FOURTH EDITION
0000 .~

Pro
Silverlig
in C#

CREATE CROSS-PLATFORM .NET
APPLICATIONS FOR THE BROWSER

Matthew MacDonald

Apresse

http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

0N

Apress°

[vww allitebooks.cond

http://www.allitebooks.org

iv

Contents at a Glance

About the AUhOrccnimmmimmnesmsensss s Xxvii
About the Technical ReVIEWETccsvssmssmismssmmssmmssmsssmsssmssssss s s ssssssssssnsnes XXviil
Acknowledgmentsccccsmismmmmmmssmmsssmms s s —————— XXiX
INtroductioncccveiinmminen s ———————————— XXX
Chapter 1: Introducing Silverlightcccccinminnnmnnmsssnmssssnss——————" 1
Chapter 2: XAML........ccccunsemmmmmmsssmmssmssssssssssssssssssssssssssssssssssassssassssssssnssassssnsnsnansas 33
Chapter 3: Layout........ccccuismmmmmmssssnmmmsssssssnmsssssssnmssssssssssssssssnnssssnnnssssssnnnnnsssnnnnnnssns 61
Chapter 4: Dependency Properties and Routed Eventsccccccnmrnsssnnnnnssssnnnnas 107
Chapter 5: Elements..........cciuemmimmmenmmmmmssmmssmmesmsssssssmsssssssssssssssssssssssssssassnns 143
Chapter 6: The Application Model...........ccccsiemmmmmnsennnmmmsssnmmmssssnmssssmmm————m 203
Chapter 7: Navigationccccuusssssmsmmmmmmmmssssssssssssssssssssssssssssssnssssssssssssssnnsssnsssssnns 233
Chapter 8: Shapes and Transformscccccvisesrmsssssmssssssssssesssssessssessssesssnsssssns 263
Chapter 9: Brushes, Bitmaps, and Printingccccccmnnnemmmmnsssssnnmnsssssnssssssnns 315
Chapter 10: Animation BasiCScusmismmismmsmmsmmsmsmsms s s 351
Chapter 11: Advanced AnNIMationcccucemmssmmmssssnmsssnsmssssssssssssssssnssssnsssssnnnnsns 379
Chapter 12: Sound, Video, and Deep ZOOM.........cceerrsssmsesssnsssssnssssssnssssnnssssnnsessas 413
Chapter 13: Silverlight 3D..........cccuscmmmmmmsmmmsnmmemmssmmssmmasmsssssmassssassam. 469
Chapter 14: Styles and Behaviors..........cccimnnseemmmnssssssmmmssssssnmssssssnmsssssssssssssnsns 513
Chapter 15: Control Templatesccccuseemmmmsssennmmmssssnnmmmsssssnmmssssssmmsssssssessssssnnns 541
Chapter 16: Multithreading.......ccuseesrssssmmssssnsssssssssssssssssssssssssesssnsesssssesssnsesssnnessnns 585
Chapter 17: Browser Integrationccccmsmmmssmmsemmssnsmsssmssssssssssssssssssssssssanssnns 607
Chapter 18: Out-of-Browser ApplicationsS.......cccccemmrrmrmmssssssssssssnmssssssssssssssssssssnss 633
Chapter 19: ASP.NET Web ServicCesccsssesmsssssssssansssssnsssssnsssssnsssssnsssssasssssnnsnss 683

[vww allitebooks.cond

http://www.allitebooks.org

CONTENTS

Chapter 20: Data Binding........cccuussssssmsmmmmmmmsssssssssssssssssssssssssssssssssssessssssssssnnnssnnss 715
Chapter 21: Data Controls.........cueussesmssessssnsssansssansssnsssansssassssnsssansssassssnsssansssanssns 769
Chapter 22: File ACCESScuussssssssssassssnsssansssansssnssssnsssassssnsssansssansssnssssnsssansssnnssns 829
Chapter 23: Networking........ooussumsmmsssmssmmssmsssmsssmsssmsssmssssssssssssssmssssssssssssssasnsanns 863
111 O 913

[vww allitebooks.cond

http://www.allitebooks.org

Introduction

Silverlight is a framework for building rich, browser-hosted applications that run on a variety of
operating systems. Silverlight works its magic through a browser plug-in. When you surf to a web page
that includes Silverlight content, this browser plug-in runs, executes the code, and renders that content
in a specifically designated region of the page. The important part is that the Silverlight plug-in provides
aricher environment than the traditional blend of HTML and JavaScript that powers ordinary web
pages. Used carefully and artfully, you can create Silverlight pages that play video, have hardware-
accelerated 3D graphics, and use vector animations.

Understanding Silverlight

Silverlight uses a familiar technique to go beyond the capabilities of standard web pages: a lightweight
browser plug-in.

The advantage of the plug-in model is that the user needs to install just a single component to see
content created by a range of different people and companies. Installing the plug-in requires a small
download and forces the user to confirm the operation in at least one security dialog box. It takes a short
but definite amount of time, and it’s an obvious inconvenience. However, once the plug-in is installed,
the browser can process any content that uses the plug-in seamlessly, with no further prompting.

Figure 1 shows two views of a page with Silverlight content. At the top is the page you'll see if you
don’thave the Silverlight plug-in installed. At this point, you can click the Get Microsoft Silverlight
picture to be taken to Microsoft’s website, where you'll be prompted to install the plug-in and then sent
back to the original page. On the bottom is the page you'll see once the Silverlight plug-in is installed.

[vww allitebooks.cond

http://www.allitebooks.org

@& EQuintera.net - Tetrislight - Windows Internet Explorer (=] B)
OO - |12 rttpy//elquintero.net/BlogGeeks/Silveriight Tetrislight/defauft atmi -] x]
T4 < |[E) EIQuinterounet - Tetrislight] % v # v hPage v {Tools v

_ Click now to install

QUICK DOWNLOAD / 30 SECOND INSTALL

<

INEXXeTy

Q
b Doo

(PR B A

Level 9
Wmeg ©

o0 B8 geere
e eI

L
r
[

,...-n.' lg; -

[@ Internet | Protected Mode: On ®100% v
g ElQuintero.net - Tetrislight - Windows Internet Explorer LEI@&
~|[2] nttp://elquintero.net/BlogGeeks/Silverlight/Tetrislight/default.htm! |4 X
p://elg 9G gl igl
o =
T8 < |[@) EIQuinterounet - Tetrislight] %o v i v b Page v £ Tools ¥

o Internet | Protected Mode: On # 100% - .E

Figure 1. Installing the Silverlight plug-in

vww .allitebooks.cond

“ INTRODUCTION

http://www.allitebooks.org

INTRODUCTION

Note At the time of this writing, Silverlight 4 is installed on an estimated 75% of Internet-connected computers
(including desktop and mobile devices). The share is higher if you consider only Windows operating systems or
Interent Explorer browsers. Although this is impressive, it pales in comparison to Flash, which has version 10 or
better installed on a staggering 96% of all web devices. (To get up-to-date statistics, refer to www.riastats.com.)

Silverlight System Requirements

With any Web-centric technology, it’s keenly important to have compatibility with the widest possible
range of computers and devices. And although Silverlight isn’t completely cross-platform, its
compatibility stacks up well on the majority of desktop computers.

Currently, Silverlight supports:

e Windows computers: Silverlight works on PCs with Windows 7, Windows Vista,
and Windows XP. The minimum browser versions that Silverlight supports are
Internet Explorer 6, Firefox 1.5, and Google Chrome 4.0. Silverlight will also work
in Windows 2000, but only with Internet Explorer 6. Other browsers, such as
Opera and Safari (for Windows), aren’t currently supported.

e Mac computers: Silverlight works on Mac computers with OS X 10.4.8 or later,
provided they have Intel hardware (as opposed to the older PowerPC hardware).
The minimum browser versions that Silverlight supports are Firefox 2 and Safari 3.
Silverlight does not run on mobile Apple devices, which includes the iPhone, iPod
Touch, and iPad.

e Linux computers: Although Silverlight 5 doesn’t work on Linux, the Mono team
has created an open-source Linux implementation called Moonlight. The last
officially released version supports Silverlight 2 applications, although there is also
areleased preview version that supports Silverlight 4. Progress is slow, and it’s
uncertain when (and if) there will be a Moonlight that supports Silverlight 5.

e Windows Phone: Silverlight is also one of two development frameworks for
Windows Phone 7 (the other being the game-focussed Microsoft XNA). However,
developing for Windows Phone raises some unique considerations, and there are
some subtle feature differences. To learn more about WP7 development, you can
refer to a dedicated book, like Pro Windows Phone 7 Development.

Installing Silverlight requires a small-sized setup (around 6MB) that’s easy to download. That allows
it to provide an all-important “frictionless” setup experience, much like Flash.

Silverlight vs. Flash

The most successful browser plug-in is Adobe Flash, which is installed on over 90 percent of the world’s
web browsers. Flash has a long history that spans more than ten years, beginning as a straightforward
tool for adding animated graphics and gradually evolving into a platform for developing interactive
content.

Xxxii

[vww allitebooks.cond

http://www.riastats.com
http://www.allitebooks.org

INTRODUCTION

It’s perfectly reasonable for .NET developers to create websites that use Flash content. However,
doing so requires a separate design tool, and a completely different programming language
(ActionScript) and programming environment (Flex). Furthermore, there’s no straightforward way to
integrate Flash content with server-side .NET code. For example, creating Flash applications that call
.NET components is awkward at best. Using server-side .NET code to render Flash content (for example,
a custom ASP.NET control that spits out a Flash content region) is far more difficult.

That’s where Silverlight fits into the picture. Silverlight aims to combine the raw power and cross-
platform support of Flash with a first-class programming platform that incorporates the fundamental
concepts of .NET. As a result, developers can write client-side code for Silverlight in the same language
they use for server-side code (such as C# and VB), and use many of the same abstractions (including
streams, controls, collections, generics, and LINQ). In short, for .NET developers Silverlight is both a
more convenient and a more powerful choice for rich Internet applications.

Silverlight vs. HTML5

When Silverlight was first created, it was intended as an all-purpose way to build rich web pages, and a
competitor to Adobe Flash. However, in the several Silverlight versions since, the world has changed.
Although Adobe Flash is still supported by virtually every desktop computer, it’s been locked out of
popular Apple products like the iPhone and iPad. As a result, the mobile world is gravitating to different
solutions, including native applications (which are limited to just one operating system) or HTMLS5.

A broad consensus exists that HTMLS5 is the future of the Web, someday. However, the features that
HTMLS5 promises (when it’s fully adopted) still fall far short of the features that are available today in
Flash and Silverlight. For some applications, these shortcomings don’t matter. And, without doubt, the
capabilities of HTML5 will strengthen in the future. But in the meantime, developers are forced choosing
between features now, if they need them (in which case they’re likely to pick Silverlight) and the
broadest possible compatibility for all computers and mobile devices (in which case they’ll probably
prefer HTMLS5). This dilemma is also described as rich versus reach. Silverlight is the rich side of this
equation—it gives applications the most powerful and mature feature set. HTMLS5 is the reach, because
it embraces every modern desktop browser.

Because of this upheaval, many Silverlight developers are uncertain about exactly where their
favorite technology fits into the world of web development. And while the future is far from certain, here
are a few points to keep in mind:

HTMLS5 isn’t quite here yet: HTML5 support lags in in Internet Explorer. Many HTML5 features are
promised for the not-yet-released IE 10, some features are available in the relatively recent IE 9, but
IE 8 has no HTMLS5 smarts. This is a problem, because IE 8 is the best version of IE that can run on
the still-widespread Windows XP platform. For all these reasons, HTML5 remains currently has less
support than Silverlight, and this situation may take years to change.

Silverlight has features that have no HTML5 equivalent: Even in the browsers that offer the best
possible HTML5 support fall behind Silverlight in a few key ares. They can’t offer the same video
streaming features, the same hardware-accelerated graphics, or the same deep networking support.
Nor do they support file access, out-of-browser applications, or the ability to call Windows system
components. And it’s hard to imagine HTMLS5 ever duplicating some of Silverlight’s more
specialized features, like the PivotViewer control that fuses together data filtering, fluid animations,
and image scaling in one easy-to-use package (Chapter 21).

Silverlight has a higher-level programming API: Features like data binding, styles, and templates
may not be essential for building an application, but they are important for building one quickly

xxxiii

[vww allitebooks.cond

http://www.allitebooks.org

INTRODUCTION

and efficiently. Many things that are possible in HTML5 are a managibility nightmare in all but the
most disciplined hands. The JavaScript language is notoriously lax in letting syntax errors slide, all
animation routines must be written by hand, and multithreading support is clumsy at best.

Silverlight has top-tier development tools: Thanks to Visual Studio, you can build a Silverlight
application just as easily as you build a desktop program. Add Expression Blend to the picture, and
you also have a way to define and customize rich graphical effects, like animations.

Silverlight offers ASP.NET integration: In particular, Silverlight makes it easy to query server-side
databases through a web service. This state of affairs has led some developers to speculate that even
when HTMLS5 does finally conquer the world, Silverlight will remain as a first choice for line-of-
business development inside closed company networks.

No one’s quite sure of Silverlight’s future. It may continue on as a first-choice platform for .NET
developers creating business applications, or it may gradually transition into a more specialized tool for
cutting-edge games and video players. One thing is settled, however—Silverlight will never replace
HTML as the main language for creating traditional, public websites—nor does it intend to.

Silverlight vs. Metro (and Windows 8)

When Microsoft announced Windows 8, complete with yet another programming model for rich client
applications, Silverlight developers paused. Some wondered if that technology—named Metro—would
be an eventual Silverlight replacement.

The answer is clearly “no.” Metro is designed to facilitate an entirely different sort of application: a
lightweight, touch-centric, data-consuming application that can run on the future generation of
Windows 8-powered tablets. In a very real sense, Metro is a competitor to native apps on the iPad, as
well as a potential successor to Microsoft’s other rich desktop programming framework, WPF (see the
next section). However, Metro applications have no ability to run on non-Microsoft platforms—or any
version of Windows other than Windows 8. For that reason, they are of little interest to Silverlight
developers.

In the future, the range of Silverlight applications may narrow, squeezed between cross-platform
HTMLS5 applications that are gradually growing more sophisticated, and native Metro or iPad
applications for mobile devices. However, today Silverlight still occupies the very important space
between these other technologies.

Silverlight and WPF

One of the most interesting aspects of Silverlight is the fact that it borrows the model WPF uses for rich,
client-side user interfaces.

WPF is a toolkit for building rich Windows applications. WPF is notable because it not only
simplifies development with a powerful set of high-level features, it also increases performance by
rendering everything through the DirectX pipeline. To learn about WPF, you can refer to Pro WPF in C#
2010 (Apress).

Silverlight obviously can’t duplicate the features of WPF, because many of them rely deeply on the
capabilities of the operating system, including Windows-specific display drivers and DirectX technology.
However, rather than invent an entirely new set of controls and classes for client-side development,
Silverlight uses a subset of the WPF model. If you've had any experience with WPF, you'll be surprised to
see how closely Silverlight resembles its big brother. Here are a few common details:

XXXiV

[vww allitebooks.cond

http://www.allitebooks.org

INTRODUCTION

e To define a Silverlight user interface (the collection of elements that makes up a
Silverlight content region), you use XAML markup, just as you do with WPF. You
can even map data to your display using the same data-binding syntax.

e Silverlight borrows many of the same basic controls from WPF, along with the
same styling system (for standardizing and reusing formatting), and a similar
templating mechanism (for changing the appearance of standard controls).

e To draw 2D graphics in Silverlight, you use shapes, paths, transforms, geometries,
and brushes, all of which closely match their WPF equivalents.

e Silverlight provides a declarative animation model that’s based on storyboards,
and works in the same way as WPF’s animation system.

e To show video or play audio files, you use the MediaElement class, as you do in
WPEF.

Note WPF is not completely cut off from the easy deployment world of the Web. WPF allows developers to
create browser-hosted applications called XBAPs (XAML Browser Applications). These applications are downloaded
seamlessly, cached locally, and run directly inside the browser window, all without security prompts. However,
although XBAPs run in Internet Explorer and Firefox, they are still a Windows-only technology, unlike Silverlight.

The Evolution of Silverlight

Silverlight 1 was a relatively modest technology. It included 2D drawing features and media playback
support. However, it didn’t include the CLR engine or support for .NET languages, so developers were
forced to code in JavaScript.

Silverlight 2 was a dramatic change. It added the CLR, a subset of .NET Framework classes, and a
user interface model based on WPF. As a result, Silverlight 2 was one of the most hotly anticipated
releases in Microsoft’s history.

The versions of Silverlight since haven’t been as ambitious. Silverligh 5 keeps the same development
model that was established in Silverlight 2, but adds a carefully selected group of features and
performance enhancements. They highlights include:

e Performance improvements: Silverlight 5 starts faster, supports 64-bit browsers,
and provides cleaner, crisper text rendering at small sizes.

e Vector printing: Silverlight improves its printing model to use vector printing,
when possible (namely, if the print driver supports PostScript). The result is faster
printing with less memory overhead (Chapter 9).

e Hardware-accelerated 3D graphics: Silverlight ports over a portion of the Microsoft
XNA framework used for building Xbox games. With it comes a powerful but very
low-level interface for rendering 3D scenes. Best of all, the video card does all the
work, ensuring blistering performance (Chapter 13).

[vww allitebooks.cond

http://www.allitebooks.org

INTRODUCTION

e Low-latency sound: Another benefit from Microsoft XNA is Silverlight’s new
support for low-latency sound playback. This is particularly useful for games that
can’t afford the slightest bit of lag (Chapter 12).

e Trick play: A new frill lets you play videos faster or slower, without changing the
pitch of the audio. This allows users to get their content (for example, watch a
video of a lecture) at their preferred speed (Chapter 12).

e Double-click and triple-click: A minor enhancement solves a long-standind
Silverlight annoyance. You can now easily distinguish between a single click and
the two clicks in quick succession that represent a double-click. Silverlight even
lets you look for triple-clicks (Chapter 4).

e Remote media control support: It's now possible to react to playback commands
sent from a remote control or enhanced keyboard with media control buttons,
provided your application is running in full-screen mode (Chapter 12).

e Pivot viewer: This all-in-one control gives you a unique new way to present huge
collections of data. It combines scalable pictures, data filtering, and fluid
animations to create a seamless viewing experience. And best of all, you need to
add hardly a line of your own code (Chapter 21).

e XAML debugging: You can now troubleshoot data binding errors by placing a
breakpoint in your data binding expression (Chapter 20).

e Child windows: Out-of-browser applications can now show secondary windows,
just like real Windows applications. They don’t even need elevated trust (Chapter
18).

e Fullfile access and P/Invoke: Applications that run with elevated trust can now
easily access any file on the hard drive that the user can access (except for those
that require administrator privileges). They can also use P/Invoke on Windows
computer to call legacy C functions or the Windows API (Chapter 18).

e Elevated-trust in-browser applications: This new sort of application combines the
benefits of elevated trust with the streamlined no-install deployment of an
ordinary Silverlight application. But there’s a significant catch—this option’s only
feasible in a controlled environment (say, inside a company network), where you
can configure the certificates on all your clients (Chapter 18).

Note This book contains everything you need to master Silverlight 5. You don’t need any experience with
previous versions of Silverlight. However, if you have developed with Silverlight 4, you'll appreciate the “What’s
New” tip boxes that follow the introduction in each chapter. They point out features that are new to Silverlight 5,
S0 you can home in on its changes and enhancements.

INTRODUCTION

BACKWARD COMPATIBILITY IN SILVERLIGHT 5

At this point, you might be wondering if older Silverlight applications can run on a computer that has only
the latest version of the Silverlight plugin (version 5) installed. It's a reasonable question, as Silverlight 5
introduces some subtle changes and bug fixes that can influence the way applications work—and even
change its behavior.

However, Silverlight 5 prevents these differences from causing problems by using its quirks mode feature.
When the Silverlight 5 plugin loads an application that was compiled for an earlier version of Silverlight, it
automatically switches into a quirks mode that attempts to emulate the behavior of the appropriate
Silverlight runtime environment.

For more detailed information about breaking changes between Silverlight 5 and Silverlight 4, you can
refer to http://tinyurl.com/6hkgtmp.

About This Book

This book is an in-depth exploration of Silverlight for professional developers. You don’t need any
experience with WPF or previous versions of Silverlight, but you do need to know the .NET platform, the
C# language, and the Visual Studio development environment.

What You Need to Use This Book

In order to run Silverlight applications, you simply need the Silverlight browser plug-in, which is
available at http://silverlight.net. In order to create Silverlight applications (and open the sample
projects included with this book), you need Visual Studio 2010 and the Silverlight 5 Tools for Visual
Studio 2010. Although they’re in beta at the time of this writing, you can download the latest versions by
searching for “Silverlight 5 tools” at the Microsoft Download Center, www.microsoft.com/download.

Alternatively, you can use Expression Blend—a graphically oriented design tool—to create, build,
and test Silverlight applications. Overall, Expression Blend is intended for graphic designers who spend
their time creating serious eye candy, while Visual Studio is ideal for code-heavy application
programmers. This book assumes you're using Visual Studio. If you’d like to learn more about
Expression Blend, you can consult one of many dedicated books on the subject.

The Silverlight Toolkit

To keep in touch with Silverlight’s latest developments, you should also download Microsoft’s
impressive Silverlight Toolkit, which provides a set of controls and components that extend the features
of Silverlight. You can use them in your Silverlight applications simply by adding an assembly reference.
The Silverlight Toolkit isn’t just a package of useful tools. It’s also a development process that
gradually brings new controls into the Silverlight platform. Many new controls appear first in the

XXXVii

http://tinyurl.com/6hkgtmp
http://silverlight.net
http://www.microsoft.com/download

INTRODUCTION

Silverlight Toolkit, are gradually refined, and then migrate to the core platform. Examples of controls
that have made the jump from the Silverlight Toolkit to the core Silverlight plugin include the
AutoCompleteBox, TreeView, and Viewbox.

To understand how this process works, you need to understand a bit more about the Silverlight
Toolkit’s quality bands—groups of controls at a particular evolutionary stage. The Silverlight Toolkit
divides its features into four quality bands:

e Mature: The mature band has controls that are unlikely to change. Usually, these
are controls that are already included with the core Silverlight plugin. However,
the Silverlight Toolkit gives you access to their complete source code, which opens
up customization possibilities.

e Stable: The stable band includes controls that are ready for inclusion in just about
any application—however, there may be further tweaks and fixes in the future that
subtly change behavior. This book describes many of the stable controls,
including the DockPanel, WrapPanel, and Expander.

e Preview: The preview band includes controls that are reliable enough for most
applications, but are likely to change in response to developer comments, so you
expect to change your code before using newer versions.

e Experimental: The experimental band includes new controls that are intended to
solicit developer feedback. Feel free to play with these, but include them in an
application at your own risk.

To learn more about the different quality bands, try out the controls with live demos, or download
the Silverlight Toolkit for yourself, go to http://silverlight.codeplex.com. At the time of this writing,
the current version of the Silverlight Toolkit is called the “Silverlight 4 Toolkit”, but it works equally well
with Silverlight 5.

Code Samples

It’s a good idea to check the Apress website or waw.apress.com to download the up-to-date code samples.
You'll need to do this to test most of the more sophisticated code examples described in this book
because the less significant details are usually left out. This book focuses on the most important sections
so that you don’t need to wade through needless extra pages to understand a concept.

Feedback

This book has the ambitious goal of being the best tutorial and reference for programming Silverlight.
Toward that end, your comments and suggestions are extremely helpful. You can send complaints,
adulation, and everything in between directly to apress@prosetech.com. I can’t solve your Silverlight
problems or critique your code, but I will benefit from information about what this book did right and
wrong (or what it may have done in an utterly confusing way).

Xxxviii

http://silverlight.codeplex.com
http://www.apress.com
mailto:apress@prosetech.com

INTRODUCTION

The Last Word

Asyou've seen, Silverlight 5 is the latest iteration of Microsoft’s .NET-based, plug-in-powered web
programming environment. Silverlight began its life as a Flash competitor. It continues today as a
platform for building rich applications that need high-powerforming graphics, animations, video. For
some, it’s a lightweight version of .NET that you can deploy use without installation headaches. For
others, it’s a way to get hardware-accelerated 3D games running right inside a browser. For still others,
it’s a most mature, productive, cross-platform framework for business applications—provided you don’t
need to support mobile devices. And no matter where the Web goes over the next few years, Silverlight
will continue to power some of the most impressive rich Internet applications.

XXXiX

CHAPTER 1

Introducing Silverlight

In the introduction, you learned about the design philosophy that underpins Silverlight. Now, you're
ready to get your hands dirty and create your first Silverlight application.

The best starting point for coding a Silverlight application is Visual Studio, Microsoft’s premiere
development tool. In this chapter, you'll see how to create, compile, and deploy a Silverlight application
using Visual Studio. Along the way, you'll get a quick look at how Silverlight controls respond to events,
you'll see how Silverlight applications are compiled and packaged for the Web, and you’ll consider the
two options for hosting Silverlight content: either in an ordinary HTML web page or in an ASP.NET web
form.

Silverlight Design Tools

Although it’s technically possible to create the files you need for a Silverlight application by hand,
professional developers always use a development tool. If you're a graphic designer, that tool is likely to
be Microsoft Expression Blend, which provides a full complement of features for designing visually rich
user interfaces. If you're a developer, you'll probably use Visual Studio, which includes well-rounded
tools for coding, testing, and debugging.

Because both tools are equally at home with the Silverlight application model, you can easily create
a workflow that incorporates both of them. For example, a developer could create a basic user interface
with Visual Studio and then hand it off to a crack design team, which would polish it up with custom
graphics in Expression Blend. When the face-lift is finished, the designers deliver the project to the
developers, who continue writing and refining its code in Visual Studio.

Many developers go a step further: they install both applications on their computer, load them
simultaneously, and switch between them as they go. They use Visual Studio for core programming tasks
such as code-writing and debugging and switch to Expression Blend to enhance the user interface—for
example, to edit control templates, pick colors, refine animations, and draw simple vector art. (This
back-and-forth process works because once you save the changes in one program, the other program
notices. When you switch back, it will prompt you to perform a quick refresh that loads the new version.
The only trick is that you need to remember to save before switching.) Whether you use this approach is
up to you—but even if you do, Visual Studio will be the starting point and central hub for your
development.

Finally, it’s worth noting that Microsoft is hard at work designing another development tool that
uses Silverlight, called Visual Studio LightSwitch. With LightSwitch, the emphasis is on using templates
and code generation to quickly build sophisticated applications. The ideal LightSwitch user is a business
developer who wants to quickly create a data-driven application with a Silverlight front end. However,
LightSwitch can also be a starting point to build more sophisticated projects that will be further refined
and customized in Visual Studio. LightSwitch isn’t covered in this book, but you can learn more about it

CHAPTER 1 = INTRODUCING SILVERLIGHT

(and download a beta) from www.microsoft.com/visualstudio/lightswitch. Or, check out Pro Business
Applications with Silverlight 5 (Apress, 2011), which has a dedicated chapter on the subject.

Visual Studio vs. Expression Blend

If you're still trying to understand how Visual Studio and Expression Blend stack up, here’s a quick
overview:

o Visual Studio: It has everything you need to develop Silverlight applications, with a
visual designer for Silverlight pages. Using this designer, you can drag, drop, and
draw your user interface into existence (which isn’t always the best idea), and you
can get a live preview of what it looks like (which is terrifically useful).

e Expression Blend: It provides the rich support for creating Silverlight user
interface, with visual tools that surpass Visual Studio. For certain types of user
interface grunt work (for example, creating a nice gradient fill), it’s a tremendous
help. Expression Blend also supports a fun application prototyping tool called
SketchFlow and includes a decent coding editor that’s designed to look like Visual
Studio. However, it lacks many advanced and important development tools, such
as debugging, code refactoring, and project source control.

Note Visual Studio 2010 includes full support for creating Silverlight 3 projects. But to create Silverlight 5
projects, you need the Silverlight 5 Tools for Visual Studio 2010. And if you plan to use Expression Blend with
Silverlight 5, you’ll (currently) need to use a beta version called the Expression Blend Preview for Silverlight 5. You
can download both tools from the Microsoft Download Center (search for Silverlight 5 at
www.microsoft.com/download).

This book assumes you’re working primarily with Visual Studio. You'll get occasional tips for
Expression Blend (and other Expression products that work with Silverlight, including the Expression
Design drawing tool and Expression Encoder video encoding tool). But if you really want to master
Expression Blend, you should consider a dedicated book on the subject, spend an afternoon
experimenting, or take a look through Microsoft’s Expression Blend training videos at
http://expression.microsoft.com/cc136535.aspx.

Understanding Silverlight Websites

You can create two types of Silverlight websites in Visual Studio or Expression Blend:

e Anordinary website with HTML pages: In this case, the entry point to your
Silverlight application is a basic HTML file that includes a Silverlight content
region.

http://www.microsoft.com/visualstudio/lightswitch
http://www.microsoft.com/download
http://expression.microsoft.com/cc136535.aspx

CHAPTER 1 = INTRODUCING SILVERLIGHT

e ASP.NET website: In this case, Visual Studio creates two projects—one to contain
the Silverlight application files and one to hold the server-side ASP.NET website
that will be deployed alongside your Silverlight files. The entry point to your
Silverlight application can be an ordinary HTML file, or it can be an ASP.NET web
page that includes server-generated content.

So, which approach is best? No matter which option you choose, your Silverlight application will
run the same way—the client browser will receive an HTML document, which will include a Silverlight
content region, and the Silverlight code will run on the local computer, not the web server. However, the
ASP.NET web approach makes it easier to mix ASP.NET and Silverlight content. This is usually a better
approach in the following cases:

e You want to create a website that contains both ASP.NET web pages and
Silverlight-enhanced pages.

e Youwant to create a Silverlight application that calls a web service, and you want
to design the web service at the same time (and deploy it to the same web server).

¢ You want to generate Silverlight content indirectly, using specialized ASP.NET
web controls.

On the other hand, if you don’t need to write any server-side code, there’s little point in creating a
full-fledged ASP.NET website. Many of the Silverlight applications you'll see in this book use basic
HTML-only websites. The examples only include ASP.NET websites when they need specific server-side
features. For example, the examples in Chapter 20 use an ASP.NET website that includes a web service.
This web service allows the Silverlight application to retrieve data from a database on the web server, a
feat that would be impossible without server-side code. You'll learn how to design an ASP.NET web
service for Silverlight in Chapter 19.

ADDING SILVERLIGHT CONTENT TO AN EXISTING WEBSITE

A key point to keep in mind when considering the Silverlight development model is that in many cases
you’ll use Silverlight to augment the existing content of your website, which will still include generous
amounts of HTML, CSS, and JavaScript. For example, you might add a Silverlight content region that
shows an advertisement or allows an enhanced experience for a portion of a website (such as playing a
game, completing a survey, interacting with a product, or taking a virtual tour). You may use Silverlight-
enhanced pages to present content that’s already available in your website in a more engaging way or to
provide a value-added feature for users who have the Silverlight plug-in.

Of course, it's also possible to create a Silverlight-only website, which is a somewhat more daring
approach. The key drawback is that Silverlight isn’t installed as widely as other web technologies such as
Flash, and doesn’t support legacy clients such as those running the Windows ME or Windows 2000
operating system. As a result, Silverlight doesn’t have nearly the same reach as ordinary HTML. Many
businesses that are adopting Silverlight are using it to distinguish themselves from other online
competitors with cutting-edge content, but they aren’t abandoning their traditional websites.

CHAPTER 1 = INTRODUCING SILVERLIGHT

Creating a Stand-Alone Silverlight Project

The easiest way to start using Silverlight is to create an ordinary website with HTML pages and no server-
side code. Here’s how:

1. Select File 72 New 2 Project in Visual Studio, choose the Visual C# 7 Silverlight
group of project types, and then select the Silverlight Application template. As
usual, you need to pick a project name and a location on your hard drive
before clicking OK to create the project.

2. At this point, Visual Studio will prompt you to choose whether you want to
create a full-fledged ASP.NET website that can run server-side code along with
your Silverlight project (see Figure 1-1). Uncheck the “Host the Silverlight
application in a new Web site” option to keep things simple.

3. Underneath, choose the version of Silverlight application that you want to
create. If you aren’t using any of the new features in Silverlight 5, you'll get
slightly more reach with Silverlight 4 (which, at the time of this writing, is still
installed on more computers). If you haven’t installed the Silverlight 5 Tools
for Visual Studio 2010, you won'’t get an option for creating Silverlight 5
applications.

Tip You can change the version of Silverlight that you're targeting at any point after you’ve created it. To do so,
just double-click the Properties node in the Solution Explorer, and change the selection in the Target Silverlight
Version list.

4. Click OK to continue and create the project.

New Silverlight Application

>)

test page will be generated during build.

[7] Host the Silverlight application in a new Web site

New Web project name:
SilverlightApplicationl.Web

New Web project type:

ASP.NET Web Application Project

Options

Silverlight Version:

Silverlight 5 -

Click the checkbox below to hest this Silveright application in a Web site, Otherwise, a

o

Figure 1-1. Choosing not to include an ASP.NET website

CHAPTER 1

INTRODUCING SILVERLIGHT

Every Silverlight project starts with a small set of essential files, as shown in Figure 1-2. All the files
that end with the extension .xaml use a flexible markup standard called XAML, which you’ll dissect in the
next chapter. All the files that end with the extension .cs hold the C# source code that powers your

application.
Solution Explorer ¥ X
SR

g Solution 'SilverlightApplicationl' (1 project)
s [SiiveriightApplication1
[=d| Properties
|«a] References
a |» Appxaml
%) App.xaml.cs
4 [« MainPagexaml
9 MainPagexaml.cs

Figure 1-2. A Silverlight project

Here’s a rundown of the files shown in Figure 1-2:

CHAPTER 1 = INTRODUCING SILVERLIGHT

o App.xaml and App.xaml.cs: These files configure your Silverlight application. They
allow you to define resources that will be made available to all the pages in your
application (see Chapter 2), and they allow you react to application events such as
startup, shutdown, and error conditions (see Chapter 6). In a newly generated
project, the startup code in the App.xaml.cs file specifies that your application
should begin by showing MainPage.xaml.

e MainPage.xaml: This file defines the user interface (the collection of controls,
images, and text) that will be shown for your first page. Technically, Silverlight
pages are user controls—custom classes that derive from UserControl. A Silverlight
application can contain as many pages as you need—to add more, simply choose
Project 7 Add New Item, pick the Silverlight User Control template, choose a file
name, and click Add.

e MainPage.xaml.cs: This file includes the code that underpins your first page,
including the event handlers that react to user actions.

Note For the first few chapters of this book, you’ll create applications that have just a single page. In Chapter 6,
you’ll take a closer look at the application logic that sets your initial page. In Chapter 7, you'll break free of this
constraint altogether and learn the techniques you need to combine pages and navigate from one to another.

Along with these four essential files, there are a few more ingredients that you'll find only if you dig
around. Under the Properties node in the Solution Explorer, you’ll find a file named AppManifest.xml,
which lists the assemblies that your application uses. You'll also find a file named AssemblyInfo.cs,
which contains information about your project (such as its name, version, and publisher) that’s
embedded into your Silverlight assembly when it’s compiled. Neither of these files should be edited by
hand—instead, they’re modified by Visual Studio when you add references or set project properties.

Last, the gateway to your Silverlight application is an automatically generated but hidden HTML test
page named ProjectNameTestPage.html. So if your project is SilverlightApplication1, that page is named
SilverlightApplication1TestPage.html (see Figure 1-3). To see this file, make sure you’'ve compiled your
application at least once. Then, click the Show All Files button at the top of the Solution Explorer, and
expand the Bin\Debug folder (which is where your application is compiled). The test page file includes
an <object> element that creates the Silverlight content area. You'll take a closer look at it later in this
chapter.

2| S EE
2 Solution 'SilverlightApplicationl' (1 project)
4 (& SilverlightApplication1

=d| Properties

|»a] References

a4 77 Bin
a 77 Debug
_} AppManifestxaml

3 SilverlightApplicationl .xap
SilverlightApplicationl TestPage.htm

T obj "
[=| Appaaml

MainPage.xaml

Solution Explorer v [B,.X

Figure 1-3. The HTML test page

Creating a Simple Silverlight Page

CHAPTER 1

INTRODUCING SILVERLIGHT

As you've already learned, every Silverlight page includes a markup portion that defines the visual
appearance (the XAML file) and a source code file that contains event handlers. To customize your first
Silverlight application, you simply need to open the MainPage.xaml file and begin adding markup.
Visual Studio gives you two ways to look at every XAML file—as a visual preview (known as the
design surface) or the underlying markup (known as the XAML view). By default, Visual Studio shows
both parts, stacked one on the other. Figure 1-4 shows this view and points out the buttons you can use

to change your vantage point.

CHAPTER 1 = INTRODUCING SILVERLIGHT

Drag this slider 2 Sierightippication - Microsaft Visusl Studio . _'D_éﬂ;!ﬂihﬁ
to change the file Edt Mew Project Bukd Debeg Data Jools Window Help |
roomusedto | |HEHe 1SS0 M DA 9 o SR Debug | anycu B[l

display the \ - -
design surface

2 EIEIE
| T Sohution ‘SiverlightApplicatio = ChOUS.B between
Hello wortd. il . 3@ sivesightppication a vertical or
Double-click the Cick Me! 44 Properties E horizontal layout
Design tab or the 53 References L (also restores the
XAML tab to see split view if one
just that portion of part is collapsed)
the window (and
collapse the "
other)
) Grid x:Mases"LayoutRoot™ sckgrounde“White®> e peios
Switch the <StackPanel> il 1 ~___ Collapse the
position of the <TextBlock x:Mase="lblMessage™ Text="Hello wg a -
two panes <Button x:Mames"ClickMe™ Content ="Click Met” B Build Action Page bottom pane

I:t\d(li(kﬂe_ciick »</Buttons Copy to Outp Do net copy

Custom Tool MSBuild:Markug _
Advanced

. n
B UserControl UserControl

B Output B Erroe List

Ready

Figure 1-4. Viewing XAML pages

You can start designing a XAML page by selecting a control in the Toolbox and then “drawing” it
onto the design surface. However, this convenience won'’t save you from learning the full intricacies of
XAML. To organize your elements into the right layout containers, change their properties, wire up event
handlers, and use Silverlight features such as animation, styles, templates, and data binding, you’ll need
to edit the XAML markup by hand. In fact, in many cases, you'll find that the markup Visual Studio
generates when you drag and drop a page into existence might not be what you really want.

Note In Silverlight terminology, each graphical widget that meets these criteria (appears in a window and is
represented by a .NET class) is called an element. The term control is generally reserved for elements that receive
focus and allow user interaction. For example, a TextBox is a control, but the TextBlock is not.

To get started, you can try creating the page shown in the following example, which defines a block
of text and a button. The portions in bold have been added to the basic page template that Visual Studio
generated when you created the project.

<UserControl x:Class="SilverlightApplicationi.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
mc:Ignorable="d" d:DesignWidth="300" d:DesignHeight="400">

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 1 = INTRODUCING SILVERLIGHT

<Grid x:Name="LayoutRoot" Background="White">
<StackPanel»
<TextBlock x:Name="lblMessage" Text="Hello world."
Margin="5"></TextBlock>
<Button x:Name="cmdClickMe" Content="Click Me!" Margin="5"»</Button>
</StackPanel»
</Grid>
</UserControl>

This creates a page that has a stacked arrangement of two elements. On the top is a block of text
with a simple message. Underneath it is a button.

Adding Event-Handling Code

You attach event handlers to the elements in your page using attributes, which is the same approach
that developers take in WPF, ASP.NET, and JavaScript. For example, the Button element exposes an
event named Click that fires when the button is triggered with the mouse or keyboard. To react to this
event, you add the Click attribute to the Button element and set it to the name of a method in your code:

<Button x:Name="cmdClickMe" Click="cmdClickMe_ Click" Content="Click Me!"

Margin="5"></Button>

Tip Although it’s not required, it's a common convention to name event handler methods in the form
ElementName_EventName. If the element doesn’t have a defined name (presumably because you don’t need to
interact with it in any other place in your code), consider using the name it would have.

This example assumes that you’ve created an event-handling method named cmdClickMe_Click.
Here’s what it looks like in the MainPage.xaml.cs file:

private void cmdClickMe Click(object sender, RoutedEventArgs e)

1blMessage.Text = "Goodbye, cruel world.";

You can add an event handler by double-clicking an element on the design surface or by clicking the
Events button in the Properties window and then double-clicking the appropriate event.

If you've already coded the event handler you need, you can use IntelliSense to quickly attach it to
the right event. Begin by typing in the attribute name, followed by the equals sign. At this point, Visual
Studio will pop up a menu that lists all the methods that have the right syntax to handle this event and
currently exist in your code-behind class, as shown in Figure 1-5. Simply choose the right event-
handling method.

CHAPTER 1 = INTRODUCING SILVERLIGHT

10

oo SilverlightApplication] - Microsoft Visual Studio = | =

File Edit View Project Build Debug Team Data Tools Architecture Test Analyze Window Help
gl il G| % a9 - -S| b [pebug | [anycu -l 2
Solution Explorer
-l<UserControl x:Class="SilverlightApplicationl.Page”
xmlns="http://schemas.microsoft.com/client/2667"
xmlns:x="http://schemas.microsoft.com/winfx/20@6/xaml"

Width="408" Height="180"> » [=| Appxaml
= Pagexaml|

-] References

<Grid x:Name="LayoutRoot" Background="White">»
<StackPanel> ! - _
<TextBlock x:Name="lblMessage" Text="Hello world." S Solut... LR
Margin="5"></TextBlock>

<Button x:Name="ClickMe" Content="(Click Me!" Margin="5"
Click=""»</Button> Button ClickMe
</StackPanel

<fGrid>

</UserControl>

4| i
Properties

@ <New Event Handler> % Prope..
- cmdClickMe_Click

Events

=800 [search

100% ~ « . Style @ Resource
| QD_ga_ign E XAML Button (ClickMe) User | Content o Click Me!

i
m
2
i
o
5=
E
3
A
b
Q
g
o
=]
=
(]
=]
(a)
c
3
m
3
=
o
g
2
0]

“

Figure 1-5. Attaching an event handler

It’s possible to use Visual Studio (either version) to create and assign an event handler in one step by
adding an event attribute and choosing the <New Event Handler> option in the menu.

Tip To jump quickly from the XAML to your event-handling code, right-click the appropriate event attribute in
your markup and choose Navigate to Event Handler.

You can also connect an event with code. The place to do it is the constructor for your page, after the
call to InitializeComponent(), which initializes all your controls. Here’s the code equivalent of the XAML
markup shown previously:

public MainPage()

InitializeComponent();
cmdClickMe.Click += cmdClickMe_Click;

The code approach is useful if you need to dynamically create a control and attach an event handler
at some point during the lifetime of your window. By comparison, the events you hook up in XAML are
always attached when the window object is first instantiated. The code approach also allows you to keep
your XAML simpler and more streamlined, which is perfect if you plan to share it with nonprogrammers,
such as a design artist. The drawback is a significant amount of boilerplate code that will clutter up your
code files.

CHAPTER 1 = INTRODUCING SILVERLIGHT

If you want to detach an event handler, code is your only option. You can use the -= operator, as
shown here:

cmdClickMe.Click -= cmdClickMe Click;

It is technically possible to connect the same event handler to the same event more than once, but
this is almost always the result of a coding mistake. (In this case, the event handler will be triggered
multiple times.) If you attempt to remove an event handler that’s been connected twice, the event will
still trigger the event handler, but just once.

THE SILVERLIGHT CLASS LIBRARIES

To write practical code, you need to know quite a bit about the classes you have to work with. That means
acquiring a thorough knowledge of the core class libraries that ship with Silverlight.

The Silverlight version of the .NET Framework is simplified in two ways. First, it doesn’t provide the sheer
number of types you’ll find in the full .NET Framework. Second, the classes that it does include often don’t
provide the full complement of constructors, methods, properties, and events. Instead, Silverlight keeps
only the most practical members of the most important classes, which leaves it with enough functionality
to create surprisingly compelling code.

You'll find that many of the Silverlight classes have public interfaces that resemble their full-fledged
counterparts in the .NET Framework. However, the actual plumbing of these classes is quite different. All
the Silverlight classes have been rewritten from the ground up to be as streamlined and efficient as
possible.

Testing a Silverlight Application

You now have enough to test your Silverlight project. When you run a Silverlight application, Visual
Studio launches your default web browser and navigates to the hidden browser test page, named
ProjectNameTestPage.html. The test page creates a new Silverlight control and initializes it using the
markup in MainPage.xaml.

Note Visual Studio sets the test page to be the start page for your project. As a result, when you launch your
project, this page will be loaded in the browser. You can choose a different start page by right-clicking another
HTML file in the Solution Explorer and choosing Set As Start Page.

Figure 1-6 shows the previous example at work. When you click the button, the event-handling code
runs, and the text changes. This process happens entirely on the client—there is no need to contact the
server or post back the page, as there is in a server-side programming framework such as ASP.NET. All
the Silverlight code is executed on the client side by the scaled-down version of .NET that’s embedded in
the Silverlight plug-in.

11

CHAPTER 1 = INTRODUCING SILVERLIGHT

12

o B i
| L SiverlightApplicationt | + | -
\f/, | file:///D:/SilverlightAppl/Bin/Debug/SilverlightAppl TestPage. html ~ ' 1 B-
Hello world. |
| Click Me!

\ Y

=E—)
| L SiverlightApplicationt | + | -
\f/, | file:///D:/SilverlightAppl/Bin/Debug/SilverlightAppl TestPage.html - C' 1 -
Goodbye, cruel world. |
| M Click Me!
W
\ Y

Figure 1-6. Running a Silverlight application (in Firefox)

If you're hosting your host Silverlight content in an ordinary website (with no server-side ASP.NET),
Visual Studio won’t use its integrated web server during the testing process. Instead, it simply opens the
HTML test page directly from the file system. (You can see this in the address bar in Figure 1-6.)

In some situations, this behavior could cause discrepancies between your test environment and
your deployed environment, which will use a full-fledged web server that serves pages over HTTP. The
most obvious difference is the security context—in other words, you could configure your web browser
to allow local web pages to perform actions that remote web content can’t. In practice, this isn’t often a
problem, because Silverlight always executes in a stripped-down security context and doesn’t include
any extra functionality for trusted locations. This simplifies the Silverlight development model and
ensures that features won'’t work in certain environments and break in others. However, when
production testing a Silverlight application, it’s a good idea to create an ASP.NET test website (as
described in the next section) or—even better—deploy your Silverlight application to a test web server.

Creating an ASP.NET-Hosted Silverlight Project

Although Silverlight does perfectly well on its own, you can also develop, test, and deploy a Silverlight
application as part of an ASP.NET website. You'll need to take this route if you want your Silverlight
application to interact with server-based features, such as web services, file uploads, TCP
communication, and so on. You'll also need to use this approach to test certain features, such as custom
startup pages and the setup process for out-of-browser applications.

CHAPTER 1 = INTRODUCING SILVERLIGHT

Note The examples included with this book usually use stand-alone Silverlight applications. The solutions
include an ASP.NET website only when it’s required (for example, to supply server-side functionality or to allow
testing of a specific feature that requires it).

Here’s how to create a Silverlight project and an ASP.NET website that uses it in the same solution:

1. Select File 72 New 72 Project in Visual Studio, choose the Visual C# e Silverlight
group of project types, and then select the Silverlight Application template. It’s
a good idea to use the “Create directory for solution” option so you can group
together the two projects that Visual Studio will create—one for the Silverlight
assembly and one for ASP.NET website.

2. Ordinarily, Visual Studio assumes you want to use the latest and greatest
version of .NET for the server-side portion of any web applications you create.
If this isn’t what you want, you can pick a different version of .NET from the
drop-down list at the top of the New Project window. For example, if you pick
.NET Framework 3.5, your ASP.NET website will be configured to use this
slightly older version of .NET.

3. Once you've picked the solution name and project name, click OK to create it.

4. Make sure the option “Host the Silverlight application in a new website” is
checked.

5. Supply a project name for the ASP.NET website. By default, it’s your project
name with the added text .Web at the end, as shown in Figure 1-7.

6. In the drop-down list underneath, choose the way you want Visual Studio to
manage your project—as a ASP.NET web application project, a ASP.NET
website, or as an ASP.NET MVC project. The choice has no effect on how
Silverlight works, but the examples in this book use ASP.NET websites.

ASP.NET WEB PROJECTS VS. ASP.NET WEBSITES

When you create a Silverlight project with an ASP.NET application, Visual Studio lets you choose between
three different project options. Your choice won't affect your Silverlight coding, but it may alter the way you
work with the ASP.NET parts of your website.

If you choose ASP.NET Web Application Project, Visual Studio uses a project file to track the contents of
your web application. It also compiles all the ASP.NET code in your web pages into a single assembly
before running your site.

If you choose ASP.NET Web Site, Visual Studio simply assumes everything in the application folder is part
of your web application. Your web page code will be compiled the first time a user requests a page (or
when you use the precompilation tool aspnet_compiler.exe).

13

CHAPTER 1 = INTRODUCING SILVERLIGHT

14

If you choose ASP.NET MVC Web Project, you'll get the same compilation model as ASP.NET Web
Application Project. However, your site will be configured to use the streamlined ASP.NET MVC
development pattern instead of the classic (and still more popular) web forms model.

For more information about the difference between web projects and projectless websites, as well as
information about ASP.NET MVC, refer to Pro ASP.NET 4 in C# 2010.

7. Choose whether you want to create a Silverlight 5 or Silverlight 4 application in
the Silverlight Version list.

8. You can also choose to enable WCF RIA services, which are a set of web
services that help you bridge the gap between the client-side world of
Silverlight and the server-side world of ASP.NET. For a basic Silverlight
website, leave this option unchecked.

Note WCF RIA Services require a separate download (www.silverlight.net/getstarted/riaservices)and
aren’t discussed in this book. However, you'll get an introduction to web services, their foundational technology, in
Chapter 19. For more information, check out the download site or read Pro Business Applications with Silverlight 5.

9. Finally, click OK to create the solution.
[New Silverlight Application | P 3 N

Click the checkbox below to host this Silverlight application in a Web site. Otherwise, a
test page will be generated during build.

[#] Host the Silverlight application in a new Web site

New Web project name:
SilverlightApplicationl.Web

New Web project type:

ASP.NET Web Site ¥

Options

Silverlight Version:

Silverlight 5 >

Figure 1-7. Creating an ASP.NET website to host Silverlight content

http://www.silverlight.net/getstarted/riaservices

CHAPTER 1 = INTRODUCING SILVERLIGHT

Note If you create an ordinary HTML-only website, you can host it on any web server. In this scenario, the web
server has an easy job—it simply needs to send along your HTML files when a browser requests them. If you
decide to create an ASP.NET website, your application’s requirements change. Although the Silverlight portion of
your application will still run on the client, any ASP.NET content you include will run on the web server, which must
have the ASP.NET engine installed.

There are two ways to integrate Silverlight content into an ASP.NET application:

e Create HTML files with Silverlight content. You place these files in your ASP.NET
website folder, just as you would with any other ordinary HTML file. The only
limitation of this approach is that your HTML file obviously can’t include ASP.NET
controls, because it won’t be processed on the server.

e Place Silverlight content inside an ASP.NET web page: In this case, the <object>
element that loads the Silverlight plug-in is inserted into a dynamic .aspx page.
You can add other ASP.NET controls to different regions of this page. The only
disadvantage to this approach is that the page is always processed on the server. If
you aren’t actually using any server-side ASP.NET content, this creates an extra bit
of overhead that you don’t need when the page is first requested.

Of course, you're also free to mingle both of these approaches and use Silverlight content in
dedicated HTML pages and inside ASP.NET web pages in the same site. When you create a Silverlight
project with an ASP.NET website in Visual Studio, you'll start with both. For example, if your Silverlight
project is named SilverlightApplication1, you can use SilverlightApplication1TestPage.html or
SilverlightApplication1TestPage.aspx.

Figure 1-8 shows how a Silverlight and ASP.NET solution starts. Along with the two test pages, the
ASP.NET website also includes a Default.aspx page (which can be used as the entry point to your
ASP.NET website), a web.config file (which allows you to configure various website settings), and a
Silverlight.js file (which has JavaScript helper functions for creating and initializing the Silverlight
content region).

15

CHAPTER 1 = INTRODUCING SILVERLIGHT

Solution Explorer > Bl

a|zh| e
:; Solution 'SilverlightApplicationl’ (2 projects)
a 2P D:\..\SilverlightApplicationl.Web\
4 | ClientBin
. SilverlightApplicationl xap
i8] Silverlight.js
(5] SilverlightApplication1 TestPage.aspx
#| SilverlightApplicationl TestPage.html
9 web.config
4 7 SilverlightApplication1
=d| Properties
|«a] References
[= Appxaml
{# MainPagexaml

Figure 1-8. Creating an ASP.NET website to host Silverlight content

The Silverlight and ASP.NET option provides essentially the same debugging experience as a
Silverlight-only solution. When you run the solution, Visual Studio compiles both projects and copies
the Silverlight assembly to the ClientBin folder in the ASP.NET website. (This is similar to assembly
references—if an ASP.NET website references a private DLL, Visual Studio automatically copies this DLL
to the Bin folder.)

Once both projects are compiled, Visual Studio looks to the startup project (which is the ASP.NET
website) and looks for the currently selected page. It then launches the default browser and navigates to
that page. The difference is that it doesn’t request the start page directly from the file system. Instead, it
communicates with its built-in test web server. This web server automatically loads on a randomly
chosen port. It acts like a scaled-down version of IIS but accepts requests only from the local computer.
This gives you the ease of debugging without needing to configure IIS virtual directories. Figure 1-9
shows the same Silverlight application you considered earlier but hosted by ASP.NET.

16

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 1 = INTRODUCING SILVERLIGHT

(& Test Page For SilverlightApplicationl - Windows Internet Explorer lﬂli_hj
Ll |§ http://localhost:10474/SilverlightApplicationl_Web/SilverlightApplicationl TestPage.aspx | 45 | X |
54 i | 8 Test Page For SilverlightApplicationl {3 v = v - Page v () Tools v =
Hello world.
[Click Me!]
Done [§ @& Internet | Protected Mode: On ®100% ~

Figure 1-9. An ASP.NET page with Silverlight content

To navigate to a different page from the ASP.NET project, you can type in the address bar of the
browser.

Note Remember, when building a Silverlight and ASP.NET solution, you add all your Silverlight files and code to
the Silverlight project. The ASP.NET website consumes the final, compiled Silverlight assembly and makes it
available through one or more of its web pages.

ASP.NET Controls That Render Silverlight Content

In the past, ASP.NET developers who wanted to incorporate Silverlight content often relied on a
specially designed ASP.NET web control named Silverlight.

Like all ASP.NET controls, the Silverlight control is processed on the server. When the ASP.NET
engine renders the page into HTML, the Silverlight control emits the <object> element that defines the
Silverlight content region. The end result is that the client gets the same content as in a normal, non-
ASP.NET-hosted Silverlight application. However, the server-side programming model is a bit different.

The advantage of using a web control to generate the Silverlight content region is that it opens up
possibilities for server-side interaction. For example, server-side code can dynamically set the Source
property of the Silverlight control to point to a different application. However, the ASP.NET Silverlight
control provided few openings for real interaction with server code. In the end, it was rarely more than a
glorified wrapper for the <object> element. If you do want to use the Silverlight and MediaPlayer
controls in new projects, you can download the source code for them from
http://code.msdn.microsoft.com/aspnetprojects.

Mixing ASP.NET Controls and Silverlight Content

Almost all the examples you’ll see in this book use HTML test pages. However, more ambitious ASP.NET
developers may use Silverlight to add new functionality to (or just sugarcoat) existing ASP.NET pages.
Examples include Silverlight-powered ad content, menu systems, and embedded applets (such as
calculators or games). When creating pages like this, a few considerations apply.

17

http://code.msdn.microsoft.com/aspnetprojects

CHAPTER 1 = INTRODUCING SILVERLIGHT

18

As you know, all ASP.NET code runs on the web server. To get server-side code to run, ASP.NET
controls use a postback mechanism that sends the current page back to the server. For example, this
happens when you click an ASP.NET button. The problem is that when the page is posted back, the
current Silverlight application ends. The web server code runs, a new version of the page is sent to the
browser, and the browser loads this new page, at which point your Silverlight application restarts. Not
only does this send the user back to the starting point, but it also takes additional time because the
Silverlight environment must be initialized all over again.

If you want to avoid this disruption, you can use ASP.NET AJAX techniques. A particularly useful tool
is the UpdatePanel. The basic technique is to wrap the controls that would ordinarily trigger a postback
and any other controls that they modify into one or more UpdatePanel controls. Then, when the user
clicks a button, an asynchronous request is sent to the web server instead of a full postback. When the
browser receives the reply, it updates the corresponding portions of the page without disrupting the
Silverlight content.

Tip For a much more detailed exploration of the UpdatePanel control, refer to Pro ASP.NET 4 in C# 2010.

Silverlight Compilation and Deployment

Now that you've seen how to create a basic Silverlight project, add a page with elements and code, and
run your application, it’s time to dig a bit deeper. In this section, you'll see how your Silverlight is
transformed from a collection of XAML files and source code into a rich browser-based application.

Compiling a Silverlight Application

When you compile a Silverlight project, Visual Studio uses the same csc.exe compiler that you use for
full-fledged .NET applications. However, it references a different set of assemblies, and it passes in the
command-line argument nostdlib, which prevents the C# compiler from using the standard library (the
core parts of the .NET Framework that are defined in mscorlib.dll). In other words, Silverlight
applications can be compiled like normal .NET applications written in standard C#, just with a more
limited set of class libraries to draw on. The Silverlight compilation model has a number of advantages,
including easy deployment and vastly improved performance when compared to ordinary JavaScript.

Your compiled Silverlight assembly includes the compiled code and the XAML documents for every
page in your application, which are embedded in the assembly as resources. This ensures that there’s no
way for your event-handling code to become separated from the user interface markup it needs.
Incidentally, the XAML is not compiled in any way (unlike WPF, which converts it into a more optimized
format called BAML).

Your Silverlight project is compiled into a DLL file named after your project. For example, if you
have a project named SilverlightApplicationl, the csc.exe compiler will create the file
SilverlightApplicationl.dll. The project assembly is dumped into a Bin\Debug folder in your project
directory, along with a few other important files:

e A PDRBfile: This file contains information required for Visual Studio debugging. It’s
named after your project assembly (for example, SilverlightApplicationl.pdb).

e AppManifest.xaml: This file lists assembly dependencies.

CHAPTER 1 = INTRODUCING SILVERLIGHT

e Dependent assemblies: The Bin\Debug folder contains the assemblies that your
Silverlight project uses, provided these assemblies have the Copy Local property
set to True. Assemblies that are a core part of Silverlight have Copy Local set to
False, because they don’t need to be deployed with your application (you can
change the Copy Local setting by expanding the References node in the Solution
Explorer, selecting the assembly, and using the Properties window).

e The test page: This is the entry page that the user requests to start your Silverlight
application.

e A XAP file: This is a Silverlight package that contains everything you need to
deploy your Silverlight application, including the application manifest, the project
assembly, and any other assemblies that your application uses. If you're
developing an ASP.NET-hosted Silverlight application, Visual Studio will also copy
the XAP file to the ClientBin folder in the test website.

Of course, you can change the assembly name, the default namespace (which is used when you add
new code files), and the XAP file name using the Visual Studio project properties (Figure 1-10). Just
double-click the Properties node in the Solution Explorer.

SilverlightApplicationl X

Sitverlight

Signing

Code Analysis

Debug
Build Application
Assembly name: Default namespace:
Build Events 3 = e o
SilverlightApplicationi] SilverlightApplicationl

Reference Paths

Startup object:

| SitverlightApplicationl.App o Assembly Information...

Silverlight build options

Target Silverlight Version:

[Silverlight 5 =
Xap file name:

SitverlightApplicationl xap

| Reduce XAP size by using application library caching

[~'] Enable running application out of the browser

[¥] Generate Silverlight manifast file
Manifest file template:
Properties\AppManifest.xm|

WOCF RIA Services link

.rv.No Project Set> -|

Figure 1-10. Silverlight project properties

19

CHAPTER 1 = INTRODUCING SILVERLIGHT

Deploying a Silverlight Application

Once you understand the Silverlight compilation model, it’s a short step to understanding the
deployment model. The XAP file is the key piece. It wraps the units of your application (the application
manifest and the assemblies) into one neat container.

Technically, the XAP file is a ZIP archive. To verify this, rename a XAP file like
SilverlightApplicationl.xap to SilverlightApplicationl.xap.zip. You can then open the archive and view
the files inside. Figure 1-11 shows the contents of the XAP file for the simple example shown earlier in
this chapter. Currently, it includes the application manifest and the application assembly. If your
application uses add-on assemblies such as System.Windows.Controls.dll, you'll find them in the XAP
file as well.

==

\ij'\:j | 1, SilverlightApplicationl xap v‘ <> | I search)

‘ Organize v Extract all files

Name Size Date modified
(| AppManifestxaml 1KB 7/22/2008 4:33 FM
/% SilverlightApplicationl.dll 7KB 7/22/2008 4:33 PM

\

Figure 1-11. The contents of a XAP file

The XAP file system has two obvious benefits:

e It compresses your content: Because this content isn’t decompressed until it
reaches the client, it reduces the time required to download your application. This
is particularly important if your application contains large static resources (see
Chapter 6), such as images or blocks of text.

o [tsimplifies deployment. When you're ready to take your Silverlight application
live, you simply need to copy the XAP file to the web server, along with the test
page or a similar HTML file (or ASP.NET web page) that includes a Silverlight
content region. You don’t need to worry about keeping track of the assemblies and
resources.

Thanks to the XAP model, there’s not much to think about when deploying a simple Silverlight
application. Hosting a Silverlight application simply involves making the appropriate XAP file available
so the clients can download it through the browser and run it on their local machines.

20

CHAPTER 1 = INTRODUCING SILVERLIGHT

SILVERLIGHT DECOMPILATION

Now that you understand the infrastructure that underpins a Silverlight project, it’s easy to see how you
can decompile any existing application to learn more about how it works. Here’s how:

1. Surfto the HTML test page.

2. View the source for the web page, and look for the <param> element that points
to the XAP file.

3. Type a request for the XAP file into your browser’s address bar. (Keep the same
domain, but replace the page name with the partial path that points to the XAP
file.)

4. Choose Save As to save the XAP file locally.

5. Rename the XAP file to add the .zip extension. Then, open it and extract the
project assembly. This assembly is essentially the same as the assemblies you
build for ordinary .NET applications. Like ordinary .NET assemblies, it contains
Intermediate Language (IL) code.

6. Open the project assembly in a tool such as Reflector (www. red-
gate.com/products/reflector) to view the IL and embedded resources. Using
the right plug-in, you can even decompile the IL to C# syntax.

0Of course, many Silverlight developers don’t condone this sort of behavior (much as many .NET developers
don’t encourage end users to decompile their rich client applications). However, it’s an unavoidable side
effect of the Silverlight compilation model.

Because IL code can be easily decompiled or reverse engineered, it’s not an appropriate place to store
secrets (such as encryption keys, proprietary algorithms, and so on). If you need to perform a task that
uses sensitive code, consider calling a web service from your Silverlight application. If you just want to
prevent other hotshots from reading your code and copying your style, you may be interested in raising the
bar with an obfuscation tool, which uses a number of tricks to scramble the structure and names in your
compiled code without changing its behavior. Visual Studio ships with a scaled-down obfuscation tool
named Dotfuscator, and many more are available commercially.

Silverlight Core Assemblies

Silverlight includes a subset of the classes from the full . NET Framework. Although it would be
impossible to cram the entire .NET Framework into Silverlight—after all, it's a 5MB download that needs
to support a variety of browsers and operating systems—Silverlight includes a remarkable amount of
functionality.

Every Silverlight project starts with references to the following assemblies. All of these assemblies

are part of the Silverlight runtime, so they don’t need to be deployed with your application.

