives from MarkupExtension (in the
System.Windows.Markup namespace). This class will consist of two things. First, it can include properties,
which the XAML parser sets based on your markup. Second, it includes the ProvideValue() method, which
you override to return the final object to the XAML parser. For example, consider the StaticResource
markup extension. It includes a ResourceKey property that accepts the text for a key name (like
“BackgroundBrush”). When the XAML parser chews through this piece of markup, it creates the
StaticResourceExtension object, sets its ResourceKey property accordingly, and then calls ProvideValue().
The ProvideValue() method then searches for the matching object and returns it to the XAML parser.

Although you’ll use plenty of markup extensions in this book, you won’t create your own. If you’re curious
about some of the specialized scenarios where custom markup extensions make sense, you can find a few
good examples online. For an example of a custom markup extension that supports localization, see
http://tinyurl.com/6xwv3se. For a markup extension that simplifies the Managed Extensibility
Framework, see http://tinyurl.com/6xm2sv5. And for a markup extension that can create pack URIs,
which are explained in Chapter 6, see http://tinyurl.com/6djjnyd (although this extension is designed
for WPF and needs minor tweaking to work in Silverlight).

The Hierarchy of Resources
Every element has its own resource collection, and Silverlight performs a recursive search up your
element tree to find the resource you want. For example, imagine you have the following markup:

<UserControl x:Class="Resources.ResourceHierarchy"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Width="400" Height="300">
 <Grid x:Name="LayoutRoot" Background="White">
 <StackPanel>
 <StackPanel.Resources>
 <LinearGradientBrush x:Key="ButtonFace">
 <GradientStop Offset="0.00" Color="Yellow" />
 <GradientStop Offset="0.50" Color="White" />
 <GradientStop Offset="1.00" Color="Purple" />
 </LinearGradientBrush>
 </StackPanel.Resources>

 <Button Content="Click Me First" Margin="5"
 Background="{StaticResource ButtonFace}"></Button>
 <Button Content="Click Me Next" Margin="5"
 Background="{StaticResource ButtonFace}"></Button>
 </StackPanel>
 </Grid>

http://tinyurl.com/6xwv3se
http://tinyurl.com/6xm2sv5
http://tinyurl.com/6djjnyd
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 2  XAML

52

</UserControl>

Figure 2-2 shows the page this markup creates.

Figure 2-2. Using one brush to color two buttons

Here, both buttons set their backgrounds to the same resource. When encountering this markup,
Silverlight will check the resources collection of the button itself and then the StackPanel (where it’s
defined). If the StackPanel didn’t include the right resource, Silverlight would continue its search with
the resources collection of the Grid and then the UserControl. If it still hasn’t found a resource with the
right name, Silverlight will end by checking the application resources that are defined in the
<Application.Resources> section of the App.xaml file:

<Application xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 x:Class="SilverlightApplication1.App">
 <Application.Resources>
 <LinearGradientBrush x:Key="ButtonFace">
 <LinearGradientBrush.GradientStops>
 <GradientStop Offset="0.00" Color="Yellow" />
 <GradientStop Offset="0.50" Color="White" />
 <GradientStop Offset="1.00" Color="Purple" />
 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
 </Application.Resources>
</Application>

The advantage of placing resources in the application collection is that they’re completely removed
from the markup in your page, and they can be reused across an entire application. In this example, it’s a
good choice if you plan to use the brush in more than one page.

http://schemas.microsoft.com/client/2007
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 2  XAML

53

 Note Before creating an application resource, consider the trade-off between complexity and reuse. Adding an
application resource gives you better reuse, but it adds complexity because it’s not immediately clear which pages
use a given resource. (It’s conceptually the same as an old-style C++ program with too many global variables.) A
good guideline is to use application resources if your object is reused widely. If it’s used in just two or three pages,
consider defining the resource in each page.

Order is important when defining a resource in markup. The rule of thumb is that a resource must
appear before you refer to it in your markup. That means that even though it’s perfectly valid (from a
markup perspective) to put the <StackPanel.Resources> section after the markup that declares the
buttons, this change will break the current example. When the XAML parser encounters a reference to a
resource it doesn’t know, it throws an exception.

Interestingly, resource names can be reused as long as you don’t use the same resource name more
than once in the same collection. In this case, Silverlight uses the resource it finds first. This allows you
to define a resource in your application resources collection and then selectively override it with a
replacement in some pages with a replacement.

Accessing Resources in Code
Usually, you’ll define and use resources in your markup. However, if the need arises, you can work with
the resources collection in code. The most straightforward approach is to look up the resource you need
in the appropriate collection by name. For example, if you store a LinearGradientBrush in the
<UserControl.Resources> section with the key name ButtonFace, you could use code like this:

LinearGradientBrush brush = (LinearGradientBrush)this.Resources["ButtonFace"];

// Swap the color order.
Color color = brush.GradientStops[0].Color;
brush.GradientStops[0].Color = brush.GradientStops[2].Color;
brush.GradientStops[2].Color = color;

When you change a resource in this way, every element that uses the resource updates itself
automatically (see Figure 2-3). In other words, if you have four buttons using the ButtonFace brush, they
will all get the reversed colors when this code runs.

CHAPTER 2  XAML

54

Figure 2-3. Altering a resource

However, there’s one limitation. Because Silverlight doesn’t support dynamic resources, you aren’t
allowed to change the resource reference. That means you can’t replace a resource with a new object.
Here’s an example of code that breaks this rule and will generate a runtime error:

SolidColorBrush brush = new SolidColorBrush(Colors.Yellow);
this.Resources["ButtonFace"] = brush;

Rather than dig through the Resources collection to find the object you want, you can give your
resource a name by adding the Name attribute. You can then access it directly by name in your code.
However, you can’t set both a name and a key on the same object, and the StaticResource markup
extension recognizes keys only. Thus, if you create a named resource, you won’t be able to use it in your
markup with a StaticResource reference. For that reason, it’s more common to use keys.

Organizing Resources with Resource Dictionaries
If you want to share resources between multiple projects or just improve the organization of a complex,
resource-laden project, you can create a resource dictionary. A resource dictionary is simply a XAML
document that does nothing but store a set of resources. To create a resource dictionary in Visual Studio,
right-click your project in the Solution Explorer, choose Add  New Item, pick the Silverlight Resource
Dictionary template, supply any name you like, and click Add.

Here’s an example of a resource dictionary named ElementBrushes.xaml that defines one resource:

<ResourceDictionary
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <LinearGradientBrush x:Key="ButtonFace">
 <LinearGradientBrush.GradientStops>
 <GradientStop Offset="0.00" Color="Yellow" />
 <GradientStop Offset="0.50" Color="White" />
 <GradientStop Offset="1.00" Color="Purple" />

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 2  XAML

55

 </LinearGradientBrush.GradientStops>
 </LinearGradientBrush>
</ResourceDictionary>

To use a resource dictionary, you need to merge it into a resource collection somewhere in your
application. You could do this in a specific page, but it’s more common to merge it into the resources
collection for the application, as shown here:

<Application xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 x:Class="SilverlightApplication1.App">
 <Application.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="ElementBrushes.xaml" />
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
 </Application.Resources>
</Application>

The MergedDictionaries collection is a collection of ResourceDictionary objects that you want to
use to supplement your resource collection. In this example, there’s just one, but you can combine as
many as you want. And if you want to add your own resources and merge in resource dictionaries, you
simply need to place your resources before or after the MergedProperties section, as shown here:

<Application.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary Source="BasicBrushes.xaml" />
 <ResourceDictionary Source="ButtonBrushes.xaml" />
 </ResourceDictionary.MergedDictionaries>
 <LinearGradientBrush x:Key="GraphicalBrush1" ... ></LinearGradientBrush>
 <LinearGradientBrush x:Key="GraphicalBrush2" ... ></LinearGradientBrush>
 </ResourceDictionary>
</Application.Resources>

 Note As you learned earlier, it’s perfectly reasonable to have resources with the same name stored in different
but overlapping resource collections. However, it’s not acceptable to merge resource dictionaries that use the
same resource names. If there’s a duplicate, you’ll receive an exception when you compile your application.

One reason to use resource dictionaries is to define the styles for application skins that you can
apply dynamically to your controls. (You’ll learn how to develop this technique in Chapter 14.) Another
reason is to store content that needs to be localized (such as error message strings).

http://schemas.microsoft.com/client/2007
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 2  XAML

56

Element-to-Element Binding
In the previous section, you saw how to use the StaticResource markup extension, which gives XAML
additional capabilities (in this case, the ability to easily refer to a resource that’s defined elsewhere in
your markup). You’ll see the StaticResource at work throughout the examples in this book. Another
markup extension that gets heavy use is the Binding expression, which sets up a relationship that
funnels information from a source object to a target control.

In Chapter 20, you’ll use binding expressions to create data-bound pages that allow the user to
review and edit the information in a linked data object. But in this chapter, you’ll take a quick look at a
more basic skill—the ability to connect two elements together with a binding expression.

One-Way Binding
To understand how you can bind an element to another element, consider the simple window shown in
Figure 2-4. It contains two controls: a Slider and a TextBlock with a single line of text. If you pull the
thumb in the slider to the right, the font size of the text is increased immediately. If you pull it to the left,
the font size is reduced.

Figure 2-4. Linked controls through data binding

Clearly, it wouldn’t be difficult to create this behavior using code. You would simply react to the
Slider.ValueChanged event and copy the current value from the slider to the TextBlock. However, data
binding makes it even easier.

When using data binding, you don’t need to make any change to your source object (which is the
Slider in this example). Just configure it to take the right range of values, as you would ordinarily.

<Slider x:Name="sliderFontSize" Margin="3"
 Minimum="1" Maximum="40" Value="10">
</Slider>

The binding is defined in the TextBlock element. Instead of setting the FontSize using a literal value,
you use a binding expression, as shown here:

<TextBlock Margin="10" Text="Simple Text" x:Name="lblSampleText"
 FontSize="{Binding ElementName=sliderFontSize, Path=Value}" >
</TextBlock>

CHAPTER 2  XAML

57

Data binding expressions use a XAML markup extension (and hence have curly braces). You begin
with the word Binding, followed by any constructor arguments (there are none in this example) and then
a list of the properties you want to set by name—in this case, ElementName and Path. ElementName
indicates the source element. Path indicates the property in the source element. Thus, this binding
expression copies the value from the Slider.Value property to the TextBlock.FontSize property.

 Tip The Path can point to a property of a property (for example, FontFamily.Source) or an indexer used by a
property (for example, Content.Children[0]). You can also refer to an attached property (a property that’s defined in
another class but applied to the bound element) by wrapping the property name in parentheses. For example, if
you’re binding to an element that’s placed in a Grid, the path (Grid.Row) retrieves the row number where you’ve
placed it.

One of the neat features of data binding is that your target is updated automatically, no matter how
the source is modified. In this example, the source can be modified in only one way—by the user’s
interaction with the slider thumb. However, consider a slightly revamped version of this example that
adds a few buttons, each of which applies a preset value to the slider. Click one of these buttons, and this
code runs:

private void cmd_SetLarge(object sender, RoutedEventArgs e)
{
 sliderFontSize.Value = 30;
}

This code sets the value of the slider, which in turn forces a change to the font size of the text
through data binding. It’s the same as if you had moved the slider thumb yourself.

However, this code wouldn’t work as well:

private void cmd_SetLarge(object sender, RoutedEventArgs e)
{
 lblSampleText.FontSize = 30;
}

It sets the font of the text box directly. As a result, the slider position isn’t updated to match. Even
worse, this has the effect of wiping out your font size binding and replacing it with a literal value. If you
move the slider thumb now, the text block won’t change at all.

Two-Way Binding
Interestingly, there’s a way to force values to flow in both directions: from the source to the target and
from the target to the source. The trick is to set the Mode property of the Binding. Here’s a revised
bidirectional binding that allows you to apply changes to either the source or the target and have the
other piece of the equation update itself automatically:

<TextBlock Margin="10" Text="Simple Text" Name="lblSampleText"
 FontSize="{Binding ElementName=sliderFontSize, Path=Value, Mode=TwoWay}" >
</TextBlock>

CHAPTER 2  XAML

58

In this example, there’s no reason to use a two-way binding, because you can solve the problem by
manipulating the value of the slider rather than changing the font size of the TextBlock. However,
consider a variation of this example that includes a text box where the user can set the font size precisely
(see Figure 2-5).

Figure 2-5. Two-way binding with a text box

Here, the text box needs to use a two-way binding, because it both receives the bound data value
and sets it. When the user drags the slider (or clicks a button), the text box receives the new slider value.
And when the user types a new value in the text box, the binding copies the value to the slider.

Here’s the two-way binding expression you need:

<TextBox Text="{Binding ElementName=lblSampleText, Path=FontSize, Mode=TwoWay}">
</TextBox>

 Note If you experiment with this example, you’ll discover that the text box applies its value to the slider only
once it loses focus. This is the default update behavior in Silverlight, but you can change it by forcing immediate
updates as the user types—a trick you’ll pick up in Chapter 20.

You’ll learn far more about data binding in Chapter 20, when you add data objects and collections
into the mix. But this example illustrates two important points—how the Binding extension enhances
XAML with the ability to tie properties from different objects together and how you can create basic
element synchronization effects with no code required.

CHAPTER 2  XAML

59

The Last Word
In this chapter, you took a tour through a simple XAML file and learned the syntax rules of XAML at the
same time. You also considered two markup extensions that Silverlight uses to enhance XAML: the
StaticResource extension for referencing resources and the Binding extension for connecting properties
in different objects.

When you’re designing an application, you don’t need to write all your XAML by hand. Instead, you
can use a tool such as Visual Studio or Expression Blend to drag and drop your pages into existence.
Based on that, you might wonder whether it’s worth spending so much time studying the syntax of
XAML. The answer is a resounding yes. Understanding XAML is critical to Silverlight application design.
Understanding XAML will help you learn key Silverlight concepts and ensure that you get the markup
you really want. More importantly, there is a host of tasks that are far easier to accomplish with at least
some handwritten XAML. In Visual Studio, these tasks include defining resources, creating control
templates, writing data binding expressions, and defining animations. Expression Blend has better
design support, but on many occasions, it’s still quicker to make a change by hand than wade through a
sequence of windows.

C H A P T E R 3

61

Layout

Half the battle in user interface design is organizing the content in a way that’s attractive, practical, and
flexible. In a browser-hosted application, this is a particularly tricky task, because your application may
be used on a wide range of different computers and devices (all with different display hardware), and
you have no control over the size of the browser window in which your Silverlight content is placed.

Fortunately, Silverlight inherits the most important part of WPF’s extremely flexible layout model.
Using the layout model, you organize your content in a set of different layout containers. Each container
has its own layout logic—one stacks elements, another arranges them in a grid of invisible cells, and
another uses a hard-coded coordinate system. If you’re ambitious, you can even create your own
containers with custom layout logic.

In this chapter, you’ll learn how to use layout containers to create the visual skeleton for a Silverlight
page. You’ll spend most of your time exploring Silverlight’s core layout containers, including the
StackPanel, Grid, and Canvas. Once you’ve mastered these basics, you’ll see how to extend your
possibilities by creating new layout containers with custom layout logic. You’ll also see how you can
create an application that breaks out of the browser window and uses the full screen.

The Layout Containers
A Silverlight window can hold only a single element. To fit in more than one element and create a more
practical user interface, you need to place a container in your page and then add other elements to that
container. Your layout is determined by the container that you use.

All the Silverlight layout containers are panels that derive from the abstract
System.Windows.Controls.Panel class (see Figure 3-1).

Figure 3-1. The hierarchy of the Panel class

CHAPTER 3  LAYOUT

62

The Panel class adds two public properties: Background and Children. Background is the brush
that’s used to paint the panel background. Children is the collection of items that’s stored in the panel.
(This is the first level of elements—in other words, these elements may themselves contain more
elements.) The Panel class also has a bit of internal plumbing you can use to create your own layout
container, as you’ll learn later in this chapter.

On its own, the base Panel class is nothing but a starting point for other more specialized classes.
Silverlight provides three Panel-derived classes that you can use to arrange layout, and the Silverlight
Toolkit adds two more. All of them are listed in Table 3-1, in the order you’ll meet them in this chapter.
As with all Silverlight controls and most visual elements, these classes are found in the
System.Windows.Controls namespace.

Table 3-1. Core Layout Panels

Name Description

StackPanel Places elements in a horizontal or vertical stack. This layout container is typically used
for small sections of a larger, more complex page.

WrapPanel Places elements in a series of wrapped lines. In horizontal orientation, the WrapPanel
lays items out in a row from left to right and then onto subsequent lines. In vertical
orientation, the WrapPanel lays out items in a top-to-bottom column and then uses
additional columns to fit the remaining items. This layout container is available in the
Silverlight Tookit.

DockPanel Aligns elements against an entire edge of the container. This layout container is
available in the Silverlight Tookit.

Grid Arranges elements in rows and columns according to an invisible table. This is one of
the most flexible and commonly used layout containers.

Canvas Allows elements to be positioned absolutely using fixed coordinates. This layout
container is the simplest but least flexible.

Layout containers can be nested. A typical user interface begins with the Grid, Silverlight’s most

capable container, and contains other layout containers that arrange smaller groups of elements, such
as captioned text boxes, items in a list, icons on a toolbar, a column of buttons, and so on.

 Note There’s one specialized layout panel that doesn’t appear in Table 3-1: the VirtualizingStackPanel. It
arranges items in the same way as the StackPanel, but it uses a memory-optimization technique called
virtualization. The VirtualizingStackPanel allows list controls like the ListBox to hold tens of thousands of items
without a dramatic slowdown, because the VirtualizingStackPanel creates objects only for the currently visible
items. But although you might use the VirtualizingStackPanel to build custom templates and controls (see Chapter
15), you won’t use it to arrange the elements in a page, and so it isn’t covered in this chapter.

CHAPTER 3  LAYOUT

63

The Panel Background
All Panel elements introduce the concept of a background by adding a Background property. It’s natural
to expect that the Background property would use some sort of color object. However, the Background
property actually uses something much more versatile: a Brush object. This design gives you the
flexibility to fill your background and foreground content with a solid color (by using the
SolidColorBrush) or something more exotic (for example, a gradient or a bitmap, by using a
LinearGradientBrush or ImageBrush). In this section, you’ll consider only the simple solid-color fills
provided by the SolidColorBrush, but you’ll try fancier brushwork in Chapter 9.

 Note All of Silverlight’s Brush classes are found in the System.Windows.Media namespace.

For example, if you want to give your entire page a light blue background, you could adjust the
background of the root panel. Here’s the code that does the trick:

layoutRoot.Background = new SolidColorBrush(Colors.AliceBlue);

Technically, every Color object is an instance of the Color structure in the System.Windows.Media
namespace. You can get a wide range of ready-made colors from the Colors class, which provides a static
property for each one. (The property names are based on the color names supported by web browsers.)
The code shown here uses one of these colors to create a new SolidColorBrush. It then sets the brush as
the background brush for the root panel, which causes its background to be painted a light shade of
blue.

 Tip Silverlight also includes a SystemColors class that provides Color objects that match the current system
preferences. For example, SystemColors.ActiveColorBorder gets the color that’s used to fill the border of the
foreground window. In some cases, you might choose to ensure your application blends in better with the current
color scheme, particularly if you’re building an out-of-browser application, as described in Chapter 18.

The Colors and SystemColors classes offer handy shortcuts, but they aren’t the only way to set a
color. You can also create a Color object by supplying the red, green, and blue (RGB) values, along with
an alpha value that indicates transparency. Each one of these values is a number from 0 to 255:

int red = 0; int green = 255; int blue = 0;
layoutRoot.Background = new SolidColorBrush(Color.FromArgb(255, red, green, blue));

You can also make a color partly transparent by supplying an alpha value when calling the
Color.FromArgb() method. An alpha value of 255 is completely opaque, while 0 is completely
transparent.

Often, you’ll set colors in XAML rather than in code. Here, you can use a helpful shortcut. Rather
than define a Brush object, you can supply a color name or color value. The type converter for the
Background property will automatically create a SolidColorBrush object using the color you specify.
Here’s an example that uses a color name:

CHAPTER 3  LAYOUT

64

<Grid x:Name="layoutRoot" Background="Red">

It’s equivalent to this more verbose syntax:

<Grid x:Name="layoutRoot">
 <Grid.Background>
 <SolidColorBrush Color="Red"></SolidColorBrush>
 </Grid.Background>
</Grid>

You need to use the longer form if you want to create a different type of brush, such as a
LinearGradientBrush, and use that to paint the background.

If you want to use a color code, you need to use a slightly less convenient syntax that puts the R, G,
and B values in hexadecimal notation. You can use one of two formats—either #rrggbb or #aarrggbb (the
difference being that the latter includes the alpha value). You need only two digits to supply the A, R, G,
and B values because they’re all in hexadecimal notation. Here’s an example that creates the same color
as in the previous code snippets using #aarrggbb notation:

<Grid x:Name="layoutRoot" Background="#FFFF0000">

Here the alpha value is FF (255), the red value is FF (255), and the green and blue values are 0.
By default, the Background of a layout panel is set to a null reference, which is equivalent to this:

<Grid x:Name="layoutRoot" Background="{x:Null}">

When your panel has a null background, any content underneath will show through (similar to if
you set a fully transparent background color). However, there’s an important difference—the layout
container won’t be able to receive mouse events.

 Note Brushes support automatic change notification. In other words, if you attach a brush to a control and
change the brush, the control updates itself accordingly.

Borders
The layout containers allow you to paint a background, but not a border outline. However, there’s an
element that fills in the gap—the Border.

The Border class is pure simplicity. It takes a single piece of nested content (which is often a layout
panel) and adds a background or border around it. To master the Border, you need nothing more than
the properties listed in Table 3-2.

Table 3-2. Properties of the Border Class

Name Description

Background Sets a background that appears behind all the content in the border using a Brush
object. You can use a solid color or something more exotic.

CHAPTER 3  LAYOUT

65

Name Description

BorderBrush Sets the fill of the border that appears around the edge of the Border object, using a
Brush object. The most straightforward approach is to use a SolidColorBrush to
create a solid border.

BorderThickness Sets the width (in pixels) of the border on each side. The BorderThickness property
holds an instance of the System.Windows.Thickness structure, with separate
components for the top, bottom, left, and right edges.

CornerRadius Rounds the corners of your border. The greater the CornerRadius, the more
dramatic the rounding effect is.

Padding Adds spacing between the border and the content inside. (By contrast, Margin adds
spacing outside the border.)

Here’s a straightforward, slightly rounded border around a basic button:

<Border Margin="25" Background="LightYellow"
 BorderBrush="SteelBlue" BorderThickness="8" CornerRadius="15">
 <Button Margin="10 Content="Click Me"></Button>
</Border>

This example adds a little bit or margin space around the border and the button, which is a feature
you’ll learn about in the next section. Figure 3-2 shows the result.

Figure 3-2. A basic border

CHAPTER 3  LAYOUT

66

Simple Layout with the StackPanel
The StackPanel is one of the simplest layout containers. It simply stacks its children in a single row or
column. These elements are arranged based on their order.

For example, consider this page, which contains a stack with one TextBlock and four buttons:

<UserControl x:Class="Layout.SimpleStack"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <StackPanel Background="White">
 <TextBlock Text="A Button Stack"></TextBlock>
 <Button Content="Button 1"></Button>
 <Button Content="Button 2"></Button>
 <Button Content="Button 3"></Button>
 <Button Content="Button 4"></Button>
 </StackPanel>
</UserControl>

Figure 3-3 shows the result.

Figure 3-3. The StackPanel in action

By default, a StackPanel arranges elements from top to bottom, making each one as tall as is
necessary to display its content. In this example, that means the TextBlock and buttons are sized just
high enough to comfortably accommodate the text inside. All the elements are then stretched to the full
width of the StackPanel, which is the width of your page.

In this example, the Height and Width properties of the page are not set. As a result, the page grows
to fit the full Silverlight content region (in this case, the complete browser window). Most of the
examples in this chapter use this approach, because it makes it easier to experiment with the different

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 3  LAYOUT

67

layout containers. You can then see how a layout container resizes itself to fit different page sizes simply
by resizing the browser window.

 Note Once you’ve examined all the layout containers, you’ll take a closer look at the issue of page sizes, and
you’ll learn about your different options for dealing content that doesn’t fit in the browser window.

The StackPanel can also be used to arrange elements horizontally by setting the Orientation
property:

<StackPanel Orientation="Horizontal" Background="White">

Now elements are given their minimum width (wide enough to fit their text) and are stretched to the
full height of the containing panel (see Figure 3-4).

Figure 3-4. The StackPanel with horizontal orientation

Clearly, this doesn’t provide the flexibility real applications need. Fortunately, you can fine-tune the
way the StackPanel and other layout containers work using layout properties, as described next.

Layout Properties
Although layout is determined by the container, the child elements can still get their say. In fact, layout
panels work in concert with their children by respecting a small set of layout properties, as listed in
Table 3-3.

CHAPTER 3  LAYOUT

68

Table 3-3. Layout Properties

Name Description

HorizontalAlignment This property determines how a child is positioned inside a layout
container when there’s extra horizontal space available. You can choose
Center, Left, Right, or Stretch.

VerticalAlignment This one determines how a child is positioned inside a layout container
when there’s extra vertical space available. You can choose Center, Top,
Bottom, or Stretch.

Margin Use Margin to add a bit of breathing room around an element. The
Margin property holds an instance of the System.Windows.Thickness
structure, with separate components for the top, bottom, left, and right
edges.

MinWidth and MinHeight These properties set the minimum dimensions of an element. If an
element is too large for its layout container, it will be cropped to fit.

MaxWidth and MaxHeight These two properties set the maximum dimensions of an element. If the
container has more room available, the element won’t be enlarged
beyond these bounds, even if the HorizontalAlignment and
VerticalAlignment properties are set to Stretch.

Width and Height Use these properties to explicitly set the size of an element. This setting
overrides a Stretch value for the HorizontalAlignment and
VerticalAlignment properties. However, this size won’t be honored if it’s
outside of the bounds set by the MinWidth, MinHeight, MaxWidth, and
MaxHeight.

All of these properties are inherited from the base FrameworkElement class and are therefore

supported by all the graphical widgets you can use in a Silverlight page.

 Note As you learned in Chapter 2, different layout containers can provide attached properties to their children.
For example, all the children of a Grid object gain Row and Column properties that allow them to choose the cell
where they’re placed. Attached properties allow you to set information that’s specific to a particular layout
container. However, the layout properties in Table 3-3 are generic enough that they apply to many layout panels.
Thus, these properties are defined as part of the base FrameworkElement class.

CHAPTER 3  LAYOUT

69

Alignment
To understand how these properties work, take another look at the simple StackPanel shown in Figure 3-
3. In this example—a StackPanel with vertical orientation—the VerticalAlignment property has no effect
because each element is given as much height as it needs and no more. However, the
HorizontalAlignment is important. It determines where each element is placed in its row.

Ordinarily, the default HorizontalAlignment is Left for a label and Stretch for a Button. That’s why
every button takes the full column width. However, you can change these details:

<StackPanel Background="White">
 <TextBlock HorizontalAlignment="Center" Text="A Button Stack"></TextBlock>
 <Button HorizontalAlignment="Left" Content="Button 1"></Button>
 <Button HorizontalAlignment="Right" Content="Button 2"></Button>
 <Button Content="Button 3"></Button>
 <Button Content="Button 4"></Button>
</StackPanel>

Figure 3-5 shows the result. The first two buttons are given their minimum sizes and aligned
accordingly, while the bottom two buttons are stretched over the entire StackPanel. If you resize the
page, you’ll see that the label remains in the middle and the first two buttons stay stuck to either side.

Figure 3-5. A StackPanel with aligned buttons

 Note The StackPanel also has its own HorizontalAlignment and VerticalAlignment properties. By default, both of
these are set to Stretch, and so the StackPanel fills its container completely. In this example, that means the
StackPanel fills the page. If you use a different value for VerticalAlignment, the StackPanel will be made just large
enough to fit the widest control.

CHAPTER 3  LAYOUT

70

Margins
There’s an obvious problem with the StackPanel example in its current form. A well-designed page
doesn’t just contain elements—it also includes a bit of extra space in between the elements. To
introduce this extra space and make the StackPanel example less cramped, you can set control margins.

When setting margins, you can set a single width for all sides, like this:

<Button Margin="5" Content="Button 3"></Button>

Alternatively, you can set different margins for each side of a control in the order left, top, right,
bottom:

<Button Margin="5,10,5,10" Content="Button 3"></Button>

In code, you can set margins using the Thickness structure:

cmd.Margin = new Thickness(5);

Getting the right control margins is a bit of an art, because you need to consider how the margin
settings of adjacent controls influence one another. For example, if you have two buttons stacked on top
of each other and the topmost button has a bottom margin of 5 and the bottommost button has a top
margin of 5, you have a total of 10 pixels of space between the two buttons.

Ideally, you’ll be able to keep different margin settings as consistent as possible and avoid setting
distinct values for the different margin sides. For instance, in the StackPanel example, it makes sense to
use the same margins on the buttons and on the panel itself, as shown here:

<StackPanel Margin="3" Background="White">
 <TextBlock Margin="3" HorizontalAlignment="Center"
 Text="A Button Stack"></TextBlock>
 <Button Margin="3" HorizontalAlignment="Left" Content="Button 1"></Button>
 <Button Margin="3" HorizontalAlignment="Right" Content="Button 2"></Button>
 <Button Margin="3" Content="Button 3"></Button>
 <Button Margin="3" Content="Button 4"></Button>
</StackPanel>

This way, the total space between two buttons (the sum of the two button margins) is the same as
the total space between the button at the edge of the page (the sum of the button margin and the
StackPanel margin). Figure 3-6 shows this more respectable page, and Figure 3-7 shows how the margin
settings break down.

CHAPTER 3  LAYOUT

71

Figure 3-6. Adding margins between elements

Figure 3-7. How margins are combined

CHAPTER 3  LAYOUT

72

Minimum, Maximum, and Explicit Sizes
Finally, every element includes Height and Width properties that allow you to give it an explicit size.
However, just because you can set explicit sizes doesn’t mean you should. In most cases, it’s better to let
elements grow to fit their content. For example, a button expands as you add more text. You can lock
your elements into a range of acceptable sizes by setting a maximum and minimum size, if necessary. If
you do add size information, you risk creating a more brittle layout that can’t adapt to changes and (at
worst) truncates content that doesn’t fit.

For example, you might decide that the buttons in your StackPanel should stretch to fit the
StackPanel but be made no larger than 200 pixels wide and no smaller than 100 pixels wide. (By default,
buttons start with a minimum width of 75 pixels.) Here’s the markup you need:

<StackPanel Margin="3">
 <TextBlock Margin="3" HorizontalAlignment="Center"
 Text="A Button Stack"></TextBlock>
 <Button Margin="3" MaxWidth="300" MinWidth="200" Content="Button 1"></Button>
 <Button Margin="3" MaxWidth="300" MinWidth="200" Content="Button 2"></Button>
 <Button Margin="3" MaxWidth="300" MinWidth="200" Content="Button 3"></Button>
 <Button Margin="3" MaxWidth="300" MinWidth="200" Content="Button 4"></Button>
</StackPanel>

 Tip At this point, you might be wondering if there’s an easier way to set properties that are standardized across
several elements, such as the button margins in this example. The answer is styles—a feature that allows you to
reuse property settings. You’ll learn about styles in Chapter 14.

When the StackPanel sizes a button that doesn’t have a hard-coded size, it considers several pieces
of information:

• The minimum size: Each button will always be at least as large as the minimum
size.

• The maximum size: Each button will always be smaller than the maximum size
(unless you’ve incorrectly set the maximum size to be smaller than the minimum
size).

• The content: If the content inside the button requires a greater width, the
StackPanel will attempt to enlarge the button.

• The size of the container: If the minimum width is larger than the width of the
StackPanel, a portion of the button will be cut off. But if the minimum width isn’t
set (or is less than the width of the StackPanel), the button will not be allowed to
grow wider than the StackPanel, even if it can’t fit all its text on the button surface.

• The horizontal alignment: Because the button uses a HorizontalAlignment of
Stretch (the default), the StackPanel will attempt to enlarge the button to fill the
full width of the StackPanel.

CHAPTER 3  LAYOUT

73

The trick to understanding this process is to realize that the minimum and maximum size set the
absolute bounds. Within those bounds, the StackPanel tries to respect the button’s desired size (to fit its
content) and its alignment settings.

Figure 3-8 sheds some light on how this works with the StackPanel. On the left is the page at its
minimum size. The buttons are 200 pixels each, and the page cannot be resized to be narrower. If you
shrink the page from this point, the right side of each button will be clipped off. (You can deal with this
situation using scrolling, as discussed later in this chapter.)

As you enlarge the page, the buttons grow with it until they reach their maximum of 300 pixels.
From this point on, if you make the page any larger, the extra space is added to either side of the button
(as shown on the right in Figure 3-8).

Figure 3-8. Constrained button sizing

 Note In some situations, you might want to use code that checks how large an element is in a page. The Height
and Width properties are no help because they indicate your desired size settings, which might not correspond to
the actual rendered size. In an ideal scenario, you’ll let your elements size to fit their content, and the Height and
Width properties won’t be set at all. However, you can find out the actual size used to render an element by
reading the ActualHeight and ActualWidth properties. But remember, these values may change when the page is
resized or the content inside it changes.

CHAPTER 3  LAYOUT

74

The WrapPanel and DockPanel
Obviously, the StackPanel alone can’t help you create a realistic user interface. To complete the picture,
the StackPanel needs to work with other more capable layout containers. Only then can you assemble a
complete window.

The most sophisticated layout container is the Grid, which you’ll consider later in this chapter. But
first, it’s worth looking at the WrapPanel and DockPanel, which are two simple layout containers that are
available as part of the Silverlight Toolkit. Both complement the StackPanel by offering different layout
behavior.

To use the WrapPanel or the DockPanel, you need to add a reference to the
System.Windows.Controls.Toolkit.dll assembly where they are defined. To get this assembly, you must
install the Silverlight Toolkit, which is available at http://silverlight.codeplex.com.

Once you’ve added the assembly reference, you need to map the namespace so it’s available in your
markup, as shown here:

<UserControl x:Class="Layout.WrapAndDock" ...
 xmlns:toolkit=
 "clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Toolkit">

You can now define the WrapPanel and DockPanel using the namespace prefix toolkit:

<toolkit:WrapPanel ...></toolkit:WrapPanel>

You can skip a few steps by adding the WrapPanel from the Toolbox. Visual Studio will then add the
appropriate assembly reference, map the namespace, and insert the XML markup for the control.

The WrapPanel
The WrapPanel lays out controls in the available space, one line or column at a time. By default, the
WrapPanel.Orientation property is set to Horizontal; controls are arranged from left to right and then on
subsequent rows. However, you can use Vertical to place elements in multiple columns.

 Tip Like the StackPanel, the WrapPanel is really intended for control over small-scale details in a user
interface, not complete window layouts. For example, you might use a WrapPanel to keep together the buttons in a
toolbar-like control.

Here’s an example that defines a series of buttons with different alignments and places them into
the WrapPanel:

<toolkit:WrapPanel Margin="3">
 <Button VerticalAlignment="Top" Content="Top Button"></Button>
 <Button MinHeight="60" Content="Tall Button"></Button>
 <Button VerticalAlignment="Bottom" Content="Bottom Button"></Button>
 <Button Content="Stretch Button"></Button>
 <Button VerticalAlignment="Center" Content="Centered Button"></Button>
</toolkit:WrapPanel>

http://silverlight.codeplex.com

CHAPTER 3  LAYOUT

75

Figure 3-9 shows how the buttons are wrapped to fit the current size of the WrapPanel (which is
determined by the size of the control that contains it). As this example demonstrates, a WrapPanel in
horizontal mode creates a series of imaginary rows, each of which is given the height of the tallest
contained element. Other controls may be stretched to fit or aligned according to the VerticalAlignment
property. In the example on the left in Figure 3-9, all the buttons fit into one tall row and are stretched or
aligned to fit. In the example on the right, several buttons have been bumped to the second row. Because
the second row does not include an unusually tall button, the row height is kept at the minimum button
height. As a result, it doesn’t matter what VerticalAlignment setting the various buttons in this row use.

Figure 3-9. Wrapped buttons

 Note The WrapPanel is the only one of the five Silverlight layout containers whose effects can’t be duplicated
with a crafty use of the Grid.

The DockPanel
The Silverlight Toolkit also includes a layout container called the DockPanel. It stretches controls against
one of its outside edges. The easiest way to visualize this is to think of the toolbars that sit at the top of
many Windows applications. These toolbars are docked to the top of the window. As with the
StackPanel, docked elements get to choose one aspect of their layout. For example, if you dock a button
to the top of a DockPanel, it’s stretched across the entire width of the DockPanel but given whatever
height it requires (based on the content and the MinHeight property). On the other hand, if you dock a
button to the left side of a container, its height is stretched to fit the container, but its width is free to
grow as needed.

The obvious question is this: How do child elements choose the side where they want to dock? The
answer is through an attached property named Dock, which can be set to Left, Right, Top, or Bottom.
Every element that’s placed inside a DockPanel automatically acquires this property.

Here’s an example that puts one button on every side of a DockPanel:

CHAPTER 3  LAYOUT

76

<toolkit:DockPanel LastChildFill="True">
 <Button toolkit:DockPanel.Dock="Top" Content="Top Button"></Button>
 <Button toolkit:DockPanel.Dock="Bottom" Content="Bottom Button"></Button>
 <Button toolkit:DockPanel.Dock="Left" Content="Left Button"></Button>
 <Button toolkit:DockPanel.Dock="Right" Content="Right Button"></Button>
 <Button Content="Remaining Space"></Button>
</toolkit:DockPanel>

This example also sets the LastChildFill to true, which tells the DockPanel to give the remaining
space to the last element. Figure 3-10 shows the result.

Figure 3-10. Docking to every side

Clearly, when docking controls, the order is important. In this example, the top and bottom buttons
get the full edge of the DockPanel because they’re docked first. When the left and right buttons are
docked next, they fit between these two buttons. If you reversed this order, the left and right buttons
would get the full sides, and the top and bottom buttons would become narrower, because they’d be
docked between the two side buttons.

You can dock several elements against the same side. In this case, the elements simply stack up
against the side in the order they’re declared in your markup. And, if you don’t like the spacing or the
stretch behavior, you can tweak the Margin, HorizontalAlignment, and VerticalAlignment properties,
just as you did with the StackPanel. Here’s a modified version of the previous example that
demonstrates:

<toolkit:DockPanel LastChildFill="True">
 <Button toolkit:DockPanel.Dock="Top" Content="A Stretched Top Button"></Button>
 <Button toolkit:DockPanel.Dock="Top" HorizontalAlignment="Center"
 Content="A Centered Top Button"></Button>
 <Button toolkit:DockPanel.Dock="Top" HorizontalAlignment="Left"
 Content="A Left-Aligned Top Button"></Button>

CHAPTER 3  LAYOUT

77

 <Button toolkit:DockPanel.Dock="Bottom" Content="Bottom Button"></Button>
 <Button toolkit:DockPanel.Dock="Left" Content="Left Button"></Button>
 <Button toolkit:DockPanel.Dock="Right" Content="Right Button"></Button>
 <Button Content="Remaining Space"></Button>
</toolkit:DockPanel>

The docking behavior is still the same. First, the top buttons are docked, then the bottom button is
docked, and finally the remaining space is divided between the side buttons and a final button in the
middle. Figure 3-11 shows the resulting window.

Figure 3-11. Docking multiple elements to the top

The Grid
The Grid is the most powerful layout container in Silverlight. In fact, the Grid is so useful that when you
add a new XAML document for a page in Visual Studio, it automatically adds the Grid tags as the first-
level container, nested inside the root UserControl element.

The Grid separates elements into an invisible grid of rows and columns. Although more than one
element can be placed in a single cell (in which case they overlap), it generally makes sense to place just
a single element per cell. Of course, that element may itself be another layout container that organizes
its own group of contained controls.

 Tip Although the Grid is designed to be invisible, you can set the Grid.ShowGridLines property to true to take a
closer look. This feature isn’t really intended for prettying up a page. Instead, it’s a debugging convenience that’s
designed to help you understand how the Grid has subdivided itself into smaller regions. This feature is important
because you have the ability to control exactly how the Grid chooses column widths and row heights.

CHAPTER 3  LAYOUT

78

Creating a Grid-based layout is a two-step process. First, you choose the number of columns and
rows that you want. Next, you assign the appropriate row and column to each contained element,
thereby placing it in just the right spot.

You create grids and rows by filling the Grid.ColumnDefinitions and Grid.RowDefinitions
collections with objects. For example, if you decide you need two rows and three columns, you’d add the
following tags:

<Grid ShowGridLines="True" Background="White">
 <Grid.RowDefinitions>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 </Grid.ColumnDefinitions>

 ...
</Grid>

As this example shows, it’s not necessary to supply any information in a RowDefinition or
ColumnDefinition element. If you leave them empty (as shown here), the Grid will share the space
evenly between all rows and columns. In this example, each cell will be exactly the same size, depending
on the size of the containing page.

To place individual elements into a cell, you use the attached Row and Column properties. Both
these properties take zero-based index numbers. For example, here’s how you could create a partially
filled grid of buttons:

<Grid ShowGridLines="True" Background="White">
 ...
 <Button Grid.Row="0" Grid.Column="0" Content="Top Left"></Button>
 <Button Grid.Row="0" Grid.Column="1" Content="Top Middle"></Button>
 <Button Grid.Row="1" Grid.Column="2" Content="Bottom Right"></Button>
 <Button Grid.Row="1" Grid.Column="1" Content="Bottom Middle"></Button>
</Grid>

Each element must be placed into its cell explicitly. This allows you to place more than one element
into a cell (which rarely makes sense) or leave certain cells blank (which is often useful). It also means
you can declare your elements out of order, as with the final two buttons in this example. However, it
makes for clearer markup if you define your controls row by row, and from left to right in each row.

There is one exception. If you don’t specify the Grid.Row property, the Grid assumes that it’s 0. The
same behavior applies to the Grid.Column property. Thus, you leave both attributes off an element to
place it in the first cell of the Grid.

Figure 3-12 shows how this simple grid appears at two different sizes. Notice that the
ShowGridLines property is set to true so that you can see the separation between each column and row.

CHAPTER 3  LAYOUT

79

Figure 3-12. A simple grid

As you would expect, the Grid honors the basic set of layout properties listed in Table 3-3. That
means you can add margins around the content in a cell, you can change the sizing mode so an element
doesn’t grow to fill the entire cell, and you can align an item along one of the edges of a cell. If you force
an element to have a size that’s larger than the cell can accommodate, part of the content will be
chopped off.

Fine-Tuning Rows and Columns
As you’ve seen, the Grid gives you the ability to create a proportionately sized collection of rows and
columns, which is often quite useful. However, to unlock the full potential of the Grid, you can change
the way each row and column is sized.

The Grid supports three sizing strategies:

• Absolute sizes: You choose the exact size using pixels. This is the least useful
strategy, because it’s not flexible enough to deal with changing content size,
changing container size, or localization.

• Automatic sizes: Each row or column is given exactly the amount of space it needs
and no more. This is one of the most useful sizing modes.

• Proportional sizes: Space is divided between a group of rows or columns. This is
the standard setting for all rows and columns. For example, in Figure 3-12 you can
see that all cells increase in size proportionately as the Grid expands.

For maximum flexibility, you can mix and match these different sizing modes. For example, it’s
often useful to create several automatically sized rows and then let one or two remaining rows get the
leftover space through proportional sizing.

You set the sizing mode using the Width property of the ColumnDefinition object or the Height
property of the RowDefinition object to a number. For example, here’s how you set an absolute width of
100 pixels:

CHAPTER 3  LAYOUT

80

<ColumnDefinition Width="100"></ColumnDefinition>

To use automatic sizing, you use a value of Auto:

<ColumnDefinition Width="Auto"></ColumnDefinition>

Finally, to use proportional sizing, you use an asterisk (*):

<ColumnDefinition Width="*"></ColumnDefinition>

This syntax stems from the world of the Web, where it’s used with HTML frames pages. If you use a
mix of proportional sizing and other sizing modes, the proportionally sized rows or columns get
whatever space is left over.

If you want to divide the remaining space unequally, you can assign a weight, which you must place
before the asterisk. For example, if you have two proportionately sized rows and you want the first to be
half as high as the second, you could share the remaining space like this:

<RowDefinition Height="*"></RowDefinition>
<RowDefinition Height="2*"></RowDefinition>

This tells the Grid that the height of the second row should be twice the height of the first row. You
can use whatever numbers you like to portion out the extra space.

Nesting Layout Containers
The Grid is impressive on its own, but most realistic user interfaces combine several layout containers.
They may use an arrangement with more than one Grid or nay mix the Grid with other layout containers
like the StackPanel.

The following markup presents a simple example of this principle. It creates a basic dialog box with
OK and Cancel buttons in the bottom-right corner and a large content region that’s sized to fit its
content (the text in a TextBlock). The entire package is centered in the middle of the page by setting the
alignment properties on the Grid.

<Grid ShowGridLines="True" Background="SteelBlue"
 HorizontalAlignment="Center" VerticalAlignment="Center">
 <Grid.RowDefinitions>
 <RowDefinition Height="*"></RowDefinition>
 <RowDefinition Height="Auto"></RowDefinition>
 </Grid.RowDefinitions>

 <TextBlock Margin="10" Grid.Row="0" Foreground="White"
 Text="This is simply a test of nested containers."></TextBlock>
 <StackPanel Grid.Row="1" HorizontalAlignment="Right" Orientation="Horizontal">
 <Button Margin="10,10,2,10" Padding="3" Content="OK"></Button>
 <Button Margin="2,10,10,10" Padding="3" Content="Cancel"></Button>
 </StackPanel>
</Grid>

You’ll notice that this Grid doesn’t declare any columns. This is a shortcut you can take if your grid
uses just one column and that column is proportionately sized (so it fills the entire width of the Grid).
Figure 3-13 shows the rather pedestrian dialog box this markup creates.

CHAPTER 3  LAYOUT

81

 Note In this example, the Padding property adds some minimum space between the button border and the
content inside (the word OK or Cancel). You’ll learn more about Padding when you consider content controls in
Chapter 5.

Figure 3-13. A basic dialog box

At first glance, nesting layout containers seems like a fair bit more work than placing controls in
precise positions using coordinates. And in many cases, it is. However, the longer setup time is
compensated by the ease with which you can change the user interface in the future. For example, if you
decide you want the OK and Cancel buttons to be centered at the bottom of the page, you simply need to
change the alignment of the StackPanel that contains them:

<StackPanel Grid.Row="1" HorizontalAlignment="Center" ... >

Similarly, if you need to change the amount of content in the first row, the entire Grid will be
enlarged to fit, and the buttons will move obligingly out of the way. And if you add a dash of styles to this
page (Chapter 14), you can improve it even further and remove other extraneous details (such as the
margin settings) to create cleaner and more compact markup.

CHAPTER 3  LAYOUT

82

 Tip If you have a densely nested tree of elements, it’s easy to lose sight of the overall structure. Visual Studio
provides a handy feature that shows you a tree representation of your elements and allows you to click your way
down to the element you want to look at (or modify). This feature is the Document Outline window, and you can
view it by choosing View  Other Windows  Document Outline from the menu.

Spanning Rows and Columns
You’ve already seen how to place elements in cells using the Row and Column attached properties. You
can also use two more attached properties to make an element stretch over several cells: RowSpan and
ColumnSpan. These properties take the number of rows or columns that the element should occupy.

For example, this button will take all the space that’s available in the first and second cell of the first
row:

<Button Grid.Row="0" Grid.Column="0" Grid.ColumnSpan="2" Content="Span Button">
</Button>

And this button will stretch over four cells in total by spanning two columns and two rows:

<Button Grid.Row="0" Grid.Column="0" Grid.RowSpan="2" Grid.ColumnSpan="2"
 Content="Span Button"></Button>

Row and column spanning can achieve some interesting effects and is particularly handy when you
need to fit elements in a tabular structure that’s broken up by dividers or longer sections of content.

Using column spanning, you could rewrite the simple dialog box example from Figure 3-13 using
just a single Grid. This Grid divides the page into three columns, spreads the text box over all three, and
uses the last two columns to align the OK and Cancel buttons.

<Grid ShowGridLines="True" Background="SteelBlue"
 HorizontalAlignment="Center" VerticalAlignment="Center">
 <Grid.RowDefinitions>
 <RowDefinition Height="*"></RowDefinition>
 <RowDefinition Height="Auto"></RowDefinition>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"></ColumnDefinition>
 <ColumnDefinition Width="Auto"></ColumnDefinition>
 <ColumnDefinition Width="Auto"></ColumnDefinition>
 </Grid.ColumnDefinitions>
 <TextBlock Margin="10" Grid.Row="0" Grid.Column="0" Grid.ColumnSpan="3"
 Foreground="White"
 Text="This is simply a test of nested containers."></TextBlock>

 <Button Margin="10,10,2,10" Padding="3"
 Grid.Row="1" Grid.Column="1" Content="OK"></Button>
 <Button Margin="2,10,10,10" Padding="3"
 Grid.Row="1" Grid.Column="2" Content="Cancel"></Button>
</Grid>

CHAPTER 3  LAYOUT

83

Most developers will agree that this layout isn’t clear or sensible. The column widths are determined
by the size of the two buttons at the bottom of the page, which makes it difficult to add new content into
the existing Grid structure. If you make even a minor addition to this page, you’ll probably be forced to
create a new set of columns.

As this shows, when you choose the layout containers for a page, you aren’t simply interested in
getting the correct layout behavior—you also want to build a layout structure that’s easy to maintain and
enhance in the future. A good rule of thumb is to use smaller layout containers such as the StackPanel
for one-off layout tasks, such as arranging a group of buttons. On the other hand, if you need to apply a
consistent structure to more than one area of your page, the Grid is an indispensable tool for
standardizing your layout.

The GridSplitter
Every Windows user has seen splitter bars—draggable dividers that separate one section of a window
from another. For example, when you use Windows Explorer, you’re presented with a list of folders (on
the left) and a list of files (on the right). You can drag the splitter bar in between to determine what
proportion of the window is given to each pane.

In Silverlight, you can create a similar design and give the user the ability to resize rows or columns
by adding a splitter bar to a Grid. Figure 3-14 shows a window where a GridSplitter sits between two
columns. By dragging the splitter bar, the user can change the relative widths of both columns.

Figure 3-14. Moving a splitter bar

 Note The GridSplitter is defined in the System.Windows.Controls.dll assembly. If you aren’t already using this
assembly, you’ll need to add an assembly reference and an XML mapping before you get access to the
GridSplitter, much as you did to use the WrapPanel and DockPanel. The easiest way to accomplish both steps is to
add the GridSplitter from the Toolbox, which gets Visual Studio will do the job for you.

CHAPTER 3  LAYOUT

84

To use the GridSplitter effectively, you need to know a little bit more about how it works. Although
the GridSplitter serves a straightforward purpose, it can be awkward at first. To get the result you want,
follow these guidelines:

• The GridSplitter must be placed in a Grid cell. You can place the GridSplitter in a
cell with existing content, in which case you need to adjust the margin settings so
it doesn’t overlap. A better approach is to reserve a dedicated column or row for
the GridSplitter, with a Height or Width value of Auto.

• The GridSplitter always resizes entire rows or columns (not single cells). To make
the appearance of the GridSplitter consistent with this behavior, you should
stretch the GridSplitter across an entire row or column, rather than limit it to a
single cell. To accomplish this, you use the RowSpan or ColumnSpan properties
you considered earlier. For example, the GridSplitter in Figure 3-14 has a RowSpan
of 2. As a result, it stretches over the entire column. If you didn’t add this setting, it
would appear only in the top row (where it’s placed), even though dragging the
splitter bar would resize the entire column.

• Initially, the GridSplitter is invisibly small. To make it usable, you need to give it a
minimum size. In the case of a vertical splitter bar (like the one in Figure 3-14),
you need to set the VerticalAlignment to Stretch (so it fills the whole height of the
available area) and the Width to a fixed size (such as 10 pixels). In the case of a
horizontal splitter bar, you need to set HorizontalAlignment to Stretch and Height
to a fixed size.

• The GridSplitter alignment also determines whether the splitter bar is horizontal
(used to resize rows) or vertical (used to resize columns). In the case of a
horizontal splitter bar, you would set VerticalAlignment to Center (which is the
default value) to indicate that dragging the splitter resizes the rows that are above
and below. In the case of a vertical splitter bar (like the one in Figure 3-14), you
would set HorizontalAlignment to Center to resize the columns on either side.

• To actually see the GridSplitter, you need to set the Background property.
Otherwise, the GridSplitter remains transparent until you click it (at which point a
light blue focus rectangle appears around its edges).

• The GridSplitter respects minimum and maximum sizes, if you’ve set them on
your ColumnDefinition or RowDefinition objects. The user won’t be allowed to
enlarge or shrink a column or row outside of its allowed size range.

To reinforce these rules, it helps to take a look at the actual markup for the example shown in Figure
3-14. In the following listing, the GridSplitter details are highlighted:

<Grid Background="White">
 <Grid.ColumnDefinitions>
 <ColumnDefinition MinWidth="100"></ColumnDefinition>
 <ColumnDefinition Width="Auto"></ColumnDefinition>
 <ColumnDefinition MinWidth="50"></ColumnDefinition>
 </Grid.ColumnDefinitions>

 <Button Grid.Column="0" Margin="3" Content="Left Side of the Grid"></Button>
 <controls:GridSplitter Grid.Column="1" Grid.RowSpan="2" Background="LightGray"
 Width="3" VerticalAlignment="Stretch" HorizontalAlignment="Center"

CHAPTER 3  LAYOUT

85

 ShowsPreview="False"></controls:GridSplitter>
 <Button Grid.Column="2" Margin="3" Content="Right Side of the Grid"></Button>
</Grid>

 Tip Remember, if a Grid has just a single row or column, you can leave out the RowDefinitions section. Also,
elements that don’t have their row position explicitly set are assumed to have a Grid.Row value of 0 and are placed
in the first row. The same holds true for elements that don’t supply a Grid.Column value.

This markup includes one additional detail. When the GridSplitter is declared, the ShowsPreview
property is set to false (which is the default value). As a result, when the splitter bar is dragged from one
side to another, the columns are resized immediately. But if you set ShowsPreview to true, when you
drag, you’ll see a gray shadow follow your mouse pointer to show you where the split will be. The
columns won’t be resized until you release the mouse button. You can also change the fill that’s used for
the GridSplitter so that it isn’t just a shaded gray rectangle. The trick is to set the Background property.

A Grid usually contains no more than a single GridSplitter. However, you can nest one Grid inside
another, and if you do, each Grid may have its own GridSplitter. This allows you to create a page that’s
split into two regions (for example, left and right panes) and then further subdivide one of these regions
(say, the pane on the right) into more sections (such as resizable top and bottom portions). Figure 3-15
shows an example.

Figure 3-15. Resizing a window with two splits

Creating this page is fairly straightforward, although it’s a chore to keep track of the three Grid
containers that are involved: the overall Grid, the nested Grid on the left, and the nested Grid on the
right. The only trick is to make sure the GridSplitter is placed in the correct cell and given the correct
alignment. Here’s the complete markup:

<!-- This is the Grid for the entire page. -->
<Grid Background="White">
 <Grid.ColumnDefinitions>

CHAPTER 3  LAYOUT

86

 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition Width="Auto"></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 </Grid.ColumnDefinitions>

 <!-- This is the nested Grid on the left.
 It isn't subdivided further with a splitter. -->
 <Grid Grid.Column="0" VerticalAlignment="Stretch">
 <Grid.RowDefinitions>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>
 <Button Margin="3" Grid.Row="0" Content="Top Left"></Button>
 <Button Margin="3" Grid.Row="1" Content="Bottom Left"></Button>
 </Grid>

 <!-- This is the vertical splitter that sits between the two nested
 (left and right) grids. -->
 <controls:GridSplitter Grid.Column="1" Background="LightGray"
 Width="3" HorizontalAlignment="Center" VerticalAlignment="Stretch">
 </controls:GridSplitter>

 <!-- This is the nested Grid on the right. -->
 <Grid Grid.Column="2">
 <Grid.RowDefinitions>
 <RowDefinition></RowDefinition>
 <RowDefinition Height="Auto"></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>

 <Button Grid.Row="0" Margin="3" Content="Top Right"></Button>
 <Button Grid.Row="2" Margin="3" Content="Bottom Right"></Button>

 <!-- This is the horizontal splitter that subdivides it into
 a top and bottom region.. -->
 <controls:GridSplitter Grid.Row="1" Background="LightGray"
 Height="3" VerticalAlignment="Center" HorizontalAlignment="Stretch"
 ShowsPreview="False"></controls:GridSplitter>
 </Grid>
</Grid>

Coordinate-Based Layout with the Canvas
The only layout container you haven’t considered yet is the Canvas. It allows you to place elements using
exact coordinates, which is a poor choice for designing rich data-driven forms and standard dialog
boxes, but it’s a valuable tool if you need to build something a little different (such as a drawing surface
for a diagramming tool). The Canvas is also the most lightweight of the layout containers. That’s because
it doesn’t include any complex layout logic to negotiate the sizing preferences of its children. Instead, it
simply lays them all out at the position they specify, with the exact size they want.

To position an element on the Canvas, you set the attached Canvas.Left and Canvas.Top properties.
Canvas.Left sets the number of pixels between the left edge of your element and the left edge of the

CHAPTER 3  LAYOUT

87

Canvas. Canvas.Top sets the number of pixels between the top of your element and the top of the
Canvas.

Optionally, you can size your element explicitly using its Width and Height properties. This is more
common when using the Canvas than it is in other panels because the Canvas has no layout logic of its
own. If you don’t set the Width and Height properties, your element will get its desired size—in other
words, it will grow just large enough to fit its content. If you change the size of the Canvas, it has no effect
on the Controls inside.

Here’s a simple Canvas that includes four buttons:

<Canvas Background="White">
 <Button Canvas.Left="10" Canvas.Top="10" Content="(10,10)"></Button>
 <Button Canvas.Left="120" Canvas.Top="30" Content="(120,30)"></Button>
 <Button Canvas.Left="60" Canvas.Top="80" Width="50" Height="50"
 Content="(60,80)"></Button>
 <Button Canvas.Left="70" Canvas.Top="120" Width="100" Height="50"
 Content="(70,120)"></Button>
</Canvas>

Figure 3-16 shows the result.

Figure 3-16. Explicitly positioned buttons in a Canvas

Like any other layout container, the Canvas can be nested inside a user interface. That means you
can use the Canvas to draw some detailed content in a portion of your page, while using more standard
Silverlight panels for the rest of your elements.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3  LAYOUT

88

Layering with ZIndex
If you have more than one overlapping element, you can set the attached Canvas.ZIndex property to
control how they are layered.

Ordinarily, all the elements you add have the same ZIndex—0. When elements have the same
ZIndex, they’re displayed in the same order that they exist in the Canvas.Children collection, which is
based on the order that they’re defined in the XAML markup. Elements declared later in the markup—
such as button (70,120)—are displayed overtop of elements that are declared earlier—such as button
(60,80).

However, you can promote any element to a higher level by increasing its ZIndex. That’s because
higher ZIndex elements always appear over lower ZIndex elements. Using this technique, you could
reverse the layering in the previous example:

<Button Canvas.Left="60" Canvas.Top="80" Canvas.ZIndex="1" Width="50" Height="50"
 Content="(60,80)"></Button>
<Button Canvas.Left="70" Canvas.Top="120" Width="100" Height="50"
 Content="(70,120)"</Button>

 Note The actual values you use for the Canvas.ZIndex property have no meaning. The important detail is how
the ZIndex value of one element compares to the ZIndex value of another. You can set the ZIndex using any
positive or negative integer.

The ZIndex property is particularly useful if you need to change the position of an element
programmatically. Just call Canvas.SetZIndex() and pass in the element you want to modify and the new
ZIndex you want to apply. Unfortunately, there is no BringToFront() or SendToBack() method—it’s up
to you to keep track of the highest and lowest ZIndex values if you want to implement this behavior.

Clipping
There’s one aspect of the Canvas that’s counterintuitive. In most layout containers, the contents are
limited to the space that’s available in that container. For example, if you create a StackPanel with a
height of 100 pixels and place a tall column of buttons inside, those that don’t fit will be chopped off the
bottom. However, the Canvas doesn’t follow this common-sense rule. Instead, it draws all its children,
even if they fall outside its bounds. That means you could replace the earlier example with a Canvas that
has a 0-pixel height and a 0-pixel width, and the result wouldn’t change.

The Canvas works this way for performance reasons—quite simply, it’s more efficient for the Canvas
to draw all its children and then check whether each one falls insides its bounds. However, this isn’t
always the behavior you want. For example, Chapter 11 includes an animated game that sends bombs
flying off the edge of the playing area, which is a Canvas. In this situation, the bombs must be visible
only inside the Canvas—when they leave, they should disappear under the Canvas border, not drift
overtop other elements.

Fortunately, the Canvas has support for clipping, which ensures that elements (or the portions of an
element) that aren’t inside a specified area are cut off, in much the same way as elements that extend
beyond the edges of a StackPanel or Grid. The only inconvenience is that you need to set the shape of the
clipping area manually using the Canvas.Clip property.

CHAPTER 3  LAYOUT

89

Technically, the Clip property takes a Geometry object, which is a useful object you’ll consider in
more detail when you tackle drawing in Chapter 8. Silverlight has different Geometry-derived classes for
different types of shapes, including squares and rectangles (RectangleGeometry), circles and ellipses
(EllipseGeometry), and more complex shapes (PathGeometry). Here’s an example that sets the clipping
region to a rectangular area that matches the bounds of the Canvas:

<Canvas x:Name="canvasBackground" Width="200" Height="500" Background="AliceBlue">
 <Canvas.Clip>
 <RectangleGeometry Rect="0,0 200,500"></RectangleGeometry>
 </Canvas.Clip>
 ...
<Canvas>

In this example, the clipping region can be described as a rectangle with its top-left corner at point
(0, 0), a width of 200 pixels, and a height of 500 pixels. The coordinate for the top-left corner is relative to
the Canvas itself, so you must always have a top-left corner of (0,0) unless you want to leave out some of
the content in the upper or left region of the Canvas.

Setting the clipping region in markup isn’t always the best approach. It’s particularly problematic if
your Canvas is sized dynamically to fit a resizable container or the browser window. In this situation, it’s
far more effective to set the clipping region programmatically. Fortunately, all you need is a simple event
handler that changes the clipping region when the Canvas is resized by reaching the
Canvas.SizeChanged event. (This event also fires when the Canvas is first created, so it also takes care of
the initial clipping region setup.)

private void canvasBackground_SizeChanged(object sender, SizeChangedEventArgs e)
{
 RectangleGeometry rect = new RectangleGeometry();
 rect.Rect = new Rect(0, 0, canvasBackground.ActualWidth,
 canvasBackground.ActualHeight);
 canvasBackground.Clip = rect;
}

You can attach that event handler like so:

<Canvas x:Name="canvasBackground" SizeChanged="canvasBackground_SizeChanged"
Background="AliceBlue">

You’ll see this technique in action with the bomb-dropping game in Chapter 11.

CHOOSING THE RIGHT LAYOUT CONTAINER

As a general rule of thumb, the Grid and StackPanel are best when dealing with business-style
applications (for example, when displaying data entry forms or documents). They deal well with changing
window sizes and dynamic content (for example, blocks of text that can grow or shrink depending on the
information at hand). They also make it easier to modify, localize, and reskin the application, because
adjacent elements will bump each other out of the way as they change size. The Grid and StackPanel are
also closest to the way ordinary HTML pages work.

The Canvas is dramatically different. Because all of its children are arranged using fixed coordinates, you
need to go to more work to position them (and even more work if you want to tweak the layout later on in

CHAPTER 3  LAYOUT

90

response to new elements or new formatting.) However, the Canvas makes sense in certain types of
graphically rich applications, such as games. In these applications, you need fine-grained control, text and
graphics often overlap, and you often change coordinates programmatically. Here, the emphasis isn’t on
flexibility but on achieving a specific visual appearance, and the Canvas makes more sense.

Custom Layout Containers
Although Silverlight has a solid collection of layout containers, it can’t offer everything. The developers
of Silverlight left out many more specialized layout containers to keep the Silverlight download as lean as
possible.

However, there’s no reason you can’t create some layout containers of your own. You simply need
to derive a custom class from Panel and supply the appropriate layout logic. And if you’re ambitious, you
can combine the layout logic of a panel with other Silverlight features. For example, you can create a
panel that handles mouse-over events to provide automatic drag support for the elements inside (like
the dragging example shown in Chapter 4), or you can create a panel that displays its children with an
animated effect.

In the following sections, you’ll learn how the layout process works, and then you’ll see how to build
a custom layout container. The example you’ll consider is the UniformGrid—a stripped-down grid
control that tiles elements into a table of identically sized cells.

The Two-Step Layout Process
Every panel uses the same plumbing: a two-step process that’s responsible for sizing and arranging
children. The first stage is the measure pass, and it’s at this point that the panel determines how large its
children want to be. The second stage is the layout pass, and it’s at this point that each control is
assigned its bounds. Two steps are required, because the panel might need to take into account the
desires of all its children before it decides how to partition the available space.

You add the logic for these two steps by overriding the oddly named MeasureOverride() and
ArrangeOverride() methods, which are defined in the FrameworkElement class as part of the Silverlight
layout system. The odd names represent that the MeasureOverride() and ArrangeOverride() methods
replace the logic that’s defined in the MeasureCore() and ArrangeCore() methods that are defined in the
UIElement class. These methods are not overridable.

MeasureOverride()
The first step is to determine how much space each child wants using the MeasureOverride() method.
However, even in the MeasureOverride() method, children aren’t given unlimited room. At a bare
minimum, children are confined to fit in the space that’s available to the panel. Optionally, you might
want to limit them more stringently. For example, a Grid with two proportionally sized rows will give
children half the available height. A StackPanel will offer the first element all the space that’s available
and then offer the second element whatever’s left, and so on.

Every MeasureOverride() implementation is responsible for looping through the collection of
children and calling the Measure() method of each one. When you call the Measure() method, you
supply the bounding box—a Size object that determines the maximum available space for the child
control. At the end of the MeasureOverride() method, the panel returns the space it needs to display all
its children and their desired sizes.

Here’s the basic structure of the MeasureOverride() method, without the specific sizing details:

CHAPTER 3  LAYOUT

91

protected override Size MeasureOverride(Size panelSpace)
{
 // Examine all the children.
 foreach (UIElement element in this.Children)
 {
 // Ask each child how much space it would like, given the
 // availableElementSize constraint.
 Size availableElementSize = new Size(...);
 element.Measure(availableElementSize);
 // (You can now read element.DesiredSize to get the requested size.)
 }

 // Indicate how much space this panel requires.
 // This will be used to set the DesiredSize property of the panel.
 return new Size(...);
}

The Measure() method doesn’t return a value. After you call Measure() on a child, that child’s
DesiredSize property provides the requested size. You can use this information in your calculations for
future children (and to determine the total space required for the panel).

You must call Measure() on each child, even if you don’t want to constrain the child’s size or use the
DesiredSize property. Many elements will not render themselves until you’ve called Measure(). If you
want to give a child free rein to take all the space it wants, pass a Size object with a value of
Double.PositiveInfinity for both dimensions. (The ScrollViewer is one element that uses this strategy,
because it can handle any amount of content.) The child will then return the space it needs for all its
content. Otherwise, the child will normally return the space it needs for its content or the space that’s
available—whichever is smaller.

At the end of the measuring process, the layout container must return its desired size. In a simple
panel, you might calculate the panel’s desired size by combining the desired size of every child.

 Note You can’t simply return the constraint that’s passed to the MeasureOverride() method for the desired size
of your panel. Although this seems like a good way to take all the available size, it runs into trouble if the container
passes in a Size object with Double.PositiveInfinity for one or both dimensions (which means “take all the space
you want”). Although an infinite size is allowed as a sizing constraint, it’s not allowed as a sizing result, because
Silverlight won’t be able to figure out how large your element should be. Furthermore, you really shouldn’t take
more space than you need. Doing so can cause extra whitespace and force elements that occur after your layout
panel to be bumped farther down the window.

If you’re an attentive reader, you may have noticed that there’s a close similarity between the
Measure() method that’s called on each child and the MeasureOverride() method that defines the first
step of the panel’s layout logic. In fact, the Measure() method triggers the MeasureOverride() method.
Thus, if you place one layout container inside another, when you call Measure(), you’ll get the total size
required for the layout container and all its children.

One reason the measuring process goes through two steps (a Measure() method that triggers the
MeasureOverride() method) is to deal with margins. When you call Measure(), you pass in the total

CHAPTER 3  LAYOUT

92

available space. When Silverlight calls the MeasureOverride() method, it automatically reduces the
available space to take margin space into account (unless you’ve passed in an infinite size).

ArrangeOverride()
Once every element has been measured, it’s time to lay them out in the space that’s available. The layout
system calls the ArrangeOverride() method of your panel, and the panel calls the Arrange() method of
each child to tell it how much space it’s been allotted. (As you can probably guess, the Arrange() method
triggers the ArrangeOverride() method, much as the Measure() method triggers the MeasureOverride()
method.)

When measuring items with the Measure() method, you pass in a Size object that defines the
bounds of the available space. When placing an item with the Arrange() method, you pass in a
System.Windows.Rect object that defines the size and position of the item. At this point, it’s as though
every element is placed with Canvas-style X and Y coordinates that determine the distance between the
top-left corner of your layout container and the element.

Here’s the basic structure of the ArrangeOverride() method, without the specific sizing details:

protected override Size ArrangeOverride(Size panelSize)
{
 // Examine all the children.
 foreach (UIElement element in this.Children)
 {
 // Assign the child its bounds.
 Rect elementBounds = new Rect(...);
 element.Arrange(elementBounds);
 // (You can now read element.ActualHeight and element.ActualWidth
 // to find out the size it used.)
 }

 // Indicate how much space this panel occupies.
 // This will be used to set the ActualHeight and ActualWidth properties
 // of the panel.
 return arrangeSize;
}

When arranging elements, you can’t pass infinite sizes. However, you can give an element its
desired size by passing in the value from its DesiredSize property. You can also give an element more
space than it requires. In fact, this happens frequently. For example, a vertical StackPanel gives a child as
much height as it requests but gives it the full width of the panel itself. Similarly, a Grid might use fixed
or proportionally sized rows that are larger than the desired size of the element inside. And even if
you’ve placed an element in a size-to-content container, that element can still be enlarged if an explicit
size has been set using the Height and Width properties.

When an element is made larger than its desired size, the HorizontalAlignment and
VerticalAlignment properties come into play. The element content is placed somewhere inside the
bounds that it has been given.

Because the ArrangeOverride() method always receives a defined size (not an infinite size), you can
return the Size object that’s passed in to set the final size of your panel. In fact, many layout containers
take this step to occupy all the space that’s been given. You aren’t in danger of taking up space that could
be needed for another control, because the measure step of the layout system ensures that you won’t be
given more space than you need unless that space is available.

CHAPTER 3  LAYOUT

93

The UniformGrid
Now that you’ve examined the layout system in a fair bit of detail, it’s worth creating your own layout
container that adds something you can’t get with the basic set of Silverlight panels. In this section, you’ll
see an example straight from the WPF world: a UniformGrid that arranges its children into automatically
generated, equally sized cells.

 Note The UniformGrid is useful as a lightweight alternative to the regular Grid, because it doesn’t require
explicitly defined rows and columns, and it doesn’t force you to manually place each child in the right cell. It
makes particularly good sense when display a tiled set of images. In fact, WPF includes a slightly more ambitious
version of this control as part of the .NET Framework.

Like all custom panels, the UniformGrid starts with a simple class declaration that inherits from the
base Panel control:

public class UniformGrid : System.Windows.Controls.Panel
{ ... }

 Note You can build the UniformGrid directly inside any Silverlight application. But if you want to reuse your
custom layout container in multiple applications, it’s a better idea to place it in a new Silverlight class library for it.
When you want to use your custom layout container in an application, simply add a reference to the compiled
class library.

Conceptually, the UniformGrid is quite simple. It examines the available space, calculates how
many cells are needed (and how big each cell will be), and then lays out its children one after the other.
The UniformGrid allows you to customize its behavior with two properties, Rows and Columns, which
can be set independently or in conjunction:

public int Columns { get; set; }
public int Rows { get; set; }

Here’s how the Rows and Columns properties affect the layout logic:

• If both the Rows and Columns properties are set, the UniformGrid knows how big
to make the grid. It simply needs to divide the available space proportionately to
find the size of each cell. If there are more elements than cells, the extra elements
aren’t displayed.

• If only one of these properties is set, the UniformGrid calculates the other,
assuming that you want to display all the elements inside. For example, if you set
Columns to 3 and place eight elements inside, the UniformGrid will divide the
available space into three rows.

CHAPTER 3  LAYOUT

94

• If neither of these properties is set, the UniformGrid will calculate both of them,
assuming that you want to display all the elements and you want an equal number
of rows and columns. (However, the UniformGrid won’t create an entirely blank
row or column. Instead, if it can’t match the number of rows and columns exactly,
the UniformGrid will add an extra column.)

To implement this system, the UniformGrid keeps track of the real number of columns and rows.
This holds the value in the Columns and Rows properties, if they’re set. If they aren’t, the Grid uses a
custom method called CalculateColumns() to count the child elements and determine the dimensions of
the grid. This method can then be called during the first stage of layout.

private int realColumns;
private int realRows;

private void CalculateColumns()
{
 // Count the elements, and don't do anything
 // if the panel is empty.
 double elementCount = this.Children.Count;
 if (elementCount == 0) return;

 realRows = Rows;
 realColumns = Columns;

 // If the Rows and Columns properties were set, use them.
 if ((realRows != 0) && (realColumns != 0))
 return;

 // If neither property was set, start by calculating the columns.
 if ((realColumns == 0) && realRows == 0)
 realColumns = (int)Math.Ceiling(Math.Sqrt(elementCount));

 // If only Rows is set, calculate Columns.
 if (realColumns == 0)
 realColumns = (int)Math.Ceiling(elementCount / realRows);

 // If only Columns is set, calculate Rows.
 if (realRows == 0)
 realRows = (int)Math.Ceiling(elementCount / realColumns);
}

The Silverlight layout system starts the layout process by calling the MeasureOverride() method in
the UniformGrid. It needs to call the column calculation method (ensuring the number of rows and
columns are set) and then divide the available space into equally sized cells.

protected override Size MeasureOverride(Size constraint)
{
 CalculateColumns();

 // Share out the available space equally.
 Size childConstraint = new Size(
 constraint.Width / realColumns, constraint.Height / realRows);
 ...

CHAPTER 3  LAYOUT

95

Now the elements inside the UniformGrid need to be measured. However, there’s a trick—an
element may return a larger value when its Measure() method is called, indicating that it’s minimum size
is greater than the allocated space. The UniformGrid keeps track of the largest requested width and
height values. Finally, when the entire measuring process is finished, the UniformGrid calculates the size
required to make every cell big enough to accommodate the maximum width and height. It then returns
that information as its requested size.

 ...
 // Keep track of the largest requested dimensions for any element.
 Size largestCell = new Size();

 // Examine all the elements in this panel.
 foreach (UIElement child in this.Children)
 {
 // Get the desired size of the child.
 child.Measure(childConstraint);

 // Record the largest requested dimensions.
 largestCell.Height = Math.Max(largestCell.Height, child.DesiredSize.Height);
 largestCell.Width = Math.Max(largestCell.Width, child.DesiredSize.Width);
 }

 // Take the largest requested element width and height, and use
 // those to calculate the maximum size of the grid.
 return new Size(largestCell.Width * realColumns, largestCell.Height * realRows);
}

The ArrangeOverride() code has a similar task. However, it’s no longer measuring the children.
Instead, it takes note of the final space measurement, calculates the cell size, and positions each child
inside the appropriate bounds. If it reaches the end of the grid but there are still extra elements (which
only occurs if the control consumer sets limiting values for Columns and Rows), these extra items are
given a 00 layout box, which hides them.

protected override Size ArrangeOverride(Size arrangeSize)
{
 // Calculate the size of each cell.
 double cellWidth = arrangeSize.Width / realColumns;
 double cellHeight = arrangeSize.Height / realRows;

 // Determine the placement for each child.
 Rect childBounds = new Rect(0, 0, cellWidth, cellHeight);

 // Examine all the elements in this panel.
 foreach (UIElement child in this.Children)
 {
 // Position the child.
 child.Arrange(childBounds);

 // Move the bounds to the next position.
 childBounds.X += cellWidth;
 if (childBounds.X >= cellWidth * realColumns)
 {
 // Move to the next row.

CHAPTER 3  LAYOUT

96

 childBounds.Y += cellHeight;
 childBounds.X = 0;

 // If there are more elements than cells,
 // hide extra elements.
 if (childBounds.Y >= cellHeight * realRows)
 childBounds = new Rect(0, 0, 0, 0);
 }
 }

 // Return the size this panel actually occupies.
 return arrangeSize;
}

Using the UniformGrid is easy. You simply need to map the namespace in your XAML markup and
then define the UniformGrid in the same way you define any other layout container. Here’s an example
that places the UniformGrid in a StackPanel with some text content. This allows you to verify that the
size of the UniformGrid is correctly calculated and make sure that the content that follows it is bumped
out of the way:

<UserControl x:Class="Layout.UniformGridTest"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:Layout" >
 <StackPanel Background="White">
 <TextBlock Margin="5" Text="Content above the WrapPanel."></TextBlock>

 <local:UniformGrid Margin="5" Background="LawnGreen">
 <Button Height="20" Content="Short Button"></Button>
 <Button Width="150" Content="Wide Button"></Button>
 <Button Width="80" Height="40" Content="Fixed Button"></Button>
 <TextBlock Margin="5" Text="Text in the UniformGrid cell goes here"
 TextWrapping="Wrap" Width="100"></TextBlock>
 <Button Width="80" Height="20" Content="Short Button"></Button>
 <TextBlock Margin="5" Text="More text goes in here"
 VerticalAlignment="Center"></TextBlock>
 <Button Content="Unsized Button"></Button>
 <Button Content="Unsized Button"></Button>
 </local:UniformGrid>
 <TextBlock Margin="5" Text="Content below the WrapPanel."></TextBlock>
 </StackPanel>
</UserControl>

Figure 3-17 shows how this markup is displayed. By examining the different sizing characteristics of
the children inside the UniformGrid, you can set how its layout works in practice. For example, the first
button (named Short Button) has a hard-coded Height property. As a result, its height is limited, but it
automatically takes the full width of the cell. The second button (Wide Button) has a hard-coded Width
property. However, it’s the widest element in the UniformGrid, which means its width determines the
cell width for the entire table. As a result, its dimensions match the unsized buttons exactly—both fill all
the available cell space. Similarly, it’s the three lines of wrapped text in the TextBlock that requires the
most vertical headroom and so determines the height of all the cells in the grid.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 3  LAYOUT

97

Figure 3-17. The UniformGrid

 Note To take a look at a more ambitious (and more mathematically complex) custom layout container, check
out the radial panel at http://tinyurl.com/cwk6nz, which arranges elements around the edge of an invisible
circle.

Sizing Pages
So far, you’ve taken an extensive look at the different layout containers Silverlight offers and how you
can use them to arrange groups of elements. However, there’s one important part of the equation that
you haven’t considered yet—the top-level page that holds your entire user interface.

As you’ve already seen, the top-level container for each Silverlight page is a custom class that derives
from UserControl. The UserControl class adds a single property, named Content, to Silverlight’s basic
element infrastructure. The Content property accepts a single element, which becomes the content of
that user control.

User controls don’t include any special functionality—they’re simply a convenient way to group
together a block of related elements. However, the way you size your user control can affect the
appearance of your entire user interface, so it’s worth taking a closer look.

You’ve already seen how you can use different layout containers with a variety of layout properties
to control whether your elements size to fit their content, the available space, or hard-coded
dimensions. Many of the same options are available when you’re sizing a page, including the following:

http://tinyurl.com/cwk6nz

CHAPTER 3  LAYOUT

98

• Fixed size: Set the Width and Height properties of the user control to give your
page an exact size. If you have controls inside the page that exceed these
dimensions, they will be truncated. When using a fixed-size window, it’s common
to change the HorizontalAlignment and VerticalAlignment properties of the user
control to Center, so it floats in the center of the browser window rather than
being locked into the top-left corner.

• Browser size: If you don’t use the Width and Height properties of your user
control, your application will take the full space allocated to it in the Silverlight
content region. (And by default, the HTML entry page that Visual Studio creates
sizes the Silverlight content region to take 100% of the browser window.) If you use
this approach, it’s still possible to create elements that stretch off the bounds of
the display region, but the user can now observe the problem and resize the
browser window to see the missing content. If you want to preserve some blank
space between your page and the browser window when using this approach, you
can set the user control’s Margin property.

• Constrained size: Instead of using the Width and Height properties, use the
MaxWidth, MaxHeight, MinWidth, and MinHeight properties. Now, the user
control will resize itself to fit the browser windows within a sensible range, and it
will stop resizing when the window reaches very large or very small dimensions,
ensuring it’s never scrambled beyond recognition.

• Unlimited size: In some cases, it makes sense to let your Silverlight content region
take more than the full browser window. In this situation, the browser will add
scroll bars, much as it does with a long HTML page. To get this effect, you need to
remove the Width and Height properties and edit the entry page (TestPage.html).
In the entry page, remove the width="100%" and height="100%" attributes in the
<object> element. This way, the Silverlight content region will be allowed to grow
to fit the size of your user control.

 Note Remember, design tools such as Visual Studio and Expression Blend add the DesignWidth and
DesignHeight attributes to your user control. These attributes affect the rendering of your page only at design time
(where they act like the Width and Height properties). At runtime, they are ignored. Their primary purpose is to
allow you to create user interfaces that follow the browser-size model, while still giving you a realistic preview of
your application at design time.

All of these approaches are reasonable choices. It simply depends on the type of user interface that
you’re building. When you use a non-fixed-size page, your application can take advantage of the extra
space in the browser window by reflowing its layout to fit. The disadvantage is that extremely large or
small windows may make your content more difficult to read or use. You can design for these issues, but
it takes more work. On the other hand, the disadvantage of hard-coded sizes it that your application will
be forever locked in a specific window size no matter what the browser window looks like. This can lead
to oceans of empty space (if you’ve hard-coded a size that’s smaller than the browser window) or make
the application unusable (if you’ve hard-coded a size that’s bigger than the browser window).

CHAPTER 3  LAYOUT

99

As a general rule of thumb, resizable pages are more flexible and preferred where possible. They’re
usually the best choice for business applications and applications with a more traditional user interface
that isn’t too heavy on the graphics. On the other hand, graphically rich applications and games often
need more precise control over what’s taking place in the page and are more likely to use fixed page
sizes.

 Tip If you’re testing different approaches, it helps to make the bounds of the page more obvious. One easy way
to do so is to apply a nonwhite background to the top-level content element (for example, setting the Background
property of a Grid to Yellow). You can’t set the Background property on the user control itself, because the
UserControl class doesn’t provide it. Another option is to use a Border element as your top-level element, which
allows you to outline the page region.

There are also a few more specialized sizing options that you’ll learn about in the following sections:
scrollable interfaces, scalable interfaces, and full-screen interfaces.

Scrolling with the ScrollViewer
None of the containers you’ve seen have provided support for scrolling, which is a key feature for fitting
large amounts of content in a limited amount of space. In Silverlight, scrolling support is easy to get, but
it requires another ingredient—the ScrollViewer content control.

To get scrolling support, you need to wrap the content you want to scroll inside a ScrollViewer.
Although the ScrollViewer can hold anything, you’ll typically use it to wrap a layout container. For
example, here’s a two-column grid of text boxes and buttons that’s made scrollable. The page is sized to
the full browser area, but it adds a margin to help distinguish the scroll bar from the browser window
that surrounds it. The following listing shows the basic structure of this example, with the markup that
creates the first row of elements:

<UserControl x:Class="Layout.Scrolling"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Margin="20">
 <ScrollViewer Background="AliceBlue">
 <Grid Margin="3,3,10,3">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"></RowDefinition>
 ...
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"></ColumnDefinition>
 <ColumnDefinition Width="Auto"></ColumnDefinition>
 </Grid.ColumnDefinitions>

 <TextBox Grid.Row="0" Grid.Column="0" Margin="3"
 Height="Auto" VerticalAlignment="Center"></TextBox>
 <Button Grid.Row="0" Grid.Column="1" Margin="3" Padding="2"
 Content="Browse"></Button>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 3  LAYOUT

100

 ...
 </Grid>
 </ScrollViewer>
</UserControl>

Figure 3-18 shows the result.

Figure 3-18. A scrollable page

If you resize the page in this example so that it’s large enough to fit all its content, the scroll bar
becomes disabled. However, the scroll bar will still be visible. You can control this behavior by setting
the VerticalScrollBarVisibility property, which takes a value from the ScrollBarVisibility enumeration.
The default value of Visible makes sure the vertical scroll bar is always present. Use Auto if you want the
scroll bar to appear when it’s needed and disappear when it’s not. Or use Disabled if you don’t want the
scroll bar to appear at all.

 Note You can also use Hidden, which is similar to Disabled but subtly different. First, content with a hidden
scroll bar is still scrollable. (For example, you can scroll through the content using the arrow keys.) Second, the
content in a ScrollViewer is laid out differently. When you use Disabled, you tell the content in the ScrollViewer that

CHAPTER 3  LAYOUT

101

it has only as much space as the ScrollViewer itself. On the other hand, if you use Hidden, you tell the content that
it has an infinite amount of space. That means it can overflow and stretch off into the scrollable region.

The ScrollViewer also supports horizontal scrolling. However, the HorizontalScrollBarVisibility
property is Hidden by default. To use horizontal scrolling, you need to change this value to Visible or
Auto.

Scaling with the Viewbox
Earlier in this chapter, you saw how the Grid can use proportional sizing to make sure your elements
take all the available space. Thus, the Grid is a great tool for building resizable interfaces that grow and
shrink to fit the browser window.

Although this resizing behavior is usually what you want, it isn’t always suitable. Changing the
dimensions of controls changes the amount of content they can accommodate and can have subtle
layout-shifting effects. In graphically rich applications, you might need more precise control to keep
your elements perfectly aligned. However, that doesn’t mean you need to use fixed-size pages. Instead,
you can use another trick, called scaling.

Essentially, scaling resizes the entire visual appearance of the control, not just its outside bounds.
No matter what the scale, a control can hold the same content—it just looks different. Conceptually, it’s
like changing the zoom level.

Figure 3-19 compares the difference. On the left is a window at its normal size. In the middle is the
window enlarged, using traditional resizing. On the right is the same expanded window using scaling.

CHAPTER 3  LAYOUT

102

Figure 3-19. Comparing an original (left), resized (middle), and rescaled (right) page

To use scaling, you need to use a transform. As you’ll discover in Chapter 8, transforms are a key
part of Silverlight’s flexible 2-D drawing framework. They allow you to rescale, skew, rotate, and
otherwise change the appearance of any element. In this example, you need the help of a
ScaleTransform to change the scale of your page.

You can use the ScaleTransform in two ways. The first option is a do-it-yourself approach. You
respond to the UserControl.SizeChanged event, examine the current size of the page, carry out the
appropriate calculations, and create the ScaleTransform by hand. Although this works, there’s a far less
painful alternative. You can use the Viewbox control, which performs exactly the same task but doesn’t
require a line of code.

Before you can write the rescaling code that you need, you need to make sure your markup is
configured correctly. Here are the requirements you must meet:

• Your user control can’t be explicitly sized—instead, it needs to be able to grow to
fill the browser window.

• To rescale a window to the right dimensions, you need to know its ideal size, that
is, the dimensions that exactly fit all of its content. Although these dimensions
won’t be set in your markup, they’ll be used for the scaling calculations in your
code.

As long as these details are in place, it’s fairly easy to create a scalable page. The following markup
uses a Grid that has an ideal size of 200225 pixels and contains the stack of text boxes and buttons
shown in Figure 3-19:

<UserControl x:Class="Layout.Page"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 3  LAYOUT

103

 <!-- This container is required for rescaling. -->
 <Viewbox>
 <!-- This container is the layout root of your ordinary user interface.
 Note that it uses a hard-coded size. -->
 <Grid Background="White" Width="200" Height="225" Margin="3,3,10,3">
 <Grid.RowDefinitions>
 ...
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"></ColumnDefinition>
 <ColumnDefinition Width="Auto"></ColumnDefinition>
 </Grid.ColumnDefinitions>

 <TextBox Grid.Row="0" Grid.Column="0" Margin="3"
 Height="Auto" VerticalAlignment="Center" Text="Sample Text"></TextBox>
 <Button Grid.Row="0" Grid.Column="1" Margin="3" Padding="2"
 Content="Browse"></Button>
 ...

 </Grid>
 </Viewbox>
</UserControl>

In this example, the Viewbox preserves the aspect ratio of the resized content. In other words, it
sizes the content to fit the smallest dimension (height or width), rather than stretching it out of
proportion to fill all the available space. If you want to use a Viewbox that does stretch its contents
without regard for their proportions, simply set the Stretch property to Fill. This isn’t terribly useful for
page scaling, but it may make sense if you’re using the Viewbox for another purpose—say, to size vector
graphics in a button.

Finally, it’s worth noting that you can create some interesting effects by placing a Viewbox in a
ScrollViewer. For example, you can manually set the size of Viewbox to be larger than the available space
(using its Height and Width properties) and then scroll around inside the magnified content. You could
use this technique to create a zoomable user interface increases the scale as the user drags a slider or
turns the mouse wheel. You’ll see an example of this technique with the mouse wheel in Chapter 4.

SILVERLIGHT SUPPORT FOR BROWSER ZOOMING

When accessed in some browsers and operating systems—currently, the most recent versions of Firefox
and Internet Explorer—Silverlight applications support a feature called autozoom. That means the user can
change the zoom percentage to shrink or enlarge a Silverlight application. (In Internet Explorer, this can be
accomplished using the browser status bar of the View  Zoom menu.) For example, if the user chooses a
zoom percentage of 110%, the entire Silverlight application, including its text, images, and controls, will be
scaled up 10 percent.

For the most part, this behavior makes sense—and it’s exactly what you want. However, if you plan to
create an application that provides its own zooming feature, the browser’s autozoom might not be
appropriate. In this situation, you can disable autozoom simply by adding the enableAutoZoom parameter
to the HTML entry page and setting it to false, as shown here:

CHAPTER 3  LAYOUT

104

<div id="silverlightControlHost">
 <object data="data:application/x-silverlight-2,"
 type="application/x-silverlight-2" width="100%" height="100%">
 <param name="enableAutoZoom" value="false" />
 ...
 </object>
 <iframe style='visibility:hidden;height:0;width:0;border:0px'></iframe>
</div>

Full-Screen Mode
Silverlight applications also have the capability to enter a full-screen mode, which allows them to break
out of the browser window altogether. In full-screen mode, the Silverlight plug-in fills the whole display
area and is shown overtop of all other applications, including the browser.

Full-screen mode has some serious limitations:

• You can only switch into full-screen mode when responding to a user input event:
In other words, you can switch into full-screen mode when the user clicks a button
or presses a key. However, you can’t switch into full-screen mode as soon as your
application loads. (If you attempt to do so, your code will simply be ignored.) This
limitation is designed to prevent a Silverlight application from fooling a user into
thinking it’s actually another local application or a system window.

• While in full-screen mode, keyboard access is limited: Your code will still respond
to the following keys: Tab, Enter, Home, End, Page Up, Page Down, spacebar, and
the arrow keys. All other keys are ignored. This means that you can build a simple
full-screen arcade game, but you can’t use text boxes or other input controls. This
limitation is designed to prevent password spoofing—for example, tricking the
user into entering a password by mimicking a Windows dialog box. The only
exception is if you’re creating an elevated-trust application (see Chapter 18),
which won’t face this limitation.

 Note Full-screen mode was primarily designed for showing video content in a large window. Some keys are
allowed—just enough to build simple graphical applications (for example, a photo browser) and games. To handle
key presses outside of an input control, you simply handle the standard KeyPress event. (For example, you can add
a KeyPress event handler to your root layout container to capture every key press that takes place, as described in
Chapter 4.)

Here’s an event handler that responds to a button press by switching into full-screen mode:

private void Button_Click(object sender, RoutedEventArgs e)
{
 Application.Current.Host.Content.IsFullScreen = true;
}

CHAPTER 3  LAYOUT

105

When your application enters full-screen mode, it displays a message like the one shown in Figure
3-20. This message includes the web domain where the application is situated. If you’re using an
ASP.NET website and the built-in Visual Studio web server, you’ll see the domain http://localhost. If
you’re hosting your application with an HTML test page that’s stored on your hard drive, you’ll see the
domain file://. The message also informs users that they can exit full-screen mode by pressing the Esc
key. Alternatively, you can set the IsFullScreen property to false to exit full-screen mode.

Figure 3-20. The full-screen mode message

For your application to take advantage of full-screen mode, your top-level user control should not
have a fixed Height or Width. That way, it can grow to fit the available space. You can also use the scaling
technique described in the previous section to scale the elements in your application to larger sizes with
a render transform when you enter full-screen mode.

There’s one other way to get out of full-screen mode in a Silverlight application: by switching to
another application. Ordinarily, this behavior makes perfect sense. But if you have a multiple monitor
setup, it might not be what you want. It prevents you from having a full-screen Silverlight application
running on one monitor while you work with another application on another monitor.

If you want to prevent this behavior, you can use the following line of code to “pin” a full-screen
application so it stays in full-screen mode even when the application loses focus:

Application.Current.Host.Content.FullScreenOptions =
 FullScreenOptions.StaysFullScreenWhenUnfocused;

You must use this option before you switch into full-screen mode. Then, when you set the
IsFullScreen property, the user will be prompted to give your application permission to stay pinned
(Figure 3-21). The confirmation dialog also includes an option for remembering the user’s choice, in
which case the message won’t be shown the next time the application switches into full-screen mode.

If the user accepts, the window will remain pinned in full-screen mode until the user hits the Esc key
or your code sets the IsFullScreen property to false. If the user doesn’t accept, the application will switch
into full-screen mode with the normal behavior, which means it will lose its full-screen state when the
application loses focus.

Figure 3-21. Switching into full-screen mode with a pinned window

CHAPTER 3  LAYOUT

106

The Last Word
In this chapter, you took a detailed tour of the new Silverlight layout model and learned how to place
elements in stacks, grids, and other arrangements. You built more complex layouts using nested
combinations of the layout containers, and you threw the GridSplitter into the mix to make resizable
split pages. You even considered how to build your own layout containers to get custom effects. Finally,
you saw how to take control of the top-level user control that hosts your entire layout by resizing it,
rescaling it, and making it fill the entire screen.

C H A P T E R 4

107

Dependency Properties and
Routed Events

At this point, you’re probably itching to dive into a realistic, practical example of Silverlight coding. But
before you can get started, you need to understand a few more fundamentals. In this chapter, you’ll get a
whirlwind tour of two key Silverlight concepts: dependency properties and routed events.

Both of these concepts first appeared in Silverlight’s big brother technology, WPF. They came as
quite a surprise to most developers—after all, few expected a user interface technology to retool core
parts of .NET’s object abstraction. However, WPF’s changes weren’t designed to improve .NET but to
support key WPF features. The new property model allowed WPF elements to plug into services such as
data binding, animation, and styles. The new event model allowed WPF to adopt a layered content
model (as described in the next chapter) without horribly complicating the task of responding to user
actions such as mouse clicks and key presses.

Silverlight borrows both concepts, albeit in a streamlined form. In this chapter, you’ll see how they
work.

 What’s New Silverlight 5 adds a minor but useful refinement to the Click event. As you’ll see in this chapter, a
new ClickCount property allows you to detect double-clicks and triple-clicks, which previously required clunky
workarounds (like timers). See the section “Double and Triple Clicks” for the details.

Dependency Properties
Essentially, a dependency property is a property that can be set directly (for example, by your code) or by
one of Silverlight’s services (such as data binding, styles, or animation). The key feature of this system is
the way that these different property providers are prioritized. For example, an animation will take
precedence over all other services while it’s running. These overlapping factors make for a very flexible
system. They also give dependency properties their name—in essence, a dependency property depends
on multiple property providers, each with its own level of precedence.

Most of the properties that are exposed by Silverlight elements are dependency properties. For
example, the Text property of the TextBlock, the Content property of the Button, and the Background
property of the Grid—all of which you saw in the simple example in Chapter 1—are all dependency
properties. This hints at an important principle of Silverlight dependency properties—they’re designed

CHAPTER 4  DEPENDENCY PROPERTIES AND ROUTED EVENTS

108

to be consumed in the same way as normal properties. That’s because the dependency properties in the
Silverlight libraries are always wrapped by ordinary property definitions.

Although dependency features can be read and set in code like normal properties, they’re
implemented quite differently behind the scenes. The simple reason why is performance. If the
designers of Silverlight simply added extra features on top of the .NET property system, they’d need to
create a complex, bulky layer for your code to travel through. Ordinary properties could not support all
the features of dependency properties without this extra overhead.

 Tip As a general rule, you don’t need to know that a property is a dependency property in order to use it.
However, some Silverlight features are limited to dependency properties. Furthermore, you’ll need to understand
dependency properties in order to define them in your own classes.

Defining and Registering a Dependency Property
You’ll spend much more time using dependency properties than creating them. However, there are still
many reasons that you’ll need to create your own dependency properties. Obviously, they’re a key
ingredient if you’re designing a custom Silverlight element. They’re also required in some cases if you
want to add data binding, animation, or another Silverlight feature to a portion of code that wouldn’t
otherwise support it.

Creating a dependency property isn’t difficult, but the syntax takes a little getting used to. It’s
thoroughly different from creating an ordinary .NET property.

The first step is to define an object that represents your property. This is an instance of the
DependencyProperty class (which is found in the System.Windows namespace). The information about
your property needs to be available all the time. For that reason, your DependencyProperty object must
be defined as a static field in the associated class.

For example, consider the FrameworkElement class from which all Silverlight elements inherit.
FrameworkElement defines a Margin dependency property that all elements share. It’s defined like this:

public class FrameworkElement: UIElement
{
 public static readonly DependencyProperty MarginProperty;

 ...
}

By convention, the field that defines a dependency property has the name of the ordinary property
plus the word Property at the end. That way, you can separate the dependency property definition from
the name of the actual property. The field is defined with the readonly keyword, which means it can be
set only in the static constructor for the FrameworkElement.

 Note Silverlight does not support WPF’s system of property sharing—in other words, defining a dependency
property in one class and reusing it in another. However, dependency properties follow the normal rules of

CHAPTER 4  DEPENDENCY PROPERTIES AND ROUTED EVENTS

109

inheritance, which means that a dependency property such as Margin that’s defined in the FrameworkElement
class applies to all Silverlight elements, because all Silverlight elements derive from FrameworkElement.

Defining the DependencyProperty object is just the first step. For it to become usable, you need to
register your dependency property with Silverlight. This step needs to be completed before any code
uses the property, so it must be performed in a static constructor for the associated class.

Silverlight ensures that DependencyProperty objects can’t be instantiated directly, because the
DependencyProperty class has no public constructor. Instead, a DependencyProperty instance can be
created only using the static DependencyProperty.Register() method. Silverlight also ensures that
DependencyProperty objects can’t be changed after they’re created, because all DependencyProperty
members are read-only. Instead, their values must be supplied as arguments to the Register() method.

The following code shows an example of how a DependencyProperty can be created. Here, the
FrameworkElement class uses a static constructor to initialize the MarginProperty:

static FrameworkElement()
{
 MarginProperty = DependencyProperty.Register("Margin",
 typeof(Thickness), typeof(FrameworkElement), null);
 ...
}

The DependencyProperty.Register() method accepts the following arguments:

• The property name (Margin in this example).

• The data type used by the property (the Thickness structure in this example).

• The type that owns this property (the FrameworkElement class in this example).

• A PropertyMetadata object that provides additional information. Currently,
Silverlight uses the PropertyMetadata to store just optional pieces of information:
a default value for the property and a callback that will be triggered when the
property is changed. If you don’t need to use either feature, supply a null value, as
in this example.

 Note To see a dependency property that uses the PropertyMetadata object to set a default value, refer to the
WrapBreakPanel example later in this chapter.

With these details in place, you’re able to register a new dependency property so that it’s available
for use. However, whereas typical property procedures retrieve or set the value of a private field, the
property procedures for a Silverlight property use the GetValue() and SetValue() methods that are
defined in the base DependencyObject class. Here’s an example:

public Thickness Margin
{
 get

CHAPTER 4  DEPENDENCY PROPERTIES AND ROUTED EVENTS

110

 {
 return (Thickness)GetValue(MarginProperty);
 }
 set
 {
 SetValue(MarginProperty, value);
 }
}

When you create the property wrapper, you should include nothing more than a call to SetValue()
and a call to GetValue(), as in the previous example. You should not add any extra code to validate
values, raise events, and so on. That’s because other features in Silverlight may bypass the property
wrapper and call SetValue() and GetValue() directly. One example is when the Silverlight parser reads
your XAML markup and uses it to initialize your user interface.

You now have a fully functioning dependency property, which you can set just like any other .NET
property using the property wrapper:

myElement.Margin = new Thickness(5);

There’s one extra detail. Dependency properties follow strict rules of precedence to determine their
current value. Even if you don’t set a dependency property directly, it may already have a value—
perhaps one that’s applied by a binding or a style or one that’s inherited through the element tree.
(You’ll learn more about these rules of precedence in the next section.) However, as soon as you set the
value directly, it overrides these other influences.

At some point later, you may want to remove your local value setting and let the property value be
determined as though you never set it. Obviously, you can’t accomplish this by setting a new value.
Instead, you need to use another method that’s inherited from DependencyObject: the ClearValue()
method. Here’s how it works:

myElement.ClearValue(FrameworkElement.MarginProperty);

This method tells Silverlight to treat the value as though you never set it, thereby returning it to its
previous value. Usually, this will be the default value that’s set for the property, but it could also be the
value that’s set through property inheritance or by a style, as described in the next section.

Dynamic Value Resolution
As you’ve already learned, dependency properties depend on multiple different services, called property
providers. To determine the current value of a property, Silverlight has to decide which one takes
precedence. This process is called dynamic value resolution.

When evaluating a property, Silverlight considers the following factors, arranged from highest to
lowest precedence:

1. Animations. If an animation is currently running and that animation is
changing the property value, Silverlight uses the animated value.

2. Local value. If you’ve explicitly set a value in XAML or in code, Silverlight uses
the local value. Remember, you can set a value using the SetValue() method or
the property wrapper. If you set a property using a resource (Chapter 2) or data
binding (Chapter 16), it’s considered to be a locally set value.

CHAPTER 4  DEPENDENCY PROPERTIES AND ROUTED EVENTS

111

3. Styles. Silverlight styles (Chapter 12) allow you to configure multiple controls
with one rule. If you’ve set a style that applies to this control, it comes into play
now.

4. Property value inheritance. Silverlight uses property value inheritance with a
small set of control properties, including Foreground, FontFamily, FontSize,
FontStretch, FontStyle, and FontWeight. That means if you set these properties
in a higher-level container (such as a Button or a ContentControl), they
cascade down to the contained content elements (like the TextBlock that
actually holds the text inside).

 Note The limitation with property value inheritance is that the container must provide the property you want to
use. For example, you might want to specify a standard font for an entire page by setting the FontFamily property
on the root Grid. However, this won’t work because the Grid doesn’t derive from Control, and so it doesn’t provide
the FontFamily property. One solution is to wrap your elements in a ContentControl, which includes all the
properties that use property value inheritance but has no built-in visual appearance.

5. Default value. If no other property setter is at work, the dependency property
gets its default value. The default value is set with the PropertyMetadata object
when the dependency property is first created, as explained in the previous
section.

One of the advantages of this system is that it’s very economical. For example, if the value of a
property has not been set locally, Silverlight will retrieve its value from the template or a style. In this
case, no additional memory is required to store the value. Another advantage is that different property
providers may override one another, but they don’t overwrite each other. For example, if you set a local
value and then trigger an animation, the animation temporarily takes control. However, your local value
is retained, and when the animation ends, it comes back into effect.

Attached Properties
Chapter 2 introduced a special type of dependency property called an attached property. An attached
property is a full-fledged dependency property, and like all dependency properties, it’s managed by the
Silverlight property system. The difference is that an attached property applies to a class other than the
one where it’s defined.

The most common example of attached properties is found in the layout containers you saw in
Chapter 3. For example, the Grid class defines the attached properties Row and Column, which you set
on the contained elements to indicate where they should be positioned. Similarly, the Canvas defines
the attached properties Left and Top that let you place elements using absolute coordinates.

To define an attached property, you use the DependencyProperty.RegisterAttached() method
instead of Register(). Here’s the code from the Grid class that registers the attached Grid.Row property:

RowProperty = DependencyProperty.RegisterAttached(
 "Row", typeof(int), typeof(Grid), null);

CHAPTER 4  DEPENDENCY PROPERTIES AND ROUTED EVENTS

112

The parameters are exactly the same for the RegisterAttached() method as they are for the Register()
method.

When creating an attached property, you don’t define the .NET property wrapper. That’s because
attached properties can be set on any dependency object. For example, the Grid.Row property may be
set on a Grid object (if you have one Grid nested inside another) or on some other element. In fact, the
Grid.Row property can be set on an element even if that element isn’t in a Grid—and even if there isn’t a
single Grid object in your element tree.

Instead of using a .NET property wrapper, attached properties require a pair of static methods that
can be called to set and get the property value. These methods use the familiar SetValue() and GetValue()
methods (inherited from the DependencyObject class). The static methods should be named
SetPropertyName() and GetPropertyName().

The SetPropertyName() method takes two arguments: the element on which you want to set the
property and the property value. Because the Grid.Row property is defined as an integer, the second
parameter of the SetRow() method must be an integer:

public static void SetRow(UIElement element, int value)
{
 element.SetValue(Grid.RowProperty, value);
}

The GetPropertyName() method takes the element on which the property is set and returns the
property value. Because the Grid.Row property is defined as an integer, the GetRow() method must
return an integer:

public static int GetRow(UIElement element)
{
 return (int)element.GetValue(Grid.RowProperty);
}

And here’s an example that positions an element in the first row of a Grid using code:

Grid.SetRow(txtElement, 0);

This sets the Grid.Row property to 0 on the txtElement object, which is a TextBox. Because Grid.Row
is an attached property, Silverlight allows you to apply it to any other element.

The WrapBreakPanel Example
Now that you understand the theory behind dependency properties, it’s time to ground your knowledge
in a realistic example.

In Chapter 3, you learned how to create custom panels that use different layout logic to get exactly
the effect you want. For example, you took a look at a custom UniformGrid panel that organizes
elements into an invisible grid of identically sized cells. The following example considers part of a
different custom layout panel, which is called the WrapBreakPanel. Here is its class declaration:

public class WrapBreakPanel : System.Windows.Controls.Panel
{ ... }

Ordinarily, the WrapBreakPanel behaves like the WrapPanel (although it doesn’t inherit directly
from WrapPanel, and its layout logic is written from scratch). Like the WrapPanel, the WrapBreakPanel
lays out its children one after the other, moving to the next line once the width in the current line is used
up. However, the WrapBreakPanel adds a new feature that the WrapPanel doesn’t offer—it allows you to
force an immediate line break wherever you want, simply by using an attached property.

CHAPTER 4  DEPENDENCY PROPERTIES AND ROUTED EVENTS

113

 Note The full code for the WrapBreakPanel is available with the downloadable samples for this chapter. The
only detail considered here is the properties that customize how it works.

Because the WrapBreakPanel is a Silverlight element, its properties should almost always be
dependency properties so you have the flexibility to use them with other Silverlight features such as data
binding and animation. For example, it makes sense to give the WrapBreakPanel an Orientation
property like its relative, the basic WrapPanel. That way, you could support displays that need to flow
elements into multiple columns. Here’s the code you need to add to the WrapBreakPanel class to define
an Orientation property that uses the data type System.Windows.Controls.Orientation:

public static readonly DependencyProperty OrientationProperty =
 DependencyProperty.Register("Orientation", typeof(Orientation),
 typeof(WrapBreakPanel), new PropertyMetadata(Orientation.Horizontal));

This code uses one minor time-saver. Rather than define the DependencyProperty and register it
with code in a static constructor, this definition takes care of the definition and registration (and the
compiled code doesn’t change). It also sets the default value to Orientation.Horizontal.

Next, you need to add the property wrapper, which is perfectly straightforward:

public Orientation Orientation
{
 get
 {
 return (Orientation)GetValue(OrientationProperty);
 }
 set
 {
 SetValue(OrientationProperty, value);
 }
}

When using the WrapBreakPanel in a Silverlight page, you can set the Orientation property as you
set any other property:

<local:WrapBreakPanel Margin="5" Orientation="Vertical">
 ...
</local:WrapBreakPanel>

A more interesting experiment is to create a version of the WrapBreakPanel that uses an attached
property. As you’ve already learned, attached properties are particularly useful in layout containers,
because they allow children to pass along extra layout information (such as row positioning in the Grid
or coordinates and layering in the Canvas).

The WrapBreakPanel includes an attached property that allows any child element to force a line
break. By using this attached property, you can ensure that a specific element begins on a new line, no
matter what the current width of the WrapBreakPanel. The attached property is named LineBreakBefore,
and the WrapBreakPanel defines it like this:

public static DependencyProperty LineBreakBeforeProperty =
 DependencyProperty.RegisterAttached("LineBreakBefore", typeof(bool),
 typeof(WrapBreakPanel), null);

CHAPTER 4  DEPENDENCY PROPERTIES AND ROUTED EVENTS

114

To implement the LineBreakBefore property, you need to create the static get and set methods that
call GetValue() and SetValue() on the element:

public static bool GetLineBreakBefore(UIElement element)
{
 return (bool)element.GetValue(LineBreakBeforeProperty);
}

public static void SetLineBreakBefore(UIElement element, bool value)
{
 element.SetValue(LineBreakBeforeProperty, value);
}

You can then modify the MeasureOverride() and ArrangeOverride() methods to check for forced
breaks, as shown here:

// Check if the element fits in the line, or if a line break was requested.
if ((currentLineSize.Width + desiredSize.Width > constraint.Width) ||
 (WrapBreakPanel.GetLineBreakBefore(element)))
{ ... }

To use this functionality, you simply need to add the LineBreakBefore property to an element, as
shown here:

<local:WrapBreakPanel Margin="5" Background="LawnGreen">
 <Button Width="50" Content="Button"></Button>
 <Button Width="150" Content="Wide Button"></Button>
 <Button Width="50" Content="Button"></Button>
 <Button Width="150" Content="Button with a Break"
 local:WrapBreakPanel.LineBreakBefore="True" FontWeight="Bold"></Button>
 <Button Width="150" Content="Wide Button"></Button>
 <Button Width="50" Content="Button"></Button>
</local:WrapBreakPanel>

Figure 4-1 shows the result.

CHAPTER 4  DEPENDENCY PROPERTIES AND ROUTED EVENTS

115

Figure 4-1. A WrapBreakPanel that supports forced line breaks

Routed Events
Every .NET developer is familiar with the idea of events—messages that are sent by an object (such as a
Silverlight element) to notify your code when something significant occurs. WPF enhanced the .NET
event model with a new concept of event routing, which allows an event to originate in one element but
be raised by another one. For example, event routing allows a click that begins in a shape to rise up to
that shape’s container and then to the containing page before it’s handled by your code.

Silverlight borrows some of WPF’s routed event model but in a dramatically simplified form. While
WPF supports several types of routed events, Silverlight allows only one: bubbled events that rise up the
containment hierarchy from deeply nested elements to their containers. Furthermore, Silverlight’s event
bubbling is linked to a few keyboard and mouse input events (such as MouseMove and KeyDown), and
it’s supported by just a few low-level elements. As you’ll see, Silverlight doesn’t use event bubbling for
higher-level control events (such as Click), and you can’t use event routing with the events in your own
custom controls.

The Core Element Events
Elements inherit their basic set of events from two core classes: UIElement and FrameworkElement. As
Figure 4-2 shows, all Silverlight elements derive from these elements.

CHAPTER 4  DEPENDENCY PROPERTIES AND ROUTED EVENTS

116

Figure 4-2. The hierarchy of Silverlight elements

The UIElement class defines the most important events for handling user input and the only events
that use event bubbling. Table 4-1 lists all the UIElement events. You’ll see how to use these events
through the rest of this chapter.

Table 4-1. The UIElement Events

Event Bubbles Description

KeyDown Yes Occurs when a key is pressed.

KeyUp Yes Occurs when a key is released.

TextInput Yes Occurs when the element receives a character. Usually, this is a
typed-in character, and TextInput fires after KeyDown and
KeyUp. However, TextInput will also fire if a character is
entered through another device, like a touch pad.

GotFocus Yes Occurs when the focus changes to this element (when the user
clicks it or tabs to it). The element that has focus is the control
that will receive keyboard events first.

LostFocus Yes Occurs when the focus leaves this element.

MouseLeftButtonDown Yes Occurs when the left mouse button is pressed while the mouse
pointer is positioned over the element.

MouseLeftButtonUp Yes Occurs when the left mouse button is released.

MouseRightButtonDown Yes Occurs when the right mouse button is pressed while the
mouse pointer is positioned over the element. If you don’t
want to show the standard Silverlight system menu, you must
set the MouseButtonEventArgs.Handled property to true in
your event handler.

CHAPTER 4  DEPENDENCY PROPERTIES AND ROUTED EVENTS

117

Event Bubbles Description

MouseRightButtonUp Yes Occurs when the right mouse button is released.

MouseEnter No Occurs when the mouse pointer first moves onto the element.
This event doesn’t bubble, but if you have several nested
elements, they’ll all fire MouseEnter events as you move to the
most deeply nested element, passing over the bounding line
that delineates the others.

MouseLeave No Occurs when the mouse pointer moves off the element. This
event doesn’t bubble, but if you have several nested elements,
they’ll all fire MouseEnter events as you move the mouse away
(in the reverse order that the MouseEnter events occurred).

MouseMove Yes Occurs when the mouse moves while over the element. The
MouseMove event is fired frequently—for example, if the user
slowly moves the mouse pointer across the face of a button,
you’ll quickly receive hundreds of MouseMove events. For that
reason, you shouldn’t perform time-consuming tasks when
reacting to this event.

MouseWheel Yes Occurs when the user turns the mouse wheel while over the
element (or while that element has focus).

DragEnter Yes Occurs when the user first drags a selected file (from the
computer) over the element.

DragLeave Yes Occurs when the user drags a selected file off of the element.

DragOver Yes Occurs (repeatedly) as the user moves the mouse over the
element, while dragging a selected file.

Drop Yes Occurs when the user drops a selected file onto the element.
Because the DragEnter, DragLeave, DragOver, and Drop events
support only dragged files (not other objects), they’re discussed
in Chapter 18.

LostMouseCapture No Occurs when an element loses its mouse capture. Mouse
capturing is a technique that an element can use to receive
mouse events even when the mouse pointer moves away, off its
surface.

In some cases, higher-level events may effectively replace some of the UIElement events. For

example, the Button class provides a Click event that’s triggered when the user presses and releases the
mouse button or when the button has focus and the user presses the space bar. Thus, when handling
button clicks, you should always respond to the Click event, not MouseLeftButtonDown or

CHAPTER 4  DEPENDENCY PROPERTIES AND ROUTED EVENTS

118

MouseLeftButtonUp (which it suppresses). Similarly, the TextBox provides a TextChanged event, which
fires when the text is changed by any mechanism, in addition to the basic KeyDown and KeyUp events.

The FrameworkElement class adds just a few more events to this model, as detailed in Table 4-2.
None of these events uses event bubbling.

Table 4-2. The FrameworkElement Events

Event Description

Loaded Occurs after an element has been created and added to the object tree (the
hierarchy of elements in the window). After this point, you may want to
perform additional customization to the element in code.

SizeChanged Occurs after the size of an element changes. As you saw in Chapter 3, you can
react to this event to implement scaling.

LayoutUpdated Occurs after the layout inside an element changes. For example, if you create
a page that uses no fixed size (and so fits the browser window) and you resize
the browser window, the controls will be rearranged to fit the new
dimensions, and the LayoutUpdated event will fire for your top-level layout
container.

BindingValidationError Occurs if a bound data object throws an exception when the user attempts to
change a property. You’ll learn how to use the BindingValidationError event
to implement validation in Chapter 16.

Event Bubbling
Bubbling events are events that travel up the containment hierarchy. For example,
MouseLeftButtonDown is a bubbling event. It’s raised first by the element that is clicked. Next, it’s raised
by that element’s parent and then by that element’s parent, and so on, until Silverlight reaches the top of
the element tree.

Event bubbling is designed to support composition—in other words, to let you build more complex
controls out of simpler ingredients. One example is Silverlight’s content controls, which are controls that
have the ability to hold a single nested element as content. These controls are usually identified by the
fact that they provide a property named Content. For example, the button is a content control. Rather
than displaying a line of text, you can fill it with a StackPanel that contains a whole group of elements,
like this:

<Button BorderBrush="Black" BorderThickness="1" Click="cmd_Click">
 <StackPanel>
 <TextBlock Margin="3" Text="Image and text label"></TextBlock>
 <Image Source="happyface.jpg" Stretch="None"></Image>
 <TextBlock Margin="3" Text="Courtesy of the StackPanel"></TextBlock>
 </StackPanel>
</Button>

Here, the content element is a StackPanel that holds two pieces of text and an image. Figure 4-3
shows the fancy button that this markup creates.

CHAPTER 4  DEPENDENCY PROPERTIES AND ROUTED EVENTS

119

Figure 4-3. A button with contained elements

In this situation, it’s important that the button reacts to the mouse events of its contained elements.
In other words, the Button.Click event should fire when the user clicks the image, some of the text, or
part of the blank space inside the button border. In every case, you’d like to respond with the same code.

Of course, you could wire up the same event handler to the MouseLeftButtonDown or
MouseLeftButtonUp event of each element inside the button, but that would result in a significant
amount of clutter, and it would make your markup more difficult to maintain. Event bubbling provides a
better solution.

When the happy face is clicked, the MouseLeftButtonDown event fires first for the Image, then for
the StackPanel, and then for the containing button. The button then reacts to the
MouseLeftButtonDown by firing its own Click event, to which your code responds (with its cmd_Click
event handler).

 Note The Button.Click event does not use event bubbling. This is a dramatic difference from WPF. In the world
of Silverlight, only a small set of basic infrastructure events support event bubbling. Higher-level control events
cannot use event bubbling. However, the button uses the bubbling nature of the MouseLeftButtonDown event to
make sure it captures clicks on any contained elements.

Handled (Suppressed) Events
When the button in Figure 4-3 receives the MouseLeftButtonDown event, it takes an extra step and
marks the event as handled. This prevents the event from bubbling up the control hierarchy any further.
Most Silverlight controls use this handling technique to suppress MouseLeftButtonDown and
MouseLeftButtonUp so they can replace them with more useful, higher-level events such as Click.

However, there are a few elements that don’t handle MouseLeftButtonDown and
MouseLeftButtonUp:

CHAPTER 4  DEPENDENCY PROPERTIES AND ROUTED EVENTS

120

• The Image class used to display bitmaps

• The TextBlock class used to show text

• The MediaElement class used to display video

• The shape classes used for 2-D drawing (Line, Rectangle, Ellipse, Polygon,
Polyline, Path)

• The layout containers used for arranging elements (Canvas, StackPanel, and Grid)
and the Border class

These exceptions allow you to use these elements in content controls such as the Button control
without any limitations. For example, if you place a TextBlock in a button, when you click the TextBlock,
the MouseLeftButtonUp event will bubble up to the button, which will then fire its Click event. However,
if you take a control that isn’t in the preceding list and place it inside the button—say, a list box, check
box, or another button—you’ll get different behavior. When you click that nested element, the
MouseLeftButtonUp event won’t bubble to the containing button, and the button won’t register a click.

 Note MouseLeftButtonDown and MouseLeftButtonUp are the only events that controls suppress. The bubbling
key events (KeyUp, KeyDown, LostFocus, and GotFocus) aren’t suppressed by any controls.

An Event Bubbling Example
To understand event bubbling and handled events, it helps to create a simple example, like the one
shown in Figure 4-4. Here, as in the example you saw previously, the MouseLeftButtonDown event starts
in a TextBlock or Image and travels through the element hierarchy.

CHAPTER 4  DEPENDENCY PROPERTIES AND ROUTED EVENTS

121

Figure 4-4. A bubbled image click

In this example, you can watch the MouseLeftButtonDown event bubble by attaching event
handlers to multiple elements. As the event is intercepted at different levels, the event sequence is
displayed in a list box. Figure 4-4 shows the display immediately after clicking the happy face image in
the button. As you can see, the MouseLeftButtownDown event fires in the image and then in the
containing StackPanel and is finally intercepted by the button, which handles it. The button does not fire
the MouseLeftButtonDown event, and therefore the MouseLeftButtonDown event does not bubble up to
the Grid that holds the button.

To create this test page, the image and every element above it in the element hierarchy are wired up
to the same event handler—a method named SomethingClicked(). Here’s the XAML that does it:

<UserControl x:Class="RoutedEvents.EventBubbling"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

 <Grid Margin="3" MouseLeftButtonDown="SomethingClicked">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"></RowDefinition>
 <RowDefinition Height="*"></RowDefinition>
 <RowDefinition Height="Auto"></RowDefinition>
 <RowDefinition Height="Auto"></RowDefinition>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 4  DEPENDENCY PROPERTIES AND ROUTED EVENTS

122

 </Grid.RowDefinitions>

 <Button Margin="5" Grid.Row="0" MouseLeftButtonDown="SomethingClicked">
 <StackPanel MouseLeftButtonDown="SomethingClicked">
 <TextBlock Margin="3" MouseLeftButtonDown="SomethingClicked"
 HorizontalAlignment="Center" Text="Image and text label"></TextBlock>
 <Image Source="happyface.jpg" Stretch="None"
 MouseLeftButtonDown="SomethingClicked"></Image>
 <TextBlock Margin="3" HorizontalAlignment="Center"
 MouseLeftButtonDown="SomethingClicked"
 Text="Courtesy of the StackPanel"></TextBlock>
 </StackPanel>
 </Button>

 <ListBox Grid.Row="1" Margin="5" x:Name="lstMessages"></ListBox>

 <Button Grid.Row="3" Margin="5" Padding="3" x:Name="cmdClear"
 Click="cmdClear_Click" Content="Clear List"></Button>
 </Grid>
</UserControl>

The SomethingClicked() method simply examines the properties of the RoutedEventArgs object and
adds a message to the list box:

protected int eventCounter = 0;

private void SomethingClicked(object sender, MouseButtonEventArgs e)
{
 eventCounter++;
 string message = "#" + eventCounter.ToString() + ":\r\n" +
 " Sender: " + sender.ToString() + "\r\n";
 lstMessages.Items.Add(message);
}

private void cmdClear_Click(object sender, RoutedEventArgs e)
{
 lstMessages.Items.Clear();
}

When dealing with a bubbled event such as MouseLeftButtonDown, the sender parameter that’s
passed to your event handler always provides a reference to the last link in the chain. For example, if an
event bubbles up from an image to a StackPanel before you handle it, the sender parameter references
the StackPanel object.

In some cases, you’ll want to determine where the event originally took place. The event arguments
object for a bubbled event provides a Source property that tells you the specific element that originally
raised the event. In the case of a keyboard event, this is the control that had focus when the event
occurred (for example, when the key was pressed). In the case of a mouse event, this is the topmost
element under the mouse pointer when the event occurred (for example, when a mouse button was
clicked). However, the Source property can get a bit more detailed than you want—for example, if you
click the blank space that forms the background of a button, the Source property will provide a reference
to the Shape or Path object that actually draws the part of background you clicked.

CHAPTER 4  DEPENDENCY PROPERTIES AND ROUTED EVENTS

123

Along with Source, the event arguments object for a bubbled event also provides a Boolean property
named Handled, which allows you to suppress the event. For example, if you handle the
MouseLeftButtonDown event in the StackPanel and set Handled to true, the StackPanel will not fire the
MouseLeftButtonDown event. As a result, when you click the StackPanel (or one of the elements inside),
the MouseLeftButtonDown event will not reach the button, and the Click event will never fire. You can
use this technique when building custom controls (for example, if you’ve taken care of a user action like
a button click and you don’t want higher-level elements to get involved).

 Note WPF provides a back door that allows code to receive events that are marked handled (and would
ordinarily be ignored). Silverlight does not provide this capability.

Mouse Handling
You’re unlikely to see a Silverlight application that doesn’t use the MouseLeftButtonDown event.
However, there’s still a lot more to learn about handling the mouse events. In the following sections,
you’ll consider how you can react to right-clicks, mouse movement, and the mouse wheel. You’ll also
learn how to capture the mouse—so you can continue handling its events even when it moves away—
how to simulate drag and drop and how to change the mouse cursor.

Right-Clicks
By default, when you right-click anywhere in a Silverlight application, a pop-up Silverlight menu
appears. This menu includes a single command named Silverlight, which opens a tabbed window where
you can change Silverlight settings. Additionally, if you’ve created an application that supports out-of-
browser installation (see Chapter 21), this menu has a second command for installing the application.

You may decide to handle right-clicks on some elements (or even the entire window) to provide
more specialized functionality. For example, when the user right-clicks a specific element, you may want
to show a customized context menu with commands for that element. Although Silverlight doesn’t
include a context menu control, you can easily get one from the Silverlight Toolkit
(http://silverlight.codeplex.com). You can then use it to attach a right-click menu to any control.

However, there’s a catch. Even if you show your own context menu, the MouseRightButtonDown
event will bubble up to the top level of your application, causing Silverlight to show its standard system
menu. To hide this menu so that yours is the only one that appears, you must handle the
MouseRightButton event and set the MouseButtonEventArgs.Handled property to true. This suppresses
the right-click event and the system menu.

Double and Triple Clicks
In some ways, Silverlight follows the convention of web user interfaces. For example, Silverlight
applications pay attention to mouse clicks but rarely look for double-clicks, the two-tap mouse
technique pioneered by Windows. In fact, until Silverlight 5 there was no direct support for detecting
double-clicks at all.

If you decide that you want to include double-click support, it’s best to use them for non-essential
tasks. For example, double-clicks can provide advanced users with a handy shortcut, while less

http://silverlight.codeplex.com

CHAPTER 4  DEPENDENCY PROPERTIES AND ROUTED EVENTS

124

experienced users are still able to click their way through a menu or another set of controls to get the
same result.

The Click event fires every time an element is clicked, including if it’s clicked several times in quick
succession. To detect a double-click, you need to check the ClickCount property of the
MouseButtonEventArgs. If ClickCount is 1, this is a normal click. If ClickCount is 2, this is the second
click in a double-click action. (Usually, that means it’s a click that follows the first click by less than 500
milliseconds, although the details may depend on operating system preferences.)

Here’s an example:

private void SomethingClicked(object sender, MouseButtonEventArgs e)
{
 if (e.ClickCount == 1)
 {
 // One click was detected.
 // This could be a single click or the start of a double-click.
 lblClickCount.Text = "Clicks: 1";
 }
 else (e.ClickCount == 2)
 {
 // This is the second click of a double-click.
 lblClickCount.Text = "Clicks: 2";
 }
}

Triple-clicks, although less well-known, are another potential shortcut. Word processors and web
browsers often let users select large blocks of text with a triple-click. (For example, a double-click might
highlight a word while a triple-click highlights a whole paragraph.) To perform a triple-click, the user
simply needs to click three times in quick succession. Your application uses the same ClickCount
property to catch triple-clicks.

Possible headaches can occur when you catch different levels of clicks (for example, when catching
both single and double-clicks or when catching both double-clicks and triple-clicks). Depending on how
you’ve written your code, you may end up performing one or more extra actions. For example, when a
user triple-clicks, you might perform one action when you detect ClickCount is 2 and another action
when you detect ClickCount is 3, even though both events are part of the same triple-click.

To avoid problems, make sure that overlapping actions don’t conflict. For a good example of well-
designed click behavior, consider what happens when you use triple-clicks to select text. In this case, the
second click is counted as a double-click (at which point the word is selected) and the next click is
counted as a triple-click action (at which point the selection is extended to the paragraph). This works
nicely, because the triple-click action augments the double-click action. But if the double-click action
does something completely different (such as launching another program, removing the clicked
element, and so on), adding triple-click support will only cause confusion.

Mouse Movements
Along with the obvious mouse clicking events (MouseLeftButtonDown, MouseLeftButtonUp,
MouseRightButtonDown, and MouseRightButtonUp), Silverlight also provides mouse events that fire
when the mouse pointer is moved. These events include MouseEnter (which fires when the mouse
pointer moves over the element), MouseLeave (which fires when the mouse pointer moves away), and
MouseMove (which fires at every point in between).

All of these events provide your code with the same information: a MouseEventArgs object. The
MouseEventArgs object includes one important ingredient: a GetPosition() method that tells you the

CHAPTER 4  DEPENDENCY PROPERTIES AND ROUTED EVENTS

125

coordinates of the mouse in relation to an element of your choosing. Here’s an example that displays the
position of the mouse pointer:

private void MouseMoved(object sender, MouseEventArgs e)
{
 Point pt = e.GetPosition(this);
 lblInfo.Text =
 String.Format("You are at ({0},{1}) in page coordinates",
 pt.X, pt.Y);
}

In this case, the coordinates are measured from the top-left corner of the page area (just below the
title bar of the browser).

 Tip To receive mouse events in a layout container, the Background property must be set to a non-null value—
for example, a solid white fill.

The Mouse Wheel
These days, a large proportion of computer users have a mouse with a scroll wheel. You can use that fact
to your advantage, by responding to with an appropriate action when the user turns the mouse wheel.
The only rule of thumb is to make sure mouse wheel support is a useful extra, not an essential part of
your application’s behavior. After all, there are still a large proportion of users who don’t have mouse
wheels (for example, laptop users) or don’t think to use them.

The MouseWheel event passes some basic information about the amount the wheel has turned
since the last MouseWheel event, using the MouseWheelEventArgs.Delta property. Typically, each notch
in the mouse wheel has a value of 120, so a single nudge of the mouse wheel will pass a Delta value of 120
to your application. The Delta value is positive if the mouse wheel was rotated away from the user and
negative if it was rotated toward the user.

To get a better grip on this situation, consider the example of the interface shown in Figure 4-5.
Here, the user can zoom into or out of a Grid of content just by turning the mouse wheel.

CHAPTER 4  DEPENDENCY PROPERTIES AND ROUTED EVENTS

126

Figure 4-5. Zooming with the mouse wheel

To create the example, you need two controls you first considered in Chapter 3—the ScrollViewer
and Viewbox. The Viewbox powers the magnification, while the ScrollViewer simply allows the user to
scroll over the whole surface of the Viewbox when it’s too big to fit in the browser window.

<UserControl x:Class="RoutedEvents.MouseWheelZoom"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
MouseWheel="Page_MouseWheel">

 <ScrollViewer VerticalScrollBarVisibility="Auto"
 HorizontalScrollBarVisibility="Auto">

 <Viewbox x:Name="viewbox" Height="250" Width="350">
 <Grid Background="White" Height="250" Width="350">
 ...
 </Grid>
 </Viewbox>

 </ScrollViewer>
</UserControl>

Notice that initially the Viewbox is given exactly the same hard-coded size as the Grid inside. This
ensures that the Viewbox doesn’t need to perform any initial scaling—instead, the Grid is at its natural
size when the application first starts.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 4  DEPENDENCY PROPERTIES AND ROUTED EVENTS

127

When the user turns the mouse wheel, a MouseWheel event handler checks the delta and simply
adjusts the Width and Height properties of the Viewbox proportionately. This expands or shrinks the
Viewbox and rescales everything inside:

private void Page_MouseWheel(object sender, MouseWheelEventArgs e)
{
 // The Delta is in units of 120, so dividing by 120 gives
 // a scale factor of 1.09 (120/110). In other words, one
 // mouse wheel notch expands or shrinks the Viewbox by about 9%.
 double scalingFactor = (double)e.Delta / 110;

 // Check which way the wheel was turned.
 if (scalingFactor > 0)
 {
 // Expand the viewbox.
 viewbox.Width *= scalingFactor;
 viewbox.Height *= scalingFactor;
 }
 else
 {
 // Shrink the viewbox.
 viewbox.Width /= -scalingFactor;
 viewbox.Height /= -scalingFactor;
 }
}

Some controls already include handle the MouseWheel event, giving them built-in support for the
mouse wheel (although the Viewbox is not one of them). For example, the TextBox, ComboBox, ListBox,
DataGrid, and ScrollViewer scroll when the user turns the mouse wheel. The Calendar moves from
month to month.

Capturing the Mouse
Ordinarily, every time an element receives a mouse button down event, it will receive a corresponding
mouse button up event shortly thereafter. However, this isn’t always the case. For example, if you click
an element, hold down the mouse, and then move the mouse pointer off the element, the element won’t
receive the mouse up event.

In some situations, you may want to have a notification of mouse up events, even if they occur after
the mouse has moved off your element. To do so, you need to capture the mouse by calling the
MouseCapture() method of the appropriate element (MouseCapture() is defined by the base UIElement
class, so it’s supported by all Silverlight elements). From that point on, your element will receive the
MouseLeftButtonDown and MouseLeftButtonUp event until it loses the mouse capture. There are two
ways to lose the mouse capture. First, you can give it up willingly by calling Mouse.Capture() again and
passing in a null reference. Second, the user can click outside of your application—on another program,
on the browser menu, on HTML content on the same web page. When an element loses mouse capture,
it fires the LostMouseCapture event.

While the mouse has been captured by an element, other elements won’t receive mouse events.
That means the user won’t be able to click buttons elsewhere in the page, click inside text boxes, and so
on. Mouse capturing is sometimes used to implement draggable and resizable elements.

CHAPTER 4  DEPENDENCY PROPERTIES AND ROUTED EVENTS

128

A Mouse Event Example
You can put all these mouse input concepts together (and learn a bit about dynamic control creation) by
reviewing a simple example.

Figure 4-6 shows a Silverlight application that allows you to draw small circles on a Canvas and
move them around. Every time you click the Canvas, a red circle appears. To move a circle, you simply
click and drag it to a new position. When you click a circle, it changes color from red to green. Finally,
when you release your circle, it changes color to orange. There’s no limit to how many circles you can
add or how many times you can move them around your drawing surface.

Figure 4-6. Dragging shapes

 Note This example demonstrates “simulated” drag and drop, which is a drag-and-drop feature that you
implement yourself, with custom code in your application. By comparison, a “true” drag-and-drop feature relies on
functionality that’s built into the operating system. Silverlight does include a true drag-and-drop feature, but it
works in only a very limited scenario—when dragging files from the computer onto a Silverlight window. Chapter
18 demonstrates the file-based drag-and-drop feature.

CHAPTER 4  DEPENDENCY PROPERTIES AND ROUTED EVENTS

129

Each circle is an instance of the Ellipse element, which is simply a colored shape that’s a basic
ingredient in 2-D drawing. Obviously, you can’t define all the ellipses you need in your XAML markup.
Instead, you need a way to generate the Ellipse objects dynamically each time the user clicks the Canvas.

Creating an Ellipse object isn’t terribly difficult—after all, you can instantiate it like any other .NET
object, set its properties, and attach event handlers. You can even use the SetValue() method to set
attached properties to place it in the correct location in the Canvas. However, there’s one more detail to
take care of—you need a way to place the Ellipse in the Canvas. This is easy enough, because the Canvas
class exposes a Children collection that holds all the child elements. Once you’ve added an element to
this collection, it will appear in the Canvas.

The XAML page for this example uses a single event handler for the Canvas.MouseLeftButtonDown
event. The Canvas.Background property is also set, because a Canvas with the default transparent
background can’t capture mouse events. No other elements are defined.

<Canvas x:Name="parentCanvas" MouseLeftButtonDown="canvas_Click" Background="White">
</Canvas>

In the code-behind class, you need two member variables to keep track of whether an ellipse-
dragging operation is currently taking place:

// Keep track of when an ellipse is being dragged.
private bool isDragging = false;

// When an ellipse is clicked, record the exact position
// where the click is made.
private Point mouseOffset;

Here’s the event-handling code that creates an ellipse when the Canvas is clicked:

private void canvas_Click(object sender, MouseButtonEventArgs e)
{
 // Create an ellipse (unless the user is in the process
 // of dragging another one).
 if (!isDragging)
 {
 // Give the ellipse a 50-pixel diameter and a red fill.
 Ellipse ellipse = new Ellipse();
 ellipse.Fill = new SolidColorBrush(Colors.Red);
 ellipse.Width = 50;
 ellipse.Height = 50;

 // Use the current mouse position for the center of
 // the ellipse.
 Point point = e.GetPosition(this);
 ellipse.SetValue(Canvas.TopProperty, point.Y - ellipse.Height/2);
 ellipse.SetValue(Canvas.LeftProperty, point.X - ellipse.Width/2);

 // Watch for left-button clicks.
 ellipse.MouseLeftButtonDown += ellipse_MouseDown;

 // Add the ellipse to the Canvas.
 parentCanvas.Children.Add(ellipse);
 }
}

CHAPTER 4  DEPENDENCY PROPERTIES AND ROUTED EVENTS

130

Not only does this code create the ellipse, but it also connects an event handler that responds when
the ellipse is clicked. This event handler changes the ellipse color and initiates the ellipse-dragging
operation:

private void ellipse_MouseDown(object sender, MouseButtonEventArgs e)
{
 // Dragging mode begins.
 isDragging = true;
 Ellipse ellipse = (Ellipse)sender;

 // Get the position of the click relative to the ellipse
 // so the top-left corner of the ellipse is (0,0).
 mouseOffset = e.GetPosition(ellipse);

 // Change the ellipse color.
 ellipse.Fill = new SolidColorBrush(Colors.Green);

 // Watch this ellipse for more mouse events.
 ellipse.MouseMove += ellipse_MouseMove;
 ellipse.MouseLeftButtonUp += ellipse_MouseUp;

 // Capture the mouse. This way you'll keep receiving
 // the MouseMove event even if the user jerks the mouse
 // off the ellipse.
 ellipse.CaptureMouse();
}

The ellipse isn’t actually moved until the MouseMove event occurs. At this point, the Canvas.Left
and Canvas.Top attached properties are set on the ellipse to move it to its new position. The coordinates
are set based on the current position of the mouse, taking into account the point where the user initially
clicked. This ellipse then moves seamlessly with the mouse, until the left mouse button is released.

private void ellipse_MouseMove(object sender, MouseEventArgs e)
{
 if (isDragging)
 {
 Ellipse ellipse = (Ellipse)sender;

 // Get the position of the ellipse relative to the Canvas.
 Point point = e.GetPosition(parentCanvas);

 // Move the ellipse.
 ellipse.SetValue(Canvas.TopProperty, point.Y - mouseOffset.Y);
 ellipse.SetValue(Canvas.LeftProperty, point.X - mouseOffset.X);
 }
}

When the left mouse button is released, the code changes the color of the ellipse, releases the mouse
capture, and stops listening for the MouseMove and MouseUp events. The user can click the ellipse
again to start the whole process over.

private void ellipse_MouseUp(object sender, MouseButtonEventArgs e)
{
 if (isDragging)

CHAPTER 4  DEPENDENCY PROPERTIES AND ROUTED EVENTS

131

 {
 Ellipse ellipse = (Ellipse)sender;

 // Change the ellipse color.
 ellipse.Fill = new SolidColorBrush(Colors.Orange);

 // Don't watch the mouse events any longer.
 ellipse.MouseMove -= ellipse_MouseMove;
 ellipse.MouseLeftButtonUp -= ellipse_MouseUp;
 ellipse.ReleaseMouseCapture();

 isDragging = false;
 }
}

Mouse Cursors
A common task in any application is to adjust the mouse cursor to show when the application is busy or
to indicate how different controls work. You can set the mouse pointer for any element using the Cursor
property, which is inherited from the FrameworkElement class.

Every cursor is represented by a System.Windows.Input.Cursor object. The easiest way to get a
Cursor object is to use the static properties of the Cursors class (from the System.Windows.Input
namespace). They include all the standard Windows cursors, such as the hourglass, the hand, the
resizing arrows, and so on. Here’s an example that sets the hourglass for the current page:

this.Cursor = Cursors.Wait;

Now when you move the mouse over the current page, the mouse pointer changes to the familiar
hourglass icon (in Windows XP) or the swirl (in Windows Vista).

 Note The properties of the Cursors class draw on the cursors that are defined on the computer. If the user has
customized the set of standard cursors, the application you create will use those customized cursors.

If you set the cursor in XAML, you don’t need to use the Cursors class directly. That’s because the
type converter for the Cursor property is able to recognize the property names and retrieve the
corresponding Cursor object from the Cursors class. That means you can write markup like this to show
the “help” cursor (a combination of an arrow and a question mark) when the mouse is positioned over a
button:

<Button Cursor="Help" Content="Help Me"></Button>

It’s possible to have overlapping cursor settings. In this case, the most specific cursor wins. For
example, you could set a different cursor on a button and on the page that contains the button. The
button’s cursor will be shown when you move the mouse over the button, and the page’s cursor will be
used for every other region in the page.

CHAPTER 4  DEPENDENCY PROPERTIES AND ROUTED EVENTS

132

 Tip Unlike WPF, Silverlight does not support custom mouse cursors. However, you can hide the mouse cursor
(set it to Cursors.None) and then make a small image follow the mouse pointer using code like that shown in the
previous section.

Keyboard Handling
Although the mouse provides the most obvious way for a user to interact with a Silverlight application,
you can’t ignore that other essential input device—the keyboard. Most of the time, you’ll rely on controls
such as the TextBox, which collects typed-in text without forcing you to pay attention to exactly how that
text is entered. However, if you need finer-grained control—for example, if you want to perform
validation or provide notifications as the user types—you’ll need to pay attention to each individual key
press as it happens.

In the following sections, you’ll learn how to handle key presses and interpret key-event
information. You’ll also consider how Silverlight manages control focus, which determines the control
that gets the keyboard’s input.

Key Presses
As you saw in Table 4-1, Silverlight elements use KeyDown and KeyUp events to notify you when a key is
pressed. These events use bubbling, so they travel up from the element that currently has focus to the
containing elements.

When you react to a key press event, you receive a KeyEventArgs object that provides two additional
pieces of information: Key and PlatformKeyCode. Key indicates the key that was pressed as a value from
the System.Windows.Input.Key enumeration (for example, Key.S is the S key). PlatformKeyCode is an
integer value that must be interpreted based on the hardware and operating system that’s being used on
the client computer. For example, a nonstandard key that Silverlight can’t recognize will return a
Key.Unknown value for the Key property but will provide a PlatformKeyCode that’s up to you to
interpret. An example of a platform-specific key is Scroll Lock on Microsoft Windows computers.

 Note In general, it’s best to avoid any platform-specific coding. But if you really do need to evaluate a
nonstandard key, you can use the BrowserInformation class from the System.Windows.Browser namespace to get
more information about the client computer where your application is running.

The best way to understand the key events is to use a sample program such as the one shown in
Figure 4-7 a little later in this chapter. It monitors a text box for three events: KeyDown, KeyUp, and the
higher-level TextChanged event (which is raised by the TextBox control), using this markup:

<TextBox KeyDown="txt_KeyDown" KeyUp="txt_KeyUp"
 TextChanged="txt_TextChanged"></TextBox>

Here, the TextBox handles the KeyDown, KeyUp, and TextChanged events explicitly. However, the
KeyDown and KeyUp events bubble, which means you can handle them at a higher level. For example,

CHAPTER 4  DEPENDENCY PROPERTIES AND ROUTED EVENTS

133

you can attach KeyDown and KeyUp event handlers on the root Grid to receive key presses that are
made anywhere in the page.

Here are the event handlers that react to these events:

private void txt_KeyUp(object sender, KeyEventArgs e)
{
 string message =
 "KeyUp " +
 " Key: " + e.Key;
 lstMessages.Items.Add(message);
}

private void txt_KeyDown(object sender, KeyEventArgs e)
{
 string message =
 "KeyDown " +
 " Key: " + e.Key;
 lstMessages.Items.Add(message);
}

private void txt_TextChanged(object sender, TextChangedEventArgs e)
{
 string message = "TextChanged";
 lstMessages.Items.Add(message);
}

Figure 4-7 shows the result of typing a lowercase S in the text box.

CHAPTER 4  DEPENDENCY PROPERTIES AND ROUTED EVENTS

134

Figure 4-7. Watching the keyboard

Typing a single character may involve multiple key presses. For example, if you want to type a
capital letter S, you must first press the Shift key and then the S key. On most computers, keys that are
pressed for longer than a brief moment start generating repeated key presses. For that reason, if you type
a capital S, you’re likely to see a series of KeyDown events for the Shift key, as shown in Figure 4-8.
However, you’ll key only two KeyUp events (for the S and for the Shift key) and just one TextChanged
event.

CHAPTER 4  DEPENDENCY PROPERTIES AND ROUTED EVENTS

135

Figure 4-8. Repeated keys

 Note Controls like the TextBox aren’t designed for low-level keyboard handling. When dealing with a text-entry
control, you should only react to its higher-level keyboard events (like TextChanged).

Key Modifiers
When a key press occurs, you often need to know more than just what key was pressed. It’s also
important to find out what other keys were held down at the same time. That means you might want to
investigate the state of other keys, particularly modifiers such as Shift and Ctrl, both of which are
supported on all platforms. Although you can handle the events for these keys separately and keep track
of them in that way, it’s much easier to use the static Modifiers property of the Keyboard class.

CHAPTER 4  DEPENDENCY PROPERTIES AND ROUTED EVENTS

136

To test for a Keyboard.Modifier, you use bitwise logic. For example, the following code checks
whether the Ctrl key is currently pressed:

if ((Keyboard.Modifiers & ModifierKeys.Control) == ModifierKeys.Control)
{
 message += "You are holding the Control key.";
}

 Note The browser is free to intercept keystrokes. For example, in Internet Explorer you won’t see the KeyDown
event for the Alt key, because the browser intercepts it. The Alt key opens the Internet Explorer menu (when used
alone) or triggers a shortcut (when used with another key).

Focus
In the Silverlight world, a user works with one control at a time. The control that is currently receiving
the user’s key presses is the control that has focus. Sometimes, this control is drawn slightly differently.
For example, the Silverlight button uses blue shading to show that it has the focus.

To move the focus from one element to another, the user can click the mouse or use the Tab and
arrow keys. In previous development frameworks, programmers have been forced to take great care to
make sure that the Tab key moves focus in a logical manner (generally from left to right and then down
the window) and that the right control has focus when the window first appears. In Silverlight, this extra
work is seldom necessary because Silverlight uses the hierarchical layout of your elements to implement
a tabbing sequence. Essentially, when you press the Tab key, you’ll move to the first child in the current
element or, if the current element has no children, to the next child at the same level. For example, if you
tab through a window with two StackPanel containers, you’ll move through all the controls in the first
StackPanel and then through all the controls in the second container.

If you want to take control of tab sequence, you can set the TabIndex property for each control to
place it in numerical order. The control with a TabIndex of 0 gets the focus first, followed by the next
highest TabIndex value (for example, 1, then 2, then 3, and so on). If more than one element has the
same TabIndex value, Silverlight uses the automatic tab sequence, which means it jumps to the nearest
subsequent element.

 Tip By default, the TabIndex property for all controls is set to 1. That means you can designate a specific
control as the starting point for a window by setting its TabIndex to 0 but rely on automatic navigation to guide the
user through the rest of the window from that starting point, according to the order that your elements are defined.

The TabIndex property is defined in the Control class, along with an IsTabStop property. You can
set IsTabStop to false to prevent a control from being included in the tab sequence. A control that has
IsTabStop set to false can still get the focus in another way—either programmatically (when your code
calls its Focus() method) or by a mouse click.

CHAPTER 4  DEPENDENCY PROPERTIES AND ROUTED EVENTS

137

Controls that are invisible or disabled are skipped in the tab order and are not activated regardless
of the TabIndex and IsTabStop settings. To hide or disable a control, you set the Visibility and IsEnabled
properties, respectively.

The Command Model
In a well-designed Silverlight application, the application logic doesn’t sit in the event handlers but is
coded in higher-level methods. Each one of these methods represents a single application “task.” In
turn, each task may rely on other libraries (such as separately compiled components that encapsulate
data access, web service calls, or other types of business logic). Figure 4-9 shows this relationship.

Figure 4-9. Mapping event handlers to a task

The most obvious way to use this design is to add event handlers wherever they’re needed and use
each event handler to call the appropriate application method. In essence, your Silverlight page (the
custom class that derives from UserControl) becomes a stripped-down switchboard that responds to
input and forwards requests to the heart of the application.

Although this design is perfectly reasonable, it still requires a fair bit of user interface code. You need
to respond to a variety of events to call your application methods, and sometimes the same application
task can be triggered in different ways (for example, through a button, a right-click menu command, and
so on). Life gets even more complex when you need to manage the state of your user interface—for
example, disabling controls that shouldn’t be accessible when the tasks they trigger aren’t relevant. Even
if you stick to good design practices, your switchboard code can become dense and tangled.

Silverlight doesn’t provide a mature solution for this problem yet. However, many Silverlight
developers have started moving to a design pattern called MVVM (which stands for Model-View-
ViewModel). The basic idea behind MVVM architecture is that your application is separated into distinct
layers. The model is the content or data that your application manages. The view is the graphical front-
end, complete with buttons, graphics, and all your Silverlight elements. In between is the view model
that allows them to communicate. For example, if the user clicks a button in the view, it can trigger a
command in the view model, which then modifies the data in the model.

True MVVM design has both fanatical adherents and more cautious critics. It requires the help of a
separate library, such as MVVM Light (www.galasoft.ch/mvvm) or Prism
(http://compositewpf.codeplex.com). It’s also beyond the scope of this book. However, the Silverlight
has started to add features that will make these higher-level toolkits more practical. The most obvious
feature is commands, which is described next.

http://www.galasoft.ch/mvvm
http://compositewpf.codeplex.com

CHAPTER 4  DEPENDENCY PROPERTIES AND ROUTED EVENTS

138

 Tip To put MVVM into practice with Silverlight, refer to Pro Business Applications with Silverlight 5 (Apress,
2011), which covers Prism.

Silverlight’s command feature is a modest, stripped-down extensibility point that has none of the
features of WPF’s rich commanding model. Instead, Silverlight commands give developers just enough
functionality to begin building their own MVVM architectures.

Here are the essential details about Silverlight’s command support:

• Commands are supported by only two element classes: Hyperlink and ButtonBase
(although several button-like controls derive from ButtonBase).

• Whether you’re using a hyperlink or button, its command is triggered when the
Click event fires. There is no direct support for wiring up commands to other
controls and other events (such as the selection change in a list box or key presses
in a text box). For that, you need the help of a more capable MVVM library.

• Commands work through two properties that have been added to the Hyperlink
and ButtonBase class: Command and CommandParameter. The Command is the
action that will be triggered when the button click takes place, and the
CommandParameter is a single object that will be passed to the command, with
additional information.

• You must create the commands you need. Silverlight includes the ICommand
interface, which all commands must implement. However, it doesn’t include any
command classes of its own. Although you could create dozens or hundreds of
different command classes, most developers prefer to create a general command
class that can be reused for different tasks.

In the following sections, you’ll see a simple example of a command at work.

Building a Command
The heart of the Silverlight command model is the System.Windows.Input.ICommand interface, which
defines how commands work. This interface includes two methods and an event:

public interface ICommand
{
 void Execute(object parameter);
 bool CanExecute(object parameter);

 event EventHandler CanExecuteChanged;
}

In a simple implementation, the Execute() method would contain the application task logic (for
example, printing the document). The CanExecute() method returns the state of the command: true if
it’s enabled and false if it’s disabled. Both Execute() and CanExecute() accept an additional parameter
object that you can use to pass along any extra information you need.

Finally, the CanExecuteChanged event is raised when the state changes. This is a signal to any
controls using the command that they should call the CanExecute() method to check the command’s

CHAPTER 4  DEPENDENCY PROPERTIES AND ROUTED EVENTS

139

state. This is part of the glue that allows command sources (such as a button) to automatically enable
themselves when the command is available and to disable themselves when it’s not.

For example, the following PrintTextCommand prints a single string when the command is
triggered and the Execute() method is called. (In truth, the command displays the string in a message
box, but you could add real printing logic using the skills you’ll pick up in Chapter 8.) The CanExecute()
method simply examines the string and disallows printing if that string is missing or empty. In both
cases, the command receives the string as a command parameter.

Here’s the complete code:

public class PrintTextCommand : ICommand
{
 public event EventHandler CanExecuteChanged;

 private bool canExecute;
 public bool CanExecute(object parameter)
 {
 // Check if the command can execute.
 // In order to be executable, it must have non-blank text in the
 // command parameter.
 bool canExecuteNow = (parameter != null) && (parameter.ToString() != "");

 // Determine if the CanExecuteChanged event should be raised.
 if (canExecute != canExecuteNow)
 {
 canExecute = canExecuteNow;
 if (CanExecuteChanged != null)
 {
 CanExecuteChanged(this, new EventArgs());
 }
 }
 return canExecute;
 }

 public void Execute(object parameter)
 {
 MessageBox.Show("Printing: " + parameter);
 }
}

Connecting a Command
To use this command, you need to set the Command and CommandParameter properties of your
button. Although you could do this in code, this defeats the true purpose of the command model, which
is to help you remove the event-handling code from your user control class. Instead, the ideal command
implementation connects everything you need in XAML.

First, you need to map your project namespace to an XML prefix, so the custom command class you
created is available in your markup. Here’s an example for a page named Commands in an application
named RoutedEvents:

<UserControl x:Class="RoutedEvents.Commands"
 xmlns:local="clr-namespace:RoutedEvents" ... >

CHAPTER 4  DEPENDENCY PROPERTIES AND ROUTED EVENTS

140

Now you can add the command as a resource:

<UserControl.Resources>
 <local:PrintTextCommand x:Key="printCommand"></local:PrintTextCommand>
</UserControl.Resources>

The final step is to find your button control and set its Command property (using the resource) and
its CommandParameter property (using data binding). In this example, the CommandParameter
extracts the text from a nearby text box.

<Button Margin="5" Content="Print Command"
 Command="{StaticResource printCommand}"
 CommandParameter="{Binding ElementName=txt, Path=Text}"></Button>
<TextBox x:Name="txt" Grid.Row="1" Margin="5"></TextBox>

Figure 4-10 shows the two states of the button. When there’s no text in the text box, the command
can’t execute, and the button is disabled automatically. When there is text in the text box, the button
becomes enabled. If its clicked, the PrintTextCommand.Execute() method runs.

Figure 4-10. A disabled (left) and enabled (right) command

This automatic state management is nice, but it’s limited to the enabling and disabling of controls.
It’s not hard to imagine situations where you’d like to manage state in other ways—for example,
checking a check box or hiding a list item when other conditions become true. Unfortunately, this isn’t
possible in the current implementation of Silverlight commands.

The real promise of the command model is the ability to get things done without writing tedious
event-handling code. In fact, this example has absolutely no code in the derived user control class. This
is the right state of mind for MVVM design, but a more formalized model would introduce a distinct view
model. The command would then be made part of that view model and exposed through a property,
along with any other commands that you need to use for this page. For a complete example of a
Silverlight application that uses this design, see http://tinyurl.com/3x9e3t8.

6

http://tinyurl.com/3x9e3t8

CHAPTER 4  DEPENDENCY PROPERTIES AND ROUTED EVENTS

141

But don’t get too excited—if you need to build anything but the simplest MVVM application, you’ll
need additional infrastructure. You can build it yourself or step up to one of the MVVM libraries
mentioned earlier. And for more design advice about MVVM, refer to Pro Business Applications with
Silverlight 5 (Apress, 2011).

The Last Word
In this chapter, you took a deep look at Silverlight dependency properties and routed events. First, you
saw how dependency properties are defined and registered and how they plug into other Silverlight
services. You explored event bubbling and saw how it allows an event to travel up the element hierarchy.
Next, you considered the basic set of mouse and keyboard events that all elements provide. Lastly, you
saw the start of a new direction in Silverlight event handling, with the command model.

 Tip One of the best ways to learn more about the internals of Silverlight is to browse the code for basic
Silverlight elements, such as Button, UIElement, and FrameworkElement. One of the best tools to perform this
browsing is Reflector, which is available at www.red-gate.com/products/reflector. Using Reflector, you can
see the definitions for dependency properties and routed events, browse through the static constructor code that
initializes them, and even explore how the properties and events are used in the class code.

http://www.red-gate.com/products/reflector

C H A P T E R 5

143

Elements

Now that you’ve learned the fundamentals of XAML, layout, and mouse and keyboard handling, you’re
ready to consider the elements that allow you to build both simple and complex user interfaces.

In this chapter, you’ll get an overview of Silverlight’s core elements, and you’ll explore many
elements that you haven’t studied yet. First, you’ll learn how to display wrapped, formatted text with the
TextBlock and how to show images with the Image element. Next, you’ll consider content controls,
including Silverlight’s many different flavors of button and the ToolTip control. Finally, you’ll take a look
at several more specialized elements, such as Silverlight’s list, text-entry, range, and date controls. By the
time you finish this chapter, you’ll have a solid overview of the essential ingredients that make up
Silverlight pages.

 What’s New Silverlight 5 adds two specialized controls that are based on the RichTextBox, called
RichTextBlock and RichTextBlockOverflow. Using these controls, you can put text in multiple columns and wrap
text around images, with a little work. You’ll learn about this enhancement in the section named “The
RichTextBlock.”

The Silverlight Elements
You’ve already met quite a few of Silverlight’s core elements, such as the layout containers in Chapter 3.
Some of the more specialized elements, such as the ones used for drawing 2-D graphics, displaying Deep
Zoom images, and playing video, won’t be covered until later in this book. But this chapter deals with all
the basics—fundamental widgets such as buttons, text boxes, lists, and check boxes.

Table 5-1 provides an at-a-glance look at the key elements that Silverlight includes and points you to
the chapters of this book where they’re described. The list is ordered alphabetically to match the order of
elements in the Visual Studio Toolbox.

CHAPTER 5  ELEMENTS

144

Table 5-1. Silverlight Elements

Class Description
Place in
This Book

Assembly
(If Not a Core Element)

AutoCompleteBox A specialized text box that
provides a list of possible matches
as the user types.

This chapter System.Windows.Controls
.Input.dll

Border A rectangular or rounded border
that’s drawn around a single,
contained element.

Chapter 3

Button The familiar button, complete with
a shaded gray background, which
the user clicks to launch a task.

This chapter

Calendar A one-month-at-a-time calendar
view that allows the user to select a
single date.

This chapter System.Windows.Controls.dll

Canvas A layout container that allows you
to lay out elements with precise
coordinates.

Chapter 3

CheckBox A box that can be checked or
unchecked, with optional content
displayed next to it.

This chapter

ComboBox A drop-down list of items, out of
which a single one can be selected.

This chapter

ContentControl The base control from which all
content controls derive, such as
Button, CheckBox, ToolTip,
ScrollViewer, and many more.
Although you can use this class
directly, you’re much more likely
to work with its descendants.

This chapter

DataGrid A rich data control that shows a
collection of data objects in a
multicolumned grid and offers
built-in features such as sorting
and selection.

Chapter 21 System.Windows.Controls
.Data.dll

CHAPTER 5  ELEMENTS

145

Class Description
Place in
This Book

Assembly
(If Not a Core Element)

DataPager A data control that provides
paging for other data sources and
can work in conjunction with
controls like the DataGrid.

Chapter 21 System.Windows.Controls
.Data.dll

DatePicker A text box for date entry, with a
drop-down calendar for easy
selection.

This chapter System.Windows.Controls.dll

Ellipse A shape drawing element that
represents an ellipse.

Chapter 8

Frame A container that displays a
separate XAML file inside an
ordinary page. You can use frames
in various ways to create a
complex navigation system.

Chapter 7 System.Windows.Controls.
Navigation.dll

Grid A layout container that places
children in an invisible grid of
cells.

Chapter 3

GridSplitter A resizing bar that allows users to
change the height or adjacent rows
or width of adjacent columns in a
Grid.

Chapter 3 System.Windows.Controls.dll

HyperlinkButton A link that directs the user to
another web page.

This chapter

Image An element that displays a
supported image file.

This chapter

Label A text display control that’s similar
to the TextBlock but heavier
weight. When paired up with a
data-bound control, the Label can
examine the bound data object to
extract caption text and determine
whether it should show a required
field indicator or error indicator.

Chapter 21 System.Windows.Controls.dll

ListBox A list of items, out of which a single
one can be selected.

This chapter

CHAPTER 5  ELEMENTS

146

Class Description
Place in
This Book

Assembly
(If Not a Core Element)

MediaElement A media file, such as a video
window.

Chapter 12

MultiScaleImage An element that supports
Silverlight’s Deep Zoom feature
and allows the user to zoom into a
precise location in a massive
image.

Chapter 12

PasswordBox A text box that masks the text the
user enters.

This chapter

ProgressBar A colored bar that indicates the
percent completion of a given task.

This chapter

RadioButton A small circle that represents one
choice out of a group of options,
with optional content displayed
next to it.

This chapter

Rectangle A shape drawing element that
represents a rectangle.

Chapter 8

RichTextBox An editable text box that supports
richly formatted text

This chapter

ScrollViewer A container that holds any large
content and makes it scrollable.

Chapter 3

Slider An input control that lets the user
set a numeric value by dragging a
thumb along a track.

This chapter

StackPanel A layout container that stacks
items from top to bottom or left to
right.

Chapter 3

TabControl A container that places items into
separate tabs and allows the user
to view just one tab at a time.

This chapter System.Windows.Controls.dll

CHAPTER 5  ELEMENTS

147

Class Description
Place in
This Book

Assembly
(If Not a Core Element)

TextBlock An all-purpose text display control
that includes the ability to give
different formatting to multiple
pieces of inline text.

This chapter

TextBox The familiar text-entry control. This chapter

TreeView A rich data control that shows the
familiar tree of items, with as
many hierarchical levels as you
need.

Chapter 21 System.Windows.Controls.dll

Viewbox A container that can scale its
content up or down, as needed

Chapter3

WebBrowser An Internet Explorer–powered
browser window that you can
embed inside a Silverlight window
in an out-of-browser application

Chapter 18

In Chapter 1, you learned that Silverlight includes some noncore controls that—if used—are

automatically added to the compiled XAP file so they can be deployed with your application. As you can
see in the last column of Table 5-1, this doesn’t apply to most Silverlight controls, and even some highly
specialized controls like the MultiScaleImage are part of the standard Silverlight package.

In the following sections, you’ll take a closer look at many of the controls from Table 5-1, and you’ll
learn how to customize them in your own applications.

 Tip If you’re still hungering for more controls, you can find many specialized (and downright ingenious)
offerings in the Silverlight Toolkit, a freely downloadable and distributable add-on that’s available on Microsoft’s
CodePlex site at http://silverlight.codeplex.com. Highlights include a rich array of beautifully rendered chart
controls that include nearly everything you’ll find in Excel, from pie charts to scatter plots. Once you’ve installed
the Silverlight Toolkit, you’ll find the new controls packed into the Silverlight tab of the Toolbox.

Static Text
Although Silverlight includes a Label control, it’s intended for data binding scenarios and discussed in
Chapter 21. If you just want the best way to show blocks of formatted text, you’re far better off with the
lightweight, flexible TextBlock element, which you’ve seen at work in many of the examples over the past
four chapters.

http://silverlight.codeplex.com

CHAPTER 5  ELEMENTS

148

The TextBlock element is refreshingly straightforward. It provides a Text property, which accepts a
string with the text you want to display.

<TextBlock Text="This is the content."></TextBlock>

Alternatively, you can supply the text as nested content:

<TextBlock>This is the content.</TextBlock>

The chief advantage of this approach is that you can add line breaks and tabs to make large sections
of text more readable in your code. Silverlight follows the standard rules of XML, which means it
collapses whitespace. Thus, a series of spaces, tabs, and hard returns is rendered using a single space
character.

If you really do want to split text over lines at an explicit position, you have three options. First, you
can use separate TextBlock elements. Second, you can use a LineBreak inside the TextBlock element, as
shown here:

<TextBlock>
 This is line 1.<LineBreak/>
 This is line 2.
</TextBlock>

Third, you can add the xml:space="preserve" attribute to your TextBlock element, which tells the
XAML parser to honor every space, tab, and hard return between the opening > character (which ends
the start tag) and the closing < (which begins the end tag). Here’s an example:

<TextBlock xml:space="preserve"
>This is line 1.
 This is an indented line 2.</TextBlock>

This approach gives you the most powerful way to micro-manage how text blocks are formatted.
However, its strictness is usually too limiting for real-world applications.

 Note When using inline text, you can’t use the < and > characters, because these have a specific XML
meaning. Instead, you need to replace the angled brackets with the character entities < (for the less than
symbol) and > (for the greater than symbol), which will be rendered as < and >.

Unsurprisingly, text is colored black by default. You can change the color of your text using the
Foreground property. You can set it using a color name in XAML:

<TextBlock x:Name="txt" Text="Hello World" Foreground="Red"></TextBlock>

or in code

txt.Foreground = new SolidColorBrush(Colors.Red);

Instead of using a color name, you can use RGB values. You can also use partially transparent colors
that allow the background to show through. Both topics are covered in Chapter 3 when discussing how
to paint the background of a panel.

CHAPTER 5  ELEMENTS

149

 Tip Ordinarily, you’ll use a solid color brush to fill in text. (The default is obviously a black brush.) However, you
can create more exotic effects by filling in your text with gradients and tiled patterns using the fancy brushes
discussed in Chapter 9.

The TextBlock also provides a TextAlignment property (which allows you to center or right-justify
text), a Padding property (which sets the space between the text and the outer edges of the TextBlock),
and a few more properties for controlling fonts, inline formatting, text wrapping, and text trimming.
You’ll consider these properties in the following sections.

Font Properties
The TextBlock class defines font properties that determine how text appears in a control. These
properties are outlined in Table 5-2.

Table 5-2. Font-Related Properties of the Control Class

Name Description

FontFamily The name of the font you want to use. Because Silverlight is a client-side technology, it’s
limited to just nine built-in fonts (Arial, Arial Black, Comic Sans MS, Courier New,
Georgia, Lucida, Times New Roman, Trebuchet MS, and Verdana). However, you can also
distribute custom fonts by going to a bit more work and packing them up with your
project assembly, as you’ll see shortly in the “Font Embedding” section.

FontSize The size of the font in pixels. Ordinary Windows applications measure fonts using points,
which are assumed to be 1/72 of an inch on a standard PC monitor, while pixels are
assumed to be 1/96 of an inch. Thus, if you want to turn a Silverlight font size into a more
familiar point size, you can use a handy trick—just multiply by 3/4. For example, a 20-
pixel FontSize is equivalent to a traditional 15-point font size.

FontStyle The angling of the text, as represented as a FontStyle object. You get the FontStyle preset
you need from the static properties of the FontStyles class, which includes Normal and
Italic lettering. If you apply italic lettering to a font that doesn’t provide an italic variant,
Silverlight will simply slant the letters. However, this behavior gives only a crude
approximation of a true italic typeface.

FontWeight The heaviness of text, as represented as a FontWeight object. You get the FontWeight
preset you need from the static properties of the FontWeights class. Normal and Bold are
the most obvious of these, but some typefaces provide other variations such as Bold,
Light, ExtraBold, and so on. If you use Bold on a font that doesn’t provide a bold variant,
Silverlight will paint a thicker border around the letters, thereby simulating a bold font.

CHAPTER 5  ELEMENTS

150

Name Description

FontStretch The amount that text is stretched or compressed, as represented by a FontStretch object.
You get the FontStretch preset you need from the static properties of the FontStretches
class. For example, UltraCondensed reduces fonts to 50 percent of their normal width,
while UltraExpanded expands them to 200 percent. Font stretching is an OpenType
feature that is not supported by many typefaces. The built-in Silverlight fonts don’t
support any of these variants, so this property is relevant only if you’re embedding a
custom font that does.

Obviously, the most important of these properties is FontFamily. A font family is a collection of
related typefaces—for example, Arial Regular, Arial Bold, Arial Italic, and Arial Bold Italic are all part of
the Arial font family. Although the typographic rules and characters for each variation are defined
separately, the operating system realizes they’re related. As a result, you can configure an element to use
Arial Regular, set the FontWeight property to Bold, and be confident that Silverlight will switch to the
Arial Bold typeface.

When choosing a font, you must supply the full family name, as shown here:

<TextBlock x:Name="txt" FontFamily="Times New Roman" FontSize="18">
Some Text</TextBlock>

It’s much the same in code:

txt.FontFamily = "Times New Roman";
txt.FontSize = "18";

When identifying a FontFamily, a shortened string is not enough. That means you can’t substitute
Times or Times New instead of the full name Times New Roman.

Optionally, you can use the full name of a typeface to get italic or bold, as shown here:

<TextBlock FontFamily="Times New Roman Bold">Some Text</TextBlock >

However, it’s clearer and more flexible to use just the family name and set other properties (such as
FontStyle and FontWeight) to get the variant you want. For example, the following markup sets the
FontFamily to Times New Roman and sets the FontWeight to FontWeights.Bold:

<TextBlock FontFamily="Times New Roman" FontWeight="Bold">Some Text</TextBlock >

Standard Fonts
Silverlight supports nine core fonts, which are guaranteed to render correctly on any browser and
operating system that supports Silverlight. They’re shown in Figure 5-1.

CHAPTER 5  ELEMENTS

151

Figure 5-1. Silverlight’s built-in fonts

In the case of Lucida, there are two variants with slightly different names. Lucida Sans Unicode is
included with Windows, while Lucida Grande is an almost identical font that’s included with Mac OS X.
To allow this system to work, the FontFamily property supports font fallback—in other words, you can
supply a comma-separated list of font names, and Silverlight will used the first supported font. The
default TextBlock font is equivalent to setting the FontFamily property to the string “Lucida Sans
Unicode, Lucida Grande.”

You might think that you can use more specialized fonts, which may or may not be present on the
client’s computer. However, Silverlight doesn’t allow this. If you specify a font that isn’t one of the nine
built-in fonts and it isn’t included with your application assembly (more on that in the next section),
your font setting will be ignored. This happens regardless of whether the client has an installed font with
the appropriate name. This makes sense—after all, using a font that’s supported on only some systems
could lead to an application that’s mangled or completely unreadable on others, which is an easy
mistake to make.

Font Embedding
If you want to use nonstandard fonts in your application, you can embed them in your application
assembly. That way, your application never has a problem finding the font you want to use.

The embedding process is simple. First, you add the font file (typically, a file with the extension .ttf)
to your application and set Build Action to Resource. You can do this in Visual Studio by selecting the
font file in the Solution Explorer and changing its Build Action setting in the Properties page.

Next, when you set the FontFamily property, you need to use this format:

CHAPTER 5  ELEMENTS

152

FontFileName#FontName

For example, if you have a font file named BayernFont.ttf and it includes a font named Bayern, you
would use markup like this:

<TextBlock FontFamily="BayernFont.ttf#Bayern">This is an embedded font</TextBlock>

Figure 5-2 shows the result.

Figure 5-2. Using an embedded font

Alternatively, you can set the font using a stream that contains the font file. In this case, you need to
set the TextBlock.FontSource property with the font file stream and then set the TextBlock.FontFamily
property with the font name. For example, if you added the BayernFont.ttf file as a resource to a project
named FontTest, you can retrieve it programmatically using this code:

StreamResourceInfo sri = Application.GetResourceStream(
 new Uri("FontTest;component/BayernFont.ttf", UriKind.Relative));

lbl.FontSource = new FontSource(sri.Stream);
lbl.FontFamily = new FontFamily("Bayern");

To pull the resource out of the current assembly, this code uses the
Application.GetResourceStream() method and a specialized URI syntax that always takes this form:

AssemblyName;component/FontResourceName

No matter which approach you use, the process of using a custom font is fairly easy. However, font
embedding raises obvious licensing concerns. Most font vendors allow their fonts to be embedded in
documents (such as PDF files) but not applications (such as Silverlight assemblies). The problem is
obvious—users can download the XAP file by hand, unzip it, retrieve the font resource, and then access
it on their local computers. Silverlight doesn’t make any attempt to enforce font licensing, but you
should make sure you’re on solid legal ground before you redistribute a font.

You can check a font’s embedding permissions using Microsoft’s free font properties extension
utility, which is available at www.microsoft.com/typography/TrueTypeProperty21.mspx. Once you install
this utility, right-click any font file, and choose Properties to see more detailed information about it. In
particular, check the Embedding tab for information about the allowed embedding for this font. Fonts
marked with Installed Embedding Allowed are suitable for Silverlight applications, while fonts with
Editable Embedding Allowed may not be. Consult with the font vendor for licensing information about a
specific font.

http://www.microsoft.com/typography/TrueTypeProperty21.mspx

CHAPTER 5  ELEMENTS

153

 Note If all else fails, you can get around licensing issues by changing your fonts to graphics. This works for
small pieces of graphical text (for example, headings) but isn’t appropriate for large blocks of text. You can save
graphical text as a bitmap in your favorite drawing program, or you can convert text to a series of shapes using
Silverlight’s Path element (which is discussed in Chapter 8). You can convert graphical text to a path using
Expression Designer or Expression Blend (simply select the TextBlock and choose Object  Path  Convert to
Path). Interestingly, Silverlight also allows you to perform the same trick through code. Surf to
http://tinyurl.com/69f74v to see an example in which a Silverlight application calls a web service that
dynamically generates a path for non-Western text. The web service returns the path data to the Silverlight
application, which displays it seamlessly.

Underlining
You can add underlining to any font by setting the TextDecorations property to Underline:

<TextBlock TextDecorations="Underline">Underlined text</TextBlock>

In WPF, there are several types of text decorations, including overlines and strikethrough. However,
currently, Silverlight includes only underlining.

If you want to underline an individual word in a block of text, you’ll need to use inline elements, as
described in the next section.

Runs
In many situations, you’ll want to format individual bits of text but keep them together in a single
paragraph in a TextBlock. To accomplish this, you need to use a Run object inside the TextBlock
element. Here’s an example that formats several words differently (see Figure 5-3):

<TextBlock FontFamily="Georgia" FontSize="20" >
 This <Run FontStyle="Italic" Foreground="YellowGreen">is</Run> a
 <Run FontFamily="Comic Sans MS" Foreground="Red" FontSize="40">test.</Run>
</TextBlock>

http://tinyurl.com/69f74v

CHAPTER 5  ELEMENTS

154

Figure 5-3. Formatting text with runs

A run supports the same key formatting properties as the TextBlock, including Foreground,
TextDecorations, and the five font properties (FontFamily, FontSize, FontStyle, FontWeight, and
FontStretch).

Technically, a Run object is not a true element. Instead, it’s an inline. Silverlight provides two just
types of inlines—the LineBreak class that you saw earlier and the Run class. You can interact with the
runs in your TextBlock through the TextBlock.Inlines collection. In fact, the TextBlock actually has two
overlapping content models. You can set text through the simple Text property, or you can supply it
through the Inlines collection. However, the changes you make in one affect the other, so if you set the
Text property, you’ll wipe out the current collection of inlines.

 Note The inline Run and LineBreak classes are part of the text element model, which is supported (in a more
fully featured way) by the RichTextBox control discussed later in this chapter.

Wrapping Text
To wrap text over several lines, you use the TextWrapping property. Ordinarily, TextWrapping is set to
TextWrapping.NoWrap, and content is truncated if it extends past the right edge of the containing
element. If you use TextWrapping.Wrap, your content will be wrapped over multiple lines when the
width of the TextBlock element is constrained in some way. (For example, you place it into a
proportionately sized or fixed-width Grid cell.) When wrapping, the TextBlock splits lines at the nearest
space. If you have a word that is longer than the available line width, the TextBlock will split that word
wherever it can to make it fit.

When wrapping text, the LineHeight and LineStackingStrategy properties become important. The
LineHeight property can set a fixed height (in pixels) that will be used for every line. However, the

CHAPTER 5  ELEMENTS

155

LineHeight can be used to increase the line height only—if you specify a height that’s smaller than
what’s required to show the text, your setting will be ignored.

The LineStackingStrategy determines what the TextBlock will do when dealing with multiline
content that uses different fonts. You can choose to use the standard behavior, MaxHeight, which makes
each line as high as it needs to be to fit the tallest piece of text it contains, or you can use
BlockLineHeight, which sets the lines to one fixed height—the height set by the LineHeight property.
Shorter text will then have extra space, and taller text will overlap with other lines. Figure 5-4 compares
the different options.

Figure 5-4. Two different ways to calculate line height

The TextBlock wraps text in a neat, rectangular region. It’s not possible to wrap text around curves
or the contours of nearby shapes. However, you can simulate such effects using the RichTextBox’s
overflow feature, as described later in this chapter.

Trimming Text
As you learned in the previous section, text that doesn’t fit the width of its container has two options:
wrap or be truncated. For example, if you have a sentence like “Silverlight is a fantastic platform,” it
might be truncated like this:

Silverlight is a fant

CHAPTER 5  ELEMENTS

156

The TextTrimming property gives you a slightly more graceful way to deal with this situation. If you
set the TextTrimming property to WordEllipsis (the only option other than the default), Silverlight adds
an ellipsis at the end of truncated text. So, the previous example might come out like this:

Silverlight is a ...

This gives the user a visual cue that the full text isn’t shown.

Character Spacing
If your type looks a little congested, you can use the LineHeight property to add vertical space between
the lines (as you’ve already seen), and you can use the CharacterSpacing property to add space
horizontal space between letters on the same line. Here’s an example:

<TextBlock FontSize="20" CharacterSpacing="100">
 These letters are spaced out.
</TextBlock>

The CharacterSpacing property takes a value that’s measured in 1/1000ths of the current font size. So
if you set CharacterSpacing to a generous 100 and your font size is 20 pixels, you’ll get 2 pixels of extra
space between each letter (because 100/1000  20 = 2).

The default value for CharacterSpacing is 0, which gets you no extra space. If you want to draw the
letters of a line closer together (and possibly even overlap), you can simply set CharacterSpacing to a
negative value.

Images
Displaying an image is one of the easier tasks in Silverlight. You simply need to add an Image element
and set its Source property. However, there are some limitations that you need to understand.

The most obvious limitation is that the Image element supports just two image formats. It has full
support for JPEG and fairly broad support for PNG (although it doesn’t support PNG files that use 64-bit
color or grayscale). The Image element does not support GIF files. There are two reasons for this
omission—it allows the Silverlight download to remain that much slimmer, and it avoids potential
confusion between the Silverlight animation model and the much more basic (and unsupported)
animated GIF feature that’s used on the Web.

It’s also important to recognize that the Image.Source property is set with a relative or absolute URI.
Usually, you’ll use a relative URI to display an image that you’ve added to your project as a resource. For
example, if you add a new image named grandpiano.jpg to your project, Visual Studio will automatically
configure it to be a resource, and it will embed that resource in the compiled assembly as a block of
binary data. At runtime, you can retrieve that image using its resource name (which is the file name it
has in the Solution Explorer). Here’s how:

<Image Source="grandpiano.jpg"></Image>

Or, assuming the image is in a project subfolder named Images, you can retrieve it like so:

<Image Source="Images/grandpiano.jpg"></Image>

Alternatively, you can construct the URI in code and set the Image.Source property
programmatically:

img.Source = new BitmapImage(new Uri("grandpiano.jpg", UriKind.Relative));

CHAPTER 5  ELEMENTS

157

You can also use image URIs to point to images that aren’t embedded in your application. You can
show images that are located on the same website as your Silverlight application, or images that exist on
separate websites.

<Image Source="http://www.mysite.com/Images/grandpiano.jpg"></Image>

However, there’s one catch. When testing a file-based website (one that doesn’t use an ASP.NET
website and the Visual Studio test web server), you won’t be able to use absolute URLs. This limitation is
a security restriction that results from the mismatch between the way you’re running your application
(from the file system) and the way you want to retrieve your images (from the Web, over HTTP). The
same limitation comes into play if you attempt to access an image over HTTPS when your Silverlight
page was accessed through HTTP (or vice versa).

For more information and to see a few examples that demonstrate your different options for using
URIs and managing resources, refer to Chapter 6.

 Tip Interestingly, Silverlight uses bitmap caching to reduce the number of URI requests it makes. That means
you can link to an image file on a website multiple times, but your application will download it only once.

Image Sizing
Images can be resized in two ways. First, you can set an explicit size for your image using the Height and
Width properties. Second, you can place your Image element in a container that uses resizing, such as a
proportionately sized cell in a Grid. If neither of these factors comes into play—in other words, you don’t
set the Height and Width properties and you place your Image in a simple layout container like the
Canvas—your image will be displayed using the native size that’s defined in the image file.

To control this behavior, you can use the Stretch property. The Stretch property determines how an
image is resized when the dimensions of the Image element don’t match the native dimensions of the
image file. Table 5-3 lists the values you can use for the Stretch property, and Figure 5-5 compares them.

Table 5-3. Values for the Stretch Enumeration

Name Description

Fill Your image is stretched in width and height to fit the Image element dimensions
exactly.

None The image keeps its native size.

Uniform The image is given the largest possible size that fits in the Image element and doesn’t
change its aspect ratio. This is the default value.

UniformToFill The width and height of the image are sized proportionately until the image fills all the
available height and width. For example, if you place a picture with this stretch setting
into an Image element that’s 100200 pixels, you’ll get a 200200 picture, and part of it
will be clipped off.

CHAPTER 5  ELEMENTS

158

Figure 5-5. Four different ways to size an image

Image Errors
Several factors can cause an image not to appear, such as using a URI to a nonexistent file or trying to
display an image in an unsupported format. In these situations, the Image element raises the
ImageFailed event. You can react to this event to determine the problem and take alternative actions.
For example, if a large image is not available from the Web, you can substitute a small placeholder that’s
embedded in your application assembly.

Image errors are not fatal, and your application will continue running even if it can’t display an
image. In this situation, the Image element will remain blank. Your image will also be blank if the image
data takes a significant amount of time to download. Silverlight will perform the image request
asynchronously and render the rest of the layout in your page while waiting.

Content Controls
Content controls are a specialized type of controls that are designed to hold (and display) a piece of
content. Technically, a content control is a control that can contain a single nested element. The one-
child limit is what differentiates content controls from layout containers, which can hold as many nested
elements as you want.

As you learned in Chapter 3, all Silverlight layout containers derive from the Panel class, which gives
the support for holding multiple elements. Similarly, all content controls derive from the
ContentControl class. Figure 5-6 shows the class hierarchy.

CHAPTER 5  ELEMENTS

159

Figure 5-6. The hierarchy of content controls

As Figure 5-6 shows, several common controls are actually content controls, including the Label,
Tooltip, Button, RadioButton, and CheckBox. There are also a few more specialized content controls,
such as ScrollViewer (which you used in Chapter 3 to create a scrollable panel), and some controls that
are designed for being used with another, specific control. For example, the ListBox control holds
ListBoxItem content controls; the Calendar requires the DayButton and MonthButton; and the DataGrid
uses the DataGridCell, DataGridRowHeader, and DataColumnHeader.

CHAPTER 5  ELEMENTS

160

The Content Property
Whereas the Panel class adds the Children collection to hold nested elements, the ContentControl class
adds a Content property, which accepts a single object. The Content property supports any type of
object. It gives you three ways to show content:

• Elements: If you use an object that derives from UIElement for the content of a
content control, that element will be rendered.

• Other objects: If you place a nonelement object into a content control, the control
will simply call ToString() to get the text representation for that control. For some
types of objects, ToString() produces a reasonable text representation. For others,
it simply returns the fully qualified class name of the object, which is the default
implementation.

• Other objects, with a data template: If you place a nonelement object into a
content control and you set the ContentTemplate property with a data template,
the content control will render the data template and use the expressions it
contains to pull information out of the properties of your object. This approach is
particularly useful when dealing with collections of data objects, and you’ll see
how it works in Chapter 20.

To understand how this works, consider the humble button. An ordinary button may just use a
simple string object to generate its content:

<Button Margin="3" Content="Text content"></Button>

This string is set as the button content and displayed on the button surface.

 Tip When filling a button with unformatted text, you may want to use the font-related properties that the Button
class inherits from Control, which duplicate the TextBlock properties listed in Table 5-2.

However, you can get more ambitious by placing other elements inside the button. For example,
you can place an image inside using the Image class:

<Button Margin="3">
 <Image Source="happyface.jpg"></Image>
</Button>

Or you could combine text and images by wrapping them all in a layout container like the
StackPanel, as you saw in Chapter 3:

<Button Margin="3">
 <StackPanel>
 <TextBlock Margin="3" Text="Image and text button"></TextBlock>
 <Image Source="happyface.jpg" />
 <TextBlock Margin="3" Text="Courtesy of the StackPanel"></TextBlock>
 </StackPanel>
</Button>

CHAPTER 5  ELEMENTS

161

If you want to create a truly exotic button, you could even place other content controls such as text
boxes and buttons inside (and nest still elements inside these). It’s doubtful that such an interface would
make much sense, but it is possible.

At this point, you might be wondering if the Silverlight content model is really worth all the trouble.
After all, you might choose to place an image inside a button, but you’re unlikely to embed other
controls and entire layout panels. However, there are a few important advantages to the content model.

For example, the previous markup placed a bitmap into a button. However, this approach isn’t as
flexible as creating a vector drawing out of Silverlight shapes. Using a vector drawing, you can create a
button image that’s scalable and can be changed programmatically (for example, with different colors, a
transform, or an animation). Using a vector-based button opens you up to the possibility of creating a
dynamic interface that responds to state changes and user actions.

In Chapter 8, you’ll consider how you can begin building vector images in Silverlight. However, the
key fact you should understand now is that the vector-drawing model integrates seamlessly with content
controls because they have the ability to hold any element. For example, this markup creates a simple
graphical button that contains two diamond shapes (as shown in Figure 5-7):

<Button Margin="3" Height="70" Width="215">
 <Grid Margin="5">
 <Polygon Points="100,25 125,0 200,25 125,50"
 Fill="LightSteelBlue" />
 <Polygon Points="100,25 75,0 0,25 75,50"
 Fill="LightGray"/>
 </Grid>
</Button>

Figure 5-7. A button with shape content

Clearly, in this case, the nested content model is simpler than adding extra properties to the Button
class to support the different types of content. Not only is the nested content model more flexible, it also

CHAPTER 5  ELEMENTS

162

allows the Button class to expose a simpler interface. And because all content controls support content
nesting in the same way, there’s no need to add different content properties to multiple classes.

In essence, the nested content model is a trade. It simplifies the class model for elements because
there’s no need to use additional layers of inheritance to add properties for different types of content.
However, you need to use a slightly more complex object model—elements that can be built out of other
nested elements.

 Note You can’t always get the effect you want by changing the content of a control. For example, even though
you can place any content in a button, a few details never change, such as the button’s shaded background, its
rounded border, and the mouse-over effect that makes it glow when you move the mouse pointer over it. However,
there’s another way to change these built-in details—by applying a new control template. Chapter 15 shows how
you can change all aspects of a control’s look and feel using a control template.

Aligning Content
In Chapter 3, you learned how to align different controls in a container using the HorizontalAlignment
and VerticalAlignment properties, which are defined in the base FrameworkElement class. However,
once a control contains content, there’s another level of organization to think about. You need to decide
how the content inside your content control is aligned with its borders. This is accomplished using the
HorizontalContentAlignment and VerticalContentAlignment properties.

HorizontalContentAlignment and VerticalContentAlignment support the same values as
HorizontalAlignment and VerticalAlignment. That means you can line content up on the inside of any
edge (Top, Bottom, Left, or Right), you can center it (Center), or you can stretch it to fill the available
space (Stretch). These settings are applied directly to the nested content element, but you can use
multiple levels of nesting to create a sophisticated layout. For example, if you nest a StackPanel in a
Button element, the Button.HorizontalContentAlignment determines where the StackPanel is placed,
but the alignment and sizing options of the StackPanel and its children will determine the rest of the
layout.

In Chapter 3, you also learned about the Margin property, which allows you to add whitespace
between adjacent elements. Content controls use a complementary property named Padding, which
inserts space between the edges of the control and the edges of the content. To see the difference,
compare the following two buttons:

<Button Content="Absolutely No Padding"></Button>
<Button Padding="3" Content="Well Padded"></Button>

The button that has no padding (the default) has its text crowded up against the button edge. The
button that has a padding of 3 pixels on each side gets a more respectable amount of breathing space.

 Note The HorizontalContentAlignment, VerticalContentAlignment, and Padding properties are all defined as part
of the Control class, not the more specific ContentControl class. That’s because there may be controls that aren’t

CHAPTER 5  ELEMENTS

163

content controls but still have some sort of content. One example is the TextBox—its contained text (stored in the
Text property) is adjusted using the alignment and padding settings you’ve applied.

Buttons
Silverlight recognizes three types of button controls: the familiar Button, the CheckBox, and the
RadioButton. All of these controls are content controls that derive from ButtonBase.

The ButtonBase class includes only a few members. It defines the obviously important Click event
and adds the IsFocused, IsMouseOver, and IsPressed read-only properties. Finally, the ButtonBase class
adds a ClickMode property, which determines when a button fires its Click event in response to mouse
actions. The default value is ClickMode.Release, which means the Click event fires when the mouse is
clicked and released. However, you can also choose to fire the Click event mouse when the mouse
button is first pressed (ClickMode.Press) or, oddly enough, whenever the mouse moves over the button
and pauses there (ClickMode.Hover).

You’ve already seen how to use the ordinary button. In the following sections, you’ll take a quick
look at the more specialized alternatives that Silverlight provides.

The HyperlinkButton
The ordinary Button control is simple enough—you click it, and it fires a Click event that you handle in
code. But what about the other variants that Silverlight offers?

One of these is the HyperlinkButton. The HyperlinkButton doesn’t draw the standard button
background. Instead, it simply renders the content that you supply. If you use text in the
HyperlinkButton, it appears blue by default, but it’s not underlined. (Use the TextDecorations property
if you want that effect.) When the user moves the mouse over a HyperlinkButton, the mouse cursor
changes to the pointing hand. You can override this effect by setting the Cursor property.

There are essentially three ways to use the HyperlinkButton:

• Send the browser to an external website: To do this, set the NavigateUri property
with an absolute URL that points to the target web page. Optionally, set the
TargetName property with the name of browser frame where you want to open
the link. Keep in mind that if you navigate away from the current page, you’ll
effectively end the current Silverlight application. As a result, this technique is of
relatively limited use.

• Send a frame to another Silverlight page: To do this, make sure you have a Frame
control on your page, and set the NavigateUri with a relative URI that points to
another XAML file in your project. You’ll learn how to use this ability, and the rest
of Silverlight’s navigation features, in Chapter 7.

• Perform some arbitrary action in code: To do this, don’t set the NavigateUri
property. Instead, simply handle the Click event to carry out the appropriate
action.

CHAPTER 5  ELEMENTS

164

 Tip The HTML entry page can specifically prevent navigation to external websites. To do so, simply add the
enableNavigation property to the <object> element in the test page, and set it to false. You will still be allowed to
use the HyperlinkButton for internal frame navigation (see Chapter 7) or to trigger an action with the Click event.

The ToggleButton and RepeatButton
Alongside Button and HyperlinkButton, two more classes derive from ButtonBase:

• RepeatButton: This control fires Click events continuously, as long as the button is
held down. Ordinary buttons fire one Click event per user click.

• ToggleButton: This control represents a button that has two states (clicked or
unclicked). When you click a ToggleButton, it stays in its pushed state until you
click it again to release it. This is sometimes described as sticky click behavior.

Both RepeatButton and ToggleButton are defined in the System.Windows.Controls.Primitives
namespace, which indicates they aren’t often used on their own. Instead, they’re used to build more
complex controls by composition or extended with features through inheritance. For example, the
RepeatButton is one of the ingredients used to build the higher-level ScrollBar control (which,
ultimately, is part of the even higher-level ScrollViewer). The RepeatButton gives the arrow buttons at
the ends of the scroll bar their trademark behavior—scrolling continues as long as you hold it down.
Similarly, the ToggleButton is used to derive the more useful CheckBox and RadioButton classes
described next. However, neither the RepeatButton nor the ToggleButton is an abstract class, so you can
use both of them directly in your user interfaces or to build custom controls if the need arises.

The CheckBox
Both the CheckBox and the RadioButton are buttons of a different sort. They derive from ToggleButton,
which means they can be switched on or off by the user, which is the reason for their toggle behavior. In
the case of the CheckBox, switching the control on means placing a check mark in it.

The CheckBox class doesn’t add any members, so the basic CheckBox interface is defined in the
ToggleButton class. Most important, ToggleButton adds an IsChecked property. IsChecked is a nullable
Boolean, which means it can be set to true, false, or a null value. Obviously, true represents a checked
box, while false represents an empty one. The null value is a little trickier—it represents an
indeterminate state, which is displayed as a shaded box. The indeterminate state is commonly used to
represent values that haven’t been set or areas where some discrepancy exists. For example, if you have
a check box that allows you to apply bold formatting in a text application and the current selection
includes both bold and regular text, you might set the check box to null to show an indeterminate state.

To assign a null value in Silverlight markup, you need to use the null markup extension, as shown
here:

<CheckBox IsChecked="{x:Null}" Content="A check box in indeterminate state">
</CheckBox>

Along with the IsChecked property, the ToggleButton class adds a property named IsThreeState,
which determines whether the user is able to place the check box into an indeterminate state. If
IsThreeState is false (the default), clicking the check box alternates its state between checked and

CHAPTER 5  ELEMENTS

165

unchecked, and the only way to place it in an indeterminate state is through code. If IsThreeState is true,
clicking the check box cycles through all three possible states.

The ToggleButton class also defines three events that fire when the check box enters specific states:
Checked, Unchecked, and Indeterminate. In most cases, it’s easier to consolidate this logic into one
event handler by handling the Click event that’s inherited from ButtonBase. The Click event fires
whenever the button changes state.

The RadioButton
The RadioButton also derives from ToggleButton and uses the same IsChecked property and the same
Checked, Unchecked, and Indeterminate events. Along with these, the RadioButton adds a single
property named GroupName, which allows you to control how radio buttons are placed into groups.

Ordinarily, radio buttons are grouped by their container. That means if you place three RadioButton
controls in a single StackPanel, they form a group from which you can select just one of the three. On the
other hand, if you place a combination of radio buttons in two separate StackPanel controls, you have
two independent groups on your hands.

The GroupName property allows you to override this behavior. You can use it to create more than
one group in the same container or to create a single group that spans multiple containers. Either way,
the trick is simple—just give all the radio buttons that belong together the same group name.

