
www.allitebooks.com

http://www.allitebooks.org

ffirs.indd iiffirs.indd ii 2/28/2012 4:27:44 PM2/28/2012 4:27:44 PM

www.allitebooks.com

http://www.allitebooks.org

McClure ffi rs.indd V1 - 01/23/2012

PROFESSIONAL

ANDROID™ PROGRAMMING WITH MONO®

FOR ANDROID AND .NET/C#

FOREWORD . xxiii

INTRODUCTION . xxv

CHAPTER 1 Introduction to Android, Mobile Devices, and the Marketplace 1

CHAPTER 2 Introduction to Mono for Android .17

CHAPTER 3 Understanding Android/Mono for Android Applications 37

CHAPTER 4 Planning and Building Your Application’s User Interface 59

CHAPTER 5 Working with Data . 105

CHAPTER 6 Binding Data to Controls . 131

CHAPTER 7 Working with the File System and Application Preferences 183

CHAPTER 8 Programming with the Device Hardware . 207

CHAPTER 9 Using Multimedia — Audio, Video, and the Camera 237

CHAPTER 10 Talking to Other Applications and Libraries . 269

CHAPTER 11 Developing Background Services and Asynchronous Code 289

CHAPTER 12 Canvas and Drawables: Building Custom Android Graphics 323

CHAPTER 13 Working with Location Information .371

CHAPTER 14 Internationalization and Localization . 393

CHAPTER 15 Sharing Code Between Mono for Android,

MonoTouch, and Windows Phone 7 .417

CHAPTER 16 Preparing and Publishing Your Application to the Market 445

CHAPTER 17 Android Tablets . 469

APPENDIX A Tips for Developers and the Future of Mono and Android 495

INDEX . 507

ffirs.indd iffirs.indd i 2/28/2012 4:27:43 PM2/28/2012 4:27:43 PM

www.allitebooks.com

http://www.allitebooks.org

ffirs.indd iiffirs.indd ii 2/28/2012 4:27:44 PM2/28/2012 4:27:44 PM

www.allitebooks.com

http://www.allitebooks.org

McClure ffi rs.indd V1 - 01/23/2012

PROFESSIONAL

Android™ Programming with Mono® for

Android and .NET/C#

Wallace B. McClure
Nathan Blevins
John J. Croft IV
Jonathan Dick
Chris Hardy

ffirs.indd iiiffirs.indd iii 2/28/2012 4:27:44 PM2/28/2012 4:27:44 PM

www.allitebooks.com

http://www.allitebooks.org

McClure ffi rs.indd V1 - 01/23/2012

Professional Android™ Programming with Mono® for Android and .NET/C#

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2012 by Wallace B. McClure, Nathan Blevins, John J. Croft IV, Jonathan Dick, Chris Hardy

Published by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-02643-4
ISBN: 978-1-118-22215-7 (ebk)
ISBN: 978-1-118-23581-2 (ebk)
ISBN: 978-1-118-26075-3 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, elec-
tronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the
1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through pay-
ment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978)
750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department,
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://
www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect
to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including without
limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or promotional
materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the
understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional
assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author
shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the information the
organization or Web site may provide or recommendations it may make. Further, readers should be aware that Internet Web
sites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the United
States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Not all content that is available in
standard print versions of this book may appear or be packaged in all book formats. If you have purchased a version of this
book that did not include media that is referenced by or accompanies a standard print version, you may request this media by
visiting http://booksupport.wiley.com. For more information about Wiley products, visit us at www.wiley.com.

Library of Congress Control Number: 2011930295

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other
countries, and may not be used without written permission. Mono is a registered trademark of Novell, Inc. Android is a
trademark of Google, Inc. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not
associated with any product or vendor mentioned in this book.

ffirs.indd ivffirs.indd iv 2/28/2012 4:27:45 PM2/28/2012 4:27:45 PM

www.allitebooks.com

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com
http://www.allitebooks.org

McClure ffi rs.indd V1 - 01/23/2012

To my wife, Ronda, daughter, Kirsten, and son, Brad

— Wallace B. McClure

To my lovely wife and accomplice, Crystal; my

beautiful daughter, Kitara; and my son, Tristan, whom

we’ve just welcomed into this wondrous world.

 — Nathan Blevins

To my wife, Valerie, and my sons, Jack and Conor

 — John J. Croft IV

To my wonderful wife, Jennifer, for all of her support

in everything I do, and her tolerance for my geeky and

gadgetry obsessions!

 — Jonathan Dick

To my wife, Cara for, once again, putting up with the

long nights; to my parents, Hazel and Bob; and to my

sister, Kate

 — Chris Hardy

ffirs.indd vffirs.indd v 2/28/2012 4:27:45 PM2/28/2012 4:27:45 PM

www.allitebooks.com

http://www.allitebooks.org

McClure ffi rs.indd V1 - 01/23/2012

EXECUTIVE EDITOR

Bob Elliott

SENIOR PROJECT EDITOR

Kevin Kent

PROJECT EDITOR

Victoria Swider

TECHNICAL EDITORS

Stephen Long

Jordan Cobb

PRODUCTION EDITOR

Daniel Scribner

COPY EDITOR

Gayle Johnson

EDITORIAL MANAGER

Mary Beth Wakefi eld

FREELANCER EDITORIAL MANAGER

Rosemarie Graham

ASSOCIATE DIRECTOR OF MARKETING

David Mayhew

MARKETING MANAGER

Ashley Zurcher

BUSINESS MANAGER

Amy Knies

PRODUCTION MANAGER

Tim Tate

VICE PRESIDENT AND EXECUTIVE GROUP

PUBLISHER

Richard Swadley

VICE PRESIDENT AND EXECUTIVE PUBLISHER

Neil Edde

ASSOCIATE PUBLISHER

Jim Minatel

PROJECT COORDINATOR, COVER

Katie Crocker

PROOFREADER

Louise Watson, Word One New York

INDEXER

Ron Strauss

COVER DESIGNER

Ryan Sneed

COVER IMAGE

© Antonis Papantoniou / iStockPhoto

CREDITS

ffirs.indd viffirs.indd vi 2/28/2012 4:27:45 PM2/28/2012 4:27:45 PM

www.allitebooks.com

http://www.allitebooks.org

McClure ffi rs.indd V1 - 01/23/2012

ABOUT THE AUTHORS

WALLACE B. (WALLY) MCCLURE graduated from the Georgia Institute of Technology
(Georgia Tech) in 1990 with a Bachelor of Science degree in electrical engineering.
He continued his education there, receiving a Master’s degree in the same fi eld in
1991. Since that time, he has done consulting and development for such companies
as the United States Department of Education, Coca-Cola, Bechtel National,

Magnatron, and Lucent Technologies, among others. McClure has authored books on architec-
ture, ADO.NET, SQL Server, AJAX, and Mobile Devices with Mono. He has authored two books
on iPhone programming with MonoTouch and one book on Mono for Android. He specializes in
mobile applications, application scalability, and application user interfaces. He is a Microsoft
MVP, an ASPInsider, and a partner in Scalable Development, Inc. You can read Wally’s blog at
www.morewally.com. Wally is married and has two children. When not writing software, he
explores entrepreneurial efforts, plays golf, exercises, and hangs out with his family.

NATHAN BLEVINS is a husband and father who has been working in application
development for the past 10 years. Always intrigued by logical puzzles, mechanics,
and problem solving, Nathan found his calling in software development and has
been playing at work ever since. Living by the philosophy of “work to become, not
to acquire,” Nathan has devoted himself to being a lifetime student, also working

within the community as a speaker, educator, and overall technology enthusiast. In the past,
Nathan has worked with various national and local businesses via his personal consulting company,
Blevins Consulting. At present, Nathan is serving as a developer and business analyst for Bush
Brothers & Company.

Though his career began on the open source development stack in languages such as PHP and
Python, Nathan’s main focus has been on ASP.NET and C# development since 2004. During the
past few years, Nathan’s work has included mobile development platforms such as Android,
Blackberry, and Windows Phone 7. Currently, Nathan is involved in the community as a member of
the ASP.NET Insiders and as a public speaker. If you would like to get into contact with Nathan
Blevins, please feel free to contact him through his personal blog at http://nathanblevins.com or
via his Twitter account, @nathanblevins.

JOHN J. CROFT IV graduated from the Georgia Institute of Technology in 1991,
receiving a Bachelor’s degree in mechanical engineering. He then spent 5 years con-
sulting for large companies, including Coca-Cola, BellSouth, and MCI. Work at these
companies primarily involved C and C++ programming and object-oriented systems
analysis. In 1995, Croft embarked on his entrepreneurial career by starting

Computing Solutions. Computing Solutions is a technology fi rm that has provided quality service to
over 200 clients nationwide. Computing Solutions clients have varied in both size and need, from
Fortune 100s to small startup companies. Their problems have varied drastically as well, from large
databases and executive information systems to lithotripter control and satellite telemetry. In 2003,

ffirs.indd viiffirs.indd vii 2/28/2012 4:27:45 PM2/28/2012 4:27:45 PM

www.allitebooks.com

http://www.allitebooks.org

McClure ffi rs.indd V1 - 01/23/2012

Computing Solutions merged with McClure Development to become Scalable Development, Inc.
SDI’s technology performances have included projects with Java, C#, and .NET applications.
Recently, John has returned to the corporate world as a senior technical manager for Turner
Broadcasting Systems. John has coauthored two other books on programming with .NET. He cur-
rently lives in Atlanta with his wife, Valerie, and his two sons.

JONATHAN DICK is a database administrator and software developer and has been
working with .NET since its beta days. He now focuses on mobile application devel-
opment, and has written several MonoTouch applications. He currently maintains
open source .NET libraries for Apple iOS Push Notifi cations and Google Android
Cloud to Device Messaging (APNS-Sharp and C2DM-Sharp), while contributing to

other mobile-focused projects such as MonoTouch.Dialog and MonoDroid.Dialog.

CHRIS HARDY, a Microsoft ASPInsider, is a .NET consultant focusing on MonoTouch
and Mono for Android development working with Xamarin. Ever since
MonoTouch was in beta, Chris has been developing and evangelizing MonoTouch
and was one of the fi rst users to get a MonoTouch application onto the App Store.
Speaking at conferences around the world on the subject, Chris has been a key

part of the community and extended this by contributing to the Wrox book Professional iPhone
Programming with MonoTouch and .NET/C#. You can follow him on Twitter @chrisntr.

ABOUT THE TECHNICAL EDITORS

STEPHEN LONG is a senior developer currently focusing on .NET and specializing in web and mobile
development. He enjoys working with MVC frameworks, such as those provided with ASP.NET and
the Android SDK, leveraging new and emerging technologies, and being a mentor to those around
him. He is a self-described Google/Android fanboy, husband, and father of two wonderful daughters
currently residing in Knoxville, Tennessee. Stephen graduated from the University of Memphis
with a BSEE degree with a concentration in computer engineering. He can be found on twitter
@long2know.

JORDAN COBB has been fascinated by technology ever since receiving his fi rst computer, a 486 DX2,
at the age of 12. His fi rst passion was network systems and hardware, but after becoming frus-
trated in relying on third-party applications, or the lack thereof, to get the job done he delved into
the world of software development. After dabbling in the PHP language for some time he moved
to the .NET Framework and has been developing professionally for the past 9 years. Jordan enjoys
interfacing software with physical devices, like Arduino, as well as other hobby electronics projects.
When he is not at the keyboard, Jordan enjoys playing the occasional round of paintball, attend-
ing conferences, and spending time with his new wife, Christine. The couple is expecting their fi rst
child, Zoey, in April 2012.

viii x ABOUT THE AUTHORS

ffirs.indd viiiffirs.indd viii 2/28/2012 4:27:57 PM2/28/2012 4:27:57 PM

www.allitebooks.com

http://www.allitebooks.org

McClure ffi rs.indd V1 - 01/23/2012

ACKNOWLEDGMENTS

I’VE ALWAYS LOVED MOBILE DEVELOPMENT. After years of working with Wrox, we were able to cre-
ate content based on MonoTouch, which is the elder sibling of Mono for Android. After more twists
and turns, Mono for Android is now out and available. I’d like to thank the Mono for Android team
for staying the course and creating a great product; Bob Elliott, who allowed us to create the Mono
for Android book; Jim Minatel, who originally asked if such a product might exist; Kevin Kent, who
worked with us on a daily basis and kept us on track; and a great set of coauthors, who all helped
get a great book out the door.

I also want to thank my family. They did a great job allowing me to work on the book and to work
for customers as well. I owe Ronda, Kirsten, and Brad a huge “Thank you!”

Finally, I want to thank you for purchasing this book. We hope you enjoy reading this book as much
as we enjoyed writing it.

—Wallace B. McClure

We are all the products of our experiences. With this in mind, I would like to thank my friends,
family, coworkers, and tweeps for all the support and advice they have provided me throughout this
process. It would be diffi cult not to succeed with so many wonderful people in my life. Specifi cally,
I’d like to thank Mom, who tirelessly worked to instill within me some sense of linguistics, and Dad,
who taught me the value of hard work and perseverance. Also, I’d like to take a moment to thank
my brother, Dave, for his patience and to formally apologize for all those missed Halo nights. In
addition, I’d like to thank Andrew May for his sanity checks and Android advice, Rodney Stephens
and the CIT for new beginnings, and the wonderful folks at Bush Brothers & Company for their
encouragement and for simply being the outstanding people that they are.

Finally, I’d like to thank my fellow authors for being such a pleasure to work with. I am grateful to
Bob, Kevin, and the other folks at Wiley whose vision and amazing attention to detail made even me
sound intelligent. Finally, I owe the biggest thanks to my loving wife, Crystal, for her understanding
and her willingness to allow me to play at working for long hours into the night.

—Nathan Blevins

I would like to thank all those who helped me in writing this book, particularly my editors, Kevin Kent,
Stephen Long, and Jordan Cobb, whose feedback was of immense help. Also I would like to thank my
coauthors and our lead author Wally McClure, who pulled the project together.

 — John J. Croft IV

ffirs.indd ixffirs.indd ix 2/28/2012 4:27:58 PM2/28/2012 4:27:58 PM

McClure ffi rs.indd V1 - 01/23/2012

Thanks to the entire Mono team. You are all fantastic, make extraordinary products, and it has
been a pleasure getting to work with you! Thanks to Wally for bringing me on board, and to my
coauthors for sticking with it to the end to make this book happen! I’d especially like to thank my
family for their enthusiastic support, and my wonderful wife, Jennifer, for her understanding and
encouragement of all my crazy endeavors and the countless hours she’s allowed me to obsess over
technology!

—Jonathan Dick

A huge thanks to all the Wrox team for letting me contribute to the book, the Mono team for cre-
ating an awesome product with Mono for Android, and to the whole MonoTouch and Mono for
Android community for being amazing!

—Chris Hardy

x x ACKNOWLEDGMENTS

ffirs.indd xffirs.indd x 2/28/2012 4:27:59 PM2/28/2012 4:27:59 PM

McClure ftoc.indd V1 - 01/12/2012

CONTENTS

FOREWORD xxiii

INTRODUCTION xxv

CHAPTER 1: INTRODUCTION TO ANDROID, MOBILE DEVICES,
AND THE MARKETPLACE 1

Product Comparison 2

The .NET Framework 2

Mono 3

Mono for Android 4

Mono for Android Components 5

Development Tools 6

Mobile Development 6

Getting Around Support Issues 7

Design Issues 7

Android 8

History of Android 8

Writing Web-Based Applications for Android 9

Writing Native Applications for Android 9

Android Development Issues 9

Android SDK Tools 10

Android Development Costs 11

Cross-Platform Alternatives 12

Other Cross-Platform Tools 12

Considerations for Selecting a Cross-Platform Tool 12

How Does the Tool Allow You to Author Your Application? 13

What Device Features Does the Tool Support? 13

What Platforms Does the Tool Support? 14

What Skill Sets Does the Tool Require? 14

What Tools Exist to Support Development? 14

How Active Are the Development Community and Support Channels? 14

What Are the Successful Application Deployments for This Tool? 14

Summary 15

ftoc.indd xiftoc.indd xi 2/28/2012 4:28:27 PM2/28/2012 4:28:27 PM

McClure ftoc.indd V1 - 01/12/2012

xii

CONTENTS

CHAPTER 2: INTRODUCTION TO MONO FOR ANDROID 17

Before You Begin Developing 17

What Is Mono? 17

Mono Implementation Goals 18

Mono Standards 18

What Is Mono for Android? 18

Why Do I Need Mono for Android? 18

Familiar Development Environment 19

Familiar API and Library Structure 19

What Are the Trade-Off s of Working with Mono for Android? 21

Waiting for Improvements 21

Taking a Potential Performance Hit 21

Memory Management 21

What Do I Need for the Mono for Android
Development Environment? 22

Java SDK 22

Android SDK 22

Visual Studio 24

Visual Studio Development with Mono for Android 25

General Setup 25

Building Hello Android 26

Logging 28

Debugging 30

Testing 30

Deploying 31

Mono for Android Development with MonoDevelop 31

General Setup 31

Building Hello Android 32

Logging 34

Debugging 34

Testing 34

Deploying 35

Summary 35

CHAPTER 3: UNDERSTANDING ANDROID/MONO FOR ANDROID
APPLICATIONS 37

What Is an Android Application? 38

The Building Blocks of an Android Application 39

Activities 39

Services 44

Content Providers 44

ftoc.indd xiiftoc.indd xii 2/28/2012 4:28:28 PM2/28/2012 4:28:28 PM

McClure ftoc.indd V1 - 01/12/2012

xiii

CONTENTS

Broadcast Receivers 47

Communicating between Components: Android Intents 49

Binding the Components: The Android Manifest 50

Android Manifest Basics 51

Editing the Manifest for Mono for Android via Visual Studio 54

Summary 56

CHAPTER 4: PLANNING AND BUILDING YOUR APPLICATION’S
USER INTERFACE 59

Guidelines for a Successful Mobile UI 59

Building an Android UI 60

Views 60

Design Surface 61

Choosing a Control Layout 61

AbsoluteLayout 62

FrameLayout 63

LinearLayout 63

RelativeLayout 65

TableLayout 67

Optimizing Layouts 68

Designing Your User Interface Controls 69

TextView 70

EditText 70

AutoCompleteTextView 71

Spinner 71

Button 73

Check Box 73

Radio Buttons and Groups 73

Clocks 76

Pickers 77

Images 79

ImageView 80

ImageButton 80

Gallery 80

Virtual Keyboards 84

Selecting Your Virtual Keyboard 86

Removing the Keyboard 86

Controlling Your Menus 87

Introducing the Menu System 87

Menus 87

Submenus 90

ftoc.indd xiiiftoc.indd xiii 2/28/2012 4:28:28 PM2/28/2012 4:28:28 PM

McClure ftoc.indd V1 - 01/12/2012

xiv

CONTENTS

Context Menus 90

Defi ning Menus as a Resource 92

Menus 93

Context Menus 94

Resolution-Independent UI 95

Supporting Various Screen Resources 95

Supporting Screen Sizes 95

Supporting Pixel Densities 96

Using Android Market Support 97

Multiple Screen Resolution Best Practices 97

Constructing a User Interface: A Phone and Tablet Example 98

Summary 104

CHAPTER 5: WORKING WITH DATA 105

Working with SQLite 105

Setting Up a Database 106

Setting Up Tables 107

Using SQL Statements 108

Using Read/Select to Read Data 108

Using SQL Statements to Insert Data 110

Upgrading Strategies 110

Upgrading in Place 111

Copying Data 111

Android-Specifi c Database Options 111

SQLiteOpenHelper 111

Storing Data Remotely 113

Working with Remote Data 113

Accessing Enterprise Services 114

Using SOAP 115

Working with ASMX Web Services 115

Working with Windows Communication Foundation (WCF) 116

Using REST-Based Web Services 119

Using JavaScript Object Notation (JSON) 120

Posting Data with POST 124

Retrieving Data Using LINQ and XML 125

Using Asynchronous Data Retrieval 127

Using Web Services Responsibly 128

Working with Remote SQL Server Databases 128

Summary 130

ftoc.indd xivftoc.indd xiv 2/28/2012 4:28:28 PM2/28/2012 4:28:28 PM

McClure ftoc.indd V1 - 01/12/2012

xv

CONTENTS

CHAPTER 6: BINDING DATA TO CONTROLS 131

Databinding in Mono for Android 132

What Is a Data Adapter? 133

What Is an Adapter View? 133

How Do These Items Relate to One Another? 134

Working with Adapter Views and Large Data Sets 134

Exploring Adapters in Depth 137

Using Native Adapters 137

Exploring Adapter Views in Depth 138

Using Native Adapter Views 138

Working with Cursors 139

Using a Cursor to Populate a Spinner 139

Setting Up the Spinner and Data Source 140

Using a Spinner Adapter 143

Adding a Listener Event for a Spinner 144

Using a Cursor with a Gallery 147

Setting Up the Project 148

Adding the Cursor 150

Completing the Custom Adapter 152

Working with Lists 154

Displaying Simple Data in a List 155

Working with Android’s ListAdapters 158

Customizing ListView with a Custom List Adapter 160

Handling ListView Events 166

Preferences Screen 168

Nested Navigation 171

Grouped Lists 173

Displaying Data in a Grid 177

Summary 182

CHAPTER 7: WORKING WITH THE FILE SYSTEM AND
APPLICATION PREFERENCES 183

Working with the File System 184

File System Type and Structure 184

QuickEdit Sample Program: Working with a File Storage Example 189

Working with Application Preferences 195

Application Preference Types 195

Creating Your Own Application Preferences 196

ftoc.indd xvftoc.indd xv 2/28/2012 4:28:28 PM2/28/2012 4:28:28 PM

McClure ftoc.indd V1 - 01/12/2012

xvi

CONTENTS

Preferences Program 197

Listening for Preference Changes 202

Processing XML 204

Summary 205

CHAPTER 8: PROGRAMMING WITH THE DEVICE HARDWARE 207

Working with Sensors 208

Referencing the Sensor Manager 208

Sensor Support 208

Accessing Sensors 209

Using Sensors 209

Understanding the Sensor Type Values 211

Responding to Acceleration 212

Using the XYZ Coordinate System 213

Coding with the Accelerometer 213

Building a Compass 214

Vibration 218

Networking Connectivity 219

ConnectivityManager 219

Checking User Communication Preferences 219

Checking for Changes to BackgroundDataSetting 220

Checking Current Network Confi guration 221

Creating Network Connectivity Notifi cations 221

Wifi Manager 221

WiFi States 224

WiFi Changes 225

Bluetooth Manager 225

Working with Bluetooth State 226

Enabling Voice Recognition in Your App 227

Getting Turn-by-Turn Directions 229

Summary 235

CHAPTER 9: USING MULTIMEDIA — AUDIO, VIDEO, AND
THE CAMERA 237

Android Media Classes 238

Playing Audio and Video 239

Media Player Supported Formats 239

Programming Audio Playback 240

Programming Video Playback 244

Controlling Playback 247

Managing Playback Output 247

ftoc.indd xviftoc.indd xvi 2/28/2012 4:28:28 PM2/28/2012 4:28:28 PM

McClure ftoc.indd V1 - 01/12/2012

xvii

CONTENTS

Recording Audio and Video 247

Using Intents to Record Video 248

Using the Media Recorder 251

Confi guring Video Recording 251

Previewing Video Recording 252

Audio Recording 253

Images and Using the Camera 254

Using Intents to Take Pictures 254

Controlling the Camera 257

Managing Camera Settings and Picture Options 257

Monitoring Autofocus 259

Using the Camera Preview 260

Taking a Picture 261

Reading and Writing JPEG Exif Values 262

Adding New Media to the Media Store 263

Using the Media Scanner 263

Adding New Media to the Store 264

Speech Recognition 265

Summary 266

CHAPTER 10: TALKING TO OTHER APPLICATIONS
AND LIBRARIES 269

Android Application Integration 269

Opening the Browser 269

Opening E-mail 272

Making a Telephone Call 273

Sending a Text/SMS Message 274

Opening a Location in the Maps Application 276

Opening a YouTube Video 276

Opening the Market 277

Application Integration 278

Simple Integration with HootSuite and Other
Twitter Applications 279

Confi guring Your Intent Filters 279

Handling Incoming Intent Requests 280

Integrating with Contacts 280

Displaying Contact Details 283

Picking a Contact 284

Creating a New Contact 285

Creating a New Contact or Adding to an Existing Contact 286

Summary 287

ftoc.indd xviiftoc.indd xvii 2/28/2012 4:28:28 PM2/28/2012 4:28:28 PM

McClure ftoc.indd V1 - 01/12/2012

xviii

CONTENTS

CHAPTER 11: DEVELOPING BACKGROUND SERVICES AND
ASYNCHRONOUS CODE 289

The Life Cycle of a Service 290

Creating Your First Service 290

Prioritizing Services 293

Using Threads for Asynchronous Processing 294

Threading Manually 295

Utilizing System.Threading.Tasks 297

Implicit Threading with the IntentService 298

Communicating with the UI 299

Using the Binder and Service Connection Method 299

Using the Broadcast Receiver Method 303

Using the Static Event Method 305

Notifying the User with Notifi cations 308

Scheduling Intents with Alarms and the IntentService 310

Push Notifi cations Using Cloud to Device
Messaging (C2DM) 312

Listening for C2DM in Your Application 313

Sending a C2DM Message from Your Server 317

Summary 321

CHAPTER 12: CANVAS AND DRAWABLES: BUILDING CUSTOM
ANDROID GRAPHICS 323

Working with Graphics in Mono for Android 324

Using the Canvas Object 325

Graphics Primitives 326

The Canvas Object 327

The Paint Object 328

The Bitmap Object 329

Bringing It All Together 330

A Path Primer 330

Case 1: Creating a Custom Graphic 331

Case 2: Responding to Events 336

Case 3: Animating Custom Graphics 342

Case 4: Improving Performance Using SurfaceView 347

Selecting the Best Approach 351

The 2D Graphics Library 352

Using Drawables 352

Drawables as XML Resources 353

Simple and Compound Drawables 354

ftoc.indd xviiiftoc.indd xviii 2/28/2012 4:28:28 PM2/28/2012 4:28:28 PM

McClure ftoc.indd V1 - 01/12/2012

xix

CONTENTS

Drawables in Action 354

Case 1: Using Default Drawables 354

Case 2: Adding Polish with the Shape Drawable 356

Case 3: Using the Gradient Drawable 360

Case 4: Using the Compound Drawable 362

Case 5: Interacting with a Custom Drawable 366

Summary 369

CHAPTER 13: WORKING WITH LOCATION INFORMATION 371

Understanding Location Basics 372

Determining Location 373

Location-Based Data Interruptions 373

Using Location-Based Services 374

Confi guring Location-Based Applications on the Emulator 374

Selecting a Location Provider 377

Determining Which Providers Are Available 377

Finding Location Providers with Criteria 377

Geocoding 379

Forward Geocoding 379

Reverse Geocoding 380

Constructing Proximity Alerts 382

Using Google Maps 384

Getting Your Development/Debugging MD5 Fingerprint 385

Getting Your Production/Release MD5 Fingerprint 386

Creating the Maps-Based Activity 386

Creating a Map in a Layout File 387

Using the MapView Controller with an Overlay 388

Summary 391

CHAPTER 14: INTERNATIONALIZATION
AND LOCALIZATION 393

Selecting a Localization Strategy 395

Updating Language and Regional Settings 396

Understanding the Mechanics of Android Localization 398

Setting Up Default Resources 398

Adding Localization Support 399

Resource Selection in Detail 399

Supporting Multiple Languages 400

Utilizing the Strings.xml File 400

Translating Text 401

ftoc.indd xixftoc.indd xix 2/28/2012 4:28:28 PM2/28/2012 4:28:28 PM

McClure ftoc.indd V1 - 01/12/2012

xx

CONTENTS

Translating Control Text 404

Localizing Other Resources 406

Localizing the Menu Icon and Application Name 409

Advanced Usage of Strings.xml 410

String Array 410

Plurals 410

String Replacements 411

Working with Format Conversions 414

Formatting Dates 414

Formatting Numbers and Currency 414

Summary 415

CHAPTER 15: SHARING CODE BETWEEN MONO FOR ANDROID,
MONOTOUCH, AND WINDOWS PHONE 7 417

Overview of the Three Platforms 417

Mono for Android 418

MonoTouch 418

Windows Phone 7 419

Using Class Libraries to Separate the Code 420

Using Preprocessor Directives 420

Mono for Android 421

Windows Phone 7 421

MonoTouch 422

Assemblies Available on Each Platform 422

One Class Library to Rule Them All 425

Mono for Android 426

MonoTouch 428

Windows Phone 7 429

Putting It All Together: Creating a Cross-Platform Application 431

Summary 443

CHAPTER 16: PREPARING AND PUBLISHING YOUR APPLICATION
TO THE MARKET 445

Preparing Your Application 446

Testing Your Application 446

Hitting the Key Testing Areas 447

Tools for the Testing Trade 449

Unit Testing 449

DDMS 449

The Emulator 452

ftoc.indd xxftoc.indd xx 2/28/2012 4:28:29 PM2/28/2012 4:28:29 PM

McClure ftoc.indd V1 - 01/12/2012

xxi

CONTENTS

Traceviews 453

Stress Testing via the Application Exerciser Monkey 455

UI Testing via the Monkeyrunner 456

Involving Peers and Users in the Testing Process 456

Publishing Your Application to the Android Market 457

Versioning Your Application 457

Creating the Final Build 459

Signing Your Application 461

Creating a Private Key 461

Creating a Self-Signed Certifi cate 464

Aligning the Final Package 464

Uploading to the Android Market 465

Summary 466

CHAPTER 17: ANDROID TABLETS 469

Examining the Android Tablet Marketplace 469

Designing a Tablet UI 470

Using the Action Bar 472

Removing the Action Bar 473

Adding Items to the Action Bar 473

Using the Application Icon 477

Navigating “Up” the Stack 477

Adding and Using Action Items 478

Creating a Tabbed Interface 479

Partial Screen Control Using Fragments 480

Creating Fragments 481

More Fragments 486

Summary 494

APPENDIX A: TIPS FOR DEVELOPERS AND THE FUTURE OF
MONO AND ANDROID 495

Best Practices, Hints, Tips, and Gotchas 495

Android Honeycomb (3.0) and Ice Cream Sandwich (4.0) 499

Fragments for All! 502

Android Version and Device Fragmentation 503

What’s Next for Mono for Android? 504

Using Xamarin.Mobile for Cross-Platform Mobile Functionality 505

INDEX 507

ftoc.indd xxiftoc.indd xxi 2/28/2012 4:28:29 PM2/28/2012 4:28:29 PM

flast.indd xxiiflast.indd xxii 2/28/2012 4:28:17 PM2/28/2012 4:28:17 PM

McClure fl ast.indd V1 - 01/23/2012

FOREWORD

Mono for Android is a blend of two fascinating and incredibly enjoyable worlds: the C# language
and the Android operating system. We designed Mono for Android to bring those two universes
together, and we did this by tapping into years of experience designing and implementing languages,
APIs, and bindings.

Our passion for the Android OS is very simple to explain: Like everyone else we were smitten by the
growth rate of the platform, the well-thought-out design, and the powerful development platform.
This combination was hard to resist.

Our love for C# goes back to the year 2000, when Microsoft unveiled their new language to the
world. And just like C# rocked the Windows world, it rocked our world. By the year 2000 we had
been working on the GNOME Desktop and the Evolution mail client for Linux for a few years, and
we had learned our share of lessons in developing desktop applications.

We were developing software in a competitive space, and we needed to produce software faster, with
fewer developers. One option was to work harder and work more hours. Instead we chose to raise
the programming level: We kept performance-sensitive code written in C and produced bindings for
high-level languages that developers could exploit.

When Microsoft announced C# and the .NET framework, the language was an immediate improve-
ment that raised the programming level. The .NET framework ensured that our hands would not be
bound to a single language, but also ensured that we could continue to re-use any existing code that
we had written in C or C++. C# made the world, ourselves included, vastly more productive.

Over the years, Mono grew in every possible direction. It quickly permeated beyond the desktop
comfort zone where it originated and was implemented on everything from embedded controllers to
MP3 players, servers, video games, and industrial controls.

MonoTouch was created purely out of user demand. Our main-line e-mail address was bombarded
during 2008 and 2009 with requests to bring Mono to the iPhone, and by the summer of 2009 we
had a full stack offering that was released later that fall. By early 2010, we were receiving a volume
of requests from developers to expand our toolkit to support the Android platform in addition to
our existing support for iOS. Just one short year later, we released Mono for Android with a full
complement of cutting-edge APIs and the ability to write Android applications using Visual Studio
2010. It is simply amazing just how far we’ve come in such a short amount of time.

The authors of this book are among the early beta testers of Mono for Android: They were there on
the fi rst days of the Mono for Android release, they were there to explore the original API design,
they were there to help us shape the fi nal product, and they continue to help us prioritize what
matters most to developers when targeting the Android OS.

flast.indd xxiiiflast.indd xxiii 2/28/2012 4:28:17 PM2/28/2012 4:28:17 PM

McClure fl ast.indd V1 - 01/23/2012

xxiv

FOREWORD

You might know some of the authors already:

Wally McClure has been a recent convert to Mono through his interest in MonoTouch and now Mono
for Android. He released the fi rst e-book for MonoTouch in record time, and was the lead author on
the fi rst MonoTouch book published. Both of these books have helped thousands of developers to get
applications up and running on the iPhone within months of the initial MonoTouch release.

Chris Hardy is well known in the Windows/ASP.NET world and is also a very active member
of the MonoTouch and Mono for Android communities. In 2011 he joined Xamarin and has to
date engaged with tons of developers to help improve their applications and has answered count-
less questions on the Xamarin mailing lists, forums, Stack Overfl ow, and IRC. Chris jumped into
MonoTouch and Mono for Android with the passion that only a rocker from Manchester can
exhibit. He also created the open source MonoTouch iPhone application for Scott Hanselman’s pod-
cast “Hanselminutes,” to much acclaim.

Jon Dick is a database administrator and software developer and has been working with .NET
since its beta days. He now focuses on mobile application development, and has written several
MonoTouch applications. He currently maintains open source .NET libraries for Apple iOS Push
Notifi cations and Google Android Cloud to Device Messaging (APNS-Sharp and C2DM-Sharp),
while contributing to other mobile-focused projects such as MonoTouch.Dialog and MonoDroid
.Dialog.

Nathan Blevins has been on ASP.NET and C# development since 2004. During the past few years,
Nathan’s work has included mobile development platforms such as Android, Blackberry, and
Windows Phone 7.

John Croft spent years consulting for large companies, including Coca-Cola, BellSouth, and MCI,
primarily doing work involving C and C++ programming and object-oriented systems analysis.
Then John’s work with his own Computing Solutions technology fi rm had him working with
everything from large databases and executive information systems to lithotripter control and satel-
lite telemetry. Then Computing Solutions merged with McClure Development to become Scalable
Development, Inc., and John’s work included projects with Java, C#, and .NET applications.
Additionally, John has coauthored two other books on programming with .NET. Currently, John is
a senior technical manager for Turner Broadcasting Systems.

Building applications with C# and the Android OS is really the best of both worlds. You get a
strongly typed, type safe, garbage collected language with the hottest APIs for mobile applications,
and the best libraries created natively for Android as well as for C# in .NET.

I leave you in the good hands of Wally, Chris, Jon, Nathan, and John.

—Miguel de Icaza
Chief Technology Offi cer

Xamarin, Inc.

flast.indd xxivflast.indd xxiv 2/28/2012 4:28:17 PM2/28/2012 4:28:17 PM

McClure fl ast.indd V1 - 01/23/2012

INTRODUCTION

SINCE ITS INTRODUCTION IN THE FALL of 2008, Android has grown and matured to the point
where it is currently the number one smartphone platform in terms of shipments worldwide. Along
with that growth is an interest in writing applications that run natively on the device and that take
advantage of the device’s features, such as the camera and voice recognition.

Since the release of the .NET Framework in January 2002, its growth has been impressive. It is
the most popular development framework in use today. While the .NET Framework was in initial
development, Miguel de Icaza, who worked for Ximian, created his own C# compiler, and from
that the Mono framework was born. In 2003, Novell purchased Ximian. In 2011, Attachmate pur-
chased Novell. Later in 2011, Xamarin was formed and all of the products associated with Mono,
MonoTouch, Mono for Android, and MonoDevelop were transferred to Xamarin. The payoff for
us as developers is that Xamarin is laser-focused on Mono for Android and MonoTouch, and on
making those the best products available for development on mobile with Android and iPhone.
Throughout all of this, the Mono framework has grown to run across various platforms. Initially,
Mono was designed to run on Linux. Since that time, Mono has branched out and is available
across several non-Windows platforms. In the summer of 2009, the MonoTouch framework was
shipped. This allowed developers to write applications with the .NET Framework and using the
C# language to run applications written for the iPhone. In February 2010, de Icaza confi rmed on
his blog that the Mono team were working on an implementation of Mono for Android similar in
concept to MonoTouch. This implementation initially was called MonoDroid and fi nally was named
Mono for Android.

To .NET developers, the ability to write applications in C# using many of the existing APIs that
they are already familiar with is very attractive. .NET developers are not required to learn the ins
and outs of the Java language, nor are they required to learn the Eclipse IDE. .NET developers can
stay within the Visual Studio IDE that they are already accustomed to, use the C# language that
they already know, make calls in the .NET Framework that they are already familiar with, and cre-
ate an application for the Android platform. I’m excited about the possibilities that this offers.

The ability to run natively on the device should not be understated. HTML5 is a great emerging stan-
dard for providing applications. Frameworks that are being built will take advantage of what the web
browser allows. Unfortunately, it has several problems. For example, a web application cannot access
all of the device, so currently you can’t access the camera or voice recognition or run applications in
the background. Also, HTML5 won’t be a full and accepted standard for several years.

But wait; there’s more.

One of the frustrations with writing applications for mobile devices is that developers are required
to write an ObjectiveC application for the iPhone, a Java application for Android, and a Silverlight/
.NET application for Windows Phone 7. The time and expense to develop for these platforms is non-
trivial. If a team decides to develop an ObjectiveC application, a Java application, and a Silverlight/
.NET application for each platform, it would be impossible to share code among those platforms.
Thankfully, the Mono platform allows developers to share business logic across those platforms.
Imagine having a class library for interacting with your Amazon web services that you can use

flast.indd xxvflast.indd xxv 2/28/2012 4:28:17 PM2/28/2012 4:28:17 PM

McClure fl ast.indd V1 - 01/23/2012

xxvi

INTRODUCTION

across all your platforms. When you add some new functionality in one platform, all platforms get
this functionality. When a bug is fi xed in one platform, the fi x is available to all platforms.

The Mono platform lets you target multiple platforms using the languages you already know. This is
a great thing for both developers and development managers. The idea of building a native applica-
tion for a device and reusing some of the same code across various platforms is very appealing. This
will defi nitely cut the cost of building mobile applications and bringing them to market across mul-
tiple platforms. And what developer, manager, or business doesn’t like that?

WHO THIS BOOK IS FOR

This book is for .NET developers who want to use their existing knowledge to create native Android
applications written in .NET/C#. .NET developers are always interested in learning, but they know
that learning Java, Eclipse, and the specifi cs of Android can be overwhelming. Developers interested
in Mono for Android will recognize that its cost is easily made up by the ability to quickly target
Android using a language they already know.

This book is intended for .NET developers who want to target Android. It is designed to get you
up to speed with Android, not to teach you about the .NET Framework or C# language, which we
assume you already know.

Chapters 1 through 4 contain introductory material; you should read them sequentially. These chapters
introduce the Mono for Android product, the basics of developing with Mono for Android, the Visual
Studio plugin and MonoDevelop, and the basics of presenting data to a user with screen and data con-
trols and how to develop a user interface for Android. When you are comfortable with these concepts,
you probably can move from one chapter to another without necessarily reading them sequentially.

WHAT THIS BOOK COVERS

This book covers .NET/C# development with Mono for Android. Mono for Android allows a devel-
oper to target Android devices running version 1.6 and later. This includes tablets based on Android.
Unless otherwise noted, all the development is geared toward Android 2.3, a.k.a. Gingerbread. At
the time of the writing of this book, Android 2.3 is the most widely deployed version of the plat-
form. However, the technology world changes fast. More recently, Google shipped Honeycomb
(a.k.a. Android 3.x), which is the version of Android geared toward tablets. Android 3.x shipped in
various tablet devices from various vendors during 2011.

Toward the end of 2011, Google shipped Android 4.0, a.k.a. Ice Cream Sandwich (ICS). This
version of Android unifi es the phone-optimized 2.x line with the tablet-optimized 3.x line.
Unfortunately, at the time of the writing of this book, we haven’t had Android 4.0 ICS devices to
test our code with. In addition, the Android marketplace tends to not upgrade their devices as fast
as the iPhone community. As a result, it’s highly likely that the Android 2.x series will continue to
have a majority of phone installations for the foreseeable future.

With all of these versions of Android out in the marketplace, we’ve tried to target Android 2.3 as our
base platform. However, having said that, we’ve also covered Android tablet support in its own chapter.
In addition, while we’ve targeted 2.3, we have made sure our code runs in Android 4.0 as well.

flast.indd xxviflast.indd xxvi 2/28/2012 4:28:17 PM2/28/2012 4:28:17 PM

McClure fl ast.indd V1 - 01/23/2012

xxvii

INTRODUCTION

HOW THIS BOOK IS STRUCTURED

This book is essentially divided into two parts. Chapters 1 through 4 make up the fi rst part,
which covers the essentials of developing for Android, the essentials of Mono for Android, and
the development experience for users targeting the Android platform. Again, it makes sense to
read that part of the book from beginning to end. When you feel comfortable with these concepts,
you can move on to the second part of the book, which contains discrete chapters from which you
can pick and choose.

WHAT YOU NEED TO USE THIS BOOK

You need several things to successfully use this book:

 ‰ An Android device: This could be a phone or tablet running Android.

 ‰ The Android SDK: You need to download and install the latest version of the Android SDK
on your computer.

 ‰ The Java SDK: Android development requires the Java SDK. In spite of the fact that Mono
for Android is an implementation of .NET/C# for Android, many pieces of development on
Android require Java. Therefore, Java is required for Mono for Android.

 ‰ A Development IDE: .NET developers are familiar with the Visual Studio .NET. Visual
Studio is featured throughout the book. MonoDevelop for the Mac and Windows is sup-
ported. MonoDevelop has additional requirements. Check out the Mono for Android
website at http://mono-android.net/ for additional information.

 ‰ Mono for Android: The Mono for Android product is necessary. Additional features may
be added over time. Therefore, it’s a good idea to check the Mono for Android website at
http://mono-android.net/.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we use a number of con-
ventions throughout the book.

Boxes with a warning icon like this one hold important, not-to-be forgotten
information that is directly relevant to the surrounding text.

The pencil icon indicates notes, tips, hints, tricks, or asides to the current
discussion.

flast.indd xxviiflast.indd xxvii 2/28/2012 4:28:18 PM2/28/2012 4:28:18 PM

McClure fl ast.indd V1 - 01/23/2012

xxviii

INTRODUCTION

As for styles in the text:

 ‰ We italicize new terms and important words when we introduce them.

 ‰ We show keyboard strokes like this: Ctrl+A.

 ‰ We show fi lenames, URLs, and code within the text like so: persistence.properties.

 ‰ We present code in two different ways:

We use a monofont type with no highlighting for most code examples.
We use bold to emphasize code that’s particularly important in the present context.

SOURCE CODE

As you work through the examples in this book, you may either type in all the code manually or use
the source code fi les that accompany the book. All the source code used in this book is available for
download at www.wrox.com. When at the site, simply locate the book’s title (use the Search box or
one of the title lists) and click the Download Code link on the book’s detail page to obtain all the
source code for the book. Code that is included on the Web site is highlighted by the following icon:

Listings include the fi lename in the title. If it is just a code snippet, you’ll fi nd the fi lename in a code
note such as this:

Code snippet fi lename

Because many books have similar titles, you may fi nd it easiest to search by
ISBN; this book’s ISBN is 978-1-118-02643-4.

After you download the code, decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx
to see the code available for this book and all other Wrox books.

Again, please note we’ve tried to target Android 2.3 as our base platform for the
code you will download, but we’ve made sure the code runs in Android 4.0 as well.

Also, if you have problems with the code that you can’t explain, doing a Clean
and Full Rebuild of your solution can often solve your problems. When in
doubt, we recommended you try this.

flast.indd xxviiiflast.indd xxviii 2/28/2012 4:28:18 PM2/28/2012 4:28:18 PM

www.allitebooks.com

http://www.allitebooks.org

McClure fl ast.indd V1 - 01/23/2012

xxix

INTRODUCTION

ERRATA

We make every effort to ensure that there are no errors in the text or code. However, no one is
perfect, and mistakes do occur. If you fi nd an error in one of our books, such as a spelling mis-
take or a faulty piece of code, we would be grateful for your feedback. By sending in errata, you
may save another reader hours of frustration. At the same time, you will help us provide even
higher quality information.

To fi nd the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you
can view all errata that have been submitted for this book and posted by Wrox editors. A complete
list that has links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.
shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fi x the problem in
subsequent editions.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at http://p2p.wrox.com. The forums are a
web-based system for you to post messages related to Wrox books and related technologies and to
interact with other readers and technology users. The forums offer a subscription feature through
which you can receive e-mail on topics of interest when new posts are made to the forums. Wrox
authors, editors, other industry experts, and your fellow readers are present on these forums. The
forums will help you not only as you read this book, but also as you develop your own applications.
To join the forums, follow these steps:

1. Go to http://p2p.wrox.com and click the Register link.

2. Read the terms of use, and click Agree.

3. Complete the required information to join, as well as any optional information you want to
provide, and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but to post your own
messages, you must join.

After you join, you can post new messages and respond to messages other users post. You can
read messages at any time on the Web. If you would like to have new messages from a particular

flast.indd xxixflast.indd xxix 2/28/2012 4:28:19 PM2/28/2012 4:28:19 PM

McClure fl ast.indd V1 - 01/23/2012

xxx

INTRODUCTION

forum e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum
listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

flast.indd xxxflast.indd xxx 2/28/2012 4:28:19 PM2/28/2012 4:28:19 PM

McClure c01.indd V2 - 02/02/2012

1
Introduction to Android, Mobile
Devices, and the Marketplace

WHAT’S IN THIS CHAPTER?

 ‰ A short history of Mono and its relationship to the .NET Framework

 ‰ How Mono for Android opens the Android platform to .NET

developers

 ‰ Why Mono for Android is so attractive to developers

 ‰ The history of Android and its mind share

 ‰ Exploring cross-platform alternatives

The past several years have seen an amazing growth in the use of smartphones. USA Today
recently reported on how smartphones have become an indispensable part of people’s lives.
With growth and popularity comes competition, and, unlike desktop computers, no single
vendor or platform dominates the mobile device marketplace; devices based on Symbian,
Research in Motion (Blackberry), Windows Mobile, Android, and other platforms are
available. In addition, devices may run the same operating system and be presented to the user
in separate form factors. This fracture in the marketplace is problematic for developers: How
can they take a development framework or tool that they already know and use that knowl-
edge in a device that has a large and growing market share?

This chapter looks at how the largest segment of developers (.NET/C# developers) can
target the smartphone that has the highest mind share (Android). It also looks at how the
smartphone is growing faster in market share than any other device.

c01.indd 1c01.indd 1 2/28/2012 4:06:12 PM2/28/2012 4:06:12 PM

McClure c01.indd V2 - 02/02/2012

2 x CHAPTER 1 INTRODUCTION TO ANDROID, MOBILE DEVICES, AND THE MARKETPLACE

PRODUCT COMPARISON

This section takes a quick look at the .NET Framework, Mono, and Mono for Android. These
products have allowed the largest segment of developers to target the Android family of mobile
devices — the fastest-growing mobile platform currently on the market.

The .NET Framework

Over the past decade, the popularity of the .NET Framework has grown. In the late 1990s,
Microsoft began working on the .NET Framework. The fi rst version shipped in 2002. Microsoft
recently introduced .NET Framework 4. The .NET Framework comes in various versions, including
32-bit, 64-bit, a version for the Xbox gaming platform, and a version for Microsoft’s mobile devices
called the Compact Framework (CF). Here are a few key facts about the .NET Framework to keep
in mind as you begin to look at the Mono framework:

 ‰ Microsoft released a development tool, Visual Studio .NET, with this framework. This tool is
the integrated development environment for .NET.

 ‰ This framework is based on a virtual machine that executes software written for the frame-
work. This virtual-machine environment is called the Common Language Runtime (CLR),
and it is responsible for security, memory management, program execution, and exception
handling.

 ‰ Applications written in the .NET Framework are initially compiled from source code, such as
Visual Basic or C#, to an intermediate language, called MSIL. The initial compilation is per-
formed by calling the language-specifi c command-line compiler, Visual Studio, or some other
build tool. A second compilation is typically performed when an application is executed. This
second compilation takes the intermediate language and compiles it into executable code
that can be run on the operating system. This second compilation is called just-in-time (JIT)
compilation.

 ‰ This framework is language-independent, and numerous languages are available for it. In Visual
Studio, Microsoft has shipped various languages, including Visual Basic, F#, C++, and C#.

 ‰ This framework has a series of libraries that provide consistent functionality across the
various languages. These libraries are called the base class libraries.

 ‰ Microsoft has submitted various parts of the .NET Framework to various standards
organizations, including those for the C# language, the Common Language Infrastructure,
Common Type System (CTS), Common Language Specifi cation (CLS), and Virtual Execution
System (VES).

 ‰ This framework has the largest number of developers of any development framework. As a
result, more developers are familiar with the .NET Framework than any other development
framework.

 ‰ A disadvantage of the .NET Framework is that it is unavailable for non-Microsoft platforms.

c01.indd 2c01.indd 2 2/28/2012 4:06:15 PM2/28/2012 4:06:15 PM

McClure c01.indd V2 - 02/02/2012

Product Comparison x 3

The signifi cance of all this is that Microsoft has created a standards-based environment for the
.NET Framework. Though most developers working on the Microsoft platform are not worried
about the standards compliance of the .NET Framework, the signifi cance of this aspect of the .NET
Framework cannot be understated. By defi ning these standards and submitting these standards to
compliance committees, Microsoft has created a group of developers that can integrate at fairly low
levels into the .NET Framework. In this environment, Miguel de Icaza had a vision and stepped up
to create the Mono framework discussed next.

Mono

Mono is an open source project that provides a C# compiler and CLR on non-Windows operating
systems. Mono is currently licensed under GPL version 2, LGPL version 2, the MIT, and dual
licenses. Mono runs on Mac, Linux, BSD, and other operating systems. Along with the C# compiler,
additional languages run on Mono, including F#, Java, Scala, Basic, and others.

Mono, the brainchild of Miguel de Icaza, was offi cially announced in 2001. Version 1.0 shipped
in 2004, and currently Mono is at version 2.10, though it is continually being upgraded and will
most likely be at a later version by the time you read this. Currently, Mono has parity with many
of the features in .NET 4. Mono continues to be directly led by de Icaza. Recently, the steward-
ship of Mono has passed to Xamarin. Xamarin leads the direction of Mono. Mono started as an
open source implementation of a C# compiler. It grew from this initial design into the current open
source implementation of .NET. It is now Xamarin’s responsibility to nurture Mono. Xamarin is
responsible for the development of Mono for Android, MonoTouch, and the software that makes
these products work for the developer. Given that Xamarin is laser-focused on Mono in the mobile
area, I think these products are in good hands.

As much as there is a desire to match the .NET Framework’s features, this is not possible because
Microsoft has more resources and a head start on the development of those features. At the same
time, the Mono project has parity with a large number of .NET Framework features. The best that
Xamarin will most likely accomplish is to be shortly behind the .NET Framework for most of the
APIs that are possible.

Along with Mono is the open source IDE called MonoDevelop, which started as a port of the
SharpDevelop IDE. MonoDevelop began as a project to allow for Mono development on Linux,
but with the release of MonoDevelop 2.2, the ability to develop with Mono expanded to the Mac,
Windows, and several other non-Linux UNIX platforms.

Although the .NET Framework is very popular, two issues make it unsuitable for running on Android:

 ‰ At some level Google and Microsoft are competitors and are probably not too excited to
work together. Microsoft has had Windows Mobile devices for years, which compete directly
with Google’s Android operating system.

 ‰ The .NET Framework fundamentally is a major competitor for the Java Virtual Machine that
is at the heart of an Android device. This Java VM is called Dalvik. The .NET Framework
and Java have been competitors since the initial announcements of the .NET Framework.

c01.indd 3c01.indd 3 2/28/2012 4:06:15 PM2/28/2012 4:06:15 PM

McClure c01.indd V2 - 02/02/2012

4 x CHAPTER 1 INTRODUCTION TO ANDROID, MOBILE DEVICES, AND THE MARKETPLACE

A disadvantage of .NET/Mono and Android is
that .NET/Mono developers cannot take their
.NET/Mono/C# knowledge and apply it to the
Android platform. Figure 1-1 shows this concept.
.NET/Mono developers can’t target Android
because they’re two separate entities.

In 2009, the Mono team announced and shipped
MonoTouch, the forerunner to Mono for Android.
MonoTouch allows developers familiar with C# to
target the Apple iPhone. Based on the experience of building MonoTouch, the Mono team learned
how to effectively and effi ciently build a C#/Mono layer that sits on top of the device’s native appli-
cation programming interface (API).

Mono for Android

In April 2010, Apple introduced fear, uncertainty, and doubt into the mobile development marketplace
by making changes to its software development kit (SDK) licensing. This change caused many
 developers to question developing for the iPhone and iOS. At that point in time, the Mono team had
been experimenting with creating a Mono product for Android similar to its MonoTouch product.
Due to Apple’s SDK changes, the Mono team announced the Mono for Android product and put
 signifi cant resources behind it. Mono for Android shipped in the spring of 2011. While Apple
 eventually rescinded their SDK issues, the 5 months during which MonoTouch sat in limbo allowed
the Mono team to put signifi cant resources into developing Mono for Android. The result of this is
that Mono for Android is further along than it would have been if Apple had not put MonoTouch into
limbo for all those months in 2010.

Mono for Android allows .NET developers to cre-
ate native applications that run on Android. These
applications look and feel like native Java applica-
tions running on Dalvik. With Mono for Android,
applications are compiled into executable code
that runs on Android devices. The signifi cance
of this should not be understated: .NET/Mono
developers can target Android through Mono for
Android, as illustrated in Figure 1-2

How does Mono for Android accomplish this? Does it somehow allow Windows Forms applica-
tions to be translated or recompiled and deployed on Android? Mono for Android provides a .NET
layer over the native programming layer present on the Android OS. Developers targeting Dalvik
would write applications in Java. Mono for Android does not provide a mechanism to cross-compile
Windows Forms applications, but it allows developers to build applications that run natively
on Android.

Overall, the API exposed by Mono for Android is a combination of the .NET 4 Framework’s core
features, Silverlight APIs, and the native Dalvik Java VM. Mono for Android provides a bridge
(interop) layer between Android’s native APIs and the APIs that .NET and C# developers are
 accustomed to.

.NET
Developers Android

FIGURE 1-1

.NET
Developers

Mono for
Android Android

FIGURE 1-2

c01.indd 4c01.indd 4 2/28/2012 4:06:15 PM2/28/2012 4:06:15 PM

McClure c01.indd V2 - 02/02/2012

Product Comparison x 5

Mono for Android Components

Mono for Android is made up of a set of assemblies, namespaces, and classes that are optimized for
mobile platforms. This code is a combination of the .NET 4, Silverlight, and Windows Phone pro-
fi les, as well as code that allows a developer to take advantage of the Android platform.

Namespaces and Classes

Mono for Android provides a rich set of namespaces and classes to support building applications for
the iPhone. Here are some of the most popular assemblies and the functionality that they provide:

 ‰ Mono.Android.dll: This assembly provides the C# bindings to the Android APIs. This
includes namespaces that support the Android.* namespaces.

 ‰ System.dll: This assembly provides much of the .NET Framework functionality for Mono
for Android.

 ‰ Mono.data.Sqlite.dll: This assembly is an ADO.NET provider for the native SQLite
database.