21

http://www.red-gate.com/products/reflector
http://www.red-gate.com/products/reflector
http://www.red-gate.com/products/reflector

CHAPTER 1 = INTRODUCING SILVERLIGHT

22

e mscorlib.dll: This assembly is the Silverlight equivalent of the mscorlib.dll
assembly that includes the most fundamental parts of the .NET Framework. The
Silverlight version includes core data types, exceptions, and interfaces in the
System namespace; ordinary and generic collections; file management classes;
and support for globalization, reflection, resources, debugging, and
multithreading.

e System.dll: This assembly contains additional generic collections, classes for
dealing with URIs, and classes for dealing with regular expressions.

e System.Core.dll: This assembly contains support for LINQ. The name of the
assembly matches the full . NET Framework.

e System.Net.dll: This assembly contains classes that support networking, allowing
you to download web pages and create socket-based connections.

o System.Windows.dll: This assembly includes many of the classes for building
Silverlight user interfaces, including basic elements, shapes and brushes, classes
that support animation and data binding, and a version of the OpenFileDialog
that works with isolated storage.

o System.Windows.Browser.dll: This assembly contains classes for interacting with
HTML elements.

e System.Xml.dll: This assembly includes the bare minimum classes you need for
XML processing: XmlReader and XmlIWriter.

Note Some of the members in the Silverlight assemblies are available only to .NET Framework code and aren’t
callable from your code. These members are marked with the SecurityCritical attribute. However, this attribute
does not appear in the Object Browser, so you won't be able to determine whether a specific feature is usable in a
Silverlight application until you try to use it. (If you attempt to use a member that has the SecurityCritical attribute,
you'll get a SecurityException.) For example, Silverlight applications are allowed to access the file system only
through the isolated storage API or the OpenFileDialog class. For that reason, the constructor for the FileStream
class is decorated with the SecurityCritical attribute.

Silverlight Add-on Assemblies

The architects of Silverlight have set out to keep the core framework as small as possible. This design
makes the initial Silverlight plug-in small to download and quick to install—an obvious selling point to
web surfers everywhere.

To achieve this lean-and-mean goal, the Silverlight designers have removed some functionality
from the core Silverlight runtime and placed it in separate add-on assemblies. These assemblies are still
considered to be part of the Silverlight platform, but if you want to use them, you'll need to package
them with your application. This is an obvious trade-off, because it will increase the download size of
your application. (The effect is mitigated by Silverlight’s built-in compression, which you’ll learn about
later in this chapter.)

CHAPTER 1 = INTRODUCING SILVERLIGHT

You'll learn about Silverlight’s add-on assemblies throughout this book. The most commonly used
ones follow:

o System.Windows.Controls.dll: This assembly contains many valuable but more
specialized controls, including a TreeView, a TabControl, two date controls (the
DatePicker and Calendar), and the GridSplitter.

o System.Windows.Controls.Data.dll: This assembly has Silverlight’s built-from-
scratch DataGrid, which is an ideal tool for showing dense grids of data, and the
DataPager, which gives it the ability to split results into separately viewable groups
called pages.

o System.Windows.Controls.Data.Input.dll: This assembly holds a few controls that
are helpful when building data-bound forms, including a Label,
DescriptionViewer, and ValidationSummary.

o System.Windows.Controls.Input.dll: This assembly includes the
AutoCompleteBox—a text box that drops down a list of suggestions as the user

types.

o System.Windows.Controls.Navigation.dll: This assembly contains the Frame and
Page controls that are the basis of Silverlight’s navigation system.

All of these assemblies add new controls to your Silverlight Toolkit. Microsoft also makes many
more add-in controls available through the Silverlight Toolkit, which you can download at
www. codeplex.com/Silverlight.

When you add a control from an add-on assembly onto a Silverlight page, Visual Studio
automatically adds the assembly reference you need. If you select that reference and look in the
Properties window, you'll see that the Copy Local property is set to True, which is different from the
other assemblies that make up the core Silverlight runtime. As a result, when you compile your
application, the assembly will be embedded in the final package. Visual Studio is intelligent enough to
recognize assemblies that aren’t part of the core Silverlight runtime—even if you add them by hand, it
automatically sets Copy Local to True.

Assembly Caching

Assembly cachingis a deployment technique that allows you to leave dependent assemblies out of your
XAP file. Instead, you deploy dependent assemblies alongside your XAP file, placing them in separate ZIP
files in the same folder. The goal is to reduce application startup time by letting clients keep cached
copies of frequently used assemblies.

By default, the Silverlight applications you create in Visual Studio are not configured to use
assembly caching. To turn this feature on, double-click the Properties node in the Solution Explorer.
Then, in the project properties window shown in Figure 1-10, switch on the setting “Reduce XAP size by
using application library caching.” To see the results, recompile your application, click the Show All Files
button at the top of the Solution Explorer, and expand the Bin\Debug folder. You'll see a ZIP file for each
cacheable assembly. For example, if your application uses System.Windows.Controls.dll, you'll see a file
named System.Windows.Controls.zip next to your XAP file. This file holds a compressed copy of the
System.Windows.Controls.dll assembly. The XAP, which held this assembly before you enabled
assembly caching, no longer has a copy of it.

If you're using an ASP.NET test website, Visual Studio copies the XAP file and all the cacheable
assemblies to the ClientBin folder in the website. Figure 1-12 shows the result after compiling an

23

http://www.codeplex.com/Silverlight

CHAPTER 1 = INTRODUCING SILVERLIGHT

24

application that uses the System.Windows.Controls.dll and System.Windows.Controls.Navigation.dll
assemblies.

Solution Explorer *xBX

a2|Fd e
3 Solution 'SilverlightApplicationl' (2 projects)
4 2P D\LMASilverlightApplicationl. Web\
4 || ClientBin
. SilverlightApplicationl xap
1, System.Windows.Controls.Navigation.zip
1, System.Windows.Controls.zip
5] Silverlight.js
(] SilverlightApplicationl TestPage.aspx
|#] SilverlightApplicationl TestPage.html
9 web.config
4 & SilverlightApplicationl
=d| Properties
-] References
(= Appxaml
{#| MainPagexaml

Figure 1-12. Dependent assemblies that support assembly caching

Assembly caching decreases the size of your XAP file. Smaller files can be downloaded more quickly,
so shrinking the XAP file improves application startup time. But initially, assembly caching won’t
produce any performance improvement. That’s because the first time clients run your Silverlight
application, they’ll need to download both the slimmed-down XAP and the separate ZIP files with the
dependent assemblies. The total amount of downloaded data is the same.

However, the benefit appears when the user returns to run the application a second time. Once
again, the browser will download the application XAP file. However, because the dependent assemblies
are still in the browser cache, the client won’t need to download them.

Here are a few considerations to help you get the most out of assembly caching:

¢ The downloaded assembly only lasts as long as the browser cache. If the user
explicitly clears the cache, all the cached assemblies will be removed.

e Every time the client runs the application, the application checks for new versions
of the cached assembly. If it spots a new version, it downloads it and replaces the
previously cached version.

e Ifone application downloads an assembly and places it in the browser cache,
another application that uses assembly caching can use it.

CHAPTER 1 = INTRODUCING SILVERLIGHT

¢ The benefits of assembly caching are greatest for large, infrequently changed
assemblies. Many assemblies aren’t that big, and the cost of downloading them
each time the application starts isn’t significant. In this case, using assembly
caching will simply complicate the deployment of your application.

e With a bit of work, you can use assembly caching with your own class library
assemblies. Once again, this makes most sense if your assemblies are large and
you don’t change them frequently. You'll learn how to create assemblies that
support assembly caching in Chapter 6.

The HTML Test Page

The last ingredient in the deployment picture is the HTML test page. This page is the entry point into
your Silverlight content—in other words, the page the user requests in the web browser. Visual Studio
names this file to match your project name (like SilverlightApplication1TestPage.html), but you'll
probably want to rename it to something more appropriate.

The HTML test page doesn’t actually contain Silverlight markup or code. Instead, it simply sets up
the content region for the Silverlight plug-in, using a small amount of JavaScript. (For this reason,
browsers that have JavaScript disabled won’t be able to see Silverlight content.) Here’s a slightly
shortened version of the HTML test page that preserves the key details:

<html xmlns="http://www.w3.0rg/1999/xhtml">

<!-- saved from url=(0014)about:internet -->

<head>
<title>SilverlightApplicationi</title>

<style type="text/css">
</style>
<script type="text/javascript">

</script>
</head>

<body>
<form id="form1" runat="server" style="height:100%">

<!-- Silverlight content will be displayed here. -->
<div id="silverlightControlHost">
<object data="data:application/x-silverlight-2,"
type="application/x-silverlight-2" width="100%" height="100%">
<param name="source" value="SilverlightApplicationi.xap" />
<param name="onError" value="onSilverlightError" />
<param name="background" value="white" />
<param name="minRuntimeVersion" value="5.0.61118.0" />
<param name="autoUpgrade" value="true" />

<a href="http://go.microsoft.com/fwlink/?LinkID=1491568v=5.0.61118.0"

style="text-decoration:none">
<img src=" http://go.microsoft.com/fwlink/?LinkId=161376"

25

http://www.w3.org/1999/xhtml
http://go.microsoft.com/fwlink/?LinkID=149156&v=5.0.61118.0
http://go.microsoft.com/fwlink/?LinkId=161376

CHAPTER 1 = INTRODUCING SILVERLIGHT

26

alt="Get Microsoft Silverlight" style="border-style:none"/>

</object>
<iframe id="_sl_historyFrame"
style="visibility:hidden;height:0px;width:0px;border:opx"></iframe>
</div»
</body>
</html>

The key detail is the <div> element that represents the Silverlight content region. It contains an
<object> element that loads the Silverlight plug-in. The <object> element includes four key attributes.
You won’t change the data and type attributes—they indicate that the <object> element represents a
Silverlight content region using version 2 or later. However, you may want to modify the height and
width attributes, which determine the dimensions of the Silverlight content region, as described next.

Note Be cautious about changing seemingly trivial details in the HTML test page. Some minor quirks are
required to ensure compatibility with certain browsers. For example, the comma at the end of the data attribute in
the <object> element ensures Firefox support. The invisible <iframe> at the bottom of the Silverlight <div> allows
navigation to work with Safari. As a general guideline, the only test page content you should change are the width
and height settings, the list of parameters, and the alternate content.

CHANGING THE TEST PAGE

If you’re using an ASP.NET website, the test page is generated once, when the ASP.NET website is first
created. As a result, you can modify the HTML page without worrying that your changes will be
overwritten.

If you're using a stand-alone project without an ASP.NET website, Visual Studio generates the test page
each time you run the project. As a result, any changes you make to it will be discarded. If you want to
customize the test page, the easiest solution is to create a new test page for your project. Here’s how:

Run your project at least once to create the test page.
1. Click the Show All Files icon at the top of the Solution Explorer.
2. Expand the Bin\Debug folder in the Solution Explorer.

3. Find the test page file, right-click it, and choose Copy. Then right-click the
Bin\Debug folder and choose Paste. This duplicate will be your custom test page.
Right-click the new file and choose Rename to give it a better name.

4. To make the custom test page part of your project, right-click it and choose
Include in Project.

5. To tell Visual Studio to navigate to your test page when you run the project, right-
click your test page, and choose Set As Start Page.

CHAPTER 1 = INTRODUCING SILVERLIGHT

Sizing the Silverlight Content Region

By default, the Silverlight content region is given a width and height of 100 percent, so the Silverlight
content can consume all the available space in the browser window. You can constrain the size of
Silverlight content region by hard-coding pixel sizes for the height and width (which is limiting and
usually avoided). Or, you can place the <div> element that holds the Silverlight content region in a more
restrictive place on the page—for example, in a cell in a table, in another fixed-sized element, or between
other <div> elements in a multicolumn layout.

Even though the default test page sizes the Silverlight content region to fit the available space in the
browser window, your XAML pages may include hard-coded dimensions. You set these by adding the
Height and Width attributes to the root UserControl element and specifying a size in pixels. If the
browser window is larger than the hard-coded page size, the extra space won’t be used. If the browser
window is smaller than the hard-coded page size, part of the page may fall outside the visible area of the
window.

Hard-coded sizes make sense when you have a graphically rich layout with absolute positioning and
little flexibility. If you don’t, you might prefer to remove the Width and Height attributes from the
<UserControl> start tag. That way, the page will be sized to match the Silverlight content region, which
in turn is sized to fit the browser window, and your Silverlight content will always fit itself into the
currently available space.

To get a better understanding of the actual dimensions of the Silverlight content region, you can add
a border around it by adding a simple style rule to the <div>, like this:

<div id="silverlightControlHost" style="border: 1px red solid">

You'll create resizable and scalable Silverlight pages in Chapter 3, when you explore layout in more
detail.

Silverlight Parameters

The <object> element contains a series of <param> elements that specify additional options to the
Silverlight plug-in.

Table 1-1 lists some of basic the parameters that you can use. You'll learn about many other
specialized parameters in examples throughout this book, as you delve into features such as HTML
access, splash screens, transparency, and animation.

Table 1-1. Basic Parameters for the Silverlight Plug-In

Name Value

source A URI that points to the XAP file for your Silverlight application.
This parameter is required.

onError A JavaScript event handler that’s triggered when a unhandled
error occurs in the Silverlight plug-in or in your code. The
onError event handler is also called if the user has Silverlight
installed but doesn’t meet the minRuntimeVersion parameter.

27

CHAPTER 1 = INTRODUCING SILVERLIGHT

28

Name

Value

background

minRuntimeVersion

autoUpgrade

enableHtmlAccess

initParams

splashScreenSource

windowless

onSourceDownloadProgressChanged

The color that’s used to paint the background of the Silverlight
content region, behind any content that you display (but in
front of any HTML content that occupies the same space). If you
set the Background property of a page, it’s painted over this
background.

This is the minimum version of Silverlight that the client must
have in order to run your application. If you need the features of
Silverlight 5, set this to 5.0.61118.0 (because slightly earlier
versions may correspond to beta builds). If Silverlight 4 is
sufficient, set this to 4.0.50401.0. If Silverlight 3 is sufficient, use
3.0.40624.0. Make sure this matches the version of Silverlight
you use to compile your application.

A Boolean that specifies whether Silverlight should (if it’s
installed and has an insufficient version number) attempt to
update itself. The default is true. You may choose to set this to
false to deal with version problems on your own using the
onError event, as described in the “Creating a Friendly Install
Experience” section.

A Boolean that specifies whether the Silverlight plug-in has
access to the HTML object model. Use true if you want to be
able to interact with the HTML elements on the test page
through your Silverlight code (as demonstrated in Chapter 17).

A string that you can use to pass custom initialization
information. This technique (which is described in Chapter 6) is
useful if you plan to use the same Silverlight application in
different ways on different pages.

The location of a XAML splash screen to show while the XAP file
is downloading. You'll learn how to use this technique in
Chapter 6.

A Boolean that specifies whether the plug-in renders in
windowed mode (the default) or windowless mode. If you set
this true, the HTML content underneath your Silverlight content
region can show through. This is ideal if you're planning to
create a shaped Silverlight control that integrates with HTML
content, and you’ll see how to use it in Chapter 17.

AJavaScript event handler that’s triggered when a piece of the
XAP file has been downloaded. You can use this event handler to
build a startup progress bar, as in Chapter 6.

CHAPTER 1 = INTRODUCING SILVERLIGHT

Name Value

onSourceDownloadComplete A JavaScript event handler that’s triggered when the entire XAP
file has been downloaded.

onLoad A JavaScript event handler that’s triggered when the markup in
the XAP file has been processed and your first page has been
loaded.

onResize ATJavaScript event handler that’s triggered when the size of a

Silverlight content region has changed.

Alternate Content

The <div> element also has some HTML markup that will be shown if the <object> tag isn’t understood
or the plug-in isn’t available. In the standard test page, this markup consists of a Get Silverlight picture,
which is wrapped in a hyperlink that, when clicked, takes the user to the Silverlight download page.

<a href="http://go.microsoft.com/fwlink/?LinkID=149156&v=5.0.61118.0"
style="text-decoration:none">

<img src=" http://go.microsoft.com/fwlink/?LinkId=161376"

alt="Get Microsoft Silverlight" style="border-style:none"/>

Creating a Friendly Install Experience

Some of the users who reach your test page will not have Silverlight installed, or they won’t have the
correct version. The standard behavior is for the Silverlight test page to detect the problem and notify the
user. However, this may not be enough to get the user to take the correct action.

For example, consider a user who arrives at your website for the first time and sees a small graphic
asking them to install Silverlight. That user may be reluctant to install an unfamiliar program, confused
about why it’s needed, and intimidated by the installation terminology. Even if they do click ahead to
install Silverlight, they’ll face still more prompts asking them to download the Silverlight installation
package and then run an executable. At any point, they might get second thoughts and surf somewhere
else.

Tip Studies show that web surfers are far more likely to make it through an installation process on the Web if
they’re guided to do it as part of an application, rather than prompted to install it as a technology.

To give your users a friendlier install experience, begin by customizing the alternate content. As you
learned in the previous section, if the user doesn’t have any version of Silverlight installed, the browser
shows the Silverlight badge—essentially, a small banner with a logo and a Get Silverlight button. This
indicator is obvious to developers but has little meaning to end users. To make it more relevant, add a
custom graphic that clearly has the name and logo of your application, include some text underneath

29

http://go.microsoft.com/fwlink/?LinkID=149156&v=5.0.61118.0
http://go.microsoft.com/fwlink/?LinkId=161376

CHAPTER 1 = INTRODUCING SILVERLIGHT

30

that explaining that the Silverlight plug-in is required to power your application, and then include the
download button.

The second area to address is versioning issues. If the user has Silverlight, but it doesn’t meet the
minimum version requirement, the alternate content isn’t shown. Instead, the Silverlight plug-in
triggers the onError event with args.ErrorCode set to 8001 (upgrade required) or 8002 (restart required)
and then displays a dialog box prompting the user to get the updated version. A better, clearer approach
is to handle this problem yourself.

First, disable the automatic upgrading process by setting the autoUpgrade parameter to false:

<param name="autoUpgrade" value="false" />

Then, check for the version error code in the onSilverlightError function in the test page. If you
detect a version problem, you can then use JavaScript to alter the content of the <div> element that
holds the Silverlight plug-in. Swap in a more meaningful graphic that clearly advertises your application,
along with the download link for the correct version of Silverlight.

function onSilverlightError(sender, args) {
if (args.ErrorCode == 8001)

// Find the Silverlight content region.
var hostContainer = document.getElementById("silverlightControlHost");

// Change the content. You can supply any HTML here.

hostContainer.innerHTML = "...";

// (Deal with other types of errors here.)
}

To test your code, just set the minRuntimeVersion parameter absurdly high:

<param name="minRuntimeVersion" value="6" />

MATCHING THE MINIMUM RUNTIME WITH THE TARGET VERSION

As you learned earlier, you can change the version of Silverlight that your application targets at any time
(just double-click the Properties node in the Solution Explorer and pick a new version in the Target
Silverlight Version list). However, it's important to understand what happens to the test page when you
make a change.

If you're using a stand-alone Silverlight application with an automatically generated test page, Visual
Studio sets the minRuntimeVersion attribute to match the target version the next time it generates the
HTML test page. This behavior is what you want.

If you're using an ASP.NET-hosted Silverlight application or a custom HTML test page, Visual Studio won’t
make any changes to the minRuntimeVersion attribute. This is a problem, because it can lead to a situation
where your application is compiled with a later version of Silverlight than indicated by the
minRuntimeVersion attribute. In this situation, a user might meet the minRuntimeVersion requirement
without having the version of Silverlight that’s actually needed to run the application. In this case, the user
won’t see the alternate content with the link to the install site. Instead, the user will receive a less helpful
error in a message box when the browser plug-in attempts to start the Silverlight application.

CHAPTER 1 = INTRODUCING SILVERLIGHT

Thus, if you change the target version of your Silverlight application, it’s always a good idea to make sure
the minRuntimeVersion attribute matches.

The Mark of the Web

One of the stranger details in the HTML test page is the following comment, which appears in the second
line:

<!-- saved from url=(0014)about:internet -->

Although this comment appears to be little more than an automatically generated stamp that the
browser ignores, it actually has an effect on the way you debug your application. This comment is known
as the mark of the Web, and it’s a specialized flag that forces Internet Explorer to run pages in a more
restrictive security zone than it would normally use.

Ordinarily, the mark of the Web indicates the website from which a locally stored page was
originally downloaded. But in this case, Visual Studio has no way of knowing where your Silverlight
application will eventually be deployed. It falls back on the URL about:internet, which simply signals
that the page is from some arbitrary location on the public Internet. The number (14) simply indicates
the number of characters in this URL. For a more detailed description of the mark of the Web and its
standard uses, see http://tinyurl.com/2ctnsj9.

All of this raises an obvious question—namely, why is Visual Studio adding a marker that’s typically
reserved for downloaded pages? The reason is that without the mark of the Web, Internet Explorer will
load your page with the relaxed security settings of the local machine zone. This wouldn’t cause a
problem, except that Internet Explorer also includes a safeguard that disables scripts and ActiveX
controls in this situation. As a result, if you run a test page that’s stored on your local hard drive and this
test page doesn’t have the mark of the Web, you'll see the irritating warning message shown in Figure 1-
13, and you'll need to explicitly allow the blocked content. Worst of all, you'll need to repeat this process
every time you open the page.

31

http://tinyurl.com/2ctnsj9

CHAPTER 1 = INTRODUCING SILVERLIGHT

32

@ Silverlight Project Test Page - Windows Internet Explorer kﬂlﬂ

\;} S [& C\Users\matthew\Desktop\SilverlightApplication1\Bin\Debug\™ I +5 l A |

Y e | @ siveright Project TestP...|

»

i @}v %"d‘PBQE'

[# To help protect your security, Internet Explorer has restricted this webpage from running X
scripts or ActiveX controls that could access your computer. Click here for options...

w Siverlight

Click now to install

QUICK DOWNLOAD / 30 SECOND INSTALL

W& Computer | Protected Mode: Off #100% ~

L%

Figure 1-13. A page with disabled Silverlight content

This problem will disappear when you deploy the web page to a real website, but it’s a significant
inconvenience while testing. To avoid headaches such as these, make sure you add a similar mark of the
Web comment if you design your own custom test pages.

The Last Word

In this chapter, you took your first look at the Silverlight application model. You saw how to create a
Silverlight project in Visual Studio, add a simple event handler, and test it. You also peered behind the
scenes to explore how a Silverlight application is compiled and deployed.

In the following chapters, you’'ll learn much more about the full capabilities of the Silverlight
platform. Sometimes, you might need to remind yourself that you're coding inside a lightweight
browser-hosted framework, because much of Silverlight coding feels like the full .NET platform, despite
that it’s built on only a few megabytes of compressed code. Out of all of Silverlight’'s many features, its
ability to pack a miniature modern programming framework into a slim download is surely its most
impressive.

CHAPTER 2

XAML

XAML (short for Extensible Application Markup Language and pronounced zammel) is a markup
language used to instantiate .NET objects. Although XAML is a technology that can be applied to many
different problem domains, it was initially designed as part of Windows Presentation Foundation (WPF),
where it allows Windows developers to construct rich user interfaces. You use the same standard to
build user interfaces for Silverlight applications.

Conceptually, XAML plays a role that’s a lot like HTML and is even closer to its stricter cousin,
XHTML. XHTML allows you to define the elements that make up an ordinary web page. Similarly, XAML
allows you to define the elements that make up a XAML content region. To manipulate XHTML
elements, you can use client-side JavaScript. To manipulate XAML elements, you write client-side C#
code. Finally, XAML and XHTML share many of the same syntax conventions. Like XHTML, XAML is an
XML-based language that consists of elements that can be nested in any arrangement you like.

In this chapter, you'll get a detailed introduction to XAML and consider a simple single-page
application. Once you understand the broad rules of XAML, you'll know what is and isn’t possible in a
Silverlight user interface—and how to make changes by hand. By exploring the tags in a Silverlight XAML
document, you'll also learn more about the object model that underpins Silverlight user interfaces and
get ready for the deeper exploration to come.

Finally, at the end of this chapter, you’ll consider two markup extensions that extend XAML with
Silverlight-specific features. First, you'll see how you can streamline code and reuse markup with XAML
resources and the StaticResource extension. Next, you'll learn how to link two elements together with
the Binding extension. Both techniques are a core part of Silverlight development, and you'll see them at
work throughout this book.

XAML Basics

The XAML standard is quite straightforward once you understand a few ground rules:

¢ Every element in a XAML document maps to an instance of a Silverlight class. The
name of the element matches the name of the class exactly. For example, the
element <Button> instructs Silverlight to create a Button object.

e Aswith any XML document, you can nest one element inside another. As you’ll
see, XAML gives every class the flexibility to decide how it handles this situation.
However, nesting is usually a way to express containment—in other words, if you
find a Button element inside a Grid element, your user interface probably includes
a Grid that contains a Button inside.

33

CHAPTER 2 = XAML

34

e You can set the properties of each class through attributes. However, in some
situations, an attribute isn’t powerful enough to handle the job. In these cases,
you'll use nested tags with a special syntax.

Tip If you're completely new to XML, you’ll probably find it easier to review the basics before you tackle XAML.
To get up to speed quickly, try the free tutorial at www.w3schools.com/xml.

Before continuing, take a look at this bare-bones XAML document, which represents a blank page
(as created by Visual Studio). The lines have been numbered for easy reference:

1 <UserControl x:Class="SilverlightApplicationi.MainPage"

2 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”

3 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

4 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

5 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
6 mc:Ignorable="d" d:DesignWidth="640" d:DesignHeight="480">
7

8

9

1

<Grid x:Name="LayoutRoot">
</Gridy
0 </UserControl>

This document includes only two elements—the top-level UserControl element, which wraps all the
Silverlight content on the page, and the Grid, in which you can place all your elements.

As in all XML documents, there can only be one top-level element. In the previous example, that
means that as soon as you close the UserControl element with the </UserControl> tag, you end the
document. No more content can follow.

XAML Namespaces

When you use an element like <UserControl> in a XAML file, the Silverlight parser recognizes that you
want to create an instance of the UserControl class. However, it doesn’t necessarily know what
UserControl class to use. After all, even if the Silverlight namespaces include only a single class with that
name, there’s no guarantee that you won'’t create a similarly named class of your own. Clearly, you need
a way to indicate the Silverlight namespace information in order to use an element.

In Silverlight, classes are resolved by mapping XML namespaces to Silverlight namespaces. In the
sample document shown earlier, four namespaces are defined:

2 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”

3 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

4 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

5 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

The xmlns attribute is a specialized attribute in the world of XML, and it’s reserved for declaring
namespaces. This snippet of markup declares four namespaces that you'll find in every page you create
with Visual Studio or Expression Blend.

http://www.w3schools.com/xml
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006

CHAPTER 2

Note XML namespaces are declared using attributes. These attributes can be placed inside any element start
tag. However, convention dictates that all the namespaces you need to use in a document should be declared in
the very first tag, as they are in this example. Once a namespace is declared, it can be used anywhere in the
document.

Core Silverlight Namespaces

The first two namespaces are the most important. You'll need them to access essential parts of the
Silverlight runtime:

e http://schemas.microsoft.com/winfx/2006/xaml/presentation is the core Silverlight
namespace. It encompasses all the essential Silverlight classes, including the
UserControl and Grid. Ordinarily, this namespace is declared without a
namespace prefix, so it becomes the default namespace for the entire document.
In other words, every element is automatically placed in this namespace unless
you specify otherwise.

e http://schemas.microsoft.com/winfx/2006/xamlis the XAML namespace. It includes
various XAML utility features that allow you to influence how your document is
interpreted. This namespace is mapped to the prefix x. That means you can apply
it by placing the namespace prefix before the name of an XML element or
attribute (as in <x:ElementName> and x:Class="ClassName").

The namespace information allows the XAML parser to find the right class. For example, when it
looks at the UserControl and Grid elements, it sees that they are placed in the default
http://schemas.microsoft.com/winfx/2006/xaml/presentation namespace. It then searches the
corresponding Silverlight namespaces, until it finds the matching classes System.Windows.UserControl
and System.Windows.Controls.Grid.

XAML

XML NAMESPACES AND SILVERLIGHT NAMESPACES

The XML namespace name doesn’t correspond to a single Silverlight namespace. Instead, all the
Silverlight namespaces share the same XML namespace. There are a couple of reasons the creators of
XAML chose this design. By convention, XML namespaces are often URIs (as they are here). These URIs
look like they point to a location on the Web, but they don’t. The URI format is used because it makes it
unlikely that different organizations will inadvertently create different XML-based languages with the same
namespace. Because the domain schemas.microsoft.com is owned by Microsoft, only Microsoft will use it
in an XML namespace name.

The other reason that there isn’t a one-to-one mapping between the XML namespaces used in XAML and
Silverlight namespaces is because it would significantly complicate your XAML documents. If each
Silverlight namespace had a different XML namespace, you’d need to specify the right namespace for each
and every control you use, which would quickly get messy. Instead, the creators of Silverlight chose to

35

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml
http://schemas.microsoft.com/winfx/2006/xaml/presentation

CHAPTER 2 = XAML

36

map all the Silverlight namespaces that include user interface elements to a single XML namespace. This
works because within the different Silverlight namespaces, no two classes share the same name.

Design Namespaces
Along with these core namespaces are too more specialized namespaces, neither of which is essential:

o xmlins:mc="http://schemas.openxmlformats.org/markup-compatibility/2006 is the
XAML compatibility namespace. You can use it to tell the XAML parser what
information must to process and what information to ignore.

e http://schemas.microsoft.com/expression/blend/2008 is a namespace reserved for
design-specific XAML features that are supported in Expression Blend (and now
Visual Studio 2010). It’s used primarily to set the size of the design surface for a

page.
Both of these namespaces are used in the single line shown here:
6 mc:Ignorable="d" d:DesignWidth="640" d:DesignHeight="480">

The DesignWidthi and DesignHeight properties are part of the
http://schemas.microsoft.com/expression/blend/2008 namespace. They tell the design tool to make the
page 640x480 pixels large at design time. Without this detail, you would be forced to work with a
squashed-up design surface that doesn’t give a realistic preview of your user interface or set a hard-
coded size using the Width and Height properties (which isn’t ideal, because it prevents your page from
resizing to fit the browser window at runtime).

The Ignorable property is part of the http://schemas.openxmlformats.org/markup-
compatibility/2006 namespace. It tells the XAML design tool that it’s safe to ignore the parts of the
document that are prefixed with a d and placed in the
http://schemas.microsoft.com/expression/blend/2008. In other words, if the XAML parser doesn’t
understand the DesignWidth and DesignHeight details, it’s safe to continue because they aren’t critical.

Note In the examples in this book, you’ll rarely see either of these namespaces, because they aren’t terribly
important. They’re intended for design tools and XAML readers only, not the Silverlight runtime.

Custom Namespaces

In many situations, you'll want to have access to your own namespaces in a XAML file. The most
common example is if you want to use a custom Silverlight control that you (or another developer) have
created. In this case, you need to define a new XML namespace prefix and map it to your assembly.
Here’s the syntax you need:

<UserControl x:Class="SilverlightApplicationi.MainPage"
xmlns:w="clr-namespace:Widgets;assembly=WidgetLibrary"
e

The XML namespace declaration sets three pieces of information:

[vww allitebooks.cond

http://schemas.openxmlformats.org/markup-compatibility/2006istheXAMLcompatibilitynamespace.YoucanuseittotelltheXAMLparserwhatinformationmusttoprocessandwhatinformationtoignore.%E2%80%A2
http://schemas.openxmlformats.org/markup-compatibility/2006istheXAMLcompatibilitynamespace.YoucanuseittotelltheXAMLparserwhatinformationmusttoprocessandwhatinformationtoignore.%E2%80%A2
http://schemas.openxmlformats.org/markup-compatibility/2006istheXAMLcompatibilitynamespace.YoucanuseittotelltheXAMLparserwhatinformationmusttoprocessandwhatinformationtoignore.%E2%80%A2
http://schemas.openxmlformats.org/markup-compatibility/2006istheXAMLcompatibilitynamespace.YoucanuseittotelltheXAMLparserwhatinformationmusttoprocessandwhatinformationtoignore.%E2%80%A2
http://schemas.microsoft.com/expression/blend/2008isanamespacereservedfordesign-specificXAMLfeaturesthataresupportedinExpressionBlend
http://schemas.microsoft.com/expression/blend/2008isanamespacereservedfordesign-specificXAMLfeaturesthataresupportedinExpressionBlend
http://schemas.microsoft.com/expression/blend/2008
http://schemas.openxmlformats.org/markup-compatibility/2006
http://schemas.openxmlformats.org/markup-compatibility/2006
http://schemas.openxmlformats.org/markup-compatibility/2006
http://schemas.microsoft.com/expression/blend/2008
http://www.allitebooks.org

CHAPTER 2

e The XML namespace prefix: You'll use the namespace prefix to refer to the
namespace in your XAML page. In this example, that’s w, although you can
choose anything you want that doesn’t conflict with another namespace prefix.

e The.NET namespace: In this case, the classes are located in the Widgets
namespace. If you have classes that you want to use in multiple namespaces, you
can map them to different XML namespaces or to the same XML namespace (as
long as there aren’t any conflicting class names).

e Theassembly: In this case, the classes are part of the WidgetLibrary.dll assembly.
(You don’t include the .dll extension when naming the assembly.) Silverlight will
look for that assembly in the same XAP package where your project assembly is
placed.

Note Remember, Silverlight uses a lean, stripped-down version of the CLR. For that reason, a Silverlight
application can’t use a full .NET class library assembly. Instead, it needs to use a Silverlight class library. You can
easily create a Silverlight class library in Visual Studio by choosing the Silverlight Class Library project template.

If you want to use a custom control that’s located in the current application, you can omit the
assembly part of the namespace mapping, as shown here:

xmlns:w="clr-namespace:Widgets"

Once you've mapped your .NET namespace to an XML namespace, you can use it anywhere in your
XAML document. For example, if the Widgets namespace contains a control named HotButton, you
could create an instance like this:

<w:HotButton Content="Click Me!" Click="DoSomething"></w:HotButton>

You'll use this technique throughout this book to access controls in the Silverlight add-on
assemblies and the Silverlight Toolkit.

The Code-Behind Class

XAML allows you to construct a user interface, but in order to make a functioning application, you need
a way to connect the event handlers that contain your application code. XAML makes this easy using the
Class attribute that’s shown here:

1 <UserControl x:Class="SilverlightApplicationi.MainPage"

The x namespace prefix places the Class attribute in the XAML namespace, which means this is a
more general part of the XAML language, not a specific Silverlight ingredient.

In fact, the Class attribute tells the Silverlight parser to generate a new class with the specified name.

That class derives from the class that’s named by the XML element. In other words, this example creates
a new class named SilverlightProjectl.MainPage, which derives from the UserControl class. The
automatically generated portion of this class is merged with the code you've supplied in the code-
behind file.

XAML

37

CHAPTER 2 = XAML

38

Usually, every XAML file will have a corresponding code-behind class with client-side C# code.
Visual Studio creates a code-behind class for the MainPage.xaml file named MainPage.xaml.cs. Here’s
what you'll see in the MainPage.xaml.cs file:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Net;

using System.Windows;

using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Animation;
using System.Windows.Shapes;

namespace SilverlightApplication1
public partial class MainPage : UserControl
public MainPage()
{

InitializeComponent();

Currently, the MainPage class code doesn’t include any real functionality. However, it does include
one important detail—the default constructor, which calls InitializeComponent() when you create an
instance of the class. This parses your markup, creates the corresponding objects, sets their properties,
and attaches any event handlers you've defined.

Note The InitializeComponent() method plays a key role in Silverlight content. For that reason, you should never
delete the InitializeComponent() call from the constructor. Similarly, if you add another constructor to your page,
make sure it also calls InitializeComponent().

Naming Elements

There’s one more detail to consider. In your code-behind class, you'll often want to manipulate
elements programmatically. For example, you might want to read or change properties or attach and
detach event handlers on the fly. To make this possible, the control must include a XAML Name
attribute. In the previous example, the Grid control already includes the Name attribute, so you can
manipulate it in your code-behind file.

6 <Grid x:Name="LayoutRoot">
7 </Grid>

CHAPTER 2

The Name attribute tells the XAML parser to add a field like this to the automatically generated
portion of the MainPage class:

private System.Windows.Controls.Grid LayoutRoot;

Now you can interact with the grid in your page class code by using the name LayoutRoot.

Tip In a traditional Windows Forms application, every control has a name. In a Silverlight application, there’s no
such requirement. If you don’t want to interact with an element in your code, you’re free to remove its Name
attribute from the markup. The examples in this book usually omit element names when they aren’t needed, which
makes the markup more concise.

Properties and Events in XAML

So far, you've considered a relatively unexciting example—a blank page that hosts an empty Grid
control. Before going any further, it’s worth introducing a more realistic page that includes several
elements. Figure 2-1 shows an example with an automatic question answerer.

[(2])

=" IE] D:\Code\Pro Silverlight\Chapter02\EightE © ~ ¢ x\ (it 2.0 503

[@ Eightsa j—

‘Will Silverlight endure?

| Ask the Eight Ball |

‘Outlook Good

L

Figure 2-1. Ask the eight ball, and all will be revealed.

The eight ball page includes four elements: a Grid (the most common tool for arranging layout in
Silverlight), two TextBox objects, and a Button. The markup that’s required to arrange and configure
these elements is significantly longer than the previous examples. Here’s an abbreviated listing that
replaces some of the details with an ellipsis (. . .) to expose the overall structure:

XAML

39

CHAPTER 2 = XAML

<UserControl x:Class="EightBall.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Width="400" Height="300">
<Grid x:Name="grid1"»>
<Grid.Background>

</Grid.Background>
<Grid.RowDefinitions>

</Grid.RowDefinitions>

<TextBox x:Name="txtQuestion" ... >
</TextBox>

<Button x:Name="cmdAnswer" ... >
</Button>

<TextBox x:Name="txtAnswer" ... >
</TextBox>
</Grid>
</UserControl>

In the following sections, you'll explore the parts of this document—and learn the syntax of XAML
along the way.

Simple Properties and Type Converters

As you've already seen, the attributes of an XML element set the properties of the corresponding
Silverlight object. For example, the text boxes in the eight ball example configure the alignment, margin,
and font:

<TextBox x:Name="txtQuestion"
VerticalAlignment="Stretch" HorizontalAlignment="Stretch"
FontFamily="Verdana" FontSize="24" Foreground="Green" ... >

For this to work, the System.Windows.Controls.TextBox class must provide the following properties:
VerticalAlignment, HorizontalAlignment, FontFamily, FontSize, and Foreground. You'll learn the
specific meaning for each of these properties in the following chapters.

Tip Several special characters can’t be entered directly into an attribute string, including the quotation mark,
the ampersand (&), and the two angle brackets. To use these values, you must replace them with the equivalent
XML character entity. That's " for a quotation mark, & for the ampersand, &1t; for the < (less than)
character, and > ; for the > (greater than) character. Of course, this limitation is an XML detail, and it won’t
affect you if you set a property in code.

40

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 2

To make the property system work, the XAML parser needs to perform a bit more work than you
might initially realize. The value in an XML attribute is always a plain-text string. However, object
properties can be any .NET type. In the previous example, there are two properties that use
enumerations (VerticalAlignment and HorizontalAlignment), one string (FontFamily), one integer
(FontSize), and one Brush object (Foreground).

To bridge the gap between string values and nonstring properties, the XAML parser needs to
perform a conversion. The conversion is performed by fype converters, a basic piece of infrastructure
that’s borrowed from the full NET Framework.

Essentially, a type converter has one role in life—it provides utility methods that can convert a
specific .NET data type to and from any other .NET type, such as a string representation in this case. The
XAML parser follows two steps to find a type converter:

1. It examines the property declaration, looking for a TypeConverter attribute. (If
present, the TypeConverter attribute indicates what class can perform the
conversion.) For example, when you use a property such as Foreground, .NET
checks the declaration of the Foreground property.

2. Ifthere’s no TypeConverter attribute on the property declaration, the XAML
parser checks the class declaration of the corresponding data type. For
example, the Foreground property uses a Brush object. The Brush class (and
its derivatives) uses the BrushConverter because the Brush class is decorated
with the TypeConverter(typeof(BrushConverter)) attribute declaration.

If there’s no associated type converter on the property declaration or the class declaration, the
XAML parser generates an error.

This system is simple but flexible. If you set a type converter at the class level, that converter applies
to every property that uses that class. On the other hand, if you want to fine-tune the way type
conversion works for a particular property, you can use the TypeConverter attribute on the property
declaration instead.

It’s technically possible to use type converters in code, but the syntax is a bit convoluted. It’s almost
always better to set a property directly—not only is it faster, but it also avoids potential errors from
mistyping strings, which won’t be caught until runtime. This problem doesn’t affect XAML, because the
XAML is parsed and validated at compile time.

Note XAML, like all XML-based languages, is case-sensitive. That means you can’t substitute <button> for
<Button>. However, type converters usually aren’t case-sensitive, which means both Foreground="White" and
Foreground="white" have the same result.

Some classes define a content property, which allows you to provide the property value between the
start and end tags. For example, the Button class designates Content as its content property, meaning
this markup:

<Button>Click Me!</Button>
is equivalent to this:

<Button Content="Click Me!"></Button>

XAML

41

CHAPTER 2 = XAML

42

Despite this convenience, you're more likely to see the second approach in markup. Not only is it
the standard Visual Studio uses when you configure elements with the Properties window, it was also the
only supported option for many controls in older versions of Silverlight (up until Silverlight 4).

Complex Properties

As handy as type converters are, they aren’t practical for all scenarios. For example, some properties are
full-fledged objects with their own set of properties. Although it’s possible to create a string
representation that the type converter could use, that syntax might be difficult to use and prone to error.

Fortunately, XAML provides another option: property-element syntax. With property-element
syntax, you add a child element with a name in the form Parent. PropertyName. For example, the Grid
has a Background property that allows you to supply a brush that’s used to paint the area behind the
elements. If you want to use a complex brush—one more advanced than a solid color fill—you’ll need to
add a child tag named Grid.Background, as shown here:

<Grid x:Name="gridi">
<Grid.Background>

</Grid.Background>
</Grid>

The key detail that makes this work is the period (.) in the element name. This distinguishes
properties from other types of nested content.

This still leaves one detail—namely, once you've identified the complex property you want to
configure, how do you set it? Here’s the trick. Inside the nested element, you can add another tag to
instantiate a specific class. In the eight ball example (shown in Figure 2-1), the background is filled with
a gradient. To define the gradient you want, you need to create a LinearGradientBrush object.

Using the rules of XAML, you can create the LinearGradientBrush object using an element with the
name LinearGradientBrush:

<Grid x:Name="grid1">
<Grid.Background>
<LinearGradientBrush>
</LinearGradientBrush>
</Grid.Background>

</Grid>

The LinearGradientBrush is part of the Silverlight set of namespaces, so you can keep using the
default XML namespace for your tags.

However, it’s not enough to simply create the LinearGradientBrush—you also need to specify the
colors in that gradient. You do this by filling the LinearGradientBrush.GradientStops property with a

collection of GradientStop objects. Once again, the GradientStops property is too complex to be set with
an attribute value alone. Instead, you need to rely on the property-element syntax:

<Grid x:Name="gridi">
<Grid.Background>
<LinearGradientBrush>
<LinearGradientBrush.GradientStops>
</LinearGradientBrush.GradientStops>
</LinearGradientBrush>
</Grid.Background>

CHAPTER 2

</Grid>
Finally, you can fill the GradientStops collection with a series of GradientStop objects. Each

GradientStop object has an Offset and Color property. You can supply these two values using the
ordinary property-attribute syntax:

<Grid x:Name="grid1i">
<Grid.Background>
<LinearGradientBrush>
<LinearGradientBrush.GradientStops>
<GradientStop Offset="0.00" Color="Yellow" />
<GradientStop Offset="0.50" Color="White" />
<GradientStop Offset="1.00" Color="Purple" />
</LinearGradientBrush.GradientStops>
</LinearGradientBrush>
</Grid.Background>

</Grid>

Note You can use property-element syntax for any property. But usually you’ll use the simpler property-
attribute approach if the property has a suitable type converter. Doing so results in more compact code.

Any set of XAML tags can be replaced with a set of code statements that performs the same task. The
tags shown previously, which fill the background with a gradient of your choice, are equivalent to the
following code:

LinearGradientBrush brush = new LinearGradientBrush();

GradientStop gradientStopl = new CradientStop();
gradientStop1.0ffset = 0;

gradientStop1.Color = Colors.Yellow;
brush.GradientStops.Add(gradientStop1);

GradientStop gradientStop2 = new GradientStop();
gradientStop2.0ffset = 0.5;

gradientStop2.Color = Colors.White;
brush.GradientStops.Add(gradientStop2);

GradientStop gradientStop3 = new GradientStop();
gradientStop3.0ffset = 1;

gradientStop3.Color = Colors.Purple;
brush.GradientStops.Add(gradientStop3);

gridi.Background = brush;

XAML

43

CHAPTER 2 = XAML

44

Attached Properties

Along with ordinary properties, XAML also includes the concept of attached properties—properties that
may apply to several elements but are defined in a different class. In Silverlight, attached properties are
frequently used to control layout.

Here’s how it works. Every control has its own set of intrinsic properties. For example, a text box has
a specific font, text color, and text content as dictated by properties such as FontFamily, Foreground,
and Text. When you place a control inside a container, it gains additional features, depending on the
type of container. For example, if you place a text box inside a grid, you need to be able to choose the
grid cell where it’s positioned. These additional details are set using attached properties.

Attached properties always use a two-part name in this form: DefiningType.PropertyName. This
two-part naming syntax allows the XAML parser to distinguish between a normal property and an
attached property.

In the eight ball example, attached properties allow the individual elements to place themselves on
separate rows in the (invisible) grid:

<TextBox ... Grid.Row="0">
</TextBox>
<Button ... Grid.Row="1">
</Button>
<TextBox ... Grid.Row="2">
</TextBox>

Attached properties aren’t really properties at all. They're actually translated into method calls. The
XAML parser calls the static method that has this form: DefiningType.SetPropertyName(). For example,
in the previous XAML snippet, the defining type is the Grid class, and the property is Row, so the parser
calls Grid.SetRow().

When calling SetPropertyName(), the parser passes two parameters: the object that’s being
modified and the property value that’s specified. For example, when you set the Grid.Row property on
the TextBox control, the XAML parser executes this code:

Grid.SetRow(txtQuestion, 0);

This pattern (calling a static method of the defining type) is a convenience that conceals what’s
really taking place. To the casual eye, this code implies that the row number is stored in the Grid object.
However, the row number is actually stored in the object that it applies fo—in this case, the TextBox
object.

This sleight of hand works because the TextBox derives from the DependencyObject base class, as
do all Silverlight elements. The DependencyObiject is designed to store a virtually unlimited collection of
dependency properties (and attached properties are one type of dependency property).

In fact, the Grid.SetRow() method is actually a shortcut that’s equivalent to calling the
DependencyObject.SetValue() method, as shown here:

txtQuestion.SetValue(Grid.RowProperty, 0);

Attached properties are a core ingredient of Silverlight. They act as an all-purpose extensibility
system. For example, by defining the Row property as an attached property, you guarantee that it’s
usable with any control. The other option, making it part of a base class such as FrameworkElement,
complicates life. Not only would it clutter the public interface with properties that have meaning only in
certain circumstances (in this case, when an element is being used inside a Grid), it also makes it
impossible to add new types of containers that require new properties.

CHAPTER 2 = XAML

Nesting Elements

As you’ve seen, XAML documents are arranged as a heavily nested tree of elements. In the current
example, a UserControl element contains a Grid element, which contains TextBox and Button elements.

XAML allows each element to decide how it deals with nested elements. This interaction is mediated
through one of three mechanisms that are evaluated in this order:

e Ifthe parent implements IList<T>, the parser calls the IList<T>.Add() method and
passes in the child.

e Ifthe parent implements IDictionary<T>, the parser calls IDictionary<T>.Add()
and passes in the child. When using a dictionary collection, you must also set the
x:Key attribute to give a key name to each item.

e Ifthe parent is decorated with the ContentProperty attribute, the parser uses the
child to set that property.

For example, earlier in this chapter you saw how a LinearGradientBrush can hold a collection of
GradientStop objects using syntax like this:

<LinearGradientBrush>
<LinearGradientBrush.GradientStops>
<GradientStop Offset="0.00" Color="Yellow" />
<GradientStop Offset="0.50" Color="White" />
<GradientStop Offset="1.00" Color="Purple" />
</LinearGradientBrush.GradientStops>
</LinearGradientBrush>

The XAML parser recognizes the LinearGradientBrush.GradientStops element is a complex property
because it includes a period. However, it needs to process the tags inside (the three GradientStop
elements) a little differently. In this case, the parser recognizes that the GradientStops property returns a
GradientStopCollection object, and the GradientStopCollection implements the IList interface. Thus, it
assumes (quite rightly) that each GradientStop should be added to the collection using the IList.Add()
method:

GradientStop gradientStopl = new CradientStop();
gradientStop1.0ffset = 0;

gradientStop1.Color = Colors.Yellow;

IList list = brush.GradientStops;
list.Add(gradientStop1);

Some properties might support more than one type of collection. In this case, you need to add a tag
that specifies the collection class, like this:

<LinearGradientBrush>
<LinearGradientBrush.GradientStops>
<GradientStopCollection»
<GradientStop Offset="0.00" Color="Yellow" />
<GradientStop Offset="0.50" Color="White" />
<GradientStop Offset="1.00" Color="Purple" />
</GradientStopCollection>
</LinearGradientBrush.GradientStops>
</LinearGradientBrush>

45

CHAPTER 2 = XAML

46

Note If the collection defaults to null, you need to include the tag that specifies the collection class, thereby
creating the collection object. If there’s a default instance of the collection and you simply need to fill it, you can
omit that part.

Nested content doesn’t always indicate a collection. For example, consider the Grid element, which
contains several other elements:

<Grid x:Name="gridi">

<TextBox x:Name="txtQuestion" ... >
</TextBox>

<Button x:Name="cmdAnswer" ... >
</Button>

<TextBox x:Name="txtAnswer" ... >
</TextBox>
</Grid>

These nested tags don’t correspond to complex properties, because they don’t include the period.
Furthermore, the Grid control isn’t a collection and so it doesn’t implement IList or IDictionary. What
the Grid does support is the ContentProperty attribute, which indicates the property that should receive
any nested content. Technically, the ContentProperty attribute is applied to the Panel class, from which
the Grid derives, and looks like this:

[ContentPropertyAttribute("Children")]
public abstract class Panel : FrameworkElement

This indicates that any nested elements should be used to set the Children property. The XAML
parser treats the content property differently depending on whether it’s a collection property (in which
case it implements the IList or IDictionary interface). Because the Panel.Children property returns a
UlElementCollection and because UIElementCollection implements IList, the parser uses the IList.Add()
method to add nested content to the grid.

In other words, when the XAML parser meets the previous markup, it creates an instance of each
nested element and passes it to the Grid using the Grid.Children.Add() method:

txtQuestion = new TextBox();
é;]:.dl .Children.Add(txtQuestion);
cmdAnswer = new Button();

é;’]:.dl .Children.Add(cmdAnswer);
txtAnswer = new TextBox();

gridi.Children.Add(txtAnswer);

What happens next depends entirely on how the control implements the content property. The Grid
displays all the elements it holds in an invisible layout of rows and columns, as you'll see in Chapter 3.

CHAPTER 2 = XAML

BROWSING NESTED ELEMENTS WITH VISUALTREEHELPER

Silverlight provides a VisualTreeHelper class that allows you to walk through the hierarchy elements. The
VisualTreeHelper class provides three static methods for this purpose: GetParent(), which returns the
element that contains a specified element; GetChildrenCount(), which indicates how many elements are
nested inside the specified element; and GetChild(),which retrieves one of the nested elements, by its index
number position.

The advantage of VisualTreeHelper is that it works in a generic way that supports all Silverlight elements,
no matter what content model they use. For example, you may know that list controls expose items
through an ltems property, layout containers provide their children through a Children property, and
content controls expose the nested content element through a Content property, but only the
VisualTreeHelper can dig through all three with the same seamless code.

The disadvantage to using the VisualTreeHelper is that it gets every detail of an element’s visual
composition, including some that aren’t important to its function. For example, when you use
VisualTreeHelper to browse through a ListBox, you’ll come across a few low-level details that probably
don’t interest you, such as the Border that outlines it, the ScrollViewer that makes it scrollable, and the
Grid that lays out items in discrete rows. For this reason, the only practical way to use the VisualTreeHelper
is with recursive code—in essence, you keep digging through the tree until you find the type of element
you're interested in, and then you act on it. The following example uses this technique to clear all the text
boxes in a hierarchy of elements:

private void Clear(DependencyObject element)

{
// If this is a text box, clear the text.

TextBox txt = element as TextBox;
if (txt !'= null) txt.Text = "";

// Check for nested children.
int children = VisualTreeHelper.GetChildrenCount(element);

for (int i = 0; i < children; i++)

DependencyObject child = VisualTreeHelper.GetChild(element, i);
Clear(child);

}

To set it in motion, call the Clear() method with the topmost object you want to examine. Here’s how to
dissect the entire current page:

Clear(this);

Events

So far, all the attributes you've seen map to properties. However, attributes can also be used to attach
event handlers. The syntax for this is EventName="EventHandlerMethodName".
For example, the Button control provides a Click event. You can attach an event handler like this:

47

CHAPTER 2 = XAML

<Button ... Click="cmdAnswer Click">

This assumes that there is a method with the name cmdAnswer_Click in the code-behind class. The
event handler must have the correct signature (that is, it must match the delegate for the Click event).
Here’s the method that does the trick:

private void cmdAnswer Click(object sender, RoutedEventArgs e)

{
AnswerGenerator generator = new AnswerGenerator();
txtAnswer.Text = generator.GetRandomAnswer (txtQuestion.Text);

}

In many situations, you'll use attributes to set properties and attach event handlers on the same
element. Silverlight always follows the same sequence: first it sets the Name property (if set), then it
attaches any event handlers, and lastly it sets the properties. This means that any event handlers that
respond to property changes will fire when the property is set for the first time.

The Full Eight Ball Example

Now that you’ve considered the fundamentals of XAML, you know enough to walk through the
definition for the page in Figure 2-1. Here’s the complete XAML markup:

<UserControl x:Class="EightBall.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
<Grid x:Name="grid1">
<Grid.RowDefinitions>
<RowDefinition Height="*" />
<RowDefinition Height="Auto" />
<RowDefinition Height="*" />
</Grid.RowDefinitions>
<TextBox VerticalAlignment="Stretch" HorizontalAlignment="Stretch"
Margin="10,10,13,10" x:Name="txtQuestion"
TextWrapping="Wrap" FontFamily="Verdana" FontSize="24"
Grid.Row="0" Text="[Place question here.]">
</TextBox>
<Button VerticalAlignment="Top" HorizontalAlignment="Left"
Margin="10,0,0,20" Width="127" Height="23" x:Name="cmdAnswer"
Click="cmdAnswer Click" Grid.Row="1" Content="Ask the Eight Ball">
</Button>
<TextBox VerticalAlignment="Stretch" HorizontalAlignment="Stretch"
Margin="10,10,13,10" x:Name="txtAnswer" TextWrapping="Wrap"
IsReadOnly="True" FontFamily="Verdana" FontSize="24" Foreground="Green
Grid.Row="2" Text="[Answer will appear here.]">
</TextBox>

<Grid.Background>
<LinearGradientBrush>
<LinearGradientBrush.GradientStops>
<GradientStop Offset="0.00" Color="Yellow" />
<GradientStop Offset="0.50" Color="White" />
<GradientStop Offset="1.00" Color="Purple" />

48

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 2

</LinearGradientBrush.GradientStops>
</LinearGradientBrush>
</Grid.Background>
</Grid>
</Window>

Remember, you probably won’t write the XAML for a graphically rich user interface by hand—doing
so would be unbearably tedious. However, you might have good reason to edit the XAML code to make a
change that would be awkward to accomplish in the designer. You might also find yourself reviewing
XAML to get a better idea of how a page works.

XAML Resources

Silverlight includes a resource system that integrates closely with XAML. Using resources, you can do the
following:

e Create nonvisual objects: This is useful if other elements use these objects. For
example, you could create a data object as a resource and then use data binding to
display its information in several elements.

e Reuse objects: Once you define a resource, several elements can draw on it. For
example, you can define a single brush that’s used to color in several shapes. Later
in this book, you’ll use resources to define styles and templates that are reused
among elements.

e Centralize details: Sometimes, it’s easier to pull frequently changed information
into one place (a resources section) rather than scatter it through a complex
markup file, where it’s more difficult to track down and change.

The resource system shouldn’t be confused with assembly resources, which are blocks of data that
you can embed in your compiled Silverlight assembly. For example, the XAML files you add to your
project are embedded as assembly resources. You'll learn more about assembly resources in Chapter 6.

The Resources Collection

Every element includes a Resources property, which stores a dictionary collection of resources. The
resources collection can hold any type of object, indexed by string.

Although every element includes the Resources property, the most common way to define resources
is at the page level. That’s because every element has access to the resources in its own resource
collection and the resources in all of its parents’ resource collections. So if you define a resource in the
page, all the elements on the page can use it.

For example, consider the eight ball example. Currently, the GradientBrush that paints the
background of the Grid is defined inline (in other words, it’s defined and set in the same place).
However, you might choose to pull the brush out of the Grid markup and place it in the resources
collection instead:

<UserControl x:Class="EightBall.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
<UserControl.Resources>
<LinearGradientBrush x:Key="BackgroundBrush">
<LinearGradientBrush.GradientStops>

XAML

49

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 2 = XAML

50

<GradientStop Offset="0.00" Color="Yellow" />
<GradientStop Offset="0.50" Color="White" />
<GradientStop Offset="1.00" Color="Purple" />
</LinearGradientBrush.GradientStops>
</LinearGradientBrush>
</UserControl .Resources>

</UserControl>

The only important new detail is the Key attribute that’s been added to the brush (and preceded by
the x: namespace prefix, which puts it in the XAML namespace rather than the Silverlight namespace).
The Key attribute assigns the name under which the brush will be indexed in the resources collection.
You can use whatever you want, so long as you use the same name when you need to retrieve the
resource. It’s a good idea to name resources based on their functions (which won’t change) rather than
the specific details of their implementations (which might). For that reason, BackgroundBrush is a better
name than LinearGradientBrush or ThreeColorBrush.

Note You can instantiate any .NET class in the resources section (including your own custom classes), as long
as it’s XAML-friendly. That means it needs to have a few basic characteristics, such as a public zero-argument
constructor and writeable properties.

To use a resource in your XAML markup, you need a way to refer to it. This is accomplished using a
markup extension—a specialized type of syntax that sets a property in a nonstandard way. Markup
extensions extend the XAML language and can be recognized by their curly braces. To use a resource,
you use a markup extension named StaticResource:

<Grid x:Name="grid1" Background="{StaticResource BackgroundBrush}">

This refactoring doesn’t shorten the markup you need for the eight ball example. However, if you
need to use the same brush in multiple elements, the resource approach is the best way to avoid
duplicating the same details. And even if you don’t use the brush more than once, you might still prefer
this approach if your user interface includes a number of graphical details that are likely to change. For
example, by placing all the brushes front and center in the resources collection, you’ll have an easier
time finding them and changing them. Some developers use the resources collection for virtually every
complex object they create to set a property in XAML.

Note The word stafic stems from the fact that WPF has two types of resources, static and dynamic. However,
Silverlight includes only static resources.

CHAPTER 2

XAML

CUSTOM MARKUP EXTENSIONS

Silverlight 5 opens the door to custom markup extensions, which can extend the XAML language with your
custom shortcuts. Custom markup extensions are particularly useful for people building add-on
frameworks that extend Silverlight.

To make a custom markup extension, you create a class that derives from MarkupExtension (in the
System.Windows.Markup namespace). This class will consist of two things. First, it can include properties,
which the XAML parser sets based on your markup. Second, it includes the ProvideValue() method, which
you override to return the final object to the XAML parser. For example, consider the StaticResource
markup extension. It includes a ResourceKey property that accepts the text for a key name (like
“BackgroundBrush”). When the XAML parser chews through this piece of markup, it creates the
StaticResourceExtension object, sets its ResourceKey property accordingly, and then calls ProvideValue().
The ProvideValue() method then searches for the matching object and returns it to the XAML parser.

Although you’ll use plenty of markup extensions in this book, you won’t create your own. If you’re curious
about some of the specialized scenarios where custom markup extensions make sense, you can find a few
good examples online. For an example of a custom markup extension that supports localization, see
http://tinyurl.com/6xwv3se. For a markup extension that simplifies the Managed Extensibility
Framework, see http://tinyurl.com/6xm2sv5. And for a markup extension that can create pack URIs,
which are explained in Chapter 6, see http://tinyurl.com/6djjnyd (although this extension is designed
for WPF and needs minor tweaking to work in Silverlight).

The Hierarchy of Resources

Every element has its own resource collection, and Silverlight performs a recursive search up your
element tree to find the resource you want. For example, imagine you have the following markup:

<UserControl x:Class="Resources.ResourceHierarchy"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Width="400" Height="300">
<Grid x:Name="LayoutRoot" Background="White">
<StackPanel>
<StackPanel.Resources>
<LinearGradientBrush x:Key="ButtonFace">
<GradientStop Offset="0.00" Color="Yellow" />
<GradientStop Offset="0.50" Color="White" />
<GradientStop Offset="1.00" Color="Purple" />
</LinearGradientBrush>
</StackPanel.Resources>

<Button Content="Click Me First" Margin="5"
Background="{StaticResource ButtonFace}"></Button>
<Button Content="Click Me Next" Margin="5"
Background="{StaticResource ButtonFace}"></Button>
</StackPanel>
</Crid>

51

http://tinyurl.com/6xwv3se
http://tinyurl.com/6xm2sv5
http://tinyurl.com/6djjnyd
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 2 = XAML

52

</UserControl>

Figure 2-2 shows the page this markup creates.

(& Silverlight Project Test Page - Windows Internet Explorer @E‘ﬂ_hj
() - | p:codePro Siveriight\Chapterd2\Resources\Clientgir + [43 | X |
W \ @ Silverlight Project Test P.. | |) ~ e v :rPagev
[Click Me First]
[Click Me Next]
€ Internet | Protected Mode: On #100%

Figure 2-2. Using one brush to color two buttons

Here, both buttons set their backgrounds to the same resource. When encountering this markup,
Silverlight will check the resources collection of the button itself and then the StackPanel (where it’s
defined). If the StackPanel didn’t include the right resource, Silverlight would continue its search with
the resources collection of the Grid and then the UserControl. If it still hasn’t found a resource with the
right name, Silverlight will end by checking the application resources that are defined in the
<Application.Resources> section of the App.xaml file:

<Application xmlns="http://schemas.microsoft.com/client/2007"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
x:Class="SilverlightApplicationi.App">
<Application.Resources>
<LinearGradientBrush x:Key="ButtonFace">
<LinearGradientBrush.GradientStops>
<GradientStop Offset="0.00" Color="Yellow" />
<GradientStop Offset="0.50" Color="White" />
<GradientStop Offset="1.00" Color="Purple" />
</LinearGradientBrush.GradientStops>
</LinearGradientBrush>
</Application.Resources>
</Application>

The advantage of placing resources in the application collection is that they’re completely removed
from the markup in your page, and they can be reused across an entire application. In this example, it’s a
good choice if you plan to use the brush in more than one page.

http://schemas.microsoft.com/client/2007
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 2

Note Before creating an application resource, consider the trade-off between complexity and reuse. Adding an
application resource gives you better reuse, but it adds complexity because it’s not immediately clear which pages
use a given resource. (It's conceptually the same as an old-style C++ program with too many global variables.) A
good guideline is to use application resources if your object is reused widely. If it's used in just two or three pages,
consider defining the resource in each page.

Order is important when defining a resource in markup. The rule of thumb is that a resource must
appear before you refer to it in your markup. That means that even though it’s perfectly valid (from a
markup perspective) to put the <StackPanel.Resources> section after the markup that declares the
buttons, this change will break the current example. When the XAML parser encounters a reference to a
resource it doesn’t know, it throws an exception.

Interestingly, resource names can be reused as long as you don’t use the same resource name more
than once in the same collection. In this case, Silverlight uses the resource it finds first. This allows you
to define a resource in your application resources collection and then selectively override it with a
replacement in some pages with a replacement.

Accessing Resources in Code

Usually, you'll define and use resources in your markup. However, if the need arises, you can work with
the resources collection in code. The most straightforward approach is to look up the resource you need
in the appropriate collection by name. For example, if you store a LinearGradientBrush in the
<UserControl.Resources> section with the key name ButtonFace, you could use code like this:

LinearGradientBrush brush = (LinearGradientBrush)this.Resources["ButtonFace"];

// Swap the color order.

Color color = brush.GradientStops[0].Color;
brush.GradientStops[0].Color = brush.GradientStops[2].Color;
brush.GradientStops[2].Color = color;

When you change a resource in this way, every element that uses the resource updates itself
automatically (see Figure 2-3). In other words, if you have four buttons using the ButtonFace brush, they
will all get the reversed colors when this code runs.