Consider this example:

<StackPanel>
 <Border Margin="5" Padding="5" BorderBrush="Yellow" BorderThickness="1"
 CornerRadius="5">
 <StackPanel>
 <RadioButton Content="Group 1"></RadioButton>
 <RadioButton Content="Group 1"></RadioButton>
 <RadioButton Content="Group 1"></RadioButton>
 <RadioButton GroupName="Group3" Content="Group 3"></RadioButton>
 </StackPanel>
 </Border>
 <Border Margin="5" Padding="5" BorderBrush="Yellow" BorderThickness="1"
 CornerRadius="5">
 <StackPanel>
 <RadioButton Content="Group 2"></RadioButton>
 <RadioButton Content="Group 2"></RadioButton>
 <RadioButton Content="Group 2"></RadioButton>
 <RadioButton GroupName="Group3" Content="Group 3"></RadioButton>
 </StackPanel>
 </Border>
</StackPanel>

Here, there are two containers holding radio buttons but three groups (see Figure 5-8). The final
radio button at the bottom of each group box is part of a third group. In this example, it makes for a
confusing design, but there may be some scenarios where you want to separate a specific radio button
from the pack in a subtle way without causing it to lose its group membership.

CHAPTER 5  ELEMENTS

166

Figure 5-8. Grouping radio buttons

Tooltips and Pop-Ups
Silverlight has a flexible model for tooltips (those infamous yellow boxes that pop up when you hover
over something interesting). Because tooltips in Silverlight are content controls, you can place virtually
anything inside a tooltip.

Tooltips are represented by the ToolTip content control. However, you don’t add the ToolTip
element to your markup directly. Instead, you use the ToolTipService to configure a tooltip for an
existing element, by setting attached properties. Silverlight will then create the ToolTip automatically
and display it when it’s needed.

The simplest example is a text-only tooltip. You can create a text-only tooltip by setting the
ToolTipService.ToolTip property on another element, as shown here:

<Button ToolTipService.ToolTip="This is my tooltip"
 Content="I have a tooltip"></Button>

When you hover over this button, the text “This is my tooltip” appears in a gray pop-up box.

Customized Tooltips
If you want to supply more ambitious tooltip content, such as a combination of nested elements, you
need to break the ToolTipService.ToolTip property out into a separate element. Here’s an example that
sets the ToolTip property of a button using more complex nested content:

CHAPTER 5  ELEMENTS

167

<Button Content="I have a fancy tooltip">
 <ToolTipService.ToolTip>
 <StackPanel>
 <TextBlock Margin="3" Text="Image and text"></TextBlock>
 <Image Source="happyface.jpg"></Image>
 <TextBlock Margin="3" Text="Image and text"></TextBlock>
 </StackPanel>
 </ToolTipService.ToolTip>
</Button>

As in the previous example, Silverlight implicitly creates a ToolTip element. The difference is that in
this case the ToolTip object contains a StackPanel rather than a simple string. Figure 5-9 shows the
result.

Figure 5-9. A fancy tooltip

 Note Don’t put user-interactive controls in a tooltip because the ToolTip page can’t accept focus. For example,
if you place a button in a ToolTip, the button will appear, but it isn’t clickable. (If you attempt to click it, your mouse
click will just pass through to the page underneath.) If you want a tooltip-like page that can hold other controls,
consider using the Popup control instead, which is discussed shortly, in the section named “The Popup.”

At this point, you might be wondering if you can customize other aspects of the tooltip’s
appearance, such as the standard gray background. You can get a bit more control by explicitly defining
the ToolTip element when setting the ToolTipService.ToolTip property. Because the ToolTip is a content
control, it provides a number of useful properties. You can adjust size and alignment properties (such as
Width, Height, MaxWidth, HoriztontalContentAlignment, Padding, and so on), font (FontFamily,
FontSize, FontStyle, and so on), and color (Background and Foreground). You can also use the

CHAPTER 5  ELEMENTS

168

HorizontalOffset and VerticalOffset properties to nudge the tooltip away from the mouse pointer and
into the position you want, with negative or positive values.

Using the ToolTip properties, the following markup creates a tooltip that uses a red background and
makes the text inside white by default:

<Button Content="I have a fancy tooltip">
 <ToolTipService.ToolTip>
 <ToolTip Background="DarkRed" Foreground="White">
 <StackPanel>
 <TextBlock Margin="3" Text="Image and text"></TextBlock>
 <Image Source="happyface.jpg"></Image>
 <TextBlock Margin="3" Text="Image and text"></TextBlock>
 </StackPanel>
 </ToolTip>
 </ToolTipService.ToolTip>
</Button>

If you assign a name to your tooltip, you can also interact with it programmatically. For example,
you can use the IsEnabled property to temporarily disable a ToolTip and IsOpen to programmatically
show or hide a tooltip (or just check whether the tooltip is open). You can also handle its Opened and
Closed events, which is useful if you want to generate the content for a tooltip dynamically, just as it
opens.

 Tip If you still want more control over the appearance of a tooltip—for example, you want to remove the black
border or change its shape—you simply need to substitute a new control template with the visuals you prefer.
Chapter 15 has the details.

The Popup
The Popup control has a great deal in common with the ToolTip control, although neither one derives
from the other.

Like the ToolTip, the Popup can hold a single piece of content, which can include any Silverlight
element. (This content is stored in the Popup.Child property, rather than the ToolTip.Content property.)
Also, like the ToolTip, the content in the Popup can extend beyond the bounds of the page. Lastly, the
Popup can be placed using the same placement properties and shown or hidden using the same IsOpen
property.

The differences between the Popup and ToolTip are more important. They include the following:

• The Popup is never shown automatically: You must set the IsOpen property for it
to appear. The Popup does not disappear until you explicitly set its IsOpen
property to false.

• The Popup can accept focus: Thus, you can place user-interactive controls in it,
such as a Button. This functionality is one of the key reasons to use the Popup
instead of the ToolTip.

Because the Popup must be shown manually, you may choose to create it entirely in code. However,
you can define it just as easily in XAML markup—just make sure to include the Name property, so you

CHAPTER 5  ELEMENTS

169

can manipulate it in code. The placement of the Popup in your markup isn’t important, because its top-
left corner will always be aligned with the top-left corner of the Silverlight content region.

<StackPanel Margin="20">
 <TextBlock TextWrapping="Wrap" MouseLeftButtonDown="txt_MouseLeftButtonDown"
 Text="Click here to open the PopUp."></TextBlock>

 <Popup x:Name="popUp" MaxWidth="200">
 <Border Background="Lime" MouseLeftButtonDown="popUp_MouseLeftButtonDown">
 <TextBlock Margin="10" Text="This is the PopUp."></TextBlock>
 </Border>
 </Popup>
</StackPanel>

The only remaining details are the relatively trivial code that shows the Popup when the user clicks
it and the code that hides the Popup when it’s clicked:

private void txt_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)
{
 popUp.IsOpen = true;
}

private void popUp_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)
{
 popUp.IsOpen = false;
}

Figure 5-10 shows the Popup in action.

Figure 5-10. A tooltip-like effect with the Popup

 Tip If you plan to create an extravagantly detailed Popup, you may want to consider creating a custom user
control for the Popup content. You can then place an instance of that custom user control inside your pop-up. The
end result is the same, but this technique simplifies your markup dramatically. And if you want your Popup to take

CHAPTER 5  ELEMENTS

170

on the characteristics of a self-contained dialog box, you should consider the ChildWindow control instead, which
is described in Chapter 7.

Items Controls
Controls that wrap collections of items generally derive from the ItemsControl class. Silverlight provides
four list-based controls. You’ll take a look at the ListBox, the ComboBox, and the TabControl in this
section. You’ll explore the TreeView in Chapter 21.

The ItemsControl class fills in the basic plumbing that’s used by all list-based controls. Notably, it
gives you two ways to fill the list of items. The most straightforward approach is to add them directly to
the Items collection, using code or XAML. This is the approach you’ll see in this chapter. However, if you
need to display a dynamic list, it’s more common to use data binding. In this case, you set the
ItemsSource property to the object that has the collection of data items you want to display. This process
is covered in Chapter 20.

The ListBox
To add items to the ListBox, you can nest ListBoxItem elements inside the ListBox element. For example,
here’s a ListBox that contains a list of colors:

<ListBox>
 <ListBoxItem Content="Green"></ListBoxItem>
 <ListBoxItem Content="Blue"></ListBoxItem>
 <ListBoxItem Content="Yellow"></ListBoxItem>
 <ListBoxItem Content="Red"></ListBoxItem>
</ListBox>

As you’ll recall from Chapter 2, different controls treat their nested content in different ways. The
ListBox stores each nested object in its Items collection.

 Note The ListBox class also allows multiple selection if you set the SelectionMode property to Multiple or
Extended. In Multiple mode, you can select or deselect any item by clicking it. In Extended mode, you need to hold
down the Ctrl key to select additional items or the Shift key to select a range of items. In either type of multiple-
selection list, you use the SelectedItems collection instead of the SelectedItem property to get all the selected
items.

The ListBox is a remarkably flexible control. Rather than being limited to ListBoxItem objects, it can
hold any arbitrary element. This works because the ListBoxItem class derives from ContentControl,
which gives it the ability to hold a single piece of nested content. If that piece of content is a UIElement-
derived class, it will be rendered in the ListBox. If it’s some other type of object, the ListBoxItem will call
ToString() and display the resulting text.

For example, if you decided you want to create a list with images, you could create markup like this:

CHAPTER 5  ELEMENTS

171

<ListBox>
 <ListBoxItem>
 <Image Source="happyface.jpg"></Image>
 </ListBoxItem>
 <ListBoxItem>
 <Image Source="happyface.jpg"></Image>
 </ListBoxItem>
</ListBox>

The ListBox is actually intelligent enough to create the ListBoxItem objects it needs implicitly. That
means you can place your objects directly inside the ListBox element. Here’s a more ambitious example
that uses nested StackPanel objects to combine text and image content:

<ListBox>
 <StackPanel Orientation="Horizontal">
 <Image Source="happyface.jpg" Width="30" Height="30"></Image>
 <TextBlock VerticalAlignment="Center" Text="A happy face"></TextBlock>
 </StackPanel>
 <StackPanel Orientation="Horizontal">
 <Image Source="redx.jpg" Width="30" Height="30"></Image>
 <TextBlock VerticalAlignment="Center" Text="A warning sign"></TextBlock>
 </StackPanel>
 <StackPanel Orientation="Horizontal">
 <Image Source="happyface.jpg" Width="30" Height="30"></Image>
 <TextBlock VerticalAlignment="Center" Text="A happy face"></TextBlock>
 </StackPanel>
</ListBox>

In this example, the StackPanel becomes the item that’s wrapped by the ListBoxItem. This markup
creates the list shown in Figure 5-11.

Figure 5-11. A list of images

CHAPTER 5  ELEMENTS

172

This ability to nest arbitrary elements inside list box items allows you to create a variety of list-based
controls without needing to use specialized classes. For example, you can display a check box next to
every item by nesting the CheckBox element inside the ListBox.

There’s one caveat to be aware of when you use a list with different elements inside. When you read
the SelectedItem value (and the SelectedItems and Items collections), you won’t see ListBoxItem
objects—instead, you’ll see whatever objects you placed in the list. In the previous example, that means
SelectedItem provides a StackPanel object.

When manually placing items in a list, it’s up to you whether you want to place the items in directly
or explicitly wrap each one in a ListBoxItem object. The second approach is often cleaner, albeit more
tedious. The most important consideration is to be consistent. For example, if you place StackPanel
objects in your list, the ListBox.SelectedItem object will be a StackPanel. If you place StackPanel objects
wrapped by ListBoxItem objects, the ListBox.SelectedItem object will be a ListBoxItem, so code
accordingly. And there’s a third option—you can place data objects inside your ListBox and use a data
template to display the properties you want. Chapter 20 has more about this technique.

The ListBoxItem offers a little bit of extra functionality from what you get with directly nested
objects. Namely, it defines an IsSelected property that you can read (or set) and a Selected and
Unselected event that tells you when that item is highlighted. However, you can get similar functionality
using the members of the ListBox class, such as the SelectedItem and SelectedIndex properties and the
SelectionChanged event.

 Note The ListBox has support for virtualization, thanks to the way it uses VirtualizingStackPanel to lay out
items. This means that the ListBox creates ListBoxItem objects only for the items that are currently in view, which
allows it to display massive lists with tens of thousands of items without consuming ridiculous amounts of memory
or slowing its performance down to a crawl. As the user scrolls, the existing set of ListBoxItem objects is reused
with different data to show the appropriate items. List controls that don’t support virtualization (which includes
every control other than the ListBox and the DataGrid) load and scroll much more slowly when they’re packed full
of items.

The ComboBox
The ComboBox is similar to the ListBox control. It holds a collection of ComboBoxItem objects, which
are created either implicitly or explicitly. As with the ListBoxItem, the ComboBoxItem is a content
control that can contain any nested element. Unlike combo boxes in the Windows world, you can’t type
in the Silverlight ComboBox control to select an item or edit the selected value. Instead, you must use
the arrow keys or the mouse to pick from the list.

The key difference between the ComboBox and ListBox classes is the way they render themselves in
a window. The ComboBox control uses a drop-down list, which means only one item can be selected at a
time.

One ComboBox quirk is the way it sizes itself when you use automatic sizing. The ComboBox
widens itself to fit its content, which means that it changes size as you move from one item to the next.
Unfortunately, there’s no easy way to tell the ComboBox to take the size of its largest contained item.
Instead, you may need to supply a hard-coded value for the Width property, which isn’t ideal.

Silverlight 5 adds a minor refinement to the ComboBox control, with support for the type-ahead
feature. With type-ahead, you can jump to an item by typing the first few letters of its name. This works

CHAPTER 5  ELEMENTS

173

when the combo box is open or closed, although it’s easiest when open (as you can see the full list of
items). For example, imagine a list that includes two items that start with the letter E—Elephant and
Elevator. If the user types in the letter E, Silverlight automatically selects the first item (Elephant). If the
user types in Elev, however, the selection jumps to the next item (Elevator).

 Note The ComboBox type-ahead feature is a very basic shortcut that lets a user quickly select an item using
the keyboard. If you want a more powerful autocomplete feature, which lets you control how matches are made
and even supply a list of dynamic suggestions culled from a web service, you need to replace the ComboBox with
the AutoCompleteBox control described later in this chapter.

The TabControl
You’re no doubt familiar with the TabControl, a handy container that condenses a large amount of user
interface into a set of tabbed pages. In Silverlight, the TabControl is an items control that holds one or
more TabItem elements.

Like several of Silverlight’s more specialized controls, the TabControl is defined in a separate
assembly. When you add it to a page, Visual Studio will add a reference to the
System.Windows.Controls.dll assembly and map a new XML namespace, like this one:

<UserControl xmlns:controls=
 "clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls"
 ... >

To use the TabControl, you must fill it with one or more TabItem elements. Each TabItem
represents a separate page. Because the TabItem is a content control, it can hold another Silverlight
element (like a layout container).

Here’s an example of a TabControl that includes two tabs. The first tab holds a StackPanel with
three check boxes:

<controls:TabControl>
 <controls:TabItem Header="Tab One">
 <StackPanel Margin="3">
 <CheckBox Margin="3" Content="Setting 1"></CheckBox>
 <CheckBox Margin="3" Content="Setting 2"></CheckBox>
 <CheckBox Margin="3" Content="Setting 3"></CheckBox>
 </StackPanel>
 </controls:TabItem>
 <controls:TabItem Header="Tab Two">
 ...
 </controls:TabItem>
</controls:TabControl>

The TabItem holds its content (in this example, a StackPanel) in the TabItem.Content property.
Interestingly, the TabItem also has another property that can hold arbitrary content—the Header. In the
previous example, the Header holds a simple text string. However, you just as readily fill it with graphical
content or a layout container that holds a whole host of elements, as shown here:

<controls:TabControl>

CHAPTER 5  ELEMENTS

174

 <controls:TabItem>
 <controls:TabItem.Header>
 <StackPanel>
 <TextBlock Margin="3">Image and Text Tab Title</TextBlock>
 <Image Source="happyface.jpg" Stretch="None" />
 </StackPanel>
 </controls:TabItem.Header>

 <StackPanel Margin="3">
 <CheckBox Margin="3" Content="Setting 1"></CheckBox>
 <CheckBox Margin="3" Content="Setting 2"></CheckBox>
 <CheckBox Margin="3" Content="Setting 3"></CheckBox>
 </StackPanel>
 </controls:TabItem>
 <controls:TabItem Header="Tab Two">
 ...
 </controls:TabItem>
</controls:TabControl>

Figure 5-12 shows the somewhat garish result.

Figure 5-12. An exotic tab title

CHAPTER 5  ELEMENTS

175

Like the ListBox, the TabControl includes a SelectionChanged event that fires when the visible tab
changes. It also has a SelectedIndex property and a SelectedItem property, which allow you to determine
or set the current tab. The TabControl adds a TabStripPlacement property, which allows you to make the
tabs appear on the side or bottom of the tab control, rather than their normal location at the top.

Text Controls
Silverlight includes a standard TextBox control and several more specialized controls that derive from
TextBox, including a PasswordBox (for entering text that should be concealed), an AutoCompleteBox
(which shows a drop-down list of suggestions as the user types), and a RichTextBox (which allows richly
formatted text, links, and pictures). You’ll learn about all these variants in the following sections.

The TextBox
The basic TextBox stores a string, which is provided by the Text property. You can change the alignment
of that text using the TextAlignment property, and you can use all the properties listed in Table 5-2 to
control the font of the text inside the text box. The TextBox also supports many of the features of its
counterpart in the Windows world, including scrolling, text wrapping, clipboard cut-and-paste, and
selection.

Ordinarily, the TextBox control stores a single line of text. (You can limit the allowed number of
characters by setting the MaxLength property.) However, you can allow text to span multiple lines in two
ways. First, you can enable wrapping using the TextWrapping property. Second, you can allow the user
to insert line breaks with the Enter key by setting the AcceptsReturn property to true.

Sometimes, you’ll create a text box purely for the purpose of displaying text. In this case, set the
IsReadOnly property to true to prevent editing. This is preferable to disabling the text box by setting
IsEnabled to false because a disabled text box shows grayed-out text (which is more difficult to read) and
does not support selection (or copying to the clipboard).

As you already know, you can select text in any text box by clicking and dragging with the mouse or
holding down Shift while you move through the text with the arrow keys. The TextBox class also gives
you the ability to determine or change the currently selected text programmatically, using the
SelectionStart, SelectionLength, and SelectedText properties.

SelectionStart identifies the zero-based position where the selection begins. For example, if you set
this property to 10, the first selected character is the 11th character in the text box. Selection Length
indicates the total number of selected characters. (A value of 0 indicates no selected characters.) Finally,
the SelectedText property allows you to quickly examine or change the selected text in the text box.

You can react to the selection being changed by handling the SelectionChanged event. Here’s an
example that reacts to this event and displays the current selection information:

private void txt_SelectionChanged(object sender, RoutedEventArgs e)
{
 if (txtSelection == null) return;

 txtSelection.Text = String.Format(
 "Selection from {0} to {1} is \"{2}\"",
 txt.SelectionStart, txt.SelectionLength, txt.SelectedText);
}

Figure 5-13 shows the result.

CHAPTER 5  ELEMENTS

176

Figure 5-13. Selecting text

PROGRAMMATICALLY USING THE CLIPBOARD

Silverlight includes a Clipboard class in the System.Windows namespace. It provides three static methods
that you can call in code to work with Windows clipboard:

• GetText(): This method retrieves any Unicode text that’s currently on the clipboard
(as a string). Other types of data that could be on the clipboard, such as images
and files, are not available to Silverlight applications.

• SetText(): This method places the text you specify on the clipboard.

• ContainsText(): This method returns true if the clipboard contains Unicode text
content.

You can only access the clipboard in the event handler for a user-initiated action (like a mouse click or a
key press). The first time your code attempts to use the clipboard with the GetText() or SetText() method, a
dialog box will appear asking for clipboard access. If the user clicks Yes, this message won’t appear for
the rest of the session (but it will reappear the next time you run this or another Silverlight application and
attempt to use clipboard again). If the user clicks No, the GetText() or SetText() method will throw a
SecurityException, which you must catch in your code.

CHAPTER 5  ELEMENTS

177

The PasswordBox
Silverlight includes a separate control called the PasswordBox to deal with password entry. The
PasswordBox looks like a TextBox, but it displays a string of circle symbols to mask the characters inside.
You can choose a different mask character by setting the PasswordChar property, and you can set (or
retrieve) the text inside through the Password property. The PasswordBox does not provide a Text
property.

Additionally, the PasswordBox does not support the clipboard. This means the user can’t copy the
text it contains using shortcut keys, and your code can’t use properties like SelectedText.

 Note The WPF PasswordBox uses in-memory encryption to ensure that passwords can’t be retrieved in certain
types of exploits (like memory dumps). The Silverlight Password box doesn’t include this feature. It stores its
contents in the same way as the ordinary TextBox.

The AutoCompleteBox
The AutoCompleteBox fuses a text entry with a drop-down list of suggestions. This feature is a common
technique on the Web, powering everything from the search box on the Google homepage to the
Internet Explorer address bar.

The Silverlight implementation is a surprisingly powerful control that gives you several ways to
decide what items should appear in the drop-down list. The simplest approach is to start with an
ordinary AutoCompleteBox:

<input:AutoCompleteBox x:Name="txtMonth"></input:AutoCompleteBox>

When you add an AutoCompleteBox from the toolbox, Visual Studio creates an XML alias named
input:

<UserControl xmlns:input=
"clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Input" ... >

Once you’ve added an AutoCompleteBox, create an array or list that holds the collection of possible
suggestions (in no particular order), and apply this collection to the AutoCompleteBox.ItemsSource
property. Typically, you’d perform this step when the page first loads by adding your code to the page
constructor or handling the UserControl.Loaded event.

Here’s an example that uses the set of 12 calendar months:

string[] monthList = {"January", "February", "March", "April",
 "May", "June", "July", "August", "September",
 "October", "November", "December"};
txtMonth.ItemsSource = monthList;

That’s enough to get the default behavior. When the user types a letter in the box at runtime, a drop-
down list of potential matches will appear, in alphabetical order (Figure 5-14). To select an item (and
avoid typing the whole text in by hand), you can click it with the mouse or cursor down to it with the
arrow keys.

CHAPTER 5  ELEMENTS

178

 Note The AutoCompleteBox offers suggestions, but it doesn’t impose rules. There is no easy way to constrain
users so that they can’t deviate from the list of suggestions.

There’s one other way for the AutoCompleteBox to behave. If you set IsTextCompletionEnabled to
true, the AutoCompleteBox automatically fills in the text box as the user types. For example, if the user
types J in the month example, the AutoCompleteBox finds the first matching month and fills in anuary.
The new filled-in text is highlighted, which means that it will be overwritten if the user continues to type
(or deleted if the user presses the Delete or Backspace key). Figure 5-14 compares the difference.

 Note When you read the AutoCompleteBox.Text property, you get exactly the text that’s currently displayed in
the AutoCompleteBox. If you’ve set IsTextCompletionEnabled to true, you also get any text that’s automatically
inserted as part of a match.

Figure 5-14. Months that start with J

Filter Mode
Ordinarily, the AutoCompleteBox filters out the list of bound items by comparing the start of each one
with the text that’s been typed in so far. However, you can change this behavior by setting the
FilterMode property. It takes one of the values from the AutoCompleteFilterMode enumeration. The
most useful ones are described in Table 5-4.

CHAPTER 5  ELEMENTS

179

Table 5-4. Values for the AutoCompleteFilterMode Enumeration

Name Description

None No filtering will be performed, and all the items will appear in the list of
suggestions. This is also the option you’ll use if you need to fetch the
collection of items yourself—for example, if you need to query them from a
database or request them from a web service.

StartsWith All the items that start with the typed-in text will appear. This is the default.

StartsWithCaseSensitive All the items that start with the typed-in text will appear provided the
capitalization also matches.

Contains All the items that contain the typed-in text will appear. For example, typing
ember would match September, November, and December.

ContainsCaseSensitive All the items that contain the typed-in text will appear provided the
capitalization also matches.

Custom You must perform the filtering by applying a delegate that does the work to
the TextFilter or ItemFilter property. In fact, if you set TextFilter or ItemFilter
the FilterMode property is automatically switched to Custom.

Custom Filtering
To perform any sort of custom filtering, you must set the TextFilter or ItemFilter property. Use TextFilter
if your ItemsSource is a collection or strings, and use ItemFilter if your ItemsSource is a collection with
some other sort of object. Either way, the TextFilter or ItemFilter property takes a delegate that points to
a method that performs the custom filtering. This method takes two arguments: the text that the user has
entered so far and the item that you’re currently testing for a match.

public bool ItemFilter(string text, object item)
{ ... }

The code in the filtering method should perform whatever comparison logic you need and return
true if the item should be included as a drop-down suggestion based on the current text or false if it
should be omitted.

Custom filtering is particularly useful if you’re comparing text against a list of complex objects.
That’s because it allows you to incorporate the information that’s stored in different properties.

For example, imagine you have this simple Product class:

public class Product
{
 public string ProductName { get; set; }
 public string ProductCode { get; set; }

 public Product(string productName, string productCode)
 {

CHAPTER 5  ELEMENTS

180

 ProductName = productName;
 ProductCode = productCode;
 }

 public override string ToString()
 {
 return ProductName;
 }
}

You then decide to build an AutoCompleteBox that attempts to match the user’s text with a Product
object. In preparation for this step, you fill the AutoComplexBox.ItemsSource collection with product
objects:

Product[] products = new []{
 new Product("Peanut Butter Applicator", "C_PBA-01"),
 new Product("Pelvic Strengthener", "C_PVS-309"), ...};

acbProduct.ItemsSource = products;

If you take no further steps, the AutoCompleteBox will use its standard behavior. As the user types, it
will call ToString() on each Product object. It will then use that text to perform its suggestion filtering.
Because the Product class overrides the ToString() method to return the product name, the
AutoCompleteBox will attempt to match the user’s text with a product name, which is perfectly
reasonable.

However, if you perform custom filtering, you can get a bit more sophisticated. For example, you
can check whether the user’s text matches the ProductName property or the ProductCode property and
deem the Product object as a match either way. Here’s an example of the custom filtering logic that does
the trick:

public bool ProductItemFilter(string text, object item)
{
 Product product = (Product)item;

 // Call it a match if the typed-in text appears in the product code
 // or at the beginning of the product name.
 return ((product.ProductName.StartsWith(text)) ||
 (product.ProductCode.Contains(text)));
}

You simply need to connect this method to your AutoComplexBox when it’s first initialized:

acbProduct.ItemFilter = ProductItemFilter;

Now if the user types the text PBA, it matches the product code C_PBA-01 and shows the matching
item Peanut Butter Applicator in the list of suggestions, as shown in Figure 5-15.

CHAPTER 5  ELEMENTS

181

Figure 5-15. A custom search that matches product codes

Dynamic Item Lists
So far, you’ve used the ItemsSource property to fill the AutoCompleteBox with a collection of
suggestions. For this to work, you must have the complete list, and it must be a manageable size. If you
need to pull the information from somewhere else or the list is large enough that it isn’t practical to load
the whole thing at once, you’ll need to take a different approach to filling the AutoCompleteBox. Instead
of setting the ItemsSource property when the page is first created, you’ll need to set it in real time, as the
user types.

To do so, set the FilterMode property to None, and handle the Populating event. The Populating
event fires whenever the AutoCompleteBox is ready to search for results. By default, this happens every
time the user presses a key and changes the current text entry. You can make the AutoCompleteBox
somewhat more relaxed using the MinimumPrefixLength and MinimumPopupDelay properties that are
discussed at the end of this section.

<input:AutoCompleteBox x:Name="acbProducts" FilterMode="None"
 Populating="acbProducts_Populating" ></input:AutoCompleteBox>

When the Populating event fires, you have two choices: set the ItemsSource property immediately
or launch an asynchronous process to do it. Setting the ItemsSource property immediately makes sense
if you have the list of suggestions on hand or you can generate them quickly. The list of suggestions will
then appear in the drop-down list right away.

But in many situations, you’ll need a potentially time-consuming step to get the list of suggestions,
such as performing a series of calculations or querying a web service. In this situation, you need to
launch an asynchronous process. Although you can accomplish this with the multithreading support
that’s described in Chapter 16, you won’t necessarily need to. Some Silverlight features have built-in
asynchronous support. This is the case with Silverlight’s implementation of web services, which is
hardwired to use asynchronous calls exclusively.

When using an asynchronous operation, you need to explicitly cancel the normal processing in the
Populating event handler, by setting PopulatingEventArgs.Cancel to true. You can then launch the
asynchronous operation. The following example gets the suggestion list asynchronously from a web
service. (You’ll learn much more about coding and consuming web services in Chapter 19. For now, you
can review the example code and the downloadable project with this chapter.)

CHAPTER 5  ELEMENTS

182

private void acbProducts_Populating(object sender, PopulatingEventArgs e)
{
 // Signal that the task is being performed asynchronously.
 e.Cancel = true;

 // Create the web service object.
 ProductAutoCompleteClient service = new ProductAutoCompleteClient();

 // Attach an event handler to the completion event.
 service.GetProductMatchesCompleted += GetProductMatchesCompleted;

 // Call the web service (asynchronously).
 service.GetProductMatchesAsync(e.Parameter);
}

On the web server, the code in a GetProductMathes() web method runs and retrieves the matches:

public string[] GetProductMatches(string inputText)
{
 // Get the products (for example, from a server-side database).
 Product[] products = GetProducts();

 // Create a collection of matches.
 List<string> productMatches = new List<string>();
 foreach (Product product in products)
 {
 // See if this is a match.
 if ((product.ProductName.StartsWith(inputText)) ||
 (product.ProductCode.Contains(inputText)))
 {
 productMatches.Add(product.ProductName);
 }
 }

 // Return the list of matches.
 return productMatches.ToArray();
}

When the asynchronous operation finishes and you receive the result in your Silverlight application,
you fill the ItemsSource property with the list of suggestions. Then, you must call the
PopulateComplete() method to notify the AutoCompleteBox that the new data has arrived. Here’s the
callback handler that does the job in the current example:

private void GetProductMatchesCompleted(object sender,
 GetProductMatchesCompletedEventArgs e)
{
 // Check for a web service error.
 if (e.Error != null)
 {
 lblStatus.Text = e.Error.Message;
 return;
 }

CHAPTER 5  ELEMENTS

183

 // Set the suggestions.
 acbProducts.ItemsSource = e.Result;

 // Notify the control that the data has arrived.
 acbProducts.PopulateComplete();
}

When filling the AutoCompleteBox with a time-consuming or asynchronous step, there are two
properties you may want to adjust: MinimumPrefixLength and MinimumPopupDelay.
MinimumPrefixLength determines how much text must be typed in before the AutoCompleteBox gives
its suggestions. Ordinarily, the AutoCompleteBox offers suggestions after the first letter is entered. If you
want it to wait for three letters (the standard used by many of the Ajax-powered autocompletion text
boxes that you’ll find on the Web), set MinimumPrefixLength to 3. Similarly, you can force the
AutoCompleteBox to hold off until a certain interval of time has passed since the user’s last keystroke
using the MinimumPopulateDelay property. This way, you won’t waste time with a flurry of overlapping
calls to a slow web service. Of course, this doesn’t necessarily determine how long it takes for the
suggestions to appear—that depends on the wait before initiating the query and then the time needed to
contact the web server and receive a response.

The RichTextBox
If you’ve programmed with WPF before, you are probably familiar with its flow document model—a
flexible system for displaying richly formatted, read-only content. Compared to ordinary text display
(say, with the TextBlock element), flow documents support advanced features such as balanced
columns, text wrapping around floating figures, and intelligent algorithms for letter spacing, word
wrapping, and hyphenation. Silverlight doesn’t include the flow document feature, but it does borrow
part of the same model to support one of its most impressive controls: the RichTextBox.

The RichTextBox is an editable text box control that supports rich formatting. Unlike the ordinary
TextBox control, the RichTextBox allows individual sections (say, a single word or an entire paragraph)
to be formatted with a different font and color. The RichTextBox also supports images, links, and inline
elements (like drop-down lists and buttons). Best of all, the RichTextBox is easy to use in any
application.

Text Elements
Before you can understand the RichTextBox, you need to know a bit about the model it uses. While an
ordinary text box shows holds a string of text, the RichTextBox holds an entire document, which is
represented by a collection of text elements (sometimes called flow elements, because they are used to
create flow documents).

Text elements have an important difference from the elements you’ve seen so far. They don’t inherit
from the familiar UIElement and FrameworkElement classes. Instead, they form an entirely separate
branch of classes that derive first from DependencyObject and then from TextElement. As you might
expect, they are also far simpler, supporting no events and providing a small set of mostly formatting-
related properties. Figure 5-16 shows the inheritance hierarchy for text elements.

CHAPTER 5  ELEMENTS

184

Figure 5-16. Text elements

There are two key branches of text elements:

• Block elements: There are two block element classes: Paragraph and Section.
Paragraphs can hold text and a combination on inline elements. Sections can hold
a group of paragraphs (or a group of sections), but they must be created
programmatically, as they aren’t usable in XAML.

• Inline elements: These elements are nested inside a block element (or another
inline element). They include elements for formatting text (Bold, Italic, Underline,
Run), making hard line breaks (LineBreak), adding hyperlinks (Hyperlink), and
embedding other controls (InlineUIContainer). Finally, the Span container gives
you the ability to group together multiple inline elements in one container.

CHAPTER 5  ELEMENTS

185

This text element model allows multiple layers of nesting. For example, you can place a Bold
element inside an Underline element to create text that’s both bold and underlined. Similarly, you might
create a Section element that wraps together multiple Paragraph elements, each of which contains a
variety of inline elements with the actual text content. All of these elements are defined in the
System.Windows.Documents namespace.

 Note You may remember the inline elements from the TextBlock discussion earlier in this chapter. In fact, the
TextBlock shares a stripped-down version of the text element model—essentially, it’s a container that holds a
small, read-only scrap of a document that consists entirely of inline objects.

The following example shows a RichTextBox with some hard-coded document content already filled
in:

<RichTextBox Margin="5" x:Name="richText">
 <Paragraph Foreground="DarkRed" FontFamily="Trebuchet MS" FontSize="22"
 FontWeight="Bold" TextAlignment="Center">Chapter I</Paragraph>
 <Paragraph>
 <Bold><Italic><Run FontSize="12">The Period</Run></Italic></Bold>
 </Paragraph>
 <Paragraph>
 It was the best of times, it was the worst of times, it was the age of ...
 <LineBreak></LineBreak>
 </Paragraph>
 <Paragraph>
 There were a king with a large jaw and a queen with a plain face, on the ...
 </Paragraph>
</RichTextBox>

Figure 5-17 shows how this markup is rendered.

CHAPTER 5  ELEMENTS

186

Figure 5-17. A simple document

This example is enough to illustrate the key details of the text element model. First, every
RichTextBox holds a collection of block elements. In this case, the RichTextBox holds four Paragraph
objects, which hold still more objects nested inside, such as Bold, Italic, and Run to apply formatting,
and LineBreak to add some empty space between paragraph. (Ordinarily, there is none.)

Formatting Text Elements
You can use two broad approaches to applying formatting. The first is to use the properties of the
appropriate text element class, most of which are inherited from the base class TextElement. The
previous example used this approach to set the formatting for the chapter title in the first paragraph and
to apply formatting to a Run in the second paragraph. Table 5-5 lists all the properties you can set.

Table 5-5. Properties for Content Elements

Name Description

Foreground Accept brushes that will be used to paint the foreground text. You
can’t set a background for individual text elements, although you can
set a background for the entire document using the
RichTextBox.Background property.

CHAPTER 5  ELEMENTS

187

Name Description

FontFamily, FontSize,
FontStretch, FontStyle, and
FontWeight

Allow you to configure the font that’s used to display text.

TextAlignment Sets the horizontal alignment of nested text content (which can be
Left, Right, Center, or Justify). Ordinarily, content is justified.

TextDecorations Allows you to add a line underneath the text. This property is provided
only for inline objects.

The second approach is to use a nested element that applies formatting automatically, such as Bold,

Italic, or Underline. The previous example used this approach to apply bold and italic formatting to the
title in the second paragraph.

Truthfully, the second approach (using formatting elements) is a subset of the first (using formatting
properties). That’s because using a formatting element is just a convenient shortcut to using a Run or
Span with the same formatting. For example, using the Bold element is the same as setting the
FontWeight property to Bold, using the Italic element is the same as setting the FontStyles property to
Italic, and using the Underline element is the same as setting the TextDecorations property to
Underline.

Compared to WPF flow documents, the Silverlight text elements lack several features. For example,
there is no way add extra spacing above or below paragraphs, there is no support for advanced text
justification and letter-spacing algorithms, and there is no ability to float content or wrap text around
the sides of figures.

Manipulating Text Elements in Code
Documents can also be explored and even created programmatically. The entry point to the content in
the RichTextBox is the Blocks property, which holds a collection of block elements. It’s analogous to the
Inlines property of the TextBlock, which holds a collection of inline elements.

Creating a document programmatically is fairly tedious because of a number of disparate elements
that need to be created. As with all XAML elements, you must create each element and then set all its
properties, because there are no constructors to help you. You also need to create a Run object to wrap
every piece of text and then add your Run objects to a suitable container (like a Paragraph object). This
step isn’t required when you create a document with markup, because Silverlight automatically creates a
Run object to wrap the text you place inside each Paragraph object.

Here’s a snippet of code that creates a document with a single paragraph and some bolded text:

// Create the first part of the sentence.
Run runFirst = new Run();
runFirst.Text = "Hello world of ";

// Create bolded text.
Bold bold = new Bold();
Run runBold = new Run();
runBold.Text = "dynamically generated";
bold.Inlines.Add(runBold);

CHAPTER 5  ELEMENTS

188

// Create last part of sentence.
Run runLast = new Run();
runLast.Text = " documents";

// Add three parts of sentence to a paragraph, in order.
Paragraph paragraph = new Paragraph();
paragraph.Inlines.Add(runFirst);
paragraph.Inlines.Add(bold);
paragraph.Inlines.Add(runLast);

// Add this paragraph to the RichTextBox.
richText.Blocks.Clear();
richText.Blocks.Add(paragraph);

The result is the sentence “Hello world of dynamically generated documents.”
Most of the time, you won’t create flow documents programmatically. However, you might want to

create an application that browses through portions of a flow document and modifies them dynamically.
You can do this in the same way that you interact with any other WPF elements: by responding to
element events and by attaching a name to the elements that you want to change. However, because
flow documents use deeply nested content with a free-flowing structure, you may need to dig through
several layers to find the actual content you want to modify. (Remember, this content is always stored in
a Run object, even if the run isn’t declared explicitly.)

 Tip The previous example demonstrates the most straightforward way to generate a document with code.
However, more complex scenarios are possible—for example, if you want to move through user-supplied content,
find individual words, and tweak their formatting. This sort of task works better using the lower-level TextPointer
class, which lets you find logical insertion points in the RichTextBox content. For a demonstration of this more
advanced but less common technique, see http://tinyurl.com/26352z2.

Creating a Text Editor
Although you can create documents with handwritten XAML or build and manipulate them in code, the
real goal of the RichTextBox is to provide a place where users can edit rich content.

On its own, the RichTextBox works just like the TextBox control. The user can type text into it, edit
that text, cut and paste a selection, and so on. However, there’s no built-in way for the user to apply
formatting. To allow this, it’s up for you to add the appropriate controls, like a button for toggling bold
formatting or a list for changing the font. Figure 5-18 shows an example.

http://tinyurl.com/26352z2

CHAPTER 5  ELEMENTS

189

Figure 5-18. A RichTextBox with editing controls

In this example, the user selects some portion of text (which may span multiple inline elements and
multiple paragraphs) and then uses the buttons to toggle bold, italic, and underline formatting. The code
is actually quite simple. The first step is to get a reference to the TextSelection object that represents the
selection from the RichTextBox.Selection property:

TextSelection selection = richTextBox.Selection;

The TextSelection object provides information about the start point and end point of the selection
(through the Start and End properties) and the selected content (through the Text and Xaml properties).
If nothing is selected, the RichTextBox.Selection property will still return a valid TextSelection object,
but its Text will be an empty string.

The TextSelection object also provides the two methods you need to manage formatting:
GetPropertyValue(), which tests the selection for a given formatting characteristic; and
ApplyPropertyValue(), which sets the new formatting you want. For example, if you want to make the
selected text bold, you simply need to manipulate the FontWeightProperty using ApplyPropertyValue():

selection.ApplyPropertyValue(Run.FontWeightProperty, FontWeights.Bold);

Similarly, you can use GetPropertyValue() to check whether the currently selected text is bold:

FontWeight currentBoldState;

CHAPTER 5  ELEMENTS

190

currentBoldState = (FontWeight)selection.GetPropertyValue(Run.FontWeightProperty);

There’s one catch with this approach. If the selected text has mixed bold and normal text, the
GetPropertyValue() method returns DependencyProperty.UnsetValue instead of a FontWeight. It’s up to
you how you handle this case—typically, you’ll either bold the entire selection (as this example does) or
do nothing at all.

The following code shows the complete code that underpins the Bold button (represented by the
button with the bold letter B in Figure 5-18). Depending on the selection, this code either applies or
removes bold formatting.

private void cmdBold_Click(object sender, RoutedEventArgs e)
{
 TextSelection selection = richTextBox.Selection;

 // If no text is selected, treat it as a selection of normal text.
 FontWeight currentState = FontWeights.Normal;

 // Try to get the bold state of the selected text.
 if (selection.GetPropertyValue(Run.FontWeightProperty) !=
 DependencyProperty.UnsetValue)
 {
 currentState =
 (FontWeight)selection.GetPropertyValue(Run.FontWeightProperty);
 }

 if (currentState == FontWeights.Normal)
 {
 selection.ApplyPropertyValue(Run.FontWeightProperty, FontWeights.Bold);
 }
 else
 {
 selection.ApplyPropertyValue(Run.FontWeightProperty, FontWeights.Normal);
 }

 // A nice detail is to bring the focus back to the text box, so the user
 // can resume typing.
 richTextBox.Focus();
}

 Note You’ll notice that this code doesn’t check for an empty selection. If no text is currently selected, clicking
the Bold button applies bold formatting to the insertion point, so that when the user starts typing, the new text will
be bold. Another possible approach is to enable the Bold button only when text is selected. You can manage the
state of the Bold button by responding to the RichTextBox.SelectionChanged event.

The code for the Italic and Underline buttons is virtually identical. The only difference is the
property it uses—instead of checking and setting FontWeight, these code routines use the FontStyle and
TextDecorations properties, respectively.

CHAPTER 5  ELEMENTS

191

Saving and Opening Rich Text Files
If your application gives users the ability to edit rich text content, it’s highly likely that you need a way to
store the final result. Fortunately, the RichTextBox makes this easy. Although Silverlight doesn’t have any
built-in support for common rich text formats such as .rtf, .doc, or .docx, it does allow you retrieve its
fully formatted contents as a XAML document using the RichTextBox.Xaml property.

Here’s an example that copies the XAML markup to an ordinary text box so you can study it:

txtFlowDocumentMarkup.Text = richTextBox.Xaml;

Figure 5-19 shows the result.

Figure 5-19. The XAML markup for a RichTextBox

The XAML document that’s exposed by the RichTextBox.Xaml property consists of the text elements
you learned about earlier (such as Section, Paragraph, and Run) and has the full formatting information
specified as attributes. Because you can store this XAML content in a simple string, it’s easy to use any
other technique you need to store it, such as submitting it to a web service that wraps a back-end
database (Chapter 19) or saving it in a simple text file (Chapter 22). But if you can’t wait to see the details,
check out the downloadable examples with this chapter, which allow you to save the content from a
RichTextBox to a file on your hard drive and open it later. (The trick is the straightforward SaveFileDialog
and OpenFileDialog classes, which you’ll consider in Chapter 22.)

CHAPTER 5  ELEMENTS

192

 Tip To clear the content in a RichTextBox, call RichTextBox.Blocks.Clear().

Using Interactive Elements in a RichTextBox
The RichTextBox stretches its capabilities beyond the display and editing of rich text content. It also
supports interactive elements, such as the Hyperlink.

The Hyperlink is an inline element that’s rendered as blue underlined text. It works in the same way
as the HyperlinkButton control discussed earlier in this chapter. Like the HyperlinkButton, the
Hyperlink can launch a web browser to show an external page (if you set the NavigateUrl property to an
absolute URL) or send a frame in your application to a new XAML page (if you set NavigateUrl to a
relative URL). Or, if you attach an event handler to the Click event, it can trigger a code routine that
performs any action you want. Here’s an example:

<RichTextBox Margin="5" x:Name="richText" IsReadOnly="True">
 <Paragraph>
 <Hyperlink Click="cmdDoSomething_Click">Click this link.</Hyperlink>
 </Paragraph>
</RichTextBox>

There’s one catch. The hyperlinks in your document are active only if you set the
RichTextBox.IsReadOnly property to true. Otherwise, the hyperlink looks the same, but it can’t be
clicked (although its text can be edited).

 Tip Hyperlinks and other types of embedded controls don’t make much sense in in an editable document. But
they make perfect sense if you’re showing some type of read-only content in the RichTextBox, such as product
documentation or company information.

The Hyperlink takes you to the very edge of what’s possible with the RichTextBox model of text
elements. However, the RichTextBox has a convenient back door that lets you embed any Silverlight
element alongside your rich text content. That back door is the InlineUIContainer, which hosts a full-
fledged Silverlight element. For example, you can use the InlineUIContainer to add a Button, CheckBox,
Image, or even a DataGrid to your RichTextBox. Here’s an example:

<RichTextBox Margin="5" x:Name="richText" IsReadOnly="True">
 <Paragraph Foreground="DarkRed" FontFamily="Trebuchet MS" FontSize="22"
 FontWeight="Bold">
 <InlineUIContainer>
 <Image Source="bookcover.jpg" Stretch="None"></Image>
 </InlineUIContainer>
 Chapter I
 </Paragraph>
 ...
</RichTextBox>

CHAPTER 5  ELEMENTS

193

Figure 5-20 shows the result. Note that inline elements are placed inline with the current text line, as
though they are ordinary characters. In other words, it’s not possible to have several lines of text wrap
around a large element like an Image.

Figure 5-20. Embedding an Image element in a RichTextBox

The InlineUIContainer has two important limitations. First, if you want the embedded element to
be interactive so that it can accept focus and receive input events, you must set the
RichTextBox.IsReadOnly property to true. If you don’t, the user will still see the element and will still be
able to edit the RichTextBox content—for example, the user will be able to delete the InlineUIContainer
element or add text around it. However, the user won’t be able to click it, type into it, or otherwise
interact with it. This is perfectly fine for an element like the Image but obviously less suitable for an
element like the Button.

The second limitation is that the InlineUIContainer isn’t represented in the document that’s
returned by RichTextBox.Xaml. This is a significant shortcoming, because it means you won’t be able to
load a ready-made XAML document that includes InlineUIContainer objects. Instead, you’ll be forced to
add them programmatically.

CHAPTER 5  ELEMENTS

194

The RichTextBlock
Silverlight includes a specialized read-only version of the RichTextBox control called RichTextBlock. The
internal architecture and display capabilities of the RichTextBlock closely parallel the RichTextBox. The
difference is that the RichTextBlock control is designed to work in partnership with the
RichTextBlockOverflow control to help you create more sophisticated layouts.

The basic idea is simple—by using the RichTextBlock in combination with one or more linked
RichTextBlockOverflow controls, you can split a single long document into several pieces. You can then
arrange these pieces wherever you want in your page. Using this technique, you can quickly construct a
multicolumn text display. Or, with a little more effort, you can build a newspaper-like layout that runs
text around graphics and other display elements.

To understand how the overflow system works, imagine you have a RichTextBlock like this:

<RichTextBlock x:Name="richText"></RichTextBlock>

Right now, if you have more content than will fit in the display area of the RichTextBlock, the
RichTextBlock cuts off the text that doesn’t fit. But consider what happens if you add a
RichTextBlockOverflow control to your page:

<RichTextBlock x:Name="richText"></RichTextBlock>
...
<RichTextBlockOverflow x:Name="overflow1"></RichTextBlockOverflow>

And then link the RichTextBlock to the RichTextBlockOverflow using the OverflowContentTarget
property and an element binding expression (like the kind you saw in Chapter 2):

<RichTextBlock x:Name="richText"
 OverflowContentTarget="{Binding ElementName=overflow1}"></RichTextBlock>
...
<RichTextBlockOverflow x:Name="overflow1"></RichTextBlockOverflow>

Now, if the RichTextBlock is constrained in size, and it has more content than it can fit, the extra will
leak into the linked RichTextBlockOverflow. The RichTextBlockOverflow can be anywhere in the same
page. And if you want to create a complex layout you can use multiple RichTextBlockOverflow controls.
You just need to use the OverflowContentProperty in each one to link to the next box in the sequence:

<RichTextBlockOverflow x:Name="overflow1"
 OverflowContentTarget="{Binding ElementName=overflow2}"></RichTextBlockOverflow>

To see this behavior in action, you can build a simple example. The following markup creates a
three-column Grid. The leftmost column holds the RichTextBlock. The second and third columns hold a
RichTextBlockOverflow that catches the excess content:

<Grid x:Name="LayoutRoot" Background="White" Margin="15">
 <Grid.ColumnDefinitions>
 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 </Grid.ColumnDefinitions>

 <RichTextBlock x:Name="richText"
 OverflowContentTarget="{Binding ElementName=overflow1}"></RichTextBlock>
 <RichTextBlockOverflow x:Name="overflow1" Grid.Column="1"
 OverflowContentTarget="{Binding ElementName=overflow2}"></RichTextBlockOverflow>
 <RichTextBlockOverflow x:Name="overflow2" Grid.Column="2"></RichTextBlockOverflow>

1

CHAPTER 5  ELEMENTS

195

</Grid>

Figure 5-21 shows the result. If the page is wide enough, all the content fits in the left column. But as
the user shrinks the browser window, the extra content gets added first to the second and then to the
third column.

Figure 5-21. Overflowing text into multiple columns

CHAPTER 5  ELEMENTS

196

If the last RichTextBlockOverflow can’t handle the remaining content, it cuts off the end of your
document. Unfortunately, there’s no easy way to improve on this situation. You could wrap the
RichTextBlock and RichTextBlockOverflow controls in a ScrollViewer, but that would simply allow the
RichTextBlock in the first column to grow tall enough to fit the entire document, leaving the other two
columns blank. What this problem really needs is the sophistication of the WPF flow document model,
which Silverlight doesn’t support.

When working with overflow text, your main point of interaction (both in XAML and code) is the
RichTextBlock. You use the RichTextBlock.Blocks collection to set and manipulate the full content, and
to adjust its formatting. The RichTextBlockOverflow controls simply manage where that content is
displayed.

<RichTextBlock x:Name="richText"
 OverflowContentTarget="{Binding ElementName=overflow1}">
 <RichTextBlock.Blocks>
 <Paragraph FontSize="20" FontWeight="Bold" ...>
 <Run>Chapter 1</Run>
 </Paragraph>
 <Paragraph FontSize="11" ...>
 <Run>It was a bright cold day in April, and the clocks were striking thirteen.
 ...
 </Run>
 </Paragraph>
 ...
 </RichTextBlock.Blocks>
</RichTextBlock>

Once you’ve created a chain of RichTextBlockOverflow controls, you can get creative. For example,
you can use a more complex Grid to place an Image element in between RichTextBlockOverflow
controls. Or, if you’re really ambitious, you can stack a number of RichTextBlockOverflow controls with
different, explicitly-set widths, to create a countoured edge. Compared to WPF’s support for flow
documents, it’s still a bit of kludge. For example, there are plenty of layout rules you’d need to create a
truly seamless, professional document display experience (like a way to keep headings together with the
subsequent text, prevent stray lines from being separated from a paragraph, manage hyphenation, and
so on. But it does give developers another useful tool.

Range-Based Controls
Silverlight includes three controls that use the concept of a range. These controls take a numeric value
that falls in between a specific minimum and maximum value. These controls—ScrollBar, Slider, and
ProgressBar—derive from the RangeBase class (which itself derives from the Control class). The
RangeBase class adds a ValueChanged event, a Tooltip property, and the range properties shown in
Table 5-6.

CHAPTER 5  ELEMENTS

197

Table 5-6. Properties of the RangeBase Class

Name Description

Value This is the current value of the control (which must fall between the minimum and
maximum). By default, it starts at 0. Contrary to what you might expect, Value isn’t an
integer—it’s a double, so it accepts fractional values. You can react to the ValueChanged
event if you want to be notified when the value is changed.

Maximum This is the upper limit (the largest allowed value). The default value is 1.

Minimum This is the lower limit (the smallest allowed value). The default value is 0.

SmallChange This is the amount the Value property is adjusted up or down for a “small change.” The
meaning of a small change depends on the control (and may not be used at all). For the
ScrollBar and Slider, this is the amount the value changes when you use the arrow keys.
For the ScrollBar, you can also use the arrow buttons at either end of the bar. The default
SmallChange is 0.1.

LargeChange This is the amount the Value property is adjusted up or down for a “large change.” The
meaning of a large change depends on the control (and may not be used at all). For the
ScrollBar and Slider, this is the amount the value changes when you use the Page Up and
Page Down keys or when you click the bar on either side of the thumb (which indicates
the current position). The default LargeChange is 1.

Ordinarily, there’s no need to use the ScrollBar control directly. The higher-level ScrollViewer

control, which wraps two ScrollBar controls, is typically much more useful. (The ScrollViewer was
covered in Chapter 3.) However, the Slider and ProgressBar are more useful on their own.

The Slider
The Slider is a specialized control that’s occasionally useful. You might use it to set numeric values in
situations where the number itself isn’t particularly significant. For example, it makes sense to set the
volume in a media player by dragging the thumb in a slider bar from side to side. The general position of
the thumb indicates the relative loudness (normal, quiet, loud), but the underlying number has no
meaning to the user.

Here’s an example that creates the horizontal slider shown in Figure 5-22:

<Slider Orientation="Horizontal" Minimum="0" Maximum="10" Width="100" />

CHAPTER 5  ELEMENTS

198

Figure 5-22. A basic slider

Unlike WPF, the Silverlight slider doesn’t provide any properties for adding tick marks. However, as
with any control, you can change its appearance while leaving its functionality intact using the control
template feature described in Chapter 15.

The ProgressBar
The ProgressBar indicates the progress of a long-running task. Unlike the slider, the ProgressBar isn’t
user interactive. Instead, it’s up to your code to periodically increment the Value property. By default,
the Minimum value of a ProgressBar is 0, and the Maximum value is 100, so the Value corresponds to the
percentage of work done. You’ll see an example with the ProgressBar in Chapter 6, with a page that
downloads a file from the Web and shows its progress on the way.

One neat trick that you can perform with the ProgressBar is using it to show a long-running status
indicator, even if you don’t know how long the task will take. You do this by setting the IsIndeterminate
property to true:

<ProgressBar Height="18" Width="200" IsIndeterminate="True"></ProgressBar>

When setting IsIndeterminate, you no longer use the Minimum, Maximum, and Value properties.
No matter what values these properties have, the ProgressBar will show a hatched pattern that travels
continuously from left to right. This pattern indicates that there’s work in progress, but it doesn’t provide
any information about how much progress has been made so far.

Date Controls
Silverlight adds two date controls, neither of which exists in the WPF control library. Both are designed
to allow the user to choose a single date.

The Calendar control displays a calendar that’s similar to what you see in the Windows operating
system (for example, when you configure the system date). It shows a single month at a time and allows
you to step through from month to month (by clicking the arrow buttons) or jump to a specific month
(by clicking the month header to view an entire year and then clicking the month).

The DatePicker requires less space. It’s modeled after a simple text box, which holds a date string in
long or short date format. However, the DatePicker provides a drop-down arrow that, when clicked,

CHAPTER 5  ELEMENTS

199

pops open a full calendar view that’s identical to that shown by the Calendar control. This pop-up is
displayed overtop of any other content, just like a drop-down combo box.

Figure 5-23 shows the two display modes that the Calendar supports and the two date formats that
the DatePicker allows.

Figure 5-23. The Calendar and DatePicker

The Calendar and DatePicker include properties that allow you to determine which dates are shown
and which dates are selectable (provided they fall in a contiguous range). Table 5-7 lists the properties
you can use.

CHAPTER 5  ELEMENTS

200

Table 5-7. Properties of the Calendar and DatePicker Classes

Property Description

DisplayDateStart and
DisplayDateEnd

Sets the range of dates that are displayed in the calendar view, from the first,
earliest date (DisplayDateStart) to the last, most recent date (DisplayDateEnd).
The user won’t be able to navigate to months that don’t have any displayable
dates. To show all dates, set DisplayDateStart to DateTime.MinValue and
DisplayDateEnd to DateTime.MaxValue.

BlackoutDates Holds a collection of dates that will be disabled in the calendar and won’t be
selectable. If these dates are not in the range of displayed dates or if one of these
dates is already selected, you’ll receive an exception. To prevent selection of any
date in the past, call the BlackoutDates.AddDatesInPast() method.

SelectedDate Provides the selected date as a DateTime object (or a null value if no date is
selected). It can be set programmatically by the user clicking the date in the
calendar or by the user typing in a date string (in the DatePicker). In the
calendar view, the selected date is marked by a shaded square, which is visible
only when the date control has focus.

SelectedDates Provides the selected dates as a collection of DateTime objects. This property is
supported by the Calendar, and it’s useful only if you’ve changed the
SelectionMode property to allow multiple date selection.

DisplayDate Determines the date that’s displayed initially in the calendar view (using a
DateTime object). If null, the SelectedDate is shown. If DisplayDate and
SelectedDate are both null, the current date is used. The display date
determines the initial month page of the calendar view. When the date control
has focus, a square outline is displayed around the appropriate day in that
month (which is different from the shaded square used for the currently selected
date).

FirstDayOfWeek Determines the day of the week that will be displayed at the start of each
calendar row, in the leftmost position.

IsTodayHighlighted Determines whether the calendar view uses highlighting to point out the current
date.

DisplayMode
(Calendar only)

Determines the initial display month of the calendar. If set to Month, the
Calendar shows the standard single-month view. If set to Year, the Calendar
shows the months in the current year (similar to when the user clicks the month
header). Once the user clicks a month, the Calendar shows the full calendar view
for that month.

CHAPTER 5  ELEMENTS

201

Property Description

SelectionMode
(Calendar only)

Determines what type of date selections are allowed. The default is SingleDate,
which allows a single date to be selected. Other options include None (selection
is disabled entirely), SingleRange (a contiguous group of dates can be selected),
and MultipleRange (any combination of dates can be selected). In SingleRange
or MultipleRange modes, the user can drag to select multiple dates or click while
holding down the Ctrl key. You can use the SelectedDates property to get a
collection with all the selected dates.

IsDropDownOpen
(DatePicker only)

Determines whether the calendar view drop-down is open in the DatePicker.
You can set this property programmatically to show or hide the calendar.

SelectedDateFormat
(DatePicker only)

Determines how the selected date will be displayed in the text part of the
DatePicker. You can choose Short or Long. The actual display format is based on
the client computer’s regional settings. For example, if you use Short, the date
might be rendered in the yyyy/mm/dd format or dd/mm/yyyy. The long format
generally includes the month and day names.

The date controls also provide a few different events. Most useful is SelectedDateChanged (in the

DatePicker) or the very similar SelectedDatesChanged (in the Calendar), which adds support for
multiple date selection. You can react to these events to reject specific date selections, such as dates that
fall on a weekend:

private void Calendar_SelectedDatesChanged (object sender,
 CalendarDateChangedEventArgs e)
{
 // Check all the newly added items.
 foreach (DateTime selectedDate in e.AddedItems)
 {
 if ((selectedDate.DayOfWeek == DayOfWeek.Saturday) ||
 (selectedDate.DayOfWeek == DayOfWeek.Sunday))
 {
 lblError.Text = "Weekends are not allowed";

 // Remove the selected date.
 ((Calendar)sender).SelectedDates.Remove(selectedDate);
 }
 }
}

You can try this with a Calendar that supports single or multiple selection. If it supports multiple
selection, try dragging the mouse over an entire week of dates. All the dates will remain highlighted
except for the disallowed weekend dates, which will be unselected automatically.

The Calendar also adds a DisplayDateChanged event (when the user browses to a new month). The
DatePicker adds CalendarOpened and CalendarClosed events (which fire when the calendar drop-down
is displayed and closed) and a DateValidationError event (which fires when the user types a value in the
text entry portion that can’t be interpreted as a valid date). Ordinarily, invalid values are discarded when
the user opens the calendar view, but here’s an option that fills in some text to alert the user of the
problem:

CHAPTER 5  ELEMENTS

202

private void DatePicker_DateValidationError(object sender,
 DatePickerDateValidationErrorEventArgs e)
{
 lblError.Text = "'" + e.Text +
 "' is not a valid value because " + e.Exception.Message;
}

The Last Word
In this chapter, you saw all the fundamental Silverlight elements. You considered several categories:

• The TextBlock, which allows you to display richly formatted text using built-in and
custom fonts

• The Image, which allows you to show JPEG and PNG images

• Content controls that can contain nested elements, including various types of
buttons and the ToolTip

• List controls that contain a collection of items, such as the ListBox, ComboBox,
and TabControl

• Text controls, including the standard TextBox, the PasswordBox, and the
AutoCompleteBox

• Range-based controls that take a numeric value from a range, such as the Slider

• The date controls, which allow the user to select one or more dates from a
calendar display

Although you haven’t had an exhaustive look at every detail of XAML markup, you’ve learned
enough to reap all its benefits. Now, your attention can shift to the Silverlight technology itself, which
holds some of the most interesting surprises. In the next chapter, you’ll start out by considering the core
of the Silverlight application model: the Application class.

C H A P T E R 6

203

The Application Model

Over the past five chapters, you’ve taken a detailed look at the different visual ingredients you can put
inside a Silverlight page. You’ve learned how to use layout containers and common controls and how to
respond to mouse and keyboard events. Now, it’s time to take a closer look at the Silverlight application
model—the scaffolding that shapes how Silverlight applications are deployed, downloaded, and hosted.

You’ll begin by considering the life cycle of a Silverlight application. You’ll examine the events that
fire when your application is created, is unloaded, or runs into trouble with an unhandled exception.
Next, you’ll pick up a few practical techniques that help you extend your application beyond Silverlight’s
basic behavior. You’ll see how to pass in initialization parameters, show a custom splash screen, and
break free from the confines of the browser to run your Silverlight application in a stand-alone
window—even when the client computer can’t get a network connection.

Finally, you’ll explore the many options Silverlight provides for efficiently retrieving the large files
called binary resources, whether they’re images, video, or other assemblies that your application
requires. You’ll learn two strategies for dealing with resources: including them in your application
package for easy deployment and downloading them on demand to streamline performance.

The Application Class
In Chapter 1, you took your first look at the App.xaml file. Much as every XAML page is a template for a
custom class that derives from System.Windows.UserControl, the App.xaml file is a template for a
custom class (named App by default) that derives from System.Windows.Application. You’ll find the
class definition in the App.xaml.cs file:

public partial class App : Application
{ ... }

When the Silverlight plug-in loads your application, it begins by creating an instance of the App
class. From that point on, the application object serves as your entry point for a variety of application-
specific features, including application events, resources, and services.

Accessing the Current Application
You can retrieve a reference to the application object at any time, at any point in your code, using the
static Application.Current property. However, this property is typed as a System.Windows.Application
object. To use any custom properties or methods that you’ve added to the derived application class, you
must cast the reference to the App type. For example, if you’ve added a method named DoSomething()
to the App.xaml.cs file, you can invoke it with code like this:

CHAPTER 6  THE APPLICATION MODEL

204

((App)Application.Current).DoSomething();

This technique allows you to use your custom application class as a sort of switchboard for global
tasks that affect your entire application. For example, you can add methods to your application class
that control navigation or registration, and you can add properties that store global data. You’ll see the
App class used this way in examples throughout this book.

Application Properties
Along with the static Current property, the Application class also provides several more members, as
described in Table 6-1.

Table 6-1. Members of the Application Class

Member Description

Host This property lets you interact with the browser and, through it,
the rest of the HTML content on the web page. It’s discussed in
Chapter 17.

Resources This property provides access to the collection of XAML resources
that are declared in App.xaml, as described in Chapter 2.

RootVisual This property provides access to the root visual for your
application—typically, the user control that’s created when your
application first starts. Once set, the root visual can’t be changed,
although you can manipulate the content in the root visual to
change what’s displayed in the page. For example, if it’s the Grid
control, you can remove one or more of its current children and
insert new controls in their place. Chapter 7 demonstrates this
technique.

IsRunningOutOfBrowser and
InstallState

These properties let you recognize and monitor out-of-browser
applications. IsRunningOutOfBrowser indicates whether the
application is currently running out of the browser (true) or in the
browser window (false). InstallState provides a value from the
InstallState enumeration that indicates whether the current
application is installed as an out-of-process application on the
current computer (Installed), not installed (NotInstalled or
InstallFailed), or in the process of being installed (Installing).
You’ll learn more about both properties when you consider out-
of-browser applications in Chapter 18.

ApplicationLifetimeObjects This property holds a collection of application extension services.
These are objects that provide additional respond to application
events, in much the same way as your event-handling code in the
Application class. The difference is that the code for an
application extension service is separated into its own class,
which makes it easier to reuse this code in more than one

CHAPTER 6  THE APPLICATION MODEL

205

Member Description
Silverlight application.

Install() and
CheckAndDownloadUpdateAsync()

These methods provide support for out-of-browser applications.
The Install() method installs the current Silverlight application on
the client’s computer. The CheckAndDownloadUpdateAsync()
method launches an asynchronous process that checks the web
server for updates. If an updated version is found, it’s
downloaded and used the next time the user runs the application.

GetResourceStream() This static method is used to retrieve resources in code. You’ll see
how to use it later in this chapter in the “Resources” section.

LoadComponent() This static method accepts a XAML file and instantiates the
corresponding elements (much as Silverlight does automatically
when you create a page class and the constructor calls the
InitializeComponent() method).

Along with these properties and methods, the Application object also raises events at various points

in the life cycle of your application. You’ll explore these next.

Application Events
In Chapter 1, you took your first look at the life cycle of a Silverlight application. Here’s a quick review:

1. The user requests the HTML entry page in the browser.

2. The browser loads the Silverlight plug-in. It then downloads the XAP file that
contains your application.

3. The Silverlight plug-in reads the AppManifest.xml file from the XAP to find out
what assemblies your application uses. It creates the Silverlight runtime
environment and then loads your application assembly (along with any
dependent assemblies).

4. The Silverlight plug-in creates an instance of your custom application class
(which is defined in the App.xaml and App.xaml.cs files).

5. The default constructor of the application class raises the Startup event.

6. Your application handles the Startup event and creates the root visual object
for your application.

From this point on, your page code takes over, until it encounters an unhandled error
(UnhandledException) or finally ends (Exit). These events—Startup, UnhandledException, and Exit—are
the core events that the Application class provides. Along with these standards, the Application class
includes two events—InstallStateChanged and CheckAndDownloadUpdateCompleted—that are
designed for use with the out-of-browser applications you’ll explore in Chapter 18.

CHAPTER 6  THE APPLICATION MODEL

206

If you look at the contents of the App.xaml.cs file, you’ll see that in Visual Studio, the application
constructor contains some pregenerated code. This code attaches an event handler to the three
application events:

public App()
{
 this.Startup += this.Application_Startup;
 this.Exit += this.Application_Exit;
 this.UnhandledException += this.Application_UnhandledException;

 InitializeComponent();
}

As with the page and element events you’ve considered in earlier chapters, there are two ways to
attach application event handlers. Instead of using code, you can add event attributes to the XAML
markup, as shown here:

<Application ... x:Class="SilverlightApplication1.App"
 Startup="Application_Startup" >

There’s no reason to prefer one approach to the other. By default, Visual Studio uses the code
approach shown first.

In the following sections, you’ll see how you can write code that plugs into the application events.

Application Startup
By default, the Application_Startup method creates the first page and assigns it to the
Application.RootVisual property, ensuring that it becomes the top-level application element—the visual
core of your application:

private void Application_Startup(object sender, StartupEventArgs e)
{
 this.RootVisual = new MainPage();
}

Although you can change the root visual by adding or removing elements, you can’t reassign the
RootVisual property at a later time. After the application starts, this property is essentially read-only.

Initialization Parameters
The Startup event passes in a StartupEventArgs object, which includes one additional detail:
initialization parameters. This mechanism allows the page that hosts the Silverlight control to pass in
custom information. This is particularly useful if you host the same Silverlight application on different
pages or you want the Silverlight application to vary based on user-specific or session-specific
information. For example, you can customize the application’s view depending on whether users are
entering from the customer page or the employee page. Or, you may choose to load different
information based on the product the user is currently viewing. Just remember that the initialization
parameters come from the tags of the HTML entry page, and a malicious user can alter them.

CHAPTER 6  THE APPLICATION MODEL

207

 Note For more detailed interactions between the HTML and your Silverlight application—for example, to pass
information back and forth while your Silverlight application is running—see Chapter 17.

For example, imagine you want to pass a ViewMode parameter that has two possible values,
Customer or Employee, as represented by this enumeration:

public enum ViewMode
{
 Customer, Employee
}

You need to change a variety of details based on this information, so it makes sense to store it
somewhere that’s accessible throughout your application. The logical choice is to add a property to your
custom application class, like this:

private ViewMode viewMode = ViewMode.Customer;
public ViewMode ViewMode
{
 get { return viewMode; }
}

This property defaults to customer view, so it needs to be changed only if the web page specifically
requests the employee view.

To pass the parameter into your Silverlight application, you need to add a <param> element to the
markup in the Silverlight content region. This parameter must have the name initParams. Its value is a
comma-separated list of name-value pairs that set your custom parameters. For example, to add a
parameter named viewMode, you add the following line (shown in bold) to your markup:

<div id="silverlightControlHost">
 <object data="data:application/x-silverlight,"
 type="application/x-silverlight-2" width="100%" height="100%">
 <param name="source" value="TransparentSilverlight.xap"/>
 <param name="onerror" value="onSilverlightError" />
 <param name="background" value="white" />
 <param name="initParams" value="viewMode=Customer" />
 ...
 </object>
 <iframe style="visibility:hidden;height:0;width:0;border:0px"></iframe>
 </div>

Then, you can retrieve this from the StartupEventArgs.InitParams collection. However, you must
check first that it exists:

private void Application_Startup(object sender, StartupEventArgs e)
{
 // Take the view mode setting, and store in an application property.
 if (e.InitParams.ContainsKey("viewMode"))
 {
 string view = e.InitParams["viewMode"];
 if (view == "Employee") this.viewMode = ViewMode.Employee;
 }

CHAPTER 6  THE APPLICATION MODEL

208

 // Create the root page.
 this.RootVisual = new Page();
}

If you have many possible values, you can use the following leaner code to convert the string to the
corresponding enumeration value, assuming the text matches exactly:

string view = e.InitParams["viewMode"];
try
{
 this.viewMode = (ViewMode)Enum.Parse(typeof(ViewMode), view, true);
}
catch { }

Now, different pages are free to pass in a different parameter and launch your application with
different view settings. Because the view information is stored as a property in the custom application
class (named App), you can retrieve it anywhere in your application:

lblViewMode.Text = "Current view mode: " +
 ((App)Application.Current).ViewMode.ToString();

Figure 6-1 shows what you’ll see when you run the test page that uses the Customer view mode.

Figure 6-1. Displaying an initialization parameter

If you have more than one initialization parameter, pass them all in one comma-delimited string.
Initialization values should be made up of alphanumeric characters. There’s currently no support for
escaping special characters such as commas in parameter values:

CHAPTER 6  THE APPLICATION MODEL

209

<param name="initParams" value="startPage=Page1,viewMode=Customer" />

Now, the event handler for the Startup event can retrieve the StartPage value and use it to choose
the application’s root page. You can load the correct page using a block of conditional logic that
distinguishes between the available choices, or you can write a more general solution that uses reflection
to attempt to create the class with the requested name, as shown here:

UserControl startPage = null;
if (e.InitParams.ContainsKey("startPage"))
{
 string startPageName = e.InitParams["startPage"];
 try
 {
 // Create an instance of the page.
 Type type = this.GetType();
 Assembly assembly = type.Assembly;
 startPage = (UserControl)assembly.CreateInstance(
 type.Namespace + "." + startPageName);
 }
 catch
 {
 startPage = null;
 }
}
// If no parameter was supplied or the class couldn't be created, use a default.
if (startPage == null) startPage = new MenuPage();

this.RootVisual = startPage;

Application Shutdown
At some point, your Silverlight application ends. Most commonly, this occurs when the user surfs to
another page in the web browser or closes the browser window. It also occurs if the users refreshes the
page (effectively abandoning the current instance of the application and launching a new one), if the
page runs JavaScript code that removes the Silverlight content region or changes its source, or if an
unhandled exception derails your code.

Just before the application is released from memory, Silverlight gives you the chance to run some
code by responding to the Application.Exit event. This event is commonly used to store user-specific
information locally in isolated storage (see Chapter 22) so it’s available the next time the user runs your
application.

The Exit event doesn’t provide any additional information in its event arguments.

Unhandled Exceptions
Although you should use disciplined exception-handling code in situations where errors are possible
(for example, when reading a file, downloading web content, or accessing a web service), it’s not always
possible to anticipate all sources of error. If your application encounters an error that isn’t handled, it
will end, and the Silverlight content region will revert to a blank space. If you’ve included JavaScript code
that reacts to potential errors from the Silverlight plug-in, that code will run. Otherwise, you won’t
receive any indication about the error that’s just occurred.

CHAPTER 6  THE APPLICATION MODEL

210

The Application.UnhandledException event gives you a last-ditch chance to respond to an
exception before it reaches the Silverlight plug-in and terminates your application. This code is notably
different from the JavaScript error-handling code that you may add to the page, because it has the ability
to mark an exception as handled. Doing so effectively neutralizes the exception, preventing it from rising
to the plug-in and ending your application.

Here’s an example that checks the exception type and decides whether to allow the application to
continue:

public void Application_UnhandledException(object sender,
 ApplicationUnhandledExceptionEventArgs e)
{
 if (e.ExceptionObject is FileNotFoundException)
 {
 // Suppress the exception and allow the application to continue.
 e.Handled = true;
 }
}

Ideally, an exception like this should be handled closer to where it occurs—for example, in your
page code, when you’re performing a task that may result in a FileNotFoundException. Application-level
error handling isn’t ideal, because it’s difficult to identify the original process that caused the problem
and it’s awkward to notify the user about what went wrong. But application-level error handling does
occasionally offer a simpler and more streamlined way to handle certain scenarios—for example, when a
particular type of exception crops up in numerous places.

After you’ve neutralized the error, it makes sense to notify the user. One option is to call a custom
method in your root visual. For example, this code calls a custom ReportError() method in the MainPage
class, which is the root visual for this application:

MainPage rootPage = (MainPage)this.RootVisual;
rootPage.ReportError(e.ExceptionObject);

Now the MainPage.ReportError() method can examine the exception object and display the
appropriate message in an element on the page.

In an effort to make your applications a little more resilient, Visual Studio adds a bit of boilerplate
error-handling code to every new Silverlight application. This code checks whether a debugger is
currently attached (which indicates that the application is running in the Visual Studio debug
environment). If there’s no debugger, the code handles the error (rendering it harmless) and uses the
HTML interoperability features you’ll learn about in Chapter 17 to raise a JavaScript error in its place.
Here’s the slightly simplified code that shows how the process works:

public void Application_UnhandledException(object sender,
 ApplicationUnhandledExceptionEventArgs e)
{
 if (!System.Diagnostics.Debugger.IsAttached)
 {
 // Suppress the exception and allow the application to continue.
 e.Handled = true;

 try
 {
 // Build an error message.
 string errorMsg = e.ExceptionObject.Message +
 e.ExceptionObject.StackTrace;

CHAPTER 6  THE APPLICATION MODEL

211

 errorMsg = errorMsg.Replace('"', '\'').Replace("\r\n", @"\n");

 // Use the Window.Eval() method to run a line of JavaScript code that
 // will raise an error with the error message.
 System.Windows.Browser.HtmlPage.Window.Eval(
 "throw new Error(\"Unhandled Error in Silverlight 2 Application " +
 errorMsg + "\");");
 }
 catch {}
 }
}

Essentially, this code converts a fatal Silverlight error to a relatively harmless JavaScript error. The
way the JavaScript error is dealt with depends on the browser. In Internet Explorer, a yellow alert icon
appears in the status bar. (Double-click the alert icon to get the full error details, as shown in Figure 6-2.)
In Firefox, a script error message appears. Either way, the error won’t stop your application from
continuing.

Figure 6-2. A JavaScript error that represents an unhandled Silverlight exception

When you finish developing your application, you need to tweak the automatically generated error-
handling code. That’s because it isn’t acceptable to indiscriminately ignore all errors—doing so allows
bugs to flourish and cause other usability problems or data errors further down the road. Instead,

CHAPTER 6  THE APPLICATION MODEL

212

consider selectively ignoring errors that correspond to known error conditions and signaling the
problem to the user.

 Caution It’s easy to forget that you need to tweak the Application.UnhandledException event handler, because
it springs into action only when you run your Silverlight application without a debugger. When you’re testing your
application in Visual Studio, you don’t see this behavior—instead, any unhandled exception ends the application
immediately.

Custom Splash Screens
If a Silverlight application is small, it downloads quickly and appears in the browser. If a Silverlight
application is large, it may take a few seconds to download. As long as your application takes longer than
500 milliseconds to download, Silverlight shows an animated splash screen.

The built-in splash screen isn’t too exciting—it displays a ring of blinking circles and the percentage
of the application that’s been downloaded so far (see Figure 6-3).

Figure 6-3. The built-in Silverlight splash screen

If you don’t like the stock splash screen, you can easily create your own (see Figure 6-4). Essentially,
a custom splash screen is a XAML file with the graphical content you want to display and a dash of
JavaScript code that updates the splash screen as the application is downloaded. You can’t use C# code
at this point, because the Silverlight programming environment hasn’t been initialized yet. However,

CHAPTER 6  THE APPLICATION MODEL

213

this isn’t a major setback, because the code you need is relatively straightforward. It lives in one or two
event-handling functions that are triggered as content is being downloaded and after it’s finished,
respectively. And because JavaScript is syntactically similar to C#, you won’t have much trouble putting
together the code you need.

Figure 6-4. A custom splash screen

The XAML file for your splash screen can’t be part of your Silverlight XAP file. That’s because the
splash screen needs to be shown while the XAP file is still in the process of being downloaded. For that
reason, the splash screen XAML must be a separate file that’s placed alongside your XAP file at the same
web location.

 Note Testing a custom splash screen requires some work. Ordinarily, you don’t see the splash screen during
testing because the application is sent to the browser too quickly. To slow down your application enough to see
the splash screen, you need to first ensure that you’re using an ASP.NET test website, which ensures that your
Silverlight application is hosted by Visual Studio test web server (as described in Chapter 1). Then, you need to add

CHAPTER 6  THE APPLICATION MODEL

214

multiple large resource files to your Silverlight project—say, a handful of MP3 files—and set the build action of
each one to Resource so it’s added to the XAP file. Another trick is to temporarily remove the line of code in the
Application_Startup() method that sets the root visual for your application. This way, after your application has
been completely downloaded, it won’t display anything. Instead, the splash screen will remain visible, displaying a
progress percentage of 100%.

To create the example shown in Figure 6-4, begin by creating a new Silverlight project with an
ASP.NET test website, as described in Chapter 1. Then, add a new XAML file to your ASP.NET website
(not the Silverlight project). To do so, select the ASP.NET website in the Solution Explorer, and choose
Website  Add New Item. Choose the Silverlight group, and select the Silverlight JScript page template.
Then enter a name and click Add. This XAML file will hold the markup for your splash screen.

When you add a new XAML file, Visual Studio creates a basic XAML skeleton that defines a Canvas.
That’s because Visual Studio assumes you’re building a Silverlight 1.0 application, which supports a
much smaller set of elements and doesn’t include any of the more advanced layout containers. But you
can use any of the core Silverlight elements—that is, elements that are in the built-in assemblies and
don’t require a separate download. You can’t use elements that are defined in the add-on
System.Windows.Controls.dll assembly or those in any other assembly that needs to be packaged in the
XAP and downloaded by the client.

 Tip The easiest way to build a simple splash screen is to create it in your Silverlight project and then copy the
markup into the splash screen file on your website. This way, you can take advantage of the Visual Studio design
surface and XAML IntelliSense, which won’t be available if you write the markup directly in your ASP.NET website.

Here’s the XAML for the splash screen shown in Figure 6-4. It includes a Grid with a TextBlock and
two Rectangle elements. (Rectangle is a shape-drawing element you’ll learn about in Chapter 8.) The
first rectangle paints the background of the progress bar, and the second paints the foreground. The two
Rectangle objects are placed together in a single-celled grid so that one rectangle is superimposed over
the other:

<Grid xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <StackPanel VerticalAlignment="Center">
 <Grid>
 <Rectangle x:Name="progressBarBackground" Fill="White" Stroke="Black"
 StrokeThickness="1" Height="30" Width="200"></Rectangle>
 <Rectangle x:Name="progressBar" Fill="Yellow" Height="28" Width="0">
 </Rectangle>
 </Grid>
 <TextBlock x:Name="progressText" HorizontalAlignment="Center"
 Text="0% downloaded ..."></TextBlock>
 </StackPanel>
</Grid>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 6  THE APPLICATION MODEL

215

Next, you need to add a JavaScript function to your HTML entry page or ASP.NET test page. (If you
plan to use both, place the JavaScript function in a separate file and then link to it in both files, using the
source attribute of the script block.) The JavaScript code can look up named elements on the page using
the sender.findName() method and manipulate their properties. It can also determine the current
progress using the eventArgs.progress property. In this example, the event-handling code updates the
text and widens the progress bar based on the current progress percentage:

<script type="text/javascript">
 function onSourceDownloadProgressChanged(sender, eventArgs)
 {
 sender.findName("progressText").Text =
 Math.round((eventArgs.progress * 100)) + "% downloaded ...";
 sender.findName("progressBar").Width =
 eventArgs.progress * sender.findName("progressBarBackground").Width;
 }
</script>

 Note The splash-screen example that’s included with the downloadable code uses a slightly more advanced
technique that draws on a transform, a concept you’ll explore in Chapter 8. This approach allows you to create a
progress-bar effect without hard-coding the maximum width, so the progress bar is sized to fit the current
browser window.

To use this splash screen, you need to add the splashscreensource parameter to identify your XAML
splash screen and the onsourcedownloadprogresschanged parameter to hook up your JavaScript event
handler. If you want to react when the download is finished, you can hook up a different JavaScript event
handler using the onsourcedownloadcomplete parameter:

<object data="data:application/x-silverlight," type="application/x-silverlight-2"
 width="100%" height="100%">
 <param name="source" value="ClientBin/SplashScreen.xap"/>
 <param name="onerror" value="onSilverlightError" />
 <param name="background" value="white" />
 <param name="splashscreensource" value="SplashScreen.xaml" />
 <param name="onsourcedownloadprogresschanged"
 value="onSourceDownloadProgressChanged" />
 ...
</object>

Expert designers can craft elaborate splash screens. This tradition is well-established with Flash
applications. To see a taste of what’s possible, visit www.smashingmagazine.com/2008/03/13/showcase-of-
creative-flash-preloaders. You can duplicate many of these effects with an ordinary Silverlight splash
screen, like the one described here. However, some are extremely difficult. Most would be far easier to
achieve after you’ve downloaded your application, such as code-heavy animations.

If you want more flexibility to create an eye-catching splash screen, you need to use a completely
different technique. Make your application as small as possible. Move its functionality to class-library
assemblies, and place large resources (such as graphics and videos) in separate files or in separate class-
library assemblies. Now that your application is stripped down to a hollow shell, it can be downloaded

http://www.smashingmagazine.com/2008/03/13/showcase-of-creative-flash-preloaders
http://www.smashingmagazine.com/2008/03/13/showcase-of-creative-flash-preloaders
http://www.smashingmagazine.com/2008/03/13/showcase-of-creative-flash-preloaders

CHAPTER 6  THE APPLICATION MODEL

216

quickly. After it’s downloaded, your application can show its fancy preloader and start the real work—
programmatically downloading the resources and assemblies it needs to function.

Designing an application this way takes more work, but you’ll get all the information you need to
perform dynamic downloads in the following sections. Pay particular attention to the “Downloading
Assemblies on Demand” section later in this chapter.

Binary Resources
As you learned in Chapter 1, a Silverlight application is actually a package of files that’s archived using
ZIP compression and stored as a single file, with the extension .xap. In a simple application, the XAP file
has little more than a manifest (which list the files your project uses) and your application assembly. But
you can place something else in the XAP file: resources.

A XAP resource is a distinct file that you want to make available to your compiled application.
Common examples include graphical assets—images, sounds, and video files that you want to display in
your user interface.

Using resources can be unnecessarily complicated because of the wealth of different options
Silverlight provides for storing them. Here’s a quick roundup of your options:

• In the application assembly: The resource file is embedded in the compiled DLL
file for your project, such as SilverlightApplication1.dll. This is the default
approach.

• In the application package: The resource file is placed in the XAP file alongside
your application assembly. It’s just as easy to deploy, but now it’s easier to
manage because you replace or modify your assets by editing the XAP file, without
compiling your application.

• On the site of origin: The resource file is placed on the website alongside your XAP
file. Now you have more deployment headaches, because you need to make sure
you deploy both the XAP file and the resource file. However, you gain the ability to
use your resource in other ways—for example, you can use images in ordinary
HTML web pages or make videos available for easy downloading. You can reduce
the size of the initial XAP download, which is important if the resources are large.

These aren’t all your options. As you’ll see later in this chapter in the “Class Library Assemblies”
section, you can also place resources in other assemblies that your application uses. (This approach
gives you more advanced options for controlling the way you share content between different Silverlight
applications.) But before tackling that topic, it’s worth taking a closer look at the more common options
outlined previously. In the following sections, you’ll explore each approach.

 Note Binary resources shouldn’t be confused with the XAML resources you explored in Chapter 2. XAML
resources are objects that are declared in your markup. Binary resources are non-executable files that are inserted
into your assembly or XAP file when your project is compiled.

CHAPTER 6  THE APPLICATION MODEL

217

Placing Resources in the Application Assembly
This is the standard approach, and it’s similar to the approach used in other types of .NET applications
(such as WPF applications). For example, if you want to show an image in Silverlight’s Image element,
begin by adding the image file to your project. By default, Visual Studio gives image files the Resource
build action, as shown in Figure 6-5. (To change the build action of an existing file, select it in the
Solution Explorer, and make a new selection in the Build Action box in the Properties pane.)

Figure 6-5. An application resource

 Note Don’t confuse the build action of Resource with Embedded Resource. Although both do the same thing
(embed a resource in the assembly as a block of binary data), Silverlight doesn’t support the Embedded Resource
approach, and you can’t reference files that are stored in this way using URIs.

CHAPTER 6  THE APPLICATION MODEL

218

Now, when you compile your application, the resource will be embedded in the project assembly,
and the project assembly will be placed in the XAP file.

 Note Although the resource option makes it most difficult for a user to extract a resource file from your
application, it’s still possible. To retrieve a resource, the user needs to download the XAP file, unzip it, and
decompile the DLL file. Tools like Reflector (http://reflector.red-gate.com) provide plug-ins that can extract
and save embedded resources from an assembly.

Using an embedded resource is easy because of the way Silverlight uses URIs. If you use a relative
URI with the Image (for graphics) or MediaElement (for sound and video files), Silverlight checks the
assembly for a resource with the right name. That means this is all you need to use the resource shown
in Figure 6-5:

<Image Source="grandpiano.jpg"></Image>

Using Subfolders
It’s possible to use the folders to group resource files in your project. This changes how the resource is
named. For example, consider Figure 6-6, which puts the grandpiano.jpg file in a subfolder named
Images.

Figure 6-6. A resource in a subfolder

Now, you need to use this URI:

<Image Source="Images/grandpiano.jpg"></Image>

http://reflector.red-gate.com

CHAPTER 6  THE APPLICATION MODEL

219

Programmatically Retrieving a Resource
Using resources is easy when you have an element that supports Silverlight’s URI standard, such as
Image or MediaElement. However, in some situations, you need to manipulate your resource in code
before handing it off to an element, or you may not want to use an element at all. For example, you may
have some static data in a text or binary file that’s stored as a resource. In your code, you want to retrieve
this file and process its data.

To perform this task, you need the help of the Application.GetResourceStream() method. It allows
you to retrieve the data for a specific resource, which you indicate by supplying the correct URI. The
trick is that you need to use the following URI format:

AssemblyName;component/ResourceFileName

For example, if you have a resource named ProductList.bin in a project named
SilverlightApplication1, you use this line of code:

StreamResourceInfo sri = Application.GetResourceStream(
 new Uri("SilverlightApplication1;component/ProductList.bin", UriKind.Relative));

The GetResourceStream() method doesn’t retrieve a stream. Instead, it gets a
System.Windows.Resources.StreamResourceInfo object, which wraps a Stream property (with the
underlying stream) and a ContentType property (with the MIME type). Here’s the code that creates a
BinaryReader object for the stream:

BinaryReader reader = new BinaryReader(sri.Stream);

You can now use the methods of the binary reader to pull each piece of data out of the file. The same
approach works with StreamReader (for text-based data) and XmlReader (for XML data). But you have a
slightly easier option when XML data is involved, because the XmlReader.Create() method accepts either
a stream or a URI string that points to a resource. So, if you have a resource named ProductList.xml, this
code works:

StreamResourceInfo sri = Application.GetResourceStream(
 new Uri("SilverlightApplication1;component/ProductList.xml", UriKind.Relative));
XmlReader reader = XmlReader.Create(sri.Stream, new XmlReaderSettings());

So does this more streamlined approach:

XmlReader reader = XmlReader.Create("ProductList.xml")

Placing Resources in the Application Package
Your second option for resource storage is to place it in the XAP file where your application assembly is
stored. To do this, you need to add the appropriate file to your project and change the build action to
Content. Best of all, you can use almost the same URLs. Just precede them with a forward slash, as
shown here:

<Image Source="/grandpiano.jpg"></Image>

Similarly, here’s a resource in a subfolder in the XAP:

<Image Source="/Images/grandpiano.jpg"></Image>

The leading slash represents the root of the XAP file.
If you add the extension .zip to your XAP file, you can open it and verify that the resource file is

stored inside, as shown in Figure 6-7.

CHAPTER 6  THE APPLICATION MODEL

220

Figure 6-7. A resource in a XAP file

Placing resources in the XAP file gives you the same easy deployment as embedding them in the
assembly. However, it adds a bit of flexibility. If you’re willing to do a little more work, you can
manipulate the files in the XAP file (for example, updating a graphic) without recompiling the
application. Furthermore, if you have several class library assemblies in the same XAP file, they can all
use the same resource files in the XAP. (This is an unlikely arrangement but a possible one.) Overall,
placing resources in the application package is a similar approach to embedding them in the assembly.

Placing Resources on the Web
Your third option is to remove resource files from your application but make them available on the Web.
That way, your application can download them when needed. Thanks to Silverlight’s URI support, you
can usually use this scenario without writing any extra code to deal with the download process.

The simplest option when deploying resources on the Web is to place them in the same web
location as your Silverlight assembly. If you’re using an ASP.NET test website, you can easily add a
resource file to the test website—just place it in the ClientBin folder where the XAP file is located. If
you’re using an HTML test page, the easiest option is to tell Visual Studio to copy your resource file to
the build location. To do so, begin by adding the resource file to your Silverlight project. Then, select the
resource file and choose None for the build action, so it won’t be compiled into the XAP. Finally, set the
Copy to Output Directory setting to Copy Always.

When using web resources, you use the same URIs as when placing resources in the application
package. These are relative URIs prefaced with a forward slash. Here’s an example:

<Image Source="/grandpiano.jpg"></Image>

CHAPTER 6  THE APPLICATION MODEL

221

Silverlight checks the XAP file first and then checks the folder where the XAP file is located. Thus,
you can freely switch between the XAP file approach and the website approach after you’ve compiled an
application—you just need to add or remove the resource files in the XAP file.

Web-deployed resources don’t need to be located at the same site as your XAP file, although that’s
the most common approach. If you use an absolute URL, you can show an image from any location:

<Image Source="http://www.mysite.com/Images/grandpiano.jpg"></Image>

 Note When you’re testing an application that uses images with absolute URLs, a small glitch can creep in. The
problem is that the Image element can’t perform cross-scheme access, which means that if you’re running
Silverlight directly from your hard drive using a simple HTML test page, you can’t retrieve an image from the Web.
To resolve this problem, add an ASP.NET test website to your project, as described in Chapter 1.

Web-deployed resources are treated in a significantly different way in your application. Because
they aren’t in the XAP file (either directly or indirectly, as part of the assembly), they aren’t compressed.
If you have a large, easily compressed file (say, XML data), this means the web-deployed option results in
longer download times, at least for some users. More significant is the fact the web-deployed resources
are downloaded on demand, when they’re referenced in your application. Thus, if you have a significant
number of large resources, web deployment is often much better—it trades a long delay on startup for
many smaller delays when individual resources are accessed.

 Note The obvious disadvantage with all of these resource-storing approaches is that they require fixed,
unchanging data. In other words, there’s no way for your application to modify the resource file and then save the
modified version in the assembly, XAP file, or website. (In theory, the last option—website uploading—could be
made possible, but it would create an obvious security hole.) The best solution when you need to change data is to
use isolated storage (if storing the changed data locally is a good enough solution) or a web service (if you need a
way to submit changes to the server). These approaches are discussed in Chapter 22 and Chapter 19,
respectively.

Failing to Download Resources
When you use web-deployed resources, you introduce the possibility that your resources won’t be where
you expect them to be and that you won’t be able to download them successfully. Elements that use the
URI system often provide events to notify when a download can’t be completed, such as ImageFailed for
the Image and MediaFailed for the MediaElement.

Failing to download a resource isn’t considered a critical error. For example, if the Image element
fails to find the right picture, it simply remains blank. But you can react to the corresponding failure
event to update your user interface.

CHAPTER 6  THE APPLICATION MODEL

222

Downloading Resources with WebClient
You can’t access web-deployed resources using the handy Application.GetResourceStream() method. As
a result, if you want to use the data from a web-deployed resource and you don’t have an element that
uses Silverlight URIs, you’ll need to do more work.

In this situation, you need to use the System.Net.WebClient class to download the resource. The
WebClient class provides three key methods. OpenReadAsync() is the most useful—it downloads a file as
blob of binary data, which is then exposed as a stream. By comparison, DownloadStringAsync()
downloads the contents into a single string. Finally, CancelAsync() halts any download that’s currently
underway.

WebClient does its work asynchronously. You can respond to the DownloadProgressChanged event
while the download is underway to find out how many bytes have been retrieved so far. When the
download is complete, you can respond to the OpenReadCompleted or DownloadStringCompleted
event, depending on which operation you’re using, and then retrieve your content.

WebClient has the following important limitations:

• It doesn’t support downloading from the file system: To use the WebClient class,
you must be running your application through a web server. The easiest way to do
this in Visual Studio is to let Visual Studio create an ASP.NET website, which is
then hosted by the integrated web server (as described in Chapter 1). If you open
your Silverlight page directly from the file system, you’ll get an exception when
you attempt to use the downloading methods in the WebClient.

• It doesn’t support relative URIs: To get the correct URI, you can determine the URI
of the current page and then add the relative URI that points to your resource.

• It allows only one download at a time: If you attempt to start a second request
while the first is underway, you’ll receive a NotSupportedException.

 Note There’s one other issue: Silverlight’s security model. If you plan to use WebClient to download a file from
another web server (not the web server where your application is hosted), make sure that web server explicitly
allows cross-domain calls. Chapter 19 discusses this issue in detail.

Here’s an example that puts the pieces together. It reads binary data from the ProductList.bin file, as
you saw earlier. However, in this example, ProductList.bin is hosted on the website and isn’t part of the
XAP file or project assembly. (When you test this example using an ASP.NET website, you need to add
the ProductList.bin file to the ASP.NET website, not the Silverlight project. To see the correct setup, refer
to the downloadable examples for this chapter.)

When a button is clicked, the downloading process starts. Notice that string processing is at work
with the URI. To get the right path, you need to create a fully qualified URI using the current address of
the entry page, which you can retrieve from the Host property of the current Application object:

private void cmdRetrieveResource_Click(object sender, RoutedEventArgs e)
{
 // Construct the fully qualified URI.
 // Assume the file is in the website root, one level above the ClientBin
 // folder. (In other words, the file has been added to the root level

CHAPTER 6  THE APPLICATION MODEL

223

 // of the ASP.NET website.)
 string uri = Application.Current.Host.Source.AbsoluteUri;
 int index = uri.IndexOf("/ClientBin");
 uri = uri.Substring(0, index) + "/ProductList.bin";

 // Begin the download.
 WebClient webClient = new WebClient();
 webClient.OpenReadCompleted += webClient_OpenReadCompleted;
 webClient.OpenReadAsync(new Uri(uri));
}

Now, you can respond when the file has been completed and manipulate the downloaded data as a
stream:

private void webClient_OpenReadCompleted (object sender,
 OpenReadCompletedEventArgs e)
{
 if (e.Error != null)
 {
 // (Add code to display error or degrade gracefully.)
 }
 else
 {
 Stream stream = e.Result;
 BinaryReader reader = new BinaryReader(stream);
 // (Now process the contents of the resource.)
 reader.Close();
 }
}

For simplicity’s sake, this code retrieves the resource every time you click the button. But a more
efficient approach is to store the retrieved data in memory so it doesn’t need to be downloaded more
than once.

The OpenReadCompletedEventArgs provides several pieces of information along with the Result
property. To determine whether the operation was cancelled using the CancelAsync() method, you can
check the Cancelled property, and if an error occurred, you can get the exception object from the Error
property. (In this situation, attempting to read the other properties of the
OpenReadCompletedEventArgs object will result in a TargetInvocationException.) You can also use an
overloaded version of the OpenReadAsync() method that accepts a custom object, which you can then
retrieve from the UserState property. However, this is of limited use, because WebClient allows only one
download at a time.

When you’re downloading a large file, it’s often worth showing a progress indicator to inform the
user about what’s taking place. To do so, attach an event handler to the DownloadProgressChanged
event:

webClient.DownloadProgressChanged += webClient_DownloadProgressChanged;

Here’s the code that calculates the percentage that’s been downloaded and uses it to set the value of
a progress bar and a text label:

private void webClient_DownloadProgressChanged(object sender,
 DownloadProgressChangedEventArgs e)
{
 lblProgress.Text = e.ProgressPercentage.ToString() + " % downloaded.";

CHAPTER 6  THE APPLICATION MODEL

224

 progressBar.Value = e.ProgressPercentage
}

Class Library Assemblies
So far, the examples you’ve seen in this book have placed all their code into a single assembly. For a
small or modest-sized Silverlight application, this straightforward design makes good sense. But it’s not
hard to imagine that you might want to factor out certain functionality and place it in a separate class
library assembly. Usually, you’ll take this step because you want to reuse that functionality with more
than one Silverlight application. Alternatively, you may want to break it out it so it can be coded,
compiled, debugged, and revised separately, which is particularly important if that code is being created
by a different development team.

Creating a Silverlight class library is easy. It’s essentially the same process you follow to create and
use class library assemblies in ordinary .NET applications. First, create a new project in Visual Studio
using the Silverlight Class Library project template. Then, add a reference in your Silverlight application
that points to that project or assembly. The dependent assembly will be copied into the XAP package
when you build your application.

Using Resources in an Assembly
Class libraries give you a handy way to share resources between applications. You can embed a resource
in a class library and then retrieve it in your application. This technique is easy—the only trick is
constructing the right URIs. To pull a resource out of a library, you need to use a URI that includes the
application in this format:

/ClassLibraryName;component/ResourceFileName

This is the same format you learned about earlier, in the section “Programmatically Retrieving a
Resource,” but with one addition: now, the URI begins with a leading slash, which represents the root of
the XAP file. This URI points to the dependent assembly in that file and then indicates a resource in that
assembly.

For example, consider the ResourceClassLibrary assembly in Figure 6-8. It includes a resource
named happyface.jpg, and that file has a build action of Resource.

CHAPTER 6  THE APPLICATION MODEL

225

Figure 6-8. A resource in a class library

Here’s an image file that uses the resource from the class library:

<Image Source="/ResourceClassLibrary;component/happyface.jpg"></Image>

Downloading Assemblies on Demand
In some situations, the code in a class library is used infrequently, or perhaps not at all for certain users.
If the class library contains a significant amount of code or (more likely) has large embedded resources
such as graphics, including it with your application will increase the size of your XAP file and lengthen
download times needlessly. In this case, you may want to create a separate component assembly—one
that isn’t downloaded until you need it. This scenario is similar to on-demand resource downloading.
You place the separate resource in a separate file outside of the XAP file but on the same website.

Before you use assembly downloading, you need to make sure the dependent assembly isn’t placed
in the XAP file. To do so, select the project reference that points to the assembly. In the Properties
window, set Copy Local to false. Next, make sure the assembly is copied to the same location as your
website. If you’re using an ASP.NET test website, that means you must add the assembly to the ClientBin
folder in the test website. (You can’t try this example with a simple HTML test page, because WebClient
doesn’t work when you run a Silverlight application from the file system.)

CHAPTER 6  THE APPLICATION MODEL

226

To implement on-demand downloading of assemblies, you need to use the WebClient class you saw
earlier, in conjunction with the AssemblyPart class. The WebClient retrieves the assembly, and the
AssemblyPart makes it available for downloading:

string uri = Application.Current.Host.Source.AbsoluteUri;
int index = uri.IndexOf("/ClientBin");
// In this example, the URI includes the /ClientBin portion, because we've
// decided to place the DLL in the ClientBin folder.
uri = uri.Substring(0, index) + "/ClientBin/ResourceClassLibrary.dll";

// Begin the download.
WebClient webClient = new WebClient ();
webClient.OpenReadCompleted += webClient_OpenReadCompleted;
webClient.OpenReadAsync(new Uri(uri));

When the assembly is downloaded, you use the AssemblyPart.Load() method to load it into the
current application domain:

private void webClient_OpenReadCompleted (object sender,
 OpenReadCompletedEventArgs e)
{
 if (e.Error != null)
 {
 // (Add code to display error or degrade gracefully.)
 }
 else
 {
 AssemblyPart assemblypart = new AssemblyPart();
 assemblypart.Load(e.Result);
 }
}

After you’ve performed this step, you can retrieve resources from your assembly and instantiate
types from it. It’s as though your assembly was part of the XAP file from the start. You can try a
demonstration of this technique with the sample code for this chapter.

Once again, it’s important to keep track of whether you’ve downloaded an assembly so you don’t
attempt to download it more than once. Some applications daisy-chain assemblies: one application
downloads other dependent assemblies on demand, and these assemblies download additional
assemblies when they need them.

 Tip If you attempt to use an assembly that hasn’t been downloaded, you’ll receive an exception. But the
exception won’t be raised to the code that is attempting to use the assembly. Instead, that code will be aborted,
and the exception will pass to the event handler for the Application.UnhandledException event. The exception is a
FileNotFoundException object, and the message includes the name of the missing assembly.

CHAPTER 6  THE APPLICATION MODEL

227

Supporting Assembly Caching
As you learned in Chapter 1, assembly caching is a feature that allows Silverlight to download class
library assemblies and store them in the browser cache. This way, these assemblies don’t need to be
downloaded every time the application is launched.

 Note A common misconception is that assembly caching replaces the on-demand assembly loading technique
that’s described in the previous section. However, both approaches have different effects. Assembly caching
reduces the startup time on repeat visits to the same application (or when running applications that share some of
the same functionality). On-demand assembly loading reduces the startup time on every visit, regardless of what’s
in the browser cache and whether the application has been used before. Assembly caching is particularly useful
with large, frequently used assemblies that your application is sure to use. On-demand assembly loading is
particularly useful for large, infrequently used assembly that your application may not need to download ever.

By default, the assemblies you build won’t support assembly caching. However, you can add this
support by satisfying two requirements. First, your assembly must have a strong name. Second, your
assembly needs a special type of XML file that describes its contents, called an .extmap.xml file. The
following sections walk you through both requirements, and you can refer to the downloadable code for
this chapter to assembly caching in action with a custom assembly.

The Strong Key Name
To support assembly caching, your class library assembly needs a strong name, which will uniquely
identify it in the browser cache and prevent naming conflicts. To create a strong key for your assembly,
follow these steps:

1. Double-click the Properties item in the Solution Explorer.

2. Click the Signing tab.

3. Select the “Sign the assembly” option.

4. In the “Choose a strong key name” list, choose <New...> to show the Create
Strong Name Key dialog box.

5. To finish creating your key, you’ll need to supply a file name (like MyKey.snk)
and, optionally, a password.

6. Click OK. Visual Studio will create the new key file and add it to your class
library project.

This creates a strong key file and uses it for your assembly. From this point on, every time you
compile your project, Visual Studio uses the strong key to sign the final assembly.

Before you can continue to the next step, you need to know public key token of the key pair that’s
used to sign your assembly. Unfortunately, Visual Studio doesn’t provide an easy way to get this
information (at least not without a plug-in of some sort). Instead, you need to resort to the sn.exe

CHAPTER 6  THE APPLICATION MODEL

228

command-line tool. First, choose Microsoft Visual Studio 2010  Visual Studio Tools  Visual Studio
Command Prompt. Once you’ve loaded the Visual Studio command prompt, change to the directory
that holds your key file. Then, run the following two commands (replacing MyKey.snk with the name of
your key):

sn –p MyKey.snk MyKey.bin
sn –t MyKey.bin

When you complete the second command, you’ll see a message like this:

Microsoft (R) .NET Framework Strong Name Utility Version 3.5.30729.1
Copyright (c) Microsoft Corporation. All rights reserved.

Public key token is e6a351dca87c1032

The bold part is the piece of information you need for the next step: creating a .extmap.xml file for
your assembly.

The .extmap.xml File
The .extmap.xml file is an ordinary text file that holds XML content. It’s named to match your assembly.
For example, if you have a class library assembly named CacheableAssembly.dll, you’ll need to create a
file named CacheableAssembly.extmap.xml. The presence of this file tells Silverlight that your assembly
supports assembly caching.

To make life easy, you can add the .extmap.xml file to your class library project. Select it in the
Solution Explorer, and set Build Action to None and the Copy to Output Directory setting to “Copy
always.” This ensures that the file will be placed in the same directory as your assembly file when you
compile it. Figure 6-9 shows a class library with the appropriate .extmap.xml file.

CHAPTER 6  THE APPLICATION MODEL

229

Figure 6-9. The .extmap.xml file for CacheableAssembly.dll

The easiest way to create an .extmap.xml file is to take a sample (like the one shown next), and
modify it for your assembly. In the following listing, the details you need to change are in bold:

<?xml version="1.0"?>
<manifest xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <assembly>
 <name>CacheableAssembly</name>
 <version>1.0.0.0</version>
 <publickeytoken>e6a351dca87c1032</publickeytoken>
 <relpath>CacheableAssembly.dll</relpath>
 <extension downloadUri="CacheableAssembly.zip" />
 </assembly>
</manifest>

The name and version details are obvious, and they should match your assembly. The public key
token is the identifying fingerprint of the strong key that was used to sign your assembly, and you
collected it with the sn.exe tool in the previous section. The relative path (relpath) is the exact file name
of the assembly. Finally, the downloadUri attribute provides the most important piece of information—
it tells the application where to find the packaged, downloadable assembly.

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema

CHAPTER 6  THE APPLICATION MODEL

230

You have two options for setting downloadUri. The easiest approach is the one that’s used in the
previous example—simply supply a file name. When you switch on assembly caching in your
application, Visual Studio will take your class library assembly (in this case, CacheableAssembly.dll),
compress it, and place the compressed file (in this case, CacheableAssembly.zip) alongside the compiled
XAP file. As you saw in Chapter 1, this is the approach that Silverlight’s add-on assemblies use.

 Note Although Visual Studio compresses your assembly using ZIP compression, it’s not necessary to use a file
name that ends with the extension .zip. If your web server requires a different extension, feel free to use that for
the downloadUri. And if you have use the same downloadUri file name for more than one assembly, Visual Studio
compresses all the assemblies into a single ZIP file.

Your other option is to use an absolute URI for the downloadUri:

<extension
downloadUri="http://www.mysite.com/assemblies/v1.0/CacheableAssembly.zip" />

In this case, Visual Studio won’t package up the assembly when you compile the application.
Instead, it expects you to have already placed the assembly at the web location you’ve specified. This
gives you a powerful way to share libraries between multiple applications. However, the download
location must be on the same domain as the Silverlight application, or it must explicitly allow cross-
domain access, as described in Chapter 19.

With the .extmap.xml file shown earlier, you’re ready to use assembly caching. To try it, create an
application that uses your class library. Turn on assembly caching for your application by opening the
project properties and selecting the “Reduce XAP size by using application library caching” option.
Finally, build your application. If you check out the contents of your Debug folder, you’ll find the
packaged up ZIP file for your assembly (as shown in Figure 6-10).

http://www.mysite.com/assemblies/v1.0/CacheableAssembly.zip

CHAPTER 6  THE APPLICATION MODEL

231

Figure 6-10. The compressed assembly, ready for caching

The Last Word
In this chapter, you explored the Silverlight application model in detail. You reexamined the application
object and the events it fires. You learned how to pass initialization parameters from different web pages
and how to display a custom splash screen while your application is being downloaded. Finally, you
explored the resource system that Silverlight uses and considered the many options for deploying
resources and class libraries, from placing them alongside your assembly to downloading them only
when needed.

C H A P T E R 7

233

Navigation

With the know-how you’ve picked up so far, you’re ready to create applications that use a variety of
different controls and layouts. However, there’s still something missing: the ability to transition from
one page to another. After all, traditional rich-client applications are usually built around different
windows that encapsulate distinct tasks. To create this sort of application in Silverlight, you need a way
to move beyond the single-page displays you’ve seen so far.

You can use two basic strategies to perform page changes in a Silverlight application, and each one
has its proper place. The first option is to do it yourself by directly manipulating the user interface. For
example, you can use code to access the root visual, remove the user control that represents the first
page, and add another user control that represents a different page. This technique is straightforward,
simple, and requires relatively little code. It also gives you the ability to micromanage details such as
state management and to apply animated transition effects.

The second option is to use Silverlight’s navigation system, which revolves around two new
controls: Frame and Page. The basic idea is that a single frame container can switch between multiple
pages. Although this approach to navigation is really no easier than managing the user interface
manually, it provides a number of value-added features that would be extremely tedious to implement
on your own. These include meaningful URIs, page tracking, and integration with the browser’s history
list.

In this chapter, you’ll start by learning the basic do-it-yourself method of navigation. Next, you’ll
take a quick detour to consider the ChildWindow class, which gives you a straightforward way to
simulate a modal dialog box (a window that temporary blocks the current page but doesn’t replace it).
Finally, you’ll step up to the Frame and Page controls and see how they plug into Silverlight’s built-in
navigation system.

Loading User Controls
The basic idea of do-it-yourself navigation is to programmatically change the content that’s shown in
the Silverlight page, usually by manipulating layout containers or content controls. Of course, you don’t
want to be forced to create and configure huge batches of controls in code—that task is easier to
complete using XAML. Instead, you need a way to create and load distinct user controls, each of which
represents a page, and each of which is prepared at design time as a separate XAML file.

In the following sections, you’ll see two related variations of this technique. First, you’ll see an
example that loads user controls into an existing page. This approach is best suited to user interfaces
that need to keep some common elements (for example, a toolbar at the top or information panel at the
side) as they load new content. Next, you’ll see how to swap out the entire content of the current page.

CHAPTER 7  NAVIGATION

234

Embedding User Controls in a Page
Many Silverlight applications are based around a single central page that acts as the main window for
the entire application. You can change part of this page to load new content and simulate navigation.

One example of this design is the menu page that’s used for most of the sample projects that
accompany this book. This page uses the Grid control to divide itself into two main sections (separated
by a horizontal GridSplitter). At the top is a list of all the pages you can visit. When you select one of the
items from this list, it’s loaded into the larger content region underneath, as shown in Figure 7-1.

Figure 7-1. A window that loads user controls dynamically

Dynamically loading a user control is easy—you simply need to create an instance of the
appropriate class and then add it to a suitable container. Good choices include the Border, ScrollViewer,
StackPanel, or Grid control. The example shown previously uses the Border element, which is a content
control that adds the ability to paint a border around its edges using the BorderBrush and
BorderThickness properties.

Here’s the markup (without the list of items in the list box):

<UserControl x:Class="Navigation.MenuPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:basics=
 "clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls">
 <Grid x:Name="LayoutRoot" Background="White" Margin="5">
 <Grid.RowDefinitions>
 <RowDefinition Height="*"></RowDefinition>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 7  NAVIGATION

235

 <RowDefinition Height="Auto"></RowDefinition>
 <RowDefinition Height="3*"></RowDefinition>
 </Grid.RowDefinitions>

 <ListBox Grid.Row="0" SelectionChanged="lstPages_SelectionChanged">
 ...
 </ListBox>

 <basics:GridSplitter Grid.Row="1" Margin="0 3" HorizontalAlignment="Stretch"
 Height="2"></basics:GridSplitter>

 <Border Grid.Row="2" BorderBrush="SlateGray" BorderThickness="1"
 x:Name="borderPlaceholder" Background="AliceBlue"></Border>
 </Grid>
</UserControl>

In this example, the Border is named borderPlaceholder. Here’s how you might display a new
custom user control named Page2 in the borderPlaceholder region:

Page2 newPage = new Page2();
borderPlaceholder.Child = newPage;

If you’re using a different container, you may need to set a different property instead. For example,
Silverlight’s layout panels can hold multiple controls and so provide a Children collection instead of a
Child property. You need to clear this collection and then add the new control to it. Here’s an example
that duplicates the previous code, assuming you’ve replaced the Border with a single-celled Grid:

Page2 newPage = new Page2();
gridPlaceholder.Children.Clear();
gridPlaceholder.Children.Add(newPage);

If you create a Grid without declaring any rows or columns, the Grid has a single proportionately
sized cell that fits all the available space. Thus, adding a control to that Grid produces the same result as
adding it to a Border.

The actual code that’s used in the examples is a bit different because it needs to work for different
types of controls. To determine which type of user control to create, the code examines the ListBoxItem
object that was just clicked. It then uses reflection to create the corresponding user-control object:

private void lstPages_SelectionChanged(object sender, SelectionChangedEventArgs e)
{
 // Get the selected item.
 string newPageName = ((ListBoxItem)e.AddedItems[0]).Content.ToString();

 // Create an instance of the page named
 // by the current button.
 Type type = this.GetType();
 Assembly assembly = type.Assembly;
 UserControl newPage = (UserControl)assembly.CreateInstance(
 type.Namespace + "." + newPageName);

 // Show the page.
 borderPlaceholder.Child = newPage;
}

CHAPTER 7  NAVIGATION

236

Despite the reflection code, the process of showing the newly created user control—that is, setting
the Border.Child property—is exactly the same.

Hiding Elements
If you decide to create a dynamic page like the one shown in the previous example, you aren’t limited to
adding and removing content. You can also temporarily hide it. The trick is to set the Visibility property,
which is defined in the base UIElement class and inherited by all elements:

panel.Visibility = Visibility.Collapsed;

The Visibility property uses an enumeration that provides just two values: Visible and Collapsed.
(WPF included a third value, Hidden, which hides an element but keeps a blank space where it should
be. However, this value isn’t supported in Silverlight.) Although you can set the Visibility property of
individual elements, usually you’ll show and hide entire containers (for example, Border, StackPanel, or
Grid objects) at once.

When an element is hidden, it takes no space in the page and doesn’t receive any input events. The
rest of your interface resizes itself to fill the available space, unless you’ve positioned your other
elements with fixed coordinates using a layout container such as the Canvas.

 Tip Many applications use panels that collapse or slide out of the way. To create this effect, you can combine
this code with a dash of Silverlight animation. The animation changes the element you want to hide—for example,
shrinking, compressing, or moving it. When the animation ends, you can set the Visibility property to hide the
element permanently. You’ll see how to use this technique in Chapter 10.

Managing the Root Visual
The page-changing technique shown in the previous example is common, but it’s not suited for all
scenarios. Its key drawback is that it slots new content into an existing layout. In the previous example,
that means the list box remains fixed at the top of the page. This is handy if you need to make sure a
toolbar or panel always remains accessible, but it isn’t as convenient if you want to switch to a
completely new display for a different task.

An alternative approach is to change the entire page from one control to another. The basic
technique is to use a simple layout container as your application’s root visual. You can then load user
controls into the root visual when required and unload them afterward. (The root visual itself can never
be replaced after the application has started.)

As you learned in Chapter 6, the startup logic for a Silverlight application usually creates an instance
of a user control, as shown here:

private void Application_Startup(object sender, StartupEventArgs e)
{
 this.RootVisual = new MainPage();
}

The trick is to use something more flexible—a simple container like the Border or a layout panel like
the Grid. Here’s an example of the latter approach:

CHAPTER 7  NAVIGATION

237

// This Grid will host your pages.
private Grid rootGrid = new Grid();

private void Application_Startup(object sender, StartupEventArgs e)
{
 // Load the first page.
 this.RootVisual = rootGrid;
 rootGrid.Children.Add(new MainPage());
}

Now, you can switch to another page by removing the first page from the Grid and adding a
different one. To make this process relatively straightforward, you can add a static method like this to the
App class:

public static void Navigate(UserControl newPage)
{
 // Get the current application object and cast it to
 // an instance of the custom (derived) App class.
 App currentApp = (App)Application.Current;

 // Change the currently displayed page.
 currentApp.rootGrid.Children.Clear();
 currentApp.rootGrid.Children.Add(newPage);
}

You can navigate at any point using code like this:

App.Navigate(new Page2());

 Tip You can add a dash of Silverlight animation and graphics to create a more pleasing transition between
pages, such as a gentle fade or wipe. You’ll learn how to use this technique in Chapter 10.

Retaining Page State
If you plan to allow the user to navigate frequently between complex pages, it makes sense to create each
page once and keep the page instance in memory until later. This approach also has the sometimes-
important side effect of maintaining that page’s current state, including all the values in any input
controls.

To implement this pattern, you first need a system to identify pages. You could fall back on string
names, but an enumeration gives you better error prevention. Here’s an enumeration that distinguished
between three pages:

public enum Pages
{
 MainWindow,
 ReviewPage,
 AboutPage
}

CHAPTER 7  NAVIGATION

238

You can then store the pages of your application in private fields in your custom application class.
Here’s a simple dictionary that does the trick:

private static Dictionary<Pages, UserControl> pageCache =
 new Dictionary<Pages,UserControl>();

In your Navigate() method, create the page only if it needs to be created—in other words, the
corresponding object doesn’t exist in the collection of cached pages:

public static void Navigate(Pages newPage)
{
 // Get the current application object and cast it to
 // an instance of the custom (derived) App class.
 App currentApp = (App)Application.Current;

 // Check if the page has been created before.
 if (!pageCache.ContainsKey(newPage))
 {
 // Create the first instance of the page,
 // and cache it for future use.
 Type type = currentApp.GetType();
 Assembly assembly = type.Assembly;
 pageCache[newPage] = (UserControl)assembly.CreateInstance(
 type.Namespace + "." + newPage.ToString());
 }

 // Change the currently displayed page.
 currentApp.rootGrid.Children.Clear();
 currentApp.rootGrid.Children.Add(pageCache[newPage]);
}

Now, you can navigate by indicating the page you want with the Pages enumeration:

App.Navigate(Pages.MainWindow);

Because only one version of the page is ever created and it’s kept in memory over the lifetime of the
application, all of the page’s state remains intact when you navigate away and back again (see Figure 7-
2).

CHAPTER 7  NAVIGATION

239

Figure 7-2. Moving from one page to another

Browser History
The only limitation with the navigation methods described in this section is that the browser has no idea
you’ve changed from one page to another. If you want to let the user go back, it’s up to you to add the
controls that do it. The browser’s Back button will only send you to the previous HTML page (thereby
exiting your Silverlight application).

If you want to create an application that integrates more effectively with the browser and supports
the Back button, you’ll need to use the Frame and Page classes discussed later in this chapter.

Child Windows
In many situations, you don’t need a way to change the page—you just need to temporarily show some
sort of content before allowing the user to return to the main application page. The obvious example is a
confirmation dialog box, but Windows and web applications use pop-up windows to collect
information, show basic program information, and provide access to configuration settings.

In Silverlight, you can create this sort of design using a handy content control called ChildWindow.
Essentially, ChildWindow mimics the modal dialog boxes you’ve seen on the Windows platform. When
you show a child window, the rest of the application information is disabled (and a gray shaded overlay
is displayed over of it as a user cue). Then, the child window appears centered on top of the page. After
the user completes a task in the child window, your code closes it, and the rest of the application
becomes responsive again.

Figure 7-3 shows an example. Here, the page includes a single button that, when clicked, pops open
a child window requesting more information. When the user clicks a button (or clicks the X in the top-
right corner), the window vanishes.

CHAPTER 7  NAVIGATION

240

Figure 7-3. Showing a child window

The child window pops into view with a subtle but attractive expansion effect. It also behaves like a
real window, allowing you to click its title bar and drag it around the page (but not out of the browser
display area).

Although the ChildWindow control provides the illusion of a separate pop-up window that appears
on top of your application, it’s actually just another element that’s added to your existing page. However,
the ChildWindow control is clever enough to disable the rest of the content in the root visual of your
application and position itself appropriately, making it look and behave like a traditional pop-up
window. Finally, it’s worth noting that when you show a child window, the user interface underneath
remains active, even though the user can’t interact with it. For example, if you have an animation

CHAPTER 7  NAVIGATION

241

running or a video playing, it continues in the background while the child window is visible (unless you
explicitly stop it).

OTHER OPTIONS FOR SECONDARY WINDOWS

There are two alternatives to the ChildWindow class, which are appropriate in specialized scenarios.

The first alternative is the FloatableWindow control. It isn’t available as part of the main Silverlight runtime,
but you can download it from http://floatablewindow.codeplex.com. Unlike the ChildWindow control,
which always blocks the main user interface, the FloatableWindow lets the main window remain
responsive. That means you can use the FloatableWindow to display one or more pop-up windows over
your main Silverlight page and keep them there while the user interacts with the rest of the application.
You can use this design to implement a notification window, separate task area, or floating tool panel, but
tread with caution. If not handled carefully, floating windows can be confusing for the end user.

The second alternative is a native window. This is a distinct, truly independent window that’s created by
the operating system. However, the native window feature is available only to out-of-browser applications
that are running with elevated trust. You’ll learn how to create native window in Chapter 18.

Designing a ChildWindow
Before you can show a child window, you need to create one with a XAML template, in the same way you
design a user control. To add a bare-bones starter in Visual Studio, right-click the project name in the
Solution Explorer, and choose Add  New Item. Then, pick the Silverlight Child Window template, enter
a name, and click Add. Visual Studio creates the new XAML template and a code-behind file, and it adds
a reference to the System.Windows.Controls.dll assembly where the ChildWindow control is defined.

 Note ChildWindow is a control that derives from ContentControl. It adds two new properties (Title and
DialogResult), two methods (Show and Close), and two events (Closing and Closed).

After you’ve added a child window, you can design it in exactly the same way you design an ordinary
user control. To make your life easier, Visual Studio automatically creates a two-row Grid in the new
child window template and places OK and Cancel buttons in the bottom row, complete with event
handlers that close the window. (Of course, you can remove or reconfigure these buttons to suit your
application design.)

Here’s the markup for the child window shown in Figure 7-3. It provides two text boxes for user
information and adds the standard OK and Cancel buttons underneath:

<controls:ChildWindow x:Class="Navigation.UserInformation"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:controls=
"clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls"
 Title="UserInformation">

http://floatablewindow.codeplex.com
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 7  NAVIGATION

242

 <Grid x:Name="LayoutRoot" Margin="2">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"></RowDefinition>
 <RowDefinition Height="Auto"></RowDefinition>
 <RowDefinition Height="Auto"></RowDefinition>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 </Grid.ColumnDefinitions>

 <TextBlock>First Name:</TextBlock>
 <TextBox x:Name="txtFirstName" Grid.Column="1" Margin="3" Width="150"></TextBox>
 <TextBlock Grid.Row="1">Last Name:</TextBlock>
 <TextBox x:Name="txtLastName" Grid.Row="1" Grid.Column="1" Margin="3"></TextBox>

 <Button Grid.Row="2" Margin="3" Width="75" Height="23"
 HorizontalAlignment="Right" Content="OK" Click="cmdOK_Click"></Button>
 <Button Grid.Row="2" Grid.Column="1" Margin="3" Width="75" Height="23"
 HorizontalAlignment="Left" Content="Cancel" Click="cmdCancel_Click"></Button>
 </Grid>
</controls:ChildWindow>

The event handlers for the two buttons set the ChildWindow.DialogResult property. This property is
a nullable Boolean value that indicates whether the user accepted the action represented by this window
(true), cancelled it (false), or did neither (null).

private void cmdOK_Click(object sender, RoutedEventArgs e)
{
 this.DialogResult = true;
}

private void cmdCancel_Click(object sender, RoutedEventArgs e)
{
 this.DialogResult = false;
}

Setting the DialogResult property also closes the window, returning control to the root visual. In
some cases, the DialogResult property may not be relevant to your application (for example, if you’re
showing an About window that includes a single Close button). In this case, you can close the window by
using the ChildWindow.Close() method rather than setting the DialogResult property.

Showing a ChildWindow
Showing a child window is easy. You need to create an instance of your custom ChildWindow class and
call the Show() method:

UserInformation childWindow = new UserInformation();
childWindow.Show();

It’s important to realize that although the child window blocks the main user interface, the Show()
method doesn’t block the execution of your code. Thus, if you put code after the call to the Show()
method, that code runs immediately.

CHAPTER 7  NAVIGATION

243

This presents a problem if you need to react when the user closes the child window, which is usually
the case. In the example shown in Figure 7-3, the application needs to gather the entered user name and
use it to update the display in the main page. To perform this task, your code must respond to the
ChildWindow.Closed event. (The ChildWindow class also provides a Closing event that fires when the
window begins to close, but this is intended for scenarios when you need to cancel the close operation—
for example, if necessary information hasn’t been entered.)

Remember to attach an event handler to the Closed event before you show the child window:

UserInformation childWindow = new UserInformation();
childWindow.Closed += childWindow_Closed;
childWindow.Show();

There’s still more to think about. If your child window is anything more than a simple confirmation
box, you’ll probably need to return additional information to the rest of your application. In the current
example, that information consists of the user’s first and last names. In theory, your application code
could grab the ChildWindow object and directly extract this information from the appropriate controls.
However, this sort of interaction is fragile. It creates tight dependencies between the main page and the
child window, and these dependencies aren’t always obvious. If you change the design of your
application—for example, swapping the first name and last name text boxes for different controls—the
code breaks. A far better approach is to create an extra layer of public properties and methods in your
child window. Your main application page can call on these members to get the information it needs.
Because these methods are stored in the custom ChildWindow class, you’ll know to tweak them so they
continue to work if you revamp the child window’s user interface.

For example, in the current example, you can add this property to the UserInformation class to
expose the full name information:

public string UserName
{
 get { return txtFirstName.Text + " " + txtLastName.Text; }
}

Now, you can access this detail when you respond to the Closed event:

private void childWindow_Closed(object sender, EventArgs e)
{
 UserInformation childWindow = (UserInformation)sender;
 if (childWindow.DialogResult == true)
 {
 lblInfo.Text = "Welcome to this application, " + childWindow.UserName + ".";
 }
}

One final improvement is worth making. Currently, the child window is created each time the user
clicks the Enter User Information button. As a result, the first name and last name text boxes always
remain empty, even if the user has entered name information previously. To correct this, you can add a
property setter for the UserName property or, even better, you can keep the lightweight
UserInformation object in memory. In this example, the ChildWindow object is created it once, as a
member variable of the main page:

private UserInformation childWindow = new UserInformation();

You must now attach the ChildWindow.Closed event handler in the page constructor:

public ShowChildWindow()
{

CHAPTER 7  NAVIGATION

244

 InitializeComponent();
 childWindow.Closed += childWindow_Closed;
}

The UserInformation object will keep its state, meaning that every time you show it, the previously
entered name information will remain in place.

 Tip Here’s a neat way to use ChildWindow: to pop up rich error messages that have more polish than the basic
MessageBox. In fact, if you create a new project in Visual Studio using the Silverlight Navigation Application
template, you’ll find that it uses this design. The navigation template includes markup and code for a custom
ChildWindow called ErrorWindow. When the Application.UnhandledException event occurs, the application uses the
ErrorWindow to politely explain the problem.

The Frame and Page
Changing the user interface by hand is a good approach if your application has very few pages (like an
animated game that revolves around a main screen and a configuration window). It also makes sense if
you need complete control over the navigation process (perhaps so you can implement page-transition
effects, like the ones you’ll see in Chapter 10). But if you’re building a more traditional application and
you expect the user to travel back and forth through a long sequence of pages, Silverlight’s navigation
system can save you some significant work.

The navigation system is built into two controls: Frame and Page. Of the two, the Frame control is
the more essential, because it’s responsible for creating the container in which navigation takes place.
The Page control is an optional sidekick—it gives you a convenient way to show different units of
content in a frame. Both classes have members that expose the navigation features to your code.

Frames
The Frame is a content control—a control that derives from ContentControl and contains a single child
element. This child is exposed through the Content property.

Other content controls include Button, ListBoxItem, ToolTip, and ScrollViewer. However, the Frame
control has a notable difference: if you’re using it right, you’ll almost never touch the Content property
directly. Instead, you’ll change the content using the higher-level Navigate() method. The Navigate()
method changes the Content property, but it also triggers the navigation services that are responsible for
tracking the user’s page history and updating the browser’s URI.

For example, consider the following page markup. It defines a Grid that has two rows. In the top row
is a Border that holds a Frame. (Although the Frame class has the BorderBrush and BorderThickness
properties, it lacks the CornerRadius property, so you need to use a Border element if you want a
rounded border around your content.) In the bottom row is a button that triggers navigation. Figure 7-4
shows the page.

<UserControl x:Class="Navigation.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:navigation=
"clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Navigation">

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 7  NAVIGATION

245

 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition></RowDefinition>
 <RowDefinition Height="Auto"></RowDefinition>
 </Grid.RowDefinitions>

 <Border Margin="10" Padding="10" BorderBrush="DarkOrange" BorderThickness="2"
 CornerRadius="4">
 <navigation:Frame x:Name="mainFrame"></navigation:Frame>
 </Border>
 <Button Grid.Row="1" Margin="5" Padding="5" HorizontalAlignment="Center"
 Content="Navigate to a New Page" Click="cmdNavigate_Click"></Button>
 </Grid>
</UserControl>

To use the Frame class, you must map the System.Windows.Controls namespace from the
System.Windows.Controls.Navigation.dll assembly to an XML namespace prefix. This example uses the
prefix navigation.

Figure 7-4. An empty frame

Currently, the frame is empty. But if the user clicks the button, an event handler runs and calls the
Navigate() method. The Navigate() method takes a single argument—a URI pointing to a compiled
XAML file in your application:

private void cmdNavigate_Click(object sender, RoutedEventArgs e)
{
 mainFrame.Navigate(new Uri("/Page1.xaml", UriKind.Relative));
}

CHAPTER 7  NAVIGATION

246

This code works because the application includes a user control named Page1.xaml. Note that the
URI always begins with a forward slash, which represents the application root.

 Note You cannot use the Navigate() method with URIs that point to other types of content or to pages outside
your application (for example, external websites).

Here’s the markup for the Page1.xaml user control:

<UserControl x:Class="Navigation.Page1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <Grid x:Name="LayoutRoot" Background="White">
 <TextBlock TextWrapping="Wrap">This is the unremarkable content in
Page1.xaml.</TextBlock>
 </Grid>
</UserControl>

When you call the Navigate() method, Silverlight creates an instance of the Page1 class and uses it to
set the frame content, as shown in Figure 7-5.

Figure 7-5. Filling a frame with content through navigation

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 7  NAVIGATION

247

If you were performing navigation by hand, you could replace the call to Navigate() with this code:

// Create the user control.
Page1 newPage = new Page1();

// Show the user control, replacing whatever content is currently visible.
mainFrame.Content = newPage;

However, this code changes only the content, whereas the Navigate() method treats the action as a
higher-level navigation event that hooks into some additional features. When you call Navigate(), you’ll
notice two significant differences—browser URI integration and history support—which are described
in the following sections.

 Tip You can get the URI of the current page at any time using the Frame.Source property. You can also set the
Source property as an alternative to calling Navigate().

Browser URI Integration
When you change the content of a Frame control through the Navigate() method, the name of the XAML
resource is appended to the current URI, after the fragment marker (#). So if your application lives at this
URI:

localhost://Navigation/TestPage.html

and you perform navigation with code like this:

mainFrame.Navigate(new Uri("/Page1.xaml", UriKind.Relative));

you’ll now see this URI in your browser:

localhost://Navigation/TestPage.html#/Page1.xaml

This system has many implications—some good, some potentially bad (or at least complicating).
Essentially, when you use Silverlight’s frame-based navigation system, each page you load into the frame
has a distinct URI, which also means it’s a separate history item and a new entry point into your
application.

For example, if you close the browser and reopen it later, you can type in the newly constructed
navigation URI with #/Page1.xaml at the end to request TestPage.html, load the Silverlight application,
and insert the content from Page1.xaml into the frame, all in one step. Similarly, users can create a
bookmark with this URI that lets them return to the application with the correct page loaded in the
frame. This feature is sometimes called deep linking, because it allows you to use links that link not just
to the entry point of an application but also to some record or state inside that application.

 Tip With a little more effort, you can use deep linking as a starting point for search engine optimization (SEO).
The basic idea is to create multiple HTML or ASP.NET pages that lead to different parts of your Silverlight
application. Each page will point to the same XAP file, but the URI will link to a different page inside that

CHAPTER 7  NAVIGATION

248

application. Web search engines can then add multiple index entries for your application, one for each HTML or
ASP.NET page that leads into it.

URI integration is obviously a convenient feature, but it also raises a few questions, which are
outlined in the following sections.

What Happens If the Page Has More Than One Frame?

The URI fragment indicates the page that should appear in the frame, but it doesn’t include the frame
name. It turns out that this system really works only for Silverlight applications that have a single frame.
(Applications that contain two or more frames are considered to be a relatively rare occurrence.)

If you have more than one frame, they will all share the same navigation path. As a result, when your
code calls Navigate() in one frame or when the user enters a URI that includes a page name as a
fragment, the same content will be loaded into every frame. To avoid this problem, you must pick a
single frame that represents the main application content. This frame will control the URI and the
browser history list. Every other frame will be responsible for tracking its navigation privately, with no
browser interaction. To implement this design, set the JournalOwnership property of each additional
frame to OwnJournal. From that point on, the only way to perform navigation in these frames is with
code that calls the Navigate() method.

What Happens If the Startup Page Doesn’t Include a Frame Control?

Pages with multiple frames aren’t the only potential problem with the navigation system’s use of URIs.
Another issue occurs if the application can’t load the requested content because there’s no frame in the
application’s root visual. This situation can occur if you’re using one of the dynamic user interface tricks
described earlier—for example, using code to create the Frame object or swap in another page that
contains a frame. In this situation, the application starts normally; but because no frame is available, the
fragment part of the URI is ignored.

To remedy this problem, you need to either simplify your application so the frame is available in the
root visual at startup or add code that responds to the Application.Startup event (see Chapter 6) and
checks the document fragment portion of the URI, using code like this:

string fragment = System.Windows.Browser.HtmlPage.Document.DocumentUri.Fragment;

If you find that the URI contains fragment information, you can then add code by hand to restore
the application to its previous state. Although this is a relatively rare design, take the time to make sure it
works properly. After all, when a fragment URI appears in the browser’s address bar, the user naturally
assumes it’s a suitable bookmark point. And if you don’t want to provide this service, consider disabling
the URI system altogether by setting the JournalOwnership property to OwnJournal.

What About Security?

In a very real sense, the URI system is like a giant back door into your application. For example, a user
can enter a URI that points to a page you don’t want that user to access—even one that you never load
with the Navigate() method. Silverlight doesn’t attempt to impose any measure of security to restrict this
scenario. In other words, adding a Frame control to your application provides a potential path of access
to any other page in your application.

CHAPTER 7  NAVIGATION

249

Fortunately, you can use several techniques to clamp down on this ability. First, you can detach the
frame from the URI system by setting the JournalOwnership property to OwnJournal, as described
earlier. However, this gives up the ability to use descriptive URIs for any of the pages in your application,
and it also removes the integration with the browser history list that’s described in the next section. A
better approach is to impose selective restriction by handling the Frame.Navigating event. At this point,
you can examine the URI (through the NavigatingCancelEventArgs object) and, optionally, cancel
navigation:

private void mainFrame_Navigating(object sender, NavigatingCancelEventArgs e)
{
 if (e.Uri.ToString().ToLower().Contains("RestrictedPage.xaml"))
 {
 e.Cancel = true;
 }
}

You’ll notice that this code doesn’t match the entire URI but simply checks for the presence of a
restricted page name. This is to avoid potential canonicalization problems—in other words, allowing
access to restricted pages by failing to account for the many different ways the same URI can be written.
Here’s an example of functionally equivalent but differently written URIs:

localhost://Navigation/TestPage.html#/Page1.xaml
localhost://Navigation/TestPage.html#/FakeFolder/.../Page1.xaml

This example assumes that you never want to perform navigation to RestrictedPage.xaml. The
Navigating event does not distinguish whether the user has edited the URI or whether the navigation
attempt is the result of the user clicking the link or your code calling the Navigate() method. Presumably,
the application will use RestrictedPage.xaml in some other way—for example, with code that manually
instantiates the user control and loads it into another container.

Finally, it’s worth noting that there’s one other way to deal with restricted pages. You could create a
custom content loader (as described in the “Custom Content Loaders” section at the end of this
chapter), which would check the requested URI against a collection of allowed pages. This approach is
similar to handling the Frame.Navigating event, but it’s a bit more general (and a bit more complex). If
you get your design right, you can use it in any application that needs it—all you need to do is add the
custom content loader to the appropriate frame and configure the collection of allowed pages. The
disadvantage is that it will take you significantly more coding to arrive at a workable solution.

History Support
The navigation features of the Frame control also integrate with the browser. Each time you call the
Navigate() method, Silverlight adds a new entry in the history list (see Figure 7-6). The first page of your
application appears in the history list first, with the title of the HTML entry page. Each subsequent page
appears under that in the history list, using the user-control file name for the display text (such as
Page1.xaml). In the “Pages” section later in this chapter, you’ll learn how you can supply your own, more
descriptive title text using a custom page.

CHAPTER 7  NAVIGATION

250

Figure 7-6. The navigation history of the frame

The browser’s history list works exactly the way you’d expect. The user can click the Back or
Forward button or pick an entry in the history list to load a previous page into the frame. Best of all, this
doesn’t cause your application to restart. As long as the rest of the URI stays the same (everything except
the fragment), Silverlight simply loads the appropriate page into the frame. On the other hand, if the
user travels to another website and then uses the Back button to return, the Silverlight application is
reloaded, the Application.Startup event fires, and then Silverlight attempts to load the requested page
into the frame.

Incidentally, you can call the Frame.Navigate() method multiple times in succession with different
pages. The user ends up on the last page, but all the others are added to the history list in between.
Finally, the Navigate() method does nothing if the page is already loaded—it doesn’t add a duplicate
entry to the history list.

Navigation Failure
Silverlight has a quirk that affects how it deals with the Back button when using navigation. The problem
occurs if you use the browser history list to return to a page that doesn’t include the fragment portion of
the URI. For example, you will encounter this problem in the previous example if you launch the
application, surf to a new page, and then press the browser’s Back button to return to the initial page.
When you do, you’ll receive an ArgumentException that explains “Content for the URI cannot be
loaded.” In other words, the URI did not specify the content for the frame, and Silverlight didn’t know
what to put there.

There are two easy ways to deal with this problem. The first approach is to handle the
Frame.NavigationFailed event. You can then examine the exception object (provided through the
NavigationFailedEventArgs.Exception property) and set the NavigationFailedEventArgs.Handled
property to true to gracefully ignore this nonissue and carry on.

CHAPTER 7  NAVIGATION

251

Your other option is to use the UriMapper to set the initial content of the frame. With this
technique, you map the ordinary, empty URI to a valid page, which will then be shown in the frame
(although that page can be blank). You’ll see how to use this technique in the next section.

URI Mapping
As you’ve seen, the fragment URI system puts the page name in the URI. In some situations, you’d prefer
not to make this detail as glaring. Perhaps you don’t want to expose the real page name, you don’t want
to tack on the potentially confusing .xaml extension, or you want to use a URI that’s easier to remember
and type in by hand. In all these situations, you can use URI mapping to define different, simpler URIs
that map to the standard versions you’ve seen so far.

To use URI mapping, you first need to add a UriMapper object as a XAML resource. Typically, you’ll
define the UriMapper in the resources collection of the main page or the App.xaml file, as shown here:

<Application xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
x:Class="Navigation.App" xmlns:navigation=
"clr-namespace:System.Windows.Navigation;assembly=System.Windows.Controls.Navigation">
 <Application.Resources>
 <navigation:UriMapper x:Key="PageMapper">
 </navigation:UriMapper>
 </Application.Resources>
</Application>

You then need to link your UriMapper to your frame by setting the Frame.UriMapper property:

<navigation:Frame x:Name="mainFrame" UriMapper="{StaticResource PageMapper}">
</navigation:Frame>

Now, you can add your URI mappings inside the UriMapper. Here’s an example:

<navigation:UriMapper x:Key="PageMapper">
 <navigation:UriMapping Uri="Home" MappedUri="/Views/HomePage.xaml" />
</navigation:UriMapper>

If your application is located here

localhost://Navigation/TestPage.html

you can use this simplified URI

localhost://Navigation/TestPage.html#Home

which is mapped to this URI:

localhost://Navigation/TestPage.html#/Views/HomePage.xaml

The only catch is that it’s up to you to use the simplified URI when you call the Navigate() method,
as shown here:

mainFrame.Navigate(new Uri("Home", UriKind.Relative));

Note that you don’t need to include a forward slash at the beginning of a mapped URI.
After mapping, both the original and the new URI will work, allowing you to reach the same page. If

you use the original URI format when calling the Navigate() method (or in a link or in a bookmark),
that’s what the user sees in the browser’s address bar.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 7  NAVIGATION

252

You can also use the UriMapper to set the initial content in a frame. The trick is to map a Uri that’s
just an empty string, as shown here:

<navigation:UriMapper x:Key="PageMapper">
 <navigation:UriMapping Uri="" MappedUri="/InitialPage.xaml" />
 <navigation:UriMapping Uri="Home" MappedUri="/Views/HomePage.xaml" />
</navigation:UriMapper>

Now, when the page first appears, the frame will show the content from InitialPage.xaml.

 Note Remember, if you don’t use the UriMapper to set the initial page, you must handle the
Frame.NavigationFailed event. Otherwise, users may receive an error when they step back to the first page using
the browser’s Back button.

The UriMapper object also supports URIs that take query-string arguments. For example, consider
the following mapping:

<navigation:UriMapping Uri="Products/{id}"
 MappedUri="/Views/ProductPage.xaml?id={id}"></navigation:UriMapping>

In this example, the {id} portion in curly brackets is a placeholder. You can use any URI that has this
basic form but supplies an arbitrary value for the id. For example, this URI

localhost://Navigation/TestPage.html#Products/324

will be mapped to this:

localhost://Navigation/TestPage.html#/Views/ProductPage.xaml?id=324

The easiest way to retrieve the id query-string argument in the ProductPage.xaml code is to use the
NavigationContext object described later in the “Pages” section.

Forward and Backward Navigation
As you’ve learned, you can set the Frame.JournalOwnership property to determine whether the frame
uses the browser’s history-tracking system (the default) or is responsible for keeping the record of visited
pages on its own (which is called the journal). If you opt for the latter by setting the JournalOwnership
property to OwnJournal, your frame won’t integrate with the browser history or use the URI system
described earlier. You’ll need to provide a way for the user to navigate through the page history. The
most common way to add this sort of support is to create your own Forward and Backward buttons.

Custom Forward and Backward buttons are also necessary if you’re building an out-of-browser
application, like the sort described in Chapter 18. That’s because an application running in a stand-
alone window doesn’t have access to any browser features and doesn’t include any browser user
interface (including the Back and Forward buttons). In this situation, you’re forced to supply your own
navigation buttons for programmatic navigation, even if you haven’t changed the JournalOwnership
property.

If you’re not sure whether your application is running in a browser or in a stand-alone window,
check the Application.IsRunningOutOfBrowser property. For example, the following code shows a panel

CHAPTER 7  NAVIGATION

253

with navigation buttons when the application is hosted in a stand-alone window. You can use this in the
Loaded event handler for your root visual.

if (App.Current.IsRunningOutOfBrowser)
 pnlNavigationButtons.Visibility = Visibility.Visible;

Designing Forward and Backward buttons is easy. You can use any element you like—the trick is
simply to step forward or backward through the page history by calling the GoBack() and GoForward()
methods of the Frame class. You can also check the CanGoBack property (which is true if there are pages
in the backward history) and the CanGoForward property (which is true if there are pages in the forward
history) and use that information to selectively enable and disable your custom navigation buttons.
Typically, you’ll do this when responding to the Frame.Navigated event:

private void mainFrame_Navigated(object sender, NavigationEventArgs e)
{
 if (mainFrame.CanGoBack)
 cmdBack.Visibility = Visibility.Visible;
 else
 cmdBack.Visibility = Visibility.Collapsed;

 if (mainFrame.CanGoForward)
 cmdForward.Visibility = Visibility.Visible;
 else
 cmdForwawrd.Visibility = Visibility.Collapsed;
}

Rather than hide the buttons (as done here), you may choose to disable them and change their
visual appearance (for example, changing the color, opacity, or picture, or adding an animated effect).
Unfortunately, there’s no way to get a list of page names from the journal, which means you can’t
display a history list like the one shown in the browser.

Hyperlinks
In the previous example, navigation was performed through an ordinary button. However, it’s a
common Silverlight design to use a set of HyperlinkButton elements for navigation. Thanks to the URI
system, it’s even easier to use the HyperlinkButton than an ordinary button. You simply need to set the
NavigateUri property to the appropriate URI. You can use URIs that point directly to XAML pages, or you
can use mapped URIs that go through the UriMapper.

Here’s a StackPanel that creates a strip of three navigation links:

<StackPanel Margin="5" HorizontalAlignment="Center" Orientation="Horizontal">
 <HyperlinkButton NavigateUri="/Page1.xaml" Content="Page 1" Margin="3" />
 <HyperlinkButton NavigateUri="/Page2.xaml" Content="Page 2" Margin="3" />
 <HyperlinkButton NavigateUri="Home" Content="Home" Margin="3" />
</StackPanel>

Although the concept hasn’t changed, this approach allows you to keep the URIs in the XAML
markup and leave your code simple and uncluttered by extraneous details.

Pages
The previous examples all used navigation to load user controls into a frame. Although this design
works, it’s far more common to use a custom class that derives from Page instead of a user control,

CHAPTER 7  NAVIGATION

254

because the Page class provides convenient hooks into the navigation system and (optionally) automatic
state management.

To add a page to a Visual Studio project, right-click the project name in the Solution Explorer, and
choose Add New Item. Then, select the Silverlight Page template, enter a page name, and click Add.
Aside from the root element, the markup you place in a page is the same as the markup you put in a user
control. Here’s a reworked example that changes Page1.xaml from a user control into a page by
modifying the root element and setting the Title property:

<navigation:Page x:Class="Navigation.Page1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:navigation=
"clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Navigation"
 Title="Sample Page">
 <Grid x:Name="LayoutRoot" Background="White">
 <TextBlock TextWrapping="Wrap">This is the unremarkable content in
Page1.xaml.</TextBlock>
 </Grid>
</navigation:Page>

 Tip It’s a common design convention to place pages in a separate project folder from your user controls. For
example, you can place all your pages in a folder named Views and use navigation URIs like /Views/Page1.xaml.

Technically, Page is a class that derives from UserControl and adds a small set of members. These
include a set of methods you can override to react to navigation actions and four properties: Title,
NavigationService, NavigationContext, and NavigationCacheMode. The Title property is the simplest. It
sets the text that’s used for the browser history list, as shown in the previous example. The other
members are described in the following sections.

Navigation Properties
Every page provides a NavigationService property that offers an entry point into Silverlight’s navigation
system. The NavigationService property provides a NavigationService object, which supplies the same
navigational methods as the Frame class, including Navigate(), GoBack(), and GoForward(), and
properties such as CanGoBack, CanGoForward, and CurrentSource. That means you can trigger page
navigation from inside a page by adding code like this:

this.NavigationService.Navigate(new Uri("/Page2.xaml", UriKind.Relative));

The Page class also includes a NavigationContext property that provides a NavigationContext
object. This object exposes two properties: Uri gets the current URI, which was used to reach the current
page, and QueryString gets a collection that contains any query-string arguments that were tacked on to
the end of the URI. This way, the code that triggers the navigation can pass information to the
destination page. For example, consider the following code, which embeds two numbers into a URI as
query-string arguments:

string uriText = String.Format("/Product.xaml?productID={0}&type={1}",

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 7  NAVIGATION

255

 productID, productType);

mainFrame.Navigate(new Uri(uriText), UriKind.Relative);

A typical completed URI might look something like this:

/Product.xaml?productID=402&type=12

You can retrieve the product ID information in the destination page with code like this:

int productID, type;

if (this.NavigationContext.QueryString.ContainsKey("productID"))
 productID = Int32.Parse(this.NavigationContext.QueryString["productID"]);
if (this.NavigationContext.QueryString.ContainsKey("type"))
 type = Int32.Parse(this.NavigationContext.QueryString["type"]);

Of course, there are other ways to share information between pages, such as storing it in the
application object. The difference is that query-string arguments are preserved in the URI, so users who
bookmark the link can reuse it later to return to an exact point in the application (for example, the query
string allows you to create links that point to particular items in a catalog of data). On the downside,
query-string arguments are visible to any user who takes the time to look at the URI, and they can be
tampered with.

State Storage
Ordinarily, when the user travels to a page using the Forward and Backward buttons or the history list,
the page is re-created from scratch. When the user leaves the page, the page object is discarded from
memory. One consequence of this design is that if a page has user input controls (for example, a text
box), they’re reset to their default values on a return visit. Similarly, any member variables in the page
class are reset to their initial values.

The do-it-yourself state-management approach described earlier lets you avoid this issue by
caching the entire page object in memory. Silverlight allows a similar trick with its own navigation
system using the Page.NavigationCacheMode property.

The default value of NavigationCacheMode is Disabled, which means no caching is performed.
Switch this to Required, and the Frame will keep the page object in memory after the user navigates
away. If the user returns, the already instantiated object is used instead of a newly created instance. The
page constructor will not run, but the Loaded event will still fire.

There’s one other option for NavigationCacheMode. Set it to Enabled, and pages will be cached—up
to a point. The key detail is the Frame.CacheSize property, which sets the maximum number of optional
pages that can be cached. For example, when this value is 10 (the default), the Frame will cache the ten
most recent pages that have a NavigationCacheMode of Enabled. When an eleventh page is added to the
cache, the first (oldest) page object will be discarded from the cache. Pages with NavigationCacheMode
set to Required don’t count against the CacheSize total.

Typically, you’ll set NavigationCacheMode to Required when you want to cache a page to preserve
its current state. You’ll set NavigationCacheMode to Enabled if you want the option of caching a page to
save time and improve performance—for example, if your page includes time-consuming initialization
logic that performs detailed calculations or calls a web service. In this case, make sure you place this
logic in the constructor, not in an event handler for the Loaded event (which still fires when a page is
served from the cache).

CHAPTER 7  NAVIGATION

256

Navigation Methods
The Page class also includes a small set of methods that are triggered during different navigation actions.
They include the following:

• OnNavigatedTo(): This method is called when the frame navigates to the page
(either for the first time or on a return trip through the history).

• OnNavigatingFrom(): This method is called when the user is about to leave the
page; it allows you to cancel the navigation action.

• OnNavigatedFrom(): This method is called when the user has left the page, just
before the next page appears.

You could use these methods to perform various actions when a page is being left or visited, such as
tracking and initialization. For example, you could use them to implement a more selective form of state
management that stores just a few details from the current page in memory, rather than caching the
entire page object. Simply store page state when OnNavigatedFrom() is called and retrieve it when
OnNavigatedTo() is called. Where you store the state is up to you—you can store it in the App class, or
you can use static members in your custom page class, as done here with a single string:

public partial class CustomCachedPage : Page
{
 ...

 public static string TextBoxState { get; set; }
}

Here’s the page code that uses this property to store the data from a single text box and retrieve it
when the user returns to the page later:

protected override void OnNavigatedFrom(NavigationEventArgs e)
{
 // Store the text box data.
 CustomCachedPage.TextBoxState = txtCached.Text;
 base.OnNavigatedFrom(e);
}
protected override void OnNavigatedTo(NavigationEventArgs e)
{
 // Retrieve the text box data.
 if (CustomCachedPage.TextBoxState != null)
 txtCached.Text = CustomCachedPage.TextBoxState;
 base.OnNavigatedTo(e);
}

Navigation Templates
You now know everything you need to use Silverlight’s Frame and Page classes to create a navigable
application. However, there’s no small gap between simply using these features and actually making
them look good, with a slick, visually consistent display. There are two ways to bridge this gap. One
option is to gradually build your design skills, review other people’s example, experiment, and
eventually end up with the perfectly customized user interface you want. The other option is to use a

CHAPTER 7  NAVIGATION

257

ready-made navigation template as a starting point. These are starter project templates that you can use
in Visual Studio, and they give you basic project structure and a few finer points of style.

Figure 7-7 shows what you start with if you create a new project using the Silverlight Navigation
Application project template instead of the general-purpose Silverlight Application template.

Figure 7-7. An application created with a navigation template

The basic structure of this application is simple enough—there’s a page header at the top of a page
with a group of link buttons on the left for navigation. Underneath is the Frame that performs the
navigation. Pages are mapped through the UriMapper and placed in a project subfolder named Views.

Silverlight ships with just one navigation template, which is shown in Figure 7-7. However, the
Silverlight team posted several alternative templates when Silverlight 3 was released, and you can get
them at http://tinyurl.com/ktv4vu. These templates use the same basic structure, but they tweak the
visual styles and the placement of the link buttons.

Custom Content Loaders
As you’ve seen, Silverlight’s navigation system is powerful but not overly flexible. It makes certain
assumptions about the way URIs will be handled. (Essentially, every URI provides the name of a XAML
page that will be loaded in a frame.) This system works well for applications that use straightforward
navigation, but it doesn’t give you the opening to explore more interesting extensions, like URIs that
prompt your application to contact remote services or start a download. It also doesn’t let you plug
additional features into the navigation system, like user authentication and authorization.

Some of these features may appear in future versions of Silverlight. Many of them will be provided
in separate libraries (some free, some not) by third-party developers. But now, you can begin to extend
the navigation on your own, using a feature called custom content loaders.

http://tinyurl.com/ktv4vu

CHAPTER 7  NAVIGATION

258

The idea of custom content loaders is simple. You create a class that implements the
INavigationContentLoader interface. This class receives a URI and then handles it appropriately (for
example, by providing the page content or starting an entirely different task). You can then attach your
custom content loader to a frame in any application. You can even chain content loaders together so
that one content loader can pass a requested URI to the next content loader in a sequence.

Although the idea of content loaders is fairly simple, programming them is not. Here, there are two
issues. First, the INavigationContentLoader is designed around an asynchronous model. That means
you need to implement methods like BeginLoad(),EndLoad(), and CancelLoad() and use an IAsyncResult
object to coordinate the interaction between the content loading code and your frame. Second, there are
subtle issues that can cause exceptions or cancellations. (This is particularly true if your navigation takes
more than a few milliseconds. If users don’t get an instant response, they may click a link several times
in a row, launching several requests, all of which will be subsequently cancelled.) In short, building a
custom content loader isn’t difficult. But building one that’s as robust and reliable as it should be often
is.

So with these complications in mind, how should you approach custom content loaders? You have
three options:

• Leave infrastructure programming to the experts: You can still benefit from the
custom content loader feature, but not by building your own implementations.
Instead, you’ll download and use the custom content loaders that are created by
other developers—those who live to write low-level plumbing code.

• Create simple implementations: You can handle several simple scenarios by
building a custom content loader that offloads most of the real work to the
PageResourceContentLoader class. (PageResourceContentLoader is the built-in
content loader that loads XAML documents into a frame.) This is the approach
you’ll use in the example in this chapter.

• Use someone else’s higher-level class: The race is on to create a simple content
loading model overtop of the low-level INavigationContentLoader interface.
Ideally, you’ll simply need to derive from a straightforward synchronous base class
to create your custom content loader. David Hill has a solid first step at
http://tinyurl.com/37rqc7x.

In the following sections, you’ll see how to build a simple content loader that implements user
authentication.

Authentication and Navigation
If you’ve ever programmed an ASP.NET application, you’re already familiar with the way authentication,
authorization, and navigation fit together.

In a traditional web application, some pages are accessible to everybody, while others are protected.
The authorization rules describe these differences, marking certain pages as public and others as
restricted (which means they are available only to logged-in users or only to specific users or groups). If
an anonymous user attempts to request a restricted page, that user is redirected to a login page for
authentication. Usually, this step involves entering a valid user name and password, after which the user
is sent back to the originally requested page.

Using a custom content loader, you can create exactly this sort of system. Your custom content
loader will intercept each page request, check whether the user is authenticated, and then take
appropriate action. To do this, the application needs to distinguish between public pages and those that
require authentication. In this example, the pages that require authentication are placed in a project
subfolder named SecurePages (Figure 7-8).

http://tinyurl.com/37rqc7x

CHAPTER 7  NAVIGATION

259

Figure 7-8. Pages that need authentication

Figure 7-9 shows a simple application that tests the finished authentication system. The first page
shown in the frame is InitialPage.xaml (Figure 7-9, left). The user can travel to another page by clicking a
button (which triggers the Navigate() method) or a link. However, if the application attempts to navigate
to a page in the SecurePages folder, the custom content loader redirects the user to the login page
(Figure 7-9, right).

Figure 7-9. Requesting a secured page

While at the login page, the user has several choices. The user can enter a valid user name and
password combination and click Login. The login page will then redirect the user to the originally
requested page. Or, the user can navigate to a page that isn’t secured (which works as it normally does)
or to a page that is secured (in which case the user returns immediately to the login page).

CHAPTER 7  NAVIGATION

260

Now that you understand how this application works, it’s time to look at the code that underpins it.

Creating a Custom Content Loader
A custom content loader is simply a class that implements INavigationContentLoader. This interface
requires that you supply the following methods: BeginLoad(), CanLoad(), CancelLoad(), and EndLoad().
Although it’s tricky to implement these methods correctly, you can use a shortcut. Simply define an
instance of the PageResourceContentLoader as a member field, and call its methods as the content
loader passes through its various stages. To get the idea, consider the following custom content loader,
which uses PageResourceContentLoader to duplicate the standard navigation behavior exactly:

public class CustomContentLoader : INavigationContentLoader
{
 private PageResourceContentLoader loader = new PageResourceContentLoader();

 public IAsyncResult BeginLoad(Uri targetUri, Uri currentUri,
 AsyncCallback userCallback, object asyncState)
 {
 return loader.BeginLoad(targetUri, currentUri, userCallback, asyncState);
 }

 public bool CanLoad(Uri targetUri, Uri currentUri)
 {
 return loader.CanLoad(targetUri, currentUri);
 }

 public void CancelLoad(IAsyncResult asyncResult)
 {
 loader.CancelLoad(asyncResult);
 }

 public LoadResult EndLoad(IAsyncResult asyncResult)
 {
 return loader.EndLoad(asyncResult);
 }
}

As simple as this seems, it provides the basic structure for the AuthenticatingContentLoader that’s
used in Figure 7-9. But now you need a few more details, starting with two new properties that allow the
user to designate a login page and the folder that holds secured pages:

public class AuthenticatingContentLoader : INavigationContentLoader
{
 private PageResourceContentLoader loader = new PageResourceContentLoader();

 public string LoginPage { get; set; }
 public string SecuredFolder { get; set; }
 ...
}

The CanLoad(), CancelLoad(), and EndLoad() methods are unchanged. But the BeginLoad() needs a
bit of fine-tuning. It needs to determine whether the user is currently logged in. If the user isn’t logged in
and the request is for a page in the secured folder, the user is redirected to the login page.

CHAPTER 7  NAVIGATION

261

public IAsyncResult BeginLoad(Uri targetUri, Uri currentUri,
 AsyncCallback userCallback, object asyncState)
{
 if (!App.UserIsAuthenticated)
 {
 if ((System.IO.Path.GetDirectoryName(targetUri.ToString()).Trim('\\') ==
 SecuredFolder) && (targetUri.ToString() != LoginPage))
 {
 // Redirect the request to the login page.
 targetUri = new Uri(LoginPage, UriKind.Relative);
 }
 }
 return loader.BeginLoad(targetUri, currentUri, userCallback, asyncState);
}

To track whether a user is logged in, you need to add a Boolean flag to the App class, like this:

public partial class App : Application
{
 public static bool UserIsAuthenticated { get; set; }
 ...
}

Now that you have the content loader finished, it’s time to put it to work in the application.

Using the Custom Content Loader
Using a custom content loader is likely using any other custom ingredient in your XAML. The first step is
to map an XML namespace for your project namespace so the content loader is available. In this
example, the project is named CustomContentLoader:

<UserControl x:Class="CustomContentLoader.MainPage"
 xmlns:local="clr-namespace:CustomContentLoader" ... >

Next, you need to set the Frame.ContentLoader property with an instance of your custom content
loader. You also set the properties of the custom content loader at the same time:

<navigation:Frame x:Name="mainFrame" UriMapper="{StaticResource UriMapper}">
 <navigation:Frame.ContentLoader>
 <local:AuthenticatingContentLoader LoginPage="/Login.xaml"
 SecuredFolder="SecurePages"></local:AuthenticatingContentLoader>
 </navigation:Frame.ContentLoader>
</navigation:Frame>

The only remaining step is to write the code for the login page. In this example, the login page
simply checks for a hard-coded password, but a more realistic approach is to call some sort of web
service (as described in Chapter 19) that authenticates the user on the web server. The important detail
is that once the user is authenticated, the UserIsAuthenticated flag must be set to true, and the
application must call the NavigationService.Refresh() method, which repeats the entire navigation
sequence. This time, because the user is authenticated, no redirection will be performed, so the user will
end up at the originally requested page.

private void cmdLogin_Click(object sender, RoutedEventArgs e)
{

CHAPTER 7  NAVIGATION

262

 // Use a hard-coded password. A more realistic application would call a remote
 // authentication service that runs on an ASP.NET website.
 if (txtPassword.Text == "secret")
 {
 App.UserIsAuthenticated = true;
 navigationService.Refresh();
 }
}

Now the content loader works seamlessly. Of course, there’s much more you could add to this basic
example. For example, you could configure the AuthenticatingContentLoader to accept a collection of
authorization rules, which it could then evaluate to determine whether a specific user can access a
specific page. To delve into more complex authentication like this, and to see examples of more
sophisticated custom content loaders, be sure to check out David Hill’s blog (www.davidpoll.com). As a
Silverlight program manager specializing in navigation, he provides helpful insight and several advanced
custom content loader examples.

The Last Word
In this chapter, you considered how to step up from single-page displays to true applications using a
range of techniques. First, you considered simple content hiding and swapping techniques, which give
you unlimited flexibility and allow you to simulate navigation. Next, you considered the ChildWindow,
which allows you to create a pop-up window that appears over the rest of your application. After that,
you took a detailed look at the Frame and Page classes and Silverlight’s built-in Silverlight navigation
system, which enables features such as history tracking and deep linking. And finally, you saw how you
can extend the navigation system using custom content loaders.

http://www.davidpoll.com

C H A P T E R 8

263

Shapes and Transforms

Silverlight’s 2-D drawing support is the basic foundation for many of its more sophisticated features,
such as custom-drawn controls, interactive graphics, and animation. Even if you don’t plan to create
customized art for your application, you need to have a solid understanding of Silverlight’s drawing
fundamentals. You’ll use it to add professional yet straightforward touches, such as reflection effects.
You’ll also need it to add interactivity to your graphics—for example, to make shapes move or change in
response to user actions.

Silverlight supports a surprisingly large subset of the drawing features from WPF. In this chapter,
you’ll explore the shape model, which allows you to construct graphics out of rectangles, ellipses, lines,
and curves. You’ll also consider transforms and projections—specialized objects that can change the
visual appearance of any element by scaling, rotating, or skewing it. Finally, you’ll see how you can
convert existing vector art to the XAML format you need, which lets you reuse existing graphics rather
than build them from scratch.

Basic Shapes
The simplest way to draw 2-D graphical content in a Silverlight user interface is to use shapes: dedicated
classes that represent simple lines, ellipses, rectangles, and polygons. Technically, shapes are known as
drawing primitives. You can combine these basic ingredients to create more complex graphics.

The most important detail about shapes in Silverlight is that they all derive from
FrameworkElement. As a result, shapes are elements. This has a number of important consequences:

• Shapes draw themselves: You don’t need to manage the invalidation and painting
process. For example, you don’t need to manually repaint a shape when content
moves, the page is resized, or the shape’s properties change.

• Shapes are organized in the same way as other elements: In other words, you can
place a shape in any of the layout containers you learned about in Chapter 3. (The
Canvas is obviously the most useful container because it lets you place shapes at
specific coordinates, which is important when you’re building a complex drawing
out of multiple pieces.)

• Shapes support the same events as other elements: That means you don’t need to
do any extra work to deal with key presses, mouse movements, and mouse clicks.
You can use the same set of events you’d use with any element.

Silverlight uses a number of optimizations to make 2-D drawing as fast as possible. For example,
because shapes often overlap in complex drawings, Silverlight uses sophisticated algorithms to

CHAPTER 8  SHAPES AND TRANSFORMS

264

determine when part of a shape won’t be visible and thereby avoid the overhead of rendering it and then
overwriting it with another shape.

The Shape Classes
Every shape derives from the abstract System.Windows.Shapes.Shape class. Figure 8-1 shows the
inheritance hierarchy for shapes.

Figure 8-1. The Silverlight shape classes

As you can see, a relatively small set of classes derives from the Shape class. Line, Ellipse, and
Rectangle are all straightforward; Polyline is a connected series of straight lines; and Polygon is a closed
shape made up of a connected series of straight lines. Finally, the Path class is an all-in-one superpower
that can combine basic shapes in a single element.

Although the Shape class can’t do anything on its own, it defines a small set of important properties,
which are listed in Table 8-1.

Table 8-1. Shape Properties

Name Description

Fill Sets the brush object that paints the surface of the shape (everything inside its
borders).

Stroke Sets the brush object that paints the edge of the shape (its border).

StrokeThickness Sets the thickness of the border, in pixels.

CHAPTER 8  SHAPES AND TRANSFORMS

265

Name Description

StrokeStartLineCap and
StrokeEndLineCap

Determine the contour of the edge of the beginning and end of the line. These
properties have an effect only for the Line, Polyline, and (sometimes) Path
shapes. All other shapes are closed and so have no starting and ending point.

StrokeDashArray,
StrokeDashOffset, and
StrokeDashCap

Allow you to create a dashed border around a shape. You can control the size
and frequency of the dashes and how the edge where each dash line begins
and ends is contoured.

StrokeLineJoin and
StrokeMiterLimit

Determine the contour of the corners of a shape. Technically, these properties
affect the vertices where different lines meet, such as the corners of a
Rectangle element. These properties have no effect for shapes without
corners, such as the Line and Ellipse elements.

Stretch Determines how a shape fills its available space. You can use this property to
create a shape that expands to fit its container. However, you’ll rarely set the
Stretch property, because each shape uses the default value that makes most
sense for it.

GeometryTransform Allows you to apply a transform object that changes the coordinate system
used to draw a shape. This lets you skew, rotate, or displace a shape.
Transforms are particularly useful when you’re animating graphics. You’ll
learn about transforms later in this chapter.

Rectangle and Ellipse
Rectangle and Ellipse are the two simplest shapes. To create either one, set the familiar Height and
Width properties (inherited from FrameworkElement) to define the size of your shape, and then set the
Fill or Stroke property (or both) to make the shape visible. You’re also free to use properties such as
MinHeight, MinWidth, HorizontalAlignment, VerticalAlignment, and Margin.

 Note If you fail to supply a brush for the Stroke or Fill property, your shape won’t appear.

Here’s a simple example that stacks an ellipse on a rectangle (see Figure 8-2) using a StackPanel:

<StackPanel>
 <Ellipse Fill="Yellow" Stroke="Blue"
 Height="50" Width="100" Margin="5" HorizontalAlignment="Left"></Ellipse>
 <Rectangle Fill="Yellow" Stroke="Blue"
 Height="50" Width="100" Margin="5" HorizontalAlignment="Left"></Rectangle>
</StackPanel>

CHAPTER 8  SHAPES AND TRANSFORMS

266

Figure 8-2. Two simple shapes

The Ellipse class doesn’t add any properties. The Rectangle class adds two: RadiusX and RadiusY.
When set to nonzero values, these properties allow you to create nicely rounded corners.

You can think of RadiusX and RadiusY as describing an ellipse that’s used to fill in the corners of the
rectangle. For example, if you set both properties to 10, Silverlight draws your corners using the edge of a
circle that’s 10 pixels wide. As you make your radius larger, more of your rectangle is rounded off. If you
increase RadiusY more than RadiusX, your corners round off more gradually along the left and right
sides and more sharply along the top and bottom edges. If you increase the RadiusX property to match
your rectangle’s width and increase RadiusY to match its height, you end up converting your rectangle
into an ordinary ellipse.

Figure 8-3 shows a few rectangles with rounded corners.

CHAPTER 8  SHAPES AND TRANSFORMS

267

Figure 8-3. Rounded corners

Sizing and Placing Shapes
As you already know, hard-coded sizes usually aren’t the ideal approach to creating user interfaces. They
limit your ability to handle dynamic content, and they make it more difficult to localize your application
into other languages.

When you’re drawing shapes, these concerns don’t always apply. Often, you need tighter control
over shape placement. However, in some cases, you can make your design a little more flexible with
proportional sizing. Both the Ellipse and Rectangle elements have the ability to size themselves to fill the
available space.

If you don’t supply the Height and Width properties, the shape is sized based on its container. For
example, you can use this stripped-down markup to create an ellipse that fills a page:

<Grid>
 <Ellipse Fill="Yellow" Stroke="Blue"></Ellipse>
</Grid>

Here, the Grid contains a single proportionately sized row. The ellipse fills the entire row, the row
fills the Grid, and the Grid fills the page.

This sizing behavior depends on the value of the Stretch property (which is defined in the Shape
class). By default, it’s set to Fill, which stretches a shape to fill its container if an explicit size isn’t
indicated. Table 8-2 lists all your possibilities.

CHAPTER 8  SHAPES AND TRANSFORMS

268

Table 8-2. Values for the Stretch Enumeration

Name Description

Fill Your shape is stretched in width and height to fit its container exactly. (If you set an
explicit height and width, this setting has no effect.)

None The shape isn’t stretched. Unless you set a nonzero width and height (using the Height
and Width or MinHeight and MinWidth properties), your shape doesn’t appear.

Uniform The width and height are increased proportionately until the shape reaches the edge of
the container. If you use this with an ellipse, you end up with the biggest circle that fits
in the container. If you use it with a rectangle, you get the biggest possible square. (If
you set an explicit height and width, your shape is sized within those bounds. For
example, if you set a Width of 10 and a Height of 100 for a rectangle, you get only a
1010 square.)

UniformToFill The width and height are sized proportionately until the shape fills all the available
height and width. For example, if you place a rectangle with this Stretch setting into a
page that’s 100200 pixels, you get a 200200 rectangle, and part of it is clipped off. (If
you set an explicit height and width, your shape is sized within those bounds. For
example, if you set a Width of 10 and a Height of 100 for a rectangle, you get a 100100
rectangle that’s clipped to fit a 10100 box.)

Figure 8-4 shows the difference between Fill, Uniform, and UniformToFill.

CHAPTER 8  SHAPES AND TRANSFORMS

269

Figure 8-4. Filling three cells in a Grid

Usually, a Stretch value of Fill is the same as setting both HorizontalAlignment and
VerticalAlignment to Stretch. The difference occurs if you choose to set a fixed Width or Height value on
your shape. In this case, the HorizontalAlignment and VerticalAlignment values are ignored. But the
Stretch setting still has an effect: it determines how your shape content is sized within the bounds you’ve
given it.

 Tip In most cases, you’ll size a shape explicitly or allow it to stretch to fit. You won’t combine both approaches.

So far, you’ve seen how to size a rectangle and an ellipse; but what about placing them where you
want them? Silverlight shapes use the same layout system as any other element. However, some layout
containers aren’t as appropriate. For example, StackPanel, DockPanel, and WrapPanel often aren’t what
you want because they’re designed to separate elements. Grid is more flexible because it allows you to
place as many elements as you want in the same cell (although it doesn’t let you position them in
different parts of that cell). The ideal container is the Canvas, which forces you to specify the coordinates
of each shape using the attached Left, Top, Right, and Bottom properties. This gives you complete
control over how shapes overlap:

<Canvas>
 <Ellipse Fill="Yellow" Stroke="Blue" Canvas.Left="100" Canvas.Top="50"

CHAPTER 8  SHAPES AND TRANSFORMS

270

 Width="100" Height="50"></Ellipse>
 <Rectangle Fill="Yellow" Stroke="Blue" Canvas.Left="30" Canvas.Top="40"
 Width="100" Height="50"></Rectangle>
</Canvas>

With the Canvas, the order of your tags is important. In the previous example, the rectangle is
superimposed on the ellipse because the ellipse appears first in the list and so is drawn first (see Figure
8-5). If this isn’t what you want, you can rearrange the markup or use the Canvas.ZIndex attached
property to move an element to a specific layer.

Figure 8-5. Overlapping shapes in a Canvas

Remember, a Canvas doesn’t need to occupy an entire page. For example, there’s no reason why
you can’t create a Grid that uses a Canvas in one of its cells. This gives you the perfect way to lock down
fixed bits of drawing logic in a dynamic, free-flowing user interface.

Sizing Shapes Proportionately with a Viewbox
The only limitation to using the Canvas is that you won’t be able to resize your graphics to fit larger or
smaller windows. This makes perfect sense for some content (for example, buttons don’t usually change
size when the window is expanded) but not necessarily for others. For example, you might create a
complex graphic that you want to be resizable so it can take advantage of the available space.

In situations like these, Silverlight has an easy solution. If you want to combine the precise control
of the Canvas with easy resizability, you can use the Viewbox. The Viewbox is a simple class that
stretches a single element (provided in the Child property) according to the stretching behavior you set
(using the Stretch and StretchDirection properties). You first saw it in Chapter 3, where it was used to
create a rescalable page.

Although you can place a single shape in the Viewbox, that doesn’t provide any advantage over the
behavior you get naturally. Instead, the Viewbox shines when you need to wrap a group of shapes that
make up a drawing. Then, you place the layout container for your drawing (typically, the Canvas) inside
the Viewbox.

CHAPTER 8  SHAPES AND TRANSFORMS

271

The following example puts a Viewbox in the second row of a Grid. The Viewbox takes the full height
and width of the row. The row takes whatever space is left over after the first autosized row is rendered.
Here’s the markup:

<Grid Margin="5">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"></RowDefinition>
 <RowDefinition Height="*"></RowDefinition>
 </Grid.RowDefinitions>

 <TextBlock>The first row of a Grid.</TextBlock>

 <Viewbox Grid.Row="1" HorizontalAlignment="Left" >
 <Canvas Width="200" Height="150">
 <Ellipse Fill="Yellow" Stroke="Blue" Canvas.Left="10" Canvas.Top="50"
 Width="100" Height="50" HorizontalAlignment="Left"></Ellipse>
 <Rectangle Fill="Yellow" Stroke="Blue" Canvas.Left="30" Canvas.Top="40"
 Width="100" Height="50" HorizontalAlignment="Left"></Rectangle>
 </Canvas>
 </Viewbox>
</Grid>

Figure 8-6 shows how the Viewbox adjusts itself as the window is resized. The first row is
unchanged. However, the second row expands to fill the extra space. As you can see, the shape in the
Viewbox changes proportionately as the page grows.

Figure 8-6. Resizing with a viewbox

CHAPTER 8  SHAPES AND TRANSFORMS

272

Like all shapes, Viewbox has a Stretch property, which takes a default value of Uniform. However,
you can use any of the other values from Table 8-2. You can also get slightly more control by using the
StretchDirection property. By default, this property takes the value Both, but you can use UpOnly to
create content that can grow but won’t shrink beyond its original size, and you can use DownOnly to
create content that can shrink but not grow.

 Note When a shape is resized, Silverlight resizes its inside area and its border proportionately. That means the
larger your shape grows, the thicker its border is.

For a Viewbox to perform its magic, it needs to be able to determine two pieces of information: the
ordinary size that your content would have (if it weren’t in a Viewbox) and the new size you want it to
have. The second detail—the new size—is simple enough. The Viewbox gives the inner content all the
space that’s available, based on its Stretch property. That means the bigger the Viewbox, the bigger your
content.

The first detail—the ordinary, non-Viewbox size is implicit in the way you define the nested content.
In the previous example, the Canvas is given an explicit size of 200 by 150 units. Thus, the Viewbox scales
the image from that starting point. For example, the ellipse is initially 100 units wide, which means it
takes up half the allotted Canvas drawing space. As the Canvas grows larger, the Viewbox respects these
proportions, and the ellipse continues to take half the available space.

However, consider what happens if you remove the Width and Height properties from the Canvas.
Now, the Canvas is given a size of 0 by 0 units, so the Viewbox can’t resize it and your nested content
doesn’t appear. (This is different from the behavior you get if you have a Canvas on its own. That’s
because even though the Canvas is still given a size of 0 by 0, your shapes are allowed to draw outside the
Canvas area. The Viewbox isn’t as tolerant of this error.)

Now, consider what happens if you wrap the Canvas inside a proportionately sized cell in a Grid,
and you don’t specify the size of the Canvas. If you aren’t using a Viewbox, this approach works perfectly
well—the Canvas is stretched to fill the cell, and the content inside is visible. But if you place all this
content in a Viewbox, this strategy fails. The Viewbox can’t determine the initial size, so it can’t resize the
Canvas appropriately.

You can get around this problem by placing certain shapes (such as rectangles and ellipses) directly
in an autosized container (such as the Grid). The Viewbox can then evaluate the minimum size the Grid
needs to fit its content and then scale it up to fit what’s available. However, the easiest way to get the size
you really want in a Viewbox is to wrap your content in an element that has a fixed size, whether it’s a
Canvas, a Button, or something else. This fixed size then becomes the initial size that the Viewbox uses
for its calculations. Hard-coding a size this way doesn’t limit the flexibility of your layout because the
Viewbox is sized proportionately based on the available space and its layout container.

Line
The Line shape represents a straight line that connects one point to another. The starting and ending
points are set by four properties: X1 and Y1 (for the first point) and X2 and Y2 (for the second). For
example, here’s a line that stretches from (0, 0) to (10, 100):

<Line Stroke="Blue" X1="0" Y1="0" X2="10" Y2="100"></Line>

The Fill property has no effect for a line. You must set the Stroke property.

CHAPTER 8  SHAPES AND TRANSFORMS

273

The coordinates you use in a line are relative to the upper-left corner where the line is placed. For
example, if you place the previous line in a StackPanel, the coordinate (0, 0) points to wherever that item
in the StackPanel is placed. It may be the upper-left corner of the page, but it probably isn’t. If the
StackPanel uses a nonzero margin or if the line is preceded by other elements, the line begins at a point
(0, 0) some distance down from the top of the page.

It’s perfectly reasonable to use negative coordinates for a line. You can use coordinates that take
your line out of its allocated space and draw over of any other part of the page. This isn’t possible with
the Rectangle and Ellipse elements that you’ve seen so far. However, this behavior also has a drawback:
lines can’t use the flow content model. That means there’s no point setting properties such as Margin,
HorizontalAlignment, and VerticalAlignment on a line, because they won’t have any effect. The same
limitation applies to the Polyline and Polygon shapes.

If you place a Line element in a Canvas, the attached position properties (such as Top and Left) still
apply. They determine the starting position of the line. In other words, the two line coordinates are offset
by that amount. Consider this line:

<Line Stroke="Blue" X1="0" Y1="0" X2="10" Y2="100"
 Canvas.Left="5" Canvas.Top="100"></Line>

It stretches from (0, 0) to (10, 100), using a coordinate system that treats the point (5, 100) on the
Canvas as (0, 0). That makes it equivalent to this line that doesn’t use the Top and Left properties:

<Line Stroke="Blue" X1="5" Y1="100" X2="15" Y2="200"></Line>

It’s up to you whether you use the position properties when you draw a line on a Canvas. Often, you
can simplify your line drawing by picking a good starting point. You also make it easier to move parts of
your drawing. For example, if you draw several lines and other shapes at a specific position in a Canvas,
it’s a good idea to draw them relative to a nearby point (by using the same Top and Left coordinates).
That way, you can shift that entire part of your drawing to a new position as needed.

 Note There’s no way to create a curved line with Line or Polyline shapes. Instead, you need the more advanced
Path class described later in this chapter.

Polyline
The Polyline class lets you draw a sequence of connected straight lines. You supply a list of X and Y
coordinates using the Points property. Technically, the Points property requires a PointCollection
object, but you fill this collection in XAML using a lean string-based syntax. You need to supply a list of
points and add a space or a comma between each coordinate.

A polyline can have as few as two points. For example, here’s a polyline that duplicates the first line
you saw in this section, which stretches from (5, 100) to (15, 200):

<Polyline Stroke="Blue" Points="5 100 15 200"></Polyline>

For better readability, use commas between each X and Y coordinate:

<Polyline Stroke="Blue" Points="5,100 15,200"></Polyline>

And here’s a more complex polyline that begins at (10, 150). The points move steadily to the right,
oscillating between higher Y values such as (50, 160) and lower ones such as (70, 130):

CHAPTER 8  SHAPES AND TRANSFORMS

274

<Canvas>
 <Polyline Stroke="Blue" StrokeThickness="5" Points="10,150 30,140 50,160 70,130

90,170 110,120 130,180 150,110 170,190 190,100 210,240">
 </Polyline>
</Canvas>

Figure 8-7 shows the final line.

Figure 8-7. A line with several segments

At this point, it may occur to you that it would be easier to fill the Points collection
programmatically, using some sort of loop that automatically increments X and Y values accordingly.
This is true if you need to create highly dynamic graphics—for example, a chart that varies its
appearance based on a set of data you extract from a database. But if you want to build a fixed piece of
graphical content, you don’t want to worry about the specific coordinates of your shapes. Instead, you
(or a designer) will use another tool, such as Expression Design, to draw the appropriate graphics and
then export them to XAML.

Polygon
Polygon is virtually the same as Polyline. Like the Polyline class, the Polygon class has a Points collection
that takes a list of coordinates. The only difference is that the Polygon adds a final line segment that

CHAPTER 8  SHAPES AND TRANSFORMS

275

connects the final point to the starting point. You can fill the interior of this shape using the Fill property.
Figure 8-8 shows the previous polyline as a polygon with a yellow fill.

<Polygon Stroke="Blue" StrokeThickness="5" Points="10,150 30,140 50,160 70,130
90,170 110,120 130,180 150,110 170,190 190,100 210,240" Fill="Yellow">
</Polygon>

Figure 8-8. A filled polygon

 Note Technically, you can set the Fill property of a Polyline class as well. In this situation, the polyline fills itself
as though it were a polygon—in other words, as though it has an invisible line segment connecting the last point
to the first point. This effect is of limited use.

In a simple shape where the lines never cross, it’s easy to fill the interior. However, sometimes you
have a more complex polygon where it’s not necessarily obvious what portions are “inside” the shape
(and should be filled) and what portions are outside.

For example, consider Figure 8-9, which features a line that crosses more than one other line,
leaving an irregular region at the center that you may or may not want to fill. Obviously, you can control
exactly what gets filled by breaking this drawing down into smaller shapes. But you may not need to do
so.

CHAPTER 8  SHAPES AND TRANSFORMS

276

Figure 8-9. Determining fill areas when FillRule is EvenOdd

Every polygon and polyline includes a FillRule property that lets you choose between two different
approaches for filling in regions using the FillRule enumeration. By default, FillRule is set to EvenOdd.
To decide whether to fill a region, Silverlight counts the number of lines that must be crossed to reach
the outside of the shape. If this number is odd, the region is filled in; if it’s even, the region isn’t filled. In
the center area of Figure 8-9, you must cross two lines to get out of the shape, so it’s not filled.

Silverlight also supports the Nonzero fill rule, which is a little trickier. Essentially, with Nonzero,
Silverlight follows the same line-counting process as EvenOdd, but it takes into account the direction
that each line flows. If the number of lines going in one direction (say, left to right) is equal to the
number going in the opposite direction (right to left), the region isn’t filled. If the difference between
these two counts isn’t zero, the region is filled. In the shape from the previous example, the interior
region is filled if you set the FillRule to Nonzero. Figure 8-10 shows why. (In this example, the points are
numbered in the order they’re drawn, and arrows show the direction in which each line is drawn.)

CHAPTER 8  SHAPES AND TRANSFORMS

277

Figure 8-10. Determining fill areas when FillRule is Nonzero

 Note If there is an odd number of lines, the difference between the two counts can’t be zero. Thus, the Nonzero
fill rule always fills at least as much as the EvenOdd rule, plus possibly a bit more.

The tricky part about Nonzero is that its fill settings depend on how you draw the shape, not what
the shape looks like. For example, you can draw the same shape in such a way that the center isn’t filled
(although doing so is much more awkward—you’d begin by drawing the inner region and then draw the
outside spikes in the reverse direction).

Here’s the markup that draws the star shown in Figure 8-10:

<Polygon Stroke="Blue" StrokeThickness="1" Fill="Yellow"
 Canvas.Left="10" Canvas.Top="175" FillRule="Nonzero"
 Points="15,200 68,70 110,200 0,125 135,125">
</Polygon>

Line Caps and Line Joins
When you’re drawing with the Line and Polyline elements, you can choose how the starting and ending
edges of the line are drawn using the StrokeStartLineCap and StrokeEndLineCap properties. (These
properties have no effect on other shapes because the shapes are closed.)

Ordinarily, both StartLineCap and EndLineCap are set to Flat, which means the line ends
immediately at its final coordinate. Your other choices are Round (which rounds off the corner gently),

CHAPTER 8  SHAPES AND TRANSFORMS

278

Triangle (which draws the two sides of the line together in a point), and Square (which ends the line with
a sharp edge). All of these values add length to the line—they take it beyond the position where it would
otherwise end. The extra distance is half the thickness of the line.

 Note The only difference between Flat and Square is the fact that a square-edged line extends this extra
distance. In all other respects, the edge looks the same.

Figure 8-11 shows different line caps at the end of a line.

Figure 8-11. Line caps

All shape classes except Line allow you to tweak how their corners are shaped using the
StrokeLineJoin property, which takes a value from the PenLineJoin enumeration. You have three
choices: the default value, Miter, uses sharp edges; Bevel cuts off the point edge; and Round rounds it
out gently. Figure 8-12 shows the difference.

CHAPTER 8  SHAPES AND TRANSFORMS

279

Figure 8-12. Line joins

When you’re using mitered edges with thick lines and very small angles, the sharp corner can extend
an impractically long distance. In this case, you can use Bevel or Round to pare down the corner. Or, you
can use the StrokeMiterLimit property, which automatically bevels the edge when it reaches a certain
maximum length. StrokeMiterLimit is a ratio that compares the length used to miter the corner to half
the thickness of the line. If you set this to 1 (which is the default value), you let the corner extend half the
thickness of the line. If you set it to 3, you let the corner extend to 1.5 times the thickness of the line. The
last line in Figure 8-12 uses a higher miter limit with a narrow corner.

Dashes
Instead of drawing boring solid lines for the borders of your shape, you can draw dashed lines—lines that
are broken with spaces according to a pattern you specify.

CHAPTER 8  SHAPES AND TRANSFORMS

280

When you create a dashed line in Silverlight, you aren’t limited to specific presets. Instead, you
choose the length of the solid segment of the line and the length of the broken (blank) segment by
setting the StrokeDashArray property. For example, consider this line:

<Polyline Stroke="Blue" StrokeThickness="14" StrokeDashArray="1 2"
 Points="10,30 60,0 90,40 120,10 350,10">
</Polyline>

It has a line value of 1 and a gap value of 2. These values are interpreted relative to the thickness of
the line. So, if the line is 14 pixels thick (as in this example), the solid portion is 14 pixels followed by a
blank portion of 28 pixels. The line repeats this pattern for its entire length.

On the other hand, if you swap these values around like so

StrokeDashArray="2 1"

you get a line that has 28-pixel solid portions broken by 14-pixel spaces. Figure 8-13 shows both lines. As
you’ll notice, when a very thick line segment falls on a corner, it may be broken unevenly.

Figure 8-13. Dashed lines

There’s no reason that you need to stick with whole number values. For example, this
StrokeDashArray is perfectly reasonable:

StrokeDashArray="5 0.2 3 0.2"

CHAPTER 8  SHAPES AND TRANSFORMS

281

It supplies a more complex sequence: a dashed line that’s 514 long, then a break that’s 0.215
long, followed by a 314 line and another 0.214 break. At the end of this sequence, the line repeats the
pattern from the beginning.

An interesting thing happens if you supply an odd number of values for the StrokeDashArray. Take
this one, for example:

StrokeDashArray="3 0.5 2"

When drawing this line, Silverlight begins with a 3-times-thickness line, followed by a 0.5-times-
thickness space, followed by a 2-times-thickness-line. But when it repeats the pattern, it starts with a
gap, meaning you get a 3-times-thickness space, followed by a 0.5-times-thickness line, and so on.
Essentially, the dashed line alternates its pattern between line segments and spaces.

If you want to start midway into your pattern, you can use the StrokeDashOffset property, which is a
0-based index number that points to one of the values in your StrokeDashArray. For example, if you set
StrokeDashOffset to 1 in the previous example, the line begins with the 0.5-thickness space. Set it to 2,
and the line begins with the 2-thickness segment.

Finally, you can control how the broken edges of your line are capped. Ordinarily, the edge is
straight, but you can set StrokeDashCap to the Bevel, Square, and Triangle values you considered in the
previous section. Remember, all of these settings add half the line thickness to the end of your dash. If
you don’t take this into account, you may end up with dashes that overlap one another. The solution is
to add extra space to compensate.

 Tip When you’re using the StrokeDashCap property with a line (not a shape), it’s often a good idea to set
StartLineCap and EndLineCap to the same value. This makes the line look consistent.

Paths and Geometries
So far, you’ve looked at a number of classes that derive from Shape, including Rectangle, Ellipse, Line,
Polygon, and Polyline. However, there’s one Shape-derived class that you haven’t considered yet, and
it’s the most powerful by far. The Path class has the ability to encompass any simple shape, groups of
shapes, and more complex ingredients such as curves.

The Path class includes a single property, Data, that accepts a Geometry object that defines the
shape (or shapes) the path includes. You can’t create a Geometry object directly because it’s an abstract
class. Instead, you need to use one of the derived classes listed in Table 8-3. All of these classes are found
in the System.Windows.Media namespace.

Table 8-3. Geometry Classes

Name Description

LineGeometry Represents a straight line. The geometry equivalent of the Line shape.

RectangleGeometry Represents a rectangle (optionally with rounded corners). The geometry
equivalent of the Rectangle shape.

EllipseGeometry Represents an ellipse. The geometry equivalent of the Ellipse shape.

CHAPTER 8  SHAPES AND TRANSFORMS

282

Name Description

GeometryGroup Adds any number of Geometry objects to a single path, using the EvenOdd or
Nonzero fill rule to determine what regions to fill.

PathGeometry Represents a more complex figure that’s composed of arcs, curves, and lines, and
can be open or closed.

 Note Silverlight doesn’t include all the geometry classes that WPF supports. Notably absent is the
CombinedGeometry class, which allows two geometries to be fused together (although the effect can be
duplicated with the more powerful PathGeometry class). Also missing is StreamGeometry, which provides a
lightweight read-only equivalent to PathGeometry.

You may wonder what the difference is between a path and a geometry. The geometry defines a
shape. A path allows you to draw the shape. Thus, the Geometry object defines details such as the
coordinates and size of your shape, whereas the Path object supplies the Stroke and Fill brushes you use
to paint it. The Path class also includes the features it inherits from the UIElement infrastructure, such as
mouse and keyboard handling.

In the following sections, you’ll explore all the classes that derive from Geometry.

Line, Rectangle, and Ellipse Geometries
The LineGeometry, RectangleGeometry, and EllipseGeometry classes map directly to the Line,
Rectangle, and Ellipse shapes you learned about in the first part of this chapter. For example, you can
convert this markup that uses the Rectangle element

<Rectangle Fill="Yellow" Stroke="Blue"
 Width="100" Height="50"></Rectangle>

to this markup that uses the Path element:

<Path Fill="Yellow" Stroke="Blue">
 <Path.Data>
 <RectangleGeometry Rect="0,0 100,50"></RectangleGeometry>

 </Path.Data>
</Path>

The only real difference is that the Rectangle shape takes Height and Width values, whereas
RectangleGeometry takes four numbers that describe the size and location of the rectangle. The first two
numbers describe the X and Y coordinates point where the upper-left corner is placed, and the last two
numbers set the width and height of the rectangle. You can start the rectangle at (0, 0) to get the same
effect as an ordinary Rectangle element, or you can offset the rectangle using different values. The
RectangleGeometry class also includes RadiusX and RadiusY properties that let you round the corners
(as described earlier).

Similarly, you can convert the following line

CHAPTER 8  SHAPES AND TRANSFORMS

283

<Line Stroke="Blue" X1="0" Y1="0" X2="10" Y2="100"></Line>

to this LineGeometry:

<Path Stroke="Blue">
 <Path.Data>
 <LineGeometry StartPoint="0,0" EndPoint="10,100"></LineGeometry>

 </Path.Data>
</Path>

And you can convert this ellipse

<Ellipse Fill="Yellow" Stroke="Blue" Width="100" Height="50"></Ellipse>

to this EllipseGeometry:

<Path Fill="Yellow" Stroke="Blue">
 <Path.Data>
 <EllipseGeometry RadiusX="50" RadiusY="25" Center="50,25"></EllipseGeometry>

 </Path.Data>
</Path>

Notice that the two radius values are half the width and height values. You can also use the Center
property to offset the location of the ellipse. In this example, the center is placed in the exact middle of
the ellipse bounding box so that it’s drawn exactly the same way as the Ellipse shape.