 ‰ Mono.Data.Tds.dll: This assembly provides the support for the TDS protocol, which is
used to connect to SQL Server.

 ‰ OpenTK.dll: This assembly has support for OpenGL.

 ‰ System.Json.dll: This assembly provides support for using JSON.

 ‰ System.ServiceModel.dll: This assembly provides support for WCF.

 ‰ System.Xml.dll: This assembly provides support for XML.

 ‰ System.Xml.Linq.dll: This assembly provides support for LINQ to XML.

Within these assemblies, Mono for Android also provides namespaces that may be important to
you. These are:

 ‰ Android: The Android.* namespace provides resources, classes, and application permission
support.

 ‰ Android.Bluetooth: This namespace provides support for Bluetooth.

 ‰ Android.Database: This namespace provides support for the SQLite database on the
device.

 ‰ Android.Graphics: This namespace provides support for graphic display.

 ‰ Android.Hardware: This namespace provides support for hardware on an Android device
such as the camera.

 ‰ Android.Locations: This namespace provides the necessary support for location.

 ‰ Android.Net: This namespace provides support for networking, including support for Voice
over IP (VoIP) and WiFi.

These namespaces are a small subset of what is available inside of Mono for Android and are fairly
self-explanatory in their functionality. Also, these namespaces are specifi c to Android. Code that is
written using these namespaces will only run on Android-based devices.

c01.indd 5c01.indd 5 2/28/2012 4:06:15 PM2/28/2012 4:06:15 PM

McClure c01.indd V2 - 02/02/2012

6 x CHAPTER 1 INTRODUCTION TO ANDROID, MOBILE DEVICES, AND THE MARKETPLACE

Development Tools

No matter what type of project you are building, development tools are an integral part of creating
an application. Long gone are the days of a bunch of fi les, a character-based editor, command-line
output for debugging, and a make fi le as the only way to build an application.

Developers who work in the .NET Framework are familiar with Visual Studio. Visual Studio is
Microsoft’s development tool. It includes support for solutions, projects, a visual design surface,
databases, and numerous other features.

Similarly, Mono has its own development tool; MonoDevelop is a free IDE used for developing
with Mono and is an early branch of the SharpDevelop IDE. Originally, MonoDevelop ran only on
Linux, but with version 2.2, MonoDevelop began running on the Mac and Windows. MonoDevelop
lets you create and manage numerous projects as well as debug and deploy to the simulator and
devices for testing.

Thankfully, the Mono team has produced Mono for Android, which will work across Visual Studio
and MonoDevelop, as well as a plug-in for operating systems other than Windows. This facilitates writ-
ing code with Mono for Android across Visual Studio, MonoDevelop on the Mac, and MonoDevelop
on Windows. Developers are free to use whichever of these development IDEs they prefer. At this point
in time, I have personally found that Windows and the Mac each have their own advantages, including:

 ‰ Debugging on Windows is where most developers starting with Mono for Android will prob-
ably start.

 ‰ Debugging on the Mac seems to work very well in the Android emulator.

MOBILE DEVELOPMENT

Developers need to keep a few key ideas in mind when building applications on Android with Mono
for Android:

 ‰ The Android simulator is good for initial testing; however, it is not necessarily accurate for
all testing. Just because something works in the simulator doesn’t mean it will run on all
Android devices in the same way. Final testing should be completed on different versions of
Android devices.

As of the Android SDK available for the writing of this book, testing on a device
is typically more accurate for advanced features. For basic development, the
emulator is easier to work with. Thanks to snapshots, it’s typically quicker to
work with as well.

 ‰ .NET executables are fairly small because they can use a shared copy of the framework.
Mono for Android can have applications deployed two different ways. The most com-
mon way is to have the application and Mono for Android bound together. A second way
is for the applications to share the Mono framework. This makes application executables
small, but it also means that a copy of the Mono framework for Mono for Android must be
installed on the device.

c01.indd 6c01.indd 6 2/28/2012 4:06:16 PM2/28/2012 4:06:16 PM

McClure c01.indd V2 - 02/02/2012

Mobile Development x 7

At the time of this writing, it is suggested that the application be bound with the
Mono for Android runtime. This is currently what is done when a “Release”
build of the application is done.

 ‰ It is important to be a good citizen on a device. Developers will need to continually think
about how to implement features that are good citizens.

Getting Around Support Issues

Although Mono for Android is a commercially licensed product, it is still under continual devel-
opment, so it might not support a specifi c namespace or assembly. You have two options in this
situation:

1. Wait on the implementation of that assembly from the Mono for Android product.

2. Pull the necessary code or reference the necessary assembly in your project. This is fairly
common if the application needs to use code within the System.Web.* namespaces. For
example, imagine an application that needs to call a REST-based web service and needs to
encode data before it is sent. System.Web.HttpUtility.HtmlEncode() should be called.
Unfortunately, the System.Web namespace is not part of Mono for Android by default.
You must add this namespace by referencing the System.Web assembly in
your application.

Design Issues

In addition to the technical issues of building an application for Android, here are some design
issues developers should be aware of:

 ‰ Don’t design an application for a desktop environment and think that it can be scaled down
to Android or any mobile device. Android does not have the display, hardware, or storage of a
desktop computer. Android and mobile device applications are good for simple, limited-purpose
functions, but they should not be expected to do everything that a desktop application does.

 ‰ The Android simulator is a fi ne tool, but don’t limit your testing to it. A simulator is just
that. A keyboard and mouse are associated with the Android simulator since it is primarily
running on the desktop. Also, understand that the simulator is ultimately using the CPUs of
the development system. While the CPU of a device is fi ne for the device, it really isn’t com-
parable in terms of performance with a desktop. The desktop has a high click speed, more
memory, and typically has higher speed and higher quality Internet bandwidth. To really test
a complicated design, you must test the application from Android on a mobile device while
running on a mobile network.

 ‰ When testing on a device, though WiFi is a mobile network, the WiFi in your offi ce or
home is typically of a higher quality than a mobile provider’s network. Typically, WiFi
will have lower latency and higher bandwidth than a 3G (or worse) connection. Applications
must be tested in a mobile scenario. Get a coworker to drive you around to test
an application.

c01.indd 7c01.indd 7 2/28/2012 4:06:16 PM2/28/2012 4:06:16 PM

McClure c01.indd V2 - 02/02/2012

8 x CHAPTER 1 INTRODUCTION TO ANDROID, MOBILE DEVICES, AND THE MARKETPLACE

ANDROID

There’s no doubt that Android devices took off in the fi rst half of 2010. Although the Android phone
was not the fi rst graphical phone, it was the fi rst product that provided its software free to phone device
manufacturers, made it easy to use, and provided an easy-to-use marketplace to purchase applications.

History of Android

In July 2005 Google purchased a small company called Android, Inc., which was involved in mobile
software. With this purchase, Google began heading in the direction of mobile devices. Rumors
regarding Google’s entry into mobile devices began to ramp up in December 2006. In the fall of
2007, the Open Handset Alliance (OHA) was formed, with the goal of creating a set of standards
for mobile devices. The alliance has at its core a mobile device architecture based on the Linux
Kernel version 2.6 (and later), along with an SDK that can be used to build native Android applica-
tions. In the fall of 2008, the fi rst Android phone shipped.

The initial shipment of Android was not well received in the marketplace. It was criticized signifi cantly
by the media and by the fi rst users of the platform. However, Android had several big advantages over
competing platforms that were not evident at the time. Android is an open platform. As such, manu-
facturers are competing against other mobile device manufacturers as well as against other members
of the Open Handset Alliance. This means the pace of innovation at the hardware level is signifi cant,
and the Android platform shows it compared to other platforms. Android devices are not limited
to one manufacturer or one telecommunications carrier either. As such, telecommunications carri-
ers must compete with each other. These two factors and others have led to a signifi cant amount of
innovation and advancement in the Android and mobile device marketplaces.

After some initial teething pains, the Android SDK has grown up. (You can fi nd a discussion of the
tools available in the Android SDK — and pertinent to Mono for Android developers — later in this
chapter.) After numerous beta releases in 2007 and 2008, the 1.0 release of the SDK occurred in
September 2008. Since that time, many additional SDK versions have shipped.

In the fall of 2009, OHA introduced the Android 2.0 (Eclair) operating system. This was a
watershed event for Android. Along with the shipment of Android 2.0, Motorola released the Droid
phone, and Verizon began signifi cantly marketing the product. From that point Android has quickly
grown in the marketplace.

In 2010, OHA shipped Android 2.1. In addition, HTC, Motorola, and others produced a family of
high-end devices. The shipment of these items further accelerated Android’s growth and mind share.
At the same time, a number of manufacturers introduced tablet devices based on Android.

In early 2011, devices based on Android 3.0 (a.k.a. Honeycomb) shipped. This version of Android
is optimized for the tablet environment. Unfortunately, this version of Android has not been well
received in the marketplace.

In late 2011, Google announced and shipped Android 4.0 (a.k.a. Ice Cream Sandwich). Ice Cream
Sandwich is the version of Android that unifi es the programming APIs for Android phones and tablets.

Growth has been a hallmark of the Android platform. Since its fi rst availability in 2008, Android
shipments have grown signifi cantly. Gartner Group is predicting that Android will see tremendous
growth at least through 2015. Considering that Android had so few devices in the marketplace in
2008, this growth is mind-boggling.

c01.indd 8c01.indd 8 2/28/2012 4:06:16 PM2/28/2012 4:06:16 PM

McClure c01.indd V2 - 02/02/2012

Android x 9

Writing Web-Based Applications for Android

Writing a web-based application for Android is fairly simple. The WebKit web browser is a
great tool; it does an excellent job of scaling web-based applications to run on an Android-
sized screen. It also does well at running applications that are highly dependent on JavaScript.
Upgrading an Android web-based application is also a simple matter of deploying a new version
of the application to a web server. Many applications have taken this approach. And although
HTML5 has a number of great features, a web-based environment has some
inherent limitations.

Unfortunately, web applications are not suitable for all applications.
Applications that require some background processing and access to local
resources must work when a network connection is unavailable, and some other
application types don’t work well in this model.

So, the question becomes how you write a native application that fi ts into Android.

Writing Native Applications for Android

These native applications are a great improvement over web-based applications, which are limited
in what they can do on a device. Fundamentally, web-based applications have to be loaded over the
web and cannot access all device features. Native applications tend to have more support for device
features such as the accelerometer, fi le system, camera, cross-domain web services, and other fea-
tures that are not available in HTML and JavaScript. In addition, native applications do not depend
on the wireless network to be loaded, whereas a web application is dependent on the wireless net-
work for nearly everything.

Android Development Issues

Developers must consider several issues when running applications on the device:

 ‰ There are a tremendous number
of form factors, screen sizes, and
devices. An application may look
great on an HTC device but not
on a slightly older Droid device.
Developers must take device differ-
ences into account. For example,
while Twitter for Android runs on
an HTC Android device as shown in
Figure 1-3, it defi nitely has a different
look than when it runs in a Motorola
Xoom Android device, as shown in
Figure 1-4 (note that user pictures
have been removed from these fi gures to protect privacy).

FIGURE 1-3

c01.indd 9c01.indd 9 2/28/2012 4:06:16 PM2/28/2012 4:06:16 PM

McClure c01.indd V2 - 02/02/2012

10 x CHAPTER 1 INTRODUCTION TO ANDROID, MOBILE DEVICES, AND THE MARKETPLACE

FIGURE 1-4

 ‰ Developers must take into account the various versions of the Android operating system.
Some users may be running Android 2.0, and others may be running 3.0.

 ‰ Developers must be realistic about the sales numbers of applications delivered through the
Android Market. Even though Android has experienced a phenomenal growth rate, this
excitement must be tempered, because the Android Market has a higher percentage of free
applications compared to the Apple App Store. Your sales numbers may be more for an
Android version of an application, but average sales prices for applications on Android are
less than average sales prices for iPhone devices.

Developers need to be aware of these issues. They may require you to spend more time in develop-
ment when building applications for Android.

Android SDK Tools

The Android SDK contains a number of tools, including a set of libraries for the Android platform,
a debugger, a simulator, and various pieces of documentation. The following tools are the most
important to the Mono for Android developer:

 ‰ Libraries: Mono for Android is a layer over the top of the existing Dalvik-based APIs. So,
learning the API calls of the Dalvik libraries will help you learn Mono for Android.

c01.indd 10c01.indd 10 2/28/2012 4:06:17 PM2/28/2012 4:06:17 PM

McClure c01.indd V2 - 02/02/2012

Android x 11

 ‰ Simulator: The simulator is the fi rst tool that developers use to test their applications. It
allows them to create various simulated versions of Android, screen resolutions, memory,
and other hardware factors.

One thing that developers will fi nd missing, at least in the initial versions of Mono for Android, is a
design surface. When the Mono team shipped MonoTouch, it used the Interface Builder SDK tool.
Unfortunately, the Android SDK has no design surface. Further, due to time constraints, the initial
shipments of Mono for Android also don’t include a design surface.

Fortunately, all is not lost for developers. There are currently two ways to create a user interface for
Mono for Android:

1. Edit the user interface XML by hand. Obviously, this method is error-prone.

2. Design the user interface through third-party tools such as DroidDraw. DroidDraw is a
standalone design surface for building an Android user interface. DroidDraw can be seen in
Figure 1-5.

FIGURE 1-5

Android Development Costs

The SDK is a free download. However, to release software for Android, a developer must join the
Android Market Development Program. The current cost to join in the United States is $25 a year.
The cost of joining varies from country to country. The ability to distribute applications to devices

c01.indd 11c01.indd 11 2/28/2012 4:06:17 PM2/28/2012 4:06:17 PM

McClure c01.indd V2 - 02/02/2012

12 x CHAPTER 1 INTRODUCTION TO ANDROID, MOBILE DEVICES, AND THE MARKETPLACE

depends on having the necessary development certifi cates. These are available through the Android
Developer site after you join the Android Development Program. Certifi cates are discussed more in
Chapter 16.

CROSS-PLATFORM ALTERNATIVES

The choice of using a cross-platform development tool, such as Mono for Android or MonoTouch, is
not one to be made lightly. Even though Mono for Android offers a superior combination of native
development and integration with the .NET stack and leverages the power of Visual Studio, it is
important to not only be aware of the differences between native and non-native development tools,
but also understand the differences between the various cross-platform options.

Other Cross-Platform Tools

In addition to Mono for Android, there are several other options out there that can be used to
develop mobile applications that can target Android as well as other platforms. Here are a few
examples of other cross-platform mobile development tools:

 ‰ PhoneGap is a cross-platform mobile development tool that focuses on using standards-based
web technologies, including HTML5, jQuery Mobile, and so on. Like Mono for Android,
PhoneGap uses a common technology to allow developers to not only write applications
for their target mobile devices but also to directly access some of the native features of the
device, such as the compass, the camera, or the fi le system.

 ‰ Appcelerator Titanium is another cross-platform tool that allows a developer to write appli-
cations using HTML, JavaScript, and their own library of APIs that grant access to several
of the mobile device’s features. Much like Mono for Android, Titanium can be compiled into
the native language, meaning that you can present the same kind of experience that other
native applications may offer.

 ‰ RhoMobile Rhodes is a Ruby-based framework that allows you to build cross-platform
applications. This tool allows you to compile into native applications that can access many of
the device’s features.

These tools are among the most popular of the many other cross-platform tools in the market today.
Because needing to target multiple mobile platforms with as little effort as possible is a common
problem, you have many different solutions to consider.

Considerations for Selecting a Cross-Platform Tool

When selecting a cross-platform tool, you have to consider many different things. In some
cases, some options may provide too simple a solution and maintenance/features could quickly
become unwieldy or even impossible. Other tools could offer many, many native features,
but in the process, introduce additional complexity beyond what a native approach might
have offered. Because of this, making the right tool selection is critical. The following
sections discuss a few things developers should ask themselves about the tool before making
their selection.

c01.indd 12c01.indd 12 2/28/2012 4:06:18 PM2/28/2012 4:06:18 PM

McClure c01.indd V2 - 02/02/2012

Cross-Platform Alternatives x 13

How Does the Tool Allow You to Author Your Application?

As far as cross-platform tools go, they tend to take one of two approaches to allow developers to
write their applications. The fi rst approach is to utilize a mobile device’s natural support for web
browsing, whereas the second approach is to develop the means to translate or compile a common
language, such as C# or JavaScript, into the native language, such as Java for Android/Dalvik or
Objective-C for iOS.

Utilizing a mobile device’s natural affi nity with web browsing allows developers to work primarily with
HTML and JavaScript, which makes development approachable for a very large subset of potential
mobile developers. In addition, there are a plethora of development tools and environments that make
the development process fl uid and painless. A great example of this approach would be PhoneGap.

Unfortunately, this approach tends to have a couple of fl aws. For starters, this approach results in a
web application with native features rather than a full, native application. Although web applications
have come a very long way in the past few years, they are quite different than native applications and
have their own special foibles. In addition, users tend to appreciate the experience of a native appli-
cation over that of a web application. The second fl aw with this approach is that support of native
features can be limited and, in some cases, impossible. Generally, access to native features is achieved
through a custom JavaScript API.

The second approach, translating or compiling from a common language to the native language, allows
the users to harness the native speed and features of the application while also writing in another, more
accessible language. The large benefi t to this approach is that you end up with the look and feel of a native
application as well as native performance speeds. Mono for Android is a great example of this approach.

The fl aws of this approach are that these solutions tend to require a slightly more advanced skill set.
Whereas the web browser–based approach usually requires a basic understanding of HTML and
browser page request life cycles, the compiled approach requires an understanding of the underly-
ing architecture and design paradigms of the mobile platform. For instance, a Mono for Android
developer needs to have at least a basic understanding of Android before they can begin writing an
application. Finally, some of the cross-platform tools may require some platform-specifi c code to
fully compliment the solution — particularly when it comes to handling UI logic.

What Device Features Does the Tool Support?

When considering the tool to select, you need to have a good idea of what features are most impor-
tant for you as an application developer. If you are writing a simple application that will display
some kind of data to the user, you probably have little concern over whether or not your solution
supports the accelerometer. However, if you are developing a simple game, this could be a make-or-
break feature. For the most part, every tool provider expressly lists the limitations of their product.

When working with a cross-platform tool such as Mono for Android, a devel-
oper is often trading features or fl exibility for simplicity and familiarity. Before
you choose a cross-platform tool, be sure to have a general concept of what you
are trying to create and ensure that the tool supports the features that you desire.
Thankfully, Mono for Android has very few limitations and has them clearly
defi ned at http://docs.xamarin.com/android/about/limitations.

c01.indd 13c01.indd 13 2/28/2012 4:06:18 PM2/28/2012 4:06:18 PM

McClure c01.indd V2 - 02/02/2012

14 x CHAPTER 1 INTRODUCTION TO ANDROID, MOBILE DEVICES, AND THE MARKETPLACE

What Platforms Does the Tool Support?

There are a wide variety of cross-platform tools out there, and each of them supports a different
number of platforms that range from most mobile device OSs to even the various desktop OSs.
When selecting your tool, consider where you plan to deploy your application as well as whether the
deployed application’s design and usage patterns would fi t with the target platform.

For instance, Appcelerator Titanium boasts the ability to deploy not only to some of the major mobile
platforms but also to Windows, Linux, and Mac. On the other hand, Rhodes focuses on supporting
the major mobile platforms — including Windows Phone 7, RIM, and Windows Mobile.

Although we have discussed the feature support consideration, make sure that your needed feature
is supported across all the platforms that you want to deploy to. For instance, if you have an appli-
cation that is dependent upon the compass feature of the device and you want to target Android and
WebOS, PhoneGap would not be the platform for you.

What Skill Sets Does the Tool Require?

Each approach offers some kind of common language to begin application development. Whether
that language is HTML or C#, it is important to ensure that you have the skills in house to cover the
development needs of the tool. In addition to this, some solutions require you to have intimate knowl-
edge of the mobile platform’s framework or, at times, intimate knowledge of the tool’s custom APIs.

With the HTML approach, a strong understanding of HTML and JavaScript can take a developer
a long way. On the other hand, the translation/compilation approach often requires a basic under-
standing of the target platform framework — especially in regards to developing the user interface.

What Tools Exist to Support Development?

One of the most important considerations of your cross-platform tool is what kind of development tools
exist to support the coding process. Development time for a solution can be vastly different when using a
specialty, proprietary tool versus a full-featured development environment, such as Visual Studio.

How Active Are the Development Community and Support Channels?

When considering the cross-platform tool of your choice, take some time to familiarize yourself
with the development community. Are there active mailing lists or forums? How frequently do
developers respond to users’ requests? How often are other developers answering each other’s issues?
Solutions with poor developer support or a stagnant community are unhealthy signs.

What Are the Successful Application Deployments for This Tool?

Most cross-platform tool vendors will quickly list any application success stories as a way to brag
about their solution. Take some time to download these applications and see how they interact

c01.indd 14c01.indd 14 2/28/2012 4:06:18 PM2/28/2012 4:06:18 PM

McClure c01.indd V2 - 02/02/2012

Summary x 15

and perform on your target mobile devices. Given the chance, take a moment to communicate
with the application developer to ask them about their development experience using this toolset.

If you are reading this book, you are clearly interested in Mono for Android as a solution. With that
in mind, it may seem somewhat strange to discuss alternative approaches to cross-platform develop-
ment. The reason for this approach is to help you make an informed decision about a development
tool rather than an incidental one. By taking the time to understand the strengths and weaknesses of
other solutions, you will, hopefully, be able to make the best choice for your application. Mono for
Android (and Mono Touch) has many strong features that enable it to accommodate just about any
development scenario.

To answer our own previous question, there are very clear reasons why Mono for Android stands
out as an excellent cross-platform development tool:

 ‰ Mono for Android gives a developer access to the tooling and developer stack as provided by
Microsoft. Considering the kind of investment that Microsoft puts into Visual Studio, this
is a huge benefi t to the developer. You can continue to work in Visual Studio and use your
existing tools, like ReSharper.

 ‰ Mono for Android runs natively, providing almost all of the native capabilities. In addition,
by supporting mobile platform–specifi c UI elements, it allows developers to reuse large por-
tions of their code without sacrifi cing the performance and agility to match user expectations.

 ‰ Mono for Android has a large, active development community. Mono for Android develop-
ers actively work to address any developer concerns or issues.

SUMMARY

This chapter looked at the following items:

 ‰ A product comparison of the .NET Framework and Mono

 ‰ Mono for Android, which allows .NET developers to target Android

 ‰ The Android platform, its licensing, and its operating system

 ‰ Cross-platform alternatives for developing Android applications

You should now understand which tools are needed to build a native application with .NET/C# for
Android. The next chapter explores the specifi cs of building a Mono for Android application with
Visual Studio and MonoDevelop. Chapters 4 and 5 describe how to work with the user controls for
user input and how to present data to the user in a standard form factor. Other chapters in the book
discuss specifi c parts of Android, such as maps and acceleration.

c01.indd 15c01.indd 15 2/28/2012 4:06:18 PM2/28/2012 4:06:18 PM

McClure c01.indd V2 - 02/02/2012

c01.indd 16c01.indd 16 2/28/2012 4:06:18 PM2/28/2012 4:06:18 PM

McClure c02.indd V3 - 02/09/2012

2
Introduction to Mono for Android

WHAT’S IN THIS CHAPTER?

 ‰ Introduction to Mono and Mono for Android

 ‰ Confi guring the development environment

 ‰ Mono for Android tools for Visual Studio

 ‰ Debugging and deploying

What is Mono for Android? This chapter provides the basis for Mono for Android devel-
opment. It starts with an overview of Mono and then moves to a discussion of Mono for
Android, confi guring the development stack, and developing and deploying a “Hello Mono
for Android” application — fi rst to an emulator and then to your Android-based phone.

BEFORE YOU BEGIN DEVELOPING

Before getting started with development, you need to learn about a number of items that
will help you understand the development environment and the tools that are involved. This
section covers what Mono is and how it is implemented. Then it discusses what Mono for
Android is, along with its benefi ts and implementation. Finally, this section discusses the
development stack before moving on to development.

What Is Mono?

Mono is an open source project sponsored by Xamarin to create an Ecma standard imple-
mentation of the .NET common language infrastructure (CLI), a C# compiler, and an open
development stack. The Mono project was started by Ximian in 2001, and version 1.0 was
released in 2004.

c02.indd 17c02.indd 17 2/28/2012 4:06:53 PM2/28/2012 4:06:53 PM

McClure c02.indd V3 - 02/09/2012

18 x CHAPTER 2 INTRODUCTION TO MONO FOR ANDROID

Mono Implementation Goals

The Mono implementation is currently targeting three goals:

 ‰ An open source CLI

 ‰ A C# compiler

 ‰ An open development stack

The CLI provides the runtime environment for languages that have been compiled to the
Common Intermediate Language (CIL). The C# compiler is responsible for compiling C# code
to CIL for execution on the runtime. The open development stack facilitates development and
includes an IDE in MonoDevelop and several libraries beyond the core libraries to provide open
cross-platform development. These libraries include GTK# for graphical user interface develop-
ment, POSIX libraries for UNIX/Linux compatibility, Gecko libraries, database connectivity
libraries, and XML schema language support via RELAX NG.

Mono Standards

Mono adheres to the Ecma Standard. Ecma International was formed in 1961 to support the stan-
dardization of information and communication technology. In 2005, Ecma approved version 3 of
C# and CLI as updates to Ecma 334 and 335. Currently, a working draft of the Ecma 335 CLI is in
progress.

The Mono C# compiler is currently feature-complete per the Ecma standards for C# versions 1, 2,
and 3 in version 2.6. Version 2.6 also includes a preview of C# 4, with a feature-complete version of
C# 4 available in the trunk of version 2.8.

What Is Mono for Android?

Mono for Android is a runtime and development stack that allows .NET developers to leverage their
knowledge of Visual Studio and C# to develop applications for Android-based devices.

 ‰ Runtime: The Mono for Android runtime is an application that runs on the Linux kernel in
the Android stack. It interprets the Mono byte code and handles communication with the
Dalvik runtime for calls to native Android APIs.

 ‰ Development stack: Mono for Android is also a development stack, providing the tools
necessary to create and package applications for Android devices.

Why Do I Need Mono for Android?

Given that the Android platform has an open development stack based on Java with Eclipse as a
visual development environment, it would be reasonable to ask why you need Mono for Android.
A .NET developer who uses Visual Studio has three main reasons: a familiar development environ-
ment, familiar APIs, and, as a result, rapid start-up.

c02.indd 18c02.indd 18 2/28/2012 4:06:56 PM2/28/2012 4:06:56 PM

www.allitebooks.com

http://www.allitebooks.org

McClure c02.indd V3 - 02/09/2012

Before You Begin Developing x 19

Familiar Development Environment

As every developer knows, learning a new development stack is time-consuming and can be painful.
Mono for Android allows the .NET developer to stick with the two core tools of .NET development:
Visual Studio and C#.

 ‰ Visual Studio: Visual Studio is an excellent and robust IDE geared toward .NET. By using the
Mono for Android tools for Visual Studio, you won’t have to change your IDE or the settings
you like.

 ‰ C#: Some .NET developers work only with Visual Basic .NET, but most .NET developers are
familiar with C#. Although C# and Java are similar in structure, many differences in the
idioms of each language make for fl uent writing. And although profi cient C# developers
would not have to spend extensive amounts of time learning the Java idioms, they would not
have to spend any time if they could stick with a language they already knew.

Familiar API and Library Structure

Staying within the .NET world allows you to work with a familiar API and library structure.
Table 2-1 shows the assemblies that are a part of Mono for Android 4.0.1.

TABLE 2-1: Mono for Android Assemblies

ASSEMBLY DESCRIPTION

Mono.Android.dll This assembly contains the C# binding to the Android

API.

Mono.CompilerServices.

SymbolWriter.dll

For compiler writers

Mono.Data.Sqlite.dll ADO.NET provider for SQLite

Mono.Data.Tds.dll TDS protocol support; used for System.Data.

SqlClient support within System.Data

Mono.Security.dll Cryptographic APIs

mscorlib.dll Silverlight

OpenTK.dll The OpenGL/OpenAL object-oriented APIs, extended

to provide Android device support

System.dll Silverlight, plus types from the following namespaces:

System.Collections.Specialized

System.ComponentModel

System.ComponentModel.Design

System.Diagnostics

System.IO.Compression

continues

c02.indd 19c02.indd 19 2/28/2012 4:06:56 PM2/28/2012 4:06:56 PM

McClure c02.indd V3 - 02/09/2012

20 x CHAPTER 2 INTRODUCTION TO MONO FOR ANDROID

ASSEMBLY DESCRIPTION

System.Net

System.Net.Cache

System.Net.Mail

System.Net.Mime

System.Net.NetworkInformation

System.Net.Security

System.Net.Sockets

System.Security.Authentication

System.Security.Cryptography

System.Timers

System.Core.dll Silverlight

System.Data.dll .NET 3.5 with some functionality removed

System.Json.dll Silverlight

System.Runtime.Serialization.dll Silverlight

System.ServiceModel.dll WCF stack as present in Silverlight

Alpha quality

System.ServiceModel.Web.dll Silverlight, plus types from the following namespaces:

System

System.ServiceModel.Channels

System.ServiceModel.Description

System.ServiceModel.Web

Alpha quality

System.Transactions.dll .NET 3.5; part of System.Data support

System.Web.Services Basic web services from the .NET 3.5 profi le, with the

server features removed

System.Xml.dll .NET 3.5

System.Xml.Linq.dll .NET 3.5

http://mono-android.net/Documentation/Assemblies

So, with your favorite development environment to leverage as well as familiar APIs, you will have a
rapid start-up for Android development.

TABLE 2-1 (continued)

c02.indd 20c02.indd 20 2/28/2012 4:06:56 PM2/28/2012 4:06:56 PM

McClure c02.indd V3 - 02/09/2012

Before You Begin Developing x 21

What Are the Trade-Off s of Working with Mono for Android?

When you decide not to work with a native API and development stack, trade-offs will be necessary.
They need to be weighed against the advantages of working with a more comfortable, but abstract, layer.

Waiting for Improvements

Although moving away from the native Java and Eclipse in favor of Visual Studio has the benefi ts
just mentioned, it also has some downsides. The fi rst is that you generally have to wait for the latest
improvements. That is, usually as soon as a new feature or performance enhancement is available in
the Android SDK, you have to wait for the next release of Mono for Android for it to be
available.

Taking a Potential Performance Hit

The second trade-off is performance. The Mono for Android runtime has to communicate with the
Dalvik runtime to get a number of things done. This overhead, however, generally is minor and is
more than offset by the benefi ts mentioned previously.

After you install the Mono for Android tools for Visual Studio, starting a new Mono for Android
project is as easy as selecting File Í New Í Project Í C# Í Mono for Android. We will cover this
in more detail next.

Memory Management

Many of the objects that are allocated by Mono for Android are wrappers for the Java objects they
represent. So what happens is this: Every time you allocate a type which is wrapping a correspond-
ing Java type, two objects are created:

1. The Java object, in the Java heap

2. The Mono “proxy” object, in the Mono heap

Mono for Android does some work to ensure that both objects stay alive as long as one is referenc-
ing the other. That is, as long as the Mono garbage collector (GC) refers to an object, the Java-side
object will be kept alive and vice versa. This is accomplished by the proxy objects that are created by
the mandroid.exe tool at build time.

However, the GCs are by nature lazy, only performing a collection on demand and not simply when
objects go out of scope. So that means that cross-VM garbage will stick around longer than average,
and this is unavoidable.

So, when allocating a large number of objects for temporary use, it is worthwhile to explic-
itly dispose of those objects. A convenient approach to this is to use a using block with a new
object, as this will implicitly dispose of the new object that is the target of the using clause, and

c02.indd 21c02.indd 21 2/28/2012 4:06:57 PM2/28/2012 4:06:57 PM

McClure c02.indd V3 - 02/09/2012

22 x CHAPTER 2 INTRODUCTION TO MONO FOR ANDROID

thereby dispose of the Mono-side wrapper, which will allow the Java-VM to collect the object,
preventing too many temporary objects from sticking around for too long.

For more details on garbage collection, you should refer to the docu-
mentation at the following link: http://mono-android.net/index.
php?title=Documentation/GC&highlight=garbage+collection.

What Do I Need for the Mono for Android
Development Environment?

Although the development environment for Mono for Android is geared toward working in Visual
Studio with C#, many pieces beyond that are required.

Java SDK

First, you need to install the Java SDK, which can be found at http://java.sun.com. You might
wonder why you need Java if Mono for Android is supposed to allow you to develop with C# on
Visual Studio. The Android SDK is developed in Java, so it is required to run all the tools that come
with the SDK. The most signifi cant tool is the Android emulator, which is required for rapid debug-
ging and testing before deploying to an actual device. However, other tools you will become familiar
with are also Java-dependent.

Android SDK

Following the installation of the Java SDK, the Android SDK can be installed. The Android SDK
can be downloaded from http://developer.android.com/sdk/index.html, where you will fi nd
a link to download a Windows installer. After you have downloaded the SDK, the installation has
four steps.

1. The fi rst step is to run the SDK installation. This is as straightforward as it sounds. Run the
Windows installer, and you’re done.

2. The second step is to download the APIs that you want to use. Run the program AVD
Manager.exe, and select the “Available packages” item on the left. This allows you to install
the different Google APIs and SDK platforms that you will use in the next step. You may
install all the platforms you want, but for our purposes, ensure that you install at least the
Level 8 platform, which corresponds to Android 2.2. If you install all the available packages,
you should have a view that looks like Figure 2-1.

3. Now that the SDK is fully set up, the third step is to confi gure an Android emulator. In the
Android SDK and AVD Manager, select “Virtual devices,” and then click the Create but-
ton. You see the window shown in Figure 2-2. In the Name fi eld, type Android_22. In the
Target drop-down, select Android 2.2 - API Level 8. In the SD Card radio group, select
Size and enter 512. Now click Create AVD. You should get a dialog that confi rms that the
Android_22 AVD was successfully created.

c02.indd 22c02.indd 22 2/28/2012 4:06:57 PM2/28/2012 4:06:57 PM

McClure c02.indd V3 - 02/09/2012

Before You Begin Developing x 23

FIGURE 2-1

FIGURE 2-2

c02.indd 23c02.indd 23 2/28/2012 4:06:57 PM2/28/2012 4:06:57 PM

McClure c02.indd V3 - 02/09/2012

24 x CHAPTER 2 INTRODUCTION TO MONO FOR ANDROID

4. The fourth step is to start the emulator you have confi gured. Select the Android_22 AVD
from the list, and click the Start button. The dialog box that appears lets you change some
launch settings. For now, the defaults are fi ne, so click the Launch button. After a short time
you should see an image like the one shown in Figure 2-3. After a minute or two you should
see the familiar Android logo, but it may take several minutes before the emulator is fully
booted, as shown in Figure 2-4.

FIGURE 2-3

Once the emulator is running, you can leave it running to save some start-up time during the “Hello
Android” development process.

Visual Studio

For Mono for Android development you must have Visual Studio 2010 Professional or better to run
the Mono for Android plug-in. Visual Studio 2010 Express is insuffi cient, because it does not sup-
port plug-ins. The installation process for Visual Studio is outside the scope of this discussion, but
you need to ensure that Visual Studio 2010 is installed before proceeding.

Mono Tools for Visual Studio

Mono Tools for Visual Studio are tools added to Visual Studio as a plug-in that helps with cross-
platform compatibility of .NET development for the open source Mono development stack. These
tools are not required for what we are doing here. However, if you are broadly interested in Mono
development or deploying code written on Windows in Visual Studio to another platform that
Mono supports, these tools are worthwhile and easy to install at this point. The tools can be found
at http://mono-tools.com/download/.

c02.indd 24c02.indd 24 2/28/2012 4:06:57 PM2/28/2012 4:06:57 PM

McClure c02.indd V3 - 02/09/2012

Visual Studio Development with Mono for Android x 25

FIGURE 2-4

Installing the Mono for Android Plug-in

As soon as all the prerequisites are in place, you can install the Mono for Android plug-in for Visual
Studio. The plug-in can be downloaded from http://mono-android.net/Store. Close
Visual Studio if it is open, and run the installation program. It takes a few minutes to install, but
after it is complete, you are ready to proceed to Mono for Android development.

VISUAL STUDIO DEVELOPMENT WITH MONO FOR ANDROID

This section covers developing a basic “Hello Android” application for your Android device working
with the Android plug-in for Visual Studio 2010. You start by setting up a new Mono for Android
project in Visual Studio and then follow through with building and debugging the application. After
that you add some logging and unit tests to the project before deploying the application to a physical
device.

Although some of the specifi cs are focused on Visual Studio, everyone is encouraged to read this sec-
tion, as it explains some aspects of Android and Mono for Android that are not covered in the section
specifi cally geared toward development with MonoDevelop.

General Setup

The fi rst thing you do is create the new application in Visual Studio. Start Visual Studio 2010
and select File Í New Í Project. When the New Project dialog appears, select Mono for Android
Application from the available C# templates, as shown in Figure 2-5. In the Name fi eld,

c02.indd 25c02.indd 25 2/28/2012 4:06:58 PM2/28/2012 4:06:58 PM

McClure c02.indd V3 - 02/09/2012

26 x CHAPTER 2 INTRODUCTION TO MONO FOR ANDROID

type HelloAndroid. That will also appear as the solution name. Then click OK. Your project opens
to Activity1.cs.

FIGURE 2-5

Building Hello Android

Before you build the application, you need to consider the template code and make some quick
changes. The template code is as follows:

using System;

using Android.App;
using Android.Content;
using Android.Runtime;
using Android.Views;
using Android.Widget;
using Android.OS;

namespace HelloAndroid
{
 [Activity(Label = “My Activity”, MainLauncher = true)]
 public class Activity1 : Activity
 {
 int count = 1;

 protected override void OnCreate(Bundle bundle)

c02.indd 26c02.indd 26 2/28/2012 4:06:58 PM2/28/2012 4:06:58 PM

McClure c02.indd V3 - 02/09/2012

Visual Studio Development with Mono for Android x 27

 {
 base.OnCreate(bundle);

 // Set our view from the “main” layout resource
 SetContentView(Resource.layout.main);

 // Get our button from the layout resource,
 // and attach an event to it
 Button button = FindViewById<Button>(Resource.id.myButton);
 button.Click += delegate { button.Text = string.Format(“{0} clicks!”,
 count++); };
 }
 }
}

This block of code shows a few things.

 ‰ First are the using clauses needed for this code.

 ‰ Then you have the namespace declaration that is set to your application name,
HelloAndroid.

 ‰ Then you have the class declaration for Activity1, which is of type Activity.

An Activity is central to the design of Android-based programs, and they are discussed
more in upcoming chapters, particularly Chapter 3. However, the annotations on this class
are also of note. First is the label My Activity, which will be the label seen in the Android
application window. Second is the MainLauncher annotation, which indicates that this
Activity is the main one to be launched in this application.

 ‰ Finally, you have the OnCreate function. Activity creation is just one of several life cycle
steps that an Activity may be subjected to. The whole life cycle will be discussed further in
Chapter 3. In this function you initialize a resource bundle, set your view, get a button from
the view, and attach an event to it.

Now you are ready to build the new application. Click the Debug button on the toolbar. You are
prompted to select a running device to deploy the code to, as shown in Figure 2-6. You should see
listed the emulator that you started running earlier. If there is no running device, you can select a
device to start.

FIGURE 2-6

c02.indd 27c02.indd 27 2/28/2012 4:06:58 PM2/28/2012 4:06:58 PM

McClure c02.indd V3 - 02/09/2012

28 x CHAPTER 2 INTRODUCTION TO MONO FOR ANDROID

Select that emulator, and click OK. The Mono for Android toolkit then checks for an installed
version of the Mono for Android runtime. If the runtime is not found, the toolkit installs it. This
process can take quite some time. Once the runtime is installed, the toolkit signs and installs the
application into the running emulator.

After that process has fi nished you can run your application. Go to the emulator, unlock it, and
click the Applications button. You should see an image similar to Figure 2-7. Click the My Activity
application. You should see the application running, as shown in Figure 2-8.

FIGURE 2-7

Logging

To follow the fl ow of the program execution, it is often helpful to log program activity. This section
briefl y examines how you can implement logging messages in Mono for Android. The Log class can
be found in the android.util namespace. You can add a few lines to the code you had before to get
the following source:

using System;

using Android.App;
using Android.Content;
using Android.Runtime;
using Android.Views;
using Android.Widget;
using Android.OS;
using Android.Util;

c02.indd 28c02.indd 28 2/28/2012 4:06:58 PM2/28/2012 4:06:58 PM

McClure c02.indd V3 - 02/09/2012

Visual Studio Development with Mono for Android x 29

namespace HelloAndroid
{
 [Activity(Label = “Hello Android”, MainLauncher = true)]
 public class Activity1 : Activity
 {
 int count = 1;

 protected override void OnCreate(Bundle bundle)
 {
 Log.I(“HA”, “Start OnCreate”);
 base.OnCreate(bundle);

 // Set our view from the “main” layout resource
 SetContentView(Resource.layout.main);

 // Get our button from the layout resource,
 // and attach an event to it
 Button button = FindViewById<Button>(Resource.id.myButton);
 button.Click += delegate { button.Text = string.Format(“{0} clicks!”,
 count++); }

 Log.I(“HA”, “End OnCreate”);
 }
 }
}

FIGURE 2-8

c02.indd 29c02.indd 29 2/28/2012 4:06:59 PM2/28/2012 4:06:59 PM

McClure c02.indd V3 - 02/09/2012

30 x CHAPTER 2 INTRODUCTION TO MONO FOR ANDROID

Here you can see the added using Android.Util that provides access to the Log class, which
contains the following convenience functions (among others):

 ‰ Log.I(string tag, string message) logs information.

 ‰ Log.W(string tag, string message) logs warnings.

 ‰ Log.E(string tag, string message) logs errors.

The tag parameter provides context for the log message. In this case you can use a tag of “HA” for
HelloAndroid. To view the messages in Visual Studio, select View Í Other Windows Í Android
Device Logging, and all the messages will be available.

Debugging

Having successfully executed the application in your emulator, you can look at how to debug a
problem that we will introduce. If you are using a physical phone, you need to go to the applications
page on your phone and select Settings. Then select Applications, Development, and check USB
Debugging. After that, return to your code.

Change the following line:

Button button = FindViewById<Button>(Resource.id.myButton);

To the following:

TextView button = FindViewById<TextView>(Resource.id.myButton);

Rerun the application. This time the application will throw an error on start-up because you are try-
ing to treat a Button as a TextView. While this example may be contrived, take a look at how you
can debug the application.

Set a break point on the following line:

base.OnCreate(bundle);

Now, click the run/debug button on the toolbar. This time, as the application starts up the software
will stop at the break point. You can now step through the application until you arrive at the offend-
ing line. Trying to step over that instruction will result in the previously seen error, and, in this case,
fi xing it is trivial.

Testing

The days of merely testing software through usage are long gone. All reliably built software relies on
unit tests as a best practice and to make the testing cycle shorter and more reliable. So, how do you
build unit tests with Mono for Android?

The short answer is NUnit, just as it is for any other Mono application. The longer answer involves
structuring your program to make it amenable to testing. That is, the NUnit testing framework is
not geared toward UI testing, so it is best to isolate your non-UI code into a separate library and set
up any tests to run against that library.

It is also worth noting that if you intend to leverage code for other platforms, for example, the
iPhone with MonoTouch or Windows Phone 7 with Mono or .NET, then you also want to isolate
platform-specifi c code from generically reusable code. This code would also be good code to build
test cases against.

c02.indd 30c02.indd 30 2/28/2012 4:06:59 PM2/28/2012 4:06:59 PM

McClure c02.indd V3 - 02/09/2012

Mono for Android Development with MonoDevelop x 31

So for non-UI and platform-independent code, instead of building program logic into the Android
activities you want to extract that code to an Android library. You can create an Android library by
creating a new solution, but instead of selecting Android application, select Android library. Then
use NUnit to provide automated tests for that code.

Deploying

Having run the gamut from “Hello Android” through debugging, logging, and testing, it’s now time
to look at deploying an application to an actual Android device. This process has three steps: con-
nect the phone via USB, set the phone into development mode, and deploy the application.

1. The fi rst step is obvious.

2. The second step requires you to go into the phone’s settings and select Application
Settings. Under Application Settings, check the option for Unknown Sources. This lets
you install non-Android market apps, which you want. Second, on the same page,
select the Development option. This takes you to a screen with three options. Select USB
Debugging and Stay Awake. You aren’t using mock locations, so don’t worry about
that now.

3. Now for the fi nal step: click the Debug button on the toolbar. This time, when the Running
Devices list comes up, your device is on it! Select your device. This time the installation
process runs over USB to your device.

When it is fi nished, give the Hello Android app a try.

MONO FOR ANDROID DEVELOPMENT WITH MONODEVELOP

This section covers developing a basic “Hello Android” application for your Android device work-
ing with the Android plug-in for MonoDevelop. If you skipped the Visual Studio section because
you are on a Mac or use MonoDevelop anyway, I would encourage you to read the Visual Studio
section because it covers some generally applicable concepts, but if you want to jump right in and
catch up along the way you should be fi ne.

General Setup

Installing the development environment on the Mac is straightforward. There are six steps to the
process:

 ‰ Install the Android SDK: This can be found at http://developer.android.com/sdk/
index.html. This is Java-based and leverages the Java SDK installed by default on OSX.

 ‰ Install Mono for Mac: This can be found at http://www.go-mono.com/mono-downloads/
download.html. This provides the Mono platform, which is the basis for the Mono develop-
ment tools that will also be installed.

 ‰ Install MonoDevelop for Mac: This can be found at http://monodevelop.com/download.
This provides an IDE for developing Mono applications on the Mac. Also, it is required
because Mono for Android for the Mac installs as a plug-in for this IDE.

 ‰ Install Mono for Android for Mac: This can be found at http://mono-android.net/Store.
At the store page you can also download a trial version of the software.

c02.indd 31c02.indd 31 2/28/2012 4:06:59 PM2/28/2012 4:06:59 PM

McClure c02.indd V3 - 02/09/2012

32 x CHAPTER 2 INTRODUCTION TO MONO FOR ANDROID

 ‰ Confi gure the Mono for Android MonoDevelop add-in: Once the plug-in is installed you
need to go to MonoDevelop Í Preferences, which will display the preferences dialog. After
this, select the Other category and select Mono for Android SDKs. This will allow you to
confi gure the Java and Android SDKs that you are using.

 ‰ Confi gure your Android Emulator: Finally, run the Android SDK installer and select Virtual
Devices. Create a new virtual device. It’s important to note that you may fi nd developing on
an actual device to be somewhat faster than it is on an emulated device.

If you want to read about this process in more detail please refer to the following link: http://
mono-android.net/Installation/Installation_for_Mac.

Also, if you are running in a Mono for Windows environment you may
want to refer to the installation instructions at http://mono-android.net/
Installation/Windows, as there are some minor differences in setup.

Building Hello Android

To get a program up and running with MonoDevelop and Android is very simple. If you read the
Visual Studio section, you can probably skip this section and fi nd the details on your own, but for
those who skipped the Visual Studio section you can run through the process now.

Go to File Í New Í Solution and select the Mono for Android template as shown in Figure 2-9.

FIGURE 2-9

c02.indd 32c02.indd 32 2/28/2012 4:06:59 PM2/28/2012 4:06:59 PM

McClure c02.indd V3 - 02/09/2012

Mono for Android Development with MonoDevelop x 33

For the solution name, key in HelloAndroid. Then click OK. The new application will appear in the
window. Go to the Run menu and select Run. After a moment a window will appear prompting you
to choose the device to run the application on. If you have a running emulator or an Android device
plugged in, it will be listed. If not, select “Start an Emulator Image” and you will receive a list of
images that are confi gured on your machine, one of which will be the emulator you confi gured dur-
ing the general setup.

Select the device or emulator that you want your application to run on, then select OK. If an emu-
lator has to start up, it could take awhile. Otherwise, messages will appear notifying you that it is
checking for installed applications, installing Mono for Android, if necessary, and, fi nally, running
the application, as shown in Figure 2-10.

FIGURE 2-10

c02.indd 33c02.indd 33 2/28/2012 4:07:00 PM2/28/2012 4:07:00 PM

McClure c02.indd V3 - 02/09/2012

34 x CHAPTER 2 INTRODUCTION TO MONO FOR ANDROID

Logging

Logging in MonoDevelop is identical to logging in Visual Studio, as it is a function of the API
and not of the IDE. To recap, in case you skipped the Visual Studio section, here are the logging
functions:

 ‰ Log.I(string tag, string message) logs information.

 ‰ Log.W(string tag, string message) logs warnings.

 ‰ Log.E(string tag, string message) logs errors.

The tag parameter provides context for the log message. For instance, if you add some logging to
your HelloAndroid application, you might use a tag of “HA” in the logging functions.

Debugging

Having successfully executed the application in the emulator, it’s time to look at how to debug a
problem that we will introduce. If you are using a physical phone, you need to go to the Applications
page on your phone and select Settings. Then select Applications, Development, and check USB
Debugging. After that, return to your code.

Change the following line:

Button button = FindViewById<Button>(Resource.id.myButton);

To the following:

TextView button = FindViewById<TextView>(Resource.id.myButton);

Rerun the application. This time the application will throw an error on start-up because you are
trying to treat a Button as a TextView. While this example may be contrived, take look at how you
can debug the application.

Set a break point on the following line:

base.OnCreate(bundle);

Now, click the Run/Debug button on the toolbar. This time, as the application starts up the soft-
ware will stop at the break point. You can now step through the application until you arrive at the
offending line. Trying to step over that instruction will result in the previously seen error, and, in
this case, fi xing it is trivial.

Testing

The days of merely testing software through usage are long gone. All reliably built software relies on
unit tests as a best practice and to make the testing cycle shorter and more reliable. So, how do you
build unit tests with Mono for Android?

The short answer is NUnit, just as it is for any other Mono application. The longer answer involves
structuring your program to make it amenable to testing. That is, the NUnit testing framework is
not geared toward UI testing, so it is best to isolate your non-UI code into a separate library and set
up any tests to run against that library.

c02.indd 34c02.indd 34 2/28/2012 4:07:00 PM2/28/2012 4:07:00 PM

McClure c02.indd V3 - 02/09/2012

Summary x 35

Deploying

Deployment of your HelloAndroid application to a device is very simple.

This process has three steps: connect the phone via USB, set the phone into development mode, and
deploy the application.

1. The fi rst step is obvious.

2. The second step requires you to go into the phone’s settings and select Application Settings.
Under Application Settings, check the option for Unknown Sources. This lets you install non-
Android market apps, which you want. Second, on the same page, select the Development
option. This takes you to a screen with three options. Select USB Debugging and Stay Awake.
You aren’t using mock locations, so don’t worry about that now.

3. Now for the fi nal step: click the Debug button on the toolbar. This time, when the running
devices list comes up, your device is on it! Select your device. This time the installation
process runs over USB to your device.

When it is fi nished, give the HelloAndroid app a try.

SUMMARY

In this chapter you covered installing the development environment for Android on Windows using
the Visual Studio 2010 plug-in, and you covered installing the development environment on the Mac
using MonoDevelop. In each case, the process is similar: install the software stack including the
Java SDK, the Android SDK, and the Mono SDK. Have your IDE installed, either Visual Studio or
MonoDevelop. Then install the Mono for Android add-in. If you are using MonoDevelop, confi gure
the add-in. Then, using the installed platform, create a default HelloAndroid application.

In addition, this chapter covered logging, testing, and deploying applications. You saw that logging
was a simple matter of adding one of the three log calls to your application, and that these logs can
be seen in the console of either Visual Studio or MonoDevelop. Testing is always considered a best
practice to assist in validating the behavior of your software before it is deployed. Deployment is what
software development is about. These skills will be used over and over in all the chapters to come.

c02.indd 35c02.indd 35 2/28/2012 4:07:00 PM2/28/2012 4:07:00 PM

c02.indd 36c02.indd 36 2/28/2012 4:07:00 PM2/28/2012 4:07:00 PM

McClure c03.indd V2 - 02/02/2012

3
Understanding Android/Mono
for Android Applications

WHAT’S IN THIS CHAPTER?

 ‰ What comprises Android and Mono for Android applications

 ‰ Explaining the Android core components

 ‰ Describing purpose of intents and how they interact within the

Android platform

 ‰ Exploring the Android manifest fi le and its key features

To develop Mono for Android applications, you need a good working knowledge of the key
components of an Android application. Not only will this understanding enable you to build a
feature-rich application, but it also will help you communicate between other applications and
processes on the Android device.

One of the selling points of Mono for Android is that it enables you to write Android applica-
tions in a .NET-specifi c language. However, this does not imply that you do not need a basic
understanding of the Android runtime as well as the underlying Java-based architecture.
To write a full-featured application, you must be able to interface with Android’s Java APIs
and, potentially, other applications that are not necessarily written using Mono for Android.
Furthermore, it is imperative that you understand the “Android way” of writing an applica-
tion, because the Mono for Android runtime is built on that understanding and, in many
ways, refl ects those “Androidisms” in its architecture. The overall goal of this chapter is to
provide the foundation for that understanding.

To accomplish its goals, this chapter gives you a broad understanding of the Android platform
but does so in a Mono for Android context where applicable. All key differences between
Mono for Android and Android are called out specifi cally. This chapter introduces the dif-
ferent components of the Android stack and how they interact with one another to form an

c03.indd 37c03.indd 37 2/28/2012 4:07:30 PM2/28/2012 4:07:30 PM

McClure c03.indd V2 - 02/02/2012

38 x CHAPTER 3 UNDERSTANDING ANDROID/MONO FOR ANDROID APPLICATIONS

application. In addition, it spends some time reviewing how the Android OS manages those applica-
tion components in terms of priority, memory usage, resources, and other life cycle–related topics.
If you are already familiar with Android, you may consider this chapter a review or even skip it. If
you’re new to the Android platform, this is a great place to get a broad understanding of the system.
Either way, this chapter should serve as a great introduction to the bridge between Android and the
Mono for Android runtime.

Although most of this chapter’s content focuses on features that are specifi c to
the Android core classes, all code samples and naming conventions are presented
as if you are working in a Mono for Android environment. For the most part,
Mono for Android namespaces mirror those of Android. However, the casing,
nonalphanumeric character usage, and names are sometimes modifi ed to favor
the suggested practices of the C# language.

WHAT IS AN ANDROID APPLICATION?

Most applications have one entry point at which the developer can defi ne start-up procedures, resource
initialization, and other steps. In the case of Windows programming, this is characterized by the Main()
function. Although Android applications have settings that identify an application’s default entry point,
Android apps are not what you would consider typical. When you look at an Android application, no
single function unilaterally instantiates the entire application. This is because Android applications
behave and interact much like a group of related subapplications rather than a single rigid entity.

Android applications are an association of core components that can be called and instantiated
upon demand. In fact, these components can work independently of each other but still maintain
a cohesive story via loose coupling and preestablished means of communicating with one another.
Furthermore, the interactions between the application’s components are not limited to the applica-
tion but may be accessed from other Android applications as well.

The reason for this structure is to allow for as much fl uidity between different applications, compo-
nents, and features within an Android device as possible. Although this may increase the complexity
of speaking from component to component, it gives the developer a lot of freedom to share data,
share behaviors, or even create something of a distributed application.

For example, suppose you needed to create an application to store grocery data while a person was
shopping. For this application to succeed, you would need to leverage the bar code on the back of
the grocery item by reading it with the device. In most situations, you would likely have to down-
load a bar code–scanning library and include it as part of your application build.

In addition to the application architecture, you should keep in mind a few other key points when
developing any Mono for Android or Android application:

 ‰ Every Android application runs in its own process. When an Android application is started,
the Android OS starts a single Linux process. This makes it much simpler for the Android OS
to create and destroy application processes upon request or when the system needs additional
resources.

c03.indd 38c03.indd 38 2/28/2012 4:07:33 PM2/28/2012 4:07:33 PM

McClure c03.indd V2 - 02/02/2012

What Is an Android Application? x 39

 ‰ Android starts only one thread per process. If you remember nothing else from this chapter,
remember this! When you are dealing with different application components within an Android
application, it is easy to forget that, with a few exceptions, everything in an application runs in
a single thread. Although it is a small matter to create additional threads to complete work, it is
up to you as a developer to do so.