XAML

53

CHAPTER 2 = XAML

54

& Silverlight Project Test Page - Windows Internet Explorer @E‘ﬂ_hj
AT, | & D:\Code\Pro Silverlight\Chapter02\Resources\ClientBir v I s ‘ X |
n n | = = g ; I = - i »»
W = ‘ & Silverlight Project Test P... | v d=h v b Page v
[[\ Change the Resource J
[This Button Uses the Same Resource]
€ Internet | Protected Mode: On #100% ~

L s

Figure 2-3. Altering a resource

However, there’s one limitation. Because Silverlight doesn’t support dynamic resources, you aren’t
allowed to change the resource reference. That means you can’t replace a resource with a new object.
Here’s an example of code that breaks this rule and will generate a runtime error:

SolidColorBrush brush = new SolidColorBrush(Colors.Yellow);
this.Resources["ButtonFace"] = brush;

Rather than dig through the Resources collection to find the object you want, you can give your
resource a name by adding the Name attribute. You can then access it directly by name in your code.
However, you can’t set both a name and a key on the same object, and the StaticResource markup
extension recognizes keys only. Thus, if you create a named resource, you won’t be able to use it in your
markup with a StaticResource reference. For that reason, it's more common to use keys.

Organizing Resources with Resource Dictionaries

If you want to share resources between multiple projects or just improve the organization of a complex,
resource-laden project, you can create a resource dictionary. A resource dictionary is simply a XAML
document that does nothing but store a set of resources. To create a resource dictionary in Visual Studio,
right-click your project in the Solution Explorer, choose Add 7 New Item, pick the Silverlight Resource
Dictionary template, supply any name you like, and click Add.

Here’s an example of a resource dictionary named ElementBrushes.xaml that defines one resource:

<ResourceDictionary
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

<LinearGradientBrush x:Key="ButtonFace">
<LinearGradientBrush.GradientStops>
<GradientStop Offset="0.00" Color="Yellow" />
<GradientStop Offset="0.50" Color="White" />
<GradientStop Offset="1.00" Color="Purple" />

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 2

</LinearGradientBrush.GradientStops>
</LinearGradientBrush>
</ResourceDictionary>

To use aresource dictionary, you need to merge it into a resource collection somewhere in your
application. You could do this in a specific page, but it’s more common to merge it into the resources
collection for the application, as shown here:

<Application xmlns="http://schemas.microsoft.com/client/2007"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
x:Class="SilverlightApplication1.App">
<Application.Resources>
<ResourceDictionary>
<ResourceDictionary.MergedDictionaries>
<ResourceDictionary Source="ElementBrushes.xaml" />
</ResourceDictionary.MergedDictionaries>
</ResourceDictionary>
</Application.Resources>
</Application>

The MergedDictionaries collection is a collection of ResourceDictionary objects that you want to
use to supplement your resource collection. In this example, there’s just one, but you can combine as
many as you want. And if you want to add your own resources and merge in resource dictionaries, you
simply need to place your resources before or after the MergedProperties section, as shown here:

<Application.Resources>
<ResourceDictionary>
<ResourceDictionary.MergedDictionaries>
<ResourceDictionary Source="BasicBrushes.xaml" />
<ResourceDictionary Source="ButtonBrushes.xaml" />
</ResourceDictionary.MergedDictionaries>
<LinearGradientBrush x:Key="GraphicalBrushi" ... »</LinearGradientBrush»
<LinearGradientBrush x:Key="GraphicalBrush2" ... »</LinearGradientBrush>
</ResourceDictionary>
</Application.Resources>

Note As you learned earlier, it's perfectly reasonable to have resources with the same name stored in different
but overlapping resource collections. However, it’s not acceptable to merge resource dictionaries that use the
same resource names. If there’s a duplicate, you'll receive an exception when you compile your application.

One reason to use resource dictionaries is to define the styles for application skins that you can
apply dynamically to your controls. (You'll learn how to develop this technique in Chapter 14.) Another
reason is to store content that needs to be localized (such as error message strings).

XAML

55

http://schemas.microsoft.com/client/2007
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 2 = XAML

56

Element-to-Element Binding

In the previous section, you saw how to use the StaticResource markup extension, which gives XAML
additional capabilities (in this case, the ability to easily refer to a resource that’s defined elsewhere in
your markup). You'll see the StaticResource at work throughout the examples in this book. Another
markup extension that gets heavy use is the Binding expression, which sets up a relationship that
funnels information from a source object to a target control.

In Chapter 20, you'll use binding expressions to create data-bound pages that allow the user to
review and edit the information in a linked data object. But in this chapter, you'll take a quick look at a
more basic skill—the ability to connect two elements together with a binding expression.

One-Way Binding

To understand how you can bind an element to another element, consider the simple window shown in
Figure 2-4. It contains two controls: a Slider and a TextBlock with a single line of text. If you pull the
thumb in the slider to the right, the font size of the text is increased immediately. If you pull it to the left,
the font size is reduced.

@ ElementBinding - Mozilla Firefox (=] & [t

File Edit View History Bookmarks Tools Help

@ ¥ c G} (|| :file:;’f‘;‘l S ¥ ". Goo P

T
Simple Text

Done

. r

Figure 2-4. Linked controls through data binding

Clearly, it wouldn’t be difficult to create this behavior using code. You would simply react to the
Slider.ValueChanged event and copy the current value from the slider to the TextBlock. However, data
binding makes it even easier.

When using data binding, you don’t need to make any change to your source object (which is the
Slider in this example). Just configure it to take the right range of values, as you would ordinarily.

<Slider x:Name="sliderFontSize" Margin="3"
Minimum="1" Maximum="40" Value="10">
</Slider>

The binding is defined in the TextBlock element. Instead of setting the FontSize using a literal value,
you use a binding expression, as shown here:

<TextBlock Margin="10" Text="Simple Text" x:Name="1lblSampleText"
FontSize="{Binding ElementName=sliderFontSize, Path=Value}" >
</TextBlock>

CHAPTER 2 = XAML

Data binding expressions use a XAML markup extension (and hence have curly braces). You begin
with the word Binding, followed by any constructor arguments (there are none in this example) and then
a list of the properties you want to set by name—in this case, ElementName and Path. ElementName
indicates the source element. Path indicates the property in the source element. Thus, this binding
expression copies the value from the Slider.Value property to the TextBlock.FontSize property.

Tip The Path can point to a property of a property (for example, FontFamily.Source) or an indexer used by a
property (for example, Content.Children[0]). You can also refer to an attached property (a property that’s defined in
another class but applied to the bound element) by wrapping the property name in parentheses. For example, if
you’re binding to an element that’s placed in a Grid, the path (Grid.Row) retrieves the row number where you've
placed it.

One of the neat features of data binding is that your target is updated automatically, no matter how
the source is modified. In this example, the source can be modified in only one way—by the user’s
interaction with the slider thumb. However, consider a slightly revamped version of this example that
adds a few buttons, each of which applies a preset value to the slider. Click one of these buttons, and this
code runs:

private void cmd_SetlLarge(object sender, RoutedEventArgs e)

sliderFontSize.Value = 30;

This code sets the value of the slider, which in turn forces a change to the font size of the text
through data binding. It’s the same as if you had moved the slider thumb yourself.
However, this code wouldn’t work as well:

private void cmd_Setlarge(object sender, RoutedEventArgs e)

1blSampleText.FontSize = 30;

It sets the font of the text box directly. As a result, the slider position isn’t updated to match. Even
worse, this has the effect of wiping out your font size binding and replacing it with a literal value. If you
move the slider thumb now, the text block won’t change at all.

Two-Way Binding

Interestingly, there’s a way to force values to flow in both directions: from the source to the target and
from the target to the source. The trick is to set the Mode property of the Binding. Here’s a revised
bidirectional binding that allows you to apply changes to either the source or the target and have the
other piece of the equation update itself automatically:

<TextBlock Margin="10" Text="Simple Text" Name="1lblSampleText"
FontSize="{Binding ElementName=sliderFontSize, Path=Value, Mode=TwoWay}" >
</TextBlock>

57

CHAPTER 2 = XAML

58

In this example, there’s no reason to use a two-way binding, because you can solve the problem by
manipulating the value of the slider rather than changing the font size of the TextBlock. However,
consider a variation of this example that includes a text box where the user can set the font size precisely
(see Figure 2-5).

i] D:\Code\Pro Silverlight\Chapter02 © ~ ¢ X ‘ N

‘ = Elem;ntBinding ! ‘

Simple Text

|Set to Smal|| |Set to Normal| |Set to Large|

Exact Size:| 30 |

+®100% ~

L ~

Figure 2-5. Two-way binding with a text box

Here, the text box needs to use a two-way binding, because it both receives the bound data value
and sets it. When the user drags the slider (or clicks a button), the text box receives the new slider value.
And when the user types a new value in the text box, the binding copies the value to the slider.

Here’s the two-way binding expression you need:

<TextBox Text="{Binding ElementName=1blSampleText, Path=FontSize, Mode=TwoWay}">
</TextBox>

Note If you experiment with this example, you’ll discover that the text box applies its value to the slider only
once it loses focus. This is the default update behavior in Silverlight, but you can change it by forcing immediate
updates as the user types—a trick you'll pick up in Chapter 20.

You'll learn far more about data binding in Chapter 20, when you add data objects and collections
into the mix. But this example illustrates two important points—how the Binding extension enhances
XAML with the ability to tie properties from different objects together and how you can create basic
element synchronization effects with no code required.

CHAPTER 2

The Last Word

In this chapter, you took a tour through a simple XAML file and learned the syntax rules of XAML at the
same time. You also considered two markup extensions that Silverlight uses to enhance XAML: the
StaticResource extension for referencing resources and the Binding extension for connecting properties
in different objects.

When you're designing an application, you don’t need to write all your XAML by hand. Instead, you
can use a tool such as Visual Studio or Expression Blend to drag and drop your pages into existence.
Based on that, you might wonder whether it’s worth spending so much time studying the syntax of
XAML. The answer is a resounding yes. Understanding XAML is critical to Silverlight application design.
Understanding XAML will help you learn key Silverlight concepts and ensure that you get the markup
you really want. More importantly, there is a host of tasks that are far easier to accomplish with at least
some handwritten XAML. In Visual Studio, these tasks include defining resources, creating control
templates, writing data binding expressions, and defining animations. Expression Blend has better
design support, but on many occasions, it’s still quicker to make a change by hand than wade through a
sequence of windows.

XAML

59

CHAPTER 3

Layout

Half the battle in user interface design is organizing the content in a way that’s attractive, practical, and
flexible. In a browser-hosted application, this is a particularly tricky task, because your application may
be used on a wide range of different computers and devices (all with different display hardware), and
you have no control over the size of the browser window in which your Silverlight content is placed.

Fortunately, Silverlight inherits the most important part of WPF’s extremely flexible layout model.
Using the layout model, you organize your content in a set of different layout containers. Each container
has its own layout logic—one stacks elements, another arranges them in a grid of invisible cells, and
another uses a hard-coded coordinate system. If you're ambitious, you can even create your own
containers with custom layout logic.

In this chapter, you'll learn how to use layout containers to create the visual skeleton for a Silverlight
page. You'll spend most of your time exploring Silverlight’s core layout containers, including the
StackPanel, Grid, and Canvas. Once you’'ve mastered these basics, you'll see how to extend your
possibilities by creating new layout containers with custom layout logic. You'll also see how you can
create an application that breaks out of the browser window and uses the full screen.

The Layout Containers

A Silverlight window can hold only a single element. To fit in more than one element and create a more
practical user interface, you need to place a container in your page and then add other elements to that
container. Your layout is determined by the container that you use.

All the Silverlight layout containers are panels that derive from the abstract
System.Windows.Controls.Panel class (see Figure 3-1).

DependencyObject

UlElement

FrameworkElement

Figure 3-1. The hierarchy of the Panel class

61

CHAPTER 3 = LAYOUT

62

The Panel class adds two public properties: Background and Children. Background is the brush
that’s used to paint the panel background. Children is the collection of items that’s stored in the panel.
(This is the first level of elements—in other words, these elements may themselves contain more
elements.) The Panel class also has a bit of internal plumbing you can use to create your own layout
container, as you'll learn later in this chapter.

On its own, the base Panel class is nothing but a starting point for other more specialized classes.
Silverlight provides three Panel-derived classes that you can use to arrange layout, and the Silverlight
Toolkit adds two more. All of them are listed in Table 3-1, in the order you'll meet them in this chapter.
As with all Silverlight controls and most visual elements, these classes are found in the
System.Windows.Controls namespace.

Table 3-1. Core Layout Panels

Name Description

StackPanel Places elements in a horizontal or vertical stack. This layout container is typically used
for small sections of a larger, more complex page.

WrapPanel Places elements in a series of wrapped lines. In horizontal orientation, the WrapPanel
lays items out in a row from left to right and then onto subsequent lines. In vertical
orientation, the WrapPanel lays out items in a top-to-bottom column and then uses
additional columns to fit the remaining items. This layout container is available in the
Silverlight Tookit.

DockPanel Aligns elements against an entire edge of the container. This layout container is
available in the Silverlight Tookit.

Grid Arranges elements in rows and columns according to an invisible table. This is one of
the most flexible and commonly used layout containers.

Canvas Allows elements to be positioned absolutely using fixed coordinates. This layout
container is the simplest but least flexible.

Layout containers can be nested. A typical user interface begins with the Grid, Silverlight’s most
capable container, and contains other layout containers that arrange smaller groups of elements, such
as captioned text boxes, items in a list, icons on a toolbar, a column of buttons, and so on.

Note There’s one specialized layout panel that doesn’t appear in Table 3-1: the VirtualizingStackPanel. It
arranges items in the same way as the StackPanel, but it uses a memory-optimization technique called
virtualization. The VirtualizingStackPanel allows list controls like the ListBox to hold tens of thousands of items
without a dramatic slowdown, because the VirtualizingStackPanel creates objects only for the currently visible
items. But although you might use the VirtualizingStackPanel to build custom templates and controls (see Chapter
15), you won’t use it to arrange the elements in a page, and so it isn’t covered in this chapter.

CHAPTER 3 = LAYOUT

The Panel Background

All Panel elements introduce the concept of a background by adding a Background property. It’s natural
to expect that the Background property would use some sort of color object. However, the Background
property actually uses something much more versatile: a Brush object. This design gives you the
flexibility to fill your background and foreground content with a solid color (by using the
SolidColorBrush) or something more exotic (for example, a gradient or a bitmap, by using a
LinearGradientBrush or ImageBrush). In this section, you’ll consider only the simple solid-color fills
provided by the SolidColorBrush, but you'll try fancier brushwork in Chapter 9.

Note All of Silverlight’s Brush classes are found in the System.Windows.Media namespace.

For example, if you want to give your entire page a light blue background, you could adjust the
background of the root panel. Here’s the code that does the trick:

layoutRoot.Background = new SolidColorBrush(Colors.AliceBlue);

Technically, every Color object is an instance of the Color structure in the System.Windows.Media
namespace. You can get a wide range of ready-made colors from the Colors class, which provides a static
property for each one. (The property names are based on the color names supported by web browsers.)
The code shown here uses one of these colors to create a new SolidColorBrush. It then sets the brush as
the background brush for the root panel, which causes its background to be painted a light shade of
blue.

Tip Silverlight also includes a SystemColors class that provides Color objects that match the current system
preferences. For example, SystemColors.ActiveColorBorder gets the color that’s used to fill the border of the
foreground window. In some cases, you might choose to ensure your application blends in better with the current
color scheme, particularly if you’re building an out-of-browser application, as described in Chapter 18.

The Colors and SystemColors classes offer handy shortcuts, but they aren’t the only way to set a
color. You can also create a Color object by supplying the red, green, and blue (RGB) values, along with
an alpha value that indicates transparency. Each one of these values is a number from 0 to 255:

int red = 0; int green = 255; int blue = 0;
layoutRoot.Background = new SolidColorBrush(Color.FromArgb(255, red, green, blue));

You can also make a color partly transparent by supplying an alpha value when calling the
Color.FromArgb() method. An alpha value of 255 is completely opaque, while 0 is completely
transparent.

Often, you'll set colors in XAML rather than in code. Here, you can use a helpful shortcut. Rather
than define a Brush object, you can supply a color name or color value. The type converter for the
Background property will automatically create a SolidColorBrush object using the color you specify.
Here’s an example that uses a color name:

63

CHAPTER 3 = LAYOUT

64

<Grid x:Name="layoutRoot" Background="Red">
It’s equivalent to this more verbose syntax:

<Grid x:Name="layoutRoot">
<Grid.Background>
<SolidColorBrush Color="Red"></SolidColorBrush>
</Grid.Background>
</Grid>

You need to use the longer form if you want to create a different type of brush, such as a
LinearGradientBrush, and use that to paint the background.

If you want to use a color code, you need to use a slightly less convenient syntax that puts the R, G,
and B values in hexadecimal notation. You can use one of two formats—either #rrggbb or #aarrggbb (the
difference being that the latter includes the alpha value). You need only two digits to supply the A, R, G,
and B values because they’re all in hexadecimal notation. Here’s an example that creates the same color
as in the previous code snippets using #aarrggbb notation:

<Grid x:Name="layoutRoot" Background="#FFFF0000">

Here the alpha value is FF (255), the red value is FF (255), and the green and blue values are 0.
By default, the Background of a layout panel is set to a null reference, which is equivalent to this:

<Grid x:Name="layoutRoot" Background="{x:Null}">

When your panel has a null background, any content underneath will show through (similar to if
you set a fully transparent background color). However, there’s an important difference—the layout
container won't be able to receive mouse events.

Note Brushes support automatic change notification. In other words, if you attach a brush to a control and
change the brush, the control updates itself accordingly.

Borders

The layout containers allow you to paint a background, but not a border outline. However, there’s an
element that fills in the gap—the Border.

The Border class is pure simplicity. It takes a single piece of nested content (which is often a layout
panel) and adds a background or border around it. To master the Border, you need nothing more than
the properties listed in Table 3-2.

Table 3-2. Properties of the Border Class

Name Description

Background Sets a background that appears behind all the content in the border using a Brush
object. You can use a solid color or something more exotic.

CHAPTER 3

Name Description

BorderBrush Sets the fill of the border that appears around the edge of the Border object, using a
Brush object. The most straightforward approach is to use a SolidColorBrush to
create a solid border.

BorderThickness Sets the width (in pixels) of the border on each side. The BorderThickness property
holds an instance of the System.Windows.Thickness structure, with separate
components for the top, bottom, left, and right edges.

CornerRadius Rounds the corners of your border. The greater the CornerRadius, the more
dramatic the rounding effect is.

Padding Adds spacing between the border and the content inside. (By contrast, Margin adds

spacing outside the border.)

Here’s a straightforward, slightly rounded border around a basic button:

<Border Margin="25" Background="LightYellow"
BorderBrush="SteelBlue" BorderThickness="8" CornerRadius="15">
<Button Margin="10 Content="Click Me"></Button>

</Border>

This example adds a little bit or margin space around the border and the button, which is a feature
you’ll learn about in the next section. Figure 3-2 shows the result.

(& Silverlight Project Test Page - Wi.. E=EE

Sl®,

@ D:\Code\Pro Silverlight | 43 | X |

w o

(& Silverlight Project Test P...

Click Me

€D Internet | Protected Mode: On #100% «

\

Figure 3-2. A basic border

LAYOUT

65

CHAPTER 3 = LAYOUT

66

Simple Layout with the StackPanel

The StackPanel is one of the simplest layout containers. It simply stacks its children in a single row or
column. These elements are arranged based on their order.
For example, consider this page, which contains a stack with one TextBlock and four buttons:

<UserControl x:Class="Layout.SimpleStack"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
<StackPanel Background="White">
<TextBlock Text="A Button Stack"></TextBlock>
<Button Content="Button 1"></Button>
<Button Content="Button 2"></Button>
<Button Content="Button 3"></Button>
<Button Content="Button 4"></Button>
</StackPanel>
</UserControl>

Figure 3-3 shows the result.

@& Layout - Windows Internet Explorer IE@'&

(_J_J - | @ p:code\ProsSiiverlight 2\Chapt v | 43 | X |

= Z ' »
W | @ Layout ’ ‘ of B

A Button Stack

| Button 1 |

| Button 2 |

| Button 3 |

| Button 4 |
€ Internet | Protected Mode: On #.100% -~

~ -y

Figure 3-3. The StackPanel in action

By default, a StackPanel arranges elements from top to bottom, making each one as tall as is
necessary to display its content. In this example, that means the TextBlock and buttons are sized just
high enough to comfortably accommodate the text inside. All the elements are then stretched to the full
width of the StackPanel, which is the width of your page.

In this example, the Height and Width properties of the page are not set. As a result, the page grows
to fit the full Silverlight content region (in this case, the complete browser window). Most of the
examples in this chapter use this approach, because it makes it easier to experiment with the different

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

layout containers. You can then see how a layout container resizes itself to fit different page sizes simply

by resizing the browser window.

CHAPTER 3

Note Once you've examined all the layout containers, you’ll take a closer look at the issue of page sizes, and

you’ll learn about your different options for dealing content that doesn’t fit in the browser window.

The StackPanel can also be used to arrange elements horizontally by setting the Orientation

property:
<StackPanel Orientation="Horizontal" Background="White">

Now elements are given their minimum width (wide enough to fit their text) and are stretched to the

full height of the containing panel (see Figure 3-4).

()~ | @ p:Code\Proilverlight 2\Chapterd3\L ~ | 49 | X |

& Layout - Windows Internet Explorer @Eﬁ

= - — =
w4 | @ Layout ‘ [& ~

A Button Stack

Button 1|Button 2 |Button 3 |Button 4

€D Internet | Protected Mode: On #100% ~

.

Figure 3-4. The StackPanel with horizontal orientation

Clearly, this doesn’t provide the flexibility real applications need. Fortunately, you can fine-tune the

way the StackPanel and other layout containers work using layout properties, as described next.

Layout Properties

Although layout is determined by the container, the child elements can still get their say. In fact, layout

panels work in concert with their children by respecting a small set of layout properties, as listed in

Table 3-3.

LAYOUT

67

CHAPTER 3 = LAYOUT

Table 3-3. Layout Properties

Name

Description

HorizontalAlignment

VerticalAlignment

Margin

MinWidth and MinHeight

MaxWidth and MaxHeight

Width and Height

This property determines how a child is positioned inside a layout
container when there’s extra horizontal space available. You can choose
Center, Left, Right, or Stretch.

This one determines how a child is positioned inside a layout container
when there’s extra vertical space available. You can choose Center, Top,
Bottom, or Stretch.

Use Margin to add a bit of breathing room around an element. The
Margin property holds an instance of the System.Windows.Thickness
structure, with separate components for the top, bottom, left, and right
edges.

These properties set the minimum dimensions of an element. If an
element is too large for its layout container, it will be cropped to fit.

These two properties set the maximum dimensions of an element. If the
container has more room available, the element won’t be enlarged
beyond these bounds, even if the HorizontalAlignment and
VerticalAlignment properties are set to Stretch.

Use these properties to explicitly set the size of an element. This setting
overrides a Stretch value for the HorizontalAlignment and
VerticalAlignment properties. However, this size won’t be honored if it’s
outside of the bounds set by the MinWidth, MinHeight, MaxWidth, and
MaxHeight.

All of these properties are inherited from the base FrameworkElement class and are therefore
supported by all the graphical widgets you can use in a Silverlight page.

Note Asyou learned in Chapter 2, different layout containers can provide attached properties to their children.
For example, all the children of a Grid object gain Row and Column properties that allow them to choose the cell
where they’re placed. Attached properties allow you to set information that’s specific to a particular layout
container. However, the layout properties in Table 3-3 are generic enough that they apply to many layout panels.
Thus, these properties are defined as part of the base FrameworkElement class.

68

CHAPTER 3 = LAYOUT

Alignment

To understand how these properties work, take another look at the simple StackPanel shown in Figure 3-
3. In this example—a StackPanel with vertical orientation—the VerticalAlignment property has no effect
because each element is given as much height as it needs and no more. However, the
HorizontalAlignment is important. It determines where each element is placed in its row.

Ordinarily, the default HorizontalAlignment is Left for a label and Stretch for a Button. That’s why
every button takes the full column width. However, you can change these details:

<StackPanel Background="White">
<TextBlock HorizontalAlignment="Centexr" Text="A Button Stack"></TextBlock>
<Button HorizontalAlignment="Left" Content="Button 1"></Button>
<Button HorizontalAlignment="Right" Content="Button 2"></Button>
<Button Content="Button 3"></Button>
<Button Content="Button 4"></Button>
</StackPanel>

Figure 3-5 shows the result. The first two buttons are given their minimum sizes and aligned
accordingly, while the bottom two buttons are stretched over the entire StackPanel. If you resize the
page, you'll see that the label remains in the middle and the first two buttons stay stuck to either side.

@ Layout - Windows Internet Explorer o | E eS|
()~ |@ picode\prosiverlight 2\ ~ |42 x|

W € Layout ‘ 2

A Button Stack
|Button 1|
|Button 2|

| Button 3 |

| Button 4 |
€ Internet | Protected Mode: On #100% ~

Figure 3-5. A StackPanel with aligned buttons

Note The StackPanel also has its own HorizontalAlignment and VerticalAlignment properties. By default, both of
these are set to Stretch, and so the StackPanel fills its container completely. In this example, that means the
StackPanel fills the page. If you use a different value for VerticalAlignment, the StackPanel will be made just large
enough to fit the widest control.

69

CHAPTER 3 = LAYOUT

70

Margins

There’s an obvious problem with the StackPanel example in its current form. A well-designed page

doesn’t just contain elements—it also includes a bit of extra space in between the elements. To

introduce this extra space and make the StackPanel example less cramped, you can set control margins.
When setting margins, you can set a single width for all sides, like this:

<Button Margin="5" Content="Button 3"></Button>

Alternatively, you can set different margins for each side of a control in the order left, top, right,
bottom:

<Button Margin="5,10,5,10" Content="Button 3"></Button>
In code, you can set margins using the Thickness structure:
cmd.Margin = new Thickness(5);

Getting the right control margins is a bit of an art, because you need to consider how the margin
settings of adjacent controls influence one another. For example, if you have two buttons stacked on top
of each other and the topmost button has a bottom margin of 5 and the bottommost button has a top
margin of 5, you have a total of 10 pixels of space between the two buttons.

Ideally, you'll be able to keep different margin settings as consistent as possible and avoid setting
distinct values for the different margin sides. For instance, in the StackPanel example, it makes sense to
use the same margins on the buttons and on the panel itself, as shown here:

<StackPanel Margin="3" Background="White">
<TextBlock Margin="3" HorizontalAlignment="Center"
Text="A Button Stack"></TextBlock>
<Button Margin="3" HorizontalAlignment="Left" Content="Button 1"></Button>
<Button Margin="3" HorizontalAlignment="Right" Content="Button 2"></Button>
<Button Margin="3" Content="Button 3"></Button>
<Button Margin="3" Content="Button 4"></Button>

</StackPanel>

This way, the total space between two buttons (the sum of the two button margins) is the same as
the total space between the button at the edge of the page (the sum of the button margin and the
StackPanel margin). Figure 3-6 shows this more respectable page, and Figure 3-7 shows how the margin
settings break down.

CHAPTER 3 = LAYOUT

(@ Layout - Windows Internet Explarer @@'ﬁ
() = | @ p:Code\Pro Sitverlight 2 v [4 | X |
?,4‘ & Layout : ‘ E}T Y
A Button Stack
[Buttcm 1|

Button 2‘

| Button 3 ‘

| Buttonirl ‘

€D Internet | Protected Mede: On #100% ~

Figure 3-6. Adding margins between elements

.
-

StackPanel.Margin.Left [Button1 l

LButlom .Margin.Bottom

',‘ Button2.Margin.Top

[Button2 J4.>

Button2.Margin.Right

“'} Button1.Margin.Top

an-lan

R .
-

StackPanel.Margin|Right

| StackPanel.Margin.Bottom

Figure 3-7. How margins are combined

71

CHAPTER 3 = LAYOUT

Minimum, Maximum, and Explicit Sizes

Finally, every element includes Height and Width properties that allow you to give it an explicit size.
However, just because you can set explicit sizes doesn’t mean you should. In most cases, it’s better to let
elements grow to fit their content. For example, a button expands as you add more text. You can lock
your elements into a range of acceptable sizes by setting a maximum and minimum size, if necessary. If
you do add size information, you risk creating a more brittle layout that can’t adapt to changes and (at
worst) truncates content that doesn't fit.

For example, you might decide that the buttons in your StackPanel should stretch to fit the
StackPanel but be made no larger than 200 pixels wide and no smaller than 100 pixels wide. (By default,
buttons start with a minimum width of 75 pixels.) Here’s the markup you need:

<StackPanel Margin="3">
<TextBlock Margin="3" HorizontalAlignment="Center"
Text="A Button Stack"></TextBlock»
<Button Margin="3" MaxWidth="300" MinWidth="200" Content="Button 1"></Button>
<Button Margin="3" MaxWidth="300" MinWidth="200" Content="Button 2"></Button>
<Button Margin="3" MaxWidth="300" MinWidth="200" Content="Button 3"></Button>
<Button Margin="3" MaxWidth="300" MinWidth="200" Content="Button 4"></Button>
</StackPanel>

Tip At this point, you might be wondering if there’s an easier way to set properties that are standardized across
several elements, such as the button margins in this example. The answer is styles—a feature that allows you to
reuse property settings. You’ll learn about styles in Chapter 14.

When the StackPanel sizes a button that doesn’t have a hard-coded size, it considers several pieces
of information:

e The minimum size: Each button will always be at least as large as the minimum
size.

¢ The maximum size: Each button will always be smaller than the maximum size
(unless you've incorrectly set the maximum size to be smaller than the minimum
size).

¢ The content: If the content inside the button requires a greater width, the
StackPanel will attempt to enlarge the button.

e The size of the container: If the minimum width is larger than the width of the
StackPanel, a portion of the button will be cut off. But if the minimum width isn’t
set (or is less than the width of the StackPanel), the button will not be allowed to
grow wider than the StackPanel, even if it can’t fit all its text on the button surface.

e The horizontal alignment: Because the button uses a HorizontalAlignment of
Stretch (the default), the StackPanel will attempt to enlarge the button to fill the
full width of the StackPanel.

72

CHAPTER 3 = LAYOUT

The trick to understanding this process is to realize that the minimum and maximum size set the
absolute bounds. Within those bounds, the StackPanel tries to respect the button’s desired size (to fit its
content) and its alignment settings.

Figure 3-8 sheds some light on how this works with the StackPanel. On the left is the page at its
minimum size. The buttons are 200 pixels each, and the page cannot be resized to be narrower. If you
shrink the page from this point, the right side of each button will be clipped off. (You can deal with this
situation using scrolling, as discussed later in this chapter.)

As you enlarge the page, the buttons grow with it until they reach their maximum of 300 pixels.
From this point on, if you make the page any larger, the extra space is added to either side of the button
(as shown on the right in Figure 3-8).

@ Layout - Windows In... L2)
"_../" \\,./ l @ D:\Code\Pro Silverl; ~ | @ Layout - Windows Internet Explorer | == -E-?'-J
| @ Layout (_J(_J - [pacode\pro Siveright 2\Chapterd\ = [43 [x |
Wk ‘@La out [&~ =
A Button Stack L il _ |
| Button 1 | A Button Stack
e 1
| Button 2 | ‘ Button |
| Button 2 |
| Button 3 |
| Button 3 |
| Button 4 |
| Button 4 |
@ Internet | Protected I #,100% ~ & Internet | Protected Mode: On +100% ~

L. L & o+

Figure 3-8. Constrained button sizing

Note In some situations, you might want to use code that checks how large an element is in a page. The Height
and Width properties are no help because they indicate your desired size settings, which might not correspond to
the actual rendered size. In an ideal scenario, you'll let your elements size to fit their content, and the Height and
Width properties won’t be set at all. However, you can find out the actual size used to render an element by
reading the ActualHeight and ActualWidth properties. But remember, these values may change when the page is
resized or the content inside it changes.

73

CHAPTER 3 = LAYOUT

74

The WrapPanel and DockPanel

Obviously, the StackPanel alone can’t help you create a realistic user interface. To complete the picture,
the StackPanel needs to work with other more capable layout containers. Only then can you assemble a
complete window.

The most sophisticated layout container is the Grid, which you’ll consider later in this chapter. But
first, it’s worth looking at the WrapPanel and DockPanel, which are two simple layout containers that are
available as part of the Silverlight Toolkit. Both complement the StackPanel by offering different layout
behavior.

To use the WrapPanel or the DockPanel, you need to add a reference to the
System.Windows.Controls.Toolkit.dll assembly where they are defined. To get this assembly, you must
install the Silverlight Toolkit, which is available at http://silverlight.codeplex.com.

Once you've added the assembly reference, you need to map the namespace so it’s available in your
markup, as shown here:

<UserControl x:Class="Layout.WrapAndDock" ...
xmlns:toolkit=
"clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Toolkit">

You can now define the WrapPanel and DockPanel using the namespace prefix roolkit:
<toolkit:WrapPanel ...></toolkit:WrapPanel>

You can skip a few steps by adding the WrapPanel from the Toolbox. Visual Studio will then add the
appropriate assembly reference, map the namespace, and insert the XML markup for the control.

The WrapPanel

The WrapPanel lays out controls in the available space, one line or column at a time. By default, the
WrapPanel.Orientation property is set to Horizontal; controls are arranged from left to right and then on
subsequent rows. However, you can use Vertical to place elements in multiple columns.

Tip Like the StackPanel, the WrapPanel is really intended for control over small-scale details in a user
interface, not complete window layouts. For example, you might use a WrapPanel to keep together the buttons in a
toolbar-like control.

Here’s an example that defines a series of buttons with different alignments and places them into
the WrapPanel:

<toolkit:WrapPanel Margin="3">
<Button VerticalAlignment="Top" Content="Top Button"></Button>
<Button MinHeight="60" Content="Tall Button"></Button>
<Button VerticalAlignment="Bottom" Content="Bottom Button"></Button>
<Button Content="Stretch Button"></Button>
<Button VerticalAlignment="Center" Content="Centered Button"></Button>
</toolkit:WrapPanel>

http://silverlight.codeplex.com

CHAPTER 3 = LAYOUT

Figure 3-9 shows how the buttons are wrapped to fit the current size of the WrapPanel (which is
determined by the size of the control that contains it). As this example demonstrates, a WrapPanel in
horizontal mode creates a series of imaginary rows, each of which is given the height of the tallest
contained element. Other controls may be stretched to fit or aligned according to the VerticalAlignment
property. In the example on the left in Figure 3-9, all the buttons fit into one tall row and are stretched or
aligned to fit. In the example on the right, several buttons have been bumped to the second row. Because
the second row does not include an unusually tall button, the row height is kept at the minimum button
height. As a result, it doesn’t matter what VerticalAlignment setting the various buttons in this row use.

IS ™)
& Layout - Windows In... |5@|ﬁ
A ‘ € C:\Matthew\Pro Silv ~ |
o [= Layout - Windows Internet Explorer lﬂl’z—kj
W e & Layout - .
e \ ! i A\Matthew\Pro Silverlight 3\Code\Pro Silverligl + | ¥4 | X
b e @& C:\Matthew\Pro Silverlight 3\Code\Pro Silverligl + \
|Top Button| W | g8 Layout BRE: AR R
Tall Button 2 —
|Top Button | .
—_— Tall Button 2| Stretch Button | Centered Button |
|Bottom Button | Stretch Button Bottom Button
|Centered Button |
0 Internet | Protected I %, 100% ~ € Internet | Protected Mode: On R100% ~
g o ’

Figure 3-9. Wrapped buttons

Note The WrapPanel is the only one of the five Silverlight layout containers whose effects can’t be duplicated
with a crafty use of the Grid.

The DockPanel

The Silverlight Toolkit also includes a layout container called the DockPanel. It stretches controls against
one of its outside edges. The easiest way to visualize this is to think of the toolbars that sit at the top of
many Windows applications. These toolbars are docked to the top of the window. As with the
StackPanel, docked elements get to choose one aspect of their layout. For example, if you dock a button
to the top of a DockPanel, it’s stretched across the entire width of the DockPanel but given whatever
height it requires (based on the content and the MinHeight property). On the other hand, if you dock a
button to the left side of a container, its height is stretched to fit the container, but its width is free to
grow as needed.

The obvious question is this: How do child elements choose the side where they want to dock? The
answer is through an attached property named Dock, which can be set to Left, Right, Top, or Bottom.
Every element that’s placed inside a DockPanel automatically acquires this property.

Here’s an example that puts one button on every side of a DockPanel:

75

CHAPTER 3 = LAYOUT

76

<toolkit:DockPanel LastChildFill="True">
<Button toolkit:DockPanel.Dock="Top" Content="Top Button"></Button>
<Button toolkit:DockPanel.Dock="Bottom" Content="Bottom Button"></Button>
<Button toolkit:DockPanel.Dock="Left" Content="Left Button"></Button>
<Button toolkit:DockPanel.Dock="Right" Content="Right Button"></Button>
<Button Content="Remaining Space"></Button>

</toolkit:DockPanel>

This example also sets the LastChildFill to true, which tells the DockPanel to give the remaining
space to the last element. Figure 3-10 shows the result.

(@ Layout - Windows Internet Expl...l =[] i&r
e ‘ @ C:\Matthew\Pro Silve ~ ‘ 3 ‘ * 1
W o | @ Layout ‘_| f

Top Button |

Left Button Remaining Space Right Button

Bottom Button

€ Internet | Protected Mode: On~ #,100%

. J

Figure 3-10. Docking to every side

Clearly, when docking controls, the order is important. In this example, the top and bottom buttons
get the full edge of the DockPanel because they’re docked first. When the left and right buttons are
docked next, they fit between these two buttons. If you reversed this order, the left and right buttons
would get the full sides, and the top and bottom buttons would become narrower, because they’d be
docked between the two side buttons.

You can dock several elements against the same side. In this case, the elements simply stack up
against the side in the order they’re declared in your markup. And, if you don’t like the spacing or the
stretch behavior, you can tweak the Margin, HorizontalAlignment, and VerticalAlignment properties,
just as you did with the StackPanel. Here’s a modified version of the previous example that
demonstrates:

<toolkit:DockPanel LastChildFill="True">
<Button toolkit:DockPanel.Dock="Top" Content="A Stretched Top Button"></Button>
<Button toolkit:DockPanel.Dock="Top" HorizontalAlignment="Center"
Content="A Centered Top Button"></Button>
<Button toolkit:DockPanel.Dock="Top" HorizontalAlignment="Left"
Content="A Left-Aligned Top Button"></Button>

<Button toolkit:DockPanel.Dock="Bottom" Content="Bottom Button"></Button>
<Button toolkit:DockPanel.Dock="Left" Content="Left Button"></Button>
<Button toolkit:DockPanel.Dock="Right" Content="Right Button"></Button>
<Button Content="Remaining Space"></Button>

</toolkit:DockPanel>

The docking behavior is still the same. First, the top buttons are docked, then the bottom button is
docked, and finally the remaining space is divided between the side buttons and a final button in the

middle. Figure 3-11 shows the resulting window.
@& Layout - Windows Internet Expl...lﬂkﬁ

()~ | @ c\MatthewtPro Siive + | 43| X |

Wi & Layout ‘_ d

A Stretched Top Button 1
|A Centered Top Button|
A Left-Aligned Top Buttcmi

Left Button Remaining Space Right Button

Bottom Button

€ Internet | Protected Mode: On ~ %,100% ~

Figure 3-11. Docking multiple elements to the top

The Grid

The Grid is the most powerful layout container in Silverlight. In fact, the Grid is so useful that when you
add a new XAML document for a page in Visual Studio, it automatically adds the Grid tags as the first-
level container, nested inside the root UserControl element.

The Grid separates elements into an invisible grid of rows and columns. Although more than one
element can be placed in a single cell (in which case they overlap), it generally makes sense to place just
a single element per cell. Of course, that element may itself be another layout container that organizes

its own group of contained controls.

L ¥ 4

LAYOUT

Tip Although the Grid is designed to be invisible, you can set the Grid.ShowGridLines property to true to take a
closer look. This feature isn’t really intended for prettying up a page. Instead, it's a debugging convenience that’s
designed to help you understand how the Grid has subdivided itself into smaller regions. This feature is important
because you have the ability to control exactly how the Grid chooses column widths and row heights.

77

CHAPTER 3 = LAYOUT

78

Creating a Grid-based layout is a two-step process. First, you choose the number of columns and
rows that you want. Next, you assign the appropriate row and column to each contained element,
thereby placing it in just the right spot.

You create grids and rows by filling the Grid.ColumnDefinitions and Grid.RowDefinitions
collections with objects. For example, if you decide you need two rows and three columns, you’'d add the
following tags:

<Grid ShowGridLines="True" Background="White">
<Grid.RowDefinitions>
<RowDefinition></RowDefinition>
<RowDefinition></RowDefinition>
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition></ColumnDefinition>
<ColumnDefinition></ColumnDefinitiony>
<ColumnDefinition></ColumnDefinition>
</Grid.ColumnDefinitions>

</Grid>

As this example shows, it’s not necessary to supply any information in a RowDefinition or
ColumnDefinition element. If you leave them empty (as shown here), the Grid will share the space
evenly between all rows and columns. In this example, each cell will be exactly the same size, depending
on the size of the containing page.

To place individual elements into a cell, you use the attached Row and Column properties. Both

these properties take zero-based index numbers. For example, here’s how you could create a partially
filled grid of buttons:

<Grid ShowGridLines="True" Background="White">

<Button Grid.Row="0" Grid.Column="0" Content="Top Left"></Button>

<Button Grid.Row="0" Grid.Column="1" Content="Top Middle"></Button>

<Button Grid.Row="1" Grid.Column="2" Content="Bottom Right"></Button>

<Button Grid.Row="1" Grid.Column="1" Content="Bottom Middle"></Button>
</Grid>

Each element must be placed into its cell explicitly. This allows you to place more than one element
into a cell (which rarely makes sense) or leave certain cells blank (which is often useful). It also means
you can declare your elements out of order, as with the final two buttons in this example. However, it
makes for clearer markup if you define your controls row by row, and from left to right in each row.

There is one exception. If you don’t specify the Grid.Row property, the Grid assumes that it’s 0. The
same behavior applies to the Grid.Column property. Thus, you leave both attributes off an element to
place it in the first cell of the Grid.

Figure 3-12 shows how this simple grid appears at two different sizes. Notice that the
ShowGridLines property is set to true so that you can see the separation between each column and row.

CHAPTER 3

p T ™
@ Layout - Windows Internet Explorer @M

() | €] DaCode\Pro Siiverlight 4\Chapterd\Layout\Bim\Det v | 43 [X |

7. Favorites @ Layout G~8 = 2,
B T -
(@ Layout - Windows Internet Ex... =S |ﬁj : ;
()~ |&] DACode\ProSitverligh v | 43 | X | s | ———
:
]
1

s Favorites & Layout

y — | | [e,
1]]

Topleft § Top Middle |
1]]
1]

......................................

Bottom Middle Bottom Right

Bottom Middle | Bottom Right

@ Internet | Protected Mo ¥3 v %100% ~ € Internet | Protected Mode: On v Kok -

Figure 3-12. A simple grid

As you would expect, the Grid honors the basic set of layout properties listed in Table 3-3. That
means you can add margins around the content in a cell, you can change the sizing mode so an element
doesn’t grow to fill the entire cell, and you can align an item along one of the edges of a cell. If you force
an element to have a size that’s larger than the cell can accommodate, part of the content will be
chopped off.

Fine-Tuning Rows and Columns

As you've seen, the Grid gives you the ability to create a proportionately sized collection of rows and
columns, which is often quite useful. However, to unlock the full potential of the Grid, you can change
the way each row and column is sized.

The Grid supports three sizing strategies:

e Absolute sizes: You choose the exact size using pixels. This is the least useful
strategy, because it’s not flexible enough to deal with changing content size,
changing container size, or localization.

e Automatic sizes: Each row or column is given exactly the amount of space it needs
and no more. This is one of the most useful sizing modes.

e Proportional sizes: Space is divided between a group of rows or columns. This is
the standard setting for all rows and columns. For example, in Figure 3-12 you can
see that all cells increase in size proportionately as the Grid expands.

For maximum flexibility, you can mix and match these different sizing modes. For example, it’s
often useful to create several automatically sized rows and then let one or two remaining rows get the
leftover space through proportional sizing.

You set the sizing mode using the Width property of the ColumnDefinition object or the Height
property of the RowDefinition object to a number. For example, here’s how you set an absolute width of
100 pixels:

LAYOUT

79

CHAPTER 3 = LAYOUT

80

<ColumnDefinition Width="100"></ColumnDefinition>
To use automatic sizing, you use a value of Auto:
<ColumnDefinition Width="Auto"></ColumnDefinition>
Finally, to use proportional sizing, you use an asterisk (*):
<ColumnDefinition Width="*"></ColumnDefinition>

This syntax stems from the world of the Web, where it’s used with HTML frames pages. If you use a
mix of proportional sizing and other sizing modes, the proportionally sized rows or columns get
whatever space is left over.

If you want to divide the remaining space unequally, you can assign a weight, which you must place
before the asterisk. For example, if you have two proportionately sized rows and you want the first to be
half as high as the second, you could share the remaining space like this:

<RowDefinition Height="*"></RowDefinition>
<RowDefinition Height="2*"></RowDefinition>

This tells the Grid that the height of the second row should be twice the height of the first row. You
can use whatever numbers you like to portion out the extra space.

Nesting Layout Containers

The Grid is impressive on its own, but most realistic user interfaces combine several layout containers.
They may use an arrangement with more than one Grid or nay mix the Grid with other layout containers
like the StackPanel.

The following markup presents a simple example of this principle. It creates a basic dialog box with
OK and Cancel buttons in the bottom-right corner and a large content region that’s sized to fit its
content (the text in a TextBlock). The entire package is centered in the middle of the page by setting the
alignment properties on the Grid.

<Grid ShowGridLines="True" Background="SteelBlue"
HorizontalAlignment="Center" VerticalAlignment="Center">
<Grid.RowDefinitions>
<RowDefinition Height="*"></RowDefinition>
<RowDefinition Height="Auto"></RowDefinition>
</Grid.RowDefinitions>

<TextBlock Margin="10" Grid.Row="0" Foreground="White"
Text="This is simply a test of nested containers."></TextBlock>
<StackPanel Grid.Row="1" HorizontalAlignment="Right" Orientation="Horizontal"»
<Button Margin="10,10,2,10" Padding="3" Content="0K"></Button>
<Button Margin="2,10,10,10" Padding="3" Content="Cancel"></Button>
</StackPanel>
</Grid>

You'll notice that this Grid doesn’t declare any columns. This is a shortcut you can take if your grid
uses just one column and that column is proportionately sized (so it fills the entire width of the Grid).
Figure 3-13 shows the rather pedestrian dialog box this markup creates.

CHAPTER 3

Note In this example, the Padding property adds some minimum space between the button border and the
content inside (the word OK or Cancel). You'll learn more about Padding when you consider content controls in
Chapter 5.

(& Silverlight Project Test Page - Windows Internet Explorer LE‘M

(_J_J | @ p:Code\Pro Siiverlight\Chapter03\Layout\ClientBin\ v | 43 | X |

»

W e ‘QSﬂverlightpmjecﬂenp...[| R v # v [5)Page~

This is simply a test of nested containers.

€ Internet | Protected Mode: On #100% ~

“ 4

Figure 3-13. A basic dialog box

At first glance, nesting layout containers seems like a fair bit more work than placing controls in
precise positions using coordinates. And in many cases, it is. However, the longer setup time is
compensated by the ease with which you can change the user interface in the future. For example, if you
decide you want the OK and Cancel buttons to be centered at the bottom of the page, you simply need to
change the alignment of the StackPanel that contains them:

<StackPanel Grid.Row="1" HorizontalAlignment="Center" ... >

Similarly, if you need to change the amount of content in the first row, the entire Grid will be
enlarged to fit, and the buttons will move obligingly out of the way. And if you add a dash of styles to this
page (Chapter 14), you can improve it even further and remove other extraneous details (such as the
margin settings) to create cleaner and more compact markup.

LAYOUT

81

CHAPTER 3 = LAYOUT

82

Tip If you have a densely nested tree of elements, it’s easy to lose sight of the overall structure. Visual Studio
provides a handy feature that shows you a tree representation of your elements and allows you to click your way
down to the element you want to look at (or modify). This feature is the Document Outline window, and you can
view it by choosing View 7 Other Windows # Document Outline from the menu.

Spanning Rows and Columns

You've already seen how to place elements in cells using the Row and Column attached properties. You
can also use two more attached properties to make an element stretch over several cells: RowSpan and
ColumnSpan. These properties take the number of rows or columns that the element should occupy.

For example, this button will take all the space that’s available in the first and second cell of the first
row:

<Button Grid.Row="0" Grid.Column="0" Grid.ColumnSpan="2" Content="Span Button">
</Button>

And this button will stretch over four cells in total by spanning two columns and two rows:

<Button Grid.Row="0" Grid.Column="0" Grid.RowSpan="2" Grid.ColumnSpan="2"
Content="Span Button"></Button>

Row and column spanning can achieve some interesting effects and is particularly handy when you
need to fit elements in a tabular structure that’s broken up by dividers or longer sections of content.

Using column spanning, you could rewrite the simple dialog box example from Figure 3-13 using
just a single Grid. This Grid divides the page into three columns, spreads the text box over all three, and
uses the last two columns to align the OK and Cancel buttons.

<Grid ShowGridLines="True" Background="SteelBlue"
HorizontalAlignment="Center" VerticalAlignment="Center">
<Grid.RowDefinitions>
<RowDefinition Height="*"></RowDefinition>
<RowDefinition Height="Auto"></RowDefinition>
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="*"></ColumnDefinition>
<ColumnDefinition Width="Auto"></ColumnDefinition>
<ColumnDefinition Width="Auto"></ColumnDefinition>
</Grid.ColumnDefinitions>
<TextBlock Margin="10" Grid.Row="0" Grid.Column="0" Grid.ColumnSpan="3"
Foreground="White"
Text="This is simply a test of nested containers."></TextBlock>

<Button Margin="10,10,2,10" Padding="3"
Grid.Row="1" Grid.Column="1" Content="0K"></Button>
<Button Margin="2,10,10,10" Padding="3"
Grid.Row="1" Grid.Column="2" Content="Cancel"></Button>
</Grid>

CHAPTER 3

Most developers will agree that this layout isn’t clear or sensible. The column widths are determined
by the size of the two buttons at the bottom of the page, which makes it difficult to add new content into

the existing Grid structure. If you make even a minor addition to this page, you’ll probably be forced to
create a new set of columns.
As this shows, when you choose the layout containers for a page, you aren’t simply interested in

getting the correct layout behavior—you also want to build a layout structure that’s easy to maintain and

enhance in the future. A good rule of thumb is to use smaller layout containers such as the StackPanel
for one-off layout tasks, such as arranging a group of buttons. On the other hand, if you need to apply a
consistent structure to more than one area of your page, the Grid is an indispensable tool for
standardizing your layout.

The GridSplitter

Every Windows user has seen splitter bars—draggable dividers that separate one section of a window
from another. For example, when you use Windows Explorer, you're presented with a list of folders (on
the left) and a list of files (on the right). You can drag the splitter bar in between to determine what
proportion of the window is given to each pane.

In Silverlight, you can create a similar design and give the user the ability to resize rows or columns
by adding a splitter bar to a Grid. Figure 3-14 shows a window where a GridSplitter sits between two
columns. By dragging the splitter bar, the user can change the relative widths of both columns.

& Silverlight Project Test Page - Windows Internet Explorer IE‘% @ Silverlight Project Test Page - Windows Internet Explorer {EIM

V) [& D:\Code\Pro Silverlight\Chapter03\Layout\ClientBin\ v | 45 ‘ R ‘ e\ ‘ & D:\Code\Pro Silverlight\Chapter03\Layout\ClientBin\ v ‘ 3 | X |

— — —
vy it | @ Silverlight Project TestP... f v o= v | Page v v¢ dbe | @ Silverlight Project Test P...) v o= v i)k Page

il

Left Side of the Grid Right Side of the Grid Left Side of the Grid Right Side of the Grid

& Internet | Protected Mode: On #100% ~ & Internet | Protected Mode: On #®100% ~

Figure 3-14. Moving a splitter bar

Note The GridSplitter is defined in the System.Windows.Controls.dll assembly. If you aren’t already using this
assembly, you’ll need to add an assembly reference and an XML mapping before you get access to the

GridSplitter, much as you did to use the WrapPanel and DockPanel. The easiest way to accomplish both steps is to

add the GridSplitter from the Toolbox, which gets Visual Studio will do the job for you.

LAYOUT

83

CHAPTER 3

84

LAYOUT

To use the GridSplitter effectively, you need to know a little bit more about how it works. Although
the GridSplitter serves a straightforward purpose, it can be awkward at first. To get the result you want,
follow these guidelines:

The GridSplitter must be placed in a Grid cell. You can place the GridSplitter in a
cell with existing content, in which case you need to adjust the margin settings so
it doesn’t overlap. A better approach is to reserve a dedicated column or row for
the GridSplitter, with a Height or Width value of Auto.

The GridSplitter always resizes entire rows or columns (not single cells). To make
the appearance of the GridSplitter consistent with this behavior, you should
stretch the GridSplitter across an entire row or column, rather than limit it to a
single cell. To accomplish this, you use the RowSpan or ColumnSpan properties
you considered earlier. For example, the GridSplitter in Figure 3-14 has a RowSpan
of 2. As aresult, it stretches over the entire column. If you didn’t add this setting, it
would appear only in the top row (where it’s placed), even though dragging the
splitter bar would resize the entire column.

Initially, the GridSplitter is invisibly small. To make it usable, you need to give ita
minimum size. In the case of a vertical splitter bar (like the one in Figure 3-14),
you need to set the VerticalAlignment to Stretch (so it fills the whole height of the
available area) and the Width to a fixed size (such as 10 pixels). In the case of a
horizontal splitter bar, you need to set HorizontalAlignment to Stretch and Height
to a fixed size.

The GridSplitter alignment also determines whether the splitter bar is horizontal
(used to resize rows) or vertical (used to resize columns). In the case of a
horizontal splitter bar, you would set VerticalAlignment to Center (which is the
default value) to indicate that dragging the splitter resizes the rows that are above
and below. In the case of a vertical splitter bar (like the one in Figure 3-14), you
would set HorizontalAlignment to Center to resize the columns on either side.

To actually see the GridSplitter, you need to set the Background property.
Otherwise, the GridSplitter remains transparent until you click it (at which point a
light blue focus rectangle appears around its edges).

The GridSplitter respects minimum and maximum sizes, if you've set them on
your ColumnDefinition or RowDefinition objects. The user won’t be allowed to
enlarge or shrink a column or row outside of its allowed size range.

To reinforce these rules, it helps to take a look at the actual markup for the example shown in Figure
3-14. In the following listing, the GridSplitter details are highlighted:

<Grid Background="White">
<Grid.ColumnDefinitions>
<ColumnDefinition MinWidth="100"></ColumnDefinition>
<ColumnDefinition Width="Auto"»</ColumnDefinitiony
<ColumnDefinition MinWidth="50"></ColumnDefinition>
</Grid.ColumnDefinitions>

<Button Grid.Column="0" Margin="3" Content="Left Side of the Grid"></Button>
<controls:GridSplitter Grid.Column="1" Grid.RowSpan="2" Background="LightGray"
Width="3" VerticalAlignment="Stretch" HorizontalAlignment="Center"

CHAPTER 3 = LAYOUT

ShowsPreview="False"»</controls:GridSplitters
<Button Grid.Column="2" Margin="3" Content="Right Side of the Grid"></Button>
</Grid>

Tip Remember, if a Grid has just a single row or column, you can leave out the RowDefinitions section. Also,
elements that don’t have their row position explicitly set are assumed to have a Grid.Row value of 0 and are placed
in the first row. The same holds true for elements that don’t supply a Grid.Column value.

This markup includes one additional detail. When the GridSplitter is declared, the ShowsPreview
property is set to false (which is the default value). As a result, when the splitter bar is dragged from one
side to another, the columns are resized immediately. But if you set ShowsPreview to true, when you
drag, you'll see a gray shadow follow your mouse pointer to show you where the split will be. The
columns won’t be resized until you release the mouse button. You can also change the fill that’s used for
the GridSplitter so that it isn’t just a shaded gray rectangle. The trick is to set the Background property.

A Grid usually contains no more than a single GridSplitter. However, you can nest one Grid inside
another, and if you do, each Grid may have its own GridSplitter. This allows you to create a page that’s
split into two regions (for example, left and right panes) and then further subdivide one of these regions
(say, the pane on the right) into more sections (such as resizable top and bottom portions). Figure 3-15
shows an example.

& Silverlight Project Test Page - Windows Internet Explorer li‘% @ Silverlight Project Test Page - Windows Internet Explorer {EIEI&J

) |+~ | @8 pa et \ClientBin\ + |) |+ @@ pa - \Cl e |
V) & D:\Code\Pro Silverlight\Chapterd3\Layout\ClientBin\ | s ‘ X (A, & D:\Code\Pro Silverlight\Chapter03\Layout\ClientBin\ ‘ 3 | X

2 = » — 2 = .
I dur | @ Silverlight Project Test P... 5 v = v [k Page v 5% e | @ Silverlight Project Test P...) v dm v [}Page ¥

Top Right]
s

Top Left Top Right Top Left

Bottom Right

Bottom Left Bottom Right Bottom Left

@ Internet | Protected Mode: On ®100% ~ & Internet | Protected Mode: On B100% ~

Figure 3-15. Resizing a window with two splits

Creating this page is fairly straightforward, although it’s a chore to keep track of the three Grid
containers that are involved: the overall Grid, the nested Grid on the left, and the nested Grid on the
right. The only trick is to make sure the GridSplitter is placed in the correct cell and given the correct
alignment. Here’s the complete markup:

<!-- This is the Grid for the entire page. -->
<Grid Background="White">
<Grid.ColumnDefinitions>

85

CHAPTER 3 = LAYOUT

<ColumnDefinition></ColumnDefinition>

<ColumnDefinition Width="Auto"></ColumnDefinition>

<ColumnDefinition></ColumnDefinition>
</Grid.ColumnDefinitions>

<!-- This is the nested Grid on the left.
It isn't subdivided further with a splitter. -->
<Grid Grid.Column="0" VerticalAlignment="Stretch">
<Grid.RowDefinitions>
<RowDefinition></RowDefinition>
<RowDefinition></RowDefinition>
</Grid.RowDefinitions>
<Button Margin="3" Grid.Row="0" Content="Top Left"></Button>
<Button Margin="3" Grid.Row="1" Content="Bottom Left"></Button>
</Grid>

<!-- This is the vertical splitter that sits between the two nested
(left and right) grids. --»>

<controls:CGridSplitter Grid.Column="1" Background="LightGray"

Width="3" HorizontalAlignment="Center" VerticalAlignment="Stretch">

</controls:GridSplitter>

<!-- This is the nested Grid on the right. -->
<Grid Grid.Column="2">
<Grid.RowDefinitions>
<RowDefinition></RowDefinition>
<RowDefinition Height="Auto"></RowDefinition>
<RowDefinition></RowDefinition>
</Grid.RowDefinitions>

<Button Grid.Row="0" Margin="3" Content="Top Right"></Button>
<Button Grid.Row="2" Margin="3" Content="Bottom Right"></Button>

<!-- This is the horizontal splitter that subdivides it into
a top and bottom region.. -->
<controls:GridSplitter Grid.Row="1" Background="LightGray"
Height="3" VerticalAlignment="Center" HorizontalAlignment="Stretch"
ShowsPreview="False"></controls:GridSplitter>
</Grid>
</Grid>

Coordinate-Based Layout with the Canvas

The only layout container you haven’t considered yet is the Canvas. It allows you to place elements using
exact coordinates, which is a poor choice for designing rich data-driven forms and standard dialog
boxes, but it’s a valuable tool if you need to build something a little different (such as a drawing surface
for a diagramming tool). The Canvas is also the most lightweight of the layout containers. That’s because
it doesn’t include any complex layout logic to negotiate the sizing preferences of its children. Instead, it
simply lays them all out at the position they specify, with the exact size they want.

To position an element on the Canvas, you set the attached Canvas.Left and Canvas.Top properties.
Canvas.Left sets the number of pixels between the left edge of your element and the left edge of the

86

CHAPTER 3 = LAYOUT

Canvas. Canvas.Top sets the number of pixels between the top of your element and the top of the
Canvas.

Optionally, you can size your element explicitly using its Width and Height properties. This is more
common when using the Canvas than it is in other panels because the Canvas has no layout logic of its
own. If you don’t set the Width and Height properties, your element will get its desired size—in other
words, it will grow just large enough to fit its content. If you change the size of the Canvas, it has no effect
on the Controls inside.

Here’s a simple Canvas that includes four buttons:

<Canvas Background="White">
<Button Canvas.Left="10" Canvas.Top="10" Content="(10,10)"></Button>
<Button Canvas.left="120" Canvas.Top="30" Content="(120,30)"></Button>
<Button Canvas.left="60" Canvas.Top="80" Width="50" Height="50"
Content="(60,80)"></Button>
<Button Canvas.Left="70" Canvas.Top="120" Width="100" Height="50"
Content="(70,120)"></Button>

</Canvas>

Figure 3-16 shows the result.

€ Silverlight Project Test Page - Windows Internet Explorer lﬂlﬁ
) | & D:\Code\Pro Silverlight\Chapter03\Layout\ClientBin\ ¥ ‘ 43 ‘ X |
n c g — . »
W 4ke \ (@ silverlight Project Test P... | {9 v = v :rPage~v
(10,10)

(60,80)

(70,120)

€ Internet | Protected Mode: On #100% ~

L F,

Figure 3-16. Explicitly positioned buttons in a Canvas

Like any other layout container, the Canvas can be nested inside a user interface. That means you
can use the Canvas to draw some detailed content in a portion of your page, while using more standard
Silverlight panels for the rest of your elements.

87

vww allitebooks.conl

http://www.allitebooks.org

CHAPTER 3 = LAYOUT

88

Layering with ZIndex

If you have more than one overlapping element, you can set the attached Canvas.ZIndex property to
control how they are layered.

Ordinarily, all the elements you add have the same ZIndex—0. When elements have the same
ZIndex, they're displayed in the same order that they exist in the Canvas.Children collection, which is
based on the order that they’re defined in the XAML markup. Elements declared later in the markup—
such as button (70,120)—are displayed overtop of elements that are declared earlier—such as button
(60,80).

However, you can promote any element to a higher level by increasing its ZIndex. That’s because
higher ZIndex elements always appear over lower ZIndex elements. Using this technique, you could
reverse the layering in the previous example:

<Button Canvas.Left="60" Canvas.Top="80" Canvas.ZIndex="1" Width="50" Height="50"
Content="(60,80)"></Button>

<Button Canvas.Left="70" Canvas.Top="120" Width="100" Height="50"
Content="(70,120)"</Button>

Note The actual values you use for the Canvas.ZIndex property have no meaning. The important detail is how
the ZIndex value of one element compares to the Zindex value of another. You can set the ZIndex using any
positive or negative integer.

The ZIndex property is particularly useful if you need to change the position of an element
programmatically. Just call Canvas.SetZIndex() and pass in the element you want to modify and the new
ZIndex you want to apply. Unfortunately, there is no BringToFront() or SendToBack() method—it’s up
to you to keep track of the highest and lowest ZIndex values if you want to implement this behavior.

Clipping

There’s one aspect of the Canvas that’s counterintuitive. In most layout containers, the contents are
limited to the space that’s available in that container. For example, if you create a StackPanel with a
height of 100 pixels and place a tall column of buttons inside, those that don’t fit will be chopped off the
bottom. However, the Canvas doesn’t follow this common-sense rule. Instead, it draws all its children,
even if they fall outside its bounds. That means you could replace the earlier example with a Canvas that
has a 0-pixel height and a 0-pixel width, and the result wouldn’t change.

The Canvas works this way for performance reasons—quite simply, it’s more efficient for the Canvas
to draw all its children and then check whether each one falls insides its bounds. However, this isn’t
always the behavior you want. For example, Chapter 11 includes an animated game that sends bombs
flying off the edge of the playing area, which is a Canvas. In this situation, the bombs must be visible
only inside the Canvas—when they leave, they should disappear under the Canvas border, not drift
overtop other elements.