Overall, these simple geometries work the same way as the corresponding shapes. You get the added
ability to offset rectangles and ellipses; but that’s not necessary if you’re placing your shapes on a
Canvas, which already gives you the ability to position your shapes at a specific position. If this were all
you could do with geometries, you probably wouldn’t bother to use the Path element. The difference
appears when you decide to group more than one geometry in the same path and when you step up to
more complex curves, as described in the following sections.

Combining Shapes with GeometryGroup
The simplest way to combine geometries is to use GeometryGroup and nest the other Geometry-derived
objects inside. Here’s an example that places an ellipse next to a square:

<Path Fill="Yellow" Stroke="Blue" Margin="5" Canvas.Top="10" Canvas.Left="10">
 <Path.Data>
 <GeometryGroup>

 <RectangleGeometry Rect="0,0 100,100"></RectangleGeometry>

 <EllipseGeometry Center="150,50" RadiusX="35" RadiusY="25"></EllipseGeometry>

 </GeometryGroup>

 </Path.Data>
</Path>

The effect of this markup is the same as if you supplied two Path elements, one with
RectangleGeometry and one with EllipseGeometry (and that’s the same as if you used Rectangle and
Ellipse shapes instead). However, this approach offers one advantage: you’ve replaced two elements
(Rectangle and Ellipse) with one (Path), which means you’ve reduced the overhead of your user
interface. In general, a page that uses a smaller number of elements with more complex geometries

CHAPTER 8  SHAPES AND TRANSFORMS

284

performs faster than a page that has a large number of elements with simpler geometries. This effect
isn’t apparent in a page that has just a few dozen shapes, but it may become significant in one that
requires hundreds or thousands.

Of course, combining geometries in a single Path element also has a drawback: you can’t perform
event handling of the different shapes separately. Instead, the Path element fires all mouse events. And
although Silverlight provides a way to perform hit testing to find out whether a point is on an element
(through the HitTest() method that’s built into all elements), it doesn’t include a way to hit-test
geometries.

But even when you combine geometries, you still have the ability to manipulate the nested
RectangleGeometry and EllipseGeometry objects independently. For example, each geometry provides a
Transform property that you can set to stretch, skew, or rotate that part of the path.

 Note Unlike WPF, Silverlight doesn’t allow you to reuse a single geometry object with more than one path. If
two objects share the same geometry, you must create a distinct copy for each one.

GeometryGroup becomes more interesting when your shapes intersect. Rather than treat your
drawing as a combination of solid shapes, GeometryGroup uses its FillRule property (which can be
EvenOdd or Nonzero, as described earlier) to decide what shapes to fill. Consider what happens if you
alter the markup shown earlier like this, placing the ellipse over the square:

<Path Fill="Yellow" Stroke="Blue" Margin="5" Canvas.Top="10" Canvas.Left="10">
 <Path.Data>
 <GeometryGroup>

 <RectangleGeometry Rect="0,0 100,100"></RectangleGeometry>

 <EllipseGeometry Center="50,50" RadiusX="35" RadiusY="25"></EllipseGeometry>

 </GeometryGroup>

 </Path.Data>
</Path>

This markup creates a square with an ellipse-shaped hole in it. If you change FillRule to Nonzero,
you get a solid ellipse over a solid rectangle, both with the same yellow fill.

You can create the square-with-a-hole effect by superimposing a white-filled ellipse over your
square. However, the GeometryGroup class becomes more useful if you have content underneath, which
is typical in a complex drawing. Because the ellipse is treated as a hole in your shape (not another shape
with a different fill), any content underneath shows through. For example, consider what happens if you
add this line of text behind the square-with-a-hole shape, by placing it before the Path in your markup:

<TextBlock Canvas.Top="50" Canvas.Left="20" FontSize="25" FontWeight="Bold">
 Hello There</TextBlock>

Now, you get the result shown in Figure 8-14.

CHAPTER 8  SHAPES AND TRANSFORMS

285

Figure 8-14. Text under a Path

Curves and Lines with PathGeometry
PathGeometry is the superpower of geometries. It can draw anything the other geometries can, and
much more. The only drawback is a lengthier (and somewhat more complex) syntax.

Every PathGeometry object is built out of one or more PathFigure objects (which are stored in the
PathGeometry.Figures collection). A PathFigure is a continuous set of connected lines and curves that
can be closed or open. You supply as many line segments as you need, and each one continues from the
end of the previous line segment. The figure is closed if the end of the last line in the figure connects to
the beginning of the first line.

The PathFigure class has four key properties, as described in Table 8-4.

Table 8-4. PathFigure Properties

Name Description

StartPoint This is a point that indicates where the line for the figure begins.

Segments This is a collection of PathSegment objects that are used to draw the figure.

IsClosed If true, Silverlight adds a straight line to connect the starting and ending points (if they
aren’t the same).

IsFilled If true, the area inside the figure is filled in using the Path.Fill brush.

So far, this sounds straightforward. The PathFigure is a shape that’s drawn using an unbroken line

that consists of a number of segments. However, the trick is that there are several type of segments, all of

CHAPTER 8  SHAPES AND TRANSFORMS

286

which derive from the PathSegment class. Some are simple, like LineSegment, which draws a straight
line. Others, like BezierSegment, draw curves and are correspondingly more complex.

You can mix and match different segments freely to build your figure. Table 8-5 lists the segment
classes you can use.

Table 8-5. PathSegment Classes

Name Description

LineSegment Creates a straight line between two points.

ArcSegment Creates an elliptical arc between two points.

BezierSegment Creates a Bézier curve between two points.

QuadraticBezierSegment Creates a simpler form of Bézier curve that has one control point
instead of two and is faster to calculate.

PolyLineSegment Creates a series of straight lines. You can get the same effect using
multiple LineSegment objects, but a single PolyLineSegment object is
more concise.

PolyBezierSegment Creates a series of Bézier curves.

PolyQuadraticBezierSegment Creates a series of simpler quadratic Bézier curves.

Straight Lines
It’s easy to create simple lines using the LineSegment and PathGeometry classes. You set the StartPoint
and add one LineSegment for each section of the line. The LineSegment.Point property identifies the
end point of each segment.

For example, the following markup begins at (10, 100), draws a straight line to (100, 100), and then
draws a line from that point to (100, 50). Because the PathFigure.IsClosed property is set to true, a final
line segment adds the connection from (100, 50) to (10, 100). The final result is a right-angled triangle:

<Path Stroke="Blue">
 <Path.Data>
 <PathGeometry>

 <PathFigure IsClosed="True" StartPoint="10,100">

 <LineSegment Point="100,100" />

 <LineSegment Point="100,50" />

 </PathFigure>
 </PathGeometry>

 </Path.Data>
</Path>

CHAPTER 8  SHAPES AND TRANSFORMS

287

Silverlight lets you manipulate figures in your code. For example, you can add or remove path
segments, or you can dynamically warp a shape by modifying existing line segments or changing the
shape’s start point. You can even use animation to modify the points in your path smoothly and
incrementally, as described in Chapter 10.

 Note Remember, each PathGeometry object can contain an unlimited number of PathFigure objects. That
means you can create several separate open or closed figures that are all considered part of the same path.

Arcs
Arcs are a little more interesting than straight lines. You identify the end point of the line using the
ArcSegment.Point property, just as you would with a line segment. However, the PathFigure draws a
curved line from the starting point (or the end point of the previous segment) to the end point of your
arc. This curved connecting line is actually a portion of the edge of an ellipse.

Obviously, the end point isn’t enough information to draw the arc, because many curves (some
gentle, some more extreme) could connect two points. You also need to indicate the size of the
imaginary ellipse that’s being used to draw the arc. You do this using the ArcSegment.Size property,
which supplies the ellipse’s X radius and Y radius. The larger the imaginary ellipse, the more gradually its
edge curves.

 Note For any two points, the ellipse has a practical maximum and minimum size. The maximum occurs when
you create an ellipse so large the line segment you’re drawing appears straight. Increasing the size beyond this
point has no effect. The minimum occurs when the ellipse is small enough that a full semicircle connects the two
points. Shrinking the size beyond this point also has no effect.

Here’s an example that creates the gentle arc shown in Figure 8-15:

<Path Stroke="Blue" StrokeThickness="3">
 <Path.Data>
 <PathGeometry>

 <PathFigure IsClosed="False" StartPoint="10,100">

 <ArcSegment Point="250,150" Size="200,300" />

 </PathFigure>
 </PathGeometry>

 </Path.Data>
</Path>

CHAPTER 8  SHAPES AND TRANSFORMS

288

Figure 8-15. A simple arc

So far, arcs sound straightforward. But it turns out that even with the start and end points and the
size of the ellipse, you still don’t have all the information you need to draw an arc unambiguously. In the
previous example, you rely on two default values that may not be set to your liking.

To understand the problem, you need to consider the other ways an arc can connect the same two
points. If you picture two points on an ellipse, it’s clear that you can connect them in two ways: by going
around the short side or by going around the long side. Figure 8-16 illustrates.

Figure 8-16. Two ways to trace a curve along an ellipse

CHAPTER 8  SHAPES AND TRANSFORMS

289

You set the direction using the ArcSegment.IsLargeArc property, which can be true or false. The
default value is false, which means you get the shorter of the two arcs.

Even after you’ve set the direction, one point of ambiguity exists: where the ellipse is placed. For
example, imagine you draw an arc that connects a point on the left with a point on the right, using the
shortest possible arc. The curve that connects these two points could be stretched down and then up (as
it does in Figure 8-15), or it could be flipped so that it curves up and then down. The arc you get depends
on the order in which you define the two points in the arc and the ArcSegment.SweepDirection property,
which can be Counterclockwise (the default) or Clockwise. Figure 8-17 shows the difference.

Figure 8-17. Two ways to flip a curve

Bézier Curves
Bézier curves connect two line segments using a complex mathematical formula that incorporates two
control points that determine how the curve is shaped. Bézier curves are an ingredient in virtually every
vector drawing application ever created because they’re remarkably flexible. Using nothing more than a
start point, an end point, and two control points, you can create a surprisingly wide variety of smooth
curves (including loops). Figure 8-18 shows a classic Bézier curve. Two small circles indicate the control
points, and a dashed line connects each control point to the end of the line it affects the most.

CHAPTER 8  SHAPES AND TRANSFORMS

290

Figure 8-18. A Bézier curve

Even without understanding the math underpinnings, it’s fairly easy to get a feel for how Bézier
curves work. Essentially, the two control points do all the magic. They influence the curve in two ways:

• At the starting point, a Bézier curve runs parallel with the line that connects it to
the first control point. At the ending point, the curve runs parallel with the line
that connects it to the end point. (In between, it curves.)

• The degree of curvature is determined by the distance to the two control points. If
one control point is farther away, it exerts a stronger “pull.”

To define a Bézier curve in markup, you supply three points. The first two points
(BezierSegment.Point1 and BezierSegment.Point2) are the control points. The third point
(BezierSegment.Point3) is the end point of the curve. As always, the starting point is that starting point of
the path or wherever the previous segment leaves off.

The example shown in Figure 8-18 includes three separate components, each of which uses a
different stroke and thus requires a separate Path element. The first path creates the curve, the second
adds the dashed lines, and the third applies the circles that indicate the control points. Here’s the
complete markup:

<Canvas>
 <Path Stroke="Blue" StrokeThickness="5" Canvas.Top="20">

 <Path.Data>
 <PathGeometry>

 <PathFigure StartPoint="10,10">

CHAPTER 8  SHAPES AND TRANSFORMS

291

 <BezierSegment Point1="130,30" Point2="40,140"

 Point3="150,150"></BezierSegment>

 </PathFigure>
 </PathGeometry>

 </Path.Data>
 </Path>
 <Path Stroke="Green" StrokeThickness="2" StrokeDashArray="5 2" Canvas.Top="20">

 <Path.Data>
 <GeometryGroup>

 <LineGeometry StartPoint="10,10" EndPoint="130,30"></LineGeometry>

 <LineGeometry StartPoint="40,140" EndPoint="150,150"></LineGeometry>

 </GeometryGroup>

 </Path.Data>
 </Path>
 <Path Fill="Red" Stroke="Red" StrokeThickness="8" Canvas.Top="20">

 <Path.Data>
 <GeometryGroup>

 <EllipseGeometry Center="130,30"></EllipseGeometry>

 <EllipseGeometry Center="40,140"></EllipseGeometry>

 </GeometryGroup>

 </Path.Data>
 </Path>
</Canvas>

Trying to code Bézier paths is a recipe for many thankless hours of trial-and-error computer coding.
You’re much more likely to draw your curves (and many other graphical elements) in a dedicated
drawing program that has an export-to-XAML feature or Microsoft Expression Blend.

 Tip To learn more about the algorithm that underlies the Bézier curve, you can read an informative Wikipedia
article on the subject at http://en.wikipedia.org/wiki/Bezier_curve.

The Geometry Mini-Language
The geometries you’ve seen so far have been relatively concise, with only a few points. More complex
geometries are conceptually the same but can easily require hundreds of segments. Defining each line,
arc, and curve in a complex path is extremely verbose and unnecessary—after all, it’s likely that complex
paths will be generated by a design tool rather than written by hand, so the clarity of the markup isn’t all
that important. With this in mind, the creators of Silverlight added a more concise alternative syntax for
defining geometries that lets you represent detailed figures with much less markup. This syntax is often

http://en.wikipedia.org/wiki/Bezier_curve

CHAPTER 8  SHAPES AND TRANSFORMS

292

described as the geometry mini-language (and sometimes the path mini-language because of its
application with the Path element).

To understand the mini-language, you need to realize that it’s essentially a long string holding a
series of commands. These commands are read by a type converter that then creates the corresponding
geometry. Each command is a single letter and is optionally followed by a few bits of numeric
information (such as X and Y coordinates) separated by spaces. Each command is also separated from
the previous command with a space.

For example, earlier you created a basic triangle using a closed path with two line segments. Here’s
the markup that did the trick:

<Path Stroke="Blue">
 <Path.Data>
 <PathGeometry>

 <PathFigure IsClosed="True" StartPoint="10,100">

 <LineSegment Point="100,100" />

 <LineSegment Point="100,50" />

 </PathFigure>
 </PathGeometry>

 </Path.Data>
</Path>

To duplicate this figure using the mini-language, you write this:

<Path Stroke="Blue" Data="M 10,100 L 100,100 L 100,50 Z"/>

This path uses a sequence of four commands. The first command (M) creates the PathFigure
element and sets the starting point to (10, 100). The following two commands (L) create line segments.
The final command (Z) ends the PathFigure and sets the IsClosed property to true. The commas in this
string are optional, as are the spaces between the command and its parameters, but you must leave at
least one space between adjacent parameters and commands. That means you can reduce the syntax
even further to this less-readable form:

<Path Stroke="Blue" Data="M10 100 L100 100 L100 50 Z"/>

The geometry mini-language is easy to grasp. It uses a fairly small set of commands, which are
detailed in Table 8-6. Parameters are shown in italics.

Table 8-6. Commands for the Geometry Mini-Language

Command Description

F value Sets the Geometry.FillRule property. Use 0 for EvenOdd or 1 for Nonzero. This
command must appear at the beginning of the string (if you decide to use it).

M x,y Creates a new PathFigure element for the geometry and sets its start point. This
command must be used before any other commands except F. You can also use it
during your drawing sequence to move the origin of your coordinate system. (The
M stands for move.)

CHAPTER 8  SHAPES AND TRANSFORMS

293

Command Description

L x,y Creates a LineSegment to the specified point.

H x Creates a horizontal LineSegment using the specified X value and keeping the Y
value constant.

V y Creates a vertical LineSegment using the specified Y value and keeping the X
value constant.

A radiusX, radiusY
degrees isLargeArc,
isClockwise x,y

Creates an ArcSegment to the indicated point. You specify the radii of the ellipse
that describes the arc, the number of degrees the arc is rotated, and Boolean flags
that set the IsLargeArc and SweepDirection properties described earlier.

C x1,y1 x2,y2 x,y Creates a BezierSegment to the indicated point, using control points at (x1, y1)
and (x2, y2).

Q x1, y1 x,y Creates a QuadraticBezierSegment to the indicated point, with one control point
at (x1, y1).

S x2,y2 x,y Creates a smooth BezierSegment by using the second control point from the
previous BezierSegment as the first control point in the new BezierSegment.

T x2,y2 x,y Creates a smooth QuadraticBezierSegment by using the second control point
from the previous QuadraticBezierSegment as the first control point in the new
QuadraticBezierSegment.

Z Ends the current PathFigure element and sets IsClosed to true. You don’t need to
use this command if you don’t want to set IsClosed to true —instead, use M if you
want to start a new PathFigure or end the string.

 Tip The geometry mini-language offers one more trick. You can use a command in lowercase if you want its
parameters to be evaluated relative to the previous point rather than using absolute coordinates.

Clipping with Geometry
As you’ve seen, geometries are the most powerful way to create a shape. However, geometries aren’t
limited to the Path element. They’re also used anywhere you need to supply the abstract definition of a
shape (rather than draw a real, concrete shape in a page).

Geometries are also used to set the Clip property, which is provided by all elements. The Clip
property lets you constrain the outer bounds of an element to fit a specific geometry. You can use the
Clip property to create a number of exotic effects. Although it’s commonly used to trim down image
content in an Image element, you can use the Clip property with any element. The only limitation is that

CHAPTER 8  SHAPES AND TRANSFORMS

294

you need a closed geometry if you want to see anything—individual curves and line segments aren’t
much use.

The following example uses the same geometry to clip two elements: an Image element that
contains a bitmap, and a standard Button element. Figure 8-19 shows the results.

Figure 8-19. Clipping two elements

Here’s the markup for this example:

<Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 </Grid.ColumnDefinitions>

 <Button Content="A button">
 <Button.Clip>
 <GeometryGroup FillRule="Nonzero">

 <EllipseGeometry RadiusX="75" RadiusY="50" Center="100,150" />

 <EllipseGeometry RadiusX="100" RadiusY="25" Center="200,150" />

 <EllipseGeometry RadiusX="75" RadiusY="130" Center="140,140" />

 </GeometryGroup>

 </Button.Clip>

CHAPTER 8  SHAPES AND TRANSFORMS

295

 </Button>
 <Image Grid.Column="1" Stretch="None" Source="creek.jpg">
 <Image.Clip>
 <GeometryGroup FillRule="Nonzero">

 <EllipseGeometry RadiusX="75" RadiusY="50" Center="100,150" />

 <EllipseGeometry RadiusX="100" RadiusY="25" Center="200,150" />

 <EllipseGeometry RadiusX="75" RadiusY="130" Center="140,140" />

 </GeometryGroup>

 </Image.Clip>
 </Image>
</Grid>

The clipping you set doesn’t take the size of the element into account. In this example, that means
that if the button is enlarged, the clipped region will remain at the same position and show a different
portion of the button.

Transforms
Many drawing tasks can be simplified by using a transform—an object that alters the way a shape or
element is drawn by secretly shifting the coordinate system it uses. In Silverlight, transforms are
represented by classes that derive from the MustInherit abstract System.Windows.Media.Transform
class, as listed in Table 8-7.

Table 8-7. Transform Classes

Name Description Important Properties

TranslateTransform Displaces your coordinate system by some amount.
This transform is useful if you want to draw the same
shape in different places.

X, Y

RotateTransform Rotates your coordinate system. The shapes you draw
normally are turned around a center point you choose.

Angle, CenterX,
CenterY

ScaleTransform Scales your coordinate system up or down so that your
shapes are drawn smaller or larger. You can apply
different degrees of scaling in the X and Y dimensions,
thereby stretching or compressing your shape. When a
shape is resized, Silverlight resizes its inside area and its
border proportionately. That means the larger your
shape grows, the thicker its border is. (Incidentally,
ScaleTransform powers the Viewbox you learned about
in Chapter 3 and so has some obvious similarities.)

ScaleX, ScaleY,
CenterX, CenterY

SkewTransform Warps your coordinate system by slanting it a number
of degrees. For example, if you draw a square, it
becomes a parallelogram.

AngleX, AngleY,
CenterX, CenterX

CHAPTER 8  SHAPES AND TRANSFORMS

296

Name Description Important Properties

CompositeTransform Fuses together a ScaleTransform, SkewTransform,
RotateTransform, and TransaleTransform (which are
applied in that order). This transform is really just a
XAML convenience—if you need to use a combination
of these transforms on a single element, the
CompositeTransform can save some markup.

CenterX, CenterY,
Rotation, ScaleX,
ScaleY, SkewX, SkewY,
TranslateX, TranslateY

MatrixTransform Modifies your coordinate system using matrix
multiplication with the matrix you supply. This is the
most complex option—it requires some mathematical
skill.

Matrix

TransformGroup Combines multiple transforms so they can all be
applied at once. The order in which you apply
transformations is important—it affects the final result.
For example, rotating a shape (with RotateTransform)
and then moving it (with TranslateTransform) sends the
shape off in a different direction than if you move it and
then rotate it. Note that although you can always
replicate a CompositeTransform with a
TransformGroup, the reverse is not true. For example, a
TransformGroup can apply transforms in any order, it
can use the same type of transform multiple times, and
it can include a MatrixTransform, all unlike the
CompositeTransform.

N/A

Technically, all transforms use matrix math to alter the coordinates of your shape. But using the

prebuilt transforms classes—TranslateTransform, RotateTransform, ScaleTransform, SkewTransform—
is far simpler than using MatrixTransform and trying to work out the right matrix for the operation you
want to perform. When you perform a series of transforms with a CompositeTransform or
TransformGroup, Silverlight fuses your transforms together into a single MatrixTransform, ensuring
optimal performance.

 Note All transforms have automatic change-notification support. If you change a transform that’s being used in
a shape, the shape redraws itself immediately.

Transforms are one of those quirky concepts that turns out to be extremely useful in a variety of
different contexts. Some examples include the following:

• Angling a shape: Using RotateTransform, you can turn your coordinate system to
create certain shapes more easily.

CHAPTER 8  SHAPES AND TRANSFORMS

297

• Repeating a shape: Many drawings are built using a similar shape in several
different places. Using a transform, you can take a shape and then move it, rotate
it, resize it, and so on.

 Tip To use the same shape in multiple places, you need to duplicate the shape in your markup (which isn’t
ideal), use code (to create the shape programmatically), or use the Path shape. As you learned earlier in this
chapter, the Path shape accepts Geometry objects, and you can store a geometry object as a resource so it can be
reused throughout your markup.

• Dynamic effects and animation: You can create a number of sophisticated effects
with the help of a transform, such as rotating a shape, moving it from one place to
another, and warping it dynamically.

In Chapter 10, you’ll use transforms to build powerful animations. But for now, you’ll take a quick
look at how transforms work by considering how you can apply a basic transform to an ordinary shape.

Transforming Shapes
To transform a shape, you assign the RenderTransform property to the transform object you want to use.
Depending on the transform object you’re using, you’ll need to fill in different properties to configure it,
as detailed in Table 8-7.

For example, if you’re rotating a shape, you need to use the rotate transform and supply the angle in
degrees. Here’s an example that rotates a rectangle by 25 degrees:

<Rectangle Width="80" Height="10" Stroke="Blue" Fill="Yellow"
 Canvas.Left="100" Canvas.Top="100">
 <Rectangle.RenderTransform>
 <RotateTransform Angle="25" />

 </Rectangle.RenderTransform>
</Rectangle>

When you rotate a shape this way, you rotate it about the shape’s origin (the upper-left corner).
Figure 8-20 illustrates by rotating the same square 25, 50, 75, and then 100 degrees.

CHAPTER 8  SHAPES AND TRANSFORMS

298

Figure 8-20. Rotating a rectangle four times

Sometimes you’ll want to rotate a shape around a different point. RotateTransform, like many other
transform classes, provides a CenterX property and a CenterY property. You can use these properties to
indicate the center point around which the rotation should be performed. Here’s a rectangle that uses
this approach to rotate itself 25 degrees around its center point:

<Rectangle Width="80" Height="10" Stroke="Blue" Fill="Yellow"
 Canvas.Left="100" Canvas.Top="100">
 <Rectangle.RenderTransform>
 <RotateTransform Angle="25" CenterX="45" CenterY="5" />

 </Rectangle.RenderTransform>
</Rectangle>

Figure 8-21 shows the result of performing the same sequence of rotations featured in Figure 9-9,
but around the designated center point.

CHAPTER 8  SHAPES AND TRANSFORMS

299

Figure 8-21. Rotating a rectangle around its middle

There’s a clear limitation to using the CenterX and CenterY properties of RotateTransform. These
properties are defined using absolute coordinates, which means you need to know the exact center point
of your content. If you’re displaying dynamic content (for example, pictures of varying dimensions or
elements that can be resized), this introduces a problem. Fortunately, Silverlight has a solution with the
handy RenderTransformOrigin property, which is supported by all shapes. This property sets the center
point using a proportional coordinate system that stretches from 0 to 1 in both dimensions. In other
words, the point (0, 0) is designated as the upper-left corner and (1, 1) is the lower-right corner. (If the
shape region isn’t square, the coordinate system is stretched accordingly.)

With the help of the RenderTransformOrigin property, you can rotate any shape around its center
point using markup like this:

CHAPTER 8  SHAPES AND TRANSFORMS

300

<Rectangle Width="80" Height="10" Stroke="Blue" Fill="Yellow"
 Canvas.Left="100" Canvas.Top="100" RenderTransformOrigin="0.5,0.5">
 <Rectangle.RenderTransform>
 <RotateTransform Angle="25" />

 </Rectangle.RenderTransform>
</Rectangle>

This works because the point (0.5, 0.5) designates the center of the shape, regardless of its size. In
practice, RenderTransformOrigin is generally more useful than the CenterX and CenterY properties,
although you can use either one (or both) depending on your needs.

 Tip You can use values greater than 1 or less than 0 when setting the RenderTransformOrigin property to
designate a point that appears outside the bounding box of your shape. For example, you can use this technique
with a RotateTransform to rotate a shape in a large arc around a very distant point, such as (5, 5).

Transforms and Layout Containers
The RenderTransform and RenderTransformOrigin properties aren’t limited to shapes. The Shape class
inherits them from the UIElement class, which means they’re supported by all Silverlight elements,
including buttons, text boxes, the TextBlock; entire layout containers full of content; and so on.
Amazingly, you can rotate, skew, and scale any piece of Silverlight user interface (although in most cases
you shouldn’t).

It’s important to note that when you apply transforms to the elements in a layout container, the
transforming is performed after the layout. For the simple Canvas, which uses coordinate-based layout,
this distinction has no effect. But for other layout containers, which position elements relatively based
on the placement and size of other elements, the effect is important. For instance, consider Figure 8-22,
which shows a StackPanel that contains a rotated button. Here, the StackPanel lays out the two buttons
as though the first button is positioned normally, and the rotation happens just before the button is
rendered. As a result, the rotated button overlaps the one underneath.

CHAPTER 8  SHAPES AND TRANSFORMS

301

Figure 8-22. Rotating buttons

WPF also has the ability to use layout transforms, which are applied before the layout pass. This
means the layout container uses the transformed dimensions of an element when positioning other
elements. However, Silverlight doesn’t provide this ability.

 Tip You can also use transforms to change a wide range of Silverlight ingredients, such as brushes,
geometries, and clipping regions.

A Reflection Effect
Transforms are important for applying many types of effects. One example is a reflection effect, such as
the one demonstrated in Figure 8-23.

CHAPTER 8  SHAPES AND TRANSFORMS

302

Figure 8-23. A reflection effect

To create a reflection effect in Silverlight, you first explicitly duplicate the content that will use the
effect. For example, to create the reflection shown in Figure 8-23, you need to begin with two identical
Image elements—one of which shows the original image and the other of which shows the reflected
copy:

<Grid x:Name="LayoutRoot" Background="White">
 <Grid.RowDefinitions>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>
 <Image Grid.Row="0" Source="harpsichord.jpg"></Image>
 <Image Grid.Row="1" Source="harpsichord.jpg"></Image>
</Grid>

CHAPTER 8  SHAPES AND TRANSFORMS

303

Because this technique forces you to duplicate your content, it generally isn’t practical to add a
reflection effect to controls. But it’s possible to create a reflection of a live video playback with the help
of the VideoBrush class, which is described in Chapter 12.

The second step is to modify the copy of your content to make it look more like a reflection. To
accomplish this, you use a combination of two ingredients—a transform, which flips the image into
place, and an opacity mask, which fades it gently out of sight.

<Image Grid.Row="1" Source="harpsichord.jpg" RenderTransformOrigin="0,0.4">
 <Image.RenderTransform>
 <ScaleTransform ScaleY="-0.8"></ScaleTransform>

 </Image.RenderTransform>
 <Image.OpacityMask>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">

 <GradientStop Offset="0" Color="Transparent"></GradientStop>
 <GradientStop Offset="1" Color="#44000000"></GradientStop>
 </LinearGradientBrush>

 </Image.OpacityMask>
</Image>

Here, a ScaleTransform flips the image over by using a negative value for ScaleY. To flip an image
horizontally, you use –1. Using a fractional value (in this case, –0.8) simultaneously flips the image over
and compresses it, so it’s shorter than the original image. To make sure the flipped copy appears in the
right place, you must position it exactly (using a layout container like the Canvas) or use the
RenderTransformOrigin property, as in this example. Here, the image is flipped around the point (0, 0.4).
In other words, it keeps the same left alignment (x = 0) but is moved down (y = 0.4). Essentially, it’s
flipped around an imaginary horizontal line that’s a bit higher than the midpoint of the image.

This example uses a LinearGradientBrush that fades between a completely transparent color and a
partially transparent color to make the reflected content more faded. Because the image is upside down,
you must define the gradient stops in reverse order.

Perspective Transforms
Silverlight doesn’t include a true toolkit for 3-D drawing. However, it does have a feature called
perspective transforms that lets you simulate a 3-D surface. Much like a normal transform, a perspective
transform takes an existing element and manipulates its visual appearance. But with a perspective
transform, the element is made to look as though it’s on a 3-D surface.

Perspective transforms can come in handy, but they’re a long way from real 3-D. First, and most
obvious, they give you only a single shape to work with—essentially, a flat, rectangular plane, like a sheet
of paper, on which you can place your elements and then tilt them away from the viewer. By
comparison, a true 3-D framework allows you to fuse tiny triangles together to build more complex
surfaces, ranging from cubes and polyhedrons to spheres and entire topographic maps. True 3-D
frameworks also use complex math to calculate proper lighting and shading, determine what shapes are
obscuring other shapes, and so on. (For an example, consider Silverlight’s Windows-only big brother,
WPF, which has rich 3-D support.)

CHAPTER 8  SHAPES AND TRANSFORMS

304

 Note The bottom line is this—if you’re looking for a few tricks to create some 3-D eye candy without the hard
work, you’ll like Silverlight’s perspective-transform feature. (Perspective transforms are particularly useful when
combined with animation, as you’ll see in Chapter 10.) But if you’re hoping for a comprehensive framework to
model a 3-D world, you’ll be sorely disappointed.

Much as Silverlight includes an abstract Transform class from which all transforms derive, it uses an
abstract System.Windows.Media.Projection class from which all projections derive. Currently, Silverlight
includes just two projections: the practical PlaneProjection that you’ll use in this chapter and the far
more complex Matrix3DProjection, which suits those who are comfortable using heavy-duty math to
construct and manipulate 3D matrices. Matrix3DProjection is beyond the scope of this book. However, if
you’d like to experiment with it and explore the underlying math, Charles Petzold provides a good two-
part introduction with sample code at http://tinyurl.com/m29v3q and
http://tinyurl.com/laalp6.

The PlaneProjection Class
PlaneProjection gives you two complementary abilities. First, you can rotate the 3-D plane around the x-
axis (side-to-side), the y-axis (up-and-down), or the z-axis (which looks like a normal rotational
transform). Figure 8-24 illustrates the difference, with 45-degree rotations around the three different
axes.

Figure 8-24. Rotations with the PlaneProjection class

In Figure 8-24, the picture is rotated around its center point. But you can explicitly choose to rotate
the element around a different point by setting the right property. Here’s how:

• For an x-axis rotation, use RotationX to control the amount of rotation (as an
angle from 0 to 360 degrees). Use CenterOfRotationX to set the x coordinate of the
center point in relative terms, where 0 is the far left, 1 is the far right, and 0.5 is the
middle point (and default).

http://tinyurl.com/m29v3q
http://tinyurl.com/laalp6

CHAPTER 8  SHAPES AND TRANSFORMS

305

• For a y-axis rotation, use RotationY to set the angle of rotation. Use
CenterOfRotationY to set the y coordinate of the center point, where 0 is the top, 1
is the bottom, and 0.5 is the middle (and default).

• For a y-axis rotation, use RotationZ to set the angle of rotation. Use
CenterOfRotationZ to set the z coordinate of the center point, where 0 is the
middle (and default), positive numbers are in front of the element, and negative
numbers are behind it.

In many cases, the rotation properties will be the only parts of the PlaneProjection that you’ll want
to use. However, you can also shift the element in any direction. There are two ways to move it:

• Use the GlobalOffsetX, GlobalOffsetY, and GlobalOffsetZ properties to move the
element using screen coordinates, before the projection is applied.

• Use the LocalOffsetX, LocalOffsetY, and LocalOffsetZ properties to move the
element using its transformed properties, after the projection is applied.

For example, consider the case where you haven’t rotated the element. In this case, the global and
the local properties will have the same effect. Increasing GlobalOffsetX or LocalOffsetX shifts the
element to the right. Now, consider the case where the element has been rotated around the y-axis using
the RotationY property (shown in Figure 8-25). In this situation, increasing GlobalOffsetX shifts the
rendered content to the right, exactly the same way it does when the element hasn’t been rotated. But
increasing LocalOffsetX moves the content along the x-axis, which now points in a virtual 3-D direction.
As a result, the content appears to move to the right and backward.

CHAPTER 8  SHAPES AND TRANSFORMS

306

Figure 8-25. Translation with the PlaneProjection

These two details—rotation and translation—encompass everything the PlaneProjection does.

Applying a Projection
Projections works on virtually any Silverlight element, because every class that derives from UIElement
includes the required Projection property. To add a perspective effect to an element, you create a
PlaneProjection and use it to set the Projection property, either in code or in XAML markup.

For example, here’s the PlaneProjection that rotates the first figure in Figure 8-24:

<Border BorderBrush="SlateGray" CornerRadius="2" BorderThickness="4">
 <Border.Projection>
 <PlaneProjection RotationY="45"></PlaneProjection>

 </Border.Projection>
 <Image Source="grandpiano.jpg"></Image>
</Border>

As with ordinary transforms, perspective transforms are performed after layout. Figure 8-24
illustrates this fact by using a shaded border that occupies the original position of the transformed

CHAPTER 8  SHAPES AND TRANSFORMS

307

element. Even though the element now sticks out in new places, the bounds of the shaded background
are used for layout calculations. As with all elements, if more than one element overlaps, the one
declared last in the markup is placed on top. (Some layout controls offer more sophisticated layering, as
the Canvas does with the ZIndex property discussed in Chapter 3.)

To get a feeling for how the different PlaneProjection properties interact, it helps to play with a
simple test application, like the one shown in Figure 8-26. Here, the user can rotate an element around
its x-axis, y-axis, or z-axis (or any combination). In addition, the element can be displaced locally or
globally along the x-axis using the LocalOffsetX and GlobalOffsetX properties described earlier.

Figure 8-26. Rotating ordinary elements in 3-D

Although you can use a projection on any element, it’s often useful to apply it to some sort of
container, such as a layout panel or the Border element, as in this example. That way, you can place
more elements inside. This example is particularly interesting because among the projected elements
are interactive controls such as a button and text box. These controls continue to work in their standard
ways, responding to mouse clicks, allowing focus and typing, and so on, even as you rotate the
containing Border element.

<Border BorderBrush="SlateGray" CornerRadius="2" BorderThickness="4" Padding="10">
 <Border.Projection>
 <PlaneProjection x:Name="projection"></PlaneProjection>

CHAPTER 8  SHAPES AND TRANSFORMS

308

 </Border.Projection>
 <StackPanel>
 <TextBlock>Type Here:</TextBlock>

 <TextBox></TextBox>
 <Button Margin="0,5" Content="OK"></Button>
 <Image Source="happyface.jpg" Stretch="None"></Image>
 </StackPanel>
</Border>

Although you can adjust the PlaneProjection object using code, this example uses the data-binding
feature you learned about in Chapter 2. However, because the PlaneProjection isn’t an element, it can’t
use binding expressions. Instead, you need to place the binding in the linked Slider controls and use a
two-way binding to ensure that the new angles are passed backed to the projection as the user drags the
tab. Here’s an example with the x-axis slider:

<TextBlock Margin="5">RotationX</TextBlock>
<Slider Grid.Column="1" Minimum="-180" Maximum="180"
 Value="{Binding RotationX, Mode=TwoWay, ElementName=projection}"></Slider>

If you rotate an element far enough around the x-axis or y-axis (more than 90 degrees), you begin to
see its back. Silverlight treats all elements as though they have transparent backing, which means your
element’s content is reversed when you look at it from the rear. This is notably different from the 3-D
support in WPF, which gives all shapes a blank (invisible) backing unless you explicitly place content
there. If you flip interactive elements this way, they keep working, and they continue capturing all the
standard mouse events.

Exporting Clip Art
In most cases, you won’t create Silverlight art by hand. Instead, you (or a graphic designer) will use a
design tool to create vector art, and then export it to XAML. The exported XAML document you end up
with is essentially a Canvas that contains a combination of shape elements. You can place that Canvas
inside an existing Canvas to show your artwork.

Although many drawing programs don’t have built-in support for XAML export, you still have many
options for getting the graphics you need. The following sections outline the options you can use to get
vector art out of virtually any application.

Expression Design
Expression Design, Microsoft’s illustration and graphic design program, has built-in XAML export. It can
import a variety of vector-art file formats, including Adobe Illustrator (.ai) files, and it can export to
XAML.

When exporting to XAML, follow these steps:

1. Choose File  Export from the menu.

2. In the Export dialog box, in the Save As Type list, choose XAML. Then, enter a
file name, and click Save. The Export XAML window appears (see Figure 8-27),
which shows you the image you’re exporting and a preview of the XAML
content it will create (click the XAML tab).

CHAPTER 8  SHAPES AND TRANSFORMS

309

Figure 8-27. Creating a Silverlight-compatible XAML file

3. In the Document Format group of settings, click Silverlight to be sure you’re
creating a Silverlight-compatible XAML file. This ensures that XAML features
that are supported in WPF but not in Silverlight aren’t used.

 Note Usually, the standard XAML export option (Canvas) works with Silverlight applications with minimal
changes, such as manually removing a few unsupported attributes. However, the Resource Dictionary export
option creates XAML files that don’t work with Silverlight. That’s because this option stores the graphic in a
collection of DrawingBrush resources instead of a Canvas. This makes it easier to efficiently reuse the drawing in
WPF, but it’s useless in Silverlight, because Silverlight doesn’t include the Drawing or DrawingBrush class.

4. Click Export to save the file.

CHAPTER 8  SHAPES AND TRANSFORMS

310

The generated XAML file includes a root-level Canvas element. Inside the Canvas, you’ll find dozens
of Path elements, each positioned at a specific place in the Canvas and with its own data and brushes.

You can cut and paste this entire block of markup into any Silverlight page to reproduce the graphic.
However, this approach is inconvenient if you have a page that includes a large number of complex
graphics or if you need to reuse a custom graphic in multiple places. If you use the cut-and-paste
approach here, you’ll clutter your markup beyond recognition and create duplicate sections that are
much more difficult to debug or modify later.

Ideally, you’d use the resources collection in the App.xaml file to share frequently used graphics.
Unfortunately, this approach isn’t possible, because Silverlight doesn’t allow you to store and reuse
entire elements (such as a Canvas with graphical content), and it doesn’t provide a way to define
drawings without using elements. The most common workaround is to create a separate user control for
each important graphic. You can then insert these user controls into other pages, wherever you need
them. You’ll see this technique in action in Chapter 10, which presents a simple bomb-dropping game
that uses dedicated user controls for its bomb graphic and its title logo.

Conversion
Microsoft Expression Design is one example of a design tool that supports XAML natively. However,
plug-ins and conversion tools are available for many other popular formats. Mike Swanson, a Microsoft
evangelist, has an old but still useful page at
http://blogs.msdn.com/mswanson/articles/WPFToolsAndControls.aspx, with links to many free
converters, including the following:

• An Adobe Illustrator (.ai) to XAML converter

• A Flash (.swf) to XAML converter

• A Visio plug-in for exporting XAML

You can also find more nonfree XAML conversion tools on the Web. These tools won’t necessarily
create XAML content that is completely compatible with Silverlight. But in most cases, you’ll need to
make only minor edits to fix markup errors.

Save or Print to XPS
The XML Paper Specification (XPS) is a Microsoft standard for creating fixed, print-ready documents. It’s
similar to the Adobe PDF standard, and support is included in modern versions of Office and Windows.
The XPS standard is based on XAML, which makes it possible to transfer content from an XPS document
to a Silverlight page.

For example, Figure 8-28 shows a document in Word after performing a clip-art search and dragging
a vector image (a stack of money) onto the page. You have two ways to convert this to an XPS document.
The easiest way is to save this graphic in the XPS format using the File  Save As command. (XPS support
is built into Office 2010, but Office 2007 users need to install the free Save As PDF or XPS add-in that
Microsoft provides at http://tinyurl.com/y69y7g.)

http://blogs.msdn.com/mswanson/articles/WPFToolsAndControls.aspx
http://tinyurl.com/y69y7g

CHAPTER 8  SHAPES AND TRANSFORMS

311

Figure 8-28. Exporting pictures to XAML through XPS

If you’re using Windows Vista or Windows 7, you have another option—you can choose to print
your document to the Microsoft XPS Document Writer print device. This approach isn’t limited to Office.
Instead, it gives you a convenient back door to get XAML output from virtually any Windows application.

Whether you save or print to XPS, you’ll end up with a file that has the extension .xps. This file is
actually a ZIP archive (somewhat like the XAP files that Silverlight uses). To extract the XAML inside, you
need to begin by changing the extension to .zip and opening the archive to view the files inside. Bitmaps
are included as separate files in the Resources folder. Vector art, like the money stack shown in Figure 8-
28, is defined in XAML inside a page in the Documents\1\Pages folder. There, you’ll find a file for each
page in your document, with file names in the format [PageNumber].fpage. For example, in the XPS file
that’s generated for the previous example, you’ll find a single file named 1.fpage that defines the page
with the money graphic.

If you extract that file and open it in a text editor, you’ll see that it’s legitimate XAML. The root
element is named FixedPage, which isn’t recognized in Silverlight; but inside that is an ordinary Canvas
that you can cut and paste into a Silverlight window. For the example shown in Figure 8-28, the Canvas

CHAPTER 8  SHAPES AND TRANSFORMS

312

holds a series of Path elements that define the different parts of the shape. After you paste it into a
Silverlight page, you’ll get a result like the one shown in Figure 8-29.

Figure 8-29. Content from an XPS document in Silverlight

When you paste the XPS markup into a Silverlight page, you’ll often need to make minor changes.
Here are some examples:

• Removing unsupported attributes: When you attempt to compile your application,
Visual Studio points out any problems in your markup and flags them as compile
errors.

• Replacing the Glyphs element with a TextBlock: The Glyphs element is a low-level
way to show text. Unlike with a TextBlock, when you use the Glyphs element, you
need to supply several details (including a font file) or your text won’t appear.
When you create an XPS document that includes text, it uses the Glyphs element.
But to make your text appear, you must find the font file in your XPS archive,
extract it, add it to your project, and change the Glyphs.FontUri property to
match. An easier approach is to replace the Glyphs element with the higher-level
TextBlock element and use the Glyphs.UnicodeString property to set the
TextBlock.Text property.

CHAPTER 8  SHAPES AND TRANSFORMS

313

• Changing the transforms: Sometimes, the exported art uses transforms to resize
and position the graphic. (This is most common when you use the Save As XPS
feature in Word rather than the XPS print driver in Windows Vista.) By removing
or modifying these transforms, you can free the image from the printed layout so
it can fit your Silverlight page perfectly.

The Last Word
In this chapter, you took a detailed look at Silverlight’s support for basic 2-D drawing. You began by
considering the simple shape classes and continued to Path, the most sophisticated of the shape classes,
which lets you add arcs and curves. You also learned how to apply transforms and 3-D projections to
manipulate shapes—a technique that will come in particularly handy when you tackle animation in
Chapter 10.

But your journey isn’t complete. In the next chapter, you’ll consider how you can create better
drawings by using the right brushes, controlling opacity, and applying with transforms.

C H A P T E R 9

315

Brushes, Bitmaps, and Printing

In the previous chapter, you started your exploration into Silverlight’s 2-D drawing model. You
considered how you can use Shape-derived classes such as Rectangle, Ellipse, Polygon, Polyline, and
Path to create a variety of different drawings. However, shapes alone fall short of what you need to create
detailed 2-D vector art for a graphically rich application. In this chapter, you’ll pick up the missing
pieces.

First, you’ll learn about the Silverlight brushes that allow you to create gradients, tiled patterns, and
bitmap fills in any shape. Next, you’ll see how you can use Silverlight’s effortless support for
transparency to blend multiple images and elements together. You’ll also explore pixel shaders, which
apply complex visual effects (such as blurs and color tuning) to any element. As you’ll see, when you
combine these features—for example, tossing together a dash of blur with the warping effect of a
transform—you can create popular effects such as reflections, glows, shadows, and even simulated 3-D.
And if these prebuilt tools don’t give you all the control you want, you can take the next step to fully
customized rendering with the WriteableBitmap class, which allows you to modify the individual pixels
of a bitmap image, even while it’s displayed in a Silverlight page.

Finally, you’ll consider another, complementary topic: printing. Although it might seem strange to
cover printing in a chapter about graphics, Silverlight uses the same plumbing to render graphics as it
does to generate printouts.

 What’s New Originally, Silverlight’s printing model was limited to bitmap-based printing, which could be slow
(particularly for high-resolution printouts). Silverlight 5 adds the ability to use vector-based printing, without
changing the underlying printing model. However, your printer (and printer driver) need PostScript support. You’ll
learn all the details in the “Bitmap and Vector Printing” section.

Brushes
As you know, brushes fill an area, whether it’s the background, foreground, or border of an element, or
the fill or stroke of a shape. For elements, you use brushes with the Foreground, Background, and
BorderBrush properties. For shapes, you use the Fill and Stroke properties.

You’ve used brushes throughout this book, but so far you’ve done most of your work with the
straightforward SolidColorBrush. Although SolidColorBrush is indisputably useful, several other classes
inherit from System.Windows.Media.Brush and give you more exotic effects. Table 9-1 lists them all.

CHAPTER 9  BRUSHES, BITMAPS, AND PRINTING

316

Table 9-1. Brush Classes

Name Description

SolidColorBrush Paints an area using a solid single-color fill.

LinearGradientBrush Paints an area using a gradient fill: a gradually shaded fill that changes from
one color to another (and, optionally, to another and then another, and so on).

RadialGradientBrush Paints an area using a radial gradient fill, which is similar to a linear gradient
but radiates out in a circular pattern starting from a center point.

ImageBrush Paints an area using an image that can be stretched, scaled, or tiled.

VideoBrush Paints an area using a MediaElement (which gets its content from a video file).
This lets you play video in any shape or element.

In this chapter, you’ll learn how to use LinearGradientBrush, RadialGradientBrush, and

ImageBrush. VideoBrush is discussed in Chapter 12, when you explore Silverlight’s media support.

The LinearGradientBrush Class
The LinearGradientBrush allows you to create a blended fill that changes from one color to another.

Here’s the simplest possible gradient. It shades a rectangle diagonally from blue (in the upper-left
corner) to white (in the lower-right corner):

<Rectangle Width="150" Height="100">
 <Rectangle.Fill>
 <LinearGradientBrush>
 <GradientStop Color="Blue" Offset="0"/>
 <GradientStop Color="White" Offset="1" />
 </LinearGradientBrush>
 </Rectangle.Fill>
</Rectangle>

The top gradient in Figure 9-1 shows the result.

CHAPTER 9  BRUSHES, BITMAPS, AND PRINTING

317

Figure 9-1. A rectangle with different linear gradients

To create the first gradient, you need to add one GradientStop for each color. You also need to place
each color in your gradient using an Offset value from 0 to 1. In this example, the GradientStop for the
blue color has an offset of 0, which means it’s placed at the very beginning of the gradient. The
GradientStop for the white color has an offset of 1, which places it at the end. If you change these values,
you can adjust how quickly the gradient switches from one color to the other. For example, if you set the
GradientStop for the white color to 0.5, the gradient will blend from blue (in the upper-left corner) to
white in the middle (the point between the two corners). The right side of the rectangle will be
completely white. (The second gradient in Figure 9-1 shows this example.)

The previous markup creates a gradient with a diagonal fill that stretches from one corner to
another. However, you may want to create a gradient that blends from top to bottom or side to side or
that uses a different diagonal angle. You control these details using the StartPoint and EndPoint
properties of LinearGradientBrush. These properties allow you to choose the point where the first color
begins to change and the point where the color change ends with the final color. (The area in between is
blended gradually.) But there’s one quirk. The coordinates you use for the starting and ending points

CHAPTER 9  BRUSHES, BITMAPS, AND PRINTING

318

aren’t real coordinates. Instead, LinearGradientBrush assigns the point (0, 0) to the upper-left corner
and (1, 1) to the lower-right corner of the area you want to fill, no matter how high and wide the area
actually is.

To create a top-to-bottom horizontal fill, you can use a start point of (0, 0) for the upper-left corner
and an end point of (0, 1), which represents the lower-left corner. To create a side-to-side vertical fill
(with no slant), you can use a start point of (0, 0) and an end point of (1, 0) for the upper-right corner.
Figure 9-1 shows a horizontal gradient (it’s the third one).

You can get a little craftier by supplying start points and end points that aren’t quite aligned with the
corners of your gradient. For example, you can have a gradient stretch from (0, 0) to (0, 0.5), which is a
point on the left edge, halfway down. This creates a compressed linear gradient—one color starts at the
top, blending to the second color in the middle. The bottom half of the shape is filled with the second
color. But wait—you can change this behavior using the LinearGradientBrush.SpreadMethod property.
It’s Pad by default (which means areas outside the gradient are given a solid fill with the appropriate
color), but you can also use Reflect (to reverse the gradient, going from the second color back to the first)
or Repeat (to duplicate the same color progression). Figure 9-1 shows the Reflect effect (it’s the fourth
gradient).

A LinearGradientBrush also lets you create gradients with more than two colors by adding more
than two GradientStop objects. For example, here’s a gradient that moves through a rainbow of colors:

<Rectangle Width="150" Height="100">
 <Rectangle.Fill>
 <LinearGradientBrush StartPoint="0,0" EndPoint="1,1">
 <GradientStop Color="Yellow" Offset="0.0" />
 <GradientStop Color="Red" Offset="0.25" />
 <GradientStop Color="Blue" Offset="0.75" />
 <GradientStop Color="LimeGreen" Offset="1.0" />
 </LinearGradientBrush>
 </Rectangle.Fill>
</Rectangle>

The only trick is to set the appropriate offset for each gradient stop. For example, if you want to
transition through five colors, you can give your first color an offset of 0, the second 0.25, the third 0.5,
the fourth 0.75, and the fifth 1. Or, if you want the colors to blend more quickly at the beginning and then
end more gradually, you can give the offsets 0, 0.1, 0.5, and 1.

Remember, brushes aren’t limited to shape drawing. You can substitute a LinearGradientBrush
anytime you would use a SolidColorBrush—for example, when filling the background surface of an
element (using the Background property), the foreground color of its text (using the Foreground
property), or the fill of a border (using the BorderBrush property). Figure 9-2 shows an example of a
gradient-filled TextBlock.

CHAPTER 9  BRUSHES, BITMAPS, AND PRINTING

319

Figure 9-2. Using a linear gradient brush to set the TextBlock.Foreground property

The RadialGradientBrush Class
RadialGradientBrush works similarly to the LinearGradientBrush. It also takes a sequence of colors with
different offsets. As with the LinearGradientBrush, you can use as many colors as you want. The
difference is how you place the gradient.

To identify the point where the first color in the gradient starts, you use the GradientOrigin
property. By default, it’s (0.5, 0.5), which represents the middle of the fill region.

 Note As with LinearGradientBrush, RadialGradientBrush uses a proportional coordinate system that acts as
though the upper-left corner of your rectangular fill area is (0, 0) and the lower-right corner is (1, 1). That means
you can pick any coordinate from (0, 0) to (1, 1) to place the starting point of the gradient. You can even go beyond
these limits if you want to locate the starting point outside the fill region.

The gradient radiates out from the starting point in a circular fashion. Eventually, your gradient
reaches the edge of an inner gradient circle, where it ends. The center of this circle may or may not line
up with the gradient origin, depending on the effect you want. The area beyond the edge of the inner
gradient circle and the outermost edge of the fill region is given a solid fill using the last color that’s
defined in RadialGradientBrush.GradientStops collection, as Figure 9-3 illustrates.

CHAPTER 9  BRUSHES, BITMAPS, AND PRINTING

320

Figure 9-3. How a radial gradient is filled

You set the edge of the inner gradient circle using three properties: Center, RadiusX, and RadiusY.
By default, the Center property is (0.5, 0.5), which places the center of the limiting circle in the middle of
your fill region and in the same position as the gradient origin.

The RadiusX and RadiusY values determine the size of the limiting circle, and by default they’re both
set to 0.5. These values can be a bit unintuitive—they’re measured in relation to the diagonal span of
your fill area (the length of an imaginary line stretching from the upper-left corner to the lower-right
corner of your fill area). That means a radius of 0.5 defines a circle that has a radius that’s half the length
of this diagonal. If you have a square fill region, you can use a dash of Pythagoras to calculate that this is
about 0.7 times the width (or height) of your region. Thus, if you’re filling a square region with the
default settings, the gradient begins in the center and stretches to its outermost edge at about 0.7 times
the width of the square.

 Note If you trace the largest possible ellipse that fits in your fill area, that’s the place where the gradient ends
with your second color.

The RadialGradientBrush is a particularly good choice for filling rounded shapes and creating
lighting effects. (Master artists use a combination of gradients to create buttons with a glow effect.) A
common trick is to offset the GradientOrigin point slightly to create an illusion of depth in your shape.
Here’s an example:

CHAPTER 9  BRUSHES, BITMAPS, AND PRINTING

321

<Ellipse Margin="5" Stroke="Black" StrokeThickness="1" Width="200" Height="200">
 <Ellipse.Fill>
 <RadialGradientBrush RadiusX="1" RadiusY="1" GradientOrigin="0.7,0.3">
 <GradientStop Color="White" Offset="0" />
 <GradientStop Color="Blue" Offset="1" />
 </RadialGradientBrush>
 </Ellipse.Fill>
</Ellipse>

Figure 9-4 shows this gradient, along with an ordinary radial gradient that has the standard
GradientOrigin value (0.5, 0.5).

Figure 9-4. Radial gradients

The ImageBrush
The ImageBrush allows you to fill an area with a bitmap image using any file type that Silverlight
supports (BMP, PNG, and JPEG files). You identify the image you want to use by setting the ImageSource
property. For example, this brush paints the background of a Grid using an image named logo.jpg that’s
included in your project as a resource (and therefore embedded in your application’s XAP file):

<Grid>
 <Grid.Background>
 <ImageBrush ImageSource="logo.jpg"></ImageBrush>
 </Grid.Background>
</Grid>

CHAPTER 9  BRUSHES, BITMAPS, AND PRINTING

322

The ImageSource property of the ImageBrush works the same way as the Source property of the
Image element, which means you can also set it using a URI that points to an embedded file in your
project or a web location.

 Note Silverlight respects any transparency information that it finds in an image. For example, Silverlight
supports transparent areas in a PNG file.

In this example, the ImageBrush is used to paint the background of a cell. As a result, the image is
stretched to fit the fill area. If the Grid is larger than the original size of the image, you may see resizing
artifacts in your image (such as a general fuzziness). If the shape of the Grid doesn’t match the aspect
ratio of the picture, the picture is distorted to fit. You can control this behavior by modifying the
ImageBrush.Stretch property and assigning one of the values listed in Table 9-2.

Table 9-2. Values for the Stretch Enumeration

Name Description

Fill Your image is stretched in width and height to fit its container exactly. This is the
default.

None The image isn’t stretched. Its native size is used (and any part that won’t fit is clipped).

Uniform The width and height are increased proportionately until the image reaches the edge
of the container. The image’s aspect ratio is preserved, but there may be extra blank
space.

UniformToFill The width and height are increased proportionately until the shape fills all the
available height and width. The image’s aspect ratio is preserved, but the image may
be clipped to fit the region.

If the image is painted smaller than the fill region, the image is aligned according to the AlignmentX
and AlignmentY properties. The unfilled area is left transparent. This occurs if you’re using Uniform
scaling and the region you’re filling has a different shape (in which case you’ll get blank bars on the top
or the sides). It also occurs if you’re using None and the fill region is larger than the image.

Transparency
In the examples you’ve considered so far, the shapes have been completely opaque. However, Silverlight
supports true transparency. That means if you layer several elements on top of one another and give
them all varying layers of transparency, you’ll see exactly what you expect. At its simplest, this feature
gives you the ability to create graphical backgrounds that “show through” the elements you place on top.
At its most complex, this feature lets you create multilayered animations and other effects.

There are several ways to make an element partly transparent:

CHAPTER 9  BRUSHES, BITMAPS, AND PRINTING

323

• Set the Opacity property of the element: Opacity is a fractional value from 0 to 1,
where 1 is completely solid (the default) and 0 is completely transparent. The
Opacity property is defined in the UIElement class, so it applies to all elements.

• Set the Opacity property of the brush: Like elements, the various brush classes
include an Opacity property that allows you to make their fill partially transparent.
You can then use these brushes to paint part of with an element.

• Use a semitransparent color: Any color that has an alpha value less than 255 is
semitransparent. You can use a semitransparent color when setting the
foreground, background, or border of an element.

• Set the OpacityMask property: This lets you make specific regions of an element
transparent or partially transparent. For example, you can use it to fade a shape
gradually into transparency.

Figure 9-5 shows an example that uses the first two approaches to create transparent elements.

Figure 9-5. A page with several semitransparent elements

CHAPTER 9  BRUSHES, BITMAPS, AND PRINTING

324

In this example, the top-level layout container is a Grid that uses an ImageBrush that sets a picture
for the background. The opacity of the Grid is reduced to 70%, allowing the solid color underneath to
show through. (In this case, it’s a white background, which lightens the image.)

<Grid Margin="5" Opacity="0.7">
 <Grid.Background>
 <ImageBrush ImageSource="celestial.jpg" />
 </Grid.Background>
 ...
</Grid>

The first element inside the Grid is a button, which uses a partially transparent red background
color (set through the Background property). The image shows through in the button background, but
the text is opaque. (Had the Opacity property been set, both the foreground and background would have
become semitransparent.)

<Button Foreground="Green" Background="#60AA4030" FontSize="16" Margin="10"
 Padding="20" Content="A Semi-Transparent Button"></Button>

 Note Silverlight supports the ARGB color standard, which uses four values to describe every color. These four
values (each of which ranges from 0 to 255) record the alpha, red, green, and blue components, respectively. The
alpha component is a measure of how transparent the color is—0 is fully transparent, and 255 is fully opaque.

The next element is a TextBlock. By default, all TextBlock elements have a completely transparent
background color, so the content underneath can show through. This example doesn’t change that
detail, but it does use the Opacity property to make the text partially transparent. You could accomplish
the same effect by setting a white color with a nonzero alpha value for the Foreground property.

<TextBlock Grid.Row="1" Margin="10" TextWrapping="Wrap"
 Foreground="White" Opacity="0.3" FontSize="38" FontFamily="Arial Black"
 Text="SEMI-TRANSPARENT TEXT"></TextBlock>

Last is a nested Grid that places two elements in the same cell, one over the other. (You could also
use a Canvas to overlap two elements and control their positions more precisely.) On the bottom is a
partially transparent Image element that shows a happy face. It also uses the Opacity property to allow
the other image to show through underneath. Over that is a TextBlock element with partially transparent
text. If you look carefully, you can see both backgrounds show through under some letters:

<Image Grid.Row="2" Margin="10" Source="happyface.jpg" Opacity="0.5"></Image>

You can extend the layering and tile multiple images or elements on top of each other, making each
one partially transparent. Of course, if you add enough transparent layers, performance will suffer,
particularly if your application uses dynamic effects such as animation. Furthermore, you’re unlikely to
perceive the difference with more than two or three layers of transparency. However, Silverlight imposes
no limits on how you use transparency.

CHAPTER 9  BRUSHES, BITMAPS, AND PRINTING

325

Opacity Masks
You can use the OpacityMask property to make specific regions of an element transparent or partially
transparent. The OpacityMask property allows you to achieve a variety of common and exotic effects.
For example, you can use it to fade a shape gradually into transparency.

The OpacityMask property accepts any brush. The alpha channel of the brush determines where the
transparency occurs. For example, if you use a SolidColorBrush that’s set to a transparent color for your
opacity mask (a color that has an alpha value of 0), your entire element disappears. If you use a
SolidColorBrush that’s set to use a nontransparent color, your element remains completely visible. If
you use a SolidColorBrush that uses a semitransparent color (for example, an alpha value of 100), the
element will be partially visible. The other details of the color (the red, green, and blue components)
aren’t important and are ignored when you set the OpacityMask property.

Using an opacity mask with a SolidColorBrush doesn’t make much sense because you can
accomplish the same effect more easily with the Opacity property. But an opacity mask becomes more
useful when you use more exotic types of brushes, such as LinearGradientBrush or RadialGradientBrush.
Using a gradient that moves from a solid to a transparent color, you can create a transparency effect that
fades in over the surface of your element, like the one used by this button:

<Button FontSize="14" FontWeight="Bold" Content="A Partially Transparent Button">
 <Button.OpacityMask>
 <LinearGradientBrush StartPoint="0,0" EndPoint="1,0">
 <GradientStop Offset="0" Color="Transparent"></GradientStop>
 <GradientStop Offset="0.8" Color="Black"></GradientStop>
 </LinearGradientBrush>
 </Button.OpacityMask>
</Button>

Figure 9-6 shows this button over a page that displays a picture of a grand piano.

CHAPTER 9  BRUSHES, BITMAPS, AND PRINTING

326

Figure 9-6. A button that fades from transparent (left) to solid (right)

Making the Silverlight Control Transparent
So far, you’ve seen how to make different elements in a Silverlight region transparent. But you can use
one more transparency trick: making the Silverlight content region windowless, so its background allows
HTML content to show through.

To configure Silverlight to use windowless rendering, you need to follow several steps. First, you
must edit your XAML to make sure your markup doesn’t set an opaque background. Ordinarily, when
you create a new page with Visual Studio, it adds a single Grid container that fills the entire page. This
Grid is the layout root for the page, and Visual Studio explicitly gives it a white background, as shown
here:

<Grid x:Name="LayoutRoot" Background="White">

To make the page transparent, you need to remove the Background property setting so the Grid can
revert to its default transparent background.

Next, you need to edit your HTML entry page. Find the <div> element that holds the Silverlight
content region. Now, you need to make two alterations: change the background parameter from white to
transparent, and add a windowless parameter with a value of true. Here’s the modified HTML markup:

<div id="silverlightControlHost">
 <object data="data:application/x-silverlight,"
 type="application/x-silverlight-2" width="100%" height="100%">

CHAPTER 9  BRUSHES, BITMAPS, AND PRINTING

327

 <param name="source" value="TransparentSilverlight.xap"/>
 <param name="onerror" value="onSilverlightError" />
 <param name="background" value="transparent" />
 <param name="windowless" value="true" />
 ...
 </object>
 <iframe id="_sl_historyFrame"
 style="visibility:hidden;height:0;width:0;border:0px"></iframe>
</div>

Figure 9-7 and Figure 9-8 show an example that places the Silverlight content region in the left
column of a multicolumned page. Each column is represented by a <div> element with different style
settings. Figure 9-7 shows the Silverlight control as it normally appears, with an opaque background.
Figure 9-8 shows the same example with a windowless Silverlight content region. Because the Silverlight
control is transparent, the tiled column background can show through.

Figure 9-7. Normal Silverlight content

CHAPTER 9  BRUSHES, BITMAPS, AND PRINTING

328

Figure 9-8. A windowless Silverlight content region

A windowless Silverlight content region has two important differences. Not only does it allow HTML
content underneath to show through, but it also allows HTML content above to overlap. Figure 9-8
demonstrates this fact with a small snippet of floating HTML that appears over the Silverlight content
region and displays the message “This is HTML text.”

To create this effect, you position two <div> elements using absolute coordinates on the left side of
the page, using these two style classes:

.SilverlightLeftPanel
{
 background-image: url('tiles5x5.png');
 background-repeat:repeat;
 position: absolute;
 top: 70px;
 left: 10px;
 width: 142px;
 height: 400px;

CHAPTER 9  BRUSHES, BITMAPS, AND PRINTING

329

 border-width: 1px;
 border-style: solid;
 border-color: black;
 padding: 8px;
}

.HtmlLeftPanel
{
 background-color: Transparent;
 position: absolute;
 top: 300px;
 left: 10px;
 width: 142px;
 font-weight: bold;
 border-width: 1px;
 border-style: solid;
 border-color: black;
 padding: 8px;
}

The first <div> element holds the Silverlight content region, and the second <div> holds the
overlapping HTML content, as shown here:

<div class="SilverlightLeftPanel">
 <div id="silverlightControlHost">...</div>
</div>

<div class="HtmlLeftPanel" >
 <p>This is HTML text.</p>
</div>

To see the complete HTML for this page, refer to the downloadable code for this chapter.

 Tip The most common reason to use a windowless Silverlight control is because you want nonrectangular
Silverlight content to blend in seamlessly with the web-page background underneath. However, you can also use a
windowless Silverlight control to put HTML elements and Silverlight elements side by side. This is particularly
useful if these elements interact (as described in Chapter 17). For example, to create a Silverlight media player
with HTML playback buttons, you’ll probably use a windowless Silverlight control.

Only use a windowless Silverlight content region if you need it. It requires extra overhead, which can
reduce performance in applications that require frequent redrawing or use a large number of
animations. When you aren’t using a windowless content region, don’t assume your Silverlight control
will automatically get a solid white background. When running on Mac computers, Silverlight always
uses windowless mode, regardless of the parameters you pass. That’s why the default entry page
explicitly sets the “background” parameter to white.

CHAPTER 9  BRUSHES, BITMAPS, AND PRINTING

330

Pixel Shaders
One of the most impressive and most understated features in Silverlight is its support for pixel shaders—
objects that transform the appearance of any element by manipulating its pixels just before they’re
displayed in the Silverlight content region. (Pixel shaders kick in after the transforms and projections you
learned about in Chapter 8.)

A crafty pixel shader is as powerful as the plug-ins used in graphics software like Adobe Photoshop.
It can do anything from adding a basic drop shadow to imposing more ambitious effects such as blurs,
glows, watery ripples, embossing, sharpening, and so on. Pixel shaders can also create eye-popping
effects when they’re combined with animation that alters their parameters in real time, as you’ll see in
Chapter 10.

Every pixel shader is represented by a class that derives from the abstract Effect class in the
System.Windows.Media.Effects namespace. Despite the remarkable potential of pixel shaders,
Silverlight takes the restrained approach of including just three derived classes in the core runtime:
BlurEffect, DropShadowEffect, and ShaderEffect. In the following sections, you’ll look at each one and
learn how you can incorporate more dazzling effects from a free library.

BlurEffect
Silverlight’s simplest effect is the BlurEffect class. It blurs the content of an element, as though you’re
looking at it through an out-of-focus lens. You increase the level of blur by increasing the value of the
Radius property. (The default value is 5.)

To use any pixel-shader effect, you create the appropriate effect object and set the Effect property of
the corresponding element:

<Button Content="Blurred (Radius=2)" Padding="5" Margin="3">
 <Button.Effect>
 <BlurEffect Radius="2"></BlurEffect>
 </Button.Effect>
</Button>

Figure 9-9 shows three different blurs (where Radius is 2, 5, and 20) applied to a stack of buttons.

Figure 9-9. Blurred buttons

DropShadowEffect
DropShadowEffect adds a slightly offset shadow behind an element. You have several properties to play
with, as listed in Table 9-3.

CHAPTER 9  BRUSHES, BITMAPS, AND PRINTING

331

Table 9-3. DropShadowEffect Properties

Name Description

Color Sets the color of the drop shadow (the default is Black).

ShadowDepth Determines how far the shadow is from the content, in pixels (the default is 5).

BlurRadius Blurs the drop shadow, much like the Radius property of BlurEffect (the default is 5).

Opacity Makes the drop shadow partially transparent, using a fractional value between 1 (fully
opaque, the default) and 0 (fully transparent).

Direction Specifies where the drop shadow should be positioned relative to the content, as an
angle from 0 to 360. Use 0 to place the shadow on the right side, and increase the value
to move the shadow counterclockwise. The default is 315, which places it to the lower
right of the element.

Figure 9-10 shows several different drop-shadow effects on a TextBlock. Here’s the markup for all of

them:

<TextBlock FontSize="20" Margin="3">
 <TextBlock.Effect>
 <DropShadowEffect></DropShadowEffect>
 </TextBlock.Effect>
 <TextBlock.Text>Basic dropshadow</TextBlock.Text>
</TextBlock>

<TextBlock FontSize="20" Margin="3">
 <TextBlock.Effect>
 <DropShadowEffect Color="SlateBlue"></DropShadowEffect>
 </TextBlock.Effect>
 <TextBlock.Text>Light blue dropshadow</TextBlock.Text>
</TextBlock>

<TextBlock FontSize="20" Foreground="White" Margin="3">
 <TextBlock.Effect>
 <DropShadowEffect BlurRadius="15"></DropShadowEffect>
 </TextBlock.Effect>
 <TextBlock.Text>Blurred dropshadow with white text</TextBlock.Text>
</TextBlock>

<TextBlock FontSize="20" Foreground="Magenta" Margin="3">
 <TextBlock.Effect>
 <DropShadowEffect ShadowDepth="0"></DropShadowEffect>
 </TextBlock.Effect>
 <TextBlock.Text>Close dropshadow</TextBlock.Text>
</TextBlock>

CHAPTER 9  BRUSHES, BITMAPS, AND PRINTING

332

<TextBlock FontSize="20" Foreground="LimeGreen" Margin="3">
 <TextBlock.Effect>
 <DropShadowEffect ShadowDepth="25"></DropShadowEffect>
 </TextBlock.Effect>
 <TextBlock.Text>Distant dropshadow</TextBlock.Text>
</TextBlock>

Figure 9-10. Different drop shadows

There is no class for grouping effects, which means you can apply only a single effect to an element
at a time. However, you can sometimes simulate multiple effects by adding them to higher-level
containers (for example, using the drop-shadow effect for a TextBlock and then placing it in a Stack
Panel that uses the blur effect). In most cases, you should avoid this workaround, because it multiplies
the rendering work and reduces performance. Instead, look for a single effect that can does everything
you need.

ShaderEffect
The ShaderEffect class doesn’t represent a ready-to-use effect. Instead, it’s an abstract class from which
you derive to create your own custom pixel shaders. By using ShaderEffect (or third-party custom effects
that derive from it), you gain the ability to go far beyond mere blurs and drop shadows.

Contrary to what you may expect, the logic that implements a pixel shader isn’t written in C# code
directly in the effect class. Instead, pixel shaders are written using High Level Shader Language (HLSL),
which was created as part of DirectX. (The benefit is obvious—because DirectX and HLSL have been
around for many years, graphics developers have already created scores of pixel-shader routines that
you can use in your own code.)

To create a pixel shader, you need to create the right HLSL code. The first step is to install the
DirectX SDK (go to http://msdn.microsoft.com/directx). This gives you enough to create and compile
HLSL code to a .ps file (using the fxc.exe command-line tool), which is what you need to use a custom
ShaderEffect class. But a more convenient option is to use the free Shazzam tool (http://shazzam-
tool.com). Shazzam provides an editor for HLSL files, which includes the ability to try them on sample
images. It also includes several sample pixel shaders that you can use as the basis for custom effects.

Although authoring your own HLSL files is beyond the scope of this book, using an existing HLSL file
isn’t. Once you’ve compiled your HLSL file to a .ps file, you can use it in a project. Simply add the file to
an existing Silverlight project, select it in the Solution Explorer, and set its Build Action to Resource.
Finally, you must create a custom class that derives from ShaderEffect and uses this resource.

For example, if you’re using a custom pixel shader that’s compiled in a file named Effect.ps, you can
use the following code:

http://msdn.microsoft.com/directx
http://shazzam-tool.com
http://shazzam-tool.com
http://shazzam-tool.com

CHAPTER 9  BRUSHES, BITMAPS, AND PRINTING

333

public class CustomEffect : ShaderEffect
{
 public CustomEffect()
 {
 // Use the URI syntax described in Chapter 6 to refer to your resource.
 // AssemblyName;component/ResourceFileName
 Uri pixelShaderUri = new Uri("CustomEffectTest;component/Effect.ps",
 UriKind.Relative);

 // Load the information from the .ps file.
 PixelShader = new PixelShader();
 PixelShader.UriSource = pixelShaderUri;
 }
}

You can now use the custom pixel shader in any page. First, make the namespace available by
adding a mapping like this:

<UserControl xmlns:local="clr-namespace:CustomEffectTest" ...>

Now, create an instance of the custom effect class, and use it to set the Effect property of an
element:

<Image>
 <Image.Effect>
 <local:CustomEffect></local:CustomEffect>
 </Image.Effect>
</Image>

You can get a bit more complicated than this if you use a pixel shader that takes certain input
arguments. In this case, you need to create the corresponding dependency properties by calling the
static RegisterPixelShaderSamplerProperty() method.

 Tip Unless you’re a hard-core graphics programmer, the best way to get more advanced pixel shaders isn’t to
write the HLSL yourself. Instead, look for existing HLSL examples or—even better—third-party Silverlight
components that provide custom effect classes. The gold standard is the free Windows Presentation Foundation
Pixel Shader Effects Library (which also works with Silverlight) at http://wpffx.codeplex.com. It includes a long
list of dazzling effects such as swirls, color inversion, and pixelation. Even more useful, it includes transition
effects that combine pixel shaders with the animation capabilities described in Chapter 10.

The WriteableBitmap Class
In Chapter 5, you learned to show bitmaps with the Image element. However, displaying a picture this
way is a strictly one-way affair. Your application takes a ready-made bitmap, reads it, and displays it in
the page. On its own, the Image element doesn’t give you a way to create or edit bitmap information.

This is where WriteableBitmap fits in. It derives from BitmapSource, which is the class you use when
setting the Image.Source property (either directly, when you set the image in code, or implicitly, when

http://wpffx.codeplex.com

CHAPTER 9  BRUSHES, BITMAPS, AND PRINTING

334

you set it in XAML). But whereas BitmapSource is a read-only reflection of bitmap data,
WriteableBitmap is a modifiable array of pixels that opens up many interesting possibilities.

Generating a Bitmap
The most direct way to use WriteableBitmap is to create an entire bitmap by hand. This process may
seem labor intensive, but it’s an invaluable tool if you want to create fractals or create a visualization for
music or scientific data. In these scenarios, you need to use a code routine to dynamically draw some
sort of data, whether it’s a collection of 2-D shapes (using the shape elements introduced in Chapter 8)
or a raw bitmap (using WriteableBitmap).

To generate a bitmap with WriteableBitmap, you follow a fairly straightforward set of steps. First,
you create the in-memory bitmap. At this time, you supply its width and height in pixels. Here’s an
example that creates an image as big as the current page:

WriteableBitmap wb = new WriteableBitmap((int)this.ActualWidth,
 (int)this.ActualHeight);

Next, you need to fill the pixels. To do so, you use the Pixels property, which provides a one-
dimensional array of pixels. The pixels in this array stretch from left to right to fill each row, from top to
bottom. To find a specific pixel, you need to use the following formula, which steps down the number of
rows and then moves to the appropriate position in that row:

y * wb.PixelWidth + x

For example, to set the pixel (40, 100), you use this code:

wb.Pixels[100 * wb.PixelWidth + 40] = ...;

The color of each pixel is represented by a single unsigned integer. However, to construct this
integer, you need to pack together several pieces of information: the alpha, red, green, and blue values of
the color, each of which is a single byte from 0 to 255. The easiest way to calculate the right pixel value is
to use this bit-shifting code:

int alpha = 255;
int red = 100;
int green = 200;
int blue = 75;

int pixelColorValue = (alpha << 24) | (red << 16) | (green << 8) | (blue << 0);

wb.Pixels[pixelPosition] = pixelColorValue;

Here’s a complete routine that steps through the entire set of available pixels, filling them with a
mostly random pattern interspersed with regular gridlines (shown in Figure 9-11):

Random rand = new Random();
for (int y = 0; y < wb.PixelHeight; y++)
{
 int red = 0; int green = 0; int blue = 0;

 // Differentiate the color to create a vertical gridline every 5 pixels
 // and a horizontal gridline every 7 pixels.
 if ((x % 5 == 0) || (y % 7 == 0))
 {

CHAPTER 9  BRUSHES, BITMAPS, AND PRINTING

335

 // The color is randomly chosen, but influenced by the x and y position,
 // which creates a gradient-like effect.
 red = (int)((double)y / wb.PixelHeight * 255);
 green = rand.Next(100, 255);
 blue = (int)((double)x / wb.PixelWidth * 255);
 }
 else
 {
 // A slightly different color calculation is used for non-gridline pixels.
 red = (int)((double)x / wb.PixelWidth * 255);
 green = rand.Next(100, 255);
 blue = (int)((double)y / wb.PixelHeight * 255);
 }

 // Set the pixel value.
 int pixelColorValue = (alpha << 24) | (red << 16) | (green << 8) | (blue << 0);

 wb.Pixels[y * wb.PixelWidth + x] = pixelColorValue;
}

Figure 9-11. A dynamically generated bitmap

CHAPTER 9  BRUSHES, BITMAPS, AND PRINTING

336

After that process is finished, you need to display the final bitmap. Typically, you’ll use an Image
element to do the job:

img.Source = wb;

Even after writing and displaying a bitmap, you’re still free to read from the Pixels array and modify
pixel values. This gives you the ability to build more specialized routines for bitmap editing and bitmap
hit testing. For an example of the bitmap hit testing in a game, check out http://tinyurl.com/mroklb.

 Note In some situations, you might want to transmit the content of a WriteableBitmap to a web service or store
it in a file. Although this is technically possible using the array exposed by the WriteableBitmap.Pixels property, it’s
not practical, because the bitmap data for a typical image is enormous. Instead, you’ll almost certainly want to
change it into a more bandwidth-friendly format, such as JPEG. Unfortunately, Silverlight doesn’t have
programmatic support for manipulating JPEG data, but you can use a third-party library like fjcore
(http://code.google.com/p/fjcore) or the .NET Image Tools (http://imagetools.codeplex.com).

Capturing Content from Other Elements
In the previous example, the image was generated pixel by pixel using code. However, WriteableBitmap
gives you another option: you can steal its content from an existing element.

Before you use this trick, you must begin by creating a WriteableBitmap in the familiar way—by
instantiating it and declaring its size. Then, you copy the element content you want into the
WriteableBitmap using the Render() method. This method takes two parameters: the element with the
content you want to capture and a transform (or group of transforms) that you want to use to alter it. If
you don’t want to transform the content, you simply need to supply a null value.

Here’s an example that grabs the content from the entire page, simulating a screen-capture feature.
(You can’t actually capture the entire screen, because accessing content outside of the Silverlight region
would constitute a security risk.)

// Find the top-level page.
UserControl mainPage = (UserControl)Application.Current.RootVisual;

// Create the bitmap.
WriteableBitmap wb = new WriteableBitmap((int)mainPage.ActualWidth,
 (int)mainPage.ActualHeight);

// Copy the content into the bitmap.
wb.Render(mainPage, null);
wb.Invalidate();

// Show the bitmap.
img.Source = wb;

You’ll notice that you need to call the Invalidate() method after you call Render(). The Invalidate()
method tells the bitmap to actually generate its content, which allows you to hold off on this more time-
consuming step until it’s necessary.

http://tinyurl.com/mroklb
http://code.google.com/p/fjcore
http://imagetools.codeplex.com

CHAPTER 9  BRUSHES, BITMAPS, AND PRINTING

337

Once you’ve filled your bitmap, you can display it the same way as before, using an existing Image
element.

 Note The WriteableBitmap.Render() method is particularly useful with MediaElement, where it lets you capture
a frame from a currently running video. You’ll learn more about video in Chapter 12.

Printing
Although graphics and printing seem to be a world apart, the behind-the-scenes bits that make it work
have a lot in common. In both cases, Silverlight needs a way to send text, shapes, and elements to
another device—whether it’s a computer monitor (through the display driver) or a printer (through the
printer driver).

Silverlight’s printing support is straightforward and somewhat limited. For example, it’s up to you to
decide how to break content over multiple pages and how to keep track of your position in a set of data.
You also need to calculate the appropriate coordinates for each line, measure the size of the content you
render, and adjust for headers and footers all on your own. However, Silverlight provides you with a
useful shortcut by allowing you to print the same elements that you use to create user interfaces. In fact,
Silverlight printing is based around the concept of elements, but rather than laying them out in a page,
you render them onto a virtual print document.

In the following sections, you’ll take a look at Silverlight’s printing feature. You’ll use it to print a
single-page image and a multiple-page list, with the test application shown in Figure 9-12.

Figure 9-12. Testing different print routines

CHAPTER 9  BRUSHES, BITMAPS, AND PRINTING

338

Silverlight supports bitmap printing (which sends a completely rendered bitmap to the printer) and
vector printing (which sends higher-level printing instructions). Happily, the actual printing commands
that you’ll use in your code are the same, no matter which printing system you’re using. The only detail
that changes is the print settings, which you’ll learn to configure in the “Bitmap and Vector Printing”
section. But before you get to that, you first need to learn how to print a basic bit of content.

 Note Silverlight printing isn’t a good tool for creating printouts that will be turned into PDFs. If your application
falls back to bitmap printing, the PDF files will be huge, and any text inside won’t be selectable or editable. If your
goal is to create PDFs, you’ll have better luck with a dedicated PDF-generating component, such as the free
silverPDF library at http://silverpdf.codeplex.com.

Printing a Single Element
All printing begins with the PrintDocument class in the System.Windows.Printing namespace. To begin
a printout, you create an instance of this class, attach an event handler to its PrintPage event, and call
the Print() method to get things started. Here’s an example:

PrintDocument document = new PrintDocument();
document.PrintPage += documentImage_PrintPage;
document.Print("Image Document");

The name you supply in the Print() method is the document name. The user won’t see this name in
your application, but it will appear in the Windows print queue (where the user can pause or cancel it).

When you call Print(), your application shows the standard Print dialog box, where the user can pick
a printer and (optionally) change printer settings. If the user clicks the Print button in the Print dialog
box, your application continues running, and the PrintDocument.PrintPage event fires on a background
thread to take care of the actual printing work.

In the PrintPage event handler, you do all your work using the properties of the PrintPageEventArgs
object, as listed in Table 9-4. Understanding these properties is the key to mastering Silverlight’s simple
printing model.

Table 9-4. PrintPageEventArgs Properties

Property Description

PrintableArea Returns a Size object that describes the Height and Width of the available printable
area where you can render content. If your content extends outside this area, the
printed content is clipped.

PageMargins Returns a Thickness object that details the Top, Bottom, Left, and Right margins
around the current page.

http://silverpdf.codeplex.com

CHAPTER 9  BRUSHES, BITMAPS, AND PRINTING

339

Property Description

PageVisual Sets the visual element you want to print on this page. This could be a simple element
(such as a TextBlock or Image) or a more complex container (such as a Grid or
Canvas). For best results, this visual should exist in memory only, not in an on-screen
window.

HasMorePages Sets whether the printing should stop after this page (false) or continue to another
new page (true).

During the printing process, the PrintDocument fires a series of events. It begins with BeginPrint

(where you can perform preliminary calculations or initialization), then PrintPage (where the actual
printing takes place), and then EndPrint (where you can clean up). Often, you’ll choose to handle only
the PrintPage event.

The PrintPage event fires once for each page. In the current example, just one page is printed, so the
PrintPage event fires just once. When it fires, the event handler creates an Image object, configures its
content, and sizes it to take up as much of the page as possible. This image is then set as the print
content for the page.

private void documentImage_PrintPage(object sender, PrintPageEventArgs e)
{
 // Stretch the image to the size of the printed page.
 Image imgToPrint = new Image();
 imgToPrint.Source = imgInWindow.Source;
 imgToPrint.Width = e.PrintableArea.Width;
 imgToPrint.Height = e.PrintableArea.Height;

 // Choose to print the image.
 e.PageVisual = imgToPrint;

 // Do not fire this event again.
 e.HasMorePages = false;
}

 Note Silverlight automatically provides the PrintableArea as a number of “screen pixels.” Thanks to this
automatic conversion, you can use the same rendering and layout logic that you use on-screen with a printout,
even though most printers have a much higher resolution than your monitor.

Keen eyes will notice that the content of the printed image (imgToPrint) is drawn from another
image object (imgInWindow), which is displayed in the current window. However, it’s not a good idea to
print imgInWindow directly. If you do, you’ll need to make do with the size that it currently has in the
window, which may not suit your printout. Although you can try to adjust the size of this image, this will
change the layout of your window, and it probably won’t work anyway because of the way Silverlight
uses clipping. For example, if you enlarge imgInWindow to the printable page size, it won’t fit in the

CHAPTER 9  BRUSHES, BITMAPS, AND PRINTING

340

current window, and some of its content will be clipped. This clipped content will also be missing in the
printout, even though the printout has more space.

Figure 9-13 shows the printout this code generates. Because the image is set to use proportional
sizing, it fits the page as near as possible, but it won’t be stretched to the exact dimensions of the page.
(If you want, you can change this by modifying the Image.Stretch property.)

Figure 9-13. Printing an image

Printing Over Multiple Pages
The previous example did all its printing in a single page. But in most scenarios, you’ll have content that
will occupy an unknown number of pages. Often, this content is dynamic (for example, text the user has
entered, data you’ve generated on the fly, records you’ve fetched from a changing database), but even if
it isn’t, you may need to use dynamic printing to deal with the possibility of different page sizes and
orientations.

In the following example, the code prints the content from a list. To do this, the code must loop
through the collection, keeping track of its position and requesting a new page pages whenever the
current page fills up.

CHAPTER 9  BRUSHES, BITMAPS, AND PRINTING

341

The code for starting the printout is virtually identical. The only difference is that you need a
member field to keep track of the position in the list as the printout moves from one page to the next:

// Keep track of the position in the list.
private int listPrintIndex;

private void cmdPrintList_Click(object sender, RoutedEventArgs e)
{
 // Reset the position, in case a previous printout has changed it.
 listPrintIndex = 0;

 PrintDocument document = new PrintDocument();
 document.PrintPage += documentList_PrintPage;
 document.Print("List Document");
}

The printing code uses a Canvas for the print visual. This is a common design choice, because the
Canvas can hold any combination of elements. It allows you to place elements using fixed coordinates,
and it doesn’t introduce any additional layout considerations.

// Add some extra margin space.
private int extraMargin = 50;

private void documentList_PrintPage(object sender, PrintPageEventArgs e)
{
 // Use a Canvas for the printing surface.
 Canvas printSurface = new Canvas();
 e.PageVisual = printSurface;
 ...

Note that it’s not necessary to explicitly size the Canvas to the print area, because the Canvas
doesn’t clip its content unless you set the Clip property. (In other words, content is always rendered,
even when it’s positioned outside the bounds of its Canvas container.)

Once the Canvas has been created, the code begins to loop through the collection of data. It creates
a single TextBlock for each printed line:

 ...
 // Find the starting coordinate.
 double topPosition = e.PageMargins.Top + extraMargin;

 // Begin looping through the list.
 while (listPrintIndex < lst.Items.Count)
 {
 // Create a TextBlock for each line, with a 30-pixel font.
 TextBlock txt = new TextBlock();
 txt.FontSize = 30;
 txt.Text = lst.Items[listPrintIndex].ToString();
 ...

Before the TextBlock can be placed in the Canvas, you need to be sure that it fits on the page. The
code calculates this detail by taking into account the total available height, the current position, the
rendered size of the TextBlock, and the page margins. If the TextBlock doesn’t fit, the code stops printing
the page and sets PrintPageEventArgs.HasMorePages to true, which requests a new page.

CHAPTER 9  BRUSHES, BITMAPS, AND PRINTING

342

 ...
 // If the new line doesn't fit, stop printing this page,
 // but request another page.
 double measuredHeight = txt.ActualHeight;
 if (measuredHeight > (e.PrintableArea.Height - topPosition - extraMargin))
 {
 e.HasMorePages = true;
 return;
 }
 ...

When HasMorePages is set to true and the method ends, PrintDocument object will fire its
PrintPage event again, immediately. Now the code will create a new Canvas for the new page and begin
placing elements on it.

However, if the current TextBlock does fit, the code simply adds it to the Canvas, moves to the next
line in the list, and shifts the coordinates down to the next row on the printed page:

 ...
 // Place the TextBlock on the Canvas.
 txt.SetValue(Canvas.TopProperty, topPosition);
 txt.SetValue(Canvas.LeftProperty, e.PageMargins.Left + extraMargin);
 printSurface.Children.Add(txt);

 // Move to the next line.
 listPrintIndex++;
 topPosition = topPosition + measuredHeight;
 ...

When the code reaches the last item of the list, the loop ends. Now the complete, multiple-page
printout has finished.

 ...
 }
 // The printing code has reached the end of the list.
 // No more pages are needed.
 e.HasMorePages = false;
}

Figure 9-14 shows the complete printout spaced out over three pages.

CHAPTER 9  BRUSHES, BITMAPS, AND PRINTING

343

Figure 9-14. Printing a list

Although this example is fairly easy, you can see how the printing logic will grow more intricate if
you need to print mixed content (for example, pictures and text) or multiple lines of wrapped text.

 Note If you set the TextBlock.TextWrapping property to Wrap and you give it a size that’s large enough to fit
multiple lines of text, the TextBlock will automatically wrap your printed text. However, life isn’t as easy if you need
to wrap text over multiple pages, because you have no way of knowing where the TextBlock runs out of space on
any given page. The only alternative is to print your documents one word at a time so that you can determine the
exact amount of text that fits on a page. Sadly, this technique is slow and tedious. It shows the limits of
Silverlight’s simplified printing model.

Bitmap and Vector Printing
Silverlight has essentially two different printing pipelines:

• Bitmap printing: This is the original printing system, which was introduced in
Silverlight 4. In bitmap mode, Silverlight turns each page into a picture (using the
WriteableBitmap class you just met). Bitmap-based printing has two significant
advantages: it can handle any content, and it works on any printer. The
disadvantage is that it needs to transmit a large amount of data to the printer,
which can be slow.

CHAPTER 9  BRUSHES, BITMAPS, AND PRINTING

344

• Vector printing: This alternative printing system was introduced in Silverlight 5. In
vector mode, Silverlight sends higher-level printing instructions that tell the
printer to render specific shapes, textures, and text. This guarantees better
performance than in bitmap mode. However, there are two significant caveats.
First, your printer and printer driver must support PostScript. Second, certain
bitmap effects won’t translate to PostScript printing—most notably, layers of
partially transparent content, perspective transforms, and 3-D scenes.

At first glance, this seems like a very awkward situation. After all, it’s never easy to choose between a
technology that’s better (in this case, vector printing) and one that’s better-supported (bitmap printing).
Fortunately, Silverlight uses a fallback system that lets you take advantage of both. With this fallback
system, you’ll get vector printing when possible but bitmap printing when the printer driver doesn’t
support PostScript or when the type of content you’re printing makes it impossible.

Here’s how the fallback system works. If you don’t take any additional steps, your printouts will use
vector printing automatically, if possible. But if the printer driver lacks PostScript support or if the type
of content you’re printing can’t be properly converted to PostScript output, Silverlight will revert to the
older bitmap-based printing model. And if you want to force Silverlight to use bitmap-based printing,
you can do that too. The trick is to call the PrintDocument.PrintBitmap() method rather than
PrintDocument.Print().

It can be difficult to tell which printing pipeline Silverlight uses when you call Print(), because
Silverlight doesn’t make this information available to your application. But one easy way for you to tell is
to look at the size of print job. To run this test, turn off your printer, and print the same document two
ways, both as a forced bitmap and as an attempted vector image. To do that, you’ll need two separate
event handlers (because you can’t show the Print dialog box twice in one event without triggering a
security error). Here’s the sort of code you can use:

private void cmdPrintBitmap_Click(object sender, RoutedEventArgs e)
{
 PrintDocument document = new PrintDocument();
 document.PrintPage += document_PrintPage;

 // The PrintBitmap() method always uses bitmap printing.
 document.PrintBitmap("My Document - Bitmap Version");
}

private void cmdPrintVector_Click(object sender, RoutedEventArgs e)
{
 PrintDocument document = new PrintDocument();
 document.PrintPage += document_PrintPage;

 // The Print() method may or may not use vector printing, depending on the
 // document and printer driver.
 document.Print("My Document");
}

Once you run this code, view the list of print jobs for your printer. You can do this by finding (and
clicking) the system tray icon for your printer. Or, you can choose Devices and Printers from the Start
menu and double-click the appropriate printer there. Either way, you’ll see a window like the one shown
in Figure 9-15.

CHAPTER 9  BRUSHES, BITMAPS, AND PRINTING

345

Figure 9-15. Comparing a vector and a bitmap print job

Here, it’s clear that Silverlight is using vector printing. The bitmap version of the document (which
is nothing more than a few lines of text on a single page) weighs in at a bloated 119 MB. By comparison,
the PostScript version is hundreds of times smaller, requiring a paltry 309 KB.

 Note PostScript is a widely supported standard but far from universal. Although you’re likely to find it on big
office printers and Mac computers, consumer-level printers on the Windows operating system commonly lack this
feature. When you run the test described previously on them, you’ll see two identical, very large print jobs.

As explained earlier, non-PostScript printers aren’t the only obstacle you can encounter. Silverlight
will also switch to bitmap printing if your content includes certain effects, such as transparency.
However, you might decide that the benefits of vector printing outweigh the value of your effect. In this
situation, Silverlight allows you to override its normal decision-making process and force it to use vector
printing whenever the printer driver supports it, even if some effects won’t be rendered. To do this, you
must create an instance of the PrinterFallbackSettings class, set its ForceVector property to true, and
then pass it as a second parameter to the Print() method. Here’s an example:

PrintDocument document = new PrintDocument();
document.PrintPage += document_PrintPage;

PrinterFallbackSettings fallback = new PrinterFallbackSettings();
fallback.ForceVector = true;
document.Print("My Document", fallback);

Now, unsupported details will be ignored on PostScript printers—for example, there won’t be any
transparency where you expect it, perspective transforms won’t apply, and so on. However, nothing will
change for non-PostScript printers, which will continue using bitmap printing with all the effects.

CHAPTER 9  BRUSHES, BITMAPS, AND PRINTING

346

 Note Silverlight also boasts one more helpful improvement. Bitmap printing now uses compressed bitmaps, if
possible (which means only on PostScript printer drivers). This makes printing faster in the scenario where your
printer supports PostScript, but vector printing isn’t possible because your content uses an unsupported drawing
feature. In other words, bitmap printing isn’t as slow and bloated on PostScript printers as it is on non-PostScript
printers.

There’s one more dial to tweak. You can use the OpacityThreshold property in conjunction with the
ForceVector property to specify how much transparency you’re willing to ignore.

By default, the OpacityThreshold is 0, which means that Silverlight rounds up all Opacity values,
making every element fully opaque when you use the PrinterFallbackSettings object. But if you change
the OpacityThreshold to something higher, Silverlight becomes more discriminating. For example,
consider this code, which sets the OpacityThreshold to 0.5:

PrinterFallbackSettings fallback = new PrinterFallbackSettings();
fallback.ForceVector = true;
fallback.OpacityThreshold = 0.5;
document.Print("My Document", fallback);

Now elements that have an Opacity of 0.5 or greater are made fully opaque. However, elements that
have a lower Opacity value are made fully transparent, and not rendered at all. Of course, this all only
applies if the printer driver supports vector printing.

SENDING A PRINTOUT TO THE DEFAULT PRINTER

If you’ve created an elevated-trust application (see Chapter 18), you can send a document to the default
printer without showing the Print dialog box.

To do this, you need to use an overload of the Print() method that takes three arguments: the print
document name, a PrinterFallbackSettings object, and a Boolean value that sends the opts-in to the quick
print feature. Here’s what your code would look like:

document.Print("My Document", new PrinterFallbackSettings(), true);

Note that even though this overload of the Print() method requires the PrinterFallbackSettings object, you
don’t actually need to use it to do anything. If you don’t set the ForceVector property, you’ll get the default
behavior—vector printing when possible and bitmap printing when the driver or content requires it.

Creating a Print Preview
Although Silverlight doesn’t have a built-in print preview, you can build one of your own fairly easily.
The basic technique is to write your root element to a WriteableBitmap (as demonstrated earlier this
chapter). You can then show that WriteableBitmap on-screen—for example, in a ScrollViewer inside a
pop-up ChildWindow. Figure 9-16 shows an example.

CHAPTER 9  BRUSHES, BITMAPS, AND PRINTING

347

Figure 9-16. A simple print preview

The first step to create an example like this is to refactor your printing code so that you can call it as
part of a print operation or to create a visual to use in a preview.

Consider the previous example, which did the bulk of its work in an event handler named
documentList_PrintPage(). To modify this example so it can more easily support a print preview feature,
you first separate the code that generates the visuals into a separate method:

private bool GeneratePage(Canvas printSurface,
 Thickness pageMargins, Size pageSize)
{ ... }

Here, the GeneratePage() method accepts the three pieces of information it needs as arguments: the
Canvas that acts as the root visual for the page, a Thickness object that represents the page margins, and
a Size object that represents the page size. The code inside doesn’t need to directly interface with the
printing system (through the PrintPageEventArgs object). Instead, it simply adds elements to the Canvas
until the page is full. It then returns true if a new page is needed or false if the printout is complete. (To
see the full code, refer to the downloadable examples for this chapter. You’ll find that the code in the
GeneratePage() method is virtually identical to the original example—it’s simply been transplanted from
the documentList_PrintPage() event handler.)

CHAPTER 9  BRUSHES, BITMAPS, AND PRINTING

348

And here’s the revised documentList_PrintPage() event handler that uses the GeneratePage()
method:

private void documentList_PrintPage(object sender, PrintPageEventArgs e)
{
 // Create the printing surface.
 Canvas printSurface = new Canvas();
 e.PageVisual = printSurface;

 // File the page and determine if a new page is needed.
 e.HasMorePages = GeneratePage(printSurface, e.PageMargins, e.PrintableArea);
}

With this rearrangement, it’s easy enough to add a print preview feature. Here’s one that creates a
new Canvas to represent the printed page and then uses that Canvas to create a WriteableBitmap.
Finally, the WriteableBitmap is passed to a custom ChildWindow class (named PrintPreview), like the
ones you learned to create in Chapter 7.

private void cmdPreviewPrintList_Click(object sender, RoutedEventArgs e)
{
 listPrintIndex = 0;
 Canvas printSurface = new Canvas();

 // The page information isn't available without starting a real printout,
 // so we hard-code a typical page size.
 int width = 816;
 int height = 1056;
 printSurface.Width = width;
 printSurface.Height = height;
 GeneratePage(printSurface, new Thickness(0), new Size(width, height));

 // Wrap the Canvas in a WriteableBitmap.
 WriteableBitmap printPreviewBitmap = new WriteableBitmap(printSurface, null);

 // Pass the bitmap to the PrintPreview window.
 PrintPreview preview = new PrintPreview(printPreviewBitmap);
 preview.Show();
}

The PrintPreview window contains an Image wrapped in a ScrollViewer:

<ScrollViewer x:Name="scrollContainer">
 <Image x:Name="imgPreview" VerticalAlignment="Top"
 HorizontalAlignment="Left"></Image>
</ScrollViewer>

When it first loads, it puts the WriteableBitmap into the Image element. It also stores the original
dimensions of the bitmap to facilitate zooming with the sider.

private Point originalSize = new Point();

public PrintPreview(WriteableBitmap printPreviewBitmap)
{
 InitializeComponent();

CHAPTER 9  BRUSHES, BITMAPS, AND PRINTING

349

 imgPreview.Source = printPreviewBitmap;
 imgPreview.Height = printPreviewBitmap.PixelHeight;
 imgPreview.Width = printPreviewBitmap.PixelWidth;

 originalSize.X = imgPreview.Width;
 originalSize.Y = imgPreview.Height;
}

When the slider is changed, the size of the Image is adjusted accordingly:

private void sliderZoom_ValueChanged(object sender,
 RoutedPropertyChangedEventArgs<double> e)
{
 imgPreview.Height = originalSize.Y * sliderZoom.Value;
 imgPreview.Width = originalSize.X * sliderZoom.Value;
}

As written, this code generates only the first page of the printout. However, you could develop a
more advanced example that allows the user to step from one page to another in the preview.

The Last Word
In this chapter, you delved deeper into Silverlight’s 2-D drawing model. This is important, because
understanding the plumbing behind 2-D graphics makes it far easier for you to manipulate them.

For example, you can alter a standard 2-D graphic by modifying the brushes used to paint various
shapes, altering the opacity, and using pixel shader effects. For still more impressive results, you can
combine these techniques with Silverlight’s animation features. For example, it’s easy to fade a layer of
shapes into existence using DrawingGroup.Opacity, or create a swirling dissolve effect by animating a
custom pixel shader. You’ll see examples of techniques like these in the next chapter.
At the same time, you also learned about lower-level approaches to generating and modifying graphics.
You saw how you could change images on the pixel level with pixel shaders and the WriteableBitmap.
Finally, you considered how Silverlight repurposes its bitmap rendering engine to provide a universally
supported printing feature.

C H A P T E R 10

351

Animation Basics

Animation allows you to create truly dynamic user interfaces. It’s often used to apply effects—for
example, icons that grow when you move over them, logos that spin, text that scrolls into view, and so
on. Sometimes, these effects seem like excessive glitz. But used properly, animations can enhance an
application in a number of ways. They can make an application seem more responsive, natural, and
intuitive. (For example, a button that slides in when you click it feels like a real, physical button—not just
another gray rectangle.) Animations can also draw attention to important elements and guide the user
through transitions to new content. (For example, an application could advertise new content with a
twinkling, blinking, or pulsing icon.)

Animations are a core part of the Silverlight model. That means you don’t need to use timers and
event-handling code to put them into action. Instead, you can create and configure them declaratively,
using XAML markup. Animations also integrate themselves seamlessly into ordinary Silverlight pages.
For example, if you animate a button so it drifts around the page, the button still behaves like a button. It
can be styled, it can receive focus, and it can be clicked to fire off the typical event-handling code.

In this chapter, you’ll take your first look at the set of animation classes that Silverlight provides.
You’ll see how to construct them with XAML and control their playback with code. You’ll also learn
about the animation easing tool that lets you create more natural, lifelike animations, and you’ll learn
about the hardware acceleration feature that can boost animation performance.

 What’s New Silverlight 5 adds a small but significant improvement to the way animations are rendered. If
you’re using bitmap caching, you can offload animation work to a separate thread. This ensures that your
animation keeps running smoothly, even if the user interface thread is tied up with other work. You’ll learn more in
the section “Independent Animations.”

Understanding Silverlight Animation
Often, an animation is thought of as a series of frames. To perform the animation, these frames are
shown one after the other, like a stop-motion video.

Silverlight animations use a dramatically different model. Essentially, a Silverlight animation is a
way to modify the value of a dependency property over an interval of time. For example, to make a
button that grows and shrinks, you can modify its Width property in an animation. To make it shimmer,

CHAPTER 10  ANIMATION BASICS

352

you can change the properties of the LinearGradientBrush that it uses for its background. The secret to
creating the right animation is determining what properties you need to modify.

If you want to make other changes that can’t be made by modifying a property, you’re out of luck.
For example, you can’t add or remove elements as part of an animation. Similarly, you can’t ask
Silverlight to perform a transition between a starting scene and an ending scene (although some crafty
workarounds can simulate this effect). And finally, you can use animation only with a dependency
property, because only dependency properties use the dynamic value-resolution system (described in
Chapter 4) that takes animations into account.

 Note Silverlight animation is a scaled-down version of the WPF animation system. It keeps the same
conceptual framework, the same model for defining animations with animation classes, and the same storyboard
system. However, WPF developers will find some key differences, particularly in the way animations are created
and started in code. (For example, Silverlight elements lack the built-in BeginAnimation() method that they have in
WPF.)

GOING BEYOND SILVERLIGHT ANIMATION

At first glance, the property-focused nature of Silverlight animations seems terribly limiting. But as you
work with Silverlight, you’ll find that it’s surprisingly capable. You can create a wide range of animated
effects using common properties that every element supports. In this chapter, you’ll even see how you can
use it to build a simple game.

That said, in some cases the property-based animation system won’t suit. As a rule of thumb, the
property-based animation is a great way to add dynamic effects to an otherwise ordinary application (such
as buttons that glow, pictures that expand when you move over them, and so on). However, if you need to
use animations as part of the core purpose of your application and you want them to continue running over
the lifetime of your application, you may need something more flexible and more powerful. For example, if
you’re creating a complex arcade game or using physics calculations to model collisions, you’ll need
greater control over the animation.

Later in this chapter, you’ll learn how to take a completely different approach with frame-based
animations. In a frame-based animation, your code runs several times a second, and each time it runs, you
have a chance to modify the content of your window. For more information, see the section “Frame-Based
Animation.”

The Rules of Animation
To understand Silverlight animation, you need to be aware of the following key rules:

• Silverlight animations are time-based: You set the initial state, the final state, and
the duration of your animation. Silverlight calculates the frame rate.

CHAPTER 10  ANIMATION BASICS

353

• Animations act on properties: A Silverlight animation can do only one thing:
modify the value of a property over an interval of time. This sounds like a
significant limitation (and it many ways, it is), but you can create a surprisingly
large range of effects by modifying properties.

• Every data type requires a different animation class: For example, the Button.Width
property uses the double data type. To animate it, you use the DoubleAnimation
class. If you want to modify the color that’s used to paint the background of a
Canvas, you need to use the ColorAnimation class.

Silverlight has relatively few animation classes, so you’re limited in the data types you can use.
Currently, you can use animations to modify properties with the following data types: double, object,
Color, and Point. However, you can also craft your own animation classes that work for different data
types—all you need to do is derive from System.Windows.Media.Animation and indicate how the value
should change as time passes.

Many data types don’t have a corresponding animation class because it wouldn’t be practical. A
prime example is enumerations. For example, you can control how an element is placed in a layout
panel using the HorizontalAlignment property, which takes a value from the HorizontalAlignment
enumeration. But the HorizontalAlignment enumeration allows you to choose among only four values
(Left, Right, Center, and Stretch), which greatly limits its use in an animation. Although you can swap
between one orientation and another, you can’t smoothly transition an element from one alignment to
another. For that reason, there’s no animation class for the HorizontalAlignment data type. You can
build one yourself, but you’re still constrained by the four values of the enumeration.

Reference types aren’t usually animated. However, their subproperties are. For example, all content
controls sport a Background property that lets you set a Brush object that’s used to paint the
background. It’s rarely efficient to use animation to switch from one brush to another, but you can use
animation to vary the properties of a brush. For example, you can vary the Color property of a
SolidColorBrush (using the ColorAnimation class) or the Offset property of a GradientStop in a
LinearGradientBrush (using the DoubleAnimation class). Doing so extends the reach of Silverlight
animation, allowing you to animate specific aspects of an element’s appearance.

 Tip As you’ll see, DoubleAnimation is by far the most useful of Silverlight’s animation classes. Most of the
properties you’ll want to change are doubles, including the position of an element on a Canvas, its size, its opacity,
and the properties of the transforms it uses.

Creating Simple Animations
Creating an animation is a multistep process. You need to create three separate ingredients: an
animation object to perform your animation, a storyboard to manage your animation, and an event
handler (an event trigger) to start your storyboard. In the following sections, you’ll tackle each of these
steps.

The Animation Class
Silverlight includes two types of animation classes. Each type of animation uses a different strategy for
varying a property value:

CHAPTER 10  ANIMATION BASICS

354

• Linear interpolation: The property value varies smoothly and continuously over
the duration of the animation. (You can use animation easing to create more
complex patterns of movement that incorporate acceleration and deceleration, as
described later in this chapter.) Silverlight includes three such classes:
DoubleAnimation, PointAnimation, and ColorAnimation.

• Key-frame animation: Values can jump abruptly from one value to another, or
they can combine jumps and periods of linear interpolation (with or without
animation easing). Silverlight includes four such classes:
ColorAnimationUsingKeyFrames, DoubleAnimationUsingKeyFrames,
PointAnimationUsingKeyFrames, and ObjectAnimationUsingKeyFrames.

In this chapter, you’ll begin by focusing on the indispensable DoubleAnimation class, which uses
linear interpolation to change a double from a starting value to its ending value.

Animations are defined using XAML markup. Although the animation classes aren’t elements, they
can be created with the same XAML syntax. For example, here’s the markup required to create a
DoubleAnimation:

<DoubleAnimation From="160" To="300" Duration="0:0:5"></DoubleAnimation>

This animation lasts five seconds (as indicated by the Duration property, which takes a time value in
the format Hours:Minutes:Seconds.FractionalSeconds). While the animation is running, it changes the
target value from 160 to 300. Because the DoubleAnimation uses linear interpolation, this change takes
place smoothly and continuously.

There’s one important detail that’s missing from this markup. The animation indicates how the
property will be changed, but it doesn’t indicate what property to use. This detail is supplied by another
ingredient, which is represented by the Storyboard class.

The Storyboard Class
The storyboard manages the timeline of your animation. You can use a storyboard to group multiple
animations, and it also has the ability to control the playback of animation—pausing it, stopping it, and
changing its position. But the most basic feature provided by the Storyboard class is its ability to point to
a specific property and specific element using the TargetProperty and TargetName properties. In other
words, the storyboard bridges the gap between your animation and the property you want to animate.

Here’s how you can define a storyboard that applies a DoubleAnimation to the Width property of a
button named cmdGrow:

<Storyboard x:Name="storyboard"
 Storyboard.TargetName="cmdGrow" Storyboard.TargetProperty="Width">
 <DoubleAnimation From="160" To="300" Duration="0:0:5"></DoubleAnimation>
</Storyboard>

The Storyboard.TargetProperty property identifies the property you want to change. (In this
example, it’s Width.) If you don’t supply a class name, the storyboard uses the parent element. If you
want to set an attached property (for example, Canvas.Left or Canvas.Top), you need to wrap the entire
property in brackets, like this:

<Storyboard x:Name="storyboard"
 Storyboard.TargetName="cmdGrow" Storyboard.TargetProperty="(Canvas.Left)">
 ...
</Storyboard>

CHAPTER 10  ANIMATION BASICS

355

Both TargetName and TargetProperty are attached properties. That means you can apply them
directly to the animation, as shown here:

<Storyboard x:Name="storyboard">
 <DoubleAnimation
 Storyboard.TargetName="cmdGrow" Storyboard.TargetProperty="Width"
 From="160" To="300" Duration="0:0:5"></DoubleAnimation>
</Storyboard>

This syntax is more common, because it allows you to put several animations in the same
storyboard but set each animation to act on a different element and property. Although you can’t
animate the same property at the same time with multiple animations, you can (and often will) animate
different properties of the same element at once.

Starting an Animation with an Event Trigger
Defining a storyboard and an animation are the first steps to creating an animation. To actually put this
storyboard into action, you need an event trigger. An event trigger responds to an event by performing a
storyboard action. The only storyboard action that Silverlight currently supports is BeginStoryboard,
which starts a storyboard (and hence all the animations it contains).

The following example uses the Triggers collection of a page to attach an animation to the Loaded
event. When the Silverlight content is first rendered in the browser and the page element is loaded, the
button begins to grow. Five seconds later, its width has stretched from 160 pixels to 300.

<UserControl ... >
 <UserControl.Triggers>
 <EventTrigger>
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation Storyboard.TargetName="cmdGrow"
 Storyboard.TargetProperty="Width"
 From="160" To="300" Duration="0:0:5"></DoubleAnimation>
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger.Actions>
 </EventTrigger>
 </UserControl.Triggers>

 <Grid x:Name="LayoutRoot" Background="White">
 <Button x:Name="cmdGrow" Width="160" Height="30"
 Content="This button grows"></Button>
 </Grid>
</UserControl>

Unfortunately, Silverlight event triggers are dramatically limited—much more so than their WPF
counterparts. Currently, Silverlight only allows event triggers to respond to the Loaded event when your
page is first created. They can’t react to other events, like clicks, keypresses, and mouse movements. For
those, you need the code described in the next section.

CHAPTER 10  ANIMATION BASICS

356

Starting an Animation with Code
You can start a Silverlight animation in response to any event using code that interacts with the
storyboard. The first step is to move your storyboard out of the Triggers collection and place it in another
collection of the same element: the Resources collection.

As you learned in Chapter 1, Silverlight elements provide a Resources property, which holds a
collection where you can store miscellaneous objects. The primary purpose of the Resources collection
is to let you define objects in XAML that aren’t elements and so can’t be placed into the visual layout of
your content region. For example, you may want to declare a Brush object as a resource so it can be used
by more than one element. You can retrieve resources in your code or use them elsewhere in your
markup.

Here’s an example that defines the button-growing animation as a resource:

<UserControl ... >
 <UserControl.Resources>
 <Storyboard x:Name="storyboard">
 <DoubleAnimation
 Storyboard.TargetName="cmdGrow" Storyboard.TargetProperty="Width"
 From="160" To="300" Duration="0:0:5"></DoubleAnimation>
 </Storyboard>
 </UserControl.Resources>

 <Grid x:Name="LayoutRoot" Background="White">
 <Button x:Name="cmdGrow" Width="160" Height="30" Click="cmdGrow_Click"
 Content="This button grows"></Button>
 </Grid>
</UserControl>

Notice that the storyboard is now given a name, so you can manipulate it in your code. (You can
also add a name to the DoubleAnimation if you want to tweak its properties programmatically before
launching the animation.)

Now, you need to call the methods of the Storyboard object in an event handler in your Silverlight
code-behind file. The methods you can use include Begin(), Stop(), Pause(), Resume(), and Seek(), all of
which are fairly self-explanatory.

private void cmdGrow_Click(object sender, RoutedEventArgs e)
{
 storyboard.Begin();
}

Clicking the button launches the animation, and the button stretches from 160 to 300 pixels, as
shown in Figure 10-1.

CHAPTER 10  ANIMATION BASICS

357

Figure 10-1. Animating a button’s width

Configuring Animation Properties
To get the most out of your animations, you need to take a closer look at the seemingly simple animation
class properties that were set in the previous example, including From, To, and Duration. As you’ll see,
there’s a bit more subtlety—and a few more possibilities—than you may initially expect.

From
The From value is the starting value. In the previous example, the animation starts at 160 pixels. Thus,
each time you click the button and start the animation, the Width property is reset to 160, and the
animation runs again. This is true even if you click the button while an animation is underway.

 Note This example exposes another detail about Silverlight animations: every dependency property can be
acted on by only one animation at a time. If you start a second animation, the first one is discarded.

In many situations, you don’t want an animation to begin at the original From value. There are two
common reasons:

• You have an animation that can be triggered multiple times in a row for a
cumulative effect: For example, you may want to create a button that grows a bit
more each time it’s clicked.

• You have animations that can overlap: For example, you may use the MouseEnter
event to trigger an animation that expands a button and the MouseLeave event to
trigger a complementary animation that shrinks it back. (This is often known as a
fish-eye effect.) If you move the mouse over and off this sort of button several
times in quick succession, each new animation interrupts the previous one,
causing the button to jump back to the size that’s set by the From property.

CHAPTER 10  ANIMATION BASICS

358

If you leave out the From value in the button-growing example, you can click the button multiple
times without resetting its progress. Each time, a new animation starts, but it continues from the current
width. When the button reaches its maximum width, further clicks have no effect, unless you add
another animation to shrink it back.

<DoubleAnimation Storyboard.TargetName="cmdGrow"
 Storyboard.TargetProperty="Width" To="300" Duration="0:0:5"></DoubleAnimation>

There’s one catch. For this technique to work, the property you’re animating must have a previously
set value. In this example, that means the button must have a hard-coded width (whether it’s defined
directly in the button tag or applied through a style setter). The problem is that in many layout
containers, it’s common not to specify a width and to allow the container to control the width based on
the element’s alignment properties. In this case, the default width applies, which is the special value
Double.NaN (where NaN stands for “not a number”). You can’t use linear interpolation to animate a
property that has this value.

What’s the solution? In many cases, the answer is to hard-code the button’s width. As you’ll see,
animations often require more fine-grained control of element sizing and positioning than you’d
otherwise use. The most common layout container for animatable content is the Canvas, because it
makes it easy to move content around (with possible overlap) and resize it. The Canvas is also the most
lightweight layout container, because no extra layout work is needed when you change a property like
Width.

In the current example, you have another option. You can retrieve the current value of the button
using its ActualWidth property, which indicates the current rendered width. You can’t animate
ActualWidth (it’s read-only), but you can use it to set the From property of your animation
programmatically, before you start the animation.

You need to be aware of another issue when you use the current value as a starting point for an
animation: doing so may change the speed of your animation. That’s because the duration isn’t adjusted
to take into account the smaller spread between the initial value and the final value. For example,
imagine you create a button that doesn’t use the From value and instead animates from its current
position. If you click the button when it has almost reached its maximum width, a new animation
begins. This animation is configured to take five seconds (through the Duration property), even though
there are only a few more pixels to go. As a result, the growth of the button seems to slow down.

This effect appears only when you restart an animation that’s almost complete. Although it’s a bit
odd, most developers don’t bother trying to code around it. Instead, it’s considered an acceptable quirk.

To
Just as you can omit the From property, you can omit the To property. You can leave out both the From
and To properties to create an animation like this:

<DoubleAnimation Storyboard.TargetName="cmdGrow"
 Storyboard.TargetProperty="Width" Duration="0:0:5"></DoubleAnimation>

At first glance, this animation seems like a long-winded way to do nothing at all. It’s logical to
assume that because both the To and From properties are omitted, they both use the same value. But
there’s a subtle and important difference.

When you leave out From, the animation uses the current value and takes animation into account.
For example, if the button is midway through a grow operation, the From value uses the expanded
width. However, when you omit To, the animation uses the current value without taking animation into
account. Essentially, that means the To value becomes the original value—whatever you last set in code,
on the element tag, or through a style. (This works thanks to Silverlight’s property-resolution system,

CHAPTER 10  ANIMATION BASICS

359

which is able to calculate a value for a property based on several overlapping property providers without
discarding any information. Chapter 4 describes this system in more detail.)

In the button example, if you start a grow animation and then interrupt it with the animation shown
previously (perhaps by clicking another button), the button shrinks from its partially expanded size until
it reaches the original width set in the XAML markup. On the other hand, if you run this code while no
other animation is underway, nothing happens. That’s because the From value (the animated width)
and the To value (the original width) are the same.

By
Instead of using To, you can use the By property. The By property is used to create an animation that
changes a value by a set amount, rather than to a specific target. For example, you can create an
animation that enlarges a button by 10 pixels more than its current size, as shown here:

<DoubleAnimation Storyboard.TargetName="cmdGrow" By="10"
 Storyboard.TargetProperty="Width" Duration="0:0:5"></DoubleAnimation>

Clicking this button always enlarges the button, no matter how many times you’ve run the
animation and how large the button has already grown.

The By property isn’t offered with all animation classes. For example, it doesn’t make sense with
non-numeric data types, such as a Color structure (as used by ColorAnimation).

Duration
The Duration property is straightforward—it takes the time interval (in milliseconds, minutes, hours, or
whatever else you’d like to use) between the time the animation starts and the time it ends. The
Duration property requires a Duration object, which is similar to a TimeSpan. In fact, the Duration
structure defines an implicit cast that can convert a System.TimeSpan object to
System.Windows.Duration object as needed. That’s why code like this is reasonable:

widthAnimation.Duration = TimeSpan.FromSeconds(5);

So, why did Microsoft bother to introduce a whole new Duration type, rather than just use the
standard TimeSpan? The Duration type can be set to two special values that can’t be represented by a
TimeSpan object: Duration.Automatic and Duration.Forever. Neither of these values is useful in the
current example. Automatic sets the animation to a 1-second duration, and Forever makes the
animation infinite in length, which prevents it from having any effect.

But Duration.Forever becomes useful if you’re creating a reversible animation. To do so, set the
AutoReverse property to true. Now, the animation will play out in reverse once it’s complete, reverting to
the original value (and doubling the time the animation takes). Because a reversible animation returns
to its initial state, Duration.Forever makes sense—it forces the animation to repeat endlessly.

Animation Lifetime
Technically, Silverlight animations are temporary, which means they don’t change the value of the
underlying property. While an animation is active, it overrides the property value. This is because of the
way that dependency properties work (as described in Chapter 4), and it’s an often-overlooked detail
that can cause significant confusion.

A one-way animation (like the button-growing animation) remains active after it finishes running.
That’s because the animation needs to hold the button’s width at the new size. This can lead to an

CHAPTER 10  ANIMATION BASICS

360

unusual problem: if you try to modify the value of the property using code after the animation has
completed, your code will appear to have no effect. Your code assigns a new local value to the property,
but the animated value still takes precedence.

You can solve this problem in several ways, depending on what you’re trying to accomplish:

• Create an animation that resets your element to its original state: You do this by not
setting the To property. For example, the button-shrinking animation reduces the
width of the button to its last set size, after which you can change it in your code.

• Create a reversible animation: You do this by setting the AutoReverse property to
true. For example, when the button-growing animation finishes widening the
button, it will play out the animation in reverse, returning it to its original width.
The total duration of your animation is doubled.

• Change the FillBehavior property: Ordinarily, FillBehavior is set to HoldEnd, which
means that when an animation ends, it continues to apply its final value to the
target property. If you change FillBehavior to Stop, then as soon as the animation
ends, the property reverts to its original value.

• Remove the animation object when the animation ends: To do so, handle the
Completed event of the animation object or the containing storyboard.

The first three options change the behavior of your animation. One way or another, they return the
animated property to its original value. If this isn’t what you want, you need to use the last option.

First, before you launch the animation, attach an event handler that reacts when the animation
finishes. You can do this when the page first loads:

storyboard.Completed += storyboard_Completed;

When the Completed event fires, you can retrieve the storyboard that controls the animation and
stop it:

private void storyboard_Completed(object sender, EventArgs e)
{
 Storyboard storyboard = (Storyboard)sender;
 storyboard.Stop();
}

When you call Storyboard.Stop(), the property returns to the value it had before the animation
started. If this isn’t what you want, you can take note of the current value that’s being applied by the
animation, remove the animation, and then manually set the new property:

double currentWidth = cmdGrow.Width;
storyboard.Stop();
cmdGrow.Width = currentWidth;

Keep in mind that this changes the local value of the property. That may affect how other
animations work. For example, if you animate this button with an animation that doesn’t specify the
From property, it uses this newly applied value as a starting point. In most cases, this is the behavior you
want.

CHAPTER 10  ANIMATION BASICS

361

RepeatBehavior
The RepeatBehavior property allows you to control how an animation is repeated. If you want to repeat
it a fixed number of times, indicate the number of times to repeat, followed by an x. For example, this
animation repeats twice:

<DoubleAnimation Storyboard.TargetName="cmdGrow" RepeatBehavior="2x"
 Storyboard.TargetProperty="Width" To="300" Duration="0:0:5"></DoubleAnimation>

Or in code, pass the number of times to the RepeatBehavior constructor:

widthAnimation.RepeatBehavior = new RepeatBehavior(2);

When you run this animation, the button increases in size (over five seconds), jumps back to its
original value, and then increases in size again (over five seconds), ending at the full width of the page. If
you’ve set AutoReverse to true, the behavior is slightly different: the entire animation is completed
forward and backward (meaning the button expands and then shrinks), and then it’s repeated again.

Rather than using RepeatBehavior to set a repeat count, you can use it to set a repeat interval. To do
so, set the RepeatBehavior property with a time value instead of a single number. For example, the
following animation repeats itself for 13 seconds:

<DoubleAnimation Storyboard.TargetName="cmdGrow" RepeatBehavior="0:0:13"
 Storyboard.TargetProperty="Width" To="300" Duration="0:0:5"></DoubleAnimation>

And here’s the same change made in code:

widthAnimation.RepeatBehavior = new RepeatBehavior(TimeSpan.FromSeconds(13));

In this example, the Duration property specifies that the entire animation takes 5 seconds. As a
result, the RepeatBehavior of 13 seconds triggers two repeats and then leaves the button halfway
through a third repeat (at the 3-second mark).

 Tip You can use RepeatBehavior to perform just part of an animation. To do so, use a fractional number of
repetitions, or use a TimeSpan that’s less than the duration.

Finally, you can cause an animation to repeat itself endlessly with the RepeatBehavior.Forever
value:

<DoubleAnimation Storyboard.TargetName="cmdGrow" RepeatBehavior="Forever"
 Storyboard.TargetProperty="Width" To="300" Duration="0:0:5"></DoubleAnimation>

Simultaneous Animations
The Storyboard class has the ability to hold more than one animation. Best of all, these animations are
managed as one group—meaning they’re started at the same time.

To see an example, consider the following storyboard. It wraps two animations, one that acts on a
button’s Width property and another that acts on the Height property. Because the animations are
grouped into one storyboard, they increment the button’s dimensions in unison:

<Storyboard x:Name="storyboard" Storyboard.TargetName="cmdGrow">

CHAPTER 10  ANIMATION BASICS

362

 <DoubleAnimation Storyboard.TargetProperty="Width"
 To="300" Duration="0:0:5"></DoubleAnimation>
 <DoubleAnimation Storyboard.TargetProperty="Height"
 To="300" Duration="0:0:5"></DoubleAnimation>
</Storyboard>

This example moves Storyboard.TargetName property from the DoubleAnimation to the
Storyboard. This is an optional change, but it saves you from setting the property twice, once on each
animation object. (Obviously, if your animation objects need to act on different elements, you couldn’t
use this shortcut.)

In this example, both animations have the same duration, but this isn’t a requirement. The only
consideration with animations that end at different times is their FillBehavior. If an animation’s
FillBehavior property is set to HoldEnd (the default), it holds the value until all the animations in the
storyboard are completed. At this point, the storyboard’s FillBehavior comes into effect, either
continuing to hold the values from both animations (HoldEnd) or reverting them to their initial values
(Stop). On the other hand, if you have multiple animations and one of them has a FillBehavior of Stop,
this animated property will revert to its initial value when the animation is complete, even if other
animations in the storyboard are still running.

When you’re dealing with more than one simultaneous animation, two more animation class
properties become useful: BeginTime and SpeedRatio. BeginTime sets a delay that is added before the
animation starts (as a TimeSpan). This delay is added to the total time, so a five-second animation with a
five-second delay takes ten seconds. BeginTime is useful when you’re synchronizing different
animations that start at the same time but should apply their effects in sequence. SpeedRatio increases
or decreases the speed of the animation. Ordinarily, SpeedRatio is 1. If you increase it, the animation
completes more quickly (for example, a SpeedRatio of 5 completes five times faster). If you decrease it,
the animation is slowed down (for example, a SpeedRatio of 0.5 takes twice as long). Although the overall
effect is the same as changing the Duration property of your animation, setting the SpeedRatio makes it
easier to control how simultaneous animations overlap.

Controlling Playback
You’ve already seen how to start an animation using the Storyboard.Begin() method. The Storyboard
class also provides a few more methods that allow you to stop or pause an animation. You’ll see them in
action in the following example, shown in Figure 10-2. This page superimposes two Image elements in
exactly the same position, using a grid. Initially, only the topmost image—which shows a day scene of a
Toronto city landmark—is visible. But as the animation runs, it reduces the opacity from 1 to 0,
eventually allowing the night scene to show through completely. The effect makes it seem that the image
is changing from day to night, like a sequence of time-lapse photography.

CHAPTER 10  ANIMATION BASICS

363

Figure 10-2. A controllable animation

Here’s the markup that defines the Grid with its two images:

<Grid>
 <Image Source="night.jpg"></Image>
 <Image Source="day.jpg" x:Name="imgDay"></Image>
</Grid>

And here’s the storyboard that fades from one to the other, which is placed in the page’s Resources
collection:

<Storyboard x:Name="fadeStoryboard">
 <DoubleAnimation x:Name="fadeAnimation"
 Storyboard.TargetName="imgDay" Storyboard.TargetProperty="Opacity"
 From="1" To="0" Duration="0:0:10">
 </DoubleAnimation>
</Storyboard>

To make this example more interesting, it includes several buttons at the bottom that let you control
the playback of this animation. Using these buttons, you can perform the typical media player actions,
such as starting, pausing, resuming, and stopping, and seeking. The event-handling code uses the
appropriate methods of the Storyboard object, as shown here:

private void cmdStart_Click(object sender, RoutedEventArgs e)
{
 fadeStoryboard.Begin();
}

CHAPTER 10  ANIMATION BASICS

364

private void cmdPause_Click(object sender, RoutedEventArgs e)
{
 fadeStoryboard.Pause();
}

private void cmdResume_Click(object sender, RoutedEventArgs e)
{
 fadeStoryboard.Resume();
}

private void cmdStop_Click(object sender, RoutedEventArgs e)
{
 fadeStoryboard.Stop();
}

private void cmdMiddle_Click(object sender, RoutedEventArgs e)
{
 // Start the animation, in case it's not currently underway.
 fadeStoryboard.Begin();

 // Move to the time position that represents the middle of the animation.
 fadeStoryboard.Seek(
 TimeSpan.FromSeconds(fadeAnimation.Duration.TimeSpan.TotalSeconds/2));
}

 Note Remember, stopping an animation isn’t equivalent to completing the animation (unless FillBehavior is set
to Stop). That’s because even when an animation reaches the end of its timeline, it continues to apply its final
value. Similarly, when an animation is paused, it continues to apply the most recent intermediary value. However,
when an animation is stopped, it no longer applies any value, and the property reverts to its preanimation value.

If you drag the thumb on the slider, the Slider.ValueChanged event fires and triggers another event
handler. This event handler then takes the current value of the slider (which ranges from 0 to 3) and uses
it to apply a new speed ratio:

private void sldSpeed_ValueChanged(object sender, RoutedEventArgs e)
{
 // To nothing if the page is still being initialized.
 if (sldSpeed == null) return;

 // This also restarts the animation if it's currently underway.
 fadeStoryboard.SpeedRatio = sldSpeed.Value;
 lblSpeed.Text = sldSpeed.Value.ToString("0.0");
}

Unlike in WPF, the Storyboard class in Silverlight doesn’t provide events that allow you to monitor
the progress of an event. For example, there’s no CurrentTimeInvalidated event to tell you the animation
is ticking forward.

CHAPTER 10  ANIMATION BASICS

365

Animation Easing
One of the shortcomings of linear animation is that it often feels mechanical and unnatural. By
comparison, sophisticated user interfaces have animated effects that model real-world systems. For
example, they may use tactile push-buttons that jump back quickly when clicked but slow down as they
come to rest, creating the illusion of true movement. Or, they may use maximize and minimize effects
like Windows Vista, where the speed at which the window grows or shrinks accelerates as the window
nears its final size. These details are subtle, and you’re not likely to notice them when they’re
implemented well. However, you’ll almost certainly notice the clumsy feeling of less refined animations
that lack these finer points.

The secret to improving your animations and creating more natural animations is to vary the rate of
change. Instead of creating animations that change properties at a fixed, unchanging rate, you need to
design animations that speed up or slow down along the way. Silverlight gives you several good options.

For the most control, you can create a frame-based animation (as discussed later in the “Frame-
Based Animation” section). This approach is useful if you must have absolute control over every detail,
which is the case if your animation needs to run in a specific way (for example, an action game or a
simulation that follows the rules of physics). The drawback is that frame-based animations take a lot of
work, because the Silverlight animation model does very little to help you.

If your animations aren’t quite as serious and you just want a way to make them look more
professional, you can use a simpler approach. One option is a key-frame animation, which divides the
animation into multiple segments and (optionally) uses key splines to add acceleration or deceleration
to different segments. This approach works well (and you’ll learn about it later in the “Key-Frame
Animation” section). But it’s tedious to implement and often requires a significant amount of XAML
markup. It makes the most sense when you’re using some sort of design tool that helps you create the
key frames and key splines—for example, by drawing on a graph, as you can in Expression Blend.

If you don’t have a design tool like Expression Blend or you don’t want to go the trouble of clicking
your way to a complex key-frame animation, you have one more choice: you can use a prebuilt
animation-easing function. In this case, you can still define your animation normally by specifying the
starting and ending property values. But in addition to these details, you add a ready-made
mathematical function that alters the progression of your animation, causing it to accelerate or
decelerate at different points. This is the technique you’ll study in the following sections.

Using an Easing Function
The best part about animation easing is that it requires much less work than other approaches such as
frame-based animation and key frames. To use animation easing, you set the EasingFunction property
of an animation object with an instance of an easing function class (a class that derives from
EasingFunctionBase). You’ll usually need to set a few properties on the easing function, and you may be
forced to play around with different settings to get the effect you want, but you’ll need no code and very
little additional XAML.

For example, consider the two animations shown here, which act on a button. When the user moves
the mouse over the button, a small snippet of code calls the growStoryboard animation into action,
stretching the button to 400 pixels. When the user moves the mouse off the button, the buttons shrinks
back to its normal size.

<Storyboard x:Name="growStoryboard">
 <DoubleAnimation
 Storyboard.TargetName="cmdGrow" Storyboard.TargetProperty="Width"
 To="400" Duration="0:0:1.5"></DoubleAnimation>
</Storyboard>

CHAPTER 10  ANIMATION BASICS

366

<Storyboard x:Name="revertStoryboard">
 <DoubleAnimation
 Storyboard.TargetName="cmdGrow" Storyboard.TargetProperty="Width"
 Duration="0:0:3"></DoubleAnimation>
</Storyboard>

Right now, the animations use linear interpolation, which means the growing and shrinking happen
in a steady, mechanical way. For a more natural effect, you can add an easing function. The following
example adds an easing function named ElasticEase. The end result is that the button springs beyond its
full size, snaps back to a value that’s somewhat less, swings back over its full size again (but a little less
than before), snaps back a bit less, and so on, repeating its bouncing pattern as the movement
diminishes. It gradually comes to rest ten oscillations later. The Oscillations property controls the
number of bounces at the end. The ElasticEase class provides one other property that’s not used in this
example: Springiness. This higher this value, the more each subsequent oscillation dies down (the
default value is 3).

<Storyboard x:Name="growStoryboard">
 <DoubleAnimation
 Storyboard.TargetName="cmdGrow" Storyboard.TargetProperty="Width"
 To="400" Duration="0:0:1.5">
 <DoubleAnimation.EasingFunction>
 <ElasticEase EasingMode="EaseOut" Oscillations="10"></ElasticEase>
 </DoubleAnimation.EasingFunction>
 </DoubleAnimation>
</Storyboard>

To really appreciate the difference between this markup and the earlier example that didn’t use an
easing function, you need to try this animation (or run the companion examples for this chapter). It’s a
remarkable change. With one line of XAML, a simple animation changes from amateurish to a slick effect
that would feel at home in a professional application.

 Note Because the EasingFunction property accepts a single easing function object, you can’t combine different
easing functions for the same animation.

Easing In and Easing Out
Before you consider the different easing functions, it’s important to understand when an easing function
is applied. Every easing function class derives from EasingFunctionBase and inherits a single property
named EasingMode. This property has three possible values: EaseIn (which means the effect is applied
to the beginning of the animation), EaseOut (which means it’s applied to the end), and EaseInOut
(which means it’s applied at both the beginning and end—the easing in takes place in the first half of the
animation, and the easing out takes place in the second half).

In the previous example, the animation in the growStoryboard animation uses EaseOut mode. Thus,
the sequence of gradually diminishing bounces takes place at the end of the animation. If you were to
graph the changing button width as the animation progresses, you’d see something like the graph shown
in Figure 10-3.

CHAPTER 10  ANIMATION BASICS

367

Figure 10-3. Oscillating to a stop using EaseOut with ElasticEase

 Note The duration of an animation doesn’t change when you apply an easing function. In the case of the
growStoryboard animation, the ElasticEase function doesn’t just change the way the animation ends—it also
makes the initial portion of the animation (when the button expands normally) run more quickly so that there’s
more time left for the oscillations at the end.

If you switch the ElasticEase function to use EaseIn mode, the bounces happen at the beginning of
the animation. The button shrinks below its starting value a bit, expands a bit over, shrinks back a little
more, and continues this pattern of gradually increasing oscillations until it finally breaks free and
expands the rest of the way. (You use the ElasticEase.Oscillations property to control the number of
bounces.) Figure 10-4 shows this very different pattern of movement.

Figure 10-4. Oscillating to a start using EaseIn with ElasticEase

Finally, EaseInOut creates a stranger effect, with oscillations that start the animation in its first half
followed by oscillations that stop it in the second half. Figure 10-5 illustrates.

CHAPTER 10  ANIMATION BASICS

368

Figure 10-5. Oscillating to a start and to a stop using EaseInOut with ElasticEase

Easing Function Classes
Silverlight has 11 easing functions, all of which are found in the familiar
System.Windows.Media.Animation namespace. Table 10-1 describes them all and lists their important
properties. Remember, every animation also provides the EasingMode property, which allows you to
control whether it affects that animation as it starts (EaseIn), ends (EaseOut), or both (EaseInOut).

Table 10-1. Easing Functions

Name Description Properties

BackEase When applied with EaseIn, pulls the
animation back before starting it. When
applied with EaseOut, this function allows
the animation to overshoot slightly and
then pulls it back.

Amplitude determines the amount of
pullback or overshoot. The default value
is 1, and you can decrease it (to any
value greater than 0) to reduce the effect
or increase it to amplify the effect.

ElasticEase When applied with EaseOut, makes the
animation overshoot its maximum and
swing back and forth, gradually slowing.
When applied with EaseIn, the animation
swings back and forth around its starting
value, gradually increasing.

Oscillations controls the number of
times the animation swings back and
forth (the default is 3), and Springiness
controls how quickly which the
oscillations increase or diminish (the
default is 3).

BounceEase Performs an effect similar to ElasticEase,
except the bounces never overshoot the
initial or final values.

Bounces controls the number of times
the animation bounces back (the
default is 2), and Bounciness
determines how quickly the bounces
increase or diminish (the default is 2).

CircleEase Accelerates (with EaseIn) or decelerates
(with EaseOut) the animation using a
circular function.

None.

CHAPTER 10  ANIMATION BASICS

369

CubicEase Accelerates (with EaseIn) or decelerates
(with EaseOut) the animation using a
function based on the cube of time. The
effect is similar to CircleEase, but the
acceleration is more gradual.

None.

QuadraticEase Accelerates (with EaseIn) or decelerates
(with EaseOut) the animation using a
function based on the square of time. The
effect is similar to CubicEase, but even
more gradual.

None.

QuarticEase Accelerates (with EaseIn) or decelerates
(with EaseOut) the animation using a
function based on time to the power of 4.
The effect is similar to CubicEase and
QuadraticEase, but the acceleration is
more pronounced.

None.

QuinticEase Accelerates (with EaseIn) or decelerates
(with EaseOut) the animation using a
function based on time to the power of 5.
The effect is similar to CubicEase,
QuadraticEase, and QuinticEase, but the
acceleration is more pronounced.

None.

SineEase Accelerates (with EaseIn) or decelerates
(with EaseOut) the animation using a
function that includes a sine calculation.
The acceleration is very gradual and closer
to linear interpolation than any of the other
easing functions.

None.

PowerEase Accelerates (with EaseIn) or decelerates
(with EaseOut) the animation using the
power function f(t) = tp. Depending on the
value you use for the exponent p, you can
duplicate the effect of the Cubic,
QuadraticEase, QuarticEase, and
QuinticEase functions.

Power, which sets the value of the
exponent in the formula. Use 2 to
duplicate QuadraticEase (f(t) = t2), 3 for
CubicEase (f(t) = t3), 4 for QuarticEase
(f(t) = t4), and 5 for QuinticEase (f(t) = t5),
or choose something different. The
default is 2.

ExponentialEase Accelerates (with EaseIn) or decelerates
(with EaseOut) the animation using the
exponential function f(t)=(e(at) – 1)/(e(a) –
1).

Exponent allows you to set the value of
the exponent (2 is the default).

CHAPTER 10  ANIMATION BASICS

370

Many of the easing functions provide similar but subtly different results. To use animation easing
successfully, you need to decide which easing function to use and how to configure it. Often, this process
requires a bit of trial-and-error experimentation. Two good resources can help you out.

First, the Silverlight documentation charts example behavior for each easing function, showing how
the animated value changes as time progresses. Reviewing these charts is a good way to develop a sense
of what the easing function does. Figure 10-6 shows the charts for the most popular easing functions.

Figure 10-6. The effect of different easing functions

Second, Microsoft provides several sample applications that you can use to play with the different
easing functions and try different property values. The most useful of these lets you observe the effect of

CHAPTER 10  ANIMATION BASICS

371

any easing function on a falling square, complete with the automatically generated XAML markup
needed to duplicate the effect. You can try it online at http://tinyurl.com/animationeasing.

Animation Performance
Often, an animated user interface requires little more than creating and configuring the right animation
and storyboard objects. But in other scenarios, particularly ones in which you have multiple animations
taking place at the same time, you may need to pay more attention to performance. Certain effects are
more likely to cause these issues—for example, those that involve video, large bitmaps, and multiple
levels of transparency typically demand more from the computer’s CPU. If they’re not implemented
carefully, they may run with notable jerkiness, or they may steal CPU time away from other applications
that are running at the same time.

Fortunately, Silverlight has a few tricks that can help you out. In the following sections, you’ll learn
to slow down the maximum frame rate and use cache bitmaps on the computer’s video card, two
techniques that can lessen the load on the CPU. You’ll also learn about a few diagnostic tricks that can
help you determine whether your animation is running at its best or facing potential problems.

Desired Frame Rate
As you’ve already learned, much of Silverlight animation uses interpolation, which modifies a property
smoothly from its starting point to its end point. For example, if you set a starting value of 1 and an
ending value of 10, your property may be rapidly changed from 1 to 1.1, 1.2, 1.3, and so on, until the
value reaches 10.

You may wonder how Silverlight determines the increments it uses when performing interpolation.
Happily, this detail is taken care of automatically. Silverlight uses whatever increment it needs to ensure
a smooth animation at the currently configured frame rate. The standard frame rate Silverlight uses is 60
frames per second. In other words, every 1/60th of a second, Silverlight calculates all animated values
and updates the corresponding properties. A rate of 60 frames per second ensures smooth, fluid
animations from start to finish. (Of course, Silverlight may not be able to deliver on its intentions,
depending on its performance and the client’s hardware.)

Silverlight makes it possible for you to decrease the frame rate. You may choose to do this if you
know your animation looks good at a lower frame rate, so you don’t want to waste the extra CPU cycles.
Or, you may find that your animation performs better on lesser-powered computers when it runs at a
slower frame rate. On the Web, many animations run at a more modest 15 frames per second.

To adjust the frame rate, you need to add the maxFramerate parameter to the entry page for your
application, as shown here:

<div id="silverlightControlHost">
 <object data="data:application/x-silverlight-2,"
 type="application/x-silverlight-2" width="100%" height="100%">
 <param name="maxFramerate" value="15" />
 ...
 </object>
 <iframe style="visibility:hidden;height:0;width:0;border:0px"></iframe>
</div>

http://tinyurl.com/animationeasing

CHAPTER 10  ANIMATION BASICS

372

 Tip For the best animation performance, use transparency sparingly, avoid animating text size (because font
smoothing and hinting slow down performance), and don’t use the windowless setting discussed in Chapter 9
(which lets HTML elements show through the Silverlight content region).

Hardware Acceleration
The holy grail of graphics programming is to offload most of the work to the graphics processing unit
(GPU) on the computer’s video card. After all, video cards are specially designed to be able to handle
certain types of graphical tasks (for example, bitmap scaling) quickly and efficiently. But when running a
typical web application, your video card is hardly working at all. Surely, it makes sense to enlist their
help and free up the much more valuable CPU.

 Note Technically, offloading work to the GPU is called hardware acceleration, because this technique speeds
up complex video tasks such as 3-D rendering in cutting-edge computer games. In a Silverlight application,
hardware acceleration can reduce the load on the CPU and it may improve the frame rate of your animations
(allowing them to run more smoothly).

Unfortunately, implementing hardware acceleration is not as easy as it seems. The first problem is
that hardware acceleration requires an extra layer of video card support on the platform that’s running
the application. For a Silverlight application running on a Windows computer, that means you’ll need a
DirectX 9–compatible video card and drivers. On Mac OS X, you’ll need an OpenGL2-compatible video
card with drivers. Furthermore, hardware acceleration works on a Mac hardware only when your
application is running in full-screen mode (as described in Chapter 3). The Windows implementation of
Silverlight doesn’t have the same limitation.

The second problem is that video cards are designed to accelerate certain specific graphic
operations (for example, shading in the tiny triangles that make up 3D scenes). Many of these
optimizations aren’t suited to Silverlight applications. In fact, Silverlight applications use just one type of
optimization: the ability of a video card to cache some visual element as a bitmap. Other types of
hardware acceleration might be possible, but they aren’t currently implemented in Silverlight.

Enabling Hardware Acceleration
Before you can even consider using hardware acceleration in a portion of your application, you
need to configure the test page to support it. You do this by adding the enableGPUAcceleration
parameter and setting it true, as shown here:<div id="silverlightControlHost">
 <object data="data:application/x-silverlight-2,"
 type="application/x-silverlight-2" width="100%" height="100%">
 <param name="enableGPUAcceleration" value="true" />
 <param name="enableCacheVisualization" value="true" />
 <param name="enableFrameRateCounter" value="true" />
 ...

CHAPTER 10  ANIMATION BASICS

373

 </object>
 <iframe style="visibility:hidden;height:0;width:0;border:0px"></iframe>
</div>

You’ll notice this example also adds two optional parameters that work in conjunction with
hardware acceleration. The enableCacheVisualization parameter uses tinting to highlight areas of your
application that aren’t taking advantage of bitmap caching on the video card. The
enableFrameRateCounter parameter displays a frame rate counter that updates itself continuously as
your animations run. Both of these parameters give you helpful diagnostic tools that allow you to
evaluate performance during testing. You’ll remove them in the final version of your application.

Setting the enableGPUAcceleration property has no immediate effect. It gives you the ability to
switch on bitmap caching for individual elements. But until you take this step, you won’t notice any
change in your application’s performance.

Bitmap Caching
Bitmap caching tells Silverlight to take a bitmap image of your content as it currently is and copy that to
the memory on your video card. From this point on, the video card can take charge of manipulating the
bitmap and refreshing the display. This process is far faster than getting the Silverlight runtime to do all
the work and communicate continuously with the video card.

However, there’s a catch. The video card is limited in what it can do with the bitmap. It supports the
following operations:

• Scaling, rotating, moving, or skewing a bitmap with a RenderTransform

• Applying a 3-D effect to a bitmap with a perspective transform (using the
Projection property)

• Changing the opacity of the bitmap (using the Opacity property)

• Clipping the bitmap with a rectangular clipping region (using the Clip property)

Thus, if you have animations that perform scaling, rotation, or fading on an element, you’ll get a
benefit from hardware acceleration. However, if you have animations that do anything else to change
the way an element looks—for example, changing its color, applying a pixel shader, and so on, you
should definitely not use bitmap caching. In this sort of situation, Silverlight will be forced to keep
passing an updated copy of the bitmap back to the video card, updating its cache several times a second.
This process will actually decrease performance.

To switch on bitmap caching, you set the CacheMode property of the corresponding element to
BitmapCache. Every element provides this property, which means you have a fine-grained ability to
choose exactly which elements use this feature.

 Note If you cache an element that contains other elements, like a layout container, all the elements will be
cached in a single bitmap. Thus, you need to be extremely careful about adding caching to something like a
Canvas—only do it if all the children are limited to the allowed transformations in the previous list.

CHAPTER 10  ANIMATION BASICS

374

To get a better understanding, it helps to play with a simple example. Figure 10-7 shows a project
that’s included with the downloadable samples for this chapter. Here, two animations are at work. The
first rotates an Image element that contains the picture of a phone booth. The second one changes the
size of a button using a ScaleTransform, endlessly expanding and shrinking it. Both animations are clear
candidates for bitmap caching.

Figure 10-7. A test page with two animated elements

Here’s the markup that switches on bitmap caching for both:

<Canvas>
 <Image x:Name="img" Source="phone_booth.jpg" Stretch="None"
 CacheMode="BitmapCache">
 <Image.RenderTransform>
 <RotateTransform x:Name="rotateTransform"></RotateTransform>
 </Image.RenderTransform>
 </Image>

 <Button x:Name="cmd" Content="I GROW and SHRINK." Canvas.Top="70" Canvas.Left="10"
 CacheMode="BitmapCache">
 <Button.RenderTransform>
 <ScaleTransform x:Name="scaleTransform"></ScaleTransform>
 </Button.RenderTransform>

CHAPTER 10  ANIMATION BASICS

375

 </Button>
</Canvas>

And here’s the markup that declares the animations:

<Storyboard x:Name="storyboard">
 <DoubleAnimation Storyboard.TargetName="rotateTransform"
 Storyboard.TargetProperty="Angle" To="360" Duration="0:0:2"
 RepeatBehavior="Forever"></DoubleAnimation>
 <DoubleAnimation Storyboard.TargetName="scaleTransform"
 Storyboard.TargetProperty="ScaleX" AutoReverse="True"
 To="20" Duration="0:0:1.8" RepeatBehavior="Forever"></DoubleAnimation>
 <DoubleAnimation Storyboard.TargetName="scaleTransform"
 Storyboard.TargetProperty="ScaleY" AutoReverse="True"
 To="20" Duration="0:0:1.8" RepeatBehavior="Forever"></DoubleAnimation>
</Storyboard>

Bitmap caching has one potential problem. Ordinarily, when you enable bitmap caching, Silverlight
takes a snapshot of the element at its current size and copies that bitmap to the video card. If you then
use a ScaleTransform to make the bitmap bigger, you’ll be enlarging the cached bitmap, not the actual
element. In the current example, that means the button will grow fuzzy and pixelated as it grows.

To solve this problem, you could switch on bitmap caching altogether (in which case the effect
disappears, because Silverlight treats buttons and other elements as fully resizable vector images).
However, another option is to explicitly indicate the size of bitmap that Silverlight should cache on the
video card, using the BitmapCache.RenderAtScale property. Ordinarily, this property is set to 1, and the
element is taken at its current size. But the markup here takes a snapshot of the button at five times its
current size:

<Button x:Name="cmd" Content="I GROW and SHRINK." Canvas.Top="70" Canvas.Left="10">
 <Button.CacheMode>
 <BitmapCache RenderAtScale="5"></BitmapCache>
 </Button.CacheMode>
 <Button.RenderTransform>
 <ScaleTransform x:Name="scaleTransform"></ScaleTransform>
 </Button.RenderTransform>
</Button>

This resolves the pixelation problem. The cached bitmap is still smaller than the maximum
animated size of the button (which reaches ten times its original size), but the video card is able to
double the size of the bitmap from five to ten times the size without any obvious scaling artifacts. There
are only two potential disadvantages to increasing the RenderAtScale property. First, you’re forcing
Silverlight to transfer more data to the video card (which slows the initial rendering step). Second, you’re
asking the video card to use more of its onboard video memory. Different video cards have different
amounts of memory, and when the available memory is used up, the video card won’t be able to cache
any more bitmaps, and Silverlight will fall back on software rendering.

Evaluating Hardware Acceleration
The easiest way to evaluate the success of your bitmap caching is to run your application both with and
without hardware acceleration. In most cases, the difference won’t be obvious until you check the CPU
usage of your computer or the frame rate of your animation. To check the CPU usage, load Task
Manager and watch the Performance tab. In an informal test with the previous example, CPU usage on a

CHAPTER 10  ANIMATION BASICS

376

single-processor computer dropped from about 50% to about 20% when caching was switched on. The
downloadable samples for this chapter include an example that allows you to switch caching on and off
using a check box. The change is performed programmatically using code like this:

img.CacheMode = new BitmapCache();

Another useful tool is Silverlight’s built-in diagnostic support. Earlier, you learned about the
enableCacheVisualization and enableFrameRateCounter parameters, which you can add to your test
page to capture some extra diagnostic information. Figure 10-8 shows an example where both
parameters are switched on and caching is turned off.

Figure 10-8. Using cache visualization and the frame rate counter

Here, the Image and Button elements are tinted red to indicate that they aren’t being cached
(thanks to enableCacheVisualization). The set of numbers in the top-left corner provides frame rate
information (thanks to enableFrameRateCounter), as follows:

• The first number shows the animation frame rate. When you are not using bitmap
caching, this number tends to fluctuate more dramatically and drop during the
most complex parts of the animation.

• The second number shows how many kilobytes of video card memory are used.
This increases when caching is turned on.

CHAPTER 10  ANIMATION BASICS

377

• The third number shows the total number of hardware-accelerated surfaces.
Remember, switching bitmap caching on for one element will usually affect
several surfaces—even in the case of the button, there is a TextBlock with content
inside.

• The fourth number shows the number of implicit hardware-accelerated surfaces.
In some situations, switching caching on for one element may necessitate turning
it on for another (for example, if the second element overlaps the first one). In this
case, Silverlight will automatically perform caching for the additional element,
which is known as an implicit surface.

The bottom line is that you can quickly size up an example like this and determine that bitmap
caching makes sense. In this scenario, it both reduces the CPU load and improves the frame rate.

Independent Animations
When the architects of Silverlight built Silverlight 5, they redesigned a portion of the low-level graphics
system. Mostly, their work was part of the effort to introduce 3D rendering, which you’ll learn about in
Chapter 13. However, the change also allows for another benefit, called independent animations.

Ordinarily, animations run on Silverlight’s user interface thread. Independent animations are
different—they run on a separate thread, which is called the composition thread. In many situations, this
distinction isn’t important. But if you have an application that’s performing CPU-intensive work on the
user-interface thread, it can affect your animations, causing them to become jerky or stop altogether.

Often, this is a sign of a poorly designed application. For example, it might suggest that you should
move your time-consuming work to a background thread (using the BackgroundWorker class described
in Chapter 16) so that your user interface thread can do its job. After all, it’s never good to lock up the
user interface thread, because it also needs to process user actions, like mouse clicks or key presses.
However, in some situations, glitchy animations are almost unavoidable. For example, imagine you’ve
created an “in-progress” animation that runs while you compute or download data (possibly using the
BackgroundWorker). Once you have the data, you add it into a DataGrid in the window. However, your
data is so large that this operation briefly locks up the user interface thread, causing your animation to
pause. Using an independent animation solves this problem and removes this pause.

Running an animation on the composition thread is simple in theory, although there are numerous
subtle details that can thwart it. Most notably, you need to meet all the requirements of hardware
acceleration:

1. Enable hardware acceleration with the enableGpuAcceleration parameter.

2. Set the BitmapCache property on the element you’re animating.

3. Make sure you aren’t using any unsupported drawing features (like pixel
shaders).

If you meet these requirements, the animations on your element will automatically be promoted to
independent animations.

To test that your animation is actually running on the composition thread, find a way to tie up your
user interface thread. In the previous example, the button is given an event handler so that every time
it’s clicked, the user interface thread is put to sleep for five seconds:

private void cmd_Click(object sender, RoutedEventArgs e)
{
 Thread.Sleep(TimeSpan.FromSeconds(5));
}

CHAPTER 10  ANIMATION BASICS

378

If you aren’t using independent animations, this action will freeze the animations that are currently
taking place, for five seconds. If you are using independent animations, the animations will carry on
unaffected.

The Last Word
In this chapter, you explored Silverlight’s animation support in detail. You learned about the basic
animation classes and the concept of linear interpolation. You also saw how to control the playback of
one or more animations with a storyboard and how to create more natural effects with animation
easing.

Now that you’ve mastered the basics, you can spend more time with the art of animation—deciding
what properties to animate and how to modify them to get your desired effect. In the next chapter, you’ll
learn how to create a variety of effects by applying animations to transforms, brushes, and pixel shaders.
You’ll also learn to create key frame animations that contain multiple segments and frame-based
animations that break free from the standard property-based animation model. Finally, you’ll see how
you can create and manage storyboards with code rather than XAML.

C H A P T E R 11

379

Advanced Animation

You now know the fundamentals of Silverlight’s property animation system—how animations are
defined, how they’re connected to elements, how you can control playback with a storyboard, and how
you can incorporate animation easing to create more realistic effects. Now is a good time to take a closer
look at the practical animation techniques you can use in an application.

In this chapter, you’ll begin by considering what you should animate to get the results you want.
You’ll see examples that animate transforms, brushes, and pixel shaders. Next, you’ll learn how key
frame–based animations allow you to shape the acceleration and deceleration of your animations, in a
way that’s similar to animation easing but far more flexible. Then, you’ll examine two code-powered
animation examples—first, a bomb-dropping game and, second, an animated page transition. Both
examples show how you can integrate animations into the overall flow of an application, by creating and
managing them with code. Lastly, you’ll learn how frame-based animation lets you break free of the
animation model altogether to create complex effects such as realistic collisions.

Animation Types Revisited
The first challenge in creating any animation is choosing the right property to animate. Making the leap
between the result you want (for example, an element moving across the page) and the property you
need to use (in this case, Canvas.Left and Canvas.Top) isn’t always intuitive. Here are a few guidelines:

• If you want to use an animation to make an element appear or disappear, don’t
use the Visibility property (which allows you to switch only between completely
visible or completely invisible). Instead, use the Opacity property to fade it in or
out.

• If you want to animate the position of an element, consider using a Canvas. It
provides the most direct properties (Canvas.Left and Canvas.Top) and requires
the least overhead.

• The most common properties to animate are transforms, which you first explored
in Chapter 8. You can use them to move or flip an element (TranslateTransform),
rotate it (RotateTransform), resize or stretch it (ScaleTransform), and more. Used
carefully, transforms can sometimes allow you to avoid hard-coding sizes and
positions in your animation. TranslateTransform also lets you move elements in
layout containers such as the Grid in much the same way you can position them in
the Canvas.

CHAPTER 11  ADVANCED ANIMATION

380

• One good way to change the surface of an element through an animation is to
modify the properties of the brush. You can use a ColorAnimation to change the
color or another animation object to transform a property of a more complex
brush, like the offset in a gradient.

The following examples demonstrate how to animate transforms and brushes and how to use a few
more animation types. You’ll also learn how to create multi-segmented animations with key frames.

Animating Transforms
Transforms offer one of the most powerful ways to customize an element. When you use transforms, you
don’t simply change the bounds of an element. Instead, the element’s entire visual appearance is
moved, flipped, skewed, stretched, enlarged, shrunk, or rotated. For example, if you animate the size of a
button using a ScaleTransform, the entire button is resized, including its border and its inner content.
The effect is much more impressive than if you animate its Width and Height or the FontSize property
that affects its text.

To use a transform in animation, the first step is to define the transform. (An animation can change
an existing transform but not create a new one.) For example, imagine you want to allow a button to
rotate. This requires the RotateTransform:

<Button Content="A Button">
 <Button.RenderTransform>
 <RotateTransform x:Name="rotateTransform"></RotateTransform>
 </Button.RenderTransform>
</Button>

 Tip You can use transforms in combination. It’s easy—use a TransformGroup object to set the
RenderTransform property. You can nest as many transforms as you need inside the transform group. You’ll see an
example in the bomb game that’s shown later in this chapter.

Here’s an animation that makes a button rotate when the mouse moves over it. It acts on the
Button.RotateTransform object and uses the target property Angle. The fact that the RenderTransform
property can hold a variety of different transform objects, each with different properties, doesn’t cause a
problem. As long as you’re using a transform that has an Angle property, this animation will work.

<Storyboard x:Name="rotateStoryboard">
 <DoubleAnimation Storyboard.TargetName="rotateTransform"
 Storyboard.TargetProperty="Angle"
 To="360" Duration="0:0:0.8" RepeatBehavior="Forever"></DoubleAnimation>
</Storyboard>

If you place this animation in the page’s Resources collection, you can trigger it when the user
moves the mouse over the button:

private void cmd_MouseEnter(object sender, MouseEventArgs e)
{
 rotateStoryboard.Begin();
}

CHAPTER 11  ADVANCED ANIMATION

381

The button rotates one revolution every 0.8 seconds and continues rotating perpetually. While the
button rotates, it’s completely usable—for example, you can click it and handle the Click event.

To make sure the button rotates around its center point (not the upper-left corner), you need to set
the RenderTransformOrigin property as shown here:

<Button Content="One" Margin="5" RenderTransformOrigin="0.5,0.5"
 MouseEnter="cmd_MouseEnter">
 <Button.RenderTransform>
 <RotateTransform x:Name="rotateTransform"></RotateTransform>
 </Button.RenderTransform>
</Button>

Remember, the RenderTransformOrigin property uses relative units from 0 to 1, so 0.5 represents a
midpoint.

To stop the rotation, you can react to the MouseLeave event. You could stop the storyboard that
performs the rotation, but doing so would cause the button to jump back to its original orientation in
one step. A better approach is to start a second animation that replaces the first. This animation leaves
out the From property, which allows it to seamlessly rotate the button from its current angle to its
original orientation in a snappy 0.2 seconds:

<Storyboard x:Name="unrotateStoryboard">
 <DoubleAnimation Storyboard.TargetName="rotateTransform"
 Storyboard.TargetProperty="Angle" To="0" Duration="0:0:0.2"></DoubleAnimation>
</Storyboard>

Here’s the event handler:

private void cmd_MouseLeave(object sender, MouseEventArgs e)
{
 unrotateStoryboard.Begin();
}

With a little more work, you can make these two animations and the two event handlers work for a
whole stack of rotatable buttons, as shown in Figure 11-1. The trick is to handle the events of all the
buttons with the same code, and dynamically assign the target of the storyboard to the current button
using the Storyboard.SetTarget() method:

private void cmd_MouseEnter(object sender, MouseEventArgs e)
{
 rotateStoryboard.Stop();
 Storyboard.SetTarget(rotateStoryboard, ((Button)sender).RenderTransform);
 rotateStoryboard.Begin();
}

private void cmd_MouseLeave(object sender, MouseEventArgs e)
{
 unrotateStoryboard.Stop();
 Storyboard.SetTarget(unrotateStoryboard, ((Button)sender).RenderTransform);
 unrotateStoryboard.Begin();
}

CHAPTER 11  ADVANCED ANIMATION

382

Figure 11-1. Animating a render transform

This approach has two limitations. First, because the code reuses the same storyboards for all the
buttons, there’s no way to have two buttons rotating at once. For example, if you quickly slide the mouse
over several buttons, the buttons you leave first may not rotate all the way back to their initial position,
because the storyboard is commandeered by another button. If this behavior is a problem, you can code
around it by creating the storyboards you need dynamically in code. You’ll see how to implement this
technique later in this chapter, when you consider the bomb game.

The other shortcoming in this example is the fact that you need a fair bit of markup to define the
margins, event handlers, and transforms for all the buttons. You can streamline this markup by using
styles to apply the same settings to various buttons (see Chapter 14) or by configuring the buttons
programmatically.

Animation Perspective Projections
Just as you can animate transforms, you can also animate perspective projections—namely, the
PlaneProjection class you studied in Chapter 8, which allows you to simulate a flat, tilted 3-D surface.
For example, imagine you have a group of elements wrapped in a Border control and that border uses a
PlaneProjection, as shown here:

<Border CornerRadius="2" Padding="10" Height="140" Width="170"
 BorderBrush="SlateGray" BorderThickness="4">
 <Border.Projection>
 <PlaneProjection x:Name="projection"></PlaneProjection>

CHAPTER 11  ADVANCED ANIMATION

383

 </Border.Projection>
 ...
</Border>

Currently, the PlaneProjection in this example doesn’t do anything. To change the way the elements
are rendered, you need to modify the RotateX, RotateY, and RotateZ properties of the PlaneProjection
object, which turns the 2-D surface of the border around the appropriate axis. You saw how to pull this
off in Chapter 8, but now you’ll use an animation to change these properties gradually and continuously.

Here’s an animation that modifies all three rotation properties at different speeds, which gives the
dizzying impression that the border is tumbling through 3-D space:

<Storyboard x:Name="spinStoryboard">
 <DoubleAnimation Storyboard.TargetName="projection" RepeatBehavior="Forever"
 Storyboard.TargetProperty="RotationY" From="0" To="360" Duration="0:0:3">
 </DoubleAnimation>
 <DoubleAnimation Storyboard.TargetName="projection" RepeatBehavior="Forever"
 Storyboard.TargetProperty="RotationZ" From="0" To="360" Duration="0:0:30">
 </DoubleAnimation>
 <DoubleAnimation Storyboard.TargetName="projection" RepeatBehavior="Forever"
 Storyboard.TargetProperty="RotationX" From="0" To="360" Duration="0:0:40">
 </DoubleAnimation>
</Storyboard>

Figure 11-2 shows the rotating border captured at two different points in its animation.

Figure 11-2. Spinning an element in 3-D

CHAPTER 11  ADVANCED ANIMATION

384

Although this technique may seem like gratuitous eye candy, a little 3-D rotation can go a long way.
It’s particularly useful when you’re implementing transitions between different content. For example,
you can create a panel that flips over and reveals different content on its back side. To do so, you take
one panel and rotate it around the x- or y-axis from 0 to 90 degrees (at which point it appears to
disappear because it’s edge-on). You then continue with a second animation that rotates a different
panel from -90 degrees to 0 degrees, exposing the new content.

Animating Brushes
Animating brushes is another common technique in Silverlight animations, and it’s just as easy as
animating transforms. Again, the technique is to dig into the particular subproperty you want to change,
using the appropriate animation type.

Figure 11-3 shows an example that tweaks a RadialGradientBrush you studied in Chapter 9. As the
animation runs, the center point of the radial gradient drifts along the ellipse, giving it a three-
dimensional effect. At the same time, the outer color of the gradient changes from blue to black.

Figure 11-3. Altering a radial gradient

To perform this animation, you need to use two animation types that you haven’t considered yet.
ColorAnimation blends gradually between two colors, creating a subtle color-shift effect.
PointAnimation allows you to move a point from one location to another. (It’s essentially the same as if
you modified both the x coordinate and the y coordinate using a separate DoubleAnimation, with linear
interpolation.) You can use a PointAnimation to deform a figure that you’ve constructed out of points or
to change the location of the radial gradient’s center point, as in this example.

CHAPTER 11  ADVANCED ANIMATION

385

Here’s the markup that defines the ellipse and its brush:

<Ellipse x:Name="ellipse" Margin="5" Grid.Row="1" Stretch="Uniform">
 <Ellipse.Fill>
 <RadialGradientBrush x:Name="ellipseBrush"
 RadiusX="1" RadiusY="1" GradientOrigin="0.7,0.3">
 <GradientStop x:Name="ellipseBrushStop" Color="White"
 Offset="0"></GradientStop>
 <GradientStop Color="Blue" Offset="1"></GradientStop>
 </RadialGradientBrush>
 </Ellipse.Fill>
</Ellipse>

And here are the two animations that move the center point and change the second color in the
gradient:

<Storyboard x:Name="ellipseStoryboard">
 <PointAnimation Storyboard.TargetName="ellipseBrush"
 Storyboard.TargetProperty="GradientOrigin"
 From="0.7,0.3" To="0.3,0.7" Duration="0:0:10" AutoReverse="True"
 RepeatBehavior="Forever">
 </PointAnimation>
 <ColorAnimation Storyboard.TargetName="ellipseBrushStop"
 Storyboard.TargetProperty="Color"
 To="Black" Duration="0:0:10" AutoReverse="True"
 RepeatBehavior="Forever">
 </ColorAnimation>
</Storyboard>

You can create a huge range of hypnotic effects by varying the colors and offsets in
LinearGradientBrush and RadialGradientBrush. And if that’s not enough, gradient brushes also have
their own RelativeTransform property that you can use to rotate, scale, stretch, and skew them. (The
WPF team has a fun tool called Gradient Obsession for building gradient-based animations, most of
which will work with Silverlight with some adjustment. You can find it at http://tinyurl.com/yc5fjpm.)

Animating Pixel Shaders
In Chapter 9, you learned about pixel shaders—low-level routines that can apply bitmap-style effects
such as blurs, glows, and warps to any element. On their own, pixel shaders are an interesting but only
occasionally useful tool. But combined with animation, they become much more versatile. You can use
them to design eye-catching transitions (for example, by blurring one control out, hiding it, and then
blurring another one in). Or, you can use them to create impressive user-interactivity effects (for
example, by increasing the glow on a button when the user moves the mouse over it). Best of all, you can
animate the properties of a pixel shader just as easily as you animate anything else.

Figure 11-4 shows a page that’s based on the rotating button example shown earlier. It contains a
sequence of buttons, and when the user moves the mouse over one of the buttons, an animation is
attached and started. The difference is that the animation in this example doesn’t rotate the button—
instead, it reduces the blur radius to 0. The result is that as you move the mouse, the nearest control
slides sharply and briskly into focus.

http://tinyurl.com/yc5fjpm

CHAPTER 11  ADVANCED ANIMATION

386

Figure 11-4. Animating a pixel shader

The code is the same as in the rotating button example. You need to give each button a BlurEffect
instead of a RotateTransform:

<Button Content="One" Margin="10"
 MouseEnter="cmd_MouseEnter" MouseLeave="cmd_MouseLeave">
 <Button.Effect>
 <BlurEffect Radius="10"></BlurEffect>
 </Button.Effect>
</Button>

You also need to change the animation accordingly:

<Storyboard x:Name="blurStoryboard">
 <DoubleAnimation Storyboard.TargetProperty="Radius"
 To="0" Duration="0:0:0.4"></DoubleAnimation>
</Storyboard>
<Storyboard x:Name="unblurStoryboard">
 <DoubleAnimation Storyboard.TargetProperty="Radius" To="10"
 Duration="0:0:0.2"></DoubleAnimation>
</Storyboard>

In this example, the Storyboard.TargetElement property isn’t set in XAML because it’s set in code,
when the MouseEnter or MouseLeave event fires. This is exactly the same technique you saw in the
rotating button example.

CHAPTER 11  ADVANCED ANIMATION

387

You could use the same approach in reverse to highlight a button. For example, you could use a
pixel shader that applies a glow effect to highlight the moused-over button. And if you’re interested in
using pixel shaders to animate page transitions, check out the WPF Shader Effects Library (which also
works with Silverlight) at http://wpffx.codeplex.com. It includes a range of eye-popping pixel shaders
beyond Silverlight’s standard plain BlurEffect and DropShadowEffect, as well as a set of helper classes
for performing transitions with them.

Key-Frame Animation
All the animations you’ve seen so far have used interpolation to move from a starting point to an ending
point. But what if you need to create an animation that has multiple segments and moves less regularly?
For example, you may want to create an animation that quickly slides an element partially into view,
then moves it more slowly, and then speeds up again to move it the rest of the way into place. Animation
easing won’t help—it’s intended to create pleasing, natural motion, not provide a specifically tuned
animation that changes speed multiple times or at precise points. You could achieve this effect by
creating a sequence of two animations and using the BeginTime property to start the second animation
after the first one. However, there’s an easier approach: you can use a key-frame animation.

A key-frame animation is an animation that’s made up of many short segments. Each segment
represents an initial, final, or intermediary value in the animation. When you run the animation, it
moves smoothly from one value to another.

For example, consider the Point animation that allowed you to move the center point of a
RadialGradientBrush from one spot to another:

<PointAnimation Storyboard.TargetName="ellipseBrush"
 Storyboard.TargetProperty="GradientOrigin"
 From="0.7,0.3" To="0.3,0.7" Duration="0:0:10" AutoReverse="True"
 RepeatBehavior="Forever">
</PointAnimation>

You can replace this PointAnimation object with an equivalent PointAnimationUsingKeyFrames
object, as shown here:

<PointAnimationUsingKeyFrames Storyboard.TargetName="ellipseBrush"
 Storyboard.TargetProperty="GradientOrigin"
 AutoReverse="True" RepeatBehavior="Forever" >
 <LinearPointKeyFrame Value="0.7,0.3" KeyTime="0:0:0"></LinearPointKeyFrame>
 <LinearPointKeyFrame Value="0.3,0.7" KeyTime="0:0:10"></LinearPointKeyFrame>
</PointAnimationUsingKeyFrames>

This animation includes two key frames. The first sets the Point value when the animation starts. (If
you want to use the current value that’s set in the RadialGradientBrush, you can leave out this key
frame.) The second key frame defines the end value, which is reached after 10 seconds. The
PointAnimationUsingKeyFrames object performs linear interpolation to move smoothly from the first
key-frame value to the second, just as the PointAnimation does with the From and To values.

 Note Every key-frame animation uses its own key-frame animation object (like LinearPointKeyFrame). For the
most part, these classes are the same—they include a Value property that stores the target value and a KeyTime

http://wpffx.codeplex.com

CHAPTER 11  ADVANCED ANIMATION

388

property that indicates when the frame reaches the target value. The only difference is the data type of the Value
property. In a LinearPointKeyFrame it’s a Point, in a DoubleKeyFrame it’s a double, and so on.

You can create a more interesting example using a series of key frames. The following animation
walks the center point through a series of positions that are reached at different times. The speed at
which the center point moves changes depending on the duration between key frames and how much
distance needs to be covered:

<PointAnimationUsingKeyFrames Storyboard.TargetName="ellipseBrush"
 Storyboard.TargetProperty="GradientOrigin"
 RepeatBehavior="Forever" >
 <LinearPointKeyFrame Value="0.7,0.3" KeyTime="0:0:0"></LinearPointKeyFrame>
 <LinearPointKeyFrame Value="0.3,0.7" KeyTime="0:0:5"></LinearPointKeyFrame>
 <LinearPointKeyFrame Value="0.5,0.9" KeyTime="0:0:8"></LinearPointKeyFrame>
 <LinearPointKeyFrame Value="0.9,0.6" KeyTime="0:0:10"></LinearPointKeyFrame>
 <LinearPointKeyFrame Value="0.8,0.2" KeyTime="0:0:12"></LinearPointKeyFrame>
 <LinearPointKeyFrame Value="0.7,0.3" KeyTime="0:0:14"></LinearPointKeyFrame>
</PointAnimationUsingKeyFrames>

This animation isn’t reversible, but it does repeat. To make sure there’s no jump between the final
value of one iteration and the starting value of the next iteration, the animation ends at the same center
point where it began.

Discrete Key Frames
The key frame animation you saw in the previous example uses linear key frames. As a result, it
transitions smoothly between the key-frame values. Another option is to use discrete key frames. In this
case, no interpolation is performed. When the key time is reached, the property changes abruptly to the
new value.

Linear key-frame classes are named in the form LinearDataTypeKeyFrame. Discrete key-frame
classes are named in the form DiscreteDataTypeKeyFrame. Here’s a revised version of the
RadialGradientBrush example that uses discrete key frames:

<PointAnimationUsingKeyFrames Storyboard.TargetName="ellipseBrush"
 Storyboard.TargetProperty="GradientOrigin"
 RepeatBehavior="Forever" >
 <DiscretePointKeyFrame Value="0.7,0.3" KeyTime="0:0:0"></DiscretePointKeyFrame>
 <DiscretePointKeyFrame Value="0.3,0.7" KeyTime="0:0:5"></DiscretePointKeyFrame>
 <DiscretePointKeyFrame Value="0.5,0.9" KeyTime="0:0:8"></DiscretePointKeyFrame>
 <DiscretePointKeyFrame Value="0.9,0.6" KeyTime="0:0:10"></DiscretePointKeyFrame>
 <DiscretePointKeyFrame Value="0.8,0.2" KeyTime="0:0:12"></DiscretePointKeyFrame>
 <DiscretePointKeyFrame Value="0.7,0.3" KeyTime="0:0:14"></DiscretePointKeyFrame>
</PointAnimationUsingKeyFrames>

When you run this animation, the center point jumps from one position to the next at the
appropriate time. It’s a dramatic (but jerky) effect.

All key-frame animation classes support discrete key frames, but only some support linear key
frames. It all depends on the data type. The data types that support linear key frames are the same ones
that support linear interpolation and provide a DataTypeAnimation class. These are Point, Color, and

CHAPTER 11  ADVANCED ANIMATION

389

double. The only other animatable data type is object, which doesn’t support linear interpolation.
(Essentially, “animating” an object means replacing it with completely new values at specific times in a
discrete key-frame animation.)

 Tip You can combine both types of key frame—linear and discrete—in the same key-frame animation, as long
as they’re both supported for that data type.

Easing Key Frames
Earlier in this chapter, you saw how easing functions can improve ordinary animations. Even though
key-frame animations are split into multiple segments, each of these segments uses ordinary, boring
linear interpolation.

If this isn’t what you want, you can use animation easing to add acceleration or deceleration to
individual key frames. However, the ordinary linear key frame and discrete key-frame classes don’t
support this feature. Instead, you need to use an easing key frame, such as EasingDoubleKeyFrame,
EasingColorKeyFrame, or EasingPointKeyFrame. Each one works the same way as its linear counterpart
but exposes an additional EasingFunction property.

Here’s an example that uses animation easing to apply an accelerating effect to the first five seconds
of the key-frame animation:

<PointAnimationUsingKeyFrames Storyboard.TargetName="ellipseBrush"
 Storyboard.TargetProperty="GradientOrigin"
 RepeatBehavior="Forever" >
 <LinearPointKeyFrame Value="0.7,0.3" KeyTime="0:0:0"></LinearPointKeyFrame>
 <EasingPointKeyFrame Value="0.3,0.7" KeyTime="0:0:5">
 <EasingPointKeyFrame.EasingFunction>
 <CircleEase></CircleEase>
 </EasingPointKeyFrame.EasingFunction>
 </EasingPointKeyFrame>
 <LinearPointKeyFrame Value="0.5,0.9" KeyTime="0:0:8"></LinearPointKeyFrame>
 <LinearPointKeyFrame Value="0.9,0.6" KeyTime="0:0:10"></LinearPointKeyFrame>
 <LinearPointKeyFrame Value="0.8,0.2" KeyTime="0:0:12"></LinearPointKeyFrame>
 <LinearPointKeyFrame Value="0.7,0.3" KeyTime="0:0:14"></LinearPointKeyFrame>
</PointAnimationUsingKeyFrames>

The combination of key frames and animation easing is a convenient way to model complex
animations, but it still may not give you the control you need. Instead of using animation easing, you can
create a mathematical formula that dictates the progression of your animation. This is the technique
you’ll learn in the next section.

Spline Key Frames
There’s one more type of key frame: a spline key frame. Every class that supports linear key frames also
supports spline key frames, and they’re named in the form SplineDataTypeKeyFrame.

Like linear key frames, spline key frames use interpolation to move smoothly from one key value to
another. The difference is that every spline key frame sports a KeySpline property. Using the KeySpline

CHAPTER 11  ADVANCED ANIMATION

390

property, you define a cubic Bézier curve that influences the way interpolation is performed. Although
it’s tricky to get the effect you want (at least without an advanced design tool to help you), this technique
gives you the ability to create more seamless acceleration and deceleration and more lifelike motion.

As you may remember from Chapter 8, a Bézier curve is defined by a start point, an end point, and
two control points. In the case of a key spline, the start point is always (0,0), and the end point is always
(1,1). You supply the two control points. The curve that you create describes the relationship between
time (in the x-axis) and the animated value (in the y-axis).

Here’s an example that demonstrates a key-spline animation by comparing the motion of two
ellipses across a Canvas. The first ellipse uses a DoubleAnimation to move slowly and evenly across the
page. The second ellipse uses a DoubleAnimationUsingKeyFrames with two SplineDoubleKeyFrame
objects. It reaches the destination at the same times (after 10 seconds), but it accelerates and decelerates
during its travel, pulling ahead and dropping behind the other ellipse:

<DoubleAnimation Storyboard.TargetName="ellipse1"
 Storyboard.TargetProperty="(Canvas.Left)"
 To="500" Duration="0:0:10">
</DoubleAnimation>

<DoubleAnimationUsingKeyFrames Storyboard.TargetName="ellipse2"
 Storyboard.TargetProperty="(Canvas.Left)" >
 <SplineDoubleKeyFrame KeyTime="0:0:5" Value="250"
 KeySpline="0.25,0 0.5,0.7"></SplineDoubleKeyFrame>
 <SplineDoubleKeyFrame KeyTime="0:0:10" Value="500"
 KeySpline="0.25,0.8 0.2,0.4"></SplineDoubleKeyFrame>
</DoubleAnimationUsingKeyFrames>

The fastest acceleration occurs shortly after the five-second mark, when the second
SplineDoubleKeyFrame kicks in. Its first control point matches a relatively large y-axis value, which
represents the animation progress (0.8) against a correspondingly smaller x-axis value, which represents
the time. As a result, the ellipse increases its speed over a small distance before slowing down again.

Figure 11-5 shows a graphical depiction of the two curves that control the movement of the ellipse.
To interpret these curves, remember that they chart the progress of the animation from top to bottom.
Looking at the first curve, you can see that it follows a fairly even progress downward, with a short pause
at the beginning and a gradual leveling off at the end. However, the second curve plummets downward
quickly, achieving the bulk of its progress, and then levels off for the remainder of the animation.

CHAPTER 11  ADVANCED ANIMATION

391

Figure 11-5. Charting the progress of a key-spline animation

Animations in Code
Sometimes, you’ll need to create every detail of an animation programmatically in code. In fact, this
scenario is fairly common. It occurs any time you have multiple animations to deal with, and you don’t
know in advance how many animations there will be or how they should be configured. (This is the case
with the simple bomb-dropping game you’ll see in this section.) It also occurs if you want to use the
same animation in different pages or you simply want the flexibility to separate all the animation-related
details from your markup for easier reuse. (This is the case with animation that’s used for page
transitions later in this chapter.)

It isn’t difficult to create, configure, and launch an animation programmatically. You just need to
create the animation and storyboard objects, add the animations to the storyboard, and start the
storyboard. You can perform any cleanup work after your animation ends by reacting to the
Storyboard.Completed event.

In the following example, you’ll see how to create the game shown in Figure 11-6. Here, a series of
bombs are dropped at ever-increasing speeds. The player must click each bomb to defuse it. When a set
limit is reached—by default, five dropped bombs—the game ends.

CHAPTER 11  ADVANCED ANIMATION

392

Figure 11-6. Catching bombs

In this example, every dropped bomb has its own storyboard with two animations. The first
animation drops the bomb (by animating the Canvas.Top property), and the second animation rotates
the bomb slightly back and forth, giving it a realistic wiggle effect. If the user clicks a bomb, these
animations are halted, and two more take place to send the bomb careening harmlessly off the side of
the Canvas. Finally, every time an animation ends, the application checks to see whether it represents a
bomb that fell down or one that was saved and updates the count accordingly.

In the following sections, you’ll see how to create each part of this example.

The Main Page
The main page in the BombDropper example is straightforward. It contains a two-column Grid. On the
left side is a Border element, which contains the Canvas that represents the game surface:

<Border Grid.Column="0" BorderBrush="SteelBlue" BorderThickness="1" Margin="5">
 <Grid>
 <Canvas x:Name="canvasBackground" SizeChanged="canvasBackground_SizeChanged"
 MinWidth="50">
 <Canvas.Background>
 <RadialGradientBrush>
 <GradientStop Color="AliceBlue" Offset="0"></GradientStop>
 <GradientStop Color="White" Offset="0.7"></GradientStop>
 </RadialGradientBrush>

CHAPTER 11  ADVANCED ANIMATION

393

 </Canvas.Background>
 </Canvas>
 </Grid>
</Border>

When the Canvas is sized for the first time or resized (when the user changes the size of the browser
window), the following code runs and sets the clipping region:

private void canvasBackground_SizeChanged(object sender, SizeChangedEventArgs e)
{
 // Set the clipping region to match the current display region of the Canvas.
 RectangleGeometry rect = new RectangleGeometry();
 rect.Rect = new Rect(0, 0,
 canvasBackground.ActualWidth, canvasBackground.ActualHeight);
 canvasBackground.Clip = rect;
}

This is required because otherwise the Canvas draws its children even if they lie outside its display
area. In the bomb-dropping game, this would cause the bombs to fly out of the box that delineates the
Canvas.

 Note Because the user control is defined without explicit sizes, it’s free to resize itself to match the browser
window. The game logic uses the current window dimensions without attempting to compensate for them in any
way. Thus, if you have a very wide window, bombs are spread across a wide area, making the game more
difficult. Similarly, if you have a very tall window, bombs fall faster so they can complete their trajectory in the
same interval of time. You could get around this issue by using a fixed-size region, which you could then center in
the middle of your user control. However, a resizable window makes the example more adaptable and more
interesting.

On the right side of the main window is a panel that shows the game statistics, the current bomb-
dropped and bomb-saved count, and a button for starting the game:

<Border Grid.Column="1" BorderBrush="SteelBlue" BorderThickness="1" Margin="5">
 <Border.Background>
 <RadialGradientBrush GradientOrigin="1,0.7" Center="1,0.7"
 RadiusX="1" RadiusY="1">
 <GradientStop Color="Orange" Offset="0"></GradientStop>
 <GradientStop Color="White" Offset="1"></GradientStop>
 </RadialGradientBrush>
 </Border.Background>

 <StackPanel Margin="15" VerticalAlignment="Center" HorizontalAlignment="Center">
 <bomb:Title></bomb:Title>
 <TextBlock x:Name="lblRate" Margin="0,30,0,0" TextWrapping="Wrap"
 FontFamily="Georgia" FontSize="14"></TextBlock>
 <TextBlock x:Name="lblSpeed" Margin="0,30" TextWrapping="Wrap"
 FontFamily="Georgia" FontSize="14"></TextBlock>

CHAPTER 11  ADVANCED ANIMATION

394

 <TextBlock x:Name="lblStatus" TextWrapping="Wrap"
 FontFamily="Georgia" FontSize="20">No bombs have dropped.</TextBlock>
 <Button x:Name="cmdStart" Padding="5" Margin="0,30" Width="80"
 Content="Start Game" Click="cmdStart_Click"></Button>
 </StackPanel>
</Border>

You’ll notice that the right-side column contains one unusual ingredient: an element named Title.
This is a custom user control that shows the BombDropper title in fiery orange letters. Technically, it’s a
piece of vector art. It was created in Microsoft Word using the WordArt feature, saved as an XPS file, and
then exported to XAML using the technique described in Chapter 8. Although you could insert the
markup for the BombDropper title directly into the main page, defining it as a separate user control
allows you to separate the title markup from the rest of the user interface.

To use the Title user control, you need to map your project namespace to an XML namespace,
thereby making it available in your page (as described in Chapter 2). Assuming the project is named
BombDropper, here’s what you need to add:

<UserControl x:Class="BombDropper.Page"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:bomb="clr-namespace:BombDropper;assembly=BombDropper">

Now you can use the XML prefix “bomb” to insert any custom controls from your project, including
user controls:

<bomb:Title></bomb:Title>

The Bomb User Control
The next step is to create the graphical image of the bomb. Although you can use a static image (as long
as it has a transparent background), it’s always better to deal with more flexible Silverlight shapes. By
using shapes, you gain the ability to resize the bomb without introducing distortion, and you can
animate or alter individual parts of the drawing. The bomb shown in this example is drawn straight from
Microsoft Word’s online clip-art collection. The bomb was converted to XAML by inserting it into a Word
document and then saving that document as an XPS file, a process described in Chapter 8. The full
XAML, which uses a combination of Path elements, isn’t shown here. But you can see it by downloading
the BombDropper game along with the samples for this chapter.

The XAML for the Bomb class was then simplified slightly (by removing the unnecessary extra
Canvas elements around it and the transforms for scaling it). The XAML was then inserted into a new
user control named Bomb. This way, the main page can show a bomb by creating the Bomb user control
and adding it to a layout container (like a Canvas).

Placing the graphic in a separate user control makes it easy to instantiate multiple copies of that
graphic in your user interface. It also lets you encapsulate related functionality by adding to the user
control’s code. In the bomb-dropping example, only one detail is added to the code—a Boolean
property that tracks whether the bomb is currently falling:

public partial class Bomb: UserControl
{
 public Bomb()
 {
 InitializeComponent();
 }

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 11  ADVANCED ANIMATION

395

 public bool IsFalling
 {
 get;
 set;
 }
}

The markup for the bomb includes a RotateTransform, which the animation code can use to give
the bomb a wiggling effect as it falls. Although you could create and add this RotateTransform
programmatically, it makes more sense to define it in the XAML file for the bomb:

<UserControl x:Class="BombDrop.Bomb"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 >
 <UserControl.RenderTransform>
 <TransformGroup>
 <RotateTransform Angle="20" CenterX="50" CenterY="50"></RotateTransform>
 <ScaleTransform ScaleX="0.5" ScaleY="0.5"></ScaleTransform>
 </TransformGroup>
 </UserControl.RenderTransform>

 <Canvas>
 <!-- The Path elements that draw the bomb graphic are defined here. -->
 </Canvas>
</UserControl>

With this code in place, you could insert a bomb into your window using a <bomb:Bomb> element,
much as the main window inserts the Title user control (as described in the previous section). However,
in this case it makes far more sense to create the bombs programmatically.

Dropping the Bombs
To drop the bombs, the application uses DispatcherTimer, a timer that plays nicely with Silverlight user
interface because it triggers events on the user-interface thread (saving you the effort of marshalling or
locking, two multithreaded programming techniques that are described in Chapter 16). You choose a
time interval, and then the DispatcherTimer fires a periodic Tick event at that interval.

private DispatcherTimer bombTimer = new DispatcherTimer();

public Page()
{
 InitializeComponent();
 bombTimer.Tick += bombTimer_Tick;
}

In the BombDropper game, the timer initially fires every 1.3 seconds. When the user clicks the
button to start the game, the timer is started:

// Keep track of how many bombs are dropped and stopped.
private int droppedCount = 0;
private int savedCount = 0;

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 11  ADVANCED ANIMATION

396

// Initially, bombs fall every 1.3 seconds, and hit the ground after 3.5 seconds.
private double initialSecondsBetweenBombs = 1.3;
private double initialSecondsToFall = 3.5;
private double secondsBetweenBombs;
private double secondsToFall;

private void cmdStart_Click(object sender, RoutedEventArgs e)
{
 cmdStart.IsEnabled = false;

 // Reset the game.
 droppedCount = 0;
 savedCount = 0;
 secondsBetweenBombs = initialSecondsBetweenBombs;
 secondsToFall = initialSecondsToFall;

 // Start the bomb-dropping timer.
 bombTimer.Interval = TimeSpan.FromSeconds(secondsBetweenBombs);
 bombTimer.Start();
}

Every time the timer fires, the code creates a new Bomb object and sets its position on the Canvas.
The bomb is placed just above the top edge of the Canvas, so it can fall seamlessly into view. It’s given a
random horizontal position that falls somewhere between the left and right sides:

private void bombTimer_Tick(object sender, EventArgs e)
{
 // Create the bomb.
 Bomb bomb = new Bomb();
 bomb.IsFalling = true;

 // Position the bomb.
 Random random = new Random();
 bomb.SetValue(Canvas.LeftProperty,
 (double)(random.Next(0, (int)(canvasBackground.ActualWidth - 50))));
 bomb.SetValue(Canvas.TopProperty, -100.0);

 // Add the bomb to the Canvas.
 canvasBackground.Children.Add(bomb);
 ...

The code then dynamically creates a storyboard to animate the bomb. Two animations are used:
one that drops the bomb by changing the attached Canvas.Top property and one that wiggles the bomb
by changing the angle of its rotate transform. Because Storyboard.TargetElement and
Storyboard.TargetProperty are attached properties, you must set them using the
Storyboard.SetTargetElement() and Storyboard.SetTargetProperty() methods:

 ...

 // Attach mouse click event (for defusing the bomb).
 bomb.MouseLeftButtonDown += bomb_MouseLeftButtonDown;

 // Create the animation for the falling bomb.

CHAPTER 11  ADVANCED ANIMATION

397

 Storyboard storyboard = new Storyboard();
 DoubleAnimation fallAnimation = new DoubleAnimation();
 fallAnimation.To = canvasBackground.ActualHeight;
 fallAnimation.Duration = TimeSpan.FromSeconds(secondsToFall);

 Storyboard.SetTarget(fallAnimation, bomb);
 Storyboard.SetTargetProperty(fallAnimation, new PropertyPath("(Canvas.Top)"));
 storyboard.Children.Add(fallAnimation);

 // Create the animation for the bomb "wiggle."
 DoubleAnimation wiggleAnimation = new DoubleAnimation();
 wiggleAnimation.To = 30;
 wiggleAnimation.Duration = TimeSpan.FromSeconds(0.2);
 wiggleAnimation.RepeatBehavior = RepeatBehavior.Forever;
 wiggleAnimation.AutoReverse = true;

 Storyboard.SetTarget(wiggleAnimation,
 ((TransformGroup)bomb.RenderTransform).Children[0]);
 Storyboard.SetTargetProperty(wiggleAnimation, new PropertyPath("Angle"));
 storyboard.Children.Add(wiggleAnimation);
 ...

Both of these animations could use animation easing for more realistic behavior, but this example
keeps the code simple by using basic linear animations.

The newly created bomb and storyboard are stored in two dictionary collections so they can be
retrieved easily in other event handlers. The collections are stored as fields in the main page class and
are defined like this:

// Make it possible to look up a bomb based on a storyboard, and vice versa.
private Dictionary<Bomb, Storyboard> storyboards =
 new Dictionary<Bomb, Storyboard>();
private Dictionary<Storyboard, Bomb> bombs = new Dictionary<Storyboard, Bomb>();

Here’s the code that adds the bomb and storyboard to these two collections:

 ...
 bombs.Add(storyboard, bomb);
 storyboards.Add(bomb, storyboard);
 ...

Next, you attach an event handler that reacts when the storyboard finishes the fallAnimation, which
occurs when the bomb hits the ground. Finally, the storyboard is started, and the animations are put in
motion:

 ...
 storyboard.Duration = fallAnimation.Duration;
 storyboard.Completed += storyboard_Completed;
 storyboard.Begin();
 ...