 ‰ Every application runs in its own instance of the Dalvik virtual machine. This sandboxing
method protects your application from being corrupted by other running applications. One
badly planned application does not affect the stability of other applications on the device.

 ‰ Every application is protected so that only the device user and the application can access the
application’s data or resources. By default, all applications live in a silo in which other appli-
cations cannot see stored or sensitive data or user actions. As a developer you can expose as
many features or as much data as you want, but it has to be explicitly named. In addition,
upon application installation or update, the user can accept or refuse any permission requests
that the installing application may make of other applications.

Although these are default rule settings for applications, you can bend them by specifi cally writing
the appropriate code or requesting the appropriate permission level from the device user. These rules
are intended to help ensure the stability of your application and the Android device by allowing each
application to live in its own world. In addition, they play a large role in protecting your application
data from malicious attacks.

The Building Blocks of an Android Application

Android applications are composed of four building blocks that are often called the Android
components. These components encapsulate different usage patterns and behaviors on the Android
platform. Specifi cally, they can be defi ned as follows:

 ‰ Activities

 ‰ Services

 ‰ Content providers

 ‰ Broadcast receivers

An Android application may have one or many of each of these components. The following sections
walk through what each of these items is, discuss their usage scenarios, and defi ne what native ver-
sions of these items exist in the Android platform.

Activities

An activity is a user interface component that can be used to accomplish a single task. If you are
working with Mono for Android or Android applications for the fi rst time, odds are that the fi rst
application component you develop will be an activity. When you are running an Android applica-
tion, every screen that the application displays or that you interact with is launched by one or more
activities. Broadly speaking, activities comprise the application’s presentation layer. They handle the
logic to display information to the user, present controls and collect their data, and direct the user to
other activities as needed.

c03.indd 39c03.indd 39 2/28/2012 4:07:34 PM2/28/2012 4:07:34 PM

McClure c03.indd V2 - 02/02/2012

40 x CHAPTER 3 UNDERSTANDING ANDROID/MONO FOR ANDROID APPLICATIONS

An application may consist of one or many activities. The number that an application may have is
based on an application’s complexity and the developer’s design decisions. Since each component of
an Android application is expected to be able to function independently of the others, activities can
be launched by being marked as the application’s startup activity in the Android manifest or by the
current activity launching a new activity directly.

In Android, you can identify the start-up activity by adding the appropriate
action to the activity’s intent fi lter. This occurs within the Android manifest.
This differs quite a bit from Mono for Android in that Mono for Android allows
you to specify the start-up activity by using the following attribute in your activ-
ity’s class declaration:

[Activity(Label = “My Activity”, MainLauncher = true)]
public class Activity1 : Activity
{
 //Activity class implementation...
}

The Android manifest, intent fi lters, and actions are covered later in this chapter
and in Chapter 11.

An activity is probably the simplest of the application components to work with. For the most part,
you can think of an activity as having two basic operating parts:

 ‰ A collection of one or more views: These items comprise the different interfaces that can be
presented to the user. This can vary from simple Toast() messages to full, complex data
tables to animations. Views are discussed at more length in the following sections.

 ‰ The activity class: This acts as the controller for the activity. Based on user interaction, it
handles the launching of additional layouts and views, the fetching and binding of appropri-
ate data, and the collection and delegating of collected data.

If you’re familiar with the MVC pattern, you will quickly recognize how activities are structured,
because Android activities and views were developed with this in mind. The Activity class acts as
the controller. The class receives input and acts on that input, calling the appropriate model objects
and presenting various views. On the other hand, Android views are responsible for knowing how
to present the model objects they are passed. One Android activity (controller) may present many
different views, based on the user input.

The Activity Life Cycle

The life cycle of an Android component runs from the time when the component is created to the
time when it is destroyed. In the larger scheme of things, component life cycles are a part of the
overall Android resource management process. By gauging where different components are within
their life cycle pattern, the Android OS can decide how to allocate resources and manage memory
requirements. Specifi cally, an activity’s life cycle is a series of states that starts with the activity’s

c03.indd 40c03.indd 40 2/28/2012 4:07:34 PM2/28/2012 4:07:34 PM

McClure c03.indd V2 - 02/02/2012

What Is an Android Application? x 41

being created in OnCreate() and ends with its being removed in OnDestroy(). Activities have basi-
cally three states: active, paused, and stopped:

 ‰ The activity is active when it is running on the device and is in the foreground of the screen.
When using an application on your Android device, the activity you are working with and
viewing is in an active state.

 ‰ The activity is paused when it is still visible but does not have screen focus. Typically, this
occurs when another activity overlies the current one. Although it does not have focus, it is
still running with resources as if it were active.

 ‰ An activity is stopped when it is obscured by another activity. It can still carry information,
such as state and member information, but its window is hidden. When an activity is in a
stopped state, it is an excellent target to be killed by the Android OS to free up resources.

Typically, an activity’s state changes due to the user’s interactions or the Android OS managing
resources. Figure 3-1 shows the theoretical states of the Gmail application while a user interacts
with it. In this example, imagine that you are checking your Gmail application on your Android
device.

FIGURE 3-1

When you fi rst launch the application, an activity displays a list of all your e-mails. The Gmail
application is in an active state, as shown on the left side of Figure 3-1.

Suppose that, as you begin working through your e-mails, the battery on your device begins run-
ning low, and you receive a notifi cation. The notifi cation screen overlies the currently active screen

c03.indd 41c03.indd 41 2/28/2012 4:07:34 PM2/28/2012 4:07:34 PM

McClure c03.indd V2 - 02/02/2012

42 x CHAPTER 3 UNDERSTANDING ANDROID/MONO FOR ANDROID APPLICATIONS

to warn you, as shown in the middle of Figure 3-1. You can see your Gmail application in the back-
ground, but it is in a paused state.

You clear the warning message and fi nd the e-mail you are looking for. You open it and follow a
link within it. This launches the browser app, which completely covers the Gmail activity (the right
side of Figure 3-1). At this point, the Gmail activity is in a stopped state. Even though it may still
be running and may contain some instance values, the Android OS will possibly kill it as more
resources are requested by your browsing or by using other applications.

As an activity is moved from one state to another, the application developer needs to be able to
respond to the changes in state. Therefore, the Activity class exposes several events that trigger
when the activity state changes. These events allow you to respond to the state change appropri-
ately to preserve your application’s data and free unnecessary resources. The available events are
OnCreate(), OnStart(), OnRestart(), OnResume(), OnPause(), OnStop(), and OnDestroy().

Although you may have occasion to use any of these events, OnCreate() and OnPause() typically
are the ones that are used most frequently:

 ‰ The OnCreate() method is reserved for defi ning whatever initialization activities your appli-
cation may require. In this method, you defi ne the fi rst view that you will present to the user
by using the SetContentView() method of the Activity base class. Also, you may choose
to request access to various system resources. Finally, you use this class to assign delegates to
the appropriate event handlers for controls such as a button press.

 ‰ The OnPause() method is a key tool for handling situations in which your activity is going
into the background. During an activity’s life cycle, this method is called when the user navi-
gates away from your activity. This method lets you clean up your application’s resource
usage by closing access to system resources, such as the device’s camera, or halt expensive
tasks such as animations.

By understanding the activity life cycle, you can ensure the stability of your application, protect the
integrity of your data, and improve system performance by proactively freeing resources when they
are no longer necessary.

Activities and Views

To fully utilize activities, you need a pretty solid understanding of what views are, as well as how
they are used throughout Mono for Android and Android. When an activity runs, the Android OS
assigns that activity a window in which it can draw whatever content it needs to present. The content
to display within this window space is communicated via views. In short, views are the basic build-
ing blocks used to defi ne the controls and layout that the activity presents to the user to interact with.

Each activity can present a single view or a hierarchy of views within its window space. This is
accomplished by calling the activity’s SetContentView() method and by providing the appropri-
ate view item to display. In addition to setting the initial view within the OnCreate() event of the
Activity class, activities can change the view that is displayed based on triggered events or by
launching into a different activity.

The Android platform has several different implementations of views. Every view type extends the
View class, which defi nes the basic interface behaviors such as creation, layout, event processing,

c03.indd 42c03.indd 42 2/28/2012 4:07:35 PM2/28/2012 4:07:35 PM

McClure c03.indd V2 - 02/02/2012

What Is an Android Application? x 43

and drawing. Some of the more common views that you will work with in your applications are
items such as a Button, ImageView, and TextView. Inheriting from the View class, all of these are a
type of view, although they are more commonly called controls or widgets.

A special kind of view known as a view group contains its own collection or hierarchy of views.
Not only does a view group perform all the same functionality of a typical view, but it also
handles the fl ow and layout of its children. View groups are a great tool because they allow a
developer to make a collection of reusable, complex controls. In addition, they serve as the foun-
dation for layouts.

A layout is a view group that is used to manage the fl ow or presentation of a group of views. The
layout is typically defi ned using an XML-based syntax similar to HTML. This allows a developer to
quickly place several views in a single layout and also individually set property values for each view
within that layout.

Often, the terms view, control, widget, and layout are used interchangeably. This can lead to some
confusion, because these terms move from generic to specifi c. In addition, these terms can be con-
fused with other Android features such as application widgets. To help resolve this confusion, con-
sider this code snippet:

<?xml version=”1.0” encoding=”utf-8”?>
 <LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>

 <ImageView android:layout_height=”wrap_content”
 android:layout_width=”wrap_content”
 android:layout_margin=”5dip”
 android:src=”@drawable/icon” />

 <TextView android:id=”@+id/text”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”@string/welcomeText” />

 <Button android:id=”@+id/helloButton”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/hello”/>
</LinearLayout>

In this example, the XML syntax defi nes a group of different user interface components to present
to the user. This is a typical snippet of what is loaded when an activity’s SetContentView() method
is called. At the root node of this snippet is the LinearLayout node. LinearLayout inherits from
View and Viewgroup. Thus, this is a view. Since it contains child views, this is also a viewgroup or
layout. In this case, LinearLayout places each child view in a single column.

Within LinearLayout are several controls (or widgets) that are predefi ned in the Android
framework. Each of these controls—Button, Image, and TextView—derives from the View
base class.

c03.indd 43c03.indd 43 2/28/2012 4:07:35 PM2/28/2012 4:07:35 PM

McClure c03.indd V2 - 02/02/2012

44 x CHAPTER 3 UNDERSTANDING ANDROID/MONO FOR ANDROID APPLICATIONS

Chapter 4 delves deeper into types of views and how to utilize them in conjunc-
tion with your activities.

Services

A service is a unit of work defi ned by the developer that can run for an indefi nite period of time.
Unlike activities, services do not have a visual component. In addition, they do not rely on the appli-
cation user to function. They can be used for a plethora of tasks, such as fetching data from the
network, playing music while you are browsing through other applications, or working on a longer-
running task. When you think of any kind of automated or timed task on an Android device, you
are most likely thinking of something that runs as a service.

Services often confuse those who have not worked in the Android environment before. When devel-
opers hear the term service, they often think of a “background service.” Although services are used
for just this purpose, developers often make the mistake of assuming that services run on a differ-
ent thread than other components of an application. This is not the case. As a developer, you are
responsible for creating additional threads as necessary. All items in an Android application run
within the same thread unless specifi cally handled by the developer.

In a nutshell, services are the workforce of an Android application. They can be used to queue a set
of tasks to be processed or to systematically check the status of a network resource. Also, a service
is a way to expose a task to other applications, allowing them to interact with that particular work.
Services are a great way to handle repetitive or ongoing tasks, even when your application’s activities
are inactive or closed. Typical Android services include mail applications, RSS readers that periodi-
cally check for updates, podcast playback applications, and Twitter clients.

Services are both a broad and deep topic that goes beyond the scope of this chapter. Chapter 11 digs
deeper into the inner workings of a service, the different aspects of the service life cycle, and how to
implement services in your Mono for Android applications.

When an application is initially asked to run, Android starts a process for it with
a single thread. All components within that application run in that single thread.
To prevent the application from locking while the service is being executed, it is
vital to spawn different threads or defi ne different processes to handle the ser-
vice task while allowing the user to enjoy a responsive interface.

Content Providers

Content providers are the preferred means of sharing information across multiple applications.
They can be thought of as a type of community data storage that allows developers to expose spe-
cifi c sets of data to be queried or even manipulated by other applications and processes. Because the
Android platform has no universal data storage mechanism, content providers are a great way to
create common data pools for Android applications.

Content providers have the fl exibility to allow you to defi ne one or many data sets that target different
subsets of your data. With this fl exibility, you can protect data that you want to exist in only your appli-
cation, such as personal user data, while sharing other data with applications that meet the security

c03.indd 44c03.indd 44 2/28/2012 4:07:35 PM2/28/2012 4:07:35 PM

McClure c03.indd V2 - 02/02/2012

What Is an Android Application? x 45

criteria you specify. In addition, a content provider can implement different actions for each data set.
This means that interaction with each of your data sets can range from read-only to mass inserts.

The advantage of these data types being exposed is that the users have options for what applications
they want to manage their data; they are not forced to use a native player. And, as a developer, you
have exposure to write your own applications to improve upon native performance.

As a developer, you may be tempted to forgo using content providers and use data
storage that only your application can access. However, by using the content pro-
vider as a community data pool, you do yourself and your potential customers a
favor. You get a prepopulated data pool directly on installation, and the users do not
have to manually migrate data. It is a way to be a good citizen on an Android device.

Native Content Providers

The best way to get a clear understanding of content providers is to look at those that are already
established in the Android platform. These native providers can give you a real sense of why you
should use content providers and also how they are best implemented.

There are several native content providers. The content they provide ranges from access to basic
data types such as contacts and phone call history to more complex types such as images and video.
Table 3-1 describes a few of the most commonly used native content providers.

TABLE 3-1: Common Content Providers

PROVIDER NAME DESCRIPTION

AlarmClock Gives access to the system’s alarm clock application, allowing diff erent

applications to set alarm modes and times.

Browser Exposes data sets such as web searches, history, and bookmarks for

viewing or editing.

CallLog Provides information about outgoing, incoming, and missed calls, includ-

ing phone numbers, timestamps, and duration.

ContactsContract Used to view or modify contact data. For those who were early Android

developers, this replaces the deprecated Contact provider.

MediaStore Provides universal access to media on the Android device, including

images, videos, and audio. In addition, this provider exposes metadata for

the media on your device, such as genre and artist.

Settings Accesses the global system settings and preferences for the Android

device. Some common settings queried are Bluetooth, locale, and net-

work settings.

UserDictionary Allows insertion or viewing of user-defi ned words to use for predictive

text. In addition, this provider stores usage frequency and locale informa-

tion for those words.

c03.indd 45c03.indd 45 2/28/2012 4:07:36 PM2/28/2012 4:07:36 PM

McClure c03.indd V2 - 02/02/2012

46 x CHAPTER 3 UNDERSTANDING ANDROID/MONO FOR ANDROID APPLICATIONS

A list of available default content providers can be found in the Android developer documentation
for the android.provider namespace.

How Content Providers Work

Whether you are using the default content providers or creating your own, Android gives you a uni-
versal way to access them. This is not achieved by allowing direct access to the content providers,
however; this is a very important facet of content providers. Rather than giving hundreds of differ-
ent content providers access to methods or schemes, the Android platform unifi es all current and
future access by utilizing a mediator object. Specifi cally, the ContentResolver object handles all
interactions with a content provider. ContentResolver ensures that any new content providers can
be universally accessed by other applications while not limiting the methods by which the developer
might want to store his or her application data.

ContentResolver acts as a mediator to a data store. This approach not only
simplifi es the consumption of data from content providers but also ensures that
all content providers are equal. This type of interaction is a great example of
the mediator design pattern.

The content resolver follows two basic rules. First, all content stores have a unique URI. This URI
is very similar to a web address. It provides a unique way to locate the content provider you want to
access. In addition, the URI can be used to target specifi c data sets within the content provider or to
specify key arguments and values.

The second rule of content providers is that the ContentProvider base class defi nes all possible
actions that can be performed on an implemented provider. While writing a custom provider, it is
up to you to implement the logic of whatever methods you choose to support. The advantage of this
approach is that, if you know how to connect to one provider, you can connect to any provider.
Of course, the downside is that you do not have the privilege of writing your own access methods.
Thankfully, ContentResolver has just the right amount of simplicity and fl exibility to support
most data needs.

Table 3-2 lists ContentResolver functions that most providers implement in some form or fashion.

TABLE 3-2: Common Content Resolver Functions

FUNCTION NAME DESCRIPTION

query() Accepts arguments for the provider URI, the selection string, the selection argu-

ments, and the result set sort order. Used to return a cursor with the target result set.

update() Accepts arguments for the provider URI, the new fi eld values, and the fi lter to tar-

get specifi c rows to be updated. This returns the number of rows aff ected by the

update statement.

insert() Accepts arguments for the provider URI and the name-value pairs to be added to

the data store. This returns the URI for the newly inserted item.

c03.indd 46c03.indd 46 2/28/2012 4:07:36 PM2/28/2012 4:07:36 PM

McClure c03.indd V2 - 02/02/2012

What Is an Android Application? x 47

FUNCTION NAME DESCRIPTION

delete() Accepts arguments for the provider URI, the selection string, and the selection

arguments. Used to delete one or more entities from the data store. Returns the

number of rows aff ected.

getType() Accepts arguments for the provider URI. This returns the text MIME type of the

data stored within the content provider.

Inserting, deleting, or updating items within a content provider is a fairly straightforward process. Since
they return simple data types, you can work directly with the ContentResolver instance associated
with your current activity. One of the advantages of the Activity class is that it automatically initiates
a ContentResolver object. By calling the methods directly, you can perform your work and not have
to worry too much about memory management. This is not quite the case with the query() method.

When performing a query through the ContentResolver, you receive a cursor object. This object
can be used to iterate through the result set and leverage the data as you see fi t. When you are using
the query() action on the ContentResolver object, it is up to you to manage the life cycle of that
query as a sensitive resource. In other words, you must be sure to call close() on the cursor object
appropriately to avoid memory leaks.

Thankfully, there is a better way to query a content provider if you do not need to directly manage
your query cursor. Each activity has an abstraction of the ContentResolver.query() method via
the ManagedQuery() function. This too is a basic function of the Activity class. This function asso-
ciates a query cursor with the activity’s life cycle, handling the fi ner details of closing the query on
application destroy() or pause() events and requerying the data when the application is restarted.
Unless you need fi ner control over the query, using the ManagedQuery() method is a better practice.

If you fi nd yourself directly using the ContentResolver.query()
method, you can still allow your application to manage the cursor with-
out using the ManagedQuery() method. This is achieved by calling the
StartManagingCursor() method of the current activity and passing it the
appropriate cursor instance.

Finally, we would be remiss not to consider the security implications of accessing and sharing appli-
cation data. Although you might want to expose user data, ultimately it is the device user’s decision
whether he or she wants his or her data used in this manner. When accessing content providers, you
may have to request certain application permissions. Likewise, you can state what permissions are
needed before someone can access your custom provider. All this confi guration is managed in the
Android manifest fi le, which is covered later in this chapter.

Broadcast Receivers

A broadcast receiver is an application component that listens for and reacts to events. Broadcast
receivers let you listen for specifi c events and, if need be, initiate activities and services in response.
Broadcast receivers comprise the core event-handling system in the Android OS. Broadcast receivers

c03.indd 47c03.indd 47 2/28/2012 4:07:37 PM2/28/2012 4:07:37 PM

McClure c03.indd V2 - 02/02/2012

48 x CHAPTER 3 UNDERSTANDING ANDROID/MONO FOR ANDROID APPLICATIONS

share many similarities with services. They do not have any user interface components, and they are
used to accomplish a kind of work. However, receivers differ from services in that they only exist to
listen for a type of message and initiate the appropriate response to that message.

Initiate is an operative word when describing what broadcast receivers do.
Broadcast receivers are intended solely to respond to an event that has occurred,
not to handle the processing of any response to that event. Major processing
should not be handled in the receiver itself but should be passed to an activity or
service. To enforce this distinction, Android has a 5-second execution limit for
broadcast receiver responses.

Broadcast Messages

As we describe the details of a broadcast receiver, it is important to understand where the messages
that receivers act on originate. First, many different system-level events broadcast messages. These
events can be anything from incoming phone calls to low battery warnings to network availability.
In addition, individual applications can broadcast messages. These messages may pertain to new
data being available or a status change on an application.

Whenever a message is broadcast, it is called a broadcasting intent. Intents serve as a messaging
facility for different components within the Android platform. This section covers a specifi c part
of what intents do as a whole. Intents are covered in greater depth in the next section and in subse-
quent chapters.

As with content providers, some intents require special permissions before they can be received by
broadcast receivers. These permissions must be requested from the user of the device during the
installation of the application onto the device.

Table 3-3 lists some of the more common broadcast messages. As you read through this list, imagine
how an Android application could respond to each event. As you might suppose, these events give
the developer a signifi cant amount of control to make sure his or her app runs smoothly in a variety
of situations.

TABLE 3-3: Common Broadcast Events

ACTION_TIME_TICK ACTION_TIME_CHANGED

ACTION_TIMEZONE_CHANGED ACTION_BOOT_COMPLETED

ACTION_PACKAGE_ADDED ACTION_PACKAGE_CHANGED

ACTION_BATTERY_CHANGED ACTION_POWER_CONNECTED

ACTION_POWER_DISCONNECTED ACTION_POWER_DISCONNECTED

ACTION_SHUTDOWN ACTION_UID_REMOVED

c03.indd 48c03.indd 48 2/28/2012 4:07:37 PM2/28/2012 4:07:37 PM

McClure c03.indd V2 - 02/02/2012

What Is an Android Application? x 49

Broadcast Receiver Life Cycle

A broadcast receiver has the simplest life cycle of all the components. Basically, it has only one call-
back method, OnReceive(). When a message is received, the intent message’s data is passed to the
receiver. At this point, the receiver is considered to be active while it handles the message and per-
forms the proper actions. Once the OnReceive() method returns, a receiver is considered to be in
an inactive status again.

Any process that has an active receiver is protected from being killed by the OS. This is an impor-
tant point to bear in mind, because it can interfere with the system’s ability to free needed resources.
Therefore, as previously noted, receivers have a 5-second execution limit. Any long-running work
should be pushed to a different component, such as a service.

For more information regarding the basic building blocks of a Mono for Android
or an Android application, please refer to the application fundamentals sections
of the offi cial Android documentation at
http://developer.android.com/guide/topics/fundamentals.html.

Communicating between Components: Android Intents

Now that you have had a look at the core components of an Android application, you need to work
on understanding how those application pieces interact. To allow different pieces of the Android
platform to communicate with one another, Android needed a universal messaging system. This
messaging system had to support a variety of different usage scenarios while respecting the auton-
omy of the application components. In addition, this messaging system would have to be a generic,
passive system that could be consumed by any application component whether or not the originat-
ing process knew who was receiving the message. These notions led to the creation of intents.

Intents form the messaging system for the Android platform. Because Android components operate
in proverbial silos, intents provide a critical function by allowing them to communicate with one
another seamlessly. In particular, intents can be used to do the following:

 ‰ Interact with an activity either by requesting that the activity start a new task or by starting a
new activity

 ‰ Interact with a service by either initializing a new service or delivering a new instruction set
to an ongoing service

 ‰ Interact with broadcast receivers by serving as the medium by which messages are broadcast

In some ways, you can think of the intent system as a way to transform your application into
part of a much larger, distributed application. This allows you to make signifi cant time savings
by leveraging another application’s functionality for your own. Some common usage scenarios
for intents include playing a piece of downloaded music, notifying interested applications that
the cell phone signal has been lost, or passing changes in an application state to other listening
applications.

c03.indd 49c03.indd 49 2/28/2012 4:07:38 PM2/28/2012 4:07:38 PM

McClure c03.indd V2 - 02/02/2012

50 x CHAPTER 3 UNDERSTANDING ANDROID/MONO FOR ANDROID APPLICATIONS

Android uses intents as a core design principle. Using this messaging system,
the Android platform can allow its components to be very loosely coupled, even
within the same application. This adherence to the publish/subscribe pattern
allows components to be easily switched in and out without causing massive
overhaul of other systems.

So, what makes up an intent? At the most basic level, an intent is an abstraction of the details
needed to accomplish a task. Several pieces of information are stored in an intent object—either
the instruction for the receiving component to execute or simply some data that a component may
choose to react to. Upon receiving an intent, it is up to that receiver to know how to respond to and
leverage the data stored in the intent message. Table 3-4 describes the core pieces of an intent.

TABLE 3-4: Core Information within an Intent

NAME DESCRIPTION

Action Specifi es the action that needs to be performed. Examples include ACTION_GET_

CONTENT, ACTION_RUN, and ACTION_SYNC.

Data Represents the data that needs to be acted upon. An example is a URI for a particu-

lar record in a content provider.

Category Used to give more information about the action to execute. It can be used to specify

the context of how to operate the action, such as CATEGORY_HOME, or even as a fi l-

ter for the given action results.

Type Allows you to override automatic resolution of type and specify your own MIME type

of the intent data.

Throughout the rest of this book, you will encounter many different scenarios in which intents are
being utilized. As the messaging system for the Android platform, intents are necessary to accom-
plish any kind of interaction between applications and device features.

BINDING THE COMPONENTS: THE ANDROID MANIFEST

So far this chapter has discussed all the key components of an Android application, in particular,
discussing how each component is, in many ways, its own autonomous entity that can run indepen-
dently of other components of the application. Although this is advantageous in terms of reusability
and design, some kind of binding mechanism is needed to keep the application cohesive and to store
universally accessed values and settings. In Android, this is achieved via the Android manifest.

The Android manifest is an XML confi guration fi le that resides in the root directory of an Android
application. This fi le contains the information necessary for the Android OS to create a process

c03.indd 50c03.indd 50 2/28/2012 4:07:38 PM2/28/2012 4:07:38 PM

McClure c03.indd V2 - 02/02/2012

Binding the Components: The Android Manifest x 51

in which this application will run. In addition, the Android manifest fi le is used for several other
functions:

 ‰ It contains metadata information for the application, such as the unique package name, mini-
mum SDK level, the icon or application theme, and application version.

 ‰ It binds the application components. This includes the core components of activities, services,
broadcast receivers, and content providers.

 ‰ It describes the capabilities of each of its components by stating which intent’s messages are
bound to which application component.

 ‰ It states what permissions the application must have to operate, as well as what permissions
other applications must have to utilize its functionality.

 ‰ It defi nes the other code libraries that the application must have to operate.

If you’re familiar with ASP.NET web development, the Android manifest and
web.config share much of the same functionality. Just as an ASP.NET web
application must have a web.config, all Android applications must have an
Android manifest to operate.

Android Manifest Basics

The Android manifest is a structured document that supports many different confi guration scenarios.
At fi rst glance, it can seem somewhat overwhelming and possibly even a nightmare to maintain. Even
though it can sometimes be a bit of a pain in terms of maintenance, having a basic understanding of the
manifest’s underlying rules and structure will go a long way toward demystifying and simplifying it.

First, the Android manifest has a limited number of nodes that can be used. As a developer, you can-
not defi ne new nodes within the Android manifest. With that in mind, The following XML snippet
displays the main nodes that are possible within the Android manifest as well as the general hierarchy.

<?xml version=”1.0” encoding=”utf-8” ?>
<manifest>
 <permission />
 <uses-permission />
 <permission-tree />
 <permission-group />
 <instrumentation />
 <uses-sdk />
 <uses-configuration />
 <uses-feature />
 <supports-screens />
 <application>
 <activity />
 <activity-alias />
 <service />

c03.indd 51c03.indd 51 2/28/2012 4:07:38 PM2/28/2012 4:07:38 PM

McClure c03.indd V2 - 02/02/2012

52 x CHAPTER 3 UNDERSTANDING ANDROID/MONO FOR ANDROID APPLICATIONS

 <receiver />
 <provider />
 </application>
</manifest>

Although this defi nes the overall structure of the Android manifest, it does not imply that nodes
of the same level need to appear in a particular order. In fact, the only node that has a required
sequence is the activity-alias node. This node must always follow the activity that it is aliasing.

Now that you have an idea of the general structure of the Android manifest, it’s time to review the
capabilities of each of the available nodes. Table 3-5 lists most of the available nodes and describes
their general purposes. By cross-referencing the hierarchy shown in the preceding snippet, you can
get a good idea of how the manifest works and what confi guration options you have at your dis-
posal. This table is not exhaustive, but it gives you a working knowledge of what each node does so
that you can recognize the developer’s intent when you see them within any Android application.

TABLE 3-5: Android Manifest Elements

ELEMENT DESCRIPTION

manifest The root node of any Android manifest. This is a required node. In addi-

tion to serving as the root node for the Android manifest, it can contain the

attributes to defi ne the package name, version number and name, Linux

user ID, and preferred installation location.

uses-permission Used to defi ne what permissions that application must have to operate

correctly. Whatever permissions you request are presented for the user’s

approval before the application is installed on his or her device.

permission Allows developers to defi ne permissions required to access shared appli-

cation components. When another application tries to use your applica-

tion’s features, it must use the uses-permission attribute to request the

specifi ed permission from your application.

You can defi ne diff erent protection levels to imply the potential risk in

allowing this access by using predetermined string values such as “nor-

mal” and “dangerous.”

permission-tree Acts as a “placeholder” for permissions that the application can add

dynamically. By using the PackageManager class, an application can

determine what permission elements to add upon request.

permission-group Creates a logical grouping of permissions. This allows the Android OS to

group these permissions visually when presenting them to the application

user for verifi cation.

instrumentation Gives the developer access to testing and monitoring hooks to check to

see how the application interacts with the system and its resources. To

accomplish this, instrumentation objects are instantiated before any other

application components.

c03.indd 52c03.indd 52 2/28/2012 4:07:39 PM2/28/2012 4:07:39 PM

McClure c03.indd V2 - 02/02/2012

Binding the Components: The Android Manifest x 53

ELEMENT DESCRIPTION

uses-sdk Allows you to set the compatibility level for your application. You have the

fl exibility to set the min, max, and target SDK level. Do not confuse the

SDK level with the Android OS version number.

uses-configuration Allows you to specify the hardware and software input features that your

application can use or needs to use to run. Items bound in this section can

include a hardware keyboard, trackball, scroll wheel, and touch screen.

This is also used to warn the user if he or she is installing an application

that depends on a feature that his or her device does not support. You

may also defi ne multiple items per feature.

uses-feature Allows you to determine an individual software or hardware feature that

will be used in your application. In addition, you can state whether that

feature is required, meaning that your application must have it to run, or

whether it is simply preferred. Examples of hardware features requested

include Bluetooth, camera, location, and microphone.

supports-screens Defi nes the screen sizes that your application will support. In a world with

Google TV and Android tablets, this node becomes increasingly important,

because you can defi ne what screens you want your application to run on.

By default, Android applications are set to support all screen sizes unless

otherwise stated.

application Used to defi ne the application’s metadata. Values set this way are consid-

ered to be the default values for all application components. There can be

only one application node per manifest.

In addition to the metadata, this node also contains the subnodes that

describe the application components (services, broadcast receivers, con-

tent providers) as well as their means of communication and confi guration.

activity Serves as the declaration for the activity component. All activities must be

declared in the manifest before the Android OS can run them. Also, you

can set activity metadata and settings such as the name, label, and screen

orientation.

activity-alias Used to present a target activity as a separate entity to the Android OS. By

doing so, you can alter the original attributes of the activity target, such as

intent fi lters and attributes.

service Declares a service component. All services must be declared in the mani-

fest before the Android OS can run them.

receiver Declares a broadcast receiver component. This is one of the two ways

to create a broadcast receiver to listen for events. The second way to

declare a receiver is by calling the Context.registerReceiver()

method.

continues

c03.indd 53c03.indd 53 2/28/2012 4:07:39 PM2/28/2012 4:07:39 PM

McClure c03.indd V2 - 02/02/2012

54 x CHAPTER 3 UNDERSTANDING ANDROID/MONO FOR ANDROID APPLICATIONS

ELEMENT DESCRIPTION

provider Specifi es each of your application’s content providers. If your application

is creating a custom provider, the system is unable to use that content pro-

vider unless it is declared within the Android manifest.

intent-filter Specifi es the kind of intents that a given application component can

respond to. This can be a subnode of the activity, service, and

receiver nodes. This node allows you to defi ne a type of intent you

would like to receive, while fi ltering out all other kinds of intents.

meta-data Contains additional developer-defi ned key-value pair data that can be

utilized by the application component in which it is located. This serves as

a subnode of activity, service, provider, and receiver.

uses-library Allows you to specify any shared libraries on which your application may

depend.

Do not let the number of available nodes and attributes overwhelm you. Despite
the number of options within the manifest, the Android OS requires only the
manifest and application nodes. Other nodes are used to defi ne details and
permissions to perform actions you will add as you develop your application.

The Android manifest is a powerful tool that serves as the “glue” for your application. Not only
does it give your application an identity and purpose, but it also brings together all the individual
components of your application. Finally, you can use the Android manifest to fi ne-tune the permis-
sions and general confi guration properties for all your application components in a single location.

For more information regarding the Android manifest or any of its components, please check out the
Mono for Android documentation or the offi cial Android documentation:

 ‰ Mono for Android: http://mono-android.net/Documentation/Guides/Working_with_
AndroidManifest.xml

 ‰ Offi cial Android: http://developer.android.com/guide/topics/manifest/manifest-
intro.html

Editing the Manifest for Mono for Android via Visual Studio

Although many “Androidisms” carry over quite nicely into the Mono for Android world, some
areas pertain to Mono for Android alone. In this case, the location and the toolset used to edit the
Android manifest differ greatly from those of a typical Android application.

When a new application is created, the Android manifest is not part of the project. As you learned
in the previous chapter, Mono for Android is possible because it generates the appropriate Java and

TABLE 3-5 (continued)

c03.indd 54c03.indd 54 2/28/2012 4:07:39 PM2/28/2012 4:07:39 PM

McClure c03.indd V2 - 02/02/2012

Binding the Components: The Android Manifest x 55

confi guration code when built. Therefore, the Android manifest is not a required part of a Mono for
Android application, because it automatically generates a manifest for you when you publish your
application.

Even though the Mono for Android toolset autogenerates your manifest fi le, this does not mean that
you do not have to edit or understand the inner workings of the manifest.

Within Visual Studio, you have three main ways to edit the Android manifest. Of those three, two
do not require utilizing the physical manifest fi le.

 ‰ The fi rst way that Mono for Android enables you to edit the Android manifest is by cre-
ating a plethora of class attributes for many of the different Android components. These
attributes allow you to defi ne confi guration options in code. When the application is
compiled, the runtime reads those attributes and adds the appropriate information to the
generated manifest fi le. One such example is the activity, which we discussed earlier in
this chapter.

When you decorate a class with the Activity attribute, the framework automatically
appends the proper activity nodes to your Android manifest. In addition, setting the values
of properties results in the correct subnodes for the activity to be generated. Consider the
following code snippet:

[Activity(Label = “Demo_Application”, MainLauncher = true,
Permission = “READ_CONTACTS”,MultiProcess = false,
ScreenOrientation = Android.Content.PM.ScreenOrientation.Landscape)]

Once your application is compiled, the runtime generates the following XML within the
Android manifest:

<activity android:label=”Demo_Application” android:multiprocess=”false”
 android:permission=”READ_CONTACTS” android:screenOrientation=”landscape”
 android:name=”testing_01.Activity1”>
 <intent-fi lter>
 <action android:name=”android.intent.action.MAIN” />
 <category android:name=”android.intent.category.LAUNCHER” />
 </intent-fi lter>
</activity>

As you can see, the resulting XML fi ts the hierarchy and rules of the Android manifest that
we discussed earlier.

 ‰ The second way to edit the Android manifest fi le within Visual Studio is by changing
select settings within the Visual Studio application properties window. For your conve-
nience, Mono for Android has included global confi guration tooling within this window
to allow you to quickly add and edit different items in the Android manifest. Figure 3-2
shows the confi guration window for adjusting the global application permissions in Visual
Studio.

 ‰ Finally, the third way to edit the Android manifest is by physically editing the manifest XML
within Visual Studio. Although it is not generated by default, the AndroidManifest.xml fi le
is located in the Properties folder of your application. If you do not see the fi le there, you
can force the system to generate a manifest for you by going to your application settings and
selecting the link “No AndroidManifest.xml found. Click to add one.” under the Application
tab, as shown in Figure 3-3.

c03.indd 55c03.indd 55 2/28/2012 4:07:40 PM2/28/2012 4:07:40 PM

McClure c03.indd V2 - 02/02/2012

56 x CHAPTER 3 UNDERSTANDING ANDROID/MONO FOR ANDROID APPLICATIONS

FIGURE 3-2

FIGURE 3-3

Although it should go without saying, take care when editing your Android
manifest by hand. Although you can edit manually, it is generally a good idea to
allow the system to generate the appropriate nodes for you by using the proper
attribute values. Since parts of the Android manifest in Visual Studio are the
result of code generation, some manual edits within the manifest could be lost
between compilations.

SUMMARY

Mono for Android goes a long way toward easing the way to developing Android applications for
C# and .NET developers. With its adherence to the general intent and naming structure of the Java
APIs, it makes the development experience feel as if you are working against the native APIs.

c03.indd 56c03.indd 56 2/28/2012 4:07:40 PM2/28/2012 4:07:40 PM

McClure c03.indd V2 - 02/02/2012

Summary x 57

However, this does not mean that you do not need a good understanding of the Android platform
and how its basic components function and interact. By having a great understanding of the under-
lying ideas behind intents, content providers, services, broadcast receivers, and activities, you can
develop applications that not only fully utilize the features of the Android device but also interact
with other Java-based applications.

Finally, you create a cohesive application of independent but cooperating components by using the
Android manifest.

c03.indd 57c03.indd 57 2/28/2012 4:07:40 PM2/28/2012 4:07:40 PM

c03.indd 58c03.indd 58 2/28/2012 4:07:40 PM2/28/2012 4:07:40 PM

McClure c04.indd V2 - 02/02/2012

4
Planning and Building Your
Application’s User Interface

WHAT’S IN THIS CHAPTER?

 ‰ Mobile UI guidelines

 ‰ Building a UI for Android

 ‰ Examining the layout of controls

 ‰ Exploring the UI controls

 ‰ Designing screen-independent UI

In this chapter you’ll learn about creating your application’s user interface (UI). You’ll get a
look at a base set of guidelines for building a successful user interface on Android, examine
the options for building a user interface, and see how controls are laid out in Android. Finally,
you’ll get to explore the controls available to Android developers.

GUIDELINES FOR A SUCCESSFUL MOBILE UI

Before you dig into building a user interface, it’s important to understand some guidelines for
doing so successfully. These guidelines affect how users will use applications when they are
mobile, as well as how your applications can be good citizens when running:

 ‰ The device’s screen size is much smaller than that on a desktop system. As such, appli-
cations should limit the number of screen controls presented to the user at one time.

 ‰ Applications should require the users to enter the smallest amount of data possible. A
spinner control (similar to a drop-down list box), where the user is required to select
a pre-entered value, is preferable to requiring the user to type in some amount of text.
Typing on a mobile device is problematic. Tapping several times is preferable to enter-
ing 30 letters into a text form.

c04.indd 59c04.indd 59 2/28/2012 4:08:55 PM2/28/2012 4:08:55 PM

McClure c04.indd V2 - 02/02/2012

60 x CHAPTER 4 PLANNING AND BUILDING YOUR APPLICATION’S USER INTERFACE

 ‰ Be a good citizen on the device. Caching data locally is preferred to pulling data over a wire-
less connection. For example, a spinner control is populated once with data from a web
service. The next time that data is needed, there is no reason to pull that data from the web
service. The data should be cached locally on the device and reused from the cache as much
as possible.

 ‰ Users typically are moving when they are using their devices. Think about the number of
users who are walking through an airport, walking the halls of an offi ce, or exercising when
accessing an application. An application’s user interface needs to take movement and jar-
ring into account. For example, presenting data in a listview is common. The user expects to
select a cell and get more detailed information. The size of the cell should be such that there
is some margin for error when selecting a cell. This will improve the user’s ability to select
the correct item.

 ‰ Because mobile devices have small screens, the text that is presented to the user needs to be
large enough for the user to easily view the data presented.

 ‰ There is no control over where a mobile device is located when it is running an application.
It may be directly in the sunlight, or it could be in a parking lot at midnight. The application
needs to be easily readable when it runs. This may involve a combination of screen colors or
the application’s theme.

Of course, this is a very short list of some of the most common guidelines to keep
in mind. For more guidelines, we recommend that you check out the Android User
Interface Guidelines. The various documents can be found at
http://developer.android.com/guide/practices/ui_guidelines/index.html.

BUILDING AN ANDROID UI

Developers who are building a user interface in Android will fi nd concepts that are similar to those
of their existing .NET applications. Android uses the concept of controls that programmers are
familiar with. Here are some characteristics of controls that will seem familiar:

 ‰ Properties can be set to get a control’s value or change a control’s default functionality.

 ‰ A program can process events, such as a button click or value change.

 ‰ Controls can be grouped in a hierarchy known as a View or ViewGroup.

 ‰ Controls can be themed so that the look of a set of controls can be changed in a group.

Views

An Android user interface is based on View and ViewGroup objects. A View class is the basis for
widgets, which are UI objects such as text fi elds, spinners, buttons, clocks, and date pickers. A
ViewGroup is the basis for layout subclasses. An Activity’s user interface consists of a tree of View
and ViewGroup nodes. The top of the tree is a ViewGroup. To display a view hierarchy, an Activity
calls SetContentView(Resource) to load the Resource view and begin drawing the tree.

c04.indd 60c04.indd 60 2/28/2012 4:08:58 PM2/28/2012 4:08:58 PM

McClure c04.indd V2 - 02/02/2012

Choosing a Control Layout x 61

Design Surface

.NET developers building a user interface with WebForms, WinForms, or other applications are famil-
iar with the concept of a design surface. With a design surface, you can use a set of controls to display
data to the user. The Android Developer Tools contain an Eclipse plug-in that lets you create a user
interface. However, this has not been integrated into Mono for Android and does not work with Visual
Studio. Mono for Android does not have its own design surface at the time of this writing. It does offer
IntelliSense for manually creating the user interface. However, given that manually creating the user
interface is prone to errors, we recommend that you look for a high-level tool for creating your user inter-
face, such as DroidDraw. DroidDraw has a website that you can use to build your app’s UI, as well as a
downloadable Java application. For more information on DroidDraw, go to http://droiddraw.org.

Figure 4-1 shows DroidDraw. The left side displays the user interface that has been defi ned. The
top-right section shows the options you can set, allowing you to set the properties of the UI ele-
ments. The bottom-right section shows the XML generated for the UI. The XML is not updated
automatically; you must create it by clicking the Generate button.

FIGURE 4-1

CHOOSING A CONTROL LAYOUT

Android UIs have different layouts that can be used. A layout defi nes how its child controls are
arranged onscreen. Android has fi ve standard layouts:

 ‰ AbsoluteLayout places all controls at a defi ned location. This layout has been deprecated.
FrameLayout or RelativeLayout is suggested instead.

 ‰ FrameLayout displays a single item, such as an image.

c04.indd 61c04.indd 61 2/28/2012 4:08:59 PM2/28/2012 4:08:59 PM

McClure c04.indd V2 - 02/02/2012

62 x CHAPTER 4 PLANNING AND BUILDING YOUR APPLICATION’S USER INTERFACE

 ‰ LinearLayout displays child controls along a single line, either horizontal or vertical.

 ‰ RelativeLayout places controls at a location relative to other controls.

 ‰ TableLayout displays controls in a row/column-style layout.

AbsoluteLayout

The AbsoluteLayout is the layout that allows a developer to place views at a defi ned location. The
AbsoluteLayout has been deprecated. The FrameLayout or RelativeLayout is suggested instead.
Having said that, if you need to use the AbsoluteLayout, Listing 4-1 shows the necessary XML.

LISTING 4-1: AbsoluteLayout XML

<?xml version=”1.0” encoding=”utf-8”?>
<AbsoluteLayout
android:id=”@+id/widget31”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
xmlns:android=”http://schemas.android.com/apk/res/android”
>
 <Spinner
 android:id=”@+id/widget27”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_x=”170px”
 android:layout_y=”12px”
>
 </Spinner>
 <EditText
 android:id=”@+id/widget29”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”EditText”
 android:textSize=”18sp”
 android:layout_x=”225px”
 android:layout_y=”102px”
>
 </EditText>
 <AnalogClock
 android:id=”@+id/widget30”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_x=”20px”
 android:layout_y=”62px”
>
 </AnalogClock>
</AbsoluteLayout>

This code is contained in Layouts\Layouts\Resources\Layout\absolute.axml

c04.indd 62c04.indd 62 2/28/2012 4:08:59 PM2/28/2012 4:08:59 PM

McClure c04.indd V2 - 02/02/2012

Choosing a Control Layout x 63

Figure 4-2 shows the output of the AbsoluteLayout previously defi ned.

FIGURE 4-2

FrameLayout

FrameLayout is the simplest layout option. It is designed to display a single object on the screen. All
elements within the FrameLayout are pinned to the top-left corner of the layout. If multiple elements are
within a FrameLayout, they are drawn in the same location, and their displays interfere with each other.

LinearLayout

LinearLayout aligns all objects either vertically or horizontally. The direction displayed depends on
the orientation attribute. All the elements are displayed one after the other. If the orientation
attribute of LinearLayout is set to vertical (as shown in Listing 4-2), the UI displays vertically. If
the orientation attribute of LinearLayout is set to horizontal, the UI displays horizontally.

LISTING 4-2: LinearLayout XML

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
android:id=”@+id/widget28”
android:layout_width=“fill_parent“
android:layout_height=“fill_parent“
xmlns:android=“http://schemas.android.com/apk/res/android“
android:orientation=“vertical“
>

continues

c04.indd 63c04.indd 63 2/28/2012 4:08:59 PM2/28/2012 4:08:59 PM

McClure c04.indd V2 - 02/02/2012

64 x CHAPTER 4 PLANNING AND BUILDING YOUR APPLICATION’S USER INTERFACE

 <Spinner
 android:id=“@+id/widget27“
 android:layout_width=“wrap_content“
 android:layout_height=“wrap_content“
>
 </Spinner>
 <EditText
 android:id=“@+id/widget29“
 android:layout_width=“wrap_content“
 android:layout_height=“wrap_content“
 android:text=“EditText“
 android:textSize=“18sp“
>
 </EditText>
 <AnalogClock
 android:id=“@+id/widget30“
 android:layout_width=“wrap_content“
 android:layout_height=“wrap_content“
>
 </AnalogClock>
</LinearLayout>

This code is contained in Layouts\Layouts\Resources\Layout\linear.axml

Figure 4-3 shows a sample LinearLayout displaying items vertically.

FIGURE 4-3

Creating a horizontal LinearLayout is simple. The value of android:orientation is changed to
horizontal, as shown in Listing 4-3.

LISTING 4-2 (continued)

c04.indd 64c04.indd 64 2/28/2012 4:09:00 PM2/28/2012 4:09:00 PM

McClure c04.indd V2 - 02/02/2012

Choosing a Control Layout x 65

LISTING 4-3: LinearLayout XML oriented horizontally

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
android:id=”@+id/widget289”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
xmlns:android=”http://schemas.android.com/apk/res/android”
android:orientation=”horizontal”
>
 <Spinner
 android:id=”@+id/widget279”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
>
 </Spinner>
 <EditText
 android:id=”@+id/widget299”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”EditText”
 android:textSize=”18sp”
>
 </EditText>
 <AnalogClock
 android:id=”@+id/widget309”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
>
 </AnalogClock>
</LinearLayout>

Figure 4-4 shows a sample horizontal LinearLayout.

RelativeLayout

With RelativeLayout, the child elements are positioned relative to the parent element or to each
other, depending on the ID that is specifi ed (see Listing 4-4):

LISTING 4-4: RelativeLayout XML

<?xml version=”1.0” encoding=”utf-8”?>
<RelativeLayout
android:id=”@+id/widget32”
android:layout_width=“fill_parent“
android:layout_height=“fill_parent“
xmlns:android=“http://schemas.android.com/apk/res/android“
>
 <Spinner
 android:id=”@+id/widget27”
 android:layout_width=“wrap_content“
 android:layout_height=“wrap_content“
 android:layout_alignParentTop=“true“
 android:layout_alignParentRight=“true“
>

FIGURE 4-4

continues

c04.indd 65c04.indd 65 2/28/2012 4:09:00 PM2/28/2012 4:09:00 PM

McClure c04.indd V2 - 02/02/2012

66 x CHAPTER 4 PLANNING AND BUILDING YOUR APPLICATION’S USER INTERFACE

 </Spinner>
 <EditText
 android:id=“@+id/widget29“
 android:layout_width=“wrap_content“
 android:layout_height=“wrap_content“
 android:text=“EditText“
 android:textSize=“18sp“
 android:layout_below=“@+id/widget27“
 android:layout_toLeftOf=“@+id/widget27“
>
 </EditText>
 <AnalogClock
 android:id=“@+id/widget30“
 android:layout_width=“wrap_content“
 android:layout_height=“wrap_content“
 android:layout_centerVertical=“true“
 android:layout_toLeftOf=“@+id/widget27“
>
 </AnalogClock>
</RelativeLayout>

This code is contained in Layouts\Layouts\Resources\Layout\relative.axml

Figure 4-5 shows the output from a RelativeLayout.

FIGURE 4-5

LISTING 4-4 (continued)

c04.indd 66c04.indd 66 2/28/2012 4:09:00 PM2/28/2012 4:09:00 PM

McClure c04.indd V2 - 02/02/2012

Choosing a Control Layout x 67

TableLayout

TableLayout arranges its elements into rows and columns. Conceptually, this is similar to an
HTML table. With TableLayout, a number of TableRows are used to defi ne the TableLayout.
Listing 4-5 shows an example of TableLayout:

LISTING 4-5: TableLayout XML

<?xml version=”1.0” encoding=”utf-8”?>
<TableLayout
android:id=”@+id/widget33”
android:layout_width=“fill_parent“
android:layout_height=“fill_parent“
xmlns:android=“http://schemas.android.com/apk/res/android“
android:orientation=“vertical“
>
 <Spinner
 android:id=“@+id/widget27“
 android:layout_width=“wrap_content“
 android:layout_height=“wrap_content“
>
 </Spinner>
 <EditText
 android:id=“@+id/widget29“
 android:layout_width=“wrap_content“
 android:layout_height=“wrap_content“
 android:text=“EditText“
 android:textSize=“18sp“
>
 </EditText>
 <TableRow>
 <AnalogClock
 android:id=“@+id/widget30“
 android:layout_width=“wrap_content“
 android:layout_height=“wrap_content“
>
 </AnalogClock>
 <Button
 android:id=“@+id/widget34“
 android:layout_width=“fill_parent“
 android:layout_height=“wrap_content“
 android:text=“Button“
>
 </Button>
 </TableRow>
</TableLayout>

This code is contained in Layouts\Layouts\Resources\Layout\table.axml

c04.indd 67c04.indd 67 2/28/2012 4:09:00 PM2/28/2012 4:09:00 PM

McClure c04.indd V2 - 02/02/2012

68 x CHAPTER 4 PLANNING AND BUILDING YOUR APPLICATION’S USER INTERFACE

Figure 4-6 shows a sample TableLayout.

FIGURE 4-6

Optimizing Layouts

Opening layouts in an Activity, called “infl ating,” is an expensive operation. Each layout that is
nested and each view that is displayed requires additional CPU processing and memory consump-
tion on the device. The general idea is to keep layouts as simple as possible. Here are some general
rules for layouts:

 ‰ Avoid nesting layouts to the extreme. Sometimes applications have a business need for nested
layouts. However, the nesting of layouts should be kept to a minimum.

 ‰ Watch out for unnecessary nesting. Two layouts set to FILL_PARENT will add unnecessary
time to the infl ation of the layouts.

 ‰ Watch for an extreme number of Views. A layout with too many Views will confuse the user
and will take a long time to display due to the need to infl ate the Views.

Obviously, this is not an exhaustive list of rules. The key is to create simple user interfaces that meet
the users’ needs and that do not overload the processor’s and device’s memory.

All the sample code for the user interface controls can be found in the
UIControls project.

c04.indd 68c04.indd 68 2/28/2012 4:09:00 PM2/28/2012 4:09:00 PM

www.allitebooks.com

http://www.allitebooks.org

McClure c04.indd V2 - 02/02/2012

Designing Your User Interface Controls x 69

DESIGNING YOUR USER INTERFACE CONTROLS

For the user, the most important part of any application is the user interface; in essence, for the user
the user interface is the application. Desktop applications can have rather complicated user inter-
faces, but creating a user interface for a mobile device is the single most important feature of an
application.

Here are some guidelines for creating a successful mobile user interface:

 ‰ Number of form elements: Because of the display size of a mobile device, the user should not
be subjected to a large number of form elements.

 ‰ Size of form elements: Mobile devices are, by defi nition, mobile. Users may be in an indus-
trial plant, on the elliptical at the gym, or taking their children for a walk in the park. Form
elements must be large enough to be readable and to allow users to make selections when
they are not standing still. At the same time, form elements must be small enough to fi t on
the screen rather easily.

 ‰ Testing: Android devices have different screen sizes and resolutions. As a result, thinking
about and testing your application on various screen sizes and capabilities is important.

Android provides a set of controls that developers can use to create a user interface. These controls
can be used individually or as part of a composite control. In addition, these controls allow you to
create an application with a consistent look and feel as well as simplify and speed development. Here
are some of the more valuable controls:

 ‰ TextView is similar to a label. It allows data to be displayed to the user.

 ‰ EditText is similar to a .NET textbox. It allows for multiline entry and word wrapping.

 ‰ AutoCompleteTextView is a textbox that will display a set of items that a user can pick
from. As the user enters more data, the set of items displayed narrows. At any point, the user
may select on the displayed items.

 ‰ ListView is a view group that creates a vertical list of views. This is similar to a gridview in
.NET. The ListView is covered in Chapter 6.

 ‰ Spinner is a composite control. It contains a textview and an associated listview for selecting
items that will be displayed in the textview. This control is similar to a drop-down list box in
.NET.

 ‰ Button is a standard push button, which should be familiar to .NET developers.

 ‰ Checkbox is a button that contains two states — checked and unchecked. The check box
should be familiar to all .NET developers.

 ‰ RadioButton is a two-state button in a group. The group of radio buttons allows only one
item to be selected at a time. The radio button should be familiar to all .NET developers as a
radio button list.

c04.indd 69c04.indd 69 2/28/2012 4:09:01 PM2/28/2012 4:09:01 PM

McClure c04.indd V2 - 02/02/2012

70 x CHAPTER 4 PLANNING AND BUILDING YOUR APPLICATION’S USER INTERFACE

 ‰ Clock has digital and analog clock controls. They are time picker controls and allow the
developer to get or set the time.

 ‰ TimePicker is associated with the clock controls. The time picker is an up/down control
along with a button.

 ‰ Image(s) are a series of controls that are used to deal with images. These controls include a
single image, an image button, and an image gallery.

 ‰ While not available in all devices, virtual keyboards are a feature available for touch devices
like the HTC and Motorola lines of Android devices.

These are just some of the controls that are available to a developer. Many more are available with
Android. They are contained within the Android.Widget namespace.

The next sections examine the defi nition of these controls, the values they support, and the controls
themselves.

SOMETHING FAMILIAR — XML, ATTRIBUTES, AND VALUES

ASP.NET developers will be familiar with the concept of the XML layout for
Android fi les. ASP.NET WebForms keeps its display information in its front-
end .aspx fi les, and the back-end logic is contained within the .cs and .vb
fi les. Android applications use a similar concept. The display information is
contained within the Views. An Activity’s user interface can be loaded by
calling SetContentView and passing in a layout resource ID or a single View
instance. As a result, a developer can actually create his or her own user interface
programmatically.

TextView

TextView is a control that displays text to the user. By default, the TextView class does not
allow editing. For the .NET developer, this control is similar in concept to a label in WinForms
or WebForms. Take a look at a couple members that the class exposes from a programmability
standpoint:

 ‰ The Text property of the TextView allows a program to get/set the value that is displayed in
the TextView.