Fortunately, the Canvas has support for clipping, which ensures that elements (or the portions of an
element) that aren’t inside a specified area are cut off, in much the same way as elements that extend
beyond the edges of a StackPanel or Grid. The only inconvenience is that you need to set the shape of the
clipping area manually using the Canvas.Clip property.

CHAPTER 3 = LAYOUT

Technically, the Clip property takes a Geometry object, which is a useful object you'll consider in
more detail when you tackle drawing in Chapter 8. Silverlight has different Geometry-derived classes for
different types of shapes, including squares and rectangles (RectangleGeometry), circles and ellipses
(EllipseGeometry), and more complex shapes (PathGeometry). Here’s an example that sets the clipping
region to a rectangular area that matches the bounds of the Canvas:

<Canvas x:Name="canvasBackground" Width="200" Height="500" Background="AliceBlue">
<Canvas.Clip>
<RectangleGeometry Rect="0,0 200,500"></RectangleGeometry>
</Canvas.Clip>

<Canvas>

In this example, the clipping region can be described as a rectangle with its top-left corner at point
(0, 0), a width of 200 pixels, and a height of 500 pixels. The coordinate for the top-left corner is relative to
the Canvas itself, so you must always have a top-left corner of (0,0) unless you want to leave out some of
the content in the upper or left region of the Canvas.

Setting the clipping region in markup isn’t always the best approach. It’s particularly problematic if
your Canvas is sized dynamically to fit a resizable container or the browser window. In this situation, it’s
far more effective to set the clipping region programmatically. Fortunately, all you need is a simple event
handler that changes the clipping region when the Canvas is resized by reaching the

Canvas.SizeChanged event. (This event also fires when the Canvas is first created, so it also takes care of
the initial clipping region setup.)

private void canvasBackground SizeChanged(object sender, SizeChangedEventArgs e)
RectangleGeometry rect = new RectangleGeometry();
rect.Rect = new Rect(0, 0, canvasBackground.ActualWidth,

canvasBackground.ActualHeight);
canvasBackground.Clip = rect;

}
You can attach that event handler like so:

<Canvas x:Name="canvasBackground" SizeChanged="canvasBackground SizeChanged"
Background="AliceBlue">

You'll see this technique in action with the bomb-dropping game in Chapter 11.

CHOOSING THE RIGHT LAYOUT CONTAINER

As a general rule of thumb, the Grid and StackPanel are best when dealing with business-style
applications (for example, when displaying data entry forms or documents). They deal well with changing
window sizes and dynamic content (for example, blocks of text that can grow or shrink depending on the
information at hand). They also make it easier to modify, localize, and reskin the application, because
adjacent elements will bump each other out of the way as they change size. The Grid and StackPanel are
also closest to the way ordinary HTML pages work.

The Canvas is dramatically different. Because all of its children are arranged using fixed coordinates, you
need to go to more work to position them (and even more work if you want to tweak the layout later on in

89

CHAPTER 3 = LAYOUT

90

response to new elements or new formatting.) However, the Canvas makes sense in certain types of
graphically rich applications, such as games. In these applications, you need fine-grained control, text and
graphics often overlap, and you often change coordinates programmatically. Here, the emphasis isn’t on
flexibility but on achieving a specific visual appearance, and the Canvas makes more sense.

Custom Layout Containers

Although Silverlight has a solid collection of layout containers, it can’t offer everything. The developers
of Silverlight left out many more specialized layout containers to keep the Silverlight download as lean as
possible.

However, there’s no reason you can’t create some layout containers of your own. You simply need
to derive a custom class from Panel and supply the appropriate layout logic. And if you're ambitious, you
can combine the layout logic of a panel with other Silverlight features. For example, you can create a
panel that handles mouse-over events to provide automatic drag support for the elements inside (like
the dragging example shown in Chapter 4), or you can create a panel that displays its children with an
animated effect.

In the following sections, you'll learn how the layout process works, and then you’ll see how to build
a custom layout container. The example you’'ll consider is the UniformGrid—a stripped-down grid
control that tiles elements into a table of identically sized cells.

The Two-Step Layout Process

Every panel uses the same plumbing: a two-step process that’s responsible for sizing and arranging
children. The first stage is the measure pass, and it’s at this point that the panel determines how large its
children want to be. The second stage is the layout pass, and it’s at this point that each control is
assigned its bounds. Two steps are required, because the panel might need to take into account the
desires of all its children before it decides how to partition the available space.

You add the logic for these two steps by overriding the oddly named MeasureOverride() and
ArrangeOverride() methods, which are defined in the FrameworkElement class as part of the Silverlight
layout system. The odd names represent that the MeasureOverride() and ArrangeOverride() methods
replace the logic that’s defined in the MeasureCore() and ArrangeCore() methods that are defined in the
UlElement class. These methods are not overridable.

MeasureOverride()

The first step is to determine how much space each child wants using the MeasureOverride() method.
However, even in the MeasureOverride() method, children aren’t given unlimited room. At a bare
minimum, children are confined to fit in the space that’s available to the panel. Optionally, you might
want to limit them more stringently. For example, a Grid with two proportionally sized rows will give
children half the available height. A StackPanel will offer the first element all the space that’s available
and then offer the second element whatever’s left, and so on.

Every MeasureOverride() implementation is responsible for looping through the collection of
children and calling the Measure() method of each one. When you call the Measure() method, you
supply the bounding box—a Size object that determines the maximum available space for the child
control. At the end of the MeasureOverride() method, the panel returns the space it needs to display all
its children and their desired sizes.

Here’s the basic structure of the MeasureOverride() method, without the specific sizing details:

CHAPTER 3

protected override Size MeasureOverride(Size panelSpace)
{
// Examine all the children.
foreach (UIElement element in this.Children)
{
// Ask each child how much space it would like, given the
// availableElementSize constraint.
Size availableElementSize = new Size(...);
element.Measure(availableElementSize);
// (You can now read element.DesiredSize to get the requested size.)

}

// Indicate how much space this panel requires.
// This will be used to set the DesiredSize property of the panel.
return new Size(...);

The Measure() method doesn’t return a value. After you call Measure() on a child, that child’s
DesiredSize property provides the requested size. You can use this information in your calculations for
future children (and to determine the total space required for the panel).

You must call Measure() on each child, even if you don’t want to constrain the child’s size or use the
DesiredSize property. Many elements will not render themselves until you've called Measure(). If you
want to give a child free rein to take all the space it wants, pass a Size object with a value of
Double.Positivelnfinity for both dimensions. (The ScrollViewer is one element that uses this strategy,
because it can handle any amount of content.) The child will then return the space it needs for all its
content. Otherwise, the child will normally return the space it needs for its content or the space that’s
available—whichever is smaller.

At the end of the measuring process, the layout container must return its desired size. In a simple
panel, you might calculate the panel’s desired size by combining the desired size of every child.

Note You can’t simply return the constraint that’s passed to the MeasureOverride() method for the desired size
of your panel. Although this seems like a good way to take all the available size, it runs into trouble if the container
passes in a Size object with Double.Positivelnfinity for one or both dimensions (which means “take all the space
you want”). Although an infinite size is allowed as a sizing constraint, it's not allowed as a sizing result, because
Silverlight won’t be able to figure out how large your element should be. Furthermore, you really shouldn’t take
more space than you need. Doing so can cause extra whitespace and force elements that occur after your layout
panel to be bumped farther down the window.

If you're an attentive reader, you may have noticed that there’s a close similarity between the
Measure() method that’s called on each child and the MeasureOverride() method that defines the first
step of the panel’s layout logic. In fact, the Measure() method triggers the MeasureOverride() method.
Thus, if you place one layout container inside another, when you call Measure(), you'll get the total size
required for the layout container and all its children.

One reason the measuring process goes through two steps (a Measure() method that triggers the
MeasureOverride() method) is to deal with margins. When you call Measure(), you pass in the total

LAYOUT

91

CHAPTER 3 = LAYOUT

92

available space. When Silverlight calls the MeasureOverride() method, it automatically reduces the
available space to take margin space into account (unless you've passed in an infinite size).

ArrangeOverride()

Once every element has been measured, it’s time to lay them out in the space that’s available. The layout
system calls the ArrangeOverride() method of your panel, and the panel calls the Arrange() method of
each child to tell it how much space it’s been allotted. (As you can probably guess, the Arrange() method
triggers the ArrangeOverride() method, much as the Measure() method triggers the MeasureOverride()
method.)

When measuring items with the Measure() method, you pass in a Size object that defines the
bounds of the available space. When placing an item with the Arrange() method, you pass in a
System.Windows.Rect object that defines the size and position of the item. At this point, it’s as though
every element is placed with Canvas-style X and Y coordinates that determine the distance between the
top-left corner of your layout container and the element.

Here’s the basic structure of the ArrangeOverride() method, without the specific sizing details:

protected override Size ArrangeOverride(Size panelSize)
{

// Examine all the children.

foreach (UIElement element in this.Children)

// Assign the child its bounds.

Rect elementBounds = new Rect(...);
element.Arrange(elementBounds);

// (You can now read element.ActualHeight and element.ActualWidth
// to find out the size it used.)

}

// Indicate how much space this panel occupies.

// This will be used to set the ActualHeight and ActualWidth properties
// of the panel.

return arrangeSize;

When arranging elements, you can'’t pass infinite sizes. However, you can give an element its
desired size by passing in the value from its DesiredSize property. You can also give an element more
space than it requires. In fact, this happens frequently. For example, a vertical StackPanel gives a child as
much height as it requests but gives it the full width of the panel itself. Similarly, a Grid might use fixed
or proportionally sized rows that are larger than the desired size of the element inside. And even if
you've placed an element in a size-to-content container, that element can still be enlarged if an explicit
size has been set using the Height and Width properties.

When an element is made larger than its desired size, the HorizontalAlignment and
VerticalAlignment properties come into play. The element content is placed somewhere inside the
bounds that it has been given.

Because the ArrangeOverride() method always receives a defined size (not an infinite size), you can
return the Size object that’s passed in to set the final size of your panel. In fact, many layout containers
take this step to occupy all the space that’s been given. You aren’t in danger of taking up space that could
be needed for another control, because the measure step of the layout system ensures that you won'’t be
given more space than you need unless that space is available.

CHAPTER 3 = LAYOUT

The UniformGrid

Now that you’ve examined the layout system in a fair bit of detail, it's worth creating your own layout
container that adds something you can’t get with the basic set of Silverlight panels. In this section, you’ll
see an example straight from the WPF world: a UniformGrid that arranges its children into automatically
generated, equally sized cells.

Note The UniformGrid is useful as a lightweight alternative to the regular Grid, because it doesn’t require
explicitly defined rows and columns, and it doesn’t force you to manually place each child in the right cell. It
makes particularly good sense when display a tiled set of images. In fact, WPF includes a slightly more ambitious
version of this control as part of the .NET Framework.

Like all custom panels, the UniformGrid starts with a simple class declaration that inherits from the
base Panel control:

public class UniformGrid : System.Windows.Controls.Panel

{...}

Note You can build the UniformGrid directly inside any Silverlight application. But if you want to reuse your
custom layout container in multiple applications, it’s a better idea to place it in a new Silverlight class library for it.
When you want to use your custom layout container in an application, simply add a reference to the compiled
class library.

Conceptually, the UniformGrid is quite simple. It examines the available space, calculates how
many cells are needed (and how big each cell will be), and then lays out its children one after the other.
The UniformGrid allows you to customize its behavior with two properties, Rows and Columns, which
can be set independently or in conjunction:

public int Columns { get; set; }
public int Rows { get; set; }

Here’s how the Rows and Columns properties affect the layout logic:

e Ifboth the Rows and Columns properties are set, the UniformGrid knows how big
to make the grid. It simply needs to divide the available space proportionately to
find the size of each cell. If there are more elements than cells, the extra elements
aren’t displayed.

e Ifonly one of these properties is set, the UniformGrid calculates the other,
assuming that you want to display all the elements inside. For example, if you set
Columns to 3 and place eight elements inside, the UniformGrid will divide the
available space into three rows.

93

CHAPTER 3

94

LAYOUT

e Ifneither of these properties is set, the UniformGrid will calculate both of them,
assuming that you want to display all the elements and you want an equal number
of rows and columns. (However, the UniformGrid won'’t create an entirely blank
row or column. Instead, if it can’t match the number of rows and columns exactly,
the UniformGrid will add an extra column.)

To implement this system, the UniformGrid keeps track of the real number of columns and rows.
This holds the value in the Columns and Rows properties, if they're set. If they aren’t, the Grid uses a
custom method called CalculateColumns() to count the child elements and determine the dimensions of
the grid. This method can then be called during the first stage of layout.

privat
privat

privat
{
//
//
do
if

re
re

//
if

//
if

//
if

//
if

e int realColumns;
e int realRows;

e void CalculateColumns()

Count the elements, and don't do anything
if the panel is empty.

uble elementCount = this.Children.Count;
(elementCount == 0) return;

alRows = Rows;
alColumns = Columns;

If the Rows and Columns properties were set, use them.
((realRows != 0) & (realColumns != 0))
return;

If neither property was set, start by calculating the columns.
((realColumns == 0) &3 realRows == 0)
realColumns = (int)Math.Ceiling(Math.Sqrt(elementCount));

If only Rows is set, calculate Columns.
(realColumns == 0)
realColumns = (int)Math.Ceiling(elementCount / realRows);

If only Columns is set, calculate Rows.
(realRows ==
realRows = (int)Math.Ceiling(elementCount / realColumns);

The Silverlight layout system starts the layout process by calling the MeasureOverride() method in
the UniformGrid. It needs to call the column calculation method (ensuring the number of rows and
columns are set) and then divide the available space into equally sized cells.

protected override Size MeasureOverride(Size constraint)

Ca

//
Si

lculateColumns();

Share out the available space equally.
ze childConstraint = new Size(
constraint.Width / realColumns, constraint.Height / realRows);

CHAPTER 3

Now the elements inside the UniformGrid need to be measured. However, there’s a trick—an

element may return a larger value when its Measure() method is called, indicating that it's minimum size

is greater than the allocated space. The UniformGrid keeps track of the largest requested width and

height values. Finally, when the entire measuring process is finished, the UniformGrid calculates the size
required to make every cell big enough to accommodate the maximum width and height. It then returns

that information as its requested size.

// Keep track of the largest requested dimensions for any element.
Size largestCell = new Size();

// Examine all the elements in this panel.
foreach (UIElement child in this.Children)

{
// Get the desired size of the child.
child.Measure(childConstraint);
// Record the largest requested dimensions.
largestCell.Height = Math.Max(largestCell.Height, child.DesiredSize.Height);
largestCell.Width = Math.Max(largestCell.Width, child.DesiredSize.Width);
}

// Take the largest requested element width and height, and use
// those to calculate the maximum size of the grid.
return new Size(largestCell.Width * realColumns, largestCell.Height * realRows);

The ArrangeOverride() code has a similar task. However, it's no longer measuring the children.

Instead, it takes note of the final space measurement, calculates the cell size, and positions each child
inside the appropriate bounds. If it reaches the end of the grid but there are still extra elements (which
only occurs if the control consumer sets limiting values for Columns and Rows), these extra items are

given a 0x 0 layout box, which hides them.

protected override Size ArrangeOverride(Size arrangeSize)
{
// Calculate the size of each cell.
double cellWidth = arrangeSize.Width / realColumns;
double cellHeight = arrangeSize.Height / realRows;

// Determine the placement for each child.
Rect childBounds = new Rect(0, 0, cellWidth, cellHeight);

// Examine all the elements in this panel.
foreach (UIElement child in this.Children)
{
// Position the child.
child.Arrange(childBounds);

// Move the bounds to the next position.
childBounds.X += cellWidth;
if (childBounds.X >= cellWidth * realColumns)

// Move to the next row.

LAYOUT

95

CHAPTER 3 = LAYOUT

96

childBounds.Y += cellHeight;
childBounds.X = 0;

// If there are more elements than cells,

// hide extra elements.

if (childBounds.Y >= cellHeight * realRows)
childBounds = new Rect(0, 0, 0, 0);

}

// Return the size this panel actually occupies.
return arrangeSize;

Using the UniformGrid is easy. You simply need to map the namespace in your XAML markup and
then define the UniformGrid in the same way you define any other layout container. Here’s an example
that places the UniformGrid in a StackPanel with some text content. This allows you to verify that the
size of the UniformGrid is correctly calculated and make sure that the content that follows it is bumped
out of the way:

<UserControl x:Class="Layout.UniformGridTest"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:local="clr-namespace:Layout" >
<StackPanel Background="White">
<TextBlock Margin="5" Text="Content above the WrapPanel."></TextBlock>

<local:UniformGrid Margin="5" Background="LawnGreen"»
<Button Height="20" Content="Short Button"></Button>
<Button Width="150" Content="Wide Button"></Button>
<Button Width="80" Height="40" Content="Fixed Button"></Button>
<TextBlock Margin="5" Text="Text in the UniformGrid cell goes here"
TextWrapping="Wrap" Width="100"></TextBlock>
<Button Width="80" Height="20" Content="Short Button"></Button>
<TextBlock Margin="5" Text="More text goes in here"
VerticalAlignment="Center"></TextBlock>
<Button Content="Unsized Button"></Button>
<Button Content="Unsized Button"></Button>
</local:UniformGrid»
<TextBlock Margin="5" Text="Content below the WrapPanel."></TextBlock>
</StackPanel>
</UserControl>

Figure 3-17 shows how this markup is displayed. By examining the different sizing characteristics of
the children inside the UniformGrid, you can set how its layout works in practice. For example, the first
button (named Short Button) has a hard-coded Height property. As a result, its height is limited, but it
automatically takes the full width of the cell. The second button (Wide Button) has a hard-coded Width
property. However, it’s the widest element in the UniformGrid, which means its width determines the
cell width for the entire table. As a result, its dimensions match the unsized buttons exactly—both fill all
the available cell space. Similarly, it’s the three lines of wrapped text in the TextBlock that requires the
most vertical headroom and so determines the height of all the cells in the grid.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 3 = LAYOUT

O Layout -_)
&« C O filey///D:;/Code/Pro%20Silverlight/Chapter03/L vl X

Content above the WrapPanel.

| Short Button _|‘ Wide Button ‘ ‘ Fixed Button
Text in the
UniformGrid cell | Short Button | More text goes in here
goes here

Unsized Button ‘

Content below the WrapPanel.

L)

Figure 3-17. The UniformGrid

Note To take a look at a more ambitious (and more mathematically complex) custom layout container, check
out the radial panel at http://tinyurl.com/cwkénz, which arranges elements around the edge of an invisible
circle.

Sizing Pages

So far, you've taken an extensive look at the different layout containers Silverlight offers and how you
can use them to arrange groups of elements. However, there’s one important part of the equation that
you haven’t considered yet—the top-level page that holds your entire user interface.

As you've already seen, the top-level container for each Silverlight page is a custom class that derives
from UserControl. The UserControl class adds a single property, named Content, to Silverlight’s basic
element infrastructure. The Content property accepts a single element, which becomes the content of
that user control.

User controls don’t include any special functionality—they’re simply a convenient way to group
together a block of related elements. However, the way you size your user control can affect the
appearance of your entire user interface, so it’s worth taking a closer look.

You've already seen how you can use different layout containers with a variety of layout properties
to control whether your elements size to fit their content, the available space, or hard-coded
dimensions. Many of the same options are available when you're sizing a page, including the following:

97

http://tinyurl.com/cwk6nz

CHAPTER 3 = LAYOUT

e Fixed size: Set the Width and Height properties of the user control to give your
page an exact size. If you have controls inside the page that exceed these
dimensions, they will be truncated. When using a fixed-size window, it's common
to change the HorizontalAlignment and VerticalAlignment properties of the user
control to Center, so it floats in the center of the browser window rather than
being locked into the top-left corner.

e Browser size: If you don’t use the Width and Height properties of your user
control, your application will take the full space allocated to it in the Silverlight
content region. (And by default, the HTML entry page that Visual Studio creates
sizes the Silverlight content region to take 100% of the browser window.) If you use
this approach, it’s still possible to create elements that stretch off the bounds of
the display region, but the user can now observe the problem and resize the
browser window to see the missing content. If you want to preserve some blank
space between your page and the browser window when using this approach, you
can set the user control’s Margin property.

e Constrained size: Instead of using the Width and Height properties, use the
MaxWidth, MaxHeight, MinWidth, and MinHeight properties. Now, the user
control will resize itself to fit the browser windows within a sensible range, and it
will stop resizing when the window reaches very large or very small dimensions,
ensuring it’s never scrambled beyond recognition.

e Unlimited size: In some cases, it makes sense to let your Silverlight content region
take more than the full browser window. In this situation, the browser will add
scroll bars, much as it does with a long HTML page. To get this effect, you need to
remove the Width and Height properties and edit the entry page (TestPage.html).
In the entry page, remove the width="100%" and height="100%" attributes in the
<object> element. This way, the Silverlight content region will be allowed to grow
to fit the size of your user control.

Note Remember, design tools such as Visual Studio and Expression Blend add the DesignWidth and
DesignHeight attributes to your user control. These attributes affect the rendering of your page only at design time
(where they act like the Width and Height properties). At runtime, they are ignored. Their primary purpose is to
allow you to create user interfaces that follow the browser-size model, while still giving you a realistic preview of
your application at design time.

All of these approaches are reasonable choices. It simply depends on the type of user interface that
you're building. When you use a non-fixed-size page, your application can take advantage of the extra
space in the browser window by reflowing its layout to fit. The disadvantage is that extremely large or
small windows may make your content more difficult to read or use. You can design for these issues, but
it takes more work. On the other hand, the disadvantage of hard-coded sizes it that your application will
be forever locked in a specific window size no matter what the browser window looks like. This can lead
to oceans of empty space (if you've hard-coded a size that’s smaller than the browser window) or make
the application unusable (if you've hard-coded a size that’s bigger than the browser window).

98

CHAPTER 3 = LAYOUT

As a general rule of thumb, resizable pages are more flexible and preferred where possible. They’re
usually the best choice for business applications and applications with a more traditional user interface
that isn’t too heavy on the graphics. On the other hand, graphically rich applications and games often
need more precise control over what’s taking place in the page and are more likely to use fixed page
sizes.

Tip If you're testing different approaches, it helps to make the bounds of the page more obvious. One easy way
to do so is to apply a nonwhite background to the top-level content element (for example, setting the Background
property of a Grid to Yellow). You can’t set the Background property on the user control itself, because the
UserControl class doesn’t provide it. Another option is to use a Border element as your top-level element, which
allows you to outline the page region.

There are also a few more specialized sizing options that you’ll learn about in the following sections:
scrollable interfaces, scalable interfaces, and full-screen interfaces.

Scrolling with the ScrollViewer

None of the containers you've seen have provided support for scrolling, which is a key feature for fitting
large amounts of content in a limited amount of space. In Silverlight, scrolling support is easy to get, but
it requires another ingredient—the ScrollViewer content control.

To get scrolling support, you need to wrap the content you want to scroll inside a ScrollViewer.
Although the ScrollViewer can hold anything, you’ll typically use it to wrap a layout container. For
example, here’s a two-column grid of text boxes and buttons that’s made scrollable. The page is sized to
the full browser area, but it adds a margin to help distinguish the scroll bar from the browser window
that surrounds it. The following listing shows the basic structure of this example, with the markup that
creates the first row of elements:

<UserControl x:Class="Layout.Scrolling"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Margin="20">
<ScrollViewer Background="AliceBlue">
<Grid Margin="3,3,10,3">
<Grid.RowDefinitions>
<RowDefinition Height="Auto"></RowDefinition>

</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="*"></ColumnDefinitiony
<ColumnDefinition Width="Auto"></ColumnDefinition>
</Grid.ColumnDefinitions>

<TextBox Grid.Row="0" Grid.Column="0" Margin="3"
Height="Auto" VerticalAlignment="Center"></TextBox>
<Button Grid.Row="0" Grid.Column="1" Margin="3" Padding="2"
Content="Browse"></Button>

99

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 3

100

LAYOUT

</Grid>
</ScrollViewer>
</UserControl>
Figure 3-18 shows the result.
& Silverlight Project Test Page - Windows Internet Ex... lgj@}ﬂ_hj

| @ D:\Code\Pro Silverlight\Chapterd3\Layout ~ | 4 | X |

'

,
(@ Silverlight Project Test Page - Windows Internet Ex... IE‘M

| @ D:\Code\Pro Siiverlight\Chapterd3\Layout + | 2 | X |

i\

»

oy ‘@SilverlightPn‘)jectTestP...| I R

»

W & | @ Sivedight Project Testp... | | Ty ~ o= ~

| | Browse
I l Browse
| | Browse
| | Browse
| | Browse
| | Browse
|
I
|
|

=
[
e
=2

I -
| | Browse
[’ Browse

’ Browse
’ Browse

|[srose] |+

Q Internet | Protected Mode: On * 100% ~

€ Internet | Protected Mode: On #100% ~

Figure 3-18. A scrollable page

If you resize the page in this example so that it’s large enough to fit all its content, the scroll bar
becomes disabled. However, the scroll bar will still be visible. You can control this behavior by setting
the VerticalScrollBarVisibility property, which takes a value from the ScrollBarVisibility enumeration.
The default value of Visible makes sure the vertical scroll bar is always present. Use Auto if you want the
scroll bar to appear when it’s needed and disappear when it’s not. Or use Disabled if you don’t want the

scroll bar to appear at all.

Note You can also use Hidden, which is similar to Disabled but subtly different. First, content with a hidden
scroll bar is still scrollable. (For example, you can scroll through the content using the arrow keys.) Second, the
content in a ScrollViewer is laid out differently. When you use Disabled, you tell the content in the ScrollViewer that

CHAPTER 3

it has only as much space as the ScrollViewer itself. On the other hand, if you use Hidden, you tell the content that
it has an infinite amount of space. That means it can overflow and stretch off into the scrollable region.

The ScrollViewer also supports horizontal scrolling. However, the HorizontalScrollBarVisibility
property is Hidden by default. To use horizontal scrolling, you need to change this value to Visible or
Auto.

Scaling with the Viewbox

Earlier in this chapter, you saw how the Grid can use proportional sizing to make sure your elements
take all the available space. Thus, the Grid is a great tool for building resizable interfaces that grow and
shrink to fit the browser window.

Although this resizing behavior is usually what you want, it isn’t always suitable. Changing the
dimensions of controls changes the amount of content they can accommodate and can have subtle
layout-shifting effects. In graphically rich applications, you might need more precise control to keep
your elements perfectly aligned. However, that doesn’t mean you need to use fixed-size pages. Instead,
you can use another trick, called scaling.

Essentially, scaling resizes the entire visual appearance of the control, not just its outside bounds.
No matter what the scale, a control can hold the same content—it just looks different. Conceptually, it’s
like changing the zoom level.

Figure 3-19 compares the difference. On the left is a window at its normal size. In the middle is the
window enlarged, using traditional resizing. On the right is the same expanded window using scaling.

LAYOUT

101

CHAPTER 3 = LAYOUT

& Layout - Windows In... |.E!M & Layout - Windows lnter...l.ilﬂlgy & Layout - Windows Internet E.. |E|EBH
& ilverl ~ (| & p: ilverlin v | - & p: iverlic v | %4 |
s/ () & D:\Code\Pro Silverli o & D\Code\Pro Silverli I .) & D:\Code\Pro Sitverlis + | X
i dal | @8 Layout | W | @8 Layout | W | @8 Layout .
Sample Text | [Browse| | Sample Text 1 |
| :Bm“‘sei Sample Text |Browse|
Sample Text | |Browse| — \ . L 4
Sample Text |
l_SarnDIe Text | |§mww| | | _Eruwse| Sample Text |BI‘0WSE|
Sample Text | |Browse| : e .) :
Sample Text | [Browse| | .Bfn"‘”i Sample Text |Browse|
Sample Text | [Browse| Sample Text fes |
. bt Sample Text |Browse‘
€ Internet | Protected b %, 100% ~) & 2
» " Sample Text (&5 |
Ry Sample Text iBrowseJ
Sample Text Browsal
| [Sample Text Browse|
@ Internet | Protected Mo R 100% ~ & Internet | Protected Mode: 01 #,100% ~
w e s

Figure 3-19. Comparing an original (left), resized (middle), and rescaled (right) page

To use scaling, you need to use a transform. As you'll discover in Chapter 8, transforms are a key
part of Silverlight’s flexible 2-D drawing framework. They allow you to rescale, skew, rotate, and
otherwise change the appearance of any element. In this example, you need the help of a
ScaleTransform to change the scale of your page.

You can use the ScaleTransform in two ways. The first option is a do-it-yourself approach. You
respond to the UserControl.SizeChanged event, examine the current size of the page, carry out the
appropriate calculations, and create the ScaleTransform by hand. Although this works, there’s a far less
painful alternative. You can use the Viewbox control, which performs exactly the same task but doesn’t
require a line of code.

Before you can write the rescaling code that you need, you need to make sure your markup is
configured correctly. Here are the requirements you must meet:

e Your user control can’t be explicitly sized—instead, it needs to be able to grow to
fill the browser window.

e To rescale a window to the right dimensions, you need to know its ideal size, that
is, the dimensions that exactly fit all of its content. Although these dimensions
won'’t be set in your markup, they’ll be used for the scaling calculations in your
code.

Aslong as these details are in place, it’s fairly easy to create a scalable page. The following markup
uses a Grid that has an ideal size of 200 %225 pixels and contains the stack of text boxes and buttons
shown in Figure 3-19:

<UserControl x:Class="Layout.Page"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

102

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 3

<!-- This container is required for rescaling. -->
<Viewbox>
<!-- This container is the layout root of your ordinary user interface.
Note that it uses a hard-coded size. -->
<Grid Background="White" Width="200" Height="225" Margin="3,3,10,3">
<Grid.RowDefinitions>

</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition Width="*"></ColumnDefinitiony
<ColumnDefinition Width="Auto"></ColumnDefinition>
</Grid.ColumnDefinitions>

<TextBox Grid.Row="0" Grid.Column="0" Margin="3"

Height="Auto" VerticalAlignment="Center" Text="Sample Text"></TextBox>
<Button Grid.Row="0" Grid.Column="1" Margin="3" Padding="2"
Content="Browse"></Button>

</Grid>
</Viewbox»
</UserControl>

In this example, the Viewbox preserves the aspect ratio of the resized content. In other words, it
sizes the content to fit the smallest dimension (height or width), rather than stretching it out of
proportion to fill all the available space. If you want to use a Viewbox that does stretch its contents
without regard for their proportions, simply set the Stretch property to Fill. This isn’t terribly useful for
page scaling, but it may make sense if you're using the Viewbox for another purpose—sayj, to size vector
graphics in a button.

Finally, it’s worth noting that you can create some interesting effects by placing a Viewbox in a
ScrollViewer. For example, you can manually set the size of Viewbox to be larger than the available space
(using its Height and Width properties) and then scroll around inside the magnified content. You could
use this technique to create a zoomable user interface increases the scale as the user drags a slider or
turns the mouse wheel. You'll see an example of this technique with the mouse wheel in Chapter 4.

LAYOUT

SILVERLIGHT SUPPORT FOR BROWSER ZOOMING

When accessed in some browsers and operating systems—currently, the most recent versions of Firefox
and Internet Explorer—Silverlight applications support a feature called autozoom. That means the user can
change the zoom percentage to shrink or enlarge a Silverlight application. (In Internet Explorer, this can be
accomplished using the browser status bar of the View 2 Zoom menu.) For example, if the user chooses a
zoom percentage of 110%, the entire Silverlight application, including its text, images, and controls, will be
scaled up 10 percent.

For the most part, this behavior makes sense—and it’s exactly what you want. However, if you plan to
create an application that provides its own zooming feature, the browser’s autozoom might not be
appropriate. In this situation, you can disable autozoom simply by adding the enableAutoZoom parameter
to the HTML entry page and setting it to false, as shown here:

103

CHAPTER 3 = LAYOUT

<div id="silverlightControlHost">
<object data="data:application/x-silverlight-2,"
type="application/x-silverlight-2" width="100%" height="100%">
<param name="enableAutoZoom" value="false" />
</object>

</div>

Full-Screen Mode

Silverlight applications also have the capability to enter a full-screen mode, which allows them to break
out of the browser window altogether. In full-screen mode, the Silverlight plug-in fills the whole display
area and is shown overtop of all other applications, including the browser.

Full-screen mode has some serious limitations:

¢ You can only switch into full-screen mode when responding to a user input event:
In other words, you can switch into full-screen mode when the user clicks a button
or presses a key. However, you can’t switch into full-screen mode as soon as your
application loads. (If you attempt to do so, your code will simply be ignored.) This
limitation is designed to prevent a Silverlight application from fooling a user into
thinking it’s actually another local application or a system window.

e While in full-screen mode, keyboard access is limited: Your code will still respond
to the following keys: Tab, Enter, Home, End, Page Up, Page Down, spacebar, and
the arrow keys. All other keys are ignored. This means that you can build a simple
full-screen arcade game, but you can’t use text boxes or other input controls. This
limitation is designed to prevent password spoofing—for example, tricking the
user into entering a password by mimicking a Windows dialog box. The only
exception is if you're creating an elevated-trust application (see Chapter 18),
which won’t face this limitation.

Note Full-screen mode was primarily designed for showing video content in a large window. Some keys are
allowed—just enough to build simple graphical applications (for example, a photo browser) and games. To handle
key presses outside of an input control, you simply handle the standard KeyPress event. (For example, you can add
a KeyPress event handler to your root layout container to capture every key press that takes place, as described in
Chapter 4.)

Here’s an event handler that responds to a button press by switching into full-screen mode:

private void Button Click(object sender, RoutedEventArgs e)

{

Application.Current.Host.Content.IsFullScreen = true;

104

CHAPTER 3 = LAYOUT

When your application enters full-screen mode, it displays a message like the one shown in Figure
3-20. This message includes the web domain where the application is situated. If you're using an
ASP.NET website and the built-in Visual Studio web server, you'll see the domain http://localhost. If
you're hosting your application with an HTML test page that’s stored on your hard drive, you'll see the
domain file://. The message also informs users that they can exit full-screen mode by pressing the Esc
key. Alternatively, you can set the IsFullScreen property to false to exit full-screen mode.

Press ESC to exit full-screen mode.

http://localhost

Figure 3-20. The full-screen mode message

For your application to take advantage of full-screen mode, your top-level user control should not
have a fixed Height or Width. That way, it can grow to fit the available space. You can also use the scaling
technique described in the previous section to scale the elements in your application to larger sizes with
arender transform when you enter full-screen mode.

There’s one other way to get out of full-screen mode in a Silverlight application: by switching to
another application. Ordinarily, this behavior makes perfect sense. But if you have a multiple monitor
setup, it might not be what you want. It prevents you from having a full-screen Silverlight application
running on one monitor while you work with another application on another monitor.

If you want to prevent this behavior, you can use the following line of code to “pin” a full-screen
application so it stays in full-screen mode even when the application loses focus:

Application.Current.Host.Content.FullScreenOptions =
FullScreenOptions.StaysFullScreenWhenUnfocused;

You must use this option before you switch into full-screen mode. Then, when you set the
IsFullScreen property, the user will be prompted to give your application permission to stay pinned
(Figure 3-21). The confirmation dialog also includes an option for remembering the user’s choice, in
which case the message won’t be shown the next time the application switches into full-screen mode.

If the user accepts, the window will remain pinned in full-screen mode until the user hits the Esc key
or your code sets the IsFullScreen property to false. If the user doesn’t accept, the application will switch
into full-screen mode with the normal behavior, which means it will lose its full-screen state when the
application loses focus.

Microsoft Silverlight [

Do you want to allow this web site to stay in ful-screen
mode?

Would you like to allow this web site to stay in full-screen mode when you
V interact with another window? If you choose No, the web site will still enter
full-screen mode, but will exit full-screen mode when it loses focus.

Silver light website: hitp://localhost:34007

More information I Yes J [No]

. A

Figure 3-21. Switching into full-screen mode with a pinned window

105

CHAPTER 3 = LAYOUT

The Last Word

In this chapter, you took a detailed tour of the new Silverlight layout model and learned how to place
elements in stacks, grids, and other arrangements. You built more complex layouts using nested
combinations of the layout containers, and you threw the GridSplitter into the mix to make resizable
split pages. You even considered how to build your own layout containers to get custom effects. Finally,
you saw how to take control of the top-level user control that hosts your entire layout by resizing it,
rescaling it, and making it fill the entire screen.

106

CHAPTER 4

Dependency Properties and
Routed Events

At this point, you're probably itching to dive into a realistic, practical example of Silverlight coding. But
before you can get started, you need to understand a few more fundamentals. In this chapter, you'll get a
whirlwind tour of two key Silverlight concepts: dependency properties and routed events.

Both of these concepts first appeared in Silverlight’s big brother technology, WPFE. They came as
quite a surprise to most developers—after all, few expected a user interface technology to retool core
parts of .NET’s object abstraction. However, WPF’s changes weren’t designed to improve .NET but to
support key WPF features. The new property model allowed WPF elements to plug into services such as
data binding, animation, and styles. The new event model allowed WPF to adopt a layered content
model (as described in the next chapter) without horribly complicating the task of responding to user
actions such as mouse clicks and key presses.

Silverlight borrows both concepts, albeit in a streamlined form. In this chapter, you'll see how they
work.

What’s New Silverlight 5 adds a minor but useful refinement to the Click event. As you'll see in this chapter, a
new ClickCount property allows you to detect double-clicks and triple-clicks, which previously required clunky
workarounds (like timers). See the section “Double and Triple Clicks” for the details.

Dependency Properties

Essentially, a dependency property is a property that can be set directly (for example, by your code) or by
one of Silverlight’s services (such as data binding, styles, or animation). The key feature of this system is
the way that these different property providers are prioritized. For example, an animation will take
precedence over all other services while it’s running. These overlapping factors make for a very flexible
system. They also give dependency properties their name—in essence, a dependency property depends
on multiple property providers, each with its own level of precedence.

Most of the properties that are exposed by Silverlight elements are dependency properties. For
example, the Text property of the TextBlock, the Content property of the Button, and the Background
property of the Grid—all of which you saw in the simple example in Chapter 1—are all dependency
properties. This hints at an important principle of Silverlight dependency properties—they’re designed

107

CHAPTER 4 = DEPENDENCY PROPERTIES AND ROUTED EVENTS

108

to be consumed in the same way as normal properties. That’s because the dependency properties in the
Silverlight libraries are always wrapped by ordinary property definitions.

Although dependency features can be read and set in code like normal properties, they're
implemented quite differently behind the scenes. The simple reason why is performance. If the
designers of Silverlight simply added extra features on top of the .NET property system, they’d need to
create a complex, bulky layer for your code to travel through. Ordinary properties could not support all
the features of dependency properties without this extra overhead.

Tip As a general rule, you don’t need to know that a property is a dependency property in order to use it.
However, some Silverlight features are limited to dependency properties. Furthermore, you'll need to understand
dependency properties in order to define them in your own classes.

Defining and Registering a Dependency Property

You'll spend much more time using dependency properties than creating them. However, there are still
many reasons that you'll need to create your own dependency properties. Obviously, they’re a key
ingredient if you're designing a custom Silverlight element. They're also required in some cases if you
want to add data binding, animation, or another Silverlight feature to a portion of code that wouldn’t
otherwise support it.

Creating a dependency property isn’t difficult, but the syntax takes a little getting used to. It’s
thoroughly different from creating an ordinary .NET property.

The first step is to define an object that represents your property. This is an instance of the
DependencyProperty class (which is found in the System.Windows namespace). The information about
your property needs to be available all the time. For that reason, your DependencyProperty object must
be defined as a static field in the associated class.

For example, consider the FrameworkElement class from which all Silverlight elements inherit.
FrameworkElement defines a Margin dependency property that all elements share. It’s defined like this:

public class FrameworkElement: UIElement

{
public static readonly DependencyProperty MarginProperty;

By convention, the field that defines a dependency property has the name of the ordinary property
plus the word Property at the end. That way, you can separate the dependency property definition from
the name of the actual property. The field is defined with the readonly keyword, which means it can be
set only in the static constructor for the FrameworkElement.

Note Silverlight does not support WPF’s system of property sharing—in other words, defining a dependency
property in one class and reusing it in another. However, dependency properties follow the normal rules of

CHAPTER 4 = DEPENDENCY PROPERTIES AND ROUTED EVENTS

inheritance, which means that a dependency property such as Margin that’s defined in the FrameworkElement
class applies to all Silverlight elements, because all Silverlight elements derive from FrameworkElement.

Defining the DependencyProperty object is just the first step. For it to become usable, you need to
register your dependency property with Silverlight. This step needs to be completed before any code
uses the property, so it must be performed in a static constructor for the associated class.

Silverlight ensures that DependencyProperty objects can’t be instantiated directly, because the
DependencyProperty class has no public constructor. Instead, a DependencyProperty instance can be
created only using the static DependencyProperty.Register() method. Silverlight also ensures that
DependencyProperty objects can’t be changed after they're created, because all DependencyProperty
members are read-only. Instead, their values must be supplied as arguments to the Register() method.

The following code shows an example of how a DependencyProperty can be created. Here, the
FrameworkElement class uses a static constructor to initialize the MarginProperty:

static FrameworkElement()

{
MarginProperty = DependencyProperty.Register("Margin”,
typeof(Thickness), typeof(FrameworkElement), null);

The DependencyProperty.Register() method accepts the following arguments:
e The property name (Margin in this example).
e The data type used by the property (the Thickness structure in this example).
e The type that owns this property (the FrameworkElement class in this example).

e APropertyMetadata object that provides additional information. Currently,
Silverlight uses the PropertyMetadata to store just optional pieces of information:
a default value for the property and a callback that will be triggered when the
property is changed. If you don’t need to use either feature, supply a null value, as
in this example.

Note To see a dependency property that uses the PropertyMetadata object to set a default value, refer to the
WrapBreakPanel example later in this chapter.

With these details in place, you're able to register a new dependency property so that it’s available
for use. However, whereas typical property procedures retrieve or set the value of a private field, the
property procedures for a Silverlight property use the GetValue() and SetValue() methods that are
defined in the base DependencyObiject class. Here’s an example:

public Thickness Margin

{
get

109

CHAPTER 4 = DEPENDENCY PROPERTIES AND ROUTED EVENTS

110

return (Thickness)GetValue(MarginProperty);
}

set

SetValue(MarginProperty, value);

When you create the property wrapper, you should include nothing more than a call to SetValue()
and a call to GetValue(), as in the previous example. You should not add any extra code to validate
values, raise events, and so on. That’s because other features in Silverlight may bypass the property
wrapper and call SetValue() and GetValue() directly. One example is when the Silverlight parser reads
your XAML markup and uses it to initialize your user interface.

You now have a fully functioning dependency property, which you can set just like any other .NET
property using the property wrapper:

myElement.Margin = new Thickness(5);

There’s one extra detail. Dependency properties follow strict rules of precedence to determine their
current value. Even if you don’t set a dependency property directly, it may already have a value—
perhaps one that’s applied by a binding or a style or one that’s inherited through the element tree.
(You'll learn more about these rules of precedence in the next section.) However, as soon as you set the
value directly, it overrides these other influences.

At some point later, you may want to remove your local value setting and let the property value be
determined as though you never set it. Obviously, you can’t accomplish this by setting a new value.
Instead, you need to use another method that’s inherited from DependencyObject: the ClearValue()
method. Here’s how it works:

myElement.ClearValue(FrameworkElement.MarginProperty);

This method tells Silverlight to treat the value as though you never set it, thereby returning it to its
previous value. Usually, this will be the default value that’s set for the property, but it could also be the
value that’s set through property inheritance or by a style, as described in the next section.

Dynamic Value Resolution

As you've already learned, dependency properties depend on multiple different services, called property
providers. To determine the current value of a property, Silverlight has to decide which one takes
precedence. This process is called dynamic value resolution.

When evaluating a property, Silverlight considers the following factors, arranged from highest to
lowest precedence:

1. Animations. If an animation is currently running and that animation is
changing the property value, Silverlight uses the animated value.

2. Local value. If you've explicitly set a value in XAML or in code, Silverlight uses
the local value. Remember, you can set a value using the SetValue() method or
the property wrapper. If you set a property using a resource (Chapter 2) or data
binding (Chapter 16), it’s considered to be a locally set value.

CHAPTER 4 = DEPENDENCY PROPERTIES AND ROUTED EVENTS

3. Styles. Silverlight styles (Chapter 12) allow you to configure multiple controls
with one rule. If you've set a style that applies to this control, it comes into play
now.

4. Property value inheritance. Silverlight uses property value inheritance with a
small set of control properties, including Foreground, FontFamily, FontSize,
FontStretch, FontStyle, and FontWeight. That means if you set these properties
in a higher-level container (such as a Button or a ContentControl), they
cascade down to the contained content elements (like the TextBlock that
actually holds the text inside).

Note The limitation with property value inheritance is that the container must provide the property you want to
use. For example, you might want to specify a standard font for an entire page by setting the FontFamily property
on the root Grid. However, this won’t work because the Grid doesn’t derive from Control, and so it doesn’t provide
the FontFamily property. One solution is to wrap your elements in a ContentControl, which includes all the
properties that use property value inheritance but has no built-in visual appearance.

5. Default value. If no other property setter is at work, the dependency property
gets its default value. The default value is set with the PropertyMetadata object
when the dependency property is first created, as explained in the previous
section.

One of the advantages of this system is that it’s very economical. For example, if the value of a
property has not been set locally, Silverlight will retrieve its value from the template or a style. In this
case, no additional memory is required to store the value. Another advantage is that different property
providers may override one another, but they don’t overwrite each other. For example, if you set a local
value and then trigger an animation, the animation temporarily takes control. However, your local value
is retained, and when the animation ends, it comes back into effect.

Attached Properties

Chapter 2 introduced a special type of dependency property called an attached property. An attached
property is a full-fledged dependency property, and like all dependency properties, it’s managed by the
Silverlight property system. The difference is that an attached property applies to a class other than the
one where it’s defined.

The most common example of attached properties is found in the layout containers you saw in
Chapter 3. For example, the Grid class defines the attached properties Row and Column, which you set
on the contained elements to indicate where they should be positioned. Similarly, the Canvas defines
the attached properties Left and Top that let you place elements using absolute coordinates.

To define an attached property, you use the DependencyProperty.RegisterAttached () method
instead of Register(). Here’s the code from the Grid class that registers the attached Grid.Row property:

RowProperty = DependencyProperty.RegisterAttached(
"Row", typeof(int), typeof(Crid), null);

111

CHAPTER 4 = DEPENDENCY PROPERTIES AND ROUTED EVENTS

112

The parameters are exactly the same for the RegisterAttached() method as they are for the Register()
method.

When creating an attached property, you don’t define the .NET property wrapper. That’s because
attached properties can be set on any dependency object. For example, the Grid.Row property may be
set on a Grid object (if you have one Grid nested inside another) or on some other element. In fact, the
Grid.Row property can be set on an element even if that element isn’t in a Grid—and even if there isn’t a
single Grid object in your element tree.

Instead of using a .NET property wrapper, attached properties require a pair of static methods that
can be called to set and get the property value. These methods use the familiar SetValue() and GetValue()
methods (inherited from the DependencyObiject class). The static methods should be named
SetPropertyName() and GetPropertyName().

The SetPropertyName() method takes two arguments: the element on which you want to set the
property and the property value. Because the Grid.Row property is defined as an integer, the second
parameter of the SetRow() method must be an integer:

public static void SetRow(UIElement element, int value)

{
}

element.SetValue(Grid.RowProperty, value);

The GetPropertyName() method takes the element on which the property is set and returns the
property value. Because the Grid.Row property is defined as an integer, the GetRow() method must
return an integer:

public static int GetRow(UIElement element)

return (int)element.CGetValue(Grid.RowProperty);

And here’s an example that positions an element in the first row of a Grid using code:
Grid.SetRow(txtElement, 0);

This sets the Grid.Row property to 0 on the txtElement object, which is a TextBox. Because Grid.Row
is an attached property, Silverlight allows you to apply it to any other element.

The WrapBreakPanel Example

Now that you understand the theory behind dependency properties, it’s time to ground your knowledge
in a realistic example.

In Chapter 3, you learned how to create custom panels that use different layout logic to get exactly
the effect you want. For example, you took a look at a custom UniformGrid panel that organizes
elements into an invisible grid of identically sized cells. The following example considers part of a
different custom layout panel, which is called the WrapBreakPanel. Here is its class declaration:

public class WrapBreakPanel : System.Windows.Controls.Panel

{...1}

Ordinarily, the WrapBreakPanel behaves like the WrapPanel (although it doesn’t inherit directly
from WrapPanel, and its layout logic is written from scratch). Like the WrapPanel, the WrapBreakPanel
lays out its children one after the other, moving to the next line once the width in the current line is used
up. However, the WrapBreakPanel adds a new feature that the WrapPanel doesn’t offer—it allows you to
force an immediate line break wherever you want, simply by using an attached property.

CHAPTER 4 = DEPENDENCY PROPERTIES AND ROUTED EVENTS

Note The full code for the WrapBreakPanel is available with the downloadable samples for this chapter. The
only detail considered here is the properties that customize how it works.

Because the WrapBreakPanel is a Silverlight element, its properties should almost always be
dependency properties so you have the flexibility to use them with other Silverlight features such as data
binding and animation. For example, it makes sense to give the WrapBreakPanel an Orientation
property like its relative, the basic WrapPanel. That way, you could support displays that need to flow
elements into multiple columns. Here’s the code you need to add to the WrapBreakPanel class to define
an Orientation property that uses the data type System.Windows.Controls.Orientation:

public static readonly DependencyProperty OrientationProperty =
DependencyProperty.Register("Orientation", typeof(Orientation),
typeof(WrapBreakPanel), new PropertyMetadata(Orientation.Horizontal));

This code uses one minor time-saver. Rather than define the DependencyProperty and register it
with code in a static constructor, this definition takes care of the definition and registration (and the
compiled code doesn’t change). It also sets the default value to Orientation.Horizontal.

Next, you need to add the property wrapper, which is perfectly straightforward:

public Orientation Orientation

{
get
{
return (Orientation)GetValue(OrientationProperty);
}
set
SetValue(OrientationProperty, value);
}

When using the WrapBreakPanel in a Silverlight page, you can set the Orientation property as you
set any other property:

<local:WrapBreakPanel Margin="5" Orientation="Vertical">

</i(.)éa1:WIapBreakPanel>

A more interesting experiment is to create a version of the WrapBreakPanel that uses an attached
property. As you've already learned, attached properties are particularly useful in layout containers,
because they allow children to pass along extra layout information (such as row positioning in the Grid
or coordinates and layering in the Canvas).

The WrapBreakPanel includes an attached property that allows any child element to force a line
break. By using this attached property, you can ensure that a specific element begins on a new line, no
matter what the current width of the WrapBreakPanel. The attached property is named LineBreakBefore,
and the WrapBreakPanel defines it like this:

public static DependencyProperty LineBreakBeforeProperty =
DependencyProperty.RegisterAttached("LineBreakBefore", typeof(bool),
typeof (WrapBreakPanel), null);

113

CHAPTER 4 = DEPENDENCY PROPERTIES AND ROUTED EVENTS

114

To implement the LineBreakBefore property, you need to create the static get and set methods that

call GetValue() and SetValue() on the element:
public static bool GetLineBreakBefore(UIElement element)

return (bool)element.GetValue(LineBreakBeforeProperty);

public static void SetlLineBreakBefore(UIElement element, bool value)

{
}

element.SetValue(LineBreakBeforeProperty, value);

You can then modify the MeasureOverride() and ArrangeOverride() methods to check for forced
breaks, as shown here:

// Check if the element fits in the line, or if a line break was requested.

if ((currentlLineSize.Width + desiredSize.Width > constraint.Width) ||
(WrapBreakPanel.GetLineBreakBefore(element)))

{...

To use this functionality, you simply need to add the LineBreakBefore property to an element, as
shown here:

<local:WrapBreakPanel Margin="5" Background="LawnGreen">
<Button Width="50" Content="Button"></Button>
<Button Width="150" Content="Wide Button"></Button>
<Button Width="50" Content="Button"></Button>
<Button Width="150" Content="Button with a Break"
local:WrapBreakPanel.LineBreakBefore="True" FontWeight="Bold"></Button>
<Button Width="150" Content="Wide Button"></Button>
<Button Width="50" Content="Button"></Button>
</local:WrapBreakPanel>

Figure 4-1 shows the result.

CHAPTER 4 = DEPENDENCY PROPERTIES AND ROUTED EVENTS

=ARCN X
O DependencyProperties o+

< C' O file///D:/Code/Pro%20Silverlight/Chapte ¥ |
Content above the WrapPanel.

[Button | Wide Button | Button |
| Button with a Break] Wide Button l Button]
{ L

| Content below the WrapPanel.

- -

Figure 4-1. A WrapBreakPanel that supports forced line breaks

Routed Events

Every .NET developer is familiar with the idea of events—messages that are sent by an object (such as a
Silverlight element) to notify your code when something significant occurs. WPF enhanced the .NET
event model with a new concept of event routing, which allows an event to originate in one element but
be raised by another one. For example, event routing allows a click that begins in a shape to rise up to
that shape’s container and then to the containing page before it’s handled by your code.

Silverlight borrows some of WPF’s routed event model but in a dramatically simplified form. While
WPF supports several types of routed events, Silverlight allows only one: bubbled events that rise up the
containment hierarchy from deeply nested elements to their containers. Furthermore, Silverlight’s event
bubbling is linked to a few keyboard and mouse input events (such as MouseMove and KeyDown), and
it’s supported by just a few low-level elements. As you'll see, Silverlight doesn’t use event bubbling for
higher-level control events (such as Click), and you can’t use event routing with the events in your own
custom controls.

The Core Element Events

Elements inherit their basic set of events from two core classes: UIElement and FrameworkElement. As
Figure 4-2 shows, all Silverlight elements derive from these elements.

115

CHAPTER 4

116

DependencyObject

UlElement

FrameworkElement

f

Silverlight element classes

DEPENDENCY PROPERTIES AND ROUTED EVENTS

Figure 4-2. The hierarchy of Silverlight elements

The UlElement class defines the most important events for handling user input and the only events
that use event bubbling. Table 4-1 lists all the UIElement events. You'll see how to use these events
through the rest of this chapter.

Table 4-1. The UlElement Events

Event Bubbles Description

KeyDown Yes Occurs when a key is pressed.

KeyUp Yes Occurs when a key is released.

TextInput Yes Occurs when the element receives a character. Usually, this is a
typed-in character, and TextInput fires after KeyDown and
KeyUp. However, TextInput will also fire if a character is
entered through another device, like a touch pad.

GotFocus Yes Occurs when the focus changes to this element (when the user
clicks it or tabs to it). The element that has focus is the control
that will receive keyboard events first.

LostFocus Yes Occurs when the focus leaves this element.

MouseLeftButtonDown Yes Occurs when the left mouse button is pressed while the mouse
pointer is positioned over the element.

MouseLeftButtonUp Yes Occurs when the left mouse button is released.

MouseRightButtonDown Yes Occurs when the right mouse button is pressed while the

mouse pointer is positioned over the element. If you don’t
want to show the standard Silverlight system menu, you must
set the MouseButtonEventArgs.Handled property to true in
your event handler.

CHAPTER 4 = DEPENDENCY PROPERTIES AND ROUTED EVENTS

Event

Bubbles

Description

MouseRightButtonUp

MouseEnter

MouseLeave

MouseMove

MouseWheel

DragEnter

Dragleave

DragOver

Drop

LostMouseCapture

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

No

Occurs when the right mouse button is released.

Occurs when the mouse pointer first moves onto the element.
This event doesn’t bubble, but if you have several nested
elements, they’ll all fire MouseEnter events as you move to the
most deeply nested element, passing over the bounding line
that delineates the others.

Occurs when the mouse pointer moves off the element. This
event doesn’t bubble, but if you have several nested elements,
they’ll all fire MouseEnter events as you move the mouse away
(in the reverse order that the MouseEnter events occurred).

Occurs when the mouse moves while over the element. The
MouseMove event is fired frequently—for example, if the user
slowly moves the mouse pointer across the face of a button,
you'll quickly receive hundreds of MouseMove events. For that
reason, you shouldn’t perform time-consuming tasks when
reacting to this event.

Occurs when the user turns the mouse wheel while over the
element (or while that element has focus).

Occurs when the user first drags a selected file (from the
computer) over the element.

Occurs when the user drags a selected file off of the element.

Occurs (repeatedly) as the user moves the mouse over the
element, while dragging a selected file.

Occurs when the user drops a selected file onto the element.
Because the DragEnter, DraglLeave, DragOver, and Drop events
support only dragged files (not other objects), they're discussed
in Chapter 18.

Occurs when an element loses its mouse capture. Mouse
capturingis a technique that an element can use to receive
mouse events even when the mouse pointer moves away, off its
surface.

In some cases, higher-level events may effectively replace some of the UIElement events. For
example, the Button class provides a Click event that’s triggered when the user presses and releases the
mouse button or when the button has focus and the user presses the space bar. Thus, when handling
button clicks, you should always respond to the Click event, not MouseLeftButtonDown or

117

CHAPTER 4 = DEPENDENCY PROPERTIES AND ROUTED EVENTS

118

MouseLeftButtonUp (which it suppresses). Similarly, the TextBox provides a TextChanged event, which
fires when the text is changed by any mechanism, in addition to the basic KeyDown and KeyUp events.

The FrameworkElement class adds just a few more events to this model, as detailed in Table 4-2.
None of these events uses event bubbling.

Table 4-2. The FrameworkElement Events

Event Description

Loaded Occurs after an element has been created and added to the object tree (the
hierarchy of elements in the window). After this point, you may want to
perform additional customization to the element in code.

SizeChanged Occurs after the size of an element changes. As you saw in Chapter 3, you can
react to this event to implement scaling.

LayoutUpdated Occurs after the layout inside an element changes. For example, if you create
a page that uses no fixed size (and so fits the browser window) and you resize
the browser window, the controls will be rearranged to fit the new
dimensions, and the LayoutUpdated event will fire for your top-level layout
container.

BindingValidationError Occurs if a bound data object throws an exception when the user attempts to
change a property. You'll learn how to use the BindingValidationError event
to implement validation in Chapter 16.

Event Bubbling

Bubbling events are events that travel up the containment hierarchy. For example,
MouseLeftButtonDown is a bubbling event. It’s raised first by the element that is clicked. Next, it’s raised
by that element’s parent and then by that element’s parent, and so on, until Silverlight reaches the top of
the element tree.

Event bubbling is designed to support composition—in other words, to let you build more complex
controls out of simpler ingredients. One example is Silverlight’s content controls, which are controls that
have the ability to hold a single nested element as content. These controls are usually identified by the
fact that they provide a property named Content. For example, the button is a content control. Rather
than displaying a line of text, you can fill it with a StackPanel that contains a whole group of elements,
like this:

<Button BorderBrush="Black" BorderThickness="1" Click="cmd_Click">
<StackPanel>
<TextBlock Margin="3" Text="Image and text label"></TextBlock>
<Image Source="happyface.jpg" Stretch="None"></Image>
<TextBlock Margin="3" Text="Courtesy of the StackPanel"></TextBlock>
</StackPanel>
</Button>

Here, the content element is a StackPanel that holds two pieces of text and an image. Figure 4-3
shows the fancy button that this markup creates.

CHAPTER 4 = DEPENDENCY PROPERTIES AND ROUTED EVENTS

(€ Silverlight Project Test Page - Windows Internet Explorer LE‘J«@J&J
T AR,] & D:\Code\Pro Sitverlight\Chapter04\RoutedEvents [+4 l X |
! B - - - [P - 22
W dRE | @ Silverlight Project Test P... | v o=~
Image and Text Button
¢
Courtesy of the StackPanel
&P Internet | Protected Mode: On #,.100% ~

Figure 4-3. A button with contained elements

In this situation, it’s important that the button reacts to the mouse events of its contained elements.
In other words, the Button.Click event should fire when the user clicks the image, some of the text, or
part of the blank space inside the button border. In every case, you'd like to respond with the same code.

Of course, you could wire up the same event handler to the MouseLeftButtonDown or
MouseLeftButtonUp event of each element inside the button, but that would result in a significant
amount of clutter, and it would make your markup more difficult to maintain. Event bubbling provides a
better solution.

When the happy face is clicked, the MouseLeftButtonDown event fires first for the Image, then for
the StackPanel, and then for the containing button. The button then reacts to the
MouseLeftButtonDown by firing its own Click event, to which your code responds (with its cmd_Click
event handler).

Note The Button.Click event does not use event bubbling. This is a dramatic difference from WPF. In the world
of Silverlight, only a small set of basic infrastructure events support event bubbling. Higher-level control events
cannot use event bubbling. However, the button uses the bubbling nature of the MouseLeftButtonDown event to
make sure it captures clicks on any contained elements.

Handled (Suppressed) Events

When the button in Figure 4-3 receives the MouseLeftButtonDown event, it takes an extra step and
marks the event as handled. This prevents the event from bubbling up the control hierarchy any further.
Most Silverlight controls use this handling technique to suppress MouseLeftButtonDown and
MouseLeftButtonUp so they can replace them with more useful, higher-level events such as Click.

However, there are a few elements that don’t handle MouseLeftButtonDown and
MouseLeftButtonUp:

119

CHAPTER 4 = DEPENDENCY PROPERTIES AND ROUTED EVENTS

120

e The Image class used to display bitmaps
e The TextBlock class used to show text
e The MediaElement class used to display video

e The shape classes used for 2-D drawing (Line, Rectangle, Ellipse, Polygon,
Polyline, Path)

¢ The layout containers used for arranging elements (Canvas, StackPanel, and Grid)
and the Border class

These exceptions allow you to use these elements in content controls such as the Button control
without any limitations. For example, if you place a TextBlock in a button, when you click the TextBlock,
the MouseLeftButtonUp event will bubble up to the button, which will then fire its Click event. However,
if you take a control that isn’t in the preceding list and place it inside the button—say, a list box, check
box, or another button—you’ll get different behavior. When you click that nested element, the
MouseLeftButtonUp event won’t bubble to the containing button, and the button won’t register a click.

Note MouseLeftButtonDown and MouselLeftButtonUp are the only events that controls suppress. The bubbling
key events (KeyUp, KeyDown, LostFocus, and GotFocus) aren’t suppressed by any controls.

An Event Bubbling Example

To understand event bubbling and handled events, it helps to create a simple example, like the one
shown in Figure 4-4. Here, as in the example you saw previously, the MouseLeftButtonDown event starts
in a TextBlock or Image and travels through the element hierarchy.

CHAPTER 4

DEPENDENCY PROPERTIES AND ROUTED EVENTS

-

=

/ O RoutedEvents

T

| € - C O filey//D:/Code/Pro%20Silverlight/Chapter04/Route 7 X,

Image and text label

Courtesy of the StackPanel

B e S

£1:

Handled: False

B3 H

Handled: False

Sender: System.Windows.Controls.Image

Sender: System.Windows.Controls.StackPanel

Clear List

=

Figure 4-4. A bubbled image click

In this example, you can watch the MouseLeftButtonDown event bubble by attaching event
handlers to multiple elements. As the event is intercepted at different levels, the event sequence is
displayed in a list box. Figure 4-4 shows the display immediately after clicking the happy face image in
the button. As you can see, the MouseLeftButtownDown event fires in the image and then in the
containing StackPanel and is finally intercepted by the button, which handles it. The button does not fire
the MouseLeftButtonDown event, and therefore the MouseLeftButtonDown event does not bubble up to
the Grid that holds the button.

To create this test page, the image and every element above it in the element hierarchy are wired up
to the same event handler—a method named SomethingClicked(). Here’s the XAML that does it:

<UserControl x:Class="RoutedEvents.EventBubbling"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

<Grid Margin="3" MouseLeftButtonDown="SomethingClicked">
<Grid.RowDefinitions>
<RowDefinition Height="Auto"></RowDefinition>
<RowDefinition Height="*"></RowDefinition>
<RowDefinition Height="Auto"></RowDefinition>
<RowDefinition Height="Auto"></RowDefinition>

121

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 4 = DEPENDENCY PROPERTIES AND ROUTED EVENTS

122

</Grid.RowDefinitions>

<Button Margin="5" Grid.Row="0" MouseLeftButtonDown="SomethingClicked">
<StackPanel MouseLeftButtonDown="SomethingClicked">
<TextBlock Margin="3" MouseLeftButtonDown="SomethingClicked"
HorizontalAlignment="Center" Text="Image and text label"></TextBlock>
<Image Source="happyface.jpg" Stretch="None"
MouseLeftButtonDown="SomethingClicked"></Image>
<TextBlock Margin="3" HorizontalAlignment="Center"
MouseLeftButtonDown="SomethingClicked"
Text="Courtesy of the StackPanel"></TextBlock>
</StackPanel>
</Button>

<ListBox Grid.Row="1" Margin="5" x:Name="lstMessages"></ListBox>

<Button Grid.Row="3" Margin="5" Padding="3" x:Name="cmdClear"
Click="cmdClear_Click" Content="Clear List"></Button>
</Grid>
</UserControl>

The SomethingClicked() method simply examines the properties of the RoutedEventArgs object and
adds a message to the list box:

protected int eventCounter = 0;

private void SomethingClicked(object sender, MouseButtonEventArgs e)

{
eventCounter++;
string message = "#" + eventCounter.ToString() + ":\r\n" +
" Sender: " + sender.ToString() + "\r\n";
1stMessages.Items.Add(message);
}

private void cmdClear Click(object sender, RoutedEventArgs e)

lstMessages.Items.Clear();

When dealing with a bubbled event such as MouseLeftButtonDown, the sender parameter that’s
passed to your event handler always provides a reference to the last link in the chain. For example, if an
event bubbles up from an image to a StackPanel before you handle it, the sender parameter references
the StackPanel object.