The bomb-dropping code needs one last detail. As the game progresses, it becomes more difficult.
The timer begins to fire more frequently, the bombs begin to appear more closely together, and the fall
time is reduced. To implement these changes, the timer code makes adjustments whenever a set interval

CHAPTER 11  ADVANCED ANIMATION

398

of time has passed. By default, BombDropper makes an adjustment every 15 seconds. Here are the fields
that control the adjustments:

// Perform an adjustment every 15 seconds.
private double secondsBetweenAdjustments = 15;
private DateTime lastAdjustmentTime = DateTime.MinValue;

// After every adjustment, shave 0.1 seconds off both.
private double secondsBetweenBombsReduction = 0.1;
private double secondsToFallReduction = 0.1;

And here’s the code at the end of the DispatcherTimer.Tick event handler, which checks whether an
adjustment is needed and makes the appropriate changes:

 ...
 // Perform an "adjustment" when needed.
 if ((DateTime.Now.Subtract(lastAdjustmentTime).TotalSeconds >
 secondsBetweenAdjustments))
 {
 lastAdjustmentTime = DateTime.Now;

 secondsBetweenBombs -= secondsBetweenBombsReduction;
 secondsToFall -= secondsToFallReduction;

 // (Technically, you should check for 0 or negative values.
 // However, in practice these won't occur because the game will
 // always end first.)

 // Set the timer to drop the next bomb at the appropriate time.
 bombTimer.Interval = TimeSpan.FromSeconds(secondsBetweenBombs);

 // Update the status message.
 lblRate.Text = String.Format("A bomb is released every {0} seconds.",
 secondsBetweenBombs);
 lblSpeed.Text = String.Format("Each bomb takes {0} seconds to fall.",
 secondsToFall);
 }
}

With this code in place, there’s enough functionality to drop bombs at an ever-increasing rate.
However, the game still lacks the code that responds to dropped and saved bombs.

Intercepting a Bomb
The user saves a bomb by clicking it before it reaches the bottom of the Canvas and explodes. Because
each bomb is a separate instance of the Bomb user control, intercepting mouse clicks is easy—all you
need to do is handle the MouseLeftButtonDown event, which fires when any part of the bomb is clicked
(but doesn’t fire if you click somewhere in the background, such as around the edges of the bomb circle).

When a bomb is clicked, the first step is to get appropriate bomb object and set its IsFalling property
to indicate that it’s no longer falling. (The IsFalling property is used by the event handler that deals with
completed animations.)

private void bomb_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)

CHAPTER 11  ADVANCED ANIMATION

399

{
 // Get the bomb.
 Bomb bomb = (Bomb)sender;
 bomb.IsFalling = false;

 // Record the bomb's current (animated) position.
 double currentTop = Canvas.GetTop(bomb);
 ...

The next step is to find the storyboard that controls the animation for this bomb so it can be
stopped. To find the storyboard, you need to look it up in the collection that this game uses for tracking.
Currently, Silverlight doesn’t include any standardized way to find the animations that are acting on a
given element.

 ...
 // Stop the bomb from falling.
 Storyboard storyboard = storyboards[bomb];
 storyboard.Stop();
 ...

After a button is clicked, another set of animations moves the bomb off the screen, throwing it up
and left or right (depending on which side is closest). Although you could create an entirely new
storyboard to implement this effect, the BombDropper game clears the current storyboard that’s being
used for the bomb and adds new animations to it. When this process is completed, the new storyboard is
started:

 ...
 // Reuse the existing storyboard, but with new animations.
 // Send the bomb on a new trajectory by animating Canvas.Top
 // and Canvas.Left.
 storyboard.Children.Clear();

 DoubleAnimation riseAnimation = new DoubleAnimation();
 riseAnimation.From = currentTop;
 riseAnimation.To = 0;
 riseAnimation.Duration = TimeSpan.FromSeconds(2);

 Storyboard.SetTarget(riseAnimation, bomb);
 Storyboard.SetTargetProperty(riseAnimation, new PropertyPath("(Canvas.Top)"));
 storyboard.Children.Add(riseAnimation);

 DoubleAnimation slideAnimation = new DoubleAnimation();
 double currentLeft = Canvas.GetLeft(bomb);

 // Throw the bomb off the closest side.
 if (currentLeft < canvasBackground.ActualWidth / 2)
 {
 slideAnimation.To = -100;
 }
 else
 {
 slideAnimation.To = canvasBackground.ActualWidth + 100;
 }

CHAPTER 11  ADVANCED ANIMATION

400

 slideAnimation.Duration = TimeSpan.FromSeconds(1);
 Storyboard.SetTarget(slideAnimation, bomb);
 Storyboard.SetTargetProperty(slideAnimation, new PropertyPath("(Canvas.Left)"));
 storyboard.Children.Add(slideAnimation);

 // Start the new animation.
 storyboard.Duration = slideAnimation.Duration;
 storyboard.Begin();
}

Now the game has enough code to drop bombs and bounce them off the screen when the user saves
them. However, to keep track of what bombs are saved and which ones are dropped, you need to react to
the Storyboard.Completed event that fires at the end of an animation.

Counting Bombs and Cleaning Up
As you’ve seen, the BombDropper uses storyboards in two ways: to animate a falling bomb and to
animate a defused bomb. You could handle the completion of these storyboards with different event
handlers, but to keep things simple the BombDropper uses just one. It tells the difference between an
exploded bomb and a rescued bomb by examining the Bomb.IsFalling property.

// End the game when 5 bombs have fallen.
private int maxDropped = 5;

private void storyboard_Completed(object sender, EventArgs e)
{
 Storyboard completedStoryboard = (Storyboard)sender;
 Bomb completedBomb = bombs[completedStoryboard];

 // Determine if a bomb fell or flew off the Canvas after being clicked.
 if (completedBomb.IsFalling)
 {
 droppedCount++;
 }
 else
 {
 savedCount++;
 }
 ...

Either way, the code then updates the display test to indicate how many bombs have been dropped
and saved. It then performs some cleanup, removing the bomb from the Canvas, and removing both the
bomb and the storyboard from the collections that are used for tracking.

 ...
 // Update the display.
 lblStatus.Text = String.Format("You have dropped {0} bombs and saved {1}.",
 droppedCount, savedCount);

 // Clean up.
 completedStoryboard.Stop();
 canvasBackground.Children.Remove(completedBomb);

CHAPTER 11  ADVANCED ANIMATION

401

 // Update the tracking collections.
 storyboards.Remove(completedBomb);
 bombs.Remove(completedStoryboard);
 ...

At this point, the code checks to see whether the maximum number of dropped bombs has been
reached. If it has, the game ends, the timer is stopped, and all the bombs and storyboards are removed:

 ...
 // Check if it's game over.
 if (droppedCount >= maxDropped)
 {
 bombTimer.Stop();
 lblStatus.Text += "\r\n\r\nGame over.";

 // Find all the storyboards that are underway.
 foreach (KeyValuePair<Bomb, Storyboard> item in storyboards)
 {
 Storyboard storyboard = item.Value;
 Bomb bomb = item.Key;

 storyboard.Stop();
 canvasBackground.Children.Remove(bomb);
 }

 // Empty the tracking collections.
 storyboards.Clear();
 bombs.Clear();

 // Allow the user to start a new game.
 cmdStart.IsEnabled = true;
 }
}

This completes the code for BombDropper game. However, you can make plenty of refinements.
Some examples include the following:

• Animate a bomb explosion effect: This effect can make the flames around the
bomb twinkle or send small pieces of shrapnel flying across the Canvas.

• Animate the background: This change is easy, and it adds pizzazz. For example,
you can create a linear gradient that shifts up, creating an impression of
movement, or one that transitions between two colors.

• Add depth: It’s easier than you think. The basic technique is to give the bombs
different sizes. Bombs that are bigger should have a higher ZIndex, ensuring that
they overlap smaller bombs, and should be given a shorter animation time,
ensuring that they fall faster. You can also make the bombs partially transparent,
so as one falls the others behind it are visible.

• Add sound effects: In Chapter 12, you’ll learn to use sound and other media in
Silverlight. You can use well-timed sound effects to punctuate bomb explosions or
rescued bombs.

CHAPTER 11  ADVANCED ANIMATION

402

• Use animation easing: If you want bombs to accelerate as they fall, bounce off the
screen, or wiggle more naturally, you can add easing functions to the animations
used here. And, as you’d expect, easing functions can be constructed in code just
as easily as in XAML.

• Fine-tune the parameters: You can provide more dials to tweak behavior (for
example, variables that set how the bomb times, trajectories, and frequencies are
altered as the game processes). You can also inject more randomness (for
example, allowing saved bombs to bounce off the Canvas in slightly different
ways).

You can find countless examples of Silverlight game programming on the Web. Microsoft’s
Silverlight community site includes game samples with full source code at
www.silverlight.net/showcase. You can also check out Andy Beaulieu’s website, which provides
Silverlight games and an impressive physics simulator, at www.andybeaulieu.com.

Encapsulating Animations
When you create animations dynamically in code, a fair bit of boilerplate code is required to create the
animations, set the storyboard properties, and handle the Completed event to clean up. For this reason,
Silverlight developers often wrap animations in higher-level classes that take care of the low-level
details.

For example, you can create an animation class named FadeElementEffect and fade an element out
of view using code like this:

FadeElementEffect fade = new FadeElementEffect();
fade.Animate(canvas);

Creating classes like this is fairly straightforward, although the exact design depends on the needs of
your application. In the rest of this section, you’ll consider one possible way to create animation helper
classes that provide transitional animations when the user navigates between pages.

Page Transitions
In Chapter 7, you saw different ways to support page navigation in a Silverlight application. One
technique is to use some sort of layout container as your application’s root element. You can then add
user controls to this container and remove them when needed. Navigating from one page to another
consists of removing the user control for the current page and adding the user control for the next page.

One advantage of this technique is that it allows you to use an animated effect to switch between the
two pages. For example, you can create an animation that fades in or slides in the new page. To make
this work, you add both pages to the root visual at once, one over the other. (The easiest way to do this is
to place both user controls in the same cell of a Grid, but a Canvas works equally well.) Then, you
animate the properties of the topmost page. For example, you can change the Opacity property to fade
the page in, alter the properties of a TranslateTransform to move it, and so on. You can even apply
multiple effects at once—for example, to create a “blow up” effect that expands a page from the corner
to fill the entire display area.

In the rest of this chapter, you’ll learn how to use a simple wipe effect that unveils the new page on
top of the current one. Figure 11-7 shows the wipe in action.

http://www.silverlight.net/showcase
http://www.andybeaulieu.com

CHAPTER 11  ADVANCED ANIMATION

403

Figure 11-7. Transitioning between pages with a wipe

This example assumes the root element in your application is a Grid. In other words, your
Application class requires code like this:

// This Grid will host your pages.
private Grid rootVisual = new Grid();

private void Application_Startup(object sender, StartupEventArgs e)
{
 // Load the first page.
 this.RootVisual = rootVisual;
 rootVisual.Children.Add(new Page());
}

This technique is discussed in Chapter 7.

The Base Class
The most straightforward way to animate a transition between pages is to code it directly in the App
class, using a custom Navigate() method. However, it’s far more flexible (and just a bit more effort) to
place the animation code in a separate class. And if you standardize your animations with an abstract
class or an interface, you’ll gain far more flexibility to swap in the new effects.

In this example, all transitions inherit from an abstract class named PageTransitionBase. This class
stores the storyboard, the previous page, and the new page as fields:

public abstract class PageTransitionBase
{
 protected Storyboard storyboard = new Storyboard();
 protected UserControl oldPage;

CHAPTER 11  ADVANCED ANIMATION

404

 protected UserControl newPage;

 public PageTransitionBase()
 {
 storyboard.Completed += TransitionCompleted;
 }
 ...

The application calls the PageTransitionBase.Navigate() method to move from one page to another.
The Navigate() method adds both pages to the Grid, calls a PrepareStoryboard() method to set up the
animation, and then starts the storyboard:

 ...
 public void Navigate(UserControl newPage)
 {
 // Set the pages.
 this.newPage = newPage;
 Grid grid = (Grid)Application.Current.RootVisual;
 oldPage = (UserControl)grid.Children[0];

 // Insert the new page first (so it lies "behind" the old page).
 grid.Children.Insert(0, newPage);

 // Prepared the animation.
 PrepareStoryboard();

 // Perform the animation.
 storyboard.Begin();
 }
 ...

The PrepareStoryboard() method is abstract. It must be overridden in derived classes, which creates
the specific animation objects they want.

 ...
 protected abstract void PrepareStoryboard();
 ...

The TransitionCompleted() event handler responds when the animation is complete. It removes the
old page:

 ...
 private void TransitionCompleted(object sender, EventArgs e)
 {
 // Remove the old page, which is not needed any longer.
 Grid grid = (Grid)Application.Current.RootVisual;
 grid.Children.Remove(oldPage);
 }
}

You can also use this method to perform cleanup. However, in this example, the animation acts on
the old page, which is discarded after the navigation. No extra cleanup is needed.

CHAPTER 11  ADVANCED ANIMATION

405

The Wipe Transition
To use a page transition, you need at least one derived class that creates animations. In this section,
you’ll consider one example: a WipeTransition class that wipes away the old page, revealing the new one
underneath.

The trick to creating a wipe effect is animating a brush that uses an opacity mask. (As you learned in
Chapter 8, an opacity mask determines what portions of an image or element should be visible and
which ones should be transparent.) To use an animation as a page transition, you need to use a
LinearGradientBrush for the opacity mask. As the animation progresses, you move the offsets in the
opacity mask, gradually making more of the topmost element transparent and revealing more of the
content underneath. In a page transition, the topmost element is the old page, and underneath is the
new page. Wipes commonly work from left to right or top to bottom, but more creative effects are
possible if you use different opacity masks.

To perform its work, the WipeTransition class overrides the PrepareStoryboard() method. Its first
task is to create the opacity mask and add it to the old page (which is topmost in the grid). This opacity
mask uses a gradient that defines two gradient stops: Black (the image is completely visible) and
Transparent (the image is completely transparent). Initially, both stops are positioned at the left edge of
the image. Because the visible stop is declared last, it takes precedence, and the image is completely
opaque.

public class WipeTransition : PageTransitionBase
{
 protected override void PrepareStoryboard()
 {
 // Create the opacity mask.
 LinearGradientBrush mask = new LinearGradientBrush();
 mask.StartPoint = new Point(0,0);
 mask.EndPoint = new Point(1,0);

 GradientStop transparentStop = new GradientStop();
 transparentStop.Color = Colors.Transparent;
 transparentStop.Offset = 0;
 mask.GradientStops.Add(transparentStop);
 GradientStop visibleStop = new GradientStop();
 visibleStop.Color = Colors.Black;
 visibleStop.Offset = 0;
 mask.GradientStops.Add(visibleStop);

 oldPage.OpacityMask = mask;
 ...

Next, you need to perform your animation on the offsets of the LinearGradientBrush. In this
example, both offsets are moved from the left side to the right side, allowing the image underneath to
appear. To make this example a bit fancier, the offsets don’t occupy the same position while they move.
Instead, the visible offset leads the way, followed by the transparent offset after a short delay of 0.2
seconds. This creates a blended fringe at the edge of the wipe while the animation is underway.

 ...
 // Create the animations for the opacity mask.
 DoubleAnimation visibleStopAnimation = new DoubleAnimation();
 Storyboard.SetTarget(visibleStopAnimation, visibleStop);
 Storyboard.SetTargetProperty(visibleStopAnimation,

CHAPTER 11  ADVANCED ANIMATION

406

 new PropertyPath("Offset"));
 visibleStopAnimation.Duration = TimeSpan.FromSeconds(1.2);
 visibleStopAnimation.From = 0;
 visibleStopAnimation.To = 1.2;

 DoubleAnimation transparentStopAnimation = new DoubleAnimation();
 Storyboard.SetTarget(transparentStopAnimation, transparentStop);
 Storyboard.SetTargetProperty(transparentStopAnimation,
 new PropertyPath("Offset"));
 transparentStopAnimation.BeginTime = TimeSpan.FromSeconds(0.2);
 transparentStopAnimation.From = 0;
 transparentStopAnimation.To = 1;
 transparentStopAnimation.Duration = TimeSpan.FromSeconds(1);
 ...

There’s one odd detail here. The visible stop moves to 1.2 rather than 1, which denotes the right
edge of the image. This ensures that both offsets move at the same speed, because the total distance that
each one must cover is proportional to the duration of its animation.

The final step is to add the animations to the storyboard, which is defined in the PageTransitionBase
class. You don’t need to start the storyboard, because the PageTransitionBase class performs this step as
soon as the PrepareStoryboard() method returns.

 ...
 // Add the animations to the storyboard.
 storyboard.Children.Add(transparentStopAnimation);
 storyboard.Children.Add(visibleStopAnimation);
 }
}

Now, you can use code like this to navigate between pages:

WipeTransition transition = new WipeTransition();
transition.Navigate(new Page2());

As with the BombDropper, there are plenty of imaginative ways to extend this example:

• Add transition properties: You could enhance the WipeTransition class with more
possibilities, allowing a configurable wipe direction, a configurable wipe time, and
so on.

• Create more transitions: Creating a new animated page transition is as simple as
deriving a class from PageTransitionBase and overriding PrepareStoryboard().

• Refactor the PageTransitionBase code: The current example is designed to be as
simple as possible. However, a more elaborate design would pull out the code that
adds and removes pages and place it in the custom application class. This opens
up new possibilities. It allows you to use different layouts. (For example, you can
use a transition animation in one panel rather than for the entire window.) It also
lets the application class add application services. (For example, you can keep
pages alive in a cache after you navigate away from them, as described in Chapter
7. This lets you retain the current state of all your elements.)

For fancier effects, check out the collection of custom pixel shaders and transitions in the free WPF
Shader Effects Library at http://codeplex.com/wpffx.

http://codeplex.com/wpffx

CHAPTER 11  ADVANCED ANIMATION

407

Frame-Based Animation
Along with the property-based animation system, Silverlight provides a way to create frame-based
animation using nothing but code. All you need to do is respond to the static
CompositionTarget.Rendering event, which is fired to get the content for each frame. This is a far lower-
level approach, which you shouldn’t tackle unless you’re sure the standard property-based animation
model won’t work for your scenario (for example, if you’re building a simple side-scrolling game,
creating physics-based animations, or modeling particle effects such as fire, snow, and bubbles).

The basic technique for building a frame-based animation is easy. You attach an event handler to
the static CompositionTarget.Rendering event. After you do, Silverlight begins calling this event handler
continuously. (As long as your rendering code executes quickly enough, Silverlight will call it 60 times
each second.) In the rendering event handler, it’s up to you to create or adjust the elements in the
window accordingly. In other words, you need to manage all the work yourself. When the animation has
ended, detach the event handler.

Figure 11-8 shows a straightforward example. Here, a random number of circles fall from the top of
a Canvas to the bottom. They fall at different speeds (based on a random starting velocity), but they
accelerate downward at the same rate. The animation ends when all the circles reach the bottom.

Figure 11-8. A frame-based animation of falling circles

In this example, each falling circle is represented by an Ellipse element. A custom class named
EllipseInfo keeps a reference to the ellipse and tracks the details that are important for the physics
model. In this case, there’s only one piece of information: the velocity at which the ellipse is moving

CHAPTER 11  ADVANCED ANIMATION

408

along the y-axis. (You could easily extend this class to include a velocity along the x-axis, additional
acceleration information, and so on.)

public class EllipseInfo
{
 public Ellipse Ellipse
 {
 get; set;
 }

 public double VelocityY
 {
 get; set;
 }

 public EllipseInfo(Ellipse ellipse, double velocityY)
 {
 VelocityY = velocityY;
 Ellipse = ellipse;
 }
}

The application keeps track of the EllipseInfo object for each ellipse using a collection. Several more
window-level fields record various details used when calculating the fall of the ellipse. You can easily
make these details configurable.

private List<EllipseInfo> ellipses = new List<EllipseInfo>();

private double accelerationY = 0.1;
private int minStartingSpeed = 1;
private int maxStartingSpeed = 50;
private double speedRatio = 0.1;
private int minEllipses = 20;
private int maxEllipses = 100;
private int ellipseRadius = 10;
private SolidColorBrush ellipseBrush = new SolidColorBrush(Colors.Green);

When a button is clicked, the collection is cleared, and the event handler is attached to the
CompositionTarget.Rendering event:

private bool rendering = false;

private void cmdStart_Clicked(object sender, RoutedEventArgs e)
{
 if (!rendering)
 {
 ellipses.Clear();
 canvas.Children.Clear();

 CompositionTarget.Rendering += RenderFrame;
 rendering = true;
 }
}

CHAPTER 11  ADVANCED ANIMATION

409

If the ellipses don’t exist, the rendering code creates them automatically. It creates a random
number of ellipses (currently, between 20 and 100) and gives each of them the same size and color. The
ellipses are placed at the top of the Canvas, but they’re offset randomly along the x-axis, and each one is
given a random starting speed:

private void RenderFrame(object sender, EventArgs e)
{
 if (ellipses.Count == 0)
 {
 // Animation just started. Create the ellipses.
 int halfCanvasWidth = (int)canvas.ActualWidth / 2;

 Random rand = new Random();
 int ellipseCount = rand.Next(minEllipses, maxEllipses+1);
 for (int i = 0; i < ellipseCount; i++)
 {
 // Create the ellipse.
 Ellipse ellipse = new Ellipse();
 ellipse.Fill = ellipseBrush;
 ellipse.Width = ellipseRadius;
 ellipse.Height = ellipseRadius;

 // Place the ellipse.
 Canvas.SetLeft(ellipse, halfCanvasWidth +
 rand.Next(-halfCanvasWidth, halfCanvasWidth));
 Canvas.SetTop(ellipse, 0);
 canvas.Children.Add(ellipse);

 // Track the ellipse.
 EllipseInfo info = new EllipseInfo(ellipse,
 speedRatio * rand.Next(minStartingSpeed, maxStartingSpeed));
 ellipses.Add(info);
 }
 }
 ...

If the ellipses already exist, the code tackles the more interesting job of animating them. Each ellipse
is moved slightly using the Canvas.SetTop() method. The amount of movement depends on the assigned
velocity.

 ...
 else
 {
 for (int i = ellipses.Count-1; i >= 0; i--)
 {
 EllipseInfo info = ellipses[i];
 double top = Canvas.GetTop(info.Ellipse);
 Canvas.SetTop(info.Ellipse, top + 1 * info.VelocityY);
 ...

To improve performance, the ellipses are removed from the tracking collection as soon as they’ve
reached the bottom of the Canvas. That way, you don’t need to process them again. To allow this to work

CHAPTER 11  ADVANCED ANIMATION

410

without causing you to lose your place while stepping through the collection, you need to iterate
backward, from the end of the collection to the beginning.

If the ellipse hasn’t yet reached the bottom of the Canvas, the code increases the velocity.
(Alternatively, you could set the velocity based on how close the ellipse is to the bottom of the Canvas for
a magnet-like effect.)

 ...
 if (top >= (canvas.ActualHeight - ellipseRadius*2))
 {
 // This circle has reached the bottom.
 // Stop animating it.
 ellipses.Remove(info);
 }
 else
 {
 // Increase the velocity.
 info.VelocityY += accelerationY;
 }
 ...

Finally, if all the ellipses have been removed from the collection, the event handler is removed,
allowing the animation to end:

 ...
 if (ellipses.Count == 0)
 {
 // End the animation.
 // There's no reason to keep calling this method
 // if it has no work to do.
 CompositionTarget.Rendering -= RenderFrame;
 rendering = false;
 }
 }
 }
}

Obviously, you can extend this animation to make the circles bounce, scatter, and so on. The
technique is the same—you need to use more complex formulas to arrive at the velocity.

There’s one caveat to consider when building frame-based animations: they aren’t time-dependent.
In other words, your animation may run faster on fast computers, because the frame rate will increase,
and your CompositionTarget.Rendering event will be called more frequently. To compensate for this
effect, you need to write code that takes the current time into account.

The Last Word
In this chapter, you learned the techniques needed to make practical animations and integrate them
into your applications. The only missing ingredient is the eye candy—in other words, making sure the
animated effects are as polished as your code.

As you’ve seen over the past two chapters, the animation model in Silverlight is surprisingly full-
featured. However, getting the result you want isn’t always easy. If you want to animate separate
portions of your interface as part of a single animated scene, you’re forced to take care of a few tedious
details, such as tracking animated objects and performing cleanup. Furthermore, none of the stock

CHAPTER 11  ADVANCED ANIMATION

411

animation classes accepts arguments in their parameters. As a result, the code required to
programmatically build a new animation is often simple but long.

The future of Silverlight animation is in higher-level features that build on the basic plumbing
you’ve learned about in this chapter. You’ve already seen one example of this technique with the page
transitions in this chapter. Here, someone else designs the animation, and you plug it into your
application with a couple of lines of code. In Chapter 15, you’ll learn about another approach that works
with Silverlight controls: using transitions.

 Note Transitions are animations that are declared, in markup, as part of a control’s template. They’re triggered
automatically at the right time—for example, when the user hovers over a button or when new items are added to
a container. Transitions are built on the animation model you’ve explored in this chapter and the previous one, but
they’re somewhat more limited than do-it-yourself animations. However, they also have the potential to be far
more convenient, especially for business developers looking for a quick way to plug in some basic effects.

C H A P T E R 12

413

Sound, Video, and Deep Zoom

In this chapter, you’ll tackle one of Silverlight’s most mature features: audio and video support.
Since version 1.0, Silverlight has distinguished itself as a technology that brings high-end

multimedia support to the limited world of the browser. And though Silverlight can’t support the full
range of media codecs (because that would multiply the size of the Silverlight download and increase its
licensing costs), Silverlight still gives you everything you need to incorporate high-quality audio and
video in your applications. Even more remarkable is the way that Silverlight allows you to use
multimedia, particularly video. For example, you can use video to fill thousands of elements at once and
combine it with other effects, such as animation, transforms, and transparency.

In this chapter, you’ll learn how to incorporate ordinary audio and video into your applications, and
you’ll consider the best way to encode and host video files for Silverlight. Next, you’ll see how
Silverlight’s VideoBrush class allows you to create impressive effects such as video-filled text and video
reflections. Then, you’ll consider Silverlight’s basic support for webcam and microphone and input.
Finally, you’ll look at Deep Zoom—a different interactive multimedia technology that lets users zoom
into massive images in real time.

 What’s New Silverlight 5 adds a few new features to its audio and video support. First, Silverlight prevents the
screen saver from interrupting your application while it’s playing a video. Second, Silverlight adds support for
remote controls (like the ones that sometimes come with fancy laptops), meaning you can use these to start, stop,
and pause playback (see the section “Media Commands” for more information). Third, Silverlight includes a trick
play feature that can speed up or slow down video without changing the pitch of the audio (see the “Trick Play”
section). And fourth, Silverlight adds support for low-latency sound, which allows you to play short audio clips with
no delay (see the “Low-Latency Audio” section).

Supported File Types
Because Silverlight needs to ensure compatibility on a number of different operating systems and
browsers, it can’t support the full range of media files that you’ll find in a desktop application such as
Windows Media Player. Before you get started with Silverlight audio and video, you need to know exactly
what media types it supports.

For audio, Silverlight supports the following:

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

414

• Windows Media Audio (WMA) versions 7, 8, and 9

• MP3 with fixed or variable bit rates from 8 to 320 Kbps

When it comes to video, Silverlight supports the follow standards:

• Windows Media Video 7 (WMV1)

• Windows Media Video 8 (WMV2)

• Windows Media Video 9 (WMV3)

• Windows Media Video Advanced Profile, non-VC-1 (WMVA)

• Windows Media Video Advanced Profile, VC-1 (WMVC1)

• H.264 video and AAC audio (also known as MPEG-4 Part 10 or MPEG-4 AVC)

Often, you can recognize Windows Media Video by the file extension .wmv. Other video formats—
for example, MPEG and QuickTime—need not apply.

The last two formats in this list—VC-1 and H.264—are widely supported industry standards.
Notable places where they’re used include Blu-ray, HD DVD, and the Xbox 360. They’re also the most
common choice for Silverlight applications. (Of course, these standards support different bit rates and
resolutions, so your Silverlight application isn’t forced to include DVD-quality video just because it uses
VC-1 or H.264.)

Silverlight doesn’t support other Windows Media formats (such as Windows Media Screen,
Windows Media Audio Professional, and Windows Media Voice), nor does it support the combination of
Windows Media Video with MP3 audio. Finally, it doesn’t support video files that use frames with odd-
number dimensions (dimensions that aren’t divisible by 2), such as 127135.

 Note Adding audio to a Silverlight application is fairly easy, because you can throw in just about any MP3 file.
Using a video file is more work. Not only must you make sure you’re using one of the supported WMV formats, but
you also need to carefully consider the quality you need and the bandwidth your visitors can support. Later in this
chapter, you’ll consider how to encode video for a Silverlight application. But first, you’ll consider how to add basic
audio.

The MediaElement
In Silverlight, all the audio and video functionality is built into a single class: MediaElement.

Like all elements, a media element is placed directly in your user interface. If you’re using the
MediaElement to play audio, this fact isn’t important, because the MediaElement remains invisible. If
you’re using the MediaElement for video, you place it where the video window should appear.

A simple MediaElement tag is all you need to play a sound. For example, add this markup to your
user interface:

<MediaElement Source="test.mp3"></MediaElement>

Now, once the page is loaded, it will download the test.mp3 file and begin playing it automatically.

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

415

Of course, for this to work, your Silverlight application needs to be able to find the test.mp3 file. The
MediaElement class uses the same URL system as the Image class. That means you can embed a media
file in your XAP package or deploy it to the same website alongside the XAP file. Generally, it’s best to
keep media files separate, unless they’re extremely small. Otherwise, you’ll bloat the size of your
application and lengthen the initial download time.

 Note When you first add a media file like test.mp3 to a project, Visual Studio sets its Build Action setting to
None and its Copy To Output Directory setting to “Do not copy.” To deploy your media file alongside your XAP file,
you must change the Copy To Output Directory setting to “Copy always.” To deploy your media file inside the XAP
package, change Build Action to Resource. The downloadable code for this chapter uses the first of these two
approaches.

Controlling Playback
The previous example starts playing an audio file immediately when the page with the MediaElement is
loaded. Playback continues until the audio file is complete.

Although this example is straightforward, it’s also a bit limiting. Usually, you’ll want the ability to
control playback more precisely. For example, you may want it to be triggered at a specific time,
repeated indefinitely, and so on. One way to achieve this result is to use the methods of the
MediaElement class at the appropriate time.

The startup behavior of the MediaElement is determined by its AutoPlay property. If this property is
set to false, the audio file is loaded, but your code takes responsibility for starting the playback at the
right time:

<MediaElement x:Name="media" Source="test.mp3" AutoPlay="False"></MediaElement>

When using this approach, you must make sure to give the MediaElement a name so that you can
interact with it in code. Generally, interaction consists of calling the Play(), Pause(), and Stop() methods.
You can also use the SetSource() method to load new media content from a stream (which is useful if
you’re downloading media files asynchronously using the WebClient class, as described in Chapter 6),
and you can change the Position property to move through the audio.

Here’s a simple event handler that seeks to the beginning of the current audio file and then starts
playback:

private void cmdPlay_Click(object sender, RoutedEventArgs e)
{
 media.Position = TimeSpan.Zero;
 media.Play();
}

If this code runs while playback is already under way, the first line resets the position to the
beginning, and playback continues from that point. In this case, the second line has no effect because
the media file is already being played.

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

416

 Note Depending on the types of media files you support, you may want to check the CanPause and CanSeek
properties before you attempt to pause playback or jump to a new position. Some types of streamed media files
don’t support pausing and seeking.

Handling Errors
MediaElement doesn’t throw an exception if it can’t find or load a file. Instead, it’s up to you to handle
the MediaFailed event. Fortunately, this task is easy. First, tweak your MediaElement tag as shown here:

<MediaElement ... MediaFailed="media_MediaFailed"></MediaElement>

Then, in the event handler, you can use the ExceptionRoutedEventArgs.ErrorException property to
get an exception object that describes the problem. Here’s an example that displays the appropriate
error message:

private void media_MediaFailed(object sender, ExceptionRoutedEventArgs e)
{
 lblErrorText.Text = e.ErrorException.Message;
}

Playing Multiple Sounds
The MediaElement is limited to playing a single media file. If you change the Source property (or call the
SetSource() method), any playback that’s currently taking place stops immediately. However, this
limitation doesn’t apply to Silverlight as a whole. Silverlight can quite easily play multiple media files at
once, as long as each one has its own MediaElement.

You can use two approaches to create an application with multiple sounds. Your first option is to
create all the MediaElement objects you need at design time. This approach is useful if you plan to reuse
the same two or three MediaElement objects. For example, you can define two MediaElement objects
and flip between them each time you play a new sound. (You can keep track of which object you used
last using a Boolean variable in your page class.) To make this technique really effortless, you can store
the audio file names in the Tag property of the appropriate element, so all your event-handling code
needs to do is read the file name from the Tag property, find the right MediaElement to use, set its
Source property, and then call its Play() method. Because this example uses two MediaElement objects,
you’re limited to two simultaneous sounds, which is a reasonable compromise if you don’t think the
user will be able pick out a third sound out over the din anyway.

Your other option is to create every MediaElement object you need dynamically. This approach
requires more overhead, but the difference is minimal (unless you go overboard and play dozens of
simultaneous media files). When you create a MediaElement in code, you need to remember to add it to
a container in your application. Assuming you haven’t changed the AutoPlay property, the
MediaElement will begin playing as soon as you add it. If you set AutoPlay to false, you’ll need to use the
Play() method. Finally, it’s also a good idea to handle the MediaEnded event to remove the
MediaElement after playback is finished.

Here’s some code for a button that starts a new playback of the same sound file each time it’s
clicked:

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

417

private void cmdPlay_Click(object sender, RoutedEventArgs e)
{
 MediaElement media = new MediaElement();
 media.Source = new Uri("test.mp3", UriKind.Relative);
 media.MediaEnded += new RoutedEventHandler(media_MediaEnded);
 LayoutRoot.Children.Add(media);
}

private void media_MediaEnded(object sender, RoutedEventArgs e)
{
 LayoutRoot.Children.Remove((MediaElement)sender);
}

To make it easier to keep track of a batch of dynamically generated MediaElement objects, you can
add them all to a designated container (for example, an invisible stack panel). This allows you to quickly
examine all the currently playing media files and stop them all. Figure 12-1 shows an example that uses
this approach and displays the element count of the invisible StackPanel every time a MediaElement is
inserted or removed.

Figure 12-1. Playing media files simultaneously

Changing Volume, Balance, and Position
The MediaElement exposes a number of properties that allow you to control your playback. The most
fundamental are as follows:

• Volume: Sets the volume as a number from 0 (completely muted) to 1 (full
volume). The default value is 0.5. To temporarily mute playback without pausing it
or changing the volume setting, set IsMuted to true.

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

418

• Balance: Sets the balance between the left and right speaker as a number from -1
(left speaker only) to 1 (right speaker only). The default is 0, which splits the sound
evenly.

• CurrentState: Indicates whether the player is currently Playing, Paused, Stopped,
downloading a media file (Opening), buffering it (Buffering), or acquiring a license
for DRM content (AcquiringLicense). If no media file was supplied, CurrentState is
Closed.

• Position: Provides a TimeSpan object that indicates the current location in the
media file. You can set this property to skip to a specific time position.

Figure 12-2 shows a simple page that allows the user to control playback.

Figure 12-2. Controlling more playback details

At the top of the window are three buttons for controlling playback. They use rather unremarkable
code—they call the Start(), Stop(), and Play() methods of the MediaElement when clicked.

Underneath are two sliders for adjusting volume and balance. These sliders are set to the
appropriate ranges (0 to 1 and -1 to 1):

<Slider Grid.Column="1" x:Name="sliderVolume" Minimum="0" Maximum="1" Value="0.5"
 ValueChanged="sliderVolume_ValueChanged" ></Slider>

<Slider Grid.Row="1" Grid.Column="1" x:Name="sliderBalance" Minimum="-1" Maximum="1"
 ValueChanged="sliderBalance_ValueChanged"></Slider>

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

419

When the user drags the thumb in the slider, the change is applied to the MediaElement:

private void sliderVolume_ValueChanged(object sender,
 RoutedPropertyChangedEventArgs<double> e)
{
 media.Volume = sliderVolume.Value;
}

private void sliderBalance_ValueChanged(object sender,
 RoutedPropertyChangedEventArgs<double> e)
{
 media.Balance = sliderBalance.Value;
}

The third slider lets the user jump to a new position. It actually consists of two sliders that are
superimposed on top of one another. The slider in the background (the one defined first) is the position
slider that the user drags to jump to a new part of the audio file:

<Slider Minimum="0" Grid.Column="1" Grid.Row="2" x:Name="sliderPosition"
 ValueChanged="sliderPosition_ValueChanged"></Slider>

In front is a slider that ignores mouse activity (because its IsHitTestVisible property is set to false)
and is partially transparent (because its Opacity property is set to 0.5). As a result, the slider appears to
be a faint image behind the position slider:

<Slider Minimum="0" Grid.Column="1" Grid.Row="2" x:Name="sliderPositionBackground"
 IsHitTestVisible="False" Opacity="0.5"></Slider>

This slider (sliderPositionBackground) represents the current position of the audio file. As the audio
advances, the code moves the thumb in sliderPositionBackground along the track to give the user a
visual indication of how far playback has progressed. You could do much the same trick by moving the
sliderPosition slider, but this could become problematic because your code would need to distinguish
between user-initiated changes (when the user drags the slider, at which point your code should change
the current position of the MediaElement) and playback synchronization (at which point your code
should do nothing).

 The code sets up the position sliders by reading the full running time from the NaturalDuration
property after the media file has been opened:

private void media_MediaOpened(object sender, RoutedEventArgs e)
{
 sliderPosition.Maximum = media.NaturalDuration.TimeSpan.TotalSeconds;
 sliderPositionBackground.Maximum = media.NaturalDuration.TimeSpan.TotalSeconds;
}

You can then jump to a specific position when the topmost slider tab is moved:

private void sliderPosition_ValueChanged(object sender, RoutedEventArgs e)
{
 // Pausing the player before moving it reduces audio "glitches"
 // when the value changes several times in quick succession.
 media.Pause();
 media.Position = TimeSpan.FromSeconds(sliderPosition.Value);
 media.Play();
}

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

420

Incidentally, the MediaElement doesn’t fire any sort of event to notify you that playback is
underway. Thus, if you want to move the thumb for sliderPositionBackground along the track or you
want to update the TextBlock with the current time offset at the bottom of the page, you need to use a
timer.

The DispatcherTimer is a perfect solution. You can create one when the page loads, use a short 0.1-
second interval, and start and stop it along with your playback:

private DispatcherTimer timer = new DispatcherTimer();

public MediaPlayer()
{
 InitializeComponent();
 timer.Interval = TimeSpan.FromSeconds(0.1);
 timer.Tick += timer_Tick;
}

private void cmdPlay_Click(object sender, RoutedEventArgs e)
{
 media.Play();
 timer.Start();
}

When the DispatcherTimer.Tick event fires, you can update your user interface by displaying the
current time position in a TextBlock and moving the position indicator (the semi-transparent
noninteractive thumb of the background slider):

private void timer_Tick(object sender, EventArgs e)
{
 lblStatus.Text = media.Position.ToString().TrimEnd(new char[]{'0'});
 sliderPositionBackground.Value = media.Position.TotalSeconds;
}

The two check boxes on the page are the last ingredient in this media player and one of the simplest
details. The Mute check box sets the corresponding IsMuted property of the MediaElement:

private void chkMute_Click(object sender, RoutedEventArgs e)
{
 media.IsMuted = (bool)chkMute.IsChecked;
}

The MediaElement has no built-in support for looping playback. If the Loop check box is set, the
code in the page restarts playback when the MediaEnded event fires:

private void media_MediaEnded(object sender, RoutedEventArgs e)
{
 if ((bool)chkLoop.IsChecked)
 {
 media.Position = TimeSpan.Zero;
 media.Play();
 }
 else
 {
 timer.Stop();
 }

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

421

}

Although relatively simple, this example could be the springboard for a more advanced player—all
you need is a heavy dose of animation, transparency, and eye candy. You’ll see some examples of more
stylized media players that have mostly the same functionality when you consider Expression Encoder
later in this chapter.

Playing Video
Everything you’ve learned about using the MediaElement class applies equally well when you use a
video file instead of an audio file.

The key difference with video files is that the visual and layout-related properties of the
MediaElement are suddenly important. The original size of the video is provided through the
NaturalVideoHeight and NaturalVideoWidth properties of the MediaElement. You can also scale or
stretch a video to fit different page sizes using the Stretch property. Use None to keep the native size
(which is recommended for optimum performance), Uniform to stretch the video to fit its container
without changing its aspect ratio (which is the default), Fill to stretch it to fit its container in both
dimensions (even if that means stretching the picture), and UniformToFill to resize the picture to fit the
largest dimension of its container while preserving its aspect ratio (which guarantees that part of the
video page will be clipped out if the container doesn’t have the same aspect ratio as the video).

 Tip The MediaElement’s preferred size is based on the native video dimensions. For example, if you create a
MediaElement with a Stretch value of Uniform (the default) and place it inside a Grid row with a Height value of
Auto, the row will be sized just large enough to keep the video at its standard size, so no scaling is required.

Trick Play
Trick play is a feature that lets you accelerate or slow down the speed of video playback, without
changing the pitch of the audio. (Ordinarily, the audio in a sped-up video will be not only faster but
shifted to a higher pitch. Similarly, a slowed-down video gets lower-pitch audio. At worst, spoken words
and other parts of the audio become distorted or unintelligible.)

 Tip Trick play is useful in certain specialized scenarios. For example, it allows power users to review training
videos more quickly. Trick play works with video or audio, although it’s most commonly used with video playback.

To use trick play, you simply set the MediaElement.PlaybackRate property. A value of 1 (the default)
represents normal speed playback. A value of 1.5 is 50 percent faster, while a value of 2 is double the
normal speed. Similarly, you can slow down playback using values less than 1. Set PlaybackRate to 0.5,
for instance, to get half-normal playback speed.

Here’s a slider that makes it easy to test the effect of different PlaybackRate settings. As you drag the
slider, the slider value is passed along to the MediaElement through a simple data binding expression,
and the video speed is adjusted immediately.

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

422

<MediaElement x:Name="media" Source="OldSpice.mp4" Stretch="Uniform"></MediaElement>
<Slider Grid.Row="1" Margin="5" Minimum="0.5" Maximum="2"
 Value="{Binding ElementName=media,Path=PlaybackRate,Mode=TwoWay}"></Slider>

Note that extremely fast or slow speeds won’t support this effect. For example, try to play a video at
four times its normal speed, and you’ll probably hear no audio at all.

Media Commands
Silverlight has the built-in smarts to receive hardware-initiated playback commands, such as play,
pause, rewind, volume up, and so on. These are called media commands.

To send a media command, a user can need the help of a wireless home-theater-style remote (like
the kind that are commonly sold for use with Windows Media Center) or a media-enhanced keyboard
that has dedicated media buttons (like most of Microsoft’s keyboards). When a button is pressed and
Silverlight receives the message, it fires the MediaCommand event on whatever element has focus. This
event then bubbles up the element hierarchy, until it reaches the containing page.

Technically, the MediaCommand feature isn’t linked to the MediaElement class. Instead, all
Silverlight elements can receive the MediaCommand event. Furthermore, it’s up to you to decide what
action you want to carry out when you receive a media command. It makes most sense to carry out a
media action (for example, starting a video when the user presses the play button), but you could just as
easily start an animation or perform a completely different task.

Before you use media commands, you need to understand one significant caveat. Unless your
application is running in full-screen mode, they are unlikely to work. That’s because the operating
system will intercept your media commands and direct them to the appropriate program (like Media
Player on Windows or iTunes on Mac). And contrary to what you might expect, the operating system will
continue to intercept (and suppress) media commands when these programs aren’t running.

Figure 12-3 shows a program that uses media commands. It includes a button that switches the
application between normal and full-screen mode:

private void cmdToggleFullScreen_Click(object sender, RoutedEventArgs e)
{
 Application.Current.Host.Content.IsFullScreen =
 !Application.Current.Host.Content.IsFullScreen;
}

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

423

Figure 12-3. A video page that receives media commands

Although it’s possible to create a page that has more than one section of playable content, most
applications will have only one, as in this example. In this case, it’s easiest to attach the MediaCommand
event handler to the root element to make sure you capture the media command no matter what
element has focus:

<UserControl x:Class="Media.MediaCommands"
 MediaCommand="media_MediaCommand" ... >

Now all you need to do is react to the actual event. Here’s the code that deals with three possible
media commands: play, pause, and the play/pause toggle button that’s found on many keyboards:

private void media_MediaCommand(object sender, MediaCommandEventArgs e)
{
 if (e.MediaCommand == System.Windows.Media.MediaCommand.Play)
 {
 media.Play();
 }
 else if (e.MediaCommand == System.Windows.Media.MediaCommand.Pause)
 {

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

424

 media.Pause();
 }
 else if (e.MediaCommand == System.Windows.Media.MediaCommand.TogglePlayPause)
 {
 if (media.CurrentState == MediaElementState.Paused ||
 media.CurrentState == MediaElementState.Stopped)
 {
 media.Play();
 }
 else if (media.CurrentState == MediaElementState.Playing)
 {
 media.Pause();
 }
 }
}

 Note This code is a bit verbose, because it’s necessary to write the fully qualified named
System.Windows.Media.MediaCommand when referring to the MediaCommand enumeration. If you write simply
MediaCommand, the compiler will assume you’re referring to the MediaCommand event in the current user
control.

These aren’t all the media commands you can intercept. Table 12-1 shows the full list of
MediaCommand values. For example, if you want to handle volume changes, you can tack this code
onto the end of the conditional logic in the previous example:

...
else if (e.MediaCommand == System.Windows.Media.MediaCommand.IncreaseVolume)
{
 media.Volume += .1;
}
else if (e.MediaCommand == System.Windows.Media.MediaCommand.DecreaseVolume)
{
 media.Volume -= .1;
}

Table 12-1. Values from the MediaCommand Enumeration

Value Description

Play Start playback.

Pause Stop playback, temporarily.

TogglePlayPause Start playback if it’s currently paused, or pause it if it’s currently playing.

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

425

Value Description

Stop Stop playback and return to the beginning or the previous state.

Record Start recording. This command commonly acts as a toggle, so the second record
command should stop recording.

FastForward Move the media forward, at an accelerated speed.

Rewind Move the media backward, at an accelerated speed.

NextTrack Skip to the next track or media file.

PreviousTrack Skip to the previous track or media file.

IncreaseVolume Raise the volume one increment.

DecreaseVolume Lower the volume one increment.

MuteVolume Silence the audio, temporarily.

ChannelUp Move to the next audio channel.

ChannelDown Move to the previous audio channel.

There are also a few media commands that are specific to Silverlight on the Xbox. They include

Menu, Title, Info, Display, Guide, and TV.

Client-Side Playlists
Silverlight also supports Windows Media metafiles, which are essentially playlists that point to one or
more other media files. Windows Media metafiles typically have the file extension .wax, .wvx, .wmx, .wpl,
or .asx. Certain features of these files, such as script commands, aren’t supported and cause errors if
used. For the full list of unsupported features, refer to the Silverlight documentation.

Here’s a basic playlist that refers to two video files:

<asx version="3.0">
 <title>Two Video Playlist</title>
 <entry>
 <title>Video 1</title>
 <ref href="Video1.wmv" />
 </entry>
 <entry>
 <title>Video 2</title>
 <ref href="Video2.wmv" />
 </entry>
</asx>

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

426

If you point the Source property of the MediaElement to this file, it will begin playing Video1.wmv
(assuming it exists) and then play Video2.wmv immediately after. In this case, both files are in the same
location on the server (and in the same folder as the playlist), but you can adjust the href attribute to
point to files in other folders or servers.

Typically, .asx files are used with .asf streaming files. In this case, the .asx file includes a link to the
.asf streaming file.

Server-Side Playlists
If you’re streaming video using Windows Media Services, you can also create a server-side playlist.
Server-side playlists are processed on the server. They let you combine more than one video into a single
stream without revealing the source of each video to the user. Server-side playlists offer one technique
for integrating advertisements into your video stream: create a server-side playlist that places an ad
before the requested video.

Server-side playlists often have the file extension .wsx. As with client-side playlists, they contain
XML markup:

<?wsx version="1.0"?>
<smil>
 <seq id="sq1">
 <media id="video2" src="Video1.wmv" />
 <media id="video1" src="Advertisement.wmv" />
 <media id="video2" src="Video2.wmv" />
 <seq>
</smil>

The root element is <smil>. Here, the <smil> element contains an ordered sequence of video files
represented by the <seq> element, with each video represented by the <media> element. More
sophisticated server-side playlists can repeat videos, play clips of longer videos, and specify videos that
will be played in the event of an error. For more information about the standard for .wsx files (and the
elements that are supported and unsupported in Silverlight), see
http://msdn.microsoft.com/library/cc645037.aspx.

Progressive Downloading and Streaming
Ordinarily, if you take no special steps, Silverlight plays media files using progressive downloading. This
means that the client downloads media files one chunk at a time, using the standard HTTP protocol.
When the client has accumulated enough of a buffer to provide for a few seconds of playback, it begins
playing the media file and continues downloading the rest of the file in the background.

Thanks to progressive downloading, the client can begin playing a media file almost immediately. In
fact, the total length of the file has no effect on the initial playback delay. The only factor is the bit rate—
how many bytes of data it takes to play five seconds of media. Progressive downloading also has a
second, not-so-trivial advantage: it doesn’t require any special server software, because the client
handles all the buffering. Thus, you can use progressive downloading with any web server.

The same isn’t true of streaming, a technology that uses a specialized stateful protocol to send data
from the web server to the client. Streaming has the instant-playback ability of progressive downloading,
but it’s more efficient. There are numerous factors at work, but switching from progressive downloading
to streaming can net your web server a two- or three-times improvement in scalability—in other words,
it may be able to serve the same video content to three times as many simultaneous users. This is the
reason streaming is usually adopted.

http://msdn.microsoft.com/library/cc645037.aspx

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

427

However, streaming also has one significant disadvantage: it needs dedicated server-side software.
(With Silverlight, this software is Windows Media Services, which is available as a free download for
Windows Server 2008.) Unfortunately, it’s considerably more complex to configure and maintain a
media streaming server than it is to host an application that uses progressive downloading.

 Note If you use a MediaElement with a URL that starts with http:// or https://, Silverlight begins a
progressive download. If you use a MediaElement with a URL that starts with mms://, Silverlight attempts to
stream it and falls back on a progressive download if streaming fails.

It’s worth noting that the word streaming isn’t always used in the technical sense described here.
For example, Microsoft provides a fantastic free Silverlight hosting service called Silverlight Streaming. It
provides 10 GB of hosting space for Silverlight applications and media files. But despite its name,
Silverlight Streaming doesn’t use streaming—instead, it simply serves video files and allows the client to
perform progressive downloading.

IMPROVING PROGRESSIVE DOWNLOADING

If you don’t want the complexity of configuring and maintaining a server with Windows Media Services or
you use a web host that doesn’t provide this service, your applications will use progressive downloading.
You’ll get the most out of progressive downloading if you follow these best practices:

• Consider providing multiple versions of the same media file: If you have huge
media files and you need to support users with a wide range of connection
speeds, consider including an option in your application that lets users specify
their bandwidth. If a user specifies a low-speed bandwidth, you can seamlessly
load smaller media files into the MediaElement. (The only problem is that average
users don’t always know their bandwidth, and the amount of video data a
computer can handle can be influenced by other factors, such as the current CPU
load or the quality of a wireless connection.)

• Adjust the BufferingTime property on the MediaElement: You can control how
much content Silverlight buffers in a progressive download by setting the
BufferingTime property of the MediaElement. The default is five seconds of
playback, but higher-quality videos that will be played over lower-bandwidth
connections will need different rates. A longer BufferingTime value won’t allow a
slow connection to play a high–bit rate video file (unless you buffer virtually the
entire file), but it will smooth over unreliable connections and give a bit more
breathing room.

• Keep the user informed about the download: It’s often useful to show the client
how much of a particular media file has been downloaded. For example, websites
such as YouTube and players such as Media Player use a progress bar that has a

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

428

shaded background, indicating how much of the file is available. To create a
similar effect in a Silverlight application, you can use the
DownloadProgressChanged event. It fires each time Silverlight crosses a 5%
download threshold (for example, when it downloads the first 5%, when it reaches
10%, when it reaches 15%, and so on). It fires again when the file is completely
downloaded. When the DownloadProgressChanged event fires, you can read the
DownloadProgress property to determine how much of the file is currently
available (as a value from 0 to 1). Use this information to set the width of a
rectangle, and you’re well on the way to creating a download progress bar.

• Consider informing the user about the buffer: You can react as the buffer is filled
using the BufferingProgressChanged event and read the BufferingProgress
property to find out how much content is in the buffer (as a value from 0 to 1). For
example, with a BufferingTime value of 5 seconds, a BufferingProgress value of 1
means the client has its full 5 seconds of media, whereas a BufferingProgress
value of 0.5 means the buffer is half full, with just 2.5 seconds available. This may
be too much information to display, or it may be a useful way to show the user
why a media file can’t be buffered successfully over the current connection.

• Use bit-rate throttling and IIS smooth streaming: Bit-rate throttling can improve the
scalability of your web server and smooth streaming can improve the performance
of your video—sometimes dramatically. Both features are described in the
“Adaptive Streaming” section that follows.

Adaptive Streaming
In recent years, the tide has shifted from true streaming to adaptive streaming, which is really a way to
mimic the benefits of streaming while still using progressive downloading and ordinary HTTP behind
the scenes. Currently, about 65% of all web content is delivered by progressive download, with YouTube
leading the way as the single most popular deliverer of video content. IIS now supports two features that
make adaptive streaming work more efficiently and help to close the performance gap with traditional
streaming:

• Bit-rate throttling: Bit-rate throttling prevents people with good connections from
downloading a video file really quickly, which can swamp the server if a large
number of people request the file simultaneously. Typically, when using bit-rate
throttling, you configure IIS to begin by sending a burst of content when a video
file is requested. This ensures that the user can start playback as quickly as
possible. However, after this burst—for example, after the user has downloaded 10
seconds of video—the rest of the video data is sent much more slowly. Limiting
the transfer rate has no real effect on the client’s ability to play the media, as long
as the client can download the content faster than the application can play it. (In
other words, a 700 Kbps transfer limit would be a disaster if you had a high-quality
video with a bit rate greater than 700 Kbps.)

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

429

 Note Bit-rate throttling also saves bandwidth overall. That’s because most web surfers won’t watch a video
form start to finish. It’s estimated that 80% of users navigate to a new page before finishing a video, effectively
throwing away any extra unwatched video data they’ve downloaded in advance.

• IIS smooth streaming: With smooth streaming, the web server customizes the bit
rate of the media file to suit the client. If the situation changes—for example, the
network starts to slow down—the server deals with the issue seamlessly,
automatically adjusting the bit rate down, and bringing it back up again when the
connection improves. The player won’t have to stop and refill its buffer. Similarly,
clients with more CPU resources are given chunks higher-bit-rate video, while
more limited clients are given reduced-bit-rate video.

To use either of these features, you need to download the IIS Media Services, which Microsoft
provides as a free download at www.iis.net/media. To create video files that support smooth streaming,
you’ll also need Expression Encoder Pro (rather than the free version). To learn more about bit-rate
throttling and how to configure it, read the walk-through at http://tinyurl.com/r7h6hp. To learn more
about smooth streaming and its architecture, see http://tinyurl.com/cszay7.

Advanced Video Playback
You now know enough to play audio and video in a Silverlight application. However, a few finer details
can help you get the result you want when dealing with video. First, you need to start with the right type
of video—that means a file in the right format and with the right dimensions and bit rate (the number of
bytes of data required per second). You may also want to consider a streamed video file for optimum
network efficiency. Next, you may be interested in additional features such as markers. And finally, some
of the most dazzling Silverlight effects depend on an artful use of the VideoBrush, which allows you to
paint an ordinary Silverlight element with live video. You’ll explore all these topics in the following
sections.

Video Encoding
To get the best results, you should prepare your files with Silverlight in mind. For example, you should
use video files that won’t overwhelm the bandwidth of your visitors. This is particularly true if you plan
to use large media files (for example, to display a 30-minute lecture).

Typically, the WMV files you use in your Silverlight application will be a final product based on
larger, higher-quality original video files. Often, the original files will be in a non-WMV format. However,
this detail isn’t terribly important, because you’ll need to reencode them anyway to reduce their size and
quality to web-friendly proportions.

To get the right results when preparing video for the Web, you need the right tool. Microsoft
provides two options:

• Windows Movie Maker: Included with some versions of Windows (such as
Windows Vista) and aimed squarely at the home user, Windows Movie Maker is
too limiting for professional use. Although it can work in a pinch, its lack of control
and its basic features makes it more suitable for authoring home movies than
preparing web video content.

http://www.iis.net/media
http://tinyurl.com/r7h6hp
http://tinyurl.com/cszay7

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

430

• Expression Encoder: Available as a premium part of Microsoft’s Expression Suite,
Expression Encoder boasts some heavyweight features. Best of all, it’s designed for
Silverlight, which means it provides valuable features such as the automatic
generation of custom-skinned Silverlight video pages. Best of all, Expression
Encoder is available in a free version that you can download at
www.microsoft.com/expression/products/Encoder4_Overview.aspx.

 Note The premium version of Expression Encoder (called Expression Encoder Pro) adds support for H.264
encoding, unlimited screen-capture recording (the free version is capped at ten minutes), and IIS Smooth
Streaming (a feature that lets your web server adjust the quality of streamed video based on changing network
conditions and the client’s CPU resources). If you don’t need these features, the free version of Expression Encoder
is a remarkably polished and powerful tool.

To learn more about video encoding, you can browse the product documentation, website articles,
or a dedicated book. The following sections outline the basics to get you started with Expression
Encoder.

Encoding in Expression Encoder
Expression Encoder gives you basic encoding ability, with a few nifty extra features:

• Simple video editing: You can cut out sections of video, insert a lead-in, and
perform other minor edits.

• Overlays: You can watermark videos with a still or animated logo that stays
superimposed over the video for as long as you want.

• A/B compare: To test the effect of a change or a new encoding, you can play the
original and preview the converted video at the same time. Expression Encoder
keeps both videos synchronized, so you can get a quick sense of quality
differences.

• Silverlight-ready: Expression Encoder ships with suitable profiles for a Silverlight
application. Additionally, Expression Encoder allows you to create a fully skinned
Silverlight video player, complete with nifty features like image thumbnails.

To encode a video file in Expression Encoder, follow these steps:

1. When the program starts, choose Silverlight Project, and click OK.

2. To specify the source file, choose File Import. Browse to the appropriate
media file, select it, and click Open. There will be a short delay while
Expression Encoder analyzes the file before it appears in the list in the Sources
tab at the bottom of the window. At this point, you can perform any other edits
you want, such as trimming out unwanted video, inserting a lead-in, or adding
an overlay. (Many of these changes are made through the Enhance tab, which
you can show by choosing Window Enhance.)

http://www.microsoft.com/expression/products/Encoder4_Overview.aspx

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

431

3. To specify the destination file, look for the Output tab on the right side of the
window. In the Job Output section, you can specify the directory where the
new file will be placed and its name.

4. To choose the bit rate, look in the Presets tab (in the top-right corner of the
window), and expand the Encoding for Silverlight section. Then, expand the
VC-1 section inside. If you’re using progressive downloads, you need to select
a format from the Variable bit-rate group. If you’re using streaming with
Windows Media Services, choose a format from the Constant bit-rate group
instead. Different formats result in different bitrates, video quality, and video
size—to get more details, hover over a format in the list (as shown in Figure 12-
4. When you’ve picked the format you want (or if you just want to preview the
effect it will have on your video), click the Apply button at the bottom of the
Presets tab.

Figure 12-4. Choosing the type of encoding

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

432

SILVERLIGHT COMPRESSION: CBR AND VBR

Depending on whether you’re planning to use streaming or simple progressive downloads, Silverlight
chooses between two compression modes:

• Constant Bit-Rate Encoding (CBR): This is the best choice if you plan to allow video
streaming. With CBR encoding, the average bit rate and the peak bit rate are the
same, which means the data flow remains relatively constant at all times. Another
way of looking at this is that the quality of the encoding may vary in order to
preserve a constant bit rate, ensuring that the user gets smooth playback. (This
isn’t necessary if your application is using progressive downloading, because then
it will cache as much of the media file as it can.)

• Variable Bit-Rate Encoding (VBR): This is the best choice if you plan to use
progressive downloading. With VBR encoding, the bit rate varies throughout the
file depending on the complexity of the video, meaning more complex content is
encoded with a higher bit rate. In other words, the quality remains constant, but
the bit rate is allowed to change. Video files are usually limited by their worst
parts, so a VBR-encoded file generally requires a smaller total file size to achieve
the same quality as a CBR-encoded file. When you use VBR encoding with
Silverlight, the maximum bit rate is still constrained. For example, if you choose
the VC-1 Web Server 512k DSL profile, you create encoded video with an average
bit rate of 350 Kbps (well within the range of the 512 Kbps connection) and a
maximum bit rate of 750 Kbps.

5. After you choose an encoding, the relevant information appears in the Video
section of the Encode tab. Before you perform the encoding, you can tweak
these details. For example, you can adjust the dimensions of the video output
using the Size box. You can also preview what the file will look like by playing it
in the video window on the left.

6. To encode your video, click the Encode button at the bottom of the window, in
the Media Content panel. If you want, you can save your job when the
encoding is finished so you can reuse its settings later (perhaps to encode an
updated version of the same file).

Markers
Markers are text annotations that are embedded in a media file and linked to a particular time.
Technically, the WMV format supports text markers and script commands (used to do things like launch
web pages while playback is underway), but Silverlight treats both of these the same: as timed
bookmarks with a bit of text.

Markers provide some interesting possibilities for creating smarter Silverlight-based media players.
For example, you can embed captions as a set of markers and display them at the appropriate times.
(You could even use this technique to build a poor man’s subtitling system.) Or, you can embed other
types of instructions, which your application can then read and act on.

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

433

Although it’s up to you to write the code that reacts to markers, Silverlight gives you two tools: a
MarkerReached event and the Markers collection in the MediaElement. But before you can investigate
these details, you first need to consider how to add markers to your media file in the first place.

Adding Markers with Expression Encoder
Expression Encoder has a built-in feature for adding markers. Here’s how to use it:

1. After you’ve imported a media file, choose the Window • Metadata to show the
Metadata tab at the bottom right of the window.

2. Drag the playback bar under the video file to the position where you want to
place the marker.

3. In the Metadata tab, find the Markers box. At the bottom of the Markers box,
click the Add button to create a new marker, which is added to the list (see
Figure 12-5).

Figure 12-5. Adding a new marker in Expression Encoder

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

434

4. Adjust the time if necessary, and supply the marker text in the Value column.

5. If you want to use a marker for indexed navigation, you may want to select the
Key Frame and Thumbnail check boxes next to your new marker. If you create
a key frame at this location, playback can resume at precisely this location with
minimal delay. If you create a thumbnail, you can show that thumbnail to the
user. The user can click that thumbnail to tell your application to seek to the
corresponding marker location. Both of these features apply only if you use
Expression Encoder to generate a Silverlight video page (see step 7), although
you can build similar features on your own.

6. Return to step 2, and repeat to add more markers. You can also edit existing
markers and click Remove to delete the currently selected marker.

7. Expression Encoder can build a complete Silverlight 4–based media player to
go along with your encoded video. To use this feature, choose Window
Templates to show the Templates tab at the right. Then, choose an item from
the Template list. The template determines the Silverlight version and the
visual skin that the Silverlight player page uses—you see a thumbnail preview
when you make your selection. If you choose (None), Expression Encoder
doesn’t create a Silverlight video player.

 Tip When Expression Encoder creates a template-based media player, it generates an HTML entry page and
several compiled XAP files. Expression Encoder doesn’t generate any source code or project files, so you won’t be
able to fine-tune the media player after you create it. However, you can take an existing template and use it as the
basis for your own custom template, which you can then use in conjunction with any Expression Encoder project.
To do so, first pick the template you want to use as the starting point in the Templates tab. Then, click the tiny
gear icon in the bottom-right corner of the tab, and choose Edit Copy of Template In Visual Studio.

8. When you’re finished, click Encode to start encoding your video.

Using Markers in a Silverlight Application
The easiest way to show marker information is to handle the MarkerReached event of the
MediaElement. The TimelineMarkerRoutedEventArgs.Marker property provides a TimelineMarker
object. The TimelineMarker object includes the text of the marker (through the Text property) and the
exact time where it’s placed (through the Time property).

Here’s a simple event handler that copies the text from a marker to a TextBlock in the Silverlight
page, as shown in Figure 12-6:

private void media_MarkerReached(object sender, TimelineMarkerRoutedEventArgs e)
{
 lblMarker.Text = e.Marker.Text + " at " + e.Marker.Time.TotalSeconds +
 " seconds";
}

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

435

Figure 12-6. Displaying a marker

Rather than setting text, you can examine it and then determine the appropriate action to perform.
Instead of waiting for the MarkerReached event, you can examine the Markers collection of the

MediaElement. This technique is particularly useful if you want to use markers for navigation. For
example, you can react to the MediaOpened event (at which point the Markers collection has been
populated) and then display the marker information in a list:

private void media_MediaOpened(object sender, RoutedEventArgs e)
{
 foreach (TimelineMarker marker in media.Markers)
 {
 lstMarkers.Items.Add(marker.Text + " (" + marker.Time.Minutes + ":" +
 marker.Time.Seconds + ":" + marker.Time.Milliseconds + ")");
 }
}

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

436

 Note If your media file includes separate-stream script commands, they don’t appear in the Markers collection.
That’s because this type of marker information can exist anywhere in the stream, and it may not have been
downloaded when the MediaOpened event fires. To prevent inconsistent behavior, these types of markers are
never added to the Markers collection. However, the MediaElement still detects them and fires the MarkerReached
event at the appropriate time. If this isn’t the behavior you want, use the more common header-embedded script
commands, which place them in the header (which is read before MediaOpened fires).

You can also use the TimelineMarker.Time property to perform navigation:

media.Position = selectedMarker.Time;
media.Play();

Figure 12-7 shows the result.

Figure 12-7. Navigating with a marker list

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

437

In this example, the code reads the markers from the media file. You can also create TimelineMarker
objects programmatically and add them to the Markers collection after the media file has been loaded
and the MediaOpened event has fired. In this case, the marker acts as a normal marker in all respects—
for example, the MediaElement fires the MarkerReached event when it’s reached. However, the marker
isn’t persisted in the video file when you close and reload it. This behavior gives you the ability to load
marker information from another source, like a text file.

 Note Expression Encoder includes a feature that lets you create image thumbnails for your markers. These
images are embedded in your video file or linked to it in any way. If you use this feature, it’s up to you to show the
images in your page and use code to navigate to the right position. If you look at the code for the video player
application that Expression Encoder can create, you’ll find that it hard-codes the image file names and the marker
positions, which is a suitable approach for automatically generated code but not as good an idea in application
code that you need to maintain.

VideoBrush
VideoBrush is a Silverlight brush that paints an area with the video content that’s currently playing in a
specified MediaElement. Like other Silverlight brushes, you can use VideoBrush to fill anything from a
basic shape to a complex path or element.

The basic approach to using a VideoBrush is straightforward. First, create a MediaElement for the
file you want to play:

<MediaElement x:Name="fireMovie" Source="fire.wmv"
 Height="0" Width="0"></MediaElement>

Notice that this example sets the Height and Width of the MediaElement to 0. This way, the original
video window doesn’t appear, and it won’t take up any space in your layout. The only video that will
appear is the video that’s being painted by the VideoBrush. You can’t get the same result by setting the
Visibility property—if you hide the MediaElement by setting its Visibility to Collapsed, you also end up
hiding the content that the VideoBrush is painting.

 Tip In some situations, you may want to display the original video window (which is shown in the
MediaElement) and the video content that’s painted by the VideoBrush. For example, you’ll want the original video
window to remain visible if you’re using the VideoBrush to create a reflection effect.

The next step is to choose the element you want to paint with the VideoBrush. You can use the
VideoBrush anywhere an element expects a brush. If you’re dealing with the shape elements, you’ll set
properties like Fill and Stroke. If you’re dealing with other elements, you’ll look for properties like
Foreground and Background. The following example uses the VideoBrush to fill the text in a large
TextBlock:

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

438

<TextBlock Text="Fiery Letters" FontFamily="Arial Black" FontSize="80">
 <TextBlock.Foreground>
 <VideoBrush SourceName="fireMovie"></VideoBrush>
 </TextBlock.Foreground>
</TextBlock>

The SourceName property links the VideoBrush to the corresponding MediaElement. Figure 12-8
shows the result—text that’s filled with roaring flames.

Figure 12-8. Using video to fill text

When you use the VideoBrush, playback is still controlled through the MediaElement. In the current
example, the video file begins to play automatically, because AutoPlay is true by default. Alternatively,
you can set AutoPlay to false and control playback using the familiar Play(), Stop(), and Pause() methods
of the MediaElement.

It’s also worth noting that you can set certain details in the MediaElement without affecting the
VideoBrush. Properties that affect the visual appearance of the MediaElement, such as Height, Width,
Opacity, Stretch, RenderTransform, and Clip, have no effect on the VideoBrush. (The obvious exception
is Visibility.) Instead, if you want to alter the video output, you can modify similar properties of the
VideoBrush or the element you’re painting with the VideoBrush.

Video Effects
Because the MediaElement works like any other Silverlight element and the VideoBrush works like any
other Silverlight brush, you have the ability to manipulate video in some surprising ways. Here are some
examples:

• You can use a MediaElement as the content inside a content control, such as a
button.

• You can set the content for thousands of content controls at once with multiple
MediaElement objects—although the client’s CPU may not bear up very well
under the strain.

• You can combine video with transformations through the RenderTransform
property. This lets you move your video page, stretch it, skew it, or rotate it.

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

439

• You can set the Clipping property of the MediaElement to cut down the video
page to a specific shape or path and show only a portion of the full frame.

• You can set the Opacity property to allow other content to show through behind
your video. You can even stack multiple semitransparent video pages on top of
each other.

• You can use an animation to change a property of the MediaElement (or one of its
transforms) dynamically.

• You can copy the current content of the video page to another place in your user
interface using a VideoBrush, which allows you to create specific effects like
reflection.

• You can use the same VideoBrush to paint multiple elements (or create multiple
VideoBrush objects that use the same MediaElement). Both of these techniques let
you fill multiple objects with the same video or transformed versions of the same
video.

For example, Figure 12-9 shows a video with a reflection effect underneath. It does so by creating a
Grid with two rows. The top row holds a MediaElement that plays a video file. The bottom row holds a
rectangle that’s painted with a VideoBrush. The video content is flipped over by using the
RelativeTransform property and then faded out gradually toward the bottom using an OpacityMask
gradient:

<Grid Margin="15" HorizontalAlignment="Center">
 <Grid.RowDefinitions>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>

 <MediaElement Grid.Row="0" x:Name="media" Source="test.wmv"
 Stretch="Uniform"></MediaElement>

 <Rectangle Grid.Row="1" Stretch="Uniform">
 <Rectangle.Fill>
 <VideoBrush SourceName="media">
 <VideoBrush.RelativeTransform>
 <ScaleTransform ScaleY="-1" CenterY="0.5"></ScaleTransform>
 </VideoBrush.RelativeTransform>
 </VideoBrush>
 </Rectangle.Fill>

 <Rectangle.OpacityMask>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Color="Black" Offset="0"></GradientStop>
 <GradientStop Color="Transparent" Offset="0.6"></GradientStop>
 </LinearGradientBrush>
 </Rectangle.OpacityMask>
 </Rectangle>
</Grid>

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

440

Figure 12-9. Reflected video

This example performs fairly well. Each frame must be copied to the lower rectangle, and each
frame needs to be flipped and faded to create the reflection effect. (Silverlight uses an intermediary
rendering surface to perform these transformations.) But the work required to download and decode the
frame of video is performed just once, and on a modern computer, the extra overhead is barely
noticeable.

One of the most impressive effects in the early days of Silverlight development was a video puzzle. It
took a high-resolution video file and split it into a grid of interlocking puzzle pieces, which the user could

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

441

then drag apart. The effect—separate puzzle pieces, each playing a completely synchronized portion of a
single video—was stunning.

With the help of the VideoBrush, creating an effect like this is almost trivial. The following example
shows a slightly simplified version of the original puzzle demonstration. It starts with a single window of
puzzle pieces that’s divided into a configurable number of squares. When the user clicks a square in the
video window, an animation moves it to a random position (as shown in Figure 12-10). Several clicks
later, the video image is completely scrambled, but all the pieces are still playing the synchronized video.

Figure 12-10. Scrambling a video while it’s playing

To create this example, you first need the MediaElement that plays the video. Because all the puzzle
pieces are showing portions of the same video and you want the playback synchronized, you need just
one MediaElement. It’s given a Height and Width of 0 to make it invisible, so it appears only when used
through the VideoBrush:

<MediaElement x:Name="videoClip" Source="Butterfly.wmv" Height="0" Width="0"
 MediaEnded="videoClip_MediaEnded"></MediaElement>

When the media ends, it’s started again, providing a looping playback:

private void videoClip_MediaEnded(object sender, RoutedEventArgs e)
{
 videoClip.Stop();
 videoClip.Play();
}

Next, you need a layout container that will hold the puzzle pieces. In this case, a Canvas makes the
most sense because the animation needs to move the pieces around the page when they’re clicked:

<Canvas Margin="20" x:Name="puzzleSurface" Width="300" Height="300"
 Background="White" HorizontalAlignment="Center" VerticalAlignment="Center">
</Canvas>

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

442

The most interesting code happens when a user clicks the Generate Puzzle button. This code
calculates the size of rectangle needed to make a puzzle piece and then dynamically creates each piece
as a simple Rectangle element. Here’s the code that starts it off:

private void cmdGeneratePuzzle_Click(object sender, RoutedEventArgs e)
{
 // Get the requested dimensions.
 int rows; int cols;
 Int32.TryParse(txtRows.Text, out rows);
 Int32.TryParse(txtCols.Text, out cols);

 if ((rows < 1) || (cols <1))
 return;

 // Clear the surface.
 puzzleSurface.Children.Clear();

 // Determine the rectangle size.
 double squareWidth = puzzleSurface.ActualWidth / cols;
 double squareHeight = puzzleSurface.ActualHeight / rows;

 // Create the brush for the MediaElement named videoClip.
 VideoBrush brush = new VideoBrush();
 brush.SetSource(videoClip);

 // Create the rectangles.
 double top = 0; double left = 0;
 for (int row = 0; row < rows; row++)
 {
 for (int col = 0; col < cols; col++)
 {
 ...

The next step is to make sure each Rectangle element shows only the region that’s assigned to it.
You could accomplish this by applying a transform to the VideoBrush, but then you’d need to use a
different VideoBrush object for each square. An alternate approach is to tweak the clipping region of
rectangle. In this case, each rectangle gets the size of the full video window, but it’s clipped to show just
the appropriate region. Here’s the code that creates the rectangles and sets the clipping:

 ...
 // Create the rectangle. Every rectangle is sized to match the Canvas.
 Rectangle rect = new Rectangle();
 rect.Width = puzzleSurface.ActualWidth;
 rect.Height = puzzleSurface.ActualHeight;

 rect.Fill = brush;
 SolidColorBrush rectBrush = new SolidColorBrush(Colors.Blue);
 rect.StrokeThickness = 3;
 rect.Stroke = rectBrush;

 // Clip the rectangle to fit its portion of the puzzle.
 RectangleGeometry clip = new RectangleGeometry();
 // A 1-pixel correction factor ensures there are never lines in between.

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

443

 clip.Rect = new Rect(left, top, squareWidth+1, squareHeight+1);
 rect.Clip = clip;

 // Handle rectangle clicks.
 rect.MouseLeftButtonDown += rect_MouseLeftButtonDown;

 puzzleSurface.Children.Add(rect);

 // Go to the next column.
 left += squareWidth;
 }
 // Go to the next row.
 left = 0;
 top += squareHeight;
 }
 // (If the video is not already playing, you can start it now.)
}

When a rectangle is clicked, the code responds by starting two animations that move it to a new,
random position. Although you could create these animations manually, it’s easier to define them in the
resources collection. That’s because the application requires just two animations and can reuse them for
whatever square is clicked.

Here are the two animations. The animation that shifts the rectangle sideways takes 0.25 seconds,
and the animation that moves it up or down takes 0.15 seconds:

<UserControl.Resources>
 <Storyboard x:Name="squareMoveStoryboard">
 <DoubleAnimation x:Name="leftAnimation" Duration="0:0:0.25"
 Storyboard.TargetProperty="(Canvas.Left)"></DoubleAnimation>
 <DoubleAnimation x:Name="topAnimation" Duration="0:0:0.15"
 Storyboard.TargetProperty="(Canvas.Top)"></DoubleAnimation>
 </Storyboard>
</UserControl.Resources>

You’ll notice that this code uses a single storyboard for all its animations. You must take extra care
when reusing this storyboard. Before you can start a new animation, you must manually place the
current square in its new position and then stop the storyboard. The alternative is to dynamically create
a new storyboard every time a square is clicked. (You saw this technique in action in Chapter 11, with the
bomb-dropping game.)

Here’s the code that manages the storyboard and moves the square when it’s clicked, sending it
drifting to a new, random location:

private Rectangle previousRectangle;

private void rect_MouseLeftButtonDown(object sender, MouseButtonEventArgs e)
{
 // Get the square.
 Rectangle rectangle = (Rectangle)sender;

 // Stop the current animation.
 if (previousRectangle != null)
 {
 double left = Canvas.GetLeft(rectangle);

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

444

 double top = Canvas.GetTop(rectangle);
 squareMoveStoryboard.Stop();
 Canvas.SetLeft(rectangle, left);
 Canvas.SetTop(rectangle, top);
 }

 // Attach the animation.
 squareMoveStoryboard.Stop();
 Storyboard.SetTarget(squareMoveStoryboard, rectangle);

 // Choose a random direction and movement amount.
 Random rand = new Random();
 int sign = 1;
 if (rand.Next(0, 2) == 0) sign = -1;
 leftAnimation.To = Canvas.GetLeft(rectangle) + rand.Next(60,150) * sign;
 topAnimation.To = Canvas.GetTop(rectangle) + rand.Next(60, 150) * sign;

 // Store a reference to the square that's being animated.
 previousRectangle = rectangle;

 // Start the animation.
 squareMoveStoryboard.Begin();
}

This is all the code you need to complete the example, combining video, interactivity, and a rather
dramatic effect that’s leagues beyond other browser-based application platforms.

Low-Latency Sound
The MediaElement is a high-level wrapper for audio or video playback. It provides plenty of worthwhile
features and is reasonably flexible. You can use it to play background music or to create your own
customized video player.

However, the MediaElement isn’t a natural fit for applications that need to combine or manipulate
real-time audio. For example, if you want to use sound in an arcade game or build a music synthesizer,
the MediaElement is awkward at best. Here are some of the challenges you’ll face:

• To avoid delays, you need to create the MediaElement and load its audio well
before you actually play it. As a workaround, developers often cycle their sound
effects through a group of MediaElement objects (which can get messy).

• Even if audio is already loaded, it may start at the exact instant you initiate
playback. At worst, there may be a noticeable lag between the event and the audio
it triggers.

• There’s no way to manipulate the audio you’re playing (for example, change its
pitch).

A better solution is to use Silverlight’s SoundEffect and SoundEffectInstance classes, which are
found in the Microsoft.Xna.Framework.Audio namespace. To use these classes, you need to add a
reference to the Microsoft.Xna.Framework.dll assembly.

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

445

Play a Sound with SoundEffect
The SoundEffect class provides a simpler, lower-level way to play sound effect clips. To use it, you create
an instance (in code, not XAML markup) and pass in a resource with your audio data. Then, you can play
your audio clip whenever you want it, as many times as you want to, and with as little delay as possible.

Unlike the MediaElement, which doesn’t support WAV audio at all, the SoundEffect class uses WAV
audio exclusively. However, not any old WAV file will do. The SoundEffect class accepts only PCM-
encoded files, in mono or stereo, with a sample size of 8-bit or 16-bit and a sample rate of 22.5, 44.1, or
48 kHz.

Here’s a no-frills playback example with SoundEffect:

// Get the sound file data.
StreamResourceInfo sri = Application.GetResourceStream(
 new Uri("Media;component/explosion.wav", UriKind.RelativeOrAbsolute));

// Load the sound.
SoundEffect explosionSound = SoundEffect.FromStream(sri.Stream);

// Play the sound. This happens asynchronously, so the code carries on
// with no pause.
explosionSound.Play();

 Note This example assumes the project is named Media, and it contains a resource named explosion.wav.
Unlike the MediaElement class, the SoundEffect class can’t play content files. And if you’re still hazy on how to add
assembly resources to a project, refer to Chapter 6.

When you call Play(), the response is virtually instantaneous. You won’t be able to detect any audio
lag.

If you plan to play a sound more than once, you can store your SoundEffect object as a member field
in the current page. You would then load all your streams when the page is initialized and play them as
needed.

 Note There’s no limit to how many SoundEffect objects you can have floating in memory, nor is there a limit to
how many SoundEffect objects you can play at once (although heavily overlapped audio will eventually degrade
performance).

Changing Playback Settings
The SoundEffect.Play() method lets you get a little fancier with your playback. You can use an
overloaded version that accepts three values, which specify the volume, pitch, and panning to use when
playing the sound:

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

446

// Use a volume of 0.8, a pitch of 1.0, and a panning of -0.3.
explosionSound.Play(0.8f, 1.0f, -0.3f);

The f after each value indicates that the compiler should treat each number as a float rather than a
double. Without this detail, you’ll run into a compile-time error.

These three details are fairly straightforward. The volume ranges from 0 (silence) to 1 (full volume,
according to the current computer settings). The pitch adjustment ranges from -1 (down one octave) to
1 (up one octave), with 0 being normal pitch. Finally, panning ranges from -1 (left channel only) to 1
(right channel only), with 0 being centered, which is the default.

Overlapping Sounds with SoundEffectInstance
Curiously, the SoundEffect also has a slightly different sibling called the SoundEffectInstance class. After
you’ve loaded a sound into a SoundEffect, you can create one more SoundEffectInstance object by
calling SoundEffect.CreateInstance(), like this:

SoundEffectInstance explosion1 = explosionSound.CreateInstance();
SoundEffectInstance explosion2 = explosionSound.CreateInstance();

The obvious question is, why bother? One reason is that you want to manipulate different copies of
the same sound and possibly overlap them in interesting ways. In this case, it’s more efficient to create
SoundEffectInstance objects than keep reloading the WAV audio into new SoundEffect objects. Here’s
an example that combines three explosion sounds:

// explosion1 will be a lower, quieter sound.
explosion1.Pitch = -0.5f;
explosion1.Volume = 0.8f;

// explosion2 will be panned to one side, higher-pitched, and even quieter.
explosion1.Pitch = 1.5f;
explosion2.Pan = -0.9f;
explosion2.Volume = 0.7f;

// Play all three at once.
explosionSound.Play();
explosion1.Play();
explosion2.Play();

 Note The SoundEffect class also provides a MasterVolume property, which starts at 1. Reduce this value, and it
reduces the volume of the SoundEffect and any SoundEffectInstance objects you created with it. The
MasterVolume property acts in addition to the SoundEffectInstance.Volume property.

When using this sort of technique, it’s often useful to delay the start of one sound. One easy and
efficient way to do this without locking up your application is to use a DispatcherTimer—a special sort of
.NET timer that triggers its Tick even on Silverlight’s user interface thread. Here’s an example:

DispatcherTimer timer = new DispatcherTimer();
timer.Interval = TimeSpan.FromSeconds(0.5);

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

447

// Play the first two sounds.
explosionSound.Play();
explosion1.Play();

// Play the third sound half a second later.
timer.Tick += delegate
 {
 timer.Stop();
 explosion2.Play();
 };
timer.Start();

To keep this code tight and concise, the Timer.Tick event handling code is declared inline, using an
anonymous method. This code has the simple task of stopping the timer and playing the sound, so it
hardly seems worthwhile to create a completely new method.

Looping Audio
Another reason to use the SoundEffectInstance class instead of SoundEffect is because it provides a few
extra features. Most useful is the SoundEffectInstance.IsLooped property, which allows you to play a
looping background audio track:

StreamResourceInfo sri explosionSoundStream = Application.GetResourceStream(
 new Uri("Media;component/backgroundLoop.wav", UriKind.RelativeOrAbsolute));

SoundEffect backgroundEffect = SoundEffect.FromStream(sri.Stream);
SoundEffectInstance backgroundInstance = backgroundEffect.CreateInstance();

backgroundInstance.IsLooped = true;
backgroundInstance.Play();

To control the playback of looped audio, you can use the Pause(), Resume(), and Stop() methods of
the SoundEffectInstance class, none of which is included in the SoundEffect class.

Webcam and Microphone Input
One of the more hyped additions to Silverlight 4 is support for video and audio input, through a user’s
webcam and microphone. This opens the door to new types of rich Internet applications, from video
conferencing to real-time chat in a multiplayer game. However, although this door is open, the opening
is a very narrow one. To create a realistic application that incorporates user-recorded audio or video,
you’ll be forced to write pages of custom code, perform complex encoding and decoding, and rely on
external libraries to get support for the formats you need.

In the following sections, you’ll see both sides of Silverlight’s webcam and microphone support.
You’ll learn how you can use the built-in support to accomplish a few relatively trivial tasks (such as
showing live video in a portion of your page), and you’ll consider the next steps you must take to build
more practical applications that use interactive video and audio.

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

448

Accessing a Capture Device
Fortunately, you don’t need to worry about hardware configuration or device specifics to use
Silverlight’s support for webcams and microphones. Instead, Silverlight automatically recognizes video
and audio capture devices and makes them available to your application. To see what Silverlight’s
discovered on your computer, right-click any currently running Silverlight application to show the
Silverlight menu, and then click Silverlight. Then, choose the Webcam/Mic tab of the Silverlight
Configuration window, which is shown in Figure 12-11.

Figure 12-11. Recognized webcam and microphone devices

If you have more than one suitable device, you can choose what Silverlight designates as the default
in an application. (Usually, Silverlight just follows the lead of the operating system, which has its own
way to designate the default video and audio capture devices.)

All capture operations begin with the CaptureDeviceConfiguration class from the
System.Windows.Media namespace. It provides a handful of static members that you can use to get
started. First up is the Boolean property AllowedDeviceAccess, which returns true if the user has given
your application permission to use Silverlight’s audio and video capture features. Initially, this property
will be false, and your application must call the RequestDeviceAccess() method to prompt the user for
permission (Figure 12-12). However, if the user checks the “Remember my answer” check box and clicks
Yes, your application will automatically get permission next time and won’t need to call
RequestDeviceAccess().

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

449

Figure 12-12. Requesting access to webcam and microphone devices

The usual way to deal with device access is to combine the two steps (checking whether your
application has access and requesting access if it doesn’t) into one if block, like so:

if (CaptureDeviceConfiguration.AllowedDeviceAccess ||
 CaptureDeviceConfiguration.RequestDeviceAccess())
{
 // Permission has been granted.
}
else
{
 // AllowedDeviceAccess was false (meaning no prior permission was granted) and
 // RequestDeviceAccess() returned false (meaning the user declined to give
 // permission.) No capture is possible.
}

Note that this code uses the OrElse operator rather than just Or. This performs short-circuit
evaluation, ensuring that the second condition isn’t evaluated and the RequestDeviceAccess() method
isn’t called if the AllowedDeviceAccess property is already True.

Once you have permission, you can call GetDefaultVideoCaptureDevice() to get the default video
device (as a VideoCaptureDevice object) and GetDefaultAudioCaptureDevice() to get the default audio
device (as an AudioCaptureDevice object). Both objects expose just a few properties: FriendlyName,
SupportedFormats, AudioFrameSize (for audio), and DesiredFormat.

You aren’t limited to using the default video or audio source. Instead, you can get all the supported
capture devices using the GetAvailableVideoCaptureDevices() and GetAvailableAudioCaptureDevices()
methods. Both of these methods return collections. However, because there is so little information
available about individual video and audio devices, and because it’s impossible for your code to know
much about the user’s hardware configuration in advance, it’s very rare for an application to choose a
device from these collections using any sort of programmatic logic. Instead, these methods are useful if
you want to give the user the choice. For example, you can bind the results returned from
GetAvailableVideoCaptureDevices() to some sort of list control (displaying the FriendlyName of each
one) and then use whichever device the user selects.

You’ve now seen all the methods of the CaptureDeviceConfiguration class. It gives you the tools you
need to request device access and retrieve limited information about every available video and audio
device. However, to actually use these devices, you need the help of the CaptureSource class described in
the next section.

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

450

Basic Webcam Support
Silverlight includes built-in support for two tasks with the webcam:

• Showing live webcam video in your application

• Taking a snapshot (as a bitmap) from the video stream of a webcam

Figure 12-13 shows a sample application that uses both of these features. On the left, it shows a live
display of what the webcam is capturing. When the user clicks the Snapshot button, it copies the current
frame to the box on the right.

Figure 12-13. A basic webcam application

The first step to use either of these features is to create a CaptureSource object. The CaptureSource
provides the Start() and Stop() methods that allow you to control when your application is capturing
audio and video. It also includes a State property that indicates what the CaptureSource is currently
doing, as a value for the CaptureStates enumeration (Started, Stopped, or Failed).

Usually, you’ll define the CaptureSource object as a member field, so it’s available in all your event
handlers:

private CaptureSource capture = new CaptureSource();

Before you start a capture with CaptureSource, you must assign the VideoCaptureDevice property
(if you’re capturing video), the AudioCaptureDevice (if you’re capturing audio), or both. Here’s an
example that starts capturing video with the default video capture device:

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

451

capture.VideoCaptureDevice =
 CaptureDeviceConfiguration.GetDefaultVideoCaptureDevice();
capture.Start();

This starts the capture process and ensures that the CaptureSource object gets the stream of video
or audio input. But how do you actually use that video input? If you want to display it in your page, you
need the help of the VideoBrush, which takes the CaptureSource stream and lets you use it to paint
another element. (In Figure 12-13, that element is a basic Rectangle object.)

You now know enough to create the code that initiates video capture in the current example (Figure
12-13). To start it off, the user clicks the Start button. At this point, the application checks for device
access (and requests it if necessary), selects the default video capture device, starts the capture, and
creates the VideoBrush that copies the video output to the screen. Here’s the complete code:

private void cmdStartCapture_Click(object sender, RoutedEventArgs e)
{
 if (CaptureDeviceConfiguration.AllowedDeviceAccess ||
 CaptureDeviceConfiguration.RequestDeviceAccess())
 {
 // It's always safe to call Stop(), even if no capture is running.
 // However, attempting to call Start() while a capture is already running,
 // without calling Stop() first, causes an exception.
 capture.Stop();

 // Get the default webcam.
 capture.VideoCaptureDevice =
 CaptureDeviceConfiguration.GetDefaultVideoCaptureDevice();
 if (capture.VideoCaptureDevice == null)
 {
 MessageBox.Show("Your computer does not have a video capture device.");
 }
 else
 {
 // Start a new capture.
 capture.Start();

 // Map the live video to a VideoBrush.
 VideoBrush videoBrush = new VideoBrush();
 videoBrush.Stretch = Stretch.Uniform;
 videoBrush.SetSource(capture);

 // Use the VideoBrush to paint the fill of a Rectangle.
 rectWebcamDisplay.Fill = videoBrush;
 }
 }
}

Stopping the capture is easy:

private void cmdStopCapture_Click(object sender, RoutedEventArgs e)
{
 capture.Stop();
}

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

452

The current example also uses the other feature of the CaptureSource class—its ability to take a
snapshot of the current frame and provide it as a WriteableBitmap object. To use this feature, you call
the CaptureImageAsync() method, which starts the frame grab, and handle the
CaptureImageCompleted event, which fires when the bitmap is ready. Here’s the code you need:

private void cmdSnapshot_Click(object sender, RoutedEventArgs e)
{
 if (capture.State == CaptureState.Started)
 {
 capture.CaptureImageCompleted += capture_CaptureImageCompleted;
 capture.CaptureImageAsync();
 }
}

private void capture_CaptureImageCompleted(object sender,
 CaptureImageCompletedEventArgs e)
{
 // Show the frame in an Image control.
 imgSnapshot.Source = e.Result;
}

This hints at additional possibilities. For example, once you have a bitmap of a single frame, you
have the ability to store it (perhaps using the isolated storage features described in Chapter 22), alter it
with pixel shader effects (Chapter 9), or upload it to a web service (Chapter 19). However, before you
start storing or sending captured frames, you need to think seriously about size, because bitmaps are
horrendously, wastefully huge. A realistic application would certainly convert the WriteableBitmap
content to another format, such as PNG or JPEG, before storing or sending it. Unfortunately, this
functionality isn’t built into Silverlight, but it’s fairly easy to get using separately available libraries like
fjcore (http://code.google.com/p/fjcore) or the .NET Image Tools (http://imagetools.codeplex.com).

Recording Audio Snippets
The CaptureSource is a simple wrapper that provides a small amount of basic functionality. To do
anything more ambitious, you need to dig deeper into the processing pipeline and write a custom video
sink or audio sink.

Video sinks and audio sinks are custom classes that have a chance to process the raw data as it’s
being captured from a video or audio device, one chunk at a time. If you plan to create a custom video
sink, you must create a custom class that derives from VideoSink. To create an audio sink, you create a
class that derives from AudioSink.

For example, imagine you want to create an application that allows the user to record a short
snippet of audio or video and store it in memory. You can then play that audio pack, save it, or pass it to
the server. Figure 12-14 shows just this short of application, which stores a short clip of audio and plays
it back at the click of a button.

http://code.google.com/p/fjcore
http://imagetools.codeplex.com

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

453

Figure 12-14. Recording and playing an audio clip

Although you might expect the CaptureSource to handle this task, it’s limited to playing live video or
capturing static images. As awkward as it seems (and is), you need to handle the raw data yourself to
implement this sort of solution.

The following code listing shows the simplest possible custom audio sink—one that merely copies
each sample of data to an in-memory stream. Here’s how the class is defined:

public class MemoryStreamAudioSink : AudioSink
{ ... }

In the MemoryStreamAudioSink, all the audio data is written to a MemoryStream object. This
stream is then made available to the rest of the application through the AudioData property:

private MemoryStream stream;
public MemoryStream AudioData
{
 get
 {
 return stream;
 }
}

All audio sinks must provide an implementation of the AudioData property. They must also override
several more abstract members. For example, the AudioFormat property track the format that the raw
audio data is in, and the OnFormatChange() gives the audio sink the chance to react when the format
changes:

private AudioFormat audioFormat;
public AudioFormat AudioFormat
{
 get
 {
 return audioFormat;
 }
}

protected override void OnFormatChange(AudioFormat audioFormat)

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

454

{
 if (this.audioFormat == null)
 {
 this.audioFormat = audioFormat;
 }
 else
 {
 // Don't allow changes that could affect an existing capture.
 throw new InvalidOperationException();
 }
}

Next, you need to override the OnCaptureStarted() method, which fires when recording is just about
to begin. In the case of the MemoryStreamAudioSink, the OnCaptureStarted() method simply
instantiates a new MemoryStream:

protected override void OnCaptureStarted()
{
 // Prepare a new in-memory stream to store the captured audio.
 stream = new MemoryStream();
}

The single most important method is OnSamples(), which is triggered repeatedly while a capture is
underway, every time the audio sink receives a complete sample of audio data. This information is
provided to your code as a byte array, which the MemoryStreamAudioSink simply writes to the memory
array:

protected override void OnSamples(long sampleTime, long sampleDuration,
 byte[] sampleData)
{
 // Each time a sample is received, write it to the in-memory stream.
 // (A more complex implementation might stream it over the network.)
 stream.Write(sampleData, 0, sampleData.Length);
}

When the capture is stopped, the OnCaptureStopped() method is called. At this point, the
MemoryStreamAudioSink has a bit of work to do. Currently, its internal memory stream has the raw
wave data. But to use this as a true WAV file, with other applications that understand the WAV file format
(for example, Windows Media Player), you need to add a proper header at the beginning. Ideally, the
MemoryStreamAudioSink class would add this header before recording even begins, but this isn’t
possible, because the header includes information that isn’t known until after the capture ends (such as
the total length of the audio). To work around this, the OnCaptureStopped() method shown here writes
the correct header and then copies all the data from the recorded memory stream to the new memory
stream. It then replaces the old stream (which releases it for garbage collection). Although this technique
works, it’s memory-intensive, because you need enough memory for two copies of your recorded audio.
A better (but more complicated) approach is to leave space for the header and attempt to patch it in
later.

protected override void OnCaptureStopped()
{
 // Genereate the header.
 byte[] wavFileHeader = WavFileHelper.GetWavFileHeader(AudioData.Length,
 AudioFormat);

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

455

 // Write the header to a new stream.
 MemoryStream wavStream = new MemoryStream();
 wavStream.Write(wavFileHeader, 0, wavFileHeader.Length);

 // Write the rest of the data, one chunk of 4096 bytes at a time.
 byte[] buffer = new byte[4096];
 int read = 0;
 stream.Seek(0, SeekOrigin.Begin);
 while ((read = stream.Read(buffer, 0, buffer.Length)) > 0)
 {
 wavStream.Write(buffer, 0, read);
 }

 // Replace the raw stream with the new stream.
 stream = wavStream;
 stream.Seek(0, SeekOrigin.Begin);
}

 Note Silverlight doesn’t include any support for writing WAV file headers. You can write the header yourself, but
the code is a bit tedious. This example uses the WavFileHelper, written by Mike Taulty, to do the job. He blogs
about it at http://tinyurl.com/yk7rw7e.

Now, you can use the MemoryStreamAudioSink to create the example shown in Figure 12-14. First,
create an instance of the audio sink and capture source as member fields:

private MemoryStreamAudioSink audioSink;
private CaptureSource capture;

To associate the two together, you simply need to set the AudioSink.CaptureSource property. Here’s
the code that starts the audio capture:

private void cmdStartRecord_Click(object sender, RoutedEventArgs e)
{
 if (CaptureDeviceConfiguration.AllowedDeviceAccess ||
 CaptureDeviceConfiguration.RequestDeviceAccess())
 {
 if (audioSink == null)
 {
 capture = new CaptureSource();
 capture.AudioCaptureDevice =
 CaptureDeviceConfiguration.GetDefaultAudioCaptureDevice();

 audioSink = new MemoryStreamAudioSink();
 audioSink.CaptureSource = capture;
 }
 else
 {
 audioSink.CaptureSource.Stop();

http://tinyurl.com/yk7rw7e

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

456

 }

 audioSink.CaptureSource.Start();
 cmdStartRecord.IsEnabled = false;

 // Add a delay to make sure the recording is initialized.
 // (Otherwise, an error may occur if the user stops it immediately.)
 System.Threading.Thread.Sleep(TimeSpan.FromSeconds(0.5));
 cmdStopRecord.IsEnabled = true;

 lblStatus.Text = "Now recording ...";
 }
}

 Note In this example, the user is allowed to record indefinitely. To avoid excessive memory usage, you should
add a safeguard, like a timer that turns off recording after a certain maximum time limit.

As you can see, you can continue to use the CaptureSource object in the normal way, by calling
Start() to initiate the capture and Stop() to end it:

private void cmdStopRecord_Click(object sender, RoutedEventArgs args)
{
 audioSink.CaptureSource.Stop();

 cmdPlayClip.IsEnabled = true;
 cmdStopRecord.IsEnabled = false;
 cmdStartRecord.IsEnabled = true;
 lblStatus.Text = "Finished recording. A clip is available to play.";
}

It’s up to you to decide what to do with the audio data when the recording is finished. You could
save it or send it to a web service or network server. This example simply plays it back using a
MediaElement (named media). However, even this step isn’t straightforward, because Silverlight
includes no MediaElement support for the WAV file format. Instead, you need to use the SoundEffect
class (discussed earlier) or a third-party library that can convert the audio (like the
WaveMediaStreamSource from http://code.msdn.microsoft.com/wavmss). This code uses the latter
approach:

private void cmdPlayClip_Click(object sender, RoutedEventArgs args)
{
 WaveMSS.WaveMediaStreamSource wavMss = new WaveMSS.WaveMediaStreamSource(
 audioSink.AudioData);
 media.SetSource(wavMss);
}

Although this example gives some perspective on raw video and audio capture with Silverlight, a
realistic application needs much more. The key problem is that raw WAV data is very large. If you need
to store multiple audio files or send frequent clips over a network, it’s not practical. The problems with
raw video are even worse—the samples are enormous, it requires reams of complex, handwritten code

http://code.msdn.microsoft.com/wavmss

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

457

to convert it, and the conversion process is computationally expensive, which makes it extremely
difficult to do in real time. Ideally, future versions of Silverlight or third-party libraries will include
support that builds on CaptureSource and provides the infrastructure developers need to implement
more useful scenarios with video and audio capture.

Deep Zoom
Now that you’ve explored the fine details of Silverlight’s audio and video support, it’s time to branch out
to a very different type of multimedia: Silverlight’s new Deep Zoom feature.

The idea behind Deep Zoom is to present a “zoomable” interface for huge images. The typical Deep
Zoom image is far too large to be shown on the screen at once at its native resolution. Initially, the Deep
Zoom image is shown at a greatly reduced size, so that the user gets a bird’s-eye view of the entire
picture. The user can then click to zoom in on a specific spot. As the user clicks, Silverlight zooms in
more and more, eventually enlarging the selected area of the image to its native resolution (and beyond)
and exposing the fine details that weren’t initially visible.

Figure 12-15 shows the Deep Zoom process. At the top is the initial zoomed-out view of a beach
scene. At the bottom is the wastebasket that you can see after zooming in on one small region at the right
of the image.

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

458

Figure 12-15. Using Deep Zoom to explore a panoramic image

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

459

Usually, Deep Zoom images are stitched together from dozens or hundreds of smaller images to
create a seamless panorama. However, Deep Zoom can also work with a quilt of distinct images. One
example is the Hard Rock Memorabilia website (http://memorabilia.hardrock.com), which uses Deep
Zoom to allow visitors to examine different relics, which are tiled together into one huge picture.

 Note Deep Zoom isn’t a new idea. Many competitors already implement the same feature. One popular
example is Zoomify, which is built using Adobe Flash. However, Deep Zoom feels surprisingly mature. It provides
notably smooth zooming (rather than simply jumping between differently sized images) and fast performance that
outdoes many more established competitors.

It’s easy to create a Silverlight application that uses Deep Zoom, provided you have the right tools.
The most important is the free Deep Zoom Composer tool. (To download it, surf to
http://tinyurl.com/6xzp8v.) The Deep Zoom Composer allows you to convert a large image into the
tiled groups of images that Deep Zoom needs for its zooming interface. It also lets you tile together
smaller images to create a large image that’s suitable for Deep Zoom, and it can even stitch overlapping
images together automatically to create a panorama. (However, you may prefer to use more specialized
stitching software such as AutoPano Pro, which can adjust geometry and lighting for a truly seamless
compound image.)

 Tip If you want to try the Deep Zoom feature, you have several options for getting the large image you need.
Some dedicated photo stitchers post extremely large pictures to photo-sharing sites like Flickr. (Obviously, you
need to ask for permission if you want to use the picture for anything other than a test on your local computer.)
You can also grab huge satellite images from NASA’s Visible Earth website (http://visibleearth.nasa.gov).

When you have the Deep Zoom Composer software and a suitable image (or images), you’re ready
to get to work.

Creating a Deep Zoom Image Set
To get started, load Deep Zoom Composer, and click New Project. You’ll need to choose a project name
and a project location. Deep Zoom Composer creates two folders in your initial project location. One
folder, named Source Images, holds the original versions of all the pictures you import. The second
folder, named Working Data, holds the dozens of image files that are generated when you lay these
pictures out into a Deep Zoom image set.

 Note Don’t confuse the Deep Zoom project with a Silverlight project. A Deep Zoom project can be opened only
in Deep Zoom composer. You must export the image set to generate a Silverlight project.

http://memorabilia.hardrock.com
http://tinyurl.com/6xzp8v
http://visibleearth.nasa.gov

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

460

There are three steps to building a Deep Zoom image set with Deep Zoom Composer. First, you
import the picture (or pictures) you plan to use. Next, you arrange the pictures. If you have a single
picture, this won’t take long. If you have multiple pictures, this is when you tile them together by hand.
Finally, you export the Deep Zoom image set and create the Silverlight project.

You can switch from one step to another using the three tab buttons at the top of the Deep Zoom
Composer window. Initially, you begin in the Import tab. Here’s what to do:

1. To get the pictures you want, click the Import button in the panel at right,
browse to the correct file, and click OK. Importing large pictures can be slow,
so be prepared to wait.

2. Repeat step 1 until you’ve imported all the pictures you need.

3. Click the Compose button. Here, you start with a blank design surface where
you can lay out your pictures (see Figure 12-16).

Figure 12-16. Laying out your images in Deep Zoom Composer

4. To add a picture to the design surface, drag it from the panel at the bottom. If
you have several pictures, you must drag, position, and size each one. (Images
can overlap.)

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

461

 Tip Deep Zoom Composer provides a number of shortcuts to help you during the arranging process. For
example, you can lay images into a regular grid. First, select the images you want (hold down Ctrl while clicking
each one or press Ctrl+A to select them all). Then, right-click the selection, choose Arrange into Grid, fill in the
appropriate options (row limits, column limits, and amount of padding), and click OK. This technique is useful if
you’re creating a Deep Zoom image set that’s made up of distinctly separate images, like the tiled items in the
Hard Rock Memorabilia display. If you want to create the illusion of a single huge picture, you can use Deep Zoom
Composer to stitch overlapping images into a panorama. To do so, select the images, right-click the selection, and
choose Create Panoramic Photo. The process may take some time as Deep Zoom Composer searches for
matching segments of image data.

5. Click the Export button. Deep Zoom Composer gives you several export
options (see Figure 12-17). The two most useful are to export your image set to
DeepZoomPix (a Microsoft service for hosting Deep Zoom image sets online,
with no code required) or to create a Silverlight project that you can edit,
customize, and deploy to your own web server (which is the approach you’ll
take in the following steps).

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

462

Figure 12-17. Exporting a Silverlight project from Deep Zoom Composer

6. To create a Silverlight project, click the Custom tab in the panel at the right. In
the “Output type” box, choose Silverlight Deep Zoom.

7. In the Name text box, enter a name for your project. If you want to export the
project to a different folder, change the path in the Location text box.

8. Choose “Export as a collection” to create a Deep Zoom image set. Underneath,
the Templates box allows you to configure how the Silverlight project will be
generated (and whether it will include source code). Although you can choose
to export a Deep Zoom image set without project files, the exported project
includes some genuinely useful code that allows the user to pan and zoom
with the mouse. (If you create your project from scratch, you’ll need to write
your own code to make the page interactive.) The two most useful templates
are “Deep Zoom Classic + Source” (which creates the standard panning and
zooming interface you’ll explore next), and “Blend 3 Behaviors + Source”
(which creates essentially the same result but uses the new behavior feature
discussed in Chapter 14 to implement interactivity).

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

463

9. In the “Image settings” box, choose either PNG or JPEG. PNG offers better
quality through lossless compression. However, JPEG gives you the option to
reduce the image quality, which decreases the size of your image files and
thereby increases performance.

10. Click Export to create the image set and Silverlight project. This process may
take some time. When it’s finished, a window appears with several options (see
Figure 12-18), allowing you to preview the Silverlight project in your browser
or browse to the image folder or project folder.

 Tip The export feature in Deep Zoom Composer is limited to C# code only. Unfortunately, that means your
options for integrating Deep Zoom images in a VB-based Silverlight project are limited. You’ll be forced to endure
the rather awkward work of translating the C# project to VB. To get a head start, check out the downloadable code
for this chapter, which includes a VB version of the Deep Zoom project. You can copy most of the code from this
project to reduce your conversion work.

Figure 12-18. Completing an export

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

464

Using a Deep Zoom Image Set in Silverlight
When you export a Silverlight project, Deep Zoom Composer creates a Silverlight application named
DeepZoomProject and a test website named DeepZoomProjectSite. The DeepZoomProject has all the
Silverlight code for panning, scrolling, and zooming into your image. The DeepZoomProjectSite holds
the compiled Silverlight project and the actual Deep Zoom image set—a set of XML files image tiles that
represent small chunks of your picture at varying resolutions.

Figure 12-19 shows both pieces of the solution. As usual, when you run the project, Visual Studio
compiles the Silverlight application into a XAP file and copies that to the ClientBin folder in the test
website. However, you’ll notice that the ClientBin folder has a subfolder named GeneratedImages. This
holds the Deep Zoom image set.

Figure 12-19. The image set in a Deep Zoom solution

Showing a Deep Zoom image in a Silverlight application is fairly easy. In fact, all you need is the
MultiScaleImage element, as shown here:

<MultiScaleImage x:Name="msi" Height="600" Width="800"/>

In the automatically generated project, you’ll find quite a bit more markup. However, almost all of it
is for extra visual frills, including fancy animated buttons that zoom in, zoom out, restore the image to its

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

465

initial size, and switch the application into full-screen mode (see Figure 12-20). If you decide to create a
Deep Zoom project from scratch, you would start with nothing more than the MultiScaleImage.

Figure 12-20. Image navigation buttons in a Deep Zoom project

The source for the MultiScaleImage is an XML file that defines the Deep Zoom image set. Although
you could set the source for the MultiScaleImage in markup, the automatically generated project uses
code, as shown here:

msi.Source = new DeepZoomImageTileSource(uri);

The URI is passed in as a parameter from the test. By default, it’s the XML file dzc_output.xml in the
GeneratedImages folder.

The MultiScaleImage element has three key methods, which are detailed in Table 12-2.

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

466

Table 12-2. Methods of the MultiScaleImage Element

Method Description

ElementToLogicalPoint() Converts a physical on-screen point in the MultiScaleImage element to a
logical point in the large, virtual image. This translation process lets you
zoom into a specific area.

LogicalToElementPoint() Converts a logical point in the virtual image to a physical location in the
MultiScaleImage where that point is currently being displayed.

ZoomAboutLogicalPoint() Zooms in or out using a logical center point you specify and a zoom
factor. The zoom factor is a number greater than 0. Use 1 to fit the
available space precisely. Numbers greater than 1 zoom in (for example, 3
zooms in to three-times magnification), and numbers less than 1 zoom
out (for example, 0.5 zooms out to half magnification).

The automatically generated project uses these methods to control zooming. The lynchpin is a

simple Zoom() method that translates a point in the element to logical coordinates and then zooms to
that point.

private void Zoom(double newzoom, Point p)
{
 // Don't allow the user to zoom the image out to less than half size.
 if (newzoom < 0.5)
 {
 newzoom = 0.5;
 }
 msi.ZoomAboutLogicalPoint(newzoom / zoom, p.X, p.Y);
 zoom = newzoom;
}

Using this method, you can programmatically zoom in on the center point, like this:

Zoom(1.2, new Point(this.ActualWidth / 2, this.ActualHeight / 2));

Or you can zoom out, like this:

Zoom(0.8, new Point(this.ActualWidth / 2, this.ActualHeight / 2));

The code in the automatically generated project goes a bit further. It allows the user to drag the
image around the viewing area (using code that’s similar to the dragging-circle example in Chapter 4). It
also lets the user zoom in by clicking or turning the scroll wheel on the mouse. First, every time the
mouse moves, its position is recorded:

this.lastMousePos = e.GetPosition(this.msi);

Then, when the user clicks, the image is zoomed in (or zoomed out if the Shift key is held down):

bool shiftDown = (Keyboard.Modifiers & ModifierKeys.Shift) == ModifierKeys.Shift;
double newzoom = zoom;

if (shiftDown)

CHAPTER 12  SOUND, VIDEO, AND DEEP ZOOM

467

 newzoom /= 2;
else
 newzoom *= 2;

Zoom(newzoom, msi.ElementToLogicalPoint(this.lastMousePos));

The scroll wheel has much the same effect, but the zoom amount is less:

double newzoom = zoom;

if (e.Delta > 0)
 newzoom /= 1.3;
else
 newzoom *= 1.3;

Zoom(newzoom, msi.ElementToLogicalPoint(this.lastMousePos));

Most Silverlight applications that use Deep Zoom include this code. However, you’re free to extend
it to suit your needs. For example, the Hard Rock Memorabilia website checks the clicked point to
determine what item is in that location. It then zooms and displays a panel next to the image with
information about the selected item.

The Last Word
In this chapter, you explored how to integrate sound and video into a Silverlight application. You also
considered the best practices for dealing with video and ensuring optimum playback performance in the
client and scalability on the server.

Microsoft has placed a great deal of emphasis on Silverlight’s multimedia capabilities. In fact,
multimedia is one area where Silverlight is gaining features that haven’t appeared in the WPF world. For
example, WPF has no VideoBrush (although it provides another way to accomplish the same effect with
the VisualBrush). Furthermore, its version of the MediaElement lacks a few properties that Silverlight
applications use to control buffering and interact with markers. Finally, WPF has no support for webcam
and microphone input or Deep Zoom—so if you want a similar capability in a rich client application,
you’ll be forced to build it yourself.

C H A P T E R 13

469

Silverlight 3D

As you already know, Silverlight began its life as a subset of the features, classes, and capabilities found
in the WPF library. Long before Silverlight was released, the technology was first called WPF/E
(shorthand for “WPF for Everyone”).

But in the years since Silverlight 1.0, Silverlight has taken its own path. As expected, it’s inherited
some of the features of WPF, including many of WPF’s controls, commands, data binding and styling
features, and the .NET file access model. But it’s also picked up some new features before WPF (like
animation easing and visual states), and it’s added a few features that have no direct WPF equivalent
(like webcam support, DeepZoom, and the PivotViewer). But Silverlight’s most significant departure
from the WPF world is its 3D drawing model.

WPF has its own 3D-rendering features, which are based on the Viewport3D control. Using them,
you can create 3D drawings in XAML (typically, using a 3D illustration program) or generate 3D models
with code. Silverlight sidesteps the Viewport3D control in favor of the entirely different DrawingSurface
control, which is based on the Microsoft XNA framework—the same toolkit used to create games on the
Xbox.

Creating 3D applications in WPF, with the Viewport3D control, was difficult. Creating 3D
applications in Silverlight, with the DrawingSurface control, is a bit more difficult. To render even simple
3D scenes, you need to think about low-level bits of plumbing like pixel shaders. However, if you invest
the time to learn the necessary concepts, you’ll be able to create an entirely new class of applications—
and thanks to Silverlight’s hardware acceleration, you’ll be rewarded with a fast, snappy visuals. And if
you already have Microsoft XNA experience from developing for the Xbox or Windows Phone, you’ll find
that many of your skills are transferrable to the world of Silverlight-powered web apps.

 What’s New Silverlight’s 3D support is entirely new in Silverlight 5.

Understanding 3D in Silverlight
You’ve already learned that Silverlight’s 3D model is not based on WPF’s 3D model. Before you go any
further, you should understand a few more key facts about the 3D support that Silverlight provides:

It’s hardware-accelerated: In fact, it must be, because there is no software
rendering fallback. If you don’t turn on hardware acceleration or it isn’t
available (for example, in the case of extremely old video hardware or bad video
drivers), you won’t be able to show anything.

CHAPTER 13  SILVERLIGHT 3D

470

It’s code-focused: Unlike the 3D framework in WPF, you can’t create any 3D
content in Silverlight through XAML markup alone. Instead, it’s up to your code
to create a number of objects and manage a fairly detailed drawing process. (Or
use a third-party tool that builds on the 3D system and does provide markup
support.)

It takes after XNA, not the rest of the Silverlight: In some cases, this leads to a
confusing duplication. For example, Silverlight already has its own Rectangle
and Color classes, but Silverlight’s 3D assemblies introduce new Rectangle and
Color classes for 3D rendering. Similarly, Silverlight 3D uses unmanaged pixel
shaders, not the ShaderEffect class you learned about in Chapter 9, and it has
no support for Silverlight features like animation, transforms, and data binding.

It doesn’t support all of XNA: There are a good number of rendering features
that are found in the full Microsoft XNA platform but aren’t supported in
Silverlight. For example, Silverlight supports only the relatively dated Shader
Model 2.0 standard for pixel shaders (which was released is 2002), but it doesn’t
support the more common Shader Model 3.0.

It requires a Windows computer: Unfortunately, because the 3D features are
built on the XNA pipeline, they don’t work on Mac computers.

With these details in mind, you’re ready to begin creating your first 3D scene.

Adding Assembly References
Silverlight’s 3D support is divided among a handful of assemblies, but eventually you’ll need to add
references to all of them. They include the following:

System.Windows.Xna.dll: This assembly defines core types like the
DrawingSurface control and the GraphicsDeviceManager that manages it.

Microsoft.Xna.Framework.dll: This assembly includes the XNA versions of the
Color and Rectangle structures. It also includes the Microsoft XNA–powered
audio support you considered in Chapter 12.

Microsoft.Xna.Framework.Graphics.dll: This assembly includes a number of
core drawing types, including GraphicsDevice, through which you perform all
your 3D drawing on the DrawingSurface.

Microsoft.Xna.Framework.Graphics.Extensions.dll: This assembly includes
more essential drawing ingredients. This includes the BasicEffect class, which
wraps a number of drawing details and provides a simple, hard-coded pixel
shader so you don’t need to write it yourself.

Microsoft.Xna.Framework.Graphics.Shaders.dll: This assembly includes the
PixelShader and VertexShader classes that let you load your own shaders,
provided you have the compiled HLSL (High Level Shader Language) code.

Microsoft.Xna.Framework.Math.dll: This class includes basic ingredients for 3D
calculations with points and matrices, such as Vector3 and Matrix.

Before continuing, you should add references to all these assemblies.

CHAPTER 13  SILVERLIGHT 3D

471

Enabling 3D in a Silverlight Project
Silverlight’s 3D support requires hardware acceleration. Without it, no 3D drawing is possible. Worse, if
you don’t enable hardware acceleration, you won’t be warned—the DrawingSurface control will simply
remain stubbornly blank.

Fortunately, it’s easy to enable hardware acceleration. As you learned in Chapter 10, all you need to
do is add the enableGPUAcceleration parameter to the Silverlight plug-in section of the test page, like
this:

<div id="silverlightControlHost">
 <object data="data:application/x-silverlight-2,"
 type="application/x-silverlight-2" width="100%" height="100%">
 <param name="enableGPUAcceleration" value="true" />
 ...
 </object>
 <iframe style="visibility:hidden;height:0;width:0;border:0px"></iframe>
</div>

However, there's a significant catch. Silverlight is blocked, by default, from using hardware
acceleration. This is to prevent certain types of denial-of-service attacks (basically, bad software that
tries to tie up your video card with ridiculously complex shaders and geometries). Although other 3D
technologies (like WebGL) are open to the same mischief, and although this sort of attack has never
appeared in the wild, Microsoft imposed this safeguard to reduce the risk.

So how does a Silverlight application gain permission to use hardware acceleration and (by
extension) 3D drawing? There are two options:

Install the application with elevated trust: This grants the application a wide
range of permissions, including hardware acceleration, as described in Chapter
18. However, it requires an installation step or certificate configuration and
isn’t appropriate for every type of application.

Change the Silverlight properties: The user can explicitly unblock the video
drivers using the Silverlight configuration window, but it's a bit awkward. To do
that, the user needs to right-click the Silverlight content region, click Silverlight
in the menu, and then choose the Permissions tab. There, the user must find
the domain that corresponds to the current application (for example
YourSite.com), select the domain, and then click the Allow button to enable 3D
support.

If you're testing your application, or installing it inside a company network, the first option works
best. But in a public application, the second option may be the only practical choice. However, it’s
important to understand that Silverlight will not tell the user that a configuration change needs to be
made. Instead, if hardware acceleration is blocked, any 3D scenes you’ve created will simply not render,
without generating any notification message or exception. To detect this problem, you can check the
RenderMode and RenderModeReason properties of the GraphicsDeviceManager when the application
loads. Here’s an example that checks for this problem first and then looks for several other less common
issues:

private void Application_Startup(object sender, StartupEventArgs e)
{
 GraphicsDeviceManager gdm = GraphicsDeviceManager.Current;
 if (gdm.RenderMode == RenderMode.Unavailable)
 {

CHAPTER 13  SILVERLIGHT 3D

472

 switch (gdm.RenderModeReason)
 {
 case RenderModeReason.SecurityBlocked:
 MessageBox.Show("3D support is currently disabled to enforce " +
 " security. You can enable it by following these steps ...");
 break;
 case RenderModeReason.GPUAccelerationDisabled:
 MessageBox.Show("Developer error! Use the enableGPUAcceleration " +
 "parameter in the test page to enable 3D rendering.");
 break;
 case RenderModeReason.Not3DCapable:
 MessageBox.Show(
 "Your computer doesn't appear to support 3D rendering.");
 break;
 case RenderModeReason.TemporarilyUnavailable:
 MessageBox.Show(
 "There was a problem accessing the video card driver.");
 break;
 }
 }
 else
 {
 // Run the application as normal.
 this.RootVisual = new MainPage();
 }
}

Of course, there are far better ways of handling this problem than using a message box. For
example, if you detect that RenderModeReason is SecurityBlocked, you can set the RootVisual of the
application to a window that has detailed setup instructions and prompts the user to refresh the page
when the configuration is changed.

At this point, you know enough to create a simple application that verifies that it has 3D support.

Basic 3D Drawing
In Silverlight, all 3D drawing takes place inside a control called DrawingSurface, which is found in the
System.Windows.Controls namespace. DrawingSurface is an ordinary Silverlight control, which means
you don’t need any to add any assembly references or import any namespaces to use it. Usually, you’ll
place the DrawingSurface in a container with a black background, so the content can be drawn overtop:

<Grid x:Name="LayoutRoot" Background="Black">
 <DrawingSurface Width="400" Height="300"></DrawingSurface>
</Grid>

When you add the DrawingSurface control to a page, you can give it fixed dimensions (as in this
example), which allows you to write the simplest drawing code. Or, you can let the drawing surface
expand to fill its container and tailor your drawing code accordingly, as you’ll see a bit later in this
chapter.

To make content actually appear in the DrawingSurface control, you need to handle its Draw event:

<DrawingSurface Width="400" Height="300" Draw="drawingSurface_Draw">
</DrawingSurface>

CHAPTER 13  SILVERLIGHT 3D

473

Unfortunately, there’s no quick shortcut to writing drawing logic. Before you can render a single
shape in your drawing surface, you need to learn a number of new concepts. You’ll cover that ground in
the following sections.

The 3D Coordinate System
Before you position even a single triangle, you need to orient yourself in the coordinate system that
Silverlight uses. Silverlight adopts the conventions of Microsoft XNA and uses a right-handed coordinate
system.

To understand what this means, imagine the z-axis pointing directly out of the screen, toward you.
As a point moves toward you, along the z-axis, its z-coordinate increases. As it moves away, its z-
coordinate decreases. (The x-axis and y-axis are the same as in two-dimensional drawing). Figure 13-1
illustrates.

Figure 13-1. The 3D coordinate axes in Silverlight

Filling the Vertex Buffer
Now that you know what 3D space looks like, you’re ready to create some 3D content. This is where
things start to get tricky.

If you’ve ever dealt with 3D drawing before (or if you’ve read a bit about the technology that
underlies modern video cards), you may already know that computers build 3D scenes out of triangles.
That’s because a triangle is the simplest, most granular way to define a surface. Triangles are simple
because every triangle is defined by just three points (the three vertices at the corners). Arcs and curved
surfaces are obviously more complex. Triangles are granular because other straight-edged shapes
(squares, rectangles, and more complex polygons) can be broken down into a collection of triangles. For
better or worse, modern-day graphics hardware and graphics programming is built on this core
abstraction.

6

CHAPTER 13  SILVERLIGHT 3D

474

 Note A vertex is a data object that represents a single point in 3D space. For example, most 3D drawing
systems work by constructing complex surfaces and objects out of thousands of tiny triangles. Each triangle is
defined by its three corner points, and each of these corner points is a vertex.

Obviously, most of the 3D objects you want won’t look like simple, flat triangles. Instead, you’ll need
to combine triangles—sometimes just a few, but often hundreds or thousands that line up with one
another at varying angles. For example, Figure 13-2 shows how a sphere can be constructed out of
triangles. As you add more triangles, the surface becomes smoother. (In the rightmost figure, the sphere
is actually built out of rectangles, but each of these rectangles is constructed from two triangles, which
aren’t shown here.)

Figure 13-2. Building 3D objects with triangles

 Note Unfortunately, Silverlight doesn’t have any higher-level abstraction for 3D objects. There are no spheres,
cubes, or meshes in the library, although third-party toolkits can (and will) build on Silverlight’s 3D support to
provide all these ingredients and more.

So, the simplest possible shape you can render in 3D is a single triangle. To draw this triangle, you
need to define a point at each corner, or vertex. A vertex buffer is the object that holds the combination of
vertices for all the triangles in your shape.

For example, imagine you want to draw the triangle shown in Figure 13-3.

CHAPTER 13  SILVERLIGHT 3D

475

Figure 13-3. A single triangle in 3D world space

Before writing any code, you should import the following namespaces:

using Microsoft.Xna.Framework.Graphics;
using Microsoft.Xna.Framework;
using System.Windows.Graphics;

To draw your triangle, you’ll first need to define the three vertices of that triangle in a VertexBuffer.
To optimize drawing performance, vertex buffers, object models, and so on, are always defined outside
of the DrawingSurface.Draw event handler that actually draws them. So, it makes to define your
VertexBuffer as a class-level variable inside your user control. At the same time, you’ll also want to create
an instance of the BasicEffect class, which will manage other aspects of the drawing process, as you’ll
learn later:

// Stores the corners of all your triangles.
private VertexBuffer vertexBuffer;

// Stores various drawing details.
private BasicEffect effect;

Now, when the page loads you can get to work. The best design is to put your code in a dedicated
method, like the PrepareDrawing() method shown here:

private void PrepareDrawing()
{
 ...
}

You can then call this method from the constructor of your user control:

public SingleTriangleExample()

CHAPTER 13  SILVERLIGHT 3D

476

{
 InitializeComponent();

 PrepareDrawing();
}

 Note Don’t make the mistake of executing your initialization logic in an event handler for the Loaded event.
Occasionally, the DrawingSurface will fire its first Draw event before the Loaded event is complete. Because the
Draw event fires on a different thread (known as the render thread), your drawing code may start before the vertex
buffer is ready, which will cause an exception.

The rest of this section examines the code that you’ll put in the PrepareDrawing() method.
First, you need to create the vertices for your shape. Each vertex is represented by an instance of the

Vector3 class. Here’s the code that creates the three vertices needed for the triangle in Figure 13-3:

// Define the triangle's vertices.
Vector3 topCenter = new Vector3(0, 1, 0);
Vector3 bottomLeft = new Vector3(-1, 0, 0);
Vector3 bottomRight = new Vector3(1, 0, 0);

Less obviously, each vertex also requires a color. When the pixel shader paints the triangle, it colors
each pixel separately, by interpolating the colors of the three surrounding vertices. If the vertices use the
same color, the entire triangle gets a solid fill. But if the vertices uses different colors (as in this example),
you get a blended, gradient effect.

To create colors, you use the Color class:

// When creating a color, you supply the red, greed, blue, and
// (optionally) alpha values.
// This is white:
Color color1 = new Color(255, 255, 255);
// and red:
Color color2 = new Color(255, 0, 0);
// and green:
Color color3 = new Color(0, 255, 0);

To avoid a namespace conflict, make sure you don’t import the System.Windows.Media namespace,
which has its own, conflicting version of the Color structure.

Now, you’re ready to combine the position and color data to create an array of VertexPositionColor
objects, which is the key ingredient in the vertex buffer you’re about to build:

// Combine the color and vertex information.
VertexPositionColor[] vertices = new VertexPositionColor[3];
vertices[0] = new VertexPositionColor(bottomLeft, color1);
vertices[1] = new VertexPositionColor(topCenter, color3);
vertices[2] = new VertexPositionColor(bottomRight, color2);

The next step is to create a VertexBuffer object. To do this, you first need to get a reference to
current GraphicsDevice, which is supplied by GraphicsDeviceManager:

CHAPTER 13  SILVERLIGHT 3D

477

GraphicsDevice device = GraphicsDeviceManager.Current.GraphicsDevice;

Then you can create and fill a vertex buffer:

vertexBuffer = new VertexBuffer(device, typeof(VertexPositionColor),
 vertices.Length, BufferUsage.WriteOnly);
vertexBuffer.SetData(0, vertices, 0, vertices.Length, 0);

If this code seems needlessly complex, that’s because the structure of the vertex buffer can vary. In
this example, the vertex buffer is filled with VertexPositionColor objects (as specified by the second
argument that’s passed to the VertexBuffer constructor). However, you could also have a vertex buffer
that doesn’t contain color information or uses texture data. In fact, the vertex buffer acts almost like a
low level array of bytes, and so you need to explicitly copy a range of data into it using the
VertexBuffer.SetData() method.

You’ve now completed all the code you need to fill the vertex buffer with a single triangle of
information. However, before you can write the drawing logic, you need to create the camera that looks
out onto your 3D scene.

Positioning the Camera
Before a 3D scene can be rendered, you need to place a camera at the correct position and orient it in the
correct direction.

Positioning the camera is easy enough, but it requires you to specify three details. The first detail is
the point in 3D space where the camera will be placed. The second detail is the point that the camera is
looking at. Taken together, these two details determine how far away the camera is from your content
(and thus, how big the scene will appear in the DrawingSurface control) and whether the camera can see
your content at all (if it’s pointed the wrong way, it won’t). Figure 13-4 shows how these details work
together.

Figure 13-4. Positioning the camera

CHAPTER 13  SILVERLIGHT 3D

478

However, these details aren’t quite enough. You also need to tell the camera which way is “up,” so it
can orient itself. After all, even with a given position and look direction, there’s nothing to stop the
camera from rotating itself around to see the scene sideways or upside-down. In Figure 13-4, the up
direction points directly, geometrically up, toward the point (0,1,0). This is a natural setup, but the titled
camera shown in Figure 13-5 is equally possible.

Figure 13-5. Positioning the camera

To position a camera, you must create a matrix that sets all three of these details. Actually
understanding the matrix math that makes sense of 3D scenes is complex and far beyond the scope of
this chapter. However, Silverlight includes just enough functionality for you to create the matrices you
need and work with them, without chewing through the tough matrix math.

For example, when placing a camera you use the handy Matrix.CreateLookAt() method. It takes the
camera position, the camera look-at direction, and the up direction. Each of these ingredients is
represented by a separate Vector3 object. Here’s how you would use the CreateLookAt() method to place
the camera on the z-axis line, looking at the triangle head-on:

Matrix view = Matrix.CreateLookAt(new Vector3(0, 0, 1), Vector3.Zero, Vector3.Up);

By comparison, here’s how you’d move the camera to the point shown in Figure 13-4:

Matrix view = Matrix.CreateLookAt(new Vector3(-2, 2, 3), Vector3.Zero, Vector3.Up);

And here’s how to place the tilted camera in Figure 13-5:

Matrix view = Matrix.CreateLookAt(new Vector3(-2, 2, 3), Vector3.Zero,
 new Vector3(-1, 2, 0));

Now the camera is tilted around the z-axis. As a result, your 3D content will appear to be tilted a bit
in the other direction. It’s just as if you’d cocked your head to one side while surveying the scene.

CHAPTER 13  SILVERLIGHT 3D

479

These camera details are called the view (or, sometimes, the view space). This view determines the
position, size, and geometry that the 3D scene will have when it’s rendered. However, in Silverlight 3D
there’s another key camera detail to think about, called the projection. While the view sets where the
camera is, the projection sets the portion of the view that the camera can see (and, thus, the portion that
the video card will draw). This visible portion of the scene is called the viewing frustrum, as shown in
Figure 13-6.

Figure 13-6. The view projection

The view projection trims out parts of the scene that are too far away (which may be obscured by
other objects anyway) and parts that are too close. Because the video card doesn’t need to render parts
of the scene that won’t be shown, this technique ensures optimum performance.

Once again, the Matrix class simplifies life with a dedicated method. The
CreatePerspectiveFieldOfView() method takes four floating-point numbers and uses them to calculate a
projection, which it returns as a matrix. Table 13-1 explains these four parameters.

Table 13-1. Parameters for the CreatePerspectiveFieldOfView() Method

Parameter Description

fieldOfView The angle that the camera can see (from side to side), in radians. This is usually
45 degrees, or π/4. The MathHelper provides this value through the static field
MathHelpfer.PiOver4.

aspectRatio The aspect ratio of the camera, which determines how the horizontal and
vertical dimensions are sized relative to one another. Usually, you’ll set this to
match the width of the DrawingSurface control (if it’s fixed) or the width of the
container or page (if the DrawingSurface is allowed to expand to fit the available
space).

nearPlaneDistance If an object is closer to the camera than this distance, it cannot be seen and will
not be rendered.

farPlaneDistance If an object is farther from the camera than this distance, it cannot be seen and
will not be rendered.

CHAPTER 13  SILVERLIGHT 3D

480

The following code creates the projection for the single-triangle example. It renders everything
that’s between 1 and 10 units from the camera. The aspect ratio of 1.33 is calculated by dividing the
DrawingSurface width (400) by the height (300).

Matrix projection = Matrix.CreatePerspectiveFieldOfView(MathHelper.PiOver4,
 1.33f, 1, 10);

Somewhat confusingly, the CreatePerspectiveFieldOf() method actually returns a perspective
projection, which isn’t the final view projection you need for your 3D scene. To calculate the view
projection, you need one extra step. Once the projection matrix is returned from the
Matrix.CreatePerspectiveFieldOfView() method, you must multiply it by the view matrix, like so:

Matrix viewProjection = view * projection;

Now that you have the view and projection matrices, you’re ready to create and configure a
BasicEffect object, which is the final initialization step that takes place in the PrepareDrawing() method.

PERSPECTIVE AND ORTHOGRAPHIC CAMERAS

The camera view and projection determine how a 3D scene is projected onto the 2D surface of the
DrawingSurface control.

When you call CreatePerspectiveFieldOfView(), you create a matrix for a perspective camera. A perspective
camera renders the scene so that objects that are farther away appear smaller. This is the behavior that
most people expect in a 3D scene.

You can also create an orthographic camera by calling either the CreateOrthographic() or
CreateOrthographicOffCenter() method of the Matrix class. An orthographic camera flattens 3D objects so
that the exact scale is preserved, no matter where a shape is positioned. This looks a bit odd, but it’s
useful for some types of visualization tools. For example, technical drawing applications often rely on this
type of view. Finally, for even more specialized camera effects, you can create your own projection matrix
by hand. Figure 13-7 shows the difference between a perspective camera and an orthographic camera.

Figure 13-7. Perspective in different types of cameras

CHAPTER 13  SILVERLIGHT 3D

481

Configuring the BasicEffect
To understand the BasicEffect object, you need to know a bit more about the Silverlight 3D model.
Technically, Silverlight 3D does all its rendering work using shaders—tiny bits of code that run directly
on the video card’s GPU. There are two types of shader:

A vertex shader: This is a piece of code that examines each vertex in your vertex
buffer and converts its position from a coordinate in virtual 3D space to a
physical display position in the 2D drawing surface.

A pixel shader: This is a piece of code that examines each pixel that’s about to
be drawn (as part of a line or triangle) and assigns the appropriate color.

You can write your own shaders and compile them with the fxc.exe utility from the DirectX SDK
(available at http://msdn.microsoft.com/en-us/directx/aa937781). The syntax of a shader is HLSL (High
Level Shader Language), which is similar to C#. However, writing low-level pixel-processing algorithms
in any language is tedious and complex.

Fortunately, Silverlight inherits Microsoft’s XNA higher-level effects model. The idea is that your
application uses an effect object, which has its own built-in vertex and pixel shaders. Many effect objects
introduce more sophisticated rendering, with support for textures, lighting, materials, fog, and skinning.

All effect classes derive from the base Effect class in the Microsoft.Xna.Framework.Graphics
namespace. Silverlight includes one nearly indispensable effect class called BasicEffect. Despite its
name, BasicEffect is practical and surprisingly full featured—with the built-in ability to perform basic
shading, texture mapping, and complex lighting. In this chapter, you’ll spend a great deal of time with
BasicEffect, and learn how to use all these valuable features.

To prepare the BasicEffect object in the current example, you need to set the view and the
projection, using the matrices you created in the previous section:

effect = new BasicEffect(device);
effect.View = view;
effect.Projection = viewProjection;

You also need to set the world matrix, which allows you to move your object to a new position:

effect.World = Matrix.Identity;

The world matrix is handy when positioning multiple objects in a scene, each with a different
BasicEffect object. The world matrix allows you to move each object from the initial place where you’ve
defined it—typically, around the origin at (0,0,0)—to another position, relative to the rest of the scene.
Conceptually, this step moves your content from its original object space to the world space of the
complete scene. Technically, this move is performed by multiplying the original position by the world
matrix you supply.

In this example there is only one object, and there’s no need to move it to anywhere else in world
space. So, the code uses the identity matrix. (The identity matrix is a matrix that, when used in a matrix
multiplication operation, changes nothing. Thus, the object remains in its current location.) Later in this
chapter, you’ll see how you can use the world matrix to move and rotate a 3D object.

The final property you need to set in the BasicEffect object is VertexColorEnabled. By settings it to
true, you switch on the built-in pixel shader that will color your triangle:

effect.VertexColorEnabled = true;

If you don’t take this step and you don’t supply any other pixel shader, the BasicEffect won’t draw
your object.

http://msdn.microsoft.com/en-us/directx/aa937781

CHAPTER 13  SILVERLIGHT 3D

482

This completes the initialization code in the PrepareDrawing() method. You’re now ready to move
ahead to the actual drawing logic that uses all the ingredients you’ve seen to render your 3D content.

Drawing the Scene
As you learned earlier, the DrawingSurface control fires a Draw event when it’s time for your code to
render the scene. The first order of business is to get a reference to the current GraphicsDevice object
and clear any preexisting content with the Clear() method, like this:

private void drawingSurface_Draw(object sender, DrawEventArgs e)
{
 GraphicsDevice device = GraphicsDeviceManager.Current.GraphicsDevice;

 device.Clear(new Color(0, 0, 0));
 ...

 Note Every drawing operation should begin with a call to the Clear() method. If you forget to clear your surface
the first time, the DrawingSurface will use a dark purplish background to indicate your oversight.

The next step is to take the vertex buffer you created earlier, which contains the content you want to
draw, and apply it to the GraphicsDevice. You do this by calling the SetVertexBuffer() method:

 ...
 device.SetVertexBuffer(vertexBuffer);
 ...

And the final step is to perform the actual drawing. When using an effect object, you may need to
repeat your drawing multiple times, depending on the sort of effect that it’s creating. Fortunately, you
don’t need to worry about the number of passes. You simply need to step through all the EffectPass
objects in the Effect.CurrentTechniques.Passes collection. For each one you find, call EffectPass.Apply(),
and then draw your content with the GraphicsDevice.DrawPrimitives() method:

 ...
 // Perform all the passes.
 foreach (EffectPass pass in effect.CurrentTechnique.Passes)
 {
 pass.Apply();

 device.DrawPrimitives(PrimitiveType.TriangleList,
 0, vertexBuffer.VertexCount / 3);
 }
}

Figure 13-8 shows the long-awaited and somewhat underwhelming result. Here, the camera is
looking straight at a single, from a modest distance. The triangle uses three different colors (one at each
vertex) to create a gradient fill, with the help of the BasicEffect object’s built-in pixel shader.

CHAPTER 13  SILVERLIGHT 3D

483

Figure 13-8. One of the simplest possible 3D scenes

 Note When you first show a page with a DrawingSurface control, the Draw event fires immediately. However, it
won’t fire again, unless you call the DrawEventArgs.InvalidateSurface() method at the end of your drawing logic or
call the DrawingSurface.Invalidate() method elsewhere in your code. You’ll learn more about this technique later in
this chapter, when you begin animating your 3D objects.

The DrawPrimitives() method is the heart of the drawing logic in this example. Here, the
DrawPrimitives() method is used to draw a series of one or more triangles (a TriangleList), starting at the
beginning of the vertex buffer (at position 0) and looking for just one triangle (the result of
vertexBuffer.VertexCount / 3).

This is fairly typical code. By adding more vertices to the end of the vertex buffer (in sets of three),
you can add more triangles to the triangle list. Then, the DrawPrimitives() method will draw all the
triangles in one step.

However, it’s worth pointing out that there are a few other sorts of primitives you can draw, as listed
in Table 13-2. Of course, if you draw a different type of primitive, you need to adjust your vertex buffer
accordingly so it has the appropriate number of vertices.

Table 13-2. 3D Primitives

Primitive Type Description

TriangleList The vertex buffer represents a series of distinct triangles. Each triangle is described
by three vertices.

CHAPTER 13  SILVERLIGHT 3D

484

Primitive Type Description

TriangleStrip The vertex buffer represents a series of connected triangles. The first triangle is
described by three vertices; each subsequent triangle uses the last vertex from the
previous triangle and adds two new vertices.

LineList The vertex buffer represents a series of distinct line segments. Each line segment is
described by two vertices.

LineStrip The vertex buffer represents a series of connected line segments. The first line
segment is described by two vertices; each subsequent line segment uses the last
vertex from the previous triangle and adds one new vertex.

Backface Culling
As you’ve learned, there are many insidious problems that can prevent your 3D from appearing
altogether. Here are some common problems you’ve learned about so far, all of which have the same
discouraging blank-screen symptom:

• Failing to enable 3D acceleration

• Forgetting to put a solid black background behind the DrawingSurface

• Pointing the camera in the wrong direction

• Putting the camera too close or too far, so the object falls outside of the viewing
frustrum

• Failing to enable vertex shading in the BasicEffect object

There’s one more mistake that can make your 3D shapes disappear: if you define your vertices in a
counterclockwise order, instead of clockwise. That’s because Silverlight uses a technique called backface
culling to remove any surfaces that appear to be the back sides of an object. (Technically, backface
culling is meant to improve performance by not drawing the unneeded back surface of an object. The
problem is that Silverlight uses a relatively crude test—it assumes that if a shape is drawn
counterclockwise, relative to the position of the camera, that shape is a back face.)

Here’s an example of some problematic code that draws a triangle in counterclockwise order, by
swapping the first and third vertices from the previous example:

VertexPositionColor[] vertices = new VertexPositionColor[3];
vertices[0] = new VertexPositionColor(bottomRight, color2);
vertices[1] = new VertexPositionColor(topCenter, color3);
vertices[2] = new VertexPositionColor(bottomLeft, color1);

When you render this vertex buffer, no triangle will appear.

CHAPTER 13  SILVERLIGHT 3D

485

 Note Backface culling works a little differently with the TriangleStrip. Unlike the TriangleList, the TriangleStrip
“flips” the backface culling order on every even-numbered triangle. That means that even-numbered
counterclockwise triangles appear, but odd-numbered clockwise triangles do not.

If you’re running into a problem with backface culling, you can simply turn it off. To do so, you need
to replace the GraphicState.RasterizerState object with a new RasterizerState object. You can do this
anywhere in your drawing code (when responding to the Drawing event), before you actually call
DrawPrimitives():

device.RasterizerState = new RasterizerState()
{
 CullMode = CullMode.None
};

The RasterizerState object also gives you a few more properties to tweak. Most usefully, you can
switch the rendering into wireframe mode so that the triangle lines are shown with no inside fill. This
makes it easier to see how different objects in a scene overlap.

device.RasterizerState = new RasterizerState()
{
 FillMode = FillMode.WireFrame
};

Scaling Your Drawing
In the current example, the DrawingSurface is assigned a fixed size (a width of 400 pixels and height of
300 pixels). But in many applications, you’ll want to give the user the chance to resize the browser
window, and you’ll size your 3D drawing to match.

To implement this technique, you first need to remove the hard-coded Width and Height properties
from the DrawingSurface control in the markup for your page. Then, you need to respond to the
SizeChanged event of the DrawingSurface, or its container, and adjust the projection appropriately:

private void DrawingSurface_SizeChanged(object sender, SizeChangedEventArgs e)
{
 // Apply new scale.
 float aspectRatio = (float)e.NewSize.Width / (float)e.NewSize.Height;
 Matrix view = Matrix.CreateLookAt(new Vector3(0, 0, 5), Vector3.Zero,
 Vector3.Up);
 Matrix projection = Matrix.CreatePerspectiveFieldOfView(MathHelper.PiOver4,
 aspectRatio, 1, 10);

 effect.Projection = view * projection;
}

This code determines the current aspect ratio of the DrawingSurface and uses that to calculate the
aspect ratio that it should use for the projection. It then applies this projection to the current BasicEffect.

You also need to trigger the actual redraw operation. It makes sense to end the SizeChanged event
handler with a call to DrawingSurface.Invalidate(), but in practice this causes flicker and occasional
glitches, perhaps because of the overlap between the Windows operating system drawing (of the

CHAPTER 13  SILVERLIGHT 3D

486

background) and the 3D rendering (of the surface). Instead, it’s customary to trigger an immediate
refresh at the end of the drawing routine, to ensure the drawing is kept continuously up to date:

private void drawingSurface_Draw(object sender, DrawEventArgs e)
{
 ...

 e.InvalidateSurface();
}

Fortunately, this has a negligible effect on performance, because Silverlight’s 3D pipeline offloads
the work to the video card. It’s also the technique you’ll need to use if you add any animation or
interactivity to your 3D content later.

 Note If your aspect ratio doesn’t match the dimensions of your DrawingSurface, your content will be stretched
one way to fit.

Complex Objects and Textures
Going to the trouble of vertex buffers, effects, views, and projections is a lot of work for a single triangle.
And because this triangle is completely flat, it hardly seems like a decent example of three-dimensional
drawing. But now that you understand the basic concepts of Silverlight 3D, you’re ready to create more
complex shapes.

Once you’ve mastered the lowly triangle, the next step up is to create a solid, faceted shape by
assembling a small group of flat, 2D triangles. In the following example, you’ll create a cube.

A cube consists of six square sides. Each square side needs two triangles. Each square side can then
be joined to the adjacent side at an angle. Figure 13-9 shows how a cube breaks down into triangles that
you can model.

Figure 13-9. Breaking the cube into triangles

To reduce overhead and improve performance in a 3D program, it’s common to avoid rendering
shapes that you won’t see. For example, if you know you’ll never look at the underside of the cube shown
in Figure 13-9, there’s no reason to define the two triangles for that side. However, in this example you’ll
define every side so you can rotate the cube freely or move the camera around it.

CHAPTER 13  SILVERLIGHT 3D

487

Drawing a Cube
The basic infrastructure in this example is the same as in the first, single-triangle example. First, you
need the same two member fields that store the vertex buffer and the effect object:

private VertexBuffer vertexBuffer;
private BasicEffect effect;

You fill the vertex buffer just before the page appears (in the constructor), usually by calling another
method that you’ve created (like the PrepareDrawing() method). In this method, the first step is to define
the colors you want to use:

private void PrepareDrawing()
{
 Color colorRed = new Color(255, 0, 0);
 Color colorBlue = new Color(0, 255, 0);
 Color colorGreen = new Color(0, 0, 255);
 Color colorWhite = new Color(255, 255, 255);
 ...

The next step is to define the points you want to use for the triangles. As Figure 13-9 makes clear,
every vertex is a corner of the cube, and so every vertex is shared with three to six triangles, depending
on exactly where you divide the sides. To make this pile of vertices easier to manage, it makes sense to
define the points, separately, and then reuse them to create the vertices you need.

It’s clear that every cube needs eight points in total, four for the square that makes up the front side
and four for the square that makes up the backside:

 ...
 Vector3 topLeft = new Vector3(-1, 1, 0);
 Vector3 bottomLeft = new Vector3(-1, -1, 0);
 Vector3 topRight = new Vector3(1, 1, 0);
 Vector3 bottomRight = new Vector3(1, -1, 0);

 Vector3 topLeftFront = new Vector3(-1, 1, 1);
 Vector3 bottomLeftFront = new Vector3(-1, -1, 1);
 Vector3 topRightFront = new Vector3(1, 1, 1);
 Vector3 bottomRightFront = new Vector3(1, -1, 1);
 Vector3 topLeftBack = new Vector3(-1, 1, -1);
 Vector3 topRightBack = new Vector3(1, 1, -1);
 Vector3 bottomLeftBack = new Vector3(-1, -1, -1);
 Vector3 bottomRightBack = new Vector3(1, -1, -1);
 ...

And as Figure 13-9 makes clear, every cube also has twelve triangles, two for each face. That means
that every triangle requires three vertices, and the entire cube needs a total of thirty-six triangles to draw
every side:

 ...
 VertexPositionColor[] vertices = new VertexPositionColor[36];
 ...

Here’s the code that stitches the eight points into the thirty-six vertices you need:

 ...
 // The front face.

CHAPTER 13  SILVERLIGHT 3D

488

 vertices[0] = new VertexPositionColor(topRightFront, colorBlue);
 vertices[1] = new VertexPositionColor(bottomLeftFront, colorBlue);
 vertices[2] = new VertexPositionColor(topLeftFront, colorBlue);
 vertices[3] = new VertexPositionColor(topRightFront, colorGreen);
 vertices[4] = new VertexPositionColor(bottomRightFront, colorGreen);
 vertices[5] = new VertexPositionColor(bottomLeftFront, colorGreen);

 // The back face.
 vertices[6] = new VertexPositionColor(bottomLeftBack, colorRed);
 vertices[7] = new VertexPositionColor(topRightBack, colorRed);
 vertices[8] = new VertexPositionColor(topLeftBack, colorRed);
 vertices[9] = new VertexPositionColor(bottomRightBack, colorWhite);
 vertices[10] = new VertexPositionColor(topRightBack, colorWhite);
 vertices[11] = new VertexPositionColor(bottomLeftBack, colorWhite);

 // The top face.
 vertices[12] = new VertexPositionColor(topLeftBack, colorRed);
 vertices[13] = new VertexPositionColor(topRightBack, colorRed);
 vertices[14] = new VertexPositionColor(topLeftFront, colorRed);
 vertices[15] = new VertexPositionColor(topRightBack, colorWhite);
 vertices[16] = new VertexPositionColor(topRightFront, colorWhite);
 vertices[17] = new VertexPositionColor(topLeftFront, colorWhite);

 // The bottom face.
 vertices[18] = new VertexPositionColor(bottomRightBack, colorWhite);
 vertices[19] = new VertexPositionColor(bottomLeftBack, colorWhite);
 vertices[20] = new VertexPositionColor(bottomLeftFront, colorWhite);
 vertices[21] = new VertexPositionColor(bottomRightFront, colorGreen);
 vertices[22] = new VertexPositionColor(bottomRightBack, colorGreen);
 vertices[23] = new VertexPositionColor(bottomLeftFront, colorGreen);

 // The left face.
 vertices[24] = new VertexPositionColor(bottomLeftFront, colorGreen);
 vertices[25] = new VertexPositionColor(bottomLeftBack, colorGreen);
 vertices[26] = new VertexPositionColor(topLeftFront, colorGreen);
 vertices[27] = new VertexPositionColor(topLeftFront, colorRed);
 vertices[28] = new VertexPositionColor(bottomLeftBack, colorRed);
 vertices[29] = new VertexPositionColor(topLeftBack, colorRed);

 // The right face.
 vertices[30] = new VertexPositionColor(bottomRightBack, colorRed);
 vertices[31] = new VertexPositionColor(bottomRightFront, colorRed);
 vertices[32] = new VertexPositionColor(topRightFront, colorRed);
 vertices[33] = new VertexPositionColor(bottomRightBack, colorBlue);
 vertices[34] = new VertexPositionColor(topRightFront, colorBlue);
 vertices[35] = new VertexPositionColor(topRightBack, colorBlue);
 ...

CHAPTER 13  SILVERLIGHT 3D

489

SHADING THE CUBE

In this example, each triangle is given a solid color. (For example, one is blue, the adjacent one is green,
and so on.) This makes it easy to distinguish the triangles you’ve drawn. However, in a more realistic
application, you’d probably choose to use different-colored vertices so that your triangles are shaded.
Usually, you’ll want the triangles on one face to blend into each other, so you’ll keep using the same color
for each vertex, even when it’s in a different triangle:

// The front face.
vertices[0] = new VertexPositionColor(topRightFront, colorBlue);
vertices[1] = new VertexPositionColor(bottomLeftFront, colorGreen);
vertices[2] = new VertexPositionColor(topLeftFront, colorRed);
vertices[3] = new VertexPositionColor(topRightFront, colorBlue);
vertices[4] = new VertexPositionColor(bottomRightFront, colorWhite);
vertices[5] = new VertexPositionColor(bottomLeftFront, colorGreen);

The drawback of this approach is that it can obscure the edges of your cube, because one colored face
may blend into another. Figure 13-10 shows the cube drawn two ways, with solid triangles on the left, and
one example of blended triangles on the right.

Figure 13-10. Differently shaded cubes

Once you’ve defined the vertices, you have the familiar tasks of creating and initializing the vertex

buffer and then creating the BasicEffect and configuring it with the view and projection settings for the
current camera. Here’s the code that does that, which is essentially the same as in the single-triangle
example:

 ...
 // Set up the vertex buffer.
 GraphicsDevice device = GraphicsDeviceManager.Current.GraphicsDevice;
 vertexBuffer = new VertexBuffer(device, typeof(VertexPositionColor),
 vertices.Length, BufferUsage.WriteOnly);
 vertexBuffer.SetData(0, vertices, 0, vertices.Length, 0);

 // Configure the camera.
 Matrix view = Matrix.CreateLookAt(new Vector3(1, 1, 3), Vector3.Zero,
 Vector3.Up);

CHAPTER 13  SILVERLIGHT 3D

490

 Matrix projection = Matrix.CreatePerspectiveFieldOfView(MathHelper.PiOver4,
 1.33f, 1, 100);

 // Set up the effect.
 effect = new BasicEffect(device);
 effect.World = Matrix.Identity;
 effect.View = view;
 effect.Projection = view * projection;
 effect.VertexColorEnabled = true;
}

Finally, you can use the same drawing code as you used in the single-triangle example. That’s
because you are performing essentially the same task—copying your vertex buffer to the GraphicsDevice
and rendering it as a triangle list:

private void drawingSurface_Draw(object sender, DrawEventArgs e)
{
 GraphicsDevice device = GraphicsDeviceManager.Current.GraphicsDevice;
 device.Clear(new Color(0, 0, 0));
 device.SetVertexBuffer(vertexBuffer);

 foreach (EffectPass pass in effect.CurrentTechnique.Passes)
 {
 pass.Apply();
 device.DrawPrimitives(PrimitiveType.TriangleList,
 0, vertexBuffer.VertexCount / 3);
 }
}

The cube is a genuine 3D object, although it may still look rather unimpressive when it’s just part of
a static scene. But because it’s a true object, look at it from different vantage points with the camera or
rotate it—as you’ll see later in this chapter.

Adding Textures
Every pixel shader paints the pixels in your triangles using some sort of formula. The BasicEffect uses a
relatively basic but still quite practical pixel shader that interpolates a color for each pixel using the three
vertices. This process can create attractive shading, but it’s not always what you want.

Another option is to use a texture, a bitmap that’s overlaid onto your 3D object. Every texture
because as a 2D bitmap—essentially, an ordinary image file. But when you map that 2D texture onto a
3D shape, it becomes stretched and warped to fit the shape’s contours. You can think of it as though
you’re taking your shape and covering it tightly with some plastic wrap (that’s the 2D texture).

The basics of texturing are easy. In the following example you’ll apply it to the cube to create the
result shown in Figure 13-11.

CHAPTER 13  SILVERLIGHT 3D

491

Figure 13-11. A textured cube

The first step is to change the way you define your vertices. When shading a shape in with color, you
use the VertexPositionColor class. When applying a texture to a shape, you replace this with the
VertexPositionTextureClass:

VertexPositionTexture[] vertices = new VertexPositionTexture[36];

Like VertexPositionColor, VertexPositionTextureClass requires a Vector3 object that represents your
vertex. But instead of coupling that with a Color object, it matches it with a texture coordinate stored in a
Vector2. Here’s an example:

vertices[0] = new VertexPositionTexture(topRightFront, new Vector2(1, 0));

At first glance, this may seem a bit odd. After all, you’re probably expecting the
VertexPositionTexture to combine a vertex and some sort of texture object. However, this isn’t what
happens, because of the way texturing works. With texturing, a single object like the cube will typically
have a single texture that wraps its entire surface. It isn’t appropriate to pair vertices with textures,
because that would give each individual triangle three textures, which definitely isn’t what you want.

So, what’s the point of the texture coordinate? The texture coordinate tells Silverlight where to start
grabbing the image data from the texture. In the previous example, the first vertex is paired up with the
point (1,0) in the texture image. Texture coordinates use a scale of 0 to 1, so the point (1,0) actually
represents the top-right corner of the texture (where x=1 and y=0). So, the end result is that the first
vertex, which is positioned in the top-right corner of the front face of the cube, is pinned to the top-right
corner of the texture (Figure 13-12).

CHAPTER 13  SILVERLIGHT 3D

492

Figure 13-12. Texture coordinates

 Note Technically, texture coordinates use something called the (u,v) system, where u represents horizontal and
v represents vertical. This corresponds perfectly well to (x,y) points, but the change in name emphasizes the
change in units. As you’ve seen, (u,v) points are fractional values from 0 to 1—they represent a relative
percentage of the texture size, rather than absolute pixel dimensions.

Lining your textures up with your vertices can get a bit tricky. It’s important that the two adjacent
triangles on the same cube face place the texture in the same orientation so the image is drawn
seamlessly over that side. To make this drawing process easier, it’s a good idea to define the four corners
of the texture using Vector2 objects, before you begin creating VertexPositionTexture objects.

Vector2 textureTopLeft = new Vector2(0, 0);
Vector2 textureTopRight = new Vector2(1, 0);
Vector2 textureBottomLeft = new Vector2(0, 1);
Vector2 textureBottomRight = new Vector2(1, 1);

Then you can use these coordinates to build your VertexPositionTexture objects, like this:

// The front face.
vertices[0] = new VertexPositionTexture(topRightFront, textureTopRight);
vertices[1] = new VertexPositionTexture(bottomLeftFront, textureBottomLeft);
vertices[2] = new VertexPositionTexture(topLeftFront, textureTopLeft);
vertices[3] = new VertexPositionTexture(topRightFront, textureTopRight);
vertices[4] = new VertexPositionTexture(bottomRightFront, textureBottomRight);
vertices[5] = new VertexPositionTexture(bottomLeftFront, textureBottomLeft);

CHAPTER 13  SILVERLIGHT 3D

493

This code places the texture on a single face of the cube. The key detail to note is that the two
triangles use consistent texture coordinates. For example, the point topRightFront is included in both of
the triangles that make up the side, and both times it’s paired up with the same texture coordinate. To
see the complete code that creates the VertexPositionTexture objects for all six sides of the cube,
download the sample project for this chapter.

Once you define all the vertices, using VertexPositionTexture objects, you can create the
VertexBuffer and the camera in the usual way:

GraphicsDevice device = GraphicsDeviceManager.Current.GraphicsDevice;
vertexBuffer = new VertexBuffer(device, typeof(VertexPositionTexture),
 vertices.Length, BufferUsage.WriteOnly);
vertexBuffer.SetData(0, vertices, 0, vertices.Length, 0);

// (Configure the camera here, using the same code as before.)

The next step is to configure the BasicEffect object. Here is where the process changes. Unlike
before, you will no longer set the BasicEffect.VertexColorEnabled property. Instead, you will set the
BasicEffect.TextureEnabled property to use the BasicEffect’s built-in texturing abilities:

effect = new BasicEffect(device);
effect.World = Matrix.Identity;
effect.View = view;
effect.Projection = view * projection;
effect.TextureEnabled = true;

Now you need to load the texture image (typically, from a resource in your project) and use that to
create a Texture2D object. There’s a little bit of juggling involved here, because you need to first pull the
data out of a stream and place it in a BitmapImage and then move it from the BitmapImage to a
Texture2D. Finally, you pass that Texture2D object to BasicEffect by setting its Texture property:

// Load the texture from a resource, and place it in a BitmapImage.
string uri = "Silverlight3D;component/mayablur.jpg";
Stream s = Application.GetResourceStream(new Uri(uri, UriKind.Relative)).Stream;
BitmapImage bmp = new BitmapImage();
bmp.SetSource(s);

// Copy the BitmapImage data into a Texture2D object.
Texture2D texture;
texture = new Texture2D(device, bmp.PixelWidth, bmp.PixelHeight);
bmp.CopyTo(texture);

// Set the texture.
effect.Texture = texture;

This last step is to tweak the drawing code by adding the following statement:

private void drawingSurface_Draw(object sender, DrawEventArgs e)
{
 GraphicsDevice device = GraphicsDeviceManager.Current.GraphicsDevice;
 device.SamplerStates[0] = SamplerState.LinearClamp;
 ...

This allows XNA to map any texture graphic. Without use the SampleState.LinearClamp, your
texture graphic needs to have pixel dimensions that are a power of two. (For example, valid texture

CHAPTER 13  SILVERLIGHT 3D

494

graphics would include images that are 2x2, 4x4, 8x8, 32x32, and so on, but not, say, 40x40). When you
use SampleState.LinearClamp, this awkward limitation disappears.

The rest of the drawing code is unchanged. It still renders a triangle list using the DrawPrimitives()
method. The only difference is that the BasicEffect object is now configured to use a texture:

 ...
 device.Clear(new Color(0, 0, 0));
 device.SetVertexBuffer(vertexBuffer);

 foreach (EffectPass pass in effect.CurrentTechnique.Passes)
 {
 pass.Apply();
 device.DrawPrimitives(PrimitiveType.TriangleList,
 0, vertexBuffer.VertexCount / 3);
 }
}

MAPPING DIFFERENT PARTS OF A TEXTURE

You don’t need to use all of a texture. For example, consider what happiness if you replace every
occurrence of 1 with 0.5 in your texture coordinates:

Vector2 textureTopLeft = new Vector2(0, 0);
Vector2 textureTopRight = new Vector2(0.5f, 0);
Vector2 textureBottomLeft = new Vector2(0, 0.5f);
Vector2 textureBottomRight = new Vector2(0.5f, 0.5f);

Now, your cube will grab the top-right quarter of the image and use that for each side, as shown in Figure
13-13. That’s because x=0.5 represents a point halfway across the horizontal x-axis, and y=0.5
represents a point halfway down the vertical y-axis.

This technique also hints at the solution if you want to display a different image on each side of the cube.
In this case, you simply need to combine all your images into one big texture graphics. Then, you can use
the texture coordinates to grab just the section of the image that you want to use for each side.

Figure 13-13. Using part of a texture

CHAPTER 13  SILVERLIGHT 3D

495

Lighting an Object
So far, you’ve seen how to use the BasicEffect class to color a shape or wrap it with a texture. However,
there’s still another option: you can use lighting to give your objects attractive, realistic shading.

The basic behind lighting is that you place switch on one or more light sources in your 3-D scene.
Your objects are then illuminated based on the position and color of those light sources.

Before you delve into lighting, it’s important that you realize that the Silverlight lighting model
doesn’t behave like light in the real world. Although the lighting system is constructed to emulate the
real world, calculating true light reflections is a processor-intensive task. For this reason, Silverlight
makes use of a number of simplifications, which include:

• Light effects are calculated for objects individually. Light reflected from one object
will not reflect off another object. Similarly, an object will not cast a shadow on
another object, no matter where it’s placed.

• Lighting is calculated at the vertices of each triangle and then interpolated over
the surface of the triangle. (In other words, Silverlight determines the light
strength at each corner and blends that to fill in the triangle.) As a result of this
design, objects that have relatively few triangles may not be illuminated correctly.
To achieve better lighting, you’ll need to divide your shapes into hundreds or
thousands of triangles.

Silverlight supports two types of lights. Ambient light is light that radiates everywhere and
illuminates every shape equally. Directional light is light that radiates in a specific direction, and
illuminates the surfaces that face it. Combining ambient light and one or more directional lights is part
of the art of 3D scene-making.

So how do you add lighting to your scene? The simplest, but least impressive approach is to simply
set the AmbientLightColor and LightingEnabled properties of the BasicEffect object. First, you set the
AmbientLightColor to pick the color cast of your light. Here’s an intensely red light:

effect.AmbientLightColor = new Vector3(1, 0, 0);

Oddly enough, lighting colors are set using the Vector3 type rather than the Color type. You still use
the familiar color components (red, green, and blue, in that order), but you specify each one as a
fractional value from 0 to 1. In the previous example, the red channel is 1 (fully red), while the green and
blue channels are 0. This is equivalent to the color 255,0,0 in RGB notation.

The second step is to set LightingEnabled to true. This puts the lighting system into effect:

effect.LightingEnabled = true;

If you try this out with the textured cube example, you’ll find that the surfaces get an even reddish
cast.

Ambient lighting is the least interesting sort of lighting, because it illuminates everything equally. In
the cube example, you could get exactly the same effect without lighting, simply by substituting a
reddish-colored texture for the cube.

Directional lighting is far more interesting. For example, consider Figure 13-14, which shows the
cube illuminated by several directional lights. This creates a richly detailed shading effect.

CHAPTER 13  SILVERLIGHT 3D

496

Figure 13-14. A textured cube with lighting

Even better, this type of lighting is dynamic. For example, if the user moves the slider at the bottom
of the page to rotate the cube, the light tracks smoothly across the surface, illuminating different areas
and creating different glare spots, just like a real light. (You’ll learn how to perform the rotation that this
slider uses a little later in this chapter.)

To create this sort of lighting effect, you must set several additional lighting properties that the
BasicEffect object provides. Rather than limiting yourself to AmbientLightColor, you can also set the
DirectionalLight0, DirectionalLight1, and DirectionalLight2 properties, which give you three lights to
shine on your scene. Each directional light has its own direction and two colors: a diffuse color (which is
used when the light hits the surface of a shape at an angle), and a specular color (which is used when the
light hits a surface dead on). Typically, you’ll use the specular color to create a shiny glare effect.

Tweaking all these lighting properties can be a bit overwhelming at first. But once again, the
BasicEffect object can help you out. It includes a method named EnableDefaultLighting():

effect.EnableDefaultLighting();

When you call this method, the BasicEffect switches on its ambient and directional light sources,
positions the directional lights, and gives all the light sources subtly different diffuse and specular colors,
without requiring a single additional line of code. For your 3D objects, it’s sort of like stepping into a well
lit portrait studio. In fact, the EnableDefaultLighting() method is used to create the sophisticated lighting
in Figure 13-14.

If you want to tweak your lighting further, it helps to know what EnableDefaultLighting() actually
does. Here’s the code it runs, behind the scenes:

CHAPTER 13  SILVERLIGHT 3D

497

effect.AmbientLightColor = new Vector3(0.053f, 0.098f, 0.181f);
effect.SpecularColor = new Vector3(0, 0, 0);
effect.DiffuseColor = new Vector3(0.64f, 0.64f, 0.64f);

effect.DirectionalLight0.Enabled = true;
effect.DirectionalLight0.DiffuseColor = new Vector3(1f, 0.96f, 0.81f);
effect.DirectionalLight0.Direction = new Vector3(-0.52f, -0.57f, -0.62f);
effect.DirectionalLight0.SpecularColor = new Vector3(1f, 0.96f, 0.81f);

effect.DirectionalLight1.Enabled = true;
effect.DirectionalLight1.DiffuseColor = new Vector3(0.96f, 0.76f, 0.40f);
effect.DirectionalLight1.Direction = new Vector3(0.71f, 0.34f, 0.60f);
effect.DirectionalLight1.SpecularColor = new Vector3(0f, 0f, 0f);

effect.DirectionalLight2.Enabled = true;
effect.DirectionalLight2.DiffuseColor = new Vector3(0.32f, 0.36f, 0.39f);
effect.DirectionalLight2.Direction = new Vector3(0.45f, -0.76f, 0.45f);
effect.DirectionalLight2.SpecularColor = new Vector3(0.32f, 0.36f, 0.39f);

Unfortunately, to create a properly-lit scene, like the one in Figure 13-14, you also need to configure
the vertices of your shapes. The problem is that Silverlight needs some more information to calculate
how lighting illuminates each vertex.

On its own, a vertex is just a point in space. Silverlight doesn’t pay attention to the way a vertex
connects to the other vertices around it, because that sort of lighting calculation would be too complex.
Instead, Silverlight needs you to supply a normal vector that tells it which way the corresponding surface
is oriented. Surfaces that are facing the light source will catch much more light than surfaces that are
partly or completely turned away from it.

Usually, the normal vector points away from your surface at a right angle. So in the cube example,
all the vertices on the left side will have normal vectors pointing out to the left. Figure 13-15 illustrates.

Figure 13-15. The normal vectors in the cube

CHAPTER 13  SILVERLIGHT 3D

498

To capture this information in your code, you need to replace your VertexPositionTexture objects
with VertexPositionNormalTexture objects. The difference is that each VertexPositionNormalTexture
object includes a normal vector, as shown here:

Vector3 vector = new VertexPositionNormalTexture(
 topRightFront, normal, textureTopRight);

Once you understand what a normal vector is, it’s easy (but tedious) to rebuild the cube. First, you
need to define normal vectors that point in the appropriate directions, away from each side:

Vector3 frontNormal = new Vector3(0, 0, 1);
Vector3 backNormal = new Vector3(0, 0, -1);
Vector3 topNormal = new Vector3(0, 1, 0);
Vector3 bottomNormal = new Vector3(0, -1, 0);
Vector3 leftNormal = new Vector3(-1, 0, 0);
Vector3 rightNormal = new Vector3(1, 0, 0);

Then, you use these normal when defining the sides of the cube. Here’s the reworked code that
defines the front face:

vertices[0] = new VertexPositionNormalTexture(
 topRightFront, frontNormal, textureTopRight);
vertices[1] = new VertexPositionNormalTexture(
 bottomLeftFront, frontNormal, textureBottomLeft);
vertices[2] = new VertexPositionNormalTexture(
 topLeftFront, frontNormal, textureTopLeft);
vertices[3] = new VertexPositionNormalTexture(
 topRightFront, frontNormal, textureTopRight);
vertices[4] = new VertexPositionNormalTexture(
 bottomRightFront, frontNormal, textureBottomRight);
vertices[5] = new VertexPositionNormalTexture(
 bottomLeftFront, frontNormal, textureBottomLeft);

No other changes are needed. Once your shapes have proper normals, you can apply any sort of
lighting effect you want through the BasicEffect object.

Creating Multiple Objects
When you create even a slightly complicated 3D object, like the textured cube in the previous examples,
you’ll need to manage a number of details—and a pile of code. So far, the examples you’ve seen have
placed that form in the user control that represents the page. However, a far better location is a
dedicated class that wraps all the drawing logic and provides easy access to the properties you want to
tweak. Not only does this design simplify your code, it also makes it easy to use multiple copies of an
object in the same 3D scene.

For example, consider the textured cube example. You could move all of its drawing details to a
dedicated class, like the Cube3D class outlined here:

public class Cube3D
{
 // Store the vertex buffer and effect internall.
 private VertexBuffer vertexBuffer;
 private BasicEffect effect;

 // Allow the code using the Cube3D to change its world matrix

CHAPTER 13  SILVERLIGHT 3D

499

 // (to move or rotate the object).
 public Matrix World
 {
 get { return effect.World; }
 set { effect.World = value; }
 }

 // Allow the code using the Cube3D to change its view matrix
 // (to move or rotate the camera).
 public Matrix View
 {
 get { return effect.View; }
 set { effect.View = value; }
 }

 // Allow the code using the Cube3D to change its view projection
 // (to change the aspect ratio if the DrawingSurface size changes).
 public Matrix Projection
 {
 get { return effect.Projection; }
 set { effect.Projection = value; }
 }

 // (Constructors go here.)
 // (Drawing code goes here.)
}

The Cube3D class exposes the three matrices that you may need to manipulate in your code to add
interactivity or animations. The other details that underpin the VertexBuffer and BasicEffect objects are
hidden out of sight.

The Cube3D class includes two constructors. Both of them accept a few key details: the
GraphicsDevice to use, a Vector3 object that places the bottom-left-back corner of the cube, the width
that the cube should have, the URI for the texture, and the aspect ratio for the DrawingSurface. The
second constructor also accepts the view matrix that places the camera. The first constructor does not—
it simply calls the second constructor with all the details and a hard-coded, default view matrix:

public Cube3D(GraphicsDevice device, Vector3 bottomLeftBack, float width,
 string textureUri, float aspectRatio)
 : this(device, bottomLeftBack, width, textureUri, aspectRatio,
 Matrix.CreateLookAt(new Vector3(0, 0, 5), Vector3.Zero, Vector3.Up))
{
 // No code is required, because this constructor calls the second
 // constructor, which does all the work.
}

public Cube3D(GraphicsDevice device, Vector3 bottomLeftBack, float width,
 string textureUri, float aspectRatio, Matrix view)
{
 // (Initialization code goes here.)
}

The second constructor contains the code that you previously placed in the PrepareDrawing()
method. The only difference is that the code is tweaked slightly to use the passed-in constructor

CHAPTER 13  SILVERLIGHT 3D

500

arguments. For example, all the vertices are defined in terms of the bottom-left-back corner of the cube
and the specified width:

Vector3 topLeftFront = new Vector3(
 bottomLeftBack.X, bottomLeftBack.Y + width, bottomLeftBack.Z + width);
Vector3 bottomLeftFront = new Vector3(
 bottomLeftBack.X, bottomLeftBack.Y, bottomLeftBack.Z + width);
Vector3 topRightFront = new Vector3(
 bottomLeftBack.X + width, bottomLeftBack.Y + width, bottomLeftBack.Z + width);
Vector3 bottomRightFront = new Vector3(
 bottomLeftBack.X + width, bottomLeftBack.Y, bottomLeftBack.Z + width);
Vector3 topLeftBack = new Vector3(
 bottomLeftBack.X, bottomLeftBack.Y + width, bottomLeftBack.Z);
Vector3 topRightBack = new Vector3(
 bottomLeftBack.X + width, bottomLeftBack.Y + width, bottomLeftBack.Z);
Vector3 bottomRightBack = new Vector3(
 bottomLeftBack.X + width, bottomLeftBack.Y, bottomLeftBack.Z);

Next, the vertex buffer is created, the camera is created using the specified aspect ratio and view,
and the texture is loaded using the specified resource URI, as you’ve seen before.

The Cube3D class also includes a public Draw() method, which the application can call to render
the cube to the drawing surface. When calling Draw(), the code simply passes in the appropriate
GraphicsDevice, and the rest unfolds in the usual way:

public void Draw(GraphicsDevice device)
{
 device.SetVertexBuffer(vertexBuffer);
 device.SamplerStates[0] = SamplerState.LinearClamp;

 foreach (EffectPass pass in effect.CurrentTechnique.Passes)
 {
 pass.Apply();
 device.DrawPrimitives(PrimitiveType.TriangleList,
 0, vertexBuffer.VertexCount / 3);
 }
}

Now that you’ve done the work of moving the drawing code into a separate class, you’ll be rewarded
with clutter-free event-handling code in your user control. The following example demonstrates, by
using three instances of the Cube3D class to create three cubes, each at a different position and with a
different size. The code is clean and lean:

public partial class MultipleCubes : UserControl
{
 private Cube3D cube;
 private Cube3D cube2;
 private Cube3D cube3;

 public MultipleCubes()
 {
 InitializeComponent();

 GraphicsDevice device = GraphicsDeviceManager.Current.GraphicsDevice;
 string uri = "Silverlight3D;component/mayablur.jpg";

CHAPTER 13  SILVERLIGHT 3D

501

 // Create a view that all three cubes will share.
 Matrix view = Matrix.CreateLookAt(new Vector3(1, 1, 3), Vector3.Zero,
 Vector3.Up);

 // Create the three cubes.
 cube = new Cube3D(device, new Vector3(-1,-1,-1), 2, uri, 1.33f, view);
 cube2 = new Cube3D(device, new Vector3(-2, -2, 1), 1.5f, uri, 1.33f, view);
 cube3 = new Cube3D(device, new Vector3(-5, -2, -2.5f), 2, uri, 1.33f, view);
 }

 private void drawingSurface_Draw(object sender, DrawEventArgs e)
 {
 GraphicsDevice device = GraphicsDeviceManager.Current.GraphicsDevice;

 // Clear the DrawingSurface.
 device.Clear(new Color(0, 0, 0));

 // Ask all three cubes to draw themselves.
 cube.Draw(device);
 cube2.Draw(device);
 cube3.Draw(device);
 }
}

Figure 13-16 shows the result.

Figure 13-16. Drawing multiple copies of an object

CHAPTER 13  SILVERLIGHT 3D

502

Using Models
So far, you’ve spent your time with very simple geometric shapes, like a flat triangle and 3D cube. But
realistic 3D scenes usually involve thousands of triangles, which are assembled into complex objects.
There are three ways you can create objects like these:

• By hand: This is the approach you’ve taken so far, but it quickly becomes
impractical for more complex objects. In fact, it’s unlikely that you’ll build
anything more sophisticated than a cube if you’re relying on a handwritten set of
vertices. However, you may get more mileage by using someone else’s ready-
made 3D classes. These classes can encapsulate the lengthy code details, as in the
Cube3D example. Still, someone needs to write the code, and it’s not a trivial
endeavor.

• With code (algorithmically): With this approach, you use a combination of loops
and calculations to construct a shape. For example, you can write the code that
creates a sphere out of hundreds of triangles, although you might need to sharpen
your math skills to get it right. This approach is commonly used when mapping
dynamic data to 3D content—for example, if you’re building a 3D charting tool
that plots scientific results retrieved from a web service.

• With a design tool: With this approach, you prepare your 3D object using a 3D
modeling program. There’s no shortage of choices, including hugely expensive
tools like 3ds Max and Maya and the completely free and surprisingly powerful
Blender (www.blender.org). Once you’ve perfected your 3D model, you can export
it to a file, import it to your Silverlight application, and manipulate it there using
the familiar techniques (like the world, view, and projection matrices).

The third option—using a design tool to create a model—is the clear for favorite for most people.
However, there’s a catch. The 3D support in Silverlight doesn’t have the capability to load models
directly, because it lacks the content pipeline that’s part of the full XNA platform. Although many
enterprising coders are rushing to fill the gap, the solution isn’t quite there yet. Two of the best bets are
higher-level, open source frameworks that build on top of Silverlight’s 3D support: Babylon
(http://babylontoolkit.codeplex.com) and Balder (http://balder.codeplex.com). Both frameworks
were developed for previous versions of Silverlight, where they provided software-rendered 3D. Now,
they provide the same great features with Silverlight’s hardware-accelerated 3D. The catch is that at the
time of this writing neither toolkit has been released.

Movement and Animation
If you use the DrawingSurface control to paint only a static scene, you’re missing out of the real
advantages of Silverlight 3D. Life becomes much more interesting when you start grabbing hold of your
objects and moving them.

There are many reasons for combining 3D rendering with animation. Perhaps you simply want to let
the user turn an object around to see it from different angles. Or maybe you plan to build a complete
first-person game that lets the user walk through a virtual world. Either way, you start with the same
basic building blocks that you’ll learn about in the following sections.

http://www.blender.org
http://babylontoolkit.codeplex.com
http://balder.codeplex.com

CHAPTER 13  SILVERLIGHT 3D

503

Moving a Shape
The trick to moving or rotating any shape—whether it’s a single triangle, the relatively simple textured
cube, or a complete model imported from a 3D design tool—is changing the world matrix.

In the examples you’ve seen so far, the world matrix (which is set in the BasicEffect.World property)
is set to the identity matrix:

effect.World = Matrix.Identity;

This means the world matrix isn’t doing anything at all. But consider this more interesting code:

Matrix translation = Matrix.CreateTranslation(-2, 0, 0);
effect.World = effect.World * translation;

Here, the world matrix is being changed with a translation. The translation is an operation that
shifts an object’s coordinates by the amount you specify. In this case, the translation moves the object
two units to the left (because the x-coordinate is -2) but doesn’t change the y- or z-coordinate.

 Note Remember, a 3D scene doesn’t use physical units (like pixels). When you move an object -2 to the side,
you may be moving it a small distance or a large distance. It depends only on how close you’ve placed your
camera and how large its field of view is.

Translations are spectacularly easy to apply. The Matrix.CreateTranslation() method generates the
transformation matrix you need. You then apply it to the object by multiplying its world view matrix with
the matrix.

You don’t need to worry about the matrix math that works out the coordinates behind the scenes.
However, you do need to realize that this:

effect.World = effect.World * translation;

is not equivalent to this:

effect.World = translation * effect.World;

Matrix multiplication is not commutative, so the order that you perform your multiplication is
important. Always begin with the world matrix, followed by the translation. For convenience, you can
use the *= operator shortcut:

effect.World *= translation;

And here’s another mistake you don’t want to make:

effect.World = translation;

This statement actually replaces the world matrix, rather than transforming it.
Finally, you should realize that the transformations you perform on the world matrix are

cumulative. That means you can do something like this:

Matrix translation = Matrix.CreateTranslation(-2, 0, 0);
effect.World *= translation;
translation = Matrix.CreateTranslation(0, 5, 0);

CHAPTER 13  SILVERLIGHT 3D

504

effect.World *= translation;
translation = Matrix.CreateTranslation(-1, 0, 0);
effect.World *= translation;

which applies three translations, one after the other. It’s the same as it you’d use this single translation:

Matrix translation = Matrix.CreateTranslation(-3, 5, 0);
effect.World = effect.World * translation;

You can think of the world matrix as a snapshot of all the transformations you’ve applied to your
object to date. Common transformation include the translation operations you’ve just seen, and the
rotations that are discussed next.

Rotating a Shape
Much as the Matrix class provides a CreateTranslation() method that allows you to move an object, it
also includes methods for rotating it. But because rotations are somewhat more complex, there are
several methods you can use, as listed in Table 13-3.

Table 13-3. Matrix Methods for Rotation

Method Description

CreateRotationX() Rotates a shape around the x-axis. You specify the rotation angle in
radians.

CreateRotationY() Rotates a shape around the y-axis. You specify the rotation angle in
radians.

CreateRotationZ() Rotates a shape around the z-axis. You specify the rotation angle in
radians.

CreateFromYawPitchRoll() Rotates a shape around all three axes at once. The pitch is the rotation
angle for the x-axis, the yaw is the rotation angle for the y-axis, and the
roll is the rotation angle for the z-axis.

CreateFromAxisAngle() Rotates a shape around an axis you define (as a vector). This custom axis
doesn’t need to line up with the x-, y-, or z-axis.

If you’re having any trouble visualizing rotations in 3D space, Figure 13-17 makes it clear.

CHAPTER 13  SILVERLIGHT 3D

505

Figure 13-17. Rotating an object in three dimensions

Here’s an example that applies a small rotation of 1/8th of a circle:

// There are 2*Pi radians in a circle. So this rotation is 1/8 of that:
Matrix rotation = Matrix.CreateRotationY(MathHelper.PiOver4);
effect.World *= rotation;

As with a translation, you apply rotation by multiplying the world matrix.
There’s another detail to think about: the distance between your object and the axis. For example, if

the y-axis runs right through the middle of your object, a rotation that’s created with CreateRotationY()
will spin it around while keeping in the same place. But if your objects offset from the y-axis,
CreateRotationY() will move it around the axis, like a planet orbiting the sun. Figure 13-18 illustrates the
difference. (To help visualize this example, remember that the z-axis is pointing out of the page, and
rotating around the z-axis spins the image around this imaginary line.)

CHAPTER 13  SILVERLIGHT 3D

506

Before Rotation After Rotation

Before Rotation

After Rotation

Figure 13-18. Rotating an object around the z-axis, two ways

To make sure you get the result you want, you need to think about where you place your objects and
when you move them. For example, imagine you want to rotate an object around its center point and
then shift it to a new position. To get the result you want, you must first place the shape on the axis
around which you want to rotate.

For example, if you want to rotate a shape around the z-axis perfectly, the z-axis must run through
the middle of the shape. For this reason, it’s often easiest to put the center point of your shape at the
origin (0,0,0).

When you’re ready to apply your transformations, apply the rotation first. Then, you can apply a
translation to move your shape to its appropriate location. Or you can do it all it one step, like this:

effect.World = effect.World * rotation * translation;

But remember that this has a different effect:

effect.World = effect.World * translation * rotation;

It moves the shape with the translation first and then rotates it around the (now-distant) axis line.

CHAPTER 13  SILVERLIGHT 3D

507

 Note The Matrix class provides one other transformation function, named CreateScale(). It allows you to change
the scale of an object, shrinking or enlarging it. You can also use the different overloads of CreateScale() to scale
an object disproportionately along the x-, y-, or z-axes. For example, you can stretch an object out twice as wide
(in the x-dimension) and three times as tall (in the y-dimension), while leaving its thickness unchanged (in the z-
dimension).

Shape Animations
You now know all you need to create an animated shape. The first step is to make sure your drawing
logic runs continuously, by adding this statement to the end of the DrawingSurface.Draw event handler:

e.InvalidateSurface();

Now you simply need to apply a rotation every time the Draw event fires.
There’s one more consideration. You need to determine how much to rotate the shape each time

the Draw event fires. This should be a small number of radians—typically, a small fraction of
MathHelper.PiOver4. However, different video cards will execute the drawing code at different speeds.
To ensure that the rotation is the same speed on everyone’s computer, you need to link the amount of
rotation to the interval of time that passes between subsequent Draw events. That way, a fast video card
that’s able to draw more frames per second will rotate the shape a smaller amount each frame, while a
slower video card will rotate the shape a greater amount to make up for the time lag, and the rotation
speed will be consistent on everyone’s computer.

The DrawEventArgs object provides two properties that can help you use timing information in your
animations. The TotalTime property returns the total time that has elapsed since the application was
started, as a TimeSpan object. More usefully, the DeltaTime property returns a TimeSpan for the time
that has elapsed since the previous Draw event was triggered (technically, it’s the difference between the
TotalTime as recorded at this Draw and the total time recorded at the beginning of the previous Draw
event). Here’s an event handler that uses DeltaTime to slowly spin the textured cube:

private void drawingSurface_Draw(object sender, DrawEventArgs e)
{
 GraphicsDevice device = GraphicsDeviceManager.Current.GraphicsDevice;
 device.Clear(new Color(0, 0, 0));

 // Spin the cube.
 Matrix rotation = Matrix.CreateRotationY(
 MathHelper.PiOver4 * (float)e.DeltaTime.TotalMilliseconds / 2000f);
 cube.World = cube.World * rotation;
 cube.Draw(device);

 // Keep the drawing surface updated.
 e.InvalidateSurface();
}

To see this rotating cube in action, refer to the sample code for this chapter.

CHAPTER 13  SILVERLIGHT 3D

508

Rotating and Moving the Camera
The final task you’ll tackle in this chapter is to create a “first-person” camera that the user can move and
orient with the keyboard. This is a more complex task than just rotating an object in the scene, because
the camera isn’t a distinct object and it doesn’t have its own world matrix. Instead, it’s modified through
the properties of the view.

Figure 13-19 shows the finished example. Here, a DrawingSurface includes two shapes: the familiar
textured shape and a gray “floor,” which is constructed out of two very large triangles. Using the arrow
keys, the user can turn and approach the cube, go past it, turn around to see it again, and so on. In fact,
because backface culling is enabled, you can even walk into the cube and view it from the inside (Figure
13-19, bottom). And while all this happens, the cube continues spinning around—unless the user clicks
the button to stop it.

Figure 13-19. Walking around a cube

CHAPTER 13  SILVERLIGHT 3D

509

To create this example, you first need to add three Vector3 fields that track camera information. You
already know about the camera position and camera target, the two pieces of information you use the
create the view with the Matrix.CreateLookAt() method. In addition, this code adds a cameraLook vector
that indicates the direction that camera is looking.

// The position of the camera.
// Initially, it starts almost at the origin.
private Vector3 cameraPosition = new Vector3(0, 0, 0.01f);

// The direction the camera is looking.
// Initially, it looks down the z-axis line, into the front of the scene.
private Vector3 cameraLook = new Vector3(0,0,-1);

// The combination of the camera's position and its look direction.
private Vector3 cameraTarget;

The difference between cameraLook and cameraTarget is subtle but important. The cameraTarget
is the point the camera is looking at. The cameraLook is the direction the camera is looking. The
important detail here is that if you add the cameraPosition and cameraLook vectors together, you arrive
at cameraTarget, as shown in Figure 13-20.

Figure 13-20. Calculating the camera target

When this page is loaded, the constructor creates the view, the cube, and the floor:

Matrix view = Matrix.CreateLookAt(cameraPosition, cameraTarget, Vector3.Up);

// The cube is positioned carefully, so that the y-axis runs through the middle,
// allowing it to spin in place.
cube = new Cube3D(device, new Vector3(-1, -1, -1), 2, uri, 1.33f, view);
floor = new Floor3D(device, 1.33f, view);

// Walk the camera back so the scene is visible.
cameraPosition -= cameraLook * 6;

CHAPTER 13  SILVERLIGHT 3D

510

The only unusual detail here is that the camera is first placed at the origin and then moved back 6
units. This allows the code to rotate the camera first (at the origin) and then move it to its proper
position. Otherwise, if you move the camera first, it will spin around the y-axis line when it’s rotated.

The drawing code is responsible for combining the cameraPosition and cameraLook to put the
camera in its correct place, just before rendering the scene. Here’s the complete Draw event handler:

private bool rotate = true;

private void drawingSurface_Draw(object sender, DrawEventArgs e)
{
 GraphicsDevice device = GraphicsDeviceManager.Current.GraphicsDevice;
 device.Clear(new Color(0, 0, 0));

 // This allows you to see the inside of the cube when you pass into it.
 device.RasterizerState = new RasterizerState()
 {
 CullMode = CullMode.None
 };

 // Spin the cube.
 if (rotate)
 {
 Matrix rotation = Matrix.CreateRotationY(
 MathHelper.PiOver4 * (float)e.DeltaTime.TotalMilliseconds / 2000f);
 cube.World = cube.World * rotation;
 }

 // Create the view for the current camera position and direction.
 cameraTarget = cameraPosition + cameraLook;
 Matrix view = Matrix.CreateLookAt(cameraPosition, cameraTarget, Vector3.Up);
 cube.View = view;
 floor.View = view;

 // Draw the shapes.
 floor.Draw(device);
 cube.Draw(device);

 // Keep the drawing surface updated.
 e.InvalidateSurface();
}

You’ll notice that the drawing code rotates the cube only if the rotate flag is true. There’s a button
that lets the user flip this flag and stop or start the rotation at any time:

private void cmdToggleRotate_Click(object sender, RoutedEventArgs e)
{
 rotate = !rotate;
}

The real magic in this example takes place in a KeyDown event handler for the user control. Here,
the arrow keys are intercepted, and the camera is adjusted accordingly. If the up or down key is pressed,
the camera moves forward or backward a fractional amount of cameraLook. Similarly, when the left or

CHAPTER 13  SILVERLIGHT 3D

511

right key is pressed, a fractional rotation is applied to the cameraLook vector, twisting it from side to
side.

private void UserControl_KeyDown(object sender, KeyEventArgs e)
{
 Matrix rotation = Matrix.Identity;
 switch (e.Key)
 {
 case Key.Up:
 cameraPosition += cameraLook * 0.08f;
 break;
 case Key.Down:
 cameraPosition -= cameraLook * 0.08f;
 break;
 case Key.Left:
 rotation = Matrix.CreateRotationY(MathHelper.PiOver4 * 0.08f);
 cameraLook = Vector3.Transform(cameraLook, rotation);
 break;
 case Key.Right:
 rotation = Matrix.CreateRotationY(MathHelper.PiOver4 * -0.08f);
 cameraLook = Vector3.Transform(cameraLook, rotation);
 break;
 }
 // Apply the new rotation, if one was created.
 cube.View *= rotation;
}

The actual amount of rotation or movement depends on how smooth and how fast you want
movement to be. In this example, the factor of 0.08 gives a good compromise, with fast but non-jerky
movement. However, that number was decided through pure trial and error.

Although this example is relatively simple, it’s easy to expand upon it by adding a more objects into
the 3D scene and letting the user walk around the entire landscape.

The Last Word
When WPF introduced its 3D model, the fit and finish was impressive. There was a range of useful
conveniences, including hit testing support, the ability to put interactive 2D controls on 3D objects,
integrated animation for manipulating shapes and moving the camera, and even some handy code to let
users rotate a 3D object with the mouse. By comparison, Silverlight’s 3D feature is a mix of great power
and slight awkwardness. Rather than create a new, truly Silverlight-integrated approach, the creators of
Silverlight wedged a powerful piece of Microsoft XNA into the Silverlight universe, and the rough edges
show. But the result—true hardware-accelerated 3D in a browser—is nothing short of revolutionary.

It’s not easy to take the 3D basics you’ve learned in this chapter and use them to build a practical 3D
application. To get there, you have two choices:

Use a toolkit: You can use a toolkit that builds on Silverlight’s 3D support but
adds key features, like the ability to import models from 3D design tools. Two of
the best frameworks are Balder (http://balder.codeplex.com) and Babylon
(http://babylontoolkit.codeplex.com).

http://balder.codeplex.com
http://babylontoolkit.codeplex.com

CHAPTER 13  SILVERLIGHT 3D

512

Do it all yourself: Your other option is to build what you need from scratch,
provided you have the math skills and pain threshold to make it. You can hone
your skills with a book about XNA, such as Learning XNA 4.0 (Aaron Reed).
Although not all the material applies to Silverlight (as Silverlight only supports a
subset of XNA), much of it does. You’ll also learn other important game-
programming skills that aren’t technology specific, such as how to perform
collision detection, add artificial intelligence, and create physics-based effects.

C H A P T E R 14

513

Styles and Behaviors

Silverlight applications would be a drab bunch if you were limited to the plain, gray look of ordinary
buttons and other common controls. Fortunately, Silverlight has several features that allow you to inject
some flair into basic elements and standardize the visual appearance of your application. In this
chapter, you’ll learn about two of the most important: styles and behaviors.

Styles are an essential tool for organizing and reusing for formatting choices. Rather than filling your
XAML with repetitive markup to set details such as margins, padding, colors, and fonts, you can create a
set of styles that encompass all these details. You can then apply the styles where you need them by
setting a single property (or automatically by element type).

Behaviors are a more ambitious tool for reusing user interface code. The basic idea is that a behavior
encapsulates a common bit of UI functionality (for example, the code that makes an element draggable).
If you have the right behavior, you can attach it to any element with a line or two of XAML markup,
saving you the effort of writing and debugging the code yourself. Currently, behaviors are still a new and
developing feature, and many useful prebuilt behaviors are sure to be released in the coming months.

 What’s New Silverlight 5 adds support for style setters that support data binding. Although you probably won’t
use this feature directly, it’s important for other data-centric frameworks, particularly if you’re using the Model-
View-ViewModel (MVVM) pattern. For more details, see the “Style Binding Expressions” section.

Styles
A style is a collection of property values that you can apply to an element in one step. In Silverlight, styles
let you streamline your XAML markup by pulling repetitive formatting details out of your element tags.