 ‰ The Width property sets the width of the TextView. This can be set with the value
fill_parent or in pixels as an integer.

EditText

EditText is a subclass that allows the user to input and edit text. Figure 4-7 shows sample output
for EditText.

c04.indd 70c04.indd 70 2/28/2012 4:09:01 PM2/28/2012 4:09:01 PM

McClure c04.indd V2 - 02/02/2012

Designing Your User Interface Controls x 71

FIGURE 4-7

AutoCompleteTextView

AutoCompleteTextView is an editable TextView that shows suggestions while the user is typing.
The list of suggestions is displayed in a drop-down menu. As the user types, he or she can choose an
item. If an item is chosen, the text is then displayed in the text view. The list of suggestions that is
displayed to the user is formed from a data adapter.

Spinner

The spinner control is used to present the user with a defi ned set of data from which he or she can
choose. The data in the spinner control is loaded from an Adapter that is associated with the spin-
ner control. Listing 4-6 shows the XML UI for a spinner activity:

LISTING 4-6: Spinner XML

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
android:id=”@+id/widget28”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
android:orientation=”vertical”
xmlns:android=”http://schemas.android.com/apk/res/android”
>
 <Spinner
 android:id=”@+id/Sp”
 android:layout_width=“fill_parent“
 android:layout_height=“wrap_content“
>

continues

c04.indd 71c04.indd 71 2/28/2012 4:09:02 PM2/28/2012 4:09:02 PM

McClure c04.indd V2 - 02/02/2012

72 x CHAPTER 4 PLANNING AND BUILDING YOUR APPLICATION’S USER INTERFACE

 </Spinner>
 <TextView
 android:id=”@+id/tvSp”
 android:layout_width=”193px”
 android:layout_height=”35px”
 android:text=”TextView”
>
 </TextView>
</LinearLayout>

This code is contained in UIControls\Resources\Layout\spinner.axml

Listing 4-7 provides the code for a spinner control:

LISTING 4-7: Spinner code

 Spinner state;
 TextView tvSp;
 ArrayAdapter<String> aas;

 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);
 SetContentView(Resource.Layout.spinner);

 state = FindViewById<Spinner>(Resource.Id.Sp);
 tvSp = FindViewById<TextView>(Resource.Id.tvSp);
 aas = new ArrayAdapter<String>(this,
 Android.Resource.Layout.SimpleSpinnerDropDownItem);
 state.Adapter = aas;
 aas.Add(String.Empty);
 aas.Add(“Alabama”);
 aas.Add(“Arizona”);
 aas.Add(“California”);
 aas.Add(“Tennessee”);
 aas.Add(“Texas”);
 aas.Add(“Washington”);
 state.ItemSelected += new EventHandler<ItemEventArgs>(sp_ItemSelected);
 }

 void sp_ItemSelected(object sender, ItemEventArgs e)
 {
 tvSp.Text = Convert.ToString(aas.GetItem(e.Position));
 }

This code is contained in UIControls\UIControls\spinneract.cs

In this example, an ArrayAdapter that contains type String is created and associated with the
spinner control. The ArrayAdapter has strings added to it, and then the strings are added to the
spinner control and ultimately are presented to the user.

LISTING 4-6 (continued)

c04.indd 72c04.indd 72 2/28/2012 4:09:02 PM2/28/2012 4:09:02 PM

McClure c04.indd V2 - 02/02/2012

Designing Your User Interface Controls x 73

Notice the second parameter in the ArrayAdapter initializer. It is the layout type
that is displayed when the spinner control is opened.

Figure 4-8 shows opening a spinner.

FIGURE 4-8

Button

The user can press the button control to perform some type of action. This button is the Android
equivalent of a button in WinForms and WebForms. It supports an OnClick event that developers
can use to process code when the button is clicked.

Check Box

A check box is a button control that supports two states — checked and unchecked. This is similar
to a check box in WinForms/WebForms for .NET developers. This control supports an OnClick
event that developers can use to process code when an item is clicked.

Radio Buttons and Groups

A radio button is a button control that supports two states — checked and unchecked. However,
this control is slightly different from a check box. Once a radio button is checked, it cannot be
unchecked.

A radio group is a class that creates a set of radio buttons. When one radio button within a radio
group is checked, any other checked radio button is unchecked. The initial state of a radio group has

c04.indd 73c04.indd 73 2/28/2012 4:09:02 PM2/28/2012 4:09:02 PM

McClure c04.indd V2 - 02/02/2012

74 x CHAPTER 4 PLANNING AND BUILDING YOUR APPLICATION’S USER INTERFACE

all items unchecked. The radio group is a container control for a group of radio buttons that work
together. Programmatically, the radio group is created by creating individual radio buttons and add-
ing them to the radio group.

Listing 4-8 provides a short example of XML with the check box, radio button, and radio group.

LISTING 4-8: Radio buttons and check boxes XML

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>
 <CheckBox
 android:id=”@+id/cb1”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”CheckBox”
></CheckBox>
 <TextView
 android:id=”@+id/tvcb”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=””
></TextView>
 <RadioButton
 android:id=”@+id/rb”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”RadioButton”
></RadioButton>
 <TextView
 android:id=”@+id/rbtv”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=””
></TextView>
 <RadioGroup
 android:id=”@+id/rg”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:orientation=”vertical”
/>
 <TextView
 android:id=”@+id/rgtv”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=””
></TextView>
 <Button
 android:id=”@+id/btnCloseRadioCheckBoxes”
 android:layout_width=”fill_parent”

c04.indd 74c04.indd 74 2/28/2012 4:09:03 PM2/28/2012 4:09:03 PM

McClure c04.indd V2 - 02/02/2012

Designing Your User Interface Controls x 75

 android:layout_height=”wrap_content”
 android:text=”Close” />
</LinearLayout>

This code is contained in UIControls\Resources\Layout\radiocheckboxes.axml

Listing 4-9 gives the code listing for buttons, check boxes, radio buttons, and radio groups:

LISTING 4-9: Radio buttons, radio groups, and check boxes

[Activity(Label = “Radio & Checkboxes”, Name=”uicontrols.radiocheckboxes”)]
public class radiocheckboxes : Activity
{
Button btn;
RadioButton rb;
CheckBox cb;
RadioGroup rg;
TextView rbtv, cbtv, rgtv;
protected override void OnCreate(Bundle bundle)
{
 base.OnCreate(bundle);
 SetContentView(Resource.Layout.radiocheckboxes);
 // Create your application here
 rg = FindViewById<RadioGroup>(Resource.Id.rg);
 rg.Click += new EventHandler(rg_Click);
 cb = FindViewById<CheckBox>(Resource.Id.cb1);
 rb = FindViewById<RadioButton>(Resource.Id.rb);
 btn = FindViewById<Button>(Resource.Id.btnCloseRadioCheckBoxes);
 rbtv = FindViewById<TextView>(Resource.Id.rbtv);
 cbtv = FindViewById<TextView>(Resource.Id.tvcb);
 rgtv = FindViewById<TextView>(Resource.Id.rgtv);
 btn.Click += new EventHandler(btn_Click);
 cb.Click += new EventHandler(cb_Click);

 rb.Click += new EventHandler(rb_Click);

 RadioButton rb1;
 for (int i = 0; i < 3; i++)
 {
 rb1 = new RadioButton(this);
 rb1.Text = “Item “ + i.ToString();
 rb1.Click += new EventHandler(rb1_Click);
 rg.AddView(rb1, i);
 }
}

void rg_Click(object sender, EventArgs e)
{
 rgtv.Text = ((RadioButton)sender).Text;
}void rb1_Click(object sender, EventArgs e)
{

continues

c04.indd 75c04.indd 75 2/28/2012 4:09:03 PM2/28/2012 4:09:03 PM

McClure c04.indd V2 - 02/02/2012

76 x CHAPTER 4 PLANNING AND BUILDING YOUR APPLICATION’S USER INTERFACE

 RadioButton rb1 = (RadioButton)sender;
 rgtv.Text = rb1.Text + “ was clicked.”;
}

void rb_Click(object sender, EventArgs e)
{
 rbtv.Text = “Radio Button Click”;
}

void cb_Click(object sender, EventArgs e)
{
 cbtv.Text = “Checkbox Clicked”;
}

void btn_Click(object sender, EventArgs e)
{
 this.Finish();
}

This code is contained in UIControls\radiocheckboxes.cs

Figure 4-9 shows the display and output associated with a
check box, radio button, and radio group.

This example contains a check box, a single radio button, and a
radio group. Here are a few things to note:

 ‰ A loop is used to add radio buttons to the radio group.

 ‰ Click events are set up for each screen control.

 ‰ The Click event of the radio group is set up on the
Click event of the individual radio buttons.

Clocks

Clocks and time are important in many mobile applica-
tions. Many mobile phone users don’t wear a watch, so they
depend on their phone and its applications for the current
time. Applications depend on the time to know when to fi re scheduled events through background
services.

For user interaction, Android can display two types of clocks. These types are:

 ‰ Analog Clock: The analog clock displays hands for hours and minutes.

 ‰ Digital Clock: The digital clock is similar to the analog clock, except that the display is
digital. The hours, minutes, and seconds are contained in separate views.

FIGURE 4-9

LISTING 4-9 (continued)

c04.indd 76c04.indd 76 2/28/2012 4:09:03 PM2/28/2012 4:09:03 PM

McClure c04.indd V2 - 02/02/2012

Designing Your User Interface Controls x 77

Pickers

Android provides a time picker and a date picker. These controls allow the user to select the date
and time.

 ‰ Time Picker: The time picker allows the user to select the hours and minutes. The time picker
can be confi gured for 12- or 24-hour days, with a.m./p.m. as necessary.

TimePicker only seems to expose a change event that can be used to obtain the
time that is currently selected.

 ‰ Date Picker: The date picker allows the user to select the month, day, and year. Thankfully,
the date picker exposes the selected day, month, and year in the control as properties.

The Month integer that the DatePicker returns runs from 0 to 11.

Listing 4-10 shows a sample XML layout involving date and time pickers.

LISTING 4-10: Date and time pickers XML

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>
 <DigitalClock
 android:id=”@+id/dc”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”11:00 PM”
></DigitalClock>
 <TextView
 android:id=”@+id/dctv”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”TextView”
></TextView>
 <DatePicker
 android:id=”@+id/dp”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
></DatePicker>
 <TextView

continues

c04.indd 77c04.indd 77 2/28/2012 4:09:03 PM2/28/2012 4:09:03 PM

McClure c04.indd V2 - 02/02/2012

78 x CHAPTER 4 PLANNING AND BUILDING YOUR APPLICATION’S USER INTERFACE

 android:id=”@+id/dptv”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”TextView”
></TextView>
 <TimePicker
 android:id=”@+id/tp”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
></TimePicker>
 <TextView
 android:id=”@+id/tptv”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”TextView”
></TextView>
 <Button
 android:id=”@+id/btnTimeValues”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”Get Values”
></Button>
 <Button
 android:id=”@+id/btnTimeClose”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”Close”
></Button>
</LinearLayout>

This code is contained in UIControls\Resources\Layout\time.axml

Listing 4-11 shows an example of the class for the date controls:

LISTING 4-11: Date and time pickers

[Activity(Label = “Time Activity”)]
public class timeact : Activity
{
 Button btnClose, btnTimeValues;
 int nowHour, nowMinute;
 TimePicker tp;
 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);
 SetContentView(Resource.Layout.time);
 btnClose = FindViewById<Button>(Resource.Id.btnTimeClose);
 btnClose.Click += new EventHandler(btnClose_Click);
 btnTimeValues = FindViewById<Button>(Resource.Id.btnTimeValues);

LISTING 4-10 (continued)

c04.indd 78c04.indd 78 2/28/2012 4:09:04 PM2/28/2012 4:09:04 PM

McClure c04.indd V2 - 02/02/2012

Designing Your User Interface Controls x 79

 btnTimeValues.Click += new EventHandler(btnTimeValues_Click);
 nowHour = DateTime.Now.Hour;
 nowMinute = DateTime.Now.Minute;
 tp = FindViewById<TimePicker>(Resource.Id.tp);
 }
 void btnTimeValues_Click(object sender, EventArgs e)
 {
 TextView tv = FindViewById<TextView>(Resource.Id.dctv);
 DigitalClock dc = FindViewById<DigitalClock>(Resource.Id.dc);
 tv.Text = dc.Text;
 TextView tptv = FindViewById<TextView>(Resource.Id.tptv);
 DatePicker dp = FindViewById<DatePicker>(Resource.Id.dp);
 TextView dptv = FindViewById<TextView>(Resource.Id.dptv);
 DateTime dt = new DateTime(dp.Year, dp.Month + 1,
 dp.DayOfMonth, nowHour, nowMinute, 0);
 dptv.Text = dt.ToString();
 }
 void tp_TimeChanged(TimePicker view, int hourOfDay, int minute)
 {
 nowHour = hourOfDay;
 nowMinute = minute;
 }
 void btnClose_Click(object sender, EventArgs e)
 {
 this.Finish();
 }

}

This code is contained in UIControls\timeact.cs

The time and date examples show how to get the time and date
properties of the various controls. One thing to note in the
code is that the time picker’s TimeChanged event is used to get
the values. Those values are saved as private variables in the
Activity’s class and can be used as needed. Figure 4-10 shows
the Activity with its output from the date and time picker
controls.

Images

Applications tend to be about the information users digest.
Typically, this information is presented in the form of text.
However, as the saying goes, a picture is worth a thousand
words. As such, the appropriate use of images can provide
tremendous value to users. With this fact in mind, Android
provides several image controls. Here are a few points to keep
in mind when working with images:

 ‰ Images can be of types png, jpg, gif, and bmp.

 ‰ Images should be placed in the /Resources/drawable directory.

FIGURE 4-10

c04.indd 79c04.indd 79 2/28/2012 4:09:04 PM2/28/2012 4:09:04 PM

McClure c04.indd V2 - 02/02/2012

80 x CHAPTER 4 PLANNING AND BUILDING YOUR APPLICATION’S USER INTERFACE

 ‰ Images should be marked as AndroidResource,
as shown in Figure 4-11. This should happen
automatically.

 ‰ IntelliSense is provided for images. The asso-
ciation between the images and their values is
stored in the fi le ResourcesDesigner.cs, as
long as the build action of the image is set to
AndroidResource.

 ‰ The IntelliSense provided for images does not
contain fi le extensions.

 ‰ Loading an image over WiFi or a wireless network requires more power than loading an
image locally. Don’t load an image from a remote resource unless absolutely necessary.

ImageView

The ImageView class is used to display an image. Images can be loaded from various resources and
content providers. ImageView computes the images’ measurements. In addition, it supports various
options such as scaling.

ImageButton

The ImageButton class displays an image in place of text in a button. An ImageButton looks like
a regular Button. The ImageButton supports several states. An image can be associated with the
states of a Button, such as the default state, focused, and pressed.

Gallery

The Gallery is a View that is used to show items in a center-locked horizontal scrolling list.
Listing 4-12 shows the XML user interface for images:

LISTING 4-12: Images XML

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>
 <ImageButton
 android:id=”@+id/ib”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
></ImageButton>
 <TextView
 android:id=”@+id/ibtv”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”

FIGURE 4-11

c04.indd 80c04.indd 80 2/28/2012 4:09:05 PM2/28/2012 4:09:05 PM

McClure c04.indd V2 - 02/02/2012

Designing Your User Interface Controls x 81

></TextView>
 <Gallery
 android:id=”@+id/gal”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
></Gallery>
 <TextView
 android:id=”@+id/galtv”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
></TextView>
 <ImageView
 android:id=”@+id/iv”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
></ImageView>
 <Button
 android:id=”@+id/btnImageClose”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”Close”
></Button>
</LinearLayout>

This code is contained in UIControls\Resources\Layout\images.axml

Listing 4-13 exemplifi es the Activity for displaying images:

LISTING 4-13: Working with images

[Activity(Label = “Image Activity”)]
public class imagesact : Activity
{
 Button btnImageClose;
 ImageButton ib;
 ImageView iv;
 Gallery g;

 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);
 SetContentView(Resource.layout.images);
 btnImageClose = FindViewById<Button>(Resource.Id.btnImageClose);
 btnImageClose.Click += new EventHandler(btnClose_Click);
 g = FindViewById<Gallery>(Resource.Id.gal);
 TextView gtv = FindViewById<TextView>(Resource.Id.galtv);
 ib = FindViewById<ImageButton>(Resource.Id.ib);
 ib.SetImageResource(Resource.Drawable.blue);
 ib.Click += new EventHandler(ib_Click);
 ib.FocusChange += new EventHandler<View.FocusChangeEventArgs>
 (ib_FocusChange);
 iv = FindViewById<ImageView>(Resource.id.iv);

continues

c04.indd 81c04.indd 81 2/28/2012 4:09:05 PM2/28/2012 4:09:05 PM

McClure c04.indd V2 - 02/02/2012

82 x CHAPTER 4 PLANNING AND BUILDING YOUR APPLICATION’S USER INTERFACE

 iv.SetImageResource(Resource.drawable.desert);
 g.Adapter = new ImageAdapter(this);
 }

 void ib_FocusChange(object sender, View.FocusChangeEventArgs e)
 {
 if (e.HasFocus)
 {
 ib.SetImageResource(Resource.drawable.red);
 }
 else
 {
 ib.SetImageResource(Resource.drawable.purple);
 }
 }
 void ib_Click(object sender, EventArgs e)
 {
 ib.SetImageResource(Resource.drawable.purple);
 }
 void btnClose_Click(object sender, EventArgs e)
 {
 this.Finish();
 }
//menu items are included in this .cs file; however
// they are not used in this section.
}

This code is contained in UIControls\imagesact.cs

Listing 4-14 gives a custom image array class for fi lling an image gallery.

LISTING 4-14: ImageAdapter for the gallery

public class ImageAdapter : BaseAdapter
{
 Context context;
 Dictionary<int, ImageView> dict;
 public ImageAdapter(Context c)
 {
 context = c;
 dict = new Dictionary<int, ImageView>();
 }

 public override int Count { get { return thumbIds.Length; } }

 public override Java.Lang.Object GetItem(int position){ return null; }

 public override long GetItemId(int position){ return 0; }

 // create a new ImageView for each item referenced by the Adapter
 public override View GetView(int position, View convertView, ViewGroup parent)
 {

LISTING 4-13 (continued)

c04.indd 82c04.indd 82 2/28/2012 4:09:05 PM2/28/2012 4:09:05 PM

McClure c04.indd V2 - 02/02/2012

Designing Your User Interface Controls x 83

 bool bOut;
 ImageView i;// = new ImageView(context);
 bOut = dict.TryGetValue(position, out i);

 if (bOut == false)
 {
 i = new ImageView(context);
 i.SetImageResource(thumbIds[position]);
 i.LayoutParameters = new Gallery.LayoutParams(150, 100);
 i.SetScaleType(ImageView.ScaleType.CenterInside);
 dict.Add(position, i);
 }

 return i;
 }

 // references to our images
 int[] thumbIds = {
 Resource.Drawable.chrysanthemum,
 Resource.Drawable.desert,
 Resource.Drawable.hydrangeas,
 Resource.Drawable.jellyfish,
 Resource.Drawable.koala,
 Resource.Drawable.lighthouse
 };
}

This code is contained in UIControls\ImagesArray.cs

Here are a few points to note about the custom image array class:

 ‰ The class inherits from the BaseAdapter.

 ‰ The class overrides the Count property. The count
returns the total number of items that will be provided
by the image array class.

 ‰ The GetItem method returns an item. In this case, the
value is not needed, so a null is returned.

 ‰ The GetItemId method returns the item’s unique identi-
fi er at a position. It is not needed in this example, so a
value of 0 is returned.

 ‰ The GetView method returns the View necessary for an
image view. This code stores the various image views in
a dictionary. As the user scrolls through the images, the
image view is pulled from the dictionary if it exists in
the dictionary. If the image view does not exist within
the dictionary, the image view is created and stored in
the dictionary.

Figure 4-12 shows an ImageButton, ImageView, and a Gallery.
FIGURE 4-12

c04.indd 83c04.indd 83 2/28/2012 4:09:05 PM2/28/2012 4:09:05 PM

McClure c04.indd V2 - 02/02/2012

84 x CHAPTER 4 PLANNING AND BUILDING YOUR APPLICATION’S USER INTERFACE

Virtual Keyboards

As we’ve already said many times in this book, mobile devices have limits. These include limits
regarding their displays and keyboards. As a result, developers need to provide the users with some
type of help inputting data into an application. Android provides this functionality through an attri-
bute on the controls named inputType, as shown in Listing 4-15.

LISTING 4-15: Setup for virtual keyboards

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
android:id=”@+id/ll1”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
android:orientation=”vertical”
xmlns:android=”http://schemas.android.com/apk/res/android”
>
 <EditText
 android:id=”@+id/UriAddress”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:hint=”Url”
 android:textSize=”18sp”
 android:inputType=”text|textUri” />
 <EditText
 android:id=”@+id/To”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:hint=”To”
 android:textSize=”18sp”
 android:inputType=”text|textEmailAddress”
/>
 <EditText
 android:id=”@+id/subject”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:hint=”Subject”
 android:textSize=”18sp”
/>
 <EditText
 android:id=”@+id/Message”
 android:layout_width=”fill_parent”
 android:layout_height=”240px”
 android:hint=”Message”
 android:textSize=”18sp”
 android:gravity=”top”
/>
 <Button
 android:id=”@+id/btn”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”

c04.indd 84c04.indd 84 2/28/2012 4:09:05 PM2/28/2012 4:09:05 PM

McClure c04.indd V2 - 02/02/2012

Designing Your User Interface Controls x 85

 android:text=”Send”
 android:textSize=”18sp”/>
</LinearLayout>

This code is contained in softkeyboards\Resources\Layout\Main.axml

Figure 4-13 shows the three different virtual keyboards that are presented to the user in
Android 2.x. Figure 4-14 shows the three different virtual keyboards that are presented
to the user in the Android 4.0 emulator. These keyboards are set up based on the inputType
attribute in the XML layout fi le. These virtual keyboards have only a few subtle differences
among them.

FIGURE 4-13

FIGURE 4-14

c04.indd 85c04.indd 85 2/28/2012 4:09:06 PM2/28/2012 4:09:06 PM

McClure c04.indd V2 - 02/02/2012

86 x CHAPTER 4 PLANNING AND BUILDING YOUR APPLICATION’S USER INTERFACE

You may want to set the keyboard support in the emulator to true to get a more
realistic visual when using an emulator session. To do this, the parameter to set
is Keyboard Support to yes in an Android 2.3 Emulator Session. In an Android
4.0 Emulator Session, set the Keyboard Support to no to get the virtual key-
board support.

Selecting Your Virtual Keyboard

Many types of keyboards can be used to help users input data. These keyboards fall into the areas of
text, number, phone, and date/time. Here are some of the possible virtual keyboards:

 ‰ none: The text is not editable.

 ‰ datetime: The input will be used for a date/time.

 ‰ number: The input text will be a number.

 ‰ phone: The input will be used as a phone number.

 ‰ text: Plain text with a basic keyboard.

 ‰ textAutoCorrect: Autocorrection support is provided.

 ‰ textCapCharacters: Text with all the characters in uppercase.

 ‰ textEmailAddress: The text will be used as an e-mail address.

 ‰ textPassword: The text will be displayed as a password input.

 ‰ textUri: The text will be used as a URI.

Many more input types can be specifi ed, of course.

Removing the Keyboard

When the user is done with input, he or she wants the virtual keyboard to slide away. There is a user
interface control within a virtual keyboard that allows the user to specify when the keyboard should
slide away. If this needs to be performed programmatically, the following code will make the virtual
keyboard slide away:

Android.Views.InputMethods.InputMethodManager imm =
 (Android.Views.InputMethods.InputMethodManager)
GetSystemService(Context.InputMethodService);
imm.HideSoftInputFromWindow(btn.WindowToken,
 Android.Views.InputMethods.HideSoftInputFlags.None);

This code can be placed in a number of locations that are particular to a specifi c application.

c04.indd 86c04.indd 86 2/28/2012 4:09:07 PM2/28/2012 4:09:07 PM

McClure c04.indd V2 - 02/02/2012

Controlling Your Menus x 87

Programmatically hiding a virtual keyboard is not commonly done in Android
applications, so this is not a requirement for you to implement.

CONTROLLING YOUR MENUS

Because screen real estate is at a premium with a mobile application, Android exposes a mechanism
to provide application functionality without sacrifi cing too much screen real estate. Android allows
each Activity to display its own menu when the device’s menu button is selected. In addition,
Android supports a context menu system that can be assigned to any View. Context menus are
triggered when the user holds the touch screen for 3 seconds or longer within a View, presses the
trackball, or presses the middle D-pad button; this depends on the device’s input mechanism.
Activity and context menus support additional submenus and context menus on the UI controls.

Introducing the Menu System

Given the small screen and the need to navigate applications that may have a large number of
onscreen options, Android provides a multistage menu system. This menu system is optimized for
small screens and the input they allow. These menu stages are as follows:

 ‰ The icon menu: The icon menu appears along the bottom of an Activity when the Menu
button is pressed and an Activity has the menu setup. The icon menu does not display
check boxes, radio buttons, or shortcut keys for menu items. When an Activity’s menu has
more items than the maximum, an option to display more is shown.

 ‰ The expanded menu: The expanded menu appears when the user clicks the More option on a
menu. The expanded menu displays items not shown in the icon menu’s fi rst set of options.

 ‰ The submenu: Faced with the icon menu and the possible expanded menu, the user can be
overwhelmed with menus. Thankfully, Android implements a submenu system. This allows
an application to present the user with a simple hierarchical set of menus that the user may
drill into. At this time, submenus cannot be nested. Note that controls may be displayed, but
icons are not displayed within the submenu items.

 ‰ The context menu: Context menus are associated with a View. A context menu offers options
associated with that view.

Menus

The fi rst issue in creating a menu is to understand where and when it is created. Menus are associ-
ated with an Activity. The menu is created by overriding the OnCreateOptionsMenu method of
an Activity. The method is called when the device’s Menu button is pressed while the Activity is
being displayed. When the Menu button is pressed, the method is called, and a menu is displayed.
Take a look at some sample code in Listing 4-16:

c04.indd 87c04.indd 87 2/28/2012 4:09:07 PM2/28/2012 4:09:07 PM

McClure c04.indd V2 - 02/02/2012

88 x CHAPTER 4 PLANNING AND BUILDING YOUR APPLICATION’S USER INTERFACE

LISTING 4-16: Adding menu items

public override bool OnCreateOptionsMenu(Android.Views.IMenu menu)
{
 base.OnCreateOptionsMenu(menu);
 int groupId = 0;
 // Unique menu item Identifier. Used for event handling.
 int menuItemId = Android.Views.Menu.First;
 // The order position of the item
 int menuItemOrder = Android.Views.Menu.None;
 // Text to be displayed for this menu item.
 int menuItemText = Resource.String.menuitem1;
 // Create the menu item and keep a reference to it.
 IMenuItem menuItem1 = menu.Add(groupId, menuItemId, menuItemOrder,
 menuItemText);
 menuItem1.SetShortcut(‘1’, ‘a’);
 Int32 MenuGroup = 10;
 IMenuItem menuItem2 =
 menu.Add(MenuGroup, menuItemId + 10, menuItemOrder + 1,
 new Java.Lang.String(“Menu Item 2”));
 IMenuItem menuItem3 =
 menu.Add(MenuGroup, menuItemId + 20, menuItemOrder + 2,
 new Java.Lang.String(“Menu Item 3”));
 ISubMenu sub = menu.AddSubMenu(0, menuItemOrder + 30,
 menuItemOrder + 3, new Java.Lang.String(“Submenu 1”));
 sub.SetHeaderIcon(Resource.Drawable.plussign);
 sub.SetIcon(Resource.Drawable.plussign);
 IMenuItem submenuItem = sub.Add(0, menuItemId + 40, menuItemOrder + 4,
 new Java.Lang.String(“Submenu Item”));
 IMenuItem submenuItem2 =
 sub.Add(MenuGroup, menuItemId + 50, menuItemOrder + 5,
 new Java.Lang.String(“sub-1”)).SetCheckable(true);
 IMenuItem submenuItem3 =
 sub.Add(MenuGroup, menuItemId + 60, menuItemOrder + 6,
 new Java.Lang.String(“sub-2”)).SetCheckable(true);
 return true;
}

This code is contained in UIControls\menus.cs

There are a few things to notice when a menu item is created:

 ‰ Calling the .Add() method creates a menu item and returns a reference to that item.

 ‰ The fi rst parameter is the group value. It separates the menu’s items for ordering and
processing.

 ‰ The second parameter is an identifi er that makes a menu item unique. The
OnOptionsItemSelected() method uses this value to determine which menu item was
clicked.

c04.indd 88c04.indd 88 2/28/2012 4:09:07 PM2/28/2012 4:09:07 PM

McClure c04.indd V2 - 02/02/2012

Controlling Your Menus x 89

 ‰ The third parameter is an order parameter in which the order will be displayed.

 ‰ The fi nal parameter is the text that the menu item displays — either a string resource or a
string.

 ‰ After the menu items are created and populated, true should be returned.

 ‰ Check boxes and radio buttons are available on expanded menus and submenus. These are
set in the SetCheckable method.

 ‰ A radio button group is created by SetGroupCheckable, by passing the group identifi er, and
by passing true to the exclusive parameter.

 ‰ Shortcut keys are set by calling the SetShortcut method.

 ‰ An icon can be set by calling the SetIcon method and passing a drawable resource.

 ‰ A condensed title can be set by calling an IMenuItem’s .SetTitleCondensed() method and
passing a string. Because the state of a check box/radio button is not shown, the condensed
title can be used to communicate the state to the user.

When a menu item is selected — including a submenu item, the menu item that represents the
submenu, and an expanded menu item — the event OnMenuItemSelected() handles a selection. The
application can tell which item was selected by looking at the item.ItemID property. The code in
Listing 4-17 shows the OnMenuItemSelected() method:

LISTING 4-17: Processing a menu item selection

public override bool OnMenuItemSelected(int featureId, IMenuItem item)
{
 switch (item.ItemId)
 {
 case(0):
 //menu id 0 was selected.
 return (true);
 case(1):
 //menu id 1 was selected
 return (true);
 // additional items can go here.
 }
 return (false);
}

This code is contained inUIControls\menus.cs

Figure 4-15 shows the menu items running in the emulator.

As mentioned previously, when two menu items need to appear on one screen, items are displayed in an
expanded menu. Figure 4-16 shows the menu items that are displayed as part of the expanded menu.

c04.indd 89c04.indd 89 2/28/2012 4:09:08 PM2/28/2012 4:09:08 PM

McClure c04.indd V2 - 02/02/2012

90 x CHAPTER 4 PLANNING AND BUILDING YOUR APPLICATION’S USER INTERFACE

Submenus

Submenus are menu items that logically and hierarchically appear under menu items. Submenus are
displayed when a menu item is selected and programmed to display the items. Here are some impor-
tant points about submenus:

 ‰ Submenus are created by calling the AddSubMenu() method of an IMenuItem.

 ‰ The AddSubMenu() method uses the same parameters as when adding a menu item.

 ‰ Adding icons and the rest of the submenu items is the same as with a menu item.

Selecting the Menu button on the device brings up the menu items shown in Figure 4-17.

The submenu item is displayed along with a graphic signifying that additional information is dis-
played when the item is selected. Figure 4-18 shows Submenu 1 selected.

Context Menus

Context menus are displayed for a given view, such as a control. They are within the view’s “con-
text.” In this source code, the context menu is created when the user selects the ImageView control.
This is done within the OnCreate() method of a view that is displayed.

iv.SetImageResource(Resource.drawable.desert);
RegisterForContextMenu(iv);

After the view has been passed to the RegisterForContextMenu() method, when the user selects
the view through some action, such as by pressing the trackball, selecting the middle D-pad button,
or selecting the view for at least 3 seconds, the context menu is shown. Figure 4-19 shows an exam-
ple of the context menu that is displayed when selecting an image view.

FIGURE 4-16FIGURE 4-15

c04.indd 90c04.indd 90 2/28/2012 4:09:08 PM2/28/2012 4:09:08 PM

McClure c04.indd V2 - 02/02/2012

Controlling Your Menus x 91

FIGURE 4-19

The code in Listing 4-18 creates the context menu. Note that the methods to add items accept the
same parameters and allow for the same options as the menus and submenus.

FIGURE 4-18FIGURE 4-17

c04.indd 91c04.indd 91 2/28/2012 4:09:08 PM2/28/2012 4:09:08 PM

McClure c04.indd V2 - 02/02/2012

92 x CHAPTER 4 PLANNING AND BUILDING YOUR APPLICATION’S USER INTERFACE

LISTING 4-18: Creating a context menu

public override void OnCreateContextMenu(Android.Views.IContextMenu menu, View v,
 Android.Views.IContextMenuContextMenuInfo menuInfo)
{
 base.OnCreateContextMenu(menu, v, menuInfo);
 Java.Lang.ICharSequence str0 = new Java.Lang.String(“Context Menu”);
 Java.Lang.ICharSequence str1 = new Java.Lang.String(“Item 1”);
 Java.Lang.ICharSequence str2 = new Java.Lang.String(“Item 2”);
 Java.Lang.ICharSequence str3 = new Java.Lang.String(“Item 3”);
 Java.Lang.ICharSequence strSubMenu = new Java.Lang.String(“Submenu”);
 Java.Lang.ICharSequence strSubMenuItem = new Java.Lang.String(“Submenu Item”);
 menu.SetHeaderTitle(str0);
 menu.Add(0, Android.Views.Menu.First,
 Android.Views.Menu.None, str1).SetIcon(Resource.Drawable.koala);
 menu.Add(0, Android.Views.Menu.First + 1, Android.Views.Menu.None, str2)
 .SetCheckable(true);
 menu.Add(0, Android.Views.Menu.First + 2, Android.Views.Menu.None, str3)
 .SetShortcut(‘3’, ‘3’);
 ISubMenu sub = menu.AddSubMenu(strSubMenu);
 sub.Add(strSubMenuItem);
}

This code is contained in UIControls\menus.cs

When the user selects a context menu item, the following code determines which menu item was
selected:

public override bool OnContextItemSelected(IMenuItem item)
{
 base.OnContextItemSelected(item);
 switch (item.ItemId)
 {
 case (0):
 return (true);
 case (1):
 return (true);
 }
 return (false);
}

This code is contained in UIControls\menus.cs

Defi ning Menus as a Resource

In addition to manually creating menus programmatically, you can create menus from an XML
resource. The menus that are created can be either standard menus created when the user clicks the
menu item or context menus.

c04.indd 92c04.indd 92 2/28/2012 4:09:09 PM2/28/2012 4:09:09 PM

McClure c04.indd V2 - 02/02/2012

Controlling Your Menus x 93

Menus

Menu resources are stored as XML fi les in the layout directory and have their build attribute set
to AndroidResource. The menu starts with the <menu> tag as the root, along with the <item> tag
for menu items and the <menu> and <item> tags shown on item04 for submenu items. Listing 4-19
shows the XML used for an embedded resource.

LISTING 4-19: Menu defi ned in XML

<menu xmlns:android=”http://schemas.android.com/apk/res/android”
android:name=”Embedded Resource - Context Menu”>
 <item
 android:id=”@+id/item01”
 android:icon=”@drawable/jellyfishsmall”
 android:title=”Menu item 1”>
 </item>
 <item
 android:id=”@+id/item02”
 android:checkable=”true”
 android:title=”Menu item 2”>
 </item>
 <item
 android:id=”@+id/item03”
 android:numericShortcut=”3”
 android:alphabeticShortcut=”3”
 android:title=”Menu item 3”>
 </item>
 <item
 android:id=”@+id/item04”
 android:title=”Submenu items”>
 <menu>
 <item
 android:id=”@+id/item05”
 android:title=”Submenu item 1”>
 </item>
 </menu>
 </item>
</menu>

 This code is contained in UIControls\Resources\Layout\menu.xml

The following code shows the menu being loaded and infl ated into the display when the user clicks
the Menu button when an Activity is loaded:

public override bool OnCreateOptionsMenu(Android.Views.IMenu menu)
{
 base.OnCreateOptionsMenu(menu);
 MenuInflater inflater = new Android.Views.MenuInflater(this);
 inflater.Inflate(Resource.layout.menu, menu);
 return (true);
}

This code is contained in UIControls\menu.cs

c04.indd 93c04.indd 93 2/28/2012 4:09:09 PM2/28/2012 4:09:09 PM

McClure c04.indd V2 - 02/02/2012

94 x CHAPTER 4 PLANNING AND BUILDING YOUR APPLICATION’S USER INTERFACE

Figure 4-20 shows the output of loading the embedded menu into the display.

FIGURE 4-20

Context Menus

An embedded resource can be used as a context menu and then be created from a View, just like
when a context menu is created programmatically. Listing 4-20 shows the creation of the context
menu from an embedded resource.

LISTING 4-20: OnCreateContextMenu method with an XML resource

public override void OnCreateContextMenu(Android.Views.IContextMenu menu, View v,
 Android.Views.IContextMenuContextMenuInfo menuInfo)
 {
 base.OnCreateContextMenu(menu, v, menuInfo);
 MenuInflater inflater = new Android.Views.MenuInflater(this);
 inflater.Inflate(Resource.layout.menu, menu);
 menu.SetHeaderTitle(“My Context Menu”);
 }

This code is contained in UIControls\menu.cs

Figure 4-21 shows the context menu that is created when an embedded resource is used.

From the embedded resource, Figure 4-22 shows the context menu’s submenu item.

c04.indd 94c04.indd 94 2/28/2012 4:09:09 PM2/28/2012 4:09:09 PM

McClure c04.indd V2 - 02/02/2012

Resolution-Independent UI x 95

RESOLUTION-INDEPENDENT UI

Initially, designing a UI for Android was simple. All the initial devices had the same screen size and pixel
density. Basically, if you designed a UI for a single device layout, it worked across the rest of the devices.

Unfortunately, the marketplace is a fi ckle beast. As the saying goes, “One size fi ts all” never fi ts you.
Starting with Android 2.0 in late 2009, the marketplace has seen a tremendous increase in the num-
ber of devices. Each of these devices seems to have a slightly different screen size and pixel density.
Creating a UI that looks good across all the devices you want to support is not diffi cult, but it can
take some thought. This section looks at some of the features in Mono for Android (and Android)
that help developers write a resolution-independent UI. These include supporting various resources,
supporting varying screen sizes, and working from a set of best practices.

Supporting Various Screen Resources

In general, resources dealing with the screen can be divided into two areas — screen sizes and pixel
density.

Supporting Screen Sizes

There are three generalized screen sizes. Based on the device’s screen size, an application can provide
various layouts. The currently supported screen sizes are as follows:

 ‰ Extra Large: An extra large screen in Android is a screen that is larger than a large screen.

FIGURE 4-21 FIGURE 4-22

c04.indd 95c04.indd 95 2/28/2012 4:09:09 PM2/28/2012 4:09:09 PM

McClure c04.indd V2 - 02/02/2012

96 x CHAPTER 4 PLANNING AND BUILDING YOUR APPLICATION’S USER INTERFACE

 ‰ Large: A large screen typically is much larger than the screen on a standard-sized smart-
phone. Usually this is a tablet–or netbook-size screen or larger.

 ‰ Medium: A medium screen equates to the typical screen size of a smartphone.

 ‰ Small: A small screen is smaller than a standard 3.2-inch smartphone screen.

Screen size support for an application can be placed within the AndroidManifest.xml fi le that is
stored within the Properties folder of an Android application. The support is set by the following
XML:

<supports-screens android:smallScreens=”false” android:normalScreens=”true”
 android:largeScreens=”true” android:xlargeScreens=”true”
 android:anyDensity=”true” />

The attributes have the following meanings:

 ‰ android:smallScreens indicates whether the application supports screen form factors with a
smaller aspect ratio than the traditional HVGA screen (smaller than “normal”). If an applica-
tion does not support small screen sizes, it will be unavailable to a device with a small screen.
By default, this value is true for API level 4 and later, so it is true for Mono for Android.

 ‰ android:normalScreens indicates whether a normal size screen is supported. By default,
this attribute is true.

 ‰ android:largeScreens indicates whether a larger-than-normal (tablet or netbook) screen
size is supported. By default, this setting is true for API level 4 and later, so it is true for
Mono for Android.

 ‰ android:xlargeScreens indicates whether or not an extra large screen is supported. By
default, this setting is false for API level below 9. This attribute will require the API level to
be 9 or higher.

 ‰ android:anyDensity indicates whether an application can support any screen density. This
is true by default for API level 4 and later, so it is true for Mono for Android.

The values for true and false are slightly different from what developers
assume. A value of false does not mean that an application will not run on the
device. It means that Android will attempt to apply some sizing features and fi t
the application into the device. A value of true means that the application has
been checked by the application developer, should support that resolution, and
does not need the device to apply any screen-sizing magic.

Supporting Pixel Densities

Pixel density is another issue that must be fi gured into an application. Resources are stored in the
drawable directory and may be stored in several subdirectories, depending on their screen resolu-
tion. Android has these standard pixel densities:

c04.indd 96c04.indd 96 2/28/2012 4:09:10 PM2/28/2012 4:09:10 PM

McClure c04.indd V2 - 02/02/2012

Resolution-Independent UI x 97

 ‰ ldpi: Low-density resources are designed for devices with a screen pixel density of 100 to 140
dpi. These resources are stored in the Resources/drawable-ldpi folder.

 ‰ mdpi: Medium-density resources are designed for devices with a screen pixel density of 140
to 190 dpi. These resources are stored in the Resources/drawable-mdpi folder.

 ‰ hdpi: High-density resources are designed for devices with a screen pixel density of 190 dpi
and higher. These resources are stored in the Resources/drawable-hdpi folder.

 ‰ xhdpi: Extra high-density resources are designed for devices with a screen pixel density of
320 dpi. These resources are stored in the Resources/drawable-xhdpi folder.

Mono for Android running in Visual Studio provides a drawable folder. The other directories may
be created manually based on the need. Mono for Android running in MonoDevelop on the Mac
provides the drawable-hdpi, drawable-mdpi, drawable-ldpi folders. These are optional
directories and are provided as a convention to provide alternative resources depending on the
device’s capabilities. The decision as to which resources to use is determined at runtime. The order
for determining the resources is ldpi, mdpi, hdpi, xhdpi, and nodpi.

For the most up-to-date information on the support for resources in Android,
check the Android Developer site on Providing Resources. The url is
http://developer.android.com/guide/topics/resources/

providing-resources.html.

It is worth noting that Google did a survey and found that, as of August 2,
2010, 97 percent of devices have a pixel density of mdpi or hdpi. Developers are
probably safe to assume that devices are mdpi or better.

Using Android Market Support

In addition to application support for various screen sizes and pixel densities, the Android Market
uses the <support-screens /> attributes. Applications that specify these values are fi ltered within
the marketplace so that the user is presented with only applications that fi t the device that is cur-
rently being used to connect to the Market. If an application does not support a small screen, the
application will not be listed when a small screen device searches the Android Market.

Multiple Screen Resolution Best Practices

The following are best practices for building an application that supports multiple screen
resolutions:

 ‰ AbsoluteLayout should not be used. AbsoluteLayout uses the concept of specifi c positions
for controls. Although this will work for the initial screen design, it will most likely cause

c04.indd 97c04.indd 97 2/28/2012 4:09:10 PM2/28/2012 4:09:10 PM

McClure c04.indd V2 - 02/02/2012

98 x CHAPTER 4 PLANNING AND BUILDING YOUR APPLICATION’S USER INTERFACE

problems when an application is run on a different device with a different screen resolution.
It is suggested that developers use RelativeLayout and FrameLayout and set
layout_margin attributes within the child controls.

 ‰ Use fill_parent, wrap_content, and dip (density-independent pixel) units instead of pixel
sizes in UI attributes.

 ‰ Avoid placing pixel values directly in code. Although the Android framework uses pixel
values in code for performance reasons, it is suggested that dips be used for calculations and
conversions as necessary. The class Android.Util.DisplayMetrics can be used to get the
necessary screen dimensions for the currently running device.

 ‰ Use the density and image-specifi c resources.

 ‰ Test your application in the simulator in various confi gurations as well as on multiple
devices.

CONSTRUCTING A USER INTERFACE: A PHONE AND TABLET

EXAMPLE

Putting together an application’s user interface using these standard controls and having that appli-
cation run across multiple form factors is the goal of any Android application. In this example, the
user is presented with a user registration screen. The user is provided with assistance during the reg-
istration process. The assistance provided in this app is as follows:

 ‰ Scrolling is turned on via the ScrollView control. This allows for the user interface of an
application to scroll as needed. (For a tablet, or larger screen device, this is not an issue.) The
ScrollView enables the controls to be scrolled.

 ‰ Virtual keyboards are used in the various input fi elds. For example, the e-mail fi eld provides
the keyboard layout optimized for e-mail, while the phone number fi eld provides the key-
board optimized for numeric input.

 ‰ A spinner is used to provide a list of states. Instead of typing the state in, the user selects the
spinner, navigates to the appropriate state, and then selects the state.

 ‰ An autocomplete is used to enter the country of the user.

 ‰ Location services are used to calculate the user’s current location. From this location, the
user’s city and zip code are then prefi lled. Once the location is determined, the location ser-
vices are no longer used and are turned off.

Figures 4-23 and 4-24 show the same application running in a tablet device (the Motorola Xoom)
and on a phone (an HTC EVO 4G device).

c04.indd 98c04.indd 98 2/28/2012 4:09:11 PM2/28/2012 4:09:11 PM

McClure c04.indd V2 - 02/02/2012

Constructing a User Interface: A Phone and Tablet Example x 99

Listing 4-21 shows the XML layout for this user interface, which runs across the Motorola Xoom
and the HTC EVO 4G.

LISTING 4-21: XML layout with inputType attributes

<?xml version=”1.0” encoding=”utf-8”?>
<ScrollView xmlns:android=”http://schemas.android.com/apk/res/android”
 android:id=”@+id/sv”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
>
 <LinearLayout
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”

FIGURE 4-23 FIGURE 4-24

continues

c04.indd 99c04.indd 99 2/28/2012 4:09:11 PM2/28/2012 4:09:11 PM

McClure c04.indd V2 - 02/02/2012

100 x CHAPTER 4 PLANNING AND BUILDING YOUR APPLICATION’S USER INTERFACE

 android:isScrollContainer=”true”
 >
 <TextView android:id=”@+id/tvName”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/Name”
/>
 <EditText android:id=”@+id/Name”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:inputType=”text|textCapWords” />

 <TextView android:id=”@+id/tvEmail”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/Email”
/>
 <EditText android:id=”@+id/Email”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:inputType=”text|textEmailAddress”
/>

 <TextView android:id=”@+id/tvUserName”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/UserName”
/>
 <EditText android:id=”@+id/UserName”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
/>
 <TextView android:id=”@+id/tvPassWord”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/PassWord”
/>
 <EditText android:id=”@+id/PassWord”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:inputType=”text|textPassword”
/>
 <TextView android:id=”@+id/tvAddress”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/Address”
/>
 <EditText android:id=”@+id/Address”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
/>

LISTING 4-21 (continued)

c04.indd 100c04.indd 100 2/28/2012 4:09:12 PM2/28/2012 4:09:12 PM

McClure c04.indd V2 - 02/02/2012

Constructing a User Interface: A Phone and Tablet Example x 101

 <TextView android:id=”@+id/tvCity”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/City”
 android:inputType=”text|textAutoCorrect”
 />
 <EditText android:id=”@+id/City”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
/>
 <TextView android:id=”@+id/tvState”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/State”
/>
 <Spinner android:id=”@+id/State”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
/>
 <TextView android:id=”@+id/tvZip”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/Zip”
/>
 <EditText android:id=”@+id/Zip”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:inputType=”number”
/>
 <Button
 android:id=”@+id/Submit”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/Submit”
 />
</LinearLayout>
</ScrollView>

This code is contained in MonoDroidUiNicities\Resources\Layout\ui.axml

Now that you have created a user interface, you can create the activity code (Listing 4-22). The key
items of note in the code are:

 ‰ The spinner control is populated from a resource.

 ‰ The autocomplete textbox control is populated from a resource.

 ‰ A location manager object is created to get the location updates.

 ‰ Once a location is detected, the location manager no longer sends updates to the application.
This keeps the UI from being updated by the application and the user wondering why the
update occurred.

c04.indd 101c04.indd 101 2/28/2012 4:09:12 PM2/28/2012 4:09:12 PM

McClure c04.indd V2 - 02/02/2012

102 x CHAPTER 4 PLANNING AND BUILDING YOUR APPLICATION’S USER INTERFACE

LISTING 4-22: Code listing for setting up the user interface

[[Activity(Label = “Mono for Android UI Nicities”, MainLauncher = true)]
public class Activity1 : Activity, ILocationListener
{
 private Spinner States;
 private Button button;
 private EditText etAddress;
 private EditText etCity;
 private EditText etZipCode;
 private AutoCompleteTextView actvCountry;
 private LocationManager lm;
 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);
 SetContentView(Resource.Layout.ui);
 try
 {
 button = FindViewById<Button>(Resource.Id.Submit);
 button.Click += new EventHandler(button_Click);
 States = FindViewById<Spinner>(Resource.Id.State);
 var fAdapter = ArrayAdapter.CreateFromResource(this,
 Resource.Array.states,
 Android.Resource.Layout.SimpleSpinnerDropDownItem);
 int spinner_dd_item = Android.Resource.
 Layout.SimpleSpinnerDropDownItem;
 fAdapter.SetDropDownViewResource(spinner_dd_item);
 States.Adapter = fAdapter;
 Criteria cr = new Criteria();
 cr.Accuracy = Accuracy.Fine;
 cr.AltitudeRequired = false;
 cr.BearingRequired = false;
 cr.SpeedRequired = false;
 cr.CostAllowed = true;
 String serviceString = Context.LocationService;
 lm = (LocationManager)GetSystemService(serviceString);
 string bestProvider = lm.GetBestProvider(cr, false);
 actvCountry = FindViewById<AutoCompleteTextView>(Resource.Id.Country);
 etAddress = FindViewById<EditText>(Resource.Id.Address);
 etCity = FindViewById<EditText>(Resource.Id.City);
 etZipCode = FindViewById<EditText>(Resource.Id.Zip);
 string[] countries = Resources.GetStringArray(
 Resource.Array.Countries);
 var adapter = new ArrayAdapter<String>(this,
 Resource.Layout.ListItem, countries);
 actvCountry.Adapter = adapter;
 lm.RequestLocationUpdates(bestProvider, 5000, 1f, this);
 }
 catch (System.Exception sysExc)
 {
 Toast.MakeText(this, sysExc.Message, ToastLength.Short).Show();
 }
 }

c04.indd 102c04.indd 102 2/28/2012 4:09:12 PM2/28/2012 4:09:12 PM

McClure c04.indd V2 - 02/02/2012

Constructing a User Interface: A Phone and Tablet Example x 103

 void GetAddress(double Lat, double Lon)
 {
 try
 {
 IList<Address> al;
 Geocoder geoc = new Geocoder(this, Java.Util.Locale.Default);
 al = geoc.GetFromLocation(Lat, Lon, 10);

 if ((al != null) && (al.Count > 0))
 {
 var firstAddress = al[0];
 var addressLine0 = firstAddress.GetAddressLine(0);
 var City = firstAddress.Locality;
 var zip = firstAddress.PostalCode;

 if (!String.IsNullOrEmpty(City))
 {
 RunOnUiThread(() => etCity.Text = City);
 }
 else
 {
 RunOnUiThread(() => etCity.Text = String.Empty);
 }
 if (!String.IsNullOrEmpty(zip))
 {
 RunOnUiThread(() => etZipCode.Text = zip);
 }
 else
 {
 RunOnUiThread(() => etZipCode.Text = String.Empty);
 }
 lm.RemoveUpdates(this);
 }
 }
 finally { }
 }
 void button_Click(object sender, EventArgs e)
 {
 EditText ev = FindViewById<EditText>(Resource.Id.Name);
 string message = “Your values will now be processed.”;
 Toast.MakeText(this, message, ToastLength.Short).Show();
 }
 public void OnLocationChanged(Location location)
 {
 GetAddress(location.Latitude, location.Longitude);
 }
 public void OnProviderDisabled(string provider)
 { }
 public void OnProviderEnabled(string provider)
 { }
 public void OnStatusChanged(string provider, Availability status,
 Bundle extras)
 { }
}

This code is contained in MonoDroidUiNicities\Activity1.cs

c04.indd 103c04.indd 103 2/28/2012 4:09:12 PM2/28/2012 4:09:12 PM

McClure c04.indd V2 - 02/02/2012

104 x CHAPTER 4 PLANNING AND BUILDING YOUR APPLICATION’S USER INTERFACE

SUMMARY

This chapter has introduced some of the ideas, concepts, and controls you can use in building your
Android user interface. Some of the key concepts presented include the following:

 ‰ Views and ViewGroups

 ‰ Layouts for placing controls on an Activity

 ‰ Some of the key controls used to build a user interface

 ‰ Some of the key ideas behind building a successful user interface

This chapter completes the fi rst part of the book on building the basics of an application with Mono
for Android.

c04.indd 104c04.indd 104 2/28/2012 4:09:12 PM2/28/2012 4:09:12 PM

McClure c05.indd V2 - 02/02/2012

5
Working with Data

WHAT’S IN THIS CHAPTER?

 ‰ Working with the SQLite database

 ‰ Working with remote data using SOAP-based web services

 ‰ Working with REST-style web services using XML and JSON

 ‰ Storing data effi ciently

 ‰ Connecting and talking to a database off the device directly

Data is the lifeblood of companies and the applications they build for public and private
consumption. The application might be an app to interact with Twitter, an instant-message
application, or your own personal address book. This chapter looks at interacting with device
databases, the SQLite database engine, and some of the strategies to store data off the device
on a central server through SOAP and REST without tying up the user interface.

WORKING WITH SQLITE

SQLite is a data engine running in Android and is the native database on Android. It is
different from client/server-style databases, such as SQL Server, Oracle, and DB/2. With a
client/server-style database, a query or operation is sent to the database engine, the opera-
tion is performed, and the result is sent back to the client. With this type of database engine,
the database runs in a separate process and typically on a separate machine. SQLite does
not run on a separate machine; it runs on the same machine, Android, and runs in the same
process as the application. SQLite is embedded in the application and linked to the app
during the compilation process. Calls made to SQLite are not made over a network, but stay
on the physical device. SQLite, a free application, uses SQL (Structured Query Language) to
interact with it.

c05.indd 105c05.indd 105 2/28/2012 4:05:35 PM2/28/2012 4:05:35 PM

McClure c05.indd V2 - 02/02/2012

106 x CHAPTER 5 WORKING WITH DATA

This chapter is not meant to be an introduction to the SQL language, databases,
tables, columns, data types, foreign keys, rows, or any other type of database
feature. You are expected to understand these concepts. For more information
on the SQLite database, check the website http://sqlite.org/. For more
information on the SQL language, check out any number of books from Wrox
and Wiley on the subject.

The data provider for SQLite is contained within the Mono.Data.Sqlite assembly, which supports
SQLite version 3. The assembly is intended for ADO.NET 2.0, which isn’t a problem for writing an
application in Mono for Android.

The Mono.Data.Sqlite.dll assembly and the Mono for Android fi les are located
in the directory for the Android assemblies. Another option for adding these
assemblies in is to just use the list capability in Visual Studio for adding a
reference.

Setting Up a Database

The fi rst step in getting an app to work with SQLite is to set up the database. With server-based
databases, this is done once by a DBA. With SQLite, the database must be created on the initial
run of an application on a device, and it must be done on each device that the application runs on.
Because the application must run on the end user’s device, the database setup process must work
without user intervention, and it must run within the device’s time constraints. Listing 5-1 is the
code that creates a database.

Dealing with data can be a time-consuming process. Locking the main thread in
an application for too long can result in the Android operating system attempt-
ing to stop the application. Database operations are a good candidate for back-
ground threads.

Sometimes there are operations that work on a device and not in the Android
emulator. SQLite’s CreateFile method has been one of these. Please be aware of
this issue if you have problems in this area.