In some cases, you'll want to determine where the event originally took place. The event arguments
object for a bubbled event provides a Source property that tells you the specific element that originally
raised the event. In the case of a keyboard event, this is the control that had focus when the event
occurred (for example, when the key was pressed). In the case of a mouse event, this is the topmost
element under the mouse pointer when the event occurred (for example, when a mouse button was
clicked). However, the Source property can get a bit more detailed than you want—for example, if you
click the blank space that forms the background of a button, the Source property will provide a reference
to the Shape or Path object that actually draws the part of background you clicked.

CHAPTER 4 = DEPENDENCY PROPERTIES AND ROUTED EVENTS

Along with Source, the event arguments object for a bubbled event also provides a Boolean property
named Handled, which allows you to suppress the event. For example, if you handle the
MouseLeftButtonDown event in the StackPanel and set Handled to true, the StackPanel will not fire the
MouseLeftButtonDown event. As a result, when you click the StackPanel (or one of the elements inside),
the MouseLeftButtonDown event will not reach the button, and the Click event will never fire. You can
use this technique when building custom controls (for example, if you've taken care of a user action like
a button click and you don’t want higher-level elements to get involved).

Note WPF provides a back door that allows code to receive events that are marked handled (and would
ordinarily be ignored). Silverlight does not provide this capability.

Mouse Handling

You're unlikely to see a Silverlight application that doesn’t use the MouseLeftButtonDown event.
However, there’s still a lot more to learn about handling the mouse events. In the following sections,
you’ll consider how you can react to right-clicks, mouse movement, and the mouse wheel. You'll also
learn how to capture the mouse—so you can continue handling its events even when it moves away—
how to simulate drag and drop and how to change the mouse cursor.

Right-Clicks

By default, when you right-click anywhere in a Silverlight application, a pop-up Silverlight menu
appears. This menu includes a single command named Silverlight, which opens a tabbed window where
you can change Silverlight settings. Additionally, if you've created an application that supports out-of-
browser installation (see Chapter 21), this menu has a second command for installing the application.

You may decide to handle right-clicks on some elements (or even the entire window) to provide
more specialized functionality. For example, when the user right-clicks a specific element, you may want
to show a customized context menu with commands for that element. Although Silverlight doesn’t
include a context menu control, you can easily get one from the Silverlight Toolkit
(http://silverlight.codeplex.com). You can then use it to attach a right-click menu to any control.

However, there’s a catch. Even if you show your own context menu, the MouseRightButtonDown
event will bubble up to the top level of your application, causing Silverlight to show its standard system
menu. To hide this menu so that yours is the only one that appears, you must handle the
MouseRightButton event and set the MouseButtonEventArgs.Handled property to true. This suppresses
the right-click event and the system menu.

Double and Triple Clicks

In some ways, Silverlight follows the convention of web user interfaces. For example, Silverlight
applications pay attention to mouse clicks but rarely look for double-clicks, the two-tap mouse
technique pioneered by Windows. In fact, until Silverlight 5 there was no direct support for detecting
double-clicks at all.

If you decide that you want to include double-click support, it’s best to use them for non-essential
tasks. For example, double-clicks can provide advanced users with a handy shortcut, while less

123

http://silverlight.codeplex.com

CHAPTER 4 = DEPENDENCY PROPERTIES AND ROUTED EVENTS

124

experienced users are still able to click their way through a menu or another set of controls to get the
same result.

The Click event fires every time an element is clicked, including if it’s clicked several times in quick
succession. To detect a double-click, you need to check the ClickCount property of the
MouseButtonEventArgs. If ClickCount is 1, this is a normal click. If ClickCount is 2, this is the second
click in a double-click action. (Usually, that means it’s a click that follows the first click by less than 500
milliseconds, although the details may depend on operating system preferences.)

Here’s an example:

private void SomethingClicked(object sender, MouseButtonEventArgs e)

{
if (e.ClickCount == 1)
// One click was detected.
// This could be a single click or the start of a double-click.
1blClickCount.Text = "Clicks: 1";
}
else (e.ClickCount == 2)
// This is the second click of a double-click.
1blClickCount.Text = "Clicks: 2";
}
}

Triple-clicks, although less well-known, are another potential shortcut. Word processors and web
browsers often let users select large blocks of text with a triple-click. (For example, a double-click might
highlight a word while a triple-click highlights a whole paragraph.) To perform a triple-click, the user
simply needs to click three times in quick succession. Your application uses the same ClickCount
property to catch triple-clicks.

Possible headaches can occur when you catch different levels of clicks (for example, when catching
both single and double-clicks or when catching both double-clicks and triple-clicks). Depending on how
you've written your code, you may end up performing one or more extra actions. For example, when a
user triple-clicks, you might perform one action when you detect ClickCount is 2 and another action
when you detect ClickCount is 3, even though both events are part of the same triple-click.

To avoid problems, make sure that overlapping actions don’t conflict. For a good example of well-
designed click behavior, consider what happens when you use triple-clicks to select text. In this case, the
second click is counted as a double-click (at which point the word is selected) and the next click is
counted as a triple-click action (at which point the selection is extended to the paragraph). This works
nicely, because the triple-click action augments the double-click action. But if the double-click action
does something completely different (such as launching another program, removing the clicked
element, and so on), adding triple-click support will only cause confusion.

Mouse Movements

Along with the obvious mouse clicking events (MouseLeftButtonDown, MouseLeftButtonUp,
MouseRightButtonDown, and MouseRightButtonUp), Silverlight also provides mouse events that fire
when the mouse pointer is moved. These events include MouseEnter (which fires when the mouse
pointer moves over the element), MouseLeave (which fires when the mouse pointer moves away), and
MouseMove (which fires at every point in between).

All of these events provide your code with the same information: a MouseEventArgs object. The
MouseEventArgs object includes one important ingredient: a GetPosition() method that tells you the

CHAPTER 4 = DEPENDENCY PROPERTIES AND ROUTED EVENTS

coordinates of the mouse in relation to an element of your choosing. Here’s an example that displays the
position of the mouse pointer:

private void MouseMoved(object sender, MouseEventArgs e)
{
Point pt = e.GetPosition(this);
1blInfo.Text =
String.Format("You are at ({0},{1}) in page coordinates"”,
pt.X, pt.Y);

In this case, the coordinates are measured from the top-left corner of the page area (just below the
title bar of the browser).

Tip To receive mouse events in a layout container, the Background property must be set to a non-null value—
for example, a solid white fill.

The Mouse Wheel

These days, a large proportion of computer users have a mouse with a scroll wheel. You can use that fact
to your advantage, by responding to with an appropriate action when the user turns the mouse wheel.
The only rule of thumb is to make sure mouse wheel support is a useful extra, not an essential part of
your application’s behavior. After all, there are still a large proportion of users who don’t have mouse
wheels (for example, laptop users) or don’t think to use them.

The MouseWheel event passes some basic information about the amount the wheel has turned
since the last MouseWheel event, using the MouseWheelEventArgs.Delta property. Typically, each notch
in the mouse wheel has a value of 120, so a single nudge of the mouse wheel will pass a Delta value of 120
to your application. The Delta value is positive if the mouse wheel was rotated away from the user and
negative if it was rotated toward the user.

To get a better grip on this situation, consider the example of the interface shown in Figure 4-5.
Here, the user can zoom into or out of a Grid of content just by turning the mouse wheel.

125

CHAPTER 4 = DEPENDENCY PROPERTIES AND ROUTED EVENTS

126

({@ RoutedEvents - Windows Internet Explorer @E&J‘ @ RoutedEvents - Windows Internet Explorer @M1

kJU | €] \\matthew-laptop\Matthew\Pro Sit | 43 | X | UU | 2] \\matthew-laptop\Matthew\Pro Sib + | 43 | x |
5 Favorites | 515 @ Suggested Sites v 5ip Favorites | 55 @ Suggested Sites =

| € RoutedEvents ‘ -8 -2 - & RoutedEvents | | i vl i
To resize this page, position the mouse overtop i t ~
it and turn the mouse wheel. TO reSlze thls page

i
|Sample Text ‘ ‘Bmwse -
: | it and turn the mot -
|Samp!e Text ‘ ‘Bmwsel
|Samp|e Text ‘ ‘Browsel [|
— Sample Text
|Sample Text ‘ |Browse|
|Sampie Text ‘ ;rOWSf;l .2
Al L =
€ Internet | Protected Mode: On v Bi10% - & Internet | Protected Mode: On fa v H100% v

“ 2N\ J

Figure 4-5. Zooming with the mouse wheel

To create the example, you need two controls you first considered in Chapter 3—the ScrollViewer
and Viewbox. The Viewbox powers the magnification, while the ScrollViewer simply allows the user to
scroll over the whole surface of the Viewbox when it’s too big to fit in the browser window.

<UserControl x:Class="RoutedEvents.MouseiWheelZoom"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
MouselWheel="Page MouseWheel">

<ScrollViewer VerticalScrollBarVisibility="Auto"
HorizontalScrollBarVisibility="Auto">

<Viewbox x:Name="viewbox" Height="250" Width="350">
<Grid Background="White" Height="250" Width="350">
</Grid>

</Viewbox>

</ScrollViewer>
</UserControl>

Notice that initially the Viewbox is given exactly the same hard-coded size as the Grid inside. This
ensures that the Viewbox doesn’t need to perform any initial scaling—instead, the Grid is at its natural
size when the application first starts.

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 4 = DEPENDENCY PROPERTIES AND ROUTED EVENTS

When the user turns the mouse wheel, a MouseWheel event handler checks the delta and simply
adjusts the Width and Height properties of the Viewbox proportionately. This expands or shrinks the
Viewbox and rescales everything inside:

private void Page MouseWheel(object sender, MousellheelEventArgs e)
{
// The Delta is in units of 120, so dividing by 120 gives
// a scale factor of 1.09 (120/110). In other words, one
// mouse wheel notch expands or shrinks the Viewbox by about 9%.
double scalingFactor = (double)e.Delta / 110;

// Check which way the wheel was turned.
if (scalingFactor > 0)

// Expand the viewbox.
viewbox.Width *= scalingFactor;
viewbox.Height *= scalingFactor;

}

else

// Shrink the viewbox.
viewbox.Width /= -scalingFactor;
viewbox.Height /= -scalingFactor;

Some controls already include handle the MouseWheel event, giving them built-in support for the
mouse wheel (although the Viewbox is not one of them). For example, the TextBox, ComboBox, ListBox,
DataGrid, and ScrollViewer scroll when the user turns the mouse wheel. The Calendar moves from
month to month.

Capturing the Mouse

Ordinarily, every time an element receives a mouse button down event, it will receive a corresponding
mouse button up event shortly thereafter. However, this isn’t always the case. For example, if you click
an element, hold down the mouse, and then move the mouse pointer off the element, the element won't
receive the mouse up event.

In some situations, you may want to have a notification of mouse up events, even if they occur after
the mouse has moved off your element. To do so, you need to capture the mouse by calling the
MouseCapture() method of the appropriate element (MouseCapture() is defined by the base UlElement
class, so it’s supported by all Silverlight elements). From that point on, your element will receive the
MouseLeftButtonDown and MouseLeftButtonUp event until it loses the mouse capture. There are two
ways to lose the mouse capture. First, you can give it up willingly by calling Mouse.Capture() again and
passing in a null reference. Second, the user can click outside of your application—on another program,
on the browser menu, on HTML content on the same web page. When an element loses mouse capture,
it fires the LostMouseCapture event.

While the mouse has been captured by an element, other elements won’t receive mouse events.
That means the user won’t be able to click buttons elsewhere in the page, click inside text boxes, and so
on. Mouse capturing is sometimes used to implement draggable and resizable elements.

127

CHAPTER 4 = DEPENDENCY PROPERTIES AND ROUTED EVENTS

A Mouse Event Example

You can put all these mouse input concepts together (and learn a bit about dynamic control creation) by
reviewing a simple example.

Figure 4-6 shows a Silverlight application that allows you to draw small circles on a Canvas and
move them around. Every time you click the Canvas, a red circle appears. To move a circle, you simply
click and drag it to a new position. When you click a circle, it changes color from red to green. Finally,
when you release your circle, it changes color to orange. There’s no limit to how many circles you can
add or how many times you can move them around your drawing surface.

~

& Silverlight Project Test Page - Windows Internet Explorer = | 5] i

A | & D:\Code\Pro Silverlight\Chapter04\RoutedEvents\ClientBin\Test v | + | X |

n A = o . i »
Wi dhr | @8 Silverlight Project Test P... fb v = v |2k Page v () Tools v

€D Internet | Protected Mode: On H100% «~

Figure 4-6. Dragging shapes

Note This example demonstrates “simulated” drag and drop, which is a drag-and-drop feature that you
implement yourself, with custom code in your application. By comparison, a “true” drag-and-drop feature relies on
functionality that’s built into the operating system. Silverlight does include a true drag-and-drop feature, but it
works in only a very limited scenario—when dragging files from the computer onto a Silverlight window. Chapter
18 demonstrates the file-based drag-and-drop feature.

128

CHAPTER 4 = DEPENDENCY PROPERTIES AND ROUTED EVENTS

Each circle is an instance of the Ellipse element, which is simply a colored shape that’s a basic
ingredient in 2-D drawing. Obviously, you can’t define all the ellipses you need in your XAML markup.
Instead, you need a way to generate the Ellipse objects dynamically each time the user clicks the Canvas.

Creating an Ellipse object isn’t terribly difficult—after all, you can instantiate it like any other .NET
object, set its properties, and attach event handlers. You can even use the SetValue() method to set
attached properties to place it in the correct location in the Canvas. However, there’s one more detail to
take care of—you need a way to place the Ellipse in the Canvas. This is easy enough, because the Canvas
class exposes a Children collection that holds all the child elements. Once you've added an element to
this collection, it will appear in the Canvas.

The XAML page for this example uses a single event handler for the Canvas.MouseLeftButtonDown
event. The Canvas.Background property is also set, because a Canvas with the default transparent
background can’t capture mouse events. No other elements are defined.

<Canvas x:Name="parentCanvas" MouselLeftButtonDown="canvas_Click" Background="White">
</Canvas>

In the code-behind class, you need two member variables to keep track of whether an ellipse-
dragging operation is currently taking place:

// Keep track of when an ellipse is being dragged.
private bool isDragging = false;

// When an ellipse is clicked, record the exact position
// where the click is made.
private Point mouseOffset;

Here’s the event-handling code that creates an ellipse when the Canvas is clicked:

private void canvas_Click(object sender, MouseButtonEventArgs e)

// Create an ellipse (unless the user is in the process
// of dragging another one).

if (!isDragging)

{

// Give the ellipse a 50-pixel diameter and a red fill.
Ellipse ellipse = new Ellipse();

ellipse.Fill = new SolidColorBrush(Colors.Red);
ellipse.Width = 50;

ellipse.Height = 50;

// Use the current mouse position for the center of

// the ellipse.

Point point = e.GetPosition(this);
ellipse.SetValue(Canvas.TopProperty, point.Y - ellipse.Height/2);
ellipse.SetValue(Canvas.LeftProperty, point.X - ellipse.Width/2);

// Watch for left-button clicks.
ellipse.MouseleftButtonDown += ellipse MouseDown;

// Add the ellipse to the Canvas.
parentCanvas.Children.Add(ellipse);

129

CHAPTER 4 = DEPENDENCY PROPERTIES AND ROUTED EVENTS

130

Not only does this code create the ellipse, but it also connects an event handler that responds when
the ellipse is clicked. This event handler changes the ellipse color and initiates the ellipse-dragging
operation:

private void ellipse_MouseDown(object sender, MouseButtonEventArgs e)
{

// Dragging mode begins.

isDragging = true;

Ellipse ellipse = (Ellipse)sender;

// Get the position of the click relative to the ellipse
// so the top-left corner of the ellipse is (0,0).
mouseOffset = e.GetPosition(ellipse);

// Change the ellipse color.
ellipse.Fill = new SolidColorBrush(Colors.Green);

// Watch this ellipse for more mouse events.
ellipse.MouseMove += ellipse MouseMove;
ellipse.MouselLeftButtonUp += ellipse MouseUp;

// Capture the mouse. This way you'll keep receiving

// the MouseMove event even if the user jerks the mouse
// off the ellipse.

ellipse.CaptureMouse();

The ellipse isn’t actually moved until the MouseMove event occurs. At this point, the Canvas.Left
and Canvas.Top attached properties are set on the ellipse to move it to its new position. The coordinates
are set based on the current position of the mouse, taking into account the point where the user initially
clicked. This ellipse then moves seamlessly with the mouse, until the left mouse button is released.

private void ellipse MouseMove(object sender, MouseEventArgs e)
if (isDragging)
{
Ellipse ellipse = (Ellipse)sender;

// Get the position of the ellipse relative to the Canvas.
Point point = e.GetPosition(parentCanvas);

// Move the ellipse.
ellipse.SetValue(Canvas.TopProperty, point.Y - mouseOffset.Y);
ellipse.SetValue(Canvas.LeftProperty, point.X - mouseOffset.X);

When the left mouse button is released, the code changes the color of the ellipse, releases the mouse
capture, and stops listening for the MouseMove and MouseUp events. The user can click the ellipse
again to start the whole process over.

private void ellipse MouseUp(object sender, MouseButtonEventArgs e)

if (isDragging)

CHAPTER 4 = DEPENDENCY PROPERTIES AND ROUTED EVENTS

{
Ellipse ellipse = (Ellipse)sender;
// Change the ellipse color.
ellipse.Fill = new SolidColorBrush(Colors.Orange);
// Don't watch the mouse events any longer.
ellipse.MouseMove -= ellipse MouseMove;
ellipse.MouseleftButtonUp -= ellipse MouseUp;
ellipse.ReleaseMouseCapture();
isDragging = false;

}

}

Mouse Cursors

A common task in any application is to adjust the mouse cursor to show when the application is busy or
to indicate how different controls work. You can set the mouse pointer for any element using the Cursor
property, which is inherited from the FrameworkElement class.

Every cursor is represented by a System.Windows.Input.Cursor object. The easiest way to get a
Cursor object is to use the static properties of the Cursors class (from the System.Windows.Input
namespace). They include all the standard Windows cursors, such as the hourglass, the hand, the
resizing arrows, and so on. Here’s an example that sets the hourglass for the current page:

this.Cursor = Cursors.Wait;

Now when you move the mouse over the current page, the mouse pointer changes to the familiar
hourglass icon (in Windows XP) or the swirl (in Windows Vista).

Note The properties of the Cursors class draw on the cursors that are defined on the computer. If the user has
customized the set of standard cursors, the application you create will use those customized cursors.

If you set the cursor in XAML, you don’t need to use the Cursors class directly. That’s because the
type converter for the Cursor property is able to recognize the property names and retrieve the
corresponding Cursor object from the Cursors class. That means you can write markup like this to show
the “help” cursor (a combination of an arrow and a question mark) when the mouse is positioned over a
button:

<Button Cursor="Help" Content="Help Me"></Button>

It’s possible to have overlapping cursor settings. In this case, the most specific cursor wins. For
example, you could set a different cursor on a button and on the page that contains the button. The
button’s cursor will be shown when you move the mouse over the button, and the page’s cursor will be
used for every other region in the page.

131

CHAPTER 4 = DEPENDENCY PROPERTIES AND ROUTED EVENTS

132

Tip Unlike WPF, Silverlight does not support custom mouse cursors. However, you can hide the mouse cursor
(set it to Cursors.None) and then make a small image follow the mouse pointer using code like that shown in the
previous section.

Keyboard Handling

Although the mouse provides the most obvious way for a user to interact with a Silverlight application,
you can’t ignore that other essential input device—the keyboard. Most of the time, you'll rely on controls
such as the TextBox, which collects typed-in text without forcing you to pay attention to exactly how that
text is entered. However, if you need finer-grained control—for example, if you want to perform
validation or provide notifications as the user types—you’ll need to pay attention to each individual key
press as it happens.

In the following sections, you'll learn how to handle key presses and interpret key-event
information. You'll also consider how Silverlight manages control focus, which determines the control
that gets the keyboard’s input.

Key Presses

As you saw in Table 4-1, Silverlight elements use KeyDown and KeyUp events to notify you when a key is
pressed. These events use bubbling, so they travel up from the element that currently has focus to the
containing elements.

When you react to a key press event, you receive a KeyEventArgs object that provides two additional
pieces of information: Key and PlatformKeyCode. Key indicates the key that was pressed as a value from
the System.Windows.Input.Key enumeration (for example, Key.S is the S key). PlatformKeyCode is an
integer value that must be interpreted based on the hardware and operating system that’s being used on
the client computer. For example, a nonstandard key that Silverlight can’t recognize will return a
Key.Unknown value for the Key property but will provide a PlatformKeyCode that’s up to you to
interpret. An example of a platform-specific key is Scroll Lock on Microsoft Windows computers.

Note In general, it’s best to avoid any platform-specific coding. But if you really do need to evaluate a
nonstandard key, you can use the Browserlnformation class from the System.Windows.Browser namespace to get
more information about the client computer where your application is running.

The best way to understand the key events is to use a sample program such as the one shown in
Figure 4-7 a little later in this chapter. It monitors a text box for three events: KeyDown, KeyUp, and the
higher-level TextChanged event (which is raised by the TextBox control), using this markup:

<TextBox KeyDown="txt_KeyDown" KeyUp="txt_KeyUp"
TextChanged="txt_TextChanged"></TextBox>

Here, the TextBox handles the KeyDown, KeyUp, and TextChanged events explicitly. However, the
KeyDown and KeyUp events bubble, which means you can handle them at a higher level. For example,

CHAPTER 4 = DEPENDENCY PROPERTIES AND ROUTED EVENTS

you can attach KeyDown and KeyUp event handlers on the root Grid to receive key presses that are
made anywhere in the page.
Here are the event handlers that react to these events:

private void txt_KeyUp(object sender, KeyEventArgs e)

{
string message =
"KeyUp " +
" Key: " + e.Key;
1stMessages.Items.Add(message);
}
private void txt_KeyDown(object sender, KeyEventArgs e)
{
string message =
"KeyDown " +
" Key: " + e.Key;
1stMessages.Items.Add(message);
}
private void txt_TextChanged(object sender, TextChangedEventArgs e)
{
string message = "TextChanged";
1stMessages.Items.Add(message);
}

Figure 4-7 shows the result of typing a lowercase S in the text box.

133

CHAPTER 4 = DEPENDENCY PROPERTIES AND ROUTED EVENTS

i€ Silverlight Project Test Page - Windows Internet... @@ﬁ
() - | @ D:\Code\Pro Siveright\Chapterd\Ror v | 43 | X |

n r - =5 y »

ilverlight Project Test P... - R

W 4 | @ Silverlight Project Test P |

Type here: 5|

KeyDown Key: S

TextChanged

KeyUp Key: S

Clear List
€ Internet | Protected Mode: On #®100% ~

Figure 4-7. Watching the keyboard

Typing a single character may involve multiple key presses. For example, if you want to type a
capital letter S, you must first press the Shift key and then the S key. On most computers, keys that are
pressed for longer than a brief moment start generating repeated key presses. For that reason, if you type
a capital S, you're likely to see a series of KeyDown events for the Shift key, as shown in Figure 4-8.
However, you'll key only two KeyUp events (for the S and for the Shift key) and just one TextChanged
event.

134

CHAPTER 4

@ Silverlight Project Test Page - Windows Internet... @E‘ﬁ

&, u | € D:\Code\Pro Silverlight\Chapter04\Ror ‘ 3 | X |

V¢ &t | @ Siverlight Project TestP... |

& -

53

Type here: Sl

|KeyDown
EKechu-\m
|KeyDown
|KeyDown
él(eyDown
|KeyDown
:KeyDown
;KevDown
;keywan
KeyDown

Key:
Key:
Key:
Key:
Key:
Key:
Key:
Key:
Key:
Key:

fTextChanged
EKevUp Key: S
|KeyUp Key: Shift

Shift
Shift
Shift
Shift
Shift
Shift
Shift
Shift
Shift

Clear List

€D Internet | Protected Mode: On

+ 100%

-

Figure 4-8. Repeated keys

DEPENDENCY PROPERTIES AND ROUTED EVENTS

Note Controls like the TextBox aren’t designed for low-level keyboard handling. When dealing with a text-entry
control, you should only react to its higher-level keyboard events (like TextChanged).

Key Modifiers

When a key press occurs, you often need to know more than just what key was pressed. It’s also
important to find out what other keys were held down at the same time. That means you might want to
investigate the state of other keys, particularly modifiers such as Shift and Ctrl, both of which are
supported on all platforms. Although you can handle the events for these keys separately and keep track
of them in that way, it’'s much easier to use the static Modifiers property of the Keyboard class.

135

CHAPTER 4 = DEPENDENCY PROPERTIES AND ROUTED EVENTS

136

To test for a Keyboard.Modifier, you use bitwise logic. For example, the following code checks
whether the Ctrl key is currently pressed:

if ((Keyboard.Modifiers & ModifierKeys.Control) == ModifierKeys.Control)

message += "You are holding the Control key.";

Note The browser is free to intercept keystrokes. For example, in Internet Explorer you won't see the KeyDown
event for the Alt key, because the browser intercepts it. The Alt key opens the Internet Explorer menu (when used
alone) or triggers a shortcut (when used with another key).

Focus

In the Silverlight world, a user works with one control at a time. The control that is currently receiving
the user’s key presses is the control that has focus. Sometimes, this control is drawn slightly differently.
For example, the Silverlight button uses blue shading to show that it has the focus.

To move the focus from one element to another, the user can click the mouse or use the Tab and
arrow keys. In previous development frameworks, programmers have been forced to take great care to
make sure that the Tab key moves focus in a logical manner (generally from left to right and then down
the window) and that the right control has focus when the window first appears. In Silverlight, this extra
work is seldom necessary because Silverlight uses the hierarchical layout of your elements to implement
a tabbing sequence. Essentially, when you press the Tab key, you’ll move to the first child in the current
element or, if the current element has no children, to the next child at the same level. For example, if you
tab through a window with two StackPanel containers, you'll move through all the controls in the first
StackPanel and then through all the controls in the second container.

If you want to take control of tab sequence, you can set the TabIndex property for each control to
place it in numerical order. The control with a TabIndex of 0 gets the focus first, followed by the next
highest TabIndex value (for example, 1, then 2, then 3, and so on). If more than one element has the
same TabIndex value, Silverlight uses the automatic tab sequence, which means it jumps to the nearest
subsequent element.

Tip By default, the Tabindex property for all controls is set to 1. That means you can designate a specific
control as the starting point for a window by setting its Tablndex to 0 but rely on automatic navigation to guide the
user through the rest of the window from that starting point, according to the order that your elements are defined.

The TabIndex property is defined in the Control class, along with an IsTabStop property. You can
set IsTabStop to false to prevent a control from being included in the tab sequence. A control that has
IsTabStop set to false can still get the focus in another way—either programmatically (when your code
calls its Focus() method) or by a mouse click.

CHAPTER 4 = DEPENDENCY PROPERTIES AND ROUTED EVENTS

Controls that are invisible or disabled are skipped in the tab order and are not activated regardless
of the TabIndex and IsTabStop settings. To hide or disable a control, you set the Visibility and IsEnabled
properties, respectively.

The Command Model

In a well-designed Silverlight application, the application logic doesn’t sit in the event handlers but is
coded in higher-level methods. Each one of these methods represents a single application “task.” In
turn, each task may rely on other libraries (such as separately compiled components that encapsulate
data access, web service calls, or other types of business logic). Figure 4-9 shows this relationship.

Internet Explorer
Custom User Control Class ApplicationTasks Class Data Web Service

= grid_SelectionChanged()
Event Handler GetProduciCatalog(
- J:) |
cmdRefresh_Click() ey nl
_>| Event Handier } - DovmicadData() l—
! emdPrint_Click{) : e {
Event Handler it PYcasstsg

[Refresh |
Print |}
—_—

11

Figure 4-9. Mapping event handlers to a task

The most obvious way to use this design is to add event handlers wherever they're needed and use
each event handler to call the appropriate application method. In essence, your Silverlight page (the
custom class that derives from UserControl) becomes a stripped-down switchboard that responds to
input and forwards requests to the heart of the application.

Although this design is perfectly reasonable, it still requires a fair bit of user interface code. You need
to respond to a variety of events to call your application methods, and sometimes the same application
task can be triggered in different ways (for example, through a button, a right-click menu command, and
so on). Life gets even more complex when you need to manage the state of your user interface—for
example, disabling controls that shouldn’t be accessible when the tasks they trigger aren’t relevant. Even
if you stick to good design practices, your switchboard code can become dense and tangled.

Silverlight doesn’t provide a mature solution for this problem yet. However, many Silverlight
developers have started moving to a design pattern called MVVM (which stands for Model-View-
ViewModel). The basic idea behind MVVM architecture is that your application is separated into distinct
layers. The model is the content or data that your application manages. The view is the graphical front-
end, complete with buttons, graphics, and all your Silverlight elements. In between is the view model
that allows them to communicate. For example, if the user clicks a button in the view, it can trigger a
command in the view model, which then modifies the data in the model.

True MVVM design has both fanatical adherents and more cautious critics. It requires the help of a
separate library, such as MVVM Light (www.galasoft.ch/mvvm) or Prism
(http://compositewpf.codeplex.com). It’s also beyond the scope of this book. However, the Silverlight
has started to add features that will make these higher-level toolkits more practical. The most obvious
feature is commands, which is described next.

137

http://www.galasoft.ch/mvvm
http://compositewpf.codeplex.com

CHAPTER 4 = DEPENDENCY PROPERTIES AND ROUTED EVENTS

138

Tip To put MVVM into practice with Silverlight, refer to Pro Business Applications with Silverlight 5 (Apress,
2011), which covers Prism.

Silverlight’s command feature is a modest, stripped-down extensibility point that has none of the
features of WPF’s rich commanding model. Instead, Silverlight commands give developers just enough
functionality to begin building their own MVVM architectures.

Here are the essential details about Silverlight’s command support:

e Commands are supported by only two element classes: Hyperlink and ButtonBase
(although several button-like controls derive from ButtonBase).

e Whether you're using a hyperlink or button, its command is triggered when the
Click event fires. There is no direct support for wiring up commands to other
controls and other events (such as the selection change in a list box or key presses
in a text box). For that, you need the help of a more capable MVVM library.

e Commands work through two properties that have been added to the Hyperlink
and ButtonBase class: Command and CommandParameter. The Command is the
action that will be triggered when the button click takes place, and the
CommandParameter is a single object that will be passed to the command, with
additional information.

¢ You must create the commands you need. Silverlight includes the ICommand
interface, which all commands must implement. However, it doesn’t include any
command classes of its own. Although you could create dozens or hundreds of
different command classes, most developers prefer to create a general command
class that can be reused for different tasks.

In the following sections, you'll see a simple example of a command at work.

Building a Command

The heart of the Silverlight command model is the System.Windows.Input.ICommand interface, which
defines how commands work. This interface includes two methods and an event:

public interface ICommand

{
void Execute(object parameter);
bool CanExecute(object parameter);
event EventHandler CanExecuteChanged;
}

In a simple implementation, the Execute() method would contain the application task logic (for
example, printing the document). The CanExecute() method returns the state of the command: true if
it’s enabled and false if it’s disabled. Both Execute() and CanExecute() accept an additional parameter
object that you can use to pass along any extra information you need.

Finally, the CanExecuteChanged event is raised when the state changes. This is a signal to any
controls using the command that they should call the CanExecute() method to check the command’s

CHAPTER 4 = DEPENDENCY PROPERTIES AND ROUTED EVENTS

state. This is part of the glue that allows command sources (such as a button) to automatically enable
themselves when the command is available and to disable themselves when it’s not.

For example, the following PrintTextCommand prints a single string when the command is
triggered and the Execute() method is called. (In truth, the command displays the string in a message
box, but you could add real printing logic using the skills you'll pick up in Chapter 8.) The CanExecute()
method simply examines the string and disallows printing if that string is missing or empty. In both
cases, the command receives the string as a command parameter.

Here’s the complete code:

public class PrintTextCommand : ICommand

{
public event EventHandler CanExecuteChanged;
private bool canExecute;
public bool CanExecute(object parameter)
{
// Check if the command can execute.
// In order to be executable, it must have non-blank text in the
// command parameter.
bool canExecuteNow = (parameter != null) 83 (parameter.ToString() != "");
// Determine if the CanExecuteChanged event should be raised.
if (canExecute != canExecuteNow)
{
canExecute = canExecuteNow;
if (CanExecuteChanged != null)
{
CanExecuteChanged(this, new EventArgs());
}
}
return canExecute;
}
public void Execute(object parameter)
{
MessageBox.Show("Printing: " + parameter);
}

Connecting a Command

To use this command, you need to set the Command and CommandParameter properties of your
button. Although you could do this in code, this defeats the true purpose of the command model, which
is to help you remove the event-handling code from your user control class. Instead, the ideal command
implementation connects everything you need in XAML.

First, you need to map your project namespace to an XML prefix, so the custom command class you
created is available in your markup. Here’s an example for a page named Commands in an application
named RoutedEvents:

<UserControl x:Class="RoutedEvents.Commands"
xmlns:local="clr-namespace:RoutedEvents" ... >

139

CHAPTER 4 = DEPENDENCY PROPERTIES AND ROUTED EVENTS

140

Now you can add the command as a resource:

<UserControl.Resources>
<local:PrintTextCommand x:Key="printCommand"></local:PrintTextCommand>
</UserControl.Resources>

The final step is to find your button control and set its Command property (using the resource) and
its CommandParameter property (using data binding). In this example, the CommandParameter
extracts the text from a nearby text box.

<Button Margin="5" Content="Print Command"
Command="{StaticResource printCommand}"
CommandParameter="{Binding ElementName=txt, Path=Text}"></Button>
<TextBox x:Name="txt" Grid.Row="1" Margin="5"></TextBox>
Figure 4-10 shows the two states of the button. When there’s no text in the text box, the command
can’t execute, and the button is disabled automatically. When there is text in the text box, the button
becomes enabled. If its clicked, the PrintTextCommand.Execute() method runs.

':é RoutedEvents - Windows Internet E@M 4@ RoutedEvents - Windows Internet E... = = | =

.9 (2] D:\Code\Pro Silverlight 4\C v|¢,‘ X | &) | D:\Code\Pro Silverlight 4\C v|¢,‘ X |

oy Favorites | & RoutedEvents _ | i ¢ Favorites | @& RoutedEvents ‘ &

Print Command | Print Command |
g

| Some sample text.

Printing: Some sample text.

_

€ Internet | Protected Mode: 0 ¥ ~ #,100% ~ & Internet | Protecrerwooero—vg——=r 0"

- 4

Figure 4-10. A disabled (left) and enabled (right) command

This automatic state management is nice, but it’s limited to the enabling and disabling of controls.
It’s not hard to imagine situations where you’d like to manage state in other ways—for example,
checking a check box or hiding a list item when other conditions become true. Unfortunately, this isn’t
possible in the current implementation of Silverlight commands.

The real promise of the command model is the ability to get things done without writing tedious
event-handling code. In fact, this example has absolutely no code in the derived user control class. This
is the right state of mind for MVVM design, but a more formalized model would introduce a distinct view
model. The command would then be made part of that view model and exposed through a property,
along with any other commands that you need to use for this page. For a complete example of a
Silverlight application that uses this design, see http://tinyurl.com/3x9e3t8.

http://tinyurl.com/3x9e3t8

CHAPTER 4 = DEPENDENCY PROPERTIES AND ROUTED EVENTS

But don’t get too excited—if you need to build anything but the simplest MVVM application, you’ll
need additional infrastructure. You can build it yourself or step up to one of the MVVM libraries
mentioned earlier. And for more design advice about MVVM, refer to Pro Business Applications with
Silverlight 5 (Apress, 2011).

The Last Word

In this chapter, you took a deep look at Silverlight dependency properties and routed events. First, you
saw how dependency properties are defined and registered and how they plug into other Silverlight
services. You explored event bubbling and saw how it allows an event to travel up the element hierarchy.
Next, you considered the basic set of mouse and keyboard events that all elements provide. Lastly, you
saw the start of a new direction in Silverlight event handling, with the command model.

Tip One of the best ways to learn more about the internals of Silverlight is to browse the code for basic
Silverlight elements, such as Button, UIElement, and FrameworkElement. One of the best tools to perform this
browsing is Reflector, which is available at www.red-gate.com/products/reflector. Using Reflector, you can
see the definitions for dependency properties and routed events, browse through the static constructor code that
initializes them, and even explore how the properties and events are used in the class code.

141

http://www.red-gate.com/products/reflector

CHAPTER S

Elements

Now that you've learned the fundamentals of XAML, layout, and mouse and keyboard handling, you're
ready to consider the elements that allow you to build both simple and complex user interfaces.

In this chapter, you'll get an overview of Silverlight’s core elements, and you’ll explore many
elements that you haven'’t studied yet. First, you'll learn how to display wrapped, formatted text with the
TextBlock and how to show images with the Image element. Next, you'll consider content controls,
including Silverlight’s many different flavors of button and the ToolTip control. Finally, you'll take a look
at several more specialized elements, such as Silverlight’s list, text-entry, range, and date controls. By the
time you finish this chapter, you'll have a solid overview of the essential ingredients that make up
Silverlight pages.

What’s New Silverlight 5 adds two specialized controls that are based on the RichTextBox, called
RichTextBlock and RichTextBlockOverflow. Using these controls, you can put text in multiple columns and wrap
text around images, with a little work. You’ll learn about this enhancement in the section named “The
RichTextBlock.”

The Silverlight Elements

You've already met quite a few of Silverlight’s core elements, such as the layout containers in Chapter 3.
Some of the more specialized elements, such as the ones used for drawing 2-D graphics, displaying Deep
Zoom images, and playing video, won’t be covered until later in this book. But this chapter deals with all
the basics—fundamental widgets such as buttons, text boxes, lists, and check boxes.

Table 5-1 provides an at-a-glance look at the key elements that Silverlight includes and points you to
the chapters of this book where they're described. The list is ordered alphabetically to match the order of
elements in the Visual Studio Toolbox.

143

CHAPTER 5 = ELEMENTS

Table 5-1. Silverlight Elements

Class

Place in Assembly

Description
P This Book (If Not a Core Element)

AutoCompleteBox

Border

Button

Calendar

Canvas

CheckBox

ComboBox

ContentControl

DataGrid

A specialized text box that This chapter System.Windows.Controls
provides a list of possible matches JInput.dll
as the user types.

A rectangular or rounded border Chapter 3
that’s drawn around a single,
contained element.

The familiar button, complete withThis chapter
a shaded gray background, which
the user clicks to launch a task.

A one-month-at-a-time calendar This chapter System.Windows.Controls.dll

view that allows the user to select a
single date.

A layout container that allows you Chapter 3
to lay out elements with precise
coordinates.

A box that can be checked or This chapter
unchecked, with optional content
displayed next to it.

A drop-down list of items, out of This chapter
which a single one can be selected.

The base control from which all ~ This chapter
content controls derive, such as

Button, CheckBox, ToolTip,

ScrollViewer, and many more.

Although you can use this class

directly, you're much more likely

to work with its descendants.

Arich data control that showsa Chapter 21 System.Windows.Controls
collection of data objectsin a .Data.dll

multicolumned grid and offers

built-in features such as sorting

and selection.

144

CHAPTER 5 = ELEMENTS

Class

Place in

Description .
This Book

Assembly
(If Not a Core Element)

DataPager

DatePicker

Ellipse

Frame

Grid

GridSplitter

HyperlinkButton

Image

Label

ListBox

A data control that provides
paging for other data sources and
can work in conjunction with
controls like the DataGrid.

Chapter 21

A text box for date entry, with a
drop-down calendar for easy
selection.

This chapter

A shape drawing element that Chapter 8

represents an ellipse.

A container that displays a
separate XAML file inside an
ordinary page. You can use frames
in various ways to create a
complex navigation system.

Chapter 7

A layout container that places
children in an invisible grid of
cells.

Chapter 3

A resizing bar that allows users to Chapter 3
change the height or adjacent rows

or width of adjacent columns in a

Grid.

A link that directs the user to
another web page.

This chapter

An element that displays a
supported image file.

This chapter

A text display control that’s similar Chapter 21
to the TextBlock but heavier

weight. When paired up with a

data-bound control, the Label can

examine the bound data object to

extract caption text and determine

whether it should show a required

field indicator or error indicator.

Alist of items, out of which a singleThis chapter
one can be selected.

System.Windows.Controls
.Data.dll

System.Windows.Controls.dll

System.Windows.Controls.
Navigation.dll

System.Windows.Controls.dll

System.Windows.Controls.dll

145

CHAPTER 5 = ELEMENTS

Class

Place in

Description .
This Book

Assembly
(If Not a Core Element)

MediaElement

MultiScaleImage

PasswordBox

ProgressBar

RadioButton

Rectangle

RichTextBox

ScrollViewer

Slider

StackPanel

TabControl

A media file, such as a video Chapter 12
window.

An element that supports Chapter 12
Silverlight’s Deep Zoom feature

and allows the user to zoom into a

precise location in a massive

image.

A text box that masks the text the This chapter
user enters.

A colored bar that indicates the This chapter
percent completion of a given task.

A small circle that represents one This chapter
choice out of a group of options,

with optional content displayed

next to it.

A shape drawing element that Chapter 8
represents a rectangle.

An editable text box that supports This chapter
richly formatted text

A container that holds any large ~ Chapter 3
content and makes it scrollable.

An input control that lets the user This chapter
set a numeric value by dragging a
thumb along a track.

A layout container that stacks Chapter 3
items from top to bottom or left to
right.

A container that places items into This chapter
separate tabs and allows the user
to view just one tab at a time.

System.Windows.Controls.dll

146

CHAPTER 5 = ELEMENTS

. Place in Assembly
Class Description .
This Book (If Not a Core Element)
TextBlock An all-purpose text display control This chapter

that includes the ability to give
different formatting to multiple
pieces of inline text.

TextBox The familiar text-entry control. This chapter

TreeView Arich data control that shows the Chapter 21 System.Windows.Controls.dll
familiar tree of items, with as
many hierarchical levels as you
need.

Viewbox A container that can scale its Chapter3
content up or down, as needed

WebBrowser An Internet Explorer—-powered Chapter 18
browser window that you can
embed inside a Silverlight window
in an out-of-browser application

In Chapter 1, you learned that Silverlight includes some noncore controls that—if used—are
automatically added to the compiled XAP file so they can be deployed with your application. As you can
see in the last column of Table 5-1, this doesn’t apply to most Silverlight controls, and even some highly
specialized controls like the MultiScaleImage are part of the standard Silverlight package.

In the following sections, you'll take a closer look at many of the controls from Table 5-1, and you'll
learn how to customize them in your own applications.

Tip If you're still hungering for more controls, you can find many specialized (and downright ingenious)
offerings in the Silverlight Toolkit, a freely downloadable and distributable add-on that’s available on Microsoft’s
CodePlex site at http://silverlight.codeplex.com. Highlights include a rich array of beautifully rendered chart
controls that include nearly everything you'll find in Excel, from pie charts to scatter plots. Once you've installed
the Silverlight Toolkit, you’ll find the new controls packed into the Silverlight tab of the Toolbox.

Static Text

Although Silverlight includes a Label control, it’s intended for data binding scenarios and discussed in
Chapter 21. If you just want the best way to show blocks of formatted text, you're far better off with the
lightweight, flexible TextBlock element, which you’ve seen at work in many of the examples over the past
four chapters.

147

http://silverlight.codeplex.com

CHAPTER 5 = ELEMENTS

148

The TextBlock element is refreshingly straightforward. It provides a Text property, which accepts a
string with the text you want to display.

<TextBlock Text="This is the content."></TextBlock>
Alternatively, you can supply the text as nested content:
<TextBlock>This is the content.</TextBlock>

The chief advantage of this approach is that you can add line breaks and tabs to make large sections
of text more readable in your code. Silverlight follows the standard rules of XML, which means it
collapses whitespace. Thus, a series of spaces, tabs, and hard returns is rendered using a single space
character.

If you really do want to split text over lines at an explicit position, you have three options. First, you
can use separate TextBlock elements. Second, you can use a LineBreak inside the TextBlock element, as
shown here:

<TextBlock>
This is line 1.<LineBreak/>
This is line 2.
</TextBlock>

Third, you can add the xml:space="preserve" attribute to your TextBlock element, which tells the
XAML parser to honor every space, tab, and hard return between the opening > character (which ends
the start tag) and the closing < (which begins the end tag). Here’s an example:

<TextBlock xml:space="preserve"
>This is line 1.
This is an indented line 2.</TextBlock>

This approach gives you the most powerful way to micro-manage how text blocks are formatted.
However, its strictness is usually too limiting for real-world applications.

Note When using inline text, you can’t use the < and > characters, because these have a specific XML
meaning. Instead, you need to replace the angled brackets with the character entities ⁢ (for the less than
symbol) and > (for the greater than symbol), which will be rendered as < and >.

Unsurprisingly, text is colored black by default. You can change the color of your text using the
Foreground property. You can set it using a color name in XAML:

<TextBlock x:Name="txt" Text="Hello World" Foreground="Red"></TextBlock>
or in code
txt.Foreground = new SolidColorBrush(Colors.Red);

Instead of using a color name, you can use RGB values. You can also use partially transparent colors
that allow the background to show through. Both topics are covered in Chapter 3 when discussing how
to paint the background of a panel.

CHAPTER 5 = ELEMENTS

Tip Ordinarily, you’ll use a solid color brush to fill in text. (The default is obviously a black brush.) However, you
can create more exotic effects by filling in your text with gradients and tiled patterns using the fancy brushes
discussed in Chapter 9.

The TextBlock also provides a TextAlignment property (which allows you to center or right-justify
text), a Padding property (which sets the space between the text and the outer edges of the TextBlock),
and a few more properties for controlling fonts, inline formatting, text wrapping, and text trimming.
You'll consider these properties in the following sections.

Font Properties

The TextBlock class defines font properties that determine how text appears in a control. These
properties are outlined in Table 5-2.

Table 5-2. Font-Related Properties of the Control Class

Name Description

FontFamily The name of the font you want to use. Because Silverlight is a client-side technology, it’s
limited to just nine built-in fonts (Arial, Arial Black, Comic Sans MS, Courier New,
Georgia, Lucida, Times New Roman, Trebuchet MS, and Verdana). However, you can also
distribute custom fonts by going to a bit more work and packing them up with your
project assembly, as you'll see shortly in the “Font Embedding” section.

FontSize The size of the font in pixels. Ordinary Windows applications measure fonts using points,
which are assumed to be 1/72 of an inch on a standard PC monitor, while pixels are
assumed to be 1/96 of an inch. Thus, if you want to turn a Silverlight font size into a more
familiar point size, you can use a handy trick—just multiply by 3/4. For example, a 20-
pixel FontSize is equivalent to a traditional 15-point font size.

FontStyle The angling of the text, as represented as a FontStyle object. You get the FontStyle preset
you need from the static properties of the FontStyles class, which includes Normal and
Italic lettering. If you apply italic lettering to a font that doesn’t provide an italic variant,
Silverlight will simply slant the letters. However, this behavior gives only a crude
approximation of a true italic typeface.

FontWeight The heaviness of text, as represented as a FontWeight object. You get the FontWeight
preset you need from the static properties of the FontWeights class. Normal and Bold are
the most obvious of these, but some typefaces provide other variations such as Bold,
Light, ExtraBold, and so on. If you use Bold on a font that doesn’t provide a bold variant,
Silverlight will paint a thicker border around the letters, thereby simulating a bold font.

149

CHAPTER 5 = ELEMENTS

150

Name Description

FontStretch The amount that text is stretched or compressed, as represented by a FontStretch object.
You get the FontStretch preset you need from the static properties of the FontStretches
class. For example, UltraCondensed reduces fonts to 50 percent of their normal width,
while UltraExpanded expands them to 200 percent. Font stretching is an OpenType
feature that is not supported by many typefaces. The built-in Silverlight fonts don’t
support any of these variants, so this property is relevant only if you're embedding a
custom font that does.

Obviously, the most important of these properties is FontFamily. A font family is a collection of
related typefaces—for example, Arial Regular, Arial Bold, Arial Italic, and Arial Bold Italic are all part of
the Arial font family. Although the typographic rules and characters for each variation are defined
separately, the operating system realizes they're related. As a result, you can configure an element to use
Arial Regular, set the FontWeight property to Bold, and be confident that Silverlight will switch to the
Arial Bold typeface.

When choosing a font, you must supply the full family name, as shown here:

<TextBlock x:Name="txt" FontFamily="Times New Roman" FontSize="18">
Some Text</TextBlock>

It’s much the same in code:

txt.FontFamily = "Times New Roman";
txt.FontSize = "18";

When identifying a FontFamily, a shortened string is not enough. That means you can’t substitute
Times or Times New instead of the full name Times New Roman.
Optionally, you can use the full name of a typeface to get italic or bold, as shown here:

<TextBlock FontFamily="Times New Roman Bold">Some Text</TextBlock >

However, it’s clearer and more flexible to use just the family name and set other properties (such as
FontStyle and FontWeight) to get the variant you want. For example, the following markup sets the
FontFamily to Times New Roman and sets the FontWeight to FontWeights.Bold:

<TextBlock FontFamily="Times New Roman" FontWeight="Bold">Some Text</TextBlock >

Standard Fonts

Silverlight supports nine core fonts, which are guaranteed to render correctly on any browser and
operating system that supports Silverlight. They’re shown in Figure 5-1.

CHAPTER 5 = ELEMENTS

Arial
Arial Black
Comic Sans MS

Courier New

Georgia

Lucida Grande/Lucida Sans Unicode
Times New Roman

Trebuchet MS

Verdana

Figure 5-1. Silverlight’s built-in fonts

In the case of Lucida, there are two variants with slightly different names. Lucida Sans Unicode is
included with Windows, while Lucida Grande is an almost identical font that’s included with Mac OS X.
To allow this system to work, the FontFamily property supports font fallback—in other words, you can
supply a comma-separated list of font names, and Silverlight will used the first supported font. The
default TextBlock font is equivalent to setting the FontFamily property to the string “Lucida Sans
Unicode, Lucida Grande.”

You might think that you can use more specialized fonts, which may or may not be present on the
client’s computer. However, Silverlight doesn’t allow this. If you specify a font that isn’t one of the nine
built-in fonts and it isn’t included with your application assembly (more on that in the next section),
your font setting will be ignored. This happens regardless of whether the client has an installed font with
the appropriate name. This makes sense—after all, using a font that’s supported on only some systems
could lead to an application that’s mangled or completely unreadable on others, which is an easy
mistake to make.

Font Embedding

If you want to use nonstandard fonts in your application, you can embed them in your application
assembly. That way, your application never has a problem finding the font you want to use.

The embedding process is simple. First, you add the font file (typically, a file with the extension .ttf)
to your application and set Build Action to Resource. You can do this in Visual Studio by selecting the
font file in the Solution Explorer and changing its Build Action setting in the Properties page.

Next, when you set the FontFamily property, you need to use this format:

151

CHAPTER 5 = ELEMENTS

152

FontFileName#FontName

For example, if you have a font file named BayernFont.ttf and it includes a font named Bayern, you
would use markup like this:

<TextBlock FontFamily="BayernFont.ttf#Bayern">This is an embedded font</TextBlock>

Figure 5-2 shows the result.

(@ Silverlight Project Test Page - Windows Internet Explorer [EL%
et) @ D:\Code\Pro Sitverlight 2\Chapter05\Elements\Clientt ~ l 4 [X l

52

Ve @t | @ silverlight Project TestP... | f ~ = v |- Page v

Chis 1s Ay ewbedaed oyt

&) Internet | Protected Mode: On ®100% ~

\ A

Figure 5-2. Using an embedded font

Alternatively, you can set the font using a stream that contains the font file. In this case, you need to
set the TextBlock.FontSource property with the font file stream and then set the TextBlock.FontFamily
property with the font name. For example, if you added the BayernFont.ttf file as a resource to a project
named FontTest, you can retrieve it programmatically using this code:

StreamResourceInfo sri = Application.GetResourceStream(
new Uri("FontTest;component/BayernFont.ttf", UriKind.Relative));

1bl.FontSource = new FontSource(sri.Stream);
1bl.FontFamily = new FontFamily("Bayern");

To pull the resource out of the current assembly, this code uses the
Application.GetResourceStream() method and a specialized URI syntax that always takes this form:

AssemblyName; component/FontResourceName

No matter which approach you use, the process of using a custom font is fairly easy. However, font
embedding raises obvious licensing concerns. Most font vendors allow their fonts to be embedded in
documents (such as PDF files) but not applications (such as Silverlight assemblies). The problem is
obvious—users can download the XAP file by hand, unzip it, retrieve the font resource, and then access
it on their local computers. Silverlight doesn’t make any attempt to enforce font licensing, but you
should make sure you're on solid legal ground before you redistribute a font.

You can check a font’s embedding permissions using Microsoft’s free font properties extension
utility, which is available at waw.microsoft.com/typography/TrueTypeProperty21.mspx. Once you install
this utility, right-click any font file, and choose Properties to see more detailed information about it. In
particular, check the Embedding tab for information about the allowed embedding for this font. Fonts
marked with Installed Embedding Allowed are suitable for Silverlight applications, while fonts with
Editable Embedding Allowed may not be. Consult with the font vendor for licensing information about a
specific font.

http://www.microsoft.com/typography/TrueTypeProperty21.mspx

CHAPTER 5 = ELEMENTS

Note If all else fails, you can get around licensing issues by changing your fonts to graphics. This works for
small pieces of graphical text (for example, headings) but isn’t appropriate for large blocks of text. You can save
graphical text as a bitmap in your favorite drawing program, or you can convert text to a series of shapes using
Silverlight’s Path element (which is discussed in Chapter 8). You can convert graphical text to a path using
Expression Designer or Expression Blend (simply select the TextBlock and choose Object # Path # Convert to
Path). Interestingly, Silverlight also allows you to perform the same trick through code. Surf to
http://tinyurl.com/69f74v to see an example in which a Silverlight application calls a web service that
dynamically generates a path for non-Western text. The web service returns the path data to the Silverlight
application, which displays it seamlessly.

Underlining

You can add underlining to any font by setting the TextDecorations property to Underline:
<TextBlock TextDecorations="Underline">Underlined text</TextBlock>

In WPF, there are several types of text decorations, including overlines and strikethrough. However,
currently, Silverlight includes only underlining.

If you want to underline an individual word in a block of text, you’ll need to use inline elements, as
described in the next section.

Runs

In many situations, you’ll want to format individual bits of text but keep them together in a single
paragraph in a TextBlock. To accomplish this, you need to use a Run object inside the TextBlock
element. Here’s an example that formats several words differently (see Figure 5-3):

<TextBlock FontFamily="Georgia" FontSize="20" >

This <Run FontStyle="Italic" Foreground="YellowGreen">is</Run> a

<Run FontFamily="Comic Sans MS" Foreground="Red" FontSize="40">test.</Run>
</TextBlock>

153

http://tinyurl.com/69f74v

CHAPTER 5 = ELEMENTS

154

& Silverlight Project Test Page - Windows Interne... lﬂ‘ﬁ

{ | [(£ A - - A - | 4
(_J_J | @ D:\Code\Pro Silverlight\Chapterd5\El 45| x|

>

9 < | @ sSiveright Project TestP.. | | &

This aTeST

&) Internet | Protected Mode: On #100% ~

", s

Figure 5-3. Formatting text with runs

A run supports the same key formatting properties as the TextBlock, including Foreground,
TextDecorations, and the five font properties (FontFamily, FontSize, FontStyle, FontWeight, and
FontStretch).

Technically, a Run object is not a true element. Instead, it’s an inline. Silverlight provides two just
types of inlines—the LineBreak class that you saw earlier and the Run class. You can interact with the
runs in your TextBlock through the TextBlock.Inlines collection. In fact, the TextBlock actually has two
overlapping content models. You can set text through the simple Text property, or you can supply it
through the Inlines collection. However, the changes you make in one affect the other, so if you set the
Text property, you'll wipe out the current collection of inlines.

Note The inline Run and LineBreak classes are part of the text element model, which is supported (in a more
fully featured way) by the RichTextBox control discussed later in this chapter.

Wrapping Text

To wrap text over several lines, you use the TextWrapping property. Ordinarily, TextWrapping is set to
TextWrapping.NoWrap, and content is truncated if it extends past the right edge of the containing
element. If you use TextWrapping.Wrap, your content will be wrapped over multiple lines when the
width of the TextBlock element is constrained in some way. (For example, you place it into a
proportionately sized or fixed-width Grid cell.) When wrapping, the TextBlock splits lines at the nearest
space. If you have a word that is longer than the available line width, the TextBlock will split that word
wherever it can to make it fit.

When wrapping text, the LineHeight and LineStackingStrategy properties become important. The
LineHeight property can set a fixed height (in pixels) that will be used for every line. However, the

CHAPTER 5 = ELEMENTS

LineHeight can be used to increase the line height only—if you specify a height that’s smaller than
what’s required to show the text, your setting will be ignored.

The LineStackingStrategy determines what the TextBlock will do when dealing with multiline
content that uses different fonts. You can choose to use the standard behavior, MaxHeight, which makes
each line as high as it needs to be to fit the tallest piece of text it contains, or you can use
BlockLineHeight, which sets the lines to one fixed height—the height set by the LineHeight property.
Shorter text will then have extra space, and taller text will overlap with other lines. Figure 5-4 compares
the different options.

@ Silverlight Project Test Page - Windows Internet Explorer (=[5 [

i | @ n. b b i 4 |
)\t & D:\Code\Pro Silverlight 2\Chapter05\Elements\Clieni + ‘ + | X

53

W @snverughtpmject'restp...[v e v Page -

BISEKETAZIHETGRT S
lines are a constant size tha®'s based on
the TextBlock LineHeight propeI’ty.

This block uses a LineStackingStrategy of

MCIX H e | 9 h 1', which means

each line is sized to fit the wrgest font neight that
it uses.

€ Internet | Protected Mode: On #100% ~

\ r

Figure 5-4. Two different ways to calculate line height

The TextBlock wraps text in a neat, rectangular region. It’s not possible to wrap text around curves
or the contours of nearby shapes. However, you can simulate such effects using the RichTextBox’s
overflow feature, as described later in this chapter.

Trimming Text

Asyou learned in the previous section, text that doesn’t fit the width of its container has two options:
wrap or be truncated. For example, if you have a sentence like “Silverlight is a fantastic platform,” it
might be truncated like this:

Silverlight is a fant

155

CHAPTER 5 = ELEMENTS

156

The TextTrimming property gives you a slightly more graceful way to deal with this situation. If you
set the TextTrimming property to WordEllipsis (the only option other than the default), Silverlight adds
an ellipsis at the end of truncated text. So, the previous example might come out like this:

Silverlight is a ...

This gives the user a visual cue that the full text isn’t shown.

Character Spacing

If your type looks a little congested, you can use the LineHeight property to add vertical space between
the lines (as you've already seen), and you can use the CharacterSpacing property to add space
horizontal space between letters on the same line. Here’s an example:

<TextBlock FontSize="20" CharacterSpacing="100">
These letters are spaced out.
</TextBlock>

The CharacterSpacing property takes a value that’s measured in 1/1000™ of the current font size. So

if you set CharacterSpacing to a generous 100 and your font size is 20 pixels, you’ll get 2 pixels of extra
space between each letter (because 100/1000 x 20 = 2).

The default value for CharacterSpacing is 0, which gets you no extra space. If you want to draw the
letters of a line closer together (and possibly even overlap), you can simply set CharacterSpacing to a
negative value.

Images

Displaying an image is one of the easier tasks in Silverlight. You simply need to add an Image element
and set its Source property. However, there are some limitations that you need to understand.

The most obvious limitation is that the Image element supports just two image formats. It has full
support for JPEG and fairly broad support for PNG (although it doesn’t support PNG files that use 64-bit
color or grayscale). The Image element does not support GIF files. There are two reasons for this
omission—it allows the Silverlight download to remain that much slimmer, and it avoids potential
confusion between the Silverlight animation model and the much more basic (and unsupported)
animated GIF feature that’s used on the Web.

It’s also important to recognize that the Image.Source property is set with a relative or absolute URIL.
Usually, you'll use a relative URI to display an image that you’'ve added to your project as a resource. For
example, if you add a new image named grandpiano.jpg to your project, Visual Studio will automatically
configure it to be a resource, and it will embed that resource in the compiled assembly as a block of
binary data. At runtime, you can retrieve that image using its resource name (which is the file name it
has in the Solution Explorer). Here’s how:

<Image Source="grandpiano.jpg"></Image>
Or, assuming the image is in a project subfolder named Images, you can retrieve it like so:
<Image Source="Images/grandpiano.jpg"></Image>

Alternatively, you can construct the URI in code and set the Image.Source property
programmatically:

img.Source = new BitmapImage(new Uri("grandpiano.jpg", UriKind.Relative));

CHAPTER 5 = ELEMENTS

You can also use image URIs to point to images that aren’t embedded in your application. You can
show images that are located on the same website as your Silverlight application, or images that exist on
separate websites.

<Image Source="http://www.mysite.com/Images/grandpiano.jpg"></Image>

However, there’s one catch. When testing a file-based website (one that doesn’t use an ASP.NET
website and the Visual Studio test web server), you won'’t be able to use absolute URLs. This limitation is
a security restriction that results from the mismatch between the way you're running your application
(from the file system) and the way you want to retrieve your images (from the Web, over HTTP). The
same limitation comes into play if you attempt to access an image over HTTPS when your Silverlight
page was accessed through HTTP (or vice versa).

For more information and to see a few examples that demonstrate your different options for using
URIs and managing resources, refer to Chapter 6.

Tip Interestingly, Silverlight uses bitmap caching to reduce the number of URI requests it makes. That means
you can link to an image file on a website multiple times, but your application will download it only once.

Image Sizing

Images can be resized in two ways. First, you can set an explicit size for your image using the Height and
Width properties. Second, you can place your Image element in a container that uses resizing, such as a
proportionately sized cell in a Grid. If neither of these factors comes into play—in other words, you don’t
set the Height and Width properties and you place your Image in a simple layout container like the
Canvas—your image will be displayed using the native size that’s defined in the image file.

To control this behavior, you can use the Stretch property. The Stretch property determines how an
image is resized when the dimensions of the Image element don’t match the native dimensions of the
image file. Table 5-3 lists the values you can use for the Stretch property, and Figure 5-5 compares them.

Table 5-3. Values for the Stretch Enumeration

Name Description

Fill Your image is stretched in width and height to fit the Image element dimensions
exactly.

None The image keeps its native size.

Uniform The image is given the largest possible size that fits in the Image element and doesn’t

change its aspect ratio. This is the default value.

UniformToFill The width and height of the image are sized proportionately until the image fills all the
available height and width. For example, if you place a picture with this stretch setting
into an Image element that’s 100x200 pixels, you'll get a 200x200 picture, and part of it
will be clipped off.

157

CHAPTER 5 = ELEMENTS

158

(@ Silverlight Project Test Page - Windows Internet Explorer ﬂ‘g

i) | & D:\Code\Pro Silverlight 2\Chapter05\Elements\ClientBin\TestPage.htn] +3] X l

Ve @t | @ Siveriight Project Test Page = | I3 v = v |- Page v &) Tools v ~

e

Fill Uniform UniformToFill None

€ Internet | Protected Mode: On #100% ~

Figure 5-5. Four different ways to size an image

Image Errors

Several factors can cause an image not to appear, such as using a URI to a nonexistent file or trying to
display an image in an unsupported format. In these situations, the Image element raises the
ImageFailed event. You can react to this event to determine the problem and take alternative actions.
For example, if a large image is not available from the Web, you can substitute a small placeholder that’s
embedded in your application assembly.