The Silverlight style system plays a similar role to the Cascading Style Sheets (CSS) standard in
HTML markup. Like CSS, Silverlight styles allow you to define a common set of formatting
characteristics and apply them throughout your application to ensure consistency.

Defining a Style
Experienced Silverlight developers turn to styles when they expect to use a group of formatting
characteristics more than once. For example, imagine that you need to standardize the font and
foreground color that are used in all the buttons on a page. The first step is to define a Style object that

CHAPTER 14  STYLES AND BEHAVIORS

514

wraps all the properties you want to set. You’ll store this Style object as a resource, typically in the
UserControl.Resources collection that holds resources for the entire page:

<UserControl.Resources>
 <Style x:Key="BigButtonStyle" TargetType="Button">
 ...
 </Style>
</UserControl.Resources>

Like all resources, the style has a key name so you can pull it out of the collection when needed. In
this case, the key name is BigButtonStyle. (By convention, the key names for styles usually end with
Style.) Additionally, every Silverlight style requires a TargetType, which is the type of element on which
you apply the style. In this case, the TargetType property indicates that this style is designed to format
buttons.

Every style holds a Setters collection with several Setter objects, one for each property you want to
set. Each Setter object sets a single property in an element. The only limitation is that a setter can change
only dependency properties—other properties can’t be modified. (In practice, this isn’t much of a
limitation, because Silverlight elements consist almost entirely of dependency properties.) It’s also
important to note that property setters can act on any dependency property, even one that governs
behavior rather than appearance. For example, if you’re applying a style to a text box, you may choose to
set the AcceptsReturn and IsReadOnly properties.

Here’s a style that sets a combination of five properties, giving buttons large, light text with Georgia
font:

<UserControl.Resources>
 <Style x:Key="BigButtonStyle" TargetType="Button">
 <Setter Property="FontFamily" Value="Georgia" />
 <Setter Property="FontSize" Value="40" />
 <Setter Property="Foreground" Value="SlateGray" />
 <Setter Property="Padding" Value="20" />
 <Setter Property="Margin" Value="10" />
 </Style>
</UserControl.Resources>

In some cases, you can’t set the property value using a simple attribute string. For example, you
can’t create a complex brush like LinearGradientBrush or ImageBrush with a string. In this situation, you
can use the familiar XAML trick of replacing the attribute with a nested element. Here’s an example that
sets the button background:

<Style x:Key="BigButtonStyle" TargetType="Button">
 <Setter Property="Background">
 <Setter.Value>
 <LinearGradientBrush StartPoint="0,0" EndPoint="1,0">
 <GradientStop Color="Blue"></GradientStop>
 <GradientStop Color="Yellow" Offset="1"></GradientStop>
 </LinearGradientBrush>
 </Setter.Value>
 </Setter>
 ...
</Style>

More powerfully, a style can set transforms, rendering effects, and control templates that
completely revamp the appearance of an element.

CHAPTER 14  STYLES AND BEHAVIORS

515

Applying a Style
Every Silverlight element can use a single style (or no style). The style plugs into an element through the
element’s Style property (which is defined in the base FrameworkElement class). For example, to
configure a button to use the style you created previously, you point the button to the style resource like
this:

<Button Style="{StaticResource BigButtonStyle}"
 Content="A Customized Button"></Button>

Figure 14-1 shows a page with two buttons that use BigButtonStyle.

Figure 14-1. Reusing button settings with a style

The style system adds many benefits. Not only does it allow you to create groups of settings that are
clearly related, but it also streamlines your markup by making it easier to apply these settings. Best of all,
you can apply a style without worrying about what properties it sets. In the previous example, the font
settings are organized into a style named BigButtonStyle. If you decide later that your big-font buttons
also need more padding and margin space, you can add setters for the Padding and Margin properties as
well. All the buttons that use the style automatically acquire the new style settings.

Styles set the initial appearance of an element, but you’re free to override the characteristics they
set. For example, if you apply the BigButtonStyle style and set the FontSize property explicitly, the
FontSize setting in the button tag overrides the style. Ideally, you won’t rely on this behavior. Instead, if
you need to alter a style, you should create a new style that sets the appropriate properties. This gives
you more flexibility to adjust your user interface in the future with minimum disruption.

CHAPTER 14  STYLES AND BEHAVIORS

516

Dynamic Styles
Although you’ll usually want to link up styles in your markup, you can also set them programmatically.
All you need to do is pull the style out of the appropriate Resources collection.

Here’s the code you use to retrieve the BigButtonStyle from the page’s Resources collection and
apply it to a Button object named cmd:

cmd.Style = (Style)this.Resources["AlternateBigButtonStyle"];

You can even retrieve a style from a separate resource dictionary file in your project (or a referenced
assembly). First, you need to create a ResourceDictionary object and supply the correct URI:

ResourceDictionary resourceDictionary = new ResourceDictionary();
resourceDictionary.Source = new Uri("/Styles/AlternateStyles.xaml",
 UriKind.Relative);

This example assumes the resource dictionary is a file named AlternateStyles.xaml in a project
folder named Styles. For this example to work, the resource dictionary must be compiled as a content
file (set Build Action to Content in the Properties window).

After you’ve configured the ResourceDictionary with the right URI, you can retrieve an object from
inside:

Style newStyle = (Style)resourceDictionary["BigButtonStyle"];
cmd.Style = newStyle;

Finally, to remove a style, set the Style property to null.
The ability to change styles dynamically opens up the possibility of creating skinnable applications

that can change their appearance based on user preferences. However, implementing such a system
would be tedious, because you’d need to programmatically retrieve each style object and set each styled
control. In WPF, the job is much easier—you simply swap in a new merged dictionary, and all the
controls that use styles from that merged dictionary update themselves automatically.

Style Inheritance
In some situations, you may want to use the properties from one style as the basis for another, more
specialized style. You can use this sort of style inheritance by setting the BasedOn attribute of a style. For
example, consider these two styles:

<UserControl.Resources>
 <Style x:Key="BigButtonStyle" TargetType="Button">
 <Setter Property="FontFamily" Value="Georgia" />
 <Setter Property="FontSize" Value="40" />
 <Setter Property="Padding" Value="20" />
 <Setter Property="Margin" Value="10" />
 </Style>

 <Style x:Key="EmphasizedBigButtonStyle" TargetType="Button"
 BasedOn="{StaticResource BigButtonStyle}">
 <Setter Property="BorderBrush" Value="Black" />
 <Setter Property="BorderThickness" Value="5" />
 </Style>
</UserControl.Resources>

CHAPTER 14  STYLES AND BEHAVIORS

517

The first style (BigButtonStyle) defines four properties. The second style
(EmphasizedBigFontButtonStyle) acquires these aspects from BigFontButtonStyle and then
supplements them with two more properties that apply a thick black outline around the button. This
two-part design gives you the ability to apply just the font settings or the font and color combination.
This design also allows you to create more styles that incorporate the font or color details you’ve defined
(but not necessarily both).

You can use the BasedOn property to create an entire chain of inherited styles. The only rule is that
if you set the same property twice, the last property setter (the one in the derived class farthest down the
inheritance chain) overrides any earlier definitions.

 Tip Surprisingly, an inherited style doesn’t need to have the same TargetType as its parent. That means you
can create a derived style that has the same formatting properties—but acts on a different element—than the
parent. But you’ll get an error if your style inherits a setter for a property that doesn’t exist in its target element
type. (For example, the TextBlock and Button classes both have a FontFamily property, so you can set FontFamily
in a button style and create a TextBlock style that derives from it. However, only the button has the IsEnabled
property, so if you set IsEnabled in a Button style, you can’t derive a TextBlock style from it.)

STYLE INHERITANCE ADDS COMPLEXITY

Although style inheritance seems like a great convenience at first glance, it’s usually not worth the trouble.
That’s because style inheritance is subject to the same problems as code inheritance: dependencies that
make your application more fragile. For example, if you use the markup shown previously, you’re forced to
keep the same font characteristics for two styles. If you decide to change BigButtonStyle,
EmphasizedBigButtonStyle changes as well—unless you explicitly add more setters that override the
inherited values.

This problem is trivial enough in the two-style example, but it becomes a significant issue if you use style
inheritance in a more realistic application. Usually, styles are categorized based on different types of
content and the role the content plays. For example, a sales application may include styles such as
ProductTitleStyle, ProductTextStyle, HighlightQuoteStyle, NavigationButtonStyle, and so on. If you base
ProductTitleStyle on ProductTextStyle (perhaps because they both share the same font), you’ll run into
trouble if you apply settings to ProductTextStyle later that you don’t want to apply to ProductTitleStyle
(such as different margins). In this case, you’ll be forced to define your settings in ProductTextStyle and
explicitly override them in ProductTitleStyle. At the end, you’ll be left with a more complicated model and
very few style settings that are actually reused.

Unless you have a specific reason to base one style on another (for example, the second style is a special
case of the first and changes just a few characteristics out of a large number of inherited settings), think
carefully before using style inheritance.

CHAPTER 14  STYLES AND BEHAVIORS

518

Organizing Styles
In the previous examples, the Style object is defined at the page level and then reused in buttons inside
that page. Although that’s a common design, it’s certainly not your only choice.

Strictly speaking, you don’t need to use styles and resources together. For example, you can define
the style of a particular button by filling its Style collection directly, as shown here:

<Button Content="A Customized Button">
 <Button.Style>
 <Style TargetType="Button">
 <Setter Property="FontFamily" Value="Georgia" />
 <Setter Property="FontSize" Value="40" />
 <Setter Property="Foreground" Value="White" />
 </Style>
 </Button.Style>
</Button>

This works, but it’s obviously a lot less useful. Now there’s no way to share this style with other
elements.

More usefully, you may want to define styles in different resource collections. If you want to create
more finely targeted styles, you can define them using the resources collection of their container, such as
a StackPanel or a Grid. It’s even possible for the same style to be defined at multiple levels (in a
StackPanel containing a button and in the page that holds the StackPanel). In this situation, Silverlight
follows the standard resource-resolution process you learned about in Chapter 2—it searches in the
resources collection of the current element first, then the containing element, then its container, and so
on, until it finds a style with the matching name.

If you want to reuse styles across an application, you should define them using the resources
collection of your application (in the App.xaml file), which is the last place Silverlight checks. Or even
better, put them in a separate resource dictionary that’s merged into the resource collection of every
page that needs it, as explained in Chapter 2.

Automatically Applying Styles by Type
So far, you’ve seen how to create named styles and refer to them in your markup. However, there’s
another approach. You can apply a style automatically to elements of a certain type.

Doing this is quite easy. You simply need to set the TargetType property to indicate the appropriate
type (as described earlier) and leave out the key name altogether. Here’s an example:

<Style TargetType="Button">

Now the style is automatically applied to any buttons all the way down the element tree. For
example, if you define a style in this way on the UserControl.Resources collection, it applies to every
button in that page (unless there’s a style further downstream that replaces it).

Here’s an example that sets the button styles automatically to get the same effect you saw in Figure
14-1:

<UserControl.Resources>
 <Style TargetType="Button">
 <Setter Property="FontFamily" Value="Georgia" />
 <Setter Property="FontSize" Value="40" />
 <Setter Property="Foreground" Value="SlateGray" />
 <Setter Property="Padding" Value="20" />
 <Setter Property="Margin" Value="10" />

CHAPTER 14  STYLES AND BEHAVIORS

519

 </Style>
</UserControl.Resources>

<StackPanel x:Name="LayoutRoot" Background="White">
 <Button Content="A Customized Button"></Button>
 <Button Content="Another Customized Button"></Button>
</StackPanel>

If you want to prevent a style from being applied to an element automatically, you simply need to
set the Style property to something else. If you don’t want to use any style at all, simply set it to a null
value, which effectively removes the style:

<Button Content="A Non-Customized Button" Style="{x:Null}"></Button>

Although automatic styles are convenient, they can complicate your design. Here are a few reasons
why:

• In a complex page with many styles and multiple layers of styles, it becomes
difficult to track down whether a given property is set through property value
inheritance or a style (and if it’s a style, which one). As a result, if you want to
change a simple detail, you may need to wade through the markup of your entire
page.

• The formatting in a page often starts out more general and becomes increasingly
fine-tuned. If you apply automatic styles to the page early on, you’ll probably need
to override the styles in many places with explicit styles. This complicates the
overall design. It’s much more straightforward to create named styles for every
combination of formatting characteristics you want and apply them by name.

• For example, if you create an automatic style for the TextBlock element, you’ll
wind up modifying other controls that use the TextBlock (such as a template-
driven ListBox control).

To avoid problems, it’s best to apply automatic styles judiciously. If you do decide to give your
entire user interface a single, consistent look using automatic styles, try to limit your use of explicit styles
to special cases.

Style Binding Expressions
In Chapter 2, you learned about XAML to define resources in XAML and write simple binding
expressions. Both techniques apply to styles.

First, you can use the StaticResource markup extension in your style setters to reference a resource
object. Here’s an example:

<UserControl.Resources>
 <FontFamily x:Key="buttonFontFamily">Georgia</FontFamily>
 <sys:Double x:Key="buttonFontSize">18</sys:Double>
 <FontWeight x:Key="buttonFontWeight">Bold</FontWeight>

 <Style x:Key="BigButtonStyle1" TargetType="Button">
 <Setter Property="FontFamily" Value="{StaticResource buttonFontFamily}" />
 <Setter Property="FontSize" Value="{StaticResource buttonFontSize}" />
 <Setter Property="FontWeight" Value="{StaticResource buttonFontWeight}" />
 </Style>

CHAPTER 14  STYLES AND BEHAVIORS

520

</UserControl.Resources>

This snippet of markup adds three resources: a FontFamily object with the name of the font you
want to use, a double that stores the number 18, and the enumerated value FontWeight.Bold. It assumes
you’ve mapped the System namespace System to the XML namespace prefix sys, as shown here:

<UserControl xmlns:sys="clr-namespace:System;assembly=mscorlib" ... >

 Note The resource doesn’t need to be in the same page as your style setting. Silverlight will search up the
resource tree, ending with the application resources, as described in Chapter 2.

Of course, you might prefer to wrap these font settings into a single object. Silverlight doesn’t have
any all-in-one Font class, but you can certainly create your own, like the FontInfo class shown here:

public class FontInfo
{
 public FontFamily FontFamily { get; set; }
 public double FontSize { get; set; }
 public FontWeight FontWeight { get; set; }
}

And if you make that namespace available to your markup:

<UserControl xmlns:local="clr-namespace:Styles" ... >

you can use it in your resources collection and bind to it in your styles:

<UserControl.Resources>
 <local:FontInfo x:Key="buttonFont" FontFamily="Georgia" FontSize="18"
 FontWeight="Bold"></local:FontInfo>

 <Style x:Key="BigButtonStyle2" TargetType="Button">
 <Setter Property="Padding" Value="20" />
 <Setter Property="Margin" Value="10" />
 <Setter Property="FontFamily"
 Value="{Binding Source={StaticResource buttonFont}, Path=FontFamily}" />
 <Setter Property="FontSize"
 Value="{Binding Source={StaticResource buttonFont}, Path=FontSize}" />
 <Setter Property="FontWeight"
 Value="{Binding Source={StaticResource buttonFont}, Path=FontWeight}" />
 </Style>
</UserControl.Resources>

Here, each binding expression grabs the resource named buttonFont and extracts a single property,
just as you learned to do in Chapter 2.

Both of these techniques inject dependencies that can make your code more fragile and difficult to
work with. For example, it’s all too easy to accidentally apply these styles in a page where the linked
resource isn’t available. In general, these features are meant to support higher-level frameworks, like the
MVVM toolkits introduced in the commanding section of Chapter 4. You can use them on your own, but
be careful not to make your markup more complicated than necessary.

CHAPTER 14  STYLES AND BEHAVIORS

521

Behaviors
Styles give you a practical way to reuse groups of property settings. They’re a great first step that can help
you build consistent, well-organized interfaces—but they’re also broadly limited.

The problem is that property settings are only a small part of the user-interface infrastructure in a
typical application. Even the most basic program usually needs reams of user-interface code that has
nothing to do with the application’s functionality. In many programs, the code that’s used for UI tasks
(such as driving animations, powering slick effects, maintaining user-interface state, and supporting
user-interface features like dragging, zooming, and docking) far outweighs the business code in both size
and complexity. Much of this code is generic, meaning you end up writing the same thing in every
Silverlight project you create. Almost all of it is tedious.

Based on this reality, it’s clear that a method for reusing user-interface code would be even more
useful than a system for reusing property values through styles. So far, Silverlight hasn’t met the
challenge. But a new system of behaviors is beginning to fill the gap. The idea is simple: you (or another
developer) create a behavior that encapsulates a common bit of user-interface functionality. This
functionality can be basic (such as starting a storyboard or navigating to a hyperlink). Or, it can be
complex (such as handling scrolling and the mouse wheel for a Deep Zoom image or modeling a
collision with a real-time physics engine). Once built, this functionality can be added to another control
in any application by hooking up the right behavior and setting its properties. In Expression Blend, using
a behavior takes little more than a drag-and-drop operation.

 Note Custom controls are another technique for reusing user-interface functionality in an application (or among
multiple applications). However, a custom control must be developed as a tightly linked package of visuals and
code. Although custom controls are extremely powerful, they don’t address situations where you need to equip
many different controls with similar functionality (for example, adding a mouse-over rendering effect to a group of
different elements). For that reason, styles, behaviors, and custom controls are all complementary, and some of
the most flexible applications use them in combination. You’ll learn about behaviors in the rest of this chapter and
custom controls in the next chapter.

Getting Support for Behaviors
There’s one catch. The new infrastructure for reusing common blocks of user-interface code isn’t part of
the Silverlight SDK. Instead, it’s bundled with Expression Blend. This is because behaviors began as a
design-time feature for Expression Blend (and Expression Blend is currently the only tool that lets you
add behaviors by dragging them onto the controls that need them). That doesn’t mean behaviors are
useful only in Expression Blend. You can create and use them in a Visual Studio application with only
slightly more effort. (You simply need to write the markup by hand rather than using the Toolbox.)

To get the assemblies that support behaviors, you have three options:

• Use the beta version of Expression Blend for Silverlight 5. (To get it, search for
“Silverlight 5” at www.microsoft.com/download.)

http://www.microsoft.com/download

CHAPTER 14  STYLES AND BEHAVIORS

522

• Install the Expression Blend SDK for Silverlight 4 (which is available at
http://tinyurl.com/25sh2jt). Even though the version numbers don’t match, this
works equally well with Silverlight 5. Microsoft may also release an Expression
Blend SDK for Silverlight 5 at some point in the future.

• Use Expression Blend 4. Even though you can’t author a Silverlight 5 application
in Expression Blend 4, you can still grab the assemblies you need from an
Expression Blend 4 installation.

No matter which option you use, you’ll get two important assemblies:

• System.Windows.Interactivity.dll: This assembly defines the base classes that
support behaviors. It’s the cornerstone of the behavior feature.

• Microsoft.Expression.Interactions.dll: This assembly adds some useful extensions,
with optional action and trigger classes that are based on the core behavior
classes.

Look for these assemblies in a folder like c:\Program Files\Microsoft
SDKs\Expression\Blend\Silverlight\v5.0\Libraries. If you’re using a version of Expression Blend that
supports Silverlight 4 rather than Silverlight 5, change the v5.0 folder part of the path to v4.0, and look for
the assemblies there.

In the following sections, you’ll see how to develop a simple action and wire it up in an application,
using nothing more than the System.Windows.Interactivity.dll assembly. Once you’ve completed this
exercise and you understand the behavior model, you’ll examine the
Microsoft.Expression.Interactions.dll assembly and consider other ready-made behaviors.

Triggers and Actions
The behaviors feature consists of three smaller ingredients—trigger, action, and behavior classes—
which, somewhat confusingly, are all called behaviors.

Triggers and actions work hand in hand. The trigger fires when something happens and invokes an
action. Together, triggers and actions make up the simplest form of behavior.

Creating an Action
To get a grip on triggers and actions, it helps to design a simple action of your own. For example,
imagine you want to play a sound when the user performs an operation (such as clicking a button). It’s
fairly easy to carry this out without behaviors—you add a MediaElement to the page, supply the URI of
an audio file, and call the MediaElement.Play() method at the appropriate time. However, these details
add unnecessary clutter. If you want to play a range of different sounds in response to different events,
you need to manage a surprisingly large amount of code.

You can avoid the hassle with an action that takes care of the playback for you. And assuming no
one has created just the action you need, you can create it yourself. First, create a Silverlight class library
assembly. (In this example, it’s called CustomBehaviorsLibrary.) Then, add a reference to the
System.Windows.Interactivity.dll assembly. Finally, create an action class that derives from
TriggerAction, as shown here:

Public Class PlaySoundAction
 Inherits TriggerAction(Of FrameworkElement)
{ ... }

http://tinyurl.com/25sh2jt

CHAPTER 14  STYLES AND BEHAVIORS

523

All actions derive from the confusingly named TriggerAction class. That’s because these are actions
that are activated by a trigger. (In theory, the model could support actions that are wired up in different
ways, although it currently doesn’t and there’s no reason it should.)

 Note Ideally, you won’t need to create an action yourself—instead, you’ll use a ready-made action that
someone else has created. Although the System.Windows.Interactivity.dll assembly doesn’t include any action
classes, you’ll hunt some down later in this chapter.

As you can see in the previous example, the TriggerAction class uses generics. When you derive from
TriggerAction, you supply the type of element that can use your action as a type parameter. Unless your
action requires specialized functionality in the triggering element, it’s common to use UIElement or
FrameworkElement. In this example, PlaySoundAction supports any FrameworkElement. (It uses
FrameworkElement rather than the somewhat more generic UIElement class, because it needs to use
the VisualTreeHelper to search the visual tree, as you’ll see shortly. But because all elements inherit from
FrameworkElement, which in turn inherits from UIElement, there’s really no difference.)

Like any other class, your action needs properties. Ideally, you’ll use dependency properties to give
yourself the best support for other Silverlight features. In this example, PlaySoundAction requires just
one property—the URI source that points to the audio file:

public static readonly DependencyProperty SourceProperty =
 DependencyProperty.Register("Source", typeof(Uri),
 typeof(PlaySoundAction), new PropertyMetadata(null));

public Uri Source
{
 get { return (Uri)GetValue(PlaySoundAction.SourceProperty); }
 set { SetValue(PlaySoundAction.SourceProperty, value); }
}

When a trigger fires, it activates your action by calling the Invoke() method. You override this
method to supply all the code for your action. In this example, that means you need to supply the code
that plays the audio.

As you know from Chapter 12, the media support in Silverlight has one clear restriction. To play
anything through a MediaElement, you must place it in your hierarchy of elements. Even if your
MediaElement is intended to play ordinary audio and has no visual presence, it needs to be in your
page’s visual tree.

You can handle this limitation several possible ways in the PlaySoundAction class. For example, you
can include a property that takes the name of a MediaElement on the page. PlaySoundAction can then
look up that MediaElement and use it. Another approach is to create the MediaElement you need and
then remove it as soon as the playback is finished. This approach has several advantages: it saves you
from needing to define the MediaElement yourself, and it allows you to play an unlimited number of
sounds simultaneously. Here’s the code that does the job, using a FindContainer() method that gets a
container where the MediaElement can be inserted:

protected override void Invoke(object args)
{
 // Find a place to insert the MediaElement.

CHAPTER 14  STYLES AND BEHAVIORS

524

 Panel container = FindContainer();

 if (container != null)
 {
 // Create and configure the MediaElement.
 MediaElement media = new MediaElement();
 media.Source = this.Source;

 // Hook up handlers that will clean up when playback finishes.
 media.MediaEnded += delegate
 {
 container.Children.Remove(media);
 };

 media.MediaFailed += delegate
 {
 container.Children.Remove(media);
 };

 // Add the MediaElement and begin playback.
 media.AutoPlay = true;
 container.Children.Add(media);
 }
}

The FindContainer() method uses VisualTreeHelper to travel up the hierarchy of elements, starting
at the current element. It stops as soon as it finds any sort of layout container (in other words, a class
that derives from Panel) where the new MediaElement can be injected. If no panel is found, the
MediaElement can’t be added, and the media isn’t played. This is possible in a window that contains a
single control, but in no other situation. To get the current element (the element where the action is
attached), you use the inherited TriggerAction.AssociatedObject property:

private Panel FindContainer()
{
 FrameworkElement element = this.AssociatedObject;

 // Search for some sort of panel where the MediaElement can be inserted.
 while (element != null)
 {
 if (element is Panel) return (Panel)element;

 element = VisualTreeHelper.GetParent(element) as FrameworkElement;
 }
 return null;
}

This completes the code for the action. As you can see, most action classes consist of nothing more
than properties and the Invoke() method that does something. In the next section, you’ll learn how to
wire an element to your action.

CHAPTER 14  STYLES AND BEHAVIORS

525

Connecting an Action to an Element
To use an action, you need the help of a trigger. Technically, the trigger connects to your element, and
the action connects to your trigger. That means the first step in using PlaySoundAction is choosing a
suitable trigger.

All triggers derive from TriggerBase. The System.Windows.Interactivity.dll assembly includes a
single trigger called EventTrigger, which fires when a specific event occurs. Although you can create your
own triggers, the EventTrigger is flexible enough to handle a wide range of scenarios.

 Note One reason that you might create your own trigger is to respond to a certain event and state combination.
For example, a custom trigger can intercept an event, check a few other details, and then decide whether to fire.
Building a trigger like this is easy: you derive from the TriggerBase class, override OnAttached() to wire up the
appropriate event, and override OnDetaching() to disconnect the event handler. When the event you’re watching
occurs, your trigger handles it. If your trigger then decides to fire, it calls the inherited InvokeActions() method.

To test PlaySoundAction, begin by creating a new Silverlight project. Then, add a reference to the
class library that defines the PlaySoundAction class (which you created in the previous section) and the
System.Windows.Interactivity.dll assembly. Then, map both namespaces. Assuming the
PlaySoundAction class is stored in a class library named CustomBehaviorsLibrary, you’ll need markup
like this:

<UserControl xmlns:i="clr-namespace:System.Windows.Interactivity;
assembly=System.Windows.Interactivity" xmlns:custom=
"clr-namespace:CustomBehaviorsLibrary;assembly=CustomBehaviorsLibrary" ... >

You can add a trigger to any element using the attached Interaction.Triggers collection that’s
defined in the System.Windows.Interactivity.dll assembly. Here’s an example that adds an event trigger
to a button:

<Button Content="Click to Play Sound">
 <i:Interaction.Triggers>
 <i:EventTrigger EventName="Click">
 </i:EventTrigger>
 </i:Interaction.Triggers>
</Button>

The EventTrigger.EventName property identifies the event that you want to respond to. In this
example, the trigger fires when the Button.Click event occurs.

The final step is to add the behavior to the EventTrigger.Actions collection. You can do this in your
markup by declaring the behavior inside the event trigger:

<Button Content="Click to Play Sound">
 <i:Interaction.Triggers>
 <i:EventTrigger EventName="Click">
 <custom:PlaySoundAction Source="test.mp3" />
 </i:EventTrigger>
 </i:Interaction.Triggers>

CHAPTER 14  STYLES AND BEHAVIORS

526

</Button>

Now you can run the page and test the button. When you click the button, playback begins for the
test.mp3 file. From the point of view of the application developer, all it takes is the right behavior and a
few straightforward lines of markup. You can use the same action to wire sound to any number of
different elements and different events in the same page. You can even add a series of actions to your
trigger, in which case they will be launched in quick succession.

But that’s still not the whole story. If you’re developing in Expression Blend, behaviors give you an
even better design experience—one that can save you from writing any markup at all.

Design-Time Behavior Support in Blend
In Expression Blend, working with behaviors is a drag-drop-and-configure operation. First, you need to
make sure your application has a reference to the assembly that has the behaviors you want to use. (In
this case, that’s the class library assembly where PlaySoundAction is defined.) Next, you need to ensure
that it also has a reference to the System.Windows.Interactivity.dll assembly.

Expression Blend automatically searches all referenced assemblies for actions and displays them in
the Asset Library (the same panel you use for choosing elements when designing a Silverlight page). It
also adds the behaviors from the Microsoft.Expression.Interactions.dll assembly, even if they aren’t yet
referenced by your project.

To see the behaviors you have to choose from, start by drawing a button on the design surface of
your page, click the Asset Library button, and click the Behaviors tab (Figure 14-2).

CHAPTER 14  STYLES AND BEHAVIORS

527

Figure 14-2. Actions in the Asset Library

To add an action to a control, drag it from the Asset Library, and drop it onto your control (in this
case, the button). When you take this step, Expression Blend automatically creates a trigger for your
element and creates the action inside. It’s then up to you to configure both objects—typically, by
selecting the action in the Objects and Timelines pane and then adjusting the options in the Properties
window (Figure 14-3).

CHAPTER 14  STYLES AND BEHAVIORS

528

Figure 14-3. Configuring an action (and its trigger)

By default, when you add a new action to a button, Expression Blend creates an EventTrigger for the
Click event. You can choose a new event (or a different trigger) in the Properties window (as shown in
Figure 14-3). Other elements use different default events—for example, the ListBox uses the
SelectionChanged event, and the Rectangle uses the Loaded event.

Incidentally, you can tell Expression Blend what trigger to use by default by adding the
DefaultTrigger attribute to your action class. Here’s an example that tells Expression Blend to use the
ever-popular EventTrigger and set it to react to the MouseLeftButtonDown event:

 [DefaultTrigger(typeof(UIElement), typeof(EventTrigger),
 new object[] {"MouseLeftButtonDown"})]
public class PlaySoundAction : TriggerAction<FrameworkElement>
{ ... }

As you can see, the DefaultTrigger attribute takes several parameters, which specify the type of
element that’s being wired up, the type of trigger, and any additional information to pass to the trigger’s

CHAPTER 14  STYLES AND BEHAVIORS

529

constructor (such as the event name for the event trigger). You can get even more specific and choose a
different trigger based on the type of element where the action is being applied. To do so, add multiple
DefaultTrigger attributes, ordered from most to least specific. For example, the following combination
ensures that when you wire the PlaySoundAction to a button, Expression Blend starts with an
EventTrigger for the Click event. For Shape-derived elements like the Rectangle, it uses an EventTrigger
set to the MouseEnter event. For all other elements, it uses an EventTrigger set to the
MouseLeftButtonDown event:

[DefaultTrigger(typeof(ButtonBase), typeof(EventTrigger), new object[] {"Click"})]
[DefaultTrigger(typeof(Shape), typeof(EventTrigger), new object[] {"MouseEnter"})]
[DefaultTrigger(typeof(UIElement), typeof(EventTrigger),
 new object[] {"MouseLeftButtonDown"})]
public class PlaySoundAction : TriggerAction<FrameworkElement>
{ ... }

Creating a Targeted Trigger
As you’ve seen, every action can access the element that it’s attached to using the
TriggerAction.AssociatedObject property. In the PlaySoundAction, this ability allowed the code to search
up the element tree for a suitable layout container. Other actions can retrieve additional information
from the source element or alter it in some way. But many actions need to go beyond the source element
and perform work on another element. For example, clicking a button may cause a change in another
control that’s placed somewhere different. And although you could attempt to deal with this situation by
adding additional properties, Silverlight has a more gracious solution—you can derive your action from
the more specialized TargetedTriggerAction. The TargetedTriggerAction provides a Target property,
which the application developer sets and your trigger code examines. You can then perform the
necessary operations on that element. Aside from the Target property, the TargetedTriggerAction works
exactly the same as the standard TriggerAction.

The following example shows a pair of actions that derive from TargetedTriggerAction. The first,
FadeOutAction, runs an animation on the target that gradually fades the Opacity of the target element to
0. The second, FadeInAction, uses another animation to fade it back in. Here’s the complete code for the
FadeOutAction:

public class FadeOutAction : TargetedTriggerAction<UIElement>
{
 // The default fade out time is 2 seconds.
 public static readonly DependencyProperty DurationProperty =
 DependencyProperty.Register("Duration", typeof(TimeSpan),
 typeof(FadeOutAction), new PropertyMetadata(TimeSpan.FromSeconds(2)));

 public TimeSpan Duration
 {
 get { return (TimeSpan)GetValue(FadeOutAction.DurationProperty); }
 set { SetValue(FadeOutAction.DurationProperty, value); }
 }

 private Storyboard fadeStoryboard = new Storyboard();
 private DoubleAnimation fadeAnimation = new DoubleAnimation();

 public FadeOutAction()
 {

CHAPTER 14  STYLES AND BEHAVIORS

530

 fadeStoryboard.Children.Add(fadeAnimation);
 }

 protected override void Invoke(object args)
 {
 // Make sure the storyboard isn't already running.
 fadeStoryboard.Stop();

 // Set up the storyboard.
 Storyboard.SetTarget(fadeAnimation, this.Target);
 Storyboard.SetTargetProperty(fadeAnimation, new PropertyPath("Opacity"));

 // Set up the animation.
 // It's important to do this at the last possible instant,
 // in case the value for the Duration property changes.
 fadeAnimation.To = 0;
 fadeAnimation.Duration = Duration;

 fadeStoryboard.Begin();
 }
}

FadeInAction is almost identical. It animates the Opacity to 1, using a default time of just 0.5
seconds:

public class FadeInAction : TargetedTriggerAction<UIElement>
{
 // The default fade in is 0.5 seconds.
 public static readonly DependencyProperty DurationProperty =
 DependencyProperty.Register("Duration", typeof(TimeSpan),
 typeof(FadeInAction), new PropertyMetadata(TimeSpan.FromSeconds(0.5)));

 public TimeSpan Duration
 {
 get { return (TimeSpan) etValue(FadeInAction.DurationProperty); }
 set { SetValue(FadeInAction.DurationProperty, value); }
 }

 private Storyboard fadeStoryboard = new Storyboard();
 private DoubleAnimation fadeAnimation = new DoubleAnimation();

 public FadeInAction()
 {
 fadeStoryboard.Children.Add(fadeAnimation);
 }

 protected override void Invoke(object args)
 {
 // Make sure the storyboard isn't already running.
 fadeStoryboard.Stop();

 // Set up the storyboard.
 Storyboard.SetTarget(fadeAnimation, this.Target);

CHAPTER 14  STYLES AND BEHAVIORS

531

 Storyboard.SetTargetProperty(fadeAnimation, new PropertyPath("Opacity"));

 // Set up the animation.
 fadeAnimation.To = 1;
 fadeAnimation.Duration = Duration;

 fadeStoryboard.Begin();
 }
}

And here’s an example that uses that both actions. By clicking one of two buttons, the user can fade
out or fade in a block of text.

<StackPanel Orientation="Horizontal" Margin="3,15">
 <Button Content="Click to Fade the TextBlock" Padding="5">
 <i:Interaction.Triggers>
 <i:EventTrigger EventName="Click">
 <custom:FadeOutAction TargetName="border" />
 </i:EventTrigger>
 </i:Interaction.Triggers>
 </Button>

 <Button Content="Click to Show the TextBlock" Padding="5">
 <i:Interaction.Triggers>
 <i:EventTrigger EventName="Click">
 <custom:FadeInAction TargetName="border" />
 </i:EventTrigger>
 </i:Interaction.Triggers>
 </Button>
</StackPanel>

<Border x:Name="border" Background="Orange" BorderBrush="Black" BorderThickness="1"
 Margin="3,0" >
 <TextBlock Margin="5" FontSize="17" TextWrapping="Wrap"
 Text="I'm the target of the FadeOutAction and FadeInAction."></TextBlock>
</Border>

Figure 14-4 shows the result.

CHAPTER 14  STYLES AND BEHAVIORS

532

Figure 14-4. Using a targeted trigger

It’s obviously possible to combine FadeOutAction and FadeInAction into a more general
FadeAction that takes an additional property (say, TargetOpacity). However, behaviors are usually
designed to be more specific so they can be dropped onto an element and used with a minimum
amount of property setting. Similarly, you can run any animated effect using the
ControlStoryboardAction (which is part of the Microsoft.Expression.Interactivity.dll assembly).
However, it’s a common design pattern for an action to encapsulate a programmatically created
animation and expose any relevant details as higher-level properties. This simplifies your application
and dramatically reduces the amount of markup that’s needed.

Incidentally, targeted actions offer one way that you can rework the PlaySoundAction shown earlier
if you want to avoid the overhead of creating and removing MediaElement objects (and you can live with
the one-sound-at-a-time restriction that comes from using a single MediaElement for all your sounds).
Rather than dynamically insert a MediaElement, ask the application developer to do the work, and then
derive PlaySoundAction from TargetedTriggerAction. The trigger target would be the MediaElement.

SWAPPING THE SOURCE AND TARGET

There’s a little-known fact about the source and target of an action: they’re interchangeable. In fact, the
application developer has the ability to set both the target and source element. You set the target using the
TargetName property of the action, as you’ve already seen. Additionally, you can set the source using the
SourceName property of the containing trigger. This means the source of an action doesn’t necessarily
need to be the element where it’s placed.

This design allows two different scenarios. The most common scenario is the one you’ve already seen,
where the trigger and action are nested inside the source element. This is called the tell model, because
you tell the action to act on a specific target. But for greater flexibility, actions also support the listen
model, where the action is defined in the target and you ask it to listen to a different source element. Either
way, the action works in the same way and has the same convenient design-time support in Expression
Blend. (It’s equally possible to create an action in one element, set its source to a second element, and

CHAPTER 14  STYLES AND BEHAVIORS

533

point its target to a third element, but it’s hard to imagine a situation where this approach adds any
benefit.)

Creating a Behavior
Although actions are often described as behaviors (and they appear in the Behaviors section of the Asset
Library window in Expression Blend), there’s a second sort of behavior that’s represented by the
Behavior class.

Behaviors have the same goal as actions: they aim to encapsulate bits of UI functionality so you can
apply them to elements without writing the code yourself. The difference is that every action is a distinct
piece of code that accomplishes a single task. Although you may create a set of related actions (like
FadeOutAction and FadeInAction), each action is self-sufficient and can be used independently.
Similarly, actions and triggers are complementary, and individual actions aren’t linked to specific
triggers. Any action can be used with any trigger.

On the other hand, behaviors group a combination of related operations. They encompass the job of
triggers (listening for certain events or changes) and actions (performing the appropriate operations).
They usually do several related things that can’t be separated into smaller building blocks, because
they’re always used in combination. For example, the Deep Zoom functionality consists of several event
handlers that allow you to pan and zoom a Deep Zoom image using the mouse buttons and mouse
wheel. Together, this code establishes a basic level of support for navigating Deep Zoom images, and it’s
wrapped into a single behavior named DeepZoomBehavior.

 Tip As a rule of thumb, if you find yourself trying to create actions that share data or interact or if you need a
tight coupling between your action and a specific behavior, you should consider implementing your functionality as
a behavior.

To gain a better understanding of behaviors, it’s worth creating your own behavior. Imagine that
you want to give any element the ability to be dragged around a Canvas with the mouse. You saw how to
implement this feature for ellipses in Chapter 4, with the draggable-circle example. But with a bit more
effort, you can turn that code into a reusable behavior that can give dragging support to any element on
any Canvas.

The first step is to create a class that derives from the base Behavior class. As with the TriggerAction
and TargetedTriggerAction classes, Behavior is a generic class that takes a type argument. You can use
this type argument to restrict your behavior to specific elements, or you can use UIElement or
FrameworkElement to include them all:

public class DragInCanvasBehavior : Behavior<UIElement>
{ ... }

The first step in any behavior is to override the OnAttached() and OnDetaching() methods. When
OnAttached() is called, you can access the element where the behavior is placed (through the
AssociatedObject property) and attach event handlers. When OnDetaching() is called, you remove your
event handlers.

Here’s the code that the DragInCanvasBehavior uses to monitor the MouseLeftButtonDown,
MouseMove, and MouseLeftButtonUp events:

CHAPTER 14  STYLES AND BEHAVIORS

534

protected override void OnAttached()
{
 base.OnAttached();

 // Hook up event handlers.
 this.AssociatedObject.MouseLeftButtonDown +=
 AssociatedObject_MouseLeftButtonDown;
 this.AssociatedObject.MouseMove += AssociatedObject_MouseMove;
 this.AssociatedObject.MouseLeftButtonUp += AssociatedObject_MouseLeftButtonUp;
}

protected override void OnDetaching()
{
 base.OnDetaching();

 // Detach event handlers.
 this.AssociatedObject.MouseLeftButtonDown -=
 AssociatedObject_MouseLeftButtonDown;
 this.AssociatedObject.MouseMove -= AssociatedObject_MouseMove;
 this.AssociatedObject.MouseLeftButtonUp -= AssociatedObject_MouseLeftButtonUp;
}

The final step is to run the appropriate code in the event handlers. For example, when the user
clicks the left mouse button, DragInCanvasBehavior starts a dragging operation, records the offset
between the upper-left corner of the element and the mouse pointer, and captures the mouse:

// Keep track of the Canvas where this element is placed.
private Canvas canvas;

// Keep track of when the element is being dragged.
private bool isDragging = false;

// When the element is clicked, record the exact position
// where the click is made.
private Point mouseOffset;

private void AssociatedObject_MouseLeftButtonDown(object sender,
 MouseButtonEventArgs e)
{
 // Find the Canvas.
 if (canvas == null)
 canvas = (Canvas)VisualTreeHelper.GetParent(this.AssociatedObject);

 // Dragging mode begins.
 isDragging = true;

 // Get the position of the click relative to the element
 // (so the top-left corner of the element is (0,0).
 mouseOffset = e.GetPosition(AssociatedObject);

 // Capture the mouse. This way you'll keep receiving
 // the MouseMove event even if the user jerks the mouse
 // off the element.

CHAPTER 14  STYLES AND BEHAVIORS

535

 AssociatedObject.CaptureMouse();
}

When the element is in dragging mode and the mouse moves, the element is repositioned:

private void AssociatedObject_MouseMove(object sender, MouseEventArgs e)
{
 if (isDragging)
 {
 // Get the position of the element relative to the Canvas.
 Point point = e.GetPosition(canvas);

 // Move the element.
 AssociatedObject.SetValue(Canvas.TopProperty, point.Y - mouseOffset.Y);
 AssociatedObject.SetValue(Canvas.LeftProperty, point.X - mouseOffset.X);
 }
}

And when the mouse button is released, dragging ends:

private void AssociatedObject_MouseLeftButtonUp(object sender,
 MouseButtonEventArgs e)
{
 if (isDragging)
 {
 AssociatedObject.ReleaseMouseCapture();
 isDragging = false;
 }
}

To use this behavior, you simply need to add to any element inside a Canvas. The following markup
creates a Canvas with three shapes. The two Ellipse elements use the DragInCanvasBehavior and can be
dragged around the Canvas. The Rectangle element does not, and so cannot be moved.

<Canvas>
 <Rectangle Canvas.Left="10" Canvas.Top="10" Fill="Yellow" Width="40" Height="60">
 </Rectangle>

 <Ellipse Canvas.Left="10" Canvas.Top="70" Fill="Blue" Width="80" Height="60">
 <i:Interaction.Behaviors>
 <custom:DragInCanvasBehavior></custom:DragInCanvasBehavior>
 </i:Interaction.Behaviors>
 </Ellipse>

 <Ellipse Canvas.Left="80" Canvas.Top="70" Fill="OrangeRed" Width="40" Height="70">
 <i:Interaction.Behaviors>
 <custom:DragInCanvasBehavior></custom:DragInCanvasBehavior>
 </i:Interaction.Behaviors>
 </Ellipse>
</Canvas>

Figure 14-5 shows this example in action.

CHAPTER 14  STYLES AND BEHAVIORS

536

Figure 14-5. Making elements draggable with a behavior

Finding More Behaviors
Although you now know enough to create your own actions, triggers, and behaviors, most of the time
you won’t want to. Instead, you’ll drop premade behavior classes into your applications. This allows you
to quickly wire up a user-interface functionality without writing any code of your own. And if you’re
using Expression Blend, you won’t need to type in the XAML markup either.

As you’ve already learned, the core System.Windows.Interactivity.dll assembly doesn’t provide any
actions or behaviors, and it includes just a single trigger class (the useful EventTrigger).

The Microsoft.Expression.Interactions.dll assembly is more practical. It includes a small set of
essential actions (see Table 14-1), triggers (Table 14-2), and behaviors (Table 14-3).

Table 14-1. Action Classes in Microsoft.Expression.Interactions.dll

Class Description

ChangePropertyAction Changes any property to any value you specify, using reflection.

GoToStateAction Switches a control to a specific visual state. (Visual states are a tool for
building control templates. You’ll explore them in Chapter 15.)

HyperlinkAction Navigates to a new page using the URI you specify.

RemoveElementAction Removes an element from the user interface.

CHAPTER 14  STYLES AND BEHAVIORS

537

Class Description

PlaySoundAction Works in essentially the same way as the PlaySoundAction demonstrated in
this chapter. However, it adds the ability to set the media volume and
displays the MediaElement in an invisible Popup control (ensuring that
there’s a place to put the MediaElement object even if your page doesn’t
include a single panel).

ControlStoryboardAction Allows you to start, stop, pause, or resume an animation.

Table 14-2. Trigger Classes in Microsoft.Expression.Interactions.dll

Class Description

KeyTrigger Fires when a key is pressed

TimerTrigger Fires at set intervals

StoryboardCompletedTrigger Fires when an animation ends

Table 14-3. Behavior Classes in Microsoft.Expression.Interactions.dll

Class Description

MouseDragElementBehavior Allows the user to drag an element around the page. Its purpose is
similar to the DragInCanvasBehavior demonstrated in this chapter, but
it works with any layout container because it moves the element using a
TranslateTransform.

FluidMoveBehavior Watches an element (or a set of child elements) for layout changes.
When these changes occur, the behavior moves the element smoothly
to their new positions using an animation.

To get still more behaviors, you can try the Expression Blend Samples project at

http://expressionblend.codeplex.com and the community behaviors gallery at
http://gallery.expression.microsoft.com.

The FluidMoveBehavior
So far, the behaviors you’ve seen have been straightforward. They’re certainly nothing you couldn’t
implement on your own, with a bit more coding. However, the creators of Expression Blend see
behaviors as part of their drive to make animated effects more accessible. In their ideal world, a business
developer using Expression Blend will be able to take basic user interface, re-skin it (using the templates
feature described in Chapter 15), and drop in slick animated effects (with the help of behaviors).

One example of this drive is the FluidMoveBehavior, which animates changes in layout. With the
FluidMoveBehavior, elements don’t jump into new positions when the window resizes or new elements
appear. Instead, they travel there with a short, smooth, animated effect.

http://expressionblend.codeplex.com
http://gallery.expression.microsoft.com

CHAPTER 14  STYLES AND BEHAVIORS

538

Figure 14-6 shows an example. Here, a series of pictures is stored in a WrapPanel (shown on the
left). When the WrapPanel changes size, the pictures drift to their new positions (shown on the right).

Figure 14-6. Animating layout changes

Creating this effect is easy. First, you need the help of both the System.Windows.Interactivity.dll
assembly and the Microsoft.Expression.Interactions.dll assembly (which contains the all-important
FluidMoveBehavior).

<UserControl xmlns:i=
 "clr-namespace:System.Windows.Interactivity;assembly=System.Windows.Interactivity"
 xmlns:ei="clr-namespace:Microsoft.Expression.Interactivity.Layout;assembly=
Microsoft.Expression.Interactions" ... >

Next, in your WrapPanel you need to add the FluidMoveBehavior. You set the length of the effect
(using the Duration property) and indicate that it applies to the children inside the container (using the
AppliesTo property):

<toolkit:WrapPanel x:Name="panel" ItemWidth="150">
 <i:Interaction.Behaviors>
 <ei:FluidMoveBehavior Duration="0:0:0.6" AppliesTo="Children">
 ...
 </ei:FluidMoveBehavior>
 </i:Interaction.Behaviors>
</toolkit:WrapPanel>

You can also set the EaseY and EaseX properties to specify the animation easing that applies to the
movement. EaseX kicks in when an element drifts from side to side, and EaseY applies when an elements
moves up or down. You use the standard easing functions you learned about in Chapter 10. Here’s the
markup that creates the example in Figure 14-6:

<ScrollViewer Margin="10">
 <toolkit:WrapPanel x:Name="panel" ItemWidth="150">
 <i:Interaction.Behaviors>

CHAPTER 14  STYLES AND BEHAVIORS

539

 <ei:FluidMoveBehavior Duration="0:0:0.6" AppliesTo="Children">
 <ei:FluidMoveBehavior.EaseY>
 <BackEase Amplitude="1"></BackEase>
 </ei:FluidMoveBehavior.EaseY>
 <ei:FluidMoveBehavior.EaseX>
 <BounceEase Bounces="4" Bounciness="3"></BounceEase>
 </ei:FluidMoveBehavior.EaseX>
 </ei:FluidMoveBehavior>
 </i:Interaction.Behaviors>
 </toolkit:WrapPanel>
</ScrollViewer>

At this point, it may occur to you that there are plenty of other effects that would be nice to drop into
an application with minimal fuss, like the FluidMoveBehavior. This has also occurred to the creators of
Expression Blend, and they’ve added ways to animate transitions and other sorts of layout changes.
However, the behavior feature isn’t powerful enough to take care of all that. Instead, you need to
combine behaviors with visual states (a feature you’ll pick up in Chapter 15), more markup, and some
more custom bits from Expression Blend. If you’re a Visual Studio developer, you’ll probably find that
these features aren’t worth the trouble, because you’ll need to write a significant amount of markup by
hand, and Visual Studio won’t help you solve the inevitable errors. However, if you’re in a business that
writes application code in Visual Studio and then polishes it up in Expression Blend, these new and
slightly experimental features could be the start of an interesting new direction.

The Last Word
In this chapter, you saw how to use styles to reuse formatting settings with elements. You also
considered how can use behaviors to develop tidy packages of user interface functionality, which can
then be wired up to any element. Both tools give you a way to make more intelligent, maintainable user
interfaces—ones that centralize formatting details and complex logic rather than forcing you to
distribute it throughout your application and repeat it many times over.

In the next chapter, you’ll continue learning how to make smart user interfaces with two still more
powerful features: control templates and custom controls.

C H A P T E R 15

541

Control Templates

In the previous chapter, you learned how to use styles and behaviors to reuse user-interface property
settings and code. In this chapter, you’ll explore two more powerful tools: control templates and custom
controls.

Templates allow you to change the visual “face” of any common control. In other words, if you can’t
get the custom appearance you want by tweaking properties alone (and often you can’t), you can almost
certainly get it by applying a new template. And although creating custom templates is more work than
just setting control properties, it’s still far simpler and more flexible than developing an entirely new
custom control. Furthermore, if the control that you’re customizing supports the parts and states model
(and most do), you can place custom animations in your template—for example, to change the way a
button glows when it’s hovered over or to set the animation that slides a new item into place when it’s
added to a layout control.

Despite the power of templates, you may occasionally choose to create your own custom control.
Although templates let you change the way a control looks and feels, only a custom control allows you to
alter its inner workings and offer new functionality. In this chapter, you’ll learn how to create well-
designed, extensible controls that use the template model. This way, you (and other developers) can
change every aspect of the control’s appearance without losing any part of its behavior.

 What’s New Silverlight 5 adds layout transitions, a feature that can help you incorporate animated effects into
the ListBox control. In an ideal world, this means a graphic designer can craft animated effects in Expression
Blend, which a programmer can use simply by swapping in the right templates. However, this model is still
evolving. See the “Layout Transitions” section for a basic example.

Template Basics
In the previous chapter, you learned about styles, which allow you to change the appearance of an
element. However, styles are limited to setting properties that are defined in the element class. For
example, there are various visual details about a button that you can’t change because they aren’t
exposed through properties. Examples include the shading in a button’s background and the way it
highlights itself when clicked.

But Silverlight has another, much more radical customization tool called control templates.
Although you can use styles with any Silverlight element, control templates are limited to Silverlight

CHAPTER 15  CONTROL TEMPLATES

542

controls—in other words, elements that inherit from the Control class in the System.Windows.Controls
namespace. These elements acquire a property named Template, which you can set to apply a custom
template, effectively overriding the control’s standard visuals.

For example, by changing the template used by a Button object, you can create many exotic types of
buttons that would be unthinkable with styles alone. You can create buttons that use round or shaped
borders, and buttons that use eye-catching mouse-over effects (such as glowing, enlarging, or twinkling).
All you need to do is draw on the drawing smarts you picked up in Chapter 8 and Chapter 9, as well as
the animation techniques you learned in Chapter 10 when you build your custom template.

In the following sections, you’ll peer into the templates used by common controls and see how to
craft custom templates.

Creating a Template
Every control has a built-in recipe that determines how it should be rendered (as a group of more
fundamental elements). That recipe is the control template. It’s defined using a block of XAML markup
and applied to a control through the Template property.

For example, consider the basic button. Perhaps you want to get more control over the shading and
animation effects that a button provides by creating a custom template. In this case, the first step is to
try replacing the button’s default template with one of your own devising.

To create a template for a basic button, you need to draw your own border and background and
then place the content inside the button. There are several possible candidates for drawing the border,
depending on the root element you choose:

• Border: This element does double duty—it holds a single element (say, a TextBlock
with the button caption) and draws a border around it.

• Grid: By placing multiple elements in the same place, you can create a bordered
button. Use a Silverlight shape element (such as a Rectangle or Path), and place a
TextBlock in the same cell. Make sure the TextBlock is defined after the shape in
XAML so it appears superimposed over the shape background. One advantage of
the Grid is that it supports automatic sizing, so you can make sure your control is
made only as large as its content requires.

• Canvas: The Canvas can place elements more precisely using coordinates. It’s
usually overkill, but it may be a good choice if you need to position a cluster of
shapes in specific positions relative to each other as part of a more complex
button graphic.

The following example uses the Border class to combine a rounded orange outline with an eye-
catching red background and white text:

<Button Content="A Custom Button Template">
 <Button.Template>
 <ControlTemplate TargetType="Button" >
 <Border BorderBrush="Orange" BorderThickness="3" CornerRadius="10"
 Background="Red">
 <TextBlock Foreground="White" Text="A Custom Template"></TextBlock>
 </Border>
 </ControlTemplate>
 </Button.Template>
</Button>

Figure 15-1 shows the result.

CHAPTER 15  CONTROL TEMPLATES

543

Figure 15-1. A very basic new look for a button

If you try this button, you’ll find it’s a pretty poor template. It loses many of the button features
(such as changing appearance when the button is clicked). It also ignores virtually every property you set
on the button, including the fundamentally important Content property. (Instead, it displays some hard-
coded text.) However, this template is on its way to becoming a much better button template, and you’ll
begin refining it in the following sections.

 Note At this point, you may be wondering why you’ve started building a custom button template without seeing
the default button template. It’s because default templates are extremely detailed. A simple button has a control
template that’s four printed pages long. But when you understand how a template is built, you’ll be able to make
your way through all the details in the default template.

Reusing Control Templates
In the previous example, the template definition is nested inside the element. But it’s much more
common to set the template of a control through a style. That’s because you’ll almost always want to
reuse your template to skin multiple instances of the same control.

To accommodate this design, you need to define your control template as a resource:

<UserControl.Resources>
 <ControlTemplate x:Key="ButtonTemplate" TargetType="Button" >
 <Border BorderBrush="Orange" BorderThickness="3" CornerRadius="10"
 Background="Red">
 <TextBlock Foreground="White" Text="A Custom Template"></TextBlock>
 </Border>
 </ControlTemplate>
</UserControl.Resources>

CHAPTER 15  CONTROL TEMPLATES

544

You can then refer to it using a StaticResource reference, as shown here:

<Button Template="{StaticResource ButtonTemplate}" Content="A Templated Button"... >
</Button>

Not only does this approach make it easier to create a whole host of customized buttons, it also
gives you the flexibility to modify your control template later without disrupting the rest of your
application’s user interface.

There’s one more option—you can define your template as part of a style. The advantage to this
approach is that your style can combine setters that adjust other properties, as well as a setter that
applies the new control template. When you set the Style property of your button, all the setters come
into action, giving your button a new template and adjusting any other related properties.

 Note A few more considerations apply if you’re creating a set of related styles that will replace the standard
Silverlight controls to give your application a custom skinned look. In this situation, you should define all your
styles in the App.xaml file, and you should place commonly used details in separate resources. For example, if all
of your controls use the same highlighting effect when selected (which is a good idea for visual consistency),
create a resource named HighlightBrush, and use that resource in your control templates.

The ContentPresenter
The previous example creates a rather unhelpful button that displays hard-coded text. What you really
want to do is take the value of the Button.Content property and display it in your custom template. To
pull this off, you need a specially designed placeholder called ContentPresenter.

The ContentPresenter is required for all content controls—it’s the “insert content here” marker that
tells Silverlight where to stuff the content. Here’s how you can add it to the current example:

<ControlTemplate x:Key="ButtonTemplate" TargetType="Button">
 <Border BorderBrush="Orange" BorderThickness="3" CornerRadius="10"
 Background="Red">
 <ContentPresenter></ContentPresenter>
 </Border>
</ControlTemplate>

 Note ContentPresenter isn’t the only placeholder you’ll use when developing custom templates, although it’s
the most common. Controls that represent lists and use ItemsControl will use an ItemsPresenter in their control
templates, which indicates where the panel that contains the list of items will be placed. Scrollable content inside
a ScrollViewer control is represented by a ScrollContentPresenter.

CHAPTER 15  CONTROL TEMPLATES

545

Template Bindings
Although the revised button template respects the content of the button, it ignores most other
properties. For example, consider this instance that uses the template:

<Button Template="{StaticResource ButtonTemplate}" Content="A Templated Button"
 Margin="10" Padding="20"></Button>

This markup gives the button a Margin value of 10 and a Padding of 20. The element that holds the
button is responsible for paying attention to the Margin property. However, the Padding property is
ignored, leaving the contents of your button scrunched up against the sides. The problem here is the fact
that the Padding property doesn’t have any effect unless you specifically use it in your template. In other
words, it’s up to your template to retrieve the Padding value and use it to insert some extra space around
your content.

Fortunately, Silverlight has a feature that’s designed exactly for this purpose: template bindings. By
using a template binding, your control template can pull out a value from the control to which you’re
applying the template. In this example, you can use a template binding to retrieve the value of the
Padding property and use it to create a margin around the ContentPresenter:

<ControlTemplate x:Key="ButtonTemplate" TargetType="Button">
 <Border BorderBrush="Orange" BorderThickness="3" CornerRadius="10"
 Background="Red">
 <ContentPresenter Margin="{TemplateBinding Padding}">
 </ContentPresenter>
 </Border>
</ControlTemplate>

This achieves the desired effect of adding some space between the border and the content. Figure
15-2 shows your modest new button.

Figure 15-2. A button with a customized control template

CHAPTER 15  CONTROL TEMPLATES

546

 Note Template bindings are similar to ordinary data bindings (which you’ll consider in Chapter 20), but they’re
lighter weight because they’re specifically designed for use in a control template. They only support one-way data
binding (they can pass information from the control to the template but not the other way around).

It turns out that you need to set quite a few details in the ContentPresenter if you want to fully
respect the properties of the Button class. For example, you need additional bindings if you want to get
details such as text alignment, text wrapping, and so on. Buttons use a default control template that
includes a ContentPresenter like this:

<ContentPresenter
Content="{TemplateBinding Content}"
ContentTemplate="{TemplateBinding ContentTemplate}"
HorizontalContentAlignment="{TemplateBinding HorizontalContentAlignment}"
Padding="{TemplateBinding Padding}"
TextAlignment="{TemplateBinding TextAlignment}"
TextDecorations="{TemplateBinding TextDecorations}"
TextWrapping="{TemplateBinding TextWrapping}"
VerticalContentAlignment="{TemplateBinding VerticalContentAlignment}"
Margin="4,5,4,4">
</ContentPresenter>

The template binding for the Content property plays a key role: it extracts the content from the
control and displays it in the ContentPresenter. However, this template binding is set implicitly. For that
reason, you don’t need to include it in your markup.

The only way you can anticipate what template bindings are needed is to check the default control
template, as you’ll see a bit later in this chapter (in the section “The Parts and States Model”). But in
many cases, leaving out template bindings isn’t a problem. You don’t need to bind a property if you
don’t plan to use it or don’t want it to change your template.

 Note Template bindings support the Silverlight change-monitoring infrastructure that’s built into all dependency
properties. That means that if you modify a property in a control, the template takes it into account automatically.
This detail is particularly useful when you’re using animations that change a property value repeatedly in a short
space of time.

Setting Templates Through Styles
Template bindings aren’t limited to the ContentPresenter. You can use them anywhere in a control
template. Consider the current button example, which hard-codes the red background in the Border
element. Here’s how you can use a template binding to set this detail:

<Border BorderBrush="Orange" BorderThickness="3" CornerRadius="10"
Background="{TemplateBinding Background}">

CHAPTER 15  CONTROL TEMPLATES

547

This raises an obvious design question: is it better to hard-code the color to preserve the default
appearance of your customized button or use a template binding to make it more flexible?

In this case, there’s a compromise that lets you do both—you can combine templates with styles.
The basic idea is to use style rules to set your template and set default values. Here’s an example:

<Style x:Key="ButtonStyle" TargetType="Button">
 <Setter Property="Background" Value="Red"></Setter>
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="Button">
 <Border BorderBrush="Orange" BorderThickness="3" CornerRadius="10"
 Background="{TemplateBinding Background}">
 <ContentPresenter Margin="{TemplateBinding Padding}">
 </ContentPresenter>
 </Border>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

It’s up to you whether you define the ControlTemplate inline (as in this example) or as a separate
resource, as shown here:

<Style x:Key="ButtonStyle" TargetType="Button">
 <Setter Property="Background" Value="Red"></Setter>
 <Setter Property="Template" Value="{StaticResource ButtonTemplate}"></Setter>
</Style>

It’s also useful to combine styles and templates if you need to set properties that aren’t exposed by
the ContentPresenter or the container elements in your control template. In the current example, you’ll
notice that there are no bindings that pass along the foreground color or font details of the button.
That’s because these properties (Foreground, FontFamily, FontSize, FontWeight, and so on) support
property inheritance. When you set those values on a higher-level element (such as the Button class),
they cascade down to contained elements (such as the TextBlock inside the button). The
ContentPresenter doesn’t provide any of these properties, because it doesn’t need to do so. They flow
from the control to the content inside, skipping right over the ContentPresenter.

In some cases, you’ll want to change the inherited property values to better suit your custom control
template. For instance, in the current example, it’s important to set white as the foreground color,
because white text stands out better against the button’s colored background. But the standard font
color is inherited from the containing Silverlight page, and it’s black. Furthermore, you can’t set the
color through the ContentPresenter, because it doesn’t offer the Foreground property. The solution is to
combine the control template with a style setter that applies the white text:

<Style x:Key="ButtonStyle" TargetType="Button">
 <Setter Property="Foreground" Value="White"></Setter>
 <Setter Property="Background" Value="Red"></Setter>
 <Setter Property="Template" Value="{StaticResource ButtonTemplate}"></Setter>
</Style>

This approach gives you convenience and flexibility. If you take no extra steps, you automatically get
the customized red background and white text. However, you also have the flexibility to create a new
style that changes the color scheme but uses the existing control template, which can save a great deal of
work.

CHAPTER 15  CONTROL TEMPLATES

548

Reusing Colors
As you’ve seen, flexible control templates can be influenced by control properties, which you can set
through style rules. But Silverlight applications rarely change just a single control at a time. Most use an
entire set of custom control templates to change the appearance of all Silverlight’s common controls. In
this situation, you need a way to share certain details (such as colors) between the controls.

The easiest way to implement this sharing is to pull hard-coded values out of styles and control
templates and define them as separate resources, like this:

<SolidColorBrush x:Key="BackgroundBrush" Color="Red"></SolidColorBrush>

You can then use these resources in your styles and control templates:

<Style x:Key="ButtonStyle" TargetType="Button">
 <Setter Property="Foreground" Value="White"></Setter>
 <Setter Property="Background" Value="{StaticResource BackgroundBrush}"></Setter>
 <Setter Property="Template" Value="{StaticResource ButtonTemplate}"></Setter>
</Style>

This allows you to keep the same template but use a different border color simply by adding a
resource with the right name. The drawback is that this approach can complicate your design.

For even greater flexibility, you can define your colors as separate resources and then use them in
brush resources, as shown here:

<Color x:Key="BackgroundColor">#FF800000</Color>
<SolidColorBrush x:Key="ButtonBorderBrush"
 Color="{StaticResource BackgroundColor"></SolidColorBrush>

This two-step approach let you reuse a color scheme in a variety of different ways (for example, in
solid fills and in gradient brushes) without duplicating the color information in your markup. If you
apply this pattern carefully, you can change the color scheme of your entire application by modifying a
single set of color resources.

 Note When you define a color as a resource, the content inside must be a color name or a hexadecimal HTML
color code (as shown in the previous example). Unfortunately, you can’t declare a color in XAML using the red,
green, and blue components.

The Parts and States Model
If you try the button that you created in the previous section, you’ll find it’s a major disappointment.
Essentially, it’s nothing more than a rounded red rectangle—as you move the mouse over it or click it,
there’s no visual feedback. The button lies there, inert. (Of course, the Click event still fires when you
click the button, but that’s small consolation.) To solve this problem, you need to include specially
named elements and animations in your control template.

To understand how to make a template that can plug into the back-end code that a control uses,
you need to study the Silverlight documentation. Online, you can view http://tinyurl.com/352brmx,
which takes you to the Control Styles and Templates section. In this topic, you’ll find a separate section

http://tinyurl.com/352brmx

CHAPTER 15  CONTROL TEMPLATES

549

that details the default templates for each control. There’s one problem: the templates are intimidatingly
huge.

To break a template into manageable pieces, you need to understand the parts and states model,
which is how Silverlight templates are organized. Parts are the named elements that a control expects to
find in a template. States are the named animations that are applied at specific times.

If your control template lacks a specific part or state, it usually won’t cause an error. Instead, design
best practices state that the control should degrade gracefully and ignore the missing information.
However, if that part or state represents a key ingredient that’s required for some part of the control’s
core functionality, the control may not work as expected (or at all). For example, this is why you lose the
mouse-over behavior in the super-simple button template shown in the previous example.

The obvious question is this: how do you know what parts and states your control template needs to
supply? There are two avenues. First, you can look at the documentation described in the previous
section. Each control-specific page lists the parts and states that are required for that template, in two
separate tables. Figure 15-3 shows an example for the Button control. Like many controls, Button
requires certain states but no specific named parts, so you see just one table.

Figure 15-3. The named states for the Button class

CHAPTER 15  CONTROL TEMPLATES

550

Your other option is to use reflection in code to examine the control class. Each part is represented
with a separate TemplatePart attribute applied to the class declaration. Each state is represented with a
separate TemplateVisualState attribute. You’ll take a closer look at these attributes in the following
sections.

Understanding States with the Button Control
If you look at the declaration for the Button class (or the documentation shown in Figure 15-3), you’ll
discover that you need to supply six states to create a complete, well-rounded button:

[TemplateVisualState(Name="Normal", GroupName="CommonStates")]
[TemplateVisualState(Name="MouseOver", GroupName="CommonStates")]
[TemplateVisualState(Name="Pressed", GroupName="CommonStates")]
[TemplateVisualState(Name="Disabled", GroupName="CommonStates")]
[TemplateVisualState(Name="Unfocused", GroupName="FocusStates")]
[TemplateVisualState(Name="Focused", GroupName="FocusStates")]
public class Button : ButtonBase
{ ... }

States are placed together in groups. Groups are mutually exclusive, which means a control has one
state in each group. For example, the button has two state groups: CommonStates and FocusStates. At
any given time, the button has one of the states from the CommonStates group and one of the states
from the FocusStates group.

For example, if you tab over to the button, its states will be Normal (from CommonStates) and
Focused (from FocusStates). If you then move the mouse over the button, its states will be MouseOver
(from CommonStates) and Focused (from FocusStates). Without state groups, you’d have trouble
dealing with this situation. You’d either be forced to make some states dominate others (so a button in
the MouseOver state would lose its focus indicator) or need to create many more states (like
FocusedNormal, UnfocusedNormal, FocusedMouseOver, UnfocusedMouseOver, and so on).

To define state groups, you must add VisualStateManager.VisualStateGroups in the root element of
your control template, as shown here:

<ControlTemplate x:Key="ButtonTemplate" TargetType="Button">
 <Grid>
 <VisualStateManager.VisualStateGroups>
 ...
 </VisualStateManager.VisualStateGroups>

 <Border x:Name="ButtonBorder" BorderBrush="Orange" BorderThickness="3"
 CornerRadius="15">

 <Border.Background>
 <SolidColorBrush x:Name="ButtonBackgroundBrush" Color="Red" />
 </Border.Background>

 <ContentPresenter ... />
 </Border>
 </Grid>
</ControlTemplate>

To add the VisualStateManager element to your template, you need to use a layout panel. This
layout panel holds both the visuals for your control and the VisualStateManager, which is invisible. Like

CHAPTER 15  CONTROL TEMPLATES

551

the resources you first learned about in Chapter 2, the VisualStateManager defines objects—in this case,
storyboards with animations—that the control can use at the appropriate time to alter its appearance.

Usually, you’ll add a Grid at the root level of your template. In the button example, a Grid holds the
VisualStateManager element and the Border element that renders the actual button.

Inside the VisualStateGroups element, you can create the state groups using appropriately named
VisualStateGroup elements. In the case of the button, there are two state groups:

<VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="CommonStates">
 ...
 </VisualStateGroup>

 <VisualStateGroup x:Name="FocusStates">
 ...
 </VisualStateGroup>
</VisualStateManager.VisualStateGroups>

After you’ve added the VisualStateManager and the VisualStateGroup elements, you’re ready to add
a VisualState element for each state. You can add all the states that the control supports (as identified by
the documentation and the TemplateVisualState attributes), or you can supply only those that you
choose to use. For example, if you want to create a button that provides a mouse-over effect, you need to
add the MouseOver state (which applies the effect) and the Normal state (which returns the button to its
normal appearance). Here’s an example that defines these two states:

<VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="MouseOver">
 ...
 </VisualState>

 <VisualState x:Name="Normal">
 ...
 </VisualState>
 </VisualStateGroup>

 <VisualStateGroup x:Name="FocusStates">
 ...
 </VisualStateGroup>
</VisualStateManager.VisualStateGroups>

Each state corresponds to a storyboard with one or more animations. If these storyboards exist,
they’re triggered at the appropriate times. For example, when the user moves the mouse over the button,
you may want to use an animation to perform one of the following tasks:

• Show a new visual: To do this, you need to change the Opacity property of an
element in the control template so it springs into view.

• Change the shape or position: You can use a TranslateTransform to tweak the
positioning of an element (for example, offsetting it slightly to give the impression
that the button’s been pressed). You can use a ScaleTransform or a
RotateTransform to twiddle the element’s appearance slightly as the user moves
the mouse over it.

CHAPTER 15  CONTROL TEMPLATES

552

• Change the lighting or coloration: To do this, you need an animation that acts on
the brush that you use to paint the background. You can use a ColorAnimation to
change colors in a SolidBrush, but more advanced effects are possible by
animating more complex brushes. For example, you can change one of the colors
in a LinearGradientBrush (which is what the default button control template
does), or you can shift the center point of a RadialGradientBrush.

 Tip Some advanced lighting effects use multiple layers of transparent elements. In this case, your animation
modifies the opacity of one layer to let other layers show through.

Figure 15-4 shows an example of a button that uses customized state animations to change its
background color when the user moves the mouse over it.

Figure 15-4. Animated effects in a custom button template

Here’s the markup that does the trick:

<VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="MouseOver">
 <Storyboard>
 <ColorAnimation Duration="0:0:0"
 Storyboard.TargetName="ButtonBackgroundBrush"
 Storyboard.TargetProperty="Color" To="Orange" />
 </Storyboard>
 </VisualState>

 <VisualState x:Name="Normal">

CHAPTER 15  CONTROL TEMPLATES

553

 <Storyboard>
 <ColorAnimation Duration="0:0:0"
 Storyboard.TargetName="ButtonBackgroundBrush"
 Storyboard.TargetProperty="Color" />
 </Storyboard>
 </VisualState>
 </VisualStateGroup>
</VisualStateManager.VisualStateGroups>

The MouseOver state applies a new, hard-coded color using a ColorAnimation. The Normal state
uses a ColorAnimation with no set color, which means the animation reverts to the color that was set
initially.

You can simplify this example by removing state settings that match the initial property settings of
your template. That means you can remove the storyboard from the Normal state, because it reapplies
the initial color. (However, you need to keep the VisualState element that defines the state.) Here’s the
result:

<VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="MouseOver">
 <Storyboard>
 <ColorAnimation Duration="0:0:0"
 Storyboard.TargetName="ButtonBackgroundBrush"
 Storyboard.TargetProperty="Color" To="Orange" />
 </Storyboard>
 </VisualState>

 <VisualState x:Name="Normal">
 </VisualState>
 </VisualStateGroup>
</VisualStateManager.VisualStateGroups>

This works because when you switch from the MouseOver state to the Normal state, Silverlight
unwinds the MouseOver state and reverts the control to its initial property settings. By not explicitly
specifying these details, you create cleaner markup.

HARD-CODING ANIMATION VALUES

You’ll notice that this example has a hard-coded background color (Orange). It’s also possible to pull
details out of other properties and apply them to your animations using the TemplateBinding extension you
saw earlier. However, this refactoring isn’t necessary. As a general rule of thumb, it’s acceptable for a
customized control template to have hard-coded details like colors, fonts, and margins, because each
template represents a specific, customized visual look.

When you create the default control template for a new custom control, it’s much more important to make
sure that the template is flexible. In this situation, control consumers should be able to customize the
control’s appearance by setting properties, and they shouldn’t be forced to supply a new control template
if only minor modifications are required. You’ll learn more about creating a default control template later in
this chapter, in the section “Creating Templates for Custom Controls.”

CHAPTER 15  CONTROL TEMPLATES

554

Showing a Focus Cue
In the previous example, you used the Normal and MouseOver states from the CommonStates group to
control how the button looks when the mouse moves overtop. You can also add the Pressed and
Disabled states to customize your other two alternatives. These four states are mutually exclusive—if the
button is pressed, the MouseOver state no longer applies, and if the button is disabled, all the other
states are ignored no matter what the user does with the mouse. (There’s a quirk here. If you don’t
supply a state animation, the previous animation keeps working. For example, if you don’t supply a
Pressed state animation, the MouseOver state animation stays active when the button is clicked.)

As you saw earlier, the button has two groups of states. Along with the four CommonStates are two
FocusStates, which allows the button to be focused or unfocused. The CommonStates and FocusStates
are independent, which means the buttons can be focused or unfocused no matter what’s taking place
with the mouse. Of course, there may be exceptions depending on the internal logic in the control. For
example, a disabled button never gets the keyboard focus, so the Focused state will never apply when
the common state is Disabled.

Many controls use a focus cue to indicate when they have focus. In the control template for the
button, the focus cue is a Rectangle element with a dotted border. The focus cue is placed overtop the
button surface using a Grid, which holds both the focus cue and the button border in the same cell. The
animations in the FocusStates group show or hide the focus rectangle by adjusting its Opacity property:

<Grid>
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="FocusStates">
 <VisualState x:Name="Focused">
 <Storyboard>
 <DoubleAnimation Duration="0" Storyboard.TargetName="FocusVisualElement"
 Storyboard.TargetProperty="Opacity" To="1" />
 </Storyboard>
 </VisualState>

 <VisualState x:Name="Unfocused">
 <!-- No storyboard is needed, because this state simply
 reverts to the initial Opacity for the rectangle (0). -->
 </VisualState>
 </VisualStateGroup>
 ...
 </VisualStateManager.VisualStateGroups>

 <Border x:Name="ButtonBorder" ... >
 <ContentPresenter ... />
 </Border>

 <Rectangle x:Name="FocusVisualElement" Stroke="Black" Margin="8" Opacity="0"
 StrokeThickness="1" StrokeDashArray="1 2"></Rectangle>
</Grid>

Now, the button shows the focus cue when it has the keyboard focus. Figure 15-5 shows an example
with two buttons that use the same control template. The first button shows the focus cue.

CHAPTER 15  CONTROL TEMPLATES

555

Figure 15-5. Focus in a custom button template

You should take care to avoid animating the same properties in different state groups. For example,
if you animate the background color in the MouseOver state (which is in the CommonStates group), you
shouldn’t animate the background color in the Focused state (which is in the FocusStates group). If you
do, the result will depend on the order that the control applies its states. For example, if the button
applies the state from the FocusStates group first and then the state from the CommonStates group,
your focused state animation will be active for just a split second before being replaced by the
competing MouseOver state.

Transitions
The button shown in the previous example uses zero-length state animations. As a result, the color
change happens instantly when the mouse moves over the button.

You can lengthen the duration to create a more gradual color-blending effect. Here’s an example
that fades in the new color over a snappy 0.2 seconds:

<VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="CommonStates">
 <VisualState x:Name="MouseOver">
 <Storyboard>
 <ColorAnimation Duration="0:0:0.2" ... />
 </Storyboard>
 </VisualState>
 ...
 </VisualStateGroup>
</VisualStateManager.VisualStateGroups>

Although this works, the concept isn’t quite right. Technically, each visual state is meant to
represent the appearance of the control while it’s in that state (not including the transition used to get
into that state). Ideally, a visual state animation should be either a zero-length animation like the ones

CHAPTER 15  CONTROL TEMPLATES

556

shown earlier or a steady-state animation—an animation that repeats itself one or more times. For
example, a button that glimmers when you move the mouse over it uses a steady-state animation.

If you want an animated effect to signal when the control switches from one state to another, you
should use a transition instead. A transition is an animation that starts from the current state and ends at
the new state. One of the advantages of the transition model is that you don’t need to create the
storyboard for this animation. Instead, Silverlight creates the animation you need automatically.

 Note Controls are smart enough to skip transition animations when the controls begin in a certain state. For
example, consider the CheckBox control, which has an Unchecked state and a Checked state. You may decide to
use an animation to fade in the check mark gracefully when the check box is selected. If you add the fade-in effect
to the Checked state animation, it will apply when you show a checked check box for the first time. (For example,
if you have a page with three checked check boxes, all three check marks will fade in when the page first
appears.) However, if you add the fade-in effect through a transition, it will be used only when the user clicks the
check box to change its state. It won’t apply when the control is shown for the first time, which makes more
sense.

The Default Transition
Transitions apply to state groups. When you define a transition, you must add it to the
VisualStateGroup.Transitions collection. The simplest type of transition is a default transition, which
applies to all the state changes for that group. To create the default transition, you need to add a
VisualTransition element and set the GeneratedDuration property to set the length of the transition
effect. Here’s an example:

<VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="CommonStates">
 <VisualStateGroup.Transitions>
 <VisualTransition GeneratedDuration="0:0:0.2" />
 </VisualStateGroup.Transitions>

 <VisualState x:Name="MouseOver">
 <Storyboard>
 <ColorAnimation Duration="0:0:0"
 Storyboard.TargetName="ButtonBackgroundBrush"
 Storyboard.TargetProperty="Color" To="Orange" />
 </Storyboard>
 </VisualState>

 <VisualState x:Name="Normal">
 </VisualState>

 </VisualStateGroup>
</VisualStateManager.VisualStateGroups>

CHAPTER 15  CONTROL TEMPLATES

557

Now, whenever the button changes from one of the common states to another, the default 0.2-
second transition kicks in. That means that when the user moves the mouse over the button and the
button enters the MouseOver state, the new color fades in over 0.2 seconds, even though the MouseOver
state animation has a zero length. Similarly, when the user moves the mouse off the button, the button
blends back to its original color over 0.2 seconds.

Essentially, a transition is an animation that takes you from one state to another.
VisualStateManager can create a transition animation as long as your state animations use one of the
following types:

• ColorAnimation or ColorAnimationUsingKeyFrames

• PointAnimation or PointAnimationUsingKeyFrames

• DoubleAnimation or DoubleAnimationUsingKeyFrames

The button example works because the Normal and MouseOver states use a ColorAnimation, which
is one of the supported types. If you use something else—say, an ObjectAnimationUsingKeyFrames—the
transition won’t have any effect. Instead, the old value will stay in place, the transition will run out its
duration, and then the new value will snap in.

 Note In some cases, a state uses several animations. In this situation, all the animations that use supported
types are animated by the transition. Any unsupported types snap in at the end of the transition.

From and to Transitions
A default transition is convenient, but it’s a one-size-fits-all solution that’s not always suitable. For
example, you may want a button to transition to the MouseOver state over 0.2 seconds but return
instantly to the Normal state when the mouse moves away. To set this up, you need to define multiple
transitions, and you need to set the From and To properties to specify when the transition will come into
effect.

For example, if you have these transitions

<VisualStateGroup.Transitions>
 <VisualTransition To="MouseOver" GeneratedDuration="0:0:0.5" />
 <VisualTransition From="MouseOver" GeneratedDuration="0:0:0.1" />
</VisualStateGroup.Transitions>

the button will switch into the MouseOver state in 0.5 seconds, and it will leave the MouseOver state in
0.1 seconds. There is no default transition, so any other state changes will happen instantly.

This example shows transitions that apply when entering specific states and transitions that apply
when leaving specific states. You can also use the To and From properties in conjunction to create even
more specific transitions that apply only when moving between two specific states. When applying
transitions, Silverlight looks through the collection of transitions to find the most specific one that
applies, and it uses only that one. For example, when the mouse moves over a button, the
VisualStateManager searches for states in this order, stopping when it finds a match:

1. A transition with From="Normal" and To="MouseOver"

2. A transition with To="MouseOver"

CHAPTER 15  CONTROL TEMPLATES

558

3. A transition with From="Normal"

4. The default transition

If there’s no default transition, it switches between the two states immediately.

Transitioning to a Steady State
So far, you’ve seen how transitions work with zero-length state animations. However, it’s equally
possible to create a control template that uses transitions to move between steady-state animations.
(Remember, a steady-state animation is a looping animation that repeats itself more than one time.)

To understand what happens in this situation, you need to realize that a transition to a steady-state
animation moves from the current property value to the starting property value of the steady-state
animation. For example, imagine you want to create a button that pulses steadily when the mouse is
over it. As with all steady-state animations, you need to set the RepeatBehavior property to a number of
repetitions you want or use Forever to loop indefinitely (as in this example). Depending on the data type,
you may also need to set the AutoReverse property to true. For example, with a ColorAnimation, you
need to use automatic reversal to return to the original color before repeating the animation. With a key-
frame animation, this extra step isn’t necessary because you can animate from the last key frame at the
end of the animation to the first key frame of a new iteration.

Here’s the steady-state animation for the pulsing button:

<VisualState x:Name="MouseOver">
 <Storyboard>
 <ColorAnimation Duration="0:0:0.4" Storyboard.TargetName="ButtonBackgroundBrush"
 Storyboard.TargetProperty="Color" From="DarkOrange" To="Orange"
 RepeatBehavior="Forever" AutoReverse="True" />
 </Storyboard>
</VisualState>

It’s not necessary to use a transition with this button—after all, you may want the pulsing effect to
kick in immediately. But if you do want to provide a transition, it will occur before the pulsing begins.
Consider a standard transition like this one:

<VisualStateGroup.Transitions>
 <VisualTransition From="Normal" To="MouseOver" GeneratedDuration="0:0:1" />
</VisualStateGroup.Transitions>

This takes the button from its current color (Red) to the starting color of the steady-state animation
(DarkOrange) using a one-second animation. After that, the pulsing begins.

Custom Transition
All the previous examples have used automatically generated transition animations. They change a
property smoothly from its current value to the value set by the new state. However, you may want to
define customized transitions that work differently. You may even choose to mix standard transitions
with custom transitions that apply only to specific state changes.

CHAPTER 15  CONTROL TEMPLATES

559

 Tip You may create a custom transition for several reasons. Here are some examples: to control the pace of the
animation with a more sophisticated animation, to use an animation easing, to run several animations in
succession (as in the FlipPanel example at the end of this chapter), or to play a sound at the same time as an
animation.

To define a custom transition, you place a storyboard with one or more animations inside the
VisualTransition element. Here’s an example that creates an elastic compression effect when the user
moves the mouse off a button:

<VisualStateGroup.Transitions>
 <VisualTransition To="Normal" From="MouseOver" GeneratedDuration="0:0:0.7">
 <Storyboard>
 <DoubleAnimationUsingKeyFrames Storyboard.TargetName="ScaleTransform"
 Storyboard.TargetProperty="ScaleX">
 <LinearDoubleKeyFrame KeyTime="0:0:0.5" Value="0" />
 <LinearDoubleKeyFrame KeyTime="0:0:0.7" Value="1" />
 </DoubleAnimationUsingKeyFrames>
 </Storyboard>
 </VisualTransition>
</VisualStateGroup.Transitions>

 Note When you use a custom transition, you must still set the VisualTransition.GeneratedDuration property to
match the duration of your animation. Without this detail, the VisualStateManager can’t use your transition, and it
will apply the new state immediately. (The actual time value you use still has no effect on your custom transition,
because it applies only to automatically generated animations. See the end of this section to learn how you can
mix and match a custom transition with automatically generated animations.)

This transition uses a key-frame animation. The first key frame compresses the button horizontally
until it disappears from view, and the second key frame causes it to spring back into sight over a shorter
interval of time. The transition animation works by adjusting the scale of this ScaleTransform object,
which is defined in the control template:

<Grid RenderTransformOrigin="0.5,0.5">
 <Grid.RenderTransform>
 <ScaleTransform x:Name="ScaleTransform" ScaleX="1" />
 </Grid.RenderTransform>
 ...
</Grid>

When the transition is complete, the transition animation is stopped, and the animated properties
return to their original values (or the values that are set by the current state animation). In this example,

CHAPTER 15  CONTROL TEMPLATES

560

the animation returns the ScaleTransform to its initial ScaleX value of 1, so you don’t notice any change
when the transition animation ends.

It’s logical to assume that a custom transition animation like this one replaces the automatically
generated transition that the VisualStateManager would otherwise use. However, this isn’t necessarily
the case. Instead, it all depends on whether your custom transition animates the same properties as the
VisualStateManager.

If your transition animates the same properties as the new state animation, your transition replaces
the automatically generated transition. In the current example, the transition bridges the gap between
the MouseOver state and the Normal state. The new state, Normal, uses a zero-length animation to
change the button’s background color. Thus, if you don’t supply a custom animation for your transition,
the VisualStateManager creates an animation that smoothly shifts the background color from the old
state to the new state.

So what happens if you throw a custom transition into the mix? If you create a custom transition
animation that targets the background color, the VisualStateManager will use your animation instead of
its default transition animation. But that’s not what happens in this example. Here, the custom
transition doesn’t modify the color—instead, it animates a transform. For that reason, the
VisualStateManager still generates an automatic animation to change the background color. It uses its
automatically generated animation in addition to your custom transition animation, and it runs them
both at the same time, giving the generated transition the duration that’s set by the
VisualTransition.GeneratedDuration property. In this example, that means the new color fades in over
0.7 seconds, and at the same time the custom transition animation applies the compression effect.

Understanding Parts with the Slider Control
In the parts and states model, the states dominate. Many controls, like Button, use templates that define
multiple state groups but no parts. But in other controls, like Slider, parts allow you to wire up elements
in the control template to key pieces of control functionality.

To understand how parts work, you need to consider a control that uses them. Often, parts are
found in controls that contain small working parts. For example, the DatePicker control uses parts to
identify the drop-down button that opens the calendar display and the text box that shows the currently
selected date. The ScrollBar control uses parts to delineate the draggable thumb, the track, and the scroll
buttons. The Slider control uses much the same set of parts, although its scroll buttons are placed over
the track, and they’re invisible. This allows the user to move the slider thumb by clicking either side of
the track.

A control indicates that it uses a specific part with the TemplatePart attribute. Here are the
TemplatePart attributes that decorate the Slider control:

[TemplatePart(Name="HorizontalTemplate", Type=typeof(FrameworkElement))]
[TemplatePart(Name="HorizontalTrackLargeChangeIncreaseRepeatButton",
 Type=typeof(RepeatButton))]
[TemplatePart(Name="HorizontalTrackLargeChangeDecreaseRepeatButton",
 Type=typeof(RepeatButton))]
[TemplatePart(Name="HorizontalThumb", Type=typeof(Thumb))]
[TemplatePart(Name="VerticalTemplate", Type=typeof(FrameworkElement))]
[TemplatePart(Name="VerticalTrackLargeChangeIncreaseRepeatButton",
 Type=typeof(RepeatButton))]
[TemplatePart(Name="VerticalTrackLargeChangeDecreaseRepeatButton",
 Type=typeof(RepeatButton))]
[TemplatePart(Name="VerticalThumb", Type=typeof(Thumb))]
[TemplateVisualState(Name="Disabled", GroupName="CommonStates")]
[TemplateVisualState(Name="Unfocused", GroupName="FocusStates")]

CHAPTER 15  CONTROL TEMPLATES

561

[TemplateVisualState(Name="MouseOver", GroupName="CommonStates")]
[TemplateVisualState(Name="Focused", GroupName="FocusStates")]
[TemplateVisualState(Name="Normal", GroupName="CommonStates")]
public class Slider: RangeBase
{ ... }

The Slider is complicated by the fact that it can be used in two different orientations, which require
two separate templates that are coded side by side. Here’s the basic structure:

<ControlTemplate TargetType="Slider">
 <!-- This Grid groups the two orientations together in the same template.-->
 <Grid>

 <!-- This Grid is used for the horizontal orientation. -->
 <Grid x:Name="HorizontalTemplate">
 ...
 </Grid>

 <!-- This Grid is used for the vertical orientation. -->
 <Grid x:Name="VerticalTemplate">
 ...
 </Grid>

 </Grid>
</ControlTemplate>

If Slider.Orientation is Horizontal, the Slider shows the HorizontalTemplate element and hides the
VerticalTemplate element (if it exists). Usually, both of these elements are layout containers. In this
example, each one is a Grid that contains the rest of the markup for that orientation.

When you understand that two distinct layouts are embedded in one control template, you’ll realize
that there are two sets of template parts to match. In this example, you’ll consider a Slider that’s always
used in horizontal orientation and so provides only the corresponding horizontal parts:
HorizontalTemplate, HorizontalTrackLargeChangeIncreaseRepeatButton,
HorizontalTrackLargeChangeDecreaseRepeatButton, and HorizontalThumb.

Figure 15-6 shows how these parts work together. Essentially, the thumb sits in the middle, on the
track. On the left and right are two invisible buttons that allow you to quickly scroll the thumb to a new
value by clicking one side of the track and holding down the mouse button.

Figure 15-6. The named parts in the HorizontalTemplate part for the Slider

CHAPTER 15  CONTROL TEMPLATES

562

The TemplatePart attribute indicates the name the element must have, which is critical because the
control code searches for that element by name. It also indicates the element type, which may be
something very specific (such as Thumb, in the case of the HorizontalThumb part) or something much
more general (for example, FrameworkElement, in the case of the HorizontalTemplate part, which
allows you to use any element).

The fact that an element is used as a part in a control template tells you nothing about how that
element is used. However, there are a few common patterns:

• The control handles events from a part: For example, the Slider code searches for
the thumb when it’s initialized and attaches event handlers that react when the
thumb is clicked and dragged.

• The control changes the visibility of a part: For example, depending on the
orientation, the Slider shows or hides the HorizontalTemplate and
VerticalTemplate parts.

• If a part isn’t present, the control doesn’t raise an exception: Depending on the
importance of the part, the control may continue to work (if at all possible), or an
important part of its functionality may be missing. For example, when dealing
with the Slider, you can safely omit
HorizontalTrackLargeChangeIncreaseRepeatButton and
HorizontalTrackLargeChangeDecreaseRepeatButton. Even without these parts,
you can still set the Slider value by dragging the thumb. But if you omit the
HorizontalThumb element, you’ll end up with a much less useful Slider.

Figure 15-7 shows a customized Slider control. Here, a custom control template changes the
appearance of the track (using a gently rounded Rectangle element) and the thumb (using a
semitransparent circle).

Figure 15-7. A customized Slider control

CHAPTER 15  CONTROL TEMPLATES

563

To create this effect, your custom template must supply a HorizontalTemplate part. In that
HorizontalTemplate part, you must also include the HorizontalThumb part. The TemplatePart attribute
makes it clear that you can’t replace the Thumb control with another element. However, you can
customize the control template of the Thumb to modify its visual appearance, as in this example.

Here’s the complete custom control template:

<ControlTemplate TargetType="Slider">
 <Grid>
 <Grid x:Name="HorizontalTemplate">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>

 <!-- The track -->
 <Rectangle Stroke="SteelBlue" StrokeThickness="1" Fill="AliceBlue"
 Grid.Column="0" Grid.ColumnSpan="3" Height="7" RadiusX="3" RadiusY="3" />

 <!-- The left RepeatButton -->
 <RepeatButton x:Name="HorizontalTrackLargeChangeDecreaseRepeatButton"
 Grid.Column="0" Background="Transparent" Opacity="0" IsTabStop="False" />

 <!-- The Thumb -->
 <Thumb x:Name="HorizontalThumb" Height="28" Width="28" Grid.Column="1">
 <Thumb.Template>
 <ControlTemplate TargetType="Thumb">
 <Ellipse x:Name="Thumb" Opacity="0.3" Fill="AliceBlue"
 Stroke="SteelBlue" StrokeThickness="3" Stretch="Fill"></Ellipse>
 </ControlTemplate>
 </Thumb.Template>
 </Thumb>

 <!-- The right RepeatButton -->
 <RepeatButton x:Name="HorizontalTrackLargeChangeIncreaseRepeatButton"
 Grid.Column="2" Background="Transparent" Opacity="0" IsTabStop="False" />

 </Grid>
 <!-- Add VerticalTemplate here if desired. -->
 </Grid>
</ControlTemplate>

CREATING SLICK CONTROL SKINS

The examples you’ve seen in this chapter demonstrate everything you need to know about the parts and
states model. But they lack one thing: eye candy. For example, although you now understand the concepts
you need to create customized Button and Slider controls, you haven’t seen how to design the graphics
that make a truly attractive control. And although the simple animated effects you’ve seen here—color
changing, pulsing, and scaling—are respectable, they certainly aren’t eye-catching. To get more dramatic

CHAPTER 15  CONTROL TEMPLATES

564

results, you need to get creative with the graphics and animation skills you’ve picked up in earlier
chapters.

To get an idea of what’s possible, you should check out the Silverlight control examples that are available
on the Web, including the many different glass and glow buttons that developers have created. You can
also apply new templates using the expansive set of themes that are included with the Silverlight Toolkit
(http://silverlight.codeplex.com). If you want to restyle your controls, you’ll find that these themes
give you a wide range of slick, professional choices. Best of all, themes work automatically thanks to a
crafty tool called the ImplicitStyleManager. All you need to do is set the theme on some sort of container
element (like a panel). The ImplicitStyleManager will automatically apply the correct styles to all the
elements inside, complete with the matching control templates.

Layout Transitions
Silverlight’s control model attempts to support two very different types of people: those who want to
build every widget themselves and customize it down to the finest details and those who want an easy
way to customize and extend the controls the platform gives them. Initially, Silverlight was more geared
to the first sort of developer. (In fact, the first version of Silverlight had a drawing model but no
prewritten controls.) But increasingly, Silverlight has set to work trying to satisfy the second type of
developer.

One example is the parts and states model. Originally fashioned as a way to make it easier to change
the control appearance, the parts and states model is gradually shifting into a convenient way to bolt on
new animated effects. For example, some controls now include states that, ordinarily, they don’t use at
all. However, these states provide useful extensibility points that allow developers to add new
animations. These features can make the control feel like a very individual, handcrafted bit of user
interface, even though it’s still the stock Silverlight control under the covers.

So far, this is a new technique that many controls don’t exploit. One that does is the ListBoxItem
control, which represents each item in a ListBox. It includes a state group named LayoutStates, which
defines three states: BeforeLoaded (when an item is about to be added), AfterLoaded (once an item has
been added), and BeforeUnloaded (when an item is about to be removed).

For example, consider the following template, which fades in added items and fades out removed
ones:

<ControlTemplate>
 <Grid x:Name="grid" Background="{TemplateBinding Background}">

 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="LayoutStates">
 <VisualStateGroup.Transitions>
 <VisualTransition GeneratedDuration="0:0:0.5" />
 </VisualStateGroup.Transitions>

 <VisualState x:Name="BeforeLoaded">
 <Storyboard>
 <DoubleAnimation Storyboard.TargetProperty="(UIElement.Opacity)"
 Storyboard.TargetName="grid" From="0">
 </DoubleAnimation>
 </Storyboard>
 </VisualState>

http://silverlight.codeplex.com

CHAPTER 15  CONTROL TEMPLATES

565

 <VisualState x:Name="AfterLoaded"></VisualState>

 <VisualState x:Name="BeforeUnloaded">
 <Storyboard>
 <DoubleAnimation Storyboard.TargetProperty="(UIElement.Opacity)"
 Storyboard.TargetName="grid" To="0">
 </DoubleAnimation>
 </Storyboard>
 </VisualState>
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>

 <ContentPresenter x:Name="contentPresenter" Margin="{TemplateBinding Padding}"
 HorizontalAlignment="{TemplateBinding HorizontalContentAlignment}">
 </ContentPresenter>

 </Grid>
</ControlTemplate>

To actually apply this style, you need to wrap it in a type-specific style that affects all ListBoxItem
controls in the page:

<UserControl.Resources>
 <Style TargetType="ListBoxItem">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate>
 ...
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>
</UserControl.Resources>

This technique is necessary because the ListBox doesn’t provide any property that lets you set the
template of its constituent items. Instead, you must create an element-specific style that applies to all
ListBoxItem elements.

Figure 15-8 shows the transition that automatically fades in a new item (which is added to the
ListBox control with the usual code).

CHAPTER 15  CONTROL TEMPLATES

566

Figure 15-8. Fading in a new item

There’s an obvious drawback to adding animated effects in control templates. Namely, it forces you
to define the entire template along with the transitions, regardless of whether you actually want to
change any of the elements in that template. For developers using Expression Blend, this is a minor
concern—in fact, Expression Blend will insert the standard template for you automatically. But for
coders who prefer to be up close and intimate with their XAML, it’s another code-cluttering detail.

A simple fade-in item, as shown in the previous example, is interesting but not stunning. To get
really adventurous effects, you need to combine the layout transitions with the FluidMoveBehavior
described in Chapter 14. This approach allows you to animate items into (or out of) existence, while also
animating the way the other items slide out of the way.

FLUID LAYOUT AND EXPRESSION BLEND

The creators of Expression Blend have taken the transition feature even further. They’ve developed an
enhanced VisualStateManager (called ExtendedVisualStateManager) that provides more powerful transition
capabilities. For example, the ExtendedVisualStateManager can perform animations using a pixel shader.
The ExtendedVisualStateManager can also create transitions between states that wouldn’t ordinarily be
supported, which is a feature commonly called fluid layout.

As you learned earlier, ordinary transitions can animate between different Double, Point, or Color values.
But the ExtendedVisualStateManager includes a “morphing” engine that simulates transitions for a much
broader range of properties. For example, it can create a fade transition if you change an element’s

CHAPTER 15  CONTROL TEMPLATES

567

Visibility property, or it can create a movement animation if you change an element’s position in a Grid.
The cost of this feature is tangled markup that’s best m,anaged by 74Expression Blend (which generates it
automatically) and is sometimes difficult to work with,

Although these pieces are still evolving, the ultimate goal is clear. The creators of Expression Blend want to
give business developers a powerful way to customize their user interface without requiring them to create
all the animations and write all the markup. To learn more about their work and try the
ExtendedVisualStateManager for yourself, see the post on the Expression Blend team blog at
http://tinyurl.com/6jv6z73.

Creating Templates for Custom Controls
As you’ve seen, every Silverlight control is designed to be lookless, which means you can completely
redefine its visuals (the look). What doesn’t change is the control’s behavior, which is hardwired into the
control class. When you choose to use a control like Button, you choose it because you want button-like
behavior—an element that presents content and can be clicked to trigger an action.

In some cases, you want different behavior, which means you need to create a custom control. As
with all controls, your custom control will be lookless. Although it will provide a default control
template, it won’t force you to use that template. Instead, it will allow the control consumer to replace
the default template with a fine-tuned custom template.

In the rest of this chapter, you’ll learn how you can create a template-driven custom control. This
custom control will let control consumers supply different visuals, just like the standard Silverlight
controls you’ve used up to this point.

CONTROL CUSTOMIZATION

Custom control development is less common in Silverlight than in many other rich-client platforms. That’s
because Silverlight provides so many other avenues for customization, such as the following:

• Content controls: Any control that derives from ContentControl supports nested
content. Using content controls, you can quickly create compound controls that
aggregate other elements. (For example, you can transform a button into an image
button or a list box into an image list.)

• Styles and control templates: You can use a style to painlessly reuse a
combination of control properties. This means there’s no reason to derive a
custom control just to set a standard, built-in appearance. Templates go even
further, giving you the ability to revamp every aspect of a control’s visual
appearance.

• Control templates: All Silverlight controls are lookless, which means they have
hardwired functionality, but their appearance is defined separately through the
control template. Replace the default template with something new, and you can
revamp basic controls such as buttons, check boxes, radio buttons, and even
windows.

http://tinyurl.com/6jv6z73

CHAPTER 15  CONTROL TEMPLATES

568

• Data templates: Silverlight’s list controls support data templates, which let you
create a rich list representation of some type of data object. Using the right data
template, you can display each item using a combination of text, images, and
editable controls, all in a layout container of your choosing. You’ll learn how in
Chapter 20.

If possible, you should pursue these avenues before you decide to create a custom control or another type
of custom element. These solutions are simpler, easier to implement, and often easier to reuse.

When should you create a custom element? Custom elements aren’t the best choice when you want to
fine-tune an element’s appearance, but they make sense when you want to change its underlying
functionality or design a control that has its own distinct set of properties, methods, and events.

Planning the FlipPanel Control
The following example develops a straightforward but useful control called FlipPanel. The basic idea
behind the FlipPanel is that it provides two surfaces to host content, but only one is visible at a time. To
see the other content, you “flip” between the sides. You can customize the flipping effect through the
control template, but the default effect use a 3-D projection that looks like the panel is a sheet of paper
being flipped around to reveal different content on its back (see Figure 15-9). Depending on your
application, you could use the FlipPanel to combine a data-entry form with some helpful
documentation, to provide a simple or a more complex view on the same data, or to fuse together a
question and an answer in a trivia game.

Figure 15-9. Flipping the FlipPanel

You can perform the flipping programmatically (by setting a property named IsFlipped), or the user
can flip the panel using a convenient button (unless the control consumer removes it from the
template).

CHAPTER 15  CONTROL TEMPLATES

569

Building the FlipPanel is refreshingly easy. You need to create a custom panel that adds an extra
content region for the hidden surface, along with the animations that switch between the two sides.
Ideally, you’ll create a carefully structured control template that allows others to restyle the custom
FlipPanel with different visuals.

Creating the Solution
Although you can develop a custom Silverlight control in the same assembly that holds your application,
it’s better to place it in a separate assembly. This approach allows you to refine, revise, and debug your
control without affecting the application. It also gives you the option of using the same control with
different Silverlight applications.

To add a Silverlight class library project to an existing solution that already holds a Silverlight
application, choose File  Add  New Project. Then, choose the Silverlight Class Library project, choose
the name and location, and click OK. Now, you’re ready to begin designing your custom control.

Starting the FlipPanel Class
Stripped down to its bare bones, the FlipPanel is surprisingly simple. It consists of two content regions
that the user can fill with a single element (most likely, a layout container that contains an assortment of
elements). Technically, that means the FlipPanel isn’t a true panel, because it doesn’t use layout logic to
organize a group of child elements. However, this isn’t likely to pose a problem, because the structure of
the FlipPanel is clear and intuitive. The FlipPanel also includes a flip button that lets the user switch
between the two different content regions.

Although you can create a custom control by deriving from a control class such as ContentControl
or Panel, the FlipPanel derives directly from the base Control class. If you don’t need the functionality of
a specialized control class, this is the best starting point. You shouldn’t derive from the simpler
FrameworkElement class unless you want to create an element without the standard control and
template infrastructure:

public class FlipPanel : Control
{...}

The first order of business is to create the properties for the FlipPanel. As with almost all the
properties in a Silverlight element, you should use dependency properties. And as you learned in
Chapter 4, defining a dependency property is a two-part process. First, you need a static definition that
records some metadata about the property: its name, its type, the type of the containing class, and an
optional callback that will be triggered when the property changes.

Here’s how FlipPanel defines the FrontContent property that holds the element that’s displayed on
the front surface:

public static readonly DependencyProperty FrontContentProperty =
 DependencyProperty.Register("FrontContent", typeof(object),
 typeof(FlipPanel), null);

Next, you need to add a traditional .NET property procedure that calls the base GetValue() and
SetValue() methods to change the dependency property. Here’s the property procedure implementation
for the FrontContent property:

public object FrontContent
{
 get
 {

CHAPTER 15  CONTROL TEMPLATES

570

 return base.GetValue(FrontContentProperty);
 }
 set
 {
 base.SetValue(FrontContentProperty, value);
 }
}

The BackContent property is virtually identical:

public static readonly DependencyProperty BackContentProperty =
 DependencyProperty.Register("BackContent", typeof(object),
 typeof(FlipPanel), null);

public object BackContent
{
 get
 {
 return base.GetValue(BackContentProperty);
 }
 set
 {
 base.SetValue(BackContentProperty, value);
 }
}

You need to add just one more essential property: IsFlipped. This Boolean property keeps track of
the current state of the FlipPanel (forward-facing or backward-facing) and lets the control consumer flip
it programmatically:

public static readonly DependencyProperty IsFlippedProperty =
 DependencyProperty.Register("IsFlipped", typeof(bool), typeof(FlipPanel), null);

public bool IsFlipped
{
 get
 {
 return (bool)base.GetValue(IsFlippedProperty);
 }
 set
 {
 base.SetValue(IsFlippedProperty, value);
 ChangeVisualState(true);
 }
}

Keen eyes will notice that the IsFlipped property setter calls a custom method called
ChangeVisualState(). This method makes sure the display is updated to match the current flip state
(forward-facing or backward-facing). You’ll consider the code that takes care of this task a bit later.

The FlipPanel doesn’t need many more properties, because it inherits virtually everything it needs
from the Control class. One exception is the CornerRadius property. Although the Control class includes
BorderBrush and BorderThickness properties, which you can use to draw a border around the FlipPanel,
it lacks the CornerRadius property for rounding square edges into a gentler curve, as the Border element

CHAPTER 15  CONTROL TEMPLATES

571

does. Implementing the same effect in the FlipPanel is easy, provided you add the CornerRadius
property and use it to configure a Border element in the FlipPanel’s default control template:

public static readonly DependencyProperty CornerRadiusProperty =
 DependencyProperty.Register("CornerRadius", typeof(CornerRadius),
 typeof(FlipPanel), null);

public CornerRadius CornerRadius
{
 get { return (CornerRadius)GetValue(CornerRadiusProperty); }
 set { SetValue(CornerRadiusProperty, value); }
}

Adding the Default Style with Generic.xaml
Custom controls suffer from a chicken-and-egg dilemma. You can’t write the code in the control class
without thinking about the type of control template you’ll use. But you can’t create the control template
until you know how your control works.

The solution is to build both the control class and the default control template at the same time. You
can place the control class in any code file template in your Silverlight class library. The control template
must be placed in a file named generic.xaml. If your class library contains multiple controls, all of their
default templates must be placed in the same generic.xaml file. To add it, follow these steps:

1. Right-click the class library project in the Solution Explorer, and choose Add 
New Folder.

2. Name the new folder Themes.

3. Right-click the Themes folder, and choose Add  New Item.

4. In the Add New Item dialog box, pick the XML file template, enter the name
generic.xaml, and click Add.

The generic.xaml file holds a resource dictionary with styles for your custom controls. You must add
one style for each custom control. And as you’ve probably guessed, the style must set the Template
property of the corresponding control to apply the default control template.

 Note You place the generic.xaml file in a folder named Themes for consistency with WPF, which takes the
Windows theme settings into account. Silverlight keeps the Themes folder, even though it doesn’t have a similar
mechanism.

For example, consider the Silverlight project and class library combination shown in Figure 15-10.
The CustomControl project is the class library with the custom control, and the
CustomControlConsumer project is the Silverlight application that uses it.

CHAPTER 15  CONTROL TEMPLATES

572

Figure 15-10. A Silverlight application and class library

In the generic.xaml file, you need to declare a resource dictionary. You then need to map the project
namespace to an XML namespace prefix, so you can access your custom control in your markup (as you
first saw in Chapter 2). In this example, the project namespace is FlipPanelControl, and the assembly is
named FlipPanelControl.dll (as you would expect based on the project name):

<ResourceDictionary
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:FlipPanelControl;assembly=FlipPanelControl">
 ...
</ResourceDictionary>

Notice that when you map the control namespace, you need to include both the project namespace
and the project assembly name, which isn’t the case when you use custom classes inside a Silverlight
application. That’s because the custom control will be used in other applications, and if you don’t
specify an assembly, Silverlight will assume that the application assembly is the one you want.

Inside the resource dictionary, you can define a style for your control. Here’s an example:

<Style TargetType="local:FlipPanel">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="local:FlipPanel">
 ...
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 15  CONTROL TEMPLATES

573

There’s one last detail. To tell your control to pick up the default style from the generic.xaml file, you
need to set the control’s DefaultStyleKey property in the constructor:

public FlipPanel()
{
 DefaultStyleKey = typeof(FlipPanel);
}

DefaultStyleKey indicates the type that is used to look up the style. In this case, the style is defined
with the TargetType of FlipPanel, so the DefaultStyleKey must also use the FlipPanel type. In most cases,
this is the pattern you’ll follow. The only exception is when you’re deriving a more specialized control
from an existing control class. In this case, you have the option of keeping the original constructor logic
and inheriting the standard style from the base class. For example, if you create a customized Button-
derived class with additional functionality, you can use the standard button style and save the trouble of
creating a new style. On the other hand, if you do want a different style and a different default control
template, you need to add the style using the TargetType of the new class and write a new constructor
that sets the DefaultStyleKey property accordingly.

Choosing Parts and States
Now that you have the basic structure in place, you’re ready to identify the parts and states that you’ll
use in the control template.

Clearly, the FlipPanel requires two states:

• Normal: This storyboard ensures that only the front content is visible. The back
content is flipped, faded, or otherwise shuffled out of view.

• Flipped: This storyboard ensures that only the back content is visible. The front
content is animated out of the way.

In addition, you need two parts:

• FlipButton: This is the button that, when clicked, changes the view from the front
to the back (or vice versa). The FlipPanel provides this service by handling this
button’s events.

• FlipButtonAlternate: This is an optional element that works in the same way as the
FlipButton. Its inclusion allows the control consumer to use two different
approaches in a custom control template. One option is to use a single flip button
outside the flippable content region. The other option is to place a separate flip
button on both sides of the panel, in the flippable region.

You could also add parts for the front content and back content regions. However, the FlipPanel
control doesn’t need to manipulate these regions directly, as long as the template includes an animation
that hides or shows them at the appropriate time. (Another option is to define these parts so you can
explicitly change their visibility in code. That way, the panel can still change between the front and back
content region even if no animations are defined, by hiding one section and showing the other. For
simplicity’s sake, the FlipPanel doesn’t go to these lengths.)

To advertise the fact that the FlipPanel uses these parts and states, you should apply the
TemplatePart attribute to your control class, as shown here:

[TemplateVisualState(Name = "Normal", GroupName="ViewStates")]
[TemplateVisualState(Name = "Flipped", GroupName = "ViewStates")]
[TemplatePart(Name = "FlipButton", Type = typeof(ToggleButton))]

CHAPTER 15  CONTROL TEMPLATES

574

[TemplatePart(Name = "FlipButtonAlternate", Type = typeof(ToggleButton))]
public class FlipPanel : Control
{ ... }

The FlipButton and FlipButtonAlternate parts are restricted—each one can only be a ToggleButton
or an instance of a ToggleButton-derived class. (As you may remember from Chapter 5, the
ToggleButton is a clickable button that can be in one of two states. In the case of the FlipPanel control,
the ToggleButton states correspond to a normal front-forward view or a flipped back-forward view.)

 Tip To ensure the best, most flexible template support, use the least-specialized element type that you can. For
example, it’s better to use FrameworkElement than ContentControl, unless you need some property or behavior
that ContentControl provides.

NAMING CONVENTIONS FOR STATES, PARTS, AND STATE GROUPS

The naming conventions for parts and states are fairly straightforward. When you’re naming a part or state,
don’t include a prefix or suffix—for example, use Flipped and FlipButton rather than FlippedState and
FlipButtonPart. The exception is state groups, which should always end with the word States, as in
ViewStates.

It also helps to look at similar controls in the Silverlight framework and use the same names. This is
especially true if you need to use the states that are commonly defined in the CommonStates group
(Normal, MouseOver, Pressed, and Disabled) or the FocusStates group (Focused and Unfocused).
Remember, the control consumer must use the exact name. If you create a button-like control that breaks
with convention and uses a Clicked state instead of a Pressed state and the control consumer inadvertently
defines a Pressed state, its animation will be quietly ignored.

Starting the Default Control Template
Now, you can slot these pieces into the default control template. The root element is a two-row Grid that
holds the content area (in the top row) and the flip button (in the bottom row). The content area is filled
with two overlapping Border elements, representing the front and back content, but only one of the two
is ever shown at a time.

To fill in the front and back content regions, the FlipPanel uses the ContentPresenter. This
technique is virtually the same as in the custom button example, except you need two ContentPresenter
elements, one for each side of the FlipPanel. The FlipPanel also includes a separate Border element
wrapping each ContentPresenter. This lets the control consumer outline the flippable content region by
setting a few straightforward properties on the FlipPanel (BorderBrush, BorderThickness, Background,
and CornerRadius), rather than being forced to add a border by hand.

Here’s the basic skeleton for the default control template:

<ControlTemplate TargetType="local:FlipPanel">
 <Grid>
 <VisualStateManager.VisualStateGroups>

CHAPTER 15  CONTROL TEMPLATES

575

 <!-- Place state animations here. -->
 </VisualStateManager.VisualStateGroups>

 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"></RowDefinition>
 <RowDefinition Height="Auto"></RowDefinition>
 </Grid.RowDefinitions>

 <!-- This is the front content. -->
 <Border BorderBrush="{TemplateBinding BorderBrush}"
 BorderThickness="{TemplateBinding BorderThickness}"
 CornerRadius="{TemplateBinding CornerRadius}"
 Background="{TemplateBinding Background}">
 <ContentPresenter Content="{TemplateBinding FrontContent}">
 </ContentPresenter>
 </Border>

 <!-- This is the back content. -->
 <Border BorderBrush="{TemplateBinding BorderBrush}"
 BorderThickness="{TemplateBinding BorderThickness}"
 CornerRadius="{TemplateBinding CornerRadius}"
 Background="{TemplateBinding Background}">
 <ContentPresenter Content="{TemplateBinding BackContent}">
 </ContentPresenter>
 </Border>

 <!-- This the flip button. -->
 <ToggleButton Grid.Row="1" x:Name="FlipButton" Margin="0,10,0,0">
 </ToggleButton>

 </Grid>
</ControlTemplate>

When you create a default control template, it’s best to avoid hard-coding details that the control
consumer may want to customize. Instead, you need to use template binding expressions. In this
example, you set several properties using template-binding expressions: BorderBrush, BorderThickness,
CornerRadius, Background, FrontContent, and BackContent. To set the default value for these
properties (and thereby ensure that you get the right visual even if the control consumer doesn’t set
them), you must add additional setters to your control’s default style.

The FlipButton Control
The control template shown in the previous example includes a ToggleButton. However, it uses the
ToggleButton’s default appearance, which makes the ToggleButton look like an ordinary button,
complete with the traditional shaded background. This isn’t suitable for the FlipPanel.

Although you can place any content you want inside the ToggleButton, the FlipPanel requires a bit
more. It needs to do away with the standard background and change the appearance of the elements
inside depending on the state of the ToggleButton. As you saw earlier in Figure 15-9, the ToggleButton
points the way the content will be flipped (right initially, when the front faces forward, and left when the
back faces forward). This makes the purpose of the button clearer.

CHAPTER 15  CONTROL TEMPLATES

576

To create this effect, you need to design a custom control template for the ToggleButton. This
control template can include the shape elements that draw the arrow you need. In this example, the
ToggleButton is drawn using an Ellipse element for the circle and a Path element for the arrow, both of
which are placed in a single-cell Grid:

<ToggleButton Grid.Row="1" x:Name="FlipButton" RenderTransformOrigin="0.5,0.5"
Margin="0,10,0,0">
 <ToggleButton.Template>
 <ControlTemplate>
 <Grid>
 <Ellipse Stroke="#FFA9A9A9" Fill="AliceBlue" Width="19"
 Height="19"></Ellipse>
 <Path RenderTransformOrigin="0.5,0.5" Data="M1,1.5L4.5,5 8,1.5"
 Stroke="#FF666666" StrokeThickness="2"
 HorizontalAlignment="Center" VerticalAlignment="Center"></Path>
 </Grid>
 </ControlTemplate>
 </ToggleButton.Template>
</ToggleButton>

Defining the State Animations
The state animations are the most interesting part of the control template. They’re the ingredients that
provide the flipping behavior. They’re also the details that are most likely to be changed if a developer
creates a custom template for the FlipPanel.

In the default control template, the animations use a 3-D projection to rotate the content regions.
To hide a content region, it’s turned until it’s at a 90-degree angle, with the edge exactly facing the user.
To show a content region, it’s returned from this position to a flat 0-degree angle. To create the flipping
effect, one animation turns and hides the first region (for example, the front), and a second animation
picks up as the first one ends to show the second region (for example, the back).

To make this work, you first need to add a projection to the Border element that holds the front
content:

<Border.Projection>
 <PlaneProjection x:Name="FrontContentProjection"></PlaneProjection>
</Border.Projection>

And you need to add a similar one to the Border element that holds the back content:

<Border.Projection>
 <PlaneProjection x:Name="BackContentProjection"></PlaneProjection>
</Border.Projection>

The content region isn’t the only part of the FlipPanel that you need to animate. You must also add a
RotateTransform to the ToggleButton so you can rotate the arrow to point to the other side when the
content is flipped:

<ToggleButton.RenderTransform>
 <RotateTransform x:Name="FlipButtonTransform" Angle="-90"></RotateTransform>
</ToggleButton.RenderTransform>

Here are the animations that flip the front and back content regions and rotate the ToggleButton
arrow:

CHAPTER 15  CONTROL TEMPLATES

577

<VisualStateGroup x:Name="ViewStates">
 <VisualState x:Name="Normal">
 <Storyboard>
 <DoubleAnimation Storyboard.TargetName="BackContentProjection"
 Storyboard.TargetProperty="RotationY" To="-90"
 Duration="0:0:0"></DoubleAnimation>
 </Storyboard>
 </VisualState>

 <VisualState x:Name="Flipped">
 <Storyboard>
 <DoubleAnimation Storyboard.TargetName="FrontContentProjection"
 Storyboard.TargetProperty="RotationY" To="90"
 Duration="0:0:0"></DoubleAnimation>

 <DoubleAnimation Storyboard.TargetName="FlipButtonTransform"
 Storyboard.TargetProperty="Angle" Duration="0:0:0" To="90"></DoubleAnimation>
 </Storyboard>
 </VisualState>
</VisualStateGroup>

Remember, the state animations only need to supply a storyboard for changing the initial values.
That means the Normal state needs to indicate what to do with the back content region. The front
content region is automatically restored to its initial state and rotated back into view. Similarly, the
Flipped state needs to indicate what to do with the front content region and the arrow, while allowing
the back content region to be rotated back into view.

Notice that all the animations are performed through transitions, which is the correct approach. For
example, the Flipped state uses a zero-length animation to change the RotationY property of
FrontContentProjection to 90 and rotate the arrow 90 degrees. However, there’s a catch. To create the
realistic flipping effect, you need to flip the visible content out of the way first and then flip the new
content into view. The default transition can’t handle this—instead, it rotates both content regions and
the arrow with three simultaneous animations.

To fix the problem, you need to add the somewhat tedious custom transitions shown here. They
explicitly use the Duration and BeginTime properties to ensure that the flipping animations happen in
sequence:

<VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="ViewStates">
 <VisualStateGroup.Transitions>
 <VisualTransition To="Normal" From="Flipped" GeneratedDuration="0:0:0.7">
 <Storyboard>
 <DoubleAnimation Storyboard.TargetName="BackContentProjection"
 Storyboard.TargetProperty="RotationY" To="-90"
 Duration="0:0:0.5"></DoubleAnimation>
 <DoubleAnimation Storyboard.TargetName="FrontContentProjection"
 BeginTime="0:0:0.5" Storyboard.TargetProperty="RotationY" To="0"
 Duration="0:0:0.5"></DoubleAnimation>
 </Storyboard>
 </VisualTransition>

 <VisualTransition To="Flipped" From="Normal" GeneratedDuration="0:0:0.7">
 <Storyboard>

CHAPTER 15  CONTROL TEMPLATES

578

 <DoubleAnimation Storyboard.TargetName="FrontContentProjection"
 Storyboard.TargetProperty="RotationY" To="90"
 Duration="0:0:0.5"></DoubleAnimation>
 <DoubleAnimation Storyboard.TargetName="BackContentProjection"
 BeginTime="0:0:0.5" Storyboard.TargetProperty="RotationY" To="0"
 Duration="0:0:0.5"></DoubleAnimation>
 </Storyboard>
 </VisualTransition>
 </VisualStateGroup.Transitions>

 <VisualState x:Name="Normal">
 ...
 </VisualState>

 <VisualState x:Name="Flipped">
 ...
 </VisualState>
 </VisualStateGroup>
</VisualStateManager.VisualStateGroups>

The custom transition doesn’t do anything to the ToggleButton arrow, because the automatically
generated transition does a perfectly good job for it.

Wiring Up the Elements in the Template
Now that you’ve polished off a respectable control template, you need to fill in the plumbing in the
FlipPanel control to make it work.

The trick is a protected method named OnApplyTemplate(), which is defined in the base Control
class. This method is called when the control is being initialized. This is the point where the control
needs to examine its template and fish out the elements it needs. The exact action a control performs
with an element varies—it may set a property, attach an event handler, or store a reference for future
use.

To use the template in a custom control, you override the OnApplyTemplate() method. To find an
element with a specific name, you call the GetTemplateChild() method (which is inherited from
FrameworkElement along with the OnApplyTemplate() method). If you don’t find an element that you
want to work with, the recommended pattern is to do nothing. Optionally, you can add code that checks
that the element, if present, is the correct type and raises an exception if it isn’t. (The thinking here is
that a missing element represents a conscious opting out of a specific feature, whereas an incorrect
element type represents a mistake.)

The OnApplyTemplate() method for the FlipPanel retrieves the ToggleButton for the FlipButton and
FlipButtonAlternate parts and attaches event handlers to each, so it can react when the user clicks to flip
the control. Finally, the OnApplyTemplate() method ends by calling a custom method named
ChangeVisualState(), which ensures that the control’s visuals match its current state:

public override void OnApplyTemplate()
{
 base.OnApplyTemplate();

 // Wire up the ToggleButton.Click event.
 ToggleButton flipButton = base.GetTemplateChild("FlipButton") as ToggleButton;
 if (flipButton != null) flipButton.Click += flipButton_Click;

CHAPTER 15  CONTROL TEMPLATES

579

 // Allow for two flip buttons if needed (one for each side of the panel).
 ToggleButton flipButtonAlternate =
 base.GetTemplateChild("FlipButtonAlternate") as ToggleButton;
 if (flipButtonAlternate != null) flipButtonAlternate.Click += flipButton_Click;

 // Make sure the visuals match the current state.
 this.ChangeVisualState(false);
}

 Tip When calling GetTemplateChild(), you need to indicate the string name of the element you want. To avoid
possible errors, you can declare this string as a constant in your control. You can then use that constant in the
TemplatePart attribute and when calling GetTemplateChild().

Here’s the very simple event handler that allows the user to click the ToggleButton and flip the
panel:

private void flipButton_Click(object sender, RoutedEventArgs e)
{
 this.IsFlipped = !this.IsFlipped;
 ChangeVisualState(true);
}

Fortunately, you don’t need to manually trigger the state animations. Nor do you need to create or
trigger the transition animations. Instead, to change from one state to another, you call the static
VisualStateManager.GoToState() method. When you do, you pass in a reference to the control object
that’s changing state, the name of the new state, and a Boolean value that determines whether a
transition is shown. This value should be true when it’s a user-initiated change (for example, when the
user clicks the ToggleButton) but false when it’s a property setting (for example, if the markup for your
page sets the initial value of the IsExpanded property).

Dealing with all the different states a control supports can become messy. To avoid scattering
GoToState() calls throughout your control code, most controls add a custom method like the
ChangeVisualState() method in the FlipPanel. This method has the responsibility of applying the correct
state in each state group. The code inside uses one if block (or switch statement) to apply the current
state in each state group. This approach works because it’s completely acceptable to call GoToState()
with the name of the current state. In this situation, when the current state and the requested state are
the same, nothing happens.

Here’s the code for the FlipPanel’s version of the ChangeVisualState() method:

private void ChangeVisualState(bool useTransitions)
{
 if (!IsFlipped)
 {
 VisualStateManager.GoToState(this, "Normal", useTransitions);
 }
 else
 {
 VisualStateManager.GoToState(this, "Flipped", useTransitions);
 }

CHAPTER 15  CONTROL TEMPLATES

580

}

Usually, you call the ChangeVisualState() method (or your equivalent) in the following places:

• After initializing the control at the end of the OnApplyTemplate() method.

• When reacting to an event that represents a state change, such as a mouse
movement or a click of the ToggleButton.

• When reacting to a property change or a method that’s triggered through code.
For example, the IsFlipped property setter calls ChangeVisualState() and always
supplies true, thereby showing the transition animations. If you want to give the
control consumer the choice of not showing the transition, you can add a Flip()
method that takes the same Boolean parameter you pass to ChangeVisualState().

As written, the FlipPanel control is remarkably flexible. For example, you can use it without a
ToggleButton and flip it programmatically (perhaps when the user clicks a different control). Or, you can
include one or two flip buttons in the control template and allow the user to take control.

Using the FlipPanel
Now that you’ve completed the control template and code for the FlipPanel, you’re ready to use it in an
application. Assuming you’ve added the necessary assembly reference, you can then map an XML prefix
to the namespace that holds your custom control:

<UserControl x:Class="FlipPanelTest.Page"
 xmlns:lib="clr-namespace:FlipPanelControl;assembly=FlipPanelControl" ... >

Next, you can add instances of the FlipPanel to your page. Here’s an example that creates the
FlipPanel shown earlier in Figure 15-9, using a StackPanel full of elements for the front content region
and a Grid for the back:

<lib:FlipPanel x:Name="panel" BorderBrush="DarkOrange"
 BorderThickness="3" CornerRadius="4" Margin="10">
 <lib:FlipPanel.FrontContent>
 <StackPanel Margin="6">
 <TextBlock TextWrapping="Wrap" Margin="3" FontSize="16"
 Foreground="DarkOrange">This is the front side of the FlipPanel.</TextBlock>
 <Button Margin="3" Padding="3" Content="Button One"></Button>
 <Button Margin="3" Padding="3" Content="Button Two"></Button>
 <Button Margin="3" Padding="3" Content="Button Three"></Button>
 <Button Margin="3" Padding="3" Content="Button Four"></Button>
 </StackPanel>
 </lib:FlipPanel.FrontContent>

 <lib:FlipPanel.BackContent>
 <Grid Margin="6">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>
 <TextBlock TextWrapping="Wrap" Margin="3" FontSize="16"
 Foreground="DarkMagenta">This is the back side of the FlipPanel.</TextBlock>
 <Button Grid.Row="2" Margin="3" Padding="10" Content="Flip Back to Front"

CHAPTER 15  CONTROL TEMPLATES

581

 HorizontalAlignment="Center" VerticalAlignment="Center"
 Click="cmdFlip_Click"></Button>
 </Grid>
 </lib:FlipPanel.BackContent>
</lib:FlipPanel>

When clicked, the button on the back side of the FlipPanel programmatically flips the panel:

private void cmdFlip_Click(object sender, RoutedEventArgs e)
{
 panel.IsFlipped = !panel.IsFlipped;
}

This has the same result as clicking the ToggleButton with the arrow, which is defined as part of the
default control template.

Using a Different Control Template
Custom controls that have been designed properly are extremely flexible. In the case of the FlipPanel,
you can supply a new template to change the appearance and placement of the ToggleButton and the
animated effects that are used when flipping between the front and back content regions.

Figure 15-11 shows one such example. Here, the flip button is placed in a special bar that’s at the
bottom of the front side and the top of the back side. And when the panel flips, it doesn’t turn its content
like a sheet of paper. Instead, it squares the front content into nothingness at the top of the panel while
simultaneously expanding the back content underneath. When the panel flips the other way, the back
content squishes back down, and the front content expands from the top. For even more visual pizzazz,
the content that’s being squashed is also blurred with the help of the BlurEffect class.

Figure 15-11. The FlipPanel with a different control template

Here’s the portion of the template that defines the front content region:

<Border BorderBrush="{TemplateBinding BorderBrush}"

CHAPTER 15  CONTROL TEMPLATES

582

 BorderThickness="{TemplateBinding BorderThickness}"
 CornerRadius="{TemplateBinding CornerRadius}"
 Background="{TemplateBinding Background}">

 <Border.RenderTransform>
 <ScaleTransform x:Name="FrontContentTransform"></ScaleTransform>
 </Border.RenderTransform>
 <Border.Effect>
 <BlurEffect x:Name="FrontContentEffect" Radius="0"></BlurEffect>
 </Border.Effect>

 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition></RowDefinition>
 <RowDefinition Height="Auto"></RowDefinition>
 </Grid.RowDefinitions>

 <ContentPresenter Content="{TemplateBinding FrontContent}"></ContentPresenter>
 <Rectangle Grid.Row="1" Stretch="Fill" Fill="LightSteelBlue"></Rectangle>
 <ToggleButton Grid.Row="1" x:Name="FlipButton" Margin="5" Padding="15,0"

 Content=" " FontWeight="Bold" FontSize="12" HorizontalAlignment="Right">
 </ToggleButton>
 </Grid>
</Border>

The back content region is almost the same. It consists of a Border that contains a ContentPresenter
element, and it includes its own ToggleButton placed at the right edge of the shaded rectangle. It also
defines the all-important ScaleTransform and BlurEffect on the Border, which is what the animations
use to flip the panel.

Here are the animations that perform the flipping:

<VisualStateManager.VisualStateGroups>
 <VisualStateGroup x:Name="ViewStates">
 <VisualStateGroup.Transitions>
 <VisualTransition GeneratedDuration="0:0:0.7">
 </VisualTransition>
 </VisualStateGroup.Transitions>

 <VisualState x:Name="Normal">
 <Storyboard>
 <DoubleAnimation Storyboard.TargetName="BackContentTransform"
 Storyboard.TargetProperty="ScaleY" To="0"
 Duration="0:0:0"></DoubleAnimation>

 <DoubleAnimation Storyboard.TargetName="BackContentEffect"
 Storyboard.TargetProperty="Radius" To="40"
 Duration="0:0:0"></DoubleAnimation>
 </Storyboard>
 </VisualState>

 <VisualState x:Name="Flipped">
 <Storyboard>

CHAPTER 15  CONTROL TEMPLATES

583

 <DoubleAnimation Storyboard.TargetName="FrontContentTransform"
 Storyboard.TargetProperty="ScaleY" To="0"
 Duration="0:0:0"></DoubleAnimation>

 <DoubleAnimation Storyboard.TargetName="FrontContentEffect"
 Storyboard.TargetProperty="Radius" To="40"
 Duration="0:0:0"></DoubleAnimation>
 </Storyboard>
 </VisualState>
 </VisualStateGroup>
</VisualStateManager.VisualStateGroups>

Because the animation that changes the front content region runs at the same time as the animation
that changes the back content region, you don’t need a custom transition to manage them.

The Last Word
In the previous chapter, you saw how to use styles to reuse formatting. In this chapter, you learned how
to use control templates to make more radical changes. You used the parts and states model to
customize a Silverlight control and saw how you can create a respectable button without being forced to
reimplement any core button functionality. These custom buttons support all the normal button
behavior—you can tab from one to the next, you can click them to fire an event, and so on. Best of all,
you can reuse your button template throughout your application and still replace it with a whole new
design at a moment’s notice.

What more do you need to know before you can skin all the Silverlight controls? In order to get the
snazzy look you probably want, you may need to spend more time studying the details of Silverlight
drawing and animation. Using the shapes, brushes, and transforms that you’ve already learned about,
you can build sophisticated controls with glass-style blurs and soft glow effects. The secret is in
combining multiple layers of shapes, each with a different gradient brush. The best way to get this sort of
effect is to learn from the control template examples others have created. Two great starting points are
the themes in the Silverlight Toolkit (http://silverlight.codeplex.com) and the Expression Blend
community gallery (http://gallery.expression.microsoft.com).

http://silverlight.codeplex.com
http://gallery.expression.microsoft.com

C H A P T E R 16

585

Multithreading

One of Silverlight’s least expected surprises is its support for multithreading—the fine art of executing
more than one piece of code at the same time. It’s a key part of the full .NET Framework and a
commonly used feature in rich client applications built with WPF and Windows Forms. However,
multithreading hasn’t appeared in the toolkit of most browser-based developers, and it’s notably absent
from both JavaScript and Flash.

The second surprise is how similar Silverlight’s threading tools are to those in the full .NET
Framework. As with ordinary .NET programming, Silverlight developers can create new threads with the
Thread class, manage a long-running operation with the BackgroundWorker, and even submit tasks to a
pool of worker threads with the ThreadPool. All of these ingredients are closely modeled after their
counterparts in the full .NET Framework, so developers who have written multithreaded client
applications will quickly find themselves at home with Silverlight. And although there are some clear
limitations—for example, you can’t control thread priorities with Silverlight code—these issues don’t
stop Silverlight threading from being remarkably powerful.

In this chapter, you’ll begin by taking a look at the lower-level Thread class, which gives you the
most flexible way to create new threads at will. Along the way, you’ll explore the Silverlight threading
model and the rules it imposes. Then, you’ll examine the higher-level BackgroundWorker class, which
gives you a conveniently streamlined, practical way to deal with background tasks.

Understanding Multithreading
When you program with threads, you write your code as though each thread is running independently.
Behind the scenes, the Windows operating system gives each thread a brief unit of time (called a time
slice) to perform some work, and then it freezes the thread in a state of suspended animation. A little
later (perhaps only a few milliseconds), the operating system unfreezes the thread and allows it to
perform a little more work.

This model of constant interruption is known as preemptive multitasking. It takes place completely
outside the control of your program. Your application acts (for the most part) as though all the threads it
has are running simultaneously, and each thread carries on as though it’s an independent program
performing some task.

 Note If you have multiple CPUs or a dual-core CPU, it’s possible that two threads will execute at once, but it’s
not necessarily likely—after all, the Silverlight plug-in, other applications and services, and the client’s operating

CHAPTER 16  MULTITHREADING

586

system can also compete for the CPU’s attention. Furthermore, the high-level tasks you perform with a
programming platform such as Silverlight will be translated into many more low-level instructions. In some cases,
a dual-core CPU can execute more than one instruction at the same time, meaning a single thread can keep more
than one CPU core busy.

The Goals of Multithreading
Multithreading increases complexity. If you decide to use multithreading, you need to code carefully to
avoid minor mistakes that can lead to mysterious errors later. Before you split your application into
separate threads, you should carefully consider whether the additional work is warranted.

There are essentially three reasons for using multiple threads in a program:

• Making the client more responsive: If you run a time-consuming task on a separate
thread, the user can still interact with your application’s user interface to perform
other tasks. You can even give the user the ability to cancel the background work
before it’s complete. By comparison, a single-threaded application locks up the
user interface when it performs time-consuming work on the main thread.

• Completing several tasks at once: On its own, multithreading doesn’t improve
performance for the typical single-CPU computer. (In fact, the additional
overhead needed to track the new threads actually decreases performance
slightly.) But certain tasks may involve a high degree of latency, such as fetching
data from an external source (a web page, a database, or a file on a network) or
communicating with a remote component. While these tasks are underway, the
CPU is essentially idle. Although you can’t reduce the wait time, you can use the
time to perform other work. For example, you can send requests to three web
services at the same time to reduce the total time taken, or you can perform CPU-
intensive work while waiting for a call to complete.

• Making a server application scalable: A server-side application needs to be able to
handle an arbitrary number of clients. Depending on the technology you’re using,
this may be handled for you (as it is if you’re creating an ASP.NET web
application). In other cases, you may need to create this infrastructure on your
own—for example, if you’re building a socket-based application with the .NET
networking classes, as demonstrated in Chapter 23. This type of design usually
applies to .NET-based server applications, not Silverlight applications.

In this chapter, you’ll explore an example where multithreading makes good sense: dealing with a
time-consuming operation in the background. You’ll see how to keep the application responsive, avoid
threading errors, and add support for progress notification and cancellation.

 Tip The CPU is rarely the limiting factor for the performance of a Silverlight application. Network latency, slow
web services, and disk access are more common limiting factors. As a result, multithreading rarely improves

CHAPTER 16  MULTITHREADING

587

overall performance, even on a dual-core CPU. However, by improving responsiveness, it can make an application
feel much more performant to the user.

The DispatcherTimer
In some cases, you can avoid threading concerns altogether using the DispatcherTimer class from the
System.Windows.Threading namespace. DispatcherTimer was used in Chapter 11 to power the bomb-
dropping animations in a simple arcade game.

The DispatcherTimer doesn’t offer true multithreaded execution. Instead, it triggers a periodic Tick
event on the main application thread. This event interrupts whatever else is taking place in your
application, giving you a chance to perform some work. But if you need to frequently perform small
amounts of work (for example, starting a new set of bomb-dropping animations every fraction of a
second), the DispatcherTimer works as seamlessly as actual multithreading.

The advantage of the DispatcherTimer is that the Tick event always executes on the main
application thread, thereby sidestepping synchronization problems and the other headaches you’ll
consider in this chapter. However, this behavior also introduces a number of limitations. For example, if
your timer event-handling code performs a time-consuming task, the user interface locks up until it’s
finished. Thus, the timer doesn’t help you make a user interface more responsive, and it doesn’t allow
you to collapse the waiting time for high-latency operations. To get this functionality, you need the real
multithreading discussed in this chapter.

However, clever use of the DispatcherTimer can achieve the effect you need in some situations. For
example, it’s a great way to periodically check a web service for new data. As you learned in Chapter 19,
all web service calls are asynchronous and are carried out on a background thread. Thus, you can use the
DispatcherTimer to create an application that periodically downloads data from a slow web service. For
example, it might fire every five minutes and then launch the web service call asynchronously, allowing
the time-consuming download to take place on a background thread.

 Note The name of the DispatcherTimer refers to the dispatcher, which controls the main application thread in a
Silverlight application. You’ll learn more about the Dispatcher in this chapter.

The Thread Class
The most straightforward way to create a multithreaded Silverlight application is to use the Thread class
from the System.Threading namespace. Each Thread object represents a separate thread of execution.

To use the Thread class, you begin by creating a new Thread object, at which point you supply a
delegate to the method you want to invoke asynchronously. A Thread object can point to only a single
method. This signature of this method is limited in several ways. It can’t have a return value, and it must
have either no parameters (in which case it matches the ThreadStart delegate) or a single object
parameter (in which case it matches the ParameterizedThreadStart delegate).

For example, if you have a method like this:

private void DoSomething()
{ ... }

CHAPTER 16  MULTITHREADING

588

you can create a thread that uses it like this:

Thread thread = new Thread(DoSomething);

After you’ve created the Thread object, you can start it on its way by calling the Thread.Start()
method. If your thread accepts an object parameter, you pass it in at this point.

thread.Start();

The Start() method returns immediately, and your code begins executing asynchronously on a new
thread. When the method ends, the thread is destroyed and can’t be reused. In between, you can use a
small set of properties and methods to control the thread’s execution. Table 16-1 lists the most
significant.

Table 16-1. Members of the Thread Class

Member Description

IsAlive Returns true unless the thread is stopped, aborted, or not yet started.

ManagedThreadId Provides an integer that uniquely identifies this thread.

Name Enables you to set a string name that identifies the thread. This is primarily useful
during debugging, but it can also be used to distinguish different threads. Once
set, the Name property can’t be set again.

ThreadState A combination of ThreadState values that indicate whether the thread is started,
running, finished, and so on. The ThreadState property should be used only for
debugging. If you want to determine whether a thread has completed its work,
you need to track that information manually.

Start() Starts a thread executing for the first time. You can’t use Start() to restart a thread
after it ends.

Join() Waits until the thread terminates (or a specified timeout elapses).

Sleep() Pauses the current thread for a specified number of milliseconds. This method is
static.

 Note Seasoned .NET programmers will notice that the Silverlight version of the Thread class leaves out a few
details. In Silverlight, all threads are background threads, you can’t set thread priorities, and you have no ability to
temporarily pause and then resume a thread. Similarly, although the Thread class includes an Abort() method that
kills a thread with an unhandled exception, this method is marked with the SecurityCritical attribute and so can be
called only by the Silverlight plug-in, not by your application code.

CHAPTER 16  MULTITHREADING

589

The challenge of multithreaded programming is communicating between the background thread
and the main application thread. It’s easy enough to pass information to the thread when it starts (using
parameters). But trying to communicate with the thread while it’s running and trying to return data
when it’s complete are two more difficult tasks. You may need to use locking to ensure that the same
data isn’t accessed on two threads at once (a cardinal sin of multithreaded programming) and
marshaling to make sure you don’t access a user interface element from a background thread (an equally
bad mistake). Even worse, threading mistakes don’t result in compile-time warnings and don’t
necessarily lead to clear, showstopper bugs. They may cause subtler problems that appear only under
occasional, difficult-to-diagnose circumstances. In the following sections, you’ll learn how to use a
background thread safely.

Marshaling Code to the User Interface Thread
Much like .NET client applications (for example, WPF applications and Windows Forms applications),
Silverlight supports a single-threaded apartment model. In this model, a single thread runs your entire
application and owns all the objects that represent user-interface elements. Furthermore, all these
elements have thread affinity. The thread that creates them owns them, and other threads can’t interact
with them directly. If you violate this rule—for example, by trying to access a user-interface object from a
background thread—you’re certain to cause an immediate exception, a lock-up, or a subtler problem.

To keep your application on an even keel, Silverlight uses a dispatcher. The dispatcher owns the
main application thread and manages a queue of work items. As your application runs, the dispatcher
accepts new work requests and executes one at a time.

 Note The dispatcher is an instance of the System.Windows.Threading.Dispatcher class, which was introduced
with WPF.

You can retrieve the dispatcher from any element through the Dispatcher property. The Dispatcher
class includes just two members: a CheckAccess() method that allows you to determine whether you’re
on the correct thread to interact with your application’s user interface, and a BeginInvoke() method that
lets you marshal code to the main application thread that the dispatcher controls.

 Tip The Dispatcher.CheckAccess() method is hidden from Visual Studio IntelliSense. You can use it in code; you
just won’t see it in the pop-up list of members.

For example, the following code responds to a button click by creating a new
System.Threading.Thread object. It then uses that thread to launch a small bit of code that changes a
text box in the current page:

private void cmdBreakRules_Click(object sender, RoutedEventArgs e)
{
 Thread thread = new Thread(UpdateTextWrong);
 thread.Start();

CHAPTER 16  MULTITHREADING

590

}

private void UpdateTextWrong()
{
 // Simulate some work taking place with a five-second delay.
 Thread.Sleep(TimeSpan.FromSeconds(5));

 txt.Text = "Here is some new text.";
}

This code is destined to fail. The UpdateTextWrong() method will be executed on a new thread, and
that thread isn’t allowed to access Silverlight objects. The result is an UnauthorizedAccessException that
derails the code.

To correct this code, you need to get a reference to the dispatcher that owns the TextBox object
(which is the same dispatcher that owns the page and all the other Silverlight objects in the application).
When you have access to that dispatcher, you can call Dispatcher.BeginInvoke() to marshal some code
to the dispatcher thread. Essentially, BeginInvoke() schedules your code as a task for the dispatcher. The
dispatcher then executes that code.

Here’s the corrected code:

private void cmdFollowRules_Click(object sender, RoutedEventArgs e)
{
 Thread thread = new Thread(UpdateTextRight);
 thread.Start();
}

private void UpdateTextRight()
{
 // Simulate some work taking place with a five-second delay.
 Thread.Sleep(TimeSpan.FromSeconds(5));

 // Get the dispatcher from the current page, and use it to invoke
 // the update code.
 this.Dispatcher.BeginInvoke((ThreadStart) delegate()
 {
 txt.Text = "Here is some new text.";
 }
);
}

The Dispatcher.BeginInvoke() method takes a single parameter: a delegate that points to the
method with the code you want to execute. This can be a method somewhere else in your code, or you
can use an anonymous method to define your code inline (as in this example). The inline approach
works well for simple operations, such as this single-line update. But if you need to use a more complex
process to update the user interface, it’s a good idea to factor this code into a separate method, as shown
here:

private void UpdateTextRight()
{
 // Simulate some work taking place with a five-second delay.
 Thread.Sleep(TimeSpan.FromSeconds(5));

 // Get the dispatcher from the current page, and use it to invoke

CHAPTER 16  MULTITHREADING

591

 // the update code.
 this.Dispatcher.BeginInvoke(SetText);
}

private void SetText()
{
 txt.Text = "Here is some new text.";
}

 Note The BeginInvoke() method also has a return value, which isn’t used in the earlier example. BeginInvoke()
returns a DispatcherOperation object, which allows you to follow the status of your marshaling operation and
determine when your code has been executed. However, the DispatcherOperation is rarely useful, because the
code you pass to BeginInvoke() should take very little time.

Remember, if you’re performing a time-consuming background operation, you need to perform this
operation on a separate thread and then marshal its result to the dispatcher thread (at which point you’ll
update the user interface or change a shared object). It makes no sense to perform your time-consuming
code in the method that you pass to BeginInvoke(). For example, this slightly rearranged code still works
but is impractical:

private void UpdateTextRight()
{
 // Get the dispatcher from the current page.
 this.Dispatcher.BeginInvoke((ThreadStart) delegate()
 {
 // Simulate some work taking place.
 Thread.Sleep(TimeSpan.FromSeconds(5));

 txt.Text = "Here is some new text.";
 }
);
}

The problem here is that all the work takes place on the dispatcher thread. That means this code ties
up the dispatcher in the same way a nonmultithreaded application would.

Creating a Thread Wrapper
The previous example shows how you can update the user interface directly from a background thread.
However, this approach isn’t ideal. It creates complex, tightly coupled applications that mingle the code
for performing a task with the code for displaying data. The result is an application that’s more complex,
less flexible, and difficult to change. For example, if you change the name of the text box in the previous
example or replace it with a different control, you’ll also need to revise your threading code.

A better approach is to create a thread that passes information back to the main application and lets
the application take care of the display details. To make it easier to use this approach, it’s common to

CHAPTER 16  MULTITHREADING

592

wrap the threading code and the data into a separate class. You can then add properties to that class for
the input and output information. This custom class is often called a thread wrapper.

Before you create your thread wrapper, it makes sense to factor out all the threading essentials into
a base class. That way, you can use the same pattern to create multiple background tasks without
repeating the same code each time.

You’ll examine the ThreadWrapperBase class piece by piece. First, you declare the
ThreadWrapperBase with the abstract keyword so it can’t be instantiated on its own. Instead, you need
to create a derived class.

public abstract class ThreadWrapperBase
{ ... }

The ThreadWrapperBase defines one public property, named Status, which returns one of three
values from an enumeration (Unstarted, InProgress, or Completed):

// Track the status of the task.
private StatusState status = StatusState.Unstarted;
public StatusState Status
{
 get { return status; }
}

The ThreadWrapperBase wraps a Thread object. It exposes a public Start() method that, when
called, creates the thread and starts it:

// This is the thread where the task is carried out.
private Thread thread;

// Start the new operation.
public void Start()
{
 if (status == StatusState.InProgress)
 {
 throw new InvalidOperationException("Already in progress.");
 }
 else
 {
 // Initialize the new task.
 status = StatusState.InProgress;

 // Create the thread.
 thread = new Thread(StartTaskAsync);

 // Start the thread.
 thread.Start();
 }
}

The thread executes a private method named StartTaskAsync(). This method farms out the work to
two other methods: DoTask() and OnCompleted(). DoTask() performs the actual work (calculating
prime numbers). OnCompleted() fires a completion event or triggers a callback to notify the client. Both
of these details are specific to the particular task at hand, so they’re implemented as abstract methods
that the derived class will override:

CHAPTER 16  MULTITHREADING

593

private void StartTaskAsync()
{
 DoTask();
 status = StatusState.Completed;
 OnCompleted();
}

// Override this class to supply the task logic.
protected abstract void DoTask();

// Override this class to supply the callback logic.
protected abstract void OnCompleted();

This completes the ThreadWrapperBase class. Now, you need to create a derived class that uses it.
The following section presents a practical example with an algorithm for finding prime numbers.

Creating the Worker Class
The basic ingredient for any test of multithreading is a time-consuming process. The following example
uses a common algorithm called the sieve of Eratosthenes for finding prime numbers in a given range,
which was invented by Eratosthenes in about 240 BC. With this algorithm, you begin by making a list of
all the integers in a range of numbers. You then strike out the multiples of all primes less than or equal to
the square root of the maximum number. The numbers that are left are the primes.

In this example, you won’t consider the theory that proves the sieve of Eratosthenes works or the
fairly trivial code that performs it. (Similarly, don’t worry about optimizing it or comparing it against
other techniques.) However, you will see how to perform the sieve of Eratosthenes algorithm on a
background thread.

The full code for the FindPrimesThreadWrapper class is available with the online examples for this
chapter. Like any class that derives from ThreadWrapperBase, it needs to supply four things:

• Fields or properties that store the initial data: In this example, those are the from
and to numbers that delineate the search range.

• Fields or properties that store the final data: In this example, that’s the final prime
list, which is stored in an array.

• An overridden DoTask() method that performs the actual operation: It uses the
initial data and sets the final result.

• An overridden OnCompleted() method that raises the completion event: Typically,
this completion event uses a custom EventArgs object that supplies the final data.
In this example, the FindPrimesCompletedEventArgs class wraps the from and to
numbers and the prime list array.

Here’s the code for the FindPrimesThreadWrapper:

public class FindPrimesThreadWrapper : ThreadWrapperBase
{
 // Store the input and output information.
 private int fromNumber, toNumber;
 private int[] primeList;

 public FindPrimesThreadWrapper(int from, int to)

CHAPTER 16  MULTITHREADING

594

 {
 this.fromNumber = from;
 this.toNumber = to;
 }

 protected override void DoTask()
 {
 // Find the primes between fromNumber and toNumber,
 // and return them as an array of integers.
 // (See the code in the downloadable examples.)
 }

 public event EventHandler<FindPrimesCompletedEventArgs> Completed;
 protected override void OnCompleted()
 {
 // Signal that the operation is complete.
 if (Completed != null)
 Completed(this,
 new FindPrimesCompletedEventArgs(fromNumber, toNumber, primeList));
 }
}

It’s important to note that the data the FindPrimesThreadWrapper class uses—the from and to
numbers and the prime list—aren’t exposed publically. This prevents the main application thread from
accessing that information while it’s being used by the background thread, which is a potentially risky
scenario that can lead to data errors. One way to make the prime list available is to add a public
property. This property can then check the ThreadWrapperBase.Status property and return the prime
list only if the thread has completed its processing.

An even better approach is to notify the user with a callback or event, as with the completion event
demonstrated in the thread wrapper. However, it’s important to remember that events fired from a
background thread continue to execute on that thread, no matter where the code is defined. Thus, when
you handle the Completed event, you still need to use marshaling code to transfer execution to the main
application thread before you attempt to update the user interface or any data in the current page.

 Note If you really need to expose the same object to two threads that may use it at the same time, you must
safeguard the access to that object with locking. As in a full-fledged .NET application, you can use the lock
keyword to obtain exclusive access to an in-memory object. However, locking complicates application design and
raises other potential problems. It can slow performance, because other threads must wait to access a locked
object, and it can lead to deadlocks if two threads try to achieve locks on the same objects.

Using the Thread Wrapper
The last ingredient is a Silverlight sample application that uses the FindPrimesThreadWrapper. Figure
16-1 shows one such example. This page lets the user choose the range of numbers to search. When the
user clicks Find Primes, the search begins, but it takes place in the background. When the search is
finished, the list of prime numbers appears in a list.

CHAPTER 16  MULTITHREADING

595

Figure 16-1. A completed prime-number search

The code that underpins this page is straightforward. When the user clicks the Find Primes button,
the application disables the button (preventing multiple concurrent searches, which are possible but
potentially confusing to the user) and determines the search range. Then, it creates the
FindPrimesThreadWrapper object, hooks up an event handler to the Completed event, and calls Start()
to begin processing:

private FindPrimesThreadWrapper threadWrapper;

private void cmdFind_Click(object sender, RoutedEventArgs e)
{
 // Disable the button and clear previous results.
 cmdFind.IsEnabled = false;
 lstPrimes.ItemsSource = null;

 // Get the search range.
 int from, to;
 if (!Int32.TryParse(txtFrom.Text, out from))
 {
 lblStatus.Text = "Invalid From value.";
 return;
 }
 if (!Int32.TryParse(txtTo.Text, out to))
 {
 lblStatus.Text = "Invalid To value.";
 return;
 }

CHAPTER 16  MULTITHREADING

596

 // Start the search for primes on another thread.
 threadWrapper = new FindPrimesThreadWrapper(from, to);
 threadWrapper.Completed += threadWrapper_Completed;
 threadWrapper.Start();

 lblStatus.Text = "The search is in progress...";
}

When the task is in process, the application remains remarkably responsive. The user can click other
controls, type in the text boxes, and so on, without having any indication that the CPU is doing
additional work in the background.

When the job is finished, the Completed event fires, and the prime list is retrieved and displayed:

private void threadWrapper_Completed(object sender, FindPrimesCompletedEventArgs e)
{
 FindPrimesThreadWrapper thread = (FindPrimesThreadWrapper)sender;

 this.Dispatcher.BeginInvoke(delegate()
 {
 if (thread.Status == StatusState.Completed)
 {
 int[] primes = e.PrimeList;
 lblStatus.Text = "Found " + primes.Length + " prime numbers.";
 lstPrimes.ItemsSource = primes;
 }

 cmdFind.IsEnabled = true;
 }
);
}

Cancellation Support
Now that you have the basic infrastructure in place, it takes just a bit more work to add additional
features such as cancellation and progress notification.

For example, to make cancellation work, your thread wrapper needs a field that, when true,
indicates that it’s time to stop processing. Your worker code can check this field periodically. Here’s the
code you can add to the ThreadWrapperBase to make this a standard feature:

// Flag that indicates a stop is requested.
private bool cancelRequested = false;
protected bool CancelRequested
{
 get { return cancelRequested; }
}

// Call this to request a cancel.
public void RequestCancel()
{
 cancelRequested = true;
}

CHAPTER 16  MULTITHREADING

597

// When cancelling, the worker should call the OnCancelled() method
// to raise the Cancelled event.
public event EventHandler Cancelled;
protected void OnCancelled()
{
 if (Cancelled != null)
 Cancelled(this, EventArgs.Empty);
}

And here’s a modified bit of worker code in the FindPrimesThreadWrapper.DoWork() method that
makes periodic checks (about 100 of them over the course of the entire operation) to see whether a
cancellation has been requested:

int iteration = list.Length / 100;

if (i % iteration == 0)
{
 if (CancelRequested)
 {
 return;
 }
}

You also need to modify the ThreadWrapperBase.StartTaskAsync() method so it recognizes the two
possible ways an operation can end—by completing gracefully or by being interrupted with a
cancellation request:

private void StartTaskAsync()
{
 DoTask();
 if (CancelRequested)
 {
 status = StatusState.Cancelled;
 OnCancelled();
 }
 else
 {
 status = StatusState.Completed;
 OnCompleted();
 }
}

To use this cancellation feature in the example shown in Figure 16-1, you simply need to hook up an
event handler to the Cancelled event and add a new Cancel button. The following code initiates a cancel
request for the current task:

private void cmdCancel_Click(object sender, RoutedEventArgs e)
{
 threadWrapper.RequestCancel();
}

And here’s the event handler that runs when the cancellation is finished:

private void threadWrapper_Cancelled(object sender, EventArgs e)

CHAPTER 16  MULTITHREADING

598

{
 this.Dispatcher.BeginInvoke(delegate() {
 lblStatus.Text = "Search cancelled.";
 cmdFind.IsEnabled = true;
 cmdCancel.IsEnabled = false;
 });
}

Remember, Silverlight threads can’t be halted with the Abort() method, so you have no choice but to
request a polite stop that the worker code is free to honor or ignore.

The BackgroundWorker
So far, you’ve seen the no-frills approach to multithreading—creating a new System.Threading.Thread
object by hand, supplying your asynchronous code, and launching it with the Thread.Start() method.
This approach is powerful, because the Thread object doesn’t hold anything back. You can create dozens
of threads at will, pass information to them at any time, temporarily delay them with Thread.Sleep(), and
so on. However, this approach is also a bit dangerous. If you access shared data, you need to use locking
to prevent subtle errors. If you create threads frequently or in large numbers, you’ll generate additional,
unnecessary overhead.

One of the simplest and safest approaches to multithreading is provided by the
System.ComponentModel.BackgroundWorker component, which was first introduced with .NET 2.0 to
simplify threading considerations in Windows Forms applications. Fortunately, the BackgroundWorker
is equally at home in Silverlight. The BackgroundWorker component gives you a nearly foolproof way to
run a time-consuming task on a separate thread. It uses the dispatcher behind the scenes and abstracts
away the marshaling issues with an event-based model.

As you’ll see, the BackgroundWorker also supports two frills: progress events and cancel messages.
In both cases, the threading details are hidden, making for easy coding. In fact, the BackgroundWorker
ranks as the single most practical tool for Silverlight multithreading.

 Note BackgroundWorker is perfect if you have a single asynchronous task that runs in the background from
start to finish (with optional support for progress reporting and cancellation). If you have something else in mind—
for example, an asynchronous task that runs throughout the entire life of your application or an asynchronous task
that communicates with your application while it does its work—you must design a customized solution that uses
the threading features you’ve already seen.

Creating the BackgroundWorker
To use the BackgroundWorker, you begin by creating an instance in your code and attaching the event
handlers programmatically. The BackgroundWorker’s core events are DoWork, ProgressChanged, and
RunWorkerCompleted. You’ll consider each of them in the following example.

CHAPTER 16  MULTITHREADING

599

 Tip If you need to perform multiple asynchronous tasks, you can create your BackgroundWorker objects when
needed and store them in some sort of collection for tracking. The example described here uses just one
BackgroundWorker, and it’s created in code when the page is first instantiated.

Here’s the initialization code that enables support for progress notification and cancellation and
attaches the event handlers. This code is placed in the constructor of a page named
BackgroundWorkerTest:

private BackgroundWorker backgroundWorker = new BackgroundWorker();

public BackgroundWorkerTest()
{
 InitializeComponent();

 backgroundWorker.WorkerReportsProgress = true;
 backgroundWorker.WorkerSupportsCancellation = true;
 backgroundWorker.DoWork += backgroundWorker_DoWork;
 backgroundWorker.ProgressChanged += backgroundWorker_ProgressChanged;
 backgroundWorker.RunWorkerCompleted += backgroundWorker_RunWorkerCompleted;
}

Running the BackgroundWorker
The first step to using the BackgroundWorker with the prime-number search example is to create a
custom class that allows you to transmit the input parameters to the BackgroundWorker. When you call
BackgroundWorker.RunWorkerAsync(), you can supply any object, which is delivered to the DoWork
event. However, you can supply only a single object, so you need to wrap the to and from numbers into
one class:

public class FindPrimesInput
{
 public int From { get; set; }

 public int To { get; set; }

 public FindPrimesInput(int from, int to)
 {
 From = from;
 To = to;
 }
}

To start the BackgroundWorker on its way, you need to call the
BackgroundWorker.RunWorkerAsync() method and pass in the FindPrimesInput object. Here’s the code
that does this when the user clicks the Find Primes button:

private void cmdFind_Click(object sender, RoutedEventArgs e)
{
 // Disable this button and clear previous results.

CHAPTER 16  MULTITHREADING

600

 cmdFind.IsEnabled = false;
 cmdCancel.IsEnabled = true;
 lstPrimes.Items.Clear();

 // Get the search range.
 int from, to;
 if (!Int32.TryParse(txtFrom.Text, out from))
 {
 MessageBox.Show("Invalid From value.");
 return;
 }
 if (!Int32.TryParse(txtTo.Text, out to))
 {
 MessageBox.Show("Invalid To value.");
 return;
 }

 // Start the search for primes on another thread.
 FindPrimesInput input = new FindPrimesInput(from, to);
 backgroundWorker.RunWorkerAsync(input);
}

When the BackgroundWorker begins executing, it fires the DoWork event on a separate thread.
Rather than create this thread (which incurs some overhead), the BackgroundWorker borrows a thread
from the runtime thread pool. When the task is complete, the BackgroundWorker returns this thread to
the thread pool so it can be reused for another task. The thread-pool threads are also used for the
asynchronous operations you’ve seen in other chapters, such as receiving a web service response,
downloading a web page, and accepting a socket connection.

 Note Although the thread pool has a set of workers at the ready, it can run out if a large number of
asynchronous tasks are underway at once, in which case the later ones are queued until a thread is free. This
prevents the computer from being swamped (say, with hundreds of separate threads), at which point the overhead
of managing the threads would impede the CPU from performing other work.

You handle the DoWork event and begin your time-consuming task. However, you need to be
careful not to access shared data (such as fields in your page class) or user-interface objects. After the
work is complete, the BackgroundWorker fires the RunWorkerCompleted event to notify your
application. This event fires on the dispatcher thread, which allows you to access shared data and your
user interface without incurring any problems.

When the BackgroundWorker acquires the thread, it fires the DoWork event. You can handle this
event to call the Worker.FindPrimes() method. The DoWork event provides a DoWorkEventArgs object,
which is the key ingredient for retrieving and returning information. You retrieve the input object
through the DoWorkEventArgs.Argument property and return the result by setting the
DoWorkEventArgs.Result property:

private void backgroundWorker_DoWork(object sender, DoWorkEventArgs e)
{

CHAPTER 16  MULTITHREADING

601

 // Get the input values.
 FindPrimesInput input = (FindPrimesInput)e.Argument;

 // Start the search for primes and wait.
 // This is the time-consuming part, but it won't freeze the
 // user interface because it takes place on another thread.
 int[] primes = Worker.FindPrimes(input.From, input.To);

 // Return the result.
 e.Result = primes;
}

When the method completes, the BackgroundWorker fires the RunWorkerCompleted event on the
dispatcher thread. At this point, you can retrieve the result from the
RunWorkerCompletedEventArgs.Result property. You can then update the interface and access page-
level variables without worry:

private void backgroundWorker_RunWorkerCompleted(object sender,
 RunWorkerCompletedEventArgs e)
{
 if (e.Error != null)
 {
 // An error was thrown by the DoWork event handler.
 MessageBox.Show(e.Error.Message);
 }
 else
 {
 int[] primes = (int[])e.Result;
 foreach (int prime in primes)
 {
 lstPrimes.Items.Add(prime);
 }
 }

 cmdFind.IsEnabled = true;
 cmdCancel.IsEnabled = false;
 progressBar.Width = 0;
}

Notice that you don’t need any locking code, and you don’t need to use the
Dispatcher.BeginInvoke() method. The BackgroundWorker takes care of these issues for you.

Tracking Progress
The BackgroundWorker also provides built-in support for tracking progress, which is useful for keeping
the client informed about how much work has been completed in a long-running task.

To add support for progress, you need to first set the BackgroundWorker.WorkerReportsProgress
property to true. Actually, providing and displaying the progress information is a two-step affair. First,
the DoWork event-handling code needs to call the BackgroundWorker.ReportProgress() method and
provide an estimated percent complete (from 0% to 100%). You can do this as little or as often as you
like. Every time you call ReportProgress(), the BackgroundWorker fires the ProgressChanged event. You
can react to this event to read the new progress percentage and update the user interface. Because the

CHAPTER 16  MULTITHREADING

602

ProgressChanged event fires from the user interface thread, there’s no need to use
Dispatcher.BeginInvoke().

The FindPrimes() method reports progress in 1% increments, using code like this:

int iteration = list.Length / 100;
for (int i = 0; i < list.Length; i++)
{
 ...

 // Report progress only if there is a change of 1%.
 // Also, don't bother performing the calculation if there
 // isn't a BackgroundWorker or if it doesn't support
 // progress notifications.
 if ((i % iteration == 0) && (backgroundWorker != null))
 {
 if (backgroundWorker.WorkerReportsProgress)
 {
 backgroundWorker.ReportProgress(i / iteration);
 }
 }
}

 Note To set this system up, the worker code needs access to the BackgroundWorker object so it can call the
ReportProgress() method. In this example, the FindPrimesWorker class has a constructor that accepts a reference
to a BackgroundWorker object. If supplied, the FindPrimesWorker uses the BackgroundWorker for progress
notification and cancellation. To see the complete worker code, refer to the downloadable examples for this
chapter.

After you’ve set the BackgroundWorker.WorkerReportsProgress property, you can respond to these
progress notifications by handling the ProgressChanged event. However, Silverlight doesn’t include a
progress bar control, so it’s up to you to decide how you want to display the progress information. You
can display the progress percentage in a TextBlock, but it’s fairly easy to build a basic progress bar out of
common Silverlight elements. Here’s one that uses two rectangles (one for the background and one for
the progress meter) and a TextBlock that shows the percentage in the center. All three elements are
placed in the same cell of a Grid, so they overlap.

<Rectangle x:Name="progressBarBackground" Fill="AliceBlue" Stroke="SlateBlue"
 Grid.Row="4" Grid.ColumnSpan="2" Margin="5" Height="30" />
<Rectangle x:Name="progressBar" Width="0" HorizontalAlignment="Left"
 Grid.Row="4" Grid.ColumnSpan="2" Margin="5" Fill="SlateBlue" Height="30" />
<TextBlock x:Name="lblProgress" HorizontalAlignment="Center" Foreground="White"
 VerticalAlignment="Center" Grid.Row="4" Grid.ColumnSpan="2" />

To make sure the progress bar looks right even if the user resizes the browser window, the following
code reacts to the SizeChanged event and stretches the progress bar to fit the current page:

private double maxWidth;

CHAPTER 16  MULTITHREADING

603

private void UserControl_SizeChanged(object sender, SizeChangedEventArgs e)
{
 maxWidth = progressBarBackground.ActualWidth;
}

Now, you simply need to handle the BackgroundWorker.ProgressChanged event, resize the progress
meter, and display the current progress percentage:

private void backgroundWorker_ProgressChanged(object sender,
 ProgressChangedEventArgs e)
{
 progressBar.Width = (double)e.ProgressPercentage/100 * maxWidth;
 lblProgress.Text = ((double)e.ProgressPercentage/100).ToString("P0");
}

It’s possible to pass information in addition to the progress percentage. The ReportProgress()
method also provides an overloaded version that accepts two parameters. The first parameter is the
percent done, and the second parameter is any custom object you want to use to pass additional
information. In the prime-number search example, you may want to use the second parameter to pass
information about how many numbers have been searched so far or how many prime numbers have
been found. Here’s how to change the worker code so it returns the most recently discovered prime
number with its progress information:

backgroundWorker.ReportProgress(i / iteration, i);

You can then check for this data in the ProgressChanged event handler and display it if it’s present:

if (e.UserState != null)
 lblStatus.Text = "Found prime: " + e.UserState.ToString() + "...";

Figure 16-2 shows the progress meter while the task is in progress.

CHAPTER 16  MULTITHREADING

604

Figure 16-2. Tracking progress for an asynchronous task

Supporting Cancellation
It’s just as easy to add support for canceling a long-running task with the BackgroundWorker. The first
step is to set the BackgroundWorker.WorkerSupportsCancellation property to true.

To request a cancellation, your code needs to call the BackgroundWorker.CancelAsync() method. In
this example, the cancellation is requested when the user clicks the Cancel button:

private void cmdCancel_Click(object sender, RoutedEventArgs e)
{
 backgroundWorker.CancelAsync();
}

Nothing happens automatically when you call CancelAsync(). Instead, the code that’s performing
the task needs to explicitly check for the cancel request, perform any required cleanup, and return.
Here’s the code in the FindPrimes() method that checks for cancellation requests just before it reports
progress:

for (int i = 0; i < list.Length; i++)
{
 ...
 if ((i % iteration) && (backgroundWorker != null))

CHAPTER 16  MULTITHREADING

605

 {
 if (backgroundWorker.CancellationPending)
 {
 // Return without doing any more work.
 return;
 }

 if (backgroundWorker.WorkerReportsProgress)
 {
 backgroundWorker.ReportProgress(i / iteration);
 }
 }
}

The code in your DoWork event handler also needs to explicitly set the DoWorkEventArgs.Cancel
property to true to complete the cancellation. You can then return from that method without attempting
to build up the string of primes:

private void backgroundWorker_DoWork(object sender, DoWorkEventArgs e)
{
 FindPrimesInput input = (FindPrimesInput)e.Argument;
 int[] primes = Worker.FindPrimes(input.From, input.To,
 backgroundWorker);

 if (backgroundWorker.CancellationPending)
 {
 e.Cancel = true;
 return;
 }

 // Return the result.
 e.Result = primes;
}

Even when you cancel an operation, the RunWorkerCompleted event still fires. At this point, you
can check whether the task was cancelled and handle it accordingly:

private void backgroundWorker_RunWorkerCompleted(object sender,
 RunWorkerCompletedEventArgs e)
{
 if (e.Cancelled)
 {
 MessageBox.Show("Search cancelled.");
 }
 else if (e.Error != null)
 {
 // An error was thrown by the DoWork event handler.
 MessageBox.Show(e.Error.Message);
 }
 else
 {
 int[] primes = (int[])e.Result;
 foreach (int prime in primes)

CHAPTER 16  MULTITHREADING

606

 {
 lstPrimes.Items.Add(prime);
 }
 }
 cmdFind.IsEnabled = true;
 cmdCancel.IsEnabled = false;
 progressBar.Value = 0;
}

Now, the BackgroundWorker component allows you to start a search and end it prematurely.

The Last Word
In this chapter, you saw two powerful ways to incorporate multithreading into a Silverlight application.
Of course, just because you can write a multithreaded Silverlight application doesn’t mean you should.
Before you delve too deeply into the intricacies of multithreaded programming, it’s worth considering
the advice of Microsoft architects. Because of the inherent complexity of deeply multithreaded code,
especially when combined with dramatically different operating systems and hardware, Microsoft’s
official guidance is to use multithreading sparingly. Certainly, you should use it to move work to the
background, avoid long delays, and create more responsive applications. However, when possible, it’s
better to use the straightforward BackgroundWorker component than the lower-level Thread class. And
when you need to use the Thread class, it’s better to stick to just one or two background threads. It’s also
a good idea to set up your threads to work with distinct islands of information and thereby avoid locking
complications and synchronization headaches.

C H A P T E R 17

607

Browser Integration

Because Silverlight applications run in their own carefully designed environment, you’re insulated from
the quirks and cross-platform headaches that traditionally confront developers when they attempt to
build rich browser-based applications. This is a tremendous advantage. It means you can work with an
efficient mix of C# code and XAML markup rather than struggle through a quagmire of HTML,
JavaScript, and browser-compatibility issues.

However, in some cases you’ll need to create a web page that isn’t just a thin shell around a
Silverlight application. Instead, you may want to add Silverlight content to an existing page and allow the
HTML and Silverlight portions of your page to interact.

There are several reasons you may choose to blend the classic browser world with the managed
Silverlight environment. Here are some possibilities:

• Compatibility: You can’t be sure your visitors will have the Silverlight plug-in
installed. If you’re building a core part of your website, your need to ensure broad
compatibility (with HTML) may trump your desire to use the latest and greatest
user interface frills (with Silverlight). In this situation, you may decide to include a
Silverlight content region to show nonessential extras alongside the critical HTML
content.

• Legacy web pages: If you have an existing web page that does exactly what you
want, it may make more sense to extend it with a bit of Silverlight pizzazz than to
replace it outright. Once again, the solution is to create a page that includes both
HTML and Silverlight content.

• Server-side features: Some types of tasks require server-side code. For example,
Silverlight is a poor fit for tasks that need to access server resources or require high
security, which is why it makes far more sense to build a secure checkout process
with a server-side programming framework like ASP.NET. But you can still use
Silverlight to display advertisements, video content, product visualizations, and
other value-added features in the same pages.

In this chapter, you’ll consider how you can bridge the gap between Silverlight and the ordinary
world of HTML. First, you’ll see how Silverlight can reach out to other HTML elements on the page and
manipulate them. Next, you’ll learn how Silverlight can fire off JavaScript code and how JavaScript code
can trigger a method in your Silverlight application. Finally, you’ll look at a few more options for
overlapping Silverlight content and ordinary HTML elements.

CHAPTER 17  BROWSER INTEGRATION

608

 Note Thinking of building an out-of-browser application (as described in Chapter 18)? If so, you won’t be able
to use any of the features described in this chapter. However, you can use the new WebBrowser control to interact
with HTML content (which is also described in Chapter 18).

Interacting with HTML Elements
Silverlight includes a set of managed classes that replicate the HTML document object model (DOM) in
managed code. These classes let your Silverlight code interact with the HTML content on the same page.
Depending on the scenario, this interaction may involve reading a control value, updating text, or
adding new HTML elements to the page.

The classes you need to perform these feats are found in the System.Windows.Browser namespace
and are listed in Table 17-1. You’ll learn about them in the following sections.

Table 17-1. The Key Classes in the System.Windows.Browser Namespace

Class Description

HtmlPage Represents the current HTML page (where the Silverlight control is
placed). The HtmlPage class is a jumping-off point for most of the
HTML interaction features. It provides members for exploring the
HTML elements on the page (the Document property), retrieving
browser information (the BrowserInformation property), interacting
with the current browser window (the Window property), and
registering Silverlight methods that you want to make available to
JavaScript (the RegisterCreatableType() and RegisterScriptableType()
methods).

BrowserInformation Provides some basic information about the browser that’s being used to
run your application, including the browser name, version, and
operating system. You can retrieve an instance of the
BrowserInformation class from the HtmlPage.BrowserInformation
property.

HtmlDocument Represents a complete HTML document. You can get an instance of
HtmlDocument that represents the current HTML page from the
HtmlPage.Document property. You can then use the HtmlDocument
object to explore the structure and content of the page (as nested levels
of HtmlElement objects).

HtmlElement Represents any HTML element on the page. You can use methods like
SetAttribute() and SetProperty() to manipulate that element. Usually,
you look up HtmlElement objects in an HtmlDocument object.

CHAPTER 17  BROWSER INTEGRATION

609

Class Description

HtmlWindow Represents the browser window and provides methods for navigating to
a new page or to a different anchor in the current page. You can get an
instance of HtmlWindow that holds the current page from the
HtmlPage.Window property.

HttpUtility Provides static methods for a few common HTML-related tasks,
including HTML encoding and decoding (making text safe for display in
a web page) and URL encoding and decoding (making text safe for use
in a URL—for example, as a query string argument).

ScriptableTypeAttribute and
ScriptableMemberAttribute

Allows you to expose the classes and methods in your Silverlight
application so they can be called from JavaScript code in the HTML
page.

ScriptObject Represents a JavaScript function that’s defined in the page and allows
you to invoke the function from your Silverlight application.

Getting Browser Information
Most of the time, you shouldn’t worry about the specific browser that’s being used to access your
application. After all, one of the key advantages of Silverlight is that it saves you from the browser-
compatibility hassles of ordinary web programming and lets you write code that behaves in the same
way in every supported environment. However, in some scenarios you may choose to take a closer look
at the browser—for example, when diagnosing an unusual error that can be browser related.

The browser information that’s available in the BrowserInformation class is fairly modest. You’re
given four string properties that indicate the browser name, version, operating system, and user agent—
a long string that includes technical details about the browser (for example, in Internet Explorer, it lists
all the currently installed versions of the .NET Framework). You can also use the Boolean
CookiesEnabled property to determine whether the current browser supports cookies and has them
enabled (in which case it’s true). You can then read or change cookies through the HtmlPage class.

 Note The information you get from the BrowserInformation class depends on how the browser represents itself
to the world, but it may not reflect the browser’s true identity. Browsers can be configured to impersonate other
browsers, and some browsers use this technique to ensure broader compatibility. If you write any browser-specific
code, make sure you test it with a range of browsers to verify that you’re detecting the correct conditions.

Here’s some straightforward code that displays all the available browser information:

BrowserInformation b = HtmlPage.BrowserInformation;
lblInfo.Text = "Name: " + b.Name;
lblInfo.Text += "\nBrowser Version: " + b.BrowserVersion.ToString();
lblInfo.Text += "\nPlatform: " + b.Platform;

CHAPTER 17  BROWSER INTEGRATION

610

lblInfo.Text += "\nCookies Enabled: " + b.CookiesEnabled;
lblInfo.Text += "\nUser Agent: " + b.UserAgent;

Figure 17-1 shows the result.

Figure 17-1. Profiling the browser

The HTML Window
Silverlight also gives you a limited ability to control the browser through the HtmlWindow class. It
provides two methods that allow you to trigger navigation: Navigate() and NavigateToBookmark().

Navigate() sends the browser to another page. You can use an overloaded version of the Navigate()
method to specify a target frame. When you use Navigate(), you abandon the current Silverlight
application. It’s the same as if the user had typed a new URL in the browser’s address bar.

NavigateToBookmark() scrolls to a specific bookmark in the current page. A bookmark is an <a>
element with an ID (or name) but no target:

...

To navigate to a bookmark, you add the number sign (#) and bookmark name to the end of your
URL:

Jump to bookmark

You can retrieve the bookmark from the current browser URL at any time using the
HtmlWindow.CurrentBookmark property, which is the only property the HtmlWindow class includes.

The NavigateToBookmark() method and CurrentBookmark property raise an interesting possibility.
You can use a bookmark to store some state information. Because this state information is part of the
URL, it’s preserved in the browser history and (if you bookmark a page with Silverlight content) the
browser’s favorites list. This technique is the basis for the higher-level navigation framework you
explored in Chapter 7.

CHAPTER 17  BROWSER INTEGRATION

611

Popup Windows
The HtmlPage class also provides a PopupWindow() method that allows you to open a pop-up window
to show a new web page. The PopupWindow() method is intended for showing advertisements and
content from other websites. It’s not intended as a way to show different parts of the current Silverlight
application. (If you want the ability to show a pop-up window inside a Silverlight application, you need
the ChildWindow control described in Chapter 7.)

The PopupWindow() method is fairly reliable and dodges most pop-up blockers (depending on the
user’s settings). However, it also has a few quirks and should never be relied on for creating an integral
part of your application. Instead, the pop-up window content should be an optional extra. Technically,
the PopupWindow() method works by triggering a JavaScript window.open() call.

Here’s an example that uses the PopupWindow() method. Note that this codes tests the
IsPopupWindowAllowed property to avoid potential errors, because popup window are not supported
in all scenarios:

if (HtmlPage.IsPopupWindowAllowed)
{
 // Configure the popup window options.
 HtmlPopupWindowOptions options = new HtmlPopupWindowOptions();
 options.Resizeable = true;

 // Show the popup window.
 // You pass in an absolute URI, an optional target frame, and the
 // HtmlPopupWindowOptions.
 HtmlPage.PopupWindow(new Uri(uriForAdvertisement),
 null, options);
}

Here are the rules and restrictions of Silverlight popup windows:

• They don’t work if the allowHtmlPopupWindow parameter is set to false in the
HTML entry page. (See the “Securing HTML Interoperability” section at the end of
this chapter.)

• If your HTML entry page and Silverlight application are deployed on different
domains, popup windows are not allowed unless the HTML entry page includes
the allowHtmlPopupWindow parameter and explicitly sets it to true.

• The PopupWindow() can be called only in response to a user-initiated click on a
visible area of the Silverlight application.

• The PopupWindow() method can be called only once per event. This means you
can’t show more than one pop-up window at once.

• Popup window work with the default security settings in Internet Explorer and
Firefox. However, they won’t appear in Safari.

• You can configure the HtmlPopupWindowOptions object to determine whether
the pop-up window should be resizable, how big it should be, where it should be
placed, and so on, just as you can in JavaScript. However, these properties won’t
always be respected. For example, browsers refuse to show popup windows that
are smaller than a certain size and, depending on settings, may show pop-up
windows as separate tabs in the current window.

CHAPTER 17  BROWSER INTEGRATION

612

• When calling PopupWindow(), you must supply an absolute URI.

Inspecting the HTML Document
Retrieving browser information and performing navigation are two relatively straightforward tasks. Life
gets a whole lot more interesting when you start peering into the structure of the page that hosts your
Silverlight content.

To start your exploration, you use one of two static properties from the HtmlPage class. The Plugin
property provides a reference to the <object> element that represents the Silverlight control, as an
HtmlElement object. The Document property provides something more interesting: an HtmlDocument
object that represents the entire page, with the members set out in Table 17-2.

Table 17-2. Members of the HtmlDocument Class

Member Description

DocumentUri Returns the URL of the current document as a Uri object.

QueryString Returns the query string portion of the URL as a single long string that you
must parse.

DocumentElement Provides an HtmlElement object that represents the top-level <html> element
in the HTML page.

Body Provides an HtmlElement object that represents the <body> element in the
HTML page.

Cookies Provides a collection of all the current HTTP cookies. You can read or set the
values in these cookies. Cookies provide one easy, low-cost way to transfer
information from server-side ASP.NET code to client-side Silverlight code.
However, cookies aren’t the best approach for storing small amounts of data
on the client’s computer—isolated storage, which is discussed in Chapter 22,
provides a similar feature with better compatibility and programming support.

IsReady Returns true if the browser is idle or false if it’s still downloading the page.

CreateElement() Creates a new HtmlElement object to represent a dynamically created HTML
element, which you can then insert into the page.

AttachEvent() and
DetachEvent()

Connect an event handler in your Silverlight application to a JavaScript event
that’s raised by the document.

Submit() Submits the page by posting a form and its data back to the server. This is
useful if you’re hosting your Silverlight control in an ASP.NET page, because it
triggers a postback that allows server-side code to run.

When you have the HtmlDocument object that represents the page, you can browse down through

the element tree, starting at HtmlDocument.DocumentElement or HtmlDocument.Body. To step from

CHAPTER 17  BROWSER INTEGRATION

613

one element to another, you use the Children property (to see the elements nested inside the current
element) and the Parent property (to get the element that contains the current element).

Figure 17-2 shows an example—a Silverlight application that starts at the top-level <html> element
and uses a recursive method to drill through the entire page. It displays the name and ID of each
element.

Figure 17-2. Dissecting the current page

Here’s the code that creates this display when the page first loads:

private void Page_Loaded(object sender, RoutedEventArgs e)
{
 // Start processing the top-level <html> element.
 HtmlElement element = HtmlPage.Document.DocumentElement;
 ProcessElement(element, 0);
}

private void ProcessElement(HtmlElement element, int indent)
{
 // Ignore comments.
 if (element.TagName == "!") return;

 // Indent the element to help show different levels of nesting.
 lblElementTree.Text += new String(' ', indent * 4);

 // Display the tag name.
 lblElementTree.Text += "<" + element.TagName;

 // Only show the id attribute if it's set.
 if (element.Id != "") lblElementTree.Text += " id=\"" + element.Id + "\"";

CHAPTER 17  BROWSER INTEGRATION

614

 lblElementTree.Text += ">\n";

 // Process all the elements nested inside the current element.
 foreach (HtmlElement childElement in element.Children)
 {
 ProcessElement(childElement, indent + 1);
 }
}

The HtmlElement provides relatively few properties. Aside from the Children and Parent properties
that allow you to navigate between elements, it also includes the TagName and Id demonstrated shown
here, as well as a CssClass property that indicates the name of the Cascading Style Sheets (CSS) style
that’s set through the class attribute and used to configure the appearance of the current element. To get
more information out of an element, you need to use one of the HtmlElement methods you’ll learn
about in the next section.

Manipulating an HTML Element
The Parent and Children properties aren’t the only way to travel through an HtmlDocument object. You
can also search for an element with a specific name using the GetElementByID() or
GetElementsByTagName() method. When you have the element you want, you can manipulate it using
one of the methods described in Table 17-3.

Table 17-3. Methods of the HtmlElement Class

Method Description

AppendChild() Inserts a new HTML element as the last nested element inside the current
element. To create the element, you must first use the
HtmlDocument.CreateElement() method.

RemoveChild() Removes the specified HtmlElement object (which you supply as an
argument). This HtmlElement must be one of the children that’s nested in
the current HtmlElement.

Focus() Gives focus to the current element so it receives keyboard events.

GetAttribute(),
SetAttribute(), and
RemoveAttribute()

Let you retrieve the value of any attribute in the element, set the value (in
which case the attribute is added if it doesn’t already exist), or remove the
attribute altogether, respectively.

GetStyleAttribute(),
SetStyleAttribute(),
RemoveStyleAttribute()

Let you retrieve a value of a CSS style property, set the value, or remove the
style attribute altogether, respectively. (As you no doubt know, CSS
properties are the modern way to format HTML elements, and they let you
control details such as font, foreground and background color, spacing and
positioning, and borders.)

CHAPTER 17  BROWSER INTEGRATION

615

Method Description

GetProperty() and
SetProperty()

Allow you to retrieve or set values that are defined as part of the HTML
DOM. These are the values that are commonly manipulated in JavaScript
code. For example, you can extract the text content from an element using
the innerHTML property.

AttachEvent() and
DetachEvent()

Connect and disconnect an event handler in your Silverlight application to a
JavaScript event that’s raised by an HTML element.

For example, imagine that you have a <p> element just underneath your Silverlight content region

(and your Silverlight content region doesn’t fill the entire browser window). You want to manipulate the
paragraph with your Silverlight application, so you assign it a unique ID like this:

<p id="paragraph">...</p>

You can retrieve an HtmlElement object that represents this paragraph in any Silverlight event
handler. The following code retrieves the paragraph and changes the text inside:

HtmlElement element = HtmlPage.Document.GetElementById("paragraph");
element.SetProperty("innerHTML",
 "This HTML paragraph has been updated by Silverlight.");

This code works by calling the HtmlElement.SetProperty() method and setting the innerHTML
property. Long-time JavaScript developers will recognize innerHTML as one of the fundamental
ingredients in the DOM.

 Note When you use methods like SetProperty() and SetStyleAttribute(), you leave the predictable Silverlight
environment and enter the quirky world of the browser. As a result, cross-platform considerations may come into
play. For example, if you use the innerText property (which is similar to innerHTML but performs automatic HTML
escaping to ensure that special characters aren’t interpreted as tags), you’ll find that your code no longer works in
Firefox, because Firefox doesn’t support innerText.

Figure 17-3 shows a test page that demonstrates this code. At the top of the page is a Silverlight
content region with a single button. When the button is clicked, the text is changed in the HTML
element underneath (which is wrapped in a solid border to make it easy to spot).

CHAPTER 17  BROWSER INTEGRATION

616

Figure 17-3. Changing HTML elements with Silverlight code

You’ll notice that the transition between Silverlight and the HTML DOM isn’t perfect. Silverlight
doesn’t include a full HTML DOM, just a lightweight version that standardizes on a basic HtmlElement
class. To manipulate this element in a meaningful way, you often need to set an HTML DOM property
(such as innerHTML in the previous example) using the SetProperty() method and supply the name of
the property as a string. If you plan to do a lot of work with specific HTML elements, you may want to
wrap them in higher-level custom classes (for example, by creating a custom Paragraph class) and
replace their DOM properties or CSS style properties with strongly typed properties. Many developers
use this approach to prevent minor typographic errors in property names that won’t be caught at
compile time.

ESCAPING SPECIAL CHARACTERS

When you set the innerHTML property, your text is interpreted as raw HTML. That means you’re free to use
nested elements, like this:

element.SetProperty("innerHTML", "This word is bold.");

CHAPTER 17  BROWSER INTEGRATION

617

If you want to use angle brackets that would otherwise be interpreted as special characters, you need to
replace them with the < and > character entities, as shown here:

element.SetProperty("innerHTML", "To get bold text use the element.");

If you have a string with many characters that need to be escaped or you don’t want reduce the readability
of your code with character entities, you can use the static HttpUtility.HtmlEncode() method to do the work:

element.SetProperty("innerHTML",
 HttpUtility.HtmlEncode("My favorite elements are , <i>, <u>, and <p>."));

If you want to add extra spaces (rather than allow them to be collapsed to a single space character), you
need to use the character entity for a nonbreaking space.

Inserting and Removing Elements
The previous example modified an existing HTML element. It’s just as easy to add elements to or remove
them from an HTML page, using three methods: HtmlDocument.CreateElement(),
HtmlElement.AppendChild(), and HtmlElement.RemoveChild().

For example, the following code assumes that the paragraph doesn’t exist in the text page and
creates it:

HtmlElement element = HtmlPage.Document.CreateElement("p");
element.Id = "paragraph";
element.SetProperty("innerHTML",
 "This is a new element. Click to change its background color.");

HtmlPage.Document.Body.AppendChild(element);

In this example, the element is inserted as the last child of the <body> element, which means it’s
placed at the end of the document. If you have a place where you want to insert dynamic Silverlight
content, it’s easiest to define an empty <div> container with a unique ID. You can then retrieve the
HtmlElement for that <div> and use AppendChild() to insert your new content.

 Note You can execute this code more than once to add multiple paragraphs to the end of the HTML document.
However, as it currently stands, each paragraph will be given the same ID, which isn’t strictly correct. If you use
the GetElementById() method on a document like this, you get only the first matching element.

Ordinarily, the AppendChild() method places the new element at the end of the collection of nested
children. But it’s possible to position an element more precisely by using an overloaded version of
AppendChild() that accepts another HtmlElement object to act as a reference. When you use this
approach, the element is inserted just before the referenced element:

// Get a reference to the first element in the <body>.
HtmlElement referenceElement = HtmlPage.Document.Body.Children[0];

CHAPTER 17  BROWSER INTEGRATION

618

// Make the new element the very first child in the <body> element,
// before all other nested elements.
HtmlPage.Document.Body.AppendChild(element, referenceElement);

Incidentally, it’s even easier to remove an element. The only trick is that you need to use the
RemoveChild() method of the parent, not the element you want to remove.

Here’s the code that removes the paragraph element if it exists:

HtmlElement element = HtmlPage.Document.GetElementById("paragraph");
if (element != null)
 element.Parent.RemoveChild(element);

Changing Style Properties
Setting style attributes is just as easy as setting DOM properties. You have essentially three options.

First, you can set the element to use an existing style class. To do this, you set the
HtmlElement.CssClass property:

element.CssClass = "highlightedParagraph";

For this to work, the named style must be defined in the current HTML document or in a linked style
sheet. Here’s an example that defines the highlightedParagraph style in the <head> of the HTML page:

<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <style type="text/css">
 .highlightedParagraph
 {
 color: White;
 border: solid 1px black;
 background-color: Lime;
 }
 ...
 </style>
 ...
 </head>
 <body>...</body>
</html>

This approach requires the least code and keeps the formatting details in your HTML markup.
However, it’s an all-or-nothing approach—if you want to fine-tune individual style properties, you must
follow up with a different approach.

Another option is to set the element’s style all at once. To do this, you use the
HtmlElement.SetAttribute() method and set the style property. Here’s an example:

element.SetAttribute("style",
 "color: White; border: solid 1px black; background-color: Lime;");

But a neater approach is to set the style properties separately using the SetStyleAttribute() method
several times:

element.SetStyleAttribute("color", "White");
element.SetStyleAttribute("border", "solid 1px black");
element.SetStyleAttribute("background", "Lime");

http://www.w3.org/1999/xhtml

CHAPTER 17  BROWSER INTEGRATION

619

You can use the SetStyleAttribute() at any point to change a single style property, regardless of how
you set the style initially (or even if you haven’t set any other style properties).

 Tip For a review of the CSS properties you can use to configure elements, refer to www.w3schools.com/css.

Handling JavaScript Events
Not only can you find, examine, and change HTML elements, you can also handle their events. Once
again, you need to know the name of the HTML DOM event. In other words, you need to have your
JavaScript skills handy in order to make the leap between Silverlight and HTML. Table 17-4 summarizes
the most commonly used events.

Table 17-4. Common HTML DOM Events

Event Description

onchange Occurs when the user changes the value in an input control. In text controls, this event
fires after the user changes focus to another control.

onclick Occurs when the user clicks a control.

onmouseover Occurs when the user moves the mouse pointer over a control.

onmouseout Occurs when the user moves the mouse pointer away from a control.

onkeydown Occurs when the user presses a key.

onkeyup Occurs when the user releases a pressed key.

onselect Occurs when the user selects a portion of text in an input control.

onfocus Occurs when a control receives focus.

onblur Occurs when focus leaves a control.

onabort Occurs when the user cancels an image download.

onerror Occurs when an image can’t be downloaded (probably because of an incorrect URL).

onload Occurs when a new page finishes downloading.

onunload Occurs when a page is unloaded. (This typically occurs after a new URL has been
entered or a link has been clicked. It fires just before the new page is downloaded.)

http://www.w3schools.com/css

CHAPTER 17  BROWSER INTEGRATION

620

To attach your event handler, you use the HtmlElement.AttachEvent() method. You can call this
method at any point and use it with existing or newly created elements. Here’s an example that watches
for the onclick event in the paragraph:

element.AttachEvent("onclick", paragraph_Click);

 Tip You can use HtmlElement.AttachEvent() to handle the events raised by any HTML element. You can also use
HtmlWindow.AttachEvent() to deal with events raised by the browser window (the DOM window object) and
HtmlDocument.AttachEvent() to handle the events raised by the top-level document (the DOM document object).

The event handler receives an HtmlEventArgs object that provides a fair bit of additional
information. For mouse events, you can check the exact coordinates of the mouse (relative to the
element that raised the event) and the state of different mouse buttons.

In this example, the event handler changes the paragraph’s text and background color:

private void paragraph_Click(object sender, HtmlEventArgs e)
{
 HtmlElement element = (HtmlElement)sender;
 element.SetProperty("innerHTML",
 "You clicked this HTML element, and Silverlight handled it.");
 element.SetStyleAttribute("background", "#00ff00");
}

This technique achieves an impressive feat. Using Silverlight as an intermediary, you can script an
HTML page with client-side C# code, instead of using the JavaScript that would normally be required.

Figure 17-4 shows this code in action.