LISTING 5-1: Creating a database on a device

string DatabaseName = “UserData.db3”;
string documents =
 System.Environment.GetFolderPath(System.Environment.SpecialFolder.Personal);

c05.indd 106c05.indd 106 2/28/2012 4:05:38 PM2/28/2012 4:05:38 PM

McClure c05.indd V2 - 02/02/2012

Working with SQLite x 107

string db = Path.Combine(documents, DatabaseName);
bool exists = File.Exists(db);
if (!exists)
{
 SqliteConnection.CreateFile(db);
}

This code is contained in InternalNetworkData\InternalNetworkData\Activity1.cs

The following are notable occurrences in this code:

 ‰ A database name is selected. This is where the tables and other data objects will be stored.

 ‰ The personal directory is determined.

 ‰ The full path to the database fi le is created.

 ‰ A test is performed to determine if the fi le exists. If it does not, the fi le is created.

Setting Up Tables

Now that your database has been created, the next step is to set up tables, indexes, triggers, and any
other particular database objects that are needed. Listing 5-2 shows code that creates tables, trig-
gers, and indexes.

 LISTING 5-2: Creating tables in a database

var conn = new SqliteConnection(“Data Source=” + db);
var commands = new[] {
 “CREATE TABLE IF NOT EXISTS STATE (STATEID INT PRIMARY KEY, “ +
 “STATENAME VARCHAR(50))”,
 “CREATE TABLE IF NOT EXISTS CUSTOMER(CUSTOMERID BIGINT PRIMARY KEY, “ +
 “NAME VARCHAR(100), CONTACTNAME VARCHAR(100), DATEJOINED DATETIME, “ +
 “PHONE VARCHAR(25), ADDRESS VARCHAR(100), CITY VARCHAR(50), “ +
 “STATEID INT, ZIPCODE VARCHAR(25), DATEENTERED DATETIME, “ +
 “DATEUPDATED DATETIME, FOREIGN KEY(STATEID) REFERENCES STATE(STATEID))”,
 “CREATE TRIGGER IF NOT EXISTS CUSTOMER_INSERT INSERT ON CUSTOMER “ +
 “BEGIN UPDATE CUSTOMER SET DATEENTERED=DATE(‘now’) “ +
 “WHERE CUSTOMERID=NEW.CUSTOMERID; END;”,
 “CREATE INDEX IF NOT EXISTS IDX_CUSTOMERNAME ON CUSTOMER (NAME)”,
 “CREATE INDEX IF NOT EXISTS IDX_STATEID ON CUSTOMER (STATEID)”,
 “CREATE INDEX IF NOT EXISTS IDX_DATEENTERED ON CUSTOMER (DATEENTERED)”,
 “INSERT INTO STATE (STATENAME) VALUES (‘TENNESSEE’);”,
 “INSERT INTO STATE (STATENAME) VALUES (‘GEORGIA’);”};
foreach (var cmd in commands)
 using (var sqlitecmd = conn.CreateCommand())
 {
 sqlitecmd.CommandText = cmd;
 sqlitecmd.CommandType = CommandType.Text;
 conn.Open();
 sqlitecmd.ExecuteNonQuery();
 conn.Close();
 }

continues

c05.indd 107c05.indd 107 2/28/2012 4:05:40 PM2/28/2012 4:05:40 PM

McClure c05.indd V2 - 02/02/2012

108 x CHAPTER 5 WORKING WITH DATA

SqliteCommand sqlc = new SqliteCommand();
sqlc.Connection = conn;
conn.Open();
string strSql = “INSERT INTO CUSTOMER (NAME, CONTACTNAME, STATEID) “ +
 “VALUES (@NAME, @CONTACTNAME, @STATEID)”;
sqlc.CommandText = strSql;
sqlc.CommandType = CommandType.Text;
sqlc.Parameters.Add(new SqliteParameter(“@NAME”, “The Coca-Cola Company”));
sqlc.Parameters.Add(new SqliteParameter(“@CONTACTNAME”, “John Johns”));
sqlc.Parameters.Add(new SqliteParameter(“@STATEID”, 1));
sqlc.ExecuteNonQuery();
if (conn.State != ConnectionState.Closed)
{
 conn.Close();
}
conn.Dispose();
tv.Text = “Commands completed.”;

This code is contained in InternalNetworkData\InternalNetworkData\Activity1.cs

Look at the sequence of events that are happening in this code:

 ‰ A Connection object is created for the SQLite database.

 ‰ A series of commands is loaded into an array of strings.

 ‰ A loop is performed. It will execute each individual command in the foreach loop.

 ‰ A command is performed to insert a customer name. Note that this command uses database
parameters.

 ‰ Finally, the connection is closed and disposed of, and the user is informed that the commands
have been completed.

Using SQL Statements

Creating, altering, and dropping database objects is interesting. However, CRUD (create, read, update,
delete) is the lifeblood of database applications. The ability to select, insert, update, and delete data
through SQL is at the core of an application. The following sections cover some useful SQL statements.

Using Read/Select to Read Data

Reading data is a very important operation for an application. Reading data from a database table is
the operation that is done most often in an application. The .NET Framework provides data
readers, connections, and a series of objects that allows us to access database tables. Mono for
Android provides an implementation of these .NET methods for Android. Listing 5-3 shows some
code that reads data from a table.

LISTING 5-2 (continued)

c05.indd 108c05.indd 108 2/28/2012 4:05:40 PM2/28/2012 4:05:40 PM

McClure c05.indd V2 - 02/02/2012

Working with SQLite x 109

LISTING 5-3: Reading data

string DatabaseName = “UserData.db3”;
string documents =
 System.Environment.GetFolderPath(System.Environment.SpecialFolder.Personal);
string db = Path.Combine(documents, DatabaseName);
var conn = new SqliteConnection(“Data Source=” + db);
var strSql = “select Name from Customer where STATEID=@STATEID”;
var cmd = new SqliteCommand(strSql, conn);
cmd.CommandType = CommandType.Text;
cmd.Parameters.Add(new SqliteParameter(“@STATEID”, 2));

try
{
 conn.Open();
 SqliteDataReader sdr = cmd.ExecuteReader();
 while (sdr.Read())
 {
 tv.Text = Convert.ToString(sdr[“Name”]);
 }
}
catch (System.Exception sysExc)
{
 tv.Text = sysExc.Message;
}
finally
{
 if (conn.State != ConnectionState.Closed)
 {
 conn.Close();
 }
 conn.Dispose();
}

This code is contained in the InternalNetworkData\InternalNetworkData\Activity1.cs

This code does the following:

 ‰ Creates a database connection.

 ‰ Creates a parameterized database query.

 ‰ Adds values to the parameter.

 ‰ Opens the database connection.

 ‰ Performs the query by returning a data reader.

 ‰ Outputs values to the TextView. The table has only one value, so the fi nal value is obtained
and displayed to the user.

c05.indd 109c05.indd 109 2/28/2012 4:05:40 PM2/28/2012 4:05:40 PM

McClure c05.indd V2 - 02/02/2012

110 x CHAPTER 5 WORKING WITH DATA

As you can see, it’s possible to use objects that you know and understand. You can create a
connection object and then create a data reader. With the data reader, you can iterate through the
records returned and use the records just like in a .NET application.

Another option is to use the using statement. The using statement will call the
.Dispose() method for you when the using statement is executed. I prefer the
try-catch-finally syntax written out. Either case is syntactically correct and
can be used at the developer’s discretion.

Using SQL Statements to Insert Data

Now that you know how to read data from a database table, the next obvious question is how to put
data into a table. Your fi rst step is to acquire some data. In this case, put some data in a table using
a SQLite command object, as shown in Listing 5-4.

LISTING 5-4: Writing data

var conn = new SqliteConnection(“Data Source=” + db);
SqliteCommand sqlc = new SqliteCommand();
sqlc.Connection = conn;
conn.Open();
string strSql = “INSERT INTO CUSTOMER (NAME, CONTACTNAME, STATEID) “ +
“VALUES (@NAME, @CONTACTNAME, @STATEID)”;
sqlc.CommandText = strSql;
sqlc.CommandType = CommandType.Text;
sqlc.Parameters.Add(new SqliteParameter(“@NAME”, “The Coca-Cola Company”));
sqlc.Parameters.Add(new SqliteParameter(“@CONTACTNAME”, “John Johns”));
sqlc.Parameters.Add(new SqliteParameter(“@STATEID”, 1));
sqlc.ExecuteNonQuery();
if (conn.State != ConnectionState.Closed)
{
 conn.Close();
}
conn.Dispose();

This code is contained in the InternalNetworkData\InternalNetworkData\Activity1.cs

In this method, a record is inserted using a SQLite command object, parameters, and a connection.
Now that you can insert data into the table, handling other operations is similar. Update and
Delete operations can easily be handled through SQLite’s command object. The command can
be a direct SQL statement or a prepared statement. Either will work. One word of warning: If you
choose to use a simple SQL statement, don’t open up code to a SQL injection attack.

UPGRADING STRATEGIES

A web application typically has only one database instance to manage. With an application installed
on Android and using SQLite, there are as many database instances as installations of the applica-
tion. A new version of your application most likely has a new version of the database schema to

c05.indd 110c05.indd 110 2/28/2012 4:05:40 PM2/28/2012 4:05:40 PM

McClure c05.indd V2 - 02/02/2012

Android-Specifi c Database Options x 111

support the new features in that upgraded application. This section discusses strategies that can be
inserted into an application to handle upgrading a database that is out in the wild.

Upgrading in Place

With an existing application’s database, one strategy is to track the application’s version within a
table. By tracking the database schema version, the application can check the version on startup.
If the version is not the current one, the schema can be upgraded by executing a series of SQLite-
commands against the database. This strategy requires a check on each startup of the application
and works well for a complicated database schema.

Copying Data

The upgrade-in-place solution requests a check each time the application starts. Another option
is to check on startup. If the schema is not the correct version, you can create a new instance of
the database and copy the necessary data. Then you can assume that the schema is correct. This
strategy requires a signifi cant number of commands to be executed and potentially a lot of data to
be moved. The more commands that must be executed and the more data that is moved, the more
opportunity there is for a mistake to be made. This option would be a good idea for an application
that must make many changes.

Either of these options is most likely preferable to deleting the existing database along with its data.

ANDROID-SPECIFIC DATABASE OPTIONS

If you review all of the previous code from this chapter, you will notice that it runs the same on
MonoTouch on the iPhone. That is a good thing. One of the goals of Mono for Android, and
MonoTouch, is that as much code as possible runs on the other Mono platform. However, there are
a couple Android-specifi c options for interfacing with the SQLite database on Android. These two
options are creating a database and its tables and performing the CRUD operations. It is defi nitely
possible to perform both of these options in a cross-platform way as shown previously in this
chapter. Therefore, caution should be used in using these Android-specifi c options. If an application
uses these Android-specifi c mechanisms, there are several issues:

 ‰ .NET developers familiar with ADO.NET are not familiar with these Android-specifi c
features.

 ‰ The parts of an application written with Android-specifi c methods will not be usable under
MonoTouch on the iPhone or any other mobile platforms supported by Mono.

SQLiteOpenHelper

SQLiteOpenHelper is a helper class. It is designed to assist with the process of creating databases as
well as version management of those databases. The process to use this class is as follows:

 ‰ Inherit from the SQLiteOpenHelper class.

 ‰ Implement three methods: OnCreate, OnUpgrade, and OnOpen. These methods can be
modifi ed to suit the needs of a specifi c application.

c05.indd 111c05.indd 111 2/28/2012 4:05:41 PM2/28/2012 4:05:41 PM

McClure c05.indd V2 - 02/02/2012

112 x CHAPTER 5 WORKING WITH DATA

Listing 5-5 shows an example of using the SQLiteOpenHelper to open a database:

LISTING 5-5: SQLiteOpenHelper usage

class DBHelper : Android.Database.Sqlite.SQLiteOpenHelper
{
 private const string DbName = “GolfScore”;
 private const int DbVersion = 1;

 public DBHelper(Context context) : base(context, DbName, null, DbVersion)
 { }
 public override void OnCreate(Android.Database.Sqlite.SQLiteDatabase db)
 {
 db.ExecSQL(@”CREATE TABLE IF NOT EXISTS GolfScore “ +
“(GolfID INTEGER PRIMARY KEY AUTOINCREMENT,” +
 “ScoreDate varchar(30) NOT NULL, ScoreNumber NOT NULL, “ +
“Rating double NOT NULL, Slope int not null)”);
 }
 public override void OnUpgrade(Android.Database.Sqlite.SQLiteDatabase db,
 int oldVersion, int newVersion)
 {
 db.ExecSQL(“DROP TABLE IF EXISTS GolfScore”);
 OnCreate(db);
 }
}

This code is contained in SQLiteAndroidSpecifi c\SQLiteAndroidSpecifi c\DBHelper.cs

Listing 5-6 shows an example using the native Android data access APIs to perform common data-
base operations.

LISTING 5-6: Using the SQLiteOpenHelper

class dbCommands
{
 private DBHelper dbHelp;
 public dbCommands(Context context)
 {
 dbHelp = new DBHelper(context);
 dbHelp.OnCreate(dbHelp.WritableDatabase);
 }

 public IList<Score> GetAllScores()
 {
 Android.Database.ICursor golfCursor = dbHelp.ReadableDatabase.
Query(“GolfScore”, null, null, null, null, null, null, null);
 var scores = new List<Score>();
 while (golfCursor.MoveToNext())
 {
 Score scr = MapScores(golfCursor);
 scores.Add(scr);
 }

c05.indd 112c05.indd 112 2/28/2012 4:05:41 PM2/28/2012 4:05:41 PM

McClure c05.indd V2 - 02/02/2012

Working with Remote Data x 113

 return scores;
 }

 public long AddScore(int ScoreNumber, DateTime ScoreDate,
 double rating, double slope)
 {
 var values = new ContentValues();
 values.Put(“ScoreNumber”, ScoreNumber);
 values.Put(“ScoreDate”, ScoreDate.ToString());
 values.Put(“Rating”, rating);
 values.Put(“Slope”, slope);
 return dbHelp.WritableDatabase.Insert(“GolfScore”, null, values);
 }

 public void DeleteScore(int ScoreID)
 {
 string[] vals = new string[1];
 vals[0] = ScoreID.ToString();

 dbHelp.WritableDatabase.Delete(“GolfScore”, “ScoreId=?”, vals);
 }
 private Score MapScores(Android.Database.ICursor cursor)
 {
 Score scr = new Score();
 scr.ScoreID = cursor.GetInt(0);
 scr.ScoreDate = cursor.GetString(1);
 scr.ScoreNumber = cursor.GetInt(2);
 scr.Rating = cursor.GetDouble(3);
 scr.Slope = cursor.GetInt(4);
 return (scr);
 }
}

This code is contained in SQLiteAndroidSpecifi c\SQLiteAndroidSpecifi c\dbCommands.cs

The code items in Listing 5-6 show how to call into the SQLiteOpenHelper that was featured in
Listing 5-5.

Storing Data Remotely

The options just described — and there are most likely others — both result in data being stored in
the application. Neither takes into account what happens if the device is lost or damaged. From a
business perspective, there may be a desire to keep potentially sensitive data from being stored on
a device. To solve this problem, it is possible to store data remotely to the device. The next section
focuses on the web services support necessary to store data remotely.

WORKING WITH REMOTE DATA

Applications no longer live as little islands of data. Everything is interconnected, or will be. The ability
to connect with remote data is not only nice to have, but a requirement with today’s applications. When
I got my fi rst cell phone, I often lost the signal or never got a signal. Those days are over. Signal connec-
tions are available all over the place now, making connecting to data services online a simple task.

c05.indd 113c05.indd 113 2/28/2012 4:05:41 PM2/28/2012 4:05:41 PM

McClure c05.indd V2 - 02/02/2012

114 x CHAPTER 5 WORKING WITH DATA

Typically, the remote-data issue is seen as a problem that has been solved. This section looks at two
primary ways to connect to data services over the Internet: SOAP and REST. Each operates over HTTP
and port 80. Other mechanisms exist to interchange data, but this section looks at just these two.

Accessing Enterprise Services

Working with data is the lifeblood of any business. This data can be in a database, ERP application,
accounting system, or any other potential data source. The question that developers must ask is,
“How do we best get at our data?” Unfortunately, the answer to this question is “It depends.” Some
of the options that developers will have to consider are:

 ‰ Does my database have direct support within Mono for Android? SQL Server has direct
support in Mono for Android. If the application is running over a private network, this is an
option. Unfortunately, exposing a SQL Server database to the Internet is a security concern. As a
result, making a direct connection to SQL Server is really only an option within a private network.

 ‰ With the release of .NET 1.0, Microsoft released support for SOAP Services through ASMX.
Over the past few years WCF has become popular amongst .NET developers. Visual Studio
has had great support for SOAP Services. Mono for Android uses this support for these
SOAP Services. Unfortunately, SOAP has met resistance in the marketplace.

 ‰ Developers can set up a REST web service and make data available in the XML or JSON
format. Mono for Android can call REST Services in this scenario. REST has the most
support amongst devices. Unfortunately, REST requires the most work for developers.

As you can see, there are several issues that developers must navigate through when integrating
Enterprise Services with Mono for Android. No one size fi ts all. As you build an application (and
read the rest of this chapter), you must be aware of the options for building an application and must
make choices as to what you will use.

One of the problems that I ran into when working on this section was creat-
ing examples of code with which I was familiar. My fi rst thought was to create
a series of examples using the Twitter.com API. Unfortunately, it is based on
REST, and there is no SOAP-based API. Therefore, Twitter has no ASMX or
WCF native solution. I decided to use some simple web services to illustrate
the issues. I found the ASMX web service example through w3schools.com.
Unfortunately, getting WCF, REST, and JSON examples was much more prob-
lematic. For those, I will demonstrate the calls against a service that I use for
my test Windows Azure application as well as an example from parasoft.com.
Parasoft provides web service testing facilities. These calls are for example pur-
poses only and the APIs may have changed after this content was written. Please
use this as a general guide for web services options.

A second problem when writing demos is to know what developers are using.
After speaking with many other developers, I found a lot of new development
being done with WCF. However, a large number of ASMX-based web services
currently are used in production, so I decided that it was important to add a
short section on ASMX-based web services.

c05.indd 114c05.indd 114 2/28/2012 4:05:41 PM2/28/2012 4:05:41 PM

McClure c05.indd V2 - 02/02/2012

Working with Remote Data x 115

Using SOAP

Simple Object Access Protocol (SOAP) is a mechanism to exchange information in the form of web
services over computer networks. SOAP is highly reliant on XML and web standards. Due to this
reliance, SOAP is a natural tool to easily allow different systems to communicate. For example, a
Windows-based system can communicate with a UNIX or mainframe system over HTTP without
requiring the heavy layer of access software that is normally associated with such communication.
One of SOAP’s big advantages is that developers are familiar with creating and using SOAP-based
web services in Visual Studio. With .NET, ASMX-based and WCF-based web services support SOAP.

Working with ASMX Web Services

ASMX web services were the fi rst mechanism in ASP.NET for building web services. ASMX
shipped with .NET 1.0 in January 2002. They are still in wide usage today. Many applications have
been developed with them and continue to work properly today. ASMX web services operate with
the Web Services Description Language (WSDL) and SOAP. Consuming an ASMX web service with
Mono for Android is similar in concept to consuming a WCF web service in Mono for Android.

I do not have an ASMX web service handy to work with. Instead of creating one
and potentially causing my own DDOS attack on one of my services with a sam-
ple application, I decided to use a simple web service that converts from Celsius
to Fahrenheit and back; it is hosted by w3schools.com.

The next example looks at how to call an ASMX-based web service using Mono for Android. The
steps are as follows:

 1. Add a reference to the web service’s WSDL within a project. You do this by right-clicking the
project and adding the location of the URL, which is
http://www.w3schools.com/WebServices/TempConvert.asmx.

 2. Now that the reference has been created for the code, it is possible to program against the
web service’s API. The code shows programming against the API exposed by the web service.

Now that this is set up, take a look at Listing 5-7.

LISTING 5-7: Calling ASMX web services

void btnCallASMX_Click(object sender, EventArgs e)
{
 com.w3schools.www.TempConvert tc = new com.w3schools.www.TempConvert();
 tc.CelsiusToFahrenheitCompleted += new
 com.w3schools.www.CelsiusToFahrenheitCompletedEventHandler(
 tc_CelsiusToFahrenheitCompleted);
 tc.CelsiusToFahrenheitAsync(“27”);
}

continues

c05.indd 115c05.indd 115 2/28/2012 4:05:41 PM2/28/2012 4:05:41 PM

McClure c05.indd V2 - 02/02/2012

116 x CHAPTER 5 WORKING WITH DATA

void tc_CelsiusToFahrenheitCompleted(object sender,
 com.w3schools.www.CelsiusToFahrenheitCompletedEventArgs e)
{
 this.RunOnUiThread(() => tv.Text = gResult + e.Result);
}

This code is contained in WebServices\WebServices\Activity1.cs

Notice the following points in Listing 5-7:

 ‰ In the OnCreate method, a button is created to handle user interface operations along with
the assignment of a .Click event handler.

 ‰ Within the event handler, a class representing the web service is created, and an
asynchronous call is made. The calling sequence for an asynchronous web service call is
to assign a .MethodCompletedEventHandler and then call the method’s asynchronous
proxy method.

 ‰ A fi nal parameter that can be passed is a user state object that might be useful in the callback.

 ‰ The callback method, tc_CelsiusToFahrenheitCompleted, accepts the
CelsiusToFahrenheitCompletedEventArgs parameter. This parameter is used to get the
asynchronous state that was passed in as well as to get the output result.

 ‰ The fi nal issue is how to return the value to the user interface so that the data can be
available to the user. This is done through the RunOnUIThread method. RunOnUIThread
must be used because the response from the web service is handled in a different thread from
the main thread. To write to the user interface, the command must be written on the main
thread.

Because the operation is performed asynchronously, the work is completed in a
different thread. To write back to the UI, this must be performed on the main
thread by calling the RunOnUIThread method.

The proxy is created by Visual Studio when using ASMX. The proxy is cre-
ated for a project similar to that shown in Figure 5-1, which appears later in the
chapter.

Working with Windows Communication Foundation (WCF)

This section explores WCF-based web services. WCF was released with .NET 3.5 and has evolved
into .NET 4.0. It is an API designed to build service-oriented applications.

LISTING 5-7 (continued)

c05.indd 116c05.indd 116 2/28/2012 4:05:42 PM2/28/2012 4:05:42 PM

McClure c05.indd V2 - 02/02/2012

Working with Remote Data x 117

Manually Create Your Own Proxy

Visual Studio hides a number of the complexities of SOAP-based web services from developers. One
of the complexities is the creation and generation of web service proxies. These proxies allow
developers to generate and use these web services as if they were local libraries on a computer. Here
are the steps to manually create an application proxy and then get things running:

 1. Manually generate the runtime proxy. Silverlight version 3 ships with a utility to generate a
proxy. This utility is available on a Windows system with Silverlight version 3 installed and is
called by C:\Program Files\Microsoft SDKs\Silverlight\v3.0\Tools\SlSvcUtil
.exe/noConfig http://example.com/service.svc?wsdl. The result is a proxy that can
be used in a Mono for Android application. The resulting fi le can be imported into a Visual
Studio or MonoDevelop project.

 2. Add the generated proxy to your project.

 3. Add references to System.Runtime.Serialization, System.ServiceModel, and
System.ServiceModel.Web to your project.

 4. Make requests against the service. The constructor for the method should use the
BasicHttpBinding type and the endpoint address.

Listing 5-8 shows the Mono for Android code for calling a remote method hosted in WCF.

LISTING 5-8: Calling WCF asynchronously via manual proxy

void btnCallWSDLClient_Click(object sender, EventArgs e)
{
 try
 {
 WebServiceWSDLClient wsClient = new WebServiceWSDLClient(
 new BasicHttpBinding(),
 new EndpointAddress(
 “http://www.twtmstr.com/webservices/webservicewsdl.svc”));
 wsClient.LoginCompleted += new EventHandler<LoginCompletedEventArgs>(
 wsClient_LoginCompleted);
 wsClient.LoginAsync(“MonoDroidBook”, “MonoDroidIsGreat”, “blah”);
 }
 catch (System.Exception sysExc)
 {
 tv.Text = “Exception: “ + sysExc.Message;
 }
}

void wsClient_LoginCompleted(object sender, LoginCompletedEventArgs e)
{
 this.RunOnUiThread(() => tv.Text = gResult + e.Result.ToString());
}

This code is contained in WebServices\WebServices\Activity1.cs

c05.indd 117c05.indd 117 2/28/2012 4:05:43 PM2/28/2012 4:05:43 PM

McClure c05.indd V2 - 02/02/2012

118 x CHAPTER 5 WORKING WITH DATA

Note the following in Listing 5-8:

 ‰ On a simple button click event, code is called.

 ‰ The AddNumberServiceClient class is created. When the class is instantiated,
BasicHttpBinding is passed as the binding, and EndPointAddress is created and passed
with the URI to the WCF service.

 ‰ Because the WCF service is asynchronous, the completed event
is set up. In this case, it calls a defi ned method; however, it could
just as easily call a delegate.

 ‰ In the callback, the result is received through the event arguments
that are passed in.

 ‰ The fi nal step is to do something with the result. In this case,
the code just displays data to the user. The result is that
InvokeOnMainThread is called to put data back in the UI.

Although it would work to manually create a proxy and use it to call WSDL
web services, just like in MonoTouch, Visual Studio provides the neces-
sary infrastructure to create proxies and such. Adding a proxy and calling
a WCF-based web service works as .NET developers would expect. As
shown in Figure 5-1, the web references can be referenced and created. After
the reference is created, Visual Studio creates the necessary proxies in the
project and allows the Mono for Android project to call the web service.
Let’s look at calling an ASMX service. In Listing 5-9, the code calls a login
method I have used for a service that is used for a personal project.

LISTING 5-9: Calling WCF synchronously via runtime proxy

void btnCallWSDL_Click(object sender, EventArgs e)
{
 com.twtmstr.www.WebServiceWSDL ws = new com.twtmstr.www.WebServiceWSDL();
 bool result, loginResult;
 ws.Login(“MonoDroidBook”, “MonoDroidIsGreat”, “blah”, out result,
 out loginResult);
 tv.Text = gResult + result.ToString();
}

This code is contained in WebServices\WebServices\Activity1.cs

This call is synchronous. An app running on a carrier’s network has a number of unknowns,
 including the availability of the network in a particular location, signal strength within a building,
and other factors that affect the signal’s reliability at any moment in time.

Listing 5-10 is an asynchronous code sample running with the Parasoft web service.

FIGURE 5-1

c05.indd 118c05.indd 118 2/28/2012 4:05:43 PM2/28/2012 4:05:43 PM

McClure c05.indd V2 - 02/02/2012

Working with Remote Data x 119

LISTING 5-10: Calling WCF asynchronously via runtime proxy

void btnCallAsyncWSDL_Click(object sender, EventArgs e)
{
 com.parasoft.soatest.Calculator calc =
 new com.parasoft.soatest.Calculator();
 calc.addCompleted += new com.parasoft.soatest.addCompletedEventHandler(calc_
addCompleted);
 calc.addAsync(2.0f, 3.0f);
}

void calc_addCompleted(object sender, com.parasoft.soatest.addCompletedEventArgs e)
{
 RunOnUiThread(delegate
 {
 tv.Text = String.Format(“result:{0}”, e.Result);
 });
}

This code is contained in WebServices\WebServices\Activity1.cs

In this code, an asynchronous request is made to the WSDL service. The LoginCompleted event
handler is created, and the Login method is called asynchronously.

Using REST-Based Web Services

REST (Representational State Transfer) is a general architecture for distributed systems, such as the
World Wide Web. REST architectures are made up of clients and servers. Servers process requests
that come from clients. Clients make requests against the servers. Conceptually, these requests are
how web browsers (clients) work against web servers.

REST-based web services run over HTTP and implement a more readable (and simpler) interface
than SOAP. With REST, there is no need for proxies or some of the other things that make SOAP
somewhat complicated.

REST-based web services typically have these three features:

 ‰ Addressability of the resources. Some portion of the data is available over a URL.

 ‰ Data is sent over various HTTP verbs, such as GET, POST, PUT, and DELETE. The verbs
 typically are used as follows:

 ‰ In a GET operation, input data is sent over the URL. This is thought of as a request
for data.

 ‰ In a POST operation, input data is sent in the body of the request. A POST is used to
add/insert data.

c05.indd 119c05.indd 119 2/28/2012 4:05:43 PM2/28/2012 4:05:43 PM

McClure c05.indd V2 - 02/02/2012

120 x CHAPTER 5 WORKING WITH DATA

 ‰ In a PUT operation, input data is sent in the body of the request. A PUT is used to
update data.

 ‰ In a DELETE operation, all data is sent in the body of the request. A DELETE is used to
delete data.

Some purists will argue the point, but there may be valid reasons to perform
REST-style operations by using different HTTP verbs. In addition, some operat-
ing systems and devices do not support all the HTTP verbs. The examples here
use the GET and POST verbs for operations.

 ‰ Data may be sent encoded in various formats, such as text, XML, JSON, and any other valid
data type. Offi cially, this is referred to as the MIME type.

Using JavaScript Object Notation (JSON)

Most developers are familiar with eXtensible Markup Language (XML), which is used for data
interchange. JSON is a similar technology; it is a data-interchange format based on the JavaScript
scripting language. The JSON format uses a series of conventions that are familiar to most
programmers who use the C family of languages. JSON is built on two concepts:

 ‰ Data is transmitted as a series of name-value pairs. The values may be a single value or a
series of values, such as an array.

 ‰ Data is stored in a structure that can be thought of as a sequence.

Because these concepts are commonly accepted, they are available across nearly all modern pro-
gramming languages. As a result, nearly all programming languages have some support for JSON.
In .NET, Microsoft introduced support for JSON with the ASP.NET 2 AJAX library that shipped in
2007. Now programmers have various options for JSON in .NET thanks to System.Json, WCF, the
popular JSON.NET library, and various other libraries.

Here is an example of a JSON data packet:

“ld”:{
 “UserName”:”tiger”,
 “PassWord”:”scott”,
 “AppKey”:”blah”
 },
 “TwitterId”:”wbm”,
 “PageIndex”:”1”

This example contains three parameters:

 ‰ ld: This object contains three properties:

 ‰ UserName has a value of tiger.

 ‰ PassWord has a value of scott.

 ‰ AppKey has a value of blah.

c05.indd 120c05.indd 120 2/28/2012 4:05:43 PM2/28/2012 4:05:43 PM

McClure c05.indd V2 - 02/02/2012

Working with Remote Data x 121

 ‰ TwitterId: This property has a value of wbm.

 ‰ PageIndex: The PageIndex property has a value of 1.

Now, take a look at a short example to call a REST-based web service (see Listing 5-11). This service
is set up to accept JSON and a JSON response. This code sends a complex request to return the time-
line of the user’s Twitter friend. This request is set up for asynchronous request. Because the password
is sent across the wire, a secure connection should be made, and the data should be sent over a post.

LISTING 5-11: Calling a REST service asynchronously with POST

void btnRESTJSON_Click(object sender, EventArgs e)
{
 string Url =
 “http://www.twtmstr.com/webservices/remoteapi.svc/GetUserTimeLine”;
 string Url =
“http://www.twtmstr.com/webservices/remoteapi.svc/GetUserTimeLine”;
 System.Json.JsonObject ld = new System.Json.JsonObject()
 { { “UserName”, “MonoDroidBookEx” },
 { “PassWord”, “MonoDroidIsGreat” },
 { “AppKey”, “blah” } };
 System.Json.JsonObject bd = new System.Json.JsonObject()
 { { “ld”, ld },
 { “TwitterId”, “monodroidbookex”},
 { “PageIndex”, 1 }};
 string Body = bd.ToString();
byte[] byteData = System.Text.UTF8Encoding.UTF8.GetBytes(Body);
 try
 {
 // Create the web request
 HttpWebRequest request = WebRequest.Create(Url) as HttpWebRequest;
 request.ContentLength = Body.Length;

 // Set type to POST
 request.Method = “POST”;
 request.ContentType = “application/json”;

 // Write the parameters
 StreamWriter stOut = new StreamWriter(request.GetRequestStream(),
 System.Text.Encoding.ASCII);
 stOut.Write(Body);
 stOut.Close();

 request.BeginGetResponse(new
 AsyncCallback(ProcessRestJSONHttpResponse), request);
 }
 catch (WebException we)
 {
 tv.Text = we.Message;
 Android.Util.Log.E(“http request”, “Exception: “ + we.Message);
 //System.Diagnostics.Debug.WriteLine(“Exception: “ + we.Message);
 }

continues

c05.indd 121c05.indd 121 2/28/2012 4:05:44 PM2/28/2012 4:05:44 PM

McClure c05.indd V2 - 02/02/2012

122 x CHAPTER 5 WORKING WITH DATA

 catch (System.Exception sysExc)
 {
 tv.Text = sysExc.Message;
 Android.Util.Log.E(“http request”, “Exception: “ + sysExc.Message);
 }
}

//Note: A secure connection is not made in this example. A secure connection
//(https) should be made. However, due to time and complexity it is not set up on
//the server.

void ProcessRestJSONHttpResponse(IAsyncResult iar)
{
 try
 {
 HttpWebRequest request = (HttpWebRequest)iar.AsyncState;
 HttpWebResponse response;
 response = (HttpWebResponse)request.EndGetResponse(iar);
 System.IO.StreamReader strm = new System.IO.StreamReader(
 response.GetResponseStream());
 System.Json.JsonArray jsonArray = (System.Json.JsonArray)
 System.Json.JsonArray.Load(strm);
 List<Tweet> twt = new List<Tweet>();
 foreach (System.Json.JsonObject jsonTweet in jsonArray)
 {
 Tweet t = new Tweet();
 t.ProfileImage = jsonTweet[“ProfileImage”].ToString();
 t.Status = jsonTweet[“Status”].ToString();
 t.StatusDate = jsonTweet[“StatusDate”];
 t.StatusId = Convert.ToInt64(jsonTweet[“StatusId”].ToString());
 t.UserName = jsonTweet[“UserName”].ToString();
 twt.Add(t);
 }
 this.RunOnUiThread(() => tv.Text = “Records returned: “ +
 twt.Count.ToString());
 Android.Util.Log.D(“http response”, “finished”);
 }
 catch (System.Exception sysExc)
 {
 Android.Util.Log.E(“http response”, “Exception: “ + sysExc.Message);
 this.RunOnUiThread(() => tv.Text = “Exception: “ + sysExc.Message);
 }
}

This code is contained in WebServices\WebServices\Activity1.cs

When the data is returned, the System.Json namespace is used. This namespace allows for the
easy processing of JSON results. In this case, a foreach loop is used to process the results. In the
foreach loop, a Tweet object is created and added to a list.

LISTING 5-11 (continued)

c05.indd 122c05.indd 122 2/28/2012 4:05:44 PM2/28/2012 4:05:44 PM

McClure c05.indd V2 - 02/02/2012

Working with Remote Data x 123

Listing 5-12 is slightly different. In this example, the asynchronous request is made through a POST
to a JSON-based web service using REST.

LISTING 5-12: Calling a REST service via POST and returning JSON and using LINQ

void btnRESTJSONLINQ_Click(object sender, EventArgs e)
{
 string Url =
 “http://www.twtmstr.com/webservices/remoteapi.svc/GetUserTimeLine”;
 string Url =
 “http://www.twtmstr.com/webservices/remoteapi.svc/GetUserTimeLine”;
 System.Json.JsonObject ld = new System.Json.JsonObject()
 { { “UserName”, “MonoDroidBookEx” },
 { “PassWord”, “MonoDroidIsGreat” },
 { “AppKey”, “blah” } };
 System.Json.JsonObject bd = new System.Json.JsonObject()
 { { “ld”, ld },
 { “TwitterId”, “monodroidbookex”},
 { “PageIndex”, 1 }};
 string Body = bd.ToString();
 byte[] byteData = System.Text.UTF8Encoding.UTF8.GetBytes(Body);
 try
 {
 HttpWebRequest request = WebRequest.Create(Url) as HttpWebRequest;
 request.ContentLength = Body.Length;
 request.Method = “POST”;
 request.ContentType = “application/json”;
 // Write the parameters
 StreamWriter stOut = new StreamWriter(request.GetRequestStream(),
 System.Text.Encoding.ASCII);
 stOut.Write(Body);
 stOut.Close();
 request.BeginGetResponse(new
 AsyncCallback(ProcessRestJSONLINQHttpResponse), request);
 }
 catch (WebException we)
 {
 tv.Text = we.Message;
 Android.Util.Log.E(“http request”, “Exception: “ + we.Message);
 }
 catch (System.Exception sysExc)
 {
 tv.Text = sysExc.Message;
 Android.Util.Log.E(“http request”, “Exception: “ + sysExc.Message);
 }
}

This code is contained in WebServices\WebServices\Activity1.cs

In the callback shown in Listing 5-13, the JSON response is placed in a JsonArray object. The
JsonArray object is then queried using Language Integrated Query (LINQ), and a list of type Tweet

c05.indd 123c05.indd 123 2/28/2012 4:05:44 PM2/28/2012 4:05:44 PM

McClure c05.indd V2 - 02/02/2012

124 x CHAPTER 5 WORKING WITH DATA

is created. This is conceptually the same as the foreach loop seen earlier, but the use of LINQ
makes this potentially much more powerful.

LISTING 5-13: Handling HTTP response of JSON with LINQ

void ProcessRestJSONLINQHttpResponse(IAsyncResult iar)
{
 try
 {
 HttpWebRequest request = (HttpWebRequest)iar.AsyncState;
 HttpWebResponse response;
 response = (HttpWebResponse)request.EndGetResponse(iar);
 System.IO.StreamReader strm = new System.IO.StreamReader(
 response.GetResponseStream());
 System.Json.JsonArray jsonArray =
 (System.Json.JsonArray)System.Json.JsonArray.Load(strm);
 var twt = (from jsonTweet in jsonArray
 select new Tweet
 {
 ProfileImage = jsonTweet[“ProfileImage”].ToString(),
 Status = jsonTweet[“Status”].ToString(),
 StatusDate = jsonTweet[“StatusDate”],
 StatusId = Convert.ToInt64(jsonTweet[“StatusId”].
 ToString()),
 UserName = jsonTweet[“UserName”].ToString()
 }).ToList<Tweet>();
 this.RunOnUiThread(() => tv.Text = “Records returned: “ +
 twt.Count.ToString());
 Android.Util.Log.D(“http response”, “finished”);
 }
 catch (System.Exception sysExc)
 {
 Android.Util.Log.E(“http response”, “Exception: “ + sysExc.Message);
 this.RunOnUiThread(() => tv.Text = “Exception: “ + sysExc.Message);
 }
}

This code is contained in WebServices\WebServices\Activity1.cs

Posting Data with POST

Now that you have learned how to get data from a service, you need to take a closer look at how to
post data to a service. In this example, you look at posting data to a service with JSON.

First, some background on the service: TwtMstr is a service that provides a number of
 enhancements to businesses that are using Twitter as part of their social media efforts. TwtMstr
exposes a set of REST-based JSON web services that allow third-party applications to integrate with
it. One of the features that TwtMstr provides is the ability to associate multiple Twitter ideas with a
single TwtMstr ID.

c05.indd 124c05.indd 124 2/28/2012 4:05:44 PM2/28/2012 4:05:44 PM

McClure c05.indd V2 - 02/02/2012

Retrieving Data Using LINQ and XML x 125

Listing 5-12 shows some sample code that logs into the TwtMstr service and returns data from a
user’s timeline over JSON. Note the following in the code:

 ‰ You create the URL for calling this method. This is stored in the Url variable.

 ‰ The body of the method is created. Ideally, this would be done with a custom object that is
serialized. The reason for showing it here is merely to display the content. The body is put
into a byte array.

 ‰ An HttpWebRequest is created with several properties set. The key is the Method and the
ContentType. The Method is set to POST, and the ContentType is set as a JSON data packet.

 ‰ Finally, BeginGetResponse() is called. This causes the web request to be made
asynchronously.

 ‰ When the response returns, the method ProcessRestJSONLINQHttpResponse() is called.
This method handles the callback event.

 ‰ The ProcessRestJSONLINQHttpResponse() method, shown in the code block, does nothing
more than close the web request when it is fi nished.

RETRIEVING DATA USING LINQ AND XML

This section is an introduction to getting data in XML and using LINQ. In this example, we’ll
return data from Twitter using APIs. LINQ is a set of methods, operations, rules, and types that
allow data to be queried within a .NET language such as Visual Basic or C#. LINQ initially shipped
within the .NET 3.5 Framework, and LINQ support for several data providers exists within the
Mono project.

LINQ to XML is a technology that allows XML documents to be converted into XElement objects,
queried based on some criteria, and converted into a collection of objects. The queries are performed
within the local execution engine. In Listing 5-14, an asynchronous request is performed against the
Twitter API to return a specifi c user’s timeline — my own in this case.

LISTING 5-14: GET Operation using XML and LINQ

void btnRESTXML_Click(object sender, EventArgs e)
{
 string Url =
“http://api.twitter.com/1/statuses/user_timeline.xml?screen_name=wbm”;
 try
 {
 // Create the web request
 HttpWebRequest request = WebRequest.Create(Url) as HttpWebRequest;
 request.Method = “GET”;
 request.ContentType = “application/xml”;
 request.BeginGetResponse(new
 AsyncCallback(ProcessRestXmlLINQHttpResponse),

continues

c05.indd 125c05.indd 125 2/28/2012 4:05:44 PM2/28/2012 4:05:44 PM

McClure c05.indd V2 - 02/02/2012

126 x CHAPTER 5 WORKING WITH DATA

 request);
 }
 catch (WebException we)
 {
 tv.Text = we.Message;
 Android.Util.Log.E(“http request”, “Exception: “ + we.Message);
 }
 catch (System.Exception sysExc)
 {
 tv.Text = sysExc.Message;
 Android.Util.Log.E(“http request”, “Exception: “ + sysExc.Message);
 }
}

void ProcessRestXmlLINQHttpResponse(IAsyncResult iar)
{
 try
 {
 HttpWebRequest request = (HttpWebRequest)iar.AsyncState;
 HttpWebResponse response;
 response = (HttpWebResponse)request.EndGetResponse(iar);
 System.IO.StreamReader strm = new System.IO.StreamReader(
 response.GetResponseStream());
 //string responseString = strm.ReadToEnd();
 System.Xml.Linq.XDocument xd = XDocument.Load(strm);
 var twt = (from x in xd.Root.Descendants(“status”) where x != null
 select new Tweet
 {
 StatusId = Convert.ToInt64(x.Element(“id”).Value),
 UserName = x.Element(“user”).
 Element(“screen_name”).Value,
 ProfileImage = x.Element(“user”).
 Element(“profile_image_url”).Value,
 Status = x.Element(“text”).Value,
 StatusDate = x.Element(“created_at”).Value
 }).ToList<Tweet>();
 Response.Close();
 this.RunOnUiThread(() => tv.Text = “records: “ + twt.Count.ToString());
 Android.Util.Log.D(“http response”, “finished”);
 }
 catch (System.Exception sysExc)
 {
 Android.Util.Log.E(“http response”, “Exception: “ + sysExc.Message);
 this.RunOnUiThread(() => tv.Text = “Exception: “ + sysExc.Message);
 }
}

This code is contained in WebServices\WebServices\Activity1.cs

LISTING 5-14 (continued)

c05.indd 126c05.indd 126 2/28/2012 4:05:45 PM2/28/2012 4:05:45 PM

McClure c05.indd V2 - 02/02/2012

Retrieving Data Using LINQ and XML x 127

In this example, a query is made against the Twitter API to get a user’s timeline. The programmatic
steps are as follows:

1. An asynchronous request is made against the Twitter API to obtain a user’s timeline.

2. When the data is returned, it is loaded into an XDocument from the response stream.

3. A query is formed against the XDocument. When the query is executed, the data is converted
from an XML format into a collection of objects.

4. LINQ queries are executed when the results are enumerated. The .ToList() method is
called to cause the data to be retrieved. .ToList() is unnecessary and is used to return the
data to the application.

You may have noticed that the code makes a request asynchronously. There is one negative to
performing synchronous operations. Performing a synchronous operation over a wireless net-
work may not be a reliable mechanism. If the connection is unreliable, the application may freeze
for more than Android’s self-imposed time limit. The result would be that Android would detect
the timeout and close the application. The easiest way around this issue is to perform the opera-
tion asynchronously. Therefore, this and most of the examples are performed using asynchronous
operations.

Using Asynchronous Data Retrieval

Performing an asynchronous call to a REST-based web service is possible. Although Android is
limited in its ability to multitask third-party applications, it is possible to make asynchronous calls
through Mono for Android. Calling a REST-based web service asynchronously is an easy way to get
around Android’s time limit spent in an application executing code. Another positive is that this is
done through the exact same API as in .NET. Most developers probably are familiar with the .NET
asynchronous programming methodologies of calling BeginXXX/EndXXX.

In Listing 5-14, the code makes asynchronous requests against the API hosted on the twitter.com
domain.

Here are the specifi cs of this code:

1. A URL to call is set up. This URL is to a REST-based XML service. This method returns
a set of user statuses and has ID information, images, and similar information that can be
extracted from the XML that is returned.

2. The HTTP request is set up as the XML MIME type.

3. The HTTP request is made asynchronously. A callback is set up so that when data returns
from the web service, a method is called to handle the returned data.

4. The ProcessRestXmlLINQHttpResponse method takes the result that is returned from the
web service.

c05.indd 127c05.indd 127 2/28/2012 4:05:45 PM2/28/2012 4:05:45 PM

McClure c05.indd V2 - 02/02/2012

128 x CHAPTER 5 WORKING WITH DATA

5. Within the ProcessRestXmlLINQHttpResponse callback method (Listing 5-14) are two
things to note:

 ‰ XML serialization into a LIST of objects is performed using LINQ.

 ‰ It is important to close HttpWebResponse after data has been retrieved.

Now that the callback has been processed, you have a set of objects you can work with. Although this
code just outputs to the Mono debugger that a set of objects has been returned, it is possible to save
the data in another format, such as SQLite, present it to the user, or process it in any number of ways.

USING WEB SERVICES RESPONSIBLY

Now that you have learned how to use web services in various forms in Mono for Android, let’s
look at some issues. Web services are great tools for the following tasks:

 ‰ Building apps that run over the Internet. Because they run over port 80, there is a very small
chance that the communication will be blocked.

 ‰ Keeping information centralized.

 ‰ Easily allowing disparate systems to communicate.

At the same time, web services over wireless have some drawbacks:

 ‰ Web services tend to be slow. Sending information over a textual format, such as JSON or
XML, can be slower than sending the same information over a binary/compressed protocol.

 ‰ Wireless communications tend to be unreliable.

 ‰ Sending data over numerous networks, which the Internet is, tends to be unreliable.

As a result, it is important to remember to use web services in a responsible manner:

 ‰ Be effi cient with the amount of data that is sent to the web service and sent back to Android.
There is no reason to overburden Android or the connection to the web service.

 ‰ Android waits for 20 seconds for user code to fi nish executing. After 20 seconds, the code
that is being executed terminates. As a result, it makes sense to call web services asynchro-
nously or in another thread.

WORKING WITH REMOTE SQL SERVER DATABASES

Companies live on data. Many corporations keep their data in private databases that are stored
behind a corporate fi rewall. The last thing companies want is for their internal data to appear
on mobile devices or to be exposed on the Internet in the form of some type of web service. The
problem may be that they have security concerns or don’t know how to securely expose their data
over web services. Therefore, let’s look at getting at data in a different way.

Many applications are internal to a business and are called “line of business” applications. These
applications typically are unexciting and aren’t sold in the Android Market, but they are important
to an organization’s day-to-day operations.

c05.indd 128c05.indd 128 2/28/2012 4:05:45 PM2/28/2012 4:05:45 PM

McClure c05.indd V2 - 02/02/2012

Working with Remote SQL Server Databases x 129

The data that powers these applications is not exposed to the outside world. It is available only
behind the corporate fi rewall. This data might be customer information, a bill of materials for a set
of products in a manufacturing environment, or hotel lodging information. This is information that
doesn’t necessarily make sense to expose to the general public but is important to a business. For
developers in the .NET space, this information is stored in a database such as SQL Server, Oracle,
MySQL, or another server-based database.

Thankfully, Mono for Android contains the Mono.Data.Tds.dll assembly. This assembly and
 associated namespace support communicating with databases through the tabular data stream
protocol. This means that you can connect from a Mono for Android application to a SQL Server
database. This communication is done directly over the Tabular Data Stream (TDS) application
layer protocol. This database includes support for connection, command, data adapter, and data set
objects that .NET developers are familiar with.

Listing 5-15 shows some sample code making a query against a SQL Server database that is
 available to an Android device.

LISTING 5-15: Performing SqlClient commands

System.Data.SqlClient.SqlConnection sqlCn =
 new System.Data.SqlClient.SqlConnection();
System.Data.SqlClient.SqlCommand sqlCm =
 new System.Data.SqlClient.SqlCommand();
System.Data.SqlClient.SqlDataAdapter sqlDa =
 new System.Data.SqlClient.SqlDataAdapter();
DataTable dt = new DataTable();
string strSql = “select * from table”;
string strCn = “............”;
sqlCn.ConnectionString = strCn;
sqlCm.CommandText = strSql;
sqlCm.CommandType = CommandType.Text;
sqlCm.Connection = sqlCn;
sqlDa.SelectCommand = sqlCm;
try
{
 sqlDa.Fill(dt);
 tv.Text = “Records returned: “ + dt.Rows.Count.ToString();
}
catch (System.Exception sysExc)
{
 Console.WriteLine(“Exc: “ + sysExc.Message);
 tv.Text = “Exc: “ + sysExc.Message;
}
finally
{
 if (sqlCn.State != ConnectionState.Closed)
 {
 sqlCn.Close();
 }
 sqlCn.Dispose();
 sqlCm.Dispose();

continues

c05.indd 129c05.indd 129 2/28/2012 4:05:45 PM2/28/2012 4:05:45 PM

McClure c05.indd V2 - 02/02/2012

130 x CHAPTER 5 WORKING WITH DATA

 sqlDa.Dispose();
}
}

This code is contained in \InternalNetworkData\InternalNetworkDataActivity1.cs

Figure 5-2 shows some output from a database query.

You should be aware of several important points with Mono
TDS support:

 ‰ Currently, support for the TDS protocol from Mono for
Android is experimental. Do not depend on it for too
many advanced features.

 ‰ Mono TDS support works only across the ports it is
allowed to work across. If a necessary port is blocked,
the connection will not work properly. While this is most likely not a concern over a corpo-
rate intranet, this is a major concern over the public Internet, where ports may be blocked by
a service provider.

 ‰ Very few Android devices have wired network ports. They typically communicate over Wi-Fi
and mobile (3G/4G) networks. Opening up ports to work with SQL Server opens up attack
surfaces. Unless taken with great caution and foresight into the issues that will come up, this
opening of ports is generally frowned upon by corporate IT and security groups.

 ‰ Opening up ports beyond the standard HTTP (80), HTTPS (443), and VPN ports is generally
a bad practice.

SUMMARY

This chapter looked at data strategies on Android. By using these technologies, developers can build
native applications that run when a network connection is unavailable. You’ve learned how to do
the following:

 ‰ Set up a local database in SQLite on Android

 ‰ Run commands against the SQLite database on Android

 ‰ Work with SOAP-based web services on Android

 ‰ Work with REST-based web services on Android

When they add the ability to call web services, Android developers and their applications can
integrate with central data stores. This allows an application’s users to interact with other users. For
example, Twitter users can use Android to interact with other Twitter users without ever having to
go to Twitter.com. Using Android, you can create applications that provide more features for users
and that are more resistant to problems when connecting to the Internet and its data sources.

FIGUR E 5-2

LISTING 5-15 (continued)

c05.indd 130c05.indd 130 2/28/2012 4:05:45 PM2/28/2012 4:05:45 PM

McClure c06.indd V3 - 02/14/2012

6
Binding Data to Controls

WHAT’S IN THIS CHAPTER?

 ‰ Examining how databinding works in Mono for Android

 ‰ Understanding an Android adapter

 ‰ Understanding an adapter view

 ‰ Exploring native adapters and views

 ‰ Working with cursors and lists

 ‰ Using spinners and cursors

 ‰ Using the Gallery control

 ‰ Handling nested navigation

 ‰ Dealing with grouped lists

 ‰ Displaying data with a GridView

So far we have covered the basic components and processes involved in creating an Android/
Mono for Android application. We started with views and application life cycle events and
then rounded out the tour of features by covering the different ways to access data. Now
we can begin focusing on different ways to support interaction between these items to build
feature-rich applications.

This chapter concentrates on utilizing the basic Android components to build data-driven
interfaces for your app. The process of coupling a data set to a user interface is often called
databinding or simply binding. Although the Android databinding mechanism differs a bit
from other approaches (particularly those of ASP.NET), the Android platform has an elegant
and simple way to quickly push rich data to a visual interface.

c06.indd 131c06.indd 131 2/28/2012 4:13:02 PM2/28/2012 4:13:02 PM

McClure c06.indd V3 - 02/14/2012

132 x CHAPTER 6 BINDING DATA TO CONTROLS

In addition to covering the basic concepts of the Android databinding story, we will walk through
several different databinding scenarios. This is a common activity in any application, so we hope to
provide a diverse exposure to the different tools that Mono for Android affords to help you develop
your application. As with any programming language, there are many different ways to accomplish
the databinding goal. Thus, this chapter will show not only what can be achieved, but also, given
the many options, what method would work best for a given scenario.

This chapter assumes that you have a basic working knowledge of Android presentation mecha-
nisms such as views, viewgroups, and layouts. In addition, this chapter uses different data sources,
such as varying content providers. Since this chapter focuses on binding data, we will not spend
much time reviewing how that data was generated. For more information on those subjects, refer
to previous chapters, such as Chapter 5, or leverage the code downloads for this chapter to interact
with the data-querying portions of the code examples.

The term databinding often has different connotations, depending on the envi-
ronment in which you are working. It sometimes implies a tight integration
between the UI and the data source, known as two-way binding. In this case, we
are using the generic defi nition of databinding, which is simply a one-way bind-
ing of data to the UI.

DATABINDING IN MONO FOR ANDROID

The databinding story in Mono for Android is actually quite simple. Databinding is achieved pri-
marily through the use of three different components:

 ‰ A basic view: This view acts as the binding target, whose main responsibility is to carry the
user interface layout for a single data entity within the data collection being bound. This will
be the view that is repeated several times as the entire layout is generated.

 ‰ Data adapter: This serves as the control for managing the bridge between a data set and the
adapter view. The data adapter accomplishes this by controlling the generation of the basic
data item views for each entity within the data set.

 ‰ Adapter view: This is a type of viewgroup that supports the dynamic generation of child
views for each data item contained within the bound data set. This view works like any other
viewgroup in that it controls the layout and fl ow of the child controls. However, unlike a
viewgroup, you cannot add or remove views directly.

If you’re familiar with other databinding patterns, such as those in .NET, you might fi nd this pat-
tern to be overly complex, because the data adapter introduces a new layer of complexity. However,
as you will see later, this additional complexity offers some great features that not only make your
life easier, but also make your applications more stable.

c06.indd 132c06.indd 132 2/28/2012 4:13:05 PM2/28/2012 4:13:05 PM

McClure c06.indd V3 - 02/14/2012

Databinding in Mono for Android x 133

What Is a Data Adapter?

As just stated, a data adapter is the channel by which data is bound and passed to the user interface
controls. You can consider them the “man in the middle” for the databinding operation. The core
function of a data adapter is to grab a requested data entity, bind it to the appropriate view item,
and pass that view to the adapter view. In addition to this basic understanding, several other key
facts about a data adapter are good to know:

 ‰ Data adapters are responsible for generating the child views that belong within the context of
the adapter view. When you declare your data adapter, you need to pass in a reference to the
view you want to use as your template for repeated items. The passed views can range from a
large list of predefi ned Android views, controls such as buttons or images, or even a custom
layout that you have defi ned yourself. It is up to the adapter to defi ne the types of views it
can support.

 ‰ Data adapters are dynamic. Rather than having to specify the number of items to display
on the screen before binding, data adapters have a mechanism to allow the adapter view to
determine how many elements it needs to fi ll its allocated space.