Image errors are not fatal, and your application will continue running even if it can’t display an
image. In this situation, the Image element will remain blank. Your image will also be blank if the image
data takes a significant amount of time to download. Silverlight will perform the image request
asynchronously and render the rest of the layout in your page while waiting.

Content Controls

Content controls are a specialized type of controls that are designed to hold (and display) a piece of
content. Technically, a content control is a control that can contain a single nested element. The one-
child limit is what differentiates content controls from layout containers, which can hold as many nested
elements as you want.

Asyou learned in Chapter 3, all Silverlight layout containers derive from the Panel class, which gives
the support for holding multiple elements. Similarly, all content controls derive from the
ContentControl class. Figure 5-6 shows the class hierarchy.

CHAPTER 5 = ELEMENTS

DependencyObject
Legend
Abstract Class
UlElement
Concrete Class

FrameworkElement

Control

il

ContentControl

i

[
—)(ButtonBase] ScrollViewer P— ListBoxitem
— HyperlinkButton Frame — Tabltem
B Button <—|: DayButton 1 ToolTip
CalendarButton)
== RepeatButton — DataGridCell
CheckBox
o ToggleButton <—|: . ChildWindow
RadioButton

Figure 5-6. The hierarchy of content controls

As Figure 5-6 shows, several common controls are actually content controls, including the Label,
Tooltip, Button, RadioButton, and CheckBox. There are also a few more specialized content controls,
such as ScrollViewer (which you used in Chapter 3 to create a scrollable panel), and some controls that
are designed for being used with another, specific control. For example, the ListBox control holds
ListBoxItem content controls; the Calendar requires the DayButton and MonthButton; and the DataGrid
uses the DataGridCell, DataGridRowHeader, and DataColumnHeader.

159

CHAPTER 5 = ELEMENTS

160

The Content Property

Whereas the Panel class adds the Children collection to hold nested elements, the ContentControl class
adds a Content property, which accepts a single object. The Content property supports any type of
object. It gives you three ways to show content:

e Elements: If you use an object that derives from UIElement for the content of a
content control, that element will be rendered.

e Other objects: If you place a nonelement object into a content control, the control
will simply call ToString() to get the text representation for that control. For some
types of objects, ToString() produces a reasonable text representation. For others,
it simply returns the fully qualified class name of the object, which is the default
implementation.

e Other objects, with a data template: If you place a nonelement object into a
content control and you set the ContentTemplate property with a data template,
the content control will render the data template and use the expressions it
contains to pull information out of the properties of your object. This approach is
particularly useful when dealing with collections of data objects, and you'll see
how it works in Chapter 20.

To understand how this works, consider the humble button. An ordinary button may just use a
simple string object to generate its content:

<Button Margin="3" Content="Text content"></Button>

This string is set as the button content and displayed on the button surface.

Tip When filling a button with unformatted text, you may want to use the font-related properties that the Button
class inherits from Control, which duplicate the TextBlock properties listed in Table 5-2.

However, you can get more ambitious by placing other elements inside the button. For example,
you can place an image inside using the Image class:

<Button Margin="3">
<Image Source="happyface.jpg"></Image>
</Button>

Or you could combine text and images by wrapping them all in a layout container like the
StackPanel, as you saw in Chapter 3:

<Button Margin="3">
<StackPanel>
<TextBlock Margin="3" Text="Image and text button"></TextBlock>
<Image Source="happyface.jpg" />
<TextBlock Margin="3" Text="Courtesy of the StackPanel"></TextBlock>
</StackPanel>
</Button>

CHAPTER 5 = ELEMENTS

If you want to create a truly exotic button, you could even place other content controls such as text
boxes and buttons inside (and nest still elements inside these). It’s doubtful that such an interface would
make much sense, but it is possible.

At this point, you might be wondering if the Silverlight content model is really worth all the trouble.
After all, you might choose to place an image inside a button, but you're unlikely to embed other
controls and entire layout panels. However, there are a few important advantages to the content model.

For example, the previous markup placed a bitmap into a button. However, this approach isn’t as
flexible as creating a vector drawing out of Silverlight shapes. Using a vector drawing, you can create a
button image that’s scalable and can be changed programmatically (for example, with different colors, a
transform, or an animation). Using a vector-based button opens you up to the possibility of creating a
dynamic interface that responds to state changes and user actions.

In Chapter 8, you'll consider how you can begin building vector images in Silverlight. However, the
key fact you should understand now is that the vector-drawing model integrates seamlessly with content
controls because they have the ability to hold any element. For example, this markup creates a simple
graphical button that contains two diamond shapes (as shown in Figure 5-7):

<Button Margin="3" Height="70" Width="215">
<Grid Margin="5">
<Polygon Points="100,25 125,0 200,25 125,50"
Fill="LightSteelBlue" />
<Polygon Points="100,25 75,0 0,25 75,50"
Fill="LightGray"/>

</Grid>
</Button>
& Silverlight Project Test Page - Windows Internet Explorer lﬂ.'%

(A, | € D:\Code\Pro Silverlight\Chapter05\Elements\ClientBin\TestPage.htrr | 45 | X |

W & | @siverlight Project TestPage | | 3 v s v [} Page v (Tools v

€ Internet | Protected Mode: On #100% ~

L%

Figure 5-7. A button with shape content

Clearly, in this case, the nested content model is simpler than adding extra properties to the Button
class to support the different types of content. Not only is the nested content model more flexible, it also

161

CHAPTER 5 = ELEMENTS

162

allows the Button class to expose a simpler interface. And because all content controls support content
nesting in the same way, there’s no need to add different content properties to multiple classes.

In essence, the nested content model is a trade. It simplifies the class model for elements because
there’s no need to use additional layers of inheritance to add properties for different types of content.
However, you need to use a slightly more complex object model—elements that can be built out of other
nested elements.

Note You can't always get the effect you want by changing the content of a control. For example, even though
you can place any content in a button, a few details never change, such as the button’s shaded background, its
rounded border, and the mouse-over effect that makes it glow when you move the mouse pointer over it. However,
there’s another way to change these built-in details—Dby applying a new control template. Chapter 15 shows how
you can change all aspects of a control’s look and feel using a control template.

Aligning Content

In Chapter 3, you learned how to align different controls in a container using the HorizontalAlignment
and VerticalAlignment properties, which are defined in the base FrameworkElement class. However,
once a control contains content, there’s another level of organization to think about. You need to decide
how the content inside your content control is aligned with its borders. This is accomplished using the
HorizontalContentAlignment and Vertical ContentAlignment properties.

HorizontalContentAlignment and VerticalContentAlignment support the same values as
HorizontalAlignment and VerticalAlignment. That means you can line content up on the inside of any
edge (Top, Bottom, Left, or Right), you can center it (Center), or you can stretch it to fill the available
space (Stretch). These settings are applied directly to the nested content element, but you can use
multiple levels of nesting to create a sophisticated layout. For example, if you nest a StackPanel in a
Button element, the Button.HorizontalContentAlignment determines where the StackPanel is placed,
but the alignment and sizing options of the StackPanel and its children will determine the rest of the
layout.

In Chapter 3, you also learned about the Margin property, which allows you to add whitespace
between adjacent elements. Content controls use a complementary property named Padding, which
inserts space between the edges of the control and the edges of the content. To see the difference,
compare the following two buttons:

<Button Content="Absolutely No Padding"></Button>
<Button Padding="3" Content="Well Padded"></Button>

The button that has no padding (the default) has its text crowded up against the button edge. The
button that has a padding of 3 pixels on each side gets a more respectable amount of breathing space.

Note The HorizontalContentAlignment, VerticalContentAlignment, and Padding properties are all defined as part
of the Control class, not the more specific ContentControl class. That’s because there may be controls that aren’t

CHAPTER 5 = ELEMENTS

content controls but still have some sort of content. One example is the TextBox—its contained text (stored in the
Text property) is adjusted using the alignment and padding settings you’ve applied.

Buttons

Silverlight recognizes three types of button controls: the familiar Button, the CheckBox, and the
RadioButton. All of these controls are content controls that derive from ButtonBase.

The ButtonBase class includes only a few members. It defines the obviously important Click event
and adds the IsFocused, IsMouseOver, and IsPressed read-only properties. Finally, the ButtonBase class
adds a ClickMode property, which determines when a button fires its Click event in response to mouse
actions. The default value is ClickMode.Release, which means the Click event fires when the mouse is
clicked and released. However, you can also choose to fire the Click event mouse when the mouse
button is first pressed (ClickMode.Press) or, oddly enough, whenever the mouse moves over the button
and pauses there (ClickMode.Hover).

You've already seen how to use the ordinary button. In the following sections, you'll take a quick
look at the more specialized alternatives that Silverlight provides.

The HyperlinkButton

The ordinary Button control is simple enough—you click it, and it fires a Click event that you handle in
code. But what about the other variants that Silverlight offers?

One of these is the HyperlinkButton. The HyperlinkButton doesn’t draw the standard button
background. Instead, it simply renders the content that you supply. If you use text in the
HyperlinkButton, it appears blue by default, but it’s not underlined. (Use the TextDecorations property
if you want that effect.) When the user moves the mouse over a HyperlinkButton, the mouse cursor
changes to the pointing hand. You can override this effect by setting the Cursor property.

There are essentially three ways to use the HyperlinkButton:

e Send the browser to an external website: To do this, set the NavigateUri property
with an absolute URL that points to the target web page. Optionally, set the
TargetName property with the name of browser frame where you want to open
the link. Keep in mind that if you navigate away from the current page, you'll
effectively end the current Silverlight application. As a result, this technique is of
relatively limited use.

e Send a frame to another Silverlight page: To do this, make sure you have a Frame
control on your page, and set the NavigateUri with a relative URI that points to
another XAML file in your project. You'll learn how to use this ability, and the rest
of Silverlight’s navigation features, in Chapter 7.

e Perform some arbitrary action in code: To do this, don’t set the NavigateUri
property. Instead, simply handle the Click event to carry out the appropriate
action.

163

CHAPTER 5 = ELEMENTS

164

Tip The HTML entry page can specifically prevent navigation to external websites. To do so, simply add the
enableNavigation property to the <object> element in the test page, and set it to false. You will still be allowed to
use the HyperlinkButton for internal frame navigation (see Chapter 7) or to trigger an action with the Click event.

The ToggleButton and RepeatButton
Alongside Button and HyperlinkButton, two more classes derive from ButtonBase:

e RepeatButton: This control fires Click events continuously, as long as the button is
held down. Ordinary buttons fire one Click event per user click.

e ToggleButton: This control represents a button that has two states (clicked or
unclicked). When you click a ToggleButton, it stays in its pushed state until you
click it again to release it. This is sometimes described as sticky click behavior.

Both RepeatButton and ToggleButton are defined in the System.Windows.Controls.Primitives
namespace, which indicates they aren’t often used on their own. Instead, they’re used to build more
complex controls by composition or extended with features through inheritance. For example, the
RepeatButton is one of the ingredients used to build the higher-level ScrollBar control (which,
ultimately, is part of the even higher-level ScrollViewer). The RepeatButton gives the arrow buttons at
the ends of the scroll bar their trademark behavior—scrolling continues as long as you hold it down.
Similarly, the ToggleButton is used to derive the more useful CheckBox and RadioButton classes
described next. However, neither the RepeatButton nor the ToggleButton is an abstract class, so you can
use both of them directly in your user interfaces or to build custom controls if the need arises.

The CheckBox

Both the CheckBox and the RadioButton are buttons of a different sort. They derive from ToggleButton,
which means they can be switched on or off by the user, which is the reason for their toggle behavior. In
the case of the CheckBox, switching the control on means placing a check mark in it.

The CheckBox class doesn’t add any members, so the basic CheckBox interface is defined in the
ToggleButton class. Most important, ToggleButton adds an IsChecked property. IsChecked is a nullable
Boolean, which means it can be set to true, false, or a null value. Obviously, true represents a checked
box, while false represents an empty one. The null value is a little trickier—it represents an
indeterminate state, which is displayed as a shaded box. The indeterminate state is commonly used to
represent values that haven’t been set or areas where some discrepancy exists. For example, if you have
a check box that allows you to apply bold formatting in a text application and the current selection
includes both bold and regular text, you might set the check box to null to show an indeterminate state.

To assign a null value in Silverlight markup, you need to use the null markup extension, as shown
here:

<CheckBox IsChecked="{x:Null}" Content="A check box in indeterminate state">
</CheckBox>

Along with the IsChecked property, the ToggleButton class adds a property named IsThreeState,
which determines whether the user is able to place the check box into an indeterminate state. If
IsThreeState is false (the default), clicking the check box alternates its state between checked and

CHAPTER 5 = ELEMENTS

unchecked, and the only way to place it in an indeterminate state is through code. If IsThreeState is true,
clicking the check box cycles through all three possible states.

The ToggleButton class also defines three events that fire when the check box enters specific states:
Checked, Unchecked, and Indeterminate. In most cases, it’s easier to consolidate this logic into one
event handler by handling the Click event that’s inherited from ButtonBase. The Click event fires
whenever the button changes state.

The RadioButton

The RadioButton also derives from ToggleButton and uses the same IsChecked property and the same
Checked, Unchecked, and Indeterminate events. Along with these, the RadioButton adds a single
property named GroupName, which allows you to control how radio buttons are placed into groups.

Ordinarily, radio buttons are grouped by their container. That means if you place three RadioButton
controls in a single StackPanel, they form a group from which you can select just one of the three. On the
other hand, if you place a combination of radio buttons in two separate StackPanel controls, you have
two independent groups on your hands.

The GroupName property allows you to override this behavior. You can use it to create more than
one group in the same container or to create a single group that spans multiple containers. Either way,
the trick is simple—just give all the radio buttons that belong together the same group name.

Consider this example:

<StackPanel>
<Border Margin="5" Padding="5" BorderBrush="Yellow" BorderThickness="1"
CornerRadius="5">
<StackPanel>
<RadioButton Content="Group 1"></RadioButton>
<RadioButton Content="Group 1"></RadioButton>
<RadioButton Content="Group 1"></RadioButton>
<RadioButton GroupName="Group3" Content="Group 3"></RadioButton>
</StackPanel>
</Border>
<Border Margin="5" Padding="5" BorderBrush="Yellow" BorderThickness="1"
CornerRadius="5">
<StackPanel>
<RadioButton Content="Group 2"></RadioButton>
<RadioButton Content="Group 2"></RadioButton>
<RadioButton Content="Group 2"></RadioButton>
<RadioButton GroupName="Group3" Content="Group 3"></RadioButton>
</StackPanel>
</Border>
</StackPanel>

Here, there are two containers holding radio buttons but three groups (see Figure 5-8). The final
radio button at the bottom of each group box is part of a third group. In this example, it makes for a
confusing design, but there may be some scenarios where you want to separate a specific radio button
from the pack in a subtle way without causing it to lose its group membership.

165

CHAPTER 5 = ELEMENTS

166

@ Silverlight Project Test Page - Windows Internet E... |5]M

{ r [. - - [v,
A € D:\Code\Pro Silverlight\Chapter05\Elem ‘ + ‘ X |

T 2 ¥
w o @SilverlightPrOjEdTﬁtP...‘ ‘ D~ =~

(@) Group 1
© Group 1

() Group 1

%Croup 3

@ Group 2
) Group 2
() Group 2

() Group 3

& Internet | Protected Mode: On #100% ~

L S

Figure 5-8. Grouping radio buttons

Tooltips and Pop-Ups

Silverlight has a flexible model for tooltips (those infamous yellow boxes that pop up when you hover
over something interesting). Because tooltips in Silverlight are content controls, you can place virtually
anything inside a tooltip.

Tooltips are represented by the ToolTip content control. However, you don’t add the ToolTip
element to your markup directly. Instead, you use the ToolTipService to configure a tooltip for an
existing element, by setting attached properties. Silverlight will then create the ToolTip automatically
and display it when it’s needed.

The simplest example is a text-only tooltip. You can create a text-only tooltip by setting the
ToolTipService.ToolTip property on another element, as shown here:

<Button ToolTipService.ToolTip="This is my tooltip"
Content="I have a tooltip"></Button>

When you hover over this button, the text “This is my tooltip” appears in a gray pop-up box.

Customized Tooltips

If you want to supply more ambitious tooltip content, such as a combination of nested elements, you
need to break the ToolTipService.ToolTip property out into a separate element. Here’s an example that
sets the ToolTip property of a button using more complex nested content:

CHAPTER 5 = ELEMENTS

<Button Content="I have a fancy tooltip">
<ToolTipService.ToolTip>
<StackPanel>
<TextBlock Margin="3" Text="Image and text"></TextBlock>
<Image Source="happyface.jpg"></Image>
<TextBlock Margin="3" Text="Image and text"></TextBlock>
</StackPanel>
</ToolTipService.ToolTip>
</Button>

As in the previous example, Silverlight implicitly creates a ToolTip element. The difference is that in
this case the ToolTip object contains a StackPanel rather than a simple string. Figure 5-9 shows the
result.

(& Silverlight Project Test Page - Windows Internet Explorer |\E_@J$J

| @ , * s i i i -
_/'l o) é D:\Code\Pro Silverlight 2\Chapter05\Elements\ClientBin\TestPa [44 | A |

[T »

Ve Gt | @ Siverlight Project Test P... | f2 ~ &= v |)Page~

| have a fancy tooltip %]

= Image and text

3

Image and text

€ Internet | Protected Mode: On H100% ~

L s

Figure 5-9. A fancy tooltip

Note Don’t put user-interactive controls in a tooltip because the ToolTip page can’t accept focus. For example,
if you place a button in a ToolTip, the button will appear, but it isn’t clickable. (If you attempt to click it, your mouse
click will just pass through to the page underneath.) If you want a tooltip-like page that can hold other controls,
consider using the Popup control instead, which is discussed shortly, in the section named “The Popup.”

At this point, you might be wondering if you can customize other aspects of the tooltip’s
appearance, such as the standard gray background. You can get a bit more control by explicitly defining
the ToolTip element when setting the ToolTipService.ToolTip property. Because the ToolTip is a content
control, it provides a number of useful properties. You can adjust size and alignment properties (such as
Width, Height, MaxWidth, HoriztontalContentAlignment, Padding, and so on), font (FontFamily,
FontSize, FontStyle, and so on), and color (Background and Foreground). You can also use the

167

CHAPTER 5 = ELEMENTS

HorizontalOffset and VerticalOffset properties to nudge the tooltip away from the mouse pointer and
into the position you want, with negative or positive values.

Using the ToolTip properties, the following markup creates a tooltip that uses a red background and
makes the text inside white by default:

<Button Content="I have a fancy tooltip">
<ToolTipService.ToolTip>
<ToolTip Background="DarkRed" Foreground="White"»
<StackPanel>
<TextBlock Margin="3" Text="Image and text"></TextBlock>
<Image Source="happyface.jpg"></Image>
<TextBlock Margin="3" Text="Image and text"></TextBlock>
</StackPanel>
</ToolTip»
</ToolTipService.ToolTip>
</Button>

If you assign a name to your tooltip, you can also interact with it programmatically. For example,
you can use the IsEnabled property to temporarily disable a ToolTip and IsOpen to programmatically
show or hide a tooltip (or just check whether the tooltip is open). You can also handle its Opened and
Closed events, which is useful if you want to generate the content for a tooltip dynamically, just as it
opens.

Tip If you still want more control over the appearance of a tooltip—for example, you want to remove the black
border or change its shape—you simply need to substitute a new control template with the visuals you prefer.
Chapter 15 has the details.

The Popup

The Popup control has a great deal in common with the ToolTip control, although neither one derives
from the other.

Like the ToolTip, the Popup can hold a single piece of content, which can include any Silverlight
element. (This content is stored in the Popup.Child property, rather than the ToolTip.Content property.)
Also, like the ToolTip, the content in the Popup can extend beyond the bounds of the page. Lastly, the
Popup can be placed using the same placement properties and shown or hidden using the same IsOpen
property.

The differences between the Popup and ToolTip are more important. They include the following:

e The Popup is never shown automatically: You must set the IsOpen property for it
to appear. The Popup does not disappear until you explicitly set its IsOpen
property to false.

e The Popup can accept focus: Thus, you can place user-interactive controls in it,
such as a Button. This functionality is one of the key reasons to use the Popup
instead of the ToolTip.

Because the Popup must be shown manually, you may choose to create it entirely in code. However,
you can define it just as easily in XAML markup—just make sure to include the Name property, so you

168

CHAPTER 5 = ELEMENTS

can manipulate it in code. The placement of the Popup in your markup isn’t important, because its top-
left corner will always be aligned with the top-left corner of the Silverlight content region.

<StackPanel Margin="20">
<TextBlock TextWrapping="Wrap" MouselLeftButtonDown="txt_MouselLeftButtonDown"
Text="Click here to open the PopUp."></TextBlock>

<Popup x:Name="popUp" MaxWidth="200">
<Border Background="Lime" MouseleftButtonDown="popUp_MouseleftButtonDown">
<TextBlock Margin="10" Text="This is the PopUp."></TextBlock>
</Border>
</Popup>
</StackPanel>

The only remaining details are the relatively trivial code that shows the Popup when the user clicks
it and the code that hides the Popup when it’s clicked:

private void txt MouselLeftButtonDown(object sender, MouseButtonEventArgs e)

{

popUp.IsOpen = true;

private void popUp MouseleftButtonDown(object sender, MouseButtonEventArgs e)

{
popUp.IsOpen = false;

Figure 5-10 shows the Popup in action.
i@ Silverlight Project Test Page - Win.. (=B S i@ Silverlight Project Test Page - Win.. .= B e

et | & D:\Code\Pro Silverlight\, ~ ‘ +y ‘ X ‘ & e | @ D:\Code\Pro Silverlight\ ~ ‘ +5 ‘ A |

%o i | @ Silverlight Project Test P... [‘ o w¢ < | @ Silverlight Project Test P... ’ ‘ fa
Click here to open the PopUp. C['i'hlislﬂis th:a PopUp' WkPopUp.

€ Internet | Protected Mode: On #100% ~ € Intemet | Protected Mode: On #100% ~

L " & J

Figure 5-10. A tooltip-like effect with the Popup

Tip If you plan to create an exiravagantly detailed Popup, you may want to consider creating a custom user
control for the Popup content. You can then place an instance of that custom user control inside your pop-up. The
end result is the same, but this technique simplifies your markup dramatically. And if you want your Popup to take

169

CHAPTER 5 = ELEMENTS

170

on the characteristics of a self-contained dialog box, you should consider the ChildWindow control instead, which
is described in Chapter 7.

Items Controls

Controls that wrap collections of items generally derive from the ItemsControl class. Silverlight provides
four list-based controls. You'll take a look at the ListBox, the ComboBox, and the TabControl in this
section. You'll explore the TreeView in Chapter 21.

The ItemsControl class fills in the basic plumbing that’s used by all list-based controls. Notably, it
gives you two ways to fill the list of items. The most straightforward approach is to add them directly to
the Items collection, using code or XAML. This is the approach you’ll see in this chapter. However, if you
need to display a dynamic list, it’'s more common to use data binding. In this case, you set the
ItemsSource property to the object that has the collection of data items you want to display. This process
is covered in Chapter 20.

The ListBox

To add items to the ListBox, you can nest ListBoxItem elements inside the ListBox element. For example,
here’s a ListBox that contains a list of colors:

<ListBox>
<ListBoxItem Content="Green"></ListBoxItem>
<ListBoxItem Content="Blue"></ListBoxItem>
<ListBoxItem Content="Yellow"></ListBoxItem>
<ListBoxItem Content="Red"></ListBoxItem>
</ListBox>

As you'll recall from Chapter 2, different controls treat their nested content in different ways. The
ListBox stores each nested object in its Items collection.

Note The ListBox class also allows multiple selection if you set the SelectionMode property to Multiple or
Extended. In Multiple mode, you can select or deselect any item by clicking it. In Extended mode, you need to hold
down the Ctrl key to select additional items or the Shift key to select a range of items. In either type of multiple-
selection list, you use the Selecteditems collection instead of the Selecteditem property to get all the selected
items.

The ListBox is a remarkably flexible control. Rather than being limited to ListBoxItem objects, it can
hold any arbitrary element. This works because the ListBoxItem class derives from ContentControl,
which gives it the ability to hold a single piece of nested content. If that piece of content is a UIElement-
derived class, it will be rendered in the ListBox. If it’s some other type of object, the ListBoxItem will call
ToString() and display the resulting text.

For example, if you decided you want to create a list with images, you could create markup like this:

CHAPTER 5 = ELEMENTS

<ListBox>
<ListBoxItem>
<Image Source="happyface.jpg"></Image>
</ListBoxItem>
<ListBoxItem>
<Image Source="happyface.jpg"></Image>
</ListBoxItem>
</ListBox>

The ListBox is actually intelligent enough to create the ListBoxItem objects it needs implicitly. That
means you can place your objects directly inside the ListBox element. Here’s a more ambitious example
that uses nested StackPanel objects to combine text and image content:

<ListBox>
<StackPanel Orientation="Horizontal">
<Image Source="happyface.jpg" Width="30" Height="30"></Image>
<TextBlock VerticalAlignment="Center" Text="A happy face"></TextBlock>
</StackPanel>
<StackPanel Orientation="Horizontal">
<Image Source="redx.jpg" Width="30" Height="30"></Image>
<TextBlock VerticalAlignment="Center" Text="A warning sign"></TextBlock>
</StackPanel>
<StackPanel Orientation="Horizontal">
<Image Source="happyface.jpg" Width="30" Height="30"></Image>
<TextBlock VerticalAlignment="Center" Text="A happy face"></TextBlock>
</StackPanel>
</ListBox>

In this example, the StackPanel becomes the item that’s wrapped by the ListBoxItem. This markup
creates the list shown in Figure 5-11.

/& Silverlight Project Test Page - Windows In...@%

U _/'I ‘ @ D:\Code\Pro Silverlight\Chapter + | +y ‘ b 4 l

Wk ‘ @ Silverlight Project Test P...]_ I
;)A happy face
eA warning sign
OJA happy face

0 Interne’; | Protected I‘_Aode‘. On il #100% v

Figure 5-11. A list of images

171

CHAPTER 5 = ELEMENTS

172

This ability to nest arbitrary elements inside list box items allows you to create a variety of list-based
controls without needing to use specialized classes. For example, you can display a check box next to
every item by nesting the CheckBox element inside the ListBox.

There’s one caveat to be aware of when you use a list with different elements inside. When you read
the SelectedItem value (and the SelectedItems and Items collections), you won’t see ListBoxItem
objects—instead, you'll see whatever objects you placed in the list. In the previous example, that means
SelectedItem provides a StackPanel object.

When manually placing items in a list, it’s up to you whether you want to place the items in directly
or explicitly wrap each one in a ListBoxItem object. The second approach is often cleaner, albeit more
tedious. The most important consideration is to be consistent. For example, if you place StackPanel
objects in your list, the ListBox.SelectedItem object will be a StackPanel. If you place StackPanel objects
wrapped by ListBoxItem objects, the ListBox.SelectedItem object will be a ListBoxItem, so code
accordingly. And there’s a third option—you can place data objects inside your ListBox and use a data
template to display the properties you want. Chapter 20 has more about this technique.

The ListBoxItem offers a little bit of extra functionality from what you get with directly nested
objects. Namely, it defines an IsSelected property that you can read (or set) and a Selected and
Unselected event that tells you when that item is highlighted. However, you can get similar functionality
using the members of the ListBox class, such as the SelectedItem and SelectedIndex properties and the
SelectionChanged event.

Note The ListBox has support for virtualization, thanks to the way it uses VirtualizingStackPanel to lay out
items. This means that the ListBox creates ListBoxItem objects only for the items that are currently in view, which
allows it to display massive lists with tens of thousands of items without consuming ridiculous amounts of memory
or slowing its performance down to a crawl. As the user scrolls, the existing set of ListBoxltem objects is reused
with different data to show the appropriate items. List controls that don’t support virtualization (which includes
every control other than the ListBox and the DataGrid) load and scroll much more slowly when they’re packed full
of items.

The ComboBox

The ComboBox is similar to the ListBox control. It holds a collection of ComboBoxItem objects, which
are created either implicitly or explicitly. As with the ListBoxItem, the ComboBoxItem is a content
control that can contain any nested element. Unlike combo boxes in the Windows world, you can’t type
in the Silverlight ComboBox control to select an item or edit the selected value. Instead, you must use
the arrow keys or the mouse to pick from the list.

The key difference between the ComboBox and ListBox classes is the way they render themselves in
a window. The ComboBox control uses a drop-down list, which means only one item can be selected at a
time.

One ComboBox quirk is the way it sizes itself when you use automatic sizing. The ComboBox
widens itself to fit its content, which means that it changes size as you move from one item to the next.
Unfortunately, there’s no easy way to tell the ComboBox to take the size of its largest contained item.
Instead, you may need to supply a hard-coded value for the Width property, which isn’t ideal.

Silverlight 5 adds a minor refinement to the ComboBox control, with support for the type-ahead
feature. With type-ahead, you can jump to an item by typing the first few letters of its name. This works

CHAPTER 5 = ELEMENTS

when the combo box is open or closed, although it’s easiest when open (as you can see the full list of
items). For example, imagine a list that includes two items that start with the letter E—Elephant and
Elevator. If the user types in the letter E, Silverlight automatically selects the first item (Elephant). If the
user types in Elev, however, the selection jumps to the next item (Elevator).

Note The ComboBox type-ahead feature is a very basic shortcut that lets a user quickly select an item using
the keyboard. If you want a more powerful autocomplete feature, which lets you control how matches are made
and even supply a list of dynamic suggestions culled from a web service, you need to replace the ComboBox with
the AutoCompleteBox control described later in this chapter.

The TabControl

You're no doubt familiar with the TabControl, a handy container that condenses a large amount of user
interface into a set of tabbed pages. In Silverlight, the TabControl is an items control that holds one or
more Tabltem elements.

Like several of Silverlight’s more specialized controls, the TabControl is defined in a separate
assembly. When you add it to a page, Visual Studio will add a reference to the
System.Windows.Controls.dll assembly and map a new XML namespace, like this one:

<UserControl xmlns:controls=
"clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls"
.

To use the TabControl, you must fill it with one or more TabItem elements. Each TabItem
represents a separate page. Because the Tabltem is a content control, it can hold another Silverlight
element (like a layout container).

Here’s an example of a TabControl that includes two tabs. The first tab holds a StackPanel with
three check boxes:

<controls:TabControl>
<controls:TabItem Header="Tab One">
<StackPanel Margin="3">
<CheckBox Margin="3" Content="Setting 1"></CheckBox>
<CheckBox Margin="3" Content="Setting 2"></CheckBox>
<CheckBox Margin="3" Content="Setting 3"></CheckBox>
</StackPanel>
</controls:TabItem>
<controls:TabItem Header="Tab Two">

</controls:TabItemy>
</controls:TabControl>

The TabItem holds its content (in this example, a StackPanel) in the TabItem.Content property.
Interestingly, the Tabltem also has another property that can hold arbitrary content—the Header. In the
previous example, the Header holds a simple text string. However, you just as readily fill it with graphical
content or a layout container that holds a whole host of elements, as shown here:

<controls:TabControl>

173

CHAPTER 5 = ELEMENTS

<controls:TabItem>
<controls:TabItem.Headery
<StackPanel»
<TextBlock Margin="3"s>Image and Text Tab Title</TextBlocks

<Image Source="happyface.jpg" Stretch="None" />
</StackPanel>

</controls:TabItem.Headery

<StackPanel Margin="3">
<CheckBox Margin="3" Content="Setting 1"></CheckBox>
<CheckBox Margin="3" Content="Setting 2"></CheckBox>

<CheckBox Margin="3" Content="Setting 3"></CheckBox>
</StackPanel>

</controls:TabItem>
<controls:TabItem Header="Tab Two">

</controls:TabItem>
</controls:TabControl>

Figure 5-12 shows the somewhat garish result.

Fes ™)
& Silverlight Project Test Page - Windows Internet Explorer @M

() - | @ p:codewproSiverlight 2\Chapterds\Elements\C + [49 | X |

Ve 4 | @ Siveright Project Test ... [_‘ N~ o =

Image and Text Tab Title | Tab Two
d
4l

E| Setting 1

[L] setting 2

[C] setting 3

& Internet | Protected Mode: On ®100% ~

L.

Figure 5-12. An exotic tab title

174

CHAPTER 5 = ELEMENTS

Like the ListBox, the TabControl includes a SelectionChanged event that fires when the visible tab
changes. It also has a SelectedIndex property and a SelectedItem property, which allow you to determine
or set the current tab. The TabControl adds a TabStripPlacement property, which allows you to make the
tabs appear on the side or bottom of the tab control, rather than their normal location at the top.

Text Controls

Silverlight includes a standard TextBox control and several more specialized controls that derive from
TextBox, including a PasswordBox (for entering text that should be concealed), an AutoCompleteBox
(which shows a drop-down list of suggestions as the user types), and a RichTextBox (which allows richly
formatted text, links, and pictures). You'll learn about all these variants in the following sections.

The TextBox

The basic TextBox stores a string, which is provided by the Text property. You can change the alignment
of that text using the TextAlignment property, and you can use all the properties listed in Table 5-2 to
control the font of the text inside the text box. The TextBox also supports many of the features of its
counterpart in the Windows world, including scrolling, text wrapping, clipboard cut-and-paste, and
selection.

Ordinarily, the TextBox control stores a single line of text. (You can limit the allowed number of
characters by setting the MaxLength property.) However, you can allow text to span multiple lines in two
ways. First, you can enable wrapping using the TextWrapping property. Second, you can allow the user
to insert line breaks with the Enter key by setting the AcceptsReturn property to true.

Sometimes, you'll create a text box purely for the purpose of displaying text. In this case, set the
IsReadOnly property to true to prevent editing. This is preferable to disabling the text box by setting
IsEnabled to false because a disabled text box shows grayed-out text (which is more difficult to read) and
does not support selection (or copying to the clipboard).

As you already know, you can select text in any text box by clicking and dragging with the mouse or
holding down Shift while you move through the text with the arrow keys. The TextBox class also gives
you the ability to determine or change the currently selected text programmatically, using the
SelectionStart, SelectionLength, and SelectedText properties.

SelectionStart identifies the zero-based position where the selection begins. For example, if you set
this property to 10, the first selected character is the 11th character in the text box. Selection Length
indicates the total number of selected characters. (A value of 0 indicates no selected characters.) Finally,
the SelectedText property allows you to quickly examine or change the selected text in the text box.

You can react to the selection being changed by handling the SelectionChanged event. Here’s an
example that reacts to this event and displays the current selection information:

private void txt_SelectionChanged(object sender, RoutedEventArgs e)

{
if (txtSelection == null) return;
txtSelection.Text = String.Format(
"Selection from {0} to {1} is \"{2}\"",
txt.SelectionStart, txt.SelectionLength, txt.SelectedText);
}

Figure 5-13 shows the result.

175

CHAPTER 5 = ELEMENTS

@ silverlight Project Test Page - Windows Internet Ex... (== [

@ D:\Code\Pro Silverlight\Chapter05\Elemer v | 45 | X |

Ve & | @ Siverlight Project Test P... | | v &

>

Select a m test the SelectionChanged event.

Current selection:
Selection from 9 to 6 is "word t"

€D Internet | Protected Mode: On #,100% ~

N r

Figure 5-13. Selecting text

PROGRAMMATICALLY USING THE CLIPBOARD

Silverlight includes a Clipboard class in the System.Windows namespace. It provides three static methods
that you can call in code to work with Windows clipboard:

o GetText(): This method retrieves any Unicode text that’s currently on the clipboard
(as a string). Other types of data that could be on the clipboard, such as images
and files, are not available to Silverlight applications.

e SetText(): This method places the text you specify on the clipboard.

e (ContainsText(). This method returns true if the clipboard contains Unicode text
content.

You can only access the clipboard in the event handler for a user-initiated action (like a mouse click or a
key press). The first time your code attempts to use the clipboard with the GetText() or SetText() method, a
dialog box will appear asking for clipboard access. If the user clicks Yes, this message won’t appear for
the rest of the session (but it will reappear the next time you run this or another Silverlight application and
attempt to use clipboard again). If the user clicks No, the GetText() or SetText() method will throw a
SecurityException, which you must catch in your code.

176

CHAPTER 5 = ELEMENTS

The PasswordBox

Silverlight includes a separate control called the PasswordBox to deal with password entry. The
PasswordBox looks like a TextBox, but it displays a string of circle symbols to mask the characters inside.
You can choose a different mask character by setting the PasswordChar property, and you can set (or
retrieve) the text inside through the Password property. The PasswordBox does not provide a Text
property.

Additionally, the PasswordBox does not support the clipboard. This means the user can’t copy the
text it contains using shortcut keys, and your code can’t use properties like SelectedText.

Note The WPF PasswordBox uses in-memory encryption to ensure that passwords can’t be retrieved in certain
types of exploits (like memory dumps). The Silverlight Password box doesn’t include this feature. It stores its
contents in the same way as the ordinary TextBox.

The AutoCompleteBox

The AutoCompleteBox fuses a text entry with a drop-down list of suggestions. This feature is a common
technique on the Web, powering everything from the search box on the Google homepage to the
Internet Explorer address bar.

The Silverlight implementation is a surprisingly powerful control that gives you several ways to
decide what items should appear in the drop-down list. The simplest approach is to start with an
ordinary AutoCompleteBox:

<input:AutoCompleteBox x:Name="txtMonth"></input:AutoCompleteBox>

When you add an AutoCompleteBox from the toolbox, Visual Studio creates an XML alias named
input:

<UserControl xmlns:input=
"clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Input" ... >

Once you've added an AutoCompleteBox, create an array or list that holds the collection of possible
suggestions (in no particular order), and apply this collection to the AutoCompleteBox.ItemsSource
property. Typically, you’d perform this step when the page first loads by adding your code to the page
constructor or handling the UserControl.Loaded event.

Here’s an example that uses the set of 12 calendar months:

string[] monthList = {"January", "February", "March", "April",
"May", "June", "July", "August", "September",
"October", "November", "December"};
txtMonth.ItemsSource = monthList;

That’s enough to get the default behavior. When the user types a letter in the box at runtime, a drop-
down list of potential matches will appear, in alphabetical order (Figure 5-14). To select an item (and
avoid typing the whole text in by hand), you can click it with the mouse or cursor down to it with the
arrow keys.

177

CHAPTER 5 = ELEMENTS

178

Note The AutoCompleteBox offers suggestions, but it doesn’t impose rules. There is no easy way to constrain
users so that they can’t deviate from the list of suggestions.

There’s one other way for the AutoCompleteBox to behave. If you set IsTextCompletionEnabled to
true, the AutoCompleteBox automatically fills in the text box as the user types. For example, if the user
types J in the month example, the AutoCompleteBox finds the first matching month and fills in anuary.
The new filled-in text is highlighted, which means that it will be overwritten if the user continues to type
(or deleted if the user presses the Delete or Backspace key). Figure 5-14 compares the difference.

Note When you read the AutoCompleteBox.Text property, you get exactly the text that's currently displayed in
the AutoCompleteBox. If you've set IsTextCompletionEnabled to true, you also get any text that’s automatically
inserted as part of a match.

A |

January

June ‘

IJU]Y

Boruary |

January

June
July

Figure 5-14. Months that start with J

Filter Mode

Ordinarily, the AutoCompleteBox filters out the list of bound items by comparing the start of each one
with the text that’s been typed in so far. However, you can change this behavior by setting the
FilterMode property. It takes one of the values from the AutoCompleteFilterMode enumeration. The
most useful ones are described in Table 5-4.

CHAPTER 5 = ELEMENTS

Table 5-4. Values for the AutoCompleteFilterMode Enumeration

Name Description

None No filtering will be performed, and all the items will appear in the list of
suggestions. This is also the option you'll use if you need to fetch the
collection of items yourself—for example, if you need to query them from a
database or request them from a web service.

StartsWith All the items that start with the typed-in text will appear. This is the default.

StartsWithCaseSensitive All the items that start with the typed-in text will appear provided the
capitalization also matches.

Contains All the items that contain the typed-in text will appear. For example, typing
ember would match September, November, and December.

ContainsCaseSensitive All the items that contain the typed-in text will appear provided the
capitalization also matches.

Custom You must perform the filtering by applying a delegate that does the work to
the TextFilter or ItemFilter property. In fact, if you set TextFilter or ItemFilter
the FilterMode property is automatically switched to Custom.

Custom Filtering

To perform any sort of custom filtering, you must set the TextFilter or ItemFilter property. Use TextFilter
if your ItemsSource is a collection or strings, and use ItemFilter if your ItemsSource is a collection with
some other sort of object. Either way, the TextFilter or ItemFilter property takes a delegate that points to
amethod that performs the custom filtering. This method takes two arguments: the text that the user has
entered so far and the item that you're currently testing for a match.

public bool ItemFilter(string text, object item)
{...1}

The code in the filtering method should perform whatever comparison logic you need and return
true if the item should be included as a drop-down suggestion based on the current text or false if it
should be omitted.

Custom filtering is particularly useful if you're comparing text against a list of complex objects.
That’s because it allows you to incorporate the information that’s stored in different properties.

For example, imagine you have this simple Product class:

public class Product

{
public string ProductName { get; set; }

public string ProductCode { get; set; }

public Product(string productName, string productCode)

179

CHAPTER 5 = ELEMENTS

180

ProductName = productName;
ProductCode = productCode;
}
public override string ToString()
{
return ProductName;
}

You then decide to build an AutoCompleteBox that attempts to match the user’s text with a Product
object. In preparation for this step, you fill the AutoComplexBox.ItemsSource collection with product
objects:

Product[] products = new []{
new Product("Peanut Butter Applicator", "C_PBA-01"),
new Product("Pelvic Strengthener", "C PVS-309"), ...};

acbProduct.ItemsSource = products;

If you take no further steps, the AutoCompleteBox will use its standard behavior. As the user types, it
will call ToString() on each Product object. It will then use that text to perform its suggestion filtering.
Because the Product class overrides the ToString() method to return the product name, the
AutoCompleteBox will attempt to match the user’s text with a product name, which is perfectly
reasonable.

However, if you perform custom filtering, you can get a bit more sophisticated. For example, you
can check whether the user’s text matches the ProductName property or the ProductCode property and
deem the Product object as a match either way. Here’s an example of the custom filtering logic that does
the trick:

public bool ProductItemFilter(string text, object item)

{
Product product = (Product)item;
// Call it a match if the typed-in text appears in the product code
// or at the beginning of the product name.
return ((product.ProductName.StartsWith(text)) ||
(product.ProductCode.Contains(text)));
}

You simply need to connect this method to your AutoComplexBox when it’s first initialized:
acbProduct.ItemFilter = ProductItemFilter;

Now if the user types the text PBA, it matches the product code C_PBA-01 and shows the matching
item Peanut Butter Applicator in the list of suggestions, as shown in Figure 5-15.

CHAPTER 5 = ELEMENTS

@ Elements - Windows Internet Explorer EENT

@ C:\Matthew\Pro Silverlight 3\Code\Pro v | 4 | X |

W @ Elements - i o~ B - “

Product: |PBAJ |

| Peanut Butter Applicator |

€ Internet | Protected Mode: On #100% ~

L "

Figure 5-15. A custom search that matches product codes

Dynamic Item Lists

So far, you've used the ItemsSource property to fill the AutoCompleteBox with a collection of
suggestions. For this to work, you must have the complete list, and it must be a manageable size. If you
need to pull the information from somewhere else or the list is large enough that it isn’t practical to load
the whole thing at once, you'll need to take a different approach to filling the AutoCompleteBox. Instead
of setting the ItemsSource property when the page is first created, you'll need to set it in real time, as the
user types.

To do so, set the FilterMode property to None, and handle the Populating event. The Populating
event fires whenever the AutoCompleteBox is ready to search for results. By default, this happens every
time the user presses a key and changes the current text entry. You can make the AutoCompleteBox
somewhat more relaxed using the MinimumPrefixLength and MinimumPopupDelay properties that are
discussed at the end of this section.

<input:AutoCompleteBox x:Name="acbProducts" FilterMode="None"
Populating="acbProducts_Populating" ></input:AutoCompleteBox>

When the Populating event fires, you have two choices: set the ItemsSource property immediately
or launch an asynchronous process to do it. Setting the ItemsSource property immediately makes sense
if you have the list of suggestions on hand or you can generate them quickly. The list of suggestions will
then appear in the drop-down list right away.

But in many situations, you'll need a potentially time-consuming step to get the list of suggestions,
such as performing a series of calculations or querying a web service. In this situation, you need to
launch an asynchronous process. Although you can accomplish this with the multithreading support
that’s described in Chapter 16, you won'’t necessarily need to. Some Silverlight features have built-in
asynchronous support. This is the case with Silverlight’s implementation of web services, which is
hardwired to use asynchronous calls exclusively.

When using an asynchronous operation, you need to explicitly cancel the normal processing in the
Populating event handler, by setting PopulatingEventArgs.Cancel to true. You can then launch the
asynchronous operation. The following example gets the suggestion list asynchronously from a web
service. (You'll learn much more about coding and consuming web services in Chapter 19. For now, you
can review the example code and the downloadable project with this chapter.)

181

CHAPTER 5 = ELEMENTS

private void acbProducts Populating(object sender, PopulatingEventArgs e)

{

// Signal that the task is being performed asynchronously.
e.Cancel = true;

// Create the web service object.
ProductAutoCompleteClient service = new ProductAutoCompleteClient();

// Attach an event handler to the completion event.
service.GetProductMatchesCompleted += GetProductMatchesCompleted;

// Call the web service (asynchronously).
service.GetProductMatchesAsync(e.Parameter);

On the web server, the code in a GetProductMathes() web method runs and retrieves the matches:

public string[] GetProductMatches(string inputText)
{

// Get the products (for example, from a server-side database).
Product[] products = GetProducts();

// Create a collection of matches.
List<string> productMatches = new List<string>();
foreach (Product product in products)

{
// See if this is a match.
if ((product.ProductName.StartsWith(inputText)) ||
(product.ProductCode.Contains(inputText)))
productMatches.Add(product.ProductName);
}

// Return the list of matches.
return productMatches.ToArray();

When the asynchronous operation finishes and you receive the result in your Silverlight application,
you fill the ItemsSource property with the list of suggestions. Then, you must call the
PopulateComplete() method to notify the AutoCompleteBox that the new data has arrived. Here’s the
callback handler that does the job in the current example:

private void GetProductMatchesCompleted(object sender,
GetProductMatchesCompletedEventArgs e)

// Check for a web service error.
if (e.Error != null)

1blStatus.Text = e.Error.Message;
return;

182

CHAPTER 5 = ELEMENTS

// Set the suggestions.
acbProducts.ItemsSource = e.Result;

// Notify the control that the data has arrived.
acbProducts.PopulateComplete();

When filling the AutoCompleteBox with a time-consuming or asynchronous step, there are two
properties you may want to adjust: MinimumPrefixLength and MinimumPopupDelay.
MinimumPrefixLength determines how much text must be typed in before the AutoCompleteBox gives
its suggestions. Ordinarily, the AutoCompleteBox offers suggestions after the first letter is entered. If you
want it to wait for three letters (the standard used by many of the Ajax-powered autocompletion text
boxes that you'll find on the Web), set MinimumPrefixLength to 3. Similarly, you can force the
AutoCompleteBox to hold off until a certain interval of time has passed since the user’s last keystroke
using the MinimumPopulateDelay property. This way, you won’t waste time with a flurry of overlapping
calls to a slow web service. Of course, this doesn’t necessarily determine how long it takes for the
suggestions to appear—that depends on the wait before initiating the query and then the time needed to
contact the web server and receive a response.

The RichTextBox

If you've programmed with WPF before, you are probably familiar with its flow document model—a
flexible system for displaying richly formatted, read-only content. Compared to ordinary text display
(say, with the TextBlock element), flow documents support advanced features such as balanced
columns, text wrapping around floating figures, and intelligent algorithms for letter spacing, word
wrapping, and hyphenation. Silverlight doesn’t include the flow document feature, but it does borrow
part of the same model to support one of its most impressive controls: the RichTextBox.

The RichTextBox is an editable text box control that supports rich formatting. Unlike the ordinary
TextBox control, the RichTextBox allows individual sections (say, a single word or an entire paragraph)
to be formatted with a different font and color. The RichTextBox also supports images, links, and inline
elements (like drop-down lists and buttons). Best of all, the RichTextBox is easy to use in any
application.

Text Elements

Before you can understand the RichTextBox, you need to know a bit about the model it uses. While an
ordinary text box shows holds a string of text, the RichTextBox holds an entire document, which is
represented by a collection of text elements (sometimes called flow elements, because they are used to
create flow documents).

Text elements have an important difference from the elements you've seen so far. They don’t inherit
from the familiar UIElement and FrameworkElement classes. Instead, they form an entirely separate
branch of classes that derive first from DependencyObject and then from TextElement. As you might
expect, they are also far simpler, supporting no events and providing a small set of mostly formatting-
related properties. Figure 5-16 shows the inheritance hierarchy for text elements.

183

CHAPTER 5 = ELEMENTS

Legend
Abstract Class
[DependencyObject J Concrete Class

[TextElement

Paragraph | Run

Section | Bold

Italic

LineBreak

Hyperlink

U GRS S R |

—I InlineUIContainer

—| Span

|
|
|
Underline ‘
|
|
|
|

Figure 5-16. Text elements

There are two key branches of text elements:

e Block elements: There are two block element classes: Paragraph and Section.
Paragraphs can hold text and a combination on inline elements. Sections can hold
a group of paragraphs (or a group of sections), but they must be created
programmatically, as they aren’t usable in XAML.

e Inline elements: These elements are nested inside a block element (or another
inline element). They include elements for formatting text (Bold, Italic, Underline,
Run), making hard line breaks (LineBreak), adding hyperlinks (Hyperlink), and
embedding other controls (InlineUIContainer). Finally, the Span container gives
you the ability to group together multiple inline elements in one container.

184

CHAPTER 5 = ELEMENTS

This text element model allows multiple layers of nesting. For example, you can place a Bold
element inside an Underline element to create text that’s both bold and underlined. Similarly, you might
create a Section element that wraps together multiple Paragraph elements, each of which contains a
variety of inline elements with the actual text content. All of these elements are defined in the
System.Windows.Documents namespace.

Note You may remember the inline elements from the TextBlock discussion earlier in this chapter. In fact, the
TextBlock shares a stripped-down version of the text element model—essentially, it's a container that holds a
small, read-only scrap of a document that consists entirely of inline objects.

The following example shows a RichTextBox with some hard-coded document content already filled
in:

<RichTextBox Margin="5" x:Name="richText">
<Paragraph Foreground="DarkRed" FontFamily="Trebuchet MS" FontSize="22"
FontWeight="Bold" TextAlignment="Center">Chapter I</Paragraph>
<Paragraph>
<Bold><Italic><Run FontSize="12">The Period</Run></Italic></Bold>
</Paragraph>
<Paragraph>
It was the best of times, it was the worst of times, it was the age of ...
<LineBreak></LineBreak>
</Paragraph>
<Paragraph>
There were a king with a large jaw and a queen with a plain face, on the ...
</Paragraph>
</RichTextBox>

Figure 5-17 shows how this markup is rendered.

185

CHAPTER 5 = ELEMENTS

186

- ™
@ Elements - Windows Internet Explorer @E‘ﬂ_ﬂi

(_J_J | €] D\Code\ProSilverlight #\Chapter05\Elements\Bin\D + | 4 | X |

5. Favorites & Elements

2

@ v B -

The Period

degree of comparison only.

It was the best of times, it was the worst of times, it was the age of
wisdom, it was the age of foolishness, it was the epoch of belief, it was
the epoch of incredulity, it was the season of Light, it was the season of
Darkness, it was the spring of hope, it was the winter of despair, we had
everything before us, we had nothing before us, we were all going direct
to Heaven, we were all going direct the other way--in short, the period
was so far like the present period, that some of its noisiest authoritiss
insisted on its being received, for good or for evil, in the superlative

There were a king with a large jaw and a queen with 3 plain face, on the
throne of England; there were a king with a large jaw and a queen with a

Chapter |

€ Internet | Protected Mode: Off g v H100% ~

b

Figure 5-17. A simple document

This example is enough to illustrate the key details of the text element model. First, every
RichTextBox holds a collection of block elements. In this case, the RichTextBox holds four Paragraph
objects, which hold still more objects nested inside, such as Bold, Italic, and Run to apply formatting,
and LineBreak to add some empty space between paragraph. (Ordinarily, there is none.)

Formatting Text Elements

You can use two broad approaches to applying formatting. The first is to use the properties of the
appropriate text element class, most of which are inherited from the base class TextElement. The
previous example used this approach to set the formatting for the chapter title in the first paragraph and
to apply formatting to a Run in the second paragraph. Table 5-5 lists all the properties you can set.

Table 5-5. Properties for Content Elements

Name

Description

Foreground

Accept brushes that will be used to paint the foreground text. You
can’t set a background for individual text elements, although you can
set a background for the entire document using the
RichTextBox.Background property.

CHAPTER 5 = ELEMENTS

Name Description

FontFamily, FontSize, Allow you to configure the font that’s used to display text.
FontStretch, FontStyle, and

FontWeight

TextAlignment Sets the horizontal alignment of nested text content (which can be

Left, Right, Center, or Justify). Ordinarily, content is justified.

TextDecorations Allows you to add a line underneath the text. This property is provided
only for inline objects.

The second approach is to use a nested element that applies formatting automatically, such as Bold,
Italic, or Underline. The previous example used this approach to apply bold and italic formatting to the
title in the second paragraph.

Truthfully, the second approach (using formatting elements) is a subset of the first (using formatting
properties). That's because using a formatting element is just a convenient shortcut to using a Run or
Span with the same formatting. For example, using the Bold element is the same as setting the
FontWeight property to Bold, using the Italic element is the same as setting the FontStyles property to
Italic, and using the Underline element is the same as setting the TextDecorations property to
Underline.

Compared to WPF flow documents, the Silverlight text elements lack several features. For example,
there is no way add extra spacing above or below paragraphs, there is no support for advanced text
justification and letter-spacing algorithms, and there is no ability to float content or wrap text around
the sides of figures.

Manipulating Text Elements in Code

Documents can also be explored and even created programmatically. The entry point to the content in
the RichTextBox is the Blocks property, which holds a collection of block elements. It’s analogous to the
Inlines property of the TextBlock, which holds a collection of inline elements.

Creating a document programmatically is fairly tedious because of a number of disparate elements
that need to be created. As with all XAML elements, you must create each element and then set all its
properties, because there are no constructors to help you. You also need to create a Run object to wrap
every piece of text and then add your Run objects to a suitable container (like a Paragraph object). This
step isn’t required when you create a document with markup, because Silverlight automatically creates a
Run object to wrap the text you place inside each Paragraph object.

Here’s a snippet of code that creates a document with a single paragraph and some bolded text:

// Create the first part of the sentence.
Run runFirst = new Run();
runFirst.Text = "Hello world of ";

// Create bolded text.

Bold bold = new Bold();

Run runBold = new Run();

runBold.Text = "dynamically generated";
bold.Inlines.Add(runBold);

187

CHAPTER 5 = ELEMENTS

188

// Create last part of sentence.
Run runLast = new Run();
runLast.Text = " documents";

// Add three parts of sentence to a paragraph, in order.
Paragraph paragraph = new Paragraph();
paragraph.Inlines.Add(runFirst);
paragraph.Inlines.Add(bold);
paragraph.Inlines.Add(runlast);

// Add this paragraph to the RichTextBox.
richText.Blocks.Clear();
richText.Blocks.Add(paragraph);

The result is the sentence “Hello world of dynamically generated documents.”

Most of the time, you won'’t create flow documents programmatically. However, you might want to
create an application that browses through portions of a flow document and modifies them dynamically.
You can do this in the same way that you interact with any other WPF elements: by responding to
element events and by attaching a name to the elements that you want to change. However, because
flow documents use deeply nested content with a free-flowing structure, you may need to dig through
several layers to find the actual content you want to modify. (Remember, this content is always stored in
a Run object, even if the run isn’t declared explicitly.)

Tip The previous example demonstrates the most straightforward way to generate a document with code.
However, more complex scenarios are possible—for example, if you want to move through user-supplied content,
find individual words, and tweak their formatting. This sort of task works better using the lower-level TextPointer
class, which lets you find logical insertion points in the RichTextBox content. For a demonstration of this more
advanced but less common technique, see http://tinyurl.com/26352z2.

Creating a Text Editor

Although you can create documents with handwritten XAML or build and manipulate them in code, the
real goal of the RichTextBox is to provide a place where users can edit rich content.

On its own, the RichTextBox works just like the TextBox control. The user can type text into it, edit
that text, cut and paste a selection, and so on. However, there’s no built-in way for the user to apply
formatting. To allow this, it’s up for you to add the appropriate controls, like a button for toggling bold
formatting or a list for changing the font. Figure 5-18 shows an example.

http://tinyurl.com/26352z2

CHAPTER 5 = ELEMENTS

€ Elements - Windows Internet Explorer LEM

U u \g D:\Code\Pro Silverlight 4\Chapter05\Elements\Bi ~ ‘ 4y ‘ X ‘

>

¢ Favorites | @@ Elements | -8 -=

Bz y

»

Chapter 1 =
It was a bright cold day in April, and the clocks were striking
thirteen. Winston Smith, his chin nuzzled into his breast in an effort to
escape the vile wind, slipped quickly through the glass doors of Victory
Mansions, though not quickly enough to prevent a swirl of gritty dust
from entering along with him.

The hallway smelt of boiled cabbage and old rag mats. At one end of it a
coloured poster, too large for indoor display, had been tacked to the
wall. It depicted simply an enormous face, more than a2 metre wide: the
face of @ man of about forty-five, with a heavy black moustache and
ruggedly handsome features, Winston made for the stairs. It was no use
trying the lift. Even at the best of times it was seldom working, and at

) ' [. . L | = 1 { S O TR -

€D Internet | Protected Mode: On fa v ®100% ~

L A

Figure 5-18. A RichTextBox with editing controls

In this example, the user selects some portion of text (which may span multiple inline elements and
multiple paragraphs) and then uses the buttons to toggle bold, italic, and underline formatting. The code
is actually quite simple. The first step is to get a reference to the TextSelection object that represents the
selection from the RichTextBox.Selection property:

TextSelection selection = richTextBox.Selection;

The TextSelection object provides information about the start point and end point of the selection
(through the Start and End properties) and the selected content (through the Text and Xaml properties).
If nothing is selected, the RichTextBox.Selection property will still return a valid TextSelection object,
but its Text will be an empty string.

The TextSelection object also provides the two methods you need to manage formatting:
GetPropertyValue(), which tests the selection for a given formatting characteristic; and
ApplyPropertyValue(), which sets the new formatting you want. For example, if you want to make the
selected text bold, you simply need to manipulate the FontWeightProperty using ApplyPropertyValue():

selection.ApplyPropertyValue(Run.FontWeightProperty, FontWeights.Bold);

Similarly, you can use GetPropertyValue() to check whether the currently selected text is bold:

FontWeight currentBoldState;

189

CHAPTER 5 = ELEMENTS

190

currentBoldState = (FontWeight)selection.GetPropertyValue(Run.FontWeightProperty);

There’s one catch with this approach. If the selected text has mixed bold and normal text, the
GetPropertyValue() method returns DependencyProperty.UnsetValue instead of a FontWeight. It’s up to
you how you handle this case—typically, you'll either bold the entire selection (as this example does) or
do nothing at all.

The following code shows the complete code that underpins the Bold button (represented by the
button with the bold letter B in Figure 5-18). Depending on the selection, this code either applies or
removes bold formatting.

private void cmdBold Click(object sender, RoutedEventArgs e)
{

TextSelection selection = richTextBox.Selection;

// If no text is selected, treat it as a selection of normal text.
FontWeight currentState = FontlWleights.Normal;

// Try to get the bold state of the selected text.
if (selection.GetPropertyValue(Run.FontWeightProperty) !=
DependencyProperty.UnsetValue)

currentState =
(Fontleight)selection.GetPropertyValue(Run.FontWeightProperty);

}

if (currentState == Fontlleights.Normal)

{
}

else

{
}

// A nice detail is to bring the focus back to the text box, so the user
// can resume typing.
richTextBox.Focus();

selection.ApplyPropertyValue(Run.FontWeightProperty, FontWeights.Bold);

selection.ApplyPropertyValue(Run.FontWeightProperty, FontWeights.Normal);

Note You'll notice that this code doesn’t check for an empty selection. If no text is currently selected, clicking
the Bold button applies bold formatting to the insertion point, so that when the user starts typing, the new text will
be bold. Another possible approach is to enable the Bold button only when text is selected. You can manage the
state of the Bold button by responding to the RichTextBox.SelectionChanged event.

The code for the Italic and Underline buttons is virtually identical. The only difference is the
property it uses—instead of checking and setting FontWeight, these code routines use the FontStyle and
TextDecorations properties, respectively.

CHAPTER 5 = ELEMENTS

Saving and Opening Rich Text Files

If your application gives users the ability to edit rich text content, it’s highly likely that you need a way to
store the final result. Fortunately, the RichTextBox makes this easy. Although Silverlight doesn’t have any
built-in support for common rich text formats such as .rtf, .doc, or .docx, it does allow you retrieve its
fully formatted contents as a XAML document using the RichTextBox.Xaml property.

Here’s an example that copies the XAML markup to an ordinary text box so you can study it:

txtFlowDocumentMarkup.Text = richTextBox.Xaml;

Figure 5-19 shows the result.

& ™y
@ Elements - Windows Internet Explorer Lﬂ‘ﬂ&]

Lty 1@ D:\Code\Pro Silverlight 4\Chapter05\Elements\Bin\Debug\TestPage.html ~ ‘ +s | A |

>

{¢ Favorites | @ Flements - v [d® v Pagevw

New|_Open ||Save| | B

| 1| u| [show xamL|

Chapter 1 E

It was a bright cold day in April, and the clocks were striking thirteen. Winston Smith, his chin
nuzzled into his breast in an effort to escape the vile wind, slipped quickly through the glass doors
of Victory Mansions, though not quickly enough to prevent a swirl of gritty dust from entering
along with him.

The hallway smelt of boiled cabbage and old rag mats. At one end of it a coloured poster, too
large for indoor display, had been tacked to the wall. It depicted simply an enormous face, more | v

<Section xml;space="preserve” HasTrailingParagraphBreakOnPaste="False" xmins="http:// -
| schemas.microsoft.com/winfx/2006/xaml/presentation" > <Paragraph FontSize="20"
FontFamily="Portable User Interface” Foreground="#FF000000" FontWeight="Bold"
FontStyle="Normal" FontStretch="Normal” TextAlignment="Left"><Run Text="Chapter 1" /></
Paragraph=><Paragraph FontSize="11" FontFamily="Portable User Interface”
Foreground="#FF000000" FontWeight="Normal" FontStyle="Normal" FontStretch="Normal"
TextAlignment="Left"><Run Text="It was a bright cold day in April, and the clocks were striking
thirteen. Winston Smith, his chin nuzzled into his breast in an effort to escape the vile wind, -

Dot &) Internet | Protected Mode: On ¥a v ®|100% ~

L5 A

Figure 5-19. The XAML markup for a RichTextBox

The XAML document that’s exposed by the RichTextBox.Xaml property consists of the text elements
you learned about earlier (such as Section, Paragraph, and Run) and has the full formatting information
specified as attributes. Because you can store this XAML content in a simple string, it’s easy to use any
other technique you need to store it, such as submitting it to a web service that wraps a back-end
database (Chapter 19) or saving it in a simple text file (Chapter 22). But if you can’t wait to see the details,
check out the downloadable examples with this chapter, which allow you to save the content from a
RichTextBox to a file on your hard drive and open it later. (The trick is the straightforward SaveFileDialog
and OpenFileDialog classes, which you’ll consider in Chapter 22.)

191

CHAPTER 5 = ELEMENTS

192

Tip To clear the content in a RichTextBox, call RichTextBox.Blocks.Clear().

Using Interactive Elements in a RichTextBox

The RichTextBox stretches its capabilities beyond the display and editing of rich text content. It also
supports interactive elements, such as the Hyperlink.