CHAPTER 17  BROWSER INTEGRATION

621

Figure 17-4. Silverlight and HTML interaction

Code Interaction
So far, you’ve seen how a Silverlight application can reach into the browser to perform navigation and
manipulate HTML elements. The one weakness of this approach is that it creates tightly bound code—in
other words, a Silverlight application that has hard-coded assumptions about the HTML elements on the
current page and their unique IDs. Change these details in the HTML page, and the Silverlight code for
interacting with them won’t work anymore.

One alternative that addresses this issue is to allow interaction between code, not elements. For
example, your Silverlight application can update the content of the HTML page by calling a JavaScript
method that’s in the page. Essentially, the JavaScript code creates an extra layer of flexibility in between
the Silverlight code and HTML content. This way, if the HTML elements on the page are ever changed,
the JavaScript method can be updated to match at the same time, and the Silverlight application won’t
need to be recompiled. The same interaction can work in the reverse direction—for example, you can
create JavaScript code that calls a Silverlight method that’s written in managed C# code. In the following
sections, you’ll see examples of both techniques.

CHAPTER 17  BROWSER INTEGRATION

622

Calling Browser Script from Silverlight
Using the Silverlight classes in the System.Windows.Browser namespace, you can invoke a JavaScript
function that’s declared in a script block. This gives you a disciplined, carefully controlled way for
Silverlight code to interact with a page. It’s particularly useful if you already have a self-sufficient page
with a full complement of JavaScript functions. Rather than duplicate the code that manipulates the
elements in that page, you can call one of the existing methods.

For example, assume you have this function defined in the <head> section of your HTML page:

<script type="text/javascript">
 function changeParagraph(newText) {
 var element = document.getElementById("paragraph");
 element.innerHTML = newText;
 }
</script>

To call this method, you need to use the HtmlWindow.GetProperty() method and pass in the name
of the function. You receive a ScriptObject, which you can execute at any time by calling InvokeSelf().

ScriptObject script = (ScriptObject)HtmlPage.Window.GetProperty("changeParagraph");

When you call InvokeSelf(), you pass in all the parameters. The changeParagraph() function requires
a single string paragraph, so you can call it like this:

script.InvokeSelf("Changed through JavaScript.");

Calling Silverlight Methods from the Browser
Interestingly, Silverlight also has the complementary ability to let JavaScript code call a method written
in managed code. This process is a bit more involved. To make it work, you need to take the following
steps:

1. Create a public method in your Silverlight code that exposes the information
or functionality you want the web page to use. You can place the method in
your page class or in a separate class. You’ll need to stick to simple data types,
such as strings, Boolean values, and numbers, unless you want to go through
the additional work of serializing your objects to a simpler form.

2. Add the ScriptableMember attribute to the declaration of the method that you
want to call from JavaScript.

3. Add the ScriptableType attribute to the declaration of the class that includes
the scriptable method.

4. To expose your Silverlight method to JavaScript, call the
HtmlPage.RegisterScriptableObject() method.

Provided you take all these steps, your JavaScript code will be able to call your Silverlight method
through the <object> element that represents the Silverlight content region. However, to make this task
easier, it’s important to give the <object> element a unique ID. By default, Visual Studio creates a test
page that assigns a name to the <div> element that contains the <object> element
(silverlightControlHost), but it doesn’t give a name to the <object> element inside. Before continuing,
you should create a test page that adds this detail, as shown here:

CHAPTER 17  BROWSER INTEGRATION

623

<div id="silverlightControlHost">
 <object data="data:application/x-silverlight,"
 type="application/x-silverlight-2-b1" width="400" height="300"
 id="silverlightControl">
 ...
 </object>
 <iframe style="visibility:hidden;height:0;width:0;border:0px"></iframe>
</div>

 Note Remember, you can’t modify the test page in a stand-alone Silverlight application, because it will be
replaced when you rebuild your project. Instead, you need to create a new test page as described in Chapter 1. If
you’re using a solution that includes an ASP.NET test website, you can change the HTML test page directly. If
you’re using the server-side .aspx test page, you can change the ID of the server-side Silverlight control, which
will be used when creating the client-side Silverlight control.

After you’ve named the Silverlight control, you’re ready to create the scriptable Silverlight method.
Consider the example shown in Figure 17-5. Here, a Silverlight region (the area with the gradient
background) includes a single text block (left). Underneath is an HTML paragraph. When the user clicks
the paragraph, a JavaScript event handler springs into action and calls a method in the Silverlight
application that updates the text block (right).

Figure 17-5. Calling Silverlight code from JavaScript

CHAPTER 17  BROWSER INTEGRATION

624

To create this example, you need the custom page class shown here. It includes a single scriptable
method, which is registered when the page is first created:

[ScriptableType()]
public partial class ScriptableSilverlight: UserControl
{
 public ScriptableSilverlight()
 {
 InitializeComponent();

 HtmlPage.RegisterScriptableObject("Page", this);
 }

 [ScriptableMember()]
 public void ChangeText(string newText)
 {
 lbl.Text = newText;
 }
}

When registering a scriptable type, you need to specify a JavaScript object name and pass a
reference to the appropriate object. Here, an instance of the ScriptableSilverlight class is registered with
the name Page. This tells Silverlight to create a property named Page in the Silverlight control on the
JavaScript page. Thus, to call this method, the JavaScript code needs to use the find the Silverlight
control, get its content, and then call its Page.ChangeText() method.

Here’s an example of a function that does exactly that:

<script type="text/javascript">
 function updateSilverlightText()
 {
 var control = document.getElementById("silverlightControl");
 control.content.Page.ChangeText(
 "This TextBlock has been updated through JavaScript.");
 }
</script>

You can trigger this JavaScript method at any time. Here’s an example that fires it off when a
paragraph is clicked:

<p onclick="updateSilverlightText()">Click here to change the Silverlight
 TextBlock.</p>

Now, clicking the paragraph triggers the updateSilverlight() JavaScript function, which in turn calls
the ChangeText () method that’s part of your ScriptableSilverlight class.

Instantiating Silverlight Objects in the Browser
The previous example demonstrated how you can call a Silverlight method for JavaScript code.
Silverlight has one more trick for code interaction: it allows JavaScript code to instantiate a Silverlight
object.

As before, you start with a scriptable type that includes scriptable methods. Here’s an example of a
very basic Silverlight class that returns random numbers:

[ScriptableType()]

CHAPTER 17  BROWSER INTEGRATION

625

public class RandomNumbers
{
 private Random random = new Random();

 [ScriptableMember()]
 public int GetRandomNumberInRange(int from, int to)
 {
 return random.Next(from, to+1);
 }
}

As with the previous example, you need to register this class to make it available to JavaScript code.
However, instead of using the RegisterScriptableObject() method, you use the RegisterCreateableType()
method, as shown here:

HtmlPage.RegisterCreateableType("RandomNumbers", typeof(RandomNumbers));

To create an instance of a registered type, you need to find the Silverlight control and call its
content.services.createObject() method. Here’s an example with a JavaScript function that displays a
random number from 1 to 6 using an instance of the Silverlight RandomNumbers class:

<script type="text/javascript">
 function getRandom1To6()
 {
 var control = document.getElementById("silverlightControl");
 var random = control.content.services.createObject("RandomNumbers");
 alert("Your number is: " + random.GetRandomNumberInRange(1, 6));
 }
</script>

The final detail is an HTML element that calls getRandom1To6():

<p onclick="getRandom1To6()">Click here to get a random number from 1 to 6.</p>

Figure 17-6 shows this code in action.

Figure 17-6. Creating a Silverlight object from JavaScript

CHAPTER 17  BROWSER INTEGRATION

626

Combining Silverlight and HTML Content
In Chapter 9, you learned how to create a windowless Silverlight content region. You can then use a
transparent background to allow your Silverlight elements to “sit” directly on your HTML page. You can
even use partial transparency to let the HTML content show through from underneath your Silverlight
content.

This visual integration comes in handy when you use Silverlight code integration. For example,
many developers have created custom-skinned media players using Silverlight’s standard video window
in conjunction with JavaScript-powered HTML elements. These controls can control playback by calling
the scriptable methods in your Silverlight application.

When you combine HTML elements and Silverlight elements in the same visual space, it can take a
bit of work to get the right layout. Usually, the trick is to fiddle around with CSS styles. For example, to
constrain Silverlight content to a specific region of your page, you can place it in a <div> container. That
<div> can even be placed with absolute coordinates. You can use other <div> containers to arrange
blocks of HTML content alongside the Silverlight content. (You saw an example of this technique in
Chapter 9, where a windowless Silverlight control was placed into a single column in a multicolumn
layout.)

Occasionally, you’ll want more layout control. For example, you may need to place or size your
Silverlight control based on the current dimensions of the browser window or the location of other
HTML elements. In the following sections, you’ll see two examples that use Silverlight’s HTML
interoperability to place the Silverlight control dynamically.

Sizing the Silverlight Control to Fit Its Content
As you learned in Chapter 1, the default test page makes a Silverlight content region that fills the entire
browser window. You can change this sizing, but you’re still forced to assign an explicit size to your
Silverlight control. If you don’t, your Silverlight content is arranged according to the size of the page, but
the page is truncated to fit a standard 200 by 200 pixel region, as shown in Figure 17-7.

Figure 17-7. The default Silverlight control size

CHAPTER 17  BROWSER INTEGRATION

627

Sometimes, it would be nice to have a way to make the Silverlight content region size itself to match
the dimensions of Silverlight page. Ordinarily, this doesn’t happen. However, you can put it into practice
with some simple code and Silverlight’s HTML interoperability. It’s easy. All you need to do is wait for
your page to load, find the corresponding <object> element on the page, and resize it to match the
dimensions of the page.

Here’s an event handler that does the trick. It sizes the Silverlight control using the width and height
style properties:

private void Page_Loaded(object sender, RoutedEventArgs e)
{
 HtmlElement element = HtmlPage.Document.GetElementById("silverlightControl");
 element.SetStyleAttribute("width", this.Width + "px");
 element.SetStyleAttribute("height", this.Height + "px");
}

You can use this code once, to size the Silverlight content region when the application is first loaded
and the first page appears; or you can resize the content region to correspond to the content you’re
currently displaying by using the same code in several pages. Figure 17-8 shows the result of this
approach, as the content changes inside a Silverlight application.

Figure 17-8. Sizing the Silverlight control to fit the page

Placing the Silverlight Control Next to an HTML Element
Much like you can resize the Silverlight control using style properties, you can also reposition it. The
trick is to use a CSS style that specifies absolute positioning for the Silverlight control (or the <div>
element that wraps it). You can then place the Silverlight control at the appropriate coordinates by
setting the left and top style properties.

For example, in Figure 17-9, the goal is to pop up the Silverlight application in a floating window
over of the page but next to a specific HTML element (which is highlighted in yellow). The specific
position of the highlighted HTML element changes depending on the size of the browser window. Thus,
to put the Silverlight content in the right place, you need to position it dynamically with code.

CHAPTER 17  BROWSER INTEGRATION

628

Figure 17-9. Positioning Silverlight content next to an element

To make this work, you must begin with a style that specifies absolute positioning for the Silverlight
control. This style rule also sets the width and height to 0, so the control doesn’t appear initially. (You
could use the visibility style property to accomplish the same thing; but in this case, the width and
height are set dynamically to match the Silverlight page size, so it may as well start at 0.)

#silverlightControlHost
{
 position: absolute;
 width: 0px;
 height: 0px;
}

The Silverlight content region doesn’t appear until the user moves the mouse over the appropriate
HTML element. In this example, the element is a placed in a block of text:

<div>
 <p>This is an ordinary HTML page.</p>
 <p>The Silverlight control is in a hidden container.</p>
 <p>The hidden container is placed using absolute coordinates.
 When you move the mouse over the highlighted word here,
 the Silverlight control will be dynamically positioned next to the highlighted
 word and displayed.
</div>

This span is given a yellow background through another style:

#target
{
 background-color: Yellow;
}

When the Silverlight page loads, the code finds the target element and attaches an event
handler to the JavaScript onmouseover event:

private void Page_Loaded(object sender, RoutedEventArgs e)

CHAPTER 17  BROWSER INTEGRATION

629

{
 HtmlElement target = HtmlPage.Document.GetElementById("target");
 target.AttachEvent("onmouseover", element_MouseOver);
}

When the user moves the mouse over the element, the event handler finds its current position using
the HTML DOM properties offsetLeft and offsetTop. It then places the Silverlight container in a nearby
location using the left and top style properties:

private void element_MouseOver(object sender, HtmlEventArgs e)
{
 // Get the current position of the .
 HtmlElement target = HtmlPage.Document.GetElementById("target");
 double targetLeft = Convert.ToDouble(target.GetProperty("offsetLeft")) - 20;
 double targetTop = Convert.ToDouble(target.GetProperty("offsetTop")) - 20;

 // Get the Silverlight container, and position it.
 HtmlElement silverlightControl =
 HtmlPage.Document.GetElementById("silverlightControlHost");
 silverlightControl.SetStyleAttribute("left", targetLeft.ToString() + "px");
 silverlightControl.SetStyleAttribute("top", targetTop.ToString() + "px");

 // Resize the Silverlight container to match the actual page size.
 // This assumes the Silverlight user control has fixed values set for
 // Width and Height (in this case, they're set in the XAML markup).
 silverlightControl.SetStyleAttribute("width", this.Width + "px");
 silverlightControl.SetStyleAttribute("height", this.Height + "px");
}

The Silverlight content region is hidden using an ordinary Silverlight event handler that reacts to the
MouseLeave event of the top-level user control:

private void Page_MouseLeave(object sender, MouseEventArgs e)
{
 HtmlElement silverlightControl =
 HtmlPage.Document.GetElementById("silverlightControlHost");
 silverlightControl.SetStyleAttribute("width", "0px");
 silverlightControl.SetStyleAttribute("height", "0px");
}

To give this example a bit more pizzazz, you can use an animation to fade the Silverlight content
region into view. Here’s an example that alternates the opacity of the top-level container from 0 to 1 over
half a second:

<UserControl.Resources>
 <Storyboard x:Name="fadeUp">
 <DoubleAnimation Storyboard.TargetName="LayoutRoot"
 Storyboard.TargetProperty="Opacity"
 From="0" To="1" Duration="0:0:0.5" />
 </Storyboard>
</UserControl.Resources>

To use this animation, you need to add this statement to the end of the element_MouseOver() event
handler:

CHAPTER 17  BROWSER INTEGRATION

630

fadeUp.Begin();

Securing HTML Interoperability
Silverlight’s HTML interoperability features raise some new security considerations. This is particularly
true if the Silverlight application and the hosting web page are developed by different parties. In this
situation, there’s a risk that malicious code in a Silverlight application could tamper with the HTML
elsewhere on the page. Or, JavaScript code in the HTML page could call into the Silverlight application
with malicious information, potentially tricking it into carrying out the wrong action.

If these issues are a concern, you can use a few options to clamp down on Silverlight’s HTML
interoperability. To prevent the Silverlight application from overstepping its bounds, you can set one of
two parameters in the HTML entry page:

• enableHtmlAccess: When false, the Silverlight application won’t be able to use
most of the HTML interoperability features, including the Document, Window,
Plugin, and BrowserInformation properties of the HtmlPage class. (However, you
will still be allowed to call the HtmlPage.PopupWindow() method.) Ordinarily,
enableHtmlAccess is set to true, and you must explicitly switch it off. However, if
your Silverlight application is hosted on a different domain than your HTML entry
page, enableHtmlAccess is set to false by default, and you can choose to explicitly
switch it on to allow HTML interoperability.

• allowHtmlPopupwindow: When false, the Silverlight application can’t use the
HtmlPage.PopupWindow() method to show a pop-up window. By default, this
parameter is true when the test page and Silverlight application are deployed
together and false when the Silverlight application is hosted on a different
domain.

Here’s an example that sets enableHtmlAccess and allowHtmlPopupwindow:

<div id="silverlightControlHost">
 <object data="data:application/x-silverlight-2,"
 type="application/x-silverlight-2" width="100%" height="100%">
 <param name="enableHtmlAccess" value="false" />
 <param name="allowHtmlPopupwindow" value="false" />
 ...
 </object>
 <iframe style="visibility:hidden;height:0;width:0;border:0px"></iframe>
</div>

Silverlight also gives you the ability to protect your Silverlight application from JavaScript code. But
first, it’s important to remember that JavaScript code can’t interact with your application unless you
explicitly designate some classes and methods as scriptable (which you learned to do in the “Code
Interaction” section of this chapter). Once you designate a method as scriptable, it will always be
available to the HTML entry page, assuming both the HTML entry page and your Silverlight application
are deployed together.

However, Silverlight’s far stricter if the HTML entry page and Silverlight application are hosted on
different domains. In this case, the HTML page will not be allowed to access to your scriptable classes
and methods. Optionally, you can override this behavior and ensure that scriptable members are
available to any HTML page by setting the ExternalCallersFromCrossDomain attribute in the application
manifest file AppManifest.xml, as shown here:

CHAPTER 17  BROWSER INTEGRATION

631

<Deployment xmlns="http://schemas.microsoft.com/client/2007/deployment"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 ExternalCallersFromsCrossDomain="ScriptableOnly" ...>
 <Deployment.Parts>
 ...
 </Deployment.Parts>
</Deployment>

Use this option with caution. It’s entirely possible for an unknown individual to create an HTML
page on another server that hosts your Silverlight application without your knowledge or consent. If you
allow cross-domain access to your scriptable methods, anyone will be able to call these methods at any
time, and with any information.

The Last Word
In this chapter, you saw how to build more advanced web pages by blending the boundaries between
Silverlight and the containing HTML page. You learned how Silverlight can find and manipulate HTML
elements directly and how it can call JavaScript code routines. You also learned how to use the reverse
trick and let JavaScript call scriptable methods in your Silverlight application. Finally, you considered the
security implications of breaking down the barriers between Silverlight code and the HTML world.

http://schemas.microsoft.com/client/2007/deployment
http://schemas.microsoft.com/winfx/2006/xaml

C H A P T E R 18

633

Out-of-Browser Applications

As you already know, the code for every Silverlight application is contained in a XAP file. The Silverlight
browser plug-in downloads this file from the web server and executes it on the client. After this point,
there’s no requirement for the web server to get involved again—all the code runs on the local computer.

This design raises an interesting possibility. Although Silverlight applications depend on the
Silverlight browser plug-in, there’s no technical reason that they need to be embedded in a live web
page. In fact, as long as there’s a reliable way to run the Silverlight plug-in outside of a browser, it’s also
possible to run a Silverlight application on its own.

This is the essential idea behind Silverlight out-of-browser applications. With an out-of-browser
application, a user visits your website to download and install your Silverlight application. After the
installation process, the application can be launched in a stand-alone window, straight from the Start
menu. Aside from being in a separate window, the out-of-browser application functions in almost
exactly the same way as an ordinary Silverlight application that’s hosted in a web page. You can even
download and automatically apply new updates on the client’s computer.

Although out-of-browser applications are still standard Silverlight applications, they open two new
possibilities. First, because they are cached on the client’s computer, they can run without a web
connection. This is a useful tool for user with intermittent network connections—for example, traveling
employees with laptops. Second, out-of-browser applications they can be installed with elevated trust,
which gives them a number of new capabilities. These include customizing the application window,
accessing the current user’s documents, and running already-installed COM components.

 What’s New Silverlight 5 adds several new features to elevated-trust applications. It gives the ability to create
child windows, use P/Invoke to call native code, and access the hard drive with all the privileges of the current
user. Silverlight 5 also allows you to create applications that run with elevated trust inside the browser, although
this specialized feature requires specific configuration on the client. For more information about all these features,
see the “Elevated Trust” section.

Understanding Out-of-Browser Support
The first detail you should understand about Silverlight out-of-browser applications is that despite their
name, they don’t run without the browser. Instead, out-of-browser applications conceal the browser’s
presence. When you run one, a specialized Silverlight tool named sllauncher.exe (which you can find in

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

634

a directory like c:\Program Files\Microsoft Silverlight\ on a Windows computer) creates a stand-alone
window that hosts a browser control inside. This browser window is stripped down to little more than a
bare frame and includes none of the standard browser user interface (which means no toolbar, favorites,
navigation buttons, and so on).

 Note Out-of-browser applications work on all supported Silverlight platforms, including Windows and Mac
computers.

Figure 18-1 shows the EightBall application from Chapter 2, running as an out-of-browser
application.

Figure 18-1. The EightBall application outside of the browser

Given that out-of-browser applications are really just slick illusions (and given your limited control
over the stand-alone window, they’re not even that slick), why would you use them? There are several
good reasons:

• To get a desktop presence: An out-of-browser application must be “installed”
through a lightweight process that downloads the XAP file (as usual) and adds
desktop and Start menu shortcuts. If you want to give your users the ability to
launch a Silverlight application this way, rather than forcing them to load a
browser and navigate to the appropriate URL, an out-of-browser application
makes sense.

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

635

• To allow the application to run when offline: Ordinarily, Silverlight applications
are accessed through a web page, and that web page is on a public or private
network. As a result, clients can’t run the application unless they have a
connection. But after going through the install process for an out-of-browser
application, a copy is cached locally and permanently (unless the user explicitly
removes the application).

• To support intermittent connectivity: This is similar to the previous point but
represents an even more common scenario. Many clients—particularly those who
use laptops and access the Internet through a wireless connection—have periods
of connectivity interrupted with periodic disconnections. Using an out-of-browser
application (and the network detection features described in Chapter 19), you can
create an application that deals with both scenarios. When it’s connected, it can
call web services to retrieve updated data and perform server actions. When
disconnected, it remains self-sufficient and allows the user to keep working.

• To gain the features of elevated trust: Although you can get elevated-trust
capabilities in an in-browser application, you’ll face several serious drawbacks
(see the section “Elevated-Trust Applications in the Browser” for the full scoop). In
most real-world scenarios, you’ll need to create an out-of-browser application to
take advantage of the elevated trust features described later in this chapter.

 Note Although out-of-browser applications have the same feature set as in-browser applications, there is one
difference: their initial allotment of file space. As explained in Chapter 22, every Silverlight application gets its own
carefully walled-off area of disk space where it can create and store files. Ordinary in-browser applications get a
mere 1MB of disk space (although they can request more by prompting the user). But out-of-browser applications
start with a significantly increased quota of 25MB, which means that in many cases they won’t need to ask the
user for additional space. To learn more about isolated storage, refer to Chapter 22.

Creating an Out-of-Browser Application
To run a Silverlight application outside of the browser window, the user must first install it locally. But
before that’s possible, you must specifically allow this feature. To do so, follow these steps:

1. Double-click the Properties item in the Solution Explorer to show the
application configuration options.

2. Click the Silverlight tab.

3. Select the “Enable running application out of the browser” setting.

4. Optionally, click the Out-of-Browser Settings button to show a window where
you can set additional options (see Figure 18-2).

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

636

Figure 18-2. Configuring out-of-browser settings

The additional options that you can set in the Out-of-Browser Settings window include the
following:

• Window Title: Name used in the title bar of the window when the application is
running outside of the browser.

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

637

• Width and Height: The initial size of the window for the out-of-browser
application. The user can resize the window after the application launches. If you
don’t supply width and height values, Silverlight creates a window that’s 800 pixels
wide and 600 pixels tall.

• Set window location manually: If checked, allows you to fill in the coordinates (in
pixels) for the top-left corner of the window. Usually, you’ll leave this unset and let
Silverlight place the window in the center of the screen.

• Shortcut name: Name used in the installation window and in any shortcuts that
are created.

• Application description: Descriptive text that describes the application. It appears
in a tooltip when you hover over the application shortcut.

• Icon settings: Allow you to customize the images used for the installation window
and the shortcuts, as described a bit later in the “Customizing Icons” section.

• Enable GPU Acceleration: Determines whether the out-of-browser will support the
video-card caching that boosts performance in some scenarios. Selecting this
check box simply gives you the option to use hardware acceleration—it’s still up to
your elements to opt in when appropriate, as described in Chapter 10.

• Show install menu: If checked, shows an option for installing your application
when the user right-clicks the Silverlight content region. If you don’t use this
option, it’s up to you to start the installation process programmatically. Both
approaches are described in the next section.

• Require elevated trust when running outside the browser: This configures your
application to be an elevated-trust application, which grants it additional
privileges (but requires that the user accept a security warning when first
installing the application). For more information, see the “Elevated Trust” section
later in this chapter.

The values you enter are placed in a file named OutOfBrowserSettings.xml and saved with your
project.

Once you’ve performed these steps, your application gains the ability to be installed locally and
then launched outside of the browser. However, it doesn’t need to be installed—the user can continue
running it as a standard Silverlight application in the browser.

TESTING AN OUT-OF-BROWSER APPLICATION

There are two ways to test an out-of-browser application:

• Skip the install: If you don’t want to try the installation process, you can create an
ordinary, stand-alone Silverlight project. As long as you’ve switched on the
“Enable running application out of the browser” setting, Visual Studio will always
run your application in a separate window. You’ll bypass the test page altogether.

• Do the install: If you want to get exactly the same experience as your users, create
a Visual Studio solution that includes both a Silverlight project and an ASP.NET

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

638

website that hosts it. Then, when you run your application, Visual Studio will start
the integrated web server, launch your browser, and request the test page. You’ll
see your Silverlight application running in the browser, as usual. To install it, right-
click anywhere in the Silverlight content region, and choose Install. The next
section has the full walk-through.

Installing an Out-of-Browser Application
There are two ways to install an application that has out-of-browser capability. The first option is for the
user to perform this step explicitly. To do so, the user must request the web page for the application,
right-click the Silverlight content region, and choose “Install [ApplicationShortName] on this computer,”
as shown in Figure 18-3.

Figure 18-3. Explicitly installing an out-of-browser application

The other option is to start the installation process programmatically by calling the
Application.Install() method. You must call this method in an event handler that responds to a user-
initiated action (like clicking a button). The Install() method returns true if the user accepts the install
prompt and continues or false if the user declines to install the application.

The Install() method has one potential problem: it throws an exception if the application is already
installed on the local computer, even if the user is currently running the application in the browser. To
avoid this error, you should check the Application.InstallState value before calling Install(). Here’s the
complete process, launched in response to a button click:

private void cmdInstall_Click(object sender, RoutedEventArgs e)

{

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

639

 // Make sure that the application is not already installed.
 if (Application.Current.InstallState != InstallState.Installed)
 {
 // Attempt to install it.
 bool installAccepted = Application.Current.Install();

 if (!installAccepted)
 {
 lblMessage.Text =
 "You declined the install. Click Install to try again.";
 }
 else
 {
 cmdInstall.IsEnabled = false;
 lblMessage.Text = "The application is installing... ";
 }
 }

}

 Tip Optionally, you can remove the install option from the Silverlight menu and force a user to install an
application through your code. To do so, simply clear the “Show install menu” check box in the Out-of-Browser
Settings window. The only reason that you would take this approach is if you need to perform some other tasks
before your installation, such as collecting user information or calling a web service.

When an application is installed, either through the user’s choice or the Install() method, several
things happen. First, an installation window appears (see Figure 18-4) that asks the user for
confirmation.

Figure 18-4. Installing the EightBall application

The installation window performs several services:

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

640

• It provides the name of the application and indicates the domain where it’s hosted
(or shows file:// for an application that’s executed locally, without an ASP.NET test
website).

• It provides a More Information link, which, if clicked, launches another browser
window and navigates to a page on the Silverlight website that describes the out-
of-browser feature.

• It allows the user to choose whether the installation should create a Start menu
shortcut (which is checked by default) and a desktop shortcut (which isn’t). If the
user clears both check boxes, the OK button becomes disabled, and the install
can’t continue. It’s also worth noting that the Start menu shortcut appears in the
first level of the Start menu (not in a subgroup).

 Note The install window looks slightly different on a Mac, to follow the conventions of that platform. For
example, it doesn’t include check boxes for creating shortcuts. Instead, Mac users are expected to drag the
installed application bundle into the location of their choice after the install completes, much as they would do
when installing any other application.

The most important feature of the installation window is that it explains what’s about to happen in
clear, nonthreatening terms. It doesn’t require an administrator account or privilege escalation, and it
isn’t followed or preceded by any additional security warnings. Compare this to the prompts you get
when installing a standard .NET application through ClickOnce, and you’ll see that the experience is
much friendlier with a Silverlight out-of-browser application. As a result, the user is much more likely to
go through with the operation and install the application, rather than be scared off by obscurely worded
warnings.

The installation process places the application in a randomly generated folder in the current user’s
profile. When the installation process finishes, it launches the newly installed application in a stand-
alone window. But the existing browser window remains open, which means there are now two
instances of the application running. You can deal with this situation by handling the
InstallStateChanged event, as described in the “Tracking Application State” section.

 Note Out-of-browser applications are installed for the current account only. Much as one user’s web
bookmarks aren’t available to others, one user’s locally installed Silverlight applications (and the related desktop or
Start menu shortcuts) aren’t shown to other users of the same computer.

Customizing Icons
The default image in the installation window is far better than an intimidating picture like a warning
icon. But you can get an even better result by substituting a custom picture in its place. Silverlight lets
you supply small image files to customize several details:

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

641

• Use a 16x16 image for the application icon in the title bar and in the Start menu.

• Use a 32x32 image for the application icon on the desktop (and in other large icon
views).

• Use a 48x48 image for the application icon in tile mode.

• Use a 128x128 image for the installation window.

To customize these details, begin by adding the images to your project. Each image file must be a
PNG file with the correct dimensions. For better organization, put the images in a project subfolder, like
AppIcons. Then, select each one in the Solution Explorer, and set Build Action to Content (not Resource)
so the images are packaged in the XAP as separate files. Finally, return to the Out-of-Browser Settings
window shown in Figure 18-2 to identify the icons you want to use.

Figure 18-5 shows the installation window with a customized image.

Figure 18-5. Customizing the EightBall installation

 Note The image is the only detail you can change in the installation window. You can’t alter the options it
provides or the descriptive text it uses.

Tracking Application State
As you’ve seen, out-of-browser applications are ordinary Silverlight applications that have a bit of
additional information in the application manifest. This gives users the option of installing them locally,
but it doesn’t prevent them from running in the browser. This flexibility can be helpful, but it many
situations you’ll want to pay attention to the application’s execution state—in other words, whether it’s
running in the browser or in a stand-alone window. You may want to provide less functionality in the
browser or even prevent the user from running the application.

The tool that allows you to implement this design is the Application. IsRunningOutOfBrowser
property. It returns true if the application was launched as a stand-alone application or false if it’s
running in the browser. To differentiate your application in these two states, you need to check this
property and adjust the user interface accordingly.

For example, if you want to create an application that supports offline use only, you can use code
like this in the Startup event handler:

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

642

private void Application_Startup(object sender, StartupEventArgs e)

{
 if (Application.Current.IsRunningOutOfBrowser)
 {
 // Show the full user interface.
 this.RootVisual = new MainPage();
 }
 else
 {
 // Show a window with an installation message and an Install button.
 this.RootVisual = new InstallPage();
 }

}

 Tip It’s also important to check the IsRunningOutOfBrowser property before attempting to use any features that
aren’t supported in out-of-browser applications—namely, the browser interaction features described in Chapter
17.

There’s one possible quirk with this code. It tests the IsRunningOutOfBrowser property and uses
that to decide whether to launch the install process. This makes sense, because if the application is
currently running in the browser (meaning IsRunningOutOfBrowser is true), the application is obviously
installed. However, the reverse isn’t necessarily correct. If the application isn’t running in the browser
(meaning IsRunningOutOfBrowser is false), it may still be installed. The only way to know for sure is to
check the Application.InstallState property, which takes one of the values from the InstallState
enumeration (as described in Table 18-1).

Table 18-1. Values of the InstallState Enumeration

Value Description

Not Installed The application is running inside the browser and hasn’t been installed
as an out-of-browser application.

Installing The application is in the process of being installed as an out-of-browser
application.

InstallFailed The out-of-browser install process failed.

Installed The application is installed as an out-of-browser application. This
doesn’t necessarily mean it’s currently running outside of the
browser—to determine this fact, you need to check the
IsRunningOutOfBrowser property.

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

643

The InstallPage takes this detail into account. When it loads, it uses the following code in its
constructor to determine whether the application is already installed. If the application hasn’t been
installed, it enables an Install button. Otherwise, it disables the Install button and shows a message
asking the user to run the application from the previously installed shortcut.

public InstallPage()

{
 InitializeComponent();

 if (Application.Current.InstallState == InstallState.Installed)
 {
 lblMessage.Text = "This application is already installed. " +
 "You cannot use the browser to run it. " +
 "Instead, use the shortcut on your computer.";
 cmdInstall.IsEnabled = false;
 }
 else
 {
 lblMessage.Text = "You need to install this application to run it.";
 cmdInstall.IsEnabled = true;
 }

}

 Tip This behavior isn’t mandatory. It’s perfectly acceptable to have an application that supports in-browser and
out-of-browser use. In this case, you may choose to check InstallState and show some sort of install button that
gives the user the option to install the application locally. However, you won’t redirect the user to an installation
page if the application isn’t installed.

Once the application has been successfully installed, it makes sense to inform the user. However,
you can’t assume that the application has been successfully installed just because the Install() method
returns true. This simply indicates that the user has clicked the OK button in the installation window to
start the install. The actual install process happens asynchronously.

As the install progresses, Silverlight adjusts the Application.InstallState property and triggers the
Application.InstallStateChanged event to notify you. When InstallStateChanged fires and InstallState is
Installed, your application has just finished being installed as an out-of-browser application. At this
point, you should notify the user. The following example does exactly that using some extra code in the
App class. It reacts as the application is being installed and notifies the InstallPage:

First, you need to attach the event handler in the App class constructor:

this.InstallStateChanged += this.Application_InstallStateChanged;

Then, you can add the code that reacts as the application is being installed and notifies the
InstallPage:

private void Application_InstallStateChanged(object sender, EventArgs e)

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

644

{
 InstallPage page = this.RootVisual as InstallPage;
 if (page != null)
 {
 // Tell the root visual to show a message by calling a method
 // in InstallPage that updates the display.
 switch (this.InstallState)
 {
 case InstallState.InstallFailed:
 page.DisplayFailed();
 break;
 case InstallState.Installed:
 page.DisplayInstalled();
 break;
 }
 }

}

Finally, you need to add the following methods to the InstallPage class to show the updated status
text:

public void DisplayInstalled()

{
 lblMessage.Text =
 "The application installed and launched. You can close this page.";
}

public void DisplayFailed()
{
 lblMessage.Text = "The application failed to install.";
 cmdInstall.IsEnabled = true;

}

In this example, the application displays some text in the first, browser-based application instance,
which informs users that they can now close the browser window (see Figure 18-6). To be fancier, you
could use a bit of JavaScript and the browser-interaction features described in Chapter 17 to forcibly
close the browser window.

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

645

Figure 18-6. Using the browser-based application for installation

Although Silverlight notifies you when the installation process is completed (successfully or
unsuccessfully), it doesn’t fire the InstallStateChanged even if the application is uninstalled, as described
in the next section.

Removing and Updating an Application
Now that you’ve explored the installation process of an out-of-browser application in detail, it’s time to
ask about two other common tasks for installed applications: updates and removal.

The removal or uninstallation process is easy: the user right-clicks the running application (either in
a browser or in a stand-alone window) and chooses “Remove this application.” A confirmation dialog
box appears; if the user clicks OK, the application is quickly uninstalled, and its shortcuts are removed.
All removals must be initiated by the user, because there is no corresponding Application class method.

Application updates are more interesting. Silverlight has the built-in ability to check for an updated
version of your application. In fact, it requires just a single line of code that calls the
Application.CheckAndDownloadUpdateAsync() method. This method launches an asynchronous
process that checks the web server to see whether a newer XAP file is available. (That’s a XAP file with a
more recent file date. The actual version number that you used when you compiled the application has
no effect.)

Here’s an example that checks for updates when the application starts:

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

646

private void Application_Startup(object sender, StartupEventArgs e)

{
 if (Application.Current.IsRunningOutOfBrowser)
 {

 // Check for updates.
 Application.Current.CheckAndDownloadUpdateCompleted +=
 Application_CheckAndDownloadUpdateCompleted;
 Application.Current.CheckAndDownloadUpdateAsync();

 this.RootVisual = new MainPage();
 }
 else
 {
 this.RootVisual = new InstallPage();
 }

}

 Note Although Microsoft recommends that you call CheckAndDownloadUpdateAsync() in response to a user-
initiated action (like clicking an Update button), it doesn’t enforce this rule, and you’re free to check for updates on
application startup.

If a network connection is present, the web server can be contacted, and an updated XAP file is
available, the application downloads it automatically and then fires the Application.
CheckAndDownloadUpdateCompleted event.

For simplicity’s sake, application updates are mandatory once you call the
CheckAndDownloadUpdateAsync() method. The user has no way to decline an update, and your
application has no way to check whether an update is present without downloading and installing it.
However, the update doesn’t kick in until the application is restarted.

If you want the user to switch to the new version immediately, you can handle the
CheckAndDownloadUpdateCompleted event to display an informative message:

private void Application_CheckAndDownloadUpdateCompleted(object sender,

 CheckAndDownloadUpdateCompletedEventArgs e)
{
 if (e.UpdateAvailable)
 {
 MessageBox.Show("A new version has been installed. " +
 "Please restart the application.");
 // (You could add code here to call a custom method in MainPage
 // that disables the user interface.)
 }
 else if (e.Error != null)
 {

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

647

 if (e.Error is PlatformNotSupportedException)
 {
 MessageBox.Show("An application update is available, " +
 "but it requires a new version of Silverlight. " +
 "Visit http://silverlight.net to upgrade.");
 }
 else
 {
 MessageBox.Show("An application update is available, " +
 "but it cannot be installed. Please remove the current version " +
 "before installing the new version.");
 }
 }

}

To try the application update feature, you’ll need to create an ASP.NET test website (as described in
Chapter 1). That’s because Silverlight only supports downloading from a web location, not the file
system. However, there’s still a catch. As you know, Visual Studio chooses a random port number when
it starts the test web server. If you close and restart Visual Studio, it will pick a new port number for its
test web server, but any previously installed out-of-browser applications will continue using the old port
number to check for updates. Their attempts will fail silently, and your application won’t be updated
until you manually remove and reinstall it. To avoid this problem altogether, you can deploy your
Silverlight application to an IIS test server on your computer or the local network.

Silent Installation
There’s one other, less traveled, road to installing an out-of-browser application. Using the
sllauncher.exe tool, you can install the application automatically and silently on a Windows computer,
using the command line. This functionality is primarily useful if you want to install a Silverlight
application through a batch file, from a setup CD, or as some sort of automated installation sequence.
(In all these cases, it’s also worth considering if a full-fledged WPF application would suit the problem
better than a Silverlight application.)

As you learned earlier, sllauncher.exe is part of the Silverlight runtime and the tool that’s used to
launch out-of-browser applications. To use it install a Silverlight application, the destination computer
must already have an installed copy of Silverlight 4. Assuming this detail is in place, you can use a
command like this to install your application:

"%ProgramFiles%\Microsoft Silverlight\sllauncher.exe" /install:"MyApplication.xap"

You run this command from the folder where your XAP file is placed (for example, a setup CD).
This line installs the application for the first time, with no support for updating. It’s more common

to add the /origin parameter (to specify the server the application will use for updates when you call the
Application.CheckAndDownloadUpdateAsync() method), the /overwrite parameter (to ensure that the
application installs over any old, already installed versions of the same application), and the /shortcut
parameter (to explicitly specify whether you want a desktop shortcut, a Start menu shortcut, or both).

"%ProgramFiles%\Microsoft Silverlight\sllauncher.exe" /install:"MyApplication.xap"
 /origin:http://www.mysite.net/MyApplication/MyApplication.xap /overwrite
 /shortcut:desktop+startmenu

http://silverlight.net
http://www.mysite.net/MyApplication/MyApplication.xap

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

648

 Tip It’s important to use the variable %ProgramFiles% instead of hard-coding the Program Files directory,
because this directory varies (it’s typically c:\Program Files\ on a 32-bit operating system and c:\Program Files
(x86)\ on a 64-bit operating system).

Out-of-Browser Application Features
Although an out-of-browser application looks superficially different from an ordinary Silverlight
application, what happens inside the stand-alone window is virtually the same. However, there are
exceptions, and in this section you’ll learn about the three that apply to all out-of-browser applications,
regardless of their trust level. First, you’ll see how the WebBrowser control allows you to embed HTML
content inside your Silverlight application. Next, you’ll see learn how to display notifications in separate
pop-up windows. Finally, you’ll consider how you can interact with the main application window to
change its size, position, or state.

The WebBrowser Control
Ordinary Silverlight applications can use Silverlight’s browser integration features to interact with the
HTML and JavaScript of the hosting page. As you learned in Chapter 17, that means they can change
HTML content and trigger JavaScript functions. None of this is possible with an out-of-browser
application, because it doesn’t have a host web page that you can configure.

To make up for this potential shortcoming, out-of-browser applications can use the WebBrowser
control, which hosts HTML content (see Figure 18-7). However, just as the browser interaction features
are limited to in-browser applications, the WebBrowser control is limited to out-of-browser
applications. If you use the WebBrowser in an ordinary Silverlight application, you’ll get a mostly blank
rectangle with a message stating that the WebBrowser is not enabled. (The only exception is the very rare
species of applications called in-browser elevated-trust applications, which are new to Silverlight 5 and
described later in this chapter. They also allow the WebBrowser control.)

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

649

Figure 18-7. The WebBrowser in action

Figure 18-7 combines a TextBox, Button, and WebBrowser control in a Grid. Here’s the markup:

<Grid x:Name="LayoutRoot" Background="White">

 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition Width="Auto"></ColumnDefinition>
 </Grid.ColumnDefinitions>

 <TextBox x:Name="txtUrl" Margin="5,5,1,5"

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

650

 Text="http://www.prosetech.com"></TextBox>
 <Button Grid.Column="1" Click="cmdGo_Click" Content="Go"
 Margin="1,5,5,5"></Button>
 <Border Grid.Row="1" Grid.ColumnSpan="2" Margin="5"
 BorderBrush="Black" BorderThickness="1">

 <WebBrowser x:Name="browser"></WebBrowser>

 </Border>

</Grid>

The WebBrowser provides an extremely simple programming model, with just a handful of
members. The following sections show you how it works.

Showing HTML Content
When using the WebBrowser, you can specify the content in three ways.

The most direct approach is to call the NavigateToString() method and pass in a string with the
HTML content you want to show. This allows you to use the WebBrowser to show static content you
have on hand or content you’ve grabbed from a web service. Usually, you’ll supply a complete HTML
document, but an HTML snippet like this works just as well:

browser.NavigateToString("<h1>Welcome to the WebBrowser Test</h1>");

Your second approach is to call the Navigate() method and pass in a fully qualified or relative URI
that points to the content you want to show. For example, this code reacts to a button click and directs
the user to the URL that was typed in the text box:

private void cmdGo_Click(object sender, RoutedEventArgs e)

{
 try
 {
 browser.Navigate(new Uri(txtUrl.Text));
 }
 catch
 {
 // Possible errors include a UriFormatException (if the text can't be
 // converted to a valid URI for the Uri class) and a SecurityException
 // (if the URL uses any scheme other than http://, including ftp://,
 // file://, and https://).
 }

}

The third possible approach is to set the Source property of the WebBrowser to a fully qualified or
relative URI. This is effectively the same as calling the Navigate() method.

browser.Source = new Uri(txtUrl.Text));

You can’t use the Navigate() method or the Source property with an application URI. In other words,
it’s not possible for the WebBrowser to load an HTML file that’s and embedded in your XAP file (unless
you manually access that resource, load it into a string, and call the NavigateToString() method).

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

651

 Note To test a Silverlight application that loads web pages into the WebBrowser control, you must include an
ASP.NET website in your solution. This shouldn’t come as a surprise, because this is a requirement for many of
Silverlight’s web-based features, including web services and networking.

The WebBrowser has some inevitable limitations. Unlike the HTML interaction features described
in Chapter 17, the WebBrowser doesn’t expose the HTML document as a collection of HtmlElement
objects, so there’s no way to programmatically explore its structure. However, you can grab the
complete HTML document as a string at any time by calling the WebBrowser.SaveToString() method.

The WebBrowserBrush
The WebBrowser doesn’t integrate with the Silverlight rendering system. For example, you can’t apply
pixel shader effects and transforms to change the appearance of a web page. However, Silverlight does
provide a crafty workaround for developers who truly need this ability. You can display the visual
content from a WebBrowser window on another element (for example, a Rectangle) by painting it with
the WebBrowserBrush. Consider this example, which places both a WebBrowser and Rectangle in the
same cell of a Grid, with the Rectangle superimposed on top but showing the content from the
WebBrowser underneath:

<Grid>

 <WebBrowser x:Name="browser" Source="Hello.html" Height="150" Width="150" />
 <Rectangle>
 <Rectangle.Fill>
 <WebBrowserBrush SourceName="browser" />
 </Rectangle.Fill>
 </Rectangle>

</Grid>

This is essentially the same technique as the one you used to paint video content with the
VideoBrush in Chapter 12. The only limitation is that the copy you paint won’t be user-interactive. For
example, if you paint a Rectangle with a WebBrowserBrush, the user can’t scroll the page or click a link.

For this reason, you’ll probably use the WebBrowserBrush briefly, to apply specific effects. For
example, you could create an animation that tweaks a rotate transform and scale transform to make a
Rectangle that’s painted with the WebBrowserBrush “pop” onto the screen. Once the animation
finishes, you would hide the Rectangle and show the real WebBrowser with the source content.

Interacting with JavaScript Code
Although it’s not terribly common, you can enable basic interaction between your Silverlight application
and JavaScript code using the WebBrowser control. To invoke a JavaScript method in the currently
loaded HTML document, you use the InvokeScript() method, as shown here:

browser.InvokeScript("MyJavaScriptFunction");

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

652

The InvokeScript() accepts an optional array of string values as a second parameter, which it will
pass to the function as arguments. It also provides the return value from the JavaScript function as its
own return value:

object result = browser.InvokeScript("AddTwoNumbers", new string[] { "1", "2" });

To react to a JavaScript method, you can handle the WebBrowser.ScriptNotify event. This event fires
when JavaScript code calls window.external.notify. For example, if you use this statement in a JavaScript
block:

window.external.notify("This is a notification from JavaScript")

you can retrieve the string in an event handler like this:

private void Browser_ScriptNotify(object sender, NotifyEventArgs e)

{
 MessageBox.Show("Received message: " + e.Value);

}

However, the WebBrowser control doesn’t support the scriptable type system that’s described in
Chapter 17 for JavaScript-to-Silverlight interaction.

Notification Windows
A notification window is one that pops up in the lower-right corner of the screen, similar to the ones that
Outlook uses to notify users about incoming e-mails or Messenger uses to alert the user to a new instant
message. (On the Macintosh, notification windows appear at the top of the screen rather than the
bottom.)

In Silverlight, a basic notification window is a completely unremarkable blank box, 400 pixels wide
and 100 pixels tall. You can resize it to have smaller dimensions but not larger ones. To create a
notification window, you create an instance of the NotificationWindow class. To place a notification into
the notification window, you simply set its Content property.

If you want your notification window to contain something more than a plain TextBlock, you should
create a custom user control for its content. You can then create an instance of that user control and use
it to set the NotificationWindow.Content property. The following example uses a two-row Grid for the
notification window content. At the top of the Grid is a title bar. Underneath is a TextBlock (for the
application-supplied message) that’s placed over a multicolor gradient fill:

<UserControl x:Class="ElevatedTrust.CustomNotification" ...>

 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>

 <Border Background="LightGray" Height="20">
 <TextBlock Margin="3" FontSize="10"
 Text="MyApplication Notification"></TextBlock>
 </Border>

 <Border Grid.Row="1">

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

653

 <Border.Background>
 <LinearGradientBrush>
 ...
 </LinearGradientBrush>
 </Border.Background>
 <TextBlock x:Name="lblMessage" Margin="10" FontWeight="Bold" FontSize="16"
 Foreground="White" TextWrapping="Wrap" HorizontalAlignment="Center"
 VerticalAlignment="Center">Notification goes here.</TextBlock>
 </Border>
 </Grid>

</UserControl>

The code that for the CustomNotification user control exposes a Message property that sets the
TextBlock:

public string Message

{
 get
 {
 return lblMessage.Text;
 }
 set
 {
 lblMessage.Text = value;
 }

}

To show the notification window, you simply need to create an instance of CustomNotification,
place it in an instance of the framework-supplied NotificationWindow class, and call
NotificationWindow.Show() to display your notification:

if (Application.Current.IsRunningOutOfBrowser)

{
 CustomNotification notification = new CustomNotification();
 notification.Message = "You have just been notified. The time is " +
 DateTime.Now.ToLongTimeString() + ".";

 NotificationWindow window = new NotificationWindow();
 window.Content = notification;

 // Specify the number of milliseconds before the window closes.
 // This example sets 5 seconds.
 window.Show(5000);
}
else
{
 // Notification windows are not available.
 // You can implement a different notification strategy here (for example,
 // change the main window, show a message box, or show a popup window).

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

654

}

Figure 18-8 shows the notification message.

Figure 18-8. A custom notification

The user can’t move a notification window. However, you could add a button inside the notification
window that calls NotificationWindow.Close(), which would allow the user to close the notification
before it times out.

 Tip This example assumes you want to use the standard notification window width (400 by 100 pixels). If you
want to resize the window smaller, you should hard-code a Width and Height in the custom user control. Then,
when you create the NotificationWindow, take the Width and Height of the custom user control and assign it to the
NotificationWindow. This way, you get a true sense of what your notification window looks like when you edit the
user control, and you can change the size whenever you want by modifying just one file (the user control XAML).

Notification windows aren’t designed with any sort of queuing mechanism. If you create a second
instance of NotifyWindow and call its Show() method while the first notification window is still visible,
nothing will happen (and the new notification message will be lost). A better approach is to store the
NotifyWindow you want to use as a class-level field in your code:

private NotificationWindow window = new NotificationWindow();

Then, you can explicitly call Close() to hide the first notification just before you call Show() to show
the second. Best of all, you don’t even need to check the current state of the notification window,
because calling Close() on an already closed window has no effect.

CustomNotification notification = new CustomNotification();

notification.Message = "You have just been notified. The time is " +
 DateTime.Now.ToLongTimeString() + ".";
window.Content = notification;

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

655

window.Close();
window.Show(5000);

In some applications, you may expect to have multiple notifications occurring in close proximity. In
this case, the Close() and Show() approach may not be suitable, because it may hide a notification before
the user has time to read it. To avoid this problem, you can implement a queuing system. The basic idea
is to maintain an application-wide Queue<T> collection of notification messages and to handle the
NotificationWindow.Closed event. Every time the Closed event occurs, you can respond by dequeuing
the next message and calling Show() to show the notification window again. Tim Heuer shows one
possible implementation at http://tinyurl.com/yfefkud.

Controlling the Main Window
An ordinary Silverlight application runs inside a web browser window, and the only way to interact with
that window is through JavaScript. But in an out-of-browser application, you get a stand-alone window,
which you can interact with as a Window object through the static Application.MainWindow property.

The Window class provides a small set of properties and methods, as listed in Table 18-2. You can
read these properties at any time, and you can change most of them in response to user-initiated events
and in an event handler for the Application.Startup event (the exception being the Top and Left
properties, which must be set in the Application.Startup event handler).

Table 18-2. Properties of the Window Class

Properties Description

Top and Left Top is the number of pixels between the top edge of the window and
the top edge of the screen. Left is the number of pixels between the left
edge of the window and the left edge of the screen. You can only set
these properties in an event handler for the Application.Startup event
and only if you have specified initial startup coordinates in the Out-of-
Browser Settings window.

Height and Width Provides the height and width of the main window, in pixels. You can
only set these properties in an event handler for the Application.Startup
event or in response to a user-initiated event.

WindowState Indicates whether the window is Normal, Minimized, or Maximized, as
a value from the WindowState enumeration. You can only set this
property in an event handler for the Application.Startup event or in
response to a user-initiated event.

TopMost If true, the window is “pinned” so it appears above all other application
windows. You can only set this property in an event handler for the
Application.Startup event or in response to a user-initiated event.

The best way to set the initial position and size of the main window is using the Out-of-Browser

Settings window. But the Window properties are useful if you need to change the size dynamically at
runtime—for example, if you need to accommodate changing amounts of content.

http://tinyurl.com/yfefkud

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

656

The Windows properties also allow you to create an application that remembers its window
position. To do this, you simply save the relevant details when the application shuts down and restore
them when it starts up. Here’s an example that performs this feat using isolated storage:

private void Application_Startup(object sender, StartupEventArgs e)

{
 if (Application.Current.IsRunningOutOfBrowser)
 {
 // (You can check for updates here, if you want.)

 // Restore the window state.
 try
 {
 IsolatedStorageFile store =
 IsolatedStorageFile.GetUserStoreForApplication();

 if (store.FileExists("window.Settings"))
 {
 using (IsolatedStorageFileStream fs =
 store.OpenFile("window.Settings", FileMode.Open))
 {
 BinaryReader r = new BinaryReader(fs);
 Application.Current.MainWindow.Top = r.ReadDouble();
 Application.Current.MainWindow.Left = r.ReadDouble();
 Application.Current.MainWindow.Width = r.ReadDouble();
 Application.Current.MainWindow.Height = r.ReadDouble();
 r.Close();
 }
 }
 }
 catch (Exception err)
 {
 // Can't restore the window details. No need to report the error.
 }
 }
 this.RootVisual = new MainPage();
}

private void Application_Exit(object sender, EventArgs e)
{
 if (Application.Current.IsRunningOutOfBrowser)
 {
 // Store window state.
 try
 {
 IsolatedStorageFile store =
 IsolatedStorageFile.GetUserStoreForApplication();

 using (IsolatedStorageFileStream fs =
 store.CreateFile("window.Settings"))
 {

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

657

 BinaryWriter w = new BinaryWriter(fs);
 w.Write(Application.Current.MainWindow.Top);
 w.Write(Application.Current.MainWindow.Left);
 w.Write(Application.Current.MainWindow.Width);
 w.Write(Application.Current.MainWindow.Height);
 w.Close();
 }
 }
 catch (Exception err)
 {
 // Can't save the window details. No need to report the error.
 }
 }

}

Remember, to set the Top and Left properties of the main window, you must have checked the “Set
window location manually” setting in the Out-of-Browser Settings window and provided a fixed default
value for the Top and Left settings. Unfortunately, the approach used here isn’t perfect, because you’ll
see the window appear briefly in the default position before it is relocated to its previous position and
restored to its previous size.

The Window class also provides a small set of methods. The most useful of these is Close(), which
closes the main window (in response to a user-initiated action). There are a few more methods that are
designed for elevated-trust applications, like DragMove(), DragResize(), and Activate(). These are
particularly useful when creating a customized window frame, and they’re discussed later in the
“Window Customization” section.

Elevated Trust
An elevated-trust application is a special type of out-of-browser application—one that has an impressive
set of additional privileges. These privileges don’t match the capabilities of a traditional desktop
application, but they do allow a range of potentially dangerous actions, from activating third-party
programs to directly accessing the file system. For this reason, elevated-trust applications make the most
sense in controlled environments, such as a corporate network where users already know the
application and trust the publisher. In other scenarios, users may be reluctant to grant the additional
privileges that an elevated-trust application needs, and they may choose not to install it at all. (System
administrators can also configure computers so that users are prevented from installing or running out-
of-browser applications that require elevated trust.)

 Note Before you begin developing a Silverlight application that requires elevated trust, consider whether a full-
fledged Windows Presentation Foundation (WPF) application will better suit your needs. WPF applications are
desktop applications that support the full .NET Framework. Like Silverlight, WPF applications can be installed from
the Web, but unlike Silverlight, WPF applications are designed exclusively for the Windows operating system.

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

658

Installing an Elevated-Trust Application
To indicate that an application requires elevated trust, you simply need to open the Out-of-Browser
Settings window (as described at the beginning of this chapter) and check the “Require elevated trust”
setting.

Now, when the installation process starts (either through the right-click Silverlight menu or through
a call to the Application.Install() method), the browser presents a more intimidating security warning,
like the one shown for the application named ElevatedTrust in Figure 18-9.

Figure 18-9. Installing an elevated-trust application

The situation improves a bit if you’ve signed the application with an X.509 certificate from a
certificate authority (CA). In this case, the warning includes the publisher name and the exclamation
icon is replaced with a less threatening question mark, as shown in Figure 18-10.

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

659

Figure 18-10. Installing a signed elevated-trust application

USING A TEST CERTIFICATE

You’ll sign a professional Silverlight application with a certificate from a known certificate authority (such
as VeriSign). If you sign your application with a test certificate that you’ve created yourself, users won’t get
the friendly warning shown in Figure 18-10. The problem here is that when you create a test certificate,
you essentially assume the role of the certificate authority. And although other people’s computers are
already configured to trust well-known certificate authorities, they aren’t be configured to trust you. That
means that if you use a test certificate, there won’t be a chain of trust to vouch for your identity as the
application publisher.

However, it’s sometimes worth signing an application with a test certificate for the purposes of testing. For
example, you might do this if you want to test an elevated-trust application on a test web server in a
company network. In this situation, you won’t be able to perform automatic updates unless you sign your
application first.

To create a test certificate, follow these steps:

1. Double-click the Properties node in the Solution Explorer, and click the Signing
tab.

2. Place a check mark next to the option named Sign the XAP File.

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

660

3. If you’ve already created a certificate, you can select it by clicking the Select From
Store or Select From File button. Otherwise, click the Create Test Certificate button
to create a new certificate. Visual Studio will ask you for a password to use to
protect the certificate, and it will then add the certificate as a .pfx file in your
project. From now on, when you compile your application, Visual Studio will sign it
automatically.

4. To establish the chain of trust, you must install your test certificate in the
certificate store on your computer. To do this, browse to the .pfx certificate file in
Windows Explorer and double-click it. Or, you can use Visual Studio. on the
Signing tab of the project properties, click More Details, and then click Install
Certificate. Either way, this starts the Certificate Import Wizard.

5. As you walk through the Certificate Import Wizard, you’ll need to supply two
details: the certificate password and the certificate store where the test certificate
should be placed. To ensure your application is trusted (so that you get the nicer
installation messages and the automatic update feature), you must place your
certificate in the Trusted Root Certification Authorities store.

When you’re finished testing your application, it’s a good idea to remove the certificate from the certificate
store on your computer, simply to reduce the possibility of an attack that exploits this opening.

There’s another reason to prefer signed applications when using elevated trust. Silverlight does not

allow automatic updates with unsigned applications that require elevated trust. In other words, calling
Application.CheckAndDownloadUpdateAsync() has no effect. This restriction is designed to prevent an
innocent application from being replaced with a more dangerous successor.

The only way to update an unsigned, elevated-trust application is to manually remove it and then
reinstall it. But if your application is signed, the Application.CheckAndDownloadUpdateAsync() method
continues to work in its normal way. That means Silverlight will check for a new version of your
application and install it automatically—provided this new version is signed with the same certificate as
the original application.

 Note There’s one exception to Silverlight’s automatic update restrictions. If your application is configured to
download its updates from the local computer (in other words, from the network address 127.0.0.1), Silverlight
allows automatic updates, even if the application is not signed. This behavior is designed to make testing easier. It
means you can run an elevated-trust application from inside Visual Studio and take advantage of automatic
updating in the same way as you would with a lower-trust application.

Once the user chooses to install the application, a shortcut is created, and the application is started,
just as with any other Silverlight application. From this point on, the user will not receive any further
security prompts. However, when the application is launched, it will automatically run with elevated
trust.

From a threat-modeling point of view, you should assume that an elevated-trust application has the
same privileges as the user who runs it. However, an elevated-trust application will not receive

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

661

administrator privileges in Windows, even if the current user is an administrator, thanks to the
permission elevation feature in the Windows operating system.

 Note An application that requires elevated trust cannot be installed as a normal, low-trust application. If the
user chooses not to continue with the installation because of the security warning, the application will not be
installed. However, an elevated-trust application can still be run inside the browser, unless you take steps to
prevent it (such as checking the install state and disabling the application user interface, as demonstrated earlier
in this chapter). When running in the browser, the application does not receive elevated trust, and it will not be
able to use any of the special features described in this section.

The Abilities of an Elevated-Trust Application
So, what can a trusted application do that an ordinary Silverlight application can’t? Here’s a list of
tweaks and features that are covered elsewhere in the book:

File system access: An elevated-trust application can access any part of the file system that the
current user can access. This is particularly useful if you need to read and write files in the current
user’s document folders, but you could also use it to add files to the desktop or build your own
folder structure. For an example of this feature in action, see Chapter 22.

Unrestricted full-screen support: Elevated-trust applications do not show the “Press ESC to exit full-
screen mode” message when they switch into full-screen mode (nor does the Escape key return the
application to normal mode, unless you explicitly add this functionality). More significantly, full-
screen applications that have elevated trust can continue to receive keyboard input.

No cross-domain access restrictions: An elevated-trust application is allowed to download content
from any website, call a web service on any website, and open a socket connection to any server,
just like an ordinary desktop application.

Fewer user-consent restrictions: There are a host of situations where an ordinary Silverlight
application must explicitly ask for user consent, such as when accessing the clipboard, storing files
in isolated storage, configuring a full-screen application to stay in full-screen mode when it loses
focus, and so on. These restrictions are removed in an elevated-trust application, except when
accessing audio and video capture devices. Similarly, there are a number of actions that can be
performed only in response to a user-initiated action, such as switching to full-screen mode, using
the clipboard, manipulating the main window, and so on. In an elevated-trust application, these
tasks can be performed at any time.
And here are a few more features that are explored in this chapter:

Window customization: If you don’t like the standard window border and controls that are provided
by the operating system, you can remove them from your elevated-trust application and then draw
your own custom chrome with the help of Silverlight’s standard elements.

Child windows: Elevated-trust applications can create secondary windows at will.

COM interop: An elevated-trust application can make use of the vast libraries of functionality that
are exposed on Windows computers through COM. For example, you can interact with Outlook,

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

662

Office applications, and built-in components of the Windows operating system, such as Windows
Script Host and Windows Management Instrumentation (WMI).

P/Invoke: Elevated-trust applications can use P/Invoke (Platform Invocation) to execute native code
DLLs on Windows computers and access the Windows API.

 Tip Before you attempt to use any of these features, remember to check the
Application.HasElevatedPermissions property. If it’s true, you can go full-speed ahead. If not, you need to either
disable the application (if you don’t want to allow running in partial trust) or provide alternate code.

Window Customization
An ordinary out-of-browser application runs in the standard window frame provided by the operating
system. It has the familiar buttons (which you can use to minimize, maximize, and close the window),
and its color, shading, and transparency are controlled by the operating system. Although this works
perfectly well, it might not suit your design. If you’re creating a slick, highly graphical application, you
might prefer to pair your visuals with a custom window frame and hand-crafted window buttons.

There are two steps to customizing the window frame. The first step is to completely remove the
standard window frame. To do this, double-click the Properties node in the Solution Explorer. Click the
Silverlight tab and then the Out-of-Browser Settings button, and choose an option from the Window
Style list. The first option, Default, gives you the standard window frame. The second option, No Border,
removes the standard window frame and leaves a floating rectangle with your user control content. The
third option, Borderless Round Corners, removes the standard window frame and gently rounds the
corners of the application window. The difference between these last two options is purely cosmetic—
either way, the standard window frame is taken away. Figure 18-11 shows a borderless window with a
light yellow background, superimposed over a Notepad window.

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

663

Figure 18-11. A Silverlight window with no frame

The second step is to draw the frame you want and add basic controls for closing the window,
dragging the window, and changing the window state. Because of cross-platform considerations,
Silverlight doesn’t give you any way to modify the standard operating system window frame. Instead,
you must draw the window frame yourself, using the appropriate image content or Silverlight elements.
For example, you could place the main content in a single-cell Grid, superimposed over another
Silverlight element, like a Rectangle or an Image. Or, you could wrap the root user control in a Border
element, like this:

<UserControl x:Class="ElevatedTrust.CustomWindow" ... >
 <Border x:Name="windowFrame" BorderBrush="DarkSlateBlue" BorderThickness="5"
 CornerRadius="2" Margin="0,0,1,1">

 <Grid x:Name="LayoutRoot" Background="LightSteelBlue" Margin="5">
 ...
 </Grid>

 </Border>
</UserControl>

Here, the application is using the Borderless Round Corners option. The 1-pixel margin on the right
and bottom edges ensures the frame appears in the correct position, and the CornerRadius of 2 lines up
with rounded corners of the window region. Figure 18-12 shows the result.

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

664

Figure 18-12. A frameless window that uses the Border element

 Note Silverlight does not support shaped or irregular windows. Thus, when you draw the window frame, you
must limit yourself to the rectangle (or rounded rectangle) that defines the main window. Essentially, Silverlight
gives you a rectangle to work with, and you simply paint it with the appropriate window frame and content.
Similarly, you can’t create transparent or partially transparent regions that allow other application windows to
show through.

Although the added border in Figure 18-12 looks a bit better, there’s still a serious problem. Without
the frame that’s provided by the operating system, the user has no way to resize the window, move it to a
different position, minimize it, maximize it, or close it. In fact, it’s up to you to build this functionality
into your customized main window. Fortunately, the members of the Window class make this work fairly
easy.

The first step is to create a title bar. The title bar has three purposes: it holds a text caption, it
provides a place that the user can click and drag to move the window, and it holds the minimize,
maximize, and close buttons (usually at the far right). Here’s the markup you could use to create a basic

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

665

title bar. The shapes in the minimize, maximize, and close buttons are drawn using Path and Rectangle
elements.

<Border x:Name="titleBar" Background="LightSteelBlue"

 MouseLeftButtonDown="titleBar_MouseLeftButtonDown">
 <Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition></ColumnDefinition>
 <ColumnDefinition Width="Auto"></ColumnDefinition>
 <ColumnDefinition Width="Auto"></ColumnDefinition>
 <ColumnDefinition Width="Auto"></ColumnDefinition>
 </Grid.ColumnDefinitions>

 <TextBlock Margin="5">Title Bar</TextBlock>

 <Button Grid.Column="1" x:Name="cmdMinimize" Width="24"
 Click="cmdMinimize_Click">
 <Path Stroke="Black" StrokeThickness="4" Data="M 1,10 L 13,10" />
 </Button>

 <Button Grid.Column="2" x:Name="cmdMaximize" Width="24"
 Click="cmdMaximize_Click">
 <Rectangle Stroke="Black" StrokeThickness="3" Height="12" Width="12" />
 </Button>

 <Button Grid.Column="3" x:Name="cmdClose" Width="24" Click="cmdClose_Click">
 <Path Stroke="Black" StrokeThickness="3" Data="M 2,2 L 12,12 M 12,2 L 2,12" />
 </Button>
 </Grid>

</Border>

You can then place this title bar in a Grid with two rows. The first row holds the title bar, and the
second row holds the rest of the window content. The entire Grid fits into the Border that outlines the
window. Figure 18-13 shows the final result.

Figure 18-13. A window with a custom title bar

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

666

Of course, to make this window do what it’s supposed to do, you need to add code. Changing the
window state and closing the window is easy, thanks to the WindowState property and the Close()
method. Surprisingly, it’s just as easy to allow the user to drag the window. All you need to do is react
when the left mouse button is pressed over the title bar and call the Window.DragMove() method. From
that point on, the window will move in tandem with the mouse, until the user releases the mouse
button.

Here’s the complete code:

private void titleBar_MouseLeftButtonDown(object sender,

 MouseButtonEventArgs e)
{
 Application.Current.MainWindow.DragMove();
}

private void cmdMinimize_Click(object sender, RoutedEventArgs e)
{
 Application.Current.MainWindow.WindowState = WindowState.Minimized;
}

private void cmdMaximize_Click(object sender, RoutedEventArgs e)
{
 if (Application.Current.MainWindow.WindowState == WindowState.Normal)
 {
 Application.Current.MainWindow.WindowState = WindowState.Maximized;
 }
 else
 {
 Application.Current.MainWindow.WindowState = WindowState.Normal;
 }
}

private void cmdClose_Click(object sender, RoutedEventArgs e)
{
 Application.Current.MainWindow.Close();

}

 Tip In an elevated-trust application, you can use the Close() method without restriction. That means you can
call it without waiting for a user-initiated action to occur. This allows you to forcibly close the window after
detecting an update in the event handler for the CheckAndDownloadUpdateCompleted event. If you choose to use
this approach, make sure you show a message explaining that an update has occurred and the application must
be restarted before you call Close().

There’s still one missing feature: a way to resize the window by clicking and dragging the edge of the
window border. The easiest way to implement this feature is to wrap the entire window in a Grid that

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

667

uses invisible Rectangle elements. Altogether, you’ll need eight Rectangle elements—one on each edge
and one at each corner. Each one is 5 pixels wide (or high). Figure 18-14 shows where each rectangle is
placed around the cells of the Grid with three rows and three columns.

Figure 18-14. Using invisible resize rectangles

Here’s the Grid that defines this structure, with the invisible rectangles that allow resizing:

<Border x:Name="windowFrame" ...>

 <Grid x:Name="resizeContainer">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="5"></ColumnDefinition>
 <ColumnDefinition Width="*"></ColumnDefinition>
 <ColumnDefinition Width="5"></ColumnDefinition>
 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

668

 <RowDefinition Height="5"></RowDefinition>
 <RowDefinition Height="*"></RowDefinition>
 <RowDefinition Height="5"></RowDefinition>
 </Grid.RowDefinitions>

 <Rectangle x:Name="rect_TopLeftCorner" Grid.Row="0" Grid.Column="0"
 Cursor="SizeNWSE" Fill="Transparent" MouseLeftButtonDown="rect_Resize" />
 <Rectangle x:Name="rect_TopEdge" Grid.Row="0" Grid.Column="1"
 Cursor="SizeNS" Fill="Transparent" MouseLeftButtonDown="rect_Resize" />
 <Rectangle x:Name="rect_TopRightCorner" Grid.Row="0" Grid.Column="2"
 Cursor="SizeNESW" Fill="Transparent" MouseLeftButtonDown="rect_Resize" />
 <Rectangle x:Name="rect_LeftEdge" Grid.Row="1" Grid.Column="0"
 Cursor="SizeWE" Fill="Transparent" MouseLeftButtonDown="rect_Resize" />
 <Rectangle x:Name="rect_RightEdge" Grid.Row="1" Grid.Column="2"
 Cursor="SizeWE" Fill="Transparent" MouseLeftButtonDown="rect_Resize" />
 <Rectangle x:Name="rect_BottomLeftCorner" Grid.Row="2" Grid.Column="0"
 Cursor="SizeNESW" Fill="Transparent" MouseLeftButtonDown="rect_Resize" />
 <Rectangle x:Name="rect_BottomEdge" Grid.Row="2" Grid.Column="1"
 Cursor="SizeNS" Fill="Transparent" MouseLeftButtonDown="rect_Resize" />
 <Rectangle x:Name="rect_BottomRightCorner" Grid.Row="2" Grid.Column="2"
 Cursor="SizeNWSE" Fill="Transparent" MouseLeftButtonDown="rect_Resize" />

 <Grid Grid.Row="1" Grid.Column="1">
 <!-- The rest of the content goes here, including the title bar. -->
 </Grid>
 </Grid>

</Border>

Each Rectangle has the job of showing the appropriate resize mouse cursor. When clicked with the
left mouse button, the Rectangle calls Window.DragResize() with the correct argument to initiate the
resize operation:

private void rect_Resize(object sender, MouseButtonEventArgs e)

{
 if (sender == rect_TopLeftCorner)
 {
 Application.Current.MainWindow.DragResize(WindowResizeEdge.TopLeft);
 }
 else if (sender == rect_TopEdge)
 {
 Application.Current.MainWindow.DragResize(WindowResizeEdge.Top);
 }
 else if (sender == rect_TopRightCorner)
 {
 Application.Current.MainWindow.DragResize(WindowResizeEdge.TopRight);
 }
 else if (sender == rect_LeftEdge)
 {
 Application.Current.MainWindow.DragResize(WindowResizeEdge.Left);
 }
 else if (sender == rect_RightEdge)

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

669

 {
 Application.Current.MainWindow.DragResize(WindowResizeEdge.Right);
 }
 else if (sender == rect_BottomLeftCorner)
 {
 Application.Current.MainWindow.DragResize(WindowResizeEdge.BottomLeft);
 }
 else if (sender == rect_BottomEdge)
 {
 Application.Current.MainWindow.DragResize(WindowResizeEdge.Bottom);
 }
 else if (sender == rect_BottomRightCorner)
 {
 Application.Current.MainWindow.DragResize(WindowResizeEdge.BottomRight);
 }

}

Much like the DragMove() method, the DragResize() method takes care of the rest, automatically
resizing the window as the user moves the mouse pointer until the mouse button is released (see Figure
18-15).

Figure 18-15. Resizing a custom window

This completes the infrastructure you need to create a respectable custom window. Once you have
these details in place (a title bar, window buttons, dragging, and resizing), you’re ready to customize the
visual appearance with images and elements to get the exact effect you want.

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

670

Child Windows
In Chapter 7, you learned how you can create the effect of a secondary window using the ChildWindow
control. However, this simply adds an overlay over your current window content to simulate a new
window. It doesn’t create a truly separate window that’s managed by the operating system. This limits
what you can do. For example, it’s not possible to create a child window that floats outside the browser
window.

If you’re developing an out-of-browser elevated-trust application, you can create a true child
window by creating an instance of the Window class. You simply set the title and content (using the Title
and Content properties) and then set the Visibility property to show the final product:

// The content of a window is any element. This example uses a Grid

// that holds a TextBlock.
Grid grid = new Grid();

// The Grid must have a white background, or no content will appear in the window.
grid.Background = new SolidColorBrush(Colors.White);

TextBlock textContent = new TextBlock();
textContent.Text = "Here's some content!";
grid.Children.Add(textContent);

// Create the window.
Window winSimple = new Window();
winSimple.Content = grid;

// Set the window size.
winSimple.Width = 300;
winSimple.Height = 100;
winSimple.Title = "Simple Window";

// Oddly, the window has no Show() method. You must set the Visibility property.

winSimple.Visibility = Visibility.Visible;

This creates the somewhat unimpressive window shown in Figure 18-16.

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

671

Figure 18-16. A free-floating secondary window

 Note One key difference between the child window effect that’s implemented with the ChildWindow control
and the real child window that’s created with the Window class is that ChildWindow is modal while Window is
modeless. This means that when you pop open a new window with the previous code, the main window remains
responsive.

You can control a few more optional details with the Window class. Use Left and Top to position it
on the screen, use WindowStyle to change or remove its border, and use WindowState to set whether it’s
minimized, maximized, or normal.

There are also a few useful events. Use Activate() to bring the window to the forefront, Close() to
remove it altogether, and DragMove() and DragResize() to power the custom chrome tricks you learned
about in the previous section. There’s also one useful event, Closing, which fires when the window is
being torn down. In many situations, you’ll want to handle this event so you know when the window
object is no longer in a valid state. That’s because a closed window object is not set to a null reference,
but attempting to use a closed window (for example, call one of its methods) will trigger an exception.

The previous example builds a window out of two elements (a TextBlock and a Grid) using code.
This is a fairly laborious approach. A far more common approach is to create a dedicated user control for
the task and then load that user control into the window’s content.

Window winStandard = new Window();

CustomChildWindow userControl = new CustomChildWindow()
winStandard.Width = userControl.Width;
winStandard.Height = userControl.Height;
winStandard.Content = userControl;

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

672

winStandard.Title = "Custom Window";

winStandard.Visibility = Visibility.Visible;

You can even create fancy windows with custom chrome by setting the WindowStyle property to
WindowStyle.None. However, there’s a catch. To call DragResize() and DragMove() to manipulate the
window, your user control needs a reference to the window object. Unfortunately, it doesn’t have a
direct way to get one, and the Application.Current.MainWindow property you used in the previous
section won’t work, because it targets the main window.

The solution is to add a custom property to your user control that encapsulates this piece of
information:

public partial class CustomChildWindow : UserControl

{
 public Window CurrentWindow {get; set;}
 ...

}

You can then set this property when you create an instance of the custom window:

Window winFancy = new Window();

winFancy.WindowStyle = WindowStyle.None;
CustomChildWindow userControl = new CustomChildWindow()

userControl.CurrentWindow = winFancy;

winStandard.Content = userControl;

...

And your user control code can use this the appropriate window object to make its magic happen:

private void titleBar_MouseLeftButtonDown(object sender,

 System.Windows.Input.MouseButtonEventArgs e)
{
 CurrentWindow.DragMove();

}

Figure 18-17 shows this more interesting result.

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

673

Figure 18-17. A child window with custom window chrome

COM
One of the most surprising features that’s granted to elevated-trust applications is the ability to create
COM objects and use them to do pretty much anything.

For those who need a history lesson, Component Object Model (COM) is the original standard for
component reuse and application integration. It’s the predecessor to .NET, a key part of past and
present versions of Windows and still a cornerstone technology for certain tasks (for example,
interacting with Office applications such as Word and Excel). Because other applications can provide
hooks into their functionality through COM libraries and because these libraries can then be used to
“drive” (or automate) the applications, this feature is sometimes called COM automation.

 Note COM is an unashamedly Windows-specific technology. Thus, this feature won’t work on non-Windows
operating systems, like Mac OS.

In the past, before the widespread adoption of .NET, developers often created their own COM
components to share and deploy functionality. However, the COM support in Silverlight is not intended
for the use of custom COM components. Although this is technically possible, deploying COM
components runs into a wide range of configuration and versioning headaches, so it’s not
recommended. Instead, the COM support is designed to give your applications a pass into preinstalled
libraries, such as those provided by the Windows operating system and other already-installed

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

674

applications (such as Microsoft Office), and those provided to access the functionality in other
components (such as scanners, cameras, and so on).

The AutomationFactory class is the entry point to Silverlight’s COM support. It’s found in the
System.Runtime.InteropServices.Automation namespace. To use Silverlight’s COM support, several
details need to be in place. Your application needs to be running out-of-browser, with elevated trust, on
a Windows computer. If all these requirements are met and COM support is available, the
AutomationFactory.IsAvailable property will return true.

Here’s an example method that checks for COM supports and shows an explanatory message if it
isn’t available:

private bool TestForComSupport()

{
 if (!Application.Current.HasElevatedPermissions)
 {
 MessageBox.Show("This feature is not available because the application "
 "does not have elevated trust.");
 }
 else if (!AutomationFactory.IsAvailable)
 {
 MessageBox.Show("This feature is not available because the operating " +
 "system does not appear to support COM.");
 }
 else
 {
 return true;
 }
 return false;

}

To create a COM object, you can call the AutomationFactory.CreateObject() method, with the full
COM type name. Here’s an example:

dynamic speech = AutomationFactory.CreateObject("Sapi.SpVoice");

To use a COM object, you need the help of the C# dynamic keyword, which uses late binding. When
you instantiate a type with the dynamic keyword, the type doesn’t need to be available (and isn’t
checked) at compile time. To get access to the dynamic keyword, you need to add a reference to the
Microsoft.CSharp.dll assembly in all assemblies that use COM interop.

To use a COM object, you need the help of late binding. When using late binding, you define a
variable that points to the COM object using the basic Object type. But here’s the trick—you can call all
the methods that the COM object supports, as though they were methods of the Object type. Here’s an
example that calls the Speak() method of the Sapi.SpVoice COM object:

There’s a drawback to Silverlight’s use of late binding with COM—it means Visual Studio can’t
provide IntelliSense for any COM object, and the C# compiler won’t catch possible errors when you
build your application. For example, it won’t notice if you attempt to use a method that the COM object
doesn’t provide. For this reason, it’s always a good idea to wrap your COM code in an exception-
handling block. This way, you can trap the errors that occur if you attempt to instantiate a COM object
that doesn’t exist or if you use it in a way that isn’t supported at runtime.

The following code puts all these details together. It starts by checking whether COM support is
available. It then creates the COM component for text-to-speech, which is included with the Windows
operating system. The result is a synthesized voice that speaks the sentence “This is a test.”

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

675

if (TestForComSupport())

{
 try
 {
 using (dynamic speech = AutomationFactory.CreateObject("Sapi.SpVoice"))
 {
 speech.Volume = 100;
 speech.Speak("This is a test");
 }
 }
 catch (Exception err)
 {
 // An exception occurs if the COM library doesn't exist, or if the
 // properties and methods you attempted to use aren't part of it.
 }

}

As this illustrates, using COM takes surprisingly little effort. The real work is finding the component
you want to use, learning its object model (which, depending on the application, may be complex and
highly idiosyncratic), and catching typos and other potential usage errors.

Here’s an example that uses a different component—the Windows Script Host, which provides
functionality for retrieving system information and environment variables, working with the registry,
and managing shortcuts. Here’s the code Windows Script Host is used to launch a completely separate
application (the Windows Calculator) using the Run() method:

using (dynamic shell = AutomationFactory.CreateObject("WScript.Shell"))

{
 shell.Run("calc.exe");

}

COM interop isn’t limited to built-in Windows components. It also works with many other well-
known applications, like the Microsoft Office applications (Word, Excel, PowerPoint, Outlook and so on).
All of these applications have complex object models with dozens of different classes.

For example, here’s a snippet that starts Word, inserts two short paragraphs of text, and then makes
the Word window visible so the user can continue working with it:

using (dynamic word = AutomationFactory.CreateObject("Word.Application"))

{
 dynamic document = word.Documents.Add();

 dynamic paragraph = document.Content.Paragraphs.Add;
 paragraph.Range.Text = "Heading 1";
 paragraph.Range.Font.Bold = true;
 paragraph.Format.SpaceAfter = 18;
 paragraph.Range.InsertParagraphAfter();

 paragraph = document.Content.Paragraphs.Add;
 paragraph.Range.Font.Bold = false;

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

676

 paragraph.Range.Text = "This is some more text";

 word.Visible = true;

}

Figure 18-18 shows the result of this code.

Figure 18-18. Interacting with Word programmatically

There’s really no limit to what a crafty use of COM interop can do. For even more mind-stretching
examples, check out Justin Angel’s blog post at
http://justinangel.net/CuttingEdgeSilverlight4ComFeatures, where he uses various COM libraries to
mimic user input, pin applications to the Windows 7 taskbar, configure applications to run
automatically at startup, connect to a camera over USB, watch the file system for changes, execute SQL
on a local database, and more. As with the previous examples, the challenge is in ferreting out the details
of the COM library you want to use, because the Silverlight side of the bargain is pure simplicity.

P/Invoke
If COM support isn’t impressive enough, you can also use Platform Invoke to call unmanaged code
libraries on Windows computers. You might take this step to call a function from the Windows API or to
call a piece of code from a legacy DLL, assuming it’s already installed on the client computer.

In most respects, Silverlight’s P/Invoke feature works just the same as it does in a .NET application.
First, you need to know the name of the function you want to call, as well as the DLL file where it’s

http://justinangel.net/CuttingEdgeSilverlight4ComFeatures

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

677

located. For example, imagine you decide to call ExitWindowsEx() from the Windows API. This function
allows you to force an immediate Windows shutdown, restart, or log off. To use this function, you must
first define it in your code with the correct method signature, like this:

static extern bool ExitWindowsEx(long uFlags, long dwReason);

Notice that this method doesn’t include the method body—in other words, the actual code that runs
when you call it. That’s because this method will actually become a link to an external function outside
your application. To set up this link, you need the help of the DllImport attribute, which is found in the
System.Runtime.InteropServices namespace. When using DllImport, you specify the name of the DLL
file that contains the function you want to call:

[DllImport("user32.dll")]
static extern bool ExitWindowsEx(long uFlags, long dwReason);

When you specify the file with DllImport, you can use a fully qualified path name. If you don’t,
Windows will search the current directory (where the Silverlight application is installed), followed by the
Windows system directory, then the Windows directory, and finally any directories that are currently set
in the Windows PATH environment variable. If you’re calling a method from the Windows API, as in this
example, you never need to specify the folder, because the DLL is always in the Windows system
directory. In this case, the ExitWindowsEx function is found in user32.dll.

 Note It might occur to you that you could choose to distribute a DLL with unmanaged code along with the
Silverlight application that calls it. However, Silverlight does not have a built-in facility for doing this. The key
problem you face is that the Silverlight installation program doesn’t have a way to install DLLs alongside your
application file. Instead, it’s up to you to make sure the DLL is installed in a usable location.

Many of the values in the Windows API functions can be reduced to simple numbers using the long
data type, as shown here. However, instead of trying to remembering hard-coded numbers and using
them in your code, it’s a far better idea to define them with constants and enumerations. For example,
the ExitWindowsEx() function supports several values for the uFlags argument, which you can wrap in
an enumeration like this:

enum ExitWindowsFlags

{
 // Use this constant to log the user off without a reboot.
 Logoff = 0,

 // Use this constant to cause a system reboot.
 Restart = 2,

 // Use this constant to cause a system shutdown
 // (and turn off the computer, if the hardware supports it).
 Shutdown = 1,

 // Add this constant to any of the other three to force the

z

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

678

 // shutdown or reboot even if the user tries to cancel it.
 Force = 4

}

Now you simply need to tweak the function definition accordingly:

[DllImport("user32.dll")]
static extern bool ExitWindowsEx(ExitWindowsFlags uFlags, long dwReason);

The final step is to call the ExitWindowsEx() function when you want to use it. Here’s an example:

ExitWindowsEx(ExitWindowsFlags.Logoff, 0);

When your application executes this statement, Windows will immediately begin shutting down all
open programs. Some may ask the user for confirmation—for example, if there is an unsaved document
open. Clicking Cancel at this point will halt the logoff process, because the ExWindowsEx() call doesn’t
use the Force flag.

If you actually want to use the ExitWindowsEx() function, you can still improve this example. Rather
than specify 0 for the shutdown reason, you can supply the appropriate value. The best resource for this
sort of information is the http://pinvoke.net website, which has a browsable catalog of Windows API
functions, along with the .NET code you can use to define them in your applications. Although this code
is written for standard .NET applications, most of it also works for Silverlight applications. For example,
you can read about ExitWindowsEx, complete with the enumerations you can use for the uFlags and
dwReason arguments, at http://pinvoke.net/default.aspx/user32/ExitWindowsEx.html.

Elevated-Trust Applications in the Browser
Usually, it makes sense to run elevated-trust applications in separate windows, which emphasizes that
they have many of the capabilities of local applications. This is the style of elevated-trust applications
you’ve seen up to this point. However, it is possible (but less common) to give elevated trust to an
application that runs in the browser. Technically, this sort of application is called an in-browser
elevated-trust application.

The main reason that you’d choose to create an in-browser elevated-trust application is to avoid the
installation process. Users can run your application directly in their browsers. There’s no installation
step, and your application gets extra capabilities, which sounds ideal. However, a significant caveat
applies. If you want other people to be able to run your in-browser elevated-trust application, you need
to perform some specific, nontrivial setup steps on their computers (which are described next). For this
reason, in-browser elevated-trust applications may be suitable for certain in-house applications on
controlled internal networks, but they aren’t suitable for public applications that you place on the
Internet.

 Note There are two elevated-trust features that don’t work in the browser, regardless of application’s trust
level. These are custom window chrome and child windows.

To create an in-browser elevated-trust application, you need to perform some additional
configuration:

http://pinvoke.net
http://pinvoke.net/default.aspx/user32/ExitWindowsEx.html

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

679

1. First, select the “Require elevated trust when running in browser” setting in
the project properties (see Figure 18-19). If you want to give users the option of
installing the application, you can also switch on the “Enable running
application out of the browser” and “Require elevated trust when running
outside of the browser” settings described earlier.

Figure 18-19. Turning on in-browser elevated trust

 Note Although the setting is named “Require elevated trust when running in browser,” the word require is a bit
misleading. If the application isn’t signed or the certificate isn’t trusted on the current computer, the application
will still run in the normal, low-trust mode of any other Silverlight application.

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

680

2. Now, you need to sign your application with an X.509 certificate (as described
in the “Installing an Elevated-Trust Application” section, earlier in this
chapter). If you don’t take this step, Silverlight’s strict security will keep your
application locked down with low trust.

3. Place the certificate in the Trusted Publishers certificate store on the client
computer. If you’re using a test certificate, you’ll also need to add it to the
Trusted Root Certification Authorities store to establish the chain of trust.

4. Even after your application has been signed, you need to explicitly allow the
computer to run in-browser applications with elevated trust by configuring the
Windows registry. So fire up regedit.exe.

5. Now go to
HKEY_LOCAL_MACHINES\Software\Wow6432Node\Microsoft\Silverlight (on
a 64-bit operating system) or
HKEY_LOCAL_MACHINE\Software\Microsoft\Silverlight (on a 32-bit
operating system).

6. Finally, add a new DWORD value to this key named
AllowElevatedTrustAppsInBrowser, and set it to 1.

 Tip You can also add more registry settings to configure how elevated trust applications work. Set
AllowInstallOfElevatedTrustApps to 0 to prevent the installation of out-of-browser elevated trust applications. Set
AllowLaunchOfElevatedTrustApps to 0 to prevent the launching of elevated trust applications (whether they run in
or out of the browser).

7. Repeat step 3 to 6 on every client computer that needs to run your application.
In a large enterprise environment, you can automate this sort of operation
with Group Policy. Consult your local network administrator, or see the post at
http://tinyurl.com/3dhjyzk for an example.

8. By default, Internet Explorer adds another level of security safeguards with its
protected mode feature. To allow your application to perform trusted actions
(like write to files), you will most likely need to turn off protected mode or add
an exception for your domain. The easiest way to do this is to designate your
Silverlight site as a trusted site. To do that, open the Internet Options dialog
box in IE and click the Security tab. Then, choose the Trusted Sites icon, click
the Sites button, and add the domain for your site.

If you fail to complete this process correctly, your application will still run, but it won’t have
elevated trust. To test whether your application is running in elevated trust, check the
Application.HasElevatedPermissions property.

In-browser elevated-trust applications support all the elevated trust features you’ve learned about
in this chapter, except for child windows. They also support two features that are ordinarily limited in
out-of-browser applications: the WebBrowser control and notification windows. (In other words, the

http://tinyurl.com/3dhjyzk

CHAPTER 18  OUT-OF-BROWSER APPLICATIONS

681

WebBrowser control and the notification window feature are available to all out-of-browser applications
and all elevated-trust applications.)

TESTING AN IN-BROWSER ELEVATED-TRUST APPLICATION

A couple of quirks can cause testing headaches with in-browser elevated-trust applications.

The first potential stumbling block appears if you create a stand-alone Silverlight project with no ASP.NET
website. In this configuration, your application will automatically load in low-trust mode, no matter what
project properties you set. This is a consequence of the way browsers like Internet Explorer deal with
content that’s served from the local file system.

If you create a solution that includes an ASP.NET test website, this problem disappears. However, this
configuration introduces another potentially misleading quirk. If you check “Require elevated trust when
running in browser” and launch your project, it will load as an in-browser elevated-trust application, even
if you haven’t signed the assembly or installed the test certificate. Run the same page outside of Visual
Studio, and you’ll get the expected behavior—namely, the application will get in-browser elevated trust
only if it’s signed with a trusted certificate and the registry key is set. In this case, the difference is simply
a testing convenience.

The Last Word
In this chapter, you looked at how Silverlight applications can go beyond the browser. At its simplest,
Silverlight’s out-of-browser feature is simply a way to let the user launch your applications from the Start
menu and run them when the computer is offline. The actual functioning of ordinary out-of-browser
applications is mostly the same as normal Silverlight applications, except for the update process, the
WebBrowser control, and the small added frill of notification windows. But out-of-browser applications
also open the way for something far more interesting—elevated-trust applications. And as you saw in
this chapter, elevated-trust applications have a set of new capabilities, including window customization,
document file access, and COM interop.

C H A P T E R 19

683

ASP.NET Web Services

Many of the most interesting Silverlight applications have a hidden backbone of server-side code. They
may call a web server to retrieve data from a database, perform authentication, store data in a central
repository, submit a time-consuming task, or perform any number of other tasks that aren’t possible
with client-side code alone. The common ingredient in all these examples is that they are based on web
services—libraries of server-side logic that any web-capable application can access.

In this chapter, you’ll learn how to create ASP.NET web services and call them from a Silverlight
application. You’ll learn how to deal with different types of data, tap into ASP.NET services, monitor the
client’s network connection, and even build a two-way web service that calls your application when it
has something to report.

Building Web Services for Silverlight
Without a doubt, the most effective way for a Silverlight application to tap into server-side code is
through web services. The basic idea is simple: you include a web service with your ASP.NET website,
and your Silverlight application calls the methods in that web service. Your web services can provide
server-generated content that isn’t available on the client (or would be too computationally expensive to
calculate). Or, your web services can run queries and perform updates against a server-side database, as
you’ll see in Chapter 20. With a little extra work, it can even use ASP.NET services such as authentication,
caching, and session state.

Silverlight applications can call old-style ASP.NET web services (.asmx services) as well as more
modern WCF services. In the following sections, you’ll learn how to build, call, and refine a WCF service.
In Chapter 23, you’ll consider how Silverlight applications can also call non-.NET web services, such as
simpler REST services hosted on other platforms.

Creating a Web Service
To create a WCF service in Visual Studio, right-click your ASP.NET website in the Solution Explorer, and
choose Add New Item. Choose the Silverlight-enabled WCF Service template, enter a file name, and click
Add.

When you add a new WCF service, Visual Studio creates two files (see Figure 19-1):

CHAPTER 19  ASP.NET WEB SERVICES

684

• The service endpoint: The service endpoint has the extension .svc and is placed in
your root website folder. For example, if you create a web service named
TestService, you get a file named TestService.svc. When using the web service, the
client requests a URL that points to the .svc file. But the .svc file doesn’t contain
any code—it includes one line of markup that tells ASP.NET where to find the
corresponding web service code.

• The service code: The service code is placed in the App_Code folder of your
website (if you’re creating a projectless website) or in a separate code-behind file
(if you’re creating a web project). For example, if you create a web service named
TestService, you get a code file named TestService.cs in a projectless website or
TestService.svc.cs in a web project. Either way, the contents are the same: a code
file with a class that implements the service interface and provides the actual code
for your web service.

Figure 19-1. An ASP.NET website with a WCF service

The code file for your web service begins with two attributes. The ServiceContract attribute
indicates that it defines a service contract—in other words, a set of methods that you plan to expose to
remote callers as part of a service. The AspNetCompatibilityRequirements attribute indicates that it will
have access to ASP.NET platform features such as session state:

[ServiceContract]
[AspNetCompatibilityRequirements(RequirementsMode =
 AspNetCompatibilityRequirementsMode.Allowed)]
public class TestService
{ ... }

CHAPTER 19  ASP.NET WEB SERVICES

685

To add a new web service method, you add a new method to the code file and make sure it’s
decorated with the OperationContract attribute. For example, if you want to add a method that returns
the current time on the server, you can modify the interface like this:

[ServiceContract]
[AspNetCompatibilityRequirements(RequirementsMode =
 AspNetCompatibilityRequirementsMode.Allowed)]
public class TestService
{
 [OperationContract]
 public DateTime GetServerTime()
 {
 return DateTime.Now;
 }
}

Initially, a newly created service contains a single DoWork() web service method, which Visual
Studio adds as an example. You’re free to delete or customize this method.

 Note When you add a WCF service, Visual Studio adds a significant amount of configuration information for it to
the web.config file. For the most part, you don’t need to pay much attention to these details. However, you will
occasionally need to modify them to take advantage of a specialized feature (as with the duplexing service that
you’ll consider later in this chapter). It’s also worth noting that, by default, the web.config file sets all WCF services
to use binary encoding, instead of the ordinary text encoding that was the standard with Silverlight 2. This makes
messages smaller, so they’re quicker to transmit over the network and process on the server.

Adding a Service Reference
You consume a web service in a Silverlight application in much the same way that you consume one in a
full-fledged.NET application. The first step is to create a proxy class by adding a Visual Studio service
reference.

To add the service reference, follow these steps:

1. Right-click your Silverlight project in the Solution Explorer, and choose Add
Service Reference. The Add Service Reference dialog box appears (see Figure
19-2).

CHAPTER 19  ASP.NET WEB SERVICES

686

Figure 19-2. Adding a service reference

2. In the Address box, enter the URL that points to the web service, and click Go.
However, you probably won’t know the exact URL of your web service,
because it incorporates the randomly chosen port used by Visual Studio’s test
web server (as in http://localhost:4198/ASPWebSite/TestService.svc). You
could run your web application to find out, but an easier approach is to click
the Discover button, which automatically finds all the web services that are in
your current solution.

3. In the Namespace box, enter the C# namespace that Visual Studio should use
for the automatically generated classes. This namespace is created inside your
project namespace. So if your project is MyClient and you give the web service
the namespace name WebServiceSite, the full namespace is
MyClient.WebServiceSite.

4. Click OK. Visual Studio creates a proxy class that has the code for calling the
web service. To see the file that contains this code, select the Silverlight project
in the Solution Explorer, click the Show All Files button, expand the
namespace node (which uses the name you picked in step 3), then expand the
Service References node inside, then expand the Reference.svcmap node
inside that, and open the Reference.cs file.

CHAPTER 19  ASP.NET WEB SERVICES

687

When you add a service reference, Visual Studio creates a proxy class—a class that you can interact
with to call your web service. The proxy class is named after the original web service class with the word
Client added at the end. For example, when adding a reference to the TestService shown earlier, Visual
Studio creates a proxy class named TestServiceClient. The proxy class contains methods that allow you
to trigger the appropriate web service calls and all the events that allow you to receive the results. It takes
care of the heavy lifting (creating the request message, sending it in an HTTP request, getting the
response, and then notifying your code).

You can update your service reference at any time to taken into account web service changes (such
as new methods or changes to the number of type of method parameters). To do so, recompile the web
application, then right-click the service reference in the Solution Explorer, and finally choose Update
Service Reference.

GENERATING PROXY CODE AT THE COMMAND LINE

Silverlight includes a command-line utility that does the same work as Visual Studio’s service reference
feature. This utility is named slsvcutil.exe (for Silverlight Service Model Proxy Generation Tool), and you can
run it most easily from the Visual Studio Command Prompt. For example, the following command creates
the proxy code for TestService example shown earlier (assuming the port number matches the port that
the test web server is currently using):

slsvcutil http://localhost:4198/ASPWebSite/TestService.svc?WSDL

The ?WSDL that’s appended to the service is an web service convention. It tells ASP.NET to provide the
Web Service Description Language (WSDL) document that describes the web service. This document
details the public interface of the web service (its methods and parameters) but doesn’t expose any private
details about its code or inner workings. The WSDL document has all the information Visual Studio or
slsvcutil needs to generate the proxy code.

The most common reason for using slsvcutil is because you want to generate the proxy class code as part
of an automated build process. To see a listing and description of all the parameters you can use, type in
slsvcutil with no parameters.

Calling the Web Service
To use the proxy class, start by importing the namespace that you specified for the service reference in
step 3. Assuming that you used the namespace MyWebServer and your project is named
MySilverlightProject, you’d need this statement:

using MySilverlightProject.MyWebServer;

In Silverlight, all web service calls must be asynchronous. That means you call a method to start the
call (and send off the request). This method returns immediately. Your code can then carry on to
perform other tasks, or the user can continue to interact with the application. When the response is
received, the proxy class triggers a corresponding proxy class event, which is named in the form
MethodNameCompleted. You must handle this event to process the results.

CHAPTER 19  ASP.NET WEB SERVICES

688

 Note This two-part communication process means that it takes a bit more work to handle a web service call
than to interact with an ordinary local object. However, it also ensures that developers create responsive Silverlight
applications. After all, making an HTTP call to a web service can take as long as one minute (using the default
timeout setting), so it’s not safe to make the user wait. (And yes, Microsoft imposes this limitation to ensure that
your code can’t give its platform a bad name.)

Here’s how to call the TestService.GetServerTime() method shown earlier:

// Create the proxy class.
TestServiceClient proxy = new TestServiceClient();

// Attach an event handler to the completed event.
proxy.GetServerTimeCompleted += new
 EventHandler<GetServerTimeCompletedEventArgs>(GetServerTimeCompleted);

// Start the web service call.
proxy.GetServerTimeAsync();

To get the results, you need to handle the completed event and examine the corresponding
EventArgs object. When generating the proxy class, Visual Studio also creates a different EventArgs class
for each method. The only difference is the Result property, which is typed to match the return value of
the method. For example, the GetServerTime() method works in conjunction with a
GetServerTimeCompletedEventArgs class that provides a DateTime object through its Result property.

When accessing the Result property for the first time, you need to use exception-handling code.
That’s because this is the point where an exception will be thrown if the web service call failed—for
example, the server couldn’t be found, the web service method returned an error, or the connection
timed out. (As an alternative, you could check the Error property of the custom EventArgs object. For
example, if GetServerTimeCompletedEventArgs.Error is null, no error occurred while processing the
request, and it’s safe to get the data from the Result property.)

Here’s an event handler that reads the result (the current date and time on the server) and displays
it in a TextBlock:

private void GetServerTimeCompleted(object sender,
 GetServerTimeCompletedEventArgs e)
{
 try
 {
 lblTime.Text = e.Result.ToLongTimeString();
 }
 catch (Exception err)
 {
 lblTime.Text = "Error contacting web service";
 }
}

CHAPTER 19  ASP.NET WEB SERVICES

689

 Tip Even though web service calls are performed on a background thread, there’s no need to worry about
thread marshaling when the completed event fires. The proxy class ensures that the completed event fires on the
main user-interface thread, allowing you to access the controls in your page without any problem.

By default, the proxy class waits for one minute before giving up if it doesn’t receive a response. You
can configure the timeout length by using code like this before you make the web service call:

proxy.InnerChannel.OperationTimeout = TimeSpan.FromSeconds(30);

WEB SERVICE EXCEPTIONS

You might think that when a web service method throws an exception, you can catch it in your Silverlight
code. But life isn’t that simple.

Although this chapter focuses on using web services for a single purpose—communicating between
Silverlight and ASP.NET—thee standards that underpin web services are far broader and more general.
They’re designed to allow interaction between applications running on any web-enabled platform, and as
such they don’t incorporate any concepts that would tie them to a single, specific technology (like .NET
exception classes).

There’s another consideration: security. Web services can be consumed by any web-enabled application,
and there’s no way for your web service code to verify that it’s your Silverlight application making the call.
If web service methods returned specific, detailed exceptions, they would reveal far too much about their
internal workings to potential attackers.

So, what happens when you call a web service method that goes wrong? First, the web server returns a
generic fault message is returned to the client application. This message uses the HTTP status code 500,
which signifies an internal error. Because of security restrictions in the browser, even if there were more
information in the fault message, your Silverlight application wouldn’t be allowed to access it because of
the status code. Instead, Silverlight detects the fault message and immediately throws a
CommunicationException with no useful information.

There is a way to work around this behavior and return more detailed exception information from the
server, but because of the security concerns already mentioned, this feature is best for debugging. To get
this error information, you need to take two somewhat tedious steps. First, you need to use a specialized
WCF behavior that changes the HTTP status code of server-side fault messages from 500 to 200 before
they’re sent to the client. (The browser places no restriction on reading information from a response when
the HTTP status code is 200.) Second, you need a mechanism to return the exception information.
Silverlight includes a web service configuration option that, if enabled, inserts exception into the fault
message. With these two details in place, you’re ready to receive error information.

CHAPTER 19  ASP.NET WEB SERVICES

690

For more information, refer to http://msdn.microsoft.com/magazine/ee294456.aspx, which shows the
WCF behavior that changes the status code, the configuration setting that inserts exception details into
fault messages, and the client-side code that digs out the error information.

Configuring the Web Service URL
When you add a service reference, the automatically generated code includes the web service URL. As a
result, you don’t need to specify the URL when you create an instance of the proxy class.

But this raises a potential problem. All web service URLs are fully qualified—relative paths aren’t
allowed. If you’re using the test web server in Visual Studio, that means you’ll run into trouble if you try
to run your application at a later point, when the test web server has chosen a different port number.
Similarly, you’ll need to update the URL when you deploy your final application to a production web
server.

You can solve this problem by updating the service reference (and thereby regenerating all the proxy
code), but there are two easier options.

Your first option is to configure Visual Studio to always use a specific port when running its test web
server with your web application. This works only if you’ve created your web application as a web
project (not a projectless website). In this case, you can configure the test web server for your project by
double-clicking the Properties item in the Solution Explorer. Choose the Web tab. Then, in the Servers
section, select “Specific port” and enter the port number you’d like to use. (You may as well choose the
port number that the test server is already using for this session.) In the settings shown in Figure 19-3,
that port number is 54752.

http://msdn.microsoft.com/magazine/ee294456.aspx

CHAPTER 19  ASP.NET WEB SERVICES

691

Figure 19-3. Setting the port for the test web server

Now you can modify the code that creates your proxy class. Instead of simply using this, which
assumes the service is at the same port that it occupied when you added the reference:

TestServiceClient proxy = new TestServiceClient();

You can explicitly set the port with the EndpointAddress class:

// Create the proxy class.
TestServiceClient proxy = new TestServiceClient();

// Use the port that's hard-coded in the project properties.
EndpointAddress address = new EndpointAddress(
 "http://localhost:54752/ASPWebSite/TestService.svc");

// Apply the new URI.
proxy.Endpoint.Address = address;

Your second option is to change the address dynamically in your code so that it’s synchronized with
the port number that the test web server is currently using. To do so, you simply need to grab the URL of

CHAPTER 19  ASP.NET WEB SERVICES

692

the Silverlight page and find its port number (because the Silverlight page is hosted on the same web
server as the web service). Here’s the code that does the trick:

// Create a new URL for the TestService.svc service using the current port number.
EndpointAddress address = new EndpointAddress("http://localhost:" +
 HtmlPage.Document.DocumentUri.Port + "/ASPWebSite/TestService.svc");

// Use the new address with the proxy object.
TestServiceClient proxy = new TestServiceClient();
proxy.Endpoint.Address = address;

You can use similar code to create a URL based on the current Silverlight page so that the web
service continues to work no matter where you deploy it, as long as you keep the web service and
Silverlight application together in the same web folder.

Using a Busy Indicator
Depending on exactly what your web method does, it may take a noticeable amount of time. If this delay
isn’t handled carefully, it can frustrate or confuse the user. For example, the user might assume there’s a
problem with the application, attempt to repeat the same action, or even restart the application.

One way to deal with slow services is to add some sort of indicator that informs the user that a web
service call is underway. Although you can use any Silverlight element as an indicator (and even use the
animation techniques you picked up in Chapter 10 and Chapter 11), the easiest solution is a dedicated
control called the BusyIndicator, which is included in the Silverlight Toolkit
(http://silverlight.codeplex.com).

The BusyIndicator has two display states: its ordinary state and its busy state. In its ordinary state,
the BusyIndicator shows the content (if any) that’s set in the Content property. In its busy state, the
BusyIndicator fuses together an endlessly pulsating progress bar with whatever content you supply in
the BusyContent property. Here’s an example:

<toolkit:BusyIndicator x:Name="busy" BusyContent="Contacting Service..." />

To put the BusyIndicator into its busy state, simply set the IsBusy property. Here’s the updated web
service code:

private void cmdCallSlowService_Click(object sender, RoutedEventArgs e)
{
 TestServiceClient proxy = new TestServiceClient();

 cmdCallSlowService.IsEnabled = false;
 lblTime.Text = "";
 busy.IsBusy = true;

 proxy.GetServerTimeCompleted += new
 EventHandler<GetServerTimeCompletedEventArgs>(GetServerTimeCompleted);
 proxy.GetServerTimeAsync();
}

private void GetServerTimeCompleted(object sender,
 GetServerTimeCompletedEventArgs e)
{
 try
 {

http://silverlight.codeplex.com

CHAPTER 19  ASP.NET WEB SERVICES

693

 lblTime.Text = e.Result.ToLongTimeString();
 }
 catch (Exception err)
 {
 lblTime.Text = "Error contacting service.";
 }
 finally
 {
 busy.IsBusy = false;
 cmdCallSlowService.IsEnabled = true;
 }

}

And Figure 19-4 shows the result, while the web service call is underway.

Figure 19-4. Showing the status of an in-progress call

Web Service Data Types
When you create a web service for use with Silverlight, you’re limited to the core set of .NET data types.
This includes strings, Boolean values, bytes, numeric data types, enumeration values, and DateTime
objects. You can also use arrays, collections of any supported type, and—more interestingly—custom
classes that are build with these same data types.

CHAPTER 19  ASP.NET WEB SERVICES

694

Custom Data Classes
To build a custom class that works with a web service, you need to meet a few basic requirements:

• Your class declaration must be decorated with the DataContract attribute.

• Your class must consist of public, writeable properties. Each property must use
one of the previously discussed serializable data types, or another custom class.

• Each property must be decorated with the DataMember attribute to indicate that
it should be serialized.

• Your class must include a zero-argument default constructor.

• Your class can include code, but it won’t be accessible on the client. Instead, the
client will get a stripped-down version of the class with no code.

Here’s an example of a custom class that satisfies all these conditions:

[DataContract]
public class Customer
{
 private string firstName;
 private string lastName;

 [DataMember]
 public string FirstName
 {
 get { return firstName; }
 set { firstName = value; }
 }

 [DataMember]
 public string LastName
 {
 get { return lastName; }
 set { lastName = value; }
 }
}

Now you can create a web service method that uses this class.

[AspNetCompatibilityRequirements(RequirementsMode =
 AspNetCompatibilityRequirementsMode.Allowed)]
public class TestService
{
 [OperationContract]
 public Customer GetCustomer(int customerID)
 {
 Customer newCustomer = new Customer();
 // (Look up and configure the Customer object here.)
 return newCustomer;
 }
}

CHAPTER 19  ASP.NET WEB SERVICES

695

The web method can use this class for a parameter or a return value (as in this example). Either way,
when you add the service reference in your Silverlight project, Visual Studio generates a similar
Customer class definition in your Silverlight application, alongside the proxy class. You can then interact
with the Customer objects that the server sends back, or you can create Customer objects in the client
and send them to the server.

private void GetCustomerCompleted(object sender,
 GetCustomerCompletedEventArgs e)
{
 try
 {
 Customer newCustomer = e.Result;
 // (You can now display the customer information in the user interface).
 }
 catch (Exception err)
 {
 lblTime.Text = "Error contacting web service";
 }
}

You’ll see a much more in-depth example of a web service that uses custom classes later in this
book. In Chapter 20, you’ll build a web service that uses custom classes and collections to return data
from a database.

Web Service Type Sharing
As you’ve seen so far, a layer of cross-platform standards separates your Silverlight client from the
ASP.NET web services it uses. One consequence of this separation is that web services and clients can’t
share code. If a web service returns a data object like an instance of the Customer class shown in the
previous section, the client gets a stripped-down version of that class with all the public data (as
properties) and none of the code.

Usually, this design isn’t a problem. As long as Visual Studio follows a few simple rules—for
example, using property procedures instead of public fields and using ObservableCollection for any sort
of collection of objects—the code-free data classes it generates will work fine with Silverlight data
binding. However, there are some situations when you might want to work around this limitation, create
a data class that includes code, and use that code on both the server and client sides of your solution. For
example, you could use this technique to create a code-enriched version of the Customer class shown in
the previous section and make that code accessible to both the web service and the Silverlight client.

To share a data class, you need to take two steps:

Share the code: You need to give a copy of the data class to both the web service
and the Silverlight client. This is tricky, because the web service targets the full
.NET Framework, whereas the client targets the scaled-down Silverlight
libraries. Thus, even though they both can use the same data class code, they
can’t share a single data class assembly, because that assembly must be
compiled for one platform or the other. The best solution is to create two class
library assemblies—one for ASP.NET and one for Silverlight—and use Visual
Studio linking to avoid duplicating your source files.

Identify the code: Once both projects have the data class, you still need a way to
tell Visual Studio that they are one and the same. Otherwise, Visual Studio will
still attempt to create a stripped-down client-side copy when you add the web

CHAPTER 19  ASP.NET WEB SERVICES

696

reference. To identify your data class, you simply need to give it a unique XML
namespace.

In the following sections, you’ll tackle both of these steps, but in the reverse order.

 Note Think carefully before you use web service type sharing. In most cases, it’s best to avoid type sharing,
because type sharing creates a tight dependency between your server-side code and your Silverlight client, which
can complicate versioning, updating, and deployment. However, type sharing sometimes make sense when you’re
building smart data objects that have embedded details such as descriptive text and validation rules. In many
cases, you aren’t actually sharing code but the attributes that decorate it. You’ll see an example that uses type
sharing for this purpose in Chapter 21.

Identifying Your Data Classes
As you already know, the data classes you use in a WCF web service need to have the DataContract
attribute. But the DataContract attribute doesn’t just make your class usable in a web service. It also
gives you the ability to uniquely identify your class by mapping it to an XML namespace of your choice.
So far, the examples you’ve seen haven’t used this ability, because it isn’t required. But if you’re
deploying data-class code to the client, it’s essential. That’s because you must give the same XML
namespace to both the Silverlight version and the ASP.NET version of each data class. Only then will
Visual Studio understand that it represents the same entity.

Here’s an example that maps the Customer class to the XML namespace
http://www.prosetech.com/DataClasses/Customer:

[DataContract(Name = "Customer",
 Namespace = "http://www.prosetech.com/DataClasses/Customer")]
public class Customer
{
 private string firstName;
 private string lastName;

 [DataMember]
 public string FirstName
 {
 get { return firstName; }
 set { firstName = value; }
 }

 [DataMember]
 public string LastName
 {
 get { return lastName; }
 set { lastName = value; }
 }

 // Ordinarily, this method would not be available on the client.

CHAPTER 19  ASP.NET WEB SERVICES

697

 public string GetFullName()
 {
 return firstName + " " + lastName;
 }
}

Remember, XML namespaces don’t need to point to web locations (even though they commonly
use URIs). Instead, you can use a domain you control in your XML namespace to ensure that it’s not
inadvertently duplicated by another developer.

Sharing the Code
You may assume that after you’ve set up the DataContract attribute, you can copy the data-class code to
your web service and Silverlight project. Unfortunately, life isn’t this simple. Even though the
DataContract attribute uniquely identifies the Customer class, Visual Studio still attempts to create new
data classes when you create a reference to your web service (and it tries to regenerate them every time
you refresh that reference). As it currently stands, that means your web service client code ends up using
a stripped-down duplicate copy of the Customer class.

To fix this problem and get Visual Studio to use the same data classes in both projects, you need to
create the correct project structure. At a bare minimum, you must place the client-side versions of the
data classes in a separate assembly.

Here’s the sequence of steps to follow:

1. Begin with a solution that includes your Silverlight project and the ASP.NET
website with the data web service. (In the downloadable example for this
chapter, that’s a Silverlight application named TypeSharingClient and an
ASP.NET website named TypeSharing.Web.)

 Note This approach works equally well regardless of whether you create a web project or a projectless website
in Visual Studio.

2. Add a new Silverlight class library application for the data classes. (In the
downloadable example, it’s called DataClasses.) This project needs to have a
reference to the System.Runtime.Serialization.dll assembly in order to use the
DataContract attribute.

3. Add a reference in your Silverlight project that points to the data-class project
so the data classes are available in your application.

4. Add a new .NET class library for the server-side implementation of the data
classes (for example, DataClasses.ServerSide). It will also need a reference to
the System.Runtime.Serialization.dll assembly, only now you’re using the full
.NET version of that assembly. Figure 19-5 shows all the projects in the
solution.

CHAPTER 19  ASP.NET WEB SERVICES

698

Figure 19-5. A solution that uses web service type sharing

5. Add a reference in your ASP.NET website (in this case, TypeSharing.Web) that
points to the server-side class library (in this case, DataClasses.ServerSide).

6. The server-side class library needs the same code as the client-side class
library. To accomplish this without duplication, you can use the Visual Studio
linking feature. In your server-side class library, choose to add an existing item
(right-click the project in the Solution Explorer, and choose Add  Existing
Item). Browse to the code file for the Silverlight class library (for example,
Customer.cs) and select it, but don’t click Add. Instead, click the drop-down
button to the right of the Add button, which pops open a small menu of
addition options (see Figure 19-6), and choose Add As Link. This way, you’ll
have just one copy of the source code, which is shared between files. No
matter which project you’re editing, you’ll update the same file, and your
changes will be incorporated into both class libraries.

CHAPTER 19  ASP.NET WEB SERVICES

699

Figure 19-6. Linking to a source code file

 Note Of course, it goes without saying that the code you write in your data class must be completely
compatible with both the .NET and Silverlight platforms. Otherwise, an error will occur when you compile your
assembly. If you need to write slightly different code for the Silverlight version of your data class, you may be
forced to resort to the decidedly clumsy cut-and-paste approach.

7. Repeat step 6 if there are multiple source code files.

CHAPTER 19  ASP.NET WEB SERVICES

700

8. You’ve finished the type sharing setup. Now you can complete the usual
steps—code your web service, compile your website, and add the service
reference in your client.

Now, when you add a reference to the web service that uses the Customer class, Visual Studio won’t
generate a new copy. Instead, it will use the code-fortified copy from the Silverlight class library
assembly. That means you can use the custom method you added to the Customer class, like this:

private void GetCustomerCompleted(object sender, GetCustomerCompletedEventArgs e)
{
 try
 {
 Customer newCustomer = e.Result;
 lblResut.Text = newCustomer.GetFullName();
 }
 catch (Exception err)
 {
 lblResult.Text = "Error contacting web service";
 }
}

If this process seems convoluted—well, it is. But after you’ve set up a solution like this, you’ll have
no trouble creating more. If you’re still in doubt, check out the downloadable code, which includes a
data-class-sharing solution that’s already set up.

PORTABLE ASSEMBLIES

A portable assembly is a Silverlight class library assembly that you can share with both .NET applications
and Silverlight applications, without being forced to recompile, cut-and-paste, link files, or resort to any
other sort of clumsy workaround. At first glance this seems like the perfect solution for web service type
sharing. Unfortunately, a portable assembly is only allowed to reference the following assemblies:

• Mscorlib.dll

• System.dll

• System.Core.dll

• System.ComponentModel.Composition.dll

• Microsoft.VisualBasic.dll

• Other portable assemblies that you’ve created

This means you can’t create a portable assembly for a web service data class, because the data class
needs to use nonportable assemblies such as System.Runtime.Serialization.dll (which provides the
DataContract attribute).

If you still want to use portable assemblies for some other type of code sharing that doesn’t involve web
service data classes, it’s fairly easy. Begin by creating a Silverlight class library, and make sure it uses
only assemblies from the allowed list shown previously. Your Silverlight application can use this class

CHAPTER 19  ASP.NET WEB SERVICES

701

library as normal. Your .NET application can use it also, but you must add a reference to the portable
assembly’s compiled .dll file. (You can’t add a reference directly to the Silverlight class project.) As long as
you follow these rules, you’ll be able to share custom code routines without a worry.

More Advanced Web Services
You’ve now seen how to build and consume web services. In this section, you’ll build on these basic
skills with some more specialized techniques. First, you’ll see how to give other websites access to your
services. Next, you’ll learn how to watch the current computer’s network connection, so you know when
it’s safe to launch a web service call. And finally you’ll see how you can use web services as a bridge to
ASP.NET’s server-side features, such as caching and authentication.

Cross-Domain Web Service Calls
Silverlight allows you to make web service calls to web services that are part of the same website with no
restrictions. Additionally, Silverlight allows you to call web services on other web services if they
explicitly allow it with a policy file.

In Chapter 23, you’ll consider the implications this has when you’re using third-party web services
and downloading content on the Web. But now, it’s worth understanding how you can configure your
web service to allow cross-domain callers. To make this possible, you must create a file named
clientaccesspolicy.xml and place it in the root of your website (for example, in the c:\inetpub\wwwroot
directory of an IIS web server). The clientaccesspolicy.xml file indicates what domains are allowed to
access your web service. Here’s an example that allows any Silverlight application that’s been
downloaded from any web server to access your website:

<?xml version="1.0" encoding="utf-8"?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from>
 <domain uri="*"/>
 </allow-from>
 <grant-to>
 <resource path="/" include-subpaths="true"/>
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

When you take this step, third-party Silverlight applications can call your web services and make
arbitrary HTTP requests (for example, download web pages). Ordinarily, neither task is allowed in a
Silverlight application.

 Note Desktop applications and server-side applications face no such restrictions—no matter what policy file
you create, they can do everything an ordinary user can do, which means they can download any public content.

CHAPTER 19  ASP.NET WEB SERVICES

702

Similarly, Silverlight applications that run with elevated trusted (a technique you considered in Chapter 18) can
also make cross-domain web service requests, regardless of the existence of a policy file.

Alternatively, you can limit access to Silverlight applications that are running on web pages in
specific domains. Here’s an example that allows requests from Silverlight applications that are hosted at
www.somecompany.com or www.someothercompany.com:

<?xml version="1.0" encoding="utf-8"?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from http-request-headers="*">
 <domain uri="http://www.somecompany.com" />
 <domain uri="http://www.someothercompany.com" />
 </allow-from>
 <grant-to>
 <resource path="/" include-subpaths="true"/>
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

You can use wildcards in the domain names to allow subdomains. For example,
*.somecompany.com allows requests from mail.somecompany.com, admin.somecompany.com, and so
on.

Furthermore, you can selectively allow access to part of your website. Here’s an example that allows
Silverlight applications to access the services folder in your root web domain, which is presumably
where you’ll place all your cross-domain web services:

<?xml version="1.0" encoding="utf-8"?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from>
 <domain uri="*"/>
 </allow-from>
 <grant-to>
 <resource path="/services/" include-subpaths="true"/>
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

 Note Instead of using clientaccesspolicy.xml, you can create a crossdomain.xml file. This file has essentially
the same purpose, but it uses a standard that was first developed for Flash applications. The only advantage to
using it is if you want to give access to Silverlight and Flash applications in one step. Compared to

http://www.somecompany.com
http://www.someothercompany.com:
http://www.somecompany.com
http://www.someothercompany.com

CHAPTER 19  ASP.NET WEB SERVICES

703

crossdomain.xml, clientaccesspolicy.xml is slightly more sophisticated, because it lets you grant access to just a
specific part of your website (both standards allow you to limit requests based on the caller’s domain). For more
information about crossdomain.xml, see Chapter 23.

Remember, if you make your web services publicly accessible, you must make sure they can’t be
easily abused. For example, you should never allow your web methods to return sensitive data or
commit arbitrary changes. Even though you know your applications will use your web services properly,
it’s trivially easy for malicious users to create their own applications that don’t. And even if your web
service doesn’t allow cross-domain access, it’s a good idea to clamp down on your web methods as
much as possible. Doing so prevents problems in a number of scenarios—for example, if a website
configuration change inadvertently grants cross-domain access to your web services, if an attacker gain
access to your website, or if an attacker fools your application into performing a damaging operation.

If you perform security checks in a cross-domain web service, remember that you can’t trust cookies
or any authentication information that’s not part of the actual request message. That’s because trusted
users can visit malicious applications—and when they do, the malicious application gains access to their
current cookies. To prevent issues like these, you can add checks and balances to your web service that
look for improper usage—for example, users who access more data than they should in a short period of
time or users who attempt to view or edit data that isn’t directly related to them.

Monitoring the Network Connection
Chapter 18 described how to create out-of-browser applications that can run outside the browser
window, even when no network connection is available. Clearly, this raises the possibility that a user
may run the application when the computer isn’t online. In this case, attempts to call a web service are
bound to fail.

Dealing with this problem is easy. As you’ve already seen, a failed web service call causes the
completed event to fire. When you respond to this event and attempt to retrieve the result, an exception
is thrown that notifies you of the problem. (If the network connection is present but the Internet comes
and goes, the completed event may not fire until the call times out. On the other hand, if the computer is
completely disconnected from the network, the completed event fires immediately. Either way, you
need to catch the exception and either ignore the problem or inform the user.)

Exception-handling code gives your application a basic line of defense. However, if you have a client
with intermittent connectivity, you may want to handle the issue more gracefully. For example, you may
want to pay attention to the network status in your application and selectively disable certain features
when they’re not available, saving the user from potential confusion or frustration. This behavior is easy
to implement using Silverlight’s new network-monitoring support.

The network-monitoring feature consists of two extremely simple classes, both of which expose a
single public member, and both of which are found in the System.Net.NetworkInformation namespace.
First, you can use the GetIsNetworkAvailable() method of the NetworkInterface class to determine
whether the user is online. Second, you can respond to the NetworkAddressChanged event of the
NetworkChange class to determine when the network status (or IP address) changes. Usually, you’ll
work in that order—first use GetIsNetworkAvailable() to determine the network status and then handle
NetworkAddressChanged to pick up any changes:

public MainPage()
{
 InitializeComponent();

CHAPTER 19  ASP.NET WEB SERVICES

704

 // Watch for network changes.
 NetworkChange.NetworkAddressChanged += NetworkChanged;

 // Set up the initial user interface
 CheckNetworkState();
}

private void NetworkChanged(object sender, EventArgs e)
{
 // Adjust the user interface to match the network state.
 CheckNetworkState();
}

private void CheckNetworkState()
{
 if (NetworkInterface.GetIsNetworkAvailable())
 {
 // Currently online.
 cmdCallCachedService.IsEnabled = true;
 cmdCallService.IsEnabled = true;
 }
 else
 {
 // Currently offline.
 cmdCallCachedService.IsEnabled = false;
 cmdCallService.IsEnabled = false;
 }
}

It’s important to remember that the network-monitoring feature was designed to help you build a
more polished, responsive application. But it’s no substitute for exception-handling code that catches
network exceptions. Even if a network connection is present, there’s no guarantee that it provides access
to the Internet, that the requested website is online, and that the requested web service method will run
without an error. For all these reasons, you need to treat your web service calls with caution.

Using ASP.NET Platform Services
Ordinarily, WCF services don’t get access to ASP.NET platform features. Thus, even though ASP.NET is
responsible for compiling your service and hosting it, your service can’t use any of the following:

• Session state

• Data caching

• The authorization rules in the web.config file

• Provider-based features, such as authentication, membership, and profiles

In many cases, this makes sense, because WCF services are meant to be independent of the
ASP.NET platform. It’s dangerous to use ASP.NET-only features, because they limit your ability to move
your service to other hosts, use other transport protocols, and so on. Although these considerations may
not come into play with a Silverlight application, there’s still a good philosophical basis for making your
services as self-contained as possible.

CHAPTER 19  ASP.NET WEB SERVICES

705

Furthermore, some of the features don’t make sense in a web service context. Currently, a number
of workarounds are available to get session state to work with WCF services. However, the session-state
feature fits awkwardly with the web service model, because the lifetime of the session isn’t linked to the
lifetime of the web service or proxy class. That means a session can unexpectedly time out between calls.
Rather than introduce these headaches, it’s better to store state information in a database.

But in some scenarios, ASP.NET features can legitimately save you a good deal of work. For
example, you may want to build a service that uses in-memory caching if it’s available. If it’s not, the
service can degrade gracefully and get its information from another source (like a database). But if the
in-memory cache is working and has the information you need, it can save you the overhead of
requerying it or re-creating it. Similarly, there’s a case to be made for using some of the ASP.NET
provider-based features to give you easy user-specific authentication, role-based security, and storage,
without forcing you to reimplement a similar feature from scratch.

To access ASP.NET features in a web service, you use the static Current property of the
System.Web.HttpContext class. HttpContext represents the HTTP environment that hosts your service.
It provides access to key ASP.NET objects through its properties, such as Session (the per-user session
state), Application (the global application state), Cache (the data cache), Request (the HTTP request
message, including HTTP headers, client browser details, cookies, the requested URL, and so on), User
(the user making the request, if authenticated through ASP.NET), and so on. ASP.NET developers will be
familiar with these details.

The following example uses HttpContext to get access to the data cache. It caches a collection of
Product objects so the database doesn’t have to be queried each time the web service method is called:

[OperationContract]
public Product[] GetAllProducts()
{
 // Check the cache.
 HttpContext context = HttpContext.Current;

 if (context.Cache["Products"] != null)
 {
 // Retrieve it from the cache
 return (Product[])context.Cache["Products"];
 }
 else
 {
 // Retrieve it from the database.
 Product[] products = QueryProducts();

 // Now store it in the cache for 10 minutes.
 context.Cache.Insert("Products", products, null,
 DateTime.Now.AddMinutes(10), TimeSpan.Zero);

 return products;
 }
}

// This private method contains the database code.
private Product[] QueryProducts()
{ ... }

The actual caching feature (and other ASP.NET features) is outside the scope of this book. However,
this example shows how experienced ASP.NET developers can continue to use some of the features of

CHAPTER 19  ASP.NET WEB SERVICES

706

ASP.NET when building a WCF service. To try an example of ASP.NET caching in a web service, check
out the downloadable examples for this chapter.

 Note For more information about ASP.NET platform services such as caching and authentication, refer to Pro
ASP.NET 4 in C# 2010 (Apress, 2010).

WCF RIA Services
So far, you’ve seen how to create a two-part solution that includes an ASP.NET website with WCF
Services, and a Silverlight client that calls them. WCF RIA Services is a higher-level framework that
extends this model.

At the risk of simplifying the WCF RIA Services model, here are some basic points that describe a
typical solution that uses it:

• The web server hosts a database.

• This database is wrapped by at least one domain service, which is a special sort of
web service. To perform database operations, the client calls the methods of the
domain service. Generally, these methods use LINQ to allow more natural and
more flexible querying.

• The domain service uses an entity to represent each data object. The domain
service is largely concerned with inserting, updating, and deleting data entities
from the database.

This sounds like a typical data-driven business application (and indeed, WCF RIA Services is all
about business applications). In fact, you’ll create a solution that follows this pattern when you begin
using data binding in Chapter 20, without using WCF RIA Services. So, the obvious question is, what
advantages does the WCF RIA Services model add?

• An easy way to generate data access code: Most developers using WCF RIA Services
will combine it with the Entity Framework to generate their data classes and
domain services automatically. This may or may not appeal to you, but if you
prefer to point and click your way to customized data code rather than writing
everything from scratch, WCF RIA Services can be a great help.

• An easier way to share business logic: The classes you generate with WCF RIA
Services give you a natural place to write business logic—for example, code that
supports validation, object creation, calculated fields, and so on. This code plugs
into Silverlight’s data controls effortlessly. And depending on your needs, you can
share code between the server and the client, or the client can call the server
automatically when it needs these services. (As you’ll see in Chapter 21, you can
still use features such as validation in your own, custom-written data classes, but a
WCF RIA Services solution can generate the rules you need based on the database
you’re using, which has the potential to save you some serious time.)

CHAPTER 19  ASP.NET WEB SERVICES

707

• LINQ support: Although you can use LINQ when querying ordinary web services,
WCF RIA allows you to write LINQ expressions on the client (your Silverlight
application) but execute them on the server (your domain service). The end result
is that your domain service can have a small, more streamlined set of methods
that still gives the client plenty of querying flexibility. (Of course, there are
drawbacks, too. Your web service gets less control over the querying process, and
you run the risk of scattering a mess of querying logic throughout your code.)

• ASP.NET extensions: WCF RIA Services includes built-in web services that give
natural hooks into ASP.NET’s authentication and authorization systems. This
makes it much easier to use the ASP.NET security model to control a Silverlight
application. Once again, this is the sort of feature that’s most at home in a
business application (and often one that’s running on a company’s internal
network). But to a specific set of developers, the conveniences of WCF RIA
Services are invaluable.

WCF RIA Services aren’t covered in this book. However, you can learn much more about them from
the book Pro Business Applications with Silverlight 5 (Apress) or online at
www.silverlight.net/getstarted/riaservices.

Duplex Services
Ordinarily, web services use a fairly straightforward and somewhat limiting form of interaction. The
client (your Silverlight application) sends a request, waits for a response, and then processes it. This is a
distinctly one-way type of communication—the client must initiate every conversation.

This model is no surprise, because it’s based on the underlying HTTP protocol. Browsers request
web resources, but websites can never initiate connections and transmit information to clients without
first being asked. Although this model makes sense, it prevents you from building certain types of
applications (such as chat servers) and implementing certain types of features (such as notification).
Fortunately, there are several ways to work around these limitations in Silverlight:

• Polling: With polling, you create a client that connects to the server periodically
and checks for new data. For example, if you want to create a chat application, you
can create a chat client that checks the web server for new messages every second.
The obvious problem with polling is that it’s inefficient. On the client side, the
overhead is fairly minimal, but the server can easily be swamped with work if a
large number of clients keep bombarding it with requests.

• Sockets: The most powerful option is to use sockets—low-level network
connections. Sockets avoid HTTP altogether, in favor of the leaner and more
efficient TCP. However, using sockets is complex, and it requires you to worry
about issues such as network timeouts, byte arrays, user concurrency, and
firewalls. If you’re still interested, Chapter 23 provides a complete example with a
messaging application that uses sockets.

• Duplex services: Silverlight includes a feature for creating duplex services, which
allow two-way communication (meaning the server can contact your client when
needed). Behind the scenes, duplex services are based on polling, but they
implement it in a more efficient manner. The client’s network request is left open
but in an inactive state that doesn’t hassle the server. It stays open until it times
out, 90 seconds later, at which point the client connects again.

http://www.silverlight.net/getstarted/riaservices

CHAPTER 19  ASP.NET WEB SERVICES

708

Duplex services work best with small-scale use. If your application has a small, well-defined
audience, duplex services offer an interesting technique for dealing with periodic updates or time-
consuming operations. In the following sections, you’ll see how to build a simple duplex service that
handles a batch job. The client submits a job request, and the server completes the work asynchronously
and then delivers the finished product back to the client.

Configuring the Service
To create a duplex service, you begin with the same steps you follow for an ordinary web service: you
add a Silverlight-enabled WCF service to your project with the right name. In this example, the service is
named AsyncTask.svc.

When you add a new web service, Visual Studio adds three familiar ingredients:

• The .svc file: This is the endpoint to your service. The client directs all its messages
to this URL. In this example, the .svc file is named AsyncTask.svc, and you don’t
need to make any modifications to it.

• The web service code: This code isn’t much help for a duplex service. In the
following sections, you’ll this service code with a more suitable version.

• The web.config settings: These are partially correct, but they need some tweaking
to support duplex communication. This is the task you’ll take on first.

The following are the changes you need to make to the automatically generated settings in the
web.config file to transform an ordinary web service into a duplex service. You can see the full
web.config file with the sample code for this chapter.

Before going any further, you need to add an assembly reference to the
System.ServiceModel.PollingDuplex.dll assembly that has the duplexing support you need. You can find
it in a folder like c:\Program Files (x86)\Microsoft SDKs\Silverlight\v5.0\Libraries\Server.

Once you’ve taken care of that, you’re ready to make the first modification to the web.config file.
Find the <system.serviceModel> element, and add this inside it:

<extensions>
 <bindingExtensions>
 <add name="pollingDuplexHttpBinding" type=
"System.ServiceModel.Configuration.PollingDuplexHttpBindingCollectionElement,
System.ServiceModel.PollingDuplex, Version=5.0.0.0, Culture=neutral,
PublicKeyToken=31bf3856ad364e35"/>
 </bindingExtensions>
</extensions>

This pulls the class you need out of the System.ServiceModel.PollingDuplex.dll assembly and uses it
to set up a binding extension.

The next step is to find the <bindings> section. Remove the <customBinding> element that’s already
there and add this one instead, which uses the binding extension you just configured:

<pollingDuplexHttpBinding />

Finally, find the <services> section, which defines a single <service>. Remove the first <endpoint>
element inside, and add this instead:

<endpoint address="" binding="pollingDuplexHttpBinding"
 contract="IAsyncTaskService"/>

CHAPTER 19  ASP.NET WEB SERVICES

709

For this to work, you must create the IAsyncTaskService interface, which is the task outlined in the
next section. If you give your service interface a different name, you’ll need to modify this configuration
information to match.

This configures your service to use the duplex binding. Now you’re ready to carry on and add the
web service code.

The Interfaces
For a client application to have a two-way conversation with a web service, the client needs to know
something about the web service, and the web service needs to know something about the client. Before
you begin building any of the actual code, you need to formalize this arrangement by creating the
interfaces that allow this interaction to happen. When calling the service, the client uses the service
interface (which, in this example, is named IAsyncTaskService). When calling the client, the service uses
the client interface (which is named IAsyncTaskClient).

In this example, the server interface consists of single method named SubmitTask(). The client calls
this method to pass the task request to the server.

[ServiceContract(CallbackContract = typeof(IAsyncTaskClient))]
public interface IAsyncTaskService
{
 [OperationContract(IsOneWay = true)]
 void SubmitTask(TaskDescription task);
}

There are two important details to note here. First, the OperationContract that decorates the
SubmitTask() method sets the IsOneWay property to true. This makes it a one-way method. When
calling a one-way method, the client will disconnect after the request message is sent, without waiting
for a response. This also makes the server-side programming model easier. Rather than starting a new
thread or running a timer, the SubmitTask() can carry out its time-consuming work from start to finish,
safe in the knowledge that the client isn’t waiting.

The second important detail is found in the ServiceContract attribute that decorates the interface
declaration. It sets the CallbackContract property to indicate the interface that the client will use. The
client interface also consists of a single one-way method. This method is named ReturnResult(), and the
server calls it to pass back the result to the client when the operation is complete.

[ServiceContract]
public interface IAsyncTaskClient
{
 [OperationContract(IsOneWay = true)]
 void ReturnResult(TaskResult result);
}

These interfaces require two data classes. The TaskDescription class encapsulates the information
in the task request that the client sends to the server. The TaskResult class encapsulates the final,
processed data that the server returns to the client.

[DataContract()]
public class TaskDescription
{
 [DataMember()]
 public string DataToProcess{ get; set; }
}

CHAPTER 19  ASP.NET WEB SERVICES

710

[DataContract()]
public class TaskResult
{
 [DataMember()]
 public string ProcessedData { get; set; }
}

In this example, both classes wrap a single string, and the “processing” consists of reversing the
characters in that string. A more sophisticated example might generate a made-to-order bitmap, look up
an archived document, or perform a statistical analysis of a set of numbers.

The Service
The service implements the IAsyncTaskService and provides the code for the SubmitTask() method. It
isn’t decorated with the ServiceContract attribute (unlike the previous service examples), because that
attribute is already present on the interface.

The actual code in the SubmitTask() method is refreshing simple. As in any other web service
method, it carries out the operation and prepares the return value. The difference is that the return value
is passed by explicitly calling the IAsyncTaskClient.ReturnResult() method.

[AspNetCompatibilityRequirements(RequirementsMode =
AspNetCompatibilityRequirementsMode.Allowed)]
public class AsyncTask : IAsyncTaskService
{
 public void SubmitTask(TaskDescription taskDescription)
 {
 // Simulate some work with a delay.
 Thread.Sleep(TimeSpan.FromSeconds(15));

 // Reverse the letters in string.
 char[] data = taskDescription.DataToProcess.ToCharArray();
 Array.Reverse(data);

 // Prepare the response.
 TaskResult result = new TaskResult();
 result.ProcessedData = new string(data);

 // Send the response to the client.
 try
 {
 IAsyncTaskClient client =
 OperationContext.Current.GetCallbackChannel<IAsyncTaskClient>();
 client.ReturnResult(result);
 }
 catch
 {
 // The client could not be contacted.
 // Clean up any resources here before the thread ends.
 }
 }
}

CHAPTER 19  ASP.NET WEB SERVICES

711

Incidentally, a web service method can call the client.ReturnResult() method multiple times to
return different pieces of data at different times. The connection to the client remains available until the
reference is released (when the method ends and the variable goes out of scope).

The Client
The client code is the easiest piece of the puzzle. First, you need a reference to the
System.ServiceModel.PollingDuplex.dll assembly. However, you can’t use the server-side version.
Instead, you can find the Silverlight version in the folder c:\Program Files (x86)\Microsoft
SDKs\Silverlight\v5.0\Libraries\Client.

Now, when creating the proxy object, you need to explicitly create the duplex binding, as shown in
the code here:

private AsyncTaskServiceClient client;

public MainPage()
{
 InitializeComponent();

 EndpointAddress address = new EndpointAddress("http://localhost:" +
 HtmlPage.Document.DocumentUri.Port + "/DuplexService.Web/AsyncTask.svc");
 PollingDuplexHttpBinding binding = new PollingDuplexHttpBinding();
 client = new AsyncTaskServiceClient(binding, address);
 ...

When consuming an ordinary web service, you attach an event handler to the completed event.
(You get one completed event for each web service method.) Using a duplex service is similar, but you
get one event for each method in the client interface, and the word Received is added to the end instead
of Completed. In the current example, the IAsyncTaskClient interface defines a single method named
ReturnResult(), and so the proxy class includes an event named ReturnResultReceived().

 ...
 client.ReturnResultReceived += client_ReturnResultReceived;
}

Figure 19-7 shows a simple client that allows the user to enter a string of text. When the user clicks
the button, this text is send to the web service, which then processes it asynchronously. When the server
calls the client back, the new information is displayed in a TextBlock underneath.

CHAPTER 19  ASP.NET WEB SERVICES

712

Figure 19-7. Processing text with a duplex service

Here’s the code that makes it all happen:

private void cmdSubmit_Click(object sender, RoutedEventArgs e)
{
 TaskDescription taskDescription = new TaskDescription();
 taskDescription.DataToProcess = txtTextToProcess.Text;
 client.SubmitTaskAsync(taskDescription);
 lblStatus.Text = "Asynchronous request sent to server.";
}

private void client_ReturnResultReceived(object sender,
 ReturnResultReceivedEventArgs e)
{
 try
 {
 lblStatus.Text = "Response received: " + e.result.ProcessedData;
 }
 catch
 {
 lblStatus.Text = "Job processing failed.";
 }
}

From the client’s point of view, the programming model seems quite similar. However, there are
numerous differences:

• The client doesn’t wait for the server’s response but polls for it periodically.

CHAPTER 19  ASP.NET WEB SERVICES

713

• The server can hold onto the client reference for long periods of time and call the
client multiple times before the method ends. The server could even keep the
connection semipermanently or wire up a timer and send intermittent data
refreshes to the client.

• The server can call different client methods from the same web service method. In
fact, the service can call any method that’s defined in the client interface.

 Note Duplex services are not designed for huge numbers of users. By default, duplex services cap themselves
at ten simultaneous connections, but you can override this by using the code shown at
http://tinyurl.com/m9bdn4. But as a general rule, duplex services will perform best with small numbers of
simultaneously connected clients—think dozens, not hundreds.

The Last Word
In this chapter, you explored the interaction between ASP.NET web services and Silverlight. You saw
how to build a basic and more advanced web service, how to monitor the network connection of the
local computer, and how to support two-way web service communication. You’ll build on these
fundamentals in Chapter 20 and Chapter 21, as you explore how you can use a web service to provide
your Silverlight application with information extracted from a server-side database.

http://tinyurl.com/m9bdn4

C H A P T E R 20

715

Data Binding

Data binding is the time-honored tradition of pulling information out of an object and displaying it in
your application’s user interface, without writing the tedious code that does all the work. Often, rich
clients use two-way data binding, which adds the ability to push information from the user interface
back into some object—again, with little or no code.

In Chapter 2, you learned how to use Silverlight data binding to link together two elements so that
changing one affects the other. In this chapter, you’ll learn how to use binding to pull data values out of
an object, display them, format them, and let users edit them. You’ll see how to get information from a
server-side using a web service, how to format it with value converters, and how to shape it with data
templates. You’ll even take a look at validation techniques and the INotifyDataErrorInfo interface.

 What’s New Silverlight 5 introduces several refinements to the data-binding system. First, it adds the
straightforward DataContextChanged event to all elements, so you can tell when a new data object is set. Second,
it adds support for relative source binding, which means you can create a data template that binds to a property in
its parent control. More glamorously, Silverlight 5 gives Visual Studio the ability to debug data binding expressions,
which is a great help for tracking down binding errors (see “Debugging a Data Binding Expression”); and it adds
implicit data templates, which lets your data controls pick the right data template based on the type of object
you’re binding (see “Implicit Data Templates”).

Binding to Data Objects
At its simplest, data binding is a process that tells Silverlight to extract a property value from a source
object and use it to set a property in a target object. The source object can be just about anything, from
an ordinary Silverlight element (as you saw in Chapter 2) to a custom data object (as you’ll see in the
examples in this chapter). The target object must be an instance of a class that derives from
DependencyObject, and the target property must be a dependency property.

Usually, the target of a data binding is an element. This makes sense—after all, the ultimate goal of
most Silverlight data binding is to display some information in your user interface. However, you can
also use data binding to extract information from a source object and insert it in a brush, transform,
bitmap effect, timeline, animation key frame, text element (in a RichTextBox), and more. For a complete

CHAPTER 20  DATA BINDING

716

list of classes that derive from DependencyObject (and are thus valid data binding targets), see the
documentation at http://tinyurl.com/35gu6ph.

Building a Data Object
The best way to try Silverlight’s data-binding features is to create a simple data object. Then, you can use
data-binding expressions to display the data from your data object without writing tedious data-display
code.

A data object is a package of related information. Any class will work as a data object, provided it
consists of public properties. (A data object can also have fields and private properties, but you can’t
extract the information these members contain through data-binding expressions.) Furthermore, if you
want the user to be able to modify a data object through data binding, its properties can’t be read-only.

Here’s a simple data object that encapsulates the information for a single product in a product
catalog:

public class Product
{
 private string modelNumber;
 public string ModelNumber
 {
 get { return modelNumber; }
 set { modelNumber = value; }
 }

 private string modelName;
 public string ModelName
 {
 get { return modelName; }
 set { modelName = value; }
 }

 private double unitCost;
 public double UnitCost
 {
 get { return unitCost; }
 set { unitCost = value; }
 }

 private string description;
 public string Description
 {
 get { return description; }
 set { description = value; }
 }

 public Product(string modelNumber, string modelName,
 double unitCost, string description)
 {
 ModelNumber = modelNumber;
 ModelName = modelName;
 UnitCost = unitCost;
 Description = description;

http://tinyurl.com/35gu6ph

CHAPTER 20  DATA BINDING

717

 }
}

This class uses explicit properties, rather than shorter and slightly more convenient automatic
properties. This design allows you to edit the property procedures later so that you can add support for
change notification and validation.

Displaying a Data Object with DataContext
Consider the simple page shown in Figure 20-1. It shows the information for a single product using
several text boxes in a Grid.

Figure 20-1. Displaying data from a Product object

To build this example, you need some code that creates the Product object you want to display. In
this example, you’ll use code to create a Product object using hard-coded details. Of course, in real life
it’s much more likely that you’ll extract the data from another resource, such as a web service, an XML
document, a file that’s been downloaded from the Web (see Chapter 23), and so on. You’ll explore a
more realistic example that uses a full-fledged web service throughout this chapter, as you dig into data
binding in more detail.

To display the information from a Product object, you can obviously resort to tedious data-copying
code like this:

txtModelNumber = product.ModelNumber;

CHAPTER 20  DATA BINDING

718

This code is lengthy, error-prone, and brittle (for example, you’ll probably need to rewrite it if you
choose to use different display controls). Data binding allows you to move the responsibility for
transferring the data from your C# code to your XAML markup.

To use data binding, you must set the target property using a binding expression. A binding
expression is a markup extension (somewhat like the StaticResource extension you used in Chapter 2).
It’s delineated by curly braces and always starts with the word Binding. The simplest binding expression
that you can create requires one more detail: the name of the property in the source object that has the
data you want to extract.

For example, to access the Product.ModelNumber property, you use a binding expression like this:

{Binding ModelNumber}

And here’s how you use it to set the Text property in a text box:

<TextBox Text="{Binding ModelNumber}"></TextBox>

Using this straightforward technique, it’s easy to build the page shown in Figure 20-1, with its four
binding expressions:

<Grid Name="gridProductDetails">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto"></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"></RowDefinition>
 <RowDefinition Height="Auto"></RowDefinition>
 <RowDefinition Height="Auto"></RowDefinition>
 <RowDefinition Height="Auto"></RowDefinition>
 <RowDefinition Height="*"></RowDefinition>
 </Grid.RowDefinitions>

 <TextBlock Margin="7">Model Number:</TextBlock>
 <TextBox Margin="5" Grid.Column="1"
 Text="{Binding ModelNumber}"></TextBox>
 <TextBlock Margin="7" Grid.Row="1">Model Name:</TextBlock>
 <TextBox Margin="5" Grid.Row="1" Grid.Column="1"
 Text="{Binding ModelName}"></TextBox>
 <TextBlock Margin="7" Grid.Row="2">Unit Cost:</TextBlock>
 <TextBox Margin="5" Grid.Row="2" Grid.Column="1"
 Text="{Binding UnitCost}"></TextBox>
 <TextBlock Margin="7,7,7,0" Grid.Row="3">Description:</TextBlock>
 <TextBox Margin="7" Grid.Row="4" Grid.Column="0" Grid.ColumnSpan="2"
 TextWrapping="Wrap" Text="{Binding Description}"></TextBox>
</Grid>

The binding expressions specify the name of the source property, but they don’t indicate the source
object. You can set the source object in one of two ways: by setting the DataContext property of an
element or by setting the Source property of a binding.

In most situations, the most practical approach is to set the DataContext property, which every
element includes. In the previous example, you could set the DataContext property of all four text boxes.
However, there’s an easier approach. If an element uses a binding expression and its DataContext
property is null (which is the default), the element continues its search up the element tree. This search
continues until the element finds a data object or reaches the top-level container, which is the user

CHAPTER 20  DATA BINDING

719

control that represents the page. In the preceding example, that means you can save considerable effort
by setting the Grid.DataContext property. All the text boxes then use the same data object.

Here’s the code that creates the Product object and sets the Grid.DataContext property when the
page first loads:

private void Page_Loaded(object sender, RoutedEventArgs e)
{
 Product product = new Product("AEFS100", "Portable Defibrillator", 77,
 "Analyzes the electrical activity of a person's heart and applies " +
 "an electric shock if necessary.");
 gridProductDetails.DataContext = product;
}

If you don’t run this code, no information will appear. Even though you’ve defined your bindings,
no source object is available, so the elements in your page will remain blank.

 Tip Usually, you’ll place all your bound controls in the same container, and you’ll be able to set the DataContext
once on the container rather than for each bound element.

Storing a Data Object as a Resource
You have one other option for specifying a data object. You can define it as a resource in your XAML
markup and then alter each binding expression by adding the Source property.

For example, you can create the Product object as a resource using markup like this:

<UserControl.Resources>
 <local:Product x:Key="resourceProduct"
 ModelNumber="AEFS100"
 ModelName="Portable Defibrillator" UnitCost="77"
 Description="Analyzes the electrical activity of a person's heart and applies
an electric shock if necessary.">
 </local:Product>
</UserControl.Resources>

This markup assumes you’ve mapped the project namespace to the XML namespace prefix local.
For example, if the project is named DataBinding, you need to add this attribute to the UserControl start
tag:

xmlns:local="clr-namespace:DataBinding"

To use this object in a binding expression, you need to specify the Source property. To set the
Source property, you use a StaticResource expression that uses the resource’s key name:

<TextBox
 Text="{Binding ModelNumber, Source={StaticResource resourceProduct} }">
</TextBox>

Unfortunately, you must specify the Source property in each data-binding expression. If you need to
bind a significant number of elements to the same data object, it’s easier to set the DataContext property

CHAPTER 20  DATA BINDING

720

of a container. In this situation, you can still use the StaticResource to set the DataContext property,
which allows you to bind a group of nested elements to a single data object that’s defined as a resource:

<Grid Name="gridProductDetails" DataContext="{StaticResource resourceProduct}">

Either way, when you define a data object as a resource, you give up a fair bit of freedom. Although
you can still alter that object, you can’t replace it. If you plan to retrieve the details for your data object
from another source (such as a web service), it’s far more natural to create the data object in code.

Incidentally, the Binding markup extension supports several other properties along with Source,
including Mode (which lets you use two-way bindings to edit data objects) and Converter (which allows
you to modify source values before they’re displayed). You’ll learn about Mode in the next section and
Converter later in this chapter.

Null Values and Failed Bindings
Binding expressions also include two ways to fill in values when your binding doesn’t work exactly the
way you want it to work. First, you can use the TargetNullValue property of the binding to set a default
value that should apply when the bound data is a null reference. Here’s an example:

<TextBox
Text="{Binding ModelName, TargetNullValue='[No Model Name Set]' }">
</TextBox>

Now, if the Product.ModelName property is a null reference, you’ll see the message “[No Model
Name Set]” appear in the bound text box. Without the TargetNullValue setting, no text will appear.

The second tool for dealing with binding problems is the FallbackValue property. This sets a value
that appears when the binding fails to load any data. Here’s an example:

<TextBox
Text="{Binding ModelName, TargetNullValue='[No Model Name Set]',
FallbackValue='N/A' }">
</TextBox>

Now, the text “N/A” appears in the text box if the entire bound object is null or if it doesn’t contain a
ModelName property. The “[No Model Name Set]” text appears if the object exists but the value of the
ModelName property is null.

Editing with Two-Way Bindings
At this point, you may wonder what happens if the user changes the bound values that appear in the text
controls. For example, if the user types in a new description, is the in-memory Product object changed?

To investigate what happens, you can use code like this that grabs the current Product object from
the DataContext and displays its properties in a TextBlock:

Product product = (Product)gridProductDetails.DataContext;

lblCheck.Text = "Model Name: " + product.ModelName + "\nModel Number: " +
 product.ModelNumber + "\nUnit Cost: " + product.UnitCost;

If you run this code, you’ll discover that changing the displayed values has no effect. The Product
object remains in its original form.

CHAPTER 20  DATA BINDING

721

This behavior results because binding expressions use one-way binding by default. However,
Silverlight actually allows you to use one of three values from the System.Windows.Data.BindingMode
enumeration when setting the Binding.Mode property. Table 20-1 has the full list.

Table 20-1. Values from the BindingMode Enumeration

Name Description

OneWay The target property is updated when the source property changes.

TwoWay The target property is updated when the source property changes, and the source property
is updated when the target property changes.

OneTime The target property is set initially based on the source property value. However, changes are
ignored from that point onward. Usually, you use this mode to reduce overhead if you know
the source property won’t change.

If you change one or more of your bindings to use two-way binding, the changes you make in the

text box are committed to the in-memory object as soon as the focus leaves the text box (for example, as
soon as you move to another control or click a button).

<TextBox Text="{Binding UnitCost, Mode=TwoWay}"></TextBox>

 Note When you use two-way binding with a text box, the in-memory data object isn’t modified until the text box
loses focus. However, other elements perform their updates immediately. For example, when you make a selection
in a list box, move the thumb in a slider, or change the state of a check box, the source object is modified
immediately.

In some situations, you need to control exactly when the update is applied. For example, you may
need to have a text box apply its changes as the user types, rather than wait for a focus change. In this
situation, you need to do the job manually by calling the BindingExpression.UpdateSource() method in
code. Here’s the code that forces the text box to update the source data object every time the user enters
or edits the text:

private void txtUnitCost_TextChanged(object sender, TextChangedEventArgs e)
{
 BindingExpression expression =
 txtUnitCost.GetBindingExpression(TextBox.TextProperty);
 expression.UpdateSource();
}

If you reach the point where all your updates are being made through code, you can disable
Silverlight’s automatic updating system using the UpdateSourceTrigger property of the Binding object,
as shown here:

<TextBox Text=

CHAPTER 20  DATA BINDING

722

 "{Binding UnitCost, Mode=TwoWay, UpdateSourceTrigger=Explicit}"></TextBox>

Silverlight supports only two values for UpdateSourceTrigger: Default and Explicit. It isn’t possible
to choose PropertyChanged (as it is in WPF). But with a little code and the UpdateSource() method, you
can ensure that updates occur whenever you need.

 Note Once you allow someone to edit bound data, you need to think about how you want to catch mistakes and
deal with invalid data. Later in this chapter, in the “Validation” section, you’ll learn about the many options
Silverlight provides for preventing problems with data entry.

Change Notification
In some cases, you may want to modify a data object after it’s been bound to one or more elements. For
example, consider this code, which increases the current price by 10%:

Product product = (Product)gridProductDetails.DataContext;
product.UnitCost *= 1.1;

 Note If you plan to modify a bound object frequently, you don’t need to retrieve it from the DataContext
property each time. A better approach is to store it using a field in your page, which simplifies your code and
requires less type casting.

This code won’t have the effect you want. Although the in-memory Product object is modified, the
change doesn’t appear in the bound controls. That’s because a vital piece of infrastructure is missing—
quite simply, there’s no way for the Product object to notify the bound elements.

To solve this problem, your data class needs to implement the
System.ComponentModel.INotifyPropertyChanged interface. The INotifyPropertyChanged interface
defines a single event, which is named PropertyChanged. When a property changes in your data object,
you must raise the PropertyChanged event and supply the property name as a string.

Here’s the definition for a revamped Product class that uses the INotifyPropertyChanged interface,
with the code for the implementation of the PropertyChanged event:

public class Product : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;
 public void OnPropertyChanged(PropertyChangedEventArgs e)
 {
 if (PropertyChanged != null)
 PropertyChanged(this, e);
 }

 ...
}

CHAPTER 20  DATA BINDING

723

Now, you need to fire the PropertyChanged event in all your property setters:

private double unitCost;
public double UnitCost
{
 get { return unitCost; }
 set {
 unitCost = value;
 OnPropertyChanged(new PropertyChangedEventArgs("UnitCost"));
 }
}

If you use this version of the Product class in the previous example, you get the behavior you expect.
When you change the current Product object, the new information appears in the bound text boxes
immediately.

 Tip If several values have changed, you can call OnPropertyChanged() and pass in an empty string. This tells
Silverlight to reevaluate the binding expressions that are bound to any property in your class.

Debugging a Data Binding Expression
Data binding mistakes are easy to make but more difficult to catch. For example, if you bind to a
property that doesn’t exist, you won’t get a helpful compile-time error to point out your mistake.
Instead, you’ll simply end up with a blank text box where you expect to see your data. The same is true if
the property is private or if the property getter throws an exception. Similarly, edits fail if the property
setter throws an exception or Silverlight fails to convert the edited value to the appropriate data type.

If a data binding error is the result of a user’s edit, you may not be able to prevent the problem.
Instead, you can use validation (discussed later in this chapter) to identify the error and notify the user.
But if the problem is the result of a mistake in your code, it’s obviously up to you to hunt it down and fix
it before your application goes any further.

Fortunately, Silverlight has a handy debugging feature that lets you dissect data-binding problems.
To use it, you start by setting a breakpoint on a troublemaking binding expression. To do that, you open
your XAML file in Visual Studio and click the margin next to your binding expression, as shown in Figure
20-2.

CHAPTER 20  DATA BINDING

724

Figure 20-2. Adding a data-binding breakpoint

Now, Visual Studio will enter break mode immediately after it executes the binding expression but
before it displays the results. At this point, you can investigate the binding information or press F5 to
continue running your application. If you want to examine several binding expressions, you can set
several breakpoints at the same time.

The best tool for investigating your binding is the Locals window. When you hit a data-binding
breakpoint, the Locals window shows the BindingState object. If you expand that object, you’ll see a
number of useful properties (Figure 20-3). For example, the Action property tells you exactly why the
binding expression is being called. If it’s set to UpdatingTarget, the binding expression is about to place
a value in the bound control. If it’s set to UpdatingSource, the binding expression is about to apply a
user-edited value to the data source. Similarly, you can examine the LastCompletedStage property to
determine what happened before the breakpoint was triggered. For example, if the LastCompletedStage
is set to TypeConversion and your binding expression is showing an error, it’s logical to assume that the
data conversion was the problem.

CHAPTER 20  DATA BINDING

725

Figure 20-3. Investigating the BindingState

The most useful BindingState property, by far, is the Error property. It provides an exception object
that details the current problem, if there is one. Figure 20-3 shows what you’ll see if you create a binding
to a property that doesn’t exist and set a breakpoint on it. The full error text is as follows:

System.Windows.Data Error: BindingExpression path error:
 'Model_Number' property not found on 'Portable Defibrillator (AEFS100)'
 'DataBinding.Local.Product' (HashCode=49011679).
 BindingExpression: Path='Model_Number'
 DataItem='Portable Defibrillator (AEFS100)' (HashCode=49011679);
 target element is 'System.Windows.Controls.TextBox' (Name='');
 target property is 'Text' (type 'System.String').

Here, the problem is that the real ModelNumber field doesn’t have an underscore. Clearly, getting
this information is better than staring at a blank text box.

 Note Data-binding expressions are evaluated only if there’s an actual bound data object. If your data object is a
null value, Silverlight won’t take any action, and your breakpoint won’t be triggered. However, you can use the
FallbackValue property to substitute a different value, as described earlier.

CHAPTER 20  DATA BINDING

726

Building a Data Service
Although the examples you’ve seen so far have walked you through the basic details of Silverlight data
binding, they haven’t been entirely realistic. A more typical design is for your Silverlight application to
retrieve the data objects it needs from an external source, such as a web service. In the examples you’ve
seen so far, the difference is minimal. However, it’s worth stepping up to a more practical example
before you begin binding to collections. After all, it makes more sense to get your data from a database
than to construct dozens or hundreds of Product objects in code.

In the examples in this chapter, you’ll rely on a straightforward data service that returns Product
objects. You’ve already learned to create a WCF service (and consume it) in Chapter 19. Building a data
service is essentially the same.

The first step is to move the class definition for the data object to the ASP.NET website. (If you’re
creating a projectless website, you must place the code file in the App_Code folder. If you’re creating a
web project, you can place it anywhere.) The data object needs a few modifications: the addition of the
DataContract and DataMember attributes to make it serializable and the addition of a public no-
argument constructor that allows it to be serialized. Here’s a partial listing of the code, which shows you
the general outline you need:

[DataContract()]
public class Product : INotifyPropertyChanged
{
 private string modelNumber;

 [DataMember()]
 public string ModelNumber
 {
 get { return modelNumber; }
 set
 {
 modelNumber = value;
 OnPropertyChanged(new PropertyChangedEventArgs("ModelNumber"));
 }
 }

 private string modelName;

 [DataMember()]
 public string ModelName
 {
 get { return modelName; }
 set
 {
 modelName = value;
 OnPropertyChanged(new PropertyChangedEventArgs("ModelName"));
 }
 }
 ...

 public Product(){}
}

CHAPTER 20  DATA BINDING

727

WEB SERVICES AND INOTIFYPROPERTYCHANGED

When you define data classes with a web service, you get Silverlight change notification for free. That’s
because when Visual Studio generates the client-side copy of a data class, it automatically implements the
INotifyPropertyChanged interface, even if the server-side original doesn’t.

For example, if you define a super-simple Product class like this:

[DataContract()]
public class Product : INotifyPropertyChanged
{

 [DataMember()]
 public string ModelNumber { get; set; }

 [DataMember()]
 public string ModelName { get; set; }

 [DataMember()]
 public decimal UnitCost { get; set; }

 [DataMember()]
 public string Description{ get; set; }
}

the client-side copy still implements INotifyPropertyChanged, has full property procedures, and calls
OnPropertyChanged() when to raise a notification event when any property changes.

You can inspect the client-side code for the data class by opening the Reference.cs file in your Silverlight
project. (This file is hidden, so to see it, you need to first click the Show All Files button in the Solution
Explorer. You’ll find it in the Solution Explorer if you drill down. For example, the Product class in the
current example is in Solution Explorer  Service References  DataService  Reference.svcmap 
Reference.cs.)

This design raises a good question—namely, if INotifyPropertyChanged is implemented automatically in
the client, should you even bother to implement it on the server? This decision is a matter of personal
preference. Some developers feel that explicitly implementing the interface on the server side is clearer,
while others don’t bother because change notification is a client-side feature that’s rarely used on the
server.

Finally, it’s worth noting that you can disable this feature and tell Visual Studio not to use
INotifyPropertyChanged when it generates client-side data classes. To do so, you must edit the
Reference.svcmap file in your Silverlight property. Just look for the <EnableDataBinding> element, and
change its content from “true” to “false”. However, there’s really no good reason to take this step.

With the data object in place, you need a web service method that uses it. The web service class is

exceedingly simple—it provides just a single method that allows the caller to retrieve one product
record. Here’s the basic outline:

[ServiceContract(Namespace = "")]

CHAPTER 20  DATA BINDING

728

[AspNetCompatibilityRequirements(RequirementsMode =
 AspNetCompatibilityRequirementsMode.Allowed)]
public class StoreDb
{
 private string connectionString =
 WebConfigurationManager.ConnectionStrings["StoreDb"].ConnectionString;

 [OperationContract()]
 public Product GetProduct(int ID)
 {
 ...
 }
}

The query is performed through a stored procedure in the database named GetProduct. The
connection string isn’t hard-coded—instead, it’s retrieved through a setting in the web.config file, which
makes it easy to modify this detail later. Here’s the section of the web.config file that defines the
connection string:

<configuration>
 ...
 <connectionStrings>
 <add name="StoreDb" connectionString=
 "Data Source=localhost;Initial Catalog=Store;Integrated Security=True" />
 </connectionStrings>
 ...
</configuration>

The database component that’s shown in the following example retrieves a table of product
information from the Store database, which is a sample database for the fictional IBuySpy store included
with some Microsoft case studies. You can get a script to install this database with the downloadable
samples for this chapter (or you can use an alternative version that grabs the same information from an
XML file).

In this book, we’re primarily interested in how data objects can be bound to Silverlight elements.
The actual process that deals with creating and filling these data objects (as well as other
implementation details, such as whether StoreDb caches the data over several method calls, whether it
uses stored procedures instead of inline queries, and so on) isn’t our focus. However, just to get an
understanding of what’s taking place, here’s the complete code for the data service:

[ServiceContract(Namespace = "")]
[AspNetCompatibilityRequirements(RequirementsMode =
 AspNetCompatibilityRequirementsMode.Allowed)]
public class StoreDb
{
 private string connectionString =
 WebConfigurationManager.ConnectionStrings["StoreDb"].ConnectionString;

 [OperationContract()]
 public Product GetProduct(int ID)
 {
 SqlConnection con = new SqlConnection(connectionString);
 SqlCommand cmd = new SqlCommand("GetProductByID", con);
 cmd.CommandType = CommandType.StoredProcedure;

CHAPTER 20  DATA BINDING

729

 cmd.Parameters.AddWithValue("@ProductID", ID);

 try
 {
 con.Open();
 SqlDataReader reader = cmd.ExecuteReader(CommandBehavior.SingleRow);
 if (reader.Read())
 {
 // Create a Product object that wraps the
 // current record.
 Product product = new Product((string)reader["ModelNumber"],
 (string)reader["ModelName"],
 Convert.ToDouble(reader["UnitCost"]),
 (string)reader["Description"]);
 return product;
 }
 else
 {
 return null;
 }
 }
 finally
 {
 con.Close();
 }
 }
}

 Note Currently, the GetProduct() method doesn’t include any exception-handling code, so exceptions will
bubble up the calling code. This is a reasonable design choice, but you may want to catch the exception in
GetProduct(), perform cleanup or logging as required, and then rethrow the exception to notify the calling code of
the problem. This design pattern is called caller inform.

Using the ADO.NET objects directly (as in this example) is a simple, clean way to write the code for a
data service. Generally, you won’t use ADO.NET’s disconnected data objects, such as the DataSet,
because Silverlight doesn’t include these classes and so can’t manipulate them.

Calling a Data Service
To use a data service, you need to begin by adding a web reference in your Silverlight project, a basic
step that’s covered in Chapter 19. Once that’s taken care of, you’re ready to use the automatically
generated web service code in your application. In this case, it’s a class named StoreDbClient.

Figure 20-4 shows a Silverlight page that lets the user retrieve the details about any product.

CHAPTER 20  DATA BINDING

730

Figure 20-4. Retrieving product data from a web service

When the user clicks Get Product, this code runs:

private void cmdGetProduct_Click(object sender, RoutedEventArgs e)
{
 // Set the URL, taking the port of the test web server into account.
 StoreDbClient client = new StoreDbClient();

 // Call the service to get the Product object.
 client.GetProductCompleted += client_GetProductCompleted;
 client.GetProductAsync(356);
}

When the web service returns its data, you need to set the DataContext property of the container, as
in previous examples:

private void client_GetProductCompleted(object sender,
 GetProductCompletedEventArgs e)
{
 try
 {

CHAPTER 20  DATA BINDING

731

 gridProductDetails.DataContext = e.Result;
 }
 catch (Exception err)
 {
 lblError.Text = "Failed to contact service.";
 }
}

If you want to allow the user to make database changes, you need to use two-way bindings (so the
Product object can be modified), and you need to add a web service method that accepts a changed
object and uses it to commit databases changes (for example, an UpdateProduct() method).

Binding to a Collection of Objects
Binding to a single object is straightforward. But life gets more interesting when you need to bind to
some collection of objects—for example, all the products in a table.

Although every dependency property supports the single-value binding you’ve seen so far,
collection binding requires an element with a bit more intelligence. In Silverlight, every control that
displays a list of items derives from ItemsControl. To support collection binding, the ItemsControl class
defines the key properties listed in Table 20-2.

Table 20-2. Properties in the ItemsControl Class for Data Binding

Name Description

ItemsSource Points to the collection that has all the objects that will be shown in the list.

DisplayMemberPath Identifies the property that will be used to create the display text for each item.

ItemTemplate Provides a data template that will be used to create the visual appearance of
each item. This property acts as a far more powerful replacement for
DisplayMemberPath.

ItemsPanel Provides a template that will be used to create the layout container that holds all
the items in the list.

At this point, you’re probably wondering what types of collections you can stuff in the ItemsSource

property. Happily, you can use just about anything. All you need is support for the IEnumerable
interface, which is provided by arrays, all types of collections, and many more specialized objects that
wrap groups of items. However, the support you get from a basic IEnumerable interface is limited to
read-only binding. If you want to edit the collection (for example, you want to allow inserts and
deletions), you need a bit more infrastructure, as you’ll see shortly.

Displaying and Editing Collection Items
Consider the page shown in Figure 20-5, which displays a list of products. When you choose a product,
the information for that product appears in the bottom section of the page, where you can edit it. (In this
example, a GridSplitter control lets you adjust the space given to the top and bottom portions of the
page.)

CHAPTER 20  DATA BINDING

732

Figure 20-5. A list of products

To create this example, you need to begin by building your data-access logic. In this case, the
StoreDb.GetProducts() method retrieves the list of all the products in the database using the
GetProducts stored procedure. A Product object is created for each record and added to a generic List
collection. (You can use any collection here—for example, an array or a weakly typed ArrayList would
work equivalently.)

Here’s the GetProducts() code:

[OperationContract()]
public List<Product> GetProducts()

CHAPTER 20  DATA BINDING

733

{
 SqlConnection con = new SqlConnection(connectionString);
 SqlCommand cmd = new SqlCommand("GetProducts", con);
 cmd.CommandType = CommandType.StoredProcedure;

 List<Product> products = new List<Product>();
 try
 {
 con.Open();
 SqlDataReader reader = cmd.ExecuteReader();
 while (reader.Read())
 {
 // Create a Product object that wraps the
 // current record.
 Product product = new Product((string)reader["ModelNumber"],
 (string)reader["ModelName"], Convert.ToDouble(reader["UnitCost"]),
 (string)reader["Description"], (string)reader["CategoryName"]);

 // Add to collection
 products.Add(product);
 }
 }
 finally
 {
 con.Close();
 }
 return products;
}

When the user clicks the Get Products button, the event-handling code calls the GetProducts()
method asynchronously:

private void cmdGetProducts_Click(object sender, RoutedEventArgs e)
{
 StoreDbClient client = new StoreDbClient();

 client.GetProductsCompleted += client_GetProductsCompleted;
 client.GetProductsAsync();
}

When the product list is received from the web service, the code stores the collection as a member
variable in the page class for easier access elsewhere in your code. The code then sets that collection as
the ItemsSource for the list:

private ObservableCollection[] products;

private void client_GetProductsCompleted(object sender,
 GetProductsCompletedEventArgs e)
{
 try
 {
 products = e.Result;
 lstProducts.ItemsSource = products;

CHAPTER 20  DATA BINDING

734

 }
 catch (Exception err)
 {
 lblError.Text = "Failed to contact service.";
 }
}

 Note Keen eyes will notice one unusual detail in this example. Although the web service returned an array of
Product objects, the client applications receives them in a different sort of package: the ObservableCollection.
You’ll learn why Silverlight performs this sleight of hand in the next section.

This code successfully fills the list with Product objects. However, the list doesn’t know how to
display a Product object, so it calls the ToString() method. Because this method hasn’t been overridden
in the Product class, this has the unimpressive result of showing the fully qualified class name for every
item (see Figure 20-6).

Figure 20-6. An unhelpful bound list

CHAPTER 20  DATA BINDING

735

You have three options to solve this problem:

• Set the list’s DisplayMemberPath property: For example, set it to ModelName to get
the result shown in Figure 20-5.

• Override the Product.ToString() method to return more useful information: For
example, you can return a string with the model number and model name of each
item. This approach gives you a way to show more than one property in the list
(for example, it’s great for combining the FirstName and LastName properties in a
Customer class).

• Supply a data template: This way, you can show any arrangement of property
values (and along with fixed text). You’ll learn how to use this trick later in this
chapter.

When you’ve decided how to display information in the list, you’re ready to move on to the second
challenge: displaying the details for the currently selected item in the grid that appears below the list. To
make this work, you need to respond to the SelectionChanged event and change the DataContext of the
Grid that contains the product details. Here’s the code that does it:

private void lstProducts_SelectionChanged(object sender,
 SelectionChangedEventArgs e)
{
 gridProductDetails.DataContext = lstProducts.SelectedItem;
}

 Tip To prevent a field from being edited, set the TextBox.IsReadOnly property to true or, better yet, use a read-
only control like a TextBlock.

If you try this example, you’ll be surprised to see that it’s already fully functional. You can edit
product items, navigate away (using the list), and then return to see that your edits were successfully
committed to the in-memory data objects. You can even change a value that affects the display text in
the list. If you modify the model name and tab to another control, the corresponding entry in the list is
refreshed automatically.

But there’s one quirk. Changes are committed only when a control loses focus. If you change a value
in a text box and then move to another text box, the data object is updated just as you’d expect.
However, if you change a value and then click a new item in the list, the edited value is discarded, and
the information from the selected data object is loaded. If this behavior isn’t what you want, you can add
code that explicitly forces a change to be committed. Unlike WPF, Silverlight has no direct way to
accomplish this. Your only option is to programmatically send the focus to another control (if necessary,
an invisible one) by calling its Focus() method. This commits the change to the data object. You can then
bring the focus back to the original text box by calling its Focus() method. You can use this code when
reacting to TextChanged, or you can add a Save or Update button. If you use the button approach, no
code is required, because clicking the button changes the focus and triggers the update automatically.

CHAPTER 20  DATA BINDING

736

Inserting and Removing Collection Items
As you saw in the previous section, Silverlight performs a change when it generates the client-side code
for communicating with a web service. Your web service may return an array or List collection, but the
client-side code places the objects into an ObservableCollection. The same translation step happens if
you return an object with a collection property.

This shift takes place because the client doesn’t really know what type of collection the web server is
returning. Silverlight assumes that it should use an ObservableCollection to be safe, because an
ObservableCollection is more fully featured than an array or an ordinary List collection.

So, what does the ObservableCollection add that arrays and List objects lack? First, like the List, the
ObservableCollection has support for adding and removing items. For example, you try deleting an item
with a Delete button that executes this code:

private void cmdDeleteProduct_Click(object sender, RoutedEventArgs e)
{
 products.Remove((Product)lstProducts.SelectedItem);
}

This obviously doesn’t work with an array. It does work with a List collection, but there’s a problem:
although the deleted item is removed from the collection, it remains stubbornly visible in the bound list.

To enable collection change tracking, you need to use a collection that implements the
INotifyCollectionChanged interface. In Silverlight, the only collection that meets this bar is the
ObservableCollection class. When you execute the previous code with an ObservableCollection like the
collection of products returned from the web service, you’ll see the bound list is refreshed immediately.
Of course, it’s still up to you to create the data-access code that can commit changes like these
permanently—for example, the web service methods that insert and remove products from the back-
end database.

Binding to a LINQ Expression
One of Silverlight’s many surprises is its support for Language Integrated Query, which is an all-purpose
query syntax that was introduced in .NET 3.5.

LINQ works with any data source that has a LINQ provider. Using the support that’s included with
Silverlight, you can use similarly structured LINQ queries to retrieve data from an in-memory collection
or an XML file. And as with other query languages, LINQ lets you apply filtering, sorting, grouping, and
transformations to the data you retrieve.

Although LINQ is somewhat outside the scope of this chapter, you can learn a lot from a simple
example. For example, imagine you have a collection of Product objects named products, and you want
to create a second collection that contains only those products that exceed $100 in cost. Using
procedural code, you can write something like this:

// Get the full list of products.
List<Product> products = App.StoreDb.GetProducts();

// Create a second collection with matching products.
List<Product> matches = new List<Product>();
foreach (Product product in products)
{
 if (product.UnitCost >= 100)
 {
 matches.Add(product);
 }

CHAPTER 20  DATA BINDING

737

}

Using LINQ, you can use the following expression, which is far more concise:

// Get the full list of products.
List<Product> products = App.StoreDb.GetProducts();

// Create a second collection with matching products.
IEnumerable<Product> matches = from product in products
 where product.UnitCost >= 100
 select product;

This example uses LINQ to Objects, which means it uses a LINQ expression to query the data in an
in-memory collection. LINQ expressions use a set of new language keywords, including from, in, where,
and select. These LINQ keywords are a genuine part of the C# language.

 Note A full discussion of LINQ is beyond the scope of this book. For a detailed treatment, you can refer to the
book Pro LINQ: Language Integrated Query in C# 2010, the LINQ developer center at
http://msdn.microsoft.com/netframework/aa904594.aspx, or the huge catalog of LINQ examples at
http://msdn.microsoft.com/vcsharp/aa336746.aspx.

LINQ revolves around the IEnumerable<T> interface. No matter what data source you use, every
LINQ expression returns some object that implements IEnumerable<T>. Because IEnumerable<T>
extends IEnumerable, you can bind it in a Silverlight page just as you bind an ordinary collection (see
Figure 20-7):

lstProducts.ItemsSource = matches;

http://msdn.microsoft.com/netframework/aa904594.aspx
http://msdn.microsoft.com/vcsharp/aa336746.aspx

CHAPTER 20  DATA BINDING

738

Figure 20-7. Filtering a collection with LINQ

Unlike the List and ObservableCollection classes, the IEnumerable<T> interface doesn’t provide a
way to add or remove items. If you need this capability, you must first convert your IEnumerable<T>
object into an array or List collection using the ToArray() or ToList() method.

Here’s an example that uses ToList() to convert the result of a LINQ query (shown previously) into a
strongly typed List collection of Product objects:

List<Product> productMatches = matches.ToList();

CHAPTER 20  DATA BINDING

739

 Note ToList() is an extension method, which means it’s defined in a different class from the one in which it’s
used. Technically, ToList() is defined in the System.Linq.Enumerable helper class, and it’s available to all
IEnumerable<T> objects. However, it isn’t available if the Enumerable class isn’t in scope, which means the code
shown here won’t work if you haven’t imported the System.Linq namespace.

The ToList() method causes the LINQ expression to be evaluated immediately. The end result is an
ordinary List collection, which you can deal with in all the usual ways. If you want to make the collection
editable so that changes show up in bound controls immediately, you’ll need to copy the contents of the
List to a new ObservableCollection.

Master-Details Display
As you’ve seen, you can bind other elements to the SelectedItem property of your list to show more
details about the currently selected item. Interestingly, you can use a similar technique to build a
master-details display of your data. For example, you can create a page that shows a list of categories
and a list of products. When the user chooses a category in the first list, you can show just the products
that belong to that category in the second list. Figure 20-8 shows this example.

Figure 20-8. A master-details list

CHAPTER 20  DATA BINDING

740

To pull this off, you need a parent data object that provides a collection of related child data objects
through a property. For example, you can build a Category class that provides a property named
Category.Products with the products that belong to that category. Like the Product class, the Category
class can implement the INotifyPropertyChanged to provide change notifications. Here’s the complete
code:

public class Category : INotifyPropertyChanged
{
 private string categoryName;
 public string CategoryName
 {
 get { return categoryName; }
 set { categoryName = value;
 OnPropertyChanged(new PropertyChangedEventArgs("CategoryName"));
 }
 }

 private List<Product> products;
 public List<Product> Products
 {
 get { return products; }
 set { products = value;
 OnPropertyChanged(new PropertyChangedEventArgs("Products"));
 }
 }

 public event PropertyChangedEventHandler PropertyChanged;
 public void OnPropertyChanged(PropertyChangedEventArgs e)
 {
 if (PropertyChanged != null)
 PropertyChanged(this, e);
 }

 public Category(string categoryName, List<Product> products)
 {
 CategoryName = categoryName;
 Products = products;
 }

 public Category(){}
}

To use the Category class, you also need to modify the data-access code that you saw earlier. Now,
you query the information about products and categories from the database. The example in Figure 20-8
uses a web service method named GetCategoriesWithProducts(), which returns a collection of Category
objects, each of which has a nested collection of Product objects:

[OperationContract()]
public List<Category> GetCategoriesWithProducts()
{
 // Perform the query for products using the GetProducts stored procedure.
 SqlConnection con = new SqlConnection(connectionString);
 SqlCommand cmd = new SqlCommand("GetProducts", con);

CHAPTER 20  DATA BINDING

741

 cmd.CommandType = CommandType.StoredProcedure;

 // Store the results (temporarily) in a DataSet.
 SqlDataAdapter adapter = new SqlDataAdapter(cmd);
 DataSet ds = new DataSet();
 adapter.Fill(ds, "Products");

 // Perform the query for categories using the GetCategories stored procedure.
 cmd.CommandText = "GetCategories";
 adapter.Fill(ds, "Categories");

 // Set up a relation between these tables.
 // This makes it easier to discover the products in each category.
 DataRelation relCategoryProduct = new DataRelation("CategoryProduct",
 ds.Tables["Categories"].Columns["CategoryID"],
 ds.Tables["Products"].Columns["CategoryID"]);
 ds.Relations.Add(relCategoryProduct);

 // Build the collection of Category objects.
 List<Category> categories = new List<Category>();
 foreach (DataRow categoryRow in ds.Tables["Categories"].Rows)
 {
 // Add the nested collection of Product objects for this category.
 List<Product> products = new List<Product>();
 foreach (DataRow productRow in categoryRow.GetChildRows(relCategoryProduct))
 {
 products.Add(new Product(productRow["ModelNumber"].ToString(),
 productRow["ModelName"].ToString(),
 Convert.ToDouble(productRow["UnitCost"]),
 productRow["Description"].ToString()));
 }
 categories.Add(new Category(categoryRow["CategoryName"].ToString(),
 products));
 }
 return categories;
}

To display this data, you need the two lists shown here:

<ListBox x:Name="lstCategories" DisplayMemberPath="CategoryName"
 SelectionChanged="lstCategories_SelectionChanged"></ListBox>
<ListBox x:Name="lstProducts" Grid.Row="1" DisplayMemberPath="ModelName">
</ListBox>

After you receive the collection from the GetCategoriesWithProducts() method, you can set the
ItemsSource of the topmost list to show the categories:

lstCategories.ItemsSource = e.Result;

To show the related products, you must react when an item is clicked in the first list and then set the
ItemsSource property of the second list to the Category.Products property of the selected Category
object:

lstProducts.ItemsSource = ((Category)lstCategories.SelectedItem).Products;

CHAPTER 20  DATA BINDING

742

Alternatively, you can perform this step using another binding expression in XAML, rather than
code. The trick is to use the SelectedValuePath property, which is provided by the ListBox and
ComboBox.

Essentially, the SelectedValuePath tells the list control to expose a specific property of the bound
object through the SelectedValue property of the list. If you’ve bound a collection of Category objects,
you can tell the ListBox to provide the Category.Products collection through the ListBox.SelectedValue
property like this:

<ListBox x:Name="lstCategories" DisplayMemberPath="CategoryName"
 SelectedValuePath="Products"></ListBox>

Then you can use the SelectedValuePath to write a binding expression for the second list box:

<ListBox x:Name="lstProducts" Grid.Row="1" DisplayMemberPath="ModelName"
 ItemsSource="{Binding ElementName=lstCategories, Path=SelectedValue}">
</ListBox>

Now, selected a category in the first list box causes the list of products to appear in the second list
box, with no code required.

 Note In this example, the full category and product information is downloaded from the web service at once.
But if your application uses a much larger product catalog and most users need to view only one or two
categories, you might be better off downloading just the subset of products you want to view. In this case, you
would react to the SelectionChanged event of the category list box and retrieve the CategoryID of the currently
selected category (using the SelectedItem or SelectedValue property). Then, you would perform a new web service
call to get the products in that category. But be warned—this scenario can multiply the work the database server
needs to perform and slow down your application. You’ll need to weight the trade-offs carefully and (at the very
least) consider caching product information in the client after it’s downloaded for the first time.

Validation
When the Silverlight data-binding system encounters invalid data, it usually ignores it. For example,
consider the following list, which details the three types of errors that can occur when you’re editing a
two-way field:

• Incorrect data type: For example, a numeric property like UnitCost can’t
accommodate letters or special characters. Similarly, it can’t hold extremely large
numbers (numbers larger than 1.79769313486231570E+308).

• Property setter exception: For example, a property like UnitCost may use a range
check and throw an exception if you attempt to set a negative number.

• Read-only property: This can’t be set at all.

If you run into these errors, you’re likely to miss them, because the Silverlight data-binding system
doesn’t give you any visual feedback. The incorrect value remains in the bound control, but it’s never
applied to the bound object.

CHAPTER 20  DATA BINDING

743

To avoid confusion, it’s a good idea to alert users to their mistakes as soon as possible. In the
following sections, you’ll learn how to respond to these issues and design data objects that have built-in
validation.

Error Notifications
The first step to implementing error notifications is to set the ValidatesOnExceptions property of the
binding to true. This tells the data-binding system to pay attention to all errors, whether they occur in
the type converter or the property setter. But when ValidatesOnException is set to false (the default), the
data-binding system fails silently when it hits these conditions. The data object isn’t updated, but the
offending value remains in the bound control.

Here’s an example that applies this property to the binding for UnitCost:

<TextBox Margin="5" Grid.Row="2" Grid.Column="1" x:Name="txtUnitCost"
 Text="{Binding UnitCost, Mode=TwoWay, ValidatesOnExceptions=True}"></TextBox>

This simple change gives your application the ability to catch and display errors, provided you’re
using two-way data binding with a control that supports the ValidationState group of control states.
These are some of the controls that support this feature (with no extra work required):

• TextBox

• PasswordBox

• CheckBox

• RadioButton

• ListBox

• ComboBox

In Chapter 14, you learned that control states are animations that change the way a control looks at
certain times. In the case of validation, a control must support three states: Valid, InvalidUnfocused, and
InvalidFocused. Together, these states make up the ValidationState group, and they allow a control to
vary its appearance when it contains invalid data.

To understand how this works, it helps to consider the simple example of a text box with invalid
data. First, consider a version of the Product class that uses this code to catch negative prices and raise
an exception:

private double unitCost;
public double UnitCost
{
 get { return unitCost; }
 set
 {
 if (value < 0) throw new ArgumentException("Can't be less than 0.");
 unitCost = value;
 }
}

Now, consider what happens if the user enters a negative number. In this case, the property setter
will throw an ArgumentException. BecauseValidatesOnException is set to true, this exception is caught

CHAPTER 20  DATA BINDING

744

by the data-binding system, which then switches the ValidationState of the text box from Valid to
InvalidFocused (if the text box currently has focus) or InvalidUnfocused (if the text box doesn’t).

 Tip If you have Visual Studio set to break an all exceptions, Visual Studio will notify you when the
ArgumentException is thrown and switch into break mode. To carry on and see what happens when the exception
reaches the data-binding system, choose Debug  Continue or just press the shortcut key F5.

In the unfocused state, the text box gets a dark red border with an error-notification icon (a tiny red
triangle) in the upper-right corner. In its focused state, or when the user moves the mouse over the error
icon, the exception message text appears in a pop-up red alert balloon. Figure 20-9 shows both states.

Figure 20-9. The InvalidUnfocused state (left) and InvalidFocused state (right) of a text box

 Note For the red pop-up balloon to appear properly, sufficient space must be available between the text box
and the edges of the browser window. If there is space on the right side of the text box, the balloon appears there.
If not, it appears on the left. The balloon appears on top of any other elements that are in the same place, such as
buttons or labels. However, it can’t stretch out of the browser window. In the example shown in Figure 20-9, the
width of the UnitPrice text box is limited to make sure there is room on the right side. Finally, if the message is too
long to fit in the available space, part of it is chopped off.

CHAPTER 20  DATA BINDING

745

At first glance, the error pop-ups seem easy and incredibly useful. Because the control takes care of
the visual details, you simply need to worry about reporting helpful error messages. But there is a
disadvantage to wiring the validation display into the control template: if you want to change the way a
control displays error messages (or disable error display altogether), you need to replace the entire
control template, making sure to include all the other unrelated states and markup details. And as you
already know, the average control template is quite lengthy, so this process is tedious and potentially
limiting. (For example, it may prevent you from using someone else’s customized template to get more
attractive visuals if you’re already relying on your own custom template to tweak the error-display
behavior.)

 Note In Chapter 21, you’ll learn about another way to display error information, with the ValidationSummary
control. It collects the error messages from a collection of child elements and lists it in a single place of your
choosing.

The BindingValidationFailed Event
Error notifications are a great way to inform the user about potential problems. But there are a whole
host of situations in which you’ll want more control over what happens next. In these cases, you need to
intercept the BindingValidationFailed event and use custom code.

To enable the BindingValidationFailed event, you must set ValidatesOnExceptions to true (to detect
errors) and NotifyOnValidationError to true (to fire the validation events). Here’s an example:

<TextBox Margin="5" Grid.Row="2" Grid.Column="1" x:Name="txtUnitCost"
 Text="{Binding UnitCost, Mode=TwoWay, ValidatesOnExceptions=True,
NotifyOnValidationError=True}"></TextBox>

BindingValidationError is a bubbling event, which means you can handle it where it occurs (in the
text box) or at a higher level (such as the containing Grid). Handling errors where they occur gives you
the opportunity to write targeted error-handling logic that deals separately with errors in different fields.
Handling them at a higher level (as shown here) allows you to reuse the same logic for many different
types of errors:

<Grid Name="gridProductDetails"
 BindingValidationError="Grid_BindingValidationError">

The final step is to do something when the problem occurs. You may choose to display a message or
change the appearance of some part of your application, but the real power of the
BindingValidationError event is that it lets you perform other actions, such as changing focus, resetting
the incorrect value, trying to correct it, or offering more detailed, targeted help based on the specific
mistake that was made.

The following example displays an error message and indicates the current value (see Figure 20-10).
It also transfers focus back to the offending text box, which is a heavy-handed (but occasionally useful)
technique. It has the side effect of making sure the control remains in the InvalidFocused state rather
than the InvalidUnfocused state, so the pop-up error message also remains visible:

private void Grid_BindingValidationError(object sender, ValidationErrorEventArgs e)
{
 // Display the error.

CHAPTER 20  DATA BINDING

746

 lblInfo.Text = e.Error.Exception.Message;
 lblInfo.Text += "\nThe stored value is still: " +
 ((Product)gridProductDetails.DataContext).UnitCost.ToString();

 // Suggest the user try again.
 txtUnitCost.Focus();
}

Figure 20-10. Pointing out a validation error

The BindingValidationError event happens only when the value is changed and the edit is
committed. In the case of the text box, this doesn’t happen until the text box loses focus. If you want
errors to be caught more quickly, you can use the BindingExpression.UpdateSource() method to force
immediate updates as the user types, as described in the previous section.

 Tip If you don’t reset the value in the text box, the incorrect value remains on display, even though it isn’t
stored in the bound data object. You might choose to allow this behavior so that users have another chance to edit
invalid values.

CHAPTER 20  DATA BINDING

747

Whatever steps you take in this event handler happen in addition to the control state change.
Unfortunately, you can’t selectively disable control error reporting and choose to receive the
BindingValidationError event.

The Validation Class
You don’t need to wait for the BindingValidationError event to detect invalid data. You can check a
bound control at any time using the static methods of the Validation class. Validation.GetHasErrors()
returns true if the control has failed validation, and Validation.GetErrors() returns the appropriate
collection of one of more exception objects.

These methods give you added flexibility. For example, you can check HasErrors() and refuse to let
the user continue to a new step or perform a specific function if invalid data exists. Similarly, you can use
GetErrors() to round up a series of mistakes at the end of a data-entry process, so you can provide an
itemized list of problems in one place.

Creating Data Objects with Built-in Validation
Earlier, you saw the simplest way to build validation logic into a data object—by throwing exceptions for
bad data (such as negative numbers in the UnitCost property). However, raising exceptions is a slightly
dangerous and often reckless way to implement validation. One problem is that the exception-raising
code can inadvertently rule out perfectly reasonable uses of the data object. For example, it might not
make sense for the UnitsInStock property to hold a value of –10, but if the underlying database stores
this value, you might still want to create the corresponding Product object so you can manipulate it in
your application.

Most purists prefer not to raise exceptions to indicate user input errors. There are several reasons
that underlie this design choice—for example, a user input error isn’t an exceptional condition, error
conditions may depend on the interaction between multiple property values, and it’s sometimes
worthwhile to hold on to incorrect values for further processing rather than reject them outright.
Instead, cautious developers rely on other techniques to flag invalid data.

In Silverlight, your data objects can provide built-in validation by implement the IDataErrorInfo or
INotifyDataErrorInfo interface. Both of these interfaces have the same goal—they replace aggressive
unhandled exceptions with a politer system of error notification. The IDataErrorInfo interface is the
original error-tracking interface, which dates back to the first version of .NET. Silverlight includes it for
backward compatibility. The INotifyDataErrorInfo interface is a similar but richer interface that was
introduced with Silverlight 4. It has support for additional features, such as multiple errors per property
and rich error objects.

No matter which interface you use, there are three basic steps to follow:

• Implement the IDataErrorInfo or INotifyDataErrorInfo interface in your data
object.

• Tell the data binding infrastructure to check the data object for errors and show
error notifications. If you’re using the IDataErrorInfo interface, you set
ValidatesOnDataErrors to true. If you’re using the INotifyDataErrorInfo interface,
you set ValidatesOnNotifyDataErrors to true.

• Optionally, set NotifyOnValidationError to true if you want to receive the
BindingValidationFailed event.

• Optionally, set the ValidatesOnExceptions property to true if you want to catch
other types of errors, such as data conversion problems.

CHAPTER 20  DATA BINDING

748

 Note If you’re using a web service, remember that Visual Studio can’t transfer the code from a server-defined
data object to the automatically generated client-side copy. This isn’t a problem for basic data objects, but it is a
serious obstacle if you want to create a rich data object that implements features such as validation. In this
situation, you need to use the type sharing feature described in Chapter 19, which lets you manually add a
synchronized copy of the data class to both projects.

The following example shows how to use the INotifyDataErrorInfo interface to detect problems with
the Product object. The first step is to implement the interface:

public class Product : INotifyPropertyChanged, INotifyDataErrorInfo
{ ... }

The INotifyDataErrorInfo interface requires just three members. The ErrorsChanged event fires
when an error is added or removed. The HasErrors property returns true or false to indicate whether the
data object has errors. Finally, the GetErrors() method provides the full error information.