 ‰ Data adapters can register observers to monitor your data for updates. To handle cases in
which bound data is changed after binding, you can register observers to monitor those
changes and take appropriate action when the event occurs. Not all data adapters support
this feature.

What Is an Adapter View?

An adapter view is a special type of viewgroup. As with other viewgroup types, its main purpose is
to be a view that contains child views. As such, adapter views determine the presentation of the lay-
out of its child views. In addition to this task, the adapter view plays a few other special roles in this
relationship:

 ‰ Adapter views control the number of items to display on the screen. This is a key
understanding. Whereas the adapter is in control of handing over databound views for the
adapter to display, it is up to the adapter view to tell the adapter just how many views to
generate. This aspect is critical in the databinding equation, because it allows for a wide vari-
ety of screen sizes and assists with memory management. We will cover this in more depth
shortly.

 ‰ Adapter views contain the events to respond to item selection as well as the mechanism
to request the bound data entity. When working with adapter views, you can easily build
responsive layouts based on user interaction. In addition, it is a small matter to get access
to the corresponding data item without having to go through extreme measures to fi nd the
original item.

 ‰ Adapter views can support logic to animate their children. When working with items such as
a horizontal or vertical scrolling list, it is nice to be able to introduce smooth animations to
improve the user experience. This handling is inherited from the ViewGroup class.

c06.indd 133c06.indd 133 2/28/2012 4:13:06 PM2/28/2012 4:13:06 PM

McClure c06.indd V3 - 02/14/2012

134 x CHAPTER 6 BINDING DATA TO CONTROLS

How Do These Items Relate to One Another?

Now that you have a basic understanding of the players in the databinding scenario, take a moment
to understand how the databinding components interact with one another. Figure 6-1 shows the
relationship between these three components.

Data Adapter

Request View

Return View

Adapter View

Data Item View

Data Item View

Data Item View

1. Get Data

2. Load Data into View

3. Return Loaded View

Data Store

2 1

43

FIGURE 6-1

As you can see, the process of databinding begins with the adapter view. The view requests the next
data item view from the data adapter. The data adapter, in turn, generates the appropriate view,
using the bound data store to fi ll the appropriate data item view with data. Then the data adapter
sends the data item view back to the adapter view to fi ll the next area in the window space.

This process continues iteratively until the visible area is fi lled with data item views. The adapter
view is smart enough to detect when a view is no longer in the visible area and stops requesting new
views from the data adapter.

Working with Adapter Views and Large Data Sets

When working with large data sets, developers are often hard pressed to fi nd the perfect balance
between managing the data set and providing a quick, responsive UI. Even simple, everyday screens,
such as contact lists, browser bookmarks, and installed applications, can become cumbersome as
the user begins adding more and more data to these items.

Imagine that you are creating a bookmark editor application. This bookmark editor uses the
 bookmarks data stored in the Android browser content provider. On load, the application needs
to create a list of all the existing bookmarks. Once those initial items have loaded, the user may
need to scroll down and up the list to view every possibility. Given your current understanding
of how adapters work, you can make some assumptions about how your list view may work in
this scenario. In particular, think about what will happen as the user begins to quickly scroll up
and down this list. Figure 6-2 shows how this fl ow could work in Android.

c06.indd 134c06.indd 134 2/28/2012 4:13:06 PM2/28/2012 4:13:06 PM

McClure c06.indd V3 - 02/14/2012

Databinding in Mono for Android x 135

Data Adapter

Request View

Return View

Adapter View

Data Item View

Data Item View

Data Item View

Data Item View

Data Item View

1. Get Data

2. Load Data into View

View newView = new View();

3. Return Loaded View

Data Store

3 2

65

1 - User Scrolls List

4 - Adapter Creates
New View (Expensive!)

FIGURE 6-2

This is not how the process works; it merely represents how you might assume
the process would work. The key to this fi gure is to point out the fl aw in this
model.

As you can see from this example, the common assumption about how this application may work
requires that a new view be created every time the user scrolls up or down the screen. This may be
fi ne for a short list or a slow user, but what happens when you have 50 bookmarks? What about 100?
What happens when the user quickly fl icks the screen? Or when he or she quickly goes backward?

Additionally, with every move of the screen you are creating and destroying new views. The process
of creating a view is one of the more expensive basic operations, particularly if you are infl ating a
custom layout.

Thankfully, this is not how the native Android adapters behave. When you create your own custom
adapters, this is not how you should instruct those adapters to behave either. Rather than going
through the process of creating a new view every time a user scrolls on the screen, why not recycle
views that have scrolled off the screen and use them as the new view? Figure 6-3 depicts this model.

In this fi gure, the Android runtime uses something called the recycler. When you scroll down a list
view, the biggest difference between one list item and the next is the data itself. Therefore, it makes
little difference whether the data item view you are binding to is newly spun or one that you used
previously, as long as you associate the appropriate data.

Native data adapters have the functionality to recycle view objects that pass out of a visible space.
When they do so, the old view is “converted” into a new view by pushing in new data. This avoids the
burden of having to create a new view object, which can greatly improve your adapter’s performance!

c06.indd 135c06.indd 135 2/28/2012 4:13:06 PM2/28/2012 4:13:06 PM

McClure c06.indd V3 - 02/14/2012

136 x CHAPTER 6 BINDING DATA TO CONTROLS

Data Adapter

Request View

Return View

Adapter View

Data Item View

Data Item View

Data Item View

Data Item View

Data Item View

1. Get Data

2. Load Data into View

If(recycledView == null) {
 return new View();
} else {
 return recycledView;
}

3. Return Loaded View

Data Store

3 2

65

1 - User Scrolls List

4 - Adapter Creates
New View (Expensive!)

OR
Resuses an Old View

(Cheap!)

FIGURE 6-3

Want to test this functionality? You can do so easily. By overriding an adapter’s
GetView() method, you can insert the logic to log times in which a view is
recycled versus when it is created. In addition, you can even turn off recycling to
gauge the difference in performance.

The following code snippet contains the logic to log the recycling process of a list
adapter:

 public int NewViewIter = 0;
public int RecycledViewIter = 0;

public override View GetView(int position, View convertView,
 ViewGroup parent)
{
 if (convertView == null)
 {
 NewViewIter++;
 Console.WriteLine(String.Format(“New View #{0}”,
 NewViewIter));

 var NewView = new View();
 // TODO: Add implementation code here!
 return NewView;
 }
 else
 {
 RecycledViewIter++;
 Console.WriteLine(String.Format(“Recycled View #{0}”,
 RecycledViewIter));

 return (View)convertView;
 }
}

c06.indd 136c06.indd 136 2/28/2012 4:13:07 PM2/28/2012 4:13:07 PM

McClure c06.indd V3 - 02/14/2012

Databinding in Mono for Android x 137

Exploring Adapters in Depth

At their core, adapters are pretty basic tools. Since they are essentially the middlemen between data
sets and adapter views, most of their methods and functions pertain to that use. Functions such as
GetCount(), GetItem(), and IsEmpty() are in place to ensure verbose communication channels.

Beyond these basic functions, adapters generally implement two other important functions/methods:

 ‰ GetView() is one of the most critical parts of the adapter. This method is called when the
adapter view asks for the next view. In addition, this is where the adapter can decide whether
to recycle a preexisting (but not visible) view object.

 ‰ RegisterDataSetObserver()allows your adapter to respond to times when the data set it is
working with is either updated or invalidated.

Using Native Adapters

Because adapters play such an integral role in the databinding story, you will fi nd occasion to use
them in many different contexts. Although you have the option of rolling your own custom adapter,
the Android runtime has several native adapters that cover a wide variety of different use cases.
Table 6-1 describes many of the native adapters.

TABLE 6-1: Native Android Adapters

ADAPTER DESCRIPTION

Base adapter This is the adapter’s common abstract class. It provides the framework for some

native adapters, such as ListAdapter and SpinnerAdapter. In addition, this is

a great place to start when considering creating your own custom adapter.

Simple adapter The purpose of this adapter is to allow for easy binding between a static map of

data and a view defi ned in an XML fi le. You should consider using this when you

need to bind complex data objects to a view or data of any kind to a complex

data item view.

Array adapter

(generic)

This adapter can be used to bind an array of objects to ListView. Typically, the

data item view involved in this relationship is a simple text view. However, you

can use more complex views as a data item by directly mapping values to target

IDs within the complex view via a diff erent constructor.

Cursor adapter A cursor adapter has two diff erent types, CursorAdapter and

SimpleCursorAdapter.

A cursor adapter is used to bridge data between a cursor and an adapter view

such as the ListView. All items returned by a cursor are accessed through an

ID fi eld, which acts much like a primary key in a database.

A SimpleCursorAdapter can be used to quickly map cursor columns to

 diff erent view types, such as TextViews or even ImageViews. These adapters

require fewer steps to bind to an adapter view but do not have the same amount

of fl exibility.

continues

c06.indd 137c06.indd 137 2/28/2012 4:13:08 PM2/28/2012 4:13:08 PM

McClure c06.indd V3 - 02/14/2012

138 x CHAPTER 6 BINDING DATA TO CONTROLS

ADAPTER DESCRIPTION

Head view list

adapter

This type of adapter can be used when you have a ListView that has not only

data item views but also header and footer views. Rather than trying to

manage a complex UI hierarchy when trying to group data visually, you can use

this adapter to manage that for you on a simple ListView.

Resource cursor

adapter

This is a simple adapter used to directly bind cursor data to XML layouts defi ned

in your Resource directory.

Spinner adapter This adapter is created to specifi cally handle the binding of data to a Spinner.

Wrapper list

adapter

This is for times when you need nested ListAdapters. A

WrapperListAdapter wraps another ListAdapter and contains the logic to

call the inner adapter via its GetWrappedAdapter() method.

Exploring Adapter Views in Depth

Adapter views are interesting objects to work with. Although they act like a viewgroup in many
ways, adapter views have a bit more intelligence built into them. One of their main roles is to let the
adapter know when the adapter view needs another item in its list. The adapter implements a couple
of functions to assist this process:

 ‰ GetFirstVisiblePosition()

 ‰ GetLastVisiblePosition()

These self-explanatory methods enable the adapter view to know when to communicate with the
adapter. In particular, they are essential when you consider recycling views.

Even though the adapter view inherits from the ViewGroup class, it is important to note
that it does not support many of the common ViewGroup methods. In particular, most
methods of the ViewGroup class that add or remove child views from the adapter throw an
UnsupportedOperationException. Typically, the best way to add a data item or view to the
UI is to add it at the data set level, rather than at the AdapterView. In cases in which you need
to introduce headers, footers, or line breaks, be sure to use the corresponding native adapt-
ers and views, rather than trying to inject additional list items to serve as headers on the
AdapterView level.

Finally, the adapter view does have one other method to allow you to manipulate the view data items as
they are presented. By using the SetEmptyView() method, you can specify a view to display in cases in
which the bound adapter is empty. For instance, if you had an AdapterView that listed search results,
this gives you the functionality to return a No Results Found message rather than a blank screen.

Using Native Adapter Views

As with adapters, the Android platform exposes several different native adapter views. Since the
main purpose of adapter views is to defi ne the layout of their child views, most of these different

TABLE 6-1 (continued)

c06.indd 138c06.indd 138 2/28/2012 4:13:09 PM2/28/2012 4:13:09 PM

McClure c06.indd V3 - 02/14/2012

Working with Cursors x 139

adapter views vary on that point alone. Table 6-2 lists the common adapter views and describes
their purpose.

TABLE 6-2: Native Adapter Views

ADAPTER DESCRIPTION

ListView Aside from the Spinner, this is probably the most commonly used adapter view

because it is one of the most versatile. This adapter view is meant to show items in a

vertical or horizontal list.

Gallery The purpose of this view is to display items in a center-focused, horizontal, scrolling

list. As the name suggests, it is a great tool for showcasing lines of images or visual-

based views.

GridView You can consider this view a hybrid of the Gallery and the ListView in that it can

contain repeating items both horizontally and vertically.

Spinner This is a special kind of view, created to mimic the common drop-down list or selec-

tion box. Although the spinner has some limitations, it’s a great way to provide the

user with a set of choices from which they can choose with ease.

WORKING WITH CURSORS

When working with content providers or anything that uses a SQLite storage system, you need to
work with cursors. In Mono for Android, the cursor object is represented by the ICursor interface,
which exposes all the methods necessary to work through the resulting data set. This is a direct
adaptation of the Cursor interface found in the Android platform.

Cursors provide access to query results while providing many different ways to access them. Data
is accessed from a cursor by moving the cursor to the appropriate position and then requesting a
data type from the appropriate column index. The process of handling cursors has been covered
in Chapter 3, but it is important to note that cursors should be treated as a sensitive resource.
They should be closed when no longer in use or tied to the activity’s life cycle via the activity’s
ManagedQuery() method.

The following examples explore the use of cursors when binding to two different types of adapter
views.

Using a Cursor to Populate a Spinner

This next example looks at the process of binding a cursor to a simple spinner. Although this is a
pretty cut-and-dried example, it is important to have a good foundational understanding of work-
ing with the ICursor interface. At the time of this writing, documentation for both the spinner and
the Cursor in Android (or ICursor in Mono for Android) is not stellar. Hopefully this section can
either enhance or plug existing gaps in the documented functionality.

Say that you are tasked with creating an application that allows the user to view all the current
bookmarks on his device. This application simply has to list all the user’s bookmarks and allow him

c06.indd 139c06.indd 139 2/28/2012 4:13:09 PM2/28/2012 4:13:09 PM

McClure c06.indd V3 - 02/14/2012

140 x CHAPTER 6 BINDING DATA TO CONTROLS

to select one from the list. After thinking over this task, you decide to attempt the following steps to
get your application working:

 1. Use the browser content provider to query for bookmarks. This content provider allows you
to access the device’s browser settings, such as history and bookmarks.

 2. Add a Spinner control to your activity to list the device’s bookmarks. You do this by linking
the browser query data to the Spinner control via a SpinnerAdapter.

Setting Up the Spinner and Data Source

You can set this process up by completing the following steps:

 1. Create a new Mono for Android project called SpinnerExample. Within that, rename the
label for the default activity Spinner Example. Also, it would be a good idea to rename the
class SpinnerExample, rather than the generic Activity1.

 2. Next, add the markup for the Spinner control in the Main layout. Within the Layout direc-
tory, open the Main.axml fi le and add the markup for a Spinner control. You may want to
add a TextView describing the use of your Spinner control as well. Listing 6-1 shows what
your Main.axml fi le should resemble.

LISTING 6-1: Adding a spinner to the Main.axml layout

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>

 <TextView android:id=”@+id/tvHeading”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”Welcome to the Spinner Example! Please select a
 bookmark!” />

 <Spinner android:id=”@+id/spinner”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content” />

</LinearLayout>

Databinding_SpinnerCursor\Databinding_Cursor\Resources\Layout\Resources\Layout\Main.axml

 3. With that in place, open the default activity class you just renamed SpinnerExample. Within this
class, add a method called CreateSpinner(). In this method, you will implement the actions
necessary to databind your Spinner. For the time being, leave the contents of that method
empty. You will focus on adding the appropriate logic after you fi nish setting up the project.

 4. Now, add a call to your newly created CreateSpinner() method in the activity’s
OnCreate() event. When you are done, your additions should look like Listing 6-2. As you

c06.indd 140c06.indd 140 2/28/2012 4:13:09 PM2/28/2012 4:13:09 PM

McClure c06.indd V3 - 02/14/2012

Working with Cursors x 141

can see, this is set up so that the spinner is created and databound as soon as the Activity’s
OnCreate() event fi res.

LISTING 6-2: Setting up the spinner create method

protected override void OnCreate(Bundle bundle)
{
 base.OnCreate(bundle);
 SetContentView(Resource.Layout.Main);

 CreateSpinner();
}

public void CreateSpinner()
{
 //TODO: Add implementation code...
}

Databinding_SpinnerCursor\Databinding_Cursor\SpinnerSample.cs

 5. With that in place, begin setting up the data source from which the application will
query. In this case, create a property called BookmarkCursor. This property will be used
to lazy-load the ICursor object upon request. As for the actual query, create a func-
tion called GetBookmarkCursor(), and set it to return an ICursor object. Within this
method, add the appropriate logic to acquire a cursor object fi lled with the browser’s
bookmarks.

 6. Finally, within the Get method of your property, check for a null value. If one is found, call
the GetBookmarkCursor() function, setting the private _BookmarkCursor in the process.
Listing 6-3 exemplifi es this setup.

LISTING 6-3: Setting up the browser bookmark cursor

private ICursor _BookmarkCursor;
public ICursor BookmarkCursor
{
 get {
 if (_BookmarkCursor == null)
 {
 _BookmarkCursor = GetBookmarkCursor();
 }
 return _BookmarkCursor;
 }
 set { _BookmarkCursor = value; }
}

public ICursor GetBookmarkCursor()
{
 return ManagedQuery(Browser.BookmarksUri,

continues

c06.indd 141c06.indd 141 2/28/2012 4:13:09 PM2/28/2012 4:13:09 PM

McClure c06.indd V3 - 02/14/2012

142 x CHAPTER 6 BINDING DATA TO CONTROLS

 new String[] { Browser.BookmarkColumns.Title, Browser.BookmarkColumns
 .Url, Browser.BookmarkColumns.InterfaceConstants.ID },
 null, null, null);
}

Databinding_SpinnerCursor\Databinding_Cursor\SpinnerSample.cs

Within the GetBookmarkCursor() method, the query for requesting the browser bookmarks has
been added. Since using content providers was covered in Chapter 3, we will not go into too much
depth here. But it is important to note that you are requesting all bookmarks from the device and
placing their Url, ID, and Title attributes into the String projection. With this in place, the
BookmarkCursor property enables access for the ICursor object at any point within the activity.

Finally, one last step is needed before you can begin using the ICursor object. To query from the
browser content provider, you need to add the appropriate uses-permission node to the Android
manifest. This can be accomplished easily by using the Visual Studio tooling:

1. Right-click the project within the Solution Explorer and select Properties.

2. Select the Android Manifest tab, as shown in Figure 6-4.

3. In the Required permissions box, check the READ_HISTORY_BOOKMARKS permission.

FIGURE 6-4

LISTING 6-3 (continued)

c06.indd 142c06.indd 142 2/28/2012 4:13:10 PM2/28/2012 4:13:10 PM

McClure c06.indd V3 - 02/14/2012

Working with Cursors x 143

Using a Spinner Adapter

With the project properly set up and the data source ready for use, the CreateSpinner() method
can be implemented. This particular project has quite a few different objects working within it, but
they can be broken into three main parts:

 ‰ The target spinner is accomplished using the FindViewByID() method. It is a reference to the
Spinner control added to the Main.axml fi le earlier in this section.

 ‰ An instance of a SpinnerCursorAdapter acts as the bridge between the target spinner and our
cursor.

 ‰ A data item view to repeat within the spinner comes from one of the default layouts defi ned
in the Android platform.

Using these three items, we can write the code necessary to bind our spinner, as shown in
Listing 6-4.

LISTING 6-4: Implementing the CreateSpinner() method

public void CreateSpinner()
{
 var targetSpinner = FindViewById<Spinner>(Resource.Id.spinner);
 SimpleCursorAdapter SpinnerAdapter = new SimpleCursorAdapter(
 this,
 Android.Resource.Layout.SimpleSpinnerItem,
 BookmarkCursor,
 new string[] { Browser.BookmarkColumns.Title },
 new int[] { Android.Resource.Id.Text1 });

 SpinnerAdapter.SetDropDownViewResource(
 Android.Resource.Layout.SimpleSpinnerDropDownItem);
 targetSpinner.Adapter = SpinnerAdapter;
 targetSpinner.Prompt = “Select...”;
}

Databinding_SpinnerCursor\Databinding_Cursor\SpinnerSample.cs

In this example, we acquire a reference to the Spinner control via the targetSpinner object. Using
a new instance of a SimpleCursorAdapter, the BookmarkCursor object is bound to the adapter. In
particular, a default Android view, Android.Resource.Layout.SimpleSpinnerItem, is used as a
data item view. To databind the Title column in the BookmarkCursor to the data item view, use its
child control with an ID of Text1.

Finally, we can set the target resource to use for the spinner’s drop-down view. After we set the
 spinner’s adapter equal to a reference to our newly created SpinnerAdapter, the databinding
 process is complete.

c06.indd 143c06.indd 143 2/28/2012 4:13:10 PM2/28/2012 4:13:10 PM

McClure c06.indd V3 - 02/14/2012

144 x CHAPTER 6 BINDING DATA TO CONTROLS

While looking at this example, you may wonder how we knew to bind the data
value to the Android.Resource.Id.Text1 control. When using the default
Android views, you need to ascertain what child controls they contain, as well as
what IDs those controls have within the Android documentation, to bind data to
those controls.

The Android.Resource.Id namespace contains hints about what possible child
controls may exist within the native layouts. Currently the process can involve
a bit of trial and error, although many working examples utilize these default
views.

With all this code in place, launch the application with the debugger. Assuming that all goes well,
you should see the screens shown in Figure 6-5.

FIGURE 6-5

Adding a Listener Event for a Spinner

Suppose that, after getting your example up and running, you decide it would be handy to be able
to click one of the listed bookmarks and open its URL in the Android browser. You can do this by
using the spinner’s ItemSelected event.

Spinners are great controls for many tasks, but they also make poor controls in some situations.
Therefore, before we get into the code, two things need to be noted.

 ‰ Although they can be thought of as a drop-down list, spinners lack one of the major features
of a drop-down list: they do not have an unselected state. Whenever a spinner is bound, it

c06.indd 144c06.indd 144 2/28/2012 4:13:10 PM2/28/2012 4:13:10 PM

McClure c06.indd V3 - 02/14/2012

Working with Cursors x 145

automatically selects the fi rst item in the binding collection. Not only does this mean that a
spinner always displays a selection, but it also means that the fi rst item in a spinner list can-
not trigger the ItemSelected event when the spinner is fi rst loaded, because it is already
selected. This assumes that you did not manually change the selected index.

 ‰ This brings us to another large drawback of spinners. Since the fi rst item is always selected
when bound, the spinner calls the ItemSelected event before the view is presented to the
user. Whatever events you set up in the ItemSelected event trigger before your activity view
ever makes it to the user.

In this example, this means that the application would launch, the spinner would be bound, and
then the Android browser would be launched with the URL of the fi rst item in the list. Rather than
seeing the activity, the user sees a browser window. This is a known behavior of the spinner and can
be frustrating to deal with. In order to work around this issue, we will use a local variable to track
the spinner’s state and determine whether we want to launch our event.

After reading about the drawbacks of using spinners, you might question
whether a spinner is the ideal control for the task we want to accomplish. This is
a valid concern.

Typically, spinners are not a good tool to use when you need to respond to
click events on an item list that does not have a preset value. In these cases,
ListViews and other adapter views are much better tools.

For the sake of demonstration, however, we are extending our spinner example
to handle this kind of scenario even though it is not quite the superior approach
to this problem. When choosing an adapter view for a project, it is always a
good idea to consider the drawbacks of every option to limit surprises that views
such as a spinner may cause.

Adding a listener event for the spinner requires several steps.

 1. First, create a local variable to track the spinner state. To do this, add a private integer fi eld
called LastSpinnerSelectedPosition. At the beginning of the Create spinner method, set
this variable’s value to 0. This way, every time the Spinner control is re-created, the selected
position always refl ects the databound state.

 2. Next, add an event handler to the targetSpinner within the CreateSpinner() method. Be
sure to do this as the last step in the method. At this point, your code should closely resemble
Listing 6-5.

LISTING 6-5: Adding an ItemSelected event to the CreateSpinner() method

int LastSpinnerSelectedPosition;

public void CreateSpinner()
{
 // Since the spinner is just being created, set this

continues

c06.indd 145c06.indd 145 2/28/2012 4:13:11 PM2/28/2012 4:13:11 PM

McClure c06.indd V3 - 02/14/2012

146 x CHAPTER 6 BINDING DATA TO CONTROLS

 // tracking var to 0.
 LastSpinnerSelectedPosition = 0;

 // ... targetSpinner binding logic as previously covered ...

 targetSpinner.ItemSelected +=
 new EventHandler<ItemEventArgs>(SpinnerItemSelected);
}

Databinding_SpinnerCursor\Databinding_Cursor\SpinnerSample.cs

 3. Finally, add a method called SpinnerItemSelected() as the target event handler, accepting
an object and ItemEventArgs as parameters. Within this method, we check to see if a new
item has been selected. If it has, we get the URL for the target spinner item and launch a new
activity to bring up the browser window. This is accomplished in Listing 6-6.

LISTING 6-6: Implementing the ItemSelected() event

public void SpinnerItemSelected(object sender, ItemEventArgs e)
{
 var CurrentSpinner = ((Spinner)sender);
 var CurrentSelectedIndex = CurrentSpinner.SelectedItemPosition;

 if (CurrentSelectedIndex != LastSpinnerSelectedPosition)
 {
 // The Selected item in a spinner is actually the
 // underlying cursor object w/ the position set to the
 // appropriate index. Cast to ICursor to access.
 ICursor selectedItem = (ICursor)CurrentSpinner.SelectedItem;

 var URLColumnIndex = selectedItem.GetColumnIndex(
 Browser.BookmarkColumns.Url);
 var URL = selectedItem.GetString(URLColumnIndex);

 // In order to open a new browser, we need to create the appropriate
 // intent and then start a new activity using that intent.
 Intent BrowserIntent = new Intent(Intent.ActionView);
 BrowserIntent.SetData(Android.Net.Uri.Parse(URL));

 StartActivity(BrowserIntent);

 LastSpinnerSelectedPosition = CurrentSelectedIndex;
 }
}

Databinding_SpinnerCursor\Databinding_Cursor\SpinnerSample.cs

LISTING 6-5 (continued)

c06.indd 146c06.indd 146 2/28/2012 4:13:12 PM2/28/2012 4:13:12 PM

McClure c06.indd V3 - 02/14/2012

Working with Cursors x 147

Within this method, initially check to make sure that the spinner state is not the same as was ini-
tially set. This keeps the OnCreate() method from launching the selected item event prematurely.
Next, fi nd the URL value of the selected spinner item by using the spinner’s SelectedItem property.
This item represents the position in the BookmarkCursor that corresponds to the selected item.

Finally, we create BrowserIntent and set its data to our target URL. This allows us to create a
new activity, which opens our browser application to the correct URL. With this code in place, you
should be able to open your spinner example and watch it work, as shown in Figure 6-6.

FIGURE 6-6

Using a Cursor with a Gallery

Now that you have seen a simple example of a cursor, you can look at an example that is a bit more
complex. In this case, we create a Gallery view of images from an Android device. To accomplish
this assignment, we will tackle the following tasks:

 ‰ Use the media content provider to pull images from our device. As you learned earlier in this
book, media resources on Android can be universally accessed via this provider.

 ‰ Add a Gallery view to the main activity, and bind our custom adapter to the Gallery. This
step doesn’t vary much from the previous example because the Gallery view requires little
setup.

 ‰ Create a custom Image Adapter to handle the generation of Image Views. Unlike the previous
example, we won’t simply rely on a predefi ned Android view to bind our images. By extending
the BaseAdapter class, we have a bit more control over how we display our images.

c06.indd 147c06.indd 147 2/28/2012 4:13:12 PM2/28/2012 4:13:12 PM

McClure c06.indd V3 - 02/14/2012

148 x CHAPTER 6 BINDING DATA TO CONTROLS

Setting Up the Project

To get started, create a new Mono for Android project, renaming the activity label Gallery View
Demo and also renaming the class GalleryViewSample. When this is done, set up the Main layout
by adding a Gallery control. The markup for a Gallery control is straightforward, as shown in
Listing 6-7.

LISTING 6-7: Adding a Gallery control to the Main.axml fi le

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>

<TextView android:id=”@+id/Welcome”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”Welcome to a Mono for Android Gallery”/>

<Gallery android:id=”@+id/targetGallery”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”/>

</LinearLayout>

Databinding_GalleryView\Databinding_GalleryView\Resources\Layout\Main.axml

In this markup, the Gallery control has been added, giving it an ID of targetGallery. To add a
little extra garnish to the layout, a TextView has been appended to describe the use of this control.

To set up the activity class to be used, a few methods need to be stubbed to prevent compile errors.
These are as follows:

 1. Within a new class fi le or just outside your activity class, create a new class called
ImageAdapter. This ImageAdapter class needs to inherit from BaseAdapter. As discussed
earlier in this chapter, BaseAdapter is an abstract class that contains many of the major
tools you need to create a custom adapter.

 2. Because BaseAdapter is abstract, several methods need to be implemented. You can add
the appropriate methods by right-clicking the BaseAdapter class and choosing Implement
Abstract Class. For the time being, do not worry about working with those generated meth-
ods. Once the activity class has been set up, our focus returns to those methods.

 3. As a last step to set up the custom adapter, add a constructor that accepts a Context object
as a parameter. Because this will be used throughout the custom adapter class, go ahead and
make a fi eld called _Context and assign its value to the parameter provided in the construc-
tor of the class.

With everything in place, the skeleton of the ImageAdapter resembles Listing 6-8.

c06.indd 148c06.indd 148 2/28/2012 4:13:13 PM2/28/2012 4:13:13 PM

McClure c06.indd V3 - 02/14/2012

Working with Cursors x 149

LISTING 6-8: Skeleton of the ImageAdapter class

public class ImageAdapter:BaseAdapter
{

 private Context _Context;

 public ImageAdapter(Context c)
 {
 _Context = c;
 }

 public override int Count
 {
 get { throw new NotImplementedException(); }
 }

 public override Java.Lang.Object GetItem(int position)
 {
 throw new NotImplementedException();
 }

 public override long GetItemId(int position)
 {
 throw new NotImplementedException();
 }

 public override View GetView(int position, View convertView,
 ViewGroup parent)
 {
 throw new NotImplementedException();
 }
}

Databinding_GalleryView\Databinding_GalleryView\GalleryViewSample.cs

This is all the information that needs to go into this class. When we begin implementing the adapter,
we will work through setting up each method. Until then, the basic setup on our project can be com-
pleted by adding the logic to bind our new adapter to the Gallery control. Using the markup that
was just added, set the adapter of the Gallery instance to the new instance of the ImageAdapter
class, as shown in Listing 6-9.

LISTING 6-9: Setting the Gallery control’s adapter to the ImageAdapter

[Activity(Label = “Gallery View Sample”, MainLauncher = true)]
public class GalleryViewSample : Activity
{

 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

continues

c06.indd 149c06.indd 149 2/28/2012 4:13:13 PM2/28/2012 4:13:13 PM

McClure c06.indd V3 - 02/14/2012

150 x CHAPTER 6 BINDING DATA TO CONTROLS

 // Set our view from the “main” layout resource
 SetContentView(Resource.Layout.Main);
 CreateGallery();
 }

 private void CreateGallery()
 {
 Gallery g = FindViewById<Gallery>(Resource.Id.targetGallery);
 g.Adapter = new ImageAdapter (this);
 }
}

Databinding_GalleryView\Databinding_GalleryView\GalleryViewSample.cs

Unlike the spinner example, Listing 6-9 is a pretty cut-and-dried binding. To make the process of
working with this Gallery a little easier down the road, the logic to create the Gallery has been
broken out into a separate method, ingeniously named CreateGallery(). When creating a new
instance of the ImageAdapter class, pass in a reference to the current activity by using the this
keyword.

The project now is almost set up to begin focusing on your custom adapter. The one outstanding task
is that you want to make sure that your target Android device actually has some images that the query
can return. If you are using the emulator, you need to fi re it up and download a few images. If you are
using your own device in debug mode, you should have plenty of images already added.

To quickly fi nd some images to add to your device for testing, go to Google
image search (http://images.google.com). Search for your favorite topic, and
directly download the images from there. Any image downloaded in this fashion
is automatically added to the media content provider. In order to continue with
this example, it is important that you have at least a couple of images on your
testing device. Otherwise the Gallery view will not function and will throw an
exception.

Adding the Cursor

With the framework of the project in place, we can begin focusing on fl eshing out the
ImageAdapter class. The main function of this class is to pass images from the Android device to
the Gallery control. To do this, a data set needs to be generated by using a query against the media
content provider. Once the data is in place, we use the acquired information to create new image
views to pass to the Gallery upon request.

LISTING 6-9 (continued)

c06.indd 150c06.indd 150 2/28/2012 4:13:13 PM2/28/2012 4:13:13 PM

McClure c06.indd V3 - 02/14/2012

Working with Cursors x 151

Because this project will interface with a content provider, the mode of getting data access will be
via a Cursor object. Using a Cursor object was covered earlier in the chapter. The following steps
outline the process of adding a cursor:

 1. In the ImageAdapter class, create a private function called GetImageCursor(). This
 function handles the call to the media content provider and returns the type of ICursor.

 2. To create an ImageView, use the cursor to get the ID of all the images on the Android device.
Specifi cally, this example uses the image ID of the generated thumbnails of the images.
Listing 6-10 provides an example of this process.

LISTING 6-10: Querying the media content provider

private ICursor GetImageCursor()
{
 string[] Projection = { MediaStore.Images.Thumbnails.ImageId };

 var ImageCursor = ((Activity)_Context).ManagedQuery(
 MediaStore.Images.Thumbnails.ExternalContentUri,
 Projection, null, null, null);

 return ImageCursor;
}

Databinding_GalleryView\Databinding_GalleryView\GalleryViewSample.cs

 3. In this listing, a projection is created that contains the desired fi elds that need to be returned
from the query. To make managing the cursor easier, use the _Context object to get an
instance to the calling activity. After casting it back to an Activity type, this method will
be able to utilize the ManagedQuery() function of the calling activity class, which allows the
calling class to manage the life cycle of the ICursor object.

If you are querying from a physical Android device, you probably have many
images on this device. To keep the return set to a manageable level, you may
want to specify selection arguments in this query. Alternatively, you can force a
limit in the GetView() method of this adapter after it is set up.

 4. With the cursor query in place, create a property within the ImageAdapter called
ImageCursor. This will be used to manage the instance of the ICursor and will make it
easier to leverage the cursor throughout the class. Since this is not something you would
 typically want to expose to the world, change the property protection level to protected.
Listing 6-11 shows an example.

c06.indd 151c06.indd 151 2/28/2012 4:13:15 PM2/28/2012 4:13:15 PM

McClure c06.indd V3 - 02/14/2012

152 x CHAPTER 6 BINDING DATA TO CONTROLS

LISTING 6-11: Managing the ImageCursor instance

private ICursor _ImageCursor;
protected ICursor ImageCursor
{
 get {
 if (_ImageCursor == null)
 {
 _ImageCursor = GetImageCursor();
 }

 return _ImageCursor;
 }
 set { _ImageCursor = value; }
}

Databinding_GalleryView\Databinding_GalleryView\GalleryViewSample.cs

The ImageAdapter now has a complete data source that is lazy-loaded upon request. Now you can
move on to the fi nal steps of setting this adapter.

Completing the Custom Adapter

By inheriting from the BaseAdapter class, we have to override several methods to allow proper
functionality of the adapter. Starting with the simplest methods, Count() and GetItemId(), let’s
begin supporting the binding operation.

 1. As you might imagine, the Count class is used to return the total number of items within the
cursor data set.

 2. Next, the purpose of GetItemId() is to provide the actual ID of the data entity at the given
index. Both of these methods can be supported by leveraging the ImageAdapter property
that was just set up. Listing 6-12 demonstrates setting this up.

LISTING 6-12: Supporting the Count and GetItemID methods

public override int Count
{
 get { return ImageCursor.Count; }
}

public override long GetItemId(int position)
{
 ImageCursor.MoveToPosition(position);
 var ImageID = ImageCursor.GetString(0);

 return position;
}

Databinding_GalleryView\Databinding_GalleryView\GalleryViewSample.cs

c06.indd 152c06.indd 152 2/28/2012 4:13:15 PM2/28/2012 4:13:15 PM

McClure c06.indd V3 - 02/14/2012

Working with Cursors x 153

You might have noticed that this example has a hard-coded index value at the
following line:

ImageCursor.GetString(0);

This unwise setup is used so that the cursor returns only one fi eld from the data
source and for the sake of keeping the example simple. If needed, a more robust
way to manage this would be to keep the right index for the right fi eld value by
creating a tracking fi eld in the class. This is accomplished by using the cursor’s
GetColumnIndex() function. In the case of this example, the code snippet looks
like this:

ImageCursor.GetColumnIndex(MediaStore.Images.Thumbnails.ImageId);

 3. The next step is to set up the GetItem() function. For this one, either simply return null or
return the same position integer that you were passed in the arguments. The purpose of this
function is to allow the developer to call the GetItemAtPosition() function on the Gallery
control. Currently we do not want to support this function.

It’s up to you as the developer to decide what the GetItemAtPosition()
function will return. In some cases, this can be used to return the key to the
appropriate entity on the data set. Other implementations actually return
complex objects that contain the desired values. The use cases for each of these
approaches depend on your needs and the type of data source you are using. Use
your best judgment, and be sure to add appropriate documentation for this par-
ticular function.

 4. Finally, the GetView() function can be set up. As covered earlier in this chapter, this
method needs to be able to either recycle previously populated views or create new views
on demand. To do this, we can leverage the convertView variable and perform a null
check. If the given view is null, generate a new ImageView based on the position integer
that the Gallery provided. Otherwise, return the previously used view. Listing 6-13 does
just this.

LISTING 6-13: The GetView function

public override View GetView(int position, View convertView, ViewGroup parent)
{
 if (convertView == null)
 {
 ImageView returnView = new ImageView(_Context);
 ImageCursor.MoveToPosition(position);

 var ImageID = ImageCursor.GetString(0);

continues

c06.indd 153c06.indd 153 2/28/2012 4:13:16 PM2/28/2012 4:13:16 PM

McClure c06.indd V3 - 02/14/2012

154 x CHAPTER 6 BINDING DATA TO CONTROLS

 returnView.SetImageURI(
 Android.Net.Uri.WithAppendedPath(
 MediaStore.Images.Thumbnails.ExternalContentUri, ImageID));
 returnView.SetScaleType(ImageView.ScaleType.CenterCrop);
 return returnView;
 }
 else
 {
 return (ImageView)convertView;
 }
}

Databinding_GalleryView\Databinding_GalleryView\GalleryViewSample.cs

Once your code is in place, the Gallery control should be ready for action. Launch the debugger
and try it out. If all goes well, you should see a screen that looks like Figure 6-7.

FIGURE 6-7

WORKING WITH LISTS

Lists are an integral part of almost every modern mobile application. They provide a convenient way
of displaying different types and amounts of data to users in a way that is easy to interact with.

Android’s ListView is a row-based data display control, giving you ultimate fl exibility over the data
in each row and how it is displayed. You will also learn about the GridView, which is a row- and
column-based data display control. It handles the layout of all the columns and rows.

LISTING 6-13 (continued)

c06.indd 154c06.indd 154 2/28/2012 4:13:17 PM2/28/2012 4:13:17 PM

McClure c06.indd V3 - 02/14/2012

Working with Lists x 155

On Android, ListView does a lot of the heavy lifting for you, including scrolling with inertia and
displaying the appropriate rows at the right time. All you need to do is provide it with the layout
and data for each row when asked. Android also handles different types of user interaction for
you by raising events.

Lists are used throughout many Android applications. One of the most prominent uses is to display
and edit user preferences. Other natural uses include RSS readers, Twitter clients, and media players.
Figure 6-8 shows several different examples of applications using ListView, illustrating its power
and fl exibility.

FIGURE 6-8

Displaying Simple Data in a List

In its simplest form, the main component required to display a list of data in Android is ListActivity.
An Activity is a single focused screen that a user can work with, similar to an ASPX page or a
WinForm. The ListActivity is a normal Activity that has a ListView fi lling the entire space of the

c06.indd 155c06.indd 155 2/28/2012 4:13:17 PM2/28/2012 4:13:17 PM

McClure c06.indd V3 - 02/14/2012

156 x CHAPTER 6 BINDING DATA TO CONTROLS

Activity’s View, on the screen. It’s a shortcut you can use if you don’t want any other views displayed
in the Activity. It doesn’t require you to infl ate a layout from an XML fi le or construct a layout pro-
grammatically. Of course, if you’re so inclined, you can call SetContentView() in the OnCreate()
override to infl ate and use a custom layout which contains a ListView. Listing 6-14 shows what the lay-
out XML fi le looks like for a ListActivity. This resource is contained within the Android framework.

LISTING 6-14: XML Layout resource

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout
android:id=”@+id/widget28”
android:layout_width=”fill_parent”
android:layout_height=”fill_parent”
android:orientation=”vertical”
xmlns:android=”http://schemas.android.com/apk/res/android”
>
 <ListView
 android:id=”@+id/listView”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 >
 </ListView>
</LinearLayout>

Lists01\Resources\layout\ListActivity.axml

To create your fi rst List, you should create a new activity and then change it to inherit from
ListActivity instead of Activity. The base ListActivity automatically infl ates the layout for
you. Use the code sample shown in Listing 6-15 to implement these two key aspects of creating your
fi rst List:

 ‰ Creating a data source to display: This data can come from any source — the arrays.xml
resource fi le, a hard-coded string array, a web service call, or a database.

 ‰ Instantiating and assigning a list adapter to ListActivity’s Adapter property: This can be any
type of list adapter — an ArrayAdapter, a SimpleAdapter, or a custom subclass of the
BaseAdapter.

LISTING 6-15: Simple ListView with ListActivity

using System;
using Android.App;
using Android.OS;
using Android.Widget;

namespace Lists01
{
 [Activity(MainLauncher = true, Label = “SimpleList”,
 LaunchMode=Android.Content.PM.LaunchMode.SingleTask)]
 public class SimpleListActivity : ListActivity

c06.indd 156c06.indd 156 2/28/2012 4:13:18 PM2/28/2012 4:13:18 PM

McClure c06.indd V3 - 02/14/2012

Working with Lists x 157

 {
 string[] items;

 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

 //Create a list of items to show
 items = new string[] {
 “Item One”,
 “Second Item”,
 “Number Three”,
 “Fourth Option”,
 “Fifth One”,
 “Sixth Item”,
 “Number Seven”,
 “This is Eight”,
 “Nine”,
 “Ten Speed”
 };

 //Make an ArrayAdapter using the built in
 //SimpleListItem1 layout and our items array
 this.ListAdapter = new ArrayAdapter<string>(
 this,
 Android.Resource.Layout.SimpleListItem1,
 items);
 }
 }
}

Lists01\SimpleListActivity.cs

You will notice that for the sample shown in Listing 6-15, the Android.Resource.Layout.
SimpleListItem1 layout is specifi ed in the constructor of the ArrayAdapter. The list adapter is
responsible for returning the view for each list item. This layout is another built-in Android resource.
Listing 6-16 shows what the layout for Android.Resource.Layout.SimpleListItem1 looks like.

LISTING 6-16: SimpleListItem1 source

<?xml version=”1.0” encoding=”utf-8”?>
<TextView xmlns:android=”http://schemas.android.com/apk/res/android”
 android:id=”@android:id/text1”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:textAppearance=”?android:attr/textAppearanceLarge”
 android:gravity=”center_vertical”
 android:paddingLeft=”6dip”
 android:minHeight=”?android:attr/listPreferredItemHeight”
/>

Lists01\Resources\layout\SimpleListItem1.axml

c06.indd 157c06.indd 157 2/28/2012 4:13:19 PM2/28/2012 4:13:19 PM

McClure c06.indd V3 - 02/14/2012

158 x CHAPTER 6 BINDING DATA TO CONTROLS

As you can see, the view for the SimpleListItem1 is a
simple, single TextView set to fi ll the width of the row,
with a few other attributes set. It’s not rocket science, but
it is convenient not to have to produce that XML layout
every time you want to display a simple list item with a
single line of text.

A number of XML layouts come with Android. These
layouts are included to provide a standardized look and
feel across all applications. They also make your life as a
developer a bit easier and keep you from constantly hav-
ing to re-create the same XML layout fi les. Not surpris-
ingly, a few layouts are specifi cally designed to be used
with ListView items that come standard with Android
(see Figure 6-9):

 ‰ SimpleListItem1 is a TextView that displays one line of text.

 ‰ SimpleListItem2 is a TwoLineListItem view with two TextViews (Android.Resource.
Id.Text1 and Android.Resource.Id.Text2) displayed one on top of the other in a Title/
Description confi guration.

 ‰ SimpleListItemChecked is a single TextView with a check box on the right side of the list
item.

 ‰ SimpleListItemMultipleChoice is a single TextView with a multiple-choice-style check
box on the right side of the list item.

 ‰ SimpleListItemSingleChoice is a single TextView with a radio-button-style check box on
the right side of the list item.

Working with Android’s ListAdapters

Behind every great ListView is a great ListAdapter. The Android SDK provides some easy-to-use
Adapters right out of the box.

ArrayAdapter, which derives from BaseAdapter, expects an enumerable set of strings, as
well as a resource identifi er for a layout and an optional fi eld resource identifi er. If only a
resource identifi er for the layout is provided, it must be that of a single TextView (such as
SimpleListItem1).

You can specify a more complicated layout for your list item by using its resource identifi er to indi-
cate the parent view for each list item, as well as by specifying the identifi er of the TextView fi eld
that is contained somewhere within that parent view. Either way, ArrayAdapter lets you pass in
only a single array of values that get displayed in a TextView somewhere within the view of each list
item. This is a great way to quickly display a collection of strings with little effort in a list form. You
might consider using this method in conjunction with a LINQ query to get a list of names for all
your objects to display. For example:

FIGURE 6-9

c06.indd 158c06.indd 158 2/28/2012 4:13:19 PM2/28/2012 4:13:19 PM

McClure c06.indd V3 - 02/14/2012

Working with Lists x 159

var adapter = new ArrayAdapter<string>(this,
Android.Resource.Layout.SimpleListItem1,
(from animal in this.Animals select animal.Name).ToArray());

The SimpleAdapter, shown in Listing 6-17, is a bit more advanced. It requires a List<T> of
Dictionary<string, object>, where each Dictionary<string, object> represents a single
list item. The Dictionary must contain a set of key/value pairs representing the various fields
of data. The SimpleAdapter also requires a string[] array from, which is a list of fi elds in the
Dictionary, and an int[] array to, which is a list of resource identifi ers that correspond to the
from array fi elds. The to and from arrays tell SimpleAdapter which fi elds from the Dictionary go
in which views within the layout.

In Listing 6-17 the SimpleListItem2 that is built into the Android SDK is used. This is very simi-
lar to the SimpleListItem1 in Listing 6-16, except it has an additional TextView with an Id of
Android.Resource.Id.Text2.

LISTING 6-17: SimpleAdapter usage

 //Create our sample data
var items = new List<IDictionary<string, object>>();

var item1 = new Dictionary<string, object>();
item1.Add(“simpleAdapterTitle”, “First Title”);
item1.Add(“simpleAdapterDesc”, “This is a Description”);

var item2 = new Dictionary<string, object>();
item2.Add(“simpleAdapterTitle”, “Second Title”);
item2.Add(“simpleAdapterDesc”, “Another Description”);

items.Add(item1);
items.Add(item2);

//Create the Adapter from the sample data
var a = new SimpleAdapter(this,
 items,
 Android.Resource.Layout.SimpleListItem2,
 new string[]
 {
 “simpleAdapterTitle”,
 “simpleAdapterDesc”
 },
 new int[]
 {
 Android.Resource.Id.Text1,
 Android.Resource.Id.Text2
 });

this.ListAdapter = a;

Lists01\SimpleAdapterActivity.cs

c06.indd 159c06.indd 159 2/28/2012 4:13:19 PM2/28/2012 4:13:19 PM

McClure c06.indd V3 - 02/14/2012

160 x CHAPTER 6 BINDING DATA TO CONTROLS

The SimpleAdapter gives you a lot more fl exibility in your layout and what data you display for
each list item. But it is still a bit clunky, coming from the .NET world. In a real use case, this would
mean creating three different array objects just to map values from a list of data objects to a list item.

Customizing ListView with a Custom List Adapter

You’ve seen some of the Android SDK’s built-in layouts for ListView items, classes for creating
list adapters, and ListActivity for displaying a ListView. There’s nothing wrong with using
this functionality. However, at some point you may need to display your data in a ListView item
in a specifi c way, different from what the default layouts allow. Or you may just fi nd that using a
SimpleListAdapter to display a collection of data objects is not as simple and elegant as it sounds.
For these situations, you may be better off creating your own layout for your ListView items that
uses your own custom list adapter subclassing the BaseAdapter class. It’s a lot easier than it sounds,
and it may just become your preferred way to create customized list displays!

The next example uses a list of Animal objects as the data source. You need to display the animal’s
name and description, as well as an image for each animal in a ListView. Listing 6-18 shows a
simple class that holds the animal’s name, description, and image. In this example Image refers to
an image’s resource ID, not an actual Image object itself, because that would be outside the scope of
this example.

LISTING 6-18: Animal data object

public class Animal
{
 public string Name
 {
 get;
 set;
 }

 public string Description
 {
 get;
 set;
 }

 public int Image
 {
 get;
 set;
 }
}

Lists02\Animal.cs

Next, a layout is needed for each ListView item. A ListView item usually displays information
for a single object from your data source. This example is no different. A single ListView item

c06.indd 160c06.indd 160 2/28/2012 4:13:19 PM2/28/2012 4:13:19 PM

McClure c06.indd V3 - 02/14/2012

Working with Lists x 161

is responsible for displaying information for a single animal, including the name, description,
and image.

More is going on in the XML layout shown in Listing 6-19 than in Android’s built-in
SimpleListItem1. A horizontal LinearLayout holds an ImageView for the animal’s image, and a
child vertical LinearLayout holds two TextViews: one for the animal’s name, and another for the
animal’s description. This layout causes the image to appear on the left. To the right of the image
are the name and, under that, the description.

LISTING 6-19: ListView item layout for Animal

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:id=”@+id/widget28”
 android:layout_width=”fill_parent”
 android:layout_height=”80px”>
 <ImageView
 android:id=”@+id/imageItem”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_gravity=”center_vertical”>
 </ImageView>
 <LinearLayout
 android:id=”@+id/linearText”
 android:layout_width=”wrap_content”
 android:layout_height=”fill_parent”
 android:orientation=”vertical”
 android:layout_marginLeft=”10px”
 android:layout_marginTop=”10px”>
 <TextView
 android:id=”@+id/textTop”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”TextView”>
 </TextView>
 <TextView
 android:id=”@+id/textBottom”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”TextView”>
 </TextView>
 </LinearLayout>
</LinearLayout>

Lists02\Resources\layout\AnimalItem.axml

It’s important to take note of the IDs of the various views inside your layout for which you will want
to set the data programmatically. In this case, you should take note of the IDs for the ImageView
as well as both of the TextViews: imageItem, textTop, and textBottom. Mono for Android

c06.indd 161c06.indd 161 2/28/2012 4:13:20 PM2/28/2012 4:13:20 PM

McClure c06.indd V3 - 02/14/2012

162 x CHAPTER 6 BINDING DATA TO CONTROLS

automatically makes these IDs available to you for referencing in the Resource.Id class. In Visual
Studio, the Resource.Designer.cs is automatically generated based on the fi les in the Resources
folder which have the AndroidResource set as their build action. It’s important to remember that
the Resource.Id class members are only regenerated whenever you build your project, and they will
not show up in Intellisense until this time.

Assuming that your data source is some enumerable list, array, or other collection of Animal
objects, it’s pretty simple to build a custom ListAdapter that your ListView can use. One way to
do this is to create a new class (call it AnimalListAdapter) and make it inherit the BaseAdapter<T>
class (see Listing 6-20).

Inheriting from BaseAdapter<T> requires a method and a couple of properties to be implemented:

 ‰ Count property

 ‰ Indexer this property of type T

 ‰ GetItemId method

The Count property is obvious. It simply returns the number of items that should appear in your list.
In most cases, this is the number of items in your data source.

The Indexer property should return the data object in your data source for a given index. In this
case the property should return an Animal object type for the position being passed into the indexer.

The GetItemId method takes an int position value and returns a long value type. For the purposes
of Mono, the actual number returned is not used by any critical underlying Android code. Just be
sure to take care of what you return if you are going to be using the ItemId values anywhere else
in your code. However, best practice would be to ensure that you return a unique value for every
different position value passed into the method. An easy way to deal with this method is to simply
return the position parameter directly. It should also be noted that the ItemId value does get
passed to some ListView events, such as the ItemClick event, so it may be useful for you to pass a
value that gives more meaning to identifying the actual data source object for the given position.

LISTING 6-20: AnimalListAdapter

using System;
using System.Collections.Generic;
using Android.App;
using Android.Views;
using Android.Widget;

namespace Lists02
{
 public class AnimalListAdapter : BaseAdapter<Animal>
 {
 Activity context;
 public List<Animal> Animals;

 public AnimalListAdapter(Activity context, List<Animal> animals)
 : base()
 {

c06.indd 162c06.indd 162 2/28/2012 4:13:20 PM2/28/2012 4:13:20 PM

McClure c06.indd V3 - 02/14/2012

Working with Lists x 163

 this.context = context;
 this.Animals = animals;
 }

 public override int Count
 {
 get { return this.Animals.Count; }
 }

 public override Animal this[int position]
 {
 get { return this.Animals[position]; }
 }

 public override View GetView(int position, View convertView, ViewGroup
 parent)
 {
 //Get our object for this position
 var item = this.Animals[position];

 //Try to reuse convertView if it’s not null, otherwise inflate it from
 our item layout
 // This gives us some performance gains by not always inflating a new
 view
 // This will sound familiar to MonoTouch developers with
 UITableViewCell.DequeueReusableCell()
 var view = convertView;

 if (convertView == null || !(convertView is LinearLayout))
 view = context.LayoutInflater.Inflate(Resource.Layout.AnimalItem,
 parent, false);

 //Find references to each subview in the list item’s view
 var imageItem = view.FindViewById(Resource.Id.imageItem) as ImageView;
 var textTop = view.FindViewById(Resource.Id.textTop) as TextView;
 var textBottom = view.FindViewById(Resource.Id.textBottom) as TextView;

 //Assign this item’s values to the various subviews
 imageItem.SetImageResource(item.Image);
 textTop.SetText(item.Name, TextView.BufferType.Normal);
 textBottom.SetText(item.Description, TextView.BufferType.Normal);

 //Finally return the view
 return view;
 }

 public long GetItemId(int position)
 {
 return position;
 }
 }
}

Lists02\AnimalListAdapter.cs

c06.indd 163c06.indd 163 2/28/2012 4:13:20 PM2/28/2012 4:13:20 PM

McClure c06.indd V3 - 02/14/2012

164 x CHAPTER 6 BINDING DATA TO CONTROLS

You may notice that the adapter’s constructor expects an Activity to be passed into it. The adapter
needs a reference to a context so that the layout and all the views within it can be created for the
ListView items. Any time you create view objects, a context is required, so this is no exception.
Typically you would pass into the constructor a reference to the Activity that is creating the cus-
tom ListAdapter.

The GetView method in the list adapter is responsible for returning a View that is the layout for a
ListView item for the given position. The fi rst thing the example does is get the Animal object for
the given position from the data source (the List<Animal> Animals property).

If you’ve done any development for the iPhone, you may be familiar with the
concept of reusing table cells in calls to the table adapter as a way to save mem-
ory resources and speed things up. The idea is the same on Android.

Even though your list may have 500 items, only some of them (10, for example) can be displayed
onscreen at any given time. Instead of making instances of your ListView item layout for all 500
items in the list, it is much more effi cient to make only 10 instances for the items that can be shown
onscreen at once. Then they can be recycled as items disappear from view and different items appear
(see Figure 6-10).

List Item 1

List Item 1

View Type 1

View Type 2

View Type n...

List Item 1

List Item 2

List Item 2 List Item 2

List Item 3

List Item 3 List Item 3

List Item 4

Recycler

List Item 4

View GetView(int position, View convertView, viewGroup parent)

List Item 4

List Item 5

List Item 5

FIGURE 6-10

This is where the convertView parameter is useful. This parameter is null if there are no existing
instances of your ListView item layouts to be recycled. In fact, the fi rst 10 times that GetView is
called, convertView is null. However, the 11th time (again assuming that only 10 items can fi t on

c06.indd 164c06.indd 164 2/28/2012 4:13:20 PM2/28/2012 4:13:20 PM

McClure c06.indd V3 - 02/14/2012

Working with Lists x 165

the screen at once) GetView is called, convertView contains the recycled instance of the ListView’s
item that just disappeared from the screen. It’s important to note that the values of any TextViews,
ImageViews, or any other subviews of convertView remain unchanged from what they were last set
to be.