The Hyperlink is an inline element that’s rendered as blue underlined text. It works in the same way
as the HyperlinkButton control discussed earlier in this chapter. Like the HyperlinkButton, the
Hyperlink can launch a web browser to show an external page (if you set the NavigateUrl property to an
absolute URL) or send a frame in your application to a new XAML page (if you set NavigateUrl to a
relative URL). Or, if you attach an event handler to the Click event, it can trigger a code routine that
performs any action you want. Here’s an example:

<RichTextBox Margin="5" x:Name="richText" IsReadOnly="True">
<Paragraph>
<Hyperlink Click="cmdDoSomething Click">Click this link.</Hyperlink>
</Paragraph>
</RichTextBox>

There’s one catch. The hyperlinks in your document are active only if you set the
RichTextBox.IsReadOnly property to true. Otherwise, the hyperlink looks the same, but it can’t be
clicked (although its text can be edited).

Tip Hyperlinks and other types of embedded controls don’t make much sense in in an editable document. But
they make perfect sense if you're showing some type of read-only content in the RichTextBox, such as product
documentation or company information.

The Hyperlink takes you to the very edge of what’s possible with the RichTextBox model of text
elements. However, the RichTextBox has a convenient back door that lets you embed any Silverlight
element alongside your rich text content. That back door is the InlineUIContainer, which hosts a full-
fledged Silverlight element. For example, you can use the InlineUIContainer to add a Button, CheckBox,
Image, or even a DataGrid to your RichTextBox. Here’s an example:

<RichTextBox Margin="5" x:Name="richText" IsReadOnly="True">
<Paragraph Foreground="DarkRed" FontFamily="Trebuchet MS" FontSize="22"
FontWeight="Bold">

<InlineUIContainer>
<Image Source="bookcover.jpg" Stretch="None"></Image>
</InlineUIContainer>
Chapter I
</Paragraph>
</RichTextBox>

CHAPTER 5 = ELEMENTS

Figure 5-20 shows the result. Note that inline elements are placed inline with the current text line, as
though they are ordinary characters. In other words, it’s not possible to have several lines of text wrap
around a large element like an Image.

p
€ Elements - Windows Internet Explorer =

Q u | £ D:\Code\Pro Silverlight 4\Chapter05'Elements\Bin\Debug\TestPage ~ | +» | X |

.7 Favorites & Elements _ v B -~ = om v Pagew

BTN

Charles Dickens|
| \’I‘:ifl' ¢||'

Two Cities

Chapter |

The Period

It was the best of times, it was the worst of times, it was the age of wisdom, it was

the age of foclishness, it was the epoch of belief, it was the epoch of incredulity, it

was the season of Light, it was the season of Darkness, it was the spring of hope, it

was the winter of despair, we had everything before us, we had nothing before us, we
were all going direct to Heaven, we were all going direct the other way--in short, the | =

& Internet | Protected Mode: On ¢a v H100% ~

- 7

Figure 5-20. Embedding an Image element in a RichTextBox

The InlineUIContainer has two important limitations. First, if you want the embedded element to
be interactive so that it can accept focus and receive input events, you must set the
RichTextBox.IsReadOnly property to true. If you don’t, the user will still see the element and will still be
able to edit the RichTextBox content—for example, the user will be able to delete the InlineUIContainer
element or add text around it. However, the user won’t be able to click it, type into it, or otherwise
interact with it. This is perfectly fine for an element like the Image but obviously less suitable for an
element like the Button.

The second limitation is that the InlineUIContainer isn’t represented in the document that’s
returned by RichTextBox.Xaml. This is a significant shortcoming, because it means you won'’t be able to
load a ready-made XAML document that includes InlineUIContainer objects. Instead, you'll be forced to
add them programmatically.

193

CHAPTER 5 = ELEMENTS

194

The RichTextBlock

Silverlight includes a specialized read-only version of the RichTextBox control called RichTextBlock. The
internal architecture and display capabilities of the RichTextBlock closely parallel the RichTextBox. The
difference is that the RichTextBlock control is designed to work in partnership with the
RichTextBlockOverflow control to help you create more sophisticated layouts.

The basic idea is simple—by using the RichTextBlock in combination with one or more linked
RichTextBlockOverflow controls, you can split a single long document into several pieces. You can then
arrange these pieces wherever you want in your page. Using this technique, you can quickly construct a
multicolumn text display. Or, with a little more effort, you can build a newspaper-like layout that runs
text around graphics and other display elements.

To understand how the overflow system works, imagine you have a RichTextBlock like this:

<RichTextBlock x:Name="richText"></RichTextBlock>

Right now, if you have more content than will fit in the display area of the RichTextBlock, the
RichTextBlock cuts off the text that doesn’t fit. But consider what happens if you add a
RichTextBlockOverflow control to your page:

<RichTextBlock x:Name="richText"></RichTextBlock>

<RichTextBlockOverflow x:Name="overflowl"></RichTextBlockOverflow>

And then link the RichTextBlock to the RichTextBlockOverflow using the OverflowContentTarget
property and an element binding expression (like the kind you saw in Chapter 2):

<RichTextBlock x:Name="richText"
OverflowContentTarget="{Binding ElementName=overflow1}"></RichTextBlock>

<RichTextBlockOverflow x:Name="overflowl"></RichTextBlockOverflow>

Now, if the RichTextBlock is constrained in size, and it has more content than it can fit, the extra will
leak into the linked RichTextBlockOverflow. The RichTextBlockOverflow can be anywhere in the same
page. And if you want to create a complex layout you can use multiple RichTextBlockOverflow controls.
You just need to use the OverflowContentProperty in each one to link to the next box in the sequence:

<RichTextBlockOverflow x:Name="overflow1"
OverflowContentTarget="{Binding ElementName=overflow2}"></RichTextBlockOverflow>

To see this behavior in action, you can build a simple example. The following markup creates a
three-column Grid. The leftmost column holds the RichTextBlock. The second and third columns hold a
RichTextBlockOverflow that catches the excess content:

<Grid x:Name="LayoutRoot" Background="White" Margin="15">
<Grid.ColumnDefinitions>
<ColumnDefinition></ColumnDefinitiony>
<ColumnDefinition></ColumnDefinition>
<ColumnDefinition></ColumnDefinition>
</Grid.ColumnDefinitions>

<RichTextBlock x:Name="richText"

OverflowContentTarget="{Binding ElementName=overflow1}"></RichTextBlock>
<RichTextBlockOverflow x:Name="overflow1" Grid.Column="1"
OverflowContentTarget="{Binding ElementName=overflow2}"></RichTextBlockOverflow>
<RichTextBlockOverflow x:Name="overflow2" Grid.Column="2"></RichTextBlockOverflow>

</Grid>

CHAPTER 5

ELEMENTS

Figure 5-21 shows the result. If the page is wide enough, all the content fits in the left column. But as

the user shrinks the browser window, the extra content gets added first to the second and then to the

third column.

)| &) pacoderprositverl © -+ € X |

@ Elements | |)LT'U\ ‘E/n\.?

lift. Even at the best of times it was
Chapter 1 seldom working, and at present the
It was a bright cold day in April, and glectric current was cut off during

the clocks were striking thirteen. daylight hours. It was part of the
Winston Smith, his chin nuzzled inte economy drive in preparation for Hate
his breast in an effort to escape the \yeek. The flat was seven flights up,
vile wind, slipped quickly through the and winston, who was thirty-nine and
glass doors of Victory Mansions, had a varicose ulcer above his right
though not quickly enough to prevent ankle, went slowly, resting several

a swirl of gritty dust from entering times on the way. On each landing,
along with him. opposite the lift-shaft, the poster with
The hallway smelt of boiled cabbage the enormous face gazed from the
and old rag mats. At one end of it @ yall, It was one of those pictures
coloured poster, too large for indoor which are so contrived that the eyes
display, had been tacked to the wall. fgllow you about when you move. BIG
It depicted simply an enormous face, BROTHER IS WATCHING YOU, the
more than a metre wide: the face of caption beneath it ran.

a man of about forty-five, with a

heavy black moustache and ruggedly

handsome features. Winston made

for the stairs. It was no use trying the

()| &) pACodePro Sitverl O ~ & X |

'@ Elements ‘

cabbage and old rag mats. At electric current was cut off
Chapter 1) ~ one end of it a coloured poster, during daylight hours. It was
It was a bright cold day in April, tgq large for indoor display, had part of the economy drive in

and the clocks were striking been tacked to the wall. It
thirteen. Winston Smith, his depicted simply an enormous

an effort to escape the vile the face of a man of about
wind, slipped quickly through farty-five, with a heavy black
the glass doors of Victory moustache and ruggedly
Mansions, though not quickly handsome features, Winston
enough to prevent a swirl of made for the stairs. It was no
gritty dust from entering along yse trying the lift. Even at the
with him. best of times it was seldom
The hallway smelt of boiled working, and at present the

chin nuzzled into his breast in face, more than a metre wide:

preparation for Hate Week. The
flat was seven flights up, and
Winston, who was thirty-nine
and had a varicose ulcer above
his right ankle, went slowly,
resting several times on the
way. On each landing, opposite
the lift-shaft, the poster with
the enormous face gazed from
the wall. It was one of those
pictures which are so contrived

#100% ~

Figure 5-21. Overflowing text into multiple columns

195

CHAPTER 5 = ELEMENTS

196

If the last RichTextBlockOverflow can’t handle the remaining content, it cuts off the end of your
document. Unfortunately, there’s no easy way to improve on this situation. You could wrap the
RichTextBlock and RichTextBlockOverflow controls in a ScrollViewer, but that would simply allow the
RichTextBlock in the first column to grow tall enough to fit the entire document, leaving the other two
columns blank. What this problem really needs is the sophistication of the WPF flow document model,
which Silverlight doesn’t support.

When working with overflow text, your main point of interaction (both in XAML and code) is the
RichTextBlock. You use the RichTextBlock.Blocks collection to set and manipulate the full content, and
to adjust its formatting. The RichTextBlockOverflow controls simply manage where that content is
displayed.

<RichTextBlock x:Name="richText"
OverflowContentTarget="{Binding ElementName=overflow1}">
<RichTextBlock.Blocks>
<Paragraph FontSize="20" FontWeight="Bold" ...>
<Run>Chapter 1</Run>

</Paragraph>

<Paragraph FontSize="11" ...>
<Run>It was a bright cold day in April, and the clocks were striking thirteen.
</Run>

</Paragraph>

</RichTextBlock.Blocks>
</RichTextBlock>

Once you've created a chain of RichTextBlockOverflow controls, you can get creative. For example,
you can use a more complex Grid to place an Image element in between RichTextBlockOverflow
controls. Or, if you're really ambitious, you can stack a number of RichTextBlockOverflow controls with
different, explicitly-set widths, to create a countoured edge. Compared to WPF’s support for flow
documents, it’s still a bit of kludge. For example, there are plenty of layout rules you'd need to create a
truly seamless, professional document display experience (like a way to keep headings together with the
subsequent text, prevent stray lines from being separated from a paragraph, manage hyphenation, and
so on. But it does give developers another useful tool.

Range-Based Controls

Silverlight includes three controls that use the concept of a range. These controls take a numeric value
that falls in between a specific minimum and maximum value. These controls—ScrollBar, Slider, and
ProgressBar—derive from the RangeBase class (which itself derives from the Control class). The
RangeBase class adds a ValueChanged event, a Tooltip property, and the range properties shown in
Table 5-6.

CHAPTER 5 = ELEMENTS

Table 5-6. Properties of the RangeBase Class

Name Description

Value This is the current value of the control (which must fall between the minimum and
maximum). By default, it starts at 0. Contrary to what you might expect, Value isn’t an
integer—it’s a double, so it accepts fractional values. You can react to the ValueChanged
event if you want to be notified when the value is changed.

Maximum This is the upper limit (the largest allowed value). The default value is 1.
Minimum This is the lower limit (the smallest allowed value). The default value is 0.

SmallChange This is the amount the Value property is adjusted up or down for a “small change.” The
meaning of a small change depends on the control (and may not be used at all). For the
ScrollBar and Slider, this is the amount the value changes when you use the arrow keys.
For the ScrollBar, you can also use the arrow buttons at either end of the bar. The default
SmallChange is 0.1.

LargeChange This is the amount the Value property is adjusted up or down for a “large change.” The
meaning of a large change depends on the control (and may not be used at all). For the
ScrollBar and Slider, this is the amount the value changes when you use the Page Up and
Page Down keys or when you click the bar on either side of the thumb (which indicates
the current position). The default LargeChange is 1.

Ordinarily, there’s no need to use the ScrollBar control directly. The higher-level ScrollViewer
control, which wraps two ScrollBar controls, is typically much more useful. (The ScrollViewer was
covered in Chapter 3.) However, the Slider and ProgressBar are more useful on their own.

The Slider

The Slider is a specialized control that’s occasionally useful. You might use it to set numeric values in
situations where the number itself isn’t particularly significant. For example, it makes sense to set the
volume in a media player by dragging the thumb in a slider bar from side to side. The general position of
the thumb indicates the relative loudness (normal, quiet, loud), but the underlying number has no
meaning to the user.

Here’s an example that creates the horizontal slider shown in Figure 5-22:

<Slider Orientation="Horizontal" Minimum="0" Maximum="10" Width="100" />

197

CHAPTER 5 = ELEMENTS

198

@ Silverlight Project Test .. \=iE)

(_J_J ~ |@ p:rcoderprosiweriy ~| ¢

A s

@ silverlight Project Test P... |

0

€ Internet | Protected Mc #,100% ~

. 4

Figure 5-22. A basic slider

Unlike WPF, the Silverlight slider doesn’t provide any properties for adding tick marks. However, as
with any control, you can change its appearance while leaving its functionality intact using the control
template feature described in Chapter 15.

The ProgressBar

The ProgressBar indicates the progress of a long-running task. Unlike the slider, the ProgressBar isn’t
user interactive. Instead, it’s up to your code to periodically increment the Value property. By default,
the Minimum value of a ProgressBar is 0, and the Maximum value is 100, so the Value corresponds to the
percentage of work done. You'll see an example with the ProgressBar in Chapter 6, with a page that
downloads a file from the Web and shows its progress on the way.

One neat trick that you can perform with the ProgressBar is using it to show a long-running status
indicator, even if you don’t know how long the task will take. You do this by setting the IsIndeterminate
property to true:

<ProgressBar Height="18" Width="200" IsIndeterminate="True"></ProgressBar>

When setting IsIndeterminate, you no longer use the Minimum, Maximum, and Value properties.
No matter what values these properties have, the ProgressBar will show a hatched pattern that travels
continuously from left to right. This pattern indicates that there’s work in progress, but it doesn’t provide
any information about how much progress has been made so far.

Date Controls

Silverlight adds two date controls, neither of which exists in the WPF control library. Both are designed
to allow the user to choose a single date.

The Calendar control displays a calendar that’s similar to what you see in the Windows operating
system (for example, when you configure the system date). It shows a single month at a time and allows
you to step through from month to month (by clicking the arrow buttons) or jump to a specific month
(by clicking the month header to view an entire year and then clicking the month).

The DatePicker requires less space. It’s modeled after a simple text box, which holds a date string in
long or short date format. However, the DatePicker provides a drop-down arrow that, when clicked,

pops open a full calendar view that’s identical to that shown by the Calendar control. This pop-up is

displayed overtop of any other content, just like a drop-down combo box.

Figure 5-23 shows the two display modes that the Calendar supports and the two date formats that

the DatePicker allows.

(@ Silverlight Project Test Page - Windows Internet Explorer

(2] &]

U ‘\J | @ D:\Code\Pro Silverlight\Chapter05\Elements\ClientBin\Te: + | 43 | X |

g 40 | @ Silveright Project TestP...

o

ELEMENTS

4 April, 2008 » (
Sun Mon Tue Wed Thu Fri Sat [
I 2 3 4 & 1 April, 2008 9

S WD R Sun Mon Tue Wed Thu Fri Sat

12 14 15 16 17 18 19 Sls o

20 21 22 23 24 [§3) 26 e S

& 28 e e 12 14 15 16 17 18 19
20, 21 22 28 24Ezs
27 28 25 30

4) »

Jan Feb Mar ‘ Apr i

May Jun Jul Aug

Sep Oct Nov Dec

& Internet | Protected Mode: On

H100% =

L

Figure 5-23. The Calendar and DatePicker

The Calendar and DatePicker include properties that allow you to determine which dates are shown

and which dates are selectable (provided they fall in a contiguous range). Table 5-7 lists the properties
you can use.

199

CHAPTER 5 = ELEMENTS

Table 5-7. Properties of the Calendar and DatePicker Classes

Property

Description

DisplayDateStart and
DisplayDateEnd

BlackoutDates

SelectedDate

SelectedDates

DisplayDate

FirstDayOfWeek

IsTodayHighlighted

DisplayMode
(Calendar only)

Sets the range of dates that are displayed in the calendar view, from the first,
earliest date (DisplayDateStart) to the last, most recent date (DisplayDateEnd).
The user won'’t be able to navigate to months that don’t have any displayable
dates. To show all dates, set DisplayDateStart to DateTime.MinValue and
DisplayDateEnd to DateTime.MaxValue.

Holds a collection of dates that will be disabled in the calendar and won’t be
selectable. If these dates are not in the range of displayed dates or if one of these
dates is already selected, you'll receive an exception. To prevent selection of any
date in the past, call the BlackoutDates.AddDatesInPast() method.

Provides the selected date as a DateTime object (or a null value if no date is
selected). It can be set programmatically by the user clicking the date in the
calendar or by the user typing in a date string (in the DatePicker). In the
calendar view, the selected date is marked by a shaded square, which is visible
only when the date control has focus.

Provides the selected dates as a collection of DateTime objects. This property is
supported by the Calendar, and it’s useful only if you've changed the
SelectionMode property to allow multiple date selection.

Determines the date that’s displayed initially in the calendar view (using a
DateTime object). If null, the SelectedDate is shown. If DisplayDate and
SelectedDate are both null, the current date is used. The display date
determines the initial month page of the calendar view. When the date control
has focus, a square outline is displayed around the appropriate day in that
month (which is different from the shaded square used for the currently selected
date).

Determines the day of the week that will be displayed at the start of each
calendar row, in the leftmost position.

Determines whether the calendar view uses highlighting to point out the current
date.

Determines the initial display month of the calendar. If set to Month, the
Calendar shows the standard single-month view. If set to Year, the Calendar
shows the months in the current year (similar to when the user clicks the month
header). Once the user clicks a month, the Calendar shows the full calendar view
for that month.

200

CHAPTER 5 = ELEMENTS

Property Description
SelectionMode Determines what type of date selections are allowed. The default is SingleDate,
(Calendar only) which allows a single date to be selected. Other options include None (selection

is disabled entirely), SingleRange (a contiguous group of dates can be selected),
and MultipleRange (any combination of dates can be selected). In SingleRange
or MultipleRange modes, the user can drag to select multiple dates or click while
holding down the Ctrl key. You can use the SelectedDates property to get a
collection with all the selected dates.

IsDropDownOpen Determines whether the calendar view drop-down is open in the DatePicker.
(DatePicker only) You can set this property programmatically to show or hide the calendar.

SelectedDateFormat Determines how the selected date will be displayed in the text part of the

(DatePicker only) DatePicker. You can choose Short or Long. The actual display format is based on
the client computer’s regional settings. For example, if you use Short, the date
might be rendered in the yyyy/mm/dd format or dd/mm/yyyy. The long format
generally includes the month and day names.

The date controls also provide a few different events. Most useful is SelectedDateChanged (in the
DatePicker) or the very similar SelectedDatesChanged (in the Calendar), which adds support for
multiple date selection. You can react to these events to reject specific date selections, such as dates that
fall on a weekend:

private void Calendar SelectedDatesChanged (object sender,
CalendarDateChangedEventArgs e)

// Check all the newly added items.
foreach (DateTime selectedDate in e.AddedItems)

if ((selectedDate.DayOfWeek == DayOflieek.Saturday) ||
(selectedDate.DayOfWeek == DayOflleek.Sunday))

1blError.Text = "Weekends are not allowed";

// Remove the selected date.
((Calendar)sender).SelectedDates.Remove(selectedDate);

You can try this with a Calendar that supports single or multiple selection. If it supports multiple
selection, try dragging the mouse over an entire week of dates. All the dates will remain highlighted
except for the disallowed weekend dates, which will be unselected automatically.

The Calendar also adds a DisplayDateChanged event (when the user browses to a new month). The
DatePicker adds CalendarOpened and CalendarClosed events (which fire when the calendar drop-down
is displayed and closed) and a DateValidationError event (which fires when the user types a value in the
text entry portion that can’t be interpreted as a valid date). Ordinarily, invalid values are discarded when
the user opens the calendar view, but here’s an option that fills in some text to alert the user of the
problem:

201

CHAPTER 5 = ELEMENTS

private void DatePicker DateValidationError(object sender,
DatePickerDateValidationErrorEventArgs e)

lblError.Text = "'" + e.Text +
"' is not a valid value because

+ e.Exception.Message;

The Last Word

In this chapter, you saw all the fundamental Silverlight elements. You considered several categories:

e The TextBlock, which allows you to display richly formatted text using built-in and
custom fonts

e The Image, which allows you to show JPEG and PNG images

e Content controls that can contain nested elements, including various types of
buttons and the ToolTip

e List controls that contain a collection of items, such as the ListBox, ComboBox,
and TabControl

e Text controls, including the standard TextBox, the PasswordBox, and the
AutoCompleteBox

e Range-based controls that take a numeric value from a range, such as the Slider

e The date controls, which allow the user to select one or more dates from a
calendar display

Although you haven’t had an exhaustive look at every detail of XAML markup, you've learned
enough to reap all its benefits. Now, your attention can shift to the Silverlight technology itself, which
holds some of the most interesting surprises. In the next chapter, you'll start out by considering the core
of the Silverlight application model: the Application class.

202

CHAPTER 6

The Application Model

Over the past five chapters, you've taken a detailed look at the different visual ingredients you can put

inside a Silverlight page. You've learned how to use layout containers and common controls and how to
respond to mouse and keyboard events. Now, it’s time to take a closer look at the Silverlight application
model—the scaffolding that shapes how Silverlight applications are deployed, downloaded, and hosted.

You'll begin by considering the life cycle of a Silverlight application. You'll examine the events that
fire when your application is created, is unloaded, or runs into trouble with an unhandled exception.
Next, you'll pick up a few practical techniques that help you extend your application beyond Silverlight’s
basic behavior. You'll see how to pass in initialization parameters, show a custom splash screen, and
break free from the confines of the browser to run your Silverlight application in a stand-alone
window—even when the client computer can’t get a network connection.

Finally, you'll explore the many options Silverlight provides for efficiently retrieving the large files
called binary resources, whether they're images, video, or other assemblies that your application
requires. You'll learn two strategies for dealing with resources: including them in your application
package for easy deployment and downloading them on demand to streamline performance.

The Application Class

In Chapter 1, you took your first look at the App.xaml file. Much as every XAML page is a template for a
custom class that derives from System.Windows.UserControl, the App.xaml file is a template for a
custom class (named App by default) that derives from System.Windows.Application. You'll find the
class definition in the App.xaml.cs file:

public partial class App : Application
{...}

When the Silverlight plug-in loads your application, it begins by creating an instance of the App
class. From that point on, the application object serves as your entry point for a variety of application-
specific features, including application events, resources, and services.

Accessing the Current Application

You can retrieve a reference to the application object at any time, at any point in your code, using the
static Application.Current property. However, this property is typed as a System.Windows.Application
object. To use any custom properties or methods that you've added to the derived application class, you
must cast the reference to the App type. For example, if you've added a method named DoSomething()
to the App.xaml.cs file, you can invoke it with code like this:

203

CHAPTER 6 = THE APPLICATION MODEL

((App)Application.Current).DoSomething();

This technique allows you to use your custom application class as a sort of switchboard for global
tasks that affect your entire application. For example, you can add methods to your application class
that control navigation or registration, and you can add properties that store global data. You'll see the
App class used this way in examples throughout this book.

Application Properties

Along with the static Current property, the Application class also provides several more members, as
described in Table 6-1.

Table 6-1. Members of the Application Class

Member Description

Host This property lets you interact with the browser and, through it,
the rest of the HTML content on the web page. It’s discussed in
Chapter 17.

Resources This property provides access to the collection of XAML resources

that are declared in App.xaml, as described in Chapter 2.

RootVisual This property provides access to the root visual for your
application—typically, the user control that’s created when your
application first starts. Once set, the root visual can’t be changed,
although you can manipulate the content in the root visual to
change what'’s displayed in the page. For example, if it’s the Grid
control, you can remove one or more of its current children and
insert new controls in their place. Chapter 7 demonstrates this

technique.
IsRunningOutOfBrowser and These properties let you recognize and monitor out-of-browser
InstallState applications. IsRunningOutOfBrowser indicates whether the

application is currently running out of the browser (true) or in the
browser window (false). InstallState provides a value from the
InstallState enumeration that indicates whether the current
application is installed as an out-of-process application on the
current computer (Installed), not installed (NotInstalled or
InstallFailed), or in the process of being installed (Installing).
You'll learn more about both properties when you consider out-
of-browser applications in Chapter 18.

ApplicationLifetimeObjects This property holds a collection of application extension services.
These are objects that provide additional respond to application
events, in much the same way as your event-handling code in the
Application class. The difference is that the code for an
application extension service is separated into its own class,
which makes it easier to reuse this code in more than one

204

CHAPTER 6 = THE APPLICATION MODEL

Member Description
Silverlight application.

Install() and These methods provide support for out-of-browser applications.

CheckAndDownloadUpdateAsync() The Install() method installs the current Silverlight application on
the client’s computer. The CheckAndDownloadUpdateAsync()
method launches an asynchronous process that checks the web
server for updates. If an updated version is found, it’s
downloaded and used the next time the user runs the application.

GetResourceStream() This static method is used to retrieve resources in code. You'll see
how to use it later in this chapter in the “Resources” section.

LoadComponent() This static method accepts a XAML file and instantiates the
corresponding elements (much as Silverlight does automatically
when you create a page class and the constructor calls the
InitializeComponent() method).

Along with these properties and methods, the Application object also raises events at various points
in the life cycle of your application. You'll explore these next.

Application Events

In Chapter 1, you took your first look at the life cycle of a Silverlight application. Here’s a quick review:
1. The user requests the HTML entry page in the browser.

2. The browser loads the Silverlight plug-in. It then downloads the XAP file that
contains your application.

3. The Silverlight plug-in reads the AppManifest.xml file from the XAP to find out
what assemblies your application uses. It creates the Silverlight runtime
environment and then loads your application assembly (along with any
dependent assemblies).

4. The Silverlight plug-in creates an instance of your custom application class
(which is defined in the App.xaml and App.xaml.cs files).

5. The default constructor of the application class raises the Startup event.

6. Your application handles the Startup event and creates the root visual object
for your application.

From this point on, your page code takes over, until it encounters an unhandled error
(UnhandledException) or finally ends (Exit). These events—Startup, UnhandledException, and Exit—are
the core events that the Application class provides. Along with these standards, the Application class
includes two events—InstallStateChanged and CheckAndDownloadUpdateCompleted—that are
designed for use with the out-of-browser applications you'll explore in Chapter 18.

205

CHAPTER 6 = THE APPLICATION MODEL

206

If you look at the contents of the App.xaml.cs file, you’ll see that in Visual Studio, the application
constructor contains some pregenerated code. This code attaches an event handler to the three
application events:

public App()
{

this.Startup += this.Application_Startup;
this.Exit += this.Application_Exit;
this.UnhandledException += this.Application_UnhandledException;

InitializeComponent();

As with the page and element events you've considered in earlier chapters, there are two ways to
attach application event handlers. Instead of using code, you can add event attributes to the XAML
markup, as shown here:

<Application ... x:Class="SilverlightApplication1.App"
Startup="Application_Startup" >

There’s no reason to prefer one approach to the other. By default, Visual Studio uses the code
approach shown first.
In the following sections, you'll see how you can write code that plugs into the application events.

Application Startup

By default, the Application_Startup method creates the first page and assigns it to the
Application.RootVisual property, ensuring that it becomes the top-level application element—the visual
core of your application:

private void Application Startup(object sender, StartupEventArgs e)

this.RootVisual = new MainPage();

Although you can change the root visual by adding or removing elements, you can’t reassign the
RootVisual property at a later time. After the application starts, this property is essentially read-only.

Initialization Parameters

The Startup event passes in a StartupEventArgs object, which includes one additional detail:
initialization parameters. This mechanism allows the page that hosts the Silverlight control to pass in
custom information. This is particularly useful if you host the same Silverlight application on different
pages or you want the Silverlight application to vary based on user-specific or session-specific
information. For example, you can customize the application’s view depending on whether users are
entering from the customer page or the employee page. Or, you may choose to load different
information based on the product the user is currently viewing. Just remember that the initialization
parameters come from the tags of the HTML entry page, and a malicious user can alter them.

CHAPTER 6 = THE APPLICATION MODEL

Note For more detailed interactions between the HTML and your Silverlight application—for example, to pass
information back and forth while your Silverlight application is running—see Chapter 17.

For example, imagine you want to pass a ViewMode parameter that has two possible values,
Customer or Employee, as represented by this enumeration:

public enum ViewMode

{
}

Customer, Employee

You need to change a variety of details based on this information, so it makes sense to store it
somewhere that’s accessible throughout your application. The logical choice is to add a property to your
custom application class, like this:

private ViewMode viewMode = ViewMode.Customer;
public ViewMode ViewMode

{

get { return viewMode; }

This property defaults to customer view, so it needs to be changed only if the web page specifically
requests the employee view.

To pass the parameter into your Silverlight application, you need to add a <param> element to the
markup in the Silverlight content region. This parameter must have the name initParams. Its value is a
comma-separated list of name-value pairs that set your custom parameters. For example, to add a
parameter named viewMode, you add the following line (shown in bold) to your markup:

<div id="silverlightControlHost">
<object data="data:application/x-silverlight,"
type="application/x-silverlight-2" width="100%" height="100%">
<param name="source" value="TransparentSilverlight.xap"/>
<param name="onerror" value="onSilverlightError" />
<param name="background" value="white" />
<param name="initParams" value="viewMode=Customer" />

</object>
<iframe style="visibility:hidden;height:0;width:0;border:0opx"></iframe>
</div>

Then, you can retrieve this from the StartupEventArgs.InitParams collection. However, you must
check first that it exists:

private void Application_Startup(object sender, StartupEventArgs e)

// Take the view mode setting, and store in an application property.
if (e.InitParams.ContainsKey("viewMode"))

{
string view = e.InitParams["viewMode"];
if (view == "Employee") this.viewMode = ViewMode.Employee;

207

CHAPTER 6 = THE APPLICATION MODEL

// Create the root page.
this.RootVisual = new Page();

}

If you have many possible values, you can use the following leaner code to convert the string to the
corresponding enumeration value, assuming the text matches exactly:

string view = e.InitParams["viewMode"];
try
{

this.viewMode = (ViewMode)Enum.Parse(typeof(ViewMode), view, true);

}
catch { }

Now, different pages are free to pass in a different parameter and launch your application with
different view settings. Because the view information is stored as a property in the custom application
class (named App), you can retrieve it anywhere in your application:

1blViewMode.Text = "Current view mode: " +
((App)Application.Current).ViewMode.ToString();

Figure 6-1 shows what you'll see when you run the test page that uses the Customer view mode.
(@ Silverlight Project Test Page - Windows Internet Expl...[i‘%

(_J{_J ~ | @ D:\Code\Pro Silverlight\Chaperd6\Applicat | 4] x|

>

n ! - -
I ‘@SilverlightprojectTestP...I ‘ N v o

Current view mode:
Customer

€D Internet | Protected Mode: On #100% ~

% ’

Figure 6-1. Displaying an initialization parameter

If you have more than one initialization parameter, pass them all in one comma-delimited string.
Initialization values should be made up of alphanumeric characters. There’s currently no support for
escaping special characters such as commas in parameter values:

208

CHAPTER 6 = THE APPLICATION MODEL

<param name="initParams" value="startPage=Pagel,viewMode=Customer" />

Now, the event handler for the Startup event can retrieve the StartPage value and use it to choose
the application’s root page. You can load the correct page using a block of conditional logic that
distinguishes between the available choices, or you can write a more general solution that uses reflection
to attempt to create the class with the requested name, as shown here:

UserControl startPage = null;
if (e.InitParams.ContainsKey("startPage"))

{
string startPageName = e.InitParams["startPage"];
try
{
// Create an instance of the page.
Type type = this.GetType();
Assembly assembly = type.Assembly;
startPage = (UserControl)assembly.CreateInstance(
type.Namespace + "." + startPageName);
catch
startPage = null;
}

// If no parameter was supplied or the class couldn't be created, use a default.
if (startPage == null) startPage = new MenuPage();

this.RootVisual = startPage;

Application Shutdown

At some point, your Silverlight application ends. Most commonly, this occurs when the user surfs to
another page in the web browser or closes the browser window. It also occurs if the users refreshes the
page (effectively abandoning the current instance of the application and launching a new one), if the
page runs JavaScript code that removes the Silverlight content region or changes its source, or if an
unhandled exception derails your code.

Just before the application is released from memory, Silverlight gives you the chance to run some
code by responding to the Application.Exit event. This event is commonly used to store user-specific
information locally in isolated storage (see Chapter 22) so it’s available the next time the user runs your
application.

The Exit event doesn’t provide any additional information in its event arguments.

Unhandled Exceptions

Although you should use disciplined exception-handling code in situations where errors are possible
(for example, when reading a file, downloading web content, or accessing a web service), it’s not always
possible to anticipate all sources of error. If your application encounters an error that isn’t handled, it
will end, and the Silverlight content region will revert to a blank space. If you've included JavaScript code
that reacts to potential errors from the Silverlight plug-in, that code will run. Otherwise, you won'’t
receive any indication about the error that’s just occurred.

209

CHAPTER 6 = THE APPLICATION MODEL

210

The Application.UnhandledException event gives you a last-ditch chance to respond to an
exception before it reaches the Silverlight plug-in and terminates your application. This code is notably
different from the JavaScript error-handling code that you may add to the page, because it has the ability
to mark an exception as handled. Doing so effectively neutralizes the exception, preventing it from rising
to the plug-in and ending your application.

Here’s an example that checks the exception type and decides whether to allow the application to
continue:

public void Application UnhandledException(object sender,
ApplicationUnhandledExceptionEventArgs e)

if (e.ExceptionObject is FileNotFoundException)

// Suppress the exception and allow the application to continue.
e.Handled = true;

Ideally, an exception like this should be handled closer to where it occurs—for example, in your
page code, when you're performing a task that may result in a FileNotFoundException. Application-level
error handling isn’t ideal, because it’s difficult to identify the original process that caused the problem
and it’s awkward to notify the user about what went wrong. But application-level error handling does
occasionally offer a simpler and more streamlined way to handle certain scenarios—for example, when a
particular type of exception crops up in numerous places.

After you've neutralized the error, it makes sense to notify the user. One option is to call a custom
method in your root visual. For example, this code calls a custom ReportError() method in the MainPage
class, which is the root visual for this application:

MainPage rootPage = (MainPage)this.RootVisual;
rootPage.ReportError(e.ExceptionObject);

Now the MainPage.ReportError() method can examine the exception object and display the
appropriate message in an element on the page.

In an effort to make your applications a little more resilient, Visual Studio adds a bit of boilerplate
error-handling code to every new Silverlight application. This code checks whether a debugger is
currently attached (which indicates that the application is running in the Visual Studio debug
environment). If there’s no debugger, the code handles the error (rendering it harmless) and uses the
HTML interoperability features you'll learn about in Chapter 17 to raise a JavaScript error in its place.
Here’s the slightly simplified code that shows how the process works:

public void Application_UnhandledException(object sender,
ApplicationUnhandledExceptionEventArgs e)

if (!System.Diagnostics.Debugger.IsAttached)
{

// Suppress the exception and allow the application to continue.
e.Handled = true;

try
// Build an error message.

string errorMsg = e.ExceptionObject.Message +
e.ExceptionObject.StackTrace;

CHAPTER 6 = THE APPLICATION MODEL

errorMsg = errorMsg.Replace('"', '\'"').Replace("\r\n", @"\n");

// Use the Window.Eval() method to run a line of JavaScript code that
// will raise an error with the error message.
System.Windows.Browser.HtmlPage.Window.Eval(
“throw new Error(\"Unhandled Error in Silverlight 2 Application " +
errorMsg + "\");");

}
catch {}

Essentially, this code converts a fatal Silverlight error to a relatively harmless JavaScript error. The
way the JavaScript error is dealt with depends on the browser. In Internet Explorer, a yellow alert icon
appears in the status bar. (Double-click the alert icon to get the full error details, as shown in Figure 6-2.)
In Firefox, a script error message appears. Either way, the error won’t stop your application from
continuing.

,’é Silverlight Project Test Page - Windows Internet Explorer i_‘:‘_.l_@_ig

(_J(_J - |@ D:\Code\Pro Siveriight 2\ApplicationParameters\Bin\Debug\TestPagehtml v | 45 | X |

A I - 5 = »
L ‘féSiIvedighthjectTﬁtPage ! | fip v o= v :rPage v () Tools v

Even though an unhandled exception has occurred, this message still appears,
because the Application.UnhandledException event intercepts it.

& | Internet Explorer ﬁ

/ Problems with this Web page might prevent it from being displayed propedy
! or functioning propery. In the future, you can display this message by
{ double-clicking the waming icon displayed in the status bar.

[Always display this message when a page contains emors.

[TTTOK | | Hide Details << |

Line: 1

Char: 1 |

Emor: Unhandled Error in Silverlight 2 Application Unable ta find the specified
file. at ApplicationParameters. App.Application_Startup(Object sender,
SIaltEpE_ver!bf‘-\fg:f) = 5 -

w o Vo o) oo e

] »

L% #)

4NDone € Internet | Protected Mode: On H100% -

\

Figure 6-2. A JavaScript error that represents an unhandled Silverlight exception

When you finish developing your application, you need to tweak the automatically generated error-
handling code. That’s because it isn’t acceptable to indiscriminately ignore all errors—doing so allows
bugs to flourish and cause other usability problems or data errors further down the road. Instead,

211

CHAPTER 6 = THE APPLICATION MODEL

212

consider selectively ignoring errors that correspond to known error conditions and signaling the
problem to the user.

Caution It’s easy to forget that you need to tweak the Application.UnhandledException event handler, because
it springs into action only when you run your Silverlight application without a debugger. When you're testing your
application in Visual Studio, you don’t see this behavior—instead, any unhandled exception ends the application
immediately.

Custom Splash Screens

If a Silverlight application is small, it downloads quickly and appears in the browser. If a Silverlight
application is large, it may take a few seconds to download. As long as your application takes longer than
500 milliseconds to download, Silverlight shows an animated splash screen.

The built-in splash screen isn’t too exciting—it displays a ring of blinking circles and the percentage
of the application that’s been downloaded so far (see Figure 6-3).

- R
& Test Page For SplashScreen - Windows Internet Explorer | =HEE ﬁ
W/ I;_EA http://localhost:12909/SplashScreen_Web/SplashScreenTestPage.aspx ~ | *s | X |

M n\ C o y 2o »

4 4af | 48 Test Page For SplashScreen &) v &= v |+ Page v {J Tools »

n [# €D Internet | Protected Mode: On +.100% ~

Figure 6-3. The built-in Silverlight splash screen

If you don’t like the stock splash screen, you can easily create your own (see Figure 6-4). Essentially,
a custom splash screen is a XAML file with the graphical content you want to display and a dash of
JavaScript code that updates the splash screen as the application is downloaded. You can’t use C# code
at this point, because the Silverlight programming environment hasn’t been initialized yet. However,

CHAPTER 6 = THE APPLICATION MODEL

this isn’t a major setback, because the code you need is relatively straightforward. It lives in one or two
event-handling functions that are triggered as content is being downloaded and after it’s finished,
respectively. And because JavaScript is syntactically similar to C#, you won’t have much trouble putting
together the code you need.

@ Silverlight Project Test Page - Windows Internet Explorer h_lglﬁ
L, |g http://localhost:12909/SplashScreen_Web/SplashScreenTestPage.html - | 44 | X |
Y% it | @ sSiverlight Project Test Page | f ~ d= v [} Page v & Teols v

77% downloaded ...

Done [# € Internet | Protected Mode: On +100% ~

Figure 6-4. A custom splash screen

The XAML file for your splash screen can’t be part of your Silverlight XAP file. That’s because the
splash screen needs to be shown while the XAP file is still in the process of being downloaded. For that
reason, the splash screen XAML must be a separate file that’s placed alongside your XAP file at the same
web location.

Note Testing a custom splash screen requires some work. Ordinarily, you don’t see the splash screen during
testing because the application is sent to the browser too quickly. To slow down your application enough to see
the splash screen, you need to first ensure that you’re using an ASP.NET test website, which ensures that your
Silverlight application is hosted by Visual Studio test web server (as described in Chapter 1). Then, you need to add

213

CHAPTER 6 = THE APPLICATION MODEL

214

multiple large resource files to your Silverlight project—say, a handful of MP3 files—and set the build action of
each one to Resource so it’s added to the XAP file. Another trick is to temporarily remove the line of code in the
Application_Startup() method that sets the root visual for your application. This way, after your application has
been completely downloaded, it won’t display anything. Instead, the splash screen will remain visible, displaying a
progress percentage of 100%.

To create the example shown in Figure 6-4, begin by creating a new Silverlight project with an
ASP.NET test website, as described in Chapter 1. Then, add a new XAML file to your ASP.NET website
(not the Silverlight project). To do so, select the ASP.NET website in the Solution Explorer, and choose
Website 7 Add New Item. Choose the Silverlight group, and select the Silverlight JScript page template.
Then enter a name and click Add. This XAML file will hold the markup for your splash screen.

When you add a new XAML file, Visual Studio creates a basic XAML skeleton that defines a Canvas.
That’s because Visual Studio assumes you're building a Silverlight 1.0 application, which supports a
much smaller set of elements and doesn’t include any of the more advanced layout containers. But you
can use any of the core Silverlight elements—that is, elements that are in the built-in assemblies and
don’t require a separate download. You can’t use elements that are defined in the add-on
System.Windows.Controls.dll assembly or those in any other assembly that needs to be packaged in the
XAP and downloaded by the client.

Tip The easiest way to build a simple splash screen is to create it in your Silverlight project and then copy the
markup into the splash screen file on your website. This way, you can take advantage of the Visual Studio design
surface and XAML IntelliSense, which won’t be available if you write the markup directly in your ASP.NET website.

Here’s the XAML for the splash screen shown in Figure 6-4. It includes a Grid with a TextBlock and
two Rectangle elements. (Rectangle is a shape-drawing element you’ll learn about in Chapter 8.) The
first rectangle paints the background of the progress bar, and the second paints the foreground. The two
Rectangle objects are placed together in a single-celled grid so that one rectangle is superimposed over
the other:

<Grid xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
<StackPanel VerticalAlignment="Center">
<Grid>
<Rectangle x:Name="progressBarBackground" Fill="White" Stroke="Black"
StrokeThickness="1" Height="30" Width="200"></Rectangle>
<Rectangle x:Name="progressBar" Fill="Yellow" Height="28" Width="0">
</Rectangle>
</Grid>
<TextBlock x:Name="progressText" HorizontalAlignment="Center"
Text="0% downloaded ..."></TextBlock>
</StackPanel>
</Grid>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 6 = THE APPLICATION MODEL

Next, you need to add a JavaScript function to your HTML entry page or ASP.NET test page. (If you
plan to use both, place the JavaScript function in a separate file and then link to it in both files, using the
source attribute of the script block.) The JavaScript code can look up named elements on the page using
the sender.findName() method and manipulate their properties. It can also determine the current
progress using the eventArgs.progress property. In this example, the event-handling code updates the
text and widens the progress bar based on the current progress percentage:

<script type="text/javascript">
function onSourceDownloadProgressChanged(sender, eventArgs)

sender.findName("progressText").Text =

Math.round((eventArgs.progress * 100)) + "% downloaded ...";
sender.findName("progressBar").Width =

eventArgs.progress * sender.findName("progressBarBackground").Width;

</script>

Note The splash-screen example that’s included with the downloadable code uses a slightly more advanced
technique that draws on a transform, a concept you'll explore in Chapter 8. This approach allows you to create a
progress-bar effect without hard-coding the maximum width, so the progress bar is sized to fit the current
browser window.

To use this splash screen, you need to add the splashscreensource parameter to identify your XAML
splash screen and the onsourcedownloadprogresschanged parameter to hook up your JavaScript event
handler. If you want to react when the download is finished, you can hook up a different JavaScript event
handler using the onsourcedownloadcomplete parameter:

<object data="data:application/x-silverlight," type="application/x-silverlight-2"
width="100%" height="100%">

<param name="source" value="ClientBin/SplashScreen.xap"/>

<param name="onerror" value="onSilverlightError" />

<param name="background" value="white" />

<param name="splashscreensource" value="SplashScreen.xaml" />

<param name="onsourcedownloadprogresschanged"

value="onSourceDownloadProgressChanged" /»

</object>

Expert designers can craft elaborate splash screens. This tradition is well-established with Flash
applications. To see a taste of what’s possible, visit www.smashingmagazine.com/2008/03/13/showcase-of-
creative-flash-preloaders. You can duplicate many of these effects with an ordinary Silverlight splash
screen, like the one described here. However, some are extremely difficult. Most would be far easier to
achieve after you've downloaded your application, such as code-heavy animations.

If you want more flexibility to create an eye-catching splash screen, you need to use a completely
different technique. Make your application as small as possible. Move its functionality to class-library

assemblies, and place large resources (such as graphics and videos) in separate files or in separate class-
library assemblies. Now that your application is stripped down to a hollow shell, it can be downloaded

215

http://www.smashingmagazine.com/2008/03/13/showcase-of-creative-flash-preloaders
http://www.smashingmagazine.com/2008/03/13/showcase-of-creative-flash-preloaders
http://www.smashingmagazine.com/2008/03/13/showcase-of-creative-flash-preloaders

CHAPTER 6 = THE APPLICATION MODEL

216

quickly. After it's downloaded, your application can show its fancy preloader and start the real work—
programmatically downloading the resources and assemblies it needs to function.

Designing an application this way takes more work, but you'll get all the information you need to
perform dynamic downloads in the following sections. Pay particular attention to the “Downloading
Assemblies on Demand” section later in this chapter.

Binary Resources

As you learned in Chapter 1, a Silverlight application is actually a package of files that’s archived using
ZIP compression and stored as a single file, with the extension .xap. In a simple application, the XAP file
has little more than a manifest (which list the files your project uses) and your application assembly. But
you can place something else in the XAP file: resources.

A XAP resource is a distinct file that you want to make available to your compiled application.
Common examples include graphical assets—images, sounds, and video files that you want to display in
your user interface.

Using resources can be unnecessarily complicated because of the wealth of different options
Silverlight provides for storing them. Here’s a quick roundup of your options:

e Inthe application assembly. The resource file is embedded in the compiled DLL
file for your project, such as SilverlightApplicationl.dll. This is the default
approach.

e Inthe application package: The resource file is placed in the XAP file alongside
your application assembly. It’s just as easy to deploy, but now it’s easier to
manage because you replace or modify your assets by editing the XAP file, without
compiling your application.

e On thesite of origin: The resource file is placed on the website alongside your XAP
file. Now you have more deployment headaches, because you need to make sure
you deploy both the XAP file and the resource file. However, you gain the ability to
use your resource in other ways—for example, you can use images in ordinary
HTML web pages or make videos available for easy downloading. You can reduce
the size of the initial XAP download, which is important if the resources are large.

These aren’t all your options. As you'll see later in this chapter in the “Class Library Assemblies”
section, you can also place resources in other assemblies that your application uses. (This approach
gives you more advanced options for controlling the way you share content between different Silverlight
applications.) But before tackling that topic, it’s worth taking a closer look at the more common options
outlined previously. In the following sections, you'll explore each approach.

Note Binary resources shouldn’t be confused with the XAML resources you explored in Chapter 2. XAML
resources are objects that are declared in your markup. Binary resources are non-executable files that are inserted
into your assembly or XAP file when your project is compiled.

CHAPTER 6 = THE APPLICATION MODEL

Placing Resources in the Application Assembly

This is the standard approach, and it’s similar to the approach used in other types of .NET applications
(such as WPF applications). For example, if you want to show an image in Silverlight’s Image element,
begin by adding the image file to your project. By default, Visual Studio gives image files the Resource
build action, as shown in Figure 6-5. (To change the build action of an existing file, select it in the
Solution Explorer, and make a new selection in the Build Action box in the Properties pane.)

"Solutiun Explorer v I x '3

MY
IE Resources

- [=d] Properties

|- == References

(=] App.xaml

"] gr=ndpiano.jpg

| Pagexaml

|

(=} Page2.xaml

®--B-5

B

gi:_l Solution Explorer |23 Class View ‘

Properties - I X|

grandpiano.jpg File Properties -

Build Action Resource
Copy to Outpu De not copy
Custom Tool

Custom Tool M

File Name grandpiano.jpg

Full Path D:\Code\Pro Silverl|

Build Action
How the file relates to the build and
deployment processes.

Figure 6-5. An application resource

Note Don’t confuse the build action of Resource with Embedded Resource. Although both do the same thing
(embed a resource in the assembly as a block of binary data), Silverlight doesn’t support the Embedded Resource
approach, and you can’t reference files that are stored in this way using URIs.

217

CHAPTER 6 = THE APPLICATION MODEL

218

Now, when you compile your application, the resource will be embedded in the project assembly,
and the project assembly will be placed in the XAP file.

Note Although the resource option makes it most difficult for a user to extract a resource file from your
application, it’s still possible. To retrieve a resource, the user needs to download the XAP file, unzip it, and
decompile the DLL file. Tools like Reflector (http://reflector.red-gate.com) provide plug-ins that can extract
and save embedded resources from an assembly.

Using an embedded resource is easy because of the way Silverlight uses URISs. If you use a relative
URI with the Image (for graphics) or MediaElement (for sound and video files), Silverlight checks the
assembly for a resource with the right name. That means this is all you need to use the resource shown
in Figure 6-5:

<Image Source="grandpiano.jpg"></Image>

Using Subfolders

It’s possible to use the folders to group resource files in your project. This changes how the resource is
named. For example, consider Figure 6-6, which puts the grandpiano.jpg file in a subfolder named
Images.

Solution Explorer \E\

LE Resources
+- [=d Properties

- [:3] References

- B Images

L
i (e Appxaml

o [#| Pagexaml

o [Pagelxaml

Figure 6-6. A resource in a subfolder

Now, you need to use this URI:

<Image Source="Images/grandpiano.jpg"></Image>

http://reflector.red-gate.com

CHAPTER 6 = THE APPLICATION MODEL

Programmatically Retrieving a Resource

Using resources is easy when you have an element that supports Silverlight’s URI standard, such as
Image or MediaElement. However, in some situations, you need to manipulate your resource in code
before handing it off to an element, or you may not want to use an element at all. For example, you may
have some static data in a text or binary file that’s stored as a resource. In your code, you want to retrieve
this file and process its data.

To perform this task, you need the help of the Application.GetResourceStream() method. It allows
you to retrieve the data for a specific resource, which you indicate by supplying the correct URIL The
trick is that you need to use the following URI format:

AssemblyName ; component/ResourceFileName

For example, if you have a resource named ProductList.bin in a project named
SilverlightApplicationl, you use this line of code:

StreamResourceInfo sri = Application.GetResourceStream(
new Uri("SilverlightApplicationi;component/ProductlList.bin", UriKind.Relative));

The GetResourceStream() method doesn’t retrieve a stream. Instead, it gets a
System.Windows.Resources.StreamResourcelnfo object, which wraps a Stream property (with the
underlying stream) and a ContentType property (with the MIME type). Here’s the code that creates a
BinaryReader object for the stream:

BinaryReader reader = new BinaryReader(sri.Stream);

You can now use the methods of the binary reader to pull each piece of data out of the file. The same
approach works with StreamReader (for text-based data) and XmlReader (for XML data). But you have a
slightly easier option when XML data is involved, because the XmlReader.Create() method accepts either
a stream or a URI string that points to a resource. So, if you have a resource named ProductList.xml, this
code works:

StreamResourceInfo sri = Application.GetResourceStream(
new Uri("SilverlightApplicationi;component/ProductList.xml", UriKind.Relative));
XmlReader reader = XmlReader.Create(sri.Stream, new XmlReaderSettings());

So does this more streamlined approach:

XmlReader reader = XmlReader.Create("ProductlList.xml")

Placing Resources in the Application Package

Your second option for resource storage is to place it in the XAP file where your application assembly is
stored. To do this, you need to add the appropriate file to your project and change the build action to
Content. Best of all, you can use almost the same URLs. Just precede them with a forward slash, as
shown here:

<Image Source="/grandpiano.jpg"></Image>
Similarly, here’s a resource in a subfolder in the XAP:
<Image Source="/Images/grandpiano.jpg"></Image>

The leading slash represents the root of the XAP file.
If you add the extension .zip to your XAP file, you can open it and verify that the resource file is
stored inside, as shown in Figure 6-7.

219

CHAPTER 6 = THE APPLICATION MODEL

220

(SEIE)

\./\J | 1, « Resources.... - ‘ ‘7| Search

‘ Organize v S Views v _I Extract all files

Name Size

=] AppManifestxaml 1KB

|i=| grandpiano.jpg 11 KB

|2 ProductListxml 1KB

%/ Resources.dll 7KB

% System.Windows.Controls.dll 192 KB

— grandpiano.jpg Compressed size: 16.0 KB

. 4

Figure 6-7. A resource in a XAP file

Placing resources in the XAP file gives you the same easy deployment as embedding them in the
assembly. However, it adds a bit of flexibility. If you're willing to do a little more work, you can
manipulate the files in the XAP file (for example, updating a graphic) without recompiling the
application. Furthermore, if you have several class library assemblies in the same XAP file, they can all
use the same resource files in the XAP. (This is an unlikely arrangement but a possible one.) Overall,
placing resources in the application package is a similar approach to embedding them in the assembly.

Placing Resources on the Web

Your third option is to remove resource files from your application but make them available on the Web.
That way, your application can download them when needed. Thanks to Silverlight’s URI support, you
can usually use this scenario without writing any extra code to deal with the download process.

The simplest option when deploying resources on the Web is to place them in the same web
location as your Silverlight assembly. If you're using an ASP.NET test website, you can easily add a
resource file to the test website—just place it in the ClientBin folder where the XAP file is located. If
you're using an HTML test page, the easiest option is to tell Visual Studio to copy your resource file to
the build location. To do so, begin by adding the resource file to your Silverlight project. Then, select the
resource file and choose None for the build action, so it won’t be compiled into the XAP. Finally, set the
Copy to Output Directory setting to Copy Always.

When using web resources, you use the same URIs as when placing resources in the application
package. These are relative URIs prefaced with a forward slash. Here’s an example:

<Image Source="/grandpiano.jpg"></Image>

CHAPTER 6 = THE APPLICATION MODEL

Silverlight checks the XAP file first and then checks the folder where the XAP file is located. Thus,
you can freely switch between the XAP file approach and the website approach after you've compiled an
application—you just need to add or remove the resource files in the XAP file.

Web-deployed resources don’t need to be located at the same site as your XAP file, although that’s
the most common approach. If you use an absolute URL, you can show an image from any location:

<Image Source="http://www.mysite.com/Images/grandpiano.jpg"></Image>

Note When you're testing an application that uses images with absolute URLs, a small glitch can creep in. The
problem is that the Image element can’t perform cross-scheme access, which means that if you’re running
Silverlight directly from your hard drive using a simple HTML test page, you can’t retrieve an image from the Web.
To resolve this problem, add an ASP.NET test website to your project, as described in Chapter 1.

Web-deployed resources are treated in a significantly different way in your application. Because
they aren’t in the XAP file (either directly or indirectly, as part of the assembly), they aren’t compressed.
If you have a large, easily compressed file (say, XML data), this means the web-deployed option results in
longer download times, at least for some users. More significant is the fact the web-deployed resources
are downloaded on demand, when they’re referenced in your application. Thus, if you have a significant
number of large resources, web deployment is often much better—it trades a long delay on startup for
many smaller delays when individual resources are accessed.

Note The obvious disadvantage with all of these resource-storing approaches is that they require fixed,
unchanging data. In other words, there’s no way for your application to modify the resource file and then save the
modified version in the assembly, XAP file, or website. (In theory, the last option—website uploading—could be
made possible, but it would create an obvious security hole.) The best solution when you need to change data is to
use isolated storage (if storing the changed data locally is a good enough solution) or a web service (if you need a
way to submit changes to the server). These approaches are discussed in Chapter 22 and Chapter 19,
respectively.

Failing to Download Resources

When you use web-deployed resources, you introduce the possibility that your resources won’t be where
you expect them to be and that you won’t be able to download them successfully. Elements that use the
URI system often provide events to notify when a download can’t be completed, such as ImageFailed for
the Image and MediaFailed for the MediaElement.

Failing to download a resource isn’t considered a critical error. For example, if the Image element
fails to find the right picture, it simply remains blank. But you can react to the corresponding failure
event to update your user interface.

221

CHAPTER 6 = THE APPLICATION MODEL

222

Downloading Resources with WebClient

You can’t access web-deployed resources using the handy Application.GetResourceStream() method. As
aresult, if you want to use the data from a web-deployed resource and you don’t have an element that
uses Silverlight URIs, you’'ll need to do more work.

In this situation, you need to use the System.Net.WebClient class to download the resource. The
WebClient class provides three key methods. OpenReadAsync() is the most useful—it downloads a file as
blob of binary data, which is then exposed as a stream. By comparison, DownloadStringAsync()
downloads the contents into a single string. Finally, CancelAsync() halts any download that’s currently
underway.

WebClient does its work asynchronously. You can respond to the DownloadProgressChanged event
while the download is underway to find out how many bytes have been retrieved so far. When the
download is complete, you can respond to the OpenReadCompleted or DownloadStringCompleted
event, depending on which operation you're using, and then retrieve your content.

WebClient has the following important limitations:

o Itdoesn’t support downloading from the file system: To use the WebClient class,
you must be running your application through a web server. The easiest way to do
this in Visual Studio is to let Visual Studio create an ASP.NET website, which is
then hosted by the integrated web server (as described in Chapter 1). If you open
your Silverlight page directly from the file system, you'll get an exception when
you attempt to use the downloading methods in the WebClient.

e Itdoesn’t support relative URIs: To get the correct URI, you can determine the URI
of the current page and then add the relative URI that points to your resource.

e Itallows only one download at a time: If you attempt to start a second request
while the first is underway, you'll receive a NotSupportedException.

Note There’s one other issue: Silverlight’s security model. If you plan to use WebClient to download a file from
another web server (not the web server where your application is hosted), make sure that web server explicitly
allows cross-domain calls. Chapter 19 discusses this issue in detail.

Here’s an example that puts the pieces together. It reads binary data from the ProductList.bin file, as
you saw earlier. However, in this example, ProductList.bin is hosted on the website and isn’t part of the
XAP file or project assembly. (When you test this example using an ASP.NET website, you need to add
the ProductList.bin file to the ASP.NET website, not the Silverlight project. To see the correct setup, refer
to the downloadable examples for this chapter.)

When a button is clicked, the downloading process starts. Notice that string processing is at work
with the URI. To get the right path, you need to create a fully qualified URI using the current address of
the entry page, which you can retrieve from the Host property of the current Application object:

private void cmdRetrieveResource Click(object sender, RoutedEventArgs e)

{
// Construct the fully qualified URI.
// Assume the file is in the website root, one level above the ClientBin
// folder. (In other words, the file has been added to the root level

CHAPTER 6 = THE APPLICATION MODEL

// of the ASP.NET website.)

string uri = Application.Current.Host.Source.AbsoluteUri;
int index = uri.IndexOf("/ClientBin");

uri = uri.Substring(o, index) + "/ProductlList.bin";

// Begin the download.

WebClient webClient = new WebClient();
webClient.OpenReadCompleted += webClient_OpenReadCompleted;
webClient.OpenReadAsync(new Uri(uri));

Now, you can respond when the file has been completed and manipulate the downloaded data as a
stream:

private void webClient OpenReadCompleted (object sender,
OpenReadCompletedEventArgs e)

if (e.Error != null)

// (Add code to display error or degrade gracefully.)

}

else

{
Stream stream = e.Result;
BinaryReader reader = new BinaryReader(stream);
// (Now process the contents of the resource.)
reader.Close();

}

For simplicity’s sake, this code retrieves the resource every time you click the button. But a more
efficient approach is to store the retrieved data in memory so it doesn’t need to be downloaded more
than once.

The OpenReadCompletedEventArgs provides several pieces of information along with the Result
property. To determine whether the operation was cancelled using the CancelAsync() method, you can
check the Cancelled property, and if an error occurred, you can get the exception object from the Error
property. (In this situation, attempting to read the other properties of the
OpenReadCompletedEventArgs object will result in a TargetInvocationException.) You can also use an
overloaded version of the OpenReadAsync() method that accepts a custom object, which you can then
retrieve from the UserState property. However, this is of limited use, because WebClient allows only one
download at a time.

When you're downloading a large file, it’s often worth showing a progress indicator to inform the
user about what'’s taking place. To do so, attach an event handler to the DownloadProgressChanged
event:

webClient.DownloadProgressChanged += webClient_DownloadProgressChanged;

Here’s the code that calculates the percentage that’s been downloaded and uses it to set the value of
a progress bar and a text label:

private void webClient DownloadProgressChanged(object sender,
DownloadProgressChangedEventArgs e)

1b1Progress.Text = e.ProgressPercentage.ToString() + " % downloaded.";

223

CHAPTER 6 = THE APPLICATION MODEL

224

progressBar.Value = e.ProgressPercentage

Class Library Assemblies

So far, the examples you've seen in this book have placed all their code into a single assembly. For a
small or modest-sized Silverlight application, this straightforward design makes good sense. But it’s not
hard to imagine that you might want to factor out certain functionality and place it in a separate class
library assembly. Usually, you'll take this step because you want to reuse that functionality with more
than one Silverlight application. Alternatively, you may want to break it out it so it can be coded,
compiled, debugged, and revised separately, which is particularly important if that code is being created
by a different development team.

Creating a Silverlight class library is easy. It’s essentially the same process you follow to create and
use class library assemblies in ordinary .NET applications. First, create a new project in Visual Studio
using the Silverlight Class Library project template. Then, add a reference in your Silverlight application
that points to that project or assembly. The dependent assembly will be copied into the XAP package
when you build your application.

Using Resources in an Assembly

Class libraries give you a handy way to share resources between applications. You can embed a resource
in a class library and then retrieve it in your application. This technique is easy—the only trick is
constructing the right URIs. To pull a resource out of a library, you need to use a URI that includes the
application in this format:

/ClassLibraryName; component/ResourceFileName

This is the same format you learned about earlier, in the section “Programmatically Retrieving a
Resource,” but with one addition: now, the URI begins with a leading slash, which represents the root of
the XAP file. This URI points to the dependent assembly in that file and then indicates a resource in that
assembly.

For example, consider the ResourceClassLibrary assembly in Figure 6-8. It includes a resource
named happyface.jpg, and that file has a build action of Resource.

CHAPTER 6 = THE APPLICATION MODEL

Solution Explorer - Solution 'Resources’ (2 projects) @

[Solution 'Resources’ (2 projects)
= £ ResourceClassLibrary
: (- [=d Properties
- «3] References
L
= £ Resources
- [=d| Properties
= | References

o «3 mscorlib
-3 ResourceClassLibrary
L.« system
i @ System.Core
-3 System.Windows

i «3 System.Windows,Browser
‘o «3 System.Windows.Controls
----- -3 System.Windows.Controls.Extended
fe = System.Xml

- = Appxaml

- =« Pagexaml

Figure 6-8. A resource in a class library

Here’s an image file that uses the resource from the class library:

<Image Source="/ResourceClassLibrary;component/happyface.jpg"></Image>

Downloading Assemblies on Demand

In some situations, the code in a class library is used infrequently, or perhaps not at all for certain users.
If the class library contains a significant amount of code or (more likely) has large embedded resources
such as graphics, including it with your application will increase the size of your XAP file and lengthen
download times needlessly. In this case, you may want to create a separate component assembly—one
that isn’t downloaded until you need it. This scenario is similar to on-demand resource downloading.
You place the separate resource in a separate file outside of the XAP file but on the same website.

Before you use assembly downloading, you need to make sure the dependent assembly isn’t placed
in the XAP file. To do so, select the project reference that points to the assembly. In the Properties
window, set Copy Local to false. Next, make sure the assembly is copied to the same location as your
website. If you're using an ASP.NET test website, that means you must add the assembly to the ClientBin
folder in the test website. (You can’t try this example with a simple HTML test page, because WebClient
doesn’t work when you run a Silverlight application from the file system.)