Before you can implement these methods, you need a way to track the errors in your code. The best
bet is a private collection, like this:

private Dictionary<string, List<string>> errors =
 new Dictionary<string, List<string>>();

At first glance, this collection looks a little odd. To understand why, you need to know to facts. First,
the INotifyPropertyChanged interface expects you to link your errors to a specific property. Second, each
property can have one or more errors. The easiest way to track this error information is with a
Dictionary<T, K> collection that’s indexed by property name:

private Dictionary<string, List<string>> errors =
 new Dictionary<string, List<string>>();

Each entry in the dictionary is itself a collection of errors. This example uses a simple List<Of T>
List<T> of strings:

private Dictionary<string, List<string>> errors =
 new Dictionary<string, List<string>>();

However, you could use a full-fledged error object to bundle together multiple pieces of information
about the error, including details such as a text message, error code, severity level, and so on.

Once you have this collection in place, you simply need to add to it when an error occurs (and
remove the error information if the error is corrected). The make this process easier, the Product class in
this example adds a pair of private methods named SetErrors() and ClearErrors():

public event EventHandler<DataErrorsChangedEventArgs> ErrorsChanged;

private void SetErrors(string propertyName, List<string> propertyErrors)
{
 // Clear any errors that already exist for this property.
 errors.Remove(propertyName);

 // Add the list collection for the specified property.
 errors.Add(propertyName, propertyErrors);

CHAPTER 20  DATA BINDING

749

 // Raise the error-notification event.
 if (ErrorsChanged != null)
 ErrorsChanged(this, new DataErrorsChangedEventArgs(propertyName));
}

private void ClearErrors(string propertyName)
{
 // Remove the error list for this property.
 errors.Remove(propertyName);

 // Raise the error-notification event.
 if (ErrorsChanged != null)
 ErrorsChanged(this, new DataErrorsChangedEventArgs(propertyName));
}

And here’s the error-handling logic that ensures that the Product.ModelNumber property is
restricted to a string of alphanumeric characters. (Punctuation, spaces, and other special characters are
not allowed.)

private string modelNumber;
public string ModelNumber
{
 get { return modelNumber; }
 set
 {
 modelNumber = value;

 bool valid = true;
 foreach (char c in modelNumber)
 {
 if (!Char.IsLetterOrDigit(c))
 {
 valid = false;
 break;
 }
 }
 if (!valid)
 {
 List<string> errors = new List<string>();
 errors.Add("The ModelNumber can only contain letters and numbers.");
 SetErrors("ModelNumber", errors);
 }
 else
 {
 ClearErrors("ModelNumber");
 }

 OnPropertyChanged(new PropertyChangedEventArgs("ModelNumber"));
 }
}

CHAPTER 20  DATA BINDING

750

The final step is to implement the GetErrors() and HasErrors() method. The GetErrors() method
returns the list of errors for a specific property (or all the errors for all the properties). The HasErrors()
property returns true if the Product class has one or more errors.

public IEnumerable GetErrors(string propertyName)
{
 if (string.IsNullOrEmpty(propertyName))
 {
 // Provide all the error collections.
 return (errors.Values);
 }
 else
 {
 // Provice the error collection for the requested property
 // (if it has errors).
 if (errors.ContainsKey(propertyName))
 {
 return (errors[propertyName]);
 }
 else
 {
 return null;
 }
 }
}

public bool HasErrors
{
 get
 {
 // Indicate whether the entire Product object is error-free.
 return (errors.Count > 0);
 }
}

To tell Silverlight to use the INotifyDataErrorInfo interface and use it to check for errors when a
property is modified, the ValidatesOnNotifyDataErrors property of the binding must be true:

<TextBox Margin="5" Grid.Row="2" Grid.Column="1" x:Name="txtModelNumber"
 Text="{Binding ModelNumber, Mode=TwoWay, ValidatesOnNotifyDataErrors=True,
NotifyOnValidationError=True}"></TextBox>

Technically, you don’t need to explicitly set ValidatesOnNotifyDataErrors, because it’s true by
default (unlike the similar ValidatesOnDataErrors property that’s used with the IDataErrorInfo
interface). However, it’s still a good idea to set it explicitly to make your intention to use it clear in the
markup.

If you also use the NotifyOnValidationError event (as shown here), the BindingValidationError event
will fire whenever the error collection changes. However, there won’t be an exception object provided in
the ValidationErrorEventArgs.Exception property, because no exception occurred. Instead, you can get
the error information that you return from your data object through the
ValidationErrorEventArgs.Error.ErrorContent property. In the current example, this is the simple string
in the error list, but you could return any object you want. And if you return a list with multiple error
items for a property, the BindingValidationError event fires once for each item.

CHAPTER 20  DATA BINDING

751

private void Grid_BindingValidationError(object sender, ValidationErrorEventArgs e)
{
 if (e.Error.Exception != null)
 {
 // Validation failed due to an exception.
 ...
 }
 else
 {
 // Validation error reported through an interface.
 lblInfo.Text = e.Error.ErrorContent.ToString();
 txtModelNumber.Focus();
 }
}

Incidentally, you can combine both approaches by creating a data object that throws exceptions for
some types of errors and uses IDataErrorInfo or INotifyDataErrorInfo to report others. However, keep in
mind that these two approaches have a broad difference. When an exception is triggered, the property is
not updated in the data object. But when you use the IDataErrorInfo or INotifyDataErrorInfo interface,
invalid values are allowed but flagged. The data object is updated, but you can use notifications and the
BindingValidationFailed event to inform the user.

 Note In Chapter 21, you’ll see another way to build validation into a data object—using declarative annotations.
This approach is less powerful but allows you to separate the validation logic from the rest of your code. It also
integrates nicely with the data controls that support these attributes.

Data Formatting and Conversion
In a basic binding, the information travels from the source to the target without any change. This seems
logical, but it’s not always the behavior you want. Your data source may use a low-level representation
that you don’t want to display directly in your user interface. For example, you may have numeric codes
you want to replace with human-readable strings, numbers that need to be cut down to size, dates that
need to be displayed in a long format, and so on. If so, you need a way to convert these values into the
correct display form. And if you’re using a two-way binding, you also need to do the converse—take
user-supplied data and convert it to a representation suitable for storage in the appropriate data object.

Fortunately, Silverlight has two tools that can help you:

• String formatting: This feature allows you to convert data that’s represented as
text—for example, strings that contain dates and numbers—by setting the
Binding.StringFormat property. It’s a convenient technique that works for at least
half of all formatting tasks.

• Value converters: This is a far more powerful (and somewhat more complicated)
feature that lets you convert any type of source data into any type of object
representation, which you can then pass on to the linked control.

In the following sections, you’ll consider both approaches.

CHAPTER 20  DATA BINDING

752

String Formatting
String formatting is the perfect tool for formatting numbers that need to be displayed as text. For
example, consider the UnitCost property of the Product class used in this chapter. UnitCost is stored as a
decimal. As a result, when it’s displayed in a text box, you see values like 3.9900. Not only does this
display format show more decimal places than you’d probably like, but it also leaves out the currency
symbol. A more intuitive representation is the currency-formatted value $49.99, as shown in Figure 20-
11.

Figure 20-11. Displaying formatted currency values

The easiest solution to fix this problem is to set the Binding.StringFormat property. Silverlight will
use the format string to convert the raw text to its display value, just before it appears in the control. Just
as importantly, Silverlight will (in most cases) use this string to perform the reverse conversion, taking
any edited data and using it to update the bound property.

When setting the Binding.StringFormat property, you use standard .NET format strings. For
example, you can use the format string C to apply the locale-specific currency format, which translates
3.99 to $3.99 on a U.S. computer. You wrap the currency string in single quotation marks. Here’s an
example that applies the currency format string to the UnitCost field:

CHAPTER 20  DATA BINDING

753

<TextBox Margin="5" Grid.Row="2" Grid.Column="1"
 Text="{Binding UnitCost, StringFormat='C' }">
</TextBox>

To get the results you want with the StringFormat property, you need the right format string. You
can learn about all the format strings that are available in the Visual Studio help. However, Table 20-3
and Table 20-4 show some of the most common options you’ll use for numeric and date values,
respectively. And here’s a binding expression that uses a custom date format string to format the
OrderDate property:

<TextBlock Text="{Binding Date, StringFormat='0:MM/dd/yyyy' }"></TextBlock>

Table 20-3. Format Strings for Numeric Data

Type Format String Example

Currency C $1,234.50.
Parentheses indicate negative values: ($1,234.50). The
currency sign is locale-specific.

Scientific (Exponential) E 1.234.50E+004.

Percentage P 45.6%.

Fixed Decimal F? Depends on the number of decimal places you set. F3
formats values like 123.400. F0 formats values like 123.

Table 20-4. Format Strings for Times and Dates

Type Format String Format

Short Date d M/d/yyyy
For example: 10/30/2008

Long Date D dddd, MMMM dd, yyyy
For example: Wednesday, January 30, 2008

Long Date and
Short Time

f dddd, MMMM dd, yyyy HH:mm aa
For example: Wednesday, January 30, 2008 10:00 AM

Long Date and
Long Time

F dddd, MMMM dd, yyyy HH:mm:ss aa
For example: Wednesday, January 30, 2008 10:00:23 AM

ISO Sortable
Standard

s yyyy-MM-dd HH:mm:ss
For example: 2008-01-30 10:00:23

Month and Day M MMMM dd
For example: January 30

CHAPTER 20  DATA BINDING

754

Type Format String Format

General G M/d/yyyy HH:mm:ss aa (depends on locale-specific settings)
For example: 10/30/2008 10:00:23 AM

Value Converters
The Binding.StringFormat property is created for simple, standard formatting with numbers and dates.
But many data binding scenarios need a more powerful tool, called a value converter class.

A value converter plays a straightforward role. It’s responsible for converting the source data just
before it’s displayed in the target and (in the case of a two-way binding) converting the new target value
just before it’s applied back to the source.

Value converters are an extremely useful piece of the Silverlight data-binding puzzle. You can use
them several ways:

• To format data to a string representation: For example, you can convert a number
to a currency string. This is the most obvious use of value converters, but it’s
certainly not the only one.

• To create a specific type of Silverlight object: For example, you can read a block of
binary data and create a BitmapImage object that can be bound to an Image
element.

• To conditionally alter a property in an element based on the bound data: For
example, you may create a value converter that changes the background color of
an element to highlight values in a specific range.

In the following sections, you’ll consider an example of each of these approaches.

Formatting Strings with a Value Converter
To get a basic idea of how a value converter works, it’s worth revisiting the currency-formatting example
you looked at in the previous section. Although that example used the Binding.StringFormat property,
you can accomplish the same thing—and more—with a value converter. For example, you could round
or truncate values (changing 3.99 to 4), use number names (changing 1,000,000 into 1 million), or even
add a dealer markup (multiplying 3.99 by 15%). You can also tailor the way that the reverse conversion
works to change user-supplied values into the right data values in the bound object.

To create a value converter, you need to take three steps:

1. Create a class that implements IValueConverter (from the
System.Windows.Data namespace). You place this class in your Silverlight
project, which is where the conversion takes place—not in the web service.

2. Implement a Convert() method that changes data from its original format to its
display format.

3. Implement a ConvertBack() method that does the reverse and changes a value
from display format to its native format.

Figure 20-12 shows how it works.

CHAPTER 20  DATA BINDING

755

Figure 20-12. Converting bound data

In the case of the decimal-to-currency conversion, you can use the Decimal.ToString() method to
get the formatted string representation you want. You need to specify the currency format string “C”, as
shown here:

string currencyText = decimalPrice.ToString("C");

This code uses the culture settings that apply to the current thread. A computer that’s configured for
the English (United States) region runs with a locale of en-US and displays currencies with the dollar
sign ($). A computer that’s configured for another locale may display a different currency symbol. (This
is the same way that Binding,StringFormat property works when set to C.) If this isn’t the result you want
(for example, you always want the dollar sign to appear), you can specify a culture using the overload of
the ToString() method shown here:

CultureInfo culture = new CultureInfo("en-US");
string currencyText = decimalPrice.ToString("C", culture);

Converting from the display format back to the number you want is a little trickier. The Parse() and
TryParse() methods of the double type are logical choices to do the work, but ordinarily they can’t
handle strings that include currency symbols. The solution is to use an overloaded version of the Parse()
or TryParse() method that accepts a System.Globalization.NumberStyles value. If you supply
NumberStyles.Any, you can successfully strip out the currency symbol, if it exists.

Here’s the complete code for the value converter that deals with price values such as the
Product.UnitCost property:

public class PriceConverter : IValueConverter
{
 public object Convert(object value, Type targetType, object parameter,
 CultureInfo culture)
 {
 double price = (double)value;
 return price.ToString("C", culture);
 }

 public object ConvertBack(object value, Type targetType, object parameter,
 CultureInfo culture)
 {
 string price = value.ToString();

 double result;
 if (Double.TryParse(price, NumberStyles.Any, culture, out result))
 {

CHAPTER 20  DATA BINDING

756

 return result;
 }
 return value;
 }
}

To put this converter into action, you need to begin by mapping your project namespace to an XML
namespace prefix you can use in your markup. Here’s an example that uses the namespace prefix local
and assumes your value converter is in the namespace DataBinding:

xmlns:local="clr-namespace:DataBinding"

Typically, you’ll add this attribute to the <UserControl> start tag at the top of your markup.
Now, you need to create an instance of the PriceConverter class in your page’s Resources collection,

as shown here:

<UserControl.Resources>
 <local:PriceConverter x:Key="PriceConverter"></local:PriceConverter>
</UserControl.Resources>

Then, you can point to it in your binding using a StaticResource reference:

<TextBox Margin="5" Grid.Row="2" Grid.Column="1"
 Text="{Binding UnitCost, Mode=TwoWay, Converter={StaticResource PriceConverter}}">
</TextBox>

 Note Unlike WPF, Silverlight lacks the IMultiValueConverter interface. As a result, you’re limited to converting
individual values, and you can’t combine values (for example, join together a FirstName and a LastName field) or
perform calculations (for example, multiply UnitPrice by UnitsInStock).

Creating Objects with a Value Converter
Value converters are indispensable when you need to bridge the gap between the way data is stored in
your classes and the way it’s displayed in a page. For example, imagine you have picture data stored as a
byte array in a field in a database. You can convert the binary data into a
System.Windows.Media.Imaging.BitmapImage object and store that as part of your data object.
However, this design may not be appropriate.

For example, you may need the flexibility to create more than one object representation of your
image, possibly because your data library is used in both Silverlight applications and Windows Forms
applications (which use the System.Drawing.Bitmap class instead). In this case, it makes sense to store
the raw binary data in your data object and convert it to a BitmapImage object using a value converter.

 Tip To convert a block of binary data into an image, you must first create a BitmapImage object and read the
image data into a MemoryStream. Then, you can call the BitmapImage.SetSource() method to pass the image data
in the stream to the BitmapImage.

CHAPTER 20  DATA BINDING

757

The Products table from the Store database doesn’t include binary picture data, but it does include a
ProductImage field that stores the file name of an associated product image. In this case, you have even
more reason to delay creating the image object. First, the image may not be available, depending on
where the application is running. Second, there’s no point in incurring the extra memory overhead from
storing the image unless it’s going to be displayed.

The ProductImage field includes the file name but not the full URI of an image file. This gives you
the flexibility to pull the image files from any location. The value converter has the task of creating a URI
that points to the image file based on the ProductImage field and the website you want to use. The root
URI is stored using a custom property named RootUri, which defaults to the same URI where the current
web page is located.

Here’s the complete code for the ImagePathConverter that performs the conversion:

public class ImagePathConverter : IValueConverter
{
 private string rootUri;
 public string RootUri
 {
 get { return rootUri; }
 set { rootUri = value; }
 }

 public ImagePathConverter()
 {
 string uri = HtmlPage.Document.DocumentUri.ToString();

 // Remove the web page from the current URI to get the root URI.
 rootUri = uri.Remove(uri.LastIndexOf('/'),
 uri.Length - uri.LastIndexOf('/'));
 }

 public object Convert(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture)
 {
 string imagePath = RootUri + "/" + (string)value;
 return new BitmapImage(new Uri(imagePath));
 }

 public object ConvertBack(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture)
 {
 // Images aren't editable, so there's no need to support ConvertBack.
 throw new NotSupportedException();
 }
}

To use this converter, begin by adding it to Resources. Although you can set the RootUri property on
the ImagePathConverter element, this example doesn’t. As a result, the ImagePathConverter uses the
default value that points to the current application website.

<UserControl.Resources>
 <local:ImagePathConverter x:Key="ImagePathConverter"></local:ImagePathConverter>
</UserControl.Resources>

CHAPTER 20  DATA BINDING

758

Now it’s easy to create a binding expression that uses this value converter:

<Image Margin="5" Grid.Row="2" Grid.Column="1" Stretch="None"
 HorizontalAlignment="Left" Source=
 "{Binding ProductImagePath, Converter={StaticResource ImagePathConverter}}">
</Image>

This works because the Image.Source property expects an ImageSource object, and the
BitmapImage class derives from ImageSource.

Figure 20-13 shows the result.

Figure 20-13. Displaying bound images

You can improve this example in a couple of ways. First, attempting to create a BitmapImage that
points to a nonexistent file causes an exception, which you’ll receive when setting the DataContext,
ItemsSource, or Source property. Alternatively, you can add properties to the ImagePathConverter class

CHAPTER 20  DATA BINDING

759

that let you configure this behavior. For example, you may introduce a Boolean SuppressExceptions
property. If it’s set to true, you can catch exceptions in the Convert() method and return an empty string.
Or, you can add a DefaultImage property that takes a placeholder BitmapImage. ImagePathConverter
can then return the default image if an exception occurs.

Applying Conditional Formatting
Some of the most interesting value converters aren’t designed to format data for presentation. Instead,
they’re intended to format some other appearance-related aspect of an element based on a data rule.

For example, imagine that you want to flag high-priced items by giving them a different background
color. You can easily encapsulate this logic with the following value converter:

public class PriceToBackgroundConverter : IValueConverter
{
 public double MinimumPriceToHighlight
 {
 get; set;
 }

 public Brush HighlightBrush
 {
 get; set;
 }

 public Brush DefaultBrush
 {
 get; set;
 }

 public object Convert(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture)
 {
 double price = (double)value;
 if (price >= MinimumPriceToHighlight)
 return HighlightBrush;
 else
 return DefaultBrush;
 }

 public object ConvertBack(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture)
 {
 throw new NotSupportedException();
 }
}

 Tip If you decide you can’t perform the conversion, you can return the value Binding.UnsetValue to tell
Silverlight to ignore your binding. The bound property (in this case, Background) will keep its default value.

CHAPTER 20  DATA BINDING

760

Once again, the value converter is carefully designed with reusability in mind. Rather than hard-
coding the color highlights in the converter, they’re specified in the XAML by the code that uses the
converter:

<local:PriceToBackgroundConverter x:Key="PriceToBackgroundConverter"
 DefaultBrush="{x:Null}" HighlightBrush="Orange" MinimumPriceToHighlight="50">
</local:PriceToBackgroundConverter>

Brushes are used instead of colors so that you can create more advanced highlight effects using
gradients and background images. And if you want to keep the standard, transparent background (so the
background of the parent elements is used), set the DefaultBrush or HighlightBrush property to null, as
shown here.

All that’s left is to use this converter to set the background of an element, such as the border that
contains all the other elements:

<Border Background=
"{Binding UnitCost, Converter={StaticResource PriceToBackgroundConverter}}"

 ... >

In many cases, you’ll need to pass information to a converter beyond the data you want to convert.
In this example, PriceToBackgroundConverter needs to know the highlight color and minimum price
details, and this information is passed along through properties. However, you have one other
alternative. You can pass a single object (of any type) to a converter through the binding expression, by
setting the ConverterParameter property. Here’s an example that uses this approach to supply the
minimum price:

<Border Background=
"{Binding UnitCost, Converter={StaticResource PriceToBackgroundConverter},
ConverterParameter=50}"
 ... >

The parameter is passed as an argument to the Convert() method. Here’s how you can rewrite the
earlier example to use it:

public object Convert(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture)
{
 double price = (double)value;
 if (price >= Double.Parse(parameter))
 return HighlightBrush;
 else
 return DefaultBrush;
}

In general, the property-based approach is preferred. It’s clearer, more flexible, and strongly typed.
(When set in the markup extension, ConverterParameter is always treated as a string.) But in some
situations, you may want to reuse a single value converter for multiple elements, and you may need to
vary a single detail for each element. In this situation, it’s more efficient to use ConverterParameter than
to create multiple copies of the value converter.

Data Templates
A data template is a chunk of XAML markup that defines how a bound data object should be displayed.
Two types of controls support data templates:

CHAPTER 20  DATA BINDING

761

• Content controls support data templates through the ContentTemplate property.
The content template is used to display whatever you’ve placed in the Content
property.

• List controls (controls that derive from ItemsControl) support data templates
through the ItemTemplate property. This template is used to display each item
from the collection (or each row from a DataTable) that you’ve supplied as the
ItemsSource.

The list-based template feature is based on content control templates: each item in a list is wrapped
by a content control, such as ListBoxItem for the ListBox, ComboBoxItem for the ComboBox, and so on.
Whatever template you specify for the ItemTemplate property of the list is used as the ContentTemplate
of each item in the list.

What can you put inside a data template? It’s simple. A data template is an ordinary block of XAML
markup. Like any other block of XAML markup, the template can include any combination of elements.
It should also include one or more data-binding expressions that pull out the information that you want
to display. (After all, if you don’t include any data-binding expressions, each item in the list will appear
the same, which isn’t very helpful.)

The best way to see how a data template works is to start with a basic list that doesn’t use a
template. For example, consider this list box, which was shown previously:

<ListBox Name="lstProducts" DisplayMemberPath="ModelName"></ListBox>

You can get the same effect with this list box that uses a data template:

<ListBox Name="lstProducts">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding ModelName}"></TextBlock>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

When you bind the list to the collection of products (by setting the ItemsSource property), a single
ListBoxItem is created for each Product object. The ListBoxItem.Content property is set to the
appropriate Product object, and the ListBoxItem.ContentTemplate is set to the data template shown
earlier, which extracts the value from the Product.ModelName property and displays it in a TextBlock.

So far, the results are underwhelming. But now that you’ve switched to a data template, there’s no
limit to how you can creatively present your data. Here’s an example that wraps each item in a rounded
border, shows two pieces of information, and uses bold formatting to highlight the model number:

<ListBox Name="lstProducts" HorizontalContentAlignment="Stretch"
 SelectionChanged="lstProducts_SelectionChanged">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <Border Margin="5" BorderThickness="1" BorderBrush="SteelBlue"
 CornerRadius="4">
 <Grid Margin="3">
 <Grid.RowDefinitions>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>
 <TextBlock FontWeight="Bold"
 Text="{Binding ModelNumber}"></TextBlock>

CHAPTER 20  DATA BINDING

762

 <TextBlock Grid.Row="1"
 Text="{Binding ModelName}"></TextBlock>
 </Grid>
 </Border>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

When this list is bound, a separate Border object is created for each product. Inside the Border
element is a Grid with two pieces of information, as shown in Figure 20-14.

Figure 20-14. A list that uses a data template

Separating and Reusing Templates
Like styles, templates are often declared as a page or application resource rather than defined in the list
where you use them. This separation is often clearer, especially if you use long, complex templates or
multiple templates in the same control (as described in the next section). It also gives you the ability to
reuse your templates in more than one list or content control if you want to present your data the same
way in different places in your user interface.

To make this work, all you need to do is to define your data template in a resources collection and
give it a key name. Here’s an example that extracts the template shown in the previous example:

<UserControl.Resources>

CHAPTER 20  DATA BINDING

763

 <DataTemplate x:Key="ProductDataTemplate">
 <Border Margin="5" BorderThickness="1" BorderBrush="SteelBlue"
 CornerRadius="4">
 <Grid Margin="3">
 <Grid.RowDefinitions>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>
 <TextBlock FontWeight="Bold"
 Text="{Binding ModelNumber}"></TextBlock>
 <TextBlock Grid.Row="1"
 Text="{Binding ModelName}"></TextBlock>
 </Grid>
 </Border>
 </DataTemplate>
</UserControl.Resources>

Now you can use your data template using a StaticResource reference:

<ListBox Name="lstProducts" HorizontalContentAlignment="Stretch"
 ItemTemplate="{StaticResource ProductDataTemplate}"
 SelectionChanged="lstProducts_SelectionChanged"></ListBox>

 Note Data templates don’t require data binding. In other words, you don’t need to use the ItemsSource property
to fill a template list. In the previous examples, you’re free to add Product objects declaratively (in your XAML
markup) or programmatically (by calling the ListBox.Items.Add() method). In both cases, the data template works
the same way.

Implicit Data Templates
In the previous examples, the template is set explicitly, using the ItemTemplate property of a list control.
However, Silverlight provides another option, called implicit templates. With implicit templates, you
define a data template for a specific type of data—for example, you might create a data template that’s
designed to present Product objects. Your list control then picks the right data template automatically.

You can see this technique in action with a simple modification of the previous example. First, you
remove the ItemTemplate property from the ListBox control:

<ListBox Name="lstProducts" HorizontalContentAlignment="Stretch"
SelectionChanged="lstProducts_SelectionChanged"></ListBox>

Then, you change the way your data template as defined in the resource collection. In this case, you
need to remove the key name and add the DataType property, as shown here:

<UserControl.Resources>
 <DataTemplate DataType="local:Product">
 ...
 </DataTemplate>
</UserControl.Resources>

CHAPTER 20  DATA BINDING

764

Of course, this assumes you’ve defined an XML namespace that maps the local prefix to the
namespace that contains your Product class, like this:

<UserControl xmlns:local="clr-namespace:DataBinding.DataService" ... >

Remarkably, this is all you need to make implicit templates work. When you fill the list with Product
objects, the ListBox control will realize that there’s a suitable data template and use it automatically.

In this example, implicit templates don’t have many benefits (or disadvantages). But here are two
more specialized ways that you can use them:

• As a shortcut for the same data in different places: If you have to use the same data
template with different controls, it may be easier to define that template once, as
an application resource. All your bound controls will then grab that template
automatically.

• To create lists with multiple templates: If you have a data source with more than
one type of object, you can give each type a different implicit template.

The second scenario is particularly interesting. For example, imagine you have a list of Product
objects, which includes some objects that derive from Product (say, SalesProduct, ExportProduct, or
RestrictedProduct). You can then give each of these classes a separate implicit template. Your bound
controls will use the right template for the corresponding class—even if they need to mix and match
different templates in the same list. This saves you the trouble of writing one super-complicated data
template that attempts to handle everything.

More Advanced Templates
Data templates can be remarkably self-sufficient. Along with basic elements such as TextBlock and data-
binding expressions, they can also use more sophisticated controls, attach event handlers, convert data
to different representations, use animations, and so on.

You can use a value converter in your binding expressions to convert your data to a more useful
representation. Consider, for example, the ImagePathConverter demonstrated earlier. It accepts a
picture file name and uses it to create a BitmapImage object with the corresponding image content. This
BitmapImage object can then be bound directly to the Image element.

You can use the ImagePathConverter to build the following data template that displays the image
for each product:

<UserControl.Resources>
 <local:ImagePathConverter x:Key="ImagePathConverter"></local:ImagePathConverter>
 <DataTemplate x:Key="ProductDataTemplate">
 <Border Margin="5" BorderThickness="1" BorderBrush="SteelBlue"
 CornerRadius="4">
 <Grid Margin="3">
 <Grid.RowDefinitions>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>
 <TextBlock FontWeight="Bold" Text="{Binding Path=ModelNumber}"></TextBlock>
 <TextBlock Grid.Row="1" Text="{Binding Path=ModelName}"></TextBlock>
 <Image Grid.Row="2" Grid.RowSpan="2" Source=
"{Binding Path=ProductImagePath, Converter={StaticResource ImagePathConverter}}">
 </Image>

CHAPTER 20  DATA BINDING

765

 </Grid>
 </Border>
 </DataTemplate>
</UserControl.Resources>

Although this markup doesn’t involve anything exotic, the result is a much more interesting list (see
Figure 20-15).

Figure 20-15. A list with image content

 Note If there is an error in your template, you don’t receive an exception. Instead, the control is unable to
display your data and remains blank. To solve this problem, you can use the data-binding debugging feature
described earlier in this chapter.

CHAPTER 20  DATA BINDING

766

Changing Item Layout
Data templates give you remarkable control over every aspect of item presentation. However, they don’t
allow you to change how the items are organized with respect to each other. No matter what templates
and styles you use, the list box puts each item into a separate horizontal row and stacks each row to
create the list.

You can change this layout by replacing the container that the list uses to lay out its children. To do
so, you set the ItemsPanel property with a block of XAML that defines the panel you want to use. This
panel can be any class that derives from System.Windows.Controls.Panel, including a custom layout
container that implements your own specialized layout logic.

The following uses the WrapPanel from the Silverlight Toolkit (http://silverlight.codeplex.com),
which was described in Chapter 3. It arranges items from left to right over multiple rows:

<ListBox Margin="7,3,7,10" Name="lstProducts"
 ItemTemplate="{StaticResource ProductDataTemplate}">
 <ListBox.ItemsPanel>
 <ItemsPanelTemplate>
 <controlsToolkit:WrapPanel></controlsToolkit:WrapPanel>
 </ItemsPanelTemplate>
 </ListBox.ItemsPanel>
</ListBox>

Figure 20-16 shows the result.

Figure 20-16. Tiling a list

http://silverlight.codeplex.com

CHAPTER 20  DATA BINDING

767

The Last Word
This chapter took a thorough look at data binding. You learned how to create data-binding expressions
that draw information from custom objects, use change notification and validation, bind entire
collections of data, and get your records from a web service. You also explored a range of techniques you
can use to customize the display of your data, from data conversion and conditional formatting with
IValueConverter to data templates and custom layout.

In the next chapter, you’ll build on these concepts as you take a deeper look into validation and
consider rich data controls like the DataGrid, DataForm, and TreeView.

C H A P T E R 21

769

Data Controls

So far, you’ve learned how to use data binding to pull information out of data objects, format it, and
make it available for editing. However, although data binding is a flexible and powerful system, getting
the result you want can still take a lot of work. For example, a typical data form needs to bind a number
of different properties to different controls, arrange them in a meaningful way, and use the appropriate
converters, templates, and validation logic. Creating these ingredients is as time-consuming as any other
type of UI design.

Silverlight offers several features that can help offload some of the work:

• The Label and DescriptionViewer controls: They pull metadata out of your data
objects and display it in your pages—automatically.

• Data annotations: Originally introduced with ASP.NET Dynamic Data, they let you
embed validation rules in your data classes. Pair data annotations with the
ValidationSummary control for an easy way to list all the validation errors in a
page.

• The DataGrid control: It’s the centerpiece of Silverlight’s rich data support—a
highly customizable table of rows and columns with support for sorting, editing,
grouping, and (with the help of the DataPager) paging.

• The TreeView control: Silverlight’s hierarchical tree isn’t limited to data binding
and doesn’t support editing. However, it’s a true time-saver when dealing with
hierarchical data, such as a list of categories with nested lists of products.

• The PivotViewer control: Silverlight’s strangest data control is a fancy slice-and-
dice data visualizer with built-in animations. Its highly specialized nature means it
isn’t suited for most applications, but those who can use it will enjoy high-level
features without the low-level coding.

In this chapter, you’ll learn how to extend the data-binding basics you picked up in the previous
chapter. You’ll also learn how to pass your smart data objects across the great web service divide so that
the same metadata and validation logic is available to your server-side ASP.NET code and your client-
side Silverlight applications.

CHAPTER 21  DATA CONTROLS

770

 What’s New Silverlight 5 adds a new version of the PivotViewer control to the core framework. Previously, the
PivotViewer was available only through the Silverlight Control Toolkit, and its programming model was subtly
different. To get up to speed, check out the section named “The PivotViewer” toward the end of this chapter.

Better Data Forms
In the previous chapter, you learned how to use data binding to build basic data forms. These forms—
essentially, ordinary pages made up of text boxes and other bound controls—allow users to enter, edit,
and review data. Best of all, they require relatively little code.

But the reality isn’t as perfect as it seems. To build a data form, you need a fair bit of handwritten
XAML markup, which must include hard-coded details such as caption text, prompts, and error
messages. Managing all these details can be a significant headache, especially if the data model changes
frequently. Change the database, and you’ll be forced to alter your data classes and your user interface—
and Visual Studio’s compile-time error checking can’t catch invalid bindings or outdated validation
rules.

For these reasons, the creators of Silverlight are hard at work building higher-level data controls,
helper classes, and even a whole server-based data-management framework (the forthcoming RIA
Services). And although these features are still evolving rapidly, some components have already trickled
down into the Silverlight platform. In the following sections, you’ll see how three of them—the Label,
DescriptionViewer, and ValidationSummary—can make it easier to build rich data forms right now,
particularly when you combine them with the powerful data annotations feature.

 Note To get access to the Label, DescriptionViewer, and ValidationSummary controls, you must add a reference
to the System.Windows.Controls.Data.Input.dll assembly. If you add one of these controls from the Toolbox, Visual
Studio will add the assembly reference and map the namespace like this: xmlns:dataInput="clr-
namespace:System.Windows.Controls;assembly=System.Windows.Controls.Data.Input"

The Goal: Data Class Markup
Although you can use Label, DescriptionViewer, and ValidationSummary on their own, their greatest
advantages appear when you use them with smart data classes—classes that use a small set of attributes
to embed extra information. These attributes allow you to move data-related details (such as property
descriptions and validation rules) into your data classes rather than force you to include them in the
page markup.

The attribute-based approach has several benefits. First, it’s an impressive time-saver that lets you
build data forms faster. Second, and more important, it makes your application far more maintainable
because you can keep data details properly synchronized. For example, if the underlying data model
changes and you need to revise your data classes, you simply need to tweak the attributes. This is
quicker and more reliable than attempting to track down the descriptive text and validation logic that’s
scattered through multiple pages—especially considering that the data class code is usually compiled in
a separate project (and possibly managed by a different developer).

CHAPTER 21  DATA CONTROLS

771

 Note The attribute-based approach also has a drawback when you’re using web services. Because all the
attributes are placed on the data class, they’ll be stripped out of the automatically generated client-side code. To
avoid this problem, you need to use web service type sharing, which lets you share the same class definition
between the server-side ASP.NET code and the client-side Silverlight code. Chapter 19 describes how to use this
technique, and the downloadable code for this chapter puts it into practice.

In the following sections, you’ll see how the data attributes works. Using them, you’ll learn how you
can embed captions, descriptions, and validation rules directly in your data objects.

The Label
The Label takes the place of the TextBlock that captions your data controls. For example, consider this
markup, which displays the text “Model Number” followed by the text box that holds the model number:

<TextBlock Margin="7">Model Number:</TextBlock>
<TextBox Margin="5" Grid.Column="1" x:Name="txtModelNumber"
 Text="{Binding ModelNumber, Mode=TwoWay}"></TextBox>

You can replace the TextBlock using a label like this:

<dataInput:Label Margin="7" Content="Model Number:"></dataInput:Label>
<TextBox Margin="5" Grid.Column="1" x:Name="txtModelNumber"
 Text="{Binding ModelNumber, Mode=TwoWay}"></TextBox>

Used in this way, the label confers no advantage. Its real benefits appear when you use binding to
latch it onto the control you’re captioning using the Target property, like this:

<dataInput:Label Margin="7" Target="{Binding ElementName=txtModelNumber}">
</dataInput:Label>
<TextBox Margin="5" Grid.Column="1" x:Name="txtModelNumber"
 Text="{Binding ModelNumber, Mode=TwoWay}"></TextBox>

When used this way, the label does something interesting. Rather than rely on you to supply it with
a fixed piece of text, it examines the referenced element, finds the bound property, and looks for a
Display attribute like this one:

[Display(Name="Model Number")]
public string ModelNumber
{ ... }

The label then displays that text—in this case, the cleanly separated two-word caption “Model
Number.”

CHAPTER 21  DATA CONTROLS

772

 Note Before you can add the Display attribute to your data class, you need to add a reference to the
System.ComponentModel.DataAnnotations.dll assembly. (You also need to import the
System.ComponentModel.DataAnnotations namespace where the Display attribute is defined.)

From a pure markup perspective, the label doesn’t save any keystrokes. You may feel that it takes
more effort to write the binding expression that connects the label than it does to fill the TextBlock with
the same text. However, the label approach has several advantages. Most obviously, it’s highly
maintainable—if you change the data class at any time, the new caption will flow seamlessly into any
data forms that use the data class, with no need to edit a line of markup.

The label isn’t limited to displaying a basic caption. It also varies its appearance to flag required
properties and validation errors. To designate a required property (a property that must be supplied in
order for the data object to be valid), add the Required attribute:

[Required()]
[Display(Name="Model Number")]
public string ModelNumber
{ ... }

By default, the label responds by bolding the caption text. But you can change this formatting—or
even add an animated effect—by modifying the Required and NotRequired visual states in the label’s
control template. (To review control templates and visual states, refer to Chapter 15.)

Similarly, the label pays attentions to errors that occur when the user edits the data. For this to work,
your binding must opt in to validation using the ValidatesOnExceptions and NotifyOnValidationError
properties, as shown here with the UnitCost property:

<dataInput:Label Margin="7" Grid.Row="2"
 Target="{Binding ElementName=txtUnitCost}"></dataInput:Label>
<TextBox Margin="5" Grid.Row="2" Grid.Column="1" x:Name="txtUnitCost" Width="100"
 HorizontalAlignment="Left" Text="{Binding UnitCost, Mode=TwoWay, ValidatesOnExceptions=true,
NotifyOnValidationError=true}"></TextBox>

To test this, type non-numeric characters into the UnitCost field, and tab away. The caption text in
the label shifts from black to red (see Figure 21-1). If you want something more interesting, you can
change the control template for the label—this time, you need to modify the Valid and Invalid visual
states.

CHAPTER 21  DATA CONTROLS

773

Figure 21-1. A required ModelNumber and invalid UnitCost

 Note The error notification in the label is in addition to the standard error indicator in the input control. For
example, in the page shown on Figure 21-1, the UnitCost text box shows a red outline and red triangle in the
upper-right corner to indicate that the data it contains is invalid. In addition, when the UnitCost text box gets the
focus, a red balloon pops up with the error description.

The DescriptionViewer
The Label control takes care of displaying caption text, and it adds the ability to highlight required
properties and invalid data. However, when users are filling out complex forms, they sometimes need a
little more. A few words of descriptive text can work wonders, and the DescriptionViewer control gives
you a way to easily incorporate this sort of guidance into your user interface.

It all starts with the Display attribute you saw in the previous section. Along with the Name
property, it accepts a Description property that’s intended for a sentence or two or more detailed
information:

[Display(Name="Model Number",
 Description="This is the alphanumeric product tag used in the warehouse.")]
public string ModelNumber
{ ... }

Here’s the markup that adds a DescriptionViewer to a column beside the ModelNumber text box:

<TextBlock Margin="7">Model Number</TextBlock>

CHAPTER 21  DATA CONTROLS

774

<TextBox Margin="5" Grid.Column="1" x:Name="txtModelNumber"
 Text="{Binding ModelNumber, Mode=TwoWay, ValidatesOnExceptions=true,
NotifyOnValidationError=true}"></TextBox>
<dataInput:DescriptionViewer Grid.Column="2"
 Target="{Binding ElementName=txtModelNumber}"></dataInput:DescriptionViewer>

The DescriptionViewer shows a small information icon. When the user moves the mouse over it, the
description text appears in a tooltip (Figure 21-2).

Figure 21-2. The DescriptionViewer

You can replace the icon with something different by setting the GlyphTemplate property, which
determines the display content of the DescriptionViewer. Here’s an example that swaps in a new icon:

<dataInput:DescriptionViewer Grid.Row="1" Grid.Column="2"
 Target="{Binding ElementName=ModelName}">
 <dataInput:DescriptionViewer.GlyphTemplate>
 <ControlTemplate>
 <Image Source="info.jpg" Stretch="None"></Image>
 </ControlTemplate>
 </dataInput:DescriptionViewer.GlyphTemplate>
</dataInput:DescriptionViewer>

The DescriptionViewer doesn’t change its appearance when the bound data has a validation error.
However, it does include an IsValid property, and it does support the four basic visual states for
validation (ValidFocused, ValidUnfocused, InvalidFocused, and InvalidUnfocused). That means you can
change the DescriptionViewer template and add some sort of differentiator that changes its appearance
to highlight errors or applies a steady-state animation.

CHAPTER 21  DATA CONTROLS

775

The ValidationSummary
You’ve now seen several ways that Silverlight helps you flag invalid data. First, as you learned in the
previous chapter, most input controls change their appearance when something is amiss—for example,
changing their border to a red outline. Second, these input controls also show a pop-up error message
when the control has focus. Third, if you’re using the Label control, it turns its caption text red. And
fourth, if you’re using the DescriptionViewer control, you can replace the default control template with
one that reacts to invalid data (much as you can change the way a label and input controls display their
error notifications by giving them custom control templates).

All these techniques are designed to give in-situ error notifications—messages that appear next to or
near the offending input. But in long forms, it’s often useful to show an error list that summarizes the
problems in a group of controls. You can implement a list like this by reacting to the
BindingValidationError described in the previous chapter. But Silverlight has an even easier option that
does the job with no need for code: the ValidationSummary control.

The ValidationSummary monitors a container for error events. For example, if you have Grid with
input controls, you can point the ValidationSummary to that Grid using the Target property. It will then
detect the errors that occur in any of the contained input controls. (Technically, you could point the
ValidationSummary at a single input control, but that wouldn’t have much point.) Most of the time, you
don’t need to set the Target property. If you don’t, the ValidationSummary retrieves a reference to its
container and monitors all the controls inside. To create the summary shown in Figure 21-3, you need to
add the ValidationSummary somewhere inside the Grid that holds the product text boxes:

<dataInput:ValidationSummary Grid.Row="6" Grid.ColumnSpan="3" Margin="7" />

Figure 21-3. A validation summary with three errors

CHAPTER 21  DATA CONTROLS

776

 Note Remember, to catch errors with the ValidationSummary, your bindings must have Mode set to TwoWay,
and they must set ValidatesOnExceptions and NotifyOnValidationError to true.

When no errors are present, the ValidationSummary is invisible and collapsed so that it takes no
space. When there are one or more errors, you see the display shown in Figure 21-3. It consists of a
header (which displays an error icon and the number of errors) and a list of errors that details the
offending property and the exception message. If the user clicks one of the error message, the
ValidationSummary fires the FocusingInvalidControl event and transfers focus to the input control with
the data (unless you’ve explicitly set the FocusControlsOnClick property to false).

If you want to prevent a control from adding its errors to the ValidationSummary, you can set the
attached ShowErrorsInSummary property, as shown here:

<TextBox Margin="5" x:Name="txtUnitCost" Width="100" HorizontalAlignment="Left"
 dataInput:ValidationSummary.ShowErrorsInSummary="False"
 Text="{Binding UnitCost, Mode=TwoWay, ValidatesOnExceptions=true,
NotifyOnValidationError=true}"></TextBox>

The ValidationSummary also provides several properties you can use to customize its appearance.
Use HeaderTemplate to supply a data template that changes how the title is presented, use Header to
supply your own custom header text, and use SummaryListBoxStyle to change how the error list is
formatted. Programmatically, you may want to check the HasErrors property to determine whether the
form is valid and the Errors collection to examine all the problems that were detected.

THE DATAFIELD DATAFORM

If you’re using the Silverlight Toolkit, you’ll find two tools that can help you build rich data forms. First up is
the DataField control, an all-in-one package for editing a single bound property. The DataField control
combines a Label control, a DescriptionViewer control, and an input control like the TextBox.

Next is a more ambitious tool: the DataForm control. It’s a single container that creates all the bound
controls needed to display and edit a data object. To use the DataForm to show a single data object, you
set the CurrentItem property, like this:

dataForm.CurrentItem = product;

Or, if you have a collection of items, you can use the ItemsSource property instead:

dataForm.ItemsSource = products;

Either way, the data form creates the input controls you need for every property in your data object,
complete with a label and DescriptionViewer for each one. If you use the ItemsSource property to bind
multiple items, the DataForm even adds a bar with navigation controls to the top of the form. Using these
controls, the user can step through the records, add new records, and delete existing ones. And it goes
without saying that the DataForm includes numerous properties for tweaking its appearance and a

CHAPTER 21  DATA CONTROLS

777

customizable template that allows you to get more control over its layout. But for complete customizability,
most developers will continue to create their data form markup by hand—at least until the DataForm
becomes a bit more mature and is incorporated into the core Silverlight platform.

Data Annotations
Now that you’ve seen how to improve the error reporting in your forms, it’s worth considering a
complementary feature that makes it easier to implement the validation rules that check your data.
Currently, Silverlight validation responds to unhandled exceptions that occur when you attempt to set a
property. If you want to implement custom validation, you’re forced to write code in the property setter
that tests the new value and throws an exception when warranted. The validation code you need is
repetitive to write and tedious to maintain. And if you need to check several different error conditions,
your code can grow into a tangled mess that inadvertently lets certain errors slip past.

Silverlight offers a solution with its new support for data annotations, which allow you to apply
validation rules by attaching one or more attributes to the properties in your data class. Done right, data
annotations let you move data validation out of your code and into the declarative metadata that
decorates it, which improves the clarity of your code and the maintainability of your classes.

 Note The data annotations system was originally developed for ASP.NET Dynamic Data, but Silverlight borrows
the same model. Technically, you’ve already seen annotations at work, as the Display and Required attributes
demonstrated in the previous section are both data annotations.

Raising Annotation Errors
Before you can use data annotations, you need to add a reference to the
System.ComponentModel.DataAnnotations.dll assembly, which is the same assembly you used to
access the Display and Required attributes in the previous section. You’ll find all the data-annotation
classes in the matching namespace, System.ComponentModel.DataAnnotations.

Data annotations work through a small set of attributes that you apply to the property definitions in
your data class. Here’s an example that uses the StringLength attribute to cap the maximum length of
the ModelName field at 25 characters:

[StringLength(25)]
[Display(Name = "Model Name", Description = "This is the retail product name.")] public string
ModelName
{
 get { return modelName; }
 set
 {
 modelName = value;
 OnPropertyChanged(new PropertyChangedEventArgs("ModelName"));
 }
}

CHAPTER 21  DATA CONTROLS

778

This setup looks perfect: the validation rule is clearly visible, easy to isolate, and completely separate
from the property setting code. However, it’s not enough for Silverlight’s data-binding system. Even with
data annotations, all of Silverlight’s standard controls require an exception before they recognize the
presence of invalid data.

Fortunately, there’s an easy way to throw the exception you need, when you need it. The trick is the
Validator class, which provides several static helper methods that can test your data annotations and
check your properties for bad data. The ValidateProperty() method throws an exception if a specific
value is invalid for a specific property. The ValidateObject() method examines an entire object for
problems and throws an exception if any property is out of whack. The TryValidateProperty() and
TryValidateObject() methods perform much the same tasks, but they provide a ValidationResult object
that explains potential problems rather than throwing a ValidationException.

The following example shows the three lines of code you use to check a property value with the
ValidateProperty() method. When called, this code examines all the validation attributes attached to the
property and throws a ValidationException as soon as it finds one that’s been violated:

[StringLength(25)]
[Display(Name = "Model Name", Description = "This is the retail product name.")]
public string ModelName
{
 get { return modelName; }
 set
 {
 // Explicitly raise an exception if a data annotation attribute
 // fails validation.
 ValidationContext context = new ValidationContext(this, null, null);
 context.MemberName = "ModelName";
 Validator.ValidateProperty(value, context);

 modelName = value;
 OnPropertyChanged(new PropertyChangedEventArgs("ModelName"));
 }
}

By adding code like this to all your property setters, you can enjoy the best of the data-annotation
system—straightforward attributes that encode your validation logic—and still plug your validation into
the Silverlight data-binding system.

 Note Data annotations are powerful, but they aren’t perfect for every scenario. In particular, they still force your
data class to throw exceptions to indicate error conditions. This design pattern isn’t always appropriate (for
example, it runs into problems if you need an object that’s temporarily in an invalid state or you want to impose
restrictions only for user edits, not programmatic changes). It’s also a bit dangerous, because making the wrong
change to a data object in your code has the potential to throw an unexpected exception and derail your
application. (To get around this, you can create an AllowInvalid property in your data classes that, when true, tells
them to bypass the validation-checking code. But it’s still awkward at best.) For this reason, many developers
prefer to use the IDataError or INotifyDataError interface with their data objects, as described in Chapter 20.

CHAPTER 21  DATA CONTROLS

779

The Annotation Attributes
To use validation with data annotations, you need to add the right attributes to your data classes. The
following sections list the attributes you can use, all of which derive from the base ValidationAttribute
class and are found in the System.ComponentModel.DataAnnotations namespace. All of these attributes
inherit the ValidationAttribute.ErrorMessage property, which you can set to add custom error message
text. This text is featured in the pop-up error balloon and shown in the ValidationSummary control (if
you’re using it).

 Tip You can add multiple restrictions to a property by stacking several different data annotation attributes.

Required
This attribute specifies that the field must be present—if it’s left blank, the user receives an error. This
works for zero-length strings, but it’s relatively useless for numeric values, which start out as perfectly
acceptable 0 values:

[Required()]
public string ModelNumber
{ ... }

Here’s an example that adds an error message:

[Required(ErrorMessage="You must valid ACME Industries ModelNumber.")]
public string ModelNumber
{ ... }

StringLength
This attribute sets the maximum length of a string. You can also (optionally) set a minimum length by
setting the MinimumLength property, as shown here:

[StringLength(25, MinimumLength=5)]
public string ModelName
{ ... }

When you’re using an attribute that has important parameters, like StringLength, you can add these
details to your error message using numbered placeholders, where {0} is the name of the field that’s
being edited, {1} is the constructor argument, {2} is the first attribute property, {3} is the second, and so
on. Here’s an example:

[StringLength(25, MinimumLength=5, ErrorMessage=
 "Model names must have between {2} and {1} characters.")]
public string ModelName
{ ... }

When the StringLength causes a validation failure, it sets the error message to this text: “Model
names must have between 5 and 25 characters.”

CHAPTER 21  DATA CONTROLS

780

Range
This attribute forces a value to fall within a range between a minimum value and a maximum value, as
shown here:

[Range(0,1000)]
public int UnitsInStock
{ ... }

The Range attribute is generally used for numeric data types, but you can use any type that
implements IComparable—just use the overloaded version of the constructor that takes the data type as
a Type argument, and supply your values in string form:

[Range(typeof(DateTime), "1/1/2005", "1/1/2010"]
public DateTime ExpiryDate
{ ... }

RegularExpression
This attribute tests a text value against a regular expression—a formula written in a specialized pattern-
matching language.

Here’s an example that allows one or more alphanumeric characters (capital letters from A–Z,
lowercase letters from a–z, and numbers from 0–9, but nothing else):

^[A-Za-z0-9]+$

The first character (^) indicates the beginning of the string. The portion in square brackets identifies
a range of options for a single character—in essence, it says that the character can fall between A to Z, or
a to z, or 0 to 9. The + that immediately follows extends this range to match a sequence of one or more
characters. Finally, the last character ($) represents the end of the string.

To apply this to a property, you use the RegularExpression attribute like this:

[RegularExpression("^[A-Za-z0-9]+$")]
public string ModelNumber
{ ... }

In this example, the characters ^, [], +, and $ are all metacharacters that have a special meaning in
the regular-expression language. Table 21-1 gives a quick outline of all the metacharacters you’re likely
to use.

Table 21-1. Regular-Expression Metacharacters

Character Rule

* Represents zero or more occurrences of the previous character or
subexpression. For example, a*b matches aab or just b.

+ Represents one or more occurrences of the previous character or
subexpression. For example, a+b matches aab but not a.

CHAPTER 21  DATA CONTROLS

781

() Groups a subexpression that is treated as a single element. For example,
(ab)+ matches ab and ababab.

{m} Requires m repetitions of the preceding character or group. For
example, a{3} matches aaa.

{m, n} Requires n to m repetitions of the preceding character or group. For
example, a{2,3} matches aa and aaa but not aaaa.

| Represents either of two matches. For example, a|b matches a or b.

[] Matches one character in a range of valid characters. For example, [A-C]
matches A, B, or C.

[^] Matches a character that isn’t in the given range. For example, [^A-C]
matches any character except A, B, and C.

. Represents any character except newline.

\s Represents any whitespace character (like a tab or space).

\S Represents any nonwhitespace character.

\d Represents any digit character.

\D Represents any character that isn’t a digit.

\w Represents any alphanumeric character (letter, number, or
underscore).

^ Represents the start of the string. For example, ^ab can find a match
only if the string begins with ab.

$ Represents the end of the string. For example, ab$ can find a match
only if the string ends with ab.

\ Indicates that the following character is a literal (even though it may
ordinarily be interpreted as a metacharacter). For example, use \\ for
the literal \ and use \+ for the literal +.

Regular expressions are all about patterned text. In many cases, you won’t devise a regular
expression yourself—instead, you’ll look for the correct premade expression that validates postal codes,
email addresses, and so on. For a detailed exploration of the regular-expression language, check out a
dedicated book like the excellent Mastering Regular Expressions (O’Reilly, Jeffrey Friedl).

CHAPTER 21  DATA CONTROLS

782

REGULAR EXPRESSION BASICS

All regular expressions are made up of two kinds of characters: literals and metacharacters. Literals
represent a specific defined character. Metacharacters are wildcards that can represent a range of values.
Regular expressions gain their power from the rich set of metacharacters that they support (see Table 21-
1).

Two examples of regular-expression metacharacters include the ^ and $ characters you’ve already seen,
which designate the beginning and ending of the string. Two more common metacharacters are \s (which
represents any whitespace character) and \d (which represents any digit). Using these characters, you can
construct the following expression, which will successfully match any string that starts with the numbers
333, followed by a single whitespace character and any three numbers. Valid matches include 333 333,
333 945, but not 334 333 or 3334 945:

^333\s\d\d\d$

You can also use the plus (+) sign to represent a repeated character. For example, 5+7 means “any
number of 5 characters, followed by a single 7.” The number 57 matches, as does 555557. In addition,
you can use the brackets to group together a subexpression. For example, (52)+7 matches any string that
starts with a sequence of 52. Matches include 527, 52527, 52552527, and so on.

You can also delimit a range of characters using square brackets. [a-f] matches any single character from
a to f (lowercase only). The following expression matches any word that starts with a letter from a to f,
contains one or more letters, and ends with ing—possible matches include acting and developing:

^[a-f][a-z]+ing$

This discussion just scratches the surface of regular expressions, which constitute an entire language of
their own. However, you don’t need to learn everything there is to know about regular expressions before
you start using them. Many programmers look for useful prebuilt regular expressions on the Web. Without
much trouble, you can find examples for e-mails, phone numbers, postal codes, and more, all of which you
can drop straight into your applications.

CustomValidation
The most interesting validation attribute is CustomValidation. It allows you to write your own validation
logic in a separate class and then attach that logic to a single property or use it to validate an entire data
object.

Writing a custom validator is remarkably easy. All you need to do is write a static method—in any
class—that accepts the property value you want to validate (and, optionally, the ValidationContext) and
returns a ValidationResult. If the value is valid, you return ValidationResult.Success. If the value isn’t
valid, you create a new ValidationResult, pass in a description of the problem, and return that object.
You then connect that custom validation class to the field you want to validate with the
CustomValidation attribute.

Here’s an example of a custom validation class named ProductValidation. It examines the UnitCost
property and only allows prices that end in 75, 95, or 99:

public class ProductValidation
{

CHAPTER 21  DATA CONTROLS

783

 public static ValidationResult ValidateUnitCost(double value,
 ValidationContext context)
 {
 // Get the cents portion.
 string valueString = value.ToString();
 string cents = "";
 int decimalPosition = valueString.IndexOf(".");
 if (decimalPosition != -1)
 {
 cents = valueString.Substring(decimalPosition);
 }

 // Perform the validation test.
 if ((cents != ".75") && (cents != ".99") && (cents != ".95"))
 {
 return new ValidationResult(
 "Retail prices must end with .75, .95, or .99 to be valid.");
 }
 else
 {
 return ValidationResult.Success;
 }
 }
}

To enforce this validation, use the CustomValidation attribute to attach it the appropriate property.
You must specify two arguments: the type of your custom validation class and the name of the static
method that does the validation. Here’s an example that points to the ValidateUnitCost() method in the
ProductValidation class:

[CustomValidation(typeof(ProductValidation), "ValidateUnitCost")]
public double UnitCost
{ ... }

Figure 21-4 shows this rule in action.

CHAPTER 21  DATA CONTROLS

784

Figure 21-4. Violating a custom validation rule

You can also use the CustomValidation attribute to attach a class-wide validation rule. This is useful
if you need to perform validation that compares properties (for example, making sure one property is
less than another). Here’s a validation method that checks to make sure the ModelNumber and
ModelName properties have different values:

public static ValidationResult ValidateProduct(Product product,
 ValidationContext context)
{
 if (product.ModelName == product.ModelNumber)
 {
 return new ValidationResult(
 "You can't use the same model number as the model name.");
 }
 else
 {
 return ValidationResult.Success;
 }
}

And here’s the CustomValidation attribute that attaches it to the Product class:

[CustomValidation(typeof(ProductValidation), "ValidateProduct")]
public class Product : INotifyPropertyChanged
{ ... }

CHAPTER 21  DATA CONTROLS

785

Class-wide validation rules have a significant drawback. Like property-validation rules, it’s up to you
to enforce them by calling the Validator.ValidateObject() method. Unfortunately, it doesn’t make sense
to do this in any of your property setters, because class-wide validation should be performed after the
entire editing process is complete for the current object. Two of Silverlight’s rich data controls—
DataGrid and DataForm—solve the problem by triggering the Validator.ValidateObject() method
themselves as soon as the user moves to a different record. But if you’re not using either of these
controls, custom validators may not be worth the trouble.

The DataGrid
DataGrid is, at its name suggests, a data-display control that takes the information from a collection of
objects and renders it in a grid of rows and cells. Each row corresponds to a separate object, and each
column corresponds to a property in that object.

The DataGrid adds much-needed versatility for dealing with data in Silverlight. Its advantages
include the following:

• Flexibility: You use a column-based model to define exactly the columns you want
to use and supply the binding expressions that extract the data from the bound
objects. The DataGrid also supports a few important tools you learned about in
Chapter 20, such as templates and value converters.

• Customizability: You can radically alter the appearance of the DataGrid using
properties, along with headers and styles that format individual components of
the grid. And if you’re truly daring, you can give the entire DataGrid a new control
template, complete with custom-drawn visuals and animations.

• Editing: The DataGrid gives you the ability to monitor the editing process and roll
back invalid changes. It supports the exception-based validation you learned
about in Chapter 20, and it also supports data annotations—flexible validation
rules that you add to data classes using attributes instead of code.

• Performance: The DataGrid boasts excellent performance with large sets of data
because it uses virtualization. That means the DataGrid only retains in-memory
objects for the data that’s currently visible, not for the entire set of data that’s
loaded. This reduces the memory overhead dramatically and lets the control hold
tens of thousands of rows without a serious slowdown.

Creating a Simple Grid
The DataGrid is defined in the familiar System.Windows.Controls namespace, but it’s deployed in a
different assembly from other Silverlight elements: the System.Windows.Controls.Data.dll assembly. By
default, your Silverlight project doesn’t have a reference to this assembly. However, as soon as you add a
DataGrid from the Toolbox, Visual Studio adds the reference and inserts a new namespace mapping like
the one shown here:

<UserControl xmlns:data=
 "clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Data" ... >

This maps the DataGrid and its related classes to the namespace prefix data.
To create a quick-and-dirty DataGrid, you can use automatic column generation. To do so, you

need to set the AutoGenerateColumns property to true (which is the default value):

CHAPTER 21  DATA CONTROLS

786

<data:DataGrid x:Name="gridProducts" AutoGenerateColumns="True">
</data:DataGrid>

Now, you can fill the DataGrid as you fill a list control, by setting the ItemsSource property:

gridProducts.DataSource = products;

Figure 21-5 shows a DataGrid that uses automatic column generation with the collection of Product
objects you used throughout Chapter 20. When using automatic column generation, the DataGrid uses
reflection to find every public property in the bound data object. It creates a column for each property.
To display nonstring properties, the DataGrid calls ToString(), which works well for numbers, dates, and
other simple data types but won’t work as well if your objects include a more complex data object. (In
this case, you may want to explicitly define your columns, which gives you the chance to bind to a
subproperty, use a value converter, or apply a template to get the right display content.)

Figure 21-5. A DataGrid with automatically generated columns

Table 21-2 lists some of the properties you can use to customize a DataGrid’s basic display. In the
following sections, you’ll see how to get fine-grained formatting control with styles and templates. You’ll
also see how the DataGrid deals with sorting and selection, and you’ll consider many more properties
that underlie these features.

CHAPTER 21  DATA CONTROLS

787

Table 21-2. Basic Display Properties for the DataGrid

Member Description

RowBackground and
AlternatingRow-
Background

RowBackground sets the brush that’s used to paint the background behind
every row. If you set AlternatingRowBackground, alternate rows are painted
with a different background color, making it easier to distinguish rows at a
glance. By default, the DataGrid gives odd-number rows a white background
and gives the alternating, even-numbered rows a light gray background.

ColumnHeaderHeight The height (in pixels) of the row that has the column headers at the top of the
DataGrid.

RowHeaderWidth The width (in pixels) of the column that has the row headers. This is the
column at the far left of the grid, which shows no data but indicates the
currently selected row (with an arrow) and indicates when the row is being
edited (with an arrow in a circle).

ColumnWidth The default width of every column. If you define columns explicitly, you can
override this width to size individual columns. By default, columns are 100
pixels wide.

RowHeight The height of every row. This setting is useful if you plan to display multiple
lines of text or different content (like images) in the DataGrid. Unlike columns,
the user can’t resize rows.

GridlinesVisibility A value from the DataGridGridlines enumeration that determines which
gridlines are shown (Horizontal, Vertical, None, or All).

VerticalGridlinesBrush The brush that’s used to paint the grid lines in between columns.

HorizontalGridlines-
Brush

The brush that’s used to paint the grid lines in between rows.

HeadersVisibility A value from the DataGridHeaders enumeration that determines which
headers are shown (Column, Row, All, None).

HorizontalScrollBar-
Visibility and
VerticalScrollBar-
Visibility

A value from the ScrollBarVisibility enumeration that determines whether a
scrollbar is shown when needed (Auto), always (Visible), or never (Hidden).
The default for both properties is Auto. No matter what this property value is,
the horizontal scroll bar is not shown if you include one or more star-sized
columns.

CHAPTER 21  DATA CONTROLS

788

How Columns Are Resized and Rearranged
When displaying automatically generated columns, the DataGrid attempts to size the width of each
column intelligently. Initially, it makes each column just wide enough to show the largest value that’s
currently in view (or the header, if that’s wider).

The DataGrid attempts to preserve this intelligent sizing approach when the user starts scrolling
through the data. As soon as you come across a row with longer data, the DataGrid widens the
appropriate columns to fit it. This automatic sizing is one-way only, so columns don’t shrink when you
leave large data behind.

The automatic sizing of the DataGrid columns is interesting and often useful, but it’s not always
what you want. Consider the example shown in Figure 21-5, which contains a Description column that
holds a long string of text. Initially, the Description column is made extremely wide to fit this data,
crowding the other columns out of the way. (In Figure 21-5, the user has manually resized the
Description column to a more sensible size. All the other columns are left at their initial widths.) After a
column has been resized, it doesn’t exhibit the automatic enlarging behavior when the user scrolls
through the data.

 Note Obviously, you don’t want to force your users to grapple with ridiculously wide columns. To size columns
correctly from the start, you need to define your columns explicitly, as described in the next section.

Ordinarily, users can resize columns by dragging the column edge to either size. You can prevent
the user from resizing the columns in your DataGrid by setting the CanUserResizeColumns property to
false. If you want to be more specific, you can prevent the user from resizing an individual column by
setting the CanUserResize property of that column to false. You can also prevent the user from making
the column extremely narrow by setting the column’s MinWidth property.

The DataGrid has another surprise frill that lets users customize the column display. Not only can
columns be resized, but they can also be dragged from one position to another. If you don’t want users
to have this reordering ability, set the CanUserReorderColumns property of the DataGrid or the
CanUserReorder property of a specific column to false.

Defining Columns
Using automatically generated columns, you can quickly create a DataGrid that shows all your data.
However, you give up a fair bit of control. For example, you can’t control how columns are ordered, how
wide they are, how the values inside are formatted, and what header text is placed at the top.

A far more powerful approach is to turn off automatic column generation by setting
AutoGenerateColumns to false. You can then explicitly define the columns you want, with the settings
you want, and in the order you want. To do this, you need to fill the DataGrid.Columns collection with
the right column objects.

Currently, the DataGrid supports three types of columns, which are represented by three different
classes that derive from DataGridColumn:

• DataGridTextColumn: This column is the standard choice for most data types. The
value is converted to text and displayed in a TextBlock. When you edit the row, the
TextBlock is replaced with a standard text box.

CHAPTER 21  DATA CONTROLS

789

• DataGridCheckBoxColumn: This column shows a check box. This column type is
used automatically for Boolean (or nullable Boolean) values. Ordinarily, the check
box is read-only; but when you edit the row, it becomes a normal check box.

• DataGridTemplateColumn: This column is by far the most powerful option. It
allows you to define a data template for displaying column values, with all the
flexibility and power you have when using templates in a list control. For example,
you can use a DataGridTemplateColumn to display image data or use a
specialized Silverlight control (like a drop-down list with valid values or a
DatePicker for date values).

For example, here’s a revised DataGrid that creates a two-column display with product names and
prices. It also applies clearer column captions and widens the Product column to fit its data:

<data:DataGrid x:Name="gridProducts" Margin="5" AutoGenerateColumns="False">
 <data:DataGrid.Columns>
 <data:DataGridTextColumn Header="Product" Width="175"
 Binding="{Binding ModelName}"></data:DataGridTextColumn>
 <data:DataGridTextColumn Header="Price"
 Binding="{Binding UnitCost}"></data:DataGridTextColumn>
 </data:DataGrid.Columns>
</data:DataGrid>

When you define a column, you almost always set three details: the header text that appears at the
top of the column, the width of the column, and—most importantly—the binding that gets the data.

The DataGrid’s approach to data binding is different from the approach of most other list controls.
List controls include a DisplayMemberPath property instead of a Binding property. The Binding
approach is more flexible—it allows you to incorporate a value converter without needing to step up to a
full template column. For example, here’s how you can format the UnitCost column as a currency value
(see Figure 21-6) using the StringFormat property of the binding:

<data:DataGridTextColumn Header="Price" Binding=
 "{Binding UnitCost, StringFormat='C'}">
</data:DataGridTextColumn>

CHAPTER 21  DATA CONTROLS

790

Figure 21-6. Setting the header text and formatting column values

 Tip You can dynamically show and hide columns by modifying the Visibility property of the corresponding
column object. Additionally, you can move columns at any time by changing their DisplayIndex values.

The DataGridCheckBoxColumn
The Product class doesn’t include any Boolean properties. If it did, the DataGridCheckBoxColumn
would be a useful option.

As with DataGridTextColumn, the Binding property extracts the data—in this case, the true or false
value that’s used to set the IsChecked property of the CheckBox element inside. The
DataGridCheckBoxColumn also adds a property named Content that lets you show optional content
alongside the check box. Finally, the DataGridCheckBoxColumn includes an IsThreeState property that
determines whether the check box supports the undetermined state as well as the more obvious checked
and unchecked states. If you’re using the DataGridCheckBoxColumn to show the information from a
nullable Boolean value, you can set IsThreeState property to true. That way, the user can click back to
the undetermined state (which shows a lightly shaded check box) to return the bound value to null.

CHAPTER 21  DATA CONTROLS

791

The DataGridTemplateColumn
The DataGridTemplateColumn uses a data template, which works in the same way as the data-template
features you explored with list controls earlier. The only difference in the DataGridTemplateColumn is
that it allows you to define two templates: one for data display (the CellTemplate) and one for data
editing (the CellEditingTemplate), which you’ll consider shortly. Here’s an example that uses the
template data column to place a thumbnail image of each product in the grid (see Figure 21-7):

<data:DataGridTemplateColumn>
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <Image Stretch="None" Source=
 "{Binding ProductImagePath, Converter={StaticResource ImagePathConverter}}">
 </Image>
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
</data:DataGridTemplateColumn>

This example assumes you’ve added the ImagePathConverter value converter to the
UserControl.Resources collection:

<UserControl.Resources>
 <local:ImagePathConverter x:Key="ImagePathConverter"></local:ImagePathConverter>
</UserControl.Resources>

The full ImagePathConverter code is shown in Chapter 20.

CHAPTER 21  DATA CONTROLS

792

Figure 21-7. A DataGrid with image content

Formatting and Styling Columns
You can format a DataGridTextColumn in the same way that you format a TextBlock element, by setting
the Foreground, FontFamily, FontSize, FontStyle, and FontWeight properties. However, the
DataGridTextColumn doesn’t expose all the properties of the TextBlock. For example, there’s no way to
set the often-used Wrapping property if you want to create a column that shows multiple lines of text. In
this case, you need to use the ElementStyle property instead.

Essentially, the ElementStyle property lets you create a style that is applied to the element inside the
DataGrid cell. In the case of a simple DataGridTextColumn, that’s a TextBlock. (In a
DataGridCheckBoxColumn, it’s a check box; and in a DataGridTemplateColumn, it’s whatever element
you’ve created in the data template.)

Here’s a simple style that allows the text in a column to wrap:

<data:DataGridTextColumn Header="Description" Width="400"
 Binding="{Binding Description}">
 <data:DataGridTextColumn.ElementStyle>

CHAPTER 21  DATA CONTROLS

793

 <Style TargetType="TextBlock">
 <Setter Property="TextWrapping" Value="Wrap"></Setter>
 </Style>
 </data:DataGridTextColumn.ElementStyle>
</data:DataGridTextColumn>

To see the wrapped text, you must expand the row height. Unfortunately, the DataGrid can’t size
itself as flexibly as Silverlight layout containers can. Instead, you’re forced to set a fixed row height using
the DataGrid.RowHeight property. This height applies to all rows, regardless of the amount of content
they contain. Figure 21-8 shows an example with the row height set to 70 pixels.

Figure 21-8. A DataGrid with wrapped text

 Tip If you want to apply the same style to multiple columns (for example, to deal with wrappable text in several
places), you can define the style in the Resources collection and then refer to it in each column using a
StaticResource.

CHAPTER 21  DATA CONTROLS

794

You can use EditingElementStyle to style the element that’s used when you’re editing a column. In
the case of DataGridTextColumn, the editing element is the TextBox control.

The ElementStyle, ElementEditingStyle, and column properties give you a way to format all the cells
in a specific column. However, in some cases you might want to apply formatting settings to every cell in
every column. The simplest way to do so is to configure a style for the DataGrid.RowStyle property. The
DataGrid also exposes a small set of additional properties that allow you to format other parts of the grid,
such as the column headers and row headers. Table 21-3 has the full story.

Table 21-3. Style-Based DataGrid Properties

Property Style Applies To…

ColumnHeaderStyle The TextBlock that’s used for the column headers at the top of the grid.

RowHeaderStyle The TextBlock that’s used for the row headers.

CornerHeaderStyle The corner cell between the row and column headers.

RowStyle The TextBlock that’s used for ordinary rows (rows in columns that haven’t
been expressly customized through the ElementStyle property of the column).

Controlling Column Width
To set the initial size of a column, you set its Width property. You have three basic choices:

• Fixed sizing: To use this approach, simply set the Width property as a number of
pixels (like 200).

• Automatic sizing: To use this approach, set the Width property to one of three
special values: SizeToCells (widen to match the largest displayed cell value),
SizeToHeader (widen to match the header text), or Auto (widen to match the
largest displayed cell value or the header, whichever is larger). When you use
SizeToCells or Auto, the column may be widened while you scroll, which is either
a handy convenience or an annoying distraction, depending on your perspective.
Incidentally, if you don’t set the Width property, the column uses the value of the
DataGrid.ColumnWidth property, which is Auto by default.

• Proportional sizing: To use this approach (which is also called star-sizing), set the
Width property to an asterisk (*). This approach works like the proportional sizing
of the Grid layout container. Once all fixed-sized and automatic-sized columns are
place, the remaining space is shared out among the proportional columns. If you
want to give some columns a larger share of the free space, set a width that uses a
number followed by an asterisk. For example, column with a width of 2* gets twice
the space of a column with a width of just *.

Here’s an example that uses a fixed width for one column (ModelNumber), automatic sizing for
another (Price), and proportional sizing for the remaining two (ModelName and Description):

<data:DataGrid.Columns>
 <data:DataGridTextColumn Header="Model Number" Binding="{Binding ModelNumber}"

CHAPTER 21  DATA CONTROLS

795

 Width="100"></data:DataGridTextColumn>

 <data:DataGridTextColumn Header="Model Name" Width="100"
 Binding="{Binding ModelName}"></data:DataGridTextColumn>

 <data:DataGridTextColumn Header="Unit Cost" Width="*" MinWidth="50"
 Binding="{Binding UnitCost, StringFormat='C'}"></data:DataGridTextColumn>

 <data:DataGridTextColumn Width="2*" MinWidth="50"
 Binding="{Binding Description}" Header="Description" >
 <data:DataGridTextColumn.ElementStyle>
 <Style TargetType="TextBlock">
 <Setter Property="TextWrapping" Value="Wrap"></Setter>
 </Style>
 </data:DataGridTextColumn.ElementStyle>
 </data:DataGridTextColumn>
</data:DataGrid.Columns>

Figure 21-9 shows the grid at two different widths.

CHAPTER 21  DATA CONTROLS

796

Figure 21-9. Resizing a grid with proportional columns

CHAPTER 21  DATA CONTROLS

797

The nice thing about proportional sizing is that it allows you to create grids that adapt to the
available space. As soon as you add even a single proportionately sized column, the GridView removes
the horizontal scrollbar. Then, if you resize the GridView (for example, by resizing the browser window
in this example), the GridView adjusts the size of its columns accordingly.

If you size the GridView to be larger, the proportionately sized columns get all the extra space. If you
size the GridView smaller, the proportionately sized columns are given less and less space, until they
reach their MinWidth values. If you continue shrinking the GridView beyond this point, the other
columns are reduced in size from their original fixed or automatic sizes, until they reach their MinWidth
values. And if you continue shrinking the GridView after all its columns reach their minimum width, the
GridView continues to reduce the width of its columns below the MinWidth settings, until every column
is collapsed. This behavior is somewhat complex, but it’s completely implemented by the DataGrid. It
requires no application intervention, and it works intuitively for the user.

Formatting Rows
By setting the properties of the DataGrid column objects, you can control how entire columns are
formatted. But in many cases, it’s more useful to flag rows that contain specific data. For example, you
may want to draw attention to high-priced products or expired shipments. You can apply this sort of
formatting programmatically by handling the DataGrid.LoadingRow event.

The LoadingRow event is a powerful tool for row formatting. It gives you access to the data object
for the current row, allowing you to perform simple range checks, comparison, and more complex
manipulations. It also provides the DataGridRow object for the row, letting you format the row with
different colors or a different font. However, you can’t format just a single cell in that row—for that, you
need DataGridTemplateColumn and IValueConverter.

The LoadingRow event fires once for each row when it appears on the screen. The advantage of this
approach is that your application is never forced to format the whole grid—instead, the LoadingRow
fires only for the rows that are currently visible. But there’s also a downside. As the user scrolls through
the grid, the LoadingRow event is triggered continuously. As a result, you can’t place time-consuming
code in the LoadingRow method unless you want scrolling to grind to a halt.

There’s also another consideration: virtualization. To lower its memory overhead, the DataGrid
reuses the same DataGrid objects to show new data as you scroll through the data. (That’s why the event
is called LoadingRow rather than CreatingRow.) If you’re not careful, the DataGrid can load data into an
already-formatted DataGridRow. To prevent this from happening, you must explicitly restore each row
to its initial state.

In the following example, high-priced items are given a bright orange background (see Figure 21-
10). Regular-price items are given the standard white background:

// Reuse brush objects for efficiency in large data displays.
private SolidColorBrush highlightBrush = new SolidColorBrush(Colors.Orange);
private SolidColorBrush normalBrush = new SolidColorBrush(Colors.White);

private void gridProducts_LoadingRow(object sender, DataGridRowEventArgs e)
{
 // Check the data object for this row.
 Product product = (Product)e.Row.DataContext;

 // Apply the conditional formatting.
 if (product.UnitCost > 100)
 {
 e.Row.Background = highlightBrush;
 }

CHAPTER 21  DATA CONTROLS

798

 else
 {
 // Restore the default white background. This ensures that used,
 // formatted DataGrid object are reset to their original appearance.
 e.Row.Background = normalBrush;
 }
}

Figure 21-10. Highlighting rows

Remember, you have another option for performing value-based formatting: you can use an
IValueConverter that examines bound data and converts it to something else. This technique is
especially powerful when combined with a DataGridTemplateColumn. For example, you can create a
template-based column that contains a TextBlock and bind the TextBlock.Background property to an
IValueConverter that sets the color based on the price. Unlike the LoadingRow approach shown
previously, this technique allows you to format just the cell that contains the price, not the whole row.
For more information about this technique, refer to the “Applying Conditional Formatting” section in
Chapter 20.

CHAPTER 21  DATA CONTROLS

799

 Tip The formatting you apply in the LoadingRow event handler applies only when the row is loaded. If you edit
a row, this LoadingRow code doesn’t fire (at least, not until you scroll the row out of view and then back into sight).

Row Details
The DataGrid also supports row details—an optional, separate display area that appears just under the
column values for a row. The row-details area adds two things that you can’t get from columns alone.
First, it spans the full width of the DataGrid and isn’t carved into separate columns, which gives you
more space to work with. Second, you can configure the row-details area so that it appears only for the
selected row, allowing you to tuck the extra details out of the way when they’re not needed.

Figure 21-11 shows a DataGrid that uses both of these behaviors. The row-details area shows the
wrapped product description text, and it’s shown only for the currently selected product.

Figure 21-11. Using the row-details area

To create this example, you need to first define the content that’s shown in the row-details area by
setting the DataGrid.RowDetailsTemplate property. In this case, the row-details area uses a basic
template that includes a TextBlock that shows the full product text and adds a border around it:

CHAPTER 21  DATA CONTROLS

800

<data:DataGrid.RowDetailsTemplate>
 <DataTemplate>
 <Border>
 <Border Margin="10" Padding="10" BorderBrush="SteelBlue" BorderThickness="3"
 CornerRadius="5">
 <TextBlock Text="{Binding Description}" TextWrapping="Wrap" FontSize="10">
 </TextBlock>
 </Border>
 </Border>
 </DataTemplate>
</data:DataGrid.RowDetailsTemplate>

Other options include adding controls that allow you to perform various tasks (for example, getting
more information about a product, adding it to a shopping list, editing it, and so on).

 Note There’s a quick with the way the DataGrid sizes the row-details area: it doesn’t take the margin of the
root element into account. As a result, if you set the Margin property on the root element, part of your content will
be cut off at the bottom and right edges. To correct this problem, you can add an extra container, as in this
example. Here, the root-level element doesn’t include a margin, but the nested Border element inside does, which
dodges the sizing problem.

You can configure the display behavior of the row-details area by setting the
DataGrid.RowDetailsVisibilityMode property. By default, this property is set to VisibleWhenSelected,
which means the row-details area is shown when the row is selected. Alternatively, you can set it to
Visible, which means the row detail area of every row will be shown at once. Or, you can use Collapsed,
which means the row detail area won’t be shown for any row, at least not until you change the
RowDetailsVisibilityMode in code (for example, when the user selects a certain type of row).

Freezing Columns
A frozen column stays in place at the left size of the DataGrid, even as you scroll to the right. Figure 21-12
shows how a frozen Product column remains visible during scrolling. Notice how the horizontal
scrollbar extends only under the scrollable columns, not the frozen columns.

CHAPTER 21  DATA CONTROLS

801

Figure 21-12. Freezing the Product column

Column freezing is a useful feature for very wide grids, especially when you want to make sure
certain information (such as the product name or a unique identifier) is always visible. To use it, you set
the IsFrozen property of the column to true:

<data:DataGridTextColumn Header="Product" Width="175" IsFrozen="True"
 Binding="{Binding ModelName}"></data:DataGridTextColumn>

There’s one catch: frozen columns must always be on the left side of the grid. If you freeze one
column, it must be the leftmost column; if you free two columns, they must be the first two on the left;
and so on.

CHAPTER 21  DATA CONTROLS

802

Selection
Like an ordinary list control, the DataGrid lets the user select individual items. You can react to the
SelectionChanged event when this happens. To find out what data object is currently selected, you can
use the SelectedItem property. If you want the user to be able to select multiple rows, set the
SelectionMode property to Extended. (Single is the only other option and the default.) To select multiple
rows, the user must hold down the Shift or Ctrl key. You can retrieve the collection of selected items
from the SelectedItems property.

 Tip You can set the selection programmatically using the SelectedItem property. If you’re setting the selection
to an item that’s not currently in view, it’s a good idea to follow up with a call to the DataGrid.ScrollIntoView()
method, which forces the DataGrid to scroll forward or backward until the item you’ve indicated is visible.

Sorting
The DataGrid features built-in sorting as long as you’re binding a collection that implements IList (such
as the List<T> and ObservableCollection<T> collections). If you meet this requirement, your DataGrid
gets basic sorting for free.

To use the sorting, the user needs to click a column header. Clicking once sorts the column in
ascending order based on its data type (for example, numbers are sorted from 0 up, and letters are
sorted alphabetically). Click the column again, and the sort order is reversed. An arrow appears at the
far-right side of the column header, indicating that the DataGrid is sorted based on the values in this
column. The arrow points up for an ascending sort and down for a descending sort. (When you click a
column more than once, the arrow flips with a quick animation effect.)

Users can sort based on multiple columns by holding down Shift while they click. For example, if
you hold down Shift and click the Category column followed by the Price column, products are sorted
into alphabetical category groups, and the items in each category group are ordered by price.

It’s possible to exercise some control over the DataGrid sorting process, depending on how much
effort you’re willing to make (and how much code you’re willing to live with). Here are your options:

• The SortMemberPath property: Every column provides the SortMemberPath
property, which allows you to specify the property in the bound data object that’s
used for sorting. If SortMemberPath isn’t set, the column is sorted using the
bound data, which makes sense. However, if you have a
DataGridTemplateColumn, you need to use SortMemberPath because there’s no
Binding property to provide the bound data. If you don’t, your column won’t
support sorting.

• The PagedCollectionView class: The PagedCollectionView wraps an ordinary
collection and gives you added abilities to sort, filter, group, and page its contents.
(You’ll use PagedCollectionView later in this chapter for DataGrid grouping and
sorting.)

CHAPTER 21  DATA CONTROLS

803

• A custom template: If you don’t like the arrows that indicate when a sort order has
been applied (or you want to add glitzier animation), you need to use the
DataGrid.ColumnHeaderStyle property to apply a new template. It has three key
states: Unsorted State (when no sorting is applied), SortedAscending State (when
the column is first sorted), and SortedDescending State (when the column header
is clicked twice, and the sort order is reversed). Customize these to plug in your
own visuals.

You can also disable sorting by setting the CanUserSortColumns property to false (or turn it off for
specific columns by setting the column’s CanUserSort property).

DataGrid Editing
One of the DataGrid’s greatest conveniences is its support for editing. A DataGrid cell switches into edit
mode when the user double-clicks it. But the DataGrid lets you restrict this editing ability in several
ways:

• DataGrid.IsReadOnly: When this property is true, users can’t edit anything.

• DataGridColumn.IsReadOnly: When this property is true, users can’t edit any of
the values in that column.

• Read-only properties: If your data object has a property with no property setter,
the DataGrid is intelligent enough to notice this detail and disable column editing
just as if you had set DataGridColumn.IsReadOnly to true. Similarly, if your
property isn’t a simple text, numeric, or date type, the DataGrid makes it read-
only (although you can remedy this situation by switching to the
DataGridTemplateColumn, as described shortly).

What happens when a cell switches into edit mode depends on the column type. A
DataGridTextColumn shows a text box (although it’s a seamless-looking text box that fills the entire cell
and has no visible border). A DataGridCheckBox column shows a check box that you can check or
uncheck. But the DataGridTemplateColumn is by far the most interesting. It allows you to replace the
standard editing text box with a more specialized input control, like a DatePicker or ComboBox.

Editing with Templates
You’ve already seen how to supply a CellTemplate for the DataGridTemplateColumn. But the
DataGridTemplateColumn supports two templates. The CellTemplate determines how the cell looks
when it’s not being edited. The CellEditingTemplate specifies the controls that should be shown in
editing mode, using a two-way binding expression to connect to the appropriate field. It’s up to you
whether you use the same controls in both templates.

For example, the following column shows a date. When the user double-clicks to edit that value, it
turns into a drop-down DatePicker (see Figure 21-13) with the current value preselected:

<data:DataGridTemplateColumn Header="Date Added">
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Margin="4" Text=
 "{Binding DateAdded, Converter={StaticResource DateOnlyConverter}}"></TextBlock>
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>

CHAPTER 21  DATA CONTROLS

804

 <data:DataGridTemplateColumn.CellEditingTemplate>
 <DataTemplate>
 <controls:DatePicker SelectedDate="{Binding DateAdded, Mode=TwoWay}">
 </controls:DatePicker>
 </DataTemplate>
 </data:DataGridTemplateColumn.CellEditingTemplate>
</data:DataGridTemplateColumn>

Figure 21-13. Editing dates with the DatePicker

You can even use a template column to supply a lookup list of options for data entry. For example,
you may want to constrain the Category choice to a list of predefined categories. The easiest way to do
this is to create a combo box in the CellEditingTemplate. Then, bind the ComboBox.SelectedItem
property to the Product.CategoryName using a two-way binding, and bind the ComboBox.ItemsSource
property to a collection that contains the allowed values. In the following example, that’s a collection
that’s exposed by the Product.CategoryChoices property:

<data:DataGridTemplateColumn Header="Category">
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Margin="4" Text="{Binding CategoryName}"></TextBlock>
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>

 <data:DataGridTemplateColumn.CellEditingTemplate>
 <DataTemplate>

 <ComboBox Margin="4" ItemsSource="{Binding CategoryChoices}"
 SelectedItem="{Binding CategoryName, Mode=TwoWay}">

CHAPTER 21  DATA CONTROLS

805

 </ComboBox>
 </DataTemplate>
 </data:DataGridTemplateColumn.CellEditingTemplate>
</data:DataGridTemplateColumn>

Validation and Editing Events
The DataGrid automatically supports the same basic validation system you learned about in the
previous chapter, which reacts to problems in the data-binding system (such as the inability to convert
supplied text to the appropriate data type) or exceptions thrown by the property setter. The error
message appears as a red pop-up next to the offending column (Figure 21-14).

Figure 21-14. A property setting exception

The DataGridTextColumn automatically uses binding expressions that support validation. However,
if you’re using a DataGridTemplateColumn, you must add both the ValidatesOnExceptions and
NotifyOnValidationError properties to the binding expression in the CellEditingTemplate, as shown
here:

<data:DataGridTemplateColumn Header="Price">
 <data:DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Margin="4"
 Text="{Binding UnitCost, StringFormat='C'}">
 </TextBlock>
 </DataTemplate>
 </data:DataGridTemplateColumn.CellTemplate>
 <data:DataGridTemplateColumn.CellEditingTemplate>

CHAPTER 21  DATA CONTROLS

806

 <DataTemplate>
 <TextBox Margin="4"
 Text="{Binding UnitCost, Mode=TwoWay, ValidatesOnExceptions=true,
NotifyOnValidationError=true}">
 </TextBox>
 </DataTemplate>
 </data:DataGridTemplateColumn.CellEditingTemplate>
</data:DataGridTemplateColumn>

You can implement validation a couple of other ways with a DataGrid. One option is to use the
DataGrid’s editing events, which are listed in Table 21-4. The order of rows matches the order that the
events fire in the DataGrid.

Table 21-4. DataGrid Editing Events

Name Description

BeginningEdit Occurs when the cell is about to be put in edit mode. You can examine the
column and row that are currently being edited, check the cell value, and
cancel this operation using the DataGridBeginningEditEventArgs.Cancel
property.

PreparingCellForEdit Used for template columns. At this point, you can perform any last-minute
initialization that’s required for the editing controls. Use
DataGridPreparingCellForEditEventArgs.EditingElement to access the element
in the CellEditingTemplate.

CellEditEnding Occurs when the cell is about to exit edit mode.
DataGridCellEditEndingEventArgs.EditAction tells you whether the user is
attempting to accept the edit (for example, by pressing Enter or clicking
another cell) or cancel it (by pressing the Escape key). You can examine the
new data and set the Cancel property to roll back an attempted change.

CellEditEnded Occurs after the cell has returned to normal. You can use this point to update
other controls or display a message that notes the change.

RowEditEnding Provides a collection of all the current HTTP cookies. You can read or set the
values in these cookies. Cookies provide one easy, low-cost way to transfer
information from server-side ASP.NET code to client-side Silverlight code.
However, cookies aren’t the best approach for storing small amounts of data
on the client’s computer—isolated storage, which is discussed in Chapter 22,
provides a similar feature with better compatibility and programming support.

RowEditEnded Occurs after the user has moved on from an edited row. You can use this point
to update other controls or display a message noting the change.

If you need a place to perform validation logic that is specific to your page (and so can’t be baked

into the data objects), you can write custom validation logic that responds to the CellEditEnding and
RowEditEnding events. Check column rules in the CellEditEnding event handler, and validate the
consistency of the entire row in the RowEditEnding event. And remember, if you cancel an edit, you

CHAPTER 21  DATA CONTROLS

807

should provide an explanation of the problem (usually in a TextBlock elsewhere on the page, although
you can also use the ChildWindow control or a message box).

Finally, it’s worth noting that the DataGrid supports data annotations in a different way than the
ordinary input controls you’ve used so far. If your property setters use the Validator.ValidateProperty()
method to check for invalid values and throw a ValidationException (as shown earlier), the DataGrid
responds in the typical way, by immediately recognizing the error and displaying the error message in a
red pop-up. But if you don’t use the validator, the DataGrid still validates all the properties you’ve set
and validates the entire object. The difference is that it doesn’t perform this validation until the user
attempts to move to another row. Furthermore, if a validation error is detected at this point, the
DataGrid handles it in a different way. It returns the user to the invalid row, keeping it in edit mode, and
then shows the error message in a shaded bar that appears over the bottom of the DataGrid. Figure 21-
15 shows an example where an edit violates the custom validation routine from the ProductValidation
class shown earlier.

Figure 21-15. Violating a data annotation

Here’s another way to think about it. Any exceptions you raise in the property setter are handled
when the CellEditEnding event fires. And data annotations you apply but don’t explicitly enforce with
code are checked by the DataGrid when the RowEditEnding event fires.

It’s up to you whether you use this ability. If you intend to perform editing in ordinary controls as
well as the DataGrid, you need to keep using the Validator.ValidateProperty() method to defend against
invalid data. But if you intend to use the DataGrid exclusively for your editing needs, it may make sense
to omit the property-setting code and let the DataGrid perform the validation. Just remember that when
used in this way, the data annotation rules won’t kick in when you set values programmatically. (This
also raises the possibility of a particularly odd error condition: if the DataGrid is loaded with invalid data
and the user attempts to edit that data, the user will be trapped in edit mode until the value is changed.
The edit can’t be cancelled, because the original value is invalid.)

CHAPTER 21  DATA CONTROLS

808

The PagedCollectionView
The DataGrid has a few more features that require the support of the PagedCollectionView, which is
found in the System.Windows.Data namespace. The PagedCollectionView wraps a collection and gives
you a different way to look at it. Conceptually, the PagedCollectionView is a window onto your data, and
that window can apply sorting, filtering, grouping, and paging before your data appears in a bound
control like the DataGrid.

To use the PagedCollectionView, you need to explicitly create it in your code. You supply the source
collection with your data as a constructor argument. You then bind the PagedCollectionView to the
appropriate control instead of your original collection.

To implement this approach with the current example, you’d change this code, which reacts when
the web service returns the collection of products:

gridProducts.ItemsSource = e.Result;

to this:

PagedCollectionView view = new PagedCollectionView(e.Result);
gridProducts.ItemsSource = view;

To change the way your data appears in the bound control, you tweak the settings of the
PagedCollectionView. In the following sections, you’ll see examples that use the most commonly
modified PagedCollectionView properties.

Sorting
You can apply a multilevel sort order by adding SortDescription objects (from the
System.ComponentModel namespace) to the PagedCollectionView.SortDescriptions collection. Each
SortDescription object applies a single level of sorting, based on a single property. The SortDescription
objects are applied in the order you add them, which means the following code orders products by
category and then sorts each category group from lowest to highest price:

PagedCollectionView view = new PagedCollectionView(e.Result);

// Sort by category and price.
view.SortDescriptions.Add(
 new SortDescription("CategoryName", ListSortDirection.Ascending));
view.SortDescriptions.Add(
 new SortDescription("UnitCost", ListSortDirection.Ascending));

gridProducts.ItemsSource = view;

This approach integrates perfectly with the built-in DataGrid sorting you considered earlier in this
chapter. The DataGrid displays the up or down sort arrow in the header of whatever columns the
PagedCollectionView uses for sorting. And if the user clicks a column header, the old sort order is
abandoned, and the rows are re-ordered appropriately.

Filtering
You can use the PagedCollectionView.Filter property to set a filtering callback: a routine that tests
whether each row should be shown or hidden. To show a row, the callback returns true. To hide it, the
callback returns false.

CHAPTER 21  DATA CONTROLS

809

Here’s an example that only shows products that are in the Travel category.

PagedCollectionView view = new PagedCollectionView(e.Result);

// Show only travel items.
// The full list of products remains in the source collection, but the
// non-travel items are not visible through the PagedCollectionView.
view.Filter = delegate(object filterObject)
{
 Product product = (Product)filterObject;
 return (product.CategoryName == "Travel");
};

gridProducts.ItemsSource = view;

Grouping
The DataGrid also has support for grouping, which allows you to organize rows together into logical
categories. The basic idea is that you pick a property to use for grouping (such as CategoryName).
Objects that have the same value for that property (for example, products with the same CategoryName)
are placed into a single group, which can be collapsed in the DataGrid display, as shown in Figure 21-16.

CHAPTER 21  DATA CONTROLS

810

Figure 21-16. Products grouped by CategoryName

To implement grouping, you pick the field on which you want to group. You then add a
PropertyGroupDescription object (from the System.ComponentModel namespace) to the
PagedCollectionView.GroupDescriptions collection. Here’s an example that creates the category groups
shown in Figure 21-16:

PagedCollectionView view = new PagedCollectionView(e.Result);
view.GroupDescriptions.Add(new PropertyGroupDescription("CategoryName"));
gridProducts.ItemsSource = view;

If you want to perform grouping and subgrouping, you add more than one
PropertyGroupDescription. The following code splits the products by category and then further divides
each category by product status:

PagedCollectionView view = new PagedCollectionView(e.Result);

view.GroupDescriptions.Add(new PropertyGroupDescription("CategoryName"));
view.GroupDescriptions.Add(new PropertyGroupDescription("Status"));

CHAPTER 21  DATA CONTROLS

811

gridProducts.ItemsSource = view;

The DataGrid allows the user to collapse and expand each group. Initially, all groups are expanded.
However, the DataGrid gives you the ability to programmatically expand and collapse groups through its
ExpandRowGroup() and CollapseRowGroup() methods. All you need to do is find the group you want in
the PagedCollectionView.Groups collection. For example, the following code collapses the Travel group:

foreach (CollectionViewGroup group in view.Groups)
{
 if (group.Name == "Travel")
 gridProducts.CollapseRowGroup(group, true);
}

The CollapseRowGroup() and ExpandRowGroup() take two parameters: first, the group you want to
collapse or expand; and second, a Boolean value that indicates whether you want to collapse or expand
all the subgroups inside.

 Note In theory, the PagedCollectionView can support any bound ItemsControl, including the modest ListBox.
This is true of sorting, filtering, and paging, but it isn’t the case for grouping. With grouping, the bound control
needs a way to show the appropriate headers for each group. Currently, only the DataGrid has this ability.

The standard PagedCollectionView grouping is simple—it works by matching values exactly. In
some cases, you might want to create broader groups—for example, you might want to group all the
products that have names starting with a certain letter or that prices within a set range. To accomplish
this, you need to use the PropertyGroupDescription.Converter property. This takes an IValueConverter
(just like the ones you created in Chapter 20), which changes the source value into the value you want to
use for grouping. For example, to implement first-letter grouping, the IValueConverter would simply
extract the first letter from the supplied string.

Another challenge is changing the appearance of the headers that precede each group. The
DataGrid helps out a bit with its RowGroupHeaderStyles property, which allows you to create a style
object that will pass its property settings down to the group header. Here’s an example that changes the
background and foreground colors:

<data:DataGrid.RowGroupHeaderStyles>
 <Style TargetType="data:DataGridRowGroupHeader">
 <Setter Property="Background" Value="#FF112255" />
 <Setter Property="Foreground" Value="#FFEEEEEE" />
 </Style>
</data:DataGrid.RowGroupHeaderStyles>

 Note Your style can change any of the properties of the DataGridRowGroupHeader class. But changing the text
is a bit of work—you need to supply a new control template for the DataGridRowGroupHeader.Template property.

CHAPTER 21  DATA CONTROLS

812

The RowGroupHeaderStyles property is a collection, which means you can supply as many Style
objects as you want. This allows you to apply customized formatting to the headers in a DataGrid that
uses multiple grouping levels. If you supply more than one style, the first one will apply to the top-level
group, the second one will apply to the subgroups inside, the third one will apply to the subgroups in the
subgroups, and so on.

Paging
Paging is the ability of the PagedCollectionView to split your data into pages, each of which has a fixed
number of rows. The user can then browse from one page to another. Paging is useful when you have a
huge amount of data, because it allows the user to review it in more manageable chunks.

The PagedCollectionView provides two properties that configure paging:

• PageSize: This property sets the maximum number of records that’s allowed on a
page. By default, its set to 0, which means the PagedCollectionView does not use
paging and all the records are kept together.

• PageIndex: This property indicates the user’s current page, where 0 is the first
page, 1 is the second, and so on. You can’t set the PageIndex property
programmatically, but the PagedCollectionView provides several methods for
changing pages, including MoveToFirstPage(), MoveToLastPage(),
MoveToPreviousPage(), MoveToNextPage(), and MoveToPage().

Paging would be a bit of a chore if you had to create the controls that allow the user to move from
one page to another. Fortunately, Silverlight has a DataPager control that’s dedicated to exactly this task.
You simply need to add the DataPager to your page (typically, you’ll place it under the DataGrid), set a
few properties to configure its appearance, and then wire it up to the PagedCollectionView.

Here’s the markup that creates the DataPager shown in Figure 21-7:

<data:DataPager Margin="5,0,5,5" Grid.Row="1" x:Name="pager"
 PageSize="5" DisplayMode="FirstLastPreviousNextNumeric"
 NumericButtonCount="3" IsTotalItemCountFixed="True"></data:DataPager>

CHAPTER 21  DATA CONTROLS

813

Figure 21-17. Using the DataPager to move through paged data

To make the DataPager operational, you need to add one line of code after you create your view,
which connects the DataPager to the PagedCollectionView:

pager.Source = view;

The DataPager is a fairly intuitive control. Table 21-5 lists its key properties.

Table 21-5. DataPager Properties

Property Description

PageCount Gets or sets the PagedCollectionView.PageCount property. This allows you to
set the number of records per page through the DataPager, rather than forcing
you to go through the PagedCollectionView.

Source Gets or sets the PagedCollectionView that wraps the source data and
implements the paging.

NumericButtonCount Allows you to choose one of six common arrangements for pager buttons,
using the PagerDisplayMode enumeration. Your options are shown in Figure
21-18. If you want to customize the pager display beyond this, you can either
create your own paging controls that interact directly with the
PagedCollecitonView or supply a custom control template for the DataPager.

CHAPTER 21  DATA CONTROLS

814

Property Description

NumericButtonStyle Allows you to create a style that formats the number buttons.
NumericButtonStyle has no effect if DisplayMode is set to PreviousNext or
FirstLastPreviousNext.

AutoEllipsis If true, replaces the last number button with an ellipsis (…). For example, if
NumericButtonCount is 3, the initial set of number buttons will be 1, 2, …
instead of 1, 2, 3. AutoEllipsis has no effect if DisplayMode is set to
PreviousNext or FirstLastPreviousNext.

IsTotalItemCountFixed If true, the Next button is disabled when the user is on the last page. You
should set this to false only if the number of pages may change because your
code is adding or removing items.

Figure 21-18. PagerDisplayMode options

The TreeView
The TreeView control allows you to display items in a collapsible, hierarchical tree, just like the kind that
are a staple of the Windows world, appearing in everything from the Windows Explorer file browser to
the .NET help library.

CHAPTER 21  DATA CONTROLS

815

At its heart, the TreeView is a specialized ItemsControl that hosts TreeViewItem objects. The trick is
that each TreeViewItem is its own distinct ItemsControl, with the ability to hold more TreeViewItem
objects. This flexibility allows you to create a deeply layered data display.

Filling a TreeView
Here’s the skeleton of a very basic TreeView, which is declared entirely in markup:

<controls:TreeView>
 <controls:TreeViewItem Header="Fruit">
 <controls:TreeViewItem Header="Orange"/>
 <controls:TreeViewItem Header="Banana"/>
 <controls:TreeViewItem Header="Grapefruit"/>
 </controls:TreeViewItem>
 <controls:TreeViewItem Header="Vegetables">
 <controls:TreeViewItem Header="Aubergine"/>
 <controls:TreeViewItem Header="Squash"/>
 <controls:TreeViewItem Header="Spinach"/>
 </controls:TreeViewItem>
</controls:TreeView>

Figure 21-19 shows the result.

Figure 21-19. A TreeView with hard-coded values

CHAPTER 21  DATA CONTROLS

816

It’s not necessary to construct a TreeView out of TreeViewItem objects. In fact, you have the ability
to add virtually any element to a TreeView, including buttons, panels, and images. However, if you want
to display nontext content, the best approach is to use a TreeViewItem wrapper and supply your content
through the TreeViewItem.Header property, like this:

<controls:TreeViewItem>
 <controls:TreeViewItem.Header>
 <Button Content="There's a Button in this TreeView"></Button>
 </controls:TreeViewItem.Header>
</controls:TreeViewItem>

This gives you the same effect as adding non-TreeViewItem elements directly to your TreeView but
gives you access to the rich set of TreeViewItem properties, such as properties that tell you whether a
node is selected or collapsed (IsSelected and IsExpanded) and events that can inform you when it
happens (Selected, Unselected, Expanded, and Collapsed).

You can also display an ordinary data object in a TreeViewItem, like a Product object. You do this in
much the same way that you showed data objects in the ListBox in Chapter 20. Just use the Header
property to supply the data object, and use the HeaderTemplate property to supply a data template that
formats it.

A Data-Bound TreeView
Usually, you won’t fill a TreeView with fixed information that’s hard-coded in your markup. Instead,
you’ll construct the TreeViewItem objects you need programmatically, or you’ll use data binding to
display a collection of objects.

Filling a TreeView with data is easy enough—as with any ItemsControl, you simply set the
ItemsSource property. However, this technique fills only the first level of the TreeView. A more
interesting use of the TreeView incorporates hierarchical data that has some sort of nested structure.

For example, consider the TreeView shown in Figure 21-20. The first level consists of Category
objects, while the second level shows the Product objects that fall into each category.

CHAPTER 21  DATA CONTROLS

817

Figure 21-20. A TreeView of categories and products

The TreeView makes hierarchical data display easy. You simply need to specify the right data
templates. Your templates indicate the relationship between the different levels of the data.

For example, imagine you want to build the example shown in Figure 21-20. In Chapter 20, you saw
how you could call a web method named GetCategoriesWithProducts() to retrieve a collection of
Category objects, each of which holds a collection of Product objects. You can use the same method with
this example—you simply need to bind the Category collection to the tree so that it appears in the first
level. Here’s the page code that queries the web service and displays the result:

private void Page_Loaded(object sender, RoutedEventArgs e)
{
 StoreDbClient client = new StoreDbClient();
 client.GetCategoriesWithProductsCompleted +=
 client_GetCategoriesWithProductsCompleted;
 client.GetCategoriesWithProductsAsync();

CHAPTER 21  DATA CONTROLS

818

 lblStatus.Text = "Contacting service ...";
}

private void client_GetCategoriesWithProductsCompleted(object sender,
 GetCategoriesWithProductsCompletedEventArgs e)
{
 try
 {
 treeCategoriesProducts.ItemsSource = e.Result;
 lblStatus.Text = "Received results from web service.";
 }
 catch (Exception err)
 {
 lblStatus.Text = "An error occured: " + err.Message;
 }
}

To display the categories, you need to supply a TreeView.ItemTemplate that can process the bound
objects. In this example, you need to display the CategoryName property of each Category object, in
bold. Here’s the data template that does it, as a resource in the UserControls.Resources collection:

<UserControl.Resources>
 <common:HierarchicalDataTemplate x:Key="CategoryTemplate">
 <TextBlock Text="{Binding CategoryName}" FontWeight="Bold" />
 </common:HierarchicalDataTemplate>
</UserControl.Resources>

The only unusual detail here is that the TreeView.ItemTemplate is set using a
HierarchicalDataTemplate object instead of a DataTemplate. The HierarchicalDataTemplate has the
added advantage that it can wrap a second template. The HierarchicalDataTemplate can then pull a
collection of items from the first level and provide that to the second-level template. You simply set the
ItemsSource property to identify the property that has the child items (in this case, it’s the
Category.Products collection), and you set the ItemTemplate property to indicate how each object
should be formatted. In this example, the child product objects are formatted using a second
HierarchicalDataTemplate, which simply displays the ModelName in italics. Here are the two templates
that do it:

<UserControl.Resources>
 <common:HierarchicalDataTemplate x:Key="CategoryTemplate"
 ItemsSource="{Binding Products}" ItemTemplate="{StaticResource ProductTemplate}">
 <TextBlock Text="{Binding CategoryName}" FontWeight="Bold" />
 </common:HierarchicalDataTemplate>

 <common:HierarchicalDataTemplate x:Key="ProductTemplate">
 <TextBlock FontStyle="Italic" Text="{Binding ModelName}" />
 </common:HierarchicalDataTemplate>
</UserControl.Resources>

Essentially, you now have two templates, one for each level of the tree. The second template uses
the selected item from the first template as its data source.

Finally, here’s the TreeView, which specifies that the root-level items (the categories) should be
formatted with the CategoryTemplate:

<controls:TreeView x:Name="treeCategories" Margin="5"

CHAPTER 21  DATA CONTROLS

819

 ItemTemplate="{StaticResource CategoryTemplate}">
</controls:TreeView>

This is all you need to get the category and product tree shown in Figure 21-20.

The PivotViewer
You’ve now considered a wide variety of data controls that work with Silverlight applications. One detail
that all of these controls share is their flexibility. Using a combination of lists, grids, forms, and trees, you
can build virtually any sort of user interface you need.

The PivotViewer is an entirely different sort of data control. It’s designed around a specific scenario
(data visualization and analysis) and outfitted with a number of high-level features. The advantage of the
PivotViewer is that you get a polished interface that requires very little code. The drawback is that your
customization options are more limited. If the PivotViewer doesn’t quite meet your needs, you probably
won’t be able to alter or extend it to fit your project.

The PivotViewer is, at its heart, a tool for dissecting large collections of data (typically, ones with
hundreds or thousands of items). The PivotViewer provides filtering options that let users home in on
the subset of data that interests them. For example, using the PivotViewer, you might take a catalog of
used items and find all the green objects in the home décor section. Or, you might review a database of
sales information to find what customer cities are placing the most orders for high-priced products.

So far, these scenarios sound less than revolutionary. After all, Silverlight already has several ways to
filter data, including LINQ queries (Chapter 20) and the PagedCollectionView (described in the previous
section). But there are two characteristics that make the PivotViewer special:

The pivot: Pivoting is the act of switching from one set of filtering settings to another. This is the
moment when you step back and look at the same data in a different way—and possibly stumble
across a new insight. (If you’ve ever used PivotTables in Microsoft Excel, you’re already familiar with
this idea.) The PivotViewer is designed to make this process of discovery easy. It allows the user to
easily combine and change filtering settings and thereby “pivot” from one vantage point to another.
Best of all, you don’t need to write any code to manage the filtering process.

Images and visual style: Although it isn’t strictly necessary, virtually every PivotViewer example uses
some sort of image to represent each item in the collection. These images are then tiled together
into a single zoomable, scrollable, high-resolution surface. This visual feel is a key part of the way
the PivotViewer works, and you’ll need to play around with an example to really get a feel for it. At its
best, the PivotViewer’s emphasis on images helps users understand and connect with the
underlying data. And because the PivotViewer uses DeepZoom technology behind the scenes
(Chapter 12), you can use a huge number of high-resolution pictures without a significant
performance slowdown.

It’s important to understand that the pictures in a PivotViewer catalog can be anything. Depending
on your data, the pictures might be of actual objects (say, photos of the items in an antique store),
people (photos of employees in a company), or even documents (first-page pictures from published
articles). The user begins at the top level, filtering down the massive collection of data, and can gradually
zoom in on a specific item to see its details and to take a close-up look at the corresponding image.

To see how this works in practice, you need an example. There are a number of live PivotViewer
demonstrations on the Web, including applications for browsing Netflix movies, baseball cards, MSDN
articles, and so on. Most of these examples were built using the older version of the PivotViewer that was
bundled with the Silverlight Control Toolkit and used with Silverlight 4.

The following figures show the more modest example you’ll examine next. It begins with the
familiar collection of products you’ve used throughout this chapter (Figure 21-21). Like many ordinary
data-bound controls, the initial PivotViewer display is created with a data template. Here, the example

CHAPTER 21  DATA CONTROLS

820

combines a border, some bound data, and a picture. The products are tiled to fit the available space—if
there’s more room, the PivotViewer sizes them up, and if space is more constrained, it shrinks them
down.

Figure 21-21. The initial product collection in the PivotViewer

 Note The PivotViewer display surface behaves like the DeepZoom images you learned about in Chapter 12. You
can use the slider (at the top right) or the mouse scroll wheel to zoom in, magnifying the pictures to show fine
detail. You can also pull the tiled surface to the side, and it will drift a short distance, using a subtle inertia effect.

Now you can use the filter pane (on the left) to pull out a specific subset of data. As you’ll see, filter
conditions are data-type specific, and they can be applied in combination to show as few or as many
items as you want. In Figure 21-22, the collection is filtered to show items in two categories.

CHAPTER 21  DATA CONTROLS

821

Figure 21-22. Filtering products

What Figure 21-22 can’t show is the PivotViewer’s slick animated effects. As you apply filtering
settings, the unwanted items fly off the display surface, and the other items rearrange and resize
themselves to fit. The effect is similar to the FluidMoveBehavior described in Chapter 14, but even more
striking. The animation also serves a practical purpose, by giving the user a general “feel” for the number
of items that are included and excluded in a given subset.

Finally, clicking an individual item brings up a details pane (on the right) with the complete data for
the selected item (Figure 21-23).

CHAPTER 21  DATA CONTROLS

822

Figure 21-23. Viewing a single product

This view also provides a change to “pivot” the display. Just click one of the data items to change the
filtering settings to match. For example, if you click the category name (it’s “Communications” in the
current example), the PivotViewer will show all the products in the communications category—again
with the slick animated effects that bring new items flying into the display surface.

In the following sections, you’ll build this simple PivotViewer display. Along the way, you’ll learn
about a few of the PivotViewer’s finer details, including text searching, numeric and date-based filtering,
chart display, and item selection.

Defining the PivotViewer
Before you can use the PivotViewer, you need to add a reference to the
System.Windows.Controls.Pivot.dll assembly. You can then map a prefix to the corresponding
namespace:

<UserControl x:Class="DataControls.PivotViewerTest" xmlns:pv=
"clr-namespace:System.Windows.Controls.Pivot;assembly=System.Windows.Controls.Pivot"
... >

With that in place, you’re ready to add the PivotViewer to your page:

<pv:PivotViewer x:Name="pivotViewer">
</pv:PivotViewer>

CHAPTER 21  DATA CONTROLS

823

The Data Template
To define what the PivotViewer shows for each item, you need a data template. Technically, you won’t
use the DataTemplate class but the PivotViewerItemTemplate class. PivotViewerItemTemplate derives
from DataTemplate and adds just a single property, MaxWidth. Although you don’t need to set the
MaxWidth property, you can use it to set an upper limit on the zoom size of your data items. This
prevents the user from zooming in too close to a low-resolution image.

Here’s the PivotViewer with its data template. The template may look familiar, because it’s virtually
identical to the one you used to display products images in the ListBox in Chapter 20.

<pv:PivotViewer x:Name="pivotViewer">
 <pv:PivotViewer.ItemTemplates>
 <pv:PivotViewerItemTemplate>
 <Border Margin="5" BorderThickness="1" BorderBrush="SteelBlue" Width="125"
 CornerRadius="4">
 <Grid Margin="3">
 <Grid.RowDefinitions>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 <RowDefinition></RowDefinition>
 </Grid.RowDefinitions>
 <TextBlock FontWeight="Bold"
 Text="{Binding Path=ModelNumber}"></TextBlock>
 <TextBlock Grid.Row="1" Text="{Binding Path=ModelName}"></TextBlock>
 <Image MinHeight="100" Grid.Row="2" Grid.RowSpan="2" Source=
"{Binding Path=ProductImagePath, Converter={StaticResource ImagePathConverter}}">
 </Image>
 </Grid>
 </Border>
 </pv:PivotViewerItemTemplate>
 </pv:PivotViewer.ItemTemplates>
</pv:PivotViewer>

Pivot Properties
With a template, the PivotViewer is now able to display its data collection as a group of animated tiles.
However, you need to add some additional information if you want to use the PivotViewer’s filter pane
and details pane.

What you need are pivot properties. Each property maps to a single field in your data item. The
property tells the PivotViewer how to use that piece of information. If you don’t add a pivot property for
a given field in your data object, the PivotViewer simply ignores that field.

To define your pivot properties, you fill the PivotViewer.PivotProperties collection. For example, if
you want to map an ordinary string (like the category name), you add a PivotViewerStringProperty, like
this:

<pv:PivotViewer x:Name="pivotViewer" ItemDoubleClick="pivotViewer_ItemDoubleClick">
 <pv:PivotViewer.PivotProperties>
 <pv:PivotViewerStringProperty Id="CategoryName" DisplayName="Category"
 Binding="{Binding CategoryName}" />
 </pv:PivotViewer.PivotProperties>
 ...

CHAPTER 21  DATA CONTROLS

824

</pv:PivotViewer>

You need to supply three key details for every pivot property: a unique Id (usually, that’s the same as
the field name), the DisplayName (which sets the text that appears for this field in the PivotViewer), and
a Binding (which extracts the information from the corresponding bound field). As long as you supply
these three details, the field will appear in the details pane when the user selects the item (as shown in
Figure 21-23). However, the field won’t be used for filtering. To enable that, you need to add the Options
property:

<pv:PivotViewerStringProperty Id="CategoryName" DisplayName="Category"
 Binding="{Binding CategoryName}" Options="CanFilter" />

The CanFilter option tells the PivotViewer to add this field to the filter pane on the left, complete
with the handy check boxes shown in Figure 21-21. The Options property supports a few more values,
including Private (which hides the property from the details pane), WrappingText (which allows values
to wrap), and CanSearchText (which allows you to find and apply a filter value using a text search box).
You can use commas to combine multiple values, if necessary:

<pv:PivotViewerStringProperty Id="ModelName" DisplayName="Category"
 Binding="{Binding CategoryName}" Options="CanFilter,CanSearchText" />

Figure 21-24 shows text searching in action. This technique is useful if you have a long list of values
and you don’t to force users to scroll through looking for the ones they want.

Figure 21-24. Finding a filter value with the search box

The PivotViewer also supports specialized filtering for numeric data types and dates (Figure 21-25).
To filter numeric data, you can drag a bar to set the minimum and maximum range you want to
consider. To filter dates, you can use a date picker drop-down. To get this advanced filtering, you need to
use the PivotVieweverNumericProperty or the PivotViewerDateTimeProperty:

CHAPTER 21  DATA CONTROLS

825

<pv:PivotViewerNumericProperty Id="UnitCost" DisplayName="Cost"
 Binding="{Binding UnitCost}" Format="C" Options="CanFilter" />
<pv:PivotViewerDateTimeProperty Id="DateProperty" DisplayName="Date Added"
 Binding="{Binding DateAdded}" Options="CanFilter" />

Figure 21-25. Filtering numbers and dates

Here’s the complete list of pivot properties:

<pv:PivotViewer x:Name="pivotViewer" ItemDoubleClick="pivotViewer_ItemDoubleClick">
 <pv:PivotViewer.PivotProperties>
 <pv:PivotViewerStringProperty Id="CategoryName" DisplayName="Category"
 Binding="{Binding CategoryName}" Options="CanFilter" />
 <pv:PivotViewerStringProperty Id="ModelNumber" DisplayName="Model Number"
 Binding="{Binding ModelNumber}" Options="CanSearchText" />
 <pv:PivotViewerStringProperty Id="ModelName" DisplayName="Model Name"
 Binding="{Binding ModelName}" Options="CanFilter" />
 <pv:PivotViewerNumericProperty Id="UnitCost" DisplayName="Cost"
 Binding="{Binding UnitCost}" Format="C" Options="CanFilter" />
 <pv:PivotViewerDateTimeProperty Id="DateProperty" DisplayName="Date Added"
 Binding="{Binding DateAdded}" Options="CanFilter" />
 <pv:PivotViewerStringProperty Id="Description" DisplayName="Description"
 Binding="{Binding Description}" />
 </pv:PivotViewer.PivotProperties>
 ...
</pv:PivotViewer>

Navigating the PivotViewer
Provided you’ve set up the data template and pivot properties, you can load the collection in the same
way you work with any other data-bound control: by supplying a collection for the ItemsSource
property.

CHAPTER 21  DATA CONTROLS

826

You can now explore the collection, apply filter settings, and select items. The PivotViewer fires the
standard SelectionChanged event to let you know when the user has picked a specific item to focus on,
along with a new ItemDoubleClick event that signals when the user double-clicks an item (at which
point you might want to launch another task):

private void pivotViewer_ItemDoubleClick(object sender,
 System.Windows.Controls.Pivot.PivotViewerItemDoubleClickEventArgs e)
{
 Product product = ((Product)e.Item);
 MessageBox.Show("You clicked " + product.ModelName + ".");
}

You can also react to the changes that take place in the PivotViewer by paying attention to events
like FilterChanged, SortPivotPropertyChanged, and ViewChanged.

One more nifty effect that the PivotViewer provides is a chart-like bar display. You can switch from
tile view into graph view by clicking the tiny bar-chart icon in the top-right corner of the PivotViewer
control (Figure 21-26). You can then focus on a specific bar of data (just click it) or spit the graph up
using a different pivot property (use the sort list). As always, any filtering changes you make are
accompanied by the PivotViewer’s slick visual transitions.

Figure 21-26. Splitting your data into columns

CHAPTER 21  DATA CONTROLS

827

DEEPER INTO THE PIVOTVIEWER

There’s still more you can do to customize the PivotViewer. Some of it is easy (for example, you can tweak
the PivotViewer properties to change its overall color scheme). Most of it is more difficult (for example,
altering the filter pane or details pane with a new control template, or using
PivotViewerMultiScaleSubImageHost to host high-resolution images in your templates with the
performance of DeepZoom). There’s a considerable amount of PivotViewer information online, but at the
time of this writing, most of it is written for the first version of the PivotViewer, which was released with
the Silverlight Control Toolkit and uses a different data model.

In the near future, Microsoft’s PivotViewer site (www.microsoft.com/silverlight/pivotviewer) will be
updated for the Silverlight 5 version of the PivotViewer. These pages contain a wealth of useful information
and examples, but take the promotional videos with a healthy dose of salt. In a colossal stretch, they
suggest that the PivotViewer will become a groundbreaking tool for everything from document searching
(ignoring the high-cost of generating document images) to genomics research (ignoring the PivotViewer’s
lack of serious data analysis abilities). Although the PivotViewer control is high on cool factor, its data
visualization skills are simply convenient, not revolutionary.

The Last Word
In this chapter, you delved deeper into data binding, one of the key pillars of Silverlight. You learned how
to build smart data forms that require less code and draw the information they need from attributes. On
the way, you mastered the Label, DescriptionViewer, and ValidationSummary controls, and you learned
how to implement validation with the new data annotation model.

Most of your time in this chapter was spent exploring Silverlight’s rich data controls, particularly the
remarkably flexible DataGrid, with its fine-grained support for formatting and editing. You saw how to
implement advanced filtering, grouping, and paging with the PagedCollectionView. You ended with a
look at the TreeView, which lets you bind nested layers of data objects, with no extra code required.

This brings you to the end of your data binding odyssey. In the next chapter, you’ll start with a new
topic, learning how to store data on the local computer with isolated storage.

http://www.microsoft.com/silverlight/pivotviewer

C H A P T E R 22

829

File Access

Silverlight includes a surprisingly capable set of features for saving, reading, and managing files. The key
fact you need to understand is that ordinary Silverlight applications aren’t allowed to write to (or read
from) arbitrary locations on the file system. Instead, Silverlight applications that need to store data
permanently must use a feature called isolated storage.

Isolated storage gives you access to a small segment of hard-disk space, with certain limitations. For
instance, you don’t know exactly where your files are being stored. You also can’t read the files left by
another Silverlight application or recorded for another user. In essence, isolated storage provides
carefully restricted, tamperproof file access for applications that need to store permanent information
on the local computer—usually so this information can be retrieved the next time the user runs the
application.

In recent releases, Silverlight has added three back doors that allow you to bypass the rules of
isolated storage in specific scenarios:

OpenFileDialog and SaveFileDialog: These classes allow you to access a file
directly, provided the user explicitly select it in a dialog box. For example, if the
user picks a file in the OpenFileDialog, your application is granted permission
to read that file’s contents. If the user picks a file in the SaveFileDialog, your
application is allowed to write to it. However, in neither case are you given the
specifics about that file (such as its exact location on the hard drive), nor are
you allowed to access any other files in the same location.

Drag and drop: The second way to get around the limits of isolated storage is
using Silverlight’s drag-and-drop feature. Once again, it’s up to the user to
explicitly pass the file to your code—in this case, by dragging it over your
application and dropping it on one of your elements. You can then handle the
Drop event and read the file content.

Elevated trust: Elevated-trust applications are applications that must be
explicitly installed by the user and show a security prompt requesting extra
privileges. In the case of file access, elevated trust applications can read and
write to the files in the set of documents folder for the current user (which is
sometimes called “My Documents”).

In this chapter, you’ll learn how to create files in isolated storage and write and read data. You’ll see
how to store miscellaneous data, application settings, and entire objects. You’ll also learn how to request
more isolated storage space for your application and upload files to a web server with the help of web
services. Finally, you’ll look at Silverlight’s file dialog classes and the drag-and-drop file transfer feature.

CHAPTER 22  FILE ACCESS

830

 What’s New Silverlight 5 gives elevated-trust applications even more file-accessing power. Previously, they
were limited to the current user’s documents folder. But now, they have the ability to access any file that the user
can access, anywhere on the hard drive. For more information, see the “File Access in Elevated Trust” section.
Also, Silverlight adds one practical refinement to the SaveFileDialog—a DefaultFileName property that you can use
to provide a suggested file name for a user’s save operation.

Isolated Storage
Isolated storage provides a virtual file system that lets you write data to a small, user-specific and
application-specific slot of space. The actual location on the hard drive is obfuscated (so there’s no way
to know beforehand exactly where the data will be written), and the default space limit is a mere 1 MB
(although you can request that the user grant you more).

Essentially, isolated storage is the Silverlight equivalent of persistent cookies in an ordinary web
page. It allows small bits of information to be stored in a dedicated location that has specific controls in
place to prevent malicious attacks (such as code that attempts to fill the hard drive or replace a system
file).

The Scope of Isolated Storage
With isolated storage, a unique storage location is created for every combination of user and application.
In other words, the same computer can have multiple isolated storage locations for the same
application, assuming each one is for a different user. Similarly, the same user can have multiple isolated
storage locations, one for each Silverlight application. Isolated storage isn’t affected by browser, so a
Windows user switching from Internet Explorer to Firefox will get the same isolated storage location in
both browsers.

 Note Data in one user’s isolated store is restricted from other users (unless they’re Windows administrators).

The critical factor that gives a Silverlight application its identity is the URL of the XAP file. That
means the following:

• Different XAP files on the same web server and in the same folder have different
isolated stores.

• If you host the website on different domains, each instance gets its own isolated
store.

• If you create different test pages that use the same application at the same
location, they share the same isolated storage.

• If you rename the XAP file (or the folder that it’s in), you get a new isolated store.

CHAPTER 22  FILE ACCESS

831

• If you change the GUID, version, or other assembly metadata for your Silverlight
application, you keep the same isolated store.

• If you replace a Silverlight application with another application that has the same
XAP file name, it acquires the previous application’s isolated store.

What to Put in Isolated Storage
Isolated storage is a great way to store small amounts of nonessential information. Good choices include
user-specific details, user preferences, and information about recent user actions. Isolated storage is also
great temporary storage. For example, imagine you create a Silverlight application that allows a user to
fill out a multipart form (over several pages) and then send it to a web service, where it will be stored
permanently. Each time the user moves from one part of the form to the next, you can save the current
data to isolated storage. Then, when the user completes the operation and successfully submits the data
to the web service, you can delete it. This commonsense approach prevents the user from losing data if
the application can’t contact the web service (because the network isn’t working) or the user
accidentally restarts the application (for example, by clicking the browser’s Back button). Your
application can check for the temporary data on startup and give the user the option of reloading that
data.

Isolated storage is persistent—unlike the browser cache, it never expires, and it’s not removed if the
user chooses to explicitly delete temporary Internet files. However, isolated storage isn’t a good storage
place for important documents, because they’re never backed up, are easily deleted, and can be even
more easily lost (for example, if the user changes accounts or computers). Furthermore, isolated storage
generally isn’t a good place to cache resources (for example, external bitmaps and media files). It may
seem tempting, but isolated storage is intended to be a limited-size storage location for data, not a
handcrafted replacement for HTTP caching.

Using Isolated Storage
Isolated storage is easy to use because it exposes the same stream-based model that’s used in ordinary
.NET file access. You use the types in the System.IO.IsolatedStorage namespace, which are a core part of
the Silverlight runtime.

Opening an Isolated Store
Silverlight creates isolated stores automatically. To interact with an isolated store, you use the
IsolatedStorageFile class. You get the IsolatedStorageFile object for the current user and application by
calling the static IsolatedStorageFile.GetUserStoreForApplication() method, as shown here:

IsolatedStorageFile store =
 IsolatedStorageFile.GetUserStoreForApplication();

Usually, this gives you exactly what you want: an application-specific, user-specific location where
you can store data. However, the IsolatedStorageFile class also includes a similar but slightly different
static method named GetUserStoreForSite(). This method provides a storage site that’s accessible to all
the Silverlight applications on the same website domain. However, these settings are still user-specific.
You may choose to use a domain-wide isolated store if you’re developing a group of Silverlight
applications together and you want all of them to share some personalization information.

Either way, once you’ve opened the isolated store and have a live IsolatedStorageFile object, you’re
ready to start creating files.

CHAPTER 22  FILE ACCESS

832

File Management
The IsolatedStorageFile class name is somewhat misleading, because it doesn’t represent a single file.
Instead, it provides access to the collection of files in the isolated store. The methods that the
IsolatedStorageFile class provides are similar to the file-management methods you can use through the
File and Directory classes in a full-fledged .NET application. Table 22-1 lists the methods you can use.

Table 22-1. File-Management Methods for IsolatedStorageFile

Method Description

CreateDirectory() Creates a new folder in the isolated store, with the name you specify.

DeleteDirectory() Deletes the specified folder from the isolated store.

CreateFile() Creates a new file with the name you supply and returns an
IsolatedStorageFileStream object that you can use to write data to the file.

DeleteFile() Deletes the specified file from the isolated store.

Remove() Removes the isolated store, along with all its files and directories.

OpenFile() Opens a file in the isolated store and returns an IsolatedStorageFileStream
object that you can use to manipulate the file. Usually, you’ll use this method
to open an existing file for reading, but you can supply different FileMode and
FileAccess values to create a new file or overwrite an existing file.

FileExists() Returns true or false, depending on whether the specified file exists in the
isolated store. You can use an overloaded version of this method to look in a
specific subfolder or match a file with a search expression (using the
wildcards ? and *).

DirectoryExists() Returns true or false, depending on whether the specified folder exists in the
isolated storage location.

GetFileNames() Returns an array of strings, one for each file in the root of the isolated store.
Optionally, you can use an overloaded version of this method that accepts a
single string argument. This argument lets you specify a subfolder you want
to search or a search expression (using the wildcards ? and *).

GetDirectoryNames() Returns an array of strings, one for each subfolder in the root of the isolated
store. Optionally, you can use an overloaded version of this method that
accepts a single string argument. This argument lets you get subfolders in a
specific directory or specify a search expression (using the wildcards ? and *).

CHAPTER 22  FILE ACCESS

833

Writing and Reading Data
Using the methods in Table 22-1, you can create files and use streams to write and read data. Of course,
you’re unlikely to deal with the IsolatedStorageFileStream class directly, unless you want to read and
write your data one byte at a time. Instead, you’ll use one of the more capable classes from the
System.IO namespace that wrap streams:

• StreamWriter and StreamReader: Use these classes if you want to write and read
data as ordinary text strings. You can write the data in several pieces and retrieve it
line by line or in one large block using StreamReader.ReadToEnd().

• BinaryWriter and BinaryReader: Use these classes if you want to write data more
strictly (and somewhat more compactly). When retrieving data, you need to use
the data type. (For example, you must use the BinaryReader.ReadInt32() method
to retrieve a 32-bit integer from the file, BinaryReader.ReadString() to read a
string, and so on.)

The following example gets the current isolated store, creates a new file named date.txt, and writes
the current date to that file as a piece of text:

// Write to isolated storage.
try
{
 using (IsolatedStorageFile store =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 using (IsolatedStorageFileStream stream = store.CreateFile("date.txt"))
 {
 StreamWriter writer = new StreamWriter(stream);
 writer.Write(DateTime.Now);
 writer.Close();
 }
 lblStatus.Text = "Data written to date.txt";
 }
}
catch (Exception err)
{
 lblStatus.Text = err.Message;
}

Retrieving information is just as easy. You simply need to open the IsolatedStorageFileStream object
in read mode:

// Read from isolated storage.
try
{
 using (IsolatedStorageFile store =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 using (IsolatedStorageFileStream stream = store.OpenFile("date.txt",
 FileMode.Open))
 {
 StreamReader reader = new StreamReader(stream);

CHAPTER 22  FILE ACCESS

834

 lblData.Text = reader.ReadLine();
 reader.Close();
 }
 }
}
catch (Exception err)
{
 // An exception will occur if you attempt to open a file that doesn't exist.
 lblStatus.Text = err.Message;
}

In this example, on a Windows Vista or Windows 7 computer, you’ll find the date.txt file in a path in
this form:

C:\Users\[UserName]\AppData\LocalLow\Microsoft\Silverlight\is\[Unique_Identifier]

Several automatically generated folder names are tacked onto the end of this path. Here’s an
example of a dynamically created path that Silverlight may use for isolated storage:

C:\Users\matthew\AppData\LocalLow\Microsoft\Silverlight\is\sid3dsxe.u1y\lstesiyg.ezx
\s\atkj2fb5vjnabwjsx2nfj3htrsq1ku1h\f\date.txt

If you’re curious, you can get the path for the current isolated store using the Visual Studio
debugger. To do so, hover over the IsolatedStorageFile object while in break mode, and look for the
nonpublic RootDirectory property, as shown in Figure 22-1.

Figure 22-1. Finding the isolated storage location

Fortunately, you don’t need to worry about the directory structure that’s used for isolated storage.
You can check for files and retrieve from isolated storage using the methods of IsolatedStorageFile, such
as GetFileNames() and OpenFile().

CHAPTER 22  FILE ACCESS

835

 Note Notably, Silverlight doesn’t obfuscate the names of files in isolated storage. That means if the user knows
the file name, the user can perform a file search to find the file.

Requesting More Space
Initially, each Silverlight application gets 1 MB of space in its isolated store. You can examine the
IsolatedStorageFile.AvailableFreeSpace property to find out how much free space remains.

 Note There’s one exception to the initial 1 MB quota. If the application has been installed as an out-of-browser
application (see Chapter 21), its quota automatically increases to 25 MB. This increased quota applies regardless
of whether you launch the application in a stand-alone window or run it through the browser—either way, the
application uses the same isolated store.

If your application needs more space, you can use an option: the IsolatedStorageFile
IncreaseQuotaTo() method. When you call this method, you request the number of bytes you want.
Silverlight then shows a message box with the current number of bytes the application is using in
isolated storage (not the current quota limit) and the new requested amount of space. The dialog box
also shows the URL of the Silverlight application (or file:// if you’re running it locally).

Figure 22-2 shows an example where the application currently has no files stored in isolated storage
and is attempting to increase the limit to 1 MB. If the user clicks Yes to accept the request, the quota is
increased, and the IncreaseQuotaTo() method returns true. If the user clicks No, the request is denied,
and IncreaseQuotaTo() returns false.

Figure 22-2. Asking to increase the isolated store quota

CHAPTER 22  FILE ACCESS

836

Two considerations limit how you can use IncreaseQuotaTo():

• You must use it in an event handler that reacts to a user action (for example, a
button click). If you attempt to use it elsewhere—say, when a page loads—the call
will be ignored. This is a security measure designed to prevent users from
inadvertently accepting large quotas if the confirmation dialog suddenly steals the
focus.

• You must request a value that’s higher than the current quota. Otherwise, you’ll
receive an exception. That means you can’t use the IncreaseQuotaTo() method to
ensure that there’s a certain level of free space—instead, you need to explicitly
check whether you have the required amount of space.

You can determine the current quota size by checking the IsolatedStorageFile.Quota property. You
can find the amount of space that remains in the isolated store using the
IsolatedStorageFile.AvailableFreeSpace property. (It therefore follows that you can calculate the amount
of space you’re using in isolated storage by calculating IsolatedStorageFile.Quota –
IsolatedStorageFile.AvailableFreeSpace.)

Here’s an example of the IncreaseQuotaTo() method in action:

using (IsolatedStorageFile store = IsolatedStorageFile.GetUserStoreForApplication())
{
 // In an application that writes 1000 KB files, you need to ask for an increase
 // if there is less than 1000 KB free.
 if (store.AvailableFreeSpace < 1000*1024)
 {
 if (store.IncreaseQuotaTo(
 store.Quota + 1000*1024 - store.AvailableFreeSpace))
 {
 // The request succeeded.
 }
 else
 {
 // The request failed.
 lblError.Text = "Not enough room to save temporary file.";
 return;
 }
 }

 // (Write the big file here.)
}

The preceding example uses a calculation to request an exact amount of space. The potential
problem with this approach is that every time you need a bit more space, you’ll need to present the user
with a new request. To avoid these constant requests, it makes sense to request an amount of space
that’s comfortably above your immediate needs.

There’s an easy way to find out how much isolated space storage has been allocated to every
Silverlight application you’ve ever used. To do so, you must first browse to a page with Silverlight
content. Right-click the Silverlight content region, and choose Silverlight. A tabbed dialog box appears
that displays information about the current version of Silverlight, allows you to control whether updates
are installed automatically, and lets you enable or disable media content that uses digital rights
management (DRM) licensing.

CHAPTER 22  FILE ACCESS

837

To review the isolated storage quotas for various applications, click the Application Storage tab.
There, you see a list of all the Silverlight applications that the current user has run and that use isolated
storage (see Figure 22-3). Next to each application is information about its maximum space quota and
the current amount of space used.

Figure 22-3. Reviewing the isolated stores of different applications

The Application Storage tab gives you the only way to remove isolated storage. Simply select the
application, and click Delete. When you do so, two things happen: all the files in isolated storage for that
application are removed, and the quota is reset to the standard 1 MB.

 Note There’s no way to lower an application’s isolated storage quota without removing the current contents of
its isolated store. You can also do this programmatically using the IsolatedStorageFile.Remove() method.

Storing Objects with XmlSerializer
As you’ve already seen, you can write to files in isolated storage using the same classes you use for
ordinary file access in a .NET application, such as StreamWriter and BinaryWriter. To read from them,
you use the corresponding StreamReader and BinaryReader classes. Although this approach gives you
the most direct control over your files, it’s not the only option.

CHAPTER 22  FILE ACCESS

838

The XmlSerializer class provides a higher-level alternative that allows you to serialize and deserialize
objects rather than write and read individual pieces of data. XmlSerializer works by converting a live
object into a stream of bytes, which you can push out to any stream. XmlSerializer can also perform the
reverse trick and convert a stream of bytes into an object instance. To use XmlSerializer, you need to add
a reference to the System.Xml.Serialization.dll assembly, which will be included in the XAP file for your
compiled application.

XmlSerializer can’t work with every class. It has two non-negotiable requirements:

• The class you want to serialize must have a public no-argument constructor. This
is the constructor that XmlSerializer uses when deserializing a new instance.

• The class you want to serialize must be made up of public settable properties.
XmlSerializer reads these properties (using reflection) when serializing the object
and sets them (again using reflection) when restoring it. Private data is ignored,
and any validation logic that you place in your property procedures—for example,
requiring one property to be set before another—is likely to cause a problem.

If you can live with these limitations, the advantage is that XmlSerializer gives you a clean, concise
way to store an entire object’s worth of information.

Ideally, the classes you use to store information with XmlSerializer will be simple data packages with
little or no functionality built in. Here’s a simple Person class that’s serialized in the next example you’ll
consider:

public class Person
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public DateTime? DateOfBirth { get; set; }

 public Person(string firstName, string lastName, DateTime? dateOfBirth)
 {
 FirstName = firstName;
 LastName = lastName;
 DateOfBirth = dateOfBirth;
 }

 public Person() { }
}

Figure 22-4 shows a test page that uses XmlSerializer and the Person class. It lets the user specify the
three pieces of information that make up a Person object and then stores that data in isolated storage.
Person files are named using the first name, last name, and extension .person, as in JoeMalik.person. The
list on the left of the page shows all the .person files in isolated storage and allows the user to select one
to view or update its data.

CHAPTER 22  FILE ACCESS

839

Figure 22-4. Storing person objects

Building this example is easy. First, you need an instance of XmlSerializer that’s customized to use
the Person class and is available to all your event-handling code:

private XmlSerializer serializer = new XmlSerializer(typeof(Person));

When the user clicks the Add button, the current information in the two text boxes and the
DatePicker control is used to build a Person object, and that Person object is serialized to isolated
storage:

private void cmdAdd_Click(object sender, RoutedEventArgs e)
{
 Person person = new Person(txtFirstName.Text, txtLastName.Text,
 dpDateOfBirth.SelectedDate);

 using (IsolatedStorageFile store =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 // The CreateFile() method creates a new file or overwrites an existing one.
 using (FileStream stream = store.CreateFile(
 person.FirstName + person.LastName + ".person"))
 {
 // Store the person details in the file.
 serializer.Serialize(stream, person);
 }

CHAPTER 22  FILE ACCESS

840

 // Update the list.
 lstPeople.ItemsSource = store.GetFileNames("*.person");
 }
}

When the user clicks one of the person files in the list, the data is retrieved from isolated storage:

private void lstPeople_SelectionChanged(object sender, SelectionChangedEventArgs e)
{
 if (lstPeople.SelectedItem == null) return;

 using (IsolatedStorageFile store =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 using (FileStream stream = store.OpenFile(
 lstPeople.SelectedItem.ToString(), FileMode.Open))
 {
 Person person = (Person)serializer.Deserialize(stream);
 txtFirstName.Text = person.FirstName;
 txtLastName.Text = person.LastName;
 dpDateOfBirth.SelectedDate = person.DateOfBirth;
 }
 }
}

And finally, if the user clicks Delete button, the selected person file is removed from the isolated
store:

private void Delete_Click(object sender, RoutedEventArgs e)
{
 if (lstPeople.SelectedItem == null) return;

 using (IsolatedStorageFile store =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 store.DeleteFile(lstPeople.SelectedItem.ToString());
 lstPeople.ItemsSource = store.GetFileNames("*.person");
 }
}

Storing Application Settings
A common pattern with isolated storage is to load it when the application starts (or as needed) and then
save it automatically when the application ends and the Application.Exit event fires. Silverlight has a
higher-level class that allows you to implement this pattern to store miscellaneous pieces of information
(typically, application settings). This class is IsolatedStorageSettings.

The IsolatedStorageSettings class provides two static properties, both of which hold collections of
information that you want to store. The most commonly used collection is
IsolatedStorageSettings.ApplicationSettings, which is a name-value collection that can hold any items
you like. Behind the scenes, the ApplicationSettings class uses XmlSerializer to store the information you
add.

To add an item, you need to assign it a new string key name. Here’s an example that stores the date
under the key name LastRunDate:

CHAPTER 22  FILE ACCESS

841

IsolatedStorageSettings.ApplicationSettings["LastRunDate"] = DateTime.Now;

And here’s an example that stores a Person object under the key name CurrentUser:

IsolatedStorageSettings.ApplicationSettings["CurrentUser"] = new Person(...);

Retrieving it is just as easy, although you need to cast the object to the right type:

DateTime date = (DateTime)
 IsolatedStorageSettings.ApplicationSettings["LastRunDate"];
Person person = (Person)IsolatedStorageSettings.ApplicationSettings["CurrentUser"];

You can also use the Contains() method to check whether a key exists in the ApplicationSettings
collection, and you can use the Remove() method to delete an existing piece of information.

The ApplicationSettings class stores all the information it contains automatically when the
Silverlight application shuts down (for example, when the user navigates to a new page). Thus, the
information will be present in the ApplicationSettings collection the next time the user runs the
application. The IsolatedStorageSettings class also provides a SiteSettings collection that works in much
the same way—it’s an untyped collection that can hold any type of serializable data—but is scoped to
the current website domain. That means any Silverlight applications running at that domain have access
to these settings.

The ApplicationSettings collection and SiteSettings collection are really just niceties that simplify
what you can already do directly with isolated storage. However, they’re a convenient place to store
small scraps of configuration information without needing to build a more complex data model for your
application.

Accessing Files Outside of Isolated Storage
As you’ve seen, Silverlight applications aren’t allowed to browse the file system. But you can use several
back doors to read and write individual files—provided the user selects them first. These back doors are
the OpenFileDialog and SaveFileDialog classes and the drag-and-drop feature.

The OpenFileDialog and SaveFileDialog classes allow you to show a standard Open and Save dialog
box in response to a user-initiated action (like a button click). The user then selects a file in the dialog
box, which is returned to your code as a stream. If you show the Open dialog box, you get given a read-
only stream for accessing the file. If you show the Save dialog box, you get a writeable stream. Either way,
the OpenFileDialog and SaveFileDialog classes give you access to a single specific file, while walling off
everything else.

 Note For security reasons, Silverlight does not support the OpenFileDialog and SaveFileDialog classes in full-
screen mode. Although Silverlight’s standard behavior is to switch out of full-screen mode as soon as you show
either one, it’s better for your code to set explicitly set Application.Current.Host.Content.IsFullScreen to false to
avoid any possible problems on different browsers and operating systems.

Silverlight’s drag-and-drop feature is similar to the OpenFileDialog. It allows your application to
access one or more files in read-only mode, provided the user explicitly drags these files onto an element
in your application. The advantage of the drag-and-drop feature is that the file selection requires fewer
user steps. It’s particularly convenient if the user needs to select a large number of files at once.

CHAPTER 22  FILE ACCESS

842

In the following sections, you’ll learn how to use all these approaches. You’ll also consider a realistic
application that uploads user-selected files to a web service.

Reading Files with OpenFileDialog
OpenFileDialog allows you to show the ordinary Open File dialog box. After the user chooses a file, it’s
made available to your application for reading only. No restrictions are placed on the OpenFileDialog, so
it’s possible for the user to choose any file. However, there’s no way for you to access any file without the
user explicitly choosing it and clicking Open, which is considered to be a high enough bar for security.

To use OpenFileDialog, you first create a new instance and then set the Filter and FilterIndex
properties to configure what file types the user sees. The Filter property determines what appears in the
file-type list.

You need to indicate the text that should appear in the file-type list and the corresponding
expression that the OpenFileDialog box will use to filter files. For example, if you want to allow the user
to open text files, you can show the text “Text Files (*.txt)” and use the filter expression *.txt to find all
files with the .txt extension. Here’s how you then set the Filter property:

OpenFileDialog dialog = new OpenFileDialog();
dialog.Filter = "Text Files (*.txt)|*.txt";

You use the pipe (|) character to separate the display text from the filter expression in the filter
string. If you have multiple file types, string them one after the other, separated by additional pipe
characters. For example, if you want to let the user see different types of images, you can write a filter
string like this:

dialog.Filter = "Bitmaps (*.bmp)|*.bmp|JPEGs (*.jpg)|*.jpg|All files (*.*)|*.*";

You can also create a filter expression that matches several file types, by separating them with
semicolons:

dialog.Filter = "Image Files (*.bmp;*.jpg;*.gif)|*.bmp;*.jpg;*.gif";

After you’ve configured the OpenFileDialog, you then show the dialog box by calling ShowDialog().
The ShowDialog() method returns a DialogResult value that indicates what the user selected. If the result
is true, the user picked a file, and you can go ahead and open it:

if (dialog.ShowDialog() == true)
{ ... }

The file is exposed through the OpenFileDialog.File property, which is a FileInfo object. The FileInfo
is a relatively simple class that exposes a small set of useful members, including a Name property that
returns the file name, an OpenRead() method that returns a FileStream object in read-only mode, and
an OpenText() method that creates the FileStream and returns a StreamReader for it:

if (dialog.ShowDialog() == true)
{
 using (StreamReader reader = dlg.File.OpenText())
 {
 string data = reader.ReadToEnd();
 }
}

Obviously, the OpenText() method is a good shortcut if you’re dealing with text data, and
OpenRead() is a better choice if you need to create a BinaryReader or use the FileStream.Read() method
directly to pull out a block of bytes.

CHAPTER 22  FILE ACCESS

843

 Tip The OpenFileDialog also supports multiple selection. Set OpenFileDialog.Multiselect to true before you call
ShowDialog(). Then, retrieve all the selected files through the OpenFileDialog.Files property.

One interesting way to use OpenFileDialog is to copy a selected file from the local hard drive to
isolated storage so the application can manipulate it later. Here’s an example that performs this trick:

OpenFileDialog dialog = new OpenFileDialog();
dialog.Filter = "All files (*.*)|*.*";
dialog.Multiselect = true;

// Show the dialog box.
if (dialog.ShowDialog() == true)
{
 // Copy all the selected files to isolated storage.
 using (IsolatedStorageFile store =
 IsolatedStorageFile.GetUserStoreForApplication())
 {
 foreach (FileInfo file in dialog.Files)
 {
 using (Stream fileStream = file.OpenRead())
 {
 // Check for free space.
 if (fileStream.Length > store.AvailableFreeSpace)
 {
 // (Cancel the operation or use IncreaseQuotaTo().)
 }

 using (IsolatedStorageFileStream storeStream =
 store.CreateFile(file.Name))
 {
 // Write 1 KB block at a time.
 byte[] buffer = new byte[1024];
 int count = 0;
 do
 {
 count = fileStream.Read(buffer, 0, buffer.Length);
 if (count > 0) storeStream.Write(buffer, 0, count);
 } while (count > 0);
 }
 }
 }
 }
}

Writing Files with SaveFileDialog
When you’ve mastered OpenFileDialog, the SaveFileDialog class will seem straightforward. Like
OpenFileDialog, it allows the user to hunt around the hard drive and choose a file that is exposed to your

CHAPTER 22  FILE ACCESS

844

application. You can’t retrieve any details about where this file is located or what other files exist in the
same folder. Instead, SaveFileDialog gives you a stream into which you can write data.

To use the SaveFileDialog class, begin by creating an instance and setting the file-type filter. Then,
show the dialog box (using the familiar ShowDialog() method), and grab the stream for the selected file
(using the OpenFile() method). Here’s a simple code routine that demonstrates these steps by copying
text out of a text box into a user-designated file:

SaveFileDialog saveDialog = new SaveFileDialog();
saveDialog.Filter = "Text Files (*.txt)|*.txt";

if (saveDialog.ShowDialog() == true)
{
 using (Stream stream = saveDialog.OpenFile())
 {
 using (StreamWriter writer = new StreamWriter(stream))
 {
 writer.Write(txtData.Text);
 }
 }
}

You can also use the DefaultExt property to set a default file extension and the DefaultFileName
property to set a recommended file name. Of course, the user is free to change the name before actually
saving the file.

saveDialog.DefaultExt = "txt";
saveDialog.DefaultFileName = "NewDocument1.txt";

SaveFileDialog adds the default extension to the file name the user types in, unless the file name
already includes the same extension. If the user includes a different extension (for example, the
DefaultExt is txt and the user enters myfile.test), the default extension is still added to the end (for
example, making the file myfile.test.txt).

If the user picks a file that already exists, a confirmation message appears asking whether the user
wants to overwrite the existing file. This will happen when the user selects an existing file from the
displayed list or if the user types in a file name that, with the addition of the default extension, matches
an existing file. Either way, the user must confirm the operation to close the dialog box and continue.

Finally, after ShowDialog() returns, you can retrieve the file name the user selected, without any
folder or path information, from the SafeFileName property.

Transmitting Files with a Web Service
With the combination of OpenFileDialog and SaveFileDialog, it’s possible to build an application that
copies server content to the local computer or uploads local files to a location on the web server. In fact,
building an application like this is easy—all you need is a back-end web service that manages the files.

Figure 22-5 shows a simple example that demonstrates the concept. When this application first
starts, it requests from the server a list of available files. The user can then choose to upload new files or
download one of the existing ones. In a more sophisticated example, the web server could require some
form of authentication and give each user access to a different collection of files.

CHAPTER 22  FILE ACCESS

845

Figure 22-5. A Silverlight-based file uploader

You can try this complete example with the downloadable code for this chapter. In the following
sections, you’ll walk through all the essential code.

The File Service
The backbone of this example is a set of server-side methods that allows the Silverlight application to do
three things: retrieve a list of files, download an existing file, and upload a new file. In this example, a
single service named FileService takes care of all three tasks.

FileService provides access to the files in a predefined location. In this case, files are stored in a
subfolder on the server named Files. Here’s the basic outline of the web service code:

[ServiceContract(Namespace = "")]
[AspNetCompatibilityRequirements(RequirementsMode =
AspNetCompatibilityRequirementsMode.Allowed)]
public class FileService
{
 private string filePath;

 public FileService()
 {
 filePath = HttpContext.Current.Server.MapPath("Files");
 }

 [OperationContract]
 public string[] GetFileList()
 {
 ...

CHAPTER 22  FILE ACCESS

846

 }

 [OperationContract]
 public void UploadFile(string fileName, byte[] data)
 {
 ...
 }

 [OperationContract]
 public byte[] DownloadFile(string fileName)
 {
 ...
 }
}

When handling file names, the server code takes great care to remove the path information so that
no sensitive details are passed back to the client. You can see this in the GetFileList() method, which uses
the System.IO.Path class to strip the path information out of each of the file names:

[OperationContract]
public string[] GetFileList()
{
 // Scan the folder for files.
 string[] files = Directory.GetFiles(filePath);

 // Trim out path information.
 for (int i = 0; i < files.Count(); i++)
 {
 files[i] = Path.GetFileName(files[i]);
 }

 // Return the file list.
 return files;
}

The DownloadFile() method needs to take similar care but for a different reason. It makes sure to
strip any path information out of the caller-supplied file name. This prevents malicious callers from
passing in relative paths such as ../../../Windows/System/somefile.dll, which could otherwise trick the
application into returning a sensitive file.

Once the DownloadFile() code has safely filtered out the file name, it opens the file, copies its
contents to a byte array, and returns the data:

[OperationContract]
public byte[] DownloadFile(string fileName)
{
 // Make sure the filename has no path information.
 string file = Path.Combine(filePath, Path.GetFileName(fileName));

 // Open the file, copy its raw data into a byte array, and return that.
 using (FileStream fs = new FileStream(file, FileMode.Open))
 {
 byte[] data = new byte[fs.Length];
 fs.Read(data, 0, (int)fs.Length);

CHAPTER 22  FILE ACCESS

847

 return data;
 }
}

 Note The file transfer technique used in DownloadFile() requires loading the contents of the file into memory.
Thus, this approach isn’t suitable for extremely large files, and it’s a good idea to add a safeguard that checks the
file length before attempting to create the byte array. When dealing with larger files, you’ll probably want to pass a
URI to the client and let the client download the file from that URI. To keep your files fairly private, you can use a
randomly generated file name that incorporates a globally unique identifier (GUID) using the System.Guid class.

Finally, the web service allows the user to submit a block of data that will be blindly written to the
Files folder. The user gets to choose the file name, and once again, any path information is stripped out
before the file is created.

[OperationContract]
public void UploadFile(string fileName, byte[] data)
{
 // Make sure the filename has no path information.
 string file = Path.Combine(filePath, Path.GetFileName(fileName));

 using (FileStream fs = new FileStream(file, FileMode.Create))
 {
 fs.Write(data, 0, (int)data.Length);
 }
}

You might think the UploadFile() method is a logical place to check the size of the byte[] array so
that a malicious user can’t pass extremely large files that will consume the hard drive. However, WCF
already clamps down on this ability by restricting the maximum message size it accepts and the
maximum size of transmitted arrays in that message. These limits are meant to stop denial-of-service
attacks by making it impossible for an attacker to tie the server up with huge or complex messages that
are time-consuming to process.

If you actually do want to build a web service that accepts large amounts of data, you’ll need to
perform a fair bit of tweaking in both the web.config file on the web server and the
ServiceReferences.ClientConfig in the client. Although these configuration changes are outside the
scope of this book, you can get the full details at http://tinyurl.com/nc8xkn. You can also see them at
work with the downloadable code for this chapter, which is configured to allow large file uploads and
downloads.

The Silverlight Client
The code for the client is fairly straightforward. All web service calls go through a single FileServiceClient
instance, which is stored as a field in the page class. When the page first loads, the code attaches all the
event handlers it will use for the various completed events and then calls the GetFileListAsync() method
to fetch the list of files for the list box.

http://tinyurl.com/nc8xkn

CHAPTER 22  FILE ACCESS

848

private FileServiceClient client = new FileServiceClient();

private void Page_Loaded(object sender, RoutedEventArgs e)
{
 // Attach these event handlers for uploads and downloads.
 client.DownloadFileCompleted += client_DownloadFileCompleted;
 client.UploadFileCompleted += client_UploadFileCompleted;

 // Get the initial file list.
 client.GetFileListCompleted += client_GetFileListCompleted;
 client.GetFileListAsync();
}

private void client_GetFileListCompleted(object sender,
 GetFileListCompletedEventArgs e)
{
 try
 {
 lstFiles.ItemsSource = e.Result;
 }
 catch
 {
 lblStatus.Text = "Error contacting web service.";
 }
}

When the user selects a file and clicks the Download button, the application shows the
SaveFileDialog so the user can pick the downloaded location. You can’t show SaveFileDialog after, when
the DownloadFileCompleted event occurs, because this event isn’t user-initiated. (If you try, you’ll
receive a SecurityException.)

However, even though the code starts by showing the SaveFileDialog, it doesn’t attempt to open the
FileStream right away. Doing so would leave the file open while the download is underway. Instead, the
code passes the SaveFileDialog object to DownloadFileCompleted event as a state object, using the
optional second argument that’s available with all web service methods.

private void cmdDownload_Click(object sender, RoutedEventArgs e)
{
 if (lstFiles.SelectedIndex != -1)
 {
 SaveFileDialog saveDialog = new SaveFileDialog();
 if (saveDialog.ShowDialog() == true)
 {
 client.DownloadFileAsync(lstFiles.SelectedItem.ToString(), saveDialog);
 lblStatus.Text = "Download started.";
 }
 }
}

The DownloadFileCompleted event retrieves the SaveFileDialog object and uses it to create the
FileStream. It then copies the data from the byte array into this file.

private void client_DownloadFileCompleted(object sender,
 DownloadFileCompletedEventArgs e)

CHAPTER 22  FILE ACCESS

849

{
 if (e.Error == null)
 {
 lblStatus.Text = "Download completed.";

 // Get the SaveFileDialog that was passed in with the call.
 SaveFileDialog saveDialog = (SaveFileDialog)e.UserState;

 using (Stream stream = saveDialog.OpenFile())
 {
 stream.Write(e.Result, 0, e.Result.Length);
 }
 lblStatus.Text = "File saved to " + saveDialog.SafeFileName;
 }
 else
 {
 lblStatus.Text = "Download failed.";
 }
}

A nice side effect of this approach is that this code allows the user to start multiple simultaneous
downloads. Each one has its own SaveFileDialog object, and so each one can be saved to the appropriate
file when the download is complete.

The uploading code is similar, but it shows the OpenFileDialog and retrieves the data from the file
as soon as the user selects the file. The data is placed in a byte array and passed to the UploadFileAsync()
method. The code the Silverlight client uses to accomplish this task is almost the same as the code the
web service uses to open a file in the DownloadFile() method.

private void cmdUpload_Click(object sender, RoutedEventArgs e)
{
 OpenFileDialog openDialog = new OpenFileDialog();

 if (openDialog.ShowDialog() == true)
 {
 try
 {
 using (Stream stream = openDialog.File.OpenRead())
 {
 // Don't allow really big files (more than 5 MB).
 if (stream.Length < 5120000)
 {
 byte[] data = new byte[stream.Length];
 stream.Read(data, 0, (int)stream.Length);

 client.UploadFileAsync(openDialog.File.Name, data);
 lblStatus.Text = "Upload started.";
 }
 else
 {
 lblStatus.Text = "Files must be less than 5 MB.";
 }
 }

CHAPTER 22  FILE ACCESS

850

 }
 catch
 {
 lblStatus.Text = "Error reading file.";
 }
 }
}

private void client_UploadFileCompleted(object sender,
 System.ComponentModel.AsyncCompletedEventArgs e)
{
 if (e.Error == null)
 {
 lblStatus.Text = "Upload succeeded.";

 // Refresh the file list.
 client.GetFileListAsync();
 }
 else
 {
 lblStatus.Text = "Upload failed.";
 }
}

This completes the example and gives you a fully functional client that can transfer content to and
from the web server.

Dragging and Dropping Files
The OpenFileDialog class provides the most practical way for a Silverlight application to access a file that
isn’t in isolated storage. However, Silverlight offers one more approach. If a selects one or more files (for
example, in Windows Explorer or on the desktop), drags these files over your Silverlight application, and
then drops them onto an element, your application can read these files. Web-based uploading tools (for
example, with SharePoint and Microsoft’s SkyDrive service) often include this sort of feature to make it
easier to upload an entire batch of files at once.

Figure 22-6 shows a Silverlight application that uses this feature. First, the user drags one or more
image files and drops them on the large shaded rectangle. Then, the application reads the image data
from all the files and adds a thumbnail for each one in the list on the right.

CHAPTER 22  FILE ACCESS

851

Figure 22-6. Dragging and dropping image files

 Note The most practical applications of the drag and drop usually involve uploading content to a web server.
For example, you could easily duplicate the multiple-document uploading feature in SharePoint or SkyDrive using a
combination of the Silverlight drag-and-drop feature and a file-uploading web service (like the one described
earlier in the section “Transmitting Files with a Web Service.”)

DRAG-AND-DROP FEATURE ON A MAC

The drag-and-drop feature works seamlessly on a Windows computer but not on a Mac. The problem is
that Mac web browsers, like Safari, have a slightly different plug-in model. The key difference is that they

CHAPTER 22  FILE ACCESS

852

don’t provide HTML DOM events to the plug-ins that are hosted in a web page. As a result, when you drop
a file onto a Silverlight content region on a Mac, the web page receives the event, but the Silverlight
application does not.

Currently, there is a Mac workaround that solves this issue on Safari web browsers but not on Firefox. It
involves adding a small section of JavaScript to the hosting web page, which will then manually forward
drag-and-drop events to the Silverlight application. For the full details, refer to the documentation at
http://msdn.microsoft.com/library/ee670998.aspx. Unfortunately, at the time of this writing, Mac
users running Firefox won’t be able to drag files onto Silverlight applications, even using the workaround.

It’s fairly easy to build the application shown in Figure 22-6. The first step is to add the element that
will receive the dropped data. Often, this is displayed a large rectangular area, so it makes sense to use a
Border or a simple Rectangle (although any element supports the drag-and-drop feature). You must
then set the AllowDrop property to true, as shown here:

<Rectangle x:Name="rectDropSurface" Margin="5" Fill="LightSteelBlue"
Stroke="SteelBlue" StrokeThickness="1" AllowDrop="True"
</Rectangle>

Now you simply need to handle the right events. Optionally, you can respond to the DragEnter,
DragLeave, and DragOver events to provide some sort of status information as the drag is in progress.
More importantly, you must handle the Drop event to receive the dropped data:

<Rectangle x:Name="rectDropSurface" Margin="5" Fill="LightSteelBlue"
Stroke="SteelBlue" StrokeThickness="1" AllowDrop="True"
DragEnter="rectDropSurface_DragEnter" DragLeave="rectDropSurface_DragLeave"
Drop="rectDropSurface_Drop">
</Rectangle>

In the example shown in Figure 22-6, the DragEnter and DragLeave event handlers simply update a
label in the display:

private void rectDropSurface_DragEnter(object sender, DragEventArgs e)
{
 lblResults.Text = "You are dragging an object over the drop area.";
}

private void rectDropSurface_DragLeave(object sender, DragEventArgs e)
{
 lblResults.Text = "";
}

The Drop event is more interesting. It checks what data has been dropped using the
DrageEventArgs.GetDataPresent() method. When calling this method, you need to specify the type of
data you want to read using a value from the DataFormats enumeration. Currently, Silverlight supports
just one value: DataFormats.FileDrop. That means it isn’t possible to drag a text selection from Microsoft
Word or a chart object from Microsoft Excel and drop it into a Silverlight application. However, it’s still
considered good form to explicitly test the type of data, because future versions of Silverlight may add
support for other data types.

private void rectDropSurface_Drop(object sender, DragEventArgs e)
{
 // Check if data is present and in the correct format.

http://msdn.microsoft.com/library/ee670998.aspx

CHAPTER 22  FILE ACCESS

853

 if ((e.Data != null) &&
 (e.Data.GetDataPresent(DataFormats.FileDrop)))
 {
 ...

Once you’ve performed this check, you can call the DragEventArgs.GetData() method to actually
retrieve the data. Silverlight provides the dropped-in files as an array of FileInfo objects:

 ...
 FileInfo[] files = (FileInfo[])e.Data.GetData(DataFormats.FileDrop);
 ...

It’s important to note that you can’t use FileInfo properties such as DirectoryName and FullPath to
get the full path information for dropped files. Doing so causes a SecurityException to be thrown. (The
exception is if you’re running an elevated trust application, as described in Chapter 21). However, you
can use the Name property to get the file name with no path information, and you can use the Length
property to get the file size in bytes.

The following code uses the Name property to extract the file extension. If the file is a recognized
image type, it carries ahead, opening a FileStream, reading the data, and loading the image content into
an ImageSource object. The ImageSource is then added to a list.

 ...
 foreach (FileInfo file in files)
 {
 string ext = System.IO.Path.GetExtension(file.Name);

 // Check if it's an image.
 switch (ext.ToLower())
 {
 case ".jpg":
 case ".gif":
 case ".png":
 case ".bmp":
 try
 {
 // Read the image, wrap it in a BitmapImage, and
 // add it to the list.
 using (FileStream fs = file.OpenRead())
 {
 BitmapImage source = new BitmapImage();
 source.SetSource(fs);
 lstImages.Items.Add(source);
 }
 }
 catch (Exception err)
 {
 lblResults.Text = "Error reading file: " + err.Message;
 }
 break;

 default:
 lblResults.Text =
 "The dropped file was not recognized as a supported image type.";

CHAPTER 22  FILE ACCESS

854

 break;
 }

 lblResults.Text = files.Count().ToString() +
 " files successfully dropped.";
 }
 }
}

Finally, the list box converts the ImageSource objects into a list of images, using this straightforward
template:

<ListBox Grid.Column="1" Margin="5" x:Name="lstImages">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <Image Margin="1"
 Source="{Binding}" Width="95" />
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

File Access in Elevated Trust Applications
In Chapter 18, you learned how to create an out-of-browser application that runs with elevated trust
(provided the user installs it or the client computer is explicitly configured to trust it). Along with their
many useful features, elevated trust applications automatically gain the full file-reading and file-writing
permissions of the current user.

In fact, not only can elevated trust applications read and write files almost anywhere on the user’s
hard drive, they can also perform a host of other file system operations. These include tasks such as
creating a new directory or tunneling down through a directory tree to perform a file search. In the
following sections, you’ll get an overview of all these capabilities.

SILVERLIGHT AND UAC

Modern versions of the Windows operating system have a feature called User Account Control (UAC), which
locks down administrator privileges. This affects the way file system access works.

For example, imagine there’s a file named c:\AdminLog.doc that is restricted to administrators. Even if the
current user is logged on as an administrator, the file won’t be accessible unless Windows performs a
permission elevation. (That’s the moment when the screen goes dark and Windows presents a
confirmation dialog box asking the user to confirm the operation.) Silverlight applications won’t perform
permission elevation automatically, so Silverlight applications will never get administrator privileges or
have the ability to access a file or directory that requires them.

However, there are exceptions. For example, the user may change the UAC settings on the current
computer or explicitly start an application in administrator mode—say, by right-clicking its shortcut and
choosing “Run as administrator.” In this latter case, the confirmation box will appear, the user can accept

CHAPTER 22  FILE ACCESS

855

it, and the Silverlight application will gain the ability to access parts of the file system that require
administrator privileges. Of course, this technique isn’t encouraged.

Accessing User Files
One of the most useful places to store any sort of content are user-specific document folders on the
Windows operating system. They include the following:

• My Documents

• My Music

• My Pictures

• My Videos

You get the physical path to these locations using the Environment.GetFolderPath() method and
passing in one of the values from the Environment.SpecialFolder enumeration. Here’s an example:

string documentPath = Environment.GetFolderPath(
 Environment.SpecialFolder.MyDocuments);

 Note The Environment.SpecialFolder enumeration provides values for additional paths besides the “My” folders
listed earlier. For example, it includes a path for the desktop, program files directory, Internet cache, Start menu
folder, and so on. Using these paths, you can perform other practical tasks, such as creating a desktop shortcut.

Once you’ve retrieved the path to a “My” folder, you can create, modify, and delete files and
directories in it. The most convenient way to perform file and directory process is to use the static
methods of the File and Directory classes, which are transplants from the full .NET Framework. For
example, you can write an entire file in one step using methods such as WriteAllText(), WriteAllBytes(),
or WriteAllLines(), and you can read a file in one step using ReadAllText(), ReadText(), or ReadLines().

Here’s an example that writes a file in the My Documents folder:

string documentPath = Environment.GetFolderPath(
 Environment.SpecialFolder.MyDocuments);
string fileName = System.IO.Path.Combine(documentPath, "TestFile.txt");

File.WriteAllText(fileName, "This is a test.");

And here’s the complementary code that reads the file:

string documentPath = Environment.GetFolderPath(
 Environment.SpecialFolder.MyDocuments);
string fileName = System.IO.Path.Combine(documentPath, "TestFile.txt");

if (File.Exists(fileName))
{
 string contents = File.ReadAllText(fileName);

CHAPTER 22  FILE ACCESS

856

 lblResults.Text = contents;
}

If you don’t want to write or read the contents of a file in one chunk, you can open a FileStream for
the file and then wrap it in a StreamReader or StreamWriter. Here’s an example that writes to a file
through a StreamWriter, in much the same way as if you called File.WriteAllText():

string documentPath = Environment.GetFolderPath(
 Environment.SpecialFolder.MyDocuments);
string fileName = System.IO.Path.Combine(documentPath, "TestFile.txt");

using (FileStream fs = new FileStream(fileName, FileMode.Create))
{
 StreamWriter writer = new StreamWriter(fs);
 writer.Write("This is a test with FileStream.");
 writer.Close();
}

No matter which approach you use, you should wrap your file access code in an exception handling
block to deal with potential errors, as you saw earlier.

Managing Directories and Files
The FileStream, StreamWriter, and StreamReader classes allow you to write to and read from any file.
Add the File class and Directory classes, and you can perform a whole host of file management tasks.

The Directory class is the place to go for most file management tasks. It provides the pile of useful
methods, detailed in Table 22-2. Most of these are the same as in .NET, although the .NET standbys
GetDirectories() and GetFiles() have been replaced with the LINQ-powered equivalents
EnumerateDirectories() and EnumerateFiles().

Table 22-2. Static Methods of the Directory Class

Method Description

CreateDirectory() Creates a new directory. If you specify a directory inside another
nonexistent directory, Silverlight will thoughtfully create all the
required directories.

Delete () Deletes the empty directory you specify. To delete a directory along
with its contents (subdirectories and files), add the optional second
parameter of true.

EnumerateDirectories Returns an IEnumerable collection of strings, one for each directory
name inside the directory you specify. (The key idea here is that the
objects are not retrieved from the file system when the collection is
created, but when you iterate over the collection, potentially improving
performance. Chapter 20 describes the IEnumerable interface in more
detail.) You can also use an overloaded version of this method that
filters names using a search expression.

CHAPTER 22  FILE ACCESS

857

Method Description

EnumerateFiles Returns an IEnumerable collection of strings, one for each file inside
the directory you specify. You can also use an overloaded version of this
method that filters names using a search expression.

EnumerateFileSystemEntries Returns the combined result of EnumerateDirectories and
EnumerateFile, which is an IEnumerable collection with the names of
all directories and files.

Exists() Returns true or false to indicate whether the specified directory exists,
much like the File.Exists() method does for files.

GetCreationTime(),
GetLastAccessTime(), and
GetLastWriteTime()

Returns a DateTime object that represents the time the directory was
created, accessed, or written to.

GetCurrentDirectory() and
SetCurrentDirectory()

Allows you to set or retrieve the current directory, which is useful if you
need to use relative paths instead of full paths. Generally, these
functions aren’t necessary.

Move() Accepts two parameters: the source path and the destination path. The
directory and all its contents can be moved to any path, as long as it’s
located on the same drive. (If you need to move files from one drive to
another, you’ll need to pair up a copy operation and a delete operation
instead.)

For example, here’s how you might use the Directory class to create a folder, place a file in it, and

then delete the folder:

// Use the @ sign so you don't need to escape the backslash character in file paths.
string newDir = @"c:\TestPath";

Directory.CreateDirectory(newDir);
string newFile = "testFile.txt";

// Use the System.IO.Path class to safely combine file paths, without worrying about
// extra backslashes. You must fully qualify the path name to avoid referring to
// System.Windows.Shapes.Path.
string filePath = System.IO.Path.Combine(newDir, newFile);
File.WriteAllText(filePath, "This is a test file in a new directory!");

MessageBox.Show("When you click OK, the new file and new directory will be deleted.");
Directory.Delete(newDir, true);

Silverlight also includes the DirectoryInfo and FileInfo classes found in .NET, which mirror much of
the functionality from the Directory and File classes but use instance methods. If you want to work with
a particular directory for a longer period of time, it may be cleaner or more efficient to create a dedicated
DirectoryInfo object and use that instead of the Directory class, like this:

CHAPTER 22  FILE ACCESS

858

DirectoryInfo dir = new DirectoryInfo(@"c:\TestPath");
dir.Create();

string filePath = System.IO.Path.Combine(dir.FullName, "testFile.txt");
FileInfo file = new FileInfo(filePath);
StreamWriter writer = file.CreateText();
writer.Write("This is a test file in a new directory!");
writer.Close();
string newFile = "testFile.txt";

MessageBox.Show("When you click OK, the new file and new directory will be deleted.");
dir.Delete();

The DirectoryInfo and FileInfo objects also allow you to set file and directory attributes, and they are
particularly convenient if you want to walk through a portion of the directory tree, as demonstrated in
the next example.

Creating a Directory Tree
Figure 22-7 shows a simple file browser running in a Silverlight application. In a traditional desktop
application, this example would be a passing interest at best. But in a partially sandboxed, web-deployed
Silverlight application, it shows just how far you can stretch the boundaries of the browser.

CHAPTER 22  FILE ACCESS

859

Figure 22-7. Browsing the local hard drive

Creating this example is surprisingly easy, provided you’re running an elevated-trust application
that can use the FileInfo and DirectoryInfo classes. The first step is to define the markup, which is a
simple pairing of a TreeView (on the left) and ListBox (on the right):

<Grid x:Name="LayoutRoot" Background="White" Margin="3">
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="2*"></ColumnDefinition>
 <ColumnDefinition></ColumnDefinition>
 </Grid.ColumnDefinitions>

 <controls:TreeView x:Name="treeFileSystem" Margin="5">
 </controls:TreeView>
 <ListBox Margin="0,5,5,5" Grid.Column="1" x:Name="lstFiles"></ListBox>
</Grid>

CHAPTER 22  FILE ACCESS

860

To ensure good performance, this example only constructs the portions of the tree that are
expanded. Initially, all that appears is the root c:\ directory. Expand that, and the application queries the
first level of subdirectories. Expand one of them to see more subdirectories, and so on.

Most of the work is done through a custom method named AddItem(). The AddItem() method needs
two details: the DirectoryInfo it’s supposed to add to the tree and the collection TreeViewItem objects
where the directory should be placed. For example, here’s the code that adds the root directory when the
window first loads:

DirectoryInfo rootDir = new DirectoryInfo(@"c:\");

// Place the root folder in the first level of the TreeView.
AddItem(rootDir, treeFileSystem.Items);

The AddItem() method creates a new TreeViewItem object for the directory and adds it at the
specified place. However, it also does a bit more. For example, it stores the DirectoryInfo object in the
all-purpose TreeViewItem.Tag property, so it can be retrieved and used later. It also attaches event
handlers for the Expanded and Selected events of the TreeViewItem, which is where the rest of the logic
takes place.

private void AddItem(DirectoryInfo dir, ItemCollection collection)
{
 TreeViewItem item = new TreeViewItem();

 // Set the text that appears in the TreeViewItem.
 item.Header = dir.Name;

 // Store the DirectoryInfo object for future reference.
 item.Tag = dir;

 // Add a "dummy" placeholder node. It's never shown in the tree,
 // because every TreeViewItem begins in collapsed state.
 // When this item is expanded, the placeholder will be removed.
 item.Items.Add("*");

 // Handle the node's expansion and selection events.
 item.Expanded += item_Expanded;
 item.Selected += item_Selected;

 collection.Add(item);
}

When the TreeViewItem is expanded, its children are cleared (including the placeholder), and the
corresponding DirectoryInfo object is retrieved. The DirectoryInfo.EnumerateDirectories() method is
then used to get all the subdirectories and add them to the tree with additional calls to AddItem().

private void item_Expanded(object sender, RoutedEventArgs e)
{
 TreeViewItem item = (TreeViewItem)sender;

 // Perform a refresh every time item is expanded.
 // Optionally, you could perform this only the first time, when the placeholder is
 // found (less refreshes), or every time an item is selected (more refreshes).
 item.Items.Clear();

CHAPTER 22  FILE ACCESS

861

 // Get the stored DirectoryInfo for this item.
 DirectoryInfo dir = (DirectoryInfo)item.Tag;

 try
 {
 foreach (DirectoryInfo subDir in dir.EnumerateDirectories())
 {
 AddItem(subDir, item.Items);
 }
 }
 catch
 {
 // An exception could be thrown in this code if you don't
 // have sufficient security permissions for a file or directory.
 // You can catch and then ignore this exception.
 }
}

Finally, when the TreeViewItem is selected, a similar approach is used to get a list of contained files,
which is then shown in the ListBox control through data binding:

private void item_Selected(object sender, RoutedEventArgs e)
{
 TreeViewItem item = (TreeViewItem)sender;
 DirectoryInfo dir = (DirectoryInfo)item.Tag;

 try
 {
 // Convert this directly to an array to get an exception to be thrown immediately,
 // if there is an access problem.
 lstFiles.ItemsSource = dir.EnumerateFiles().ToArray();
 }
 catch
 {
 // An exception could be thrown in this code if you don't
 // have sufficient security permissions for a file or directory.
 // You can catch and then ignore this exception.
 }
}

Here, the list simply shows the file names. However, it actually holds a collection of FileInfo objects.
You could get considerably fancier using a custom data template or the multicolumned DataGrid
control.

The Last Word
In this chapter, you saw how Silverlight allows you to access the local hard drive but with careful
restrictions in place. First, you took a thorough look at isolated storage, the obfuscated, space-limited
storage location that you can use to store miscellaneous data, serialized objects, and application
settings. Then, you saw how you can use the OpenFileDialog class to retrieve information from a user-
selected file anywhere on the hard drive and how to use SaveFileDialog to perform the reverse feat and

CHAPTER 22  FILE ACCESS

862

write to a user-selected file. You also learned how to access file content through a drag-and-drop
operation. These features give Silverlight applications an impressive balance of safety and performance.
They ensure that malicious applications can’t tamper with local files or read sensitive data but that
legitimate software can store details from one user session to the next.

Finally, you considered the extra capabilities that are available to elevated trust applications. In this
mode, your code acts much the same as a desktop application, with the ability to read and write files
freely, no matter where they’re stored.

C H A P T E R 23

863

Networking

Like most software, Silverlight applications need to interact with the outside world to get relevant,
current information. You’ve already seen one tremendously useful way to pull information into a
Silverlight application: using WCF services, which allow Silverlight applications to retrieve data from the
web server by calling a carefully encapsulated piece of .NET code. However, WCF services won’t provide
all the data you need to use. In many situations you’ll want to retrieve information from other non-.NET
repositories, such as representational state transfer (REST) web services, RSS feeds, and ordinary HTML
web pages.

In this chapter, you’ll learn about this other side of the Silverlight networking picture. You’ll pick up
the techniques you need to download data from a variety of different non-.NET sources and convert it to
the form you need. On the way, you’ll also learn how to process XML data with the remarkable
XDocument class and LINQ to XML. But the most ambitious task you’ll consider in this chapter is using
Silverlight’s socket support to build a basic messaging application.

Interacting with the Web
In Chapter 6, you saw how you can use the WebClient class to download a file from the Web. This
technique allows you to grab a resource or even a Silverlight assembly at the exact point in time when an
application needs it.

The WebClient isn’t just for downloading binary files. It also opens some possibilities for accessing
HTML pages and web services. And using its bigger brother, WebRequest, you gain the ability to post
values to a web page. In the following sections, you’ll see a variety of approaches that use these classes to
pull information from the Web. But before you begin, you need to reconsider the security limitations
that Silverlight applies to any code that uses HTTP.

 Note The networking examples in this chapter assume you’re using a solution with an ASP.NET test website, as
described in Chapter 1. You need to use a test website both to build simple web services and to use Silverlight’s
downloading features, which aren’t available when you launch a Silverlight application directly from your hard
drive.

CHAPTER 23  NETWORKING

864

Cross-Domain Access
If you’ve ever created a web page using Ajax techniques, you’ve no doubt used the XMLHttpRequest
object, which lets you perform web requests in the background. However, the XMLHttpRequest object
imposes a significant limitation: the web page can only access web resources (HTML documents, web
services, files, and so on) that are on the same web server. There’s no direct way to perform a cross-
domain call to fetch information from another website.

Silverlight imposes almost exactly the same restrictions in its WebClient and WebRequest classes.
The issue is security. If a Silverlight application could call other websites without informing the user, it
would open up the possibility for phishing attacks. For example, if a user was logged on to a service like
Hotmail, a malicious Silverlight application could quietly retrieve pages that provide the user’s Hotmail
data. There are some possible changes that could stave off these attacks—for example, linking user
credentials to their source URLs—but these would require a fairly significant change to the way browsers
work.

However, Silverlight isn’t completely restrictive. It borrows a trick from Flash to let websites opt in
to cross-domain access through an XML policy file. When you attempt to download data from a website,
Silverlight looks on that website for a file named clientaccesspolicy.xml (which you learned to create in
Chapter 19). If this file isn’t present, Silverlight looks for a file named crossdomain.xml. This file plays the
same role but was originally developed for Flash applications. The end result is that websites that can be
accessed by Flash applications can also be accessed by Silverlight applications.

The clientaccesspolicy.xml or crossdomain.xml file must be stored in the web root. So, if you
attempt to access web content with the URL www.somesite.com/~luther/services/CalendarService.ashx,
Silverlight checks for www.somesite.com/clientaccesspolicy.xml and then (if the former isn’t found)
www.somesite.com/crossdomain.xml. If neither of these files exists, or if the one that exists doesn’t
grant access to your Silverlight application’s domain, your application won’t be allowed to access any
content on that website. Often, companies that provide public web services place them on a separate
domain to better control this type of access. For example, the photo-sharing website Flickr won’t allow
you to access URLs on the domain www.flickr.com, but it will let you access those on api.flickr.com
(thanks to the http://api.flickr.com/crossdomain.xml file).

 Tip Before you attempt to use the examples in this chapter with different websites, you should verify that they
support cross-domain access. To do so, try requesting the clientaccesspolicy.xml and crossdomain.xml files in the
root website.

In Chapter 19, you learned what the clientaccesspolicy.xml file looks like. The crossdomain.xml file
is similar. For example, here’s a crossdomain.xml file that allows all access. It’s similar to what you’ll find
on the Flickr website http://api.flickr.com:

<?xml version="1.0"?>
<cross-domain-policy>
 <allow-access-from domain="*" />
</cross-domain-policy>

On the other hand, the Twitter social-networking website uses its clientaccesspolicy.xml file to allow
access to just a few domains, which means your Silverlight code can’t retrieve any of its content:

<?xml version="1.0"?>

http://www.somesite.com/~luther/services/CalendarService.ashx
http://www.somesite.com/clientaccesspolicy.xml
http://www.somesite.com/crossdomain.xml
http://www.flickr.com
http://api.flickr.com/crossdomain.xml
http://api.flickr.com:

CHAPTER 23  NETWORKING

865

<cross-domain-policy>
 <allow-access-from domain="twitter.com" />
 <allow-access-from domain="api.twitter.com" />
 <allow-access-from domain="search.twitter.com" />
 <allow-access-from domain="static.twitter.com" />
 ...
</cross-domain-policy>

If you need to access web content from a website that doesn’t allow cross-domain access, you have
two options. One approach is to create an out-of-browser application that runs with elevated trust, as
you learned to do in Chapter 18. In this situation, users must explicitly install your application and
accept a security warning—but once they do, your application will be able to download content from
any website.

Your other option is to build a server-side proxy. To implement this design, you must create an
ASP.NET website that includes a web service, as you learned to do in Chapter 19. Your web page will be
allowed to call that service, because it’s on the same website (and even if it isn’t, you’ll need to add your
own clientaccesspolicy.xml file alongside the web service). Your web service can then access the website
you want and return the data to your page. This works because the web service is allowed to call any
website, regardless of the cross-domain access rules. That’s because web services run on the server, not
the browser, and so they don’t face the same security considerations. Figure 23-1 compares this
arrangement to the more straightforward direct-downloading approach.

Figure 23-1. Downloading web content in Silverlight

Creating a server-side proxy requires a bit more work, but it’s an acceptable solution if you need to
retrieve small amounts of information infrequently. However, if you need to make frequent calls to your
web service (for example, you’re trying to read the news items in an RSS feed on a server that doesn’t
allow cross-domain access), the overhead can add up quickly. The web server ends up doing a
significant amount of extra work, and the Silverlight application waits longer to get its information
because every call goes through two delays: first, the web page’s request to the web service; and second,
the web service’s request to the third-party website.

CHAPTER 23  NETWORKING

866

Now that you understand the rules that govern what websites you can access, you’re ready to start
downloading content. In this chapter, you’ll learn how to manipulate several different types of content,
but you’ll start out with the absolute basic—ordinary HTML files.

HTML Scraping
One of the crudest ways to get information from the Web is to dig through the raw markup in an HTML
page. This approach is fragile, because the assumptions your code makes about the structure of a page
can be violated easily if the page is modified. But in some circumstances, HTML scraping is the only
option. In the past, before websites like Amazon and eBay provided web services, developers often used
screen-scraping techniques to get price details, sales rank, product images, and so on.

In the following example, you’ll see how HTML screen scraping allows you to pull information from
the table shown in Figure 23-2. This table lists the world’s population at different points in history, and
it’s based on information drawn from Wikipedia.

Figure 23-2. A plain HTML page

The information in the table has a structure in this format:

CHAPTER 23  NETWORKING

867

<table>
 <tr>
 <th>Year</th>
 <th width="70">World</th>
 </tr>
 <tr>
 <th>70,000 BCE</th>
 <td>2</td>
 </tr>
 <tr>
 <th>10,000 BCE</th>
 <td>1,000</td>
 </tr>
 <tr>
 <th>9000 BCE</th>
 <td>3,000</td>
 </tr>
 ...
</table>

The WebClient class gives you the ability to download the entire HTML document. It’s then up to
you to parse the data.

In Chapter 6, you learned to use the WebClient.OpenReadAsync() method to download a file from
the Web as a stream of bytes. You then have the flexibility to read that stream using a StreamReader (for
text data) or a BinaryReader (for binary information). In this example, you can use the OpenAsync()
method and then use a StreamReader to browse through the page. However, the WebClient provides a
shortcut for relatively small amounts of text content—the DownloadStringAsync() method, which
returns the results as a single string. In this example, that string includes the HTML for the entire page.

Figure 23-3 shows a simple Silverlight page that lets you query the table from Figure 23-2 for
information. The user enters a year. The code then searches the web page for a matching cell and returns
the population number from the next column. No attempt is made to interpolate values—if the
indicated year falls between values in the table, no result is returned.

CHAPTER 23  NETWORKING

868

Figure 23-3. Querying an HTML page with WebClient

When the user clicks the Get Data button, a new WebClient object is created. The
DownloadStringAsync() method is called with the appropriate website address:

private void cmdGetData_Click(object sender, RoutedEventArgs e)
{
 WebClient client = new WebClient();
 Uri address = new Uri("http://localhost:" +
 HtmlPage.Document.DocumentUri.Port + "/ASPWebSite/PopulationTable.html");

 client.DownloadStringCompleted += client_DownloadStringCompleted;
 client.DownloadStringAsync(address);
}

 Tip When you begin an asynchronous operation like this one, it’s a good time to update the user interface with
some sort of status message. For example, you can display the text “Contacting web service” in a TextBlock.

Here’s the code that receives the results:

private void client_DownloadStringCompleted(object sender,
 DownloadStringCompletedEventArgs e)
{
 string pageHtml = "";

CHAPTER 23  NETWORKING

869

 try
 {
 pageHtml = e.Result;
 }
 catch
 {
 lblResult.Text = "Error contacting service.";
 return;
 }
 ...

When you read the Result property, an exception is thrown if the web request failed—for example, if
the specified web page can’t be found, or it doesn’t allow cross-domain access. For this reason,
exception-handling code is required.

It takes a bit more work to coax the information you want out of the HTML string. Although you can
manually step through the string, examining each character, it’s far easier to use regular expressions.
Regular expressions are a pattern-matching language that’s often used to search text or validate input.
Using the ordinary methods of the String class, you can search for a series of specific characters (for
example, the word hello) in a string. Using a regular expression, however, you can find any word in a
string that is five letters long and begins with an h. You first learned about regular expressions in Chapter
21, where you used them to perform validation in a data object.

In this example, you need to find scraps of HTML in this form:

<th>500 BCE</th><td>100,000</td>

Here, the year in the <th> element is the lookup value, which is provided by the user. The number in
the following <td> element is the result you want to retrieve.

There are several ways to construct a regular expression that does the trick, but the cleanest
approach is to use a named group. A named group is a placeholder that represents some information
you want to retrieve. You assign the group a name and then retrieve its value when you need it. Named
groups use this syntax:

(?<NamedGroupName>MatchExpression)

Here’s the named group used in this example:

(?<population>.*)

This named group is named population. It uses .* as its expression, which is just about as simple as a
regular expression can get. The period (.) matches any character except a newline. The asterisk (*)
indicates that there can be zero, one, or more occurrences of this pattern—in other words, the
population value can have any number of characters.

What makes this named group useful is its position inside a larger regular expression. Here’s an
example that’s very similar to the final expression used in this example:

<th>1985</th>\s*<td>(?<population>.*)</td>

If you break down this expression piece by piece, it’s relatively straightforward. First, this regular
expression looks for the column with the year value 1985:

<th>1985</th>

That can be followed by zero or more whitespace characters (spaces, lines, hard returns, and so on),
which are represented by the \s metacharacter:

<th>1985</th>\s*

CHAPTER 23  NETWORKING

870

Then, the <td> tag for the next column appears, followed by the value you want to capture (the
population number), in a named group:

<th>1985</th>\s*<td>(?<population>.*)

Finally, the closing </td> tag represents the end of column and the end of the expression.
The only difference in the final version of this expression that the code uses is that the year isn’t

hard-coded. Instead, the user enters it in a text box, and this value is inserted into the expression string:

string pattern = "<th>" + txtYear.Text + "</th>" + @"\s*" + "<td>" +
 "(?<population>.*)" + "</td>";

When you have the regular expression in place, the rest of the code is easy. You need to create a
Regex object that uses the expression and pass in the search string to the Regex.Match() method. You
can then look up your group by name and extract the value:

 ...
 Regex regex = new Regex(pattern);
 Match match = regex.Match(pageHtml);
 string people = match.Groups["population"].Value;
 if (people == "")
 lblResult.Text = "Year not found.";
 else
 lblResult.Text = match.Groups["population"].Value + " people.";
}

This isn’t the most elegant way to get information from the Web, but it demonstrates how
WebClient can work as a straightforward tool for reading HTML and other text sources on the Web. This
behavior becomes even more useful when you begin to dabble in web services that use representational
state transfer (REST), as described in the following sections.

REST and Other Simple Web Services
Recently, there’s been a resurgence of simple web services—web services that avoid the detailed SOAP
protocol and the complexity of the WS-* standards. Simple web services will never replace SOAP-based
web services, because they don’t provide solutions for the real challenges of distributed processing, such
as routing, transactions, and security. However, their clean, stripped-down structure makes them an
ideal choice for building public web services that need to be compatible with the broadest range of
clients possible. Many top-notch websites (like Amazon, eBay, and Google) provide REST-based and
SOAP-based interfaces for their web services.

SOAP VS. REST

At this point, you may be wondering what the differences are between SOAP, REST, and other web service
standards. All web services pass messages over HTTP. But there are differences in the way information is
presented, both when it’s passed to the web service and when it’s returned from the web service.

Full-fledged SOAP web services place their data into a specific XML structure: a SOAP document. SOAP
can be verbose, which means it’s more work to construct a SOAP message on a platform that doesn’t have
built-in SOAP support. (Silverlight is an example of a platform that does have built-in SOAP support, which
is why you need to add a web reference to a SOAP service in order to use it, rather than construct the XML

CHAPTER 23  NETWORKING

871

you need by hand.) SOAP also provides some significant advantages—it uses strongly typed data, and it’s
highly extensible thanks to SOAP headers (separate pieces of information that can be passed along with a
message but aren’t placed in the message body). SOAP headers are a key extensibility point that other
SOAP-based standards use.

Non-SOAP web services have simpler ways to pass in information. Input values can be supplied in the URL
(in which cased they’re tacked on to the end as query string parameters) or supplied as a combination of
name-value pairs in the message body. Either way, there’s less overhead, but no real type checking. The
web service response may use plain string data or XML.

Simple web services that return HTML documents are often described as using XML over HTTP. Simple
web services are often also described as REST services, but in truth REST is a philosophical idea rather
than a concrete standard. The fundamental idea behind REST is that every URL represents a unique object
rather than a mere method call. The different HTTP verbs represent what you want to do with the object
(for example, you use an HTTP GET to retrieve the object and HTTP POST to update it). Most web services
that describe themselves as REST-based don’t completely adhere to this idea and are actually just simple
non-SOAP web services.

In this section, you’ll see how to consume a simple web service that returns plain-text data. Later in

this chapter, you’ll go a little further and consider a web service that returns XML.
Earlier, you looked at a page that included a table with world population numbers throughout

history. If you want to convert this to a web service, you can write a bit of web code that receives a year
and writes out the relevant population figure. The requested year can be supplied through a query string
argument (in an HTTP GET request) or posted to your page (with an HTTP POST request). The strategy
you choose determines whether the client must use WebClient or the somewhat more complex
WebRequest class. WebClient is enough for an ordinary HTTP GET request, but only WebRequest allows
your Silverlight code to post a value.

You can build your web service using ASP.NET, but you need to avoid the full web form model. After
all, you don’t want to return a complete page to the user, with unnecessary elements like <html>,
<head>, and <body>. Instead, you need to create what ASP.NET calls an HTTP handler.

To do so, right-click your ASP.NET website in the Solution Explorer, and choose Add New Item.
Then, choose the Generic Handler template, supply a name, and click Add. By default, HTTP handlers
have the extension .ashx. In this example, the handler is called PopulationService.ashx.

All HTTP handlers are code as classes that implement IHttpHandler, and they must provide a
ProcessRequest() method and an IsReusable property getter. The IsReusable property indicates whether
your HTTP handler can, after it’s created, be reused to handle more than one request, which is slightly
more efficient than creating it each time. If you don’t store any state information in the fields of your
class, you can safely return true:

public bool IsReusable
{
 get { return true; }
}

The ProcessRequest() method does the actual work. It receives an HttpContext object through
which it can access the current request details and write the response. In this example, ProcessRequest()
checks for a posted value named year. It then checks if the year string includes the letters, and gets the
corresponding population statistic using a custom method called GetPopulation (which isn’t shown).
The result is written to the page as plain text:

CHAPTER 23  NETWORKING

872

public void ProcessRequest (HttpContext context)
{
 // Get the posted year.
 string year = context.Request.Form["year"];

 // Remove any commas in the number, and excess spaces at the ends.
 year = year.Replace(",", "");
 year = year.Trim();

 // Check if this year is BC.
 bool isBc = false;
 if (year.EndsWith("BC", StringComparison.OrdinalIgnoreCase))
 {
 isBc = true;
 year = year.Remove(year.IndexOf("BC" , StringComparison.OrdinalIgnoreCase));
 year = year.Trim();
 }

 // Get the population.
 int yearNumber = Int32.Parse(year);
 int population = GetPopulation(yearNumber, isBc);

 // Write the response.
 context.Response.ContentType = "text/plain";
 context.Response.Write(population);
}

On the client side, you need to use the WebRequest class from the System.Net namespace. To make
this class available, you must add a reference to the System.Net.dll assembly, which isn’t included by
default.