If convertView happens to be null, the code shown in Listing 6-20 uses a LayoutInflater to
infl ate a view from the layout you saw earlier. Otherwise, convertView can be reused, and no lay-
out needs to be infl ated.

If you are working with multiple types of layouts or views for different list items, you should over-
ride the ViewTypeCount property as well as the GetItemViewType(int position) method in your
adapter. ListView calls the GetItemViewType method for each list item to ensure that it passes
the proper type of recycled View for the contentView parameter in the GetView method. This also
means that you may want to use the GetItemViewType method in your GetView method so that you
know which type of view you are working with.

This example uses the View object to fi nd all the subviews that need to have values set that corre-
spond to the Animal instance being displayed. The view’s FindViewById method works well to fi nd
references to the ImageView and two TextViews. As soon as you have those references, you can set
the values for those subviews using the Animal instance of the row to be displayed. When all this
is fi nished, the view is returned to be displayed for the row. You can think of this method as the
Android version of ASP.NET’s Control.FindControl method.

The last thing you need is an actual Activity to show your ListView. Listing 6-21 shows a simple
use of ListActivity to show ListView with the custom list adapter.

LISTING 6-21: Activity to display the ListView

using System.Collections.Generic;
using Android.App;
using Android.OS;

namespace Lists02
{
 [Activity(Label = “Animal List”, MainLauncher = true)]
 public class AnimalListActivity : ListActivity
 {
 protected override void OnCreate(Bundle savedInstanceState)
 {
 base.OnCreate(savedInstanceState);

 this.ListAdapter = new AnimalListAdapter(this,
 new List<Animal>() {
 new Animal() { Name = “Elephant”,
 Description = “Big and Gray, but what the hey”,
 Image = Resource.Drawable.Elephant },
 new Animal() { Name = “Chinchilla”,
 Description = “Little people of the andes”,
 Image = Resource.Drawable.Chinchilla },
 new Animal() { Name = “Lion”,
 Description = “Cowardly lion, anyone?”,

continues

c06.indd 165c06.indd 165 2/28/2012 4:13:22 PM2/28/2012 4:13:22 PM

McClure c06.indd V3 - 02/14/2012

166 x CHAPTER 6 BINDING DATA TO CONTROLS

 Image = Resource.Drawable.Lion },
 new Animal() { Name = “Skunk”,
 Description = “Ello, baby. I am ze locksmith...”,
 Image = Resource.Drawable.Skunk },
 new Animal() { Name = “Rhino”,
 Description = “Most live to about 60!”,
 Image = Resource.Drawable.Rhino },
 new Animal() { Name = “Zebra”,
 Description = “Stripes, not so great for hiding”
 Image = Resource.Drawable.Zebra }

 });
 }
 }
}

Lists02\AnimalListActivity.cs

Now you have all the components required to
display a custom list. You started with a custom
layout for your list items using multiple views,
you created a custom list adapter by overriding
the BaseAdapter class, and you created a
custom ListActivity with a data source to
display the ListView you wired to your
adapter. Your list should look something
like Figure 6-11.

Now you have seen a usable example for creating
your own customized lists using nondefault list
item layouts. This example also illustrates the
important real-world use case of incorporating your own custom data objects. You have taken the
most basic form of the list adapter by subclassing the BaseAdapter. From here, the sky’s the limit!

Handling ListView Events

A ListView isn’t very useful unless users can interact with it. ListView automatically gives you
scrolling and knows when to ask the list adapter for the right items to display. It even goes so far
as to recycle layouts for you with a little bit of knowledge implemented in your adapter. Luckily,
ListView also exposes a number of events for various types of interaction:

 ‰ ItemClick is raised whenever a user taps a list item once. This requires the user to touch the
list item and then lift while still in the area of the list item within a short period of time. On
some devices this event may also be fi red when the Enter button is clicked.

 ‰ ItemLongClick is raised when a user taps and holds a list item for a longer period of time.
This could also include clicking and holding the Enter button on some devices.

 ‰ ItemSelected occurs when an item has been selected.

 ‰ ItemCleared is the opposite of ItemSelected. This is when the item’s state is no longer selected.

FIGURE 6-11

LISTING 6-21 (continued)

c06.indd 166c06.indd 166 2/28/2012 4:13:22 PM2/28/2012 4:13:22 PM

McClure c06.indd V3 - 02/14/2012

Working with Lists x 167

 ‰ CreateContextMenuEvent is raised when a long click happens on a list item. This is a
convenient way to know when to show a context menu rather than writing the code in the
ItemLongClick event.

 ‰ Touch is a low-level event for touches that you can use to detect more complex touches.

 ‰ Recycler is raised with an instance to a view whenever a view is recycled for a list item.

Responding to one of these events is no different from any other .NET event, except that there is no
design-time support in Visual Studio for wiring up events. You can wire up a delegate for it and have
its code executed when the event fi res. As with any other .NET event, you can use anonymous del-
egate methods or lambda expressions to make for some clean inline code. Listing 6-22 shows a few
examples of wiring up ListView events to do something simple.

LISTING 6-22: Handling ListView events

using System;
using Android.App;
using Android.OS;
using Android.Widget;
using Android.Views;

namespace Lists03
{
 [Activity(Label = “Events List”), Mainlauncher=true)]
 public class EventsListActivity : ListActivity
 {
 private string[] items;

 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

 items = new string[] {“Item 1”, “Item 2”, “Item 3”};
 this.ListAdapter = new ArrayAdapter<string>(this,
 Android.Resource.Layout.SimpleListItem1, items);

 //Using an EventHandler
 this.ListView.ItemClick += new EventHandler<ItemEventArgs>(
 ListView_ItemClick);

 //Using an Anonymous Method
 this.ListView.ItemLongClick += delegate(object sender,
 Android.Widget.AdapterView.ItemLongClickEventArgs e)
 {
 Toast.MakeText(this,
 “Long Click: “ +
 items[e.Position],
 ToastLength.Short).Show();
 };

 //Using a Lambda Expression
 this.ListView.Recycler += (object sender,

continues

c06.indd 167c06.indd 167 2/28/2012 4:13:23 PM2/28/2012 4:13:23 PM

McClure c06.indd V3 - 02/14/2012

168 x CHAPTER 6 BINDING DATA TO CONTROLS

 AbsListView.RecyclerEventArgs e) =>
 {
 Toast.MakeText(this, “Recycler!”,
 ToastLength.Short).Show();
 };
 }

 void ListView_ItemClick(object sender, ItemEventArgs e)
 {
 Toast.MakeText(this, “Click: “ + items[e.Position],
 ToastLength.Short).Show();
 }
 }
}

Lists03\EventsListActivity.cs

Preferences Screen

You have many options for how your lists look and function; however, many times you may need to
accomplish the same types of tasks with your lists. Preferences and settings, for example, often use
the same types of list items to display and allow users to confi gure data. Android has some built-in
functionality that specifi cally addresses the task of displaying preferences to users.

PreferenceActivity is another type of Activity designed specifi cally to display certain
Preference list items with minimal effort. Most of the Preference list items allow you to defi ne a
key to access the values, as well as a title and description to display to the user:

 ‰ CheckBoxPreference is a simple on/off check box control.

 ‰ EditTextPreference displays a text box for editing in a dialog when the user taps the list item.

 ‰ ListPreference gives users a choice of items to select from a list. A default value can be set.

 ‰ PreferenceCategory displays a category title as a list item. This is for grouping
Preference items in a logical and aesthetically pleasing way.

 ‰ PreferenceScreen is used as a placeholder to navigate to another list of preferences. The
list items are obtained from the inner XML of the Preference screen in the layout fi le. You
can nest several levels of preferences in the same XML fi le.

 ‰ RingtonePreference shows a list of ringtones for the user to pick from.

 ‰ PreferenceDialog is a base class that you can inherit from to display your own UI inside a
dialog for a preference.

One of the nice things about this class is that it saves and loads preferences from a SharedPreference
automatically. Then you can access those preferences by their key later using the Preference Manager’s
DefaultSharedPreferences. PreferenceActivity typically is constructed from an XML layout
resource fi le. Listing 6-23 demonstrates a layout using many of the built-in preferences.

LISTING 6-22 (continued)

c06.indd 168c06.indd 168 2/28/2012 4:13:23 PM2/28/2012 4:13:23 PM

McClure c06.indd V3 - 02/14/2012

Working with Lists x 169

LISTING 6-23: Sample PreferenceActivity layout

<?xml version=”1.0” encoding=”utf-8”?>
<PreferenceScreen xmlns:android=”http://schemas.android.com/apk/res/android”>
 <PreferenceCategory android:title=”First Category”>
 <CheckBoxPreference
 android:key=”chooseFromList”
 android:title=”CheckBox Preference”
 android:defaultValue=”true”
 android:summary=”Do you want to Choose from the List?”
 />
 <ListPreference
 android:title=”List Preference”
 android:summary=” Allows you to select an array item”
 android:dependency=”chooseFromList”
 android:key=”listChoice”
 android:defaultValue=”1”
 android:entries=”@array/listChoiceEntries”
 android:entryValues=”@array/listChoiceEntryValues”
 />
 </PreferenceCategory>
 <PreferenceCategory android:title=”Second Category”>
 <PreferenceScreen android:title=”Advanced Options”>
 <CheckBoxPreference
 android:key=”advancedOption”
 android:title=”Advanced Option”
 android:defaultValue=”true”
 android:summary=”This is an Advanced Option”
 />
 </PreferenceScreen>
 <EditTextPreference android:dialogTitle=”EditTextTitle”
 android:dialogMessage=”Please enter your Text:”
 android:key=”mainOption”
 android:title=”Some Title”
 android:summary=”This is an EditText Preference”
 android:defaultValue=”Test”
 />
 </PreferenceCategory>
</PreferenceScreen>

Lists04\Resources\layout\Preferences.axml

Figure 6-12 shows what the XML layout from Listing 6-23 looks like after the layout is
infl ated. You can see how easy it is to create a rich set of Preference screens. Note that
Second Category contains a PreferenceScreen with a CheckBoxPreference inside it.
Nesting the PreferenceScreen in this way automatically creates the navigation between
PreferenceScreens. When the user taps the Advanced Options list item, a PreferenceScreen
with the Advanced Option check box is shown. You can easily nest multiple levels of
PreferenceScreen layout items in this way to create multilevel navigable Preferences using a
single PreferenceActivity.

c06.indd 169c06.indd 169 2/28/2012 4:13:23 PM2/28/2012 4:13:23 PM

McClure c06.indd V3 - 02/14/2012

170 x CHAPTER 6 BINDING DATA TO CONTROLS

FIGURE 6-12

You can also create PreferenceScreens programmatically. Sometimes you need to use a combina-
tion of techniques. Normally, you would assign a resource identifi er for the entries and entryVal-
ues of a ListPreference in the XML layout fi le. The resource identifi ers for these properties would
be string arrays in your Resources\values\strings.xml fi le.

In practice, sometimes you don’t know which values you want to use in your list until runtime. If you
don’t know what these entries and their values are at compile time, you can programmatically assign
them to your PreferenceList item at runtime. Listing 6-24 shows one way you can accomplish this.

LISTING 6-24: Setting up ListPreference items at runtime

using System;
using Android.App;
using Android.Content;
using Android.OS;
using Android.Runtime;
using Android.Views;
using Android.Widget;
using Android.Preferences;

namespace Lists04
{
 [Activity(Label = “Prefs”, MainLauncher=true)]
 public class Preferences : PreferenceActivity
 {
 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

c06.indd 170c06.indd 170 2/28/2012 4:13:23 PM2/28/2012 4:13:23 PM

McClure c06.indd V3 - 02/14/2012

Working with Lists x 171

 this.AddPreferencesFromResource(Resource.Layout.Preferences);

 var listPref = (this.FindPreference(“listChoice”) as ListPreference);

 listPref.SetEntries(new string[] { “Choice #1”, “Option No. 2”,
 “3rd” });
 listPref.SetEntryValues(new string[] { “1”, “2”, “3” });
 }
 }
}

Lists04\PreferencesActivity.cs

In this example, the PreferenceActivity’s layout is infl ated
from the preferences.xml layout by calling the method
AddPreferencesFromResource. However, after the layout
gets infl ated, FindPreference is used to locate the instance
of the ListPreference by the key specifi ed in the layout
resource XML fi le. Once you have a reference to the
ListPreference, you can call the SetEntries and
SetEntryValues methods to override whatever entries
and values exist in the ListPreference, as assigned by
the infl ator.

If you look at Listing 6-23, you can see it is not necessary to
specify the android:entries and android:entryValues
properties in your layout XML fi le if you plan to manually
assign entries and values at runtime. Figure 6-13 shows what
the ListPreference looks like.

Nested Navigation

Lists are often used to navigate through an application. A user
taps an item in a list, and then another list appears with more
items to choose from. Using this type of navigation, users can
drill down into an object’s properties and subproperties.

Enabling this sort of functionality is simple in Android and uses the concepts you’ve learned in
this chapter. All you need to do is wire up ListView’s ItemClick event (see Listing 6-25) and
start a new activity in the event handler. The Android Back button returns you to the previous
ListActivity.

Don’t forget that the same Activity life cycle applies here. It is possible that
you could return to an Activity that has been unloaded. You should try to save
and load states on an Activity-by-Activity basis wherever appropriate to
avoid confusing the users and causing errors in your application. Please refer to
Chapter 3 for more information about the life cycle of an Activity.

FIGURE 6-13

c06.indd 171c06.indd 171 2/28/2012 4:13:24 PM2/28/2012 4:13:24 PM

McClure c06.indd V3 - 02/14/2012

172 x CHAPTER 6 BINDING DATA TO CONTROLS

LISTING 6-25: Starting a nested activity

this.ListView.ItemClick += delegate
{
 StartActivity(typeof(SecondActivity));
};

Lists05\FirstActivity.cs

When dealing with nested lists, or nested activities of any type, you might need to pass data from
one Activity to the next. The Android documentation suggests a couple of ways to do this:

 ‰ Intent.PutExtra: This method requires that you have instantiated your Intent to be used
in the new Activity instead of just using a shortcut method such as StartActivity(Type).
With an Intent instance, calling PutExtra allows you to store simple data type values by
key name, which can be retrieved in the new Activity by using one of the Intent
.GetTypeExtra method variants. This is great for simple data types and arrays of simple
data types (and, in some cases, complex data types) such as the following:

 ‰ Bool

 ‰ Bool[]

 ‰ Bundle: Just another key/value dictionary to store more simple data types. PutExtra
uses a Bundle at the root level, so you can store Bundles within Bundles in this way.

 ‰ byte[]

 ‰ char, char[]

 ‰ double, double[]

 ‰ float, float[]

 ‰ int, int[]

 ‰ sbyte

 ‰ short, short[]

 ‰ string, string[]

 ‰ Java.IO.Iserializable: Any complex data type that implements this interface can
be stored.

 ‰ Static properties: Creating a static property or variable is also an acceptable way of stor-
ing data to be passed between Activities. You could create a static property on either the
Activity you are launching a new Activity from or the new Activity to be started. Just
be aware that if you plan to use multiple instances of an Activity, they will all use the same
static instance, which could cause problems.

Listing 6-26 shows how you can modify your code to start the next Activity by using the
PutExtra method to pass in the selected value from the ItemClick event.

c06.indd 172c06.indd 172 2/28/2012 4:13:25 PM2/28/2012 4:13:25 PM

McClure c06.indd V3 - 02/14/2012

Working with Lists x 173

LISTING 6-26: Passing data to the nested activity

this.ListView.ItemLongClick += (sender, e) => {

 string sel = this.ListAdapter.GetItem(e.Position).ToString();

 var secondIntent = new Android.Content.Intent(this, typeof(SecondActivity));
 secondIntent.PutExtra(“selected”, sel + “ was Selected!”);
 StartActivity(secondIntent);

};

Lists05\FirstActivity.cs

Grouped Lists

Sometimes you may want to group items in your ListView. In the Preferences example, you used
PreferenceCategory items to group different user preferences in a logical way. Unfortunately,
Android does not yet provide a default way to do this Category grouping in a normal ListView.
Only PreferenceScreen currently has this capability.

It is defi nitely possible to implement this style of grouped list, given the great fl exibility that
ListView gives you. One common way to implement this is to create a list adapter that displays a
collection of list adapters — one for each group or section.

In this example you will create a list adapter called SectionedAdapter. You will use two different
layouts for your list items. One layout is for the actual list items (in this example you will use an
instance of an ArrayAdapter for each group), and the other is for the Group Name separator items.
For the sake of simplicity, the sample uses the SimpleListItem1 layout for the list items to be dis-
played from the ArrayAdapters. Listing 6-27 demonstrates a layout for the Group Name separator
list item. The only unusual thing about the layout is the style property. It has a value of the built-in
listSeparatorTextViewStyle, which produces a gray background with white text.

LISTING 6-27: Group Name separator list item layout

<TextView
xmlns:android=”http://schemas.android.com/apk/res/android”
 android:id=”@+id/separator”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:gravity=”center”
 style=”?android:attr/listSeparatorTextViewStyle” />

Lists06\Resources\layout\Separator.axml

SectionedAdapter is responsible for managing all the sections containing an instance of the
Section property to be displayed. The Section object has a Caption property to store the section’s
displayable title, as well as a BaseAdapter property to keep a reference to the list adapter for the
section. Listing 6-28 shows the code you need to create SectionedAdapter.

c06.indd 173c06.indd 173 2/28/2012 4:13:25 PM2/28/2012 4:13:25 PM

McClure c06.indd V3 - 02/14/2012

174 x CHAPTER 6 BINDING DATA TO CONTROLS

LISTING 6-28: SectionedAdapter

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Android.App;
using Android.Content;
using Android.OS;
using Android.Runtime;
using Android.Views;
using Android.Widget;

namespace Lists06
{
 public class SectionedAdapter : BaseAdapter<Section>
 {
 const int TYPE_SECTION_HEADER = 0;

 Context context;
 LayoutInflater inflater;

 public SectionedAdapter(Context context)
 {
 this.context = context;
 this.inflater = LayoutInflater.From(context);
 this.Sections = new List<Section>();
 }

 public List<Section> Sections
 {
 get;
 set;
 }

 public override int Count
 {
 get
 {
 int count = 0;

 //Get each adapter’s count + 1 for the header
 foreach (var s in Sections)
 count += s.Adapter.Count + 1;

 return count;
 }
 }

 public override int ViewTypeCount
 {
 get
 {
 //The headers count as a view type too

c06.indd 174c06.indd 174 2/28/2012 4:13:25 PM2/28/2012 4:13:25 PM

McClure c06.indd V3 - 02/14/2012

Working with Lists x 175

 int viewTypeCount = 1;

 //Get each adapter’s ViewTypeCount
 foreach (var s in Sections)
 viewTypeCount += s.Adapter.ViewTypeCount;

 return viewTypeCount;
 }
 }

 public override Section this[int position]
 {
 get { return this.Sections[position]; }
 }

 public override bool AreAllItemsEnabled()
 {
 return false;
 }

 public override int GetItemViewType(int position)
 {
 // start counting from here
 int typeOffset = TYPE_SECTION_HEADER + 1;

 foreach (var s in Sections)
 {
 if (position == 0)
 return (TYPE_SECTION_HEADER);

 int size = s.Adapter.Count + 1;

 if (position < size)
 return (typeOffset + s.Adapter.GetItemViewType(position - 1));

 position -= size;
 typeOffset += s.Adapter.ViewTypeCount;
 }

 return -1;
 }

 public override long GetItemId(int position)
 {
 return position;
 }

 public void AddSection(string caption, BaseAdapter adapter)
 {
 this.Sections.Add(new Section() { Caption = caption, Adapter =
 adapter });
 }

 public override View GetView(int position, View convertView,
 ViewGroup parent)

continues

c06.indd 175c06.indd 175 2/28/2012 4:13:25 PM2/28/2012 4:13:25 PM

McClure c06.indd V3 - 02/14/2012

176 x CHAPTER 6 BINDING DATA TO CONTROLS

 {
 int sectionIndex = 0;

 foreach (var s in Sections)
 {
 if (position == 0)
 {
 TextView separator = convertView as TextView;

 if (separator == null)
 inflater.Inflate(Resource.Layout.Separator, null) as
 TextView;

 separator.Text = s.Caption;

 return separator;
 }

 int size = s.Adapter.Count + 1;

 if (position < size)
 return (s.Adapter.GetView(position - 1, convertView, parent));

 position -= size;
 sectionIndex++;
 }

 return null;
 }
 }
}

Lists06\SectionedAdapter.cs

All the usual methods and properties for a derivative of BaseAdapter are overridden in
SectionedAdapter. In the case of the Count property, the count becomes a Sum of the Count of
each Section’s adapter, plus 1 for the header row for each Section. Similarly, ViewTypeCount is a
Sum of ViewTypeCounts for each Section, plus 1 for the Separator view type.

GetItemViewType loops through all the Sections in order to fi nd which type of view the given
position is. In the case where the position is of a Separator, it returns the VIEW_TYPE_HEADER
constant of 0. Otherwise, it calls the GetItemViewType on the Adapter containing the item at
the specifi ed position to get its view type directly from the Adapter. The view type returned is
then added with the typeOffset value to ensure that no collisions occur in view types with other
adapters.

GetView uses the separator layout to build a View for Separator title list item. This method calls
on the adapter for the Section of the item in question, using the adapter’s GetView method to pass
along the View as the returned object.

LISTING 6-28 (continued)

c06.indd 176c06.indd 176 2/28/2012 4:13:25 PM2/28/2012 4:13:25 PM

McClure c06.indd V3 - 02/14/2012

Working with Lists x 177

Whereas you used an ArrayAdapter for both of the sections
in your SectionedAdapter example, you can use the
SectionedAdapter to display any type of list adapter you like.
You can also mix and match different list adapters within
a single SectionedAdapter. Each section can have its own
list adapter type, as long as it derives from the BaseAdapter
at some point. Your example should produce something
similar to Figure 6-14.

Displaying Data in a Grid

What if you wanted to display a grid of pictures in your appli-
cation? You could use a ListView and divide each row into
columns, managing each row yourself as actually being three
separate items. This would be challenging, but you could create
a subclass of ListView with this functionality, to be reused any
time you need it.

Android has done this for you in the form of a GridView.
GridView is ultimately derived from ListView, but instead of
displaying one list item per row, it displays list items in rows as well as columns in a two-dimen-
sional, scrollable grid. You can set the number of columns as well as the width of each column to
display varying amounts of data.

No simple activity such as ListActivity can be used with GridView, so you must at the very
least create a basic XML layout fi le with a GridView in it. Listing 6-29 shows a basic layout with a
GridView. You need to be aware of a couple of attributes that are specifi c to GridView, in addition
to the ListView attributes you are already familiar with:

 ‰ numColumns can be either an explicit number or auto_fit, which automatically shows as
many columns in a row as can fi t. This is useful in Landscape orientation, which, on most
devices, can fi t more columns than Portrait mode.

 ‰ stretchMode determines how to handle any extra space that is not taken up in a row by
the columns that fi t. If this value is set to columnWidth, any extra space is divided evenly
between each column’s width in the row. If this value is set to spacingWidth, the extra space
is divided evenly between the white spaces between the columns in the row.

LISTING 6-29: GridView layout

<?xml version=”1.0” encoding=”utf-8”?>
<GridView xmlns:android=”http://schemas.android.com/apk/res/android”
 android:id=”@+id/gridview”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 android:columnWidth=”90dp”
 android:numColumns=”auto_fit”
 android:verticalSpacing=”10dp”

FIGURE 6-14

continues

c06.indd 177c06.indd 177 2/28/2012 4:13:26 PM2/28/2012 4:13:26 PM

McClure c06.indd V3 - 02/14/2012

178 x CHAPTER 6 BINDING DATA TO CONTROLS

 android:horizontalSpacing=”10dp”
 android:stretchMode=”columnWidth”
 android:gravity=”center”
/>

Lists07\Resources\layout\Gridview.axml

This GridView requires a ListAdapter, just like every ListView. This adapter could be an
ArrayAdapter, a SimpleAdapter, or your own custom adapter derived from BaseAdapter, just
like in the project you created earlier. Continuing with the example, you will create a new custom
adapter called ImageAdapter, which will display one image per item. This is probably one of the
more common uses for a GridView, but you certainly aren’t limited to images. You can use Listing
6-30 to create your ImageAdapter.

LISTING 6-30: ImageAdapter

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using Android.App;
using Android.Content;
using Android.Graphics.Drawables;
using Android.OS;
using Android.Runtime;
using Android.Views;
using Android.Widget;

namespace Lists07
{
 public class ImageAdapter : BaseAdapter<Drawable>
 {
 Context context;

 public ImageAdapter(Context context)
 {
 this.context = context;
 this.Images = new List<Drawable>();
 }

 public List<Drawable> Images
 {
 get;
 set;
 }

 public override int Count
 {

LISTING 6-29 (continued)

c06.indd 178c06.indd 178 2/28/2012 4:13:26 PM2/28/2012 4:13:26 PM

McClure c06.indd V3 - 02/14/2012

Working with Lists x 179

 get { return this.Images.Count; }
 }

 public override Drawable this[int position]
 {
 get { return this.Images[position]; }
 }

 public override long GetItemId(int position)
 {
 return position;
 }

 public override View GetView(int position, View convertView, ViewGroup
 parent)
 {
 ImageView imageView;

 if (convertView == null)
 imageView = new ImageView(context);
 else
 imageView = (ImageView)convertView;

 imageView.SetImageDrawable(this.Images[position]);

 return imageView;
 }
 }
}

Lists07\ImageAdapter.cs

Notice that the ImageAdapter uses the BaseAdapter<Drawable> generic type, with a Drawable being
an image to be displayed for each item. The ImageAdapter has a List<Drawable> property to store
an instance of each image to be displayed in the GridView. The constructor requires a Context to be
passed in so that you have a Context to use when creating ImageViews to be displayed in each list item.

Focusing on GetView, convertView is checked to see if it can be recycled. If it cannot, a new
ImageView is created. In either case, the imageView reference is assigned a Drawable for the given
position.

Next you need an Activity to show the GridView. Listing 6-31 shows an Activity using the XML
layout from Listing 6-29.

LISTING 6-31: GridView Activity code

using System;
using Android.App;
using Android.Content;
using Android.Runtime;
using Android.Views;

continues

c06.indd 179c06.indd 179 2/28/2012 4:13:26 PM2/28/2012 4:13:26 PM

McClure c06.indd V3 - 02/14/2012

180 x CHAPTER 6 BINDING DATA TO CONTROLS

using Android.Widget;
using Android.OS;
using Android.Graphics.Drawables;

namespace Lists07
{
 [Activity(Label = “GridView”, MainLauncher = true)]
 public class ImageGridViewActivity : Activity
 {
 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

 // Set our view from the “main” layout resource
 SetContentView(Resource.Layout.Gridview);

 // Get our button from the layout resource,
 // and attach an event to it
 var gridView = this.FindViewById<GridView>(Resource.Id.Gridview);

 var ia = new ImageAdapter(this);
 ia.Images.Add(Resources.GetDrawable(Resource.Drawable.Battery));
 ia.Images.Add(Resources.GetDrawable(Resource.Drawable.Computer));
 ia.Images.Add(Resources.GetDrawable(Resource.Drawable.DriveCDROM));
 ia.Images.Add(Resources.GetDrawable(Resource.Drawable.DriveHardDisk));
 ia.Images.Add(Resources.GetDrawable(Resource.Drawable.InputKeyboard));
 ia.Images.Add(Resources.GetDrawable(Resource.Drawable.InputMouse));
 ia.Images.Add(Resources.GetDrawable(Resource.Drawable.MediaCDROM));
 ia.Images.Add(Resources.GetDrawable(Resource.Drawable
 .MediaCDROMAudio));
 ia.Images.Add(Resources.GetDrawable(Resource.Drawable.MediaCDRW));
 ia.Images.Add(Resources.GetDrawable(Resource.Drawable.MediaDVD));
 ia.Images.Add(Resources.GetDrawable(Resource.Drawable.MediaDVDRW));
 ia.Images.Add(Resources.GetDrawable(Resource.Drawable.MediaFloppy));
 ia.Images.Add(Resources.GetDrawable(Resource.Drawable.Printer));
 ia.Images.Add(Resources.GetDrawable(Resource.Drawable.VideoDisplay));

 gridView.Adapter = ia;
 }
 }
}

Lists07\ImageGridViewActivity.cs

All the images used in your project must exist in the proper Resources folder structure and have
the Build Action property set to AndroidResource. Figure 6-15 shows the Visual Studio Solution
Explorer layout for the images.

When you compile and run your project, you see a GridView like the one shown in Figure 6-16.
Notice how Portrait and Landscape modes hold a different number of columns. Because you did not

LISTING 6-31 (continued)

c06.indd 180c06.indd 180 2/28/2012 4:13:26 PM2/28/2012 4:13:26 PM

McClure c06.indd V3 - 02/14/2012

Working with Lists x 181

specify a number of columns in the XML Layout Resource fi le, GridView automatically fi ts in as
many columns as possible, based on their width.

FIG URE 6-15

FIG URE 6-16

c06.indd 181c06.indd 181 2/28/2012 4:13:26 PM2/28/2012 4:13:26 PM

McClure c06.indd V3 - 02/14/2012

182 x CHAPTER 6 BINDING DATA TO CONTROLS

SUMMARY

As you have learned in this chapter, there are many different ways to bind data to controls in
Android. First, you learned about data adapters and their relationship with adapter views. You
learned in detail about the inner workings of an adapter and explored the various native adapters
available in Android. Working with the SQLite storage system, you learned how to utilize cursors to
populate a spinner, as well as how to handle events from the Spinner. You also created a gallery con-
trol with cursors and a custom ImageAdapter implementation.

Later in this chapter, you worked closely with the ListView and ListActivity. You built a basic
ListView before creating a project using a Custom List Adapter to display Animal objects in the
ListView. Using the ListView events, you learned how to create an application using nested
navigation. You also explored the PreferenceScreen and different types of preference elements
that can be used to easily create intuitive and stylish user input–driven lists. Next, you worked on
a SectionedAdapter to create grouped lists. Finally, you used the GridView to display a grid of
images.

Displaying data to users is an integral part of any application. With Android, displaying data most
often follows the adapter powering a view pattern. This chapter has given you a close look at vari-
ous techniques to present data to users in a meaningful way. Now you are one step closer to creating
useful Android applications using Mono.

c06.indd 182c06.indd 182 2/28/2012 4:13:27 PM2/28/2012 4:13:27 PM

McClure c07.indd V2 - 02/06/2012

7
Working with the File System
and Application Preferences

WHAT’S IN THIS CHAPTER?

 ‰ Reviewing the fi le system

 ‰ Reading and writing a fi le

 ‰ Creating and reading application shared preferences

 ‰ Processing an XML fi le

 ‰ Listening for preference changes

This chapter covers the fi le system, reading and writing fi les to the fi le system, and system and
application preferences. The review of the fi le system covers the fi le system type and structure
and gives examples of reading and writing text fi les from the application to the fi le system. For
application preferences the chapter covers the API used for both shared and private preferences
and preference change notifi cation. The chapter also shows a program that uses the available
preferences namespace to show a standard user preferences interface. Finally, the chapter
shows how to process XML from an atom feed on the Internet.

User preferences are essential to providing a robust user experience, ensuring that users can
tailor the software to their own liking. Also, in the context of Android, private preferences
are important to maintaining user state in an environment where context changes can hap-
pen unexpectedly. For instance, if a user gets a call while keying data into your app, you want
to be sure that when the user returns to the app, the input is still there. The samples in this
chapter enable you to accomplish these tasks.

c07.indd 183c07.indd 183 2/28/2012 4:15:02 PM2/28/2012 4:15:02 PM

McClure c07.indd V2 - 02/06/2012

184 x CHAPTER 7 WORKING WITH THE FILE SYSTEM AND APPLICATION PREFERENCES

WORKING WITH THE FILE SYSTEM

As previously indicated, this chapter covers the fi le system and fi le I/O. It starts with a discussion of
the fi le system type and structure and then moves to look at how you work with permissions and fi le
access. Next it covers the fi le access API and wraps up with a sample program that reads and writes
to and from a local XML fi le.

File System Type and Structure

The default fi le system for Android is YAFFS (Yet Another Flash File System). YAFFS is currently
at version 2. It runs on top of the Linux operating system in Android and is also available for other
OSs. YAFFS provides wear leveling to prolong the life of the Flash memory. It has built-in error cor-
rection for robustness in case of a power failure. It also provides fast boot-up, making it a solid fi le
system for the Android platform.

If you want a thorough review of YAFFS, go to http://yaffs.net. In this chap-
ter we will just cover some of the high points.

The Linux operating system supports permissions to control the ability of the world, a group, or
the owner of a fi le to read, write, list, or execute the fi le. Each process executed on the Linux sys-
tem runs with a given set of user permissions. Each process running on Android is isolated. This is
achieved partially by having each process run with its own unique user permissions.

So, what permissions can a fi le have in Android? The four modes of fi le accessibility are private,
append, world-readable, and world-writeable. These modes are governed by the following constants:

 ‰ FileCreationMode.Private

 ‰ FileCreationMode.Append

 ‰ FileCreationMode.WorldReadable

 ‰ FileCreationMode.WorldWriteable

The names of these modes should be fairly obvious, but for clarity’s sake:

 ‰ Private makes the fi le readable and writeable for the fi le owner and no one else.

 ‰ Append constrains a fi le to be written to in Append mode.

 ‰ WorldReadable allows any other process to read the fi le.

 ‰ WorldWritable allows any other process to read from or write to the fi le.

The following snippet shows how to read from a fi le. It comes from the longer QuickEdit example
shown later in the chapter:

byte[] content = new byte[1024];
try
{
FileInputStream fis = OpenFileInput(QUICKEDIT_FILENAME);

c07.indd 184c07.indd 184 2/28/2012 4:15:05 PM2/28/2012 4:15:05 PM

McClure c07.indd V2 - 02/06/2012

Working with the File System x 185

fis.Read(content);
fis.Close();
}
catch (FileNotFoundException e)
{
Log.Error(QUICKEDIT_TAG, e.Message);
}
catch (IOException e)
{
 Log.Error(QUICKEDIT_TAG, e.Message);
}

The fi le access functions are defi ned in the Java.IO namespace. Table 7-1 lists the key functions and
exceptions.

TABLE 7-1: The Java.IO Namespace

TYPE DESCRIPTION

BufferedReader Provides buff ered fi le input.

BufferedWriter Provides buff ered fi le output.

EOFException This exception is thrown when a program encoun-

ters the end of a fi le or stream during an input

operation.

File This is the object that abstracts a fi le in the fi le sys-

tem, and could be a directory or a fi le. Also note

that although Java doesn’t specify character encod-

ing for fi lenames, on Android Java strings are con-

verted into UTF-8 byte sequences when sending

fi lenames to the operating system. Byte sequences

returned by the operating system (from the vari-

ous list methods) are converted to Java strings by

decoding them as UTF-8 byte sequences.

FileInputStream This is a specialized Java.IO.InputStream that is

used to stream read a fi le from the fi le system.

FileNotFoundException This exception is thrown when a fi le specifi ed by a

program cannot be found.

FileOutputStream This is a specialized Java.IO.OutputStream that

stream writes a fi le in the fi le system.

FilePermission Object that contains the permission enums for a

fi le. Also note that a File.separatorChar must

be used in all pathnames when constructing a

FilePermission.

continues

c07.indd 185c07.indd 185 2/28/2012 4:15:05 PM2/28/2012 4:15:05 PM

McClure c07.indd V2 - 02/06/2012

186 x CHAPTER 7 WORKING WITH THE FILE SYSTEM AND APPLICATION PREFERENCES

TYPE DESCRIPTION

InputStream This is an abstract class that is inherited by many

specialized input streams for purposes such as

reading from a fi le or a byte array.

IOException This exception signals a general, I/O-related error.

NotSerializableException This exception signals that an object that is not

serializable has been passed into the

ObjectOutput.writeObject() method.

OutputStream This is an abstract class that is inherited by many

specialized output streams for purposes such as

writing to a fi le or a byte array.

PrintStream Wraps an existing Java.IO.OutputStream and

provides convenience methods for writing common

data types in a human-readable format.

PrintWriter Wraps either an existing Java.IO.OutputStream

or an existing Java.IO.Writer and provides con-

venience methods for printing common data types

in a human-readable format.

RandomAccessFile Allows reading from and writing to a fi le in a ran-

dom-access manner.

StringReader This is a specialized Java.IO.Reader that reads

characters from a String in a sequential manner.

StringWriter This is a specialized Java.IO.Writer that writes

characters to a StringBuffer sequentially,

appending them in the process.

UnsupportedEncodingException This exception is thrown when a program asks for a

particular character converter that is unavailable.

UTFDataFormatException This exception signals that an incorrectly encoded

UTF-8 string has been encountered, most likely

while reading a DataInputStream.

Aside from persistent fi les, your application might need to store cache data in a fi le. To do that,
you would use GetCacheDir() along with a File object to open a fi le in the cache directory.
Cache fi les are subject to removal by Android if the system runs low on internal storage space, but
you should not count on the system’s cleaning up these fi les for you. If your application is removed,
the cache fi les it owns are removed also. But, as a good Android citizen you should remove any
unused cache fi les.

TABLE 7-1 (continued)

c07.indd 186c07.indd 186 2/28/2012 4:15:05 PM2/28/2012 4:15:05 PM

McClure c07.indd V2 - 02/06/2012

Working with the File System x 187

In addition to fi le creation, fi le placement also occurs. Files can be placed in internal or external
storage. Internal storage refers to the built-in device storage, and external storage refers to a
media card that can be added to the device. The two systems are accessed in a slightly different
manner.

For internal fi les, the following functions are used:

 ‰ OpenFileInput (filename, operatingmode)

 ‰ OpenFileOutput (filename, operatingmode)

These are for fi le input and output, respectively. In each case, the parameters are a fi lename and one
of the operating context modes that were mentioned earlier.

For external storage the operation is different. First you must check to see if any external storage is
available. If it is, you have to check to see if it is writable. After you have confi rmed that external
storage is available, you use GetExternalFilesDir() in conjunction with a standard File() object
to create a fi le on the external storage medium.

This can all be done with the ExternalStorageState property, as shown in the following code
snippet:

if (Android.OS.Environment.ExternalStorageState == Android.OS.Environment
 .MediaMounted)
 {
 File dataDir = this.GetExternalFilesDir(Android.OS.Environment
 .DataDirectory.Path);
 FileOutputStream fos = OpenFileOutput(dataDir +
 QUICKEDIT_FILENAME, FileCreationMode.Private);
 UTF8Encoding enc = new UTF8Encoding();
 fos.Write(enc.GetBytes(content));
 fos.Close();
 }

In this example there is only one test, whether ExternalStorageState equals MediaMounted. If
this is true, then the external media is available and in read-write mode — all is good. If this is not
true, then there are other media states that could be tested to determine the exact status.

GetExternalFilesDir takes a parameter of type string that indicates the standard directory for
any of the several standard fi le types shown in Table 7-2.

TABLE 7-2: Standard Directories Used by GetExternalFilesDir

DIRECTORY CONSTANT DESCRIPTION

DirectoryAlarms Standard directory in which to place any audio fi les that

should be in the list of alarms that the user can select (not as

regular music).

DirectoryDcim Standard directory in which to place pictures and videos when

mounting the device as a camera.

continues

c07.indd 187c07.indd 187 2/28/2012 4:15:05 PM2/28/2012 4:15:05 PM

McClure c07.indd V2 - 02/06/2012

188 x CHAPTER 7 WORKING WITH THE FILE SYSTEM AND APPLICATION PREFERENCES

DIRECTORY CONSTANT DESCRIPTION

DirectoryDownloads Standard directory in which to place fi les that the user has

downloaded.

DirectoryMovies Standard directory in which to place movies that are available

to the user.

DirectoryMusic Standard directory in which to place any audio fi les that

should be in the list of regular music for the user.

DirectoryNotifications Standard directory in which to place any audio fi les that

should be in the list of notifi cations that the user can select

(not as regular music).

DirectoryPictures Standard directory in which to place pictures that are available

to the user.

DirectoryPodcasts Standard directory in which to place any audio fi les that

should be in the list of podcasts that the user can select (not

as regular music).

DirectoryRingtones Standard directory in which to place any audio fi les that

should be in the list of ringtones that the user can select (not

as regular music).

If you pass in a null instead of one of the previous constants, GetExternalFilesDir returns the
path to the root of the external storage medium.

Again, as with internal storage, you may create cache fi les on the external storage medium. This is
done with the unsurprisingly named GetExternalCacheDir() and a File object.

How do you read a fi le? Files can be read from or written to in either a streaming or random-access
fashion. The following snippet shows how to read bytes from a fi le:

byte[] content = new byte[1024];
FileInputStream fis = OpenFileInput(QUICKEDIT_FILENAME);
fis.Read(content);
fis.Close();

The following snippet shows how to write to a fi le. Here a string value is written to a text fi le
through FileOutputStream. It’s important to note that because a string is made up of char-
acters and FileOutputStream writes bytes, the characters must be converted to bytes. Here
UTF8Encoding is used to accomplish the task:

String content = “content”;
FileOutputStream fos = OpenFileOutput(“filename.txt”,
 FileCreationMode.Private);
UTF8Encoding enc = new UTF8Encoding();
fos.Write(enc.GetBytes(content));
fos.Close();

TABLE 7-2 (continued)

c07.indd 188c07.indd 188 2/28/2012 4:15:05 PM2/28/2012 4:15:05 PM

McClure c07.indd V2 - 02/06/2012

Working with the File System x 189

QuickEdit Sample Program: Working with a File Storage Example

Having reviewed fi le storage, now you are going to take a look at a program that reads and writes
text data from the display to the fi le system.

The fi rst thing to do is create a new Android program and call it QuickEdit.

The next thing to do is to change the layout:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 >
<EditText
 android:id=”@+id/fileEditor”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 android:text=”@string/Hello”
 android:gravity=”top”
 />
</LinearLayout>

QuickEdit snippets can be found in the QuickEdit folder.

Here you can see to replace the default “Hello World” button with an EditText element that fi lls
the screen.

Next add some constants that you will use in the program above the OnCreate function:

const int MENU_GROUP = 0;
const int SAVE_FILE_MENU_ID = 1;
const int SAVE_FILE_MENU_ORDER = 1;

const string QUICKEDIT_TAG = “QUICKEDIT”;
const string QUICKEDIT_FILENAME = “quickedit.txt”;

These constants specify values to be used by the context menu, the tag you will use in the log mes-
sages generated by the program, and a fi lename for the notes you create. Of course, a more sophisti-
cated program would give the user a dialog box in which to enter this value, but a single fi lename is
fi ne for demonstration purposes.

Next, you add an OpenFile function:

void OpenFile()
{
 byte[] content = new byte[1024];
 try
 {
 Stream fis = OpenFileInput(QUICKEDIT_FILENAME);
 if ((fis.Read(content,0,content.Length)) > 0)
 {

c07.indd 189c07.indd 189 2/28/2012 4:15:06 PM2/28/2012 4:15:06 PM

McClure c07.indd V2 - 02/06/2012

190 x CHAPTER 7 WORKING WITH THE FILE SYSTEM AND APPLICATION PREFERENCES

 EditText editText = (EditText)FindViewById(Resource.Id.fileEditor);
 UTF8Encoding enc = new UTF8Encoding();
 char[] chars = enc.GetChars(content);
 int charLength = chars.Length;
 if (charLength>0) {
 editText.SetText(new string(chars),
 Android.Widget.TextView.BufferType.Editable);
 }
 }
 fis.Close();
 }
 catch (Java.IO.FileNotFoundException e)
 {
 Log.Error(QUICKEDIT_TAG, e.Message);
 }
 catch (Java.IO.IOException e)
 {
 Log.Error(QUICKEDIT_TAG, e.Message);
 }
}

Here you call the OpenFileInput function to open the fi lename specifi ed by the constant value. The
fi le data is read into a byte array (limited in size to 1024 bytes for demonstration purposes), and
then the fi le is closed. The editText view is retrieved. Finally, the fi le text is set into the edit text
view while the bytes are converted into characters using UTF8 encoding.

After this, you defi ne two functions to display and handle the context menu and its events:

public override bool OnCreateOptionsMenu (IMenu menu)
{
 base.OnCreateOptionsMenu(menu);
 menu.Add(MENU_GROUP,
 SAVE_FILE_MENU_ID,
 SAVE_FILE_MENU_ORDER,
 Resource.String.Save);
 return true;
}

public override bool OnOptionsItemSelected(IMenuItem item)
{
 base.OnOptionsItemSelected(item);
 switch (item.ItemId)
 {
 case SAVE_FILE_MENU_ID:
 SaveFile();
 return true;
 }

 return false;
}

First you create the options menu in the OnCreateOptionsMenu handler. Then you handle the
OnOptionsItemSelected event, where you call SaveFile if that option has been selected.

Finally, you defi ne the SaveFile function:

c07.indd 190c07.indd 190 2/28/2012 4:15:06 PM2/28/2012 4:15:06 PM

McClure c07.indd V2 - 02/06/2012

Working with the File System x 191

void SaveFile()
 {
 EditText editText = (EditText)FindViewById(Resource.Id.fileEditor);
 String content = editText.Text;
 try
 {
 Stream fos = OpenFileOutput(QUICKEDIT_FILENAME,
 FileCreationMode.Private);
 UTF8Encoding enc = new UTF8Encoding();
 fos.Write(enc.GetBytes(content),0,enc.GetBytes(content).Length);
 fos.Close();
 }
 catch (Java.IO.FileNotFoundException e)
 {
 Log.Error(QUICKEDIT_TAG, e.Message);
 }
 catch (Java.IO.IOException e)
 {
 Log.Error(QUICKEDIT_TAG, e.Message);
 }
 }

Here you do the reverse of the OpenFile function, opening an output stream to the
quickedit.txt fi le. Then you write the bytes to the output stream after converting them from
UTF8 characters.

Finally, add a call to OpenFile in the OnCreate method:

OpenFile();

Listing 7-1 shows the fi nal program:

LISTING 7-1: QuickEdit sample program

using System;

using Android.App;
using Android.Content;
using Android.Runtime;
using Android.Views;
using Android.Widget;
using Android.OS;
using Java.IO;
using Android.Util;
using System.Text;
using System.IO;

namespace QuickEdit
{
 [Activity(Label = “QuickEdit”, MainLauncher = true)]
 public class QuickEdit : Activity
 {
 const int MENU_GROUP = 0;

continues

c07.indd 191c07.indd 191 2/28/2012 4:15:06 PM2/28/2012 4:15:06 PM

McClure c07.indd V2 - 02/06/2012

192 x CHAPTER 7 WORKING WITH THE FILE SYSTEM AND APPLICATION PREFERENCES

 const int SAVE_FILE_MENU_ID = 1;
 const int SAVE_FILE_MENU_ORDER = 1;

 const string QUICKEDIT_TAG = “QUICKEDIT”;
 const string QUICKEDIT_FILENAME = “quickedit.txt”;

 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

 // Set our view from the “main” layout resource
 SetContentView(Resource.Layout.Main);

 OpenFile();
 }

 public override bool OnCreateOptionsMenu (IMenu menu)
 {
 base.OnCreateOptionsMenu(menu);
 menu.Add(MENU_GROUP,
 SAVE_FILE_MENU_ID,
 SAVE_FILE_MENU_ORDER,
 Resource.String.Save);
 return true;
 }

 public override bool OnOptionsItemSelected(IMenuItem item)
 {
 base.OnOptionsItemSelected(item);
 switch (item.ItemId)
 {
 case SAVE_FILE_MENU_ID:
 SaveFile();
 return true;
 }
 return false;
 }

 void SaveFile()
 {
 EditText editText = (EditText)FindViewById(Resource.Id.fileEditor);
 String content = editText.Text;
 try
 {
 Stream fos = OpenFileOutput(QUICKEDIT_FILENAME,
 FileCreationMode.Private);
 UTF8Encoding enc = new UTF8Encoding();
 fos.Write(enc.GetBytes(content),0,enc.GetBytes(content).Length);
 fos.Close();
 }
 catch (Java.IO.FileNotFoundException e)
 {
 Log.Error(QUICKEDIT_TAG, e.Message);

LISTING 7-1 (continued)

c07.indd 192c07.indd 192 2/28/2012 4:15:07 PM2/28/2012 4:15:07 PM

McClure c07.indd V2 - 02/06/2012

Working with the File System x 193

 }
 catch (Java.IO.IOException e)
 {
 Log.Error(QUICKEDIT_TAG, e.Message);
 }
 }

 void SaveExternalFile()
 {
 EditText editText = (EditText)FindViewById(Resource.Id.fileEditor);
 String content = editText.Text.ToString();
 try
 {

 if (Android.OS.Environment.ExternalStorageState ==
 Android.OS.Environment.MediaMounted)
 {
 Java.IO.File dataDir = this.GetExternalFilesDir
 (Android.OS.Environment.DataDirectory.Path);
 Stream fos = OpenFileOutput(dataDir + QUICKEDIT_FILENAME,
 FileCreationMode.Private);
 UTF8Encoding enc = new UTF8Encoding();
 fos.Write(enc.GetBytes(content), 0,
 enc.GetBytes(content).Length);
 fos.Close();
 }
 }
 catch (Java.IO.FileNotFoundException e)
 {
 Log.Error(QUICKEDIT_TAG, e.Message);
 }
 catch (Java.IO.IOException e)
 {
 Log.Error(QUICKEDIT_TAG, e.Message);
 }
 }

 void OpenFile()
 {
 byte[] content = new byte[1024];
 try
 {
 Stream fis = OpenFileInput(QUICKEDIT_FILENAME);
 if ((fis.Read(content,0,content.Length)) > 0)
 {
 EditText editText =
 (EditText)FindViewById(Resource.Id.fileEditor);
 UTF8Encoding enc = new UTF8Encoding();
 char[] chars = enc.GetChars(content);
 int charLength = chars.Length;
 if (charLength>0) {
 editText.SetText(new string(chars),
 Android.Widget.TextView.BufferType.Editable);
 }
 }
 fis.Close();

continues

c07.indd 193c07.indd 193 2/28/2012 4:15:07 PM2/28/2012 4:15:07 PM

McClure c07.indd V2 - 02/06/2012

194 x CHAPTER 7 WORKING WITH THE FILE SYSTEM AND APPLICATION PREFERENCES

 }
 catch (Java.IO.FileNotFoundException e)
 {
 Log.Error(QUICKEDIT_TAG, e.Message);
 }
 catch (Java.IO.IOException e)
 {
 Log.Error(QUICKEDIT_TAG, e.Message);
 }
 }
 }
}

The QuickEdit sample program can be found in the QuickEdit folder.

If you run this program in your Android emulator, you should see the result shown in Figure 7-1.

FIGURE 7-1

If you add some text and select Save from the menu, that text is saved and will be automati-
cally loaded every time you reenter the program. To improve the program you should try a
couple of things. Enhance the OpenFile function to be unlimited by the 1024-byte buffer. Also
link SaveFile to a text-changed event so that the user does not need to remember to save his
or her file.

LISTING 7-1 (continued)

c07.indd 194c07.indd 194 2/28/2012 4:15:07 PM2/28/2012 4:15:07 PM

McClure c07.indd V2 - 02/06/2012

Working with Application Preferences x 195

WORKING WITH APPLICATION PREFERENCES

This section deals with application preferences. It starts by covering the types of application prefer-
ences and then discusses the preferences API. This section wraps up with a sample program that
shows how to store and retrieve shared and private preferences and how to listen for preference
changes.

Application Preference Types

Application preferences are simple maps of name-value pairs. Name-value pairs are stored through a
key string and then one of a limited number of value types:

 ‰ Boolean

 ‰ Float

 ‰ Int

 ‰ Long

 ‰ String

The two types of preferences are private and shared. Private preferences are private to an activity
within an application. Shared preferences are named and can be opened by any activity within the
application. The function calls for each are as follows:

 ‰ GetPreferences(mode)

 ‰ GetSharedPreferences(name, mode)

Since private preferences are necessarily private and are inaccessible to any other activity, the call
requires no name parameter — only an access mode. In fact, this function simply leverages the sec-
ond function by calling it with the activity’s class name as the name parameter.

GetSharedPreferences, however, requires two parameters. The fi rst parameter is the name of the
preferences fi le, and the second is the fi le access mode. These were mentioned in the previous sec-
tion, but this time the available modes are limited to three:

 ‰ FileCreationMode.Private

 ‰ FileCreationMode.WorldReadable

 ‰ FileCreationMode.WorldWriteable

You might ask, “What is the benefi t of private preferences when you could sim-
ply have shared preferences in private mode?” The answer is simply convenience
and a common scenario in Android. Given that activities in Android do not con-
trol their own life cycle and that users can navigate away at any time, you often
need to save the activity state. So a quick call to GetPreferences(mode) gives
you a good object for storing partially entered text or other settings that have not
yet been completed.

c07.indd 195c07.indd 195 2/28/2012 4:15:07 PM2/28/2012 4:15:07 PM

McClure c07.indd V2 - 02/06/2012

196 x CHAPTER 7 WORKING WITH THE FILE SYSTEM AND APPLICATION PREFERENCES

Creating Your Own Application Preferences

So how do you create your own application preferences? There are a couple of ways. First you are
going to look at some snippets of code that demonstrate how to manually create private and shared
preferences. Then you are going to look at a sample program that uses a standard preferences screen
to create preference values. Consider the following snippet:

ISharedPreferences p = GetPreferences(FileCreationMode.Private);
String value = p.GetString(“MyTextValue”, “”);

The fi rst line gets the private ISharedPreferences object. Again, it is important to note that both
GetPreferences() and GetSharedPreferences() return an object of type ISharedPreferences.
Then the second line retrieves the value stored under the key “MyTextValue”. If there is no value, it
returns the second parameter — in this case, an empty string — as the default. There are six acces-
sor methods:

 ‰ GetString

 ‰ GetFloat

 ‰ GetInt

 ‰ GetLong

 ‰ GetBoolean

 ‰ GetAll

The fi rst fi ve return a single value of the data type specifi ed by the function. The last function
returns a map of all the keys and values in the system.

Now that you have seen how to read values from a ISharedPreferences object, how do you
change the values in this object? The answer is to use the SharedPreferences.Editor interface.
You access this interface through a call to p.Edit() on the ISharedPreferences object. The fol-
lowing code snippet shows getting, editing, and storing the edited values:

ISharedPreferences p = GetPreferences(FileCreationMode.Private);
String value = p.GetString(“MyTextValue”, “”);
value = “New Value”;
ISharedPreferencesEditor e = p.Edit();
e.PutString(“MyTextValue”,value);
e.Commit();

Here you retrieve ISharedPreferences with a call to GetPreferences(). Then you retrieve what-
ever string is stored under the key “MyTextValue” or “” if there is no value. The value string is then
assigned “New Value”. A call to p.Edit() returns ISharedPreferencesEditor, which is used to
store the string “New Value” into the key “MyTextValue”. Then a fi nal call to e.Commit() writes
the changes to disk.

Five functions are used to store values in ISharedPreferencesEditor:

 ‰ PutString(string key, string value)

 ‰ PutInt(string key, int value)

c07.indd 196c07.indd 196 2/28/2012 4:15:08 PM2/28/2012 4:15:08 PM

McClure c07.indd V2 - 02/06/2012

Working with Application Preferences x 197

 ‰ PutLong(string key, long value)

 ‰ PutFloat(string key, float value)

 ‰ PutBoolean(string key, boolean value)

Two functions are used to remove keys:

 ‰ Remove(string key)

 ‰ Clear()

Remove removes the key-value pair specifi ed by the key, and Clear removes all the key-value pairs.

Then it is important to note that all changes are batched and are not saved until the following func-
tion is called:

 ‰ Boolean Commit();

Commit() makes a synchronous call to write to storage immediately and provides a Boolean result
to that call.