225

CHAPTER 6 = THE APPLICATION MODEL

226

To implement on-demand downloading of assemblies, you need to use the WebClient class you saw
earlier, in conjunction with the AssemblyPart class. The WebClient retrieves the assembly, and the
AssemblyPart makes it available for downloading:

string uri = Application.Current.Host.Source.AbsoluteUri;

int index = uri.IndexOf("/ClientBin");

// In this example, the URI includes the /ClientBin portion, because we've
// decided to place the DLL in the ClientBin folder.

uri = uri.Substring(o, index) + "/ClientBin/ResourceClassLibrary.dll";

// Begin the download.

WebClient webClient = new WebClient ();
webClient.OpenReadCompleted += webClient_OpenReadCompleted;
webClient.OpenReadAsync(new Uri(uri));

When the assembly is downloaded, you use the AssemblyPart.Load() method to load it into the
current application domain:

private void webClient OpenReadCompleted (object sender,
OpenReadCompletedEventArgs e)

if (e.Error != null)

// (Add code to display error or degrade gracefully.)
}

else

AssemblyPart assemblypart = new AssemblyPart();
assemblypart.Load(e.Result);

After you've performed this step, you can retrieve resources from your assembly and instantiate
types from it. It’s as though your assembly was part of the XAP file from the start. You can try a
demonstration of this technique with the sample code for this chapter.

Once again, it’s important to keep track of whether you've downloaded an assembly so you don’t
attempt to download it more than once. Some applications daisy-chain assemblies: one application
downloads other dependent assemblies on demand, and these assemblies download additional
assemblies when they need them.

Tip If you attempt to use an assembly that hasn’t been downloaded, you’ll receive an exception. But the
exception won’t be raised to the code that is attempting to use the assembly. Instead, that code will be aborted,
and the exception will pass to the event handler for the Application.UnhandledException event. The exception is a
FileNotFoundException object, and the message includes the name of the missing assembly.

CHAPTER 6 = THE APPLICATION MODEL

Supporting Assembly Caching

As you learned in Chapter 1, assembly caching is a feature that allows Silverlight to download class
library assemblies and store them in the browser cache. This way, these assemblies don’t need to be
downloaded every time the application is launched.

Note A common misconception is that assembly caching replaces the on-demand assembly loading technique
that’s described in the previous section. However, both approaches have different effects. Assembly caching
reduces the startup time on repeat visits to the same application (or when running applications that share some of
the same functionality). On-demand assembly loading reduces the startup time on every visit, regardless of what’s
in the browser cache and whether the application has been used before. Assembly caching is particularly useful
with large, frequently used assemblies that your application is sure to use. On-demand assembly loading is
particularly useful for large, infrequently used assembly that your application may not need to download ever.

By default, the assemblies you build won’t support assembly caching. However, you can add this
support by satisfying two requirements. First, your assembly must have a strong name. Second, your
assembly needs a special type of XML file that describes its contents, called an .extmap.xml file. The
following sections walk you through both requirements, and you can refer to the downloadable code for
this chapter to assembly caching in action with a custom assembly.

The Strong Key Name

To support assembly caching, your class library assembly needs a strong name, which will uniquely
identify it in the browser cache and prevent naming conflicts. To create a strong key for your assembly,
follow these steps:

1. Double-click the Properties item in the Solution Explorer.
2. Click the Signing tab.

3. Select the “Sign the assembly” option.

4

In the “Choose a strong key name” list, choose <New...> to show the Create
Strong Name Key dialog box.

5. To finish creating your key, you'll need to supply a file name (like MyKey.snk)
and, optionally, a password.

6. Click OK. Visual Studio will create the new key file and add it to your class
library project.

This creates a strong key file and uses it for your assembly. From this point on, every time you
compile your project, Visual Studio uses the strong key to sign the final assembly.

Before you can continue to the next step, you need to know public key token of the key pair that’s
used to sign your assembly. Unfortunately, Visual Studio doesn’t provide an easy way to get this
information (at least not without a plug-in of some sort). Instead, you need to resort to the sn.exe

227

CHAPTER 6 = THE APPLICATION MODEL

228

command-line tool. First, choose Microsoft Visual Studio 2010 7 Visual Studio Tools 7 Visual Studio
Command Prompt. Once you've loaded the Visual Studio command prompt, change to the directory
that holds your key file. Then, run the following two commands (replacing MyKey.snk with the name of
your key):

sn -p MyKey.snk MyKey.bin
sn -t MyKey.bin

When you complete the second command, you'll see a message like this:

Microsoft (R) .NET Framework Strong Name Utility Version 3.5.30729.1
Copyright (c) Microsoft Corporation. All rights reserved.

Public key token is e6a351dca87c1032

The bold part is the piece of information you need for the next step: creating a .extmap.xml file for
your assembly.

The .extmap.xml File

The .extmap.xml file is an ordinary text file that holds XML content. It's named to match your assembly.
For example, if you have a class library assembly named CacheableAssembly.dll, you'll need to create a
file named CacheableAssembly.extmap.xml. The presence of this file tells Silverlight that your assembly
supports assembly caching.

To make life easy, you can add the .extmap.xml file to your class library project. Select it in the
Solution Explorer, and set Build Action to None and the Copy to Output Directory setting to “Copy
always.” This ensures that the file will be placed in the same directory as your assembly file when you
compile it. Figure 6-9 shows a class library with the appropriate .extmap.xml file.

CHAPTER 6 = THE APPLICATION MODEL

Solution Explorer - Solution 'AssemblyCach... v & X
[4 Solution ‘AssemblyCaching' (2 projects)

@ (& AssemblyCaching

B Gf. CacheableAssembly

: =d| Properties

+)- [+9 References

W= | CacheableAssembly.extmap.axmi
P

‘] Classl.cs

-

i)

= __:g MyKey.snk
;ngolution ExplorerE?gClass View |
Properties ~ 1 x
CacheableAssembly.extmap.xml File Properties ~

A=
Build Action None
Copy to Output Directo Copy always
Custom Tool MSBuild:MarkupCompilePad
Custom Tool Namespa
File Name CacheableAssembly.extmap
Full Path CA\Users\matthew\Desktop)\

Figure 6-9. The .extmap.xml file for CacheableAssembly.dll

The easiest way to create an .extmap.xml file is to take a sample (like the one shown next), and
modify it for your assembly. In the following listing, the details you need to change are in bold:

<?xml version="1.0"?>
<manifest xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">
<assembly>
<name>CacheableAssembly</name>
<version>1.0.0.0</version>
<publickeytoken>e6a351dca87c1032</publickeytoken>
<relpath>CacheableAssembly.dll</relpath>
<extension downloadUri="CacheableAssembly.zip" />
</assembly>
</manifest>

The name and version details are obvious, and they should match your assembly. The public key
token is the identifying fingerprint of the strong key that was used to sign your assembly, and you
collected it with the sn.exe tool in the previous section. The relative path (relpath) is the exact file name
of the assembly. Finally, the downloadUri attribute provides the most important piece of information—
it tells the application where to find the packaged, downloadable assembly.

229

http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema

CHAPTER 6 = THE APPLICATION MODEL

You have two options for setting downloadUri. The easiest approach is the one that’s used in the
previous example—simply supply a file name. When you switch on assembly caching in your
application, Visual Studio will take your class library assembly (in this case, CacheableAssembly.dll),
compress it, and place the compressed file (in this case, CacheableAssembly.zip) alongside the compiled
XAP file. As you saw in Chapter 1, this is the approach that Silverlight’s add-on assemblies use.

Note Although Visual Studio compresses your assembly using ZIP compression, it’s not necessary to use a file
name that ends with the extension .zip. If your web server requires a different extension, feel free to use that for
the downloadUri. And if you have use the same downloadUri file name for more than one assembly, Visual Studio
compresses all the assemblies into a single ZIP file.

Your other option is to use an absolute URI for the downloadUri:

<extension
downloadUri="http://www.mysite.com/assemblies/v1.0/CacheableAssembly.zip" />

In this case, Visual Studio won’t package up the assembly when you compile the application.
Instead, it expects you to have already placed the assembly at the web location you've specified. This
gives you a powerful way to share libraries between multiple applications. However, the download
location must be on the same domain as the Silverlight application, or it must explicitly allow cross-
domain access, as described in Chapter 19.

With the .extmap.xml file shown earlier, you're ready to use assembly caching. To try it, create an
application that uses your class library. Turn on assembly caching for your application by opening the
project properties and selecting the “Reduce XAP size by using application library caching” option.
Finally, build your application. If you check out the contents of your Debug folder, you'll find the
packaged up ZIP file for your assembly (as shown in Figure 6-10).

230

http://www.mysite.com/assemblies/v1.0/CacheableAssembly.zip

Solution Explorer - Solution 'AssemblyCaching’ (2 project...@

’_J Solution 'AssemblyCaching’ (2 projects)
| ~. (& AssemblyCaching
i [=d Properties
+)-] References
7 Bin
B Debug

' _} AssemblyCaching.dll
P % AssemblyCaching.pdb
1 AssemblyCaching.xap

% CacheableAssembly.dll

N i CacheableAssembly.extmap.xml
| & | - % CacheableAssembly.pdb

N R CocheablcAssembly.zip

[= Appxaml
| #- «| MainPage.xaml

?| o CacheableAssembly

Figure 6-10. The compressed assembly, ready for caching

The Last Word

CHAPTER 6

THE APPLICATION MODEL

In this chapter, you explored the Silverlight application model in detail. You reexamined the application
object and the events it fires. You learned how to pass initialization parameters from different web pages
and how to display a custom splash screen while your application is being downloaded. Finally, you
explored the resource system that Silverlight uses and considered the many options for deploying
resources and class libraries, from placing them alongside your assembly to downloading them only

when needed.

231

CHAPTER 7

Navigation

With the know-how you’ve picked up so far, you're ready to create applications that use a variety of
different controls and layouts. However, there’s still something missing: the ability to transition from
one page to another. After all, traditional rich-client applications are usually built around different
windows that encapsulate distinct tasks. To create this sort of application in Silverlight, you need a way
to move beyond the single-page displays you've seen so far.

You can use two basic strategies to perform page changes in a Silverlight application, and each one
has its proper place. The first option is to do it yourself by directly manipulating the user interface. For
example, you can use code to access the root visual, remove the user control that represents the first
page, and add another user control that represents a different page. This technique is straightforward,
simple, and requires relatively little code. It also gives you the ability to micromanage details such as
state management and to apply animated transition effects.

The second option is to use Silverlight’s navigation system, which revolves around two new
controls: Frame and Page. The basic idea is that a single frame container can switch between multiple
pages. Although this approach to navigation is really no easier than managing the user interface
manually, it provides a number of value-added features that would be extremely tedious to implement
on your own. These include meaningful URIs, page tracking, and integration with the browser’s history
list.

In this chapter, you'll start by learning the basic do-it-yourself method of navigation. Next, you’ll
take a quick detour to consider the ChildWindow class, which gives you a straightforward way to
simulate a modal dialog box (a window that temporary blocks the current page but doesn’t replace it).
Finally, you'll step up to the Frame and Page controls and see how they plug into Silverlight’s built-in
navigation system.

Loading User Controls

The basic idea of do-it-yourself navigation is to programmatically change the content that’s shown in
the Silverlight page, usually by manipulating layout containers or content controls. Of course, you don’t
want to be forced to create and configure huge batches of controls in code—that task is easier to
complete using XAML. Instead, you need a way to create and load distinct user controls, each of which
represents a page, and each of which is prepared at design time as a separate XAML file.

In the following sections, you'll see two related variations of this technique. First, you'll see an
example that loads user controls into an existing page. This approach is best suited to user interfaces
that need to keep some common elements (for example, a toolbar at the top or information panel at the
side) as they load new content. Next, you'll see how to swap out the entire content of the current page.

233

CHAPTER 7 = NAVIGATION

234

Embedding User Controls in a Page

Many Silverlight applications are based around a single central page that acts as the main window for
the entire application. You can change part of this page to load new content and simulate navigation.

One example of this design is the menu page that’s used for most of the sample projects that
accompany this book. This page uses the Grid control to divide itself into two main sections (separated
by a horizontal GridSplitter). At the top is a list of all the pages you can visit. When you select one of the
items from this list, it’s loaded into the larger content region underneath, as shown in Figure 7-1.

& Elements - Windows Internet Explorer E@ﬁ

() | €] c\Matthew\Pro Silverlight 3\Code\Pro Silverlight 2\ ~ [42| x|

s Favorites | 53

@ Elements g v v [m v Pagevw

EmbeddedFont =
TextBlockWrapping

ImageSizing

VectorButton

RadioButtonGroups 5

BISERETASIETERY e
lines are a constant size thats based on
the TecttiockLineteight Property.

€ Internet | Protected Mode: On g v H10% ~

\ ’

Figure 7-1. A window that loads user controls dynamically

Dynamically loading a user control is easy—you simply need to create an instance of the
appropriate class and then add it to a suitable container. Good choices include the Border, ScrollViewer,
StackPanel, or Grid control. The example shown previously uses the Border element, which is a content
control that adds the ability to paint a border around its edges using the BorderBrush and
BorderThickness properties.

Here’s the markup (without the list of items in the list box):

<UserControl x:Class="Navigation.MenuPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:basics=
"clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls">
<Grid x:Name="LayoutRoot" Background="White" Margin="5">
<Grid.RowDefinitions>
<RowDefinition Height="*"></RowDefinition>

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 7 = NAVIGATION

<RowDefinition Height="Auto"></RowDefinition>
<RowDefinition Height="3*"></RowDefinition>
</Grid.RowDefinitions>

<ListBox Grid.Row="0" SelectionChanged="1stPages SelectionChanged">
</ListBox>

<basics:GridSplitter Grid.Row="1" Margin="0 3" HorizontalAlignment="Stretch"

Height="2"></basics:GridSplitter>

<Border Grid.Row="2" BorderBrush="SlateGray" BorderThickness="1"
x:Name="borderPlaceholder" Background="AliceBlue"></Border>
</Grid>
</UserControl>

In this example, the Border is named borderPlaceholder. Here’s how you might display a new
custom user control named Page2 in the borderPlaceholder region:

Page2 newPage = new Page2();
borderPlaceholder.Child = newPage;

If you're using a different container, you may need to set a different property instead. For example,
Silverlight’s layout panels can hold multiple controls and so provide a Children collection instead of a
Child property. You need to clear this collection and then add the new control to it. Here’s an example
that duplicates the previous code, assuming you've replaced the Border with a single-celled Grid:

Page2 newPage = new Page2();
gridPlaceholder.Children.Clear();
gridPlaceholder.Children.Add(newPage);

If you create a Grid without declaring any rows or columns, the Grid has a single proportionately
sized cell that fits all the available space. Thus, adding a control to that Grid produces the same result as
adding it to a Border.

The actual code that’s used in the examples is a bit different because it needs to work for different
types of controls. To determine which type of user control to create, the code examines the ListBoxItem
object that was just clicked. It then uses reflection to create the corresponding user-control object:

private void lstPages SelectionChanged(object sender, SelectionChangedEventArgs e)
{

// Get the selected item.

string newPageName = ((ListBoxItem)e.AddedItems[0]).Content.ToString();

// Create an instance of the page named

// by the current button.

Type type = this.GetType();

Assembly assembly = type.Assembly;

UserControl newPage = (UserControl)assembly.CreateInstance(
type.Namespace + "." + newPageName);

// Show the page.
borderPlaceholder.Child = newPage;

235

CHAPTER 7 = NAVIGATION

236

Despite the reflection code, the process of showing the newly created user control—that is, setting
the Border.Child property—is exactly the same.

Hiding Elements

If you decide to create a dynamic page like the one shown in the previous example, you aren’t limited to
adding and removing content. You can also temporarily hideit. The trick is to set the Visibility property,
which is defined in the base UlElement class and inherited by all elements:

panel.Visibility = Visibility.Collapsed;

The Visibility property uses an enumeration that provides just two values: Visible and Collapsed.
(WPF included a third value, Hidden, which hides an element but keeps a blank space where it should
be. However, this value isn’t supported in Silverlight.) Although you can set the Visibility property of
individual elements, usually you’ll show and hide entire containers (for example, Border, StackPanel, or
Grid objects) at once.

When an element is hidden, it takes no space in the page and doesn’t receive any input events. The
rest of your interface resizes itself to fill the available space, unless you've positioned your other
elements with fixed coordinates using a layout container such as the Canvas.

Tip Many applications use panels that collapse or slide out of the way. To create this effect, you can combine
this code with a dash of Silverlight animation. The animation changes the element you want to hide—for example,
shrinking, compressing, or moving it. When the animation ends, you can set the Visibility property to hide the
element permanently. You’ll see how to use this technique in Chapter 10.

Managing the Root Visual

The page-changing technique shown in the previous example is common, but it’s not suited for all
scenarios. Its key drawback is that it slots new content into an existing layout. In the previous example,
that means the list box remains fixed at the top of the page. This is handy if you need to make sure a
toolbar or panel always remains accessible, but it isn’t as convenient if you want to switch to a
completely new display for a different task.

An alternative approach is to change the entire page from one control to another. The basic
technique is to use a simple layout container as your application’s root visual. You can then load user
controls into the root visual when required and unload them afterward. (The root visual itself can never
be replaced after the application has started.)

Asyou learned in Chapter 6, the startup logic for a Silverlight application usually creates an instance
of a user control, as shown here:

private void Application Startup(object sender, StartupEventArgs e)

this.RootVisual = new MainPage();

}

The trick is to use something more flexible—a simple container like the Border or a layout panel like
the Grid. Here’s an example of the latter approach:

CHAPTER 7 = NAVIGATION

// This Grid will host your pages.
private Grid rootGrid = new Grid();

private void Application_Startup(object sender, StartupEventArgs e)

{
// Load the first page.
this.RootVisual = rootGrid;
rootGrid.Children.Add(new MainPage());
}

Now, you can switch to another page by removing the first page from the Grid and adding a
different one. To make this process relatively straightforward, you can add a static method like this to the
App class:

public static void Navigate(UserControl newPage)

{

// Get the current application object and cast it to
// an instance of the custom (derived) App class.
App currentApp = (App)Application.Current;

// Change the currently displayed page.
currentApp.rootGrid.Children.Clear();
currentApp.rootGrid.Children.Add(newPage);

You can navigate at any point using code like this:

App.Navigate(new Page2());

Tip You can add a dash of Silverlight animation and graphics to create a more pleasing transition between
pages, such as a gentle fade or wipe. You’ll learn how to use this technique in Chapter 10.

Retaining Page State

If you plan to allow the user to navigate frequently between complex pages, it makes sense to create each
page once and keep the page instance in memory until later. This approach also has the sometimes-
important side effect of maintaining that page’s current state, including all the values in any input
controls.

To implement this pattern, you first need a system to identify pages. You could fall back on string
names, but an enumeration gives you better error prevention. Here’s an enumeration that distinguished
between three pages:

public enum Pages

{
MainWindow,
ReviewPage,
AboutPage

}

237

CHAPTER 7

238

NAVIGATION

You can then store the pages of your application in private fields in your custom application class.

Here’s a simple dictionary that does the trick:

private static Dictionary<Pages, UserControl> pageCache =
new Dictionary<Pages,UserControl>();

In your Navigate() method, create the page only if it needs to be created—in other words, the

corresponding object doesn’t exist in the collection of cached pages:

public static void Navigate(Pages newPage)

{

App.

// Get the current application object and cast it to
// an instance of the custom (derived) App class.
App currentApp = (App)Application.Current;

// Check if the page has been created before.
if (!pageCache.ContainsKey(newPage))
{

// Create the first instance of the page,

// and cache it for future use.

Type type = currentApp.GetType();

Assembly assembly = type.Assembly;

pageCache[newPage] = (UserControl)assembly.CreateInstance(
type.Namespace + "." + newPage.ToString());

// Change the currently displayed page.
currentApp.rootGrid.Children.Clear();
currentApp.rootGrid.Children.Add(pageCache[newPage]);

Now, you can navigate by indicating the page you want with the Pages enumeration:
Navigate(Pages.MainWindow);

Because only one version of the page is ever created and it’s kept in memory over the lifetime of the

application, all of the page’s state remains intact when you navigate away and back again (see Figure 7-

2).

CHAPTER 7 = NAVIGATION

@ Silverlight Project Test Page - Windows Internet Expl... lﬂ‘&] @ Silverlight Project Test Page - Windows Internet Expl... lﬂ‘&]
(_J_J ~ | @ p:CoderPro siiverlight\Chaperd6\Multple ~ [42] x | (_J_J | @ D:CoderPro Silverlight\Chaper06\Multiple [42] x |
% & |@sivedight Project TestP... | | 3~ @ v 7[||| §F & | 4 Siveright Project TestP... ERE: R - R
This is page 1. This is page 2.
IThe text you enter here will be retained. } [<-- Go to Page |]
[Go to Page 2 ——>]
€ Internet | Protected Mode: On H100% ~ € Internet | Protected Mode: On ®100% -~

Figure 7-2. Moving from one page to another

Browser History

The only limitation with the navigation methods described in this section is that the browser has no idea
you've changed from one page to another. If you want to let the user go back, it’s up to you to add the
controls that do it. The browser’s Back button will only send you to the previous HTML page (thereby
exiting your Silverlight application).

If you want to create an application that integrates more effectively with the browser and supports
the Back button, you’ll need to use the Frame and Page classes discussed later in this chapter.

Child Windows

In many situations, you don’t need a way to change the page—you just need to temporarily show some
sort of content before allowing the user to return to the main application page. The obvious example is a
confirmation dialog box, but Windows and web applications use pop-up windows to collect
information, show basic program information, and provide access to configuration settings.

In Silverlight, you can create this sort of design using a handy content control called ChildWindow.
Essentially, ChildWindow mimics the modal dialog boxes you've seen on the Windows platform. When
you show a child window, the rest of the application information is disabled (and a gray shaded overlay
is displayed over of it as a user cue). Then, the child window appears centered on top of the page. After
the user completes a task in the child window, your code closes it, and the rest of the application
becomes responsive again.

Figure 7-3 shows an example. Here, the page includes a single button that, when clicked, pops open
a child window requesting more information. When the user clicks a button (or clicks the Xin the top-
right corner), the window vanishes.

239

CHAPTER 7 = NAVIGATION

& Navigation - Windows Internet Explorer E@g & Navigation - Windows Internet Explorer E@Iﬁ

O Q ‘g, C:\Matthew\Pro Silverlight 3\Navigation\Bin\[~ } +3 I A l

Q Q ‘EI C:\Matthew\Pro Silverlight 3\Navigation\Bin\[~ I 3 { X l

<7 Favorites ‘ 9is (@ Suggested Sites v @] Web Slice Gallery = 5.7 Favorites ‘ 5 (@ Suggested Sites v @] Web Slice Gallery »
) »

BB 0 &= ~ ‘?Navigation B v~ am o~

‘ € Navigation

»

Currently, you are an unknown user. To enter your
user information, click the button shown here.

UserInformation

First Name: |
Joe

Last Name: W‘

ok || cancel |

| Enter User Information

m

m

& Intenet | Protected Mode: On fh oy H100% v

& Internet | Protected Mode: On dp v H100% -
\ I\ J
& Navigation - Windows Internet Explorer E@Ig

(LI = [B] CAMatthew\Pro Silveriight 3\Navigation\Bin\l ~ | 43 | X
Wi 9 9

<7 Favorites ‘ 92 (@ Suggested Sites v @] Web Slice Gallery =
‘ﬁNavigation M~ 2 &

| »

Welcome to this application, Joe Samakye.

I Enter User Information

m

€& Internet | Protected Mode: On Y5 v H100% -

\

Figure 7-3. Showing a child window

The child window pops into view with a subtle but attractive expansion effect. It also behaves like a
real window, allowing you to click its title bar and drag it around the page (but not out of the browser
display area).

Although the ChildWindow control provides the illusion of a separate pop-up window that appears
on top of your application, it’s actually just another element that’s added to your existing page. However,
the ChildWindow control is clever enough to disable the rest of the content in the root visual of your
application and position itself appropriately, making it look and behave like a traditional pop-up
window. Finally, it's worth noting that when you show a child window, the user interface underneath
remains active, even though the user can’t interact with it. For example, if you have an animation

240

CHAPTER 7 = NAVIGATION

running or a video playing, it continues in the background while the child window is visible (unless you
explicitly stop it).

OTHER OPTIONS FOR SECONDARY WINDOWS

There are two alternatives to the ChildWindow class, which are appropriate in specialized scenarios.

The first alternative is the FloatableWindow control. It isn’t available as part of the main Silverlight runtime,
but you can download it from http://floatablewindow.codeplex.com. Unlike the ChildWindow control,
which always blocks the main user interface, the FloatableWindow lets the main window remain
responsive. That means you can use the FloatableWindow to display one or more pop-up windows over
your main Silverlight page and keep them there while the user interacts with the rest of the application.
You can use this design to implement a notification window, separate task area, or floating tool panel, but
tread with caution. If not handled carefully, floating windows can be confusing for the end user.

The second alternative is a native window. This is a distinct, truly independent window that’s created by
the operating system. However, the native window feature is available only to out-of-browser applications
that are running with elevated trust. You'll learn how to create native window in Chapter 18.

Designing a ChildWindow

Before you can show a child window, you need to create one with a XAML template, in the same way you
design a user control. To add a bare-bones starter in Visual Studio, right-click the project name in the
Solution Explorer, and choose Add 7 New Item. Then, pick the Silverlight Child Window template, enter
aname, and click Add. Visual Studio creates the new XAML template and a code-behind file, and it adds
areference to the System.Windows.Controls.dll assembly where the ChildWindow control is defined.

Note ChildWindow is a control that derives from ContentControl. It adds two new properties (Title and
DialogResult), two methods (Show and Close), and two events (Closing and Closed).

After you've added a child window, you can design it in exactly the same way you design an ordinary
user control. To make your life easier, Visual Studio automatically creates a two-row Grid in the new
child window template and places OK and Cancel buttons in the bottom row, complete with event
handlers that close the window. (Of course, you can remove or reconfigure these buttons to suit your
application design.)

Here’s the markup for the child window shown in Figure 7-3. It provides two text boxes for user
information and adds the standard OK and Cancel buttons underneath:

<controls:ChildWindow x:Class="Navigation.UserInformation"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:controls=
"clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls"
Title="UserInformation">

241

http://floatablewindow.codeplex.com
http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 7 = NAVIGATION

242

<Grid x:Name="LayoutRoot" Margin="2">
<Grid.RowDefinitions>
<RowDefinition Height="Auto"></RowDefinition>
<RowDefinition Height="Auto"></RowDefinition>
<RowDefinition Height="Auto"></RowDefinition>
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition></ColumnDefinition>
<ColumnDefinition></ColumnDefinition>
</Grid.ColumnDefinitions>

<TextBlock>First Name:</TextBlock>

<TextBox x:Name="txtFirstName" Grid.Column="1" Margin="3" Width="150"></TextBox>
<TextBlock Grid.Row="1">Last Name:</TextBlock>

<TextBox x:Name="txtLastName" Grid.Row="1" Grid.Column="1" Margin="3"></TextBox>

<Button Grid.Row="2" Margin="3" Width="75" Height="23"
HorizontalAlignment="Right" Content="0K" Click="cmdOK_Click"></Button>
<Button Grid.Row="2" Grid.Column="1" Margin="3" Width="75" Height="23"
HorizontalAlignment="Left" Content="Cancel" Click="cmdCancel Click"></Button>
</Grid>

</controls:ChildWindow>

The event handlers for the two buttons set the ChildWindow.DialogResult property. This property is
a nullable Boolean value that indicates whether the user accepted the action represented by this window
(true), cancelled it (false), or did neither (null).

private void cmdOK_Click(object sender, RoutedEventArgs e)

this.DialogResult = true;

}
private void cmdCancel Click(object sender, RoutedEventArgs e)
{
this.DialogResult = false;
}

Setting the DialogResult property also closes the window, returning control to the root visual. In
some cases, the DialogResult property may not be relevant to your application (for example, if you're
showing an About window that includes a single Close button). In this case, you can close the window by
using the ChildWindow.Close() method rather than setting the DialogResult property.

Showing a ChildWindow

Showing a child window is easy. You need to create an instance of your custom ChildWindow class and
call the Show() method:

UserInformation childWindow = new UserInformation();
childWindow. Show();

It’s important to realize that although the child window blocks the main user interface, the Show()
method doesn’t block the execution of your code. Thus, if you put code after the call to the Show()
method, that code runs immediately.

CHAPTER 7 = NAVIGATION

This presents a problem if you need to react when the user closes the child window, which is usually
the case. In the example shown in Figure 7-3, the application needs to gather the entered user name and
use it to update the display in the main page. To perform this task, your code must respond to the
ChildWindow.Closed event. (The ChildWindow class also provides a Closing event that fires when the
window begins to close, but this is intended for scenarios when you need to cancel the close operation—
for example, if necessary information hasn’t been entered.)

Remember to attach an event handler to the Closed event before you show the child window:

UserInformation childWindow = new UserInformation();
childWindow.Closed += childWindow_Closed;
childWindow. Show();

There’s still more to think about. If your child window is anything more than a simple confirmation
box, you'll probably need to return additional information to the rest of your application. In the current
example, that information consists of the user’s first and last names. In theory, your application code
could grab the ChildWindow object and directly extract this information from the appropriate controls.
However, this sort of interaction is fragile. It creates tight dependencies between the main page and the
child window, and these dependencies aren’t always obvious. If you change the design of your
application—for example, swapping the first name and last name text boxes for different controls—the
code breaks. A far better approach is to create an extra layer of public properties and methods in your
child window. Your main application page can call on these members to get the information it needs.
Because these methods are stored in the custom ChildWindow class, you'll know to tweak them so they
continue to work if you revamp the child window’s user interface.

For example, in the current example, you can add this property to the UserInformation class to
expose the full name information:

public string UserName

get { return txtFirstName.Text + " " + txtLastName.Text; }

Now, you can access this detail when you respond to the Closed event:

private void childWindow_Closed(object sender, EventArgs e)

{
UserInformation childWindow = (UserInformation)sender;
if (childWindow.DialogResult == true)
1blInfo.Text = "Welcome to this application, " + childWindow.UserName + ".";
}
}

One final improvement is worth making. Currently, the child window is created each time the user
clicks the Enter User Information button. As a result, the first name and last name text boxes always
remain empty, even if the user has entered name information previously. To correct this, you can add a
property setter for the UserName property or, even better, you can keep the lightweight
UserInformation object in memory. In this example, the ChildWindow object is created it once, as a
member variable of the main page:

private UserInformation childWindow = new UserInformation();
You must now attach the ChildWindow.Closed event handler in the page constructor:

public ShowChildWindow()
{

243

CHAPTER 7 = NAVIGATION

244

InitializeComponent();
childWindow.Closed += childWindow_Closed;

The UserInformation object will keep its state, meaning that every time you show it, the previously
entered name information will remain in place.

Tip Here’s a neat way to use ChildWindow: to pop up rich error messages that have more polish than the basic
MessageBox. In fact, if you create a new project in Visual Studio using the Silverlight Navigation Application
template, you'll find that it uses this design. The navigation template includes markup and code for a custom
ChildWindow called ErrorWindow. When the Application.UnhandledException event occurs, the application uses the
ErrorWindow to politely explain the problem.

The Frame and Page

Changing the user interface by hand is a good approach if your application has very few pages (like an
animated game that revolves around a main screen and a configuration window). It also makes sense if
you need complete control over the navigation process (perhaps so you can implement page-transition
effects, like the ones you'll see in Chapter 10). But if you're building a more traditional application and
you expect the user to travel back and forth through a long sequence of pages, Silverlight’s navigation
system can save you some significant work.

The navigation system is built into two controls: Frame and Page. Of the two, the Frame control is
the more essential, because it’s responsible for creating the container in which navigation takes place.
The Page control is an optional sidekick—it gives you a convenient way to show different units of
content in a frame. Both classes have members that expose the navigation features to your code.

Frames

The Frame is a content control—a control that derives from ContentControl and contains a single child
element. This child is exposed through the Content property.

Other content controls include Button, ListBoxItem, ToolTip, and ScrollViewer. However, the Frame
control has a notable difference: if you're using it right, you’ll almost never touch the Content property
directly. Instead, you'll change the content using the higher-level Navigate() method. The Navigate()
method changes the Content property, but it also triggers the navigation services that are responsible for
tracking the user’s page history and updating the browser’s URI.

For example, consider the following page markup. It defines a Grid that has two rows. In the top row
is a Border that holds a Frame. (Although the Frame class has the BorderBrush and BorderThickness
properties, it lacks the CornerRadius property, so you need to use a Border element if you want a
rounded border around your content.) In the bottom row is a button that triggers navigation. Figure 7-4
shows the page.

<UserControl x:Class="Navigation.MainPage"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlnssnavigation=

"clr-namespace:System.Windous.Controls;assembly=System.Windows.Controls.Navigation">

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 7 = NAVIGATION

<Grid>
<Grid.RowDefinitions>
<RowDefinition></RowDefinition>
<RowDefinition Height="Auto"></RowDefinition>

</Grid.RowDefinitions>

<Border Margin="10" Padding="10" BorderBrush="DarkOrange" BorderThickness="2"

CornerRadius="4">
<navigation:Frame x:Name="mainFrame"></navigation:Frame>

</Border>
<Button Grid.Row="1" Margin="5" Padding="5" HorizontalAlignment="Center"

Content="Navigate to a New Page" Click="cmdNavigate Click"></Button>

</Grid>
</UserControl>

To use the Frame class, you must map the System.Windows.Controls namespace from the
System.Windows.Controls.Navigation.dll assembly to an XML namespace prefix. This example uses the

prefix navigation.

& Navigation - Windows Internet Explorer I&@L.-éh_]
it £ | C\Matthew\Pro Silverlight 3\Navigation\Bin\[~ ‘ +3 I b4 ‘
T Favorites ,5, &8 Suggested Sites = £ | Web Slice Gallery »
& »
@ Navigation B~ = &~
‘ Mavigate to a New Page ‘
€ Internet | Protected Mode: On 8 v H100% ~

L

Figure 7-4. An empty frame

Currently, the frame is empty. But if the user clicks the button, an event handler runs and calls the
Navigate() method. The Navigate() method takes a single argument—a URI pointing to a compiled

XAML file in your application:
private void cmdNavigate Click(object sender, RoutedEventArgs e)

{
}

mainFrame.Navigate(new Uri("/Pagel.xaml", UriKind.Relative));

245

CHAPTER 7 = NAVIGATION

This code works because the application includes a user control named Pagel.xaml. Note that the
URI always begins with a forward slash, which represents the application root.

Note You cannot use the Navigate() method with URIs that point to other types of content or to pages outside
your application (for example, external websites).

Here’s the markup for the Pagel.xaml user control:

<UserControl x:Class="Navigation.Page1"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
<Grid x:Name="LayoutRoot" Background="White">

<TextBlock TextWrapping="Wrap">This is the unremarkable content in
Pagel.xaml.</TextBlock>

</Grid>
</UserControl>

When you call the Navigate() method, Silverlight creates an instance of the Pagel class and uses it to
set the frame content, as shown in Figure 7-5.

@ Pagel Page - Windows Internet Explorer lﬂ‘ﬁ

@ '_/ 42 ‘g file:///C:/Matthew/Pro%205ilverlight3:203/Na ‘ +3 [x '

<7 Favorites | ey 8 Suggested Sites & | Web Slice Gallery »

| € Pagel Page v~ .

This is the unremarkable content in Pagel.xaml.

m

I Navigate to a New Page

€ Internet | Protected Mode: On ‘v H100%

L J

Figure 7-5. Filling a frame with content through navigation

246

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 7 = NAVIGATION

If you were performing navigation by hand, you could replace the call to Navigate() with this code:

// Create the user control.
Pagel newPage = new Pagel();

// Show the user control, replacing whatever content is currently visible.
mainFrame.Content = newPage;

However, this code changes only the content, whereas the Navigate() method treats the action as a
higher-level navigation event that hooks into some additional features. When you call Navigate(), you’ll
notice two significant differences—browser URI integration and history support—which are described
in the following sections.

Tip You can get the URI of the current page at any time using the Frame.Source property. You can also set the
Source property as an alternative to calling Navigate().

Browser URI Integration

When you change the content of a Frame control through the Navigate() method, the name of the XAML
resource is appended to the current URI, after the fragment marker (#). So if your application lives at this
URI:

localhost://Navigation/TestPage.html

and you perform navigation with code like this:
mainFrame.Navigate(new Uri("/Pagel.xaml", UriKind.Relative));
you’ll now see this URI in your browser:
localhost://Navigation/TestPage.htmli#/Pagel1.xaml

This system has many implications—some good, some potentially bad (or at least complicating).
Essentially, when you use Silverlight’s frame-based navigation system, each page you load into the frame
has a distinct URI, which also means it’s a separate history item and a new entry point into your
application.

For example, if you close the browser and reopen it later, you can type in the newly constructed
navigation URI with #/Pagel.xaml at the end to request TestPage.html, load the Silverlight application,
and insert the content from Pagel.xaml into the frame, all in one step. Similarly, users can create a
bookmark with this URI that lets them return to the application with the correct page loaded in the
frame. This feature is sometimes called deep linking, because it allows you to use links that link not just
to the entry point of an application but also to some record or state inside that application.

Tip With a little more effort, you can use deep linking as a starting point for search engine optimization (SEQ).
The basic idea is to create multiple HTML or ASP.NET pages that lead to different parts of your Silverlight
application. Each page will point to the same XAP file, but the URI will link to a different page inside that

247

CHAPTER 7 = NAVIGATION

248

application. Web search engines can then add multiple index entries for your application, one for each HTML or
ASP.NET page that leads into it.

URI integration is obviously a convenient feature, but it also raises a few questions, which are
outlined in the following sections.

What Happens If the Page Has More Than One Frame?

The URI fragment indicates the page that should appear in the frame, but it doesn’t include the frame
name. It turns out that this system really works only for Silverlight applications that have a single frame.
(Applications that contain two or more frames are considered to be a relatively rare occurrence.)

If you have more than one frame, they will all share the same navigation path. As a result, when your
code calls Navigate() in one frame or when the user enters a URI that includes a page name as a
fragment, the same content will be loaded into every frame. To avoid this problem, you must pick a
single frame that represents the main application content. This frame will control the URI and the
browser history list. Every other frame will be responsible for tracking its navigation privately, with no
browser interaction. To implement this design, set the JournalOwnership property of each additional
frame to OwnJournal. From that point on, the only way to perform navigation in these frames is with
code that calls the Navigate() method.

What Happens If the Startup Page Doesn’t Include a Frame Control?

Pages with multiple frames aren’t the only potential problem with the navigation system’s use of URIs.
Another issue occurs if the application can’t load the requested content because there’s no frame in the
application’s root visual. This situation can occur if you're using one of the dynamic user interface tricks
described earlier—for example, using code to create the Frame object or swap in another page that
contains a frame. In this situation, the application starts normally; but because no frame is available, the
fragment part of the URI is ignored.

To remedy this problem, you need to either simplify your application so the frame is available in the
root visual at startup or add code that responds to the Application.Startup event (see Chapter 6) and
checks the document fragment portion of the URI, using code like this:

string fragment = System.Windows.Browser.HtmlPage.Document.DocumentUri.Fragment;

If you find that the URI contains fragment information, you can then add code by hand to restore
the application to its previous state. Although this is a relatively rare design, take the time to make sure it
works properly. After all, when a fragment URI appears in the browser’s address bar, the user naturally
assumes it’s a suitable bookmark point. And if you don’t want to provide this service, consider disabling
the URI system altogether by setting the JournalOwnership property to OwnJournal.

What About Security?

In a very real sense, the URI system is like a giant back door into your application. For example, a user
can enter a URI that points to a page you don’t want that user to access—even one that you never load
with the Navigate() method. Silverlight doesn’t attempt to impose any measure of security to restrict this
scenario. In other words, adding a Frame control to your application provides a potential path of access
to any other page in your application.

CHAPTER 7 = NAVIGATION

Fortunately, you can use several techniques to clamp down on this ability. First, you can detach the
frame from the URI system by setting the JournalOwnership property to OwnJournal, as described
earlier. However, this gives up the ability to use descriptive URIs for any of the pages in your application,
and it also removes the integration with the browser history list that’s described in the next section. A
better approach is to impose selective restriction by handling the Frame.Navigating event. At this point,
you can examine the URI (through the NavigatingCancelEventArgs object) and, optionally, cancel
navigation:

private void mainFrame Navigating(object sender, NavigatingCancelEventArgs e)
if (e.Uri.ToString().ToLower().Contains("RestrictedPage.xaml"))

e.Cancel = true;

You'll notice that this code doesn’t match the entire URI but simply checks for the presence of a
restricted page name. This is to avoid potential canonicalization problems—in other words, allowing
access to restricted pages by failing to account for the many different ways the same URI can be written.
Here’s an example of functionally equivalent but differently written URIs:

localhost://Navigation/TestPage.html#/Page1.xaml
localhost://Navigation/TestPage.html#/FakeFolder/.../Pagel.xaml

This example assumes that you never want to perform navigation to RestrictedPage.xaml. The
Navigating event does not distinguish whether the user has edited the URI or whether the navigation
attempt is the result of the user clicking the link or your code calling the Navigate() method. Presumably,
the application will use RestrictedPage.xaml in some other way—for example, with code that manually
instantiates the user control and loads it into another container.

Finally, it’s worth noting that there’s one other way to deal with restricted pages. You could create a
custom content loader (as described in the “Custom Content Loaders” section at the end of this
chapter), which would check the requested URI against a collection of allowed pages. This approach is
similar to handling the Frame.Navigating event, but it’s a bit more general (and a bit more complex). If
you get your design right, you can use it in any application that needs it—all you need to do is add the
custom content loader to the appropriate frame and configure the collection of allowed pages. The
disadvantage is that it will take you significantly more coding to arrive at a workable solution.

History Support

The navigation features of the Frame control also integrate with the browser. Each time you call the
Navigate() method, Silverlight adds a new entry in the history list (see Figure 7-6). The first page of your
application appears in the history list first, with the title of the HTML entry page. Each subsequent page
appears under that in the history list, using the user-control file name for the display text (such as
Pagel.xaml). In the “Pages” section later in this chapter, you'll learn how you can supply your own, more
descriptive title text using a custom page.

249

CHAPTER 7 = NAVIGATION

250

fe /Pagel.xaml - Windows Internet Explorer LE‘%

@ _/ﬂ| £ | file:///C:/Users/matthew/Desktop/Navig ~ ‘ .4 ‘ % |

v Current Page

/Page2 xaml : - »
) E‘:}' - - R | TE] -
/Pagel xaml |

|
Navigation 1

|
::ontent in Pagel.xaml.
& History Ctrl+Shift+H

T

i

€D Internet | Protected Mode: On fa v H100% ~

L s

[-=)

Figure 7-6. The navigation history of the frame

The browser’s history list works exactly the way you'd expect. The user can click the Back or
Forward button or pick an entry in the history list to load a previous page into the frame. Best of all, this
doesn’t cause your application to restart. As long as the rest of the URI stays the same (everything except
the fragment), Silverlight simply loads the appropriate page into the frame. On the other hand, if the
user travels to another website and then uses the Back button to return, the Silverlight application is
reloaded, the Application.Startup event fires, and then Silverlight attempts to load the requested page
into the frame.

Incidentally, you can call the Frame.Navigate() method multiple times in succession with different
pages. The user ends up on the last page, but all the others are added to the history list in between.
Finally, the Navigate() method does nothing if the page is already loaded—it doesn’t add a duplicate
entry to the history list.

Navigation Failure

Silverlight has a quirk that affects how it deals with the Back button when using navigation. The problem
occurs if you use the browser history list to return to a page that doesn’t include the fragment portion of
the URI. For example, you will encounter this problem in the previous example if you launch the
application, surf to a new page, and then press the browser’s Back button to return to the initial page.
When you do, you'll receive an ArgumentException that explains “Content for the URI cannot be
loaded.” In other words, the URI did not specify the content for the frame, and Silverlight didn’t know
what to put there.

There are two easy ways to deal with this problem. The first approach is to handle the
Frame.NavigationFailed event. You can then examine the exception object (provided through the
NavigationFailedEventArgs.Exception property) and set the NavigationFailedEventArgs.Handled
property to true to gracefully ignore this nonissue and carry on.

CHAPTER 7 = NAVIGATION

Your other option is to use the UriMapper to set the initial content of the frame. With this
technique, you map the ordinary, empty URI to a valid page, which will then be shown in the frame
(although that page can be blank). You'll see how to use this technique in the next section.

URI Mapping

As you've seen, the fragment URI system puts the page name in the URI. In some situations, you'd prefer
not to make this detail as glaring. Perhaps you don’t want to expose the real page name, you don’t want
to tack on the potentially confusing .xaml extension, or you want to use a URI that’s easier to remember
and type in by hand. In all these situations, you can use URI mapping to define different, simpler URIs
that map to the standard versions you've seen so far.

To use URI mapping, you first need to add a UriMapper object as a XAML resource. Typically, you’ll
define the UriMapper in the resources collection of the main page or the App.xaml file, as shown here:

<Application xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
x:Class="Navigation.App" xmlns:navigation=
"clr-namespace:System.Windows.Navigation;assembly=System.Windows.Controls.Navigation">
<Application.Resources>
<navigation:UriMapper x:Key="PageMapper"»
</navigation:UriMapper>
</Application.Resources>
</Application>

You then need to link your UriMapper to your frame by setting the Frame.UriMapper property:

<navigation:Frame x:Name="mainFrame" UriMapper="{StaticResource PageMapper}">
</navigation:Frame>

Now, you can add your URI mappings inside the UriMapper. Here’s an example:

<navigation:UriMapper x:Key="PageMapper">
<navigation:UriMapping Uri="Home" MappedUri="/Views/HomePage.xaml" />
</navigation:UriMapper>

If your application is located here
localhost://Navigation/TestPage.html
you can use this simplified URI
localhost://Navigation/TestPage.html#Home
which is mapped to this URIL:
localhost://Navigation/TestPage.html#/Views/HomePage.xaml

The only catch is that it’s up to you to use the simplified URI when you call the Navigate() method,
as shown here:

mainFrame.Navigate(new Uri("Home", UriKind.Relative));

Note that you don’t need to include a forward slash at the beginning of a mapped URI.

After mapping, both the original and the new URI will work, allowing you to reach the same page. If
you use the original URI format when calling the Navigate() method (or in a link or in a bookmark),
that’s what the user sees in the browser’s address bar.

251

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 7 = NAVIGATION

252

You can also use the UriMapper to set the initial content in a frame. The trick is to map a Uri that’s
just an empty string, as shown here:

<navigation:UriMapper x:Key="PageMapper">
<navigation:UriMapping Uri="" MappedUri="/InitialPage.xaml" />
<navigation:UriMapping Uri="Home" MappedUri="/Views/HomePage.xaml" />
</navigation:UriMapper>

Now, when the page first appears, the frame will show the content from InitialPage.xaml.

Note Remember, if you don’t use the UriMapper to set the initial page, you must handle the
Frame.NavigationFailed event. Otherwise, users may receive an error when they step back to the first page using
the browser’s Back button.

The UriMapper object also supports URIs that take query-string arguments. For example, consider
the following mapping:

<navigation:UriMapping Uri="Products/{id}"
MappedUri="/Views/ProductPage.xaml?id={id}"></navigation:UriMapping>

In this example, the {id} portion in curly brackets is a placeholder. You can use any URI that has this
basic form but supplies an arbitrary value for the id. For example, this URI

localhost://Navigation/TestPage.html#Products/324
will be mapped to this:
localhost://Navigation/TestPage.html#/Views/ProductPage.xaml?id=324

The easiest way to retrieve the id query-string argument in the ProductPage.xaml code is to use the
NavigationContext object described later in the “Pages” section.

Forward and Backward Navigation

As you've learned, you can set the Frame.JournalOwnership property to determine whether the frame
uses the browser’s history-tracking system (the default) or is responsible for keeping the record of visited
pages on its own (which is called the journal). If you opt for the latter by setting the JournalOwnership
property to OwnJournal, your frame won't integrate with the browser history or use the URI system
described earlier. You'll need to provide a way for the user to navigate through the page history. The
most common way to add this sort of support is to create your own Forward and Backward buttons.

Custom Forward and Backward buttons are also necessary if you're building an out-of-browser
application, like the sort described in Chapter 18. That’s because an application running in a stand-
alone window doesn’t have access to any browser features and doesn’t include any browser user
interface (including the Back and Forward buttons). In this situation, you're forced to supply your own
navigation buttons for programmatic navigation, even if you haven’t changed the JournalOwnership
property.

If you're not sure whether your application is running in a browser or in a stand-alone window,
check the Application.IsRunningOutOfBrowser property. For example, the following code shows a panel

CHAPTER 7 = NAVIGATION

with navigation buttons when the application is hosted in a stand-alone window. You can use this in the
Loaded event handler for your root visual.

if (App.Current.IsRunningOutOfBrowser)
pnlNavigationButtons.Visibility = Visibility.Visible;

Designing Forward and Backward buttons is easy. You can use any element you like—the trick is
simply to step forward or backward through the page history by calling the GoBack() and GoForward()
methods of the Frame class. You can also check the CanGoBack property (which is true if there are pages
in the backward history) and the CanGoForward property (which is true if there are pages in the forward
history) and use that information to selectively enable and disable your custom navigation buttons.
Typically, you'll do this when responding to the Frame.Navigated event:

private void mainFrame Navigated(object sender, NavigationEventArgs e)
{
if (mainFrame.CanGoBack)
cmdBack.Visibility = Visibility.Visible;
else
cmdBack.Visibility = Visibility.Collapsed;

if (mainFrame.CanGoForward)

cmdForward.Visibility = Visibility.Visible;
else

cmdForwawrd.Visibility = Visibility.Collapsed;

Rather than hide the buttons (as done here), you may choose to disable them and change their
visual appearance (for example, changing the color, opacity, or picture, or adding an animated effect).
Unfortunately, there’s no way to get a list of page names from the journal, which means you can’t
display a history list like the one shown in the browser.

Hyperlinks

In the previous example, navigation was performed through an ordinary button. However, it’s a
common Silverlight design to use a set of HyperlinkButton elements for navigation. Thanks to the URI
system, it’s even easier to use the HyperlinkButton than an ordinary button. You simply need to set the
NavigateUri property to the appropriate URI. You can use URIs that point directly to XAML pages, or you
can use mapped URIs that go through the UriMapper.

Here’s a StackPanel that creates a strip of three navigation links:

<StackPanel Margin="5" HorizontalAlignment="Center" Orientation="Horizontal">
<HyperlinkButton NavigateUri="/Pagel.xaml" Content="Page 1" Margin="3" />
<HyperlinkButton NavigateUri="/Page2.xaml" Content="Page 2" Margin="3" />
<HyperlinkButton NavigateUri="Home" Content="Home" Margin="3" />
</StackPanel>

Although the concept hasn’t changed, this approach allows you to keep the URIs in the XAML
markup and leave your code simple and uncluttered by extraneous details.

Pages

The previous examples all used navigation to load user controls into a frame. Although this design
works, it’s far more common to use a custom class that derives from Page instead of a user control,

253

CHAPTER 7 = NAVIGATION

254

because the Page class provides convenient hooks into the navigation system and (optionally) automatic
state management.

To add a page to a Visual Studio project, right-click the project name in the Solution Explorer, and
choose Add New Item. Then, select the Silverlight Page template, enter a page name, and click Add.
Aside from the root element, the markup you place in a page is the same as the markup you put in a user
control. Here’s a reworked example that changes Pagel.xaml from a user control into a page by
modifying the root element and setting the Title property:

<navigation:Page x:Class="Navigation.Page1"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
xmlns:navigation=
"clr-namespace:System.Windows .Controls;assembly=System.Windows.Controls.Navigation"
Title="Sample Page">
<Grid x:Name="LayoutRoot" Background="White">

<TextBlock TextWrapping="Wrap">This is the unremarkable content in
Pagel.xaml.</TextBlock>

</Grid>
</navigation:Page>

Tip It's a common design convention to place pages in a separate project folder from your user controls. For
example, you can place all your pages in a folder named Views and use navigation URIs like /vViews/Page1.xaml.

Technically, Page is a class that derives from UserControl and adds a small set of members. These
include a set of methods you can override to react to navigation actions and four properties: Title,
NavigationService, NavigationContext, and NavigationCacheMode. The Title property is the simplest. It
sets the text that’s used for the browser history list, as shown in the previous example. The other
members are described in the following sections.

Navigation Properties

Every page provides a NavigationService property that offers an entry point into Silverlight’s navigation
system. The NavigationService property provides a NavigationService object, which supplies the same
navigational methods as the Frame class, including Navigate(), GoBack(), and GoForward(), and
properties such as CanGoBack, CanGoForward, and CurrentSource. That means you can trigger page
navigation from inside a page by adding code like this:

this.NavigationService.Navigate(new Uri("/Page2.xaml", UriKind.Relative));

The Page class also includes a NavigationContext property that provides a NavigationContext
object. This object exposes two properties: Uri gets the current URI, which was used to reach the current
page, and QueryString gets a collection that contains any query-string arguments that were tacked on to
the end of the URIL. This way, the code that triggers the navigation can pass information to the
destination page. For example, consider the following code, which embeds two numbers into a URI as
query-string arguments:

string uriText = String.Format("/Product.xaml?productID={0}&type={1}",

http://schemas.microsoft.com/winfx/2006/xaml/presentation
http://schemas.microsoft.com/winfx/2006/xaml

CHAPTER 7 = NAVIGATION

productID, productType);

mainFrame.Navigate(new Uri(uriText), UriKind.Relative);

A typical completed URI might look something like this:
/Product.xaml?productID=402&type=12

You can retrieve the product ID information in the destination page with code like this:

int productID, type;

if (this.NavigationContext.QueryString.ContainsKey("productID"))

productID = Int32.Parse(this.NavigationContext.QueryString["productID"]);
if (this.NavigationContext.QueryString.ContainsKey("type"))

type = Int32.Parse(this.NavigationContext.QueryString["type"]);

Of course, there are other ways to share information between pages, such as storing it in the
application object. The difference is that query-string arguments are preserved in the URI, so users who
bookmark the link can reuse it later to return to an exact point in the application (for example, the query
string allows you to create links that point to particular items in a catalog of data). On the downside,
query-string arguments are visible to any user who takes the time to look at the URI, and they can be
tampered with.

State Storage

Ordinarily, when the user travels to a page using the Forward and Backward buttons or the history list,
the page is re-created from scratch. When the user leaves the page, the page object is discarded from
memory. One consequence of this design is that if a page has user input controls (for example, a text
box), they're reset to their default values on a return visit. Similarly, any member variables in the page
class are reset to their initial values.

The do-it-yourself state-management approach described earlier lets you avoid this issue by
caching the entire page object in memory. Silverlight allows a similar trick with its own navigation
system using the Page.NavigationCacheMode property.

The default value of NavigationCacheMode is Disabled, which means no caching is performed.
Switch this to Required, and the Frame will keep the page object in memory after the user navigates
away. If the user returns, the already instantiated object is used instead of a newly created instance. The
page constructor will not run, but the Loaded event will still fire.

There’s one other option for NavigationCacheMode. Set it to Enabled, and pages will be cached—up
to a point. The key detail is the Frame.CacheSize property, which sets the maximum number of optional
pages that can be cached. For example, when this value is 10 (the default), the Frame will cache the ten
most recent pages that have a NavigationCacheMode of Enabled. When an eleventh page is added to the
cache, the first (oldest) page object will be discarded from the cache. Pages with NavigationCacheMode
set to Required don’t count against the CacheSize total.

Typically, you’ll set NavigationCacheMode to Required when you want to cache a page to preserve
its current state. You'll set NavigationCacheMode to Enabled if you want the option of caching a page to
save time and improve performance—for example, if your page includes time-consuming initialization
logic that performs detailed calculations or calls a web service. In this case, make sure you place this
logic in the constructor, not in an event handler for the Loaded event (which still fires when a page is
served from the cache).

255

CHAPTER 7 = NAVIGATION

256

Navigation Methods

The Page class also includes a small set of methods that are triggered during different navigation actions.
They include the following:

e OnNavigatedTo(): This method is called when the frame navigates to the page
(either for the first time or on a return trip through the history).

e OnNavigatingFrom(): This method is called when the user is about to leave the
page; it allows you to cancel the navigation action.

e OnNavigatedFrom(): This method is called when the user has left the page, just
before the next page appears.

You could use these methods to perform various actions when a page is being left or visited, such as
tracking and initialization. For example, you could use them to implement a more selective form of state
management that stores just a few details from the current page in memory, rather than caching the
entire page object. Simply store page state when OnNavigatedFrom() is called and retrieve it when
OnNavigatedTo() is called. Where you store the state is up to you—you can store it in the App class, or
you can use static members in your custom page class, as done here with a single string:

public partial class CustomCachedPage : Page

public static string TextBoxState { get; set; }

Here’s the page code that uses this property to store the data from a single text box and retrieve it
when the user returns to the page later:

protected override void OnNavigatedFrom(NavigationEventArgs e)
// Store the text box data.
CustomCachedPage.TextBoxState = txtCached.Text;
base.OnNavigatedFrom(e);

protected override void OnNavigatedTo(NavigationEventArgs e)

{
// Retrieve the text box data.
if (CustomCachedPage.TextBoxState != null)
txtCached.Text = CustomCachedPage.TextBoxState;
base.OnNavigatedTo(e);
}
Navigation Templates

You now know everything you need to use Silverlight’'s Frame and Page classes to create a navigable
application. However, there’s no small gap between simply using these features and actually making
them look good, with a slick, visually consistent display. There are two ways to bridge this gap. One
option is to gradually build your design skills, review other people’s example, experiment, and
eventually end up with the perfectly customized user interface you want. The other option is to use a

CHAPTER 7 = NAVIGATION

ready-made navigation template as a starting point. These are starter project templates that you can use
in Visual Studio, and they give you basic project structure and a few finer points of style.

Figure 7-7 shows what you start with if you create a new project using the Silverlight Navigation
Application project template instead of the general-purpose Silverlight Application template.

& About - Windows Internet Explorer (=& S

@) ¥ |£ file:///C:/Users/matthew/Desktop/SilverlightApplication2/Bin/D l *'f| A |

¢ Favorites | 95

3

| @ About 2 v B v & @m v Pagev Safety~

Application Name

About

About page content

€ Internet | Protected Mode: On a4 v H100% ~

\ ’

Figure 7-7. An application created with a navigation template

The basic structure of this application is simple enough—there’s a page header at the top of a page
with a group of link buttons on the left for navigation. Underneath is the Frame that performs the
navigation. Pages are mapped through the UriMapper and placed in a project subfolder named Views.

Silverlight ships with just one navigation template, which is shown in Figure 7-7. However, the
Silverlight team posted several alternative templates when Silverlight 3 was released, and you can get
them at http://tinyurl.com/ktv4vu. These templates use the same basic structure, but they tweak the
visual styles and the placement of the link buttons.

Custom Content Loaders

As you've seen, Silverlight’s navigation system is powerful but not overly flexible. It makes certain
assumptions about the way URIs will be handled. (Essentially, every URI provides the name of a XAML
page that will be loaded in a frame.) This system works well for applications that use straightforward
navigation, but it doesn’t give you the opening to explore more interesting extensions, like URIs that
prompt your application to contact remote services or start a download. It also doesn’t let you plug
additional features into the navigation system, like user authentication and authorization.

Some of these features may appear in future versions of Silverlight. Many of them will be provided
in separate libraries (some free, some not) by third-party developers. But now, you can begin to extend
the navigation on your own, using a feature called custom content loaders.

257

http://tinyurl.com/ktv4vu

CHAPTER 7 = NAVIGATION

258

The idea of custom content loaders is simple. You create a class that implements the
INavigationContentLoader interface. This class receives a URI and then handles it appropriately (for
example, by providing the page content or starting an entirely different task). You can then attach your
custom content loader to a frame in any application. You can even chain content loaders together so
that one content loader can pass a requested URI to the next content loader in a sequence.

Although the idea of content loaders is fairly simple, programming them is not. Here, there are two
issues. First, the INavigationContentLoader is designed around an asynchronous model. That means
you need to implement methods like BeginLoad(),EndLoad(), and CancelLoad() and use an IAsyncResult
object to coordinate the interaction between the content loading code and your frame. Second, there are
subtle issues that can cause exceptions or cancellations. (This is particularly true if your navigation takes
more than a few milliseconds. If users don’t get an instant response, they may click a link several times
in a row, launching several requests, all of which will be subsequently cancelled.) In short, building a
custom content loader isn’t difficult. But building one that’s as robust and reliable as it should be often
is.

So with these complications in mind, how should you approach custom content loaders? You have
three options:

e Leave infrastructure programming to the experts: You can still benefit from the
custom content loader feature, but not by building your own implementations.
Instead, you’ll download and use the custom content loaders that are created by
other developers—those who live to write low-level plumbing code.

e Create simple implementations: You can handle several simple scenarios by
building a custom content loader that offloads most of the real work to the
PageResourceContentLoader class. (PageResourceContentLoader is the built-in
content loader that loads XAML documents into a frame.) This is the approach
you’ll use in the example in this chapter.

e Use someone else’s higher-level class: The race is on to create a simple content
loading model overtop of the low-level INavigationContentLoader interface.
Ideally, you'll simply need to derive from a straightforward synchronous base class
to create your custom content loader. David Hill has a solid first step at
http://tinyurl.com/37rqc7x.

In the following sections, you'll see how to build a simple content loader that implements user
authentication.

Authentication and Navigation

If you've ever programmed an ASP.NET application, you're already familiar with the way authentication,
authorization, and navigation fit together.

In a traditional web application, some pages are accessible to everybody, while others are protected.
The authorization rules describe these differences, marking certain pages as public and others as
restricted (which means they are available only to logged-in users or only to specific users or groups). If
an anonymous user attempts to request a restricted page, that user is redirected to a login page for
authentication. Usually, this step involves entering a valid user name and password, after which the user
is sent back to the originally requested page.

Using a custom content loader, you can create exactly this sort of system. Your custom content
loader will intercept each page request, check whether the user is authenticated, and then take
appropriate action. To do this, the application needs to distinguish between public pages and those that
require authentication. In this example, the pages that require authentication are placed in a project
subfolder named SecurePages (Figure 7-8).

http://tinyurl.com/37rqc7x

Solution Explorer

)
"4 Selution 'CustomContentLoader’ (1 project)
4 ;:tECmtomContentl.oader
» [=d| Properties
=i References
4 |7 SecurePages
#| Pagel.xaml
[#| Page2.xaml
ppxaml
uthenticatingContentLoader.cs
InitialPage.xaml

| A
Al

=
=]
)

i |

Login.xaml

|

MainPage.xaml

i |

Figure 7-8. Pages that need authenticat

ion

CHAPTER 7 = NAVIGATION

Figure 7-9 shows a simple application that tests the finished authentication system. The first page
shown in the frame is InitialPage.xaml (Figure 7-9, left). The user can travel to another page by clicking a
button (which triggers the Navigate() method) or a link. However, if the application attempts to navigate
to a page in the SecurePages folder, the custom content loader redirects the user to the login page

(Figure 7-9, right).

8 D\Desktop\CustomContentLoaden\Bin\Debug)\CustomC... | () S

Q \:-)]a_P._, D:\Desktop\CustomContentl oader\Bin\Debugh | + | .S |

& Login Page - Windows Internet Explorer

=]

@\:‘)v | 2] file///D:/Deskiop/CustomContentloader/Bin/D = | 41 | X |

Password: |

Login

ir Favorites | @ D\Desktop\CustomCon... - e ¢ Favorites | @@ Login Page - v
This is the unremarkable content in InitialPage.xaml.
User Name: | |

Use “secret” for the password,

| SecurePages/Pagel.xaml |

|SemrePagea-"Page1.xamI| ecurePages/F

& Internet | Protected Mode: On a

H100%

& Internet | Protected Mode: On

:.ﬂ v #100% v

L

Figure 7-9. Requesting a secured page

While at the login page, the user has several choices. The user can enter a valid user name and
password combination and click Login. The login page will then redirect the user to the originally
requested page. Or, the user can navigate to a page that isn’t secured (which works as it normally does)
or to a page that is secured (in which case the user returns immediately to the login page).

259

CHAPTER 7

260

NAVIGATION

Now that you understand how this application works, it’s time to look at the code that underpins it.

Creating a Custom Content Loader

A custom content loader is simply a class that implements INavigationContentLoader. This interface
requires that you supply the following methods: BeginLoad(), CanLoad(), CancelLoad(), and EndLoad().
Although it’s tricky to implement these methods correctly, you can use a shortcut. Simply define an
instance of the PageResourceContentLoader as a member field, and call its methods as the content
loader passes through its various stage