WebRequest requires that you do all your work asynchronously. Whereas WebClient has one
asynchronous step (downloading the response data), WebRequest has two: creating the request stream
and then downloading the response.

To use WebRequest, you first need to create a WebRequest object, configure it with the correct URI,
and then call BeginGetRequestStream(). When you call BeginGetRequestStream(), you supply a callback
that will write the request to the request stream when it’s ready. In this example, that task falls to another
method named CreateRequest():

private string searchYear;

private void cmdGetData_Click(object sender, RoutedEventArgs e)
{
 Uri address = new Uri("http://localhost:" +
 HtmlPage.Document.DocumentUri.Port + "/ASPWebSite/PopulationService.ashx");

 // Create the request object.
 WebRequest request = WebRequest.Create(address);
 request.Method = "POST";
 request.ContentType = "application/x-www-form-urlencoded";

 // Store the year you want to use.
 searchYear = txtYear.Text;

CHAPTER 23  NETWORKING

873

 // Prepare the request asynchronously.
 request.BeginGetRequestStream(CreateRequest, request);
}

This code contains one other detail. Before calling BeginGetRequestStream(), the code copies the
search year from the text box into a private field named searchYear. This technique serves two purposes.
First, it ensures that the CreateRequest() callback can access the original search value, even if the user is
somehow able to edit the text box before the CreateRequest() code runs. More important, this technique
avoids threading headaches. Because the CreateRequest() callback runs on a background thread (not the
main application thread), it can’t directly access the elements in the page. As you saw in Chapter 16, you
can work around this problem using Dispatcher.BeginInvoke(). However, copying the search year
sidesteps the problem.

Typically, Silverlight calls your CreateRequest() method a fraction of a second after you call
BeginGetRequestStream(). At this point, you need to write the posted values as part of your request.
Often, web services use the same standard for posted values as HTML forms. That means each value is
supplied as a name-value pair, separated by an equal sign; multiple values are chained together with
ampersands (&), as in FirstName=Matthew&LastName=MacDonald. To write the data, you use a
StreamWriter:

private void CreateRequest(IAsyncResult asyncResult)
{
 WebRequest request = (WebRequest)asyncResult.AsyncState;

 // Write the year information in the name-value format "year=1985".
 Stream requestStream = request.EndGetRequestStream(asyncResult);
 StreamWriter writer = new StreamWriter(requestStream);
 writer.Write("year=" + searchYear);

 // Clean up (required).
 writer.Close();
 requestStream.Close();

 // Read the response asynchronously.
 request.BeginGetResponse(ReadResponse, request);
}

After you’ve written the request, you need to close the StreamWriter (to ensure all the data is
written) and then close the request stream. Next, you must call BeginGetResponse() to supply the
callback that will process the response stream when it’s available. In this example, a method named
ReadResponse() does the job.

To read the response, you use a StreamReader. You also need error-handling code at this point, to
deal with the exceptions that are thrown if the service can’t be found. If the response uses XML, it’s also
up to you to parse that XML now:

private void ReadResponse(IAsyncResult asyncResult)
{
 string result;
 WebRequest request = (WebRequest)asyncResult.AsyncState;

 // Get the response stream.
 WebResponse response = request.EndGetResponse(asyncResult);
 Stream responseStream = response.GetResponseStream();

CHAPTER 23  NETWORKING

874

 try
 {
 // Read the returned text.
 StreamReader reader = new StreamReader(responseStream);
 string population = reader.ReadToEnd();
 result = population + " people.";
 }
 catch
 {
 result = "Error contacting service.";
 }
 finally
 {
 response.Close();
 }
 ...

As with the callback for BeginGetRequestStream(), the callback for BeginGetResponse() runs on a
background thread. If you want to interact with an element, you need to use Dispatcher.BeginInvoke()
to marshal the call to the foreground thread. Here’s the code that does the trick:

 ...
 // Update the display.
 Dispatcher.BeginInvoke(
 delegate()
 {
 lblResult.Text = result;
 });
}

Ironically, calling a simple web service is more work in Silverlight than calling a SOAP-based web
service, because Silverlight can’t generate any code for you. This is part of the drawback with simple web
services—although they’re easier to call, they aren’t self-describing. That means they lack the low-level
documentation details that allow development tools like Visual Studio to generate some of the code you
need.

Using Network Credentials
Both the WebClient and WebRequest classes allow you to pass network credentials—specifically, a user
name and password—with your web request. This allows you to access secure web servers that require
authentication.

To use network credentials, you must first call the static WebRequest.RegisterPrefix() method to
make sure you’re using the Client HTTP stack, as shown here:

WebRequest.RegisterPrefix("http://",
 System.Net.Browser.WebRequestCreator.ClientHttp);

You then set the UseDefaultCredentials property and the Credentials property of your WebClient or
WebRequest object. Here’s an example with the WebRequest class:

WebRequest request = WebRequest.Create(address);
request.UseDefaultCredentials = false;

CHAPTER 23  NETWORKING

875

request.Credentials = new NetworkCredential("username", "password");

Once you’ve finished setting these properties, you can use the WebRequest or WebClient object in
the normal way to contact the web server.

Processing Different Types of Data
So far, you’ve seen how to retrieve ordinary text data from the Web, whether it’s from a static file or
dynamically generated by a web service. You’ve also seen how to search through that text if it contains
HTML markup. But both plain text and HTML are limited from a programming point of view, because
they’re difficult to parse. More often, you’ll deal with more complex structured data. Web services that
return structured data usually adopt a standardized format, such as ordinary XML, SOAP messages, or
JSON. Silverlight supports all three formats, and you’ll see how to use them in the following sections.

XML
Many simple web services return their data in XML. When consuming this sort of service, you need to
decide how to process the XML.

Silverlight includes several options for dealing with XML:

• XmlWriter and XmlReader: These classes offer a bare-bones approach for dealing
with XML, with the fewest features. Using them, you can write or read XML
content one element at a time.

• XmlSerializer: This class allows you to convert a live object into an XML
representation, and vice versa. The only limitation is that the XML is forced to
adhere to the structure of the class. To use XmlSerializer, you need a reference to
the System.Xml.Serialization.dll assembly.

• XDocument: This class is the foundation of LINQ to XML. It lets you transform
XML objects (and back), but it gives you far more flexibility than XmlSerializer.
Using the right LINQ expression, you can filter out just the details you want and
change the structure of your content. To use XDocument, you need a reference to
the System.Xml.Linq.dll assembly.

So which is the best approach to use? XmlReader and XmlWriter offer the lowest-level approach. For
example, to read an XML document with XmlReader, you need to loop through all the nodes, keeping
track of the structure on your own and ignoring comments and whitespace. You’re limited to travelling
in one direction (forward). If you want just a single node, you’re still forced to read through every node
that occurs before it in the document. Similarly, when writing a document, you need to write all the
elements sequentially, relying on the order of your statements to generate the right structure. You also
need to explicitly write the start and end tag for each element that contains nested elements.

Generally, most Silverlight applications are better off using the higher-level XmlSerializer and
XDocument classes. The only exception is if you need to deal with a huge amount of XML and you want
to avoid the overhead of loading it all into memory at once. In this case, the bit-by-bit processing of
XmlWriter and XmlReader may be required.

Between XmlSerializer and XDocument, XmlSerializer is a reasonable option if you’re in complete
control of the data format—in other words, you’ve created the class you want to serialize and you don’t
need to conform to a specific XML format. However, XDocument provides much more flexibility, giving
you the ability to look at XML as a collection of elements or transform it into a collection of objects. It’s

CHAPTER 23  NETWORKING

876

particularly useful when you’re consuming someone else’s XML—for example, when you’re retrieving
data from a web service.

 Note Silverlight doesn’t include a class that uses the XML DOM model (such as the XmlDocument class you
can use in .NET). If you want to perform in-memory XML processing, you’re better off with the more streamlined
and efficient XDocument.

In the next section, you’ll see how to use XDocument to parse the data that’s returned from a web
service and create an XML document to send to a web service. If you have a specialized scenario that
requires XmlWriter, XmlReader, or XmlSerializer, you’ll find that they work much the same way as in the
full .NET Framework.

Services That Return XML Data
Flickr is an image-sharing website that provides REST-like services. You supply your parameters by
tacking query string arguments onto the end of the URL. The Flickr web service returns a response in
XML.

Figure 23-4 shows an example that lets the user supply a search keyword and then displays a list of
images that are described with that keyword on Flickr.

CHAPTER 23  NETWORKING

877

Figure 23-4. Retrieving pictures from Flickr

In this example, the Flickr request includes the following query string arguments: method (indicates
the type of operation being performed), tags (the search keywords), perpage (the number of results you
want to retrieve), and api_key (a unique ID that allows you to get access to Flickr’s service). You can use
many more arguments to fetch multiple pages of results, apply sorting, filter by dates, and so on. To get
more information and obtain your own free API key, visit www.flickr.com/services/api.

http://www.flickr.com/services/api

CHAPTER 23  NETWORKING

878

 Tip Flickr provides several different ways to call its web services. The simple REST approach is used here to
demonstrate how to deal with XML in a Silverlight application. But if you’re building a practical Silverlight
application that uses Flickr, you’ll find it easier to use the SOAP interface and let Visual Studio generate some of
the code for you.

Here’s what the request used in Figure 23-4 looks like:

http://api.flickr.com/services/rest/?method=flickr.photos.search&tags=frog&
api_key=...&perpage=10

Because all the input parameters are passed in through the URL, there’s no need to post anything,
and you can use the simpler WebClient instead of WebRequest. Here’s the code that builds the Flickr
request URL and then triggers an asynchronous operation to get the result:

private void cmdGetData_Click(object sender, RoutedEventArgs e)
{
 WebClient client = new WebClient();
 Uri address = new Uri("http://api.flickr.com/services/rest/?" +
 "method=flickr.photos.search" + "&tags=" +
 HttpUtility.UrlEncode(txtSearchKeyword.Text) +
 "&api_key=..." + "&perpage=10");

 client.DownloadStringCompleted += client_DownloadStringCompleted;
 client.DownloadStringAsync(address);
}

The static HttpUtility.UrlEncode() method ensures that if there are any non-URL-friendly
characters in the search string, they’re replaced with the corresponding character entities.

The result is retrieved as a single long string, which contains XML in this format:

<?xml version="1.0" encoding="utf-8" ?>
<rsp stat="ok">
 <photos page="1" pages="1026" perpage="100" total="102577">
 <photo id="2519140273" owner="85463968@N00" secret="9d215a1b8b" server="2132"
 farm="3" title="He could hop in, but he couldn't hop out" ispublic="1"
 isfriend="0" isfamily="0" />
 <photo id="2519866774" owner="72063229@N00" secret="05bccd89cd" server="2353"
 farm="3" title="Small Frog on a Leaf" ispublic="1" isfriend="0" isfamily="0" />
 ...
 </photos>
</rsp>

To parse this information, the first step is to load the entire document into a new XDocument
object. The XDocument class provides two static methods to help you: a Load() method for pulling
content out of an XmlReader, and a Parse() method for pulling content out a string. When the
WebClient.DownloadStringCompleted event fires, you use the Parse() method:

XDocument document = XDocument.Parse(e.Result);

http://api.flickr.com/services/rest/?method=flickr.photos.search&tags=frog&
http://api.flickr.com/services/rest/?

CHAPTER 23  NETWORKING

879

When you have the XDocument object, you can use one of two strategies to extract the information
you need. You can move through the collections of elements and attributes in the XDocument, which
are represented as XElement and XAttribute objects. Or, you can use a LINQ expression to retrieve the
XML content you want and convert it into the most suitable object representation. The following
sections demonstrate both approaches.

Navigating Over an XDocument
Every XDocument holds a collection of XNode objects. The XNode is an abstract base class. Other more
specific classes, like XElement, XComment, and XText, derive from it and are used to represent
elements, comments, and text content. Attributes are an exception—they’re treated not as separate
nodes but as simple name-value pairs that are attached to an element.

Once you have a live XDocument with your content, you can dig into the tree of nodes using a few
key properties and methods of the XElement class. Table 23-1 lists the most useful methods.

Table 23-1. Essential Methods of the XElement Class

Method Description

Attributes() Gets the collection of XAttribute objects for this element.

Attribute() Gets the XAttribute with a specific name (or null if there’s no match).

Elements() Gets the collection of XElement objects that are contained by this element. (This is the top
level only—these elements may in turn contain more elements.) Optionally, you can
specify an element name, and only those elements will be retrieved.

Element() Gets the XElement contained by this element that has a specific name (or null if there’s no
match). If there is more than matching element, this returns the first.

Nodes() Gets all the XNode objects contained by this elements. This includes elements and other
content, like comments.

There’s a critically important detail here: XDocument exposes nested elements through methods,

not properties. This gives you added flexibility to filter out just the elements that interest you. For
example, when using the XDocument.Elements method, you have two overloads to choose from. You
can get all the child elements (in which case you supply no parameters) or get only those child elements
that have a specific element name (in which case you specify the element name as a string).

In the Flickr example, the top-level element is named <rsp>. Thus, you can access it like this:

XElement element = document.Element("rsp");

Of course, what you’re really interested in is the <photos> element inside the <rsp> element. You
can get this in two steps:

XElement rspElement = document.Element("rsp");
XElement photosElement = rspElement.Element("photos");

or even more efficiently in one:

CHAPTER 23  NETWORKING

880

XElement photosElement = document.Element("rsp").Element("photos");

To get the <photo> elements inside the <photos> element, you use the Elements() method (because
there are multiple matching elements). You don’t need to specify the name <photos>, because there
isn’t any other type of element inside:

IEnumerable<XElement> elements =
 document.Element("rsp").Element("photos").Elements();

All the information you need is in the attributes of each <photo> element. To get the Flickr image
(which you can then display using the Image element), you need to construct the right URL, which
involves combining several pieces of information in the correct format:

private void client_DownloadStringCompleted(object sender,
 DownloadStringCompletedEventArgs e)
{
 XDocument document = XDocument.Parse(e.Result);

 // Clear the list.
 images.Items.Clear();

 // Examine each <photo> element.
 foreach (XElement element in
 document.Element("rsp").Element("photos").Elements())
 {
 // Get the attribute values and combine them to build the image URL.
 string imageUrl = String.Format(
 "http://farm{0}.static.flickr.com/{1}/{2}_{3}_m.jpg",
 (string)element.Attribute("farm"),
 (string)element.Attribute("server"),
 (string)element.Attribute("id"),
 (string)element.Attribute("secret")
);

 // Create an Image object that shows the image.
 Image img = new Image();
 img.Stretch = Stretch.Uniform;
 img.Width = 200; img.Height = 200;
 img.Margin = new Thickness(10);
 img.Source = new BitmapImage(new Uri(imageUrl));

 // Add the Image element to the list.
 images.Items.Add(img);
 }
}

 Tip The easiest way to get the actual value out of an XAttribute or XElement object is to cast it to the desired
type. In the previous example, all the attributes are treated as string values.

CHAPTER 23  NETWORKING

881

You’ve already seen how to use the Element() and Elements() methods to filter out elements that
have a specific name. However, both these methods go only one level deep. The XDocument and
XElement classes also include two methods that search more deeply: Ancestors() and Descendants().
The Descendants() method finds all XElement objects contained by the current element, at any depth.
The Ancestors() method finds all the XElement objects that contain the current element, again at any
level. Using Descendants(), you can rewrite this statement from the earlier code block

foreach (XElement element in
 document.Element("rsp").Element("photos").Elements())

like this:

foreach (XElement element in document.Descendants("photo"))

The XDocument and XElement classes are small miracles of efficiency. If you take a closer look at
them, you’ll find many more members for navigation. For example, they have properties for quickly
stepping from one node to the next (FirstNode, LastNode, NextNode, PreviousNode, and Parent) and
methods for retrieving sibling nodes at the same level as the current node (ElementsAfterSelf() and
ElementsBeforeSelf()). You’ll also find methods for manipulating the document structure, which you’ll
consider later in this chapter.

Querying an XDocument with LINQ
As you’ve seen, it’s easy to use methods like Element(), Elements(), and Ancestors() to reach into an
XDocument and get the content you want. However, in some situations you want to transform the
content to a different structure. For example, you may want to extract the information from various
elements and flatten it into a simple structure. This technique is easy if you use the XDocument in
conjunction with a LINQ expression.

As you saw in Chapter 20, LINQ expressions work with objects that implement IEnumerable<T>.
The XDocument and XElement classes include several ways to get IEnumerable<T> collections of
elements, including the Elements() and Descendants() methods you’ve just considered.

After you place your collection of elements in a LINQ expression, you can use all the standard LINQ
operators. That means you can use sorting, filtering, grouping, and projections to get the data you want.

Here’s an example that selects all the <photo> elements in an XML document (using the
Descendants() method), extracts the most important attribute values, and sets these as the properties of
an object:

var photos = from results in document.Descendants("photo")
 select new
 {
 Id = (string)results.Attribute("id"),
 Farm = (string)results.Attribute("farm"),
 Server = (string)results.Attribute("server"),
 Secret = (string)results.Attribute("secret")
 };

This technique uses the standard LINQ feature of anonymous types. Essentially, this expression
generates a collection of a dynamically defined type that includes the properties you specify.

The C# compiler creates the class definition you need. Because you don’t have a reference to this
class definition in your code, you need to use the var keyword when defining the photos collection. But
the code is still strongly typed, because the class really does exist—it’s just generated automatically at

CHAPTER 23  NETWORKING

882

compile time. Elsewhere in your code, you can loop over the photos collection and interact with the
properties of the dynamically generated type to build Image elements, as you saw earlier:

foreach (var photo in photos)
{
 imageUrl = string.Format("http://farm{0}.static.flickr.com/{1}/{2}_{3}_m.jpg",
 photo.Farm, photo.Server, photo.Id, photo.Secret);
 ...
}

This technique of mapping a portion of an XML document to new class is called projection. Often,
projection is combined with anonymous types for one-off tasks, when you don’t need to use the same
grouping of data elsewhere in your application. However, it’s just as easy to use a projection to create
instances of a custom class. You’ll need to use this approach if you plan to perform data binding with the
newly generated objects.

To see how this works, it helps to consider an alternative way to build the example that’s shown in
Figure 23-4. Instead of manually constructing each Image element, you can define a data template that
takes bound objects, extracts the URL information, and uses it in an Image element:

<ListBox x:Name="images">
 <ListBox.ItemTemplate>
 <DataTemplate>
 <Image Stretch="Uniform" Width="200" Height="200"
 Margin="5" Source="{Binding ImageUrl}"></Image>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

To make this work, you need a custom class that provides an ImageUrl property (and may include
other details). Here’s the simplest possibility:

public class FlickrImage
{
 public string ImageUrl { get; set; }
}

Now, you can use a LINQ expression to create a collection of FlickrImage objects:

var photos = from results in document.Descendants("photo")
 select new FlickrImage
 {
 ImageUrl =
 String.Format(
 "http://farm{0}.static.flickr.com/{1}/{2}_{3}_m.jpg",
 (string)results.Attribute("farm"),
 (string)results.Attribute("server"),
 (string)results.Attribute("id"),
 (string)results.Attribute("secret"))
 };
images.ItemsSource = photos;

This approach requires the least amount of code and provides the most streamlined solution.

CHAPTER 23  NETWORKING

883

XDOCUMENT AND NAMESPACES

The XDocument class has a particularly elegant way of dealing with namespaces. You add the namespace
before the element name, wrapped in curly braces. For example, if you want to find the <photos> element
in the namespace http://www.somecompany.com/PhotoMarkup, you change this

XElement photosElement = element.Element("photos");

to this:

XElement photosElement = element.Element(
 "{http://www.somecompany.com/PhotoMarkup}photos");

To clean up this code, you should use the XNamespace class, as shown here:

XNamespace ns = "http://www.somecompany.com/DVDList";
XElement photosElement = element.Element(ns + "photos");

This way, you need to define the namespace only once, and you can reuse it whenever you need to refer to
an element in that namespace. You can use the same name-changing approach when creating elements
that you want to place in a particular namespace. Just remember that most XML-based languages place
elements in namespaces but don’t assign any namespace to attributes.

Services That Require XML Data
Simple web services often allow you to supply all the input parameters through query string arguments.
However, query string arguments are limited by the rules of web browser URIs. They can only be so long,
and they’re hard-pressed to represent structured data.

For that reason, web services that need more detailed data usually accept some form of XML. SOAP
(described next) is one example. Non-SOAP web services often use a basic standard called XML-RPC. For
example, Flickr provides an XML-RPC interface for its image search. To use it, you post an XML request
in this format:

<methodCall>
 <methodName>flickr.photos.search</methodName>
 <params>
 <param>
 <value>
 <struct>
 <member>
 <name>tags</name>
 <value><string>value</string></value>
 </member>
 <member>
 <name>api_key</name>
 <value><string>...</string></value>
 </member>
 </struct>
 </value>
 </param>
 </params>

http://www.somecompany.com/PhotoMarkup
http://www.somecompany.com/PhotoMarkup
http://www.somecompany.com/DVDList

CHAPTER 23  NETWORKING

884

</methodCall>

You can add additional parameters by adding more <member> elements. For example, you can add
the optional perpage parameter, as in the previous examples.

To use an XML-RPC service (or any web service that requires an XML request message), you need to
send the XML document in the body of an HTTP POST. That means you need the higher-powered
WebRequest class rather than WebClient.

To construct the XML message, you can use simple string concatenation. This works well if you
need to set just a single detail. (Remember to use HttpUtility.HtmlEncode() to escape characters like the
angle brackets, which would otherwise be interpreted as XML.) However, string concatenation is also
fragile, because you won’t be notified of any errors if your XML is invalid. (Instead, your web service call
will fail.) Another option is to construct the XML document using the XDocument classes (XDocument,
XElement, XAttribute, XComment, XDeclaration, and so on). The code you need is refreshingly clean and
concise.

All the XDocument classes provide useful constructors that you can create and initialize in one step.
For example, you can create an element and supply text content that should be placed inside using code
like this:

XElement element = new XElement("Price", "23.99");

The code savings become even more dramatic when you consider another feature of the
XDocument: its ability to create a nested tree of nodes in a single code statement. Here’s how it works.
The XDocument and XElement classes include constructors that take a parameter array for the last
argument. This parameter array holds a list of nested nodes.

 Note A parameter array is a parameter that’s preceded by the params keyword. This parameter is always the
last parameter, and it’s always an array. The advantage is that users don’t need to declare the array—instead,
they can tack on as many arguments as they want, which are grouped into a single array automatically.
String.Format() is an example of a method that uses a parameter array. It allows you to supply an unlimited
number of values that are inserted into the placeholders of a string.

Here’s an example that creates an element with an attribute and two nested elements:

XElement element = new XElement("photo",
 new XAttribute("src", "http://www.someplace.com/someimage.jpg") ,
 new XElement("tag", "horse"),
 new XElement("tag", "plow")
);

This code creates XML markup like this:

<photo src="http://www.someplace.com/someimage.jpg">
 <tag>horse</tag>
 <tag>plow</tag>
</photo>

You can extend this technique to create an entire XML document. For example, here’s the complete
code that creates an XML-RPC request for a Flickr image search, using the search keywords in a text box:

http://www.someplace.com/someimage.jpg
http://www.someplace.com/someimage.jpg

CHAPTER 23  NETWORKING

885

XDocument document = new XDocument(
 new XElement("methodCall",
 new XElement("methodName", "flickr.photos.search"),
 new XElement("params",
 new XElement("param",
 new XElement("value",
 new XElement("struct",
 new XElement("member",
 new XElement("name", "tags"),
 new XElement("value",
 new XElement("string", searchKeyword)
)
),
 new XElement("member",
 new XElement("name", "api_key"),
 new XElement("value",
 new XElement("string", "...")
)
)
)
)
)
)
)
);

One nice detail about using XDocument to create XML content is the way the indenting of the code
statements mirrors the nesting of the elements in the XML document, allowing you to quickly take in the
overall shape of the XML content.

After the XML content has been created, you can save it to a TextWriter using the XDocument.Save()
method or convert it to a string using ToString(). When you use XDocument with the WebRequest class,
you need to write it to the request stream using a StreamWriter , as shown here:

StreamWriter writer = new StreamWriter(requestStream);
writer.Write(document.ToString());

When you call the Flickr image search through XML-RPC, you also get an XML-RPC response. To get
the photo information you used earlier, you need to call HttpUtility.HtmlDecode() on the message and
then use LINQ to XML to filter out the <photo> elements. For the complete code, see the downloadable
examples for this chapter.

 Note You’ve now learned how to read and create XML with XDocument and LINQ to XML. These techniques are
useful when you’re dealing with XML-based web services, but they also come in handy if you need to work with
XML in other scenarios (for example, if you have a locally stored file in isolated storage that has XML content). If
you dig into the XDocument and XElement classes, you’ll find they have many more elements that make it easy to
modify XML documents after you’ve created them. Not only can you set the value of any element or attribute, but

CHAPTER 23  NETWORKING

886

you can also use methods for inserting, removing, and otherwise manipulating the XML tree of nodes, such as
Add(), AddAfterSelf(), AddBeforeSelf(), RemoveNodes(), Remove(), ReplaceWith(), and so on.

Services That Return SOAP Data
As you learned in Chapter 19, Silverlight works seamlessly with .NET web services. These web services
send SOAP-encoded data. SOAP is a form of XML, so it’s technically possible to use Silverlight’s XML
processing (for example, the XDocument class) to create request messages and parse response
messages, as in the previous sections. However, it’s far easier to add a service reference in Visual Studio.

What you may not know is that the same technique applies to any SOAP-based web service. In other
words, you can add references to SOAP-based services that aren’t built in .NET. Silverlight has no way of
distinguishing between the two and no way of knowing what code powers the service it’s calling.

When you add a web reference to any SOAP-based web service, Visual Studio creates the proxy class
you need, complete with asynchronous methods and events for each web method in the web service.
For more information, see Chapter 19.

Services That Return JSON Data
JavaScript Object Notation (JSON) is an object-notation syntax that’s sometimes used as a lightweight
alternative to XML. You need to use the JSON serializer is when you’re consuming a web service that
returns JSON data and provides no SOAP alternative. (If the web service returns JSON or simple XML, it’s
up to you whether you prefer the JSON approach or XDocument.) To make matters even more
interesting, Silverlight provides two distinct ways to parse JSON data: you can deserialize it with the
JSON deserializer, as the next example demonstrates; or you can use LINQ to JSON, which works much
the same way as LINQ to XML. Although this chapter doesn’t discuss LINQ to JSON, you can get more
information in the Silverlight SDK documentation (or read a quick review at
http://blogs.msdn.com/mikeormond/archive/2008/08/21/linq-to-json.aspx).

Before you can deal with JSON data, you need to add references to three additional assemblies:
System.Runtime.Serialization.dll, System.ServiceModel.dll, and System.ServiceModel.Web.dll.

Deserializing JSON is a lot like deserializing XML with the XmlSerializer class. The first requirement
is to have a suitable class that matches the structure of your JSON data. You can then use the
DataContractJsonSerializer class to convert instances of this class into JSON data and vice versa.

For example, Yahoo! provides a JSON interface for its image-search service (described at
http://developer.yahoo.com/search/image/V1/imageSearch.html). It returns data that looks like this:

{"ResultSet":{
 "totalResultsAvailable":"957841",
 "totalResultsReturned":10,
 "firstResultPosition":1,
 "Result":[
 {
 "Title":"tree_frog.jpg",
 "Summary":"Red-Eyed Tree Frog",
 "Url":"http:\/\/www.thekidscollege.com\/images\/animals\/redeyetree_frog.jpg",
 ...
 },
 {
 "Title":"tree_frog_large-thumb.jpg",

http://blogs.msdn.com/mikeormond/archive/2008/08/21/linq-to-json.aspx
http://developer.yahoo.com/search/image/V1/imageSearch.html
http://www.thekidscollege.com\/images\/animals\/redeyetree_frog.jpg

CHAPTER 23  NETWORKING

887

 "Summary":"Before I came back in though I got another shot of the frog.",
 "Url":"http:\/\/www.silveriafamily.com\/blog\/john\/treefrog.jpg",
 ...
 }
]
}}

The data is in name-value pairs and is grouped into classes using curly braces {} and into arrays
using square brackets []. To model the data shown here with classes, you need a class for each individual
search result (named Result in the JSON), a class for the entire result set (named ResultSet in the JSON),
and a top-level class that holds the search result set. You can give these classes any name you want, but
the property names must match the names in the JSON representation exactly, including case. Your
classes don’t need to include properties for details you don’t want to retrieve—they can be safely
ignored.

Here are the classes you need. The property names (which are based on the JSON representation)
are bold:

public class SearchResults
{
 public SearchResultSet ResultSet;
}

public class SearchResultSet
{
 public int totalResultsAvailable { get; set; }
 public int totalResultsReturned { get; set; }
 public SearchResult[] Result { get; set; }
}

public class SearchResult
{
 public string Title {get; set;}
 public string Summary { get; set; }
 public string Url { get; set; }
}

Now you can use these classes to deserialize the results of a search. It’s a two-step affair. First, you
create an instance of the DataContractJsonSerializer, specifying the type you want to serialize or
deserialize as a constructor argument:

DataContractJsonSerializer serializer =
 new DataContractJsonSerializer(typeof(SearchResults));

Then, you can use ReadObject() to deserialize JSON data or WriteObject() to create it:

SearchResults results = (SearchResults)serializer.ReadObject(jsonData);

Figure 23-5 shows a sample Silverlight page that searches for images by keyword.

http://www.silveriafamily.com\/blog\/john\/treefrog.jpg

CHAPTER 23  NETWORKING

888

Figure 23-5. Searching for images with Yahoo!

Here’s the code that underpins this page:

private void cmdGetData_Click(object sender, RoutedEventArgs e)
{
 WebClient client = new WebClient();
 Uri address = new Uri(
 "http://search.yahooapis.com/ImageSearchService/V1/imageSearch?" +
 "appid=YahooDemo&query=" + HttpUtility.UrlEncode(txtSearchKeyword.Text) +
 "&output=json");

 client.OpenReadCompleted += client_OpenReadCompleted;
 client.OpenReadAsync(address);
}

private void client_OpenReadCompleted(object sender, OpenReadCompletedEventArgs e)
{
 DataContractJsonSerializer serializer =
 new DataContractJsonSerializer(typeof(SearchResults));
 SearchResults results = (SearchResults)serializer.ReadObject(e.Result);

 lblResultsTotal.Text = results.ResultSet.totalResultsAvailable +
 " total results.";

http://search.yahooapis.com/ImageSearchService/V1/imageSearch?

CHAPTER 23  NETWORKING

889

 lblResultsReturned.Text = results.ResultSet.totalResultsReturned +
 " results returned.";
 gridResults.ItemsSource = results.ResultSet.Result;
}

RSS
Really Simple Syndication (RSS) is an XML-based format for publishing summaries of frequently
updated content, such as blog entries or news stories. These documents are called feeds. Client
applications called RSS readers can check RSS feeds periodically and notify you about newly added
items.

.NET 3.5 introduced classes that support the RSS 2.0 or Atom 1.0 formats. Silverlight borrows these
same classes, allowing you to read feed information without tedious XML-parsing code. These classes
are defined in the System.ServiceModel.Syndication namespace, and to get access to them you need to
add a reference to the System.ServiceModel.Syndication.dll assembly.

When you use RSS, it’s important to remember that you’re limited by the cross-domain rules
explained at the beginning of this chapter. Obviously, if you try to access a feed on a web server that
doesn’t allow cross-domain access, you’ll get an error. However, feeds also contain links. For example, a
typical feed item contains a summary and a link that points to the full page for the corresponding blog
entry or news item. If you attempt to download the page at this location, you must also be sure it’s on a
web server that allows cross-domain access.

You need to consider one other issue. The items in an RSS feed usually point to full-fledged HTML
pages. But even if you download this HTML content, there’s no way to display it in its properly formatted
form in the Silverlight content region. A better approach is to show it on another part of the current
HTML page—for example, just below the Silverlight control. Figure 23-6 shows an example that
combines a Silverlight page that displays feed items (on top) with an ordinary HTML <iframe> element,
which shows the page that corresponds to the currently selected item.

CHAPTER 23  NETWORKING

890

Figure 23-6. Browsing an RSS feed with news items

Creating this example is surprisingly straightforward. First, you need a feed URI. This example uses
the URI http://feeds.feedburner.com/ZDNetBlogs, which points to blogged news items on the high-tech
website ZDNet. Feeds are XML documents, and you can download them easily using the familiar
DownloadStringAsycn() and OpenReadAsync() methods. The latter is more efficient, because the entire
XML document doesn’t need to be held in memory at once as a string:

private void cmdGetData_Click(object sender, RoutedEventArgs e)
{
 WebClient client = new WebClient();
 Uri address = new Uri("http://feeds.feedburner.com/ZDNetBlogs");
 client.OpenReadCompleted += client_OpenReadCompleted;
 client.OpenReadAsync(address);
}

http://feeds.feedburner.com/ZDNetBlogs
http://feeds.feedburner.com/ZDNetBlogs

CHAPTER 23  NETWORKING

891

 Note Silverlight’s feed-reading abilities are somewhat fragile, and minor formatting quirks can easily throw it
off. For that reason, the RSS feature works best when paired with feed documents that you generate yourself.

When you read the response, you can load the XML content into a SyndicationFeed object. The
SyndicationFeed class includes various properties that describe details about the feed, such as its
author, its last update, a summary of what the feed is about, and so on. The most important detail is the
Items property, which holds a collection of SyndicationItem objects. The SyndicationItem objects are
shown in the Grid in Figure 23-6:

private void client_OpenReadCompleted(object sender, OpenReadCompletedEventArgs e)
{
 try
 {
 XmlReader reader = XmlReader.Create(e.Result);
 SyndicationFeed feed = SyndicationFeed.Load(reader);
 gridFeed.ItemsSource = feed.Items;
 reader.Close();
 }
 catch
 {
 lblError.Text = "Error downloading feed.";
 }
}

To display the information from each SyndicationItem object, you need to pull out the right
information with custom binding expressions. Useful properties include Authors, Title, Summary, and
PublishDate, each of which returns a different type of syndication object (all of which are defined in the
System.ServiceModel.Syndication namespace). The example in Figure 23-6 uses the title and summary
information:

<data:DataGrid>
 <data:DataGrid.Columns>
 <data:DataGridTextColumn Binding="{Binding Title.Text}"
 ElementStyle="{StaticResource DataGridWrapStyle}" />
 <data:DataGridTextColumn Width="400"
 Binding="{Binding Summary.Text, Converter={StaticResource HtmlCleanUp}}"
 ElementStyle="{StaticResource DataGridWrapStyle}" />
 </data:DataGrid.Columns>
</data:DataGrid>

The DataGrid also uses a custom style for text wrapping (as described in Chapter 21) and a custom
value converter to remove the HTML tags from the summary and shorten it if it exceeds a certain
maximum number of characters. (To see the custom value converter, refer to the downloadable code
examples for this chapter.)

When an item is clicked in the DataGrid, the following event handler grabs the corresponding
SyndicationItem object and examines the Links property to find the URI that points to the web page with
the full story. It then uses a dash of HTML interoperability (as described in Chapter 17) to point an
<iframe> to that page:

private void gridFeed_SelectionChanged(object sender, EventArgs e)

CHAPTER 23  NETWORKING

892

{
 // Get the selected syndication item.
 SyndicationItem selectedItem = (SyndicationItem)gridFeed.SelectedItem;

 // Find the <iframe> element on the page.
 HtmlElement element = HtmlPage.Document.GetElementById("rssFrame");
 // Point the <iframe> to the full page for the selected feed item.
 element.SetAttribute("src", selectedItem.Links[0].Uri.ToString());
}

Sockets
So far, you’ve focused exclusively on retrieving information over HTTP. Even though HTTP was
developed for downloading simple HTML documents in the earliest days of the Internet, it also works
surprisingly well as a transport mechanism for XML documents and the request and response messages
used to interact with web services.

That said, HTTP isn’t without a few significant drawbacks. First, HTTP is a high-level standard that’s
built on Transmission Control Protocol (TCP). It will never be as fast as a raw network connection.
Second, HTTP uses a request model that forces the client to ask for data. There’s no way for the server to
call back to the client if new information arrives. This limitation means that HTTP is a poor choice for
everything from real-time Internet games to stock monitoring. If you need to go beyond these
limitations in order to build a certain type of application, you’ll need to step up to a rich client platform
(like WPF) or use Silverlight’s support for sockets.

Understanding Sockets and TCP
Strictly speaking, sockets are nothing more than endpoints on a network. They consist of two numbers:

• IP address: The IP address identifies your computer on a network or the Internet.

• Port: The port number corresponds to a specific application or service that’s
communicating over the network.

The combination of two sockets—one on the client that’s running the Silverlight application, and
one on a web server that’s running a server application—defines a connection, as shown in Figure 23-7.

CHAPTER 23  NETWORKING

893

Figure 23-7. A socket-based connection

 Note Port numbers don’t correspond to anything physical—they’re a method for separating different
application endpoints on the same computer. For example, if you’re running a web server, your computer will
respond to requests on port 80. Another application may use port 8000. Essentially, ports map the network
communication on a single computer to the appropriate applications. Silverlight lets you open connections using
any port in the range 4502–4534.

Silverlight supports stream sockets, which are sockets that use TCP communication. TCP is a
connection-oriented protocol that has built-in flow control, error correction, and sequencing. Thanks to
these features, you don’t need to worry about resolving any one of the numerous possible network
problems that can occur as information is segmented into packets and then transported and
reassembled in its proper sequence at another computer. Instead, you can write data to a stream on one
side of the connection and read it from the stream on the other side.

To create a TCP connection, your application must perform a three-stage handshaking process:

1. The server enters listening mode by performing a passive open. At this point,
the server is idle, waiting for an incoming request.

2. A client uses the IP address and port number to perform an active open. The
server responds with an acknowledgment message in a predetermined format
that incorporates the client sequence number.

3. The client responds to the acknowledgment. The connection is now ready to
transmit data in either direction.

CHAPTER 23  NETWORKING

894

 Note Silverlight also includes low-level support for UDP socket connections, in addition to the TCP socket
connections you’ll learn about in this chapter. UDP is a lightweight protocol that’s sometimes used when speed is
more important than reliability—for example, when streaming video. Although UDP isn’t covered in this book, you
can learn more from the official documentation at http://tinyurl.com/34tn68y.

In the following sections, you’ll use Silverlight to build a socket client and .NET to build a socket
server. The result is a simple chat application that allows multiple users to log in at the same time and
send messages back and forth. Figure 23-8 shows two of these instances of the client engaged in
conversation.

Figure 23-8. A socket-based chat client

Implementing this solution takes a fair bit of networking code. However, the result is well worth it
and takes you far beyond the bounds of ordinary HTML pages.

Understanding Policy Files
Before you can even think about designing a socket server, you need to develop something else: a policy
server that tells Silverlight what clients are allowed to connect to your socket server.

As you saw earlier in this chapter, Silverlight doesn’t let you download content or call a web service
if the domain doesn’t have a clientaccesspolicy.xml or crossdomain.xml file that explicitly allows it. A
similar restriction applies to your socket server. Unless it provides a way for the client to download a
clientaccesspolicy.xml file that allows remote access, Silverlight will refuse to make a connection.

http://tinyurl.com/34tn68y

CHAPTER 23  NETWORKING

895

Here’s the policy file that you’ll use in this example:

<?xml version="1.0" encoding="utf-8" ?>
<access-policy>
 <cross-domain-access>
 <policy>
 <allow-from>
 <domain uri="*"/>
 </allow-from>
 <grant-to>
 <socket-resource port="4502-4534" protocol="tcp"/>
 </grant-to>
 </policy>
 </cross-domain-access>
</access-policy>

This policy file establishes three rules:

• It allows access on all ports from 4502 to 4534, which is the full range supported by
Silverlight. To change this detail, modify the port attribute in the <socket-
resource> element.

• It allows TCP access through the protocol attribute in the <socket-resource>
element.

• It allows callers from any domain. In other words, the Silverlight application that’s
making the connection can be hosted on any website. To change this detail,
modify the uri attribute in the <domain> element.

There are two possible ways you can provide your policy file: add it to your web server or create a
dedicated policy server. The first approach is usually the simplest in a deployed application (as long as
you can meet its small set of requirements). It’s described in the following sidebar. The second approach
is better in some specialized scenarios, and it’s more convenient for testing. You’ll use it to build the
example in this chapter.

PLACING A POLICY FILE ON YOUR WEB SERVER

The easiest way to hand out policy files is to copy them to the root of the web server that’s hosting your
Silverlight application (this may not be the folder where your actual web pages are located). If you set this
up correctly, you won’t need to write any code or perform any additional configuration tasks.

However, there’s a catch—the web server must be running on the same computer that’s hosting your
socket server. For example, if you’re connecting to a server with the address 102.168.212.226, Silverlight
will attempt to retrieve the policy file from http://102.168.212.226/clientaccesspolicy.xml. (Silverlight
always uses port 80 to download the policy file, because this is the standard for HTTP traffic.)

The HTTP download feature works well for a deployed Silverlight application, because you’ll usually place
your Silverlight content on an IIS web server, often with an ASP.NET website. However, it’s not as
convenient when testing an application, because the built-in Visual Studio test web server doesn’t use port
80. Thus, it can’t serve the policy file to your Silverlight client. Instead, you need to install IIS on your
computer, configure it, and copy your policy file to the root web (usually that’s c:\inetpub\wwwroot). This

CHAPTER 23  NETWORKING

896

setup task is outside the scope of this book, and for that reason the sample code for this chapter uses the
policy server approach, which works in a deployed application and when testing in Visual Studio.

Finally, it’s important to note that if you do have a deployed Silverlight application on a web server with a
policy file, you still need to explicitly indicate that you want to use the HTTP download feature. You’ll learn
how to do this “Connecting to the Server” section, later in this chapter. Unfortunately, you need to choose
one approach or the other—if you tell Silverlight to use the HTTP download feature, it won’t attempt to
contact a policy server if the download fails.

The Policy Server
A policy server is a socket-based application that clients can call with their policy requests. The
drawback is that you need to write the policy server code—in other words, the logic that handles
requests and serves out the policy file.

As you’ll see, the policy server works in much the same way as the messaging server—it just has a
simpler range of interactions. Although you can create the policy server and messaging server separately,
you can also combine them both in one application, as long as they’re listening for requests on different
threads. In this example, you’ll begin with a simple policy server and then enhance it to be a messaging
server.

To create a policy server, you begin by creating a .NET application. Although you can use any type of
.NET application to serve as a policy server, a simple command-line Console application is the most
common choice. (After you’ve perfected your server, you might choose to move the code to a Windows
service so it can run quietly in the background at all times.)

Once you’ve created the policy server project, you then add the policy file (just add a file named
clientaccesspolicy.xml, and add the markup shown earlier). Using Visual Studio, set the file’s Copy to
Output Directory setting to “Copy always.” That way, the policy file will be copied to the same folder as
the policy server application when you build it. The policy server simply needs to find the file, open it,
and return its contents to the client.

The PolicyServer Classes
The policy server’s functionality resides in two key classes. The first class, PolicyServer, is responsible for
waiting and listening for connections. When a connection is received, it’s handed off to a new instance
of the second class, PolicyConnection, which then sends the policy file. This two-part design is common
in network programming, and you’ll see it again with the messaging server.

When the PolicyServer class is created, it loads the policy file from the hard drive and stores it in a
field as an array of bytes:

public class PolicyServer
{
 private byte[] policy;

 public PolicyServer(string policyFile)
 {
 // Load the policy file.
 FileStream policyStream = new FileStream(policyFile, FileMode.Open);
 policy = new byte[policyStream.Length];
 policyStream.Read(policy, 0, policy.Length);
 policyStream.Close();

CHAPTER 23  NETWORKING

897

 }
 ...

To start listening, the server application must call PolicyServer.Start(). This creates a TcpListener
object, which waits for requests. The TcpListener is configured to listen on port 943, because Silverlight
reserves this port for policy servers. (As you’ll see, when Silverlight applications make policy files
requests, they automatically send them to this port.)

 ...
 private TcpListener listener;

 public void Start()
 {
 // Create the listener.
 listener = new TcpListener(IPAddress.Any, 943);

 // Begin listening. This method returns immediately.
 listener.Start();

 // Wait for a connection. This method returns immediately.
 // The waiting happens on a separate thread.
 listener.BeginAcceptTcpClient(OnAcceptTcpClient, null);
 }
 ...

To accept any pending connections, the policy server calls BeginAcceptTcpClient(). Like all the
BeginXxx() methods in .NET, this method returns immediately and starts the real work on a separate
thread. This is an important detail for a networking application, because it allows you to handle multiple
policy file requests at the same time.

 Note Newcomers to network programming often wonder how they can handle more than one simultaneous
request, and they sometimes assume that multiple server ports are required. This isn’t the case—if it were, a
small set of applications could quickly exhaust the available ports. Instead, server applications handle multiple
requests with the same port. This process is almost completely transparent because the underlying TCP
architecture in Windows automatically identifies messages and routes them to the appropriate object in your code.
Connections are uniquely identified based on four pieces of information: the IP address and server port, and the IP
address and client port.

Each time a request is made, the OnAcceptTcpClient() callback is triggered. That callback then calls
BeginAcceptTcpClient() again to start waiting for the next request on another thread, and then gets to
the real work of dealing with the current request:

 ...
 public void OnAcceptTcpClient(IAsyncResult ar)
 {
 if (isStopped) return;
 Console.WriteLine("Received policy request.");

CHAPTER 23  NETWORKING

898

 // Wait for the next connection.
 listener.BeginAcceptTcpClient(AddressOf OnAcceptTcpClient, null);

 // Handle this connection.
 try
 {
 TcpClient client = listener.EndAcceptTcpClient(ar);
 PolicyConnection policyConnection = new PolicyConnection(client,
 policy);
 policyConnection.HandleRequest();
 }
 catch (Exception err)
 {
 Console.WriteLine(err.Message);
 }
 }
 ...

Each time a new connection is received, a new PolicyConnection object is created to deal with it.
The task of serving the policy file is handled by the PolicyConnection class, which you’ll consider in the
next section.

The final ingredient in the PolicyServer class is a Stop() method that stops waiting for requests. The
application can call this if it’s shutting down:

 ...
 private bool isStopped;
 public void Stop()
 {
 isStopped = true;
 try
 {
 listener.Stop();
 }
 catch (Exception err)
 {
 Console.WriteLine(err.Message);
 }
 }
}

To start the policy server, the Main() method of the server application uses the following code,
which is placed in a file named Program.cs:

static void Main(string[] args)
{
 PolicyServer policyServer = new PolicyServer("clientaccesspolicy.xml");
 policyServer.Start();
 Console.WriteLine("Policy server started.");

 Console.WriteLine("Press Enter to exit.");
 // Wait for an Enter key. You could also wait for a specific input
 // string (like "quit") or a single key using Console.ReadKey().

CHAPTER 23  NETWORKING

899

 Console.ReadLine();

 policyServer.Stop();
 Console.WriteLine("Policy server shut down.");
}

The PolicyConnection Classes
The PolicyConnection class has a simple task. When created, it stores a reference to the policy file data.
Then, when the HandleRequest() method is called, the code accesses the network stream for the new
connection and attempts to read from it. If all is well, the client will have sent a string that contains the
text “<policy-file-request/>”. After reading that string, the client writes the policy data to that stream and
closes the connection.

Here’s the complete code:

public class PolicyConnection
{
 private TcpClient client;
 private byte[] policy;

 public PolicyConnection(TcpClient client, byte[] policy)
 {
 this.client = client;
 this.policy = policy;
 }

 // The request that the client sends.
 private static string policyRequestString = "<policy-file-request/>";

 public void HandleRequest()
 {
 Stream s = client.GetStream();

 // Read the policy request string.
 // This code doesn't actually check the content of the request string.
 // Instead, it returns the policy for every request.
 byte[] buffer = new byte[policyRequestString.Length];

 // Only wait 5 seconds. That way, if you attempt to read the request string
 // and it isn't there or it's incomplete, the client only waits for 5
 // seconds before timing out.
 client.ReceiveTimeout = 5000;
 s.Read(buffer, 0, buffer.Length);

 // Send the policy.
 s.Write(policy, 0, policy.Length);

 // Close the connection.
 client.Close();

 Console.WriteLine("Served policy file.");

CHAPTER 23  NETWORKING

900

 }
}

You now have a complete, fully functioning policy server. Unfortunately, you can’t test it yet. That’s
because Silverlight doesn’t allow you to explicitly request policy files. Instead, it automatically requests
them when you attempt to use a socket-based application. And before you build a client for that socket-
based application, you need to build the server.

The Messaging Server
Although you can create the messaging server as a separate application, it’s tidier to place it in the same
application as the policy server. Because the policy server does its listening and request-handling work
on separate threads, the messaging server can do its work at the same time.

Like the policy server, the messaging server is broken into two classes: MessengerServer, which
listens for requests and tracks clients, and MessengerConnection, which handles the interaction of a
single client. To see the full code, refer to the downloadable examples for this chapter. In this section,
you’ll explore the differences between the policy server and messaging server.

First, the messaging server performs its listening on a different port. As described earlier, Silverlight
allows socket-based applications to use any port in a limited band from 4502 to 4534. The messaging
server uses port 4530:

listener = new TcpListener(IPAddress.Any, 4530);

When the messaging server receives a connection request, it performs an extra step. As with the
policy server, it creates an instance of a new class (in this case, MessengerConnection) to handle the
communication. Additionally, it adds the client to a collection so it can keep track of all the currently
connected users. This is the only way you can allow interaction between these clients—for example,
allowing messages to be sent from one user to another. Here’s the collection that performs the tracking,
and a field that helps the server give each new client a different identifying number:

private int clientNum;
private List<MessengerConnection> clients = new List<MessengerConnection>();

When the client connects, this code creates the MessengerConnection and adds the client to the
clients collection:

clientNum++;
Console.WriteLine("Messenger client #" + clientNum.ToString() + " connected.");

// Create a new object to handle this connection.
MessengerConnection clientHandler = new MessengerConnection(client,
 "Client " + clientNum.ToString(), this);
clientHandler.Start();

lock (clients)
{
 clients.Add(clientHandler);
}

Because the possibility exists that several clients will be connected at the same time, this code locks
the clients collection before adding the client. Otherwise, subtle threading errors could occur when two
threads in the messaging server attempt to access the clients collection simultaneously.

When the messaging server is stopped, it steps through this complete collection and makes sure
every client is disconnected:

CHAPTER 23  NETWORKING

901

foreach (MessengerConnection client in clients)
{
 client.Close();
}

You’ve now seen how the basic framework for the messaging server is designed. However, it still
lacks the message-delivery feature—the ability for one client to submit a message that’s then delivered
to all clients.

To implement this feature, you need two ingredients. First, you must handle the message
submission in the MessengerConnection class. Then, you need to handle the message delivery in the
MessengerServer class.

When a MessengerConnection object is created and has its Start() method called, it begins listening
for any data:

public void Start()
{
 try
 {
 // Listen for messages.
 client.Client.BeginReceive(message, 0, message.Length,
 SocketFlags.None, new AsyncCallback(OnDataReceived), null);
 }
 catch (SocketException se)
 {
 Console.WriteLine(se.Message);
 }
}

The OnDataReceived() callback is triggered when the client sends some data. It reads one byte at a
time until it has all the information the client has sent. It then passes the data along to the
MessengerServer.Deliver() method and begins listening for the next message:

public void OnDataReceived(IAsyncResult asyn)
{
 try
 {
 int bytesRead = client.Client.EndReceive(asyn);

 if (bytesRead > 0)
 {
 // Ask the server to send the message to all the clients.
 server.DeliverMessage(message, bytesRead);

 // Listen for more messages.
 client.Client.BeginReceive(message, 0, message.Length,
 SocketFlags.None, new AsyncCallback(OnDataReceived), null);
 }
 }
 catch (Exception err)
 {
 Console.WriteLine(err.Message);
 }
}

CHAPTER 23  NETWORKING

902

 Note When a message is received, the messenger assumes that message is made up of text that needs to be
delivered to other recipients. A more sophisticated application would allow more complex messages. For example,
you might serialize and send a Message object that indicates the message text, sender, and intended recipient. Or,
you might use a library of string constants that identify different commands—for example, for sending messages,
sending files, querying for a list of currently connected users, logging off, and so on. The design of your messaging
application would be the same, but you would need much more code to analyze the message and decide what
action to take.

The MessengerServer.DeliverMessage() method walks through the collection of clients and calls
each one’s ReceiveMessage() method to pass the communication along. Once again, threading issues
are a concern, and an error could occur if the messenger is adding a new client to the clients collection
while another thread is iterating over the clients collection to perform a message delivery. But locking
the entire collection isn’t ideal, because the delivery process can take some time, particularly if a client
isn’t responding. To avoid any slowdowns, the DeliverMessage() code begins by creating a snapshot
copy of the collection. It then uses that copy to deliver its message:

public void DeliverMessage(byte[] message, int bytesRead)
{
 Console.WriteLine("Delivering message.");

 // Duplicate the collection to prevent threading issues.
 MessengerConnection[] connectedClients;
 lock (clients)
 {
 connectedClients = clients.ToArray();
 }

 foreach (MessengerConnection client in connectedClients)
 {
 try
 {
 client.ReceiveMessage(message, bytesRead);
 }
 catch
 {
 // Client is disconnected.
 // Remove the client to avoid future attempts.
 lock (clients)
 {
 clients.Remove(client);
 }

 client.Close();
 }
 }
}

CHAPTER 23  NETWORKING

903

The MessengerConnection.ReceiveMessage() method writes the message data back into the
network stream so the client can receive it:

public void ReceiveMessage(byte[] data, int bytesRead)
{
 client.GetStream().Write(data, 0, bytesRead);
}

The final change you need to make is to modify the startup code so the application creates and
starts both the policy server and the messaging server. Here’s the code, with additions in bold:

static void Main(string[] args)
{
 PolicyServer policyServer = new PolicyServer("clientaccesspolicy.xml");
 policyServer.Start();
 Console.WriteLine("Policy server started.");

 MessengerServer messengerServer = new MessengerServer();
 messengerServer.Start();
 Console.WriteLine("Messenger server started.");
 Console.WriteLine("Press Enter to exit.");

 // Wait for an Enter key. You could also wait for a specific input
 // string (like "quit") or a single key using Console.ReadKey().
 Console.ReadLine();

 policyServer.Stop();
 Console.WriteLine("Policy server shut down.");

 messengerServer.Stop();
 Console.WriteLine("Messenger server shut down.");
}

Figure 23-8 showed what happens when two clients begin talking to each other through the socket
server. Figure 23-9 shows the back end of the same process—the messages that appear in the Console
window of the socket server while the clients are connecting and then interacting.

CHAPTER 23  NETWORKING

904

Figure 23-9. The policy and messaging server

The Messenger Client
So far, you’ve focused exclusively on the server-side .NET application that powers the messaging server.
Although this is the most complex piece of the puzzle, the Silverlight socket client also requires its fair
share of code.

The messaging client has three basic tasks: to connect to the server, to send messages, and to
receive and display them. The code is similar to the socket server, but it requires slightly more work.
That’s because Silverlight doesn’t have a TcpClient class but forces you to use the lower-level Socket
class instead.

To use the Socket class, you use three asynchronous methods: ConnectAsync() to make a
connection, SendAsync() to send an outgoing message, and ReceiveAsync() to listen for an incoming. All
three of these methods require a SocketAsyncEventArgs object.

The SocketAsyncEventArgs plays two crucial roles:

• It acts as a package that holds any additional data you want to transmit.

• It notifies you when the asynchronous operation is complete with the Completed
event.

To perform any task with a socket in Silverlight, you must create and configure a
SocketAsyncEventArgs object, and then pass it to one of the asynchronous methods in the Socket class.

Connecting to the Server
The first task in the messaging client is to establish a connection when the user clicks the Connect
button. To do so, the client needs to create a new Socket object and a new SocketAsyncEventArgs object.
Here’s what happens:

CHAPTER 23  NETWORKING

905

// The socket for the underlying connection.
private Socket socket;

private void cmdConnect_Click(object sender, RoutedEventArgs e)
{
 try
 {
 if ((socket != null) && (socket.Connected)) socket.Close();
 }
 catch (Exception err)
 {
 AddMessage("ERROR: " + err.Message);
 }

 DnsEndPoint endPoint =
 new DnsEndPoint(Application.Current.Host.Source.DnsSafeHost, 4530);
 socket = new Socket(AddressFamily.InterNetwork,
 SocketType.Stream, ProtocolType.Tcp);

 SocketAsyncEventArgs args = new SocketAsyncEventArgs();

 // To configure a SocketAsyncEventArgs object, you need to set
 // the corresponding Socket object (in the UserToken property)
 // and the location of the remote server (in the RemoteEndPoint property).
 args.UserToken = socket;
 args.RemoteEndPoint = endPoint;

 // You must also attach an event handler for the Completed event.
 args.Completed +=
 new EventHandler<SocketAsyncEventArgs>(OnSocketConnectCompleted);

 // Start the asynchronous connect process.
 socket.ConnectAsync(args);
}

Most of these details are straightforward. If the socket is already opened, it’s closed. Then, a
DnsEndPoint object is created to identify the location of the remote host. In this case, the location of the
remove host is the web server that hosts the Silverlight page, and the port number is 4530. Finally, the
code creates the SocketAsyncEventArgs object and attaches the OnSocketConnectCompleted() event to
the Completed event.

 Note Remember, unless you specify otherwise, the client’s port is chosen dynamically from the set of available
ports when the connection is created. That means you can have multiple clients open connections to the same
server. On the server side, each connection is dealt with uniquely, because each connection has a different client
port number.

CHAPTER 23  NETWORKING

906

If you want to download the policy file from an IIS web server over HTTP (rather than a dedicated
policy server), you need to make one change to the previous code. Before you call ConnectAsync(), you
must set the SocketAsyncEventArgs. SocketClientAccessPolicyProtocol property, as shown here:

args.SocketClientAccessPolicyProtocol = SocketClientAccessPolicyProtocol.Http;

But be aware that when you use this approach, Silverlight will not attempt to contact a policy server
if it fails to download the policy file (or if the policy file is incorrect). Instead, your application will be
unable to connect to the server.

The code in the cmdConnect_Click() event handler uses a custom method named AddMessage() to
add information to the message list. This method takes the extra step of making sure it’s running on the
user-interface thread. This is important, because AddMessage() may be called during one of the client’s
asynchronous operations:

private void AddMessage(string message)
{
 Dispatcher.BeginInvoke(
 delegate()
 {
 lblMessages.Text += message + "\n";

 // Scroll down to the bottom of the list, so the new message is visible.
 scrollViewer.ScrollToVerticalOffset(scrollViewer.ScrollableHeight);
 });
}

When the client’s connection attempt finishes, the OnSocketConnectCompleted() event handler
runs. It updates the display and reconfigures the SocketAsyncEventArgs object so it can be used to
receive messages, wiring the Completed event to a new event handler. The client then begins listening
for messages:

private void OnSocketConnectCompleted(object sender, SocketAsyncEventArgs e)
{
 if (!socket.Connected)
 {
 AddMessage("Connection failed.");
 return;
 }

 AddMessage("Connected to server.");

 // Messages can be a maximum of 1024 bytes.
 byte[] response = new byte[1024];
 e.SetBuffer(response, 0, response.Length);
 e.Completed -=
 new EventHandler<SocketAsyncEventArgs>(OnSocketConnectCompleted);
 e.Completed += new EventHandler<SocketAsyncEventArgs>(OnSocketReceive);

 // Listen for messages.
 socket.ReceiveAsync(e);
}

To listen for a message, you must create a buffer that will hold the received data (or at least a single
chunk of that data). The messaging client creates a 1024-byte buffer and doesn’t attempt to read more

CHAPTER 23  NETWORKING

907

than one chunk. It assumes that messages won’t be greater than 1024 bytes. To prevent potential errors,
the messaging application should enforce this restriction as well. One good safety measure is to set a
MaxLength property of the text box where the user enters new messages.

Sending Messages
The messages in the chat application are slightly more detailed than simple strings. Each message
includes three details: the text, the sender’s chosen name, and the sender’s time when the message was
submitted. These three details are encapsulated in a custom Message class:

public class Message
{
 public string MessageText {get; set;}
 public string Sender {get; set;}
 public DateTime SendTime {get; set;}

 public Message(string messageText, string sender)
 {
 MessageText = messageText;
 Sender = sender;
 SendTime = DateTime.Now;
 }

 // A no-argument constructor allows instances of this class to be serialized.
 public Message(){}
}

To send a message, the user enters some text and clicks the Send button. At this point, you must
create a new SocketAsyncEventArgs object. (Remember, the first one is still in use, waiting to receive
new messages on a background thread.) The new SocketAsyncEventArgs object needs to store the buffer
of message data. To create it, you begin by constructing a Message object. You then serialize that
message object to a stream with the XmlSerializer, convert it to a simple byte array, and add it to the
SocketAsyncEventArgs object using the BufferList property, as shown here:

private void cmdSend_Click(object sender, RoutedEventArgs e)
{
 if ((socket == null) || (!socket.Connected))
 {
 AddMessage("ERROR: Not connected.");
 return;
 }

 // Create the MemoryStream where the serialized data will be placed.
 MemoryStream ms = new MemoryStream();

 // Use the XmlSerializer to serialize the data.
 XmlSerializer serializer = new XmlSerializer(typeof(Message));
 serializer.Serialize(ms, new Message(txtMessage.Text, txtName.Text));

 // Convert the serialized data in the MemoryStream to a byte array.
 byte[] messageData = ms.ToArray();

CHAPTER 23  NETWORKING

908

 // Place the byte array in the SocketAsyncEventArgs object,
 // so it can be sent to the server.
 SocketAsyncEventArgs args = new SocketAsyncEventArgs();
 List<ArraySegment<byte>> bufferList = new List<ArraySegment<byte>>();
 bufferList.Add(new ArraySegment<byte>(messageData));
 args.BufferList = bufferList;

 // Send the message.
 socket.SendAsync(args);
}

Unfortunately, because the Socket class in Silverlight works at a lower level than the TcpClient class
in .NET, you don’t have the straightforward stream-based access to the network connection that you
have on the server side.

 Tip You can write any type of data you want to the server, in any form. You certainly don’t need to use
XmlSerializer. However, serialization gives you a simple way to pass along a bundle of information as an instance
of some class.

Receiving Messages
When a message is sent to the client, the other SocketAsyncEventArgs object fires its Completed event,
which triggers the OnSocketReceive() event handler. You now need to deserialize the message, display it,
and wait for the next one:

private void OnSocketReceive(object sender, SocketAsyncEventArgs e)
{
 if (e.BytesTransferred == 0)
 {
 AddMessage("Server disconnected.");

 try
 {
 socket.Close();
 }
 catch { }
 return;
 }

 try
 {
 // Retrieve and display the message.
 XmlSerializer serializer = new XmlSerializer(typeof(Message));
 MemoryStream ms = new MemoryStream();
 ms.Write(e.Buffer, 0, e.BytesTransferred);
 ms.Position = 0;
 Message message = (Message)serializer.Deserialize(ms);

CHAPTER 23  NETWORKING

909

 AddMessage("[" + message.Sender + "] " + message.MessageText +
 " (at " + message.SendTime.ToLongTimeString() + ")");
 }
 catch (Exception err)
 {
 AddMessage("ERROR: " + err.Message);
 }

 // Listen for more messages.
 socket.ReceiveAsync(e);
}

This completes the messaging client. To experiment with the complete solution, try the
downloadable code for this chapter.

 Note You can make a number of refinements to polish the messaging application. You’ve already considered
how you can replace the simple message-passing mechanism on the server side with more complex logic that
recognizes different types of messages and performs various operations. Other changes you may want to
implement include managing user-interface state (for example, disabling or enabling controls based on whether a
connection is available), intercepting the application shutdown event and politely disconnecting from the server,
allowing users to deliver to specific people, adding authentication, and informing newly connected clients about
how many other people are currently online. With all that in mind, the messaging application is still an impressive
first start that shows how far a Silverlight application can go with direct network communication.

Local Connections
As you’ve seen, Silverlight gives you considerable power to communicate with sockets, but the cost is
complexity. Interestingly, Silverlight has another communication mechanism that’s far simpler: the local
connection model.

Whereas socket support allows a Silverlight application to communicate with virtually any
networked program, on any computer (provided there’s no firewall blocking the way), the local
connection feature is far more modest. It provides a simple way for two Silverlight applications running
on the same computer to interact. This feature is particularly suited to out-of-browser applications,
because users are more likely to run them in combination and leave them loaded for long periods of
time.

In the following sections, you’ll take a quick look at the local connection model, and see how it
allows you to build the application shown in Figure 23-10.

CHAPTER 23  NETWORKING

910

Figure 23-10. Sending messages between local applications

The local connection model works through two classes in the System.Windows.Messaging
namespace: LocalMessageSender and LocalMessageReceiver. Together, these two classes allow one way
communication. The sender application transmits a message to the receiver. If you want both
applications to have the chance to send and receive messages, you simply need to use the
LocalMessageSender and LocalMessageReceiver in combination.

It’s also worth noting that communication doesn’t need to be one-to-one. The message that one
application sends can be received by any number of other Silverlight applications that are running at the
same time. Or, it can be received by none. Unlike sockets, local connection messaging is a one-way, fire-
and-forget system. The message sender has no idea whether its message has been received, unless the
responder sends a confirmation message back.

Sending a Message
To send a message, you begin by creating an instance of the LocalMessageSender class. It’s usually
convenient to create a single instance, and keep it around as a member variable in your page:

private LocalMessageSender messageSender =
 new LocalMessageSender("EavesdropperReceiver");

When you create the LocalMessageSender object, you need to supply a receiver name. This is the
name that the receiver will use to listen for messages. The actual name isn’t important, but the sender
and receiver must use the same name to communicate.

Ordinarily, local connections only work with applications that are running from the same web
domain. However, you have the option of specifying a different domain as a second constructor
argument:

private LocalMessageSender messageSender =
 new LocalMessageSender("EavesdropperReceiver", "anotherWebDomain.com");

CHAPTER 23  NETWORKING

911

Alternatively, you can use the syntax shown here to create a global message sender:

private LocalMessageSender messageSender =
 new LocalMessageSender("EavesdropperReceiver", LocalMessageSender.Global);

Now, any application from any domain can receive the messages you send. If you use this approach,
it’s a good idea to take extra care to choose a receiver name that’s likely to be unique. Don’t use a
common naming shorthand like “receiver”, “MessageReceiver”, and so on, as other Silverlight
applications use the same names.

Once you’ve created the LocalMessageSender, sending a message is easy. You simply need to call
SendAsync() method and pass in your message as a string. Optionally, you can handle the
LocalMessageSender.Completed event, which fires when the message has been sent (but won’t tell you if
it’s been received).

Here’s the code used to send messages as the user types, as shown in the application in Figure 23-
10:

private void txt_KeyUp(object sender, KeyEventArgs e)
{
 messageSender.SendAsync(txt.Text);
}

Receiving a Message
As you probably expect, you receive messages by creating a LocalMessageReceiver object. When you do,
you must specify the same receiver name that was used when creating the LocalMessageSender:

private LocalMessageReceiver receiver =
 new LocalMessageReceiver("EavesdropperReceiver");

This LocalMessageReceiver will receive message from Silveright applications that are running from
the same domain. Alternatively, you can pass in an array that specifies one or more domains that you
want to allow. Here’s an example that listens to messages sent to the Eavesdropper receiver, by
applications running on anotherWebDomain.com:

LocalMessageReceiver messageReceiver = new LocalMessageReceiver(
 "Eavesdropper", ReceiverNameScope.Domain, new string[]{"anotherWebDomain.com"});

Finally, you can choose to accept messages from all domains with this syntax:

LocalMessageReceiver messageReceiver = new LocalMessageReceiver(
 "Eavesdropper", ReceiverNameScope.Global, LocalMessageReceiver.AnyDomain);

Once you’ve created the LocalMessageReceiver, you need to attach an event handler to the
MessageReceived event, and call the Listen() method to start listening.

private void Page_Loaded(object sender, RoutedEventArgs e)
{
 receiver.MessageReceived += receiver_MessageReceived;
 receiver.Listen();
}

Listen() is an asynchronous method, so all the message listening takes place on a separate thread
while your application continues its normal operations. When a message is received, the listening thread
fires the MessageReceived event on the user interface thread and resumes listening. Here’s the code
that’s used in the example in Figure 23-10 to display the received message in a TextBlock:

CHAPTER 23  NETWORKING

912

private void receiver_MessageReceived(object sender, MessageReceivedEventArgs e)
{
 lblDisplay.Text = "The user of Main Application typed: \"" +
 e.Message + "\"";
}

The Last Word
In this chapter, you saw a wide range of Silverlight networking features. You learned how to use them to
do everything from directly downloading HTML files to calling simple XML-based web services to
building an entire messaging system based on socket communication. Along the way, you considered
several techniques for parsing different types of information, including regular expressions (to search
HTML), LINQ to XML (to process XML), and serialization (to save or restore the contents of an in-
memory object). These techniques can come in handy in a variety of situations—for example, they’re
just as useful when you need to manage information that’s stored on the client computer in isolated
storage.



913

Index

 Numbers and Symbols
%ProgramFiles% variable, 647–648
3-D drawing

creating solid and faceted cube, 486
MatrixCamera class, 480
not rendering unseen shapes, 486
WPF lighting model, 495

 A
Abort() method, 588, 598
AcceptsReturn property, 175
access, cross-domain, 864–866
accessing files. See file access
Action property, 724
actions, for behaviors

connecting to element, 525–526
creating, 522–524

Activate() method, 657, 672
ActiveX controls, 31
ActualHeight property, 73, 89, 92
ActualWidth property, 73, 89, 92, 358
adaptive streaming, 428–429
Add As Link option, 698
add-on assemblies, 22–23
adding depth, 401
adding sound effects, 401
AddItem() method, 860
AfterLoaded, 564–565
aligning, content, 162–163
alignment, in StackPanel layout container, 69
AllowDrop property, 852
AllowedDeviceAccess property, 448–449, 451,

455
AllowInvalid property, 778
Alt key, 136
alternate content, in HTML test page, 29
AlternateStyles.xaml, 516
ampersand character, 40
Ancestors() method, 881

Angle property, 380
animation, 351–411

classes of, 353–355
in code, BombDropper example, 391–402
configuring properties of, 357–359

By, 359
Duration, 359
From, 357–358
To, 358–359

controlling playback, 362–364
easing, 365–371, 379, 389, 397, 402

functions for, 365–366, 368–371
in and out, 366–368

encapsulating, 402–406
base class for, 403–404
page transitions, 402–403
WipeTransition class, 405–406

frame-based, 407
lifetime of, 359–361
performance, 371–378

desired frame rate, 371
hardware acceleration, 372–377
independent animations, 377–378

rules of, 352–353
simultaneous, 361–362
starting

with code, 356
with event trigger, 355

types of, 379–390
brushes, 384–385
key-frame, 387–390
perspective projections, 382–384
pixel shaders, 385–387
transforms, 380–382

annotations, 777–785
attributes for, 779–785

CustomValidation, 782–785
Range, 780
RegularExpression, 780–781
Required, 779
StringLength, 779

 INDEX

914

annotations (cont.)
raising annotation errors, 777–778

APIs (Application Programming Interfaces), 870–
874

App class, 203–204, 237–238, 256, 261, 403, 643
App type, 203
AppendChild() method, 614, 617–618
Application class, 203–205, 403, 645

Current property, 203–204
properties for, 204–205

application model, 203–231
Application class, 203–205

Current property, 203–204
properties for, 204–205

binary resources, 216–223
placing in application package, 219
placing in assembly subfolders, 218
placing on Web, 220–223
programmatically retrieving, 219

class library assemblies, 224–231
downloading assemblies on demand,

225–226
supporting caching for, 227–231
using resources in, 224–225

events for, 205–212
application shutdown, 209
Application_Startup method, 206
initialization parameters, 206–209
unhandled exceptions, 209–212

splash screens, custom, 212–216
Application object, 205, 222
application package, binary resources in, 219
Application Programming Interfaces (APIs), 870–

874
application settings, storing, 840–841
application state, tracking, 641–645
Application.CheckAndDownloadUpdateAsync()

method, 645, 647, 660
Application.Current property, 203
Application.Current.MainWindow property, 673
Application.GetResourceStream() method, 152,

219, 222
Application.HasElevatedPermissions property,

662, 681
Application.Install() method, 638, 658
Application.InstallState property, 642–643
Application.IsRunningOutOfBrowser property,

252
ApplicationLifetimeObjects property, 204
Application.MainWindow property, 655
Application.Resources, 52, 55

Application.RootVisual property, 206
ApplicationSettings class, 840–841
Application_Startup() method, 206, 214
AppliesTo property, 538
AppManifest.xaml, 18
AppManifest.xml file, 205
App.xaml file, 52, 203, 251, 310, 518, 544
App.xaml.cs file, 6, 203, 205–206
arcs, with Path class, 287–289
ArcSegment class, 286–287, 289, 293
ArcSegment.IsLargeArc property, 289
ArcSegment.Point property, 287
ArcSegment.SweepDirection property, 289
Arrange() method, 92
ArrangeCore() method, 90
ArrangeOverride() method, 90, 92, 95, 114
ASP.NET-hosted Silverlight project, 12–18

ASP.NET controls for, 17
vs. HTML pages, 2–3
mixing ASP.NET and Silverlight content, 17–

18
ASP.NET platform, services of, 704–706
ASP.NET Web Application Project, 13–14
ASP.NET web services, 683–713

advanced, 701–707
ASP.NET platform services, 704–706
cross-domain web service calls, 701–703
monitoring network connection, 703–704
WCF RIA Services, 706–707

busy indicators, 692–693
calling, 687–690
configuring URL, 690–692
data types, 693–701

custom data classes, 694–695
web service type sharing, 695–701

duplex, 707–713
client, 711–713
configuring, 708–709
interfaces, 709–710
service, 710–711

service references, 685–687
AspNetCompatibilityRequirements attribute,

684–685, 694, 710
assemblies

add-on, 22–23
binary resources in, 218
caching of, 23–25
core, 21–22

AssemblyPart class, 226
AssemblyPart.Load() method, 226
Asset Library, 526–527, 533

 INDEX

915

AssociatedObject property, 533
attached properties, 44, 111–112
AttachEvent() method, 612, 615, 620, 629
audio

playing, 444–447
changing playback settings, 445–446
looping, 447
multiple sounds, 416–417
overlapping sounds, 446–447
with SoundEffect class, 445

recording, with microphone input, 452–457
AudioCaptureDevice object, 449
AudioData property, 453
AudioFormat property, 453
AudioSink class, 452–453, 455
AudioSink.CaptureSource property, 455
authentication, and custom content loaders,

258–260
AutoCompleteBox class, 144, 173, 175, 177–178,

180–183, 202
AutoCompleteBox control, 173
AutoCompleteBox element, 177–183

custom filtering for, 179–180
filter mode for, 178–179
populating dynamically, 181–183

AutoCompleteBox.ItemsSource property, 177
AutoCompleteFilterMode, 178–179
AutoGenerateColumns property, 785
automatic sizes, 79
AutomationFactory class, 675
AutomationFactory.CreateObject() method, 675
AutomationFactory.IsAvailable property, 675
AutoPlay property, 415–416
AutoReverse property, 359–360, 558
autoUpgrade parameter, 25, 28, 30
autozoom, 103

 B
BackContent property, 570
background parameter, 28
Background property, 63–64, 96, 99, 103, 107,

318, 326, 437, 441
backgrounds, 394, 398, 401
BackgroundWorker class, 377, 585, 598–604, 606
BackgroundWorker component, 598–606

running, 599–601
supporting cancellation, 604–606
tracking progress, 601–603

BackgroundWorker object, 599, 602

BackgroundWorker.CancelAsync() method, 604
BackgroundWorker.ReportProgress() method,

601
BackgroundWorker.RunWorkerAsync() method,

599
BackgroundWorker.WorkerReportsProgress

property, 601–602
BackgroundWorker.WorkerSupportsCancellatio

n property, 604
backward, navigation, 252–253
balance, for MediaElement class, 417–421
BasedOn property, 517
BayernFont.ttf file, 152
BeforeLoaded, 564
BeforeUnloaded, 564–565
BeginAnimation() method, 352
BeginInvoke() method, 589–591, 596, 598, 601–

602
BeginPrint, 339
BeginTime property, 387, 577–578
Behavior class, 533
behaviors, 521–539

actions for
connecting to element, 525–526
creating, 522–524

creating, 533–535
design-time support in Blend, 526–529
finding, 536–537
FluidMoveBehavior, 537
support for, 521–522
triggers for, creating, 529–533

Bézier curves, with Path class, 289–291
BezierSegment class, 286, 290–291, 293
BigButtonStyle, 514–517
binary resources, 216–223

placing in application package, 219
placing in assembly subfolders, 218
placing on Web, 220–223

downloading with WebClient, 222–223
failing to download, 221

programmatically retrieving, 219
BinaryReader object, 219
binding

collection items to LINQ expression, 736–739
data. See data binding
element-to-element, 56–59

one-way binding, 56–57
two-way binding, 57–59

Binding property, 721, 789–790, 802
BindingExpression.UpdateSource() method,

721, 746

 INDEX

916

Binding.Mode property, 721
bindings

failed, null values and, 720
for templates, 545–546
two-way, editing data object with, 720–722

BindingState object, 724
BindingState property, 725
Binding.StringFormat property, 751–752, 754
Binding,StringFormat property, 755
Binding.UnsetValue, 760
BindingValidationError event, 118, 745–747, 750–

751
bindingValidationFailed event, 745–747
Binebug folder, 6, 18–19, 23, 26
bit-rate throttling, 428–429
bitmap caching, 373–375
bitmap printing, 343, 346
BitmapCache property, 377
BitmapCache.RenderAtScale property, 375
BitmapImage class, 754, 756, 758, 764
BitmapImage.SetSource() method, 756
BlackoutDates property, 200
BlackoutDates.AddDatesInPast() method, 200
Blocks property, 187
BlurEffect class, 330, 581–582
BlurRadius property, 331
Body member, 612, 787, 806, 814
Bomb class, 394
bomb explosion effect, 401
Bomb object, 396
BombDropper example, 391–402
BombDropper game, 392, 394–395, 398–401, 406
Bomb.IsFalling property, 400
Boolean flag, 261
Boolean parameter, 580
Boolean property, 123, 394, 448, 570
Border class, 64–65, 120, 144, 165, 169, 542
Border control, 382
Border element, 542, 546, 551, 570, 574, 576
Border object, 65, 762
BorderBrush property, 65, 318, 542, 544–545, 547,

570, 574, 580
Border.Child property, 236
Borderless Round Corners option, 662, 664
BorderThickness property, 65, 542–543, 545–546,

550, 570, 575, 580, 582
bound data, 720, 722, 725, 746, 754–755, 761
browser history, and user controls, 239
browser integration, 607–631

code interaction, 621–625
calling browser script, 622

calling methods from browser, 622–624
instantiating Silverlight objects in

browser, 624–625
HTML

combining content, 626–629
interacting with elements of, 608–620
securing interoperability, 630–631

BrowserInformation class, 132, 608–609, 630,
642, 655

BrowserInformation property, 608
browsers

calling methods from, 622–624
elevated trust applications in, 679
instantiating Silverlight objects in, 624–625
script, calling, 622

Brush class, 41, 63–65, 353, 356
brushes, 315–322

animating, 384–385
ImageBrush class, 321–322
LinearGradientBrush class, 316–318
RadialGradientBrush class, 319–321

bubbling, of events, 118–123
BufferingProgress property, 428
BufferingTime property, 427
BufferList property, 907
business logic, 706
busy indicators, 692–693
BusyContent property, 692
Button class, 41, 117, 159, 161, 163, 166, 168, 193,

546, 549
Button control, 47, 120, 163, 549–553
Button-derived class, 573
Button element, 33, 41
Button object, 33, 516, 542
ButtonBase class, 138, 163
Button.Content property, 544
ButtonFace, 51–54
Button.RotateTransform object, 380
buttons, 163–165

CheckBox, 164–165
HyperlinkButton, 163–164
RadioButton, 165
RepeatButton, 164
ToggleButton, 164

Button.Width property, 353
By property, 359

 C
CA (certificate authority), 658–659

 INDEX

917

CacheMode property, 373
caching

of assemblies, 23–25
bitmap, 373–375
for class library assemblies, 227–231

.extmap.xml file, 228
strong key name, 227–228

Calendar class, 144, 159, 198–201
Calendar control, 198–199
CallbackContract property, 709
Cancel property, 806
CancelAsync() method, 223, 604
cancellation, support for, 596–598, 604–606
Cancelled property, 223
CancelLoad() method, 258, 260–261
CanExecute() method, 138–139
CanExecute.object parameter, 138–139
CanGoBack property, 253
CanGoForward property, 253
CanLoad() method, 260–261
CanUserReorder property, 788
CanUserReorderColumns property, 788
CanUserResize property, 788
CanUserResizeColumns property, 788
CanUserSortColumns property, 803
Canvas class, 62, 129, 144, 542
Canvas layout container, 86–90

clipping for, 88–90
layering with ZIndex, 88

Canvas.Background property, 129
Canvas.Clip property, 88
Canvas.Left property, 86–88, 130
Canvas.SetTop() method, 409
Canvas.SizeChanged event, 89
Canvas.Top property, 86–88, 130, 392, 396
Canvas.ZIndex property, 88
capture device, webcam input, 448–449
CaptureDeviceConfiguration class, 448–449
CaptureImageAsync() method, 452
CaptureSource class, 449–453, 455–457
capturing mouse, 127
Cascading Style Sheets (CSS), 513, 614
Category class, 740
Category column, 802
Category object, 740–742, 816–818
CategoryName property, 818
Category.Products property, 741
CBR (Constant Bit-Rate Encoding), 432
CBR-encoded file, 432
Center property, 283, 320
CenterOfRotationX, 304

CenterX property, 295–296, 298–300
CenterY property, 295–296, 298–300
certificate authority (CA), 658–659
Certificate Import Wizard, 660
change notification, 722–723
ChangePropertyAction class, 536
ChangeVisualState() method, 570, 578–580
ChannelDown value, 425
ChannelUp value, 425
CharacterSpacing property, for TextBlock

element, 156
Check column, 806
CheckAccess() method, 589
CheckAndDownloadUpdateAsync() method,

205, 645–647, 660
CheckAndDownloadUpdateAsync property, 205
CheckAndDownloadUpdateCompleted event,

646, 667
CheckBox class, 144, 159, 163–164, 172–174, 192
CheckBox control, 556
CheckBox element, 164–165
CheckBox interface, 164
Child property, 235, 270
child windows, 661, 671–673
Children property, 46–47, 613
ChildWindow class, 233, 241–243, 348
ChildWindow control, 170, 239–241, 611, 671–

672, 807
designing, 241–242
showing, 242–244

ChildWindow object, 243
ChildWindow.Close() method, 242
ChildWindow.DialogResult property, 242
Choose a strong key name option, 227
Class attribute, 37
class library assemblies, 224–231

downloading assemblies on demand, 225–
226

supporting caching for, 227–231
.extmap.xml file, 228
strong key name, 227–228

using resources in, 224–225
classes, for shapes, 264–265
Clear() method, 47
ClearValue() method, 110
ClickCount property, 107, 124
ClickMode property, 163
ClickOnce, 640
client-side playlists, for MediaElement class,

425–426
clientaccesspolicy.xml, 701–702

 INDEX

918

ClientBin folder, 16, 19, 23
client.ReturnResult() method, 711
clients, duplex services, 711–713
clip art, exporting to XAML, 308–313

conversion tools for, 310
with Expression Design, 308–310
saving as XPS, 310

Clip property, 89, 293, 341, 373
Clipboard class, 176
clipping

for Canvas layout container, 88–90
with geometry, 293–295

Clipping property, 439
Close() method, 654–657, 666–667, 672
cmdAnswer_Click method, 48
code-behind class, 37–39
code interaction, browsers, 621–625

calling methods from, 622–624
instantiating Silverlight objects in, 624–625
script, 622

collections
data binding to, 731–742

binding collection items to LINQ
expression, 736–739

displaying and editing collection items,
731–735

inserting and removing collection items,
736

master-details display, 739–742
of resources, 49–51

Color object, 63
Color property, 43, 331, 353
ColorAnimation class, 353, 552–553, 555–558
coloration, 552
Color.FromArgb() method, 63
Colors class, 63
ColumnDefinition object, 79
columns

controlling width of, 794–797
defining, 788–791

DataGridCheckBoxColumn column, 790
DataGridTemplateColumn column, 791

formatting and styling, 792–794
freezing, 800–801
in Grid layout container

overview, 79–80
spanning, 82–83

resizing and rearranging, 788
ColumnSpan property, 82, 84
COM automation, 674

COM (Component Object Model), 661, 674–677,
682

ComboBox class, 144, 170, 172–173, 202
ComboBox control, 172
ComboBox element, 172–173
ComboBoxItem, 761
ComboBox.ItemsSource property, 804
ComboBox.SelectedItem property, 804
command-line utility, 687
command model, 137–141

building, 138–139
connecting, 139–141

Command property, 140
CommandParameter property, 140
CommonStates, 550–556, 560, 574
compiling, Silverlight applications, 18–19
Completed event, 594–596
complex properties, 42–43
Component Object Model (COM), 661, 674–677,

682
CompositeTransform class, 296
CompositionTarget.Rendering event, 407–408,

410
conditional formatting, applying, 759–761
Constant Bit-Rate Encoding (CBR), 432
containers, 61–65, 90, 92, 97, 99, 106

and Background property, 63–64
and Border class, 64–65
nesting of, 80–81

containment, 33
Contains() method, 841
ContainsCaseSensitive value, 179
content controls, 118, 120, 158–163, 567

aligning, 162–163
Content property, 160–162

Content property, 47, 97, 107, 160, 244, 543, 546,
652, 692, 761

content region, in HTML test page, 27
ContentControl class, 144, 158, 160, 162, 170
ContentPresenter, 544–547, 550, 554, 565, 574–

575, 582
content.services.createObject() method, 625
ContentTemplate property, 160, 761
ContentType property, 219
Control class, 136, 162, 196, 542, 569–570, 578
Control Styles, 548
controls, transparency of, 326–329
ControlStoryboardAction class, 532, 537
conversion tools

for exporting clip art to XAML, 310
formatting and, of data, 751–761

 INDEX

919

Convert() method, 754, 759–760
ConvertBack() method, 754
ConverterParameter property, 760
Cookies member, 612, 787, 806, 814
CookiesEnabled property, 609
core assemblies, 21–22
core events, 115–118
core namespaces, 35–36
CornerRadius property, 65, 244, 542–544, 546,

550, 571, 575, 582
Create Test Certificate button, 660
CreateElement() method, 612, 614, 617
CreateFile() method, 839
CreateRequest() method, 873
credentials, of network, 874–875
Credentials property, 874
cross-domain access, 661, 864–866
cross-domain web service calls, 701–703
CSS (Cascading Style Sheets), 513, 614
CssClass property, 614
Current property, 203–204, 705
CurrentBookmark property, 610
CurrentItem property, 776
CurrentState, 418, 424
Cursor property, 131, 163
Cursors class, 131
cursors, for mouse, 131–132
custom content loaders, 257–262

and authentication, 258–260
creating, 260–261
using, 261

custom controls, templates for, FlipPanel control
example, 567–583

custom layout containers, 90–97
ArrangeOverride() method, 92
MeasureOverride() method, 90–92
UniformGrid layout container, 93–97

custom namespaces, 36–37
Custom value, 179
CustomBehaviorsLibrary, 522, 525
Customer class, 694–697, 700, 735
CustomValidation attribute, 782–785

 D
dashed lines, 279–281
data access code, 706
data binding, 715–767

to collection of objects, 731–742
binding to LINQ expression, 736–739

displaying and editing, 731–735
inserting and removing, 736
master-details display, 739–742

to data objects, 715–731
change notification, 722–723
data services, 726–731
debugging data binding expression, 723–

725
displaying with DataContext property,

717–719
editing with two-way bindings, 720–722
null values and failed bindings, 720
storing as resource, 719–720

formatting and conversion, 751–761
applying conditional formatting, 759–761
string formatting, 752–754
value converters, 754–759

templates, 761–767
advanced, 764–766
changing item layout, 766–767
implicit data, 763–764
separating and reusing, 763

validation, 742–751
bindingValidationFailed event, 745–747
data objects with built-in, 747–751
error notifications, 743–745
Validation class, 747

data-bound TreeView controls, 816–819
data classes

custom, 694–695
identifying, 696–697
markup, 770–771

data controls, 769–827
annotations, 777–785

attributes for, 779–785
raising annotation errors, 777–778

DataGrid, 785–803
columns, 788–797, 800–801
editing, 803–807
rows, 797–800
selection, 802
simple grid, 785–786
sorting, 802–803

forms, 770–776
data class markup, 770–771
DescriptionViewer control, 773–774
Label control, 771–772
ValidationSummary control, 775–776

PagedCollectionView, 808–813
filtering, 808
grouping, 809–812

 INDEX

920

data controls, PagedCollectionView (cont.)
paging, 812–813
sorting, 808

PivotViewer, 819–826
defining, 822–826
navigating, 825

TreeView, 814–819
data-bound, 816–819
filling, 815–816

data objects
with built-in validation, 747–751
data binding to, 715–731

change notification, 722–723
data services, 726–731
debugging data binding expression, 723–

725
displaying data object with DataContext

property, 717–719
editing data object with two-way

bindings, 720–722
null values and failed bindings, 720
storing data object as resource, 719–720

data services
calling, 729–731
overview, 726–729

data templates, 568
data types, 693–701

custom data classes, 694–695
processing different, 875–892

JSON data, 886–889
RSS format, 889–892
SOAP data, 886
XML, 875–876

web service type sharing, 695–701
identifying data classes, 696–697
sharing code, 697–701

DataBinding, 719, 725, 756, 764
DataContext property, 717–719, 722, 730
DataContractJsonSerializer class, 886
DataField control, 776
DataForm control, 776
DataGrid class, 144–145, 159, 172, 192
DataGrid column, 788, 797
DataGrid control, 769, 785–803, 861

columns
controlling width of, 794–797
defining, 788–791
formatting and styling, 792–794
freezing, 800–801
resizing and rearranging, 788

editing, 803–807

with templates, 803–804
validation and editing events, 805–807

rows
details area, 799–800
formatting, 797–798

selection, 802
simple grid, 785–786
sorting, 802–803

DataGrid object, 797–798
DataGridBeginningEditEventArgs.Cancel

property, 806
DataGridCheckBoxColumn, 790, 803
DataGrid.ColumnHeaderStyle property, 803
DataGrid.ColumnWidth property, 794
DataGridRow object, 797
DataGrid.RowDetailsTemplate property, 799
DataGrid.RowDetailsVisibilityMode property,

800
DataGridRowGroupHeader class, 811
DataGridRowGroupHeader.Template property,

811
DataGrid.RowHeight property, 793
DataGrid.RowStyle property, 794
DataGrid.ScrollIntoView() method, 802
DataGridTemplateColumn column, 791
DataPager class, 145
DataPager control, 812
DataTemplate class, 823
DataType property, 764
DataTypeAnimation class, 388
date controls, 198
DatePicker class, 145, 198–202
DatePicker control, 560, 839
DateTime object, 200, 688, 693, 857
debugging, data binding expression, 723–725
Decimal.ToString() method, 755
DecreaseVolume value, 424–425
Deep Zoom, 457–467

creating image set for, 459–463
using in Silverlight, 464

Deep Zoom Composer, 459–464
Default option, 662
DefaultExt property, 844
DefaultFileName property, 830, 844
DefaultImage property, 759
DefaultStyleKey property, 573
DefaultTrigger attribute, 528–529
DefiningType.PropertyName, 44
dependency properties, 107–114

and attached properties, 111–112
defining and registering, 108–110

 INDEX

921

dynamic value resolution for, 110–111
WrapBreakPanel example, 112–114

DependencyObject class, 109, 112
DependencyObject.SetValue() method, 44
DependencyProperty class, 108–109
DependencyProperty.Register() method, 109
DependencyProperty.RegisterAttached()

method, 111
dependent assemblies, 19, 24
deploying, Silverlight applications, 20–21
Descendants() method, 881
Description column, 788
Description property, 773
DescriptionViewer control, 769, 773–776
design namespaces, 36
design tools, Visual Studio vs. Expression Blend,

2
DesignHeight attribute, 98
DesignWidth attribute, 98
DesiredSize property, 91–92
DetachEvent() method, 612, 615
DialogResult property, 242
dictionaries, organizing resources with, 54–55
Direction property, 331
directories, managing files and, 856–858
Directory class, 832, 855–857
directory trees, 858–862
DirectoryInfo object, 857, 860
DirectoryInfo.EnumerateDirectories() method,

860
discrete key frames, key-frame animations, 388–

389
Dispatcher class, 589
Dispatcher.BeginInvoke() method, 590, 601
Dispatcher.CheckAccess() method, 589
DispatcherOperation object, 591
DispatcherTimer class, 587
DispatcherTimer.Tick event, 398
DisplayDate property, 200
DisplayDateEnd property, 200
DisplayDateStart property, 200
DisplayMemberPath property, 735, 789
displays, master-details, 739–742
div tag, 26–27, 30, 617, 622, 626–628
DLL file, 18, 216, 218, 677–678
DnsEndPoint object, 905
DockPanel layout container, 62, 75–77, 83
document object model (DOM), 608, 616
Document Outline window, 82
Document property, 608, 612

DocumentElement member, 612–613, 787, 794,
806, 813

DocumentUri member, 612, 787, 794, 806, 813
DOM (document object model), 608, 616
domain service, 706–707
DoTask() method, 592–594, 597
double clicks, of mouse, handling, 123–124
DoubleAnimation class, 353–354, 554, 557, 564–

565, 577–578, 582–583
DoubleAnimationUsingKeyFrames, 557, 559
Double.PositiveInfinity, 91
DownloadFile() method, 846, 849
downloading assemblies, on demand, 225–226
DownloadProgress property, 428
DownloadStringAsync() method, 867–868
DoWork() method, 685
DoWorkEventArgs object, 600
DoWorkEventArgs.Argument property, 600
DoWorkEventArgs.Cancel property, 605
DoWorkEventArgs.Result property, 600
drag-and-drop feature, 128
DrageEventArgs.GetDataPresent() method, 852
DragEnter event, 117
DragEventArgs.GetData() method, 853
dragging and dropping, 850–854
DragInCanvasBehavior, 533–535, 537
DragLeave event, 117
DragMove() method, 657, 666, 670, 672–673
DragOver event, 117
DragResize() method, 657, 669–670, 672–673
DrawingBrush class, 309
Drop event, 117
DropShadowEffect class, 330–332
duplex services, 707–713

client, 711–713
configuring, 708–709
interfaces, 709–710
service, 710–711

Duration property, 354, 358–359, 361–362, 530,
538, 577

dynamic styles, 516
dynamic value resolution, for dependency

properties, 110–111

 E
EaseX property, 538–539
EaseY property, 538–539
easing

animation, 365–371

 INDEX

922

easing, animation (cont.)
functions for, 365–366, 368–371
in and out, 366–368

key frames, key-frame animations, 389
EasingFunction property, 365–366, 389
EasingMode property, 368
editing events, validation and, 805–807
Effect class, 330
Effect property, 330, 333
Eight Ball Example, 48–49
ElasticEase class, 366
ElasticEase.Oscillations property, 367
element-to-element binding, 56–59

one-way binding, 56–57
two-way binding, 57–59

ElementBrushes.xaml, 54–55
ElementName, 35, 56–58
elements, 143–202

AutoCompleteBox element, 177–183
custom filtering for, 179–180
filter mode for, 178–179
populating dynamically, 181–183

buttons, 163–165
CheckBox, 164–165
HyperlinkButton, 163–164
RadioButton, 165
RepeatButton, 164
ToggleButton, 164

in code-behind class, naming, 38–39
connecting actions to, for behaviors, 525–526
content controls, 158–163

aligning, 162–163
Content property, 160–162

date controls, 198
hiding, 236
Image element, 156–158

errors for, 158
sizing of, 157

ItemsControl class elements, 170–175
ComboBox element, 172–173
ListBox element, 170–172
TabControl element, 173–175

list of, 143–147
PasswordBox element, 177
Popup control, 168–170
printing of, 338–340
ProgressBar element, 198
RichTextBlock element, 194–196
RichTextBox element, 183–191

creating text editor with, 191
formatting in, 186–187

manipulating in code, 187–188
model for, 183–186
using interactive elements in, 192–193

Slider element, 197–198
TextBlock element, 147–156

CharacterSpacing property for, 156
font properties for, 149–152
Run object in, 153–154
TextTrimming property for, 155–156
TextWrapping property for, 154–155
underlining, 153

TextBox element, 175–176
tooltips, 166–168

Elements() method, 880–881
ElementStyle property, 792, 794
ElementToLogicalPoint() method, 466–467
elevated trust applications, 657

abilities of, 661–662
in browser, 679
COM, 674–677
file access in, 854–862

directory tree, 858–862
managing directories and files, 856–858
user files, 855–856

installing, 658–661
P/Invoke feature, 677–679
windows

child, 671–673
customization of, 662–670

Ellipse class, 129, 145, 265–266
ellipse, with Path class, 282–283
EllipseGeometry class, 89, 281–284, 291, 294–295
EllipseInfo object, 408
embedding, user controls in page, 234–236
enableHtmlAccess parameter, 28
encapsulating, animations, 402–406

base class for, 403–404
page transitions, 402–403
WipeTransition class, 405–406

encoding video
in Expression Encoder, 430–432
overview, 429–430

EndLoad() method, 258, 260–261
endpoint element, 708
EndpointAddress class, 691
Enumerable class, 739
Environment.GetFolderPath() method, 855
error notifications, 743–745
Error property, 223, 688, 725
errors

annotation, raising, 777–778

 INDEX

923

handling with MediaElement class, 416
for Image element, 158

event-handling code, adding to pages, 9–11
event triggers, starting animation with, 355
EventArgs class, 593, 688
events, 205–212

application shutdown, 209
Application_Startup method, 206
bubbling of, 118–123
core events, 115–118
handled events, 119–120
initialization parameters, 206–209
unhandled exceptions, 209–212
in XAML, 47–48

EventTrigger class, 525, 528–529, 531, 536
EventTrigger.EventName property, 525
exception-handling code, 703
ExceptionRoutedEventArgs.ErrorException

property, 416
Execute() method, 138–139
Execute.object parameter, 138–139
ExitWindowsEx() method, 678–679
Explorer file, 814
ExportProduct, 764
Expression Blend

design-time support for behaviors in, 526–
529

vs. Visual Studio, 2
Expression Design, XAML exporting clip art with,

308–310
Expression Encoder, 421, 429–434, 437
Extensible Application Markup Language. See

XAML
Extensible Markup Language. See XML
.extmap.xml file, caching for class library

assemblies, 228

 F
F value command, 292
FadeInAction, 529–533
FadeOutAction, 529, 531–533
failed bindings, null values and, 720
FallbackValue property, 720, 725
FastForward value, 425
file access, 829–862

in elevated trust applications, 854–862
directory tree, 858–862
managing directories and files, 856–858
user files, 855–856

isolated storage, 830–841
accessing files outside of, 841–854
of application settings, 840–841
file management, 832
of objects with XmlSerializer class, 837–

840
opening, 831
requesting more space, 835–837
scope of, 830–831
uses for, 831
writing and reading data, 833–834

File class, 856–857
file management, in isolated storage, 832
file system access, 661
file types, supported for MediaElement class,

413–414
File.Exists() method, 857
FileInfo file, 843, 853, 858
FileInfo object, 842, 853, 858, 861
FileNotFoundException object, 226
files

managing directories and, 856–858
user, accessing, 855–856

FileService service, 845–847
FileStream class, 22, 842
FileStream.Read() method, 842
Fill property, 264–265, 272, 275
Fill value, 157, 268, 322
FillBehavior property, 360, 362
FillRule property, 276, 284
filter mode, for AutoCompleteBox element, 178–

179
Filter property, 842
filtering, with PagedCollectionView control, 808
FilterMode property, 178–179, 181
FindContainer() method, 523–524
FindPrimes() method, 602, 604
FindPrimesCompletedEventArgs class, 593
FindPrimesInput object, 599
FindPrimesThreadWrapper class, 593–595
FindPrimesThreadWrapper.DoWork() method,

597
FindPrimesWorker class, 602
FirstDayOfWeek property, 200
Flip() method, 580
FlipButton, 573–576, 578, 582
FlipButton control, for FlipPanel control

example, 575–576
FlipButtonAlternate, 573–574, 578–579
FlipPanel control example, 567–583

class for, 569–571

 INDEX

924

FlipPanel control example (cont.)
default control template, 574–575
default style for, 571–573
different control template, 581
FlipButton control for, 575–576
implementing, 580–581
overview, 568–569
parts and states for, 573–574
state animations for, 576–578

FlipPanel type, 573
FlipPanelControl.dll assembly, 572
flipped state, 573
FloatableWindow control, 241
FluidMoveBehavior class, 537–539
focus, and keyboard handling, 136–137
focus cue, showing, 554–555
Focus() method, 136, 614, 735
FocusControlsOnClick property, 776
FocusedMouseOver, 550
FocusedNormal, 550
FocusStates, 550–551, 554–555, 560, 574
Font class, 520
font family, 150
font properties, for TextBlock element, 149–152

font embedding, 151–152
standard fonts, 150–151

FontFamily property, 111, 149–151, 153–154, 185,
187, 192, 517

FontInfo class, 520
FontSize property, 149–150, 153–154, 167, 187,

192, 196, 380, 515
FontStretch property, 150, 154, 187
FontStretches class, 150
FontStyle property, 149–150, 153–154, 167, 187,

190
FontStyles class, 149, 187
FontWeight property, 149–150, 154, 185, 187,

189–190, 192, 196
FontWeight.Bold, 520
FontWeights class, 149
ForceVector property, 345–346
Foreground property, 41, 148, 153, 167, 185, 192,

324, 437–438, 547
formatting

applying conditional, 759–761
columns, 792–794
and conversion, of data, 751–761
in RichTextBox element, 186–187
rows, 797–798
strings

overview, 752–754

with value converter, 754–756
forms, 770–776

data class markup, 770–771
DescriptionViewer control, 773–774
Label control, 771–772
ValidationSummary control, 775–776

forward, navigation, 252–253
frame-based animation, 407
Frame class, 145, 244–245, 253–254
Frame content control, 244–251

browser URI integration with, 247–249
more than one frame on page, 248
no frame on startup page, 248
and security, 248–249

history support, 249–250
navigation failure, 250–251

Frame object, 248
frame rates, desired, 371
Frame.CacheSize property, 255
Frame.ContentLoader property, 261
Frame.JournalOwnership property, 252
Frame.Navigate() method, 250
Frame.Source property, 247
Frame.UriMapper property, 251
FrameworkElement class, 68, 90, 109, 118, 162,

515, 523–524, 529, 569
FriendlyName, 449
from and to transitions, 557–558
From property, 357–358, 381
FrontContent property, 569
FrontContentProjection, 576–578
frozen columns, 800–801
full-screen mode, 104–105
full-screen support, 661

 G
GeneratedDuration property, 556
GeneratePage() method, 347–348
geometry mini-language, for Path class, 291–293
Geometry object, 89, 281–282, 297
Geometry.FillRule property, 292
GeometryGroup class, 282–284, 291, 294–295
GeometryTransform property, 265
Get Silverlight button, 29
GetAttribute() method, 614
GetAvailableAudioCaptureDevices() method,

449
GetAvailableVideoCaptureDevices() method,

449

 INDEX

925

GetCategoriesWithProducts() method, 741
GetChildrenCount() method, 47
GetElementById() method, 617
GetElementsByTagName() method, 614
GetErrors() method, 748, 750
GetFileList() method, 846
GetFileListAsync() method, 847
GetIsNetworkAvailable() method, 703
GetParent() method, 47
GetPosition() method, 124
GetProduct() method, 729
GetProducts() method, 733
GetProperty() method, 615, 622, 629
GetPropertyName() method, 112
GetPropertyValue() method, 190
GetResourceStream() method, 205, 219, 222
GetRow() method, 112
GetServerTime() method, 688
GetServerTimeCompletedEventArgs class, 688,

692
GetStyleAttribute() method, 614
GetTemplateChild() method, 578–579
GetValue() method, 112
GlobalOffsetX property, 305, 307
GlobalOffsetY property, 305
GlobalOffsetZ property, 305
Glyphs element, 312
Glyphs.FontUri property, 312
Glyphs.UnicodeString property, 312
GlyphTemplate property, 774
GotFocus event, 116, 120
GoToStateAction class, 536
GradientBrush, 49
GradientOrigin property, 319
GradientStop object, 42–43, 45, 318
GradientStopCollection object, 45
GradientStops property, 42, 45
Grid class, 44, 62, 68, 111–112, 145, 236
Grid element, 542
Grid layout container, 77–86

GridSplitter for, 83–86
rows and columns in, 79–80
spanning rows and columns, 82–83

Grid.Background tag, 40, 42–43, 48–49
Grid.Children.Add() method, 46
Grid.Column property, 78
Grid.ColumnDefinitions, 78, 82, 84–86, 99, 103
Grid.DataContext property, 719
Grid.Row property, 44, 78, 111–112
Grid.RowDefinitions, 78, 80, 82, 86, 99, 103
grids, simple, 785–786

Grid.SetRow() method, 44
GridSplitter class, 83–86, 106, 145
GridSplitter control, 731
grouping, with PagedCollectionView control,

809–812
GroupName property, 165

 H
H x command, 293
handled events, 119–120
HandleRequest() method, 899
Hard Rock Memorabilia, 459, 461, 467
hardware acceleration, 372–377

bitmap caching, 373–375
enabling, 372–373
evaluating, 375–377

HasErrors() method, 750
HasErrors property, 748, 750, 776
HasMorePages property, 339, 341–342, 348
head section, 622
Header property, 816
HeaderTemplate property, 816
Height property, 68, 79, 96, 361
HierarchicalDataTemplate object, 818
hierarchy, of resources, 51–53
High Level Shader Language (HLSL), 332
Higher-level control, 119
HighlightBrush property, 760
HighlightQuoteStyle, 517
history, support with Frame content control,

249–250
HitTest() method, 284
HLSL (High Level Shader Language), 332
HorizontalAlignment data type, 353
HorizontalAlignment property, 68–70, 76, 81, 84,

86, 92, 98, 353
HorizontalScrollBarVisibility property, 101
HorizontalTemplate element, 561
HorizontalThumb, 560–563
HorizontalTrackLargeChangeDecreaseRepeatBu

tton, 560–563
HorizontalTrackLargeChangeIncreaseRepeatBut

ton, 560–563
Host property, 204, 222
HTML content, showing with WebBrowser

control, 650
HTML element, 608, 612, 614–615, 617, 620, 625,

627–628
HTML file, 2–3, 11, 15, 20, 650, 912

 INDEX

926

HTML (Hypertext Markup Language)
combining content, 626–629
interacting with elements of, 608–620

getting browser information, 609–610
handling JavaScript events, 619–620
HTMLWindow class, 610
inspecting HTML documents, 612–614
manipulating, 614–619
popup windows, 611–612

scraping, 866–870
securing interoperability, 630–631
test page, 25–32

alternate content, 29
vs. ASP.NET, 2–3
creating friendly install experience, 29–31
mark of Web in, 31–32
parameters for Silverlight, 27–29
sizing Silverlight content region, 27

HtmlDocument class, 608, 612, 614, 617, 620,
642, 655

HtmlDocument.CreateElement() method, 614
HtmlElement class, 608, 612–614, 617–618, 627,

629, 642, 655
HtmlElement.AttachEvent() method, 620
HtmlElement.CssClass property, 618
HtmlElement.SetAttribute() method, 618
HtmlElement.SetProperty() method, 615
HtmlEventArgs object, 620
HtmlPage class, 608–609, 612–613, 617, 622, 625,

627, 630, 655
HtmlPage.BrowserInformation property, 608,

642, 655
HtmlPage.Document property, 608
HtmlPage.PopupWindow() method, 630
HtmlPage.RegisterScriptableObject() method,

622
HtmlPage.Window property, 609, 780
HtmlPopupWindowOptions object, 611
HtmlWindow class, 609–610, 620, 622, 780
HtmlWindow.CurrentBookmark property, 610
HtmlWindow.GetProperty() method, 622
HTTP headers, 705
HTTP status code, 689
HttpContext object, 705, 871
HttpUtility class, 609, 617, 780
HttpUtility.HtmlEncode() method, 617
HttpUtility.UrlEncode() method, 878
HyperlinkAction class, 536
HyperlinkButton class, 145, 163–164, 192
HyperlinkButton control, 192
HyperlinkButton element, 163–164

Hypertext Markup Language. See HTML

 I
IAsyncResult object, 258
IAsyncTaskClient interface, 711
IAsyncTaskClient.ReturnResult() method, 710
IAsyncTaskService interface, 709
ICommand interface, 138
icons, customizing, 640–641
IDataErrorInfo interface, 747, 750
IDictionary interface, 46
IDictionaryT.Add() method, 45
IEnumerable interface, 731, 856
iframe tag, 26
Ignorable property, 36
IIS smooth streaming, 428–429
IL (Intermediate Language), 21
IList interface, 45
IList.Add() method, 45–46
Image class, 120, 145, 160, 339, 415, 880
Image control, 452
Image element, 156–158, 322, 324, 333, 336, 348

errors for, 158
sizing of, 157

image sets, for Deep Zoom, 459–463
ImageBrush class, 316, 321–322, 324
ImageBrush.Stretch property, 322
ImagePathConverter class, 757–759, 764–765
ImageSource object, 758, 853–854
ImageSource property, 156, 321–322, 333, 758
ImageUrl property, 882
implicit data, 763–764
IMultiValueConverter interface, 756
in-browser elevated-trust applications, 648
INavigationContentLoader interface, 258
Incorrect data type, 742
IncreaseQuotaTo() method, 835–836
IncreaseVolume value, 424–425
independent animations, 377–378
indicators, when web service is busy, 692–693
infrastructure programming, 258
inheritance, of styles, 516–517
initialization parameters, 206–209
InitializeComponent() method, 10, 38, 205
initParams parameter, 28
Inlines property, 187
innerHTML property, 615–616
INotifyCollectionChanged interface, 736
INotifyDataError interface, 778

 INDEX

927

INotifyDataErrorInfo interface, 715, 747–748,
750–751

INotifyPropertyChanged interface, 722, 727, 748
Install button, 642–643
Install() method, 205, 638–639, 643
installing, creating friendly experience for, 29–31
InstallPage class, 642–644, 646
InstallState class, 204, 638, 642–644
InstallStateChanged, 640, 643, 645
interactive elements, in RichTextBox element,

192–193
interfaces, duplex services, 709–710
Intermediate Language (IL), 21
interoperability, with HTML, 630–631
Invalidate() method, 336
Invoke() method, 523–524
InvokeActions() method, 525
InvokeScript() method, 651
IsAlive, 588
IsBusy property, 692
IsChecked property, 164–165, 790
isClockwise x,y command, 293
IsClosed property, 285–287, 292–293
IsEnabled property, 168, 517
IsExpanded property, 579
IsFalling property, 395–396, 398–400
IsFilled property, 285
IsFlipped property, 570, 580
IsFrozen property, 801
IsFullScreen property, 105
IsHitTestVisible property, 419
IsIndeterminate property, 198
isLargeArc command, 293
IsMuted property, 420
isolated storage, 830–841

accessing files outside of, 841–854
dragging and dropping, 850–854
reading with OpenFileDialog class, 842–

843
transmitting with web service, 844–850
writing with SaveFileDialog class, 843–844

of application settings, 840–841
file management, 832
of objects with XmlSerializer class, 837–840
opening, 831
requesting more space, 835–837
scope of, 830–831
uses for, 831
writing and reading data, 833–834

IsolatedStorageFile class, 831–832, 834

IsolatedStorageFile.AvailableFreeSpace
property, 835–836

IsolatedStorageFile.GetUserStoreForApplication
() method, 831

IsolatedStorageFile.Quota property, 836
IsolatedStorageFile.Remove() method, 837
IsolatedStorageFileStream class, 833
IsolatedStorageFileStream object, 832–833
IsolatedStorageSettings class, 840–841
IsOneWay property, 709
IsOpen property, 168
IsPopupWindowAllowed property, 611
IsReadOnly property, 175
IsReady member, 612, 787
IsReusable property, 871
IsRunningOutOfBrowser property, 204, 641–642
IsSelected property, 172
IsTabStop property, 136
IsThreeState property, 790
IsTodayHighlighted property, 200
IsValid property, 774
ItemFilter property, 179
Items property, 47, 891
ItemsControl class, elements for, 170–175

ComboBox element, 172–173
ListBox element, 170–172
TabControl element, 173–175

ItemsPanel property, 766
ItemsSource property, 170, 181–182, 731, 761,

763, 786, 816, 818, 825
ItemTemplate property, 761, 763, 818

 J
JavaScript events, handling, 619–620
JavaScript function, 609, 622, 624–625
JavaScript language, interacting with code using

WebBrowser control, 651
JavaScript method, 621, 624, 651–652
JavaScript Object Notation (JSON), 886–889
Join() method, 588
JournalOwnership property, 248–249, 252
JSON (JavaScript Object Notation), 886–889

 K
Key attribute, 45, 50
Key Frame, 434
key-frame animations, 387–390

discrete key frames, 388–389

 INDEX

928

key-frame animations (cont.)
easing key frames, 389
spline key frames, 389–390

Keyboard class, 135
keyboard handling, 132–137

and focus, 136–137
key modifiers, 135–136
key presses, 132–134

KeyDown event, 115–116, 118, 120, 132–134, 136
KeyEventArgs object, 132
KeyPress event, 104
KeySpline property, 389
KeyTime property, 388
KeyTrigger class, 537
Key.Unknown value, 132
KeyUp event, 116, 118, 120, 132–134

 L
L command, 292
Label class, 145
Label control, 147, 771–772, 775–776
Language Integrated Query expressions. See

LINQ
LargeChange property, 197
LastCompletedStage property, 724
layering, Canvas layout container, 88
layout pass, 90
layouts

Canvas layout container, 86–90
clipping for, 88–90
layering with ZIndex, 88

containers, 61–65
and Background property, 63–64
and Border class, 64–65
nesting of, 80–81
transforms, 300–301

custom layout containers, 90–97
ArrangeOverride() method, 92
MeasureOverride() method, 90–92
UniformGrid layout container, 93–97

DockPanel layout container, 75–77
Grid layout container, 77–86

GridSplitter for, 83–86
rows and columns in, 79–80
spanning rows and columns, 82–83

of items, changing, 766–767
sizing pages, 97–106

full-screen mode, 104–105
ScrollViewer content control, 99–101

Viewbox content control, 101–103
StackPanel layout container, 66–73

alignment in, 69
layout properties in, 67–68
margins in, 70
sizing in, 72–73

transitions, parts model, 564–566
WrapPanel layout container, 74–75

LayoutUpdated event, 118
Length property, 853
light sources, WPF lighting model, 495
line caps and line joins, for shapes, 277–279
Line class, 272–273
line, with Path class, 282–283
LinearGradientBrush class, 42, 316–319, 325
LinearGradientBrush.GradientStops property, 42
LinearGradientBrush.SpreadMethod property,

318
LineBreak class, 154
LineBreakBefore property, 114
LineGeometry class, 281–283, 291
LineHeight property, 154–156
LineSegment class, 286, 292–293
LineSegment.Point property, 286
linking feature, 698
Links property, 891
LINQ (Language Integrated Query) expressions

binding collection items to, 736–739
querying XDocument objects with, 881–883

LINQ support, 707
list, of elements, 143–147
ListBox class, 145, 159, 170–172, 175, 202
ListBox control, 159, 172, 519, 541, 565, 763–764,

861
ListBox element, 170–172
ListBoxItem class, 170–172, 235
ListBoxItem control, 564–565
ListBoxItem.Content property, 761
ListBox.Items.Add() method, 763
ListBox.SelectedItem object, 172
ListBox.SelectedValue property, 742
Listen() method, 911
Load() method, 878
LoadComponent() method, 205
Loaded event, 118
LoadingRow method, 797
local connections, messages, 909–912
local prefix, 764
Local property, 19, 23
LocalMessageReceiver object, 911
LocalMessageSender class, 910

 INDEX

929

LocalMessageSender object, 910
LocalOffsetX property, 305, 307
LocalOffsetY property, 305
LocalOffsetZ property, 305
LogicalToElementPoint() method, 466
looping, audio, 447
LostFocus event, 116, 120
LostMouseCapture event, 117, 127
low-level keyboard handling, 135

 M
M command, 292
M x,y commands, 292
Main() method, 898
main windows, controlling, 655–657
MainPage class, 38–39, 210
MainPage.ReportError() method, 210
MainPage.xaml file, 7, 38
MainPage.xaml.cs file, 9, 38
ManagedThreadId, 588
Margin property, 68, 98, 162, 545, 800
margins, in StackPanel layout container, 70
mark of Web, in HTML test page, 31–32
Marker property, 434
markers, for video, 432–437
markup, data class, 770–771
markup extensions, 33, 50–51, 54, 56–57, 59
master-details display, 739–742
MasterVolume property, 446
Matrix3DProjection, 304
MatrixTransform class, 296
MaxHeight property, 68, 98
Maximum property, 197
MaxLength property, 175, 907
MaxWidth property, 68, 72, 98, 823
Measure() method, 90–92, 95
measure pass, 90
MeasureCore() method, 90
MeasureOverride() method, 90–92, 94
media commands, for MediaElement class, 422–

425
MediaCommand, 422–424
MediaElement class, 120, 146, 415, 421–422, 445

and adaptive streaming, 428–429
changing balance, 417–421
changing position, 417–421
changing volume, 417–421
controlling playback, 415
file types supported, 413–414

handling errors, 416
media commands for, 422–425
playing audio, 444–447

changing playback settings, 445–446
looping, 447
multiple sounds, 416–417
overlapping sounds, 446–447
with SoundEffect class, 445

playing video, 421–429, 444
encoding for, 429–430
encoding in Expression Encoder, 430–432
markers for, 432–437
Video Effects class, 438–444
VideoBrush class, 437–438

playlists for
client-side, 425–426
server-side, 426

progressive downloading vs. streaming, 426–
428

trick play feature, 421–422
MediaElement.Play() method, 522
MediaElement.PlaybackRate property, 421
MediaOpened, 419, 435–437
MemoryStream object, 453
MemoryStreamAudioSink class, 454
MergedProperties, 55
Message class, 902, 907
Message property, 653
messages

receiving
with local connections, 911–912
with messenger clients, 908–909

sending
with local connections, 911–912
with messenger clients, 907–908

messaging server, 900–903
messenger clients, 904–909

connecting to server, 904–907
receiving messages, 908–909
sending messages, 907–908

MessengerConnection class, 901
MessengerConnection.ReceiveMessage()

method, 903
MessengerServer class, 901
MessengerServer.Deliver() method, 901
MessengerServer.DeliverMessage() method, 902
methods, calling from browser, 622–624
microphone input, recording audio snippets,

452–457
Microsoft.Expression.Interactivity.dll assembly,

522, 526, 532, 536–538

 INDEX

930

Microsoft.Xna.Framework.Audio namespace,
444

MIME type, 219
MinHeight property, 68, 74–75, 98
Minimum property, 197
MinimumLength property, 779
MinimumPopulateDelay property, 183
minRuntimeVersion parameter, 25, 27–28, 30–31
MinWidth property, 68, 72, 84, 98, 788
Mode property, 57
model, for RichTextBox element, 183–186
Model-View-ViewModel (MVVM), 137, 513
ModelName property, 720
Model_Number' property, 725
modifier keys, 135–136
Modifiers property, 135
mouse capturing, 117, 127
mouse handling, 123–132

capturing mouse, 127
cursors for, 131–132
double and triple clicks, 123–124
example of, 128–131
movements, 124–125
right-clicks, 123
of wheel, 125–127

MouseButtonEventArgs.Handled property, 116,
123

MouseCapture() method, 127
MouseDragElementBehavior class, 537
MouseEnter event, 117, 124
MouseEventArgs object, 124
MouseLeave event, 117, 124, 629
MouseLeftButtonDown event, 116–119, 121–122,

124, 129, 529, 534
MouseLeftButtonUp event, 116, 118–120, 127,

130–131, 533–535
MouseMove event, 115, 117, 124, 130–131, 533–

535
MouseOver event, 550–555, 557, 559–560, 574
MouseRightButtonDown event, 116, 123–124
MouseRightButtonUp event, 117, 124
MouseWheel event, 117, 125–127
MouseWheelEventArgs.Delta property, 125
movements, of mouse, 124–125
mscorlib.dll, 18, 22
multiple pages, printing of, 340–343
multiple templates, 763–764
MultiScaleImage class, 146–147
multithreading, 585–606

BackgroundWorker component, 598–606
running, 599–601

supporting cancellation, 604–606
tracking progress, 601–603

description of, 585–587
DispatcherTimer class, 587
goals of multithreading, 586–587

Thread class, 587–598
cancellation support, 596–598
marshaling code to user interface thread,

589–591
thread wrapper, 591–596
Worker class, 593–594

MuteVolume value, 425
MVVM (Model-View-ViewModel), 137, 513

 N
Name attribute, 38–39, 54
Name property, 48, 168, 588, 773, 842, 853
namespaces, 34–37

core namespaces, 35–36
custom namespaces, 36–37
design namespaces, 36

naming elements, in code-behind class, 38–39
NaturalDuration property, 419
Navigate() method, 238, 244, 246, 248–249, 251,

259, 404, 610, 650
NavigateToBookmark() method, 610
NavigateToString() method, 650
NavigateUri property, 163, 253
NavigateUrl property, 192
NavigatingCancelEventArgs object, 249
navigation, 233–262

ChildWindow control, 239–241
designing, 241–242
showing, 242–244

custom content loaders, 257–262
and authentication, 258–260
creating, 260–261
using, 261

forward and backward, 252–253
Frame content control, 244–251

browser URI integration with, 247–249
history support, 249–250
navigation failure, 250–251

loading user controls, 233–239
and browser history, 239
embedding in page, 234–236
hiding elements, 236
managing root visual, 236–237
retaining page state, 237–238

 INDEX

931

navigation templates for, 256–257
over XDocument object, 879–881
Page class, 253–256

navigation methods for, 256
NavigationService property, 254–255
state storage for, 255

PivotViewer control, 825
URI mapping, 251–252

NavigationButtonStyle, 517
NavigationContext object, 252, 254
NavigationContext property, 254
NavigationFailedEventArgs.Exception property,

250
NavigationFailedEventArgs.Handled property,

250
NavigationService property, Page class, 254–255
NavigationService.Refresh() method, 261
nesting

of containers, 80–81
elements, in XAML, 45–47

NET class, 8, 37, 50, 697
NET data type, 41, 693
NET file, 831
.NET namespace, 37
NET object, 33, 129, 705, 729
NET property, 108, 110, 112, 569
NET type, 41
network connections, monitoring, 703–704
network credentials, 874–875
NetworkChange class, 703
networking, 863–912

interacting with Web, 863–875
cross-domain access, 864–866
HTML scraping, 866–870
network credentials, 874–875
REST API and simple web services, 870–

874
local connections, 909–912
processing different types of data, 875–892

JSON, 886–889
RSS format, 889–892
SOAP, 886
XML, 875–876

sockets, 892–909
messaging server, 900–903
messenger client, 904–909
policy files, 894–896
policy server, 896–900
and TCP, 892–894

NetworkInterface class, 703
New Event Handler option, 10

NextTrack value, 425
No Border option, 662
None value, 157, 268, 322
nonvisual objects, 49
normal state, 573
notification windows, 652
NotificationWindow class, 652–653
NotificationWindow.Close() method, 654
NotificationWindow.Content property, 652
NotificationWindow.Show() method, 653
NotifyOnValidationError event, 745, 747, 750
null values, and failed bindings, 720
NumberStyles, 755

 O
obfuscation tool, 21
object element, 6, 15, 17, 26–27, 612, 622, 627
Object type, 675
ObservableCollection class, 695, 736, 738
Offset property, 353
onabort event, 619
OnApplyTemplate() method, 578, 580
onblur event, 619
OnCancelled() method, 597
OnCaptureStarted() method, 454
OnCaptureStopped() method, 454
onchange event, 619
onclick event, 619–620, 624–625
OnCompleted() method, 592–594, 597
one-way binding, 56–57
onerror event, 619
onError parameter, 25, 27–28, 30
onfocus event, 619
onkeydown event, 619
onkeyup event, 619
onload event, 619
onLoad parameter, 29
onmouseout event, 619
onmouseover event, 619, 628–629
onResize parameter, 29
OnSamples() method, 454
onselect event, 619
onSourceDownloadComplete parameter, 29
onSourceDownloadProgressChanged parameter,

28
onunload event, 619
opacity masks, for transparency, 325
Opacity property, 323–325, 331, 379, 402, 419,

439, 551, 554

 INDEX

932

OpacityMask property, 323, 325
OpacityThreshold property, 346
OpenAsync() method, 867
OpenFile() method, 844
OpenFileDialog class, 22, 191, 842–843, 850, 861
OpenFileDialog.File property, 842
OpenFileDialog.Files property, 843
OpenRead() method, 842
OpenReadAsync() method, 223, 890
OpenReadCompletedEventArgs object, 223
OpenText() method, 842
OperationContract attribute, 685, 694, 705, 709
Options property, 824
OrderDate property, 753
Orientation property, 67, 113
OrthographicCamera class, flattening 3-D

objects to preserve exact scale, 480
Oscillations property, 366
oundEffect.Play() method, 445
out-of-browser applications, 633

customizing icons, 640–641
description of, 633–635
elevated trust, 657

abilities of, 661–662
in browser, 679
COM, 674–677
installing, 658–661
P/Invoke feature, 677–679
windows, 662–673

features of, 648–657
WebBrowser control, 648–652
windows, 652–657

installing, 638–640, 647
removing and updating, 645–647
tracking application state, 641–645

Out-of-Browser Settings window, 636, 639, 641,
655, 657–658

Output type, 462
OverflowContentTarget property, 194
overlapping sounds, 446–447

 P
P/Invoke (Platform Invocation), 662, 677–679
Padding property, 65, 80–82, 99, 103, 149, 545
Page class, 239, 253–256, 262

navigation methods for, 256
NavigationService property, 254–255
state storage for, 255

Page control, 23, 233, 244

page state, 237–238
page transitions, animating, 402
Page.ChangeText() method, 624
PagedCollectionView class, 802
PagedCollectionView control, 808–813

filtering, 808
grouping, 809–812
paging, 812–813
sorting, 808

PagedCollectionView.Filter property, 808
PagedCollectionView.PageCount property, 813
PageIndex property, 812
PageMargins property, 338, 341–342, 348
Page.NavigationCacheMode property, 255
PageResourceContentLoader class, 258
PageTransitionBase class, 406
PageTransitionBase code, 406
PageTransitionBase.Navigate() method, 404
PageVisual property, 339, 341, 348
paging, with PagedCollectionView control, 812–

813
Panel class, 46, 61–62, 158, 160
Panel control, 93
Panel.Children property, 46
Paragraph class, 186–187, 616
parameters, in HTML test page, 27–29
Parent property, 613
Parse() method, 755, 878
parts model

layout transitions, 564–566
with Slider control, 560–564

Password property, 177
PasswordBox class, 146, 175, 177, 202
PasswordBox element, 177
PasswordChar property, 177
Path class, 264, 273, 281–295

arcs with, 287–289
Bézier curves with, 289–291
clipping with geometry, 293–295
combining shapes with GeometryGroup,

283–284
geometry mini-language for, 291–293
line, rectangle and ellipse with, 282–283
straight lines with, 286–287

PATH variable, 678
PathFigure class, 285
PathFigure.IsClosed property, 286
PathGeometry class, 89, 282, 285–287, 290–292
PathSegment class, 286
Pause value, 424
pdateProduct() method, 731

 INDEX

933

PDB file, 18
performance, of animation, 371–378

desired frame rate, 371
hardware acceleration, 372–377
independent, 377–378

Person class, 838–839, 841
perspective projections, animating, 382–384
perspective transforms, 303–308

applying, 306–308
PlaneProjection class, 304–306

PerspectiveCamera class, adding perspective to
scenes, 480

pivot properties, 823–825
PivotViewer control, 769–770, 819–827

defining, 822–826
data template, 823
pivot properties, 823–825

navigating, 825
PivotViewerItemTemplate class, 823
pixel shaders, 330–333

animating, 385–387
BlurEffect class, 330
DropShadowEffect class, 330–332
ShaderEffect class, 332–333

Pixels property, 334, 336
placement, of shapes, 267–270
PlaneProjection class, 304–306, 308, 382–383
PlaneProjection property, 304–308
Platform Invocation (P/Invoke), 662, 677–679
PlatformKeyCode, 132
Play() method, 416, 418
Play value, 424
playback

of animation, controlling, 362–364
playlists

for MediaElement class
client-side, 425–426
server-side, 426

PlaySoundAction class, 522–523, 525–526, 528–
529, 532, 537

Plugin property, 612
PNG file, 156, 322, 641
PointAnimation object, 387, 557
PointAnimationUsingKeyFrames object, 387
PointCollection object, 273
Points property, 273
policy files, 894–896
policy servers, 896–900

PolicyConnection classes, 899–900
PolicyServer classes, 896–899

PolicyConnection classes, 899–900

PolicyServer classes, 896–899
polling, 707
PolyBezierSegment class, 286
Polygon class, 274–277
Polyline class, 273–275
PolyLineSegment class, 286
PolyQuadraticBezierSegment class, 286
PopulateComplete() method, 182
populating dynamically, in AutoCompleteBox

element, 181–183
Popup control, 167–170, 537
popup windows, 611–612
Popup.Child property, 168
PopupWindow() method, 611
portable assembly, 700–701
position, for MediaElement class, 417–421
Position property, 415
PostScript, 315, 344–346
PrepareStoryboard() method, 404–406
PreviousTrack value, 425
Price column, 802
PriceConverter class, 756
PriceToBackgroundConverter, 759–760
Print() method, 338, 341, 344–346
PrintableArea property, 338–339, 342, 348
PrintBitmap() method, 344
PrintDocument class, 338–339, 341–342, 344–345
PrintDocument.PrintBitmap() method, 344
PrinterFallbackSettings class, 345
PrinterFallbackSettings object, 346
printing, 337–349

bitmap vs. vector printing, 343
creating print preview, 346
multiple pages, 340–343
single element, 338–340

PrintPage, 338–339, 341–342, 344–345, 347–348
PrintPageEventArgs object, 338, 347
PrintPreview, 348
PrintTextCommand.Execute() method, 140
ProcessRequest() method, 871
Product class, 179–180, 723, 734, 740, 748, 750,

752, 764, 784
Product column, 789, 800–801
ProductCode property, 180
ProductImage, 757
ProductList.bin file, 222
Product.ModelName property, 720, 761
Product.ModelNumber property, 718, 749
ProductName property, 180
Products table, 757
ProductTextStyle, 517

 INDEX

934

ProductTitleStyle, 517
Product.ToString() method, 735
Product.UnitCost property, 755
ProductValidation class, 783, 807
progress, tracking, 601–603
ProgressBar class, 146, 196–198
ProgressBar element, 198
ProgressChanged event, 598–599, 601–603
progressive downloading, vs. streaming, 426–428
Projection property, 306, 373
ProjectNameTestPage.html, 6, 11
properties

for Application class, 204–205
attached properties, 44
complex properties, 42–43
simple properties, 40–42
and type converters, 40–42

property-element syntax, 42–43
property inheritance, 547
PropertyGroupDescription object, 810
PropertyGroupDescription.Converter property,

811
PropertyMetadata object, 109, 111
Proportional sizes, 79
ProvideValue() method, 51
proxy class, 685–691, 695, 705, 711

 Q
QuadraticBezierSegment class, 286, 293
QueryString member, 612, 787, 794, 806, 813
quotation mark character, 40

 R
RadialGradientBrush class, 316, 319–321, 325,

552
RadioButton class, 146, 159, 163–165
RadioButton element, 165
Radius property, 330–331
radiusX command, 293
RadiusX property, 266
radiusY degrees command, 293
RandomNumbers class, 625
Range attribute, 780
RangeBase class, 196
Read-only property, 742
Really Simple Syndication (RSS) format, 889–892
ReceiveMessage() method, 902
Record value, 425

Rectangle class, 146, 214, 265–266, 451
Rectangle element, 535
rectangle, with Path class, 282–283
RectangleGeometry class, 89, 281–284
red, green, and blue (RGB), 63
Reference.cs file, 686, 727
Reference.svcmap file, 727
reflection effect, with transforms, 301–303
Regex object, 870
Regex.Match() method, 870
Register() method, 109, 112
RegisterAttached() method, 112
RegisterCreateableType() method, 625
registering, dependency properties, 108–110
RegisterPixelShaderSamplerProperty() method,

333
RegisterScriptableObject() method, 625
RegularExpression attribute, 780–781
RelativeTransform property, 385, 439
RemoteEndPoint property, 905
Remove() method, 841
RemoveAttribute() method, 614
RemoveChild() method, 614, 617–618
RemoveElementAction class, 536
RemoveHandler statement, 11
RemoveStyleAttribute() method, 614
Render() method, 336–337
RenderAtScale property, 375
RenderTransform property, 297, 380, 438
RenderTransformOrigin property, 299–300, 303,

381
RepeatBehavior property, 361, 558
RepeatButton element, 164
ReportError() method, 210
ReportProgress() method, 602–603
Representational State Transfer (REST) API, 870–

874
RequestDeviceAccess() method, 448–449
Required attribute, 779
ResourceDictionary object, 55, 309, 516
ResourceKey property, 51
resources, 49–55

accessing in code, 53–54
in class library assemblies, 224–225
collection of, 49–51
hierarchy of, 51–53
organizing with dictionaries, 54–55
storing data object as, 719–720

Resources property, 49, 204, 356
REST (Representational State Transfer) API, 870–

874

 INDEX

935

RestrictedProduct, 764
Result property, 223, 688, 869
ReturnResult() method, 709–711
reusing

objects, 49
templates, 543–544, 548

Rewind value, 425
RGB (red, green, and blue), 63
RichTextBlock element, 194–196
RichTextBlockOverflow control, 194, 196
RichTextBox class, 143, 146, 155, 183, 186–187,

189, 191–192, 194
RichTextBox control, 154, 194
RichTextBox element, 183–191

creating text editor with, saving and opening
rich text files, 191

formatting in, 186–187
manipulating in code, 187–188
model for, 183–186
using interactive elements in, 192–193

RichTextBox.Background property, 186
RichTextBox.IsReadOnly property, 192–193
RichTextBox.Selection property, 189
RichTextBox.Xaml property, 191
right-clicks, of mouse, 123
root visual, managing, 236–237
RootDirectory property, 834
RootUri property, 757
RootVisual property, 204, 206
RotateTransform class, 295–298, 300, 379–381,

386, 395
RotationY property, 305–306, 577
RotationZ property, 305
routed events, 115–123

core events, 115–118
event bubbling, 118–123
and handled events, 119–120

RoutedEventArgs object, 122
Row property, 44, 112
RowDefinition object, 79, 84
RowGroupHeaderStyles property, 811–812
rows

details area, 799–800
formatting, 797–798
in Grid layout container

overview, 79–80
spanning, 82–83

RowSpan property, 82, 84
RSS (Really Simple Syndication) format, 889–892
Run class, 154
Run() method, 676

Run object, 153–154, 187–188
RunWorkerCompleted event, 598–601, 605
RunWorkerCompletedEventArgs.Result

property, 601

 S
SalesProduct, 764
SaveFileDialog class, 841, 843–844, 848–849
ScaleTransform class, 295–296, 303, 551, 559, 582
scaling, 101–103, 105
scraping, HTML, 866–870
ScriptableMember attribute, 622, 624–625
ScriptableMemberAttribute class, 609, 781
ScriptableSilverlight class, 624
ScriptableType attribute, 622, 624
ScriptableTypeAttribute class, 609
ScriptObject class, 609, 622, 781
scripts, browser, 622
ScrollBar control, 164, 197, 560
ScrollContentPresenter, 544
ScrollViewer class, 91, 99, 101, 126, 144, 159, 164,

197, 346, 348
ScrollViewer control, 99–101, 197, 544
search engine optimization (SEO), 247
security, and URI with Frame content control,

248–249
SecurityCritical attribute, 22
Segments property, 285
Select From File button, 660
SelectedDate property, 200
SelectedDates property, 200–201
SelectedDatesChanged, 201
SelectedIndex property, 175
SelectedItem property, 170, 175, 739, 802
SelectedText property, 175
SelectedValue property, 742
SelectedValuePath property, 742
SelectionMode property, 170, 200, 802
SendAsync() method, 911
sender.findName() method, 215
SendToBack() method, 88
SEO (search engine optimization), 247
server-side features, 607
server-side playlists, for MediaElement class, 426
servers

connecting to, 904–907
messaging, 900–903

service code, 684, 689, 692, 708
service endpoint, 684

 INDEX

936

service references, 685–687
ServiceContract attribute, 684–685, 709–710
services, data. See data services
services section, 708
SetAttribute() method, 608, 614, 618
SetProperty() method, 608, 615–617, 620
SetPropertyName() method, 112
SetRow() method, 112
SetSource() method, 415–416
SetStyleAttribute() method, 614–615, 618–620,

627, 629
Setter object, 514
SetText() method, 176
settings, application, storing, 840–841
SetValue() method, 109–110, 129, 569
ShaderEffect class, 332–333
ShadowDepth property, 331–332
Shape class, 264, 267, 281, 300, 315
shapes

classes for, 264–265
dashed lines, 279–281
Ellipse class, 265–266
line caps and line joins for, 277–279
Line class, 272–273
Path class, 281–295

arcs with, 287–289
Bézier curves with, 289–291
clipping with geometry, 293–295
combining shapes with GeometryGroup,

283–284
geometry mini-language for, 291–293
line, rectangle and ellipse with, 282–283
straight lines with, 286–287

placement of, 267–270
Polygon class, 274–277
Polyline class, 273–274
Rectangle class, 265–266
sizing of

overview, 267–270
proportionately with Viewbox, 270–272

transforms for, 297–300
sharing code, 697–701
Show() method, 242, 654, 671
ShowDialog() method, 842, 844
ShowErrorsInSummary property, 776
ShowGridLines property, 77–78
ShowsPreview property, 85
shutdown of application, 209
sieve of Eratosthenes, 593
Sign the assembly option, 227

silent installation, of out-of-browser
applications, 647

Silverlight badge, 29
Silverlight-based file, 845
Silverlight class, 11, 33, 37, 93, 522, 569, 622, 697–

698, 700
Silverlight client, 847–850
Silverlight command, 138, 140
Silverlight controls, 789, 889

placing next to HTML element, 627–629
sizing to fit content, 626–627

Silverlight method, 608, 621–624
Silverlight object, 40, 590, 624–625, 754
Silverlight plug-in, 3, 11, 15, 22, 25–28, 30
Silverlight property, 109, 111, 727
Silverlight Resource Dictionary template, 54
silverlightControlHost, 622–623, 628–630
Silverlight.js file, 15
Simple Object Access Protocol (SOAP), 878, 886
simple properties, 40–42
simulated drag and drop, 128
simultaneous animations, 361–362
single-threaded apartment model, 589
Size object, 90–92, 338, 347
SizeChanged event, 118, 602–603
sizing, 97–106

full-screen mode, 104–105
of Image element, 157
ScrollViewer content control, 99–101
of shapes

overview, 267–270
proportionately with Viewbox, 270–272

in StackPanel layout container, 72–73
Viewbox content control, 101–103

SkewTransform class, 295–296
skinnable applications, 516
Sleep() method, 588, 590–591, 598
Slider class, 146
Slider control, 308, 560–564
Slider element, 197–198
Slider.Orientation, 561
sliderPositionBackground, 419–420
Slider.Value property, 57
SmallChange property, 197
smil element, 426
SOAP (Simple Object Access Protocol), 878, 886
Socket class, 904–905, 908
SocketAsyncEventArgs object, 904–908
SocketClientAccessPolicyProtocol property, 906
sockets, 707, 892–909

messaging server, 900–903

 INDEX

937

messenger client, 904–909
connecting to server, 904–907
receiving messages, 908–909
sending messages, 907–908

policy files, 894–896
policy server, 896–900

PolicyConnection classes, 899–900
PolicyServer classes, 896–899

and TCP, 892–894
SolidColorBrush class, 315–316, 318, 325
SolidColorBrush object, 63
SomethingClicked() method, 122
SortDescription object, 808
SortMemberPath property, 802
sound effects, 401
SoundEffect class, 445–446, 456
SoundEffectInstance class, 444, 446–447
SoundEffectInstance.IsLooped property, 447
SoundEffectInstance.Volume property, 446
source parameter, 27
Source property, 17, 122, 156, 247, 416, 426, 650,

718–719, 759
SourceName property, 438, 532
spanning, rows and columns, 82–83
Speak() method, 675
special characters, 616
splash screens, custom, 212–216
splashScreenSource parameter, 28
spline key frames, key-frame animations, 389–

390
StackPanel class, 146, 160, 162, 165, 168–169,

171–174
StackPanel layout container, 66–73

alignment in, 69
layout properties in, 67–68
margins in, 70
sizing in, 72–73

StackPanel.Resources section, 53
stand-alone Silverlight projects

adding event-handling code, 9–11
creating, 4–7
testing, 11–12

Start() method, 418, 446–447, 451, 588, 590, 595,
598, 600, 901

StartPoint property, 283, 285–287, 290–292, 303
StartsWith value, 179–180, 182
StartsWithCaseSensitive value, 179
StartTaskAsync() method, 592–593, 597
StartupEventArgs object, 206
State property, 450
state storage, for Page class, 255

states model
with Button control, 550–553
showing focus cue, 554–555
transitions, 555–560

custom transition, 558–560
default transition, 556–557
transitioning to steady state, 558
from and to transitions, 557–558

StaticResource class, 33, 50–51, 54, 56, 59, 544–
545, 547–548

StaticResourceExtension object, 51
steady-state animation, 555, 558
Stop() method, 415, 418, 420, 441, 444, 447, 451,

455–456, 898
storage

of application settings, 840–841
of objects, with XmlSerializer class, 837–840

Store database, 728, 757
StoreDb.GetProducts() method, 732
Storyboard class, 354–356, 362–364
Storyboard.Begin() method, 362
StoryboardCompletedTrigger class, 537
Storyboard.SetTarget() method, 381
Storyboard.SetTargetElement() method, 396
Storyboard.TargetElement property, 386
Storyboard.TargetProperty property, 354
straight lines, with Path class, 286–287
Stream property, 219
streaming

and adaptive streaming, 428–429
vs. progressive downloading, 426–428

Stretch property, 103, 157, 265, 267, 272, 421
StretchDirection property, 272
String class, 869
string formatting

overview, 752–754
with value converter, 754–756

string representation, 754–755
StringFormat property, 753, 789
StringLength attribute, 779
Stroke property, 264–265, 272
StrokeDashArray property, 265, 280–281, 291
StrokeDashCap property, 265, 281
StrokeDashOffset property, 265, 281
StrokeEndLineCap property, 265, 277
StrokeLineJoin property, 265, 278
StrokeMiterLimit property, 265, 279
StrokeStartLineCap property, 265, 277
StrokeThickness property, 264, 274–275, 277,

280, 287, 290–291

 INDEX

938

strong key name, caching for class library
assemblies, 227–228

style binding expressions, 519–520
Style object, 513, 518
Style property, 515–516, 519, 544, 618–619
styles, 513–520

applying, 515
automatically applying by type, 518–519
columns, 792–794
and control templates, 567
defining, 513–514
dynamic, 516
inheritance of, 516–517
organizing, 518
setting templates through, 546–547
style binding expressions, 519–520

Submit() method, 612
SubmitTask() method, 709–710
support, for behaviors, 521–522
SuppressExceptions property, 759
.svc file, 684, 708
SyndicationFeed class, 891
SyndicationItem object, 891
SystemColors.ActiveColorBorder, 63
System.ComponentModel.BackgroundWorker,

598
System.ComponentModel.INotifyPropertyChan

ged interface, 722
System.Core.dll, 22
System.dll, 22
System.Drawing.Bitmap class, 756
System.Guid class, 847
System.IO.Path class, 846, 857
System.Net.dll, 22
System.Net.WebClient class, 222
System.Runtime.Serialization.dll, 697, 700
System.ServiceModel.PollingDuplex.dll, 708, 711
System.Threading.Thread object, 589, 598
System.TimeSpan object, 359
System.Web.HttpContext class, 705
System.Windows.Application object, 203
System.Windows.Browser.dll, 22
System.Windows.Controls.Data.dll, 23
System.Windows.Controls.Data.Input.dll, 23
System.Windows.Controls.dll, 20, 23–24
System.Windows.Controls.Input.dll, 23
System.Windows.Controls.Navigation.dll, 23–24
System.Windows.Controls.Panel class, 61
System.Windows.Controls.TextBox class, 40
System.Windows.dll, 22
System.Windows.Duration object, 359

System.Windows.Input.Cursor object, 131
System.Windows.Input.ICommand interface,

138
System.Windows.Input.Key, 132
System.Windows.Interactivity.dll, 522–523, 525–

526, 536, 538
System.Windows.Media.Imaging.BitmapImage

object, 756
System.Windows.Media.Projection class, 304
System.Windows.Media.Transform class, 295
System.Windows.Rect object, 92
System.Windows.Resources.StreamResourceInfo

object, 219
System.Windows.Shapes.Shape class, 264
System.Windows.Threading.Dispatcher class,

589
System.Xml.dll, 22

 T
TabControl class, 146, 170, 173–175, 202
TabControl element, 173–175
TabIndex property, 136
TabItem.Content property, 173
TabStripPlacement property, 175
Tag property, 416
Target property, 529, 771, 775
TargetedTriggerAction, 529–530, 532–533
TargetName property, 163, 362, 532
TargetNullValue property, 720
TargetType property, 514, 518
TaskDescription class, 709
TaskResult class, 709
TCP (Transmission Control Protocol), 892–894
TcpClient class, 904, 908
TcpListener object, 897
Template property, 542, 571
TemplateBinding, 545–547, 553, 564–565, 575,

581–582
TemplatePart attribute, 550, 560–561, 563, 573,

579
templates, 541–583, 761–767

advanced, 764–766
bindings, 545–546
changing item layout, 766–767
and ContentPresenter, 544
creating, 542–543
for custom controls, FlipPanel control

example, 567–583
data, 823

 INDEX

939

editing with, 803–804
implicit data, 763–764
for navigation, 256–257
parts model

layout transitions, 564–566
with Slider control, 560–564

reusing, 543–544, 548
separating and reusing, 763
setting through styles, 546–547
states model

with Button control, 550–553
showing focus cue, 554–555
transitions, 555–560

test page, 6–7, 12, 20–21, 26–27, 29–31
testing, stand-alone Silverlight projects, 11–12
TestService class, 684–688, 691–692, 694
TestServiceClient class, 687–688, 691–692
TestService.GetServerTime() method, 688
text editor, with RichTextBox element, 191
Text property, 107, 148, 154, 163, 175, 177–178,

434, 718
TextAlignment property, 149, 175, 185, 187
TextBlock class, 120, 147–148, 151, 153, 156, 167,

174, 185, 202
TextBlock element, 147–156

CharacterSpacing property for, 156
font properties for, 149–152

font embedding, 151–152
standard fonts, 150–151

Run object in, 153–154
TextTrimming property for, 155–156
TextWrapping property for, 154–155
underlining, 153

TextBlock.Background property, 798
TextBlock.FontFamily property, 152
TextBlock.FontSize property, 57
TextBlock.FontSource property, 152
TextBlock.Foreground property, 319
TextBlock.Text property, 312
TextBox class, 39, 44, 147, 163, 175, 177, 183, 188,

202, 590
TextBox control, 44, 132, 175, 183, 188, 794
TextBox element, 175–176
TextBox.IsReadOnly property, 735
TextDecorations property, 153–154, 163, 187, 190
TextInput event, 116
TextPointer class, 188
TextSelection object, 189
TextTrimming property, for TextBlock element,

155–156
TextWrapping property, 154–155, 175, 343

Thickness object, 338, 347
thread affinity, 589
Thread class, 585, 587–598, 606

cancellation support, 596–598
marshaling code to user interface thread,

589–591
thread wrapper, 591–596
Worker class, 593–594

thread wrappers, 591–593
Thread.Start() method, 588, 598
ThreadState property, 588
ThreadWrapperBase class, 592–594, 596–597
ThreadWrapperBase.StartTaskAsync() method,

597
ThreadWrapperBase.Status property, 594
thumb control, 563
thumbnails, 434
Tick event, 587
TimelineMarker object, 434, 437
TimelineMarker.Time property, 436
TimerTrigger class, 537
TimeSpan object, 359, 418
Title property, 254
To property, 358–359
ToggleButton class, 164–165, 573–574, 576, 578–

582
ToggleButton element, 164
TogglePlayPause value, 424
ToList() method, 738–739
ToolTip control, 143, 168
ToolTip object, 167
ToolTip property, 166
Tooltip property, 196
ToolTip.Content property, 168
tooltips, 166–168
ToolTipService.ToolTip property, 166–167
ToString() method, 180, 734, 755
tracking, application state, 641–645
Transform class, 304
Transform property, 284
TransformGroup class, 296
transforms, 263, 265, 295–303, 306, 313

animating, 380–382
and layout containers, 300–301
perspective transforms, 303–308

applying, 306–308
PlaneProjection class, 304–306

reflection effect with, 301–303
for shapes, 297–300

transition properties, 406
transitions, 555–560

 INDEX

940

transitions (cont.)
custom transition, 558–560
default transition, 556–557
transitioning to steady state, 558
from and to transitions, 557–558

TranslateTransform class, 295–296, 551
Transmission Control Protocol (TCP), 892–894
transparency, 322–329

opacity masks, 325
of Silverlight controls, 326–329

TreeView class, 147, 170
TreeView control, 769, 814–819

data-bound, 816–819
filling, 815–816

TreeViewItem object, 860
TreeViewItem.Header property, 816
TreeViewItem.Tag property, 860
trick play feature, MediaElement class, 421–422
TriggerAction class, 523
TriggerAction.AssociatedObject property, 524,

529
TriggerBase class, 525
triggers, for behaviors, 529–533
triple-clicks, 107, 123–124
Trusted Publishers certificate, 681
Trusted Root Certification Authorities store, 660,

681
TryParse() method, 755
two angle brackets character, 40
two-way bindings, 57–59, 720–722
type converters, and properties, 40–42
type sharing, web service, 695–701

identifying data classes, 696–697
sharing code, 697–701

Type type, 209, 235, 238
TypeConverter attribute, 41
types, of animation, 379–390

brushes, 384–385
key-frame, 387–390
perspective projections, 382–384
pixel shaders, 385–387
transforms, 380–382

TypeSharingClient, 697
TypeSharing.Web, 697–698

 U
UIElement class, 90, 116, 127, 170, 236, 300, 323,

523
underlining, TextBlock element, 153

UnfocusedMouseOver, 550
UnfocusedNormal, 550
unhandled exceptions, 209–212
Uniform Resource Identifier. See URI
Uniform Resource Locators (URLs), 690–713
Uniform value, 157, 268, 322
UniformGrid, 90, 93–97
UniformToFill value, 157, 268, 322
UnitCost column, 789
UnitCost property, 747, 752, 772, 782
UnitsInStock property, 747
UpdatePanel control, 18
UpdateSource() method, 722
UpdateSourceTrigger property, 721
UpdateTextWrong() method, 590
UploadFile() method, 847
UploadFileAsync() method, 849
Uri class, 612, 650, 787, 794, 806, 813
URI (Uniform Resource Identifier)

with Frame content control, 247–249
more than one frame on page, 248
no frame on startup page, 248
and security, 248–249

mapping, 251–252
UriMapper object, 251–252
URLs (Uniform Resource Locators), 690–713
UseDefaultCredentials property, 874
user-consent restrictions, 661
user controls, 233–239

and browser history, 239
embedding in page, 234–236
hiding elements, 236
managing root visual, 236–237
retaining page state, 237–238

user files, accessing, 855–856
user interface threads, marshaling code to, 589–

591
UserControl class, 34, 37, 97, 99
UserControl tag, 27
UserControl.Resources section, 53
UserControl.SizeChanged event, 102
UserInformation class, 243–244
UserName property, 243
UserState property, 223
UserToken property, 905
Using column, 82

 V
V y command, 293

 INDEX

941

ValidateObject() method, 778, 785
ValidateProperty() method, 778
ValidatesOnDataErrors property, 750
ValidatesOnExceptions property, 743, 747
ValidatesOnNotifyDataErrors property, 750
ValidateUnitCost() method, 783
validation, 742–751

bindingValidationFailed event, 745–747
data objects with built-in, 747–751
and editing events, 805–807
error notifications, 743–745
Validation class, 747

Validation class, 747
ValidationAttribute class, 779
ValidationAttribute.ErrorMessage property, 779
ValidationErrorEventArgs.Error.ErrorContent

property, 750
ValidationErrorEventArgs.Exception property,

750
ValidationResult object, 778
ValidationSummary control, 745, 769–770, 775–

776, 779, 827
Validator class, 778
Validator.ValidateObject() method, 785
Validator.ValidateProperty() method, 807
Value column, 434
value converters, 751, 754

creating objects with, 756–759
string formatting with, 754–756

Value property, 197–198, 387
VBR (Variable Bit-Rate Encoding), 432
vector printing, 343–344
VerticalAlignment property, 68–69, 75, 80, 82, 86,

92, 98–99, 103
VerticalScrollBarVisibility property, 100
VerticalTemplate element, 561
vertices, 265
Video Effects class, 438–444
video, playing, 421–429, 444

encoding for, 429–432
markers for, 432–437
Video Effects class, 438–444
VideoBrush class, 437–438

VideoBrush class, 303, 316, 413, 437–439, 442
VideoCaptureDevice property, 449–450
Viewbox class, 126–127, 147, 270–272
Viewbox content control, 101–103
virtualization, 62
VirtualizingStackPanel, 62
Visibility property, 236, 379, 437, 566, 671, 790
Visual Studio, vs. Expression Blend, 2

VisualStateGroups element, 551
VisualStateManager class, 551, 553, 555, 557, 560,

565, 574, 577, 579, 583
VisualStateManager.GoToState() method, 579
VisualStateManager.VisualStateGroups, 550–553,

555–556, 565, 575, 578, 583
VisualTransition element, 556, 559
VisualTransition.GeneratedDuration property,

559–560
VisualTreeHelper class, 47
volume, for MediaElement class, 417–421

 W
WAV file, 445, 454–456
WCF RIA (Windows Communication Framework

Rich Internet Application) Services, 706–707
Web

binary resources on, 220–223
downloading with WebClient, 222–223
failing to download, 221

interacting with, 863–875
cross-domain access, 864–866
HTML scraping, 866–870
network credentials, 874–875
REST API and simple web services, 870–

874
web pages, 607, 631
Web Service Description Language (WSDL), 687
web services

requiring data in XML, 883–885
returned data from

JSON, 886–889
SOAP, 886
in XML, 876–883

simple, REST API and, 870–874
transmitting files with, 844–850

FileService service, 845–847
Silverlight client, 847–850

WebBrowser class, 147
WebBrowser control, 608, 648–652, 681–682

interacting with JavaScript language code,
651

showing HTML content, 650
WebBrowserBrush control, 651

WebBrowserBrush control, 651
WebBrowser.ScriptNotify event, 652
webcam input, 447–457

accessing capture device, 448–449
basic support for, 450–452

 INDEX

942

WebClient class, 222, 226, 415, 863, 867–868, 875
WebClient, downloading resources with, 222–

223
WebClient.OpenReadAsync() method, 867
web.config settings, 708
WebRequest class, 864, 871–872, 874, 884–885
WebRequest.RegisterPrefix() method, 874
websites, ASP.NET vs. HTML pages, 2–3
wheel, of mouse, 125–127
Width property, 68, 79, 96, 172, 351, 354, 357,

361, 794
Window class, 655, 657, 664, 671–672
window customization, 661
Window object, 655
Window property, 608
Window.DragMove() method, 666
Window.DragResize() method, 669
Window.Eval() method, 211
windowless parameter, 28
windows

child, 671–673
controlling main, 655–657
customization of, 662–670
notification, 652
popup, 611–612

Windows Communication Framework Rich
Internet Application (WCF RIA) Services, 706–
707

Windows Management Instrumentation (WMI),
662

Windows Media Audio (WMA), 414
Windows Media Video Advanced Profile VC-1

(WMVAC1), 414
Windows Media Video Advanced Profile

(WMVA), 414
Windows Movie Maker, 429
Windows Presentation Foundation (WPF), 33,

198, 495, 657
Windows Script Host, 662, 676
WindowState property, 666
WindowStyle property, 673
WipeTransition class, 405–406
With property, 42
With type, 172
WMA (Windows Media Audio), 414
WMI (Windows Management Instrumentation),

662
WMVA (Windows Media Video Advanced

Profile), 414
WMVAC1 (Windows Media Video Advanced

Profile VC-1), 414

Worker.FindPrimes() method, 600
WPF (Windows Presentation Foundation), 33,

198, 495, 657
WrapBreakPanel class, 112–114
WrapPanel class, 62, 74–75, 83, 96, 538–539, 766
WrapPanel.Orientation property, 74
wrappers, thread, 591–593
Wrapping property, 792
WriteableBitmap class, 315, 333–337, 343

capturing content from other elements, 336–
337

generating bitmap with, 334–336
WriteableBitmap object, 452
WSDL (Web Service Description Language), 687

 X, Y
XAML (Extensible Application Markup

Language), 33–59
code-behind class, 37–39
element-to-element binding, 56–59

one-way binding, 56–57
two-way binding, 57–59

events in, 47–48
exporting clip art to, 308–313

conversion tools for, 310
with Expression Design, 308–310
saving as XPS (XML Paper Specification),

310
namespaces, 34–37

core namespaces, 35–36
custom namespaces, 36–37
design namespaces, 36

nesting elements, 45–47
properties in

attached properties, 44
complex properties, 42–43
simple properties, 40–42
and type converters, 40–42

resources, 49–55
accessing in code, 53–54
collection of, 49–51
hierarchy of, 51–53
organizing with dictionaries, 54–55

XAML file, 7, 18, 38, 59, 205, 213–214, 245, 310,
723

XAP file, 19–21, 23–24, 27–29, 147, 152
XDocument class

navigating over, 879–881
querying with LINQ expression, 881–883

 INDEX

943

XDocument.Elements method, 879
XDocument.Save() method, 885
XElement class, 879–881, 884–885
XML (Extensible Markup Language), 875–876

services that require data in, 883–885
services that return data in, 876–883

navigating over XDocument object, 879–
881

querying XDocument object with LINQ
expression, 881–883

XML file, 227, 464–465, 571, 728, 736
XML namespace prefix, 36–37
XML namespaces, 34–35, 37
XML Paper Specification (XPS), 310–311, 394
XML-RPC interface, 883

XmlDocument class, 876
XMLHttpRequest object, 864
XmlReader.Create() method, 219
XmlSerializer class, 837–840, 886
XNamespace class, 883
XPS (XML Paper Specification), 310–311, 394

 Z
Z command, 292–293
ZIndex property, 88, 307
ZIP compression, 216, 230
ZIP file, 23–24, 230
Zoom() method, 466
ZoomAboutLogicalPoint() method, 466

Pro Silverlight 5 in C#

  

Matthew MacDonald

Pro Silverlight 5 in C#

Copyright © 2012 by Matthew MacDonald

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-3479-1

ISBN-13 (electronic): 978-1-4302-3480-7

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Ewan Buckingham
Technical Reviewer: Fabio Claudio Ferracchiati
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Morgan Ertel,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Adam Heath
Copy Editor: Kim Wimpsett
Compositor: Bytheway Publishing Services
Indexer: SPI Global
Artist: SPI Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, LLC., 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

The source code for this book is available to readers at www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com

For my family

vi

Contents

 About the Author... xxvii

 About the Technical Reviewer ... xxviii

 Acknowledgments ... xxix

 Introduction .. xxx

 Chapter 1: Introducing Silverlight ..1

Silverlight Design Tools ...1
Visual Studio vs. Expression Blend... 2
Understanding Silverlight Websites.. 2

Creating a Stand-Alone Silverlight Project ..4

Creating a Simple Silverlight Page ..7
Adding Event-Handling Code.. 9
Testing a Silverlight Application ... 11

Creating an ASP.NET-Hosted Silverlight Project..12
ASP.NET Controls That Render Silverlight Content... 17
Mixing ASP.NET Controls and Silverlight Content... 17

Silverlight Compilation and Deployment..18
Compiling a Silverlight Application... 18
Deploying a Silverlight Application... 20
Silverlight Core Assemblies.. 21
Silverlight Add-on Assemblies.. 22
Assembly Caching .. 23

 CONTENTS

vii

The HTML Test Page ..25
Sizing the Silverlight Content Region ... 27
Silverlight Parameters .. 27
Alternate Content.. 29
Creating a Friendly Install Experience .. 29
The Mark of the Web .. 31

The Last Word..32

 Chapter 2: XAML ...33

XAML Basics ..33
XAML Namespaces... 34
The Code-Behind Class .. 37

Properties and Events in XAML..39
Simple Properties and Type Converters ... 40
Complex Properties .. 42
Attached Properties .. 44
Nesting Elements.. 45
Events... 47
The Full Eight Ball Example .. 48

XAML Resources..49
The Resources Collection ... 49
The Hierarchy of Resources ... 51
Accessing Resources in Code... 53
Organizing Resources with Resource Dictionaries... 54

Element-to-Element Binding ...56
One-Way Binding.. 56
Two-Way Binding ... 57

The Last Word..59

 CONTENTS

viii

 Chapter 3: Layout..61

The Layout Containers ...61
The Panel Background.. 63
Borders ... 64

Simple Layout with the StackPanel ...66
Layout Properties.. 67
Alignment ... 69
Margins... 70
Minimum, Maximum, and Explicit Sizes... 72

The WrapPanel and DockPanel..74
The WrapPanel ... 74
The DockPanel.. 75

The Grid ...77
Fine-Tuning Rows and Columns... 79
Nesting Layout Containers.. 80
Spanning Rows and Columns... 82
The GridSplitter... 83

Coordinate-Based Layout with the Canvas..86
Layering with ZIndex .. 88
Clipping... 88

Custom Layout Containers...90
The Two-Step Layout Process.. 90
The UniformGrid.. 93

Sizing Pages ..97
Scrolling with the ScrollViewer .. 99
Scaling with the Viewbox ... 101
Full-Screen Mode ... 104

 CONTENTS

ix

The Last Word..106

 Chapter 4: Dependency Properties and Routed Events......................................107

Dependency Properties..107
Defining and Registering a Dependency Property .. 108
Dynamic Value Resolution .. 110
Attached Properties .. 111
The WrapBreakPanel Example ... 112

Routed Events..115
The Core Element Events.. 115
Event Bubbling.. 118
Handled (Suppressed) Events... 119
An Event Bubbling Example.. 120

Mouse Handling...123
Right-Clicks .. 123
Double and Triple Clicks... 123
Mouse Movements ... 124
The Mouse Wheel ... 125
Capturing the Mouse .. 127
A Mouse Event Example ... 128
Mouse Cursors.. 131

Keyboard Handling...132
Key Presses .. 132
Key Modifiers.. 135
Focus .. 136

The Command Model...137
Building a Command .. 138
Connecting a Command ... 139

The Last Word..141

 CONTENTS

x

 Chapter 5: Elements..143

The Silverlight Elements ..143
Static Text..147

Font Properties ... 149
Underlining ... 153
Runs ... 153
Wrapping Text .. 154
Trimming Text .. 155
Character Spacing .. 156

Images ...156
Image Sizing... 157
Image Errors ... 158

Content Controls ..158
The Content Property.. 160
Aligning Content ... 162

Buttons ..163
The HyperlinkButton ... 163
The ToggleButton and RepeatButton.. 164
The CheckBox... 164
The RadioButton ... 165

Tooltips and Pop-Ups...166
Customized Tooltips ... 166
The Popup... 168

Items Controls..170
The ListBox ... 170
The ComboBox.. 172
The TabControl ... 173

 CONTENTS

xi

Text Controls. ...175
The TextBox. .. 175
The PasswordBox 177
The AutoCompleteBox . .. 177
The RichTextBox. ... 183
Creating a Text Editor 188
Using Interactive Elements in a RichTextBox 192
The RichTextBlock . .. 194

Range-Based Controls . ..196
The Slider 197
The ProgressBar 198

Date Controls . ..198

The Last Word..202

 Chapter 6: The Application Model...203

The Application Class203
Accessing the Current Application 203
Application Properties . .. 204

Application Events . ..205
Application Startup 206
Initialization Parameters. ... 206
Application Shutdown. ... 209
Unhandled Exceptions . .. 209

Custom Splash Screens. ..212
Binary Resources. ..216

Placing Resources in the Application Assembly. ... 217
Placing Resources in the Application Package. ... 219
Placing Resources on the Web 220

 CONTENTS

xii

Class Library Assemblies...224
Using Resources in an Assembly.. 224
Downloading Assemblies on Demand .. 225
Supporting Assembly Caching.. 227

The Last Word..231

 Chapter 7: Navigation ...233

Loading User Controls..233
Embedding User Controls in a Page ... 234
Hiding Elements.. 236
Managing the Root Visual... 236
Retaining Page State .. 237
Browser History .. 239

Child Windows ...239
Designing a ChildWindow... 241
Showing a ChildWindow... 242

The Frame and Page..244
Frames.. 244
URI Mapping ... 251
Forward and Backward Navigation .. 252
Hyperlinks... 253
Pages.. 253
Navigation Templates... 256

Custom Content Loaders ...257
Authentication and Navigation ... 258
Creating a Custom Content Loader... 260
Using the Custom Content Loader .. 261

The Last Word..262

 CONTENTS

xiii

 Chapter 8: Shapes and Transforms ..263

Basic Shapes ...263
The Shape Classes ... 264
Rectangle and Ellipse ... 265
Sizing and Placing Shapes ... 267
Sizing Shapes Proportionately with a Viewbox .. 270
Line... 272
Polyline ... 273
Polygon... 274
Line Caps and Line Joins.. 277
Dashes.. 279

Paths and Geometries..281
Line, Rectangle, and Ellipse Geometries .. 282
Combining Shapes with GeometryGroup.. 283
Curves and Lines with PathGeometry... 285
The Geometry Mini-Language .. 291
Clipping with Geometry .. 293

Transforms ..295
Transforming Shapes ... 297
Transforms and Layout Containers... 300
A Reflection Effect .. 301

Perspective Transforms...303
The PlaneProjection Class .. 304
Applying a Projection.. 306

Exporting Clip Art ...308
Expression Design .. 308
Conversion.. 310
Save or Print to XPS.. 310

 CONTENTS

xiv

The Last Word..313

 Chapter 9: Brushes, Bitmaps, and Printing ..315

Brushes..315
The LinearGradientBrush Class .. 316
The RadialGradientBrush Class .. 319
The ImageBrush ... 321

Transparency...322
Opacity Masks .. 325
Making the Silverlight Control Transparent.. 326

Pixel Shaders ...330
BlurEffect.. 330
DropShadowEffect.. 330
ShaderEffect ... 332

The WriteableBitmap Class..333
Generating a Bitmap... 334
Capturing Content from Other Elements... 336

Printing ..337
Printing a Single Element ... 338
Printing Over Multiple Pages .. 340
Bitmap and Vector Printing... 343
Creating a Print Preview... 346

The Last Word..349

 Chapter 10: Animation Basics ..351

Understanding Silverlight Animation ...351
The Rules of Animation... 352

Creating Simple Animations ..353
The Animation Class ... 353

 CONTENTS

xv

The Storyboard Class.. 354
Starting an Animation with an Event Trigger.. 355
Starting an Animation with Code.. 356
Configuring Animation Properties... 357
Animation Lifetime ... 359
Simultaneous Animations... 361
Controlling Playback... 362

Animation Easing...365
Using an Easing Function ... 365
Easing In and Easing Out .. 366
Easing Function Classes... 368

Animation Performance ...371
Desired Frame Rate.. 371
Hardware Acceleration ... 372
Independent Animations... 377

The Last Word..378

 Chapter 11: Advanced Animation ...379

Animation Types Revisited ..379
Animating Transforms .. 380
Animation Perspective Projections... 382
Animating Brushes ... 384
Animating Pixel Shaders... 385
Key-Frame Animation... 387

Animations in Code..391
The Main Page.. 392
The Bomb User Control... 394
Dropping the Bombs... 395
Intercepting a Bomb ... 398

 CONTENTS

xvi

Counting Bombs and Cleaning Up .. 400
Encapsulating Animations ...402

Page Transitions... 402
The Base Class ... 403
The Wipe Transition.. 405

Frame-Based Animation ..407

The Last Word..410

 Chapter 12: Sound, Video, and Deep Zoom...413

Supported File Types ...413

The MediaElement ...414
Controlling Playback... 415
Handling Errors... 416
Playing Multiple Sounds ... 416
Changing Volume, Balance, and Position ... 417
Playing Video .. 421
Trick Play.. 421
Media Commands... 422
Client-Side Playlists.. 425
Server-Side Playlists .. 426
Progressive Downloading and Streaming .. 426
Adaptive Streaming .. 428

Advanced Video Playback..429
Video Encoding ... 429
Encoding in Expression Encoder .. 430
Markers .. 432
VideoBrush ... 437
Video Effects... 438

Low-Latency Sound ...444

 CONTENTS

xvii

Play a Sound with SoundEffect .. 445
Changing Playback Settings ... 445
Overlapping Sounds with SoundEffectInstance.. 446
Looping Audio... 447

Webcam and Microphone Input ...447
Accessing a Capture Device ... 448
Basic Webcam Support .. 450
Recording Audio Snippets .. 452

Deep Zoom...457
Creating a Deep Zoom Image Set ... 459
Using a Deep Zoom Image Set in Silverlight... 464

The Last Word..467

 Chapter 13: Silverlight 3D...469

Understanding 3D in Silverlight ...469
Adding Assembly References... 470
Enabling 3D in a Silverlight Project .. 471

Basic 3D Drawing ..472
The 3D Coordinate System ... 473
Filling the Vertex Buffer .. 473
Positioning the Camera .. 477
Configuring the BasicEffect .. 481
Drawing the Scene ... 482
Backface Culling... 484
Scaling Your Drawing ... 485

Complex Objects and Textures ..486
Drawing a Cube .. 487
Adding Textures.. 490
Lighting an Object... 495

 CONTENTS

xviii

Creating Multiple Objects ... 498
Using Models .. 502

Movement and Animation..502
Moving a Shape.. 503
Rotating a Shape .. 504
Shape Animations... 507
Rotating and Moving the Camera ... 508

The Last Word..511

 Chapter 14: Styles and Behaviors...513

Styles ...513
Defining a Style .. 513
Applying a Style.. 515
Dynamic Styles... 516
Style Inheritance... 516
Organizing Styles.. 518
Automatically Applying Styles by Type... 518
Style Binding Expressions .. 519

Behaviors...521
Getting Support for Behaviors .. 521
Triggers and Actions... 522
Creating a Behavior .. 533
Finding More Behaviors.. 536
The FluidMoveBehavior .. 537

The Last Word..539

 Chapter 15: Control Templates ...541

Template Basics ..541
Creating a Template ... 542
Reusing Control Templates... 543

 CONTENTS

xix

The ContentPresenter ... 544
Template Bindings.. 545
Setting Templates Through Styles.. 546
Reusing Colors.. 548

The Parts and States Model...548
Understanding States with the Button Control ... 550
Showing a Focus Cue ... 554
Transitions.. 555
Understanding Parts with the Slider Control .. 560
Layout Transitions .. 564

Creating Templates for Custom Controls...567
Planning the FlipPanel Control ... 568
Creating the Solution .. 569
Starting the FlipPanel Class.. 569
Adding the Default Style with Generic.xaml ... 571
Choosing Parts and States ... 573
Starting the Default Control Template .. 574
The FlipButton Control .. 575
Defining the State Animations.. 576
Wiring Up the Elements in the Template .. 578
Using the FlipPanel... 580
Using a Different Control Template .. 581

The Last Word..583

 Chapter 16: Multithreading...585

Understanding Multithreading ...585
The Goals of Multithreading ... 586
The DispatcherTimer .. 587

The Thread Class ...587

 CONTENTS

xx

Marshaling Code to the User Interface Thread ... 589
Creating a Thread Wrapper .. 591
Creating the Worker Class.. 593
Using the Thread Wrapper.. 594
Cancellation Support .. 596

The BackgroundWorker ...598
Creating the BackgroundWorker .. 598
Running the BackgroundWorker... 599
Tracking Progress... 601
Supporting Cancellation ... 604

The Last Word..606

 Chapter 17: Browser Integration ..607

Interacting with HTML Elements..608
Getting Browser Information .. 609
The HTML Window.. 610
Popup Windows.. 611
Inspecting the HTML Document ... 612
Manipulating an HTML Element.. 614
Handling JavaScript Events.. 619

Code Interaction...621
Calling Browser Script from Silverlight .. 622
Calling Silverlight Methods from the Browser.. 622
Instantiating Silverlight Objects in the Browser ... 624

Combining Silverlight and HTML Content ..626
Sizing the Silverlight Control to Fit Its Content ... 626
Placing the Silverlight Control Next to an HTML Element... 627

Securing HTML Interoperability ...630
The Last Word..631

 CONTENTS

xxi

 Chapter 18: Out-of-Browser Applications...633

Understanding Out-of-Browser Support633
Creating an Out-of-Browser Application. ...635

Installing an Out-of-Browser Application 638
Customizing Icons . .. 640
Tracking Application State 641
Removing and Updating an Application. .. 645
Silent Installation. .. 647

Out-of-Browser Application Features648
The WebBrowser Control. .. 648
Notification Windows. .. 652
Controlling the Main Window 655

Elevated Trust. ...657
Installing an Elevated-Trust Application. ... 658
The Abilities of an Elevated-Trust Application. .. 661
Window Customization 662
Child Windows. .. 671
COM . .. 674
P/Invoke. .. 677
Elevated-Trust Applications in the Browser 679

The Last Word. ...682

 Chapter 19: ASP.NET Web Services ..683

Building Web Services for Silverlight. ..683
Creating a Web Service . .. 683
Adding a Service Reference 685
Calling the Web Service. .. 687
Configuring the Web Service URL. ... 690
Using a Busy Indicator. .. 692

 CONTENTS

xxii

Web Service Data Types ..693
Custom Data Classes.. 694
Web Service Type Sharing.. 695

More Advanced Web Services ...701
Cross-Domain Web Service Calls ... 701
Monitoring the Network Connection... 703
Using ASP.NET Platform Services... 704
WCF RIA Services ... 706

Duplex Services ...707
Configuring the Service .. 708
The Interfaces... 709
The Service... 710
The Client.. 711

The Last Word..713

 Chapter 20: Data Binding..715

Binding to Data Objects ...715
Building a Data Object .. 716
Displaying a Data Object with DataContext .. 717
Storing a Data Object as a Resource .. 719
Null Values and Failed Bindings ... 720
Editing with Two-Way Bindings.. 720
Change Notification .. 722
Debugging a Data Binding Expression.. 723
Building a Data Service .. 726
Calling a Data Service .. 729

Binding to a Collection of Objects..731
Displaying and Editing Collection Items ... 731
Inserting and Removing Collection Items ... 736

 CONTENTS

xxiii

Binding to a LINQ Expression ... 736
Master-Details Display ... 739

Validation ...742
Error Notifications... 743
The BindingValidationFailed Event ... 745
The Validation Class ... 747
Creating Data Objects with Built-in Validation ... 747

Data Formatting and Conversion ...751
String Formatting.. 752
Value Converters .. 754
Formatting Strings with a Value Converter... 754
Creating Objects with a Value Converter .. 756
Applying Conditional Formatting .. 759

Data Templates..761
Separating and Reusing Templates.. 763
Implicit Data Templates.. 763
More Advanced Templates ... 764
Changing Item Layout... 766

The Last Word..767

 Chapter 21: Data Controls...769

Better Data Forms..770
The Goal: Data Class Markup.. 770
The Label .. 771
The DescriptionViewer.. 773
The ValidationSummary.. 775

Data Annotations ...777
Raising Annotation Errors... 777
The Annotation Attributes... 779

 CONTENTS

xxiv

The DataGrid ..785
Creating a Simple Grid.. 785
How Columns Are Resized and Rearranged ... 788
Defining Columns ... 788
Formatting and Styling Columns .. 792
Controlling Column Width ... 794
Formatting Rows .. 797
Row Details... 799
Freezing Columns... 800
Selection... 802
Sorting .. 802

DataGrid Editing...803
Editing with Templates... 803
Validation and Editing Events ... 805

The PagedCollectionView ..808
Sorting .. 808
Filtering .. 808
Grouping ... 809
Paging... 812

The TreeView ...814
Filling a TreeView ... 815
A Data-Bound TreeView.. 816

The PivotViewer ...819
Defining the PivotViewer .. 822
Navigating the PivotViewer... 825

The Last Word..827

 Chapter 22: File Access ..829

Isolated Storage...830

 CONTENTS

xxv

The Scope of Isolated Storage.. 830
What to Put in Isolated Storage .. 831

Using Isolated Storage...831
Opening an Isolated Store .. 831
File Management.. 832
Writing and Reading Data... 833
Requesting More Space ... 835
Storing Objects with XmlSerializer ... 837
Storing Application Settings ... 840

Accessing Files Outside of Isolated Storage..841
Reading Files with OpenFileDialog ... 842
Writing Files with SaveFileDialog ... 843
Transmitting Files with a Web Service ... 844
Dragging and Dropping Files .. 850

File Access in Elevated Trust Applications ..854
Accessing User Files... 855
Managing Directories and Files .. 856
Creating a Directory Tree.. 858

The Last Word..861

 Chapter 23: Networking..863

Interacting with the Web ...863
Cross-Domain Access... 864
HTML Scraping ... 866
REST and Other Simple Web Services.. 870
Using Network Credentials ... 874

Processing Different Types of Data ...875
XML... 875
Services That Return XML Data.. 876

 CONTENTS

xxvi

Services That Require XML Data .. 883
Services That Return SOAP Data .. 886
Services That Return JSON Data .. 886
RSS... 889

Sockets ..892
Understanding Sockets and TCP .. 892
Understanding Policy Files ... 894
The Policy Server.. 896
The Messaging Server.. 900
The Messenger Client... 904

Local Connections..909
Sending a Message .. 910
Receiving a Message.. 911

The Last Word..912

Index...913

xxvii

About the Author

 Matthew MacDonald is an author, educator, and former Microsoft MVP for Silverlight. He’s the author
of more than a dozen books about .NET programming, including Pro WPF in C# 2010, Pro ASP.NET 4 in
C# 2010, and Beginning ASP.NET in C# 2010. He’s also the author of Your Brain: The Missing Manual
(O’Reilly), a popular look at getting the most from your squishy gray matter. Matthew lives in Toronto
with his wife and two daughters.

xxviii

About the Technical Reviewer

 A prolific writer on cutting-edge technologies, Fabio Claudio Ferracchiati has contributed to more
than a dozen books on .NET, C#, Visual Basic, and ASP.NET. He is a .NET Microsoft Certified Solution
Developer and lives in Rome, Italy.

xxix

Acknowledgments

No author can complete a book without a small army of helpful individuals. I’m deeply indebted to the
whole Apress team, including Adam Heath and Ewan Buckingham, who shepherded the book through
its various stages; Fabio Ferracchiati and Damien Foggon, who hunted down stray errors in this and
previous editions of the book; and Kim Wimpsett, who copy edited the text. Finally, I’d never write any
book without the support of my wife and these special individuals: Nora, Razia, Paul, and Hamid.
Thanks everyone!

	Cover
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Understanding Silverlight
	Silverlight System Requirements
	Silverlight vs. Flash
	Silverlight vs. HTML5
	Silverlight vs. Metro (and Windows 8)
	Silverlight and WPF
	The Evolution of Silverlight

	About This Book
	What You Need to Use This Book
	The Silverlight Toolkit
	Code Samples
	Feedback

	The Last Word

	Introducing Silverlight
	Silverlight Design Tools
	Visual Studio vs. Expression Blend
	Understanding Silverlight Websites

	Creating a Stand-Alone Silverlight Project
	Creating a Simple Silverlight Page
	Adding Event-Handling Code
	Testing a Silverlight Application

	Creating an ASP.NET-Hosted Silverlight Project
	ASP.NET Controls That Render Silverlight Content
	Mixing ASP.NET Controls and Silverlight Content

	Silverlight Compilation and Deployment
	Compiling a Silverlight Application
	Deploying a Silverlight Application
	Silverlight Core Assemblies
	Silverlight Add-on Assemblies
	Assembly Caching

	The HTML Test Page
	Sizing the Silverlight Content Region
	Silverlight Parameters
	Alternate Content
	Creating a Friendly Install Experience
	The Mark of the Web

	The Last Word

	XAML
	XAML Basics
	XAML Namespaces
	The Code-Behind Class

	Properties and Events in XAML
	Simple Properties and Type Converters
	Complex Properties
	Attached Properties
	Nesting Elements
	Events
	The Full Eight Ball Example

	XAML Resources
	The Resources Collection
	The Hierarchy of Resources
	Accessing Resources in Code
	Organizing Resources with Resource Dictionaries

	Element-to-Element Binding
	One-Way Binding
	Two-Way Binding

	The Last Word

	Layout
	The Layout Containers
	The Panel Background
	Borders

	Simple Layout with the StackPanel
	Layout Properties
	Alignment
	Margins
	Minimum, Maximum, and Explicit Sizes

	The WrapPanel and DockPanel
	The WrapPanel
	The DockPanel

	The Grid
	Fine-Tuning Rows and Columns
	Nesting Layout Containers
	Spanning Rows and Columns
	The GridSplitter

	Coordinate-Based Layout with the Canvas
	Layering with ZIndex
	Clipping

	Custom Layout Containers
	The Two-Step Layout Process
	The UniformGrid

	Sizing Pages
	Scrolling with the ScrollViewer
	Scaling with the Viewbox
	Full-Screen Mode

	The Last Word

	Dependency Properties and Routed Events
	Dependency Properties
	Defining and Registering a Dependency Property
	Dynamic Value Resolution
	Attached Properties
	The WrapBreakPanel Example

	Routed Events
	The Core Element Events
	Event Bubbling
	Handled (Suppressed) Events
	An Event Bubbling Example

	Mouse Handling
	Right-Clicks
	Double and Triple Clicks
	Mouse Movements
	The Mouse Wheel
	Capturing the Mouse
	A Mouse Event Example
	Mouse Cursors

	Keyboard Handling
	Key Presses
	Key Modifiers
	Focus

	The Command Model
	Building a Command
	Connecting a Command

	The Last Word

	Elements
	The Silverlight Elements
	Static Text
	Font Properties
	Underlining
	Runs
	Wrapping Text
	Trimming Text
	Character Spacing

	Images
	Image Sizing
	Image Errors

	Content Controls
	The Content Property
	Aligning Content

	Buttons
	The HyperlinkButton
	The ToggleButton and RepeatButton
	The CheckBox
	The RadioButton

	Tooltips and Pop-Ups
	Customized Tooltips
	The Popup

	Items Controls
	The ListBox
	The ComboBox
	The TabControl

	Text Controls
	The TextBox
	The PasswordBox
	The AutoCompleteBox
	The RichTextBox
	Creating a Text Editor
	Using Interactive Elements in a RichTextBox
	The RichTextBlock

	Range-Based Controls
	The Slider
	The ProgressBar

	Date Controls
	The Last Word

	The Application Model
	The Application Class
	Accessing the Current Application
	Application Properties

	Application Events
	Application Startup
	Initialization Parameters
	Application Shutdown
	Unhandled Exceptions

	Custom Splash Screens
	Binary Resources
	Placing Resources in the Application Assembly
	Placing Resources in the Application Package
	Placing Resources on the Web

	Class Library Assemblies
	Using Resources in an Assembly
	Downloading Assemblies on Demand
	Supporting Assembly Caching

	The Last Word

	Navigation
	Loading User Controls
	Embedding User Controls in a Page
	Hiding Elements
	Managing the Root Visual
	Retaining Page State
	Browser History

	Child Windows
	Designing a ChildWindow
	Showing a ChildWindow

	The Frame and Page
	Frames
	URI Mapping
	Forward and Backward Navigation
	Hyperlinks
	Pages
	Navigation Templates

	Custom Content Loaders
	Authentication and Navigation
	Creating a Custom Content Loader
	Using the Custom Content Loader

	The Last Word

	Shapes and Transforms
	Basic Shapes
	The Shape Classes
	Rectangle and Ellipse
	Sizing and Placing Shapes
	Sizing Shapes Proportionately with a Viewbox
	Line
	Polyline
	Polygon
	Line Caps and Line Joins
	Dashes

	Paths and Geometries
	Line, Rectangle, and Ellipse Geometries
	Combining Shapes with GeometryGroup
	Curves and Lines with PathGeometry
	The Geometry Mini-Language
	Clipping with Geometry

	Transforms
	Transforming Shapes
	Transforms and Layout Containers
	A Reflection Effect

	Perspective Transforms
	The PlaneProjection Class
	Applying a Projection

	Exporting Clip Art
	Expression Design
	Conversion
	Save or Print to XPS

	The Last Word

	Brushes, Bitmaps, and Printing
	Brushes
	The LinearGradientBrush Class
	The RadialGradientBrush Class
	The ImageBrush

	Transparency
	Opacity Masks
	Making the Silverlight Control Transparent

	Pixel Shaders
	BlurEffect
	DropShadowEffect
	ShaderEffect

	The WriteableBitmap Class
	Generating a Bitmap
	Capturing Content from Other Elements

	Printing
	Printing a Single Element
	Printing Over Multiple Pages
	Bitmap and Vector Printing
	Creating a Print Preview

	The Last Word

	Animation Basics
	Understanding Silverlight Animation
	The Rules of Animation

	Creating Simple Animations
	The Animation Class
	The Storyboard Class
	Starting an Animation with an Event Trigger
	Starting an Animation with Code
	Configuring Animation Properties
	Animation Lifetime
	Simultaneous Animations
	Controlling Playback

	Animation Easing
	Using an Easing Function
	Easing In and Easing Out
	Easing Function Classes

	Animation Performance
	Desired Frame Rate
	Hardware Acceleration
	Independent Animations

	The Last Word

	Advanced Animation
	Animation Types Revisited
	Animating Transforms
	Animation Perspective Projections
	Animating Brushes
	Animating Pixel Shaders
	Key-Frame Animation

	Animations in Code
	The Main Page
	The Bomb User Control
	Dropping the Bombs
	Intercepting a Bomb
	Counting Bombs and Cleaning Up

	Encapsulating Animations
	Page Transitions
	The Base Class
	The Wipe Transition

	Frame-Based Animation
	The Last Word

	Sound, Video, and Deep Zoom
	Supported File Types
	The MediaElement
	Controlling Playback
	Handling Errors
	Playing Multiple Sounds
	Changing Volume, Balance, and Position
	Playing Video
	Trick Play
	Media Commands
	Client-Side Playlists
	Server-Side Playlists
	Progressive Downloading and Streaming
	Adaptive Streaming

	Advanced Video Playback
	Video Encoding
	Encoding in Expression Encoder
	Markers
	VideoBrush
	Video Effects

	Low-Latency Sound
	Play a Sound with SoundEffect
	Changing Playback Settings
	Overlapping Sounds with SoundEffectInstance
	Looping Audio

	Webcam and Microphone Input
	Accessing a Capture Device
	Basic Webcam Support
	Recording Audio Snippets

	Deep Zoom
	Creating a Deep Zoom Image Set
	Using a Deep Zoom Image Set in Silverlight

	The Last Word

	Silverlight 3D
	Understanding 3D in Silverlight
	Adding Assembly References
	Enabling 3D in a Silverlight Project

	Basic 3D Drawing
	The 3D Coordinate System
	Filling the Vertex Buffer
	Positioning the Camera
	Configuring the BasicEffect
	Drawing the Scene
	Backface Culling
	Scaling Your Drawing

	Complex Objects and Textures
	Drawing a Cube
	Adding Textures
	Lighting an Object
	Creating Multiple Objects
	Using Models

	Movement and Animation
	Moving a Shape
	Rotating a Shape
	Shape Animations
	Rotating and Moving the Camera

	The Last Word

	Styles and Behaviors
	Styles
	Defining a Style
	Applying a Style
	Dynamic Styles
	Style Inheritance
	Organizing Styles
	Automatically Applying Styles by Type
	Style Binding Expressions

	Behaviors
	Getting Support for Behaviors
	Triggers and Actions
	Creating a Behavior
	Finding More Behaviors
	The FluidMoveBehavior

	The Last Word

	Control Templates
	Template Basics
	Creating a Template
	Reusing Control Templates
	The ContentPresenter
	Template Bindings
	Setting Templates Through Styles
	Reusing Colors

	The Parts and States Model
	Understanding States with the Button Control
	Showing a Focus Cue
	Transitions
	Understanding Parts with the Slider Control
	Layout Transitions

	Creating Templates for Custom Controls
	Planning the FlipPanel Control
	Creating the Solution
	Starting the FlipPanel Class
	Adding the Default Style with Generic.xaml
	Choosing Parts and States
	Starting the Default Control Template
	The FlipButton Control
	Defining the State Animations
	Wiring Up the Elements in the Template
	Using the FlipPanel
	Using a Different Control Template

	The Last Word

	Multithreading
	Understanding Multithreading
	The Goals of Multithreading
	The DispatcherTimer

	The Thread Class
	Marshaling Code to the User Interface Thread
	Creating a Thread Wrapper
	Creating the Worker Class
	Using the Thread Wrapper
	Cancellation Support

	The BackgroundWorker
	Creating the BackgroundWorker
	Running the BackgroundWorker
	Tracking Progress
	Supporting Cancellation

	The Last Word

	Browser Integration
	Interacting with HTML Elements
	Getting Browser Information
	The HTML Window
	Popup Windows
	Inspecting the HTML Document
	Manipulating an HTML Element
	Handling JavaScript Events

	Code Interaction
	Calling Browser Script from Silverlight
	Calling Silverlight Methods from the Browser
	Instantiating Silverlight Objects in the Browser

	Combining Silverlight and HTML Content
	Sizing the Silverlight Control to Fit Its Content
	Placing the Silverlight Control Next to an HTML Element

	Securing HTML Interoperability
	The Last Word

	Out-of-Browser Applications
	Understanding Out-of-Browser Support
	Creating an Out-of-Browser Application
	Installing an Out-of-Browser Application
	Customizing Icons
	Tracking Application State
	Removing and Updating an Application
	Silent Installation

	Out-of-Browser Application Features
	The WebBrowser Control
	Notification Windows
	Controlling the Main Window

	Elevated Trust
	Installing an Elevated-Trust Application
	The Abilities of an Elevated-Trust Application
	Window Customization
	Child Windows
	COM
	P/Invoke
	Elevated-Trust Applications in the Browser

	The Last Word

	ASP.NET Web Services
	Building Web Services for Silverlight
	Creating a Web Service
	Adding a Service Reference
	Calling the Web Service
	Configuring the Web Service URL
	Using a Busy Indicator

	Web Service Data Types
	Custom Data Classes
	Web Service Type Sharing

	More Advanced Web Services
	Cross-Domain Web Service Calls
	Monitoring the Network Connection
	Using ASP.NET Platform Services
	WCF RIA Services

	Duplex Services
	Configuring the Service
	The Interfaces
	The Service
	The Client

	The Last Word

	Data Binding
	Binding to Data Objects
	Building a Data Object
	Displaying a Data Object with DataContext
	Storing a Data Object as a Resource
	Null Values and Failed Bindings
	Editing with Two-Way Bindings
	Change Notification
	Debugging a Data Binding Expression
	Building a Data Service
	Calling a Data Service

	Binding to a Collection of Objects
	Displaying and Editing Collection Items
	Inserting and Removing Collection Items
	Binding to a LINQ Expression
	Master-Details Display

	Validation
	Error Notifications
	The BindingValidationFailed Event
	The Validation Class
	Creating Data Objects with Built-in Validation

	Data Formatting and Conversion
	String Formatting
	Value Converters
	Formatting Strings with a Value Converter
	Creating Objects with a Value Converter
	Applying Conditional Formatting

	Data Templates
	Separating and Reusing Templates
	Implicit Data Templates
	More Advanced Templates
	Changing Item Layout

	The Last Word

	Data Controls
	Better Data Forms
	The Goal: Data Class Markup
	The Label
	The DescriptionViewer
	The ValidationSummary

	Data Annotations
	Raising Annotation Errors
	The Annotation Attributes

	The DataGrid
	Creating a Simple Grid
	How Columns Are Resized and Rearranged
	Defining Columns
	Formatting and Styling Columns
	Controlling Column Width
	Formatting Rows
	Row Details
	Freezing Columns
	Selection
	Sorting

	DataGrid Editing
	Editing with Templates
	Validation and Editing Events

	The PagedCollectionView
	Sorting
	Filtering
	Grouping
	Paging

	The TreeView
	Filling a TreeView
	A Data-Bound TreeView

	The PivotViewer
	Defining the PivotViewer
	Navigating the PivotViewer

	The Last Word

	File Access
	Isolated Storage
	The Scope of Isolated Storage
	What to Put in Isolated Storage

	Using Isolated Storage
	Opening an Isolated Store
	File Management
	Writing and Reading Data
	Requesting More Space
	Storing Objects with XmlSerializer
	Storing Application Settings

	Accessing Files Outside of Isolated Storage
	Reading Files with OpenFileDialog
	Writing Files with SaveFileDialog
	Transmitting Files with a Web Service
	Dragging and Dropping Files

	File Access in Elevated Trust Applications
	Accessing User Files
	Managing Directories and Files
	Creating a Directory Tree

	The Last Word

	Networking
	Interacting with the Web
	Cross-Domain Access
	HTML Scraping
	REST and Other Simple Web Services
	Using Network Credentials

	Processing Different Types of Data
	XML
	Services That Return XML Data
	Services That Require XML Data
	Services That Return SOAP Data
	Services That Return JSON Data
	RSS

	Sockets
	Understanding Sockets and TCP
	Understanding Policy Files
	The Policy Server
	The Messaging Server
	The Messenger Client

	Local Connections
	Sending a Message
	Receiving a Message

	The Last Word

	Index
	Numbers and Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X, Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