Preferences Program

This section shows you how to create a preferences screen and how to update preference values
using that screen in a sample program. In this example you will use the objects in the preferences
namespace, which are described in Table 7-3.

TABLE 7-3: Preferences Namespace

TYPE DESCRIPTION

CheckBoxPreference This preference stores a Boolean in SharedPreferences.

DialogPreference This is a base class for Android.Preferences.Preference objects

that are dialog box-based.

EditTextPreference This preference allows an editable string to be stored into the prefer-

ences fi le.

ListPreference This preference stores a string in SharedPreferences from a list of

available strings.

Preference This class contains a key that will be used as the key into

Android.Content.ISharedPreferences.

PreferenceActivity As a convenience, this activity implements a click listener for any

 preference in the current hierarchy.

PreferenceCategory Used to group Android.Preferences.Preference objects and

 provide a disabled title above the group.

continues

c07.indd 197c07.indd 197 2/28/2012 4:15:08 PM2/28/2012 4:15:08 PM

McClure c07.indd V2 - 02/06/2012

198 x CHAPTER 7 WORKING WITH THE FILE SYSTEM AND APPLICATION PREFERENCES

TYPE DESCRIPTION

PreferenceGroup A container for multiple Android.Preferences.Preference objects.

PreferenceScreen Used to group preferences onto another screen so that when the title is

clicked, a new preference screen opens with the grouped preferences.

RingtonePreference Allows the user to select a ringtone. If the user chooses the Default item,

the saved string is one of Android.Provider.Settings.System

.DefaultRingtoneUri, Android.Provider.Settings.System

.DefaultNotificationUri, or Android.Provider.Settings

.System.DefaultAlarmAlertUri.

Most of these objects don’t need to be coded directly, but you will leverage them in a
PreferenceScreen layout. So let’s start. The fi rst step is to create a new Android program. This
time you will call it MonoForAndroidPreferences.

Once the new project is up and going, the next thing to do is add an arrays.xml fi le under
Resources/Values with the following content:

<?xml version=”1.0” encoding=”utf-8” ?>
<resources>
 <string-array name=”frequency_options”>
 <item>Every Minute</item>
 <item>5 minutes</item>
 <item>10 minutes</item>
 <item>15 minutes</item>
 <item>Every Hour</item>
 </string-array>
 <string-array name=”frequency_values”>
 <item>1</item>
 <item>5</item>
 <item>10</item>
 <item>15</item>
 <item>60</item>
 </string-array>
 <string-array name=”number_options”>
 <item>3</item>
 <item>5</item>
 <item>6</item>
 <item>7</item>
 <item>8</item>
 </string-array>
 <string-array name=”number_values”>
 <item>3</item>
 <item>5</item>
 <item>6</item>
 <item>7</item>
 <item>8</item>

TABLE 7-3 (continued)

c07.indd 198c07.indd 198 2/28/2012 4:15:08 PM2/28/2012 4:15:08 PM

McClure c07.indd V2 - 02/06/2012

Working with Application Preferences x 199

 </string-array>
</resources>

MonoForAndroidPreferences snippets can be found in the MonoForAndroidPreferences folder.

The layout uses these arrays to populate the preferences screen. The next thing to do is to create the
following layout under the name userpreferences.xml in the Layouts folder.

<?xml version=”1.0” encoding=”utf-8” ?>
<PreferenceScreen
 xmlns:android=”http://schemas.android.com/apk/res/android”>
 <PreferenceCategory
 android:title=”Category One”/>
 <CheckBoxPreference
 android:key=”PREF_AUTO_UPDATE”
 android:title=”Auto refresh”
 android:summary=”Select to turn on automatic updating”
 android:defaultValue=”true”
 />
 <ListPreference
 android:key=”PREF_SIZE”
 android:title=”Minimum size”
 android:summary=”Select the minimum size”
 android:entries=”@array/number_options”
 android:entryValues=”@array/number_values”
 android:dialogTitle=”Magnitude”
 android:defaultValue=”3”
 />
 <ListPreference
 android:key=”PREF_FREQUENCY”
 android:title=”Refresh frequency”
 android:summary=”Frequency at which to refresh”
 android:entries=”@array/frequency_options”
 android:entryValues=”@array/frequency_values”
 Android: dialogTitle=”Refresh frequency”
 Android: defaultValue=”60”
 />
 <PreferenceCategory
 Android:title=”Category Two”/>
 <EditTextPreference
 android:name=”EditText Preference”
 android:summary=”This allows you to enter a string”
 android:defaultValue=”Edit Me”
 android:title=”Edit This Text”
 android:key=”PREF_TEXT_1” />
 <PreferenceScreen
 android:key=”SecondPrefScreen”
 android:title=”Second PreferenceScreen”
 android:summary=”This is a second PreferenceScreen”>
 <EditTextPreference

c07.indd 199c07.indd 199 2/28/2012 4:15:09 PM2/28/2012 4:15:09 PM

McClure c07.indd V2 - 02/06/2012

200 x CHAPTER 7 WORKING WITH THE FILE SYSTEM AND APPLICATION PREFERENCES

 android:name=”A second EditText Preference”
 android:summary=”This is a preference in the second PreferenceScreen”
 android:title=”Edit text”
 android:key=”PREF_TEXT_2” />
 </PreferenceScreen>

</PreferenceScreen>

A few items are worth noting in this piece of XML. The fi rst is that the different preference objects
such as ListPreference and EditTextPreference have android:key values. These refer to
the keys that will be stored in the preferences fi le. The second thing to note is the reference to the
arrays that we created under the list preferences. Finally, it is worth noting that you can embed one
PreferenceScreen in another to automatically link to an extended set of preferences.

Next you want to make some quick changes to the Resources/Values strings.xml, setting the
text to the following:

<resources>
 <string name=”hello”>Hello Preferences, Click Me!</string>
 <string name=”app_name”>MonoForAndroidPreferences</string>
</resources>

Next you want to move on to some actual code. So create a new class called UserPreferences and
provide the following code:

namespace MonoForAndroidPreferences
{
 [Activity(Label = “User Preferences”)]
 public class UserPreferences : PreferenceActivity
 {
 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

 // Create your application here
 this.AddPreferencesFromResource(Resource.Layout.userpreferences);
 }
 }
}

Notice that UserPreferences inherits from PreferenceActivity and that you call
AddPreferencesFromResource referring to the previously created userpreferences layout.

Finally, return to the MonoForAndroidPreferences OnCreate handler to make the following
changes:

namespace MonoForAndroidPreferences
{
 [Activity(Label = “Preferences”, MainLauncher = true)]
 public class PreferencesDemo : Activity
 {
 int count = 1;

 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

c07.indd 200c07.indd 200 2/28/2012 4:15:09 PM2/28/2012 4:15:09 PM

McClure c07.indd V2 - 02/06/2012

Working with Application Preferences x 201

 // Set our view from the “main” layout resource
 SetContentView(Resource.Layout.main);

 // Get our button from the layout resource,
 // and attach an event to it
 Button button = FindViewById<Button>(Resource.Id.myButton);

 button.Click += delegate {

 Intent i = new Intent(this, (Java.Lang.Class)(new
 UserPreferences().Class));
 this.StartActivityForResult(i, 0);
 };
 }
 }
}

Here you see the code changed for the button delegate. You create a new intent based on
the UserPreferences class. Then, when the button is clicked, you fi re off the activity using
StartActivityForResult. This guarantees that you will return to this activity when you are through
with your preference changes on the preference screens. Listing 7-2 presents a full listing of the code.

LISTING 7-2: MonoForAndroidPreferences sample program

namespace MonoForAndroidPreferences
{
 [Activity(Label = “Preferences”, MainLauncher = true)]
 public class PreferencesDemo : Activity
 {
 int count = 1;

 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

 // Set our view from the “main” layout resource
 SetContentView(Resource.Layout.main);

 // Get our button from the layout resource,
 // and attach an event to it
 Button button = FindViewById<Button>(Resource.Id.myButton);

 button.Click += delegate {

 Intent i = new Intent(this, (Java.Lang.Class)(new
 UserPreferences().Class));
 this.StartActivityForResult(i, 0);
 };
 }
 }
}

continues

c07.indd 201c07.indd 201 2/28/2012 4:15:09 PM2/28/2012 4:15:09 PM

McClure c07.indd V2 - 02/06/2012

202 x CHAPTER 7 WORKING WITH THE FILE SYSTEM AND APPLICATION PREFERENCES

namespace MonoForAndroidPreferences
{
 [Activity(Label = “User Preferences”)]
 public class UserPreferences : PreferenceActivity
 {
 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

 // Create your application here
 this.AddPreferencesFromResource(Resource.Layout.userpreferences);
 }
 }
}

The MonoForAndroidPreferences sample program can be found in the MonoForAndroidPreferences folder.

Figures 7-2 and 7-3 show the program running.

FIGURE 7-2

Listening for Preference Changes

One important aspect of preferences is to know when they change. This section looks at how to
handle the change events that are generated by changes in shared preferences.

LISTING 7-2 (continued)

c07.indd 202c07.indd 202 2/28/2012 4:15:09 PM2/28/2012 4:15:09 PM

McClure c07.indd V2 - 02/06/2012

Working with Application Preferences x 203

FIGURE 7-3

Two functions are important in this process — one for registering a change listener, and the other
for unregistering it:

 ‰ RegisterOnSharedPreferenceChangeListener

(ISharedPreferencesOnSharedPreferenceChangeListener)

 ‰ UnregisterOnSharedPreferenceChangeListener

(ISharedPreferencesOnSharedPreferenceChangeListener)

The following code snippet shows these functions in action:

 protected override void OnResume()
 {
 base.OnResume();

 this.GetPreferences(FileCreationMode.Private)
 .RegisterOnSharedPreferenceChangeListener(this);
 }

 protected override void OnPause()
 {
 base.OnPause();

 this.GetPreferences(FileCreationMode.Private)
 .UnregisterOnSharedPreferenceChangeListener(this);
 }

c07.indd 203c07.indd 203 2/28/2012 4:15:09 PM2/28/2012 4:15:09 PM

McClure c07.indd V2 - 02/06/2012

204 x CHAPTER 7 WORKING WITH THE FILE SYSTEM AND APPLICATION PREFERENCES

 public void OnSharedPreferenceChanged(ISharedPreferences prefs, string key)
 {
 // Do something with the changed value pointed to by key
 }

In this example the listener is registered during the OnResume process and is unregistered dur-
ing the OnPause process. While the listener is active, whenever a preference changes, the
OnSharedPreferenceChanged function is called, allowing the activity to react to the preference change.

Processing XML

Android provides access to three different XML parsers: the DOM parser, the SAX parser, and an
XML pull parser. However, these have not all been exposed through the Mono for Android inter-
face yet. Nevertheless, XML processing is available through the Linq XML namespace.

The following snippet shows how an Atom feed from http://freshmeat.net, a site focused on
open source software, might be processed:

private void getFreshMeatFeed()
{
 WebClient client = new WebClient();
 client.DownloadStringAsync(new
 Uri(“http://freshmeat.net/?format=atom”));
 client.DownloadStringCompleted += new
 DownloadStringCompletedEventHandler(client_DownloadStringCompleted);
}

private void client_DownloadStringCompleted(object sender,
 DownloadStringCompletedEventArgs e)
 {
 if (e.Error == null)
 {
 XDocument xml = XDocument.Parse(e.Result);
 XNamespace atomNS = “http://www.w3.org/2005/Atom”;

 System.Collections.Generic.IEnumerable<AtomEntry> list = (from
 entry in xml.Descendants(atomNS + “entry”)
 select new AtomEntry()
 {
 ID = entry.Element(atomNS + “id”).Value,
 Title = entry.Element(atomNS + “title”).Value,
 Content = entry.Element(atomNS + “content”).Value,
 Published = DateTime.Parse(entry.Element(atomNS +
 “published”).Value),
 Updated = DateTime.Parse(entry.Element(atomNS +
 “updated”).Value)
 });

 ArrayList titles = new ArrayList();
 foreach (AtomEntry atomEntry in list) {

c07.indd 204c07.indd 204 2/28/2012 4:15:10 PM2/28/2012 4:15:10 PM

McClure c07.indd V2 - 02/06/2012

Summary x 205

 titles.Add(atomEntry.Title);
 }

 this.RunOnUiThread(() =>
 {
 Java.Lang.Object[] test = list.ToArray();
 ArrayAdapter aao = new ArrayAdapter<Java.Lang.Object>(this,
 Android.Resource.Layout.SimpleListItem1,test);
 ((ListView)this.FindViewById(Resource.Id.FMListView)).Adapter
 = aao;
 });
 }
 }

Code for this sample can be found in this chapter’s download in the FreshMeat2 folder.

Here we see a couple of things going on. First, in the function getFreshMeatFeed, you create a
WebClient object to make the call to the feed on the Internet. When the client download is fi nished,
client_DownloadStringCompleted is called. After checking for any errors, the download result
is parsed into an XDocument object. Then a list of AtomEntry objects is created by searching on
“entry” descendants and parsing the contents of each entry.

Although this is only a snippet, it represents a common pattern for processing XML into a list. And
although this XML comes from an Internet feed, it could have just as well come from a local fi le.
And, once the list is in place, it could be iterated to display information, or it could be connected to
a ListAdapter for display.

SUMMARY

This chapter started with program preferences. You saw that an activity can have private preferences
accessible to only that activity, or an activity can access shared preferences that are available to mul-
tiple activities as long as they have the same process ID.

You also saw how to create, read from, and write to fi les on the fi le system. Files can have three dif-
ferent permission settings that cause them to be private, world-readable, or world-writeable. Files
that are created directly can be either text or binary and can be accessed randomly or in a streaming
mode.

Finally, we wrapped up with a couple of additional code snippets. One demonstrated how to register
and unregister a shared preference change listener and receive and react to those events. The fi nal
code snippet showed how to use the Linq.xml namespace to parse the XML in an Atom feed from
FreshMeat.

Now you should be able to create preferences for your users that add robustness to your app. Going
forward, your activities will be able to maintain state despite losing focus, your program settings
will be durable between usages, and data can be stored to fi les for later usage.

c07.indd 205c07.indd 205 2/28/2012 4:15:10 PM2/28/2012 4:15:10 PM

c07.indd 206c07.indd 206 2/28/2012 4:15:11 PM2/28/2012 4:15:11 PM

McClure c08.indd V2 - 02/03/2012

8
Programming with the
Device Hardware

WHAT’S IN THIS CHAPTER?

 ‰ Using the sensor API

 ‰ Programming accelerometer, device orientation, and proximity detec-

tion support

 ‰ Supporting networking

 ‰ Bluetooth programming

Android contains a vast amount of exciting hardware. This hardware in and of itself doesn’t
interest users; the excitement occurs when the application presents the users with information
in a way that makes sense to them. This hardware is very interesting to developers building
apps because it allows applications to provide extraordinary features based on it. This chapter
looks at the sensor API, accelerometer, device orientation, proximity detection, networking,
and Bluetooth. Here are some sample uses of this hardware:

 ‰ A program can test whether a network is available over any connection (WiFi, 3G,
or EDGE). If a connection does not exist, instead of seeing an error message when
attempting to upload information, the user can be notifi ed that there is no connection
to a service.

 ‰ The accelerometer can be used to pull random data from a data source. When the
device is shaken, the application can respond by reading random data from a
data source.

 ‰ When the user changes the device from portrait to landscape, the application can
change how it displays content to the user.

c08.indd 207c08.indd 207 2/28/2012 4:16:19 PM2/28/2012 4:16:19 PM

McClure c08.indd V2 - 02/03/2012

208 x CHAPTER 8 PROGRAMMING WITH THE DEVICE HARDWARE

WORKING WITH SENSORS

Android devices come with all types of exciting features, including accelerometers, compasses,
microphones, gyroscopes, and other nifty hardware. This hardware allows devices to detect what is
happening around you. With the hardware in the device, applications and user interfaces can better
provide user inputs based on the environment around them.

Android’s Sensor class abstracts the actual implementation of sensors on each device. The Sensor
class can then be used to obtain the properties of the hardware sensor, including the manufacturer,
name, accuracy, range, and type of sensor.

Referencing the Sensor Manager

The fi rst step in using sensors is to work with the Android Sensor Manager. The Sensor Manager
is how you access the sensors on a particular device. This code provides a reference to the Sensor
Manager:

String service_name = Context.SensorService;
sensManager = (SensorManager)GetSystemService(service_name);

Sensor Support

The Sensor class includes a set of constants that describe the type of sensor that is being used by
a Sensor object. The following sensor types are currently supported, can be accessed through the
Android.Hardware.SensorType enumeration, and can be programmed with:

 ‰ Accelerometer returns acceleration information in the x-, y-, and z-axes in meters per
second squared.

 ‰ Gyroscope returns the device’s current orientation in three axes in degrees.

 ‰ Light is a single value that is the illumination in lux. This sensor type can be used to set the
screen’s brightness based on the available light.

 ‰ MagneticField determines the magnetic fi eld that the device is in. The magnetic fi eld is mea-
sured in three axes and is returned in microteslas.

 ‰ Orientation determines the device orientation in three axes in degrees.

 ‰ Pressure returns the pressure on the current device in hPa.

 ‰ Proximity determines the distance between a device and a target object in centimeters.
Typically, the proximity detector is used to determine if the phone is being held to the user’s
ear. This allows the device to listen for a voice command or to turn off the screen, since the
screen is not needed for input when it’s against the user’s ear. The selection of the target
object and the distances that are supported depend greatly on the hardware used within the
proximity detector.

 ‰ Temperature determines the device’s temperature in Celsius. The type of temperature
returned varies depending on the hardware used to detect the temperature.

 ‰ All returns all the sensors on the host platform.

c08.indd 208c08.indd 208 2/28/2012 4:16:21 PM2/28/2012 4:16:21 PM

McClure c08.indd V2 - 02/03/2012

Working with Sensors x 209

Accessing Sensors

There are two ways to obtain a sensor with the Sensor class. The fi rst way is to obtain the default
sensor corresponding to a given sensor type. This is done by calling the following:

defSensor = sensManager.GetDefaultSensor(SensorType.Accelerometer);

In this case, the code returns the default sensor for the accelerometer.

The other way is to obtain all the sensors associated with a given sensor type. This is done by call-
ing the following:

IList<Sensor> accSensors = sensorManager.GetSensorList(SensorType.Accelerometer);

The result is a list of type sensor that a program can iterate through. This could be useful if a pro-
gram needs to get all the sensors for a type on a device and allow a user to select a specifi c sensor.

Using Sensors

After you decide which sensor to use, the process of setting up the code involves three additional steps:

 ‰ Registration: The application must register that it is listening for updates from the hardware.
This is accomplished with the following code:

sensManager.RegisterListener(this, defSensor, SensorDelay.Ui);

 ‰ Processing: The interfaces for ISensorEventListener must be implemented to process sen-
sor values.

 ‰ Unregistration.

The registration of the listener takes multiple parameters. The fi rst parameter is the class that pro-
cesses the sensor’s changes. The second parameter is the sensor that sends the change. The fi nal
parameter is the desired rate of getting an update from the sensor. The rate that is selected is not
defi nite. Updates tend to be faster. To minimize usage of the battery, an application should use the
slowest suitable rate. The SensorDelay enum has the following properties:

 ‰ Fastest is the fastest update value for the hardware.

 ‰ Game is an update rate suitable for games.

 ‰ Normal represents the default update rate for the hardware sensor.

 ‰ Ui represents a rate suitable for updating UI elements.

The class that listens for sensor updates must implement the Android.Hardware
.ISensorEventListener interface. In the case of the example in this chapter, the activity
implements the interface with the following code:

public class Activity1 : Activity, Android.Hardware.ISensorEventListener

The ISensorEventListener interface requires that the methods OnSensorChanged and
OnAccuracyChanged be implemented. Listing 8-1 implements these two methods. One of the key
things to notice in the OnSensorChanged method is that a check is done for the sensor type. This
check allows a class to listen for multiple sensor changes.

c08.indd 209c08.indd 209 2/28/2012 4:16:21 PM2/28/2012 4:16:21 PM

McClure c08.indd V2 - 02/03/2012

210 x CHAPTER 8 PROGRAMMING WITH THE DEVICE HARDWARE

LISTING 8-1: Processing Sensors using the Accelerometer

public void ISensorEventListener.OnSensorChanged(SensorEvent e)
{
 if (e.Sensor.Type == SensorType.Accelerometer){
 var calibrationValue = SensorManager.StandardGravity;
 var mVals = e.Values;
 var x = mVals[0];
 var y = mVals[1];
 var z = mVals[2];
 var SumOfSq = Math.Pow(x, 2) + Math.Pow(y, 2) + Math.Pow(z, 2);
 var mag = Math.Pow(SumOfSq, .5) - calibrationValue;
 RunOnUiThread(() =>
 tv.Text = ”Acceleration (g): ” + mag.ToString()
);
 }
}
public void ISensorEventListener.OnAccuracyChanged(Sensor sensor, int accuracy)
{
 if (sensor.Type == Android.Hardware.SensorType.Accelerometer)
 {
 if (Android.Hardware.SensorStatus.AccuracyHigh ==
 (Android.Hardware.SensorStatus)accuracy)
 {

 }
 }
}

This code is contained in Acceleration\Activity1.cs

Objects on the Earth are always experiencing acceleration. Fortunately, the
Android Sensor Manager provides a value representing the Earth’s standard
gravity.

Another item to remember is that Visual Studio can automatically cre-
ate the necessary interface methods. Visual Studio will automatically put a
NotImplementedException within the method, so you will want to remove that
exception.

The OnAccuracyChanged event has an enum that can be used to determine the sensor’s new
accuracy. The enum is within Android.Hardware.SensorStatus.Accuracy. The values are as follows:

 ‰ AccuracyLow indicates that the hardware sensor’s accuracy is low and that it may need
calibration.

 ‰ AccuracyMedium indicates that the hardware sensor’s accuracy is moderate. Calibrating the
sensor may help improve the accuracy.

c08.indd 210c08.indd 210 2/28/2012 4:16:22 PM2/28/2012 4:16:22 PM

McClure c08.indd V2 - 02/03/2012

Working with Sensors x 211

 ‰ AccuracyHigh indicates that the hardware sensor’s accuracy is the best that it will be.

 ‰ Unreliable indicates that the data returned from the hardware sensor is unreliable. This can
mean that the values returned are not possible or that the sensor must be calibrated.

The fi nal operation to perform is to unregister sensor listening when the application no longer
needs to receive updates. This is handled by calling the Sensor Manager’s
.UnregisterListener method:

sensManager.UnregisterListener(this, defSensor);

Understanding the Sensor Type Values

The following section describes the values that are returned from the various sensor types that
are monitored.

 ‰ Accelerometer: The accelerometer returns three values — acceleration along three axes in
meters per second squared:

 ‰ value[0]: Lateral (x direction)

 ‰ value[1]: Longitudinal (z direction)

 ‰ value[2]: Vertical (y direction)

The Sensor Manager includes a set of gravity constants of the form SensorManager
.GRAVITY* that represent the gravity of various bodies in the solar system. This is helpful
for those really long-distance trips.

Because there is always confusion on this subject, this is a good place to mention
that a device only has zero acceleration in two places, when it is in free fall and
when it is fl oating in a zero gravity/outer space environment. Because of this, a
program will need to take this into account by using the standard gravity con-
stants to pull out the constant acceleration due to gravity.

 ‰ Gyroscope: The gyroscope returns three values — device orientation in degrees along three axes:

 ‰ value[0]: Azimuth

 ‰ value[1]: Pitch

 ‰ value[2]: Roll

This is useful in games where the Android device is used as a game controller. For example,
the phone could be rotated to simulate a turn on a steering wheel in a racing game.

 ‰ Light: The light sensor returns the measurement of illumination. Only one value is returned.
It is obtained by value[0]. The illumination is measured in lux. The Sensor Manager
includes a set of constants representing different standard illuminations of the form
SensorManager.LIGHT*.

c08.indd 211c08.indd 211 2/28/2012 4:16:23 PM2/28/2012 4:16:23 PM

McClure c08.indd V2 - 02/03/2012

212 x CHAPTER 8 PROGRAMMING WITH THE DEVICE HARDWARE

 ‰ Magnetic Field: The magnetic fi eld that is returned is measured in three directions, and the
values are in microteslas:

 ‰ value[0] : Lateral (x direction)

 ‰ value[1] : Longitudinal (z direction)

 ‰ value[2] : Vertical (y direction)

The Sensor Manager includes several values representing the minimum and maximum val-
ues of the magnetic fi eld on the Earth.

Detecting a magnetic fi eld on a phone sounds exceedingly boring. Who besides an engi-
neer working in a power plant would care about this? However, detecting the intensity of
a magnetic fi eld does have a practical use. Suppose you’re in your car, and you want to use
your phone to get driving directions. You place your phone against the holding clamp with
the magnet in it. When your phone adheres to the plate, it detects a signifi cant increase in
the magnetic fi eld intensity and opens the turn by turn directions. An example later in this
chapter combines a magnetic fi eld and voice recognition.

 ‰ Orientation: The device’s orientation is returned in degrees along three axes based on the fol-
lowing values:

 ‰ value[0]: Azimuth

 ‰ value[1]: Roll

 ‰ value[2]: Pitch

 ‰ Pressure: The pressure is returned in value[0]. This would be useful in an engineering sce-
nario. The pressure is measured in hPa.

 ‰ Proximity: The proximity is measured in centimeters and is returned in value[0].

 ‰ Temperature: The temperature is measured in Celsius and is returned in value[0]. This
could be useful in a weather scenario. Imagine that an application needs to track the tem-
perature for an amateur storm chaser.

RESPONDING TO ACCELERATION

The accelerometer is one of Android’s more interesting features. It has many uses from a user inter-
face standpoint. The UrbanSpoon.com app is a great example of using acceleration to return ran-
dom restaurant data. With that app, you shake Android, and the app fi nds a good nearby restaurant
for you. Another use I have found for acceleration is entertaining children. Imagine that you are at a
restaurant, and your kids are bored. You can create an app that will record the maximum accelera-
tion that your phone has been subjected to. Give the kids your phone, and they will entertain them-
selves seeing who can shake the device the fastest.

When you give your phone to your kids to entertain them, be sure to tell them
to keep a fi rm grip on it. If they don’t, your phone may land on someone else’s
table. Please learn from my experience.

c08.indd 212c08.indd 212 2/28/2012 4:16:23 PM2/28/2012 4:16:23 PM

McClure c08.indd V2 - 02/03/2012

Responding to Acceleration x 213

In general, an accelerometer measures the device’s acceleration relative to free fall. Android’s accel-
erometer detects changes in the XYZ axis, allowing a program to fi gure out the device’s orientation
and movement. Because the changes are provided in the XYZ axis, the acceleration can be calcu-
lated in a vector.

The Mono for Android framework makes it easy to access the accelerometer via the sensor API, as
was discussed earlier.

Using the XYZ Coordinate System

Understanding how data is returned from the accelerometer is
important. Multiple coordinate systems can be used. Android
has implemented the XYZ coordinate system to provide accel-
eration information. Figure 8-1 shows Android within the
coordinate system.

Assuming that the user is along the z-axis, if Android is moved
toward or away from the user, acceleration occurs along the
z-axis. If Android is moved left or right, acceleration occurs
along the x-axis. If Android is moved up or down, acceleration
occurs along the y-axis. The acceleration values can be deter-
mined along each axis. With each value known along an axis
and the help of some math, the total magnitude of acceleration
can be calculated, as well as the direction of that acceleration
at any given time.

Coding with the Accelerometer

The accelerometer allows a program to read when Android is moving and to return data about
the device’s movement. This can also be used to keep kids at a restaurant entertained, as they will
compete against each other to shake the device faster than others. Listing 8-2 shows how to handle
acceleration events and display that information to the user.

LISTING 8-2: Processing acceleration changes

public void ISensorEventListener.OnSensorChanged(SensorEvent e)
{
 if (e.Sensor.Type == SensorType.Accelerometer){
 var mVals = e.Values;
 var x = mVals[0];
 var y = mVals[1];
 var z = mVals[2];
 var SumOfSq = Math.Pow(x, 2) + Math.Pow(y, 2) + Math.Pow(z, 2);
 var mag = Math.Pow(SumOfSq, .5) - SensorManager.StandardGravity
 if (MaxAccel == 0.0)
 {
 MaxAccel = mag;
 }

y

x

z

FIGURE 8-1

continues

c08.indd 213c08.indd 213 2/28/2012 4:16:25 PM2/28/2012 4:16:25 PM

McClure c08.indd V2 - 02/03/2012

214 x CHAPTER 8 PROGRAMMING WITH THE DEVICE HARDWARE

 if (mag > MaxAccel)
 {
 MaxAccel = mag;
 }
 RunOnUiThread(() =>
 tv.Text = ”Acceleration (m/s^2): ” + MaxAccel.ToString()
);
 }
}

This code is contained in Acceleration\Activity1.cs

Figure 8-2 shows the result of shaking the device.

BUILDING A COMPASS

Location and direction are important in a mobile device. This section will build a compass so that
direction can be determined. The sensor API is used to determine this direction. The top of the
phone device is the heading that is used for the direction.

The fi rst step is the XML for the UI (Listing 8-3). This code simply consists of a LinearLayout and
a TextView.

LISTING 8-3: XML Layout for compass

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 android:id=”@+id/ll”
 >
 <TextView
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/display”
 />
</LinearLayout>

This code is contained in Compass\Compass\Resources\Layout\Main.axml

The next step is to create the class that will be used as the view to display the direction that a user is
heading (see Listing 8-4).

FIGURE 8-2

LISTING 8-2 (continued)

c08.indd 214c08.indd 214 2/28/2012 4:16:25 PM2/28/2012 4:16:25 PM

McClure c08.indd V2 - 02/03/2012

Building a Compass x 215

LISTING 8-4: Custom view

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Android.App;
using Android.Content;
using Android.OS;
using Android.Runtime;
using Android.Util;
using Android.Views;
using Android.Widget;
using Android.Graphics;
namespace Compass
{
 public class CompassView : View
 {
 public CompassView(Context context)
 : base(context)
 {
 Initialize();
 init();
 }
 public CompassView(Context context, IAttributeSet attrs) :
 base(context, attrs)
 {
 Initialize();
 init();
 }
 public CompassView(Context context, IAttributeSet attrs, int defStyle) :
 base(context, attrs, defStyle)
 {
 Initialize();
 init();
 }

 private void Initialize()
 {
 init();
 }
 private float direction = 0;
 private Android.Graphics.Paint paint = new Paint(PaintFlags.AntiAlias);
 private bool firstDraw;
 private void init(){
 paint.SetStyle(Paint.Style.Stroke);
 paint.StrokeWidth = 3;
 paint.Color = Color.White;
 paint.TextSize = 30;
 firstDraw = true;
 }

continues

c08.indd 215c08.indd 215 2/28/2012 4:16:26 PM2/28/2012 4:16:26 PM

McClure c08.indd V2 - 02/03/2012

216 x CHAPTER 8 PROGRAMMING WITH THE DEVICE HARDWARE

 protected override void OnMeasure(int widthMeasureSpec, int heightMeasureSpec) {
 SetMeasuredDimension(
 MeasureSpec.GetSize(widthMeasureSpec),
 MeasureSpec.GetSize(heightMeasureSpec));
 }
 protected override void OnDraw(Canvas canvas) {
 int cxCompass = MeasuredWidth/2;
 int cyCompass = MeasuredHeight/2;
 float radiusCompass;
 if(cxCompass > cyCompass){
 radiusCompass = (float) (cyCompass * 0.9);
 }
 else{
 radiusCompass = (float) (cxCompass * 0.9);
 }
 canvas.DrawCircle(cxCompass, cyCompass, radiusCompass, paint);
 canvas.DrawRect(0, 0, MeasuredWidth, MeasuredHeight, paint);

 if(!firstDraw){

 canvas.DrawLine(cxCompass, cyCompass,
 (float)(cxCompass +
 radiusCompass * Math.Sin((double)(-direction) * 3.14/180)),
 (float)(cyCompass –
 radiusCompass * Math.Cos((double)(-direction) * 3.14/180)),
 paint);
 canvas.DrawText(direction.ToString(), cxCompass, cyCompass, paint);
 }
 }
 public void updateDirection(float dir)
 {
 firstDraw = false;
 direction = dir;
 this.Invalidate();
 }
 }
}

This c o de is contained in Compass\Compass\CompassView.cs

The fi nal step in the process is to create the activity and to process the sensor events (Listing 8-5). The
activity implements the ISensorEventListener interface. When a change is made in the Orientation
SensorType, the change is sent to the activity and the activity will notify the control what the new ori-
entation is. When the view receives the value, it performs a redraw of the control on the screen.

LISTING 8-5: Processing the activity

using System;
using System.Collections.Generic;
using Android.App;

LISTING 8-4 (continued)

c08.indd 216c08.indd 216 2/28/2012 4:16:26 PM2/28/2012 4:16:26 PM

McClure c08.indd V2 - 02/03/2012

Building a Compass x 217

using Android.Content;
using Android.Hardware;
using Android.Runtime;
using Android.Views;
using Android.Widget;
using Android.OS;
namespace Compass
{
 [Activity(Label = “Compass”, MainLauncher = true,
 Icon = “@drawable/icon”,
 ScreenOrientation=Android.Content.PM.ScreenOrientation.Portrait)]
 public class Activity1 : Activity, ISensorEventListener
 {
 int count = 1;
 private Android.Hardware.SensorManager sm;
 private bool sersorrunning;
 private CompassView compView;
 private Sensor s;

 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);
 SetContentView(Resource.Layout.Main);
 var layout = FindViewById<LinearLayout>(Resource.Id.ll);
 var Params = new
 Android.Widget.LinearLayout.LayoutParams(ViewGroup.LayoutParams
 .FillParent, ViewGroup.LayoutParams.FillParent);
 compView = new CompassView(this, null);
 layout.AddView(compView, Params);
 sm = (Android.Hardware.SensorManager)GetSystemService
 (Context.SensorService);
 IList<Sensor> mySensors = sm.GetSensorList(SensorType.Orientation);
 if (mySensors.Count > 0)
 {
 s = mySensors[0];
 sm.RegisterListener(this, mySensors[0], SensorDelay.Normal);
 sersorrunning = true;
 Toast.MakeText(this, “Start ORIENTATION Sensor”,
 ToastLength.Long).Show();
 }
 else
 {
 Toast.MakeText(this, “No ORIENTATION Sensor”, ToastLength.Long).Show();
 sersorrunning = false;
 Finish();
 }
 }

 public void ISensorEventListener.OnAccuracyChanged(Sensor sensor, int accuracy)
 {
 }

 public void ISensorEventListener.OnSensorChanged(SensorEvent e)
 {
 if (e.Sensor.Type == SensorType.Orientation)

continues

c08.indd 217c08.indd 217 2/28/2012 4:16:26 PM2/28/2012 4:16:26 PM

McClure c08.indd V2 - 02/03/2012

218 x CHAPTER 8 PROGRAMMING WITH THE DEVICE HARDWARE

 {
 float dir = e.Values[0];
 compView.updateDirection(dir);
 }
 }

 protected override void OnPause()
 {
 base.OnPause();
 sm.UnregisterListener(this);
 }
 protected override void OnResume()
 {
 base.OnResume();
 sm.RegisterListener(this, s, SensorDelay.Normal);
 }
 protected override void OnDestroy()
 {
 sm.UnregisterListener(this);
 }
 }
}

This code is contained in Compass\Compass\Activity1.cs

Figure 8-3 shows the output of the compass.

VIBRATION

Vibration is commonly used to provide feedback to the user. For
example, when the user selects a keyboard element on an HTC
EVO 4G, the phone vibrates for about 50 milliseconds, telling
the user that a letter has been selected. Another use of vibration
is to notify the user that he or she has something to do on the
device. This vibration could mean that an e-mail has arrived,
someone is calling the user, or a similar event has occurred.

Mono for Android has the class Android.OS.Vibrator, which
allows a developer to access a device’s vibration hardware.
Using the Vibrator class is a two-step process.

1. The fi rst step is to set the appropriate permission in the
AndroidManifest.xml fi le:

<uses-permission android:name=”android
.permission.VIBRATE” />

FIGURE 8-3

LISTING 8-5 (continued)

c08.indd 218c08.indd 218 2/28/2012 4:16:26 PM2/28/2012 4:16:26 PM

McClure c08.indd V2 - 02/03/2012

Networking Connectivity x 219

2. The second step is to program against the Vibrator class:

Vibrator vibrator = (Vibrator)GetSystemService(Context.VibratorService);
vibrator.Vibrate(pattern, -1);

Note two interesting things in this code:

 ‰ The Vibrator class is instantiated by getting a reference to the vibration service on the
device.

 ‰ The .Vibrate() method can be called in two different ways. One overload takes the number
of milliseconds that the device will be called for. The second overload takes an array of type
long as well as a parameter indicating whether the vibration should be repeated.

NETWORKING CONNECTIVITY

The past few years have seen tremendous growth in wired, WiFi, and mobile Internet connectivity.
Mobile broadband connectivity is quickly becoming a staple for wireless consumers. This wireless con-
nectivity could take many forms, including EDGE, various fl avors of 3G over GSM and CDMA, WiFi
over various hotspots, and other data options. Given the options, it becomes important for an application
to be able to provide connectivity and to be able to switch to a different connectivity option as necessary.

With Android, users can specify connectivity preferences. As connectivity options change, Android
also provides the ability to broadcast intents describing the changes in network connectivity options.

ConnectivityManager

Android network connectivity is handled by the ConnectivityManager, a service that runs in
the background. It allows a program to monitor the state of a preferred network connection and the
network connectivity state and perform any network connectivity changes that need to happen.

The ConnectivityManager monitors the device’s network state, controls network radios in the
device, and makes any necessary changes regarding the current network connection.

The fi rst step in accessing the ConnectivityManager is to get the appropriate permission. This is
accomplished by adding the following permissions to the AndroidManifest.xml fi le:

<uses-permission android:name=”android.permission.ACCESS_NETWORK_STATE” />
<uses-permission android:name=”android.permission.CHANGE_NETWORK_STATE” />

The next step is to get a reference to ConnectivityManager. The ConnectivityManager is a system
service and can be obtained by calling GetSystemService:

var cm = Context.ConnectivityService;
var cmMgr = (Android.Net.ConnectivityManager)GetSystemService(cm);

Checking User Communication Preferences

Once a program has a reference to the ConnectivityManager, the next step is to check the user
preferences for whether background communications should be performed. The option for

c08.indd 219c08.indd 219 2/28/2012 4:16:26 PM2/28/2012 4:16:26 PM

McClure c08.indd V2 - 02/03/2012

220 x CHAPTER 8 PROGRAMMING WITH THE DEVICE HARDWARE

background communication is set in the Settings Í
Accounts & sync option, as shown in Figure 8-4.

The application reads this value to determine if background
processing should be performed. If the background setting is
not checked, an application should communicate off-device
only when the application is in the foreground. Unfortunately,
the developer is responsible for obeying this setting, and you
know how easy it is to miss details.

This setting for background communications is done based on
the following call:

bool bckgrnd = cmMgr.BackgroundDataSetting;

Checking for Changes to
BackgroundDataSetting

Checking the background data setting is suffi cient for most
situations. However, what happens when a user changes that
setting? An application should determine that this value has
changed and act accordingly (see Listing 8-6):

LISTING 8-6: Listening to network changes

[BroadcastReceiver]
[IntentFilter(new[] { Android.Net.ConnectivityManager
 .ActionBackgroundDataSettingChanged },
 Categories = new[] { Android.Content.Intent.CategoryDefault })]
public class Receiver1 : BroadcastReceiver
{
 public override void OnReceive(Context context, Intent intent)
 {
 if ((intent != null) &&
 (intent.Action == Android.Net.ConnectivityManager
 .ActionBackgroundDataSettingChanged))
 {

 }
 }
}

This code is contained in Wifi \Wifi Management\Receiver1.cs

You check for a change in the background setting by creating a BroadcastReceiver and then listen-
ing for the ConnectivityManager.ActionBackgroundDataSettingChanged intent. After receiving
the message that a change has occurred, your application should read the change and act accordingly.

FIGURE 8-4

c08.indd 220c08.indd 220 2/28/2012 4:16:26 PM2/28/2012 4:16:26 PM

McClure c08.indd V2 - 02/03/2012

Networking Connectivity x 221

Checking Current Network Confi guration

Customers throughout the world have varying levels of network connectivity. Some have only local
WiFi, others have wireless, and still others have only strings and tin cans. All of this depends on
your location at any particular moment. Thankfully, the ConnectivityManager lets you fi nd the cur-
rent network interface and set your preferred network interface.

Creating Network Connectivity Notifi cations

The ConnectivityManager can notify an application that network connectivity has changed. This
takes place through a broadcast receiver that listens for ConnectionManager.ConnectionAction
intents. These intents have extra information about the state of the network connection. These
nuggets of information can be obtained by calling .Extra(...) with a param to obtain the
value. The ConnectivityManager contains a set of static string values that can be used to obtain
these values:

 ‰ ExtraIsFailover is a Boolean. If the value is true, the current network is a failover from a
preferred network.

 ‰ ExtraNoConnectivity is a Boolean. If the value is true, the device is not currently connected
to a network.

 ‰ ExtraReason is a string. If the intent represents a connectivity failure, the reason is passed
back.

 ‰ ExtraNetworkInfo is a NetworkInfo object. This object contains additional information
about the network represented in the current intent.

 ‰ ExtraOtherNetworkInfo is a NetworkInfo object. This object represents network informa-
tion about a failover network connection.

 ‰ ExtraExtraInfo contains additional connection details.

This network information could be used by an application to determine if network connectivity
exists. If so, the application could go ahead and process the operation back on a remote server; oth-
erwise, the data could be stored locally and sent to a central server once a connection is available.

Wifi Manager

Android contains the Wifi Manager. This class is a reference to the Android WiFi Connectivity
Service. The Wifi Manager can be used to

 ‰ Confi gure WiFi connections

 ‰ Manage the current WiFi connection

 ‰ Scan the area for access points

 ‰ Monitor changes in a device’s WiFi connectivity

c08.indd 221c08.indd 221 2/28/2012 4:16:27 PM2/28/2012 4:16:27 PM

McClure c08.indd V2 - 02/03/2012

222 x CHAPTER 8 PROGRAMMING WITH THE DEVICE HARDWARE

To access and use the Wifi Manager, the fi rst step is to request permission in the AndroidManifest
.xml fi le via these settings:

<uses-permission android:name=”android.permission.ACCESS_WIFI_STATE” />
<uses-permission android:name=”android.permission.CHANGE_WIFI_STATE” />

The fi nal step (Listing 8-7) is to scan for networks and output the results (see Figure 8-5).

LISTING 8-7: Identifying WiFi networks

wifiMgr.StartScan(); // this is an async startup call
var wifiR = wifiMgr.ScanResults;
for (int i = 0; i < wifiR.Count; i++)
{
 tv.Text += wifiR[i].Ssid + System.Environment.NewLine;
using System;
using Android.App;
using Android.Content;
using Android.Runtime;
using Android.Views;
using Android.Widget;
using Android.OS;
using Android.Net.Wifi;
using Android.Net;

namespace WifiManagement
{
 [Activity(Label = “WifiManagement”, MainLauncher = true)]
 public class Activity1 : Activity
 {
 public TextView _tv;
 public Button _button;
 WifiManager _wifiMgr;
 ScanResultBroadcastReceiver _scanResultBroadcastReceiver;

 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

 // Set our view from the “main” layout resource
 SetContentView(Resource.Layout.Main);

 // Get our button from the layout resource, and attach an event to it
 _button = FindViewById<Button>(Resource.Id.MyButton);
 _tv = FindViewById<TextView>(Resource.Id.tv);
 _wifiMgr = (Android.Net.Wifi.WifiManager)GetSystemService(
 Context.WifiService);
 _button.Text = String.Format(“wifi state: {0}”, _wifiMgr.WifiState);

 // Define our receiver here so that we can update our UI
 _scanResultBroadcastReceiver = new ScanResultBroadcastReceiver();
 _scanResultBroadcastReceiver.Receive += (Context context,
 Intent intent) =>

c08.indd 222c08.indd 222 2/28/2012 4:16:27 PM2/28/2012 4:16:27 PM

McClure c08.indd V2 - 02/03/2012

Networking Connectivity x 223

 {
 _button.Text = String.Format(“wifi state: {0}”,
 _wifiMgr.WifiState);
 var wifiR = _wifiMgr.ScanResults;
 _tv.Text = String.Empty;
 for (int i = 0; i < wifiR.Count; i++)
 {
 _tv.Text += wifiR[i].Ssid + System.Environment.NewLine;
 }
 };

 _button.Click += delegate
 {
 _button.Text = String.Format(“wifi state: {0}”,
 _wifiMgr.WifiState);

 if (_wifiMgr.WifiState == WifiState.Enabled)
 {
 _wifiMgr.StartScan();
 }
 else
 {
 // If WiFi is disabled, prompt the user to enable it
 new AlertDialog.Builder(this)
 .SetTitle(“Alert!”)
 .SetMessage(“Enable WiFi?”)
 .SetPositiveButton(“Yes”, delegate
 {
 // Enable WiFi and perform the scan.
 _button.Text = String.Format(“wifi state: {0}”,
 “enabling..”);
 _wifiMgr.SetWifiEnabled(true);
 _wifiMgr.StartScan();
 })
 .SetNegativeButton(“No”, delegate
 {
 // Do nothing
 })
 .Show();
 }
 };
 }

 protected override void OnResume()
 {
 base.OnResume();

 RegisterReceiver(_scanResultBroadcastReceiver,
 new IntentFilter(Android.Net.Wifi.WifiManager.
 ScanResultsAvailableAction));
 }

 protected override void OnPause()
 {

continues

c08.indd 223c08.indd 223 2/28/2012 4:16:27 PM2/28/2012 4:16:27 PM

McClure c08.indd V2 - 02/03/2012

224 x CHAPTER 8 PROGRAMMING WITH THE DEVICE HARDWARE

 UnregisterReceiver(_scanResultBroadcastReceiver);

 base.OnPause();
 }

 public class ScanResultBroadcastReceiver : BroadcastReceiver
 {
 public event Action<Context, Intent> Receive;
 public override void OnReceive(Context context, Intent intent)
 {
 if (this.Receive != null && intent != null &&
 intent.Action == “android.net.wifi.SCAN_RESULTS”)
 {
 this.Receive(context, intent);
 }
 }
 }
 }
}
}

This code is contained in Wifi \Wifi Management\Activity1.cs

WiFi States

Now that you have looked at the Wifi Manager, a couple of
additional items may be important as you deal with developing
apps with WiFi:

 ‰ .IsWifiEnabled is a Boolean property that can allow
a program to determine if the WiFi is enabled on the
device.

 ‰ .SetWifiEnabled(bool) is a method that enables
/disables WiFi on the device.

 ‰ .WifiState is a property that returns the current WiFi state.

Along with these properties and methods, the Wifi Manager’s .WifiState can be compared against
the Android.Net.WifiState enum to determine the device’s current WiFi state. The values are
as follows:

 ‰ .Disabled means that WiFi is currently disabled.

 ‰ .Disabling means that WiFi is currently in the process of being disabled.

 ‰ .Enabled means that WiFi is currently enabled.

 ‰ .Enabling means that WiFi is currently in the process of being enabled.

 ‰ .Unknown means the WiFi state cannot be determined.

FIGURE 8-5

LISTING 8-7 (continued)

c08.indd 224c08.indd 224 2/28/2012 4:16:27 PM2/28/2012 4:16:27 PM

McClure c08.indd V2 - 02/03/2012

Bluetooth Manager x 225

Developers of applications may fi nd all this useful for certain types of applications that need
higher bandwidth or a more reliable type of connection than a 3G using WiFi.

WiFi Changes

The Wifi Manager broadcasts intents when the network’s connection state changes. Your program
can register for these intents and then make changes as appropriate. This information may be
valuable if a program needs to make changes to the way it communicates based on changes in the
WiFi networks that a device encounters, as well as changes in WiFi states. For example, this could
be used when an application wants to offer functionality only over a WiFi connection or over a
specifi c WiFi connection.

The Wifi Manager has the following intents:

 ‰ ActionPickWifiNetwork is an intent that a program can start.

 ‰ NetworkIdsChangedAction means that the network IDs of the confi gured networks may
have changed.

 ‰ NetworkStateChangedAction is fi red when the state of the WiFi connection changes. The
ExtraNetworkInfo key returns a NetworkInfo object that details the current network state.
The ExtraBssid key returns the Bssid of the access point that the device has connected to.

 ‰ RssiChangedAction allows a program to check the changing signal strength of the WiFi
connection. The ExtraNewRssi key returns an integer that represents the current signal
strength. The integer can then be handed into the static method CalculateSignalLevel on
the Wifi Manager.

 ‰ ScanResultsAvailableAction means that an access point scan has been completed.

 ‰ SupplicantConnectionChangeAction has the extra keys ExtraSupplicantConnected and
ExtraSupplicantError. ExtraSupplicantConnected returns a Boolean that represents
whether the supplicant connection has been gained or lost. ExtraSupplicantError returns
supplicant error information.

 ‰ SupplicantStateChangedAction is a broadcast intent that reports that the state of the
established connection to an access point has changed. The ExtraNewState key returns the
new supplicant state. ExtraSupplicantError returns an error if it is reported.

 ‰ WifiStateChangedAction has the extra keys ExtraWifiState and
ExtraPreviousWifiState. ExtraWifiState provides information about the new
WiFi connection. ExtraPreviousWifiState provides information about the previous
WiFi connection.

BLUETOOTH MANAGER

Bluetooth is a wireless technology standard that connects devices over relatively short
distances. Bluetooth is managed by the Bluetooth Special Interest Group. Bluetooth in mobile
phones is most often used to connect a phone with an earpiece that enables wireless and
hands-free use of the phone.

c08.indd 225c08.indd 225 2/28/2012 4:16:28 PM2/28/2012 4:16:28 PM

McClure c08.indd V2 - 02/03/2012

226 x CHAPTER 8 PROGRAMMING WITH THE DEVICE HARDWARE

Android supports Bluetooth in the following classes in the Android.Bluetooth namespace:

 ‰ BluetoothAdapter: The Bluetooth Adapter is the Android device that has an application
running on it.

 ‰ BluetoothDevice: A Bluetooth device is a remote device that an Android device is con-
nected to.

 ‰ BluetoothSocket: A Bluetooth socket is a mechanism to communicate with a device.

 ‰ BluetoothServerSocket: A Bluetooth server socket is a mechanism to listen for incoming
connection requests from a Bluetooth socket on another device.

The fi rst step in accessing the Bluetooth hardware is to obtain permission to use the Bluetooth
hardware. This is obtained via the BLUETOOTH and BLUETOOTH_ADMIN privileges in the
AndroidManifest.xml fi le:

 <uses-permission android:name=”android.permission.BLUETOOTH” />
 <uses-permission android:name=”android.permission.BLUETOOTH_ADMIN” />

The next step is to get a reference to the Bluetooth adapter on the host device:

BluetoothAdapter defaultAdapter = BluetoothAdapter.DefaultAdapter;

Working with Bluetooth State

BluetoothAdapter provides an array of methods and properties for interacting with Bluetooth
on your Android device. These properties and methods allow an application to turn on
Bluetooth and interact with it. Listing 8-8 shows the application querying for information
regarding the Bluetooth:

LISTING 8-8: Getting Bluetooth-bound devices

string Output, AdapterAddress, AdapterName, AdapterBoundDevices = String.Empty;
BluetoothAdapter defaultAdapter = BluetoothAdapter.DefaultAdapter;
Android.Bluetooth.State AdapterState;
if (defaultAdapter.IsEnabled)
{
 AdapterAddress = defaultAdapter.Address;
 AdapterName = defaultAdapter.Name;
 var bd = defaultAdapter.BondedDevices;
 foreach (var dev in bd)
 {
 if (!String.IsNullOrEmpty(AdapterBoundDevices))
 {
 AdapterBoundDevices += “,”;
 }
 AdapterBoundDevices += dev.Name;
 }
 AdapterState = defaultAdapter.State;
 Output = String.Format(“{0}:{1}:{2}:State-{3}”,

c08.indd 226c08.indd 226 2/28/2012 4:16:28 PM2/28/2012 4:16:28 PM

McClure c08.indd V2 - 02/03/2012

Enabling Voice Recognition in Your App x 227

 AdapterName, AdapterAddress,
 AdapterBoundDevices, AdapterState);
 Toast.MakeText(this, Output, ToastLength.Long).Show();
}

This code is contained in BlueToothAdapter\BlueTooth\Activity1.cs

In this code sample, a check is performed to verify that the
Bluetooth adapter is enabled. After this is done, the name of
the device, its address, and the names of the currently bound
devices are obtained. This information is then sent to the user
through a toast. The output is shown in Figure 8-6.

The BluetoothAdapter’s .State property has four possible values, which are part of the
Android.Bluetooth.State enum: OFF, TURNINGOFF, ON, and TURNINGON.

If the Bluetooth Adapter needs to be turned on, this can be accomplished as follows:

StartActivityForResult(new Intent(Android.Bluetooth.BluetoothAdapter
.ActionRequestEnable), 0);

This line of code presents the user with the message shown in Figure 8-7, asking the user if he or she
wants to turn on the Bluetooth adapter in the device.

Figure 8-8 tells the user that the Bluetooth adapter is being turned on.

Depending on the device, these messages may be slightly different.

ENABLING VOICE RECOGNITION IN YOUR APP

Who doesn’t want to just talk into their phone and have the phone perform the operation? This
occurs through a technique known as voice recognition. With voice recognition, the user’s voice
goes into the microphone and is translated into a set of bits that looks like a wave. The waveform
can then be translated into letters, words, and phrases with varying degrees of accuracy.

Starting with Android 1.5, Android supports voice recognition for input. The fi rst step is to query
the device to determine if it can perform speech recognition. This query doesn’t necessarily test to

FIGURE 8-6

FIGURE 8-7

FIGURE 8-8

c08.indd 227c08.indd 227 2/28/2012 4:16:28 PM2/28/2012 4:16:28 PM

McClure c08.indd V2 - 02/03/2012

228 x CHAPTER 8 PROGRAMMING WITH THE DEVICE HARDWARE

see if the device has the necessary hardware. Instead, the query determines if the necessary activity
is installed:

// Check to see if a recognition activity is present
PackageManager pm = PackageManager;
IList<ResolveInfo> activities = pm.QueryIntentActivities (new Intent
 (RecognizerIntent.ActionRecognizeSpeech), 0);

If one or more activities are present, the program can allow the user to perform voice recognition:

Intent intent = new Intent (RecognizerIntent.ActionRecognizeSpeech);
intent.PutExtra (RecognizerIntent.ExtraLanguageModel,
 RecognizerIntent.LanguageModelFreeForm);
intent.PutExtra (RecognizerIntent.ExtraPrompt, “Voice Recognition Demo”);
StartActivityForResult (intent, VOICE_RECOGNITION_REQUEST_CODE);

With this code, an intent is created and an activity is started. The user is then handed to the speech
recognition activity. When the speech recognition activity returns to the code, data is returned to
the activity through the OnActivityResult method (Listing 8-9):

LISTING 8-9: Using voice recognition

protected override void OnActivityResult (int requestCode, Result resultCode,
Intent data)
{
 base.OnActivityResult (requestCode, resultCode, data);
 if ((requestCode == VOICE_RECOGNITION_REQUEST_CODE) &&
(resultCode == Result.Ok))
{
 // Fill the list view with the strings the recognizer
 thought it could have heard
 IList<String> matches = data.GetStringArrayListExtra
 (RecognizerIntent.ExtraResults);
 voice_list.Adapter = new ArrayAdapter<String> (this,
 Android.Resource.Layout.SimpleListItem1, matches);
}
}

This code is contained in VoiceRecognition\VoiceRecognition\VoiceRecognition.cs

When voice recognition returns, the array adapter is fi lled with the possible phrases that the
voice recognition applet returned. This is then presented to the user in a list view in this example.

Integrating voice recognition into your apps is also discussed in Chapter 9.

If you have a custom ROM and do not have voice capabilities, you may need to
install Google Voice from the Android Market.

c08.indd 228c08.indd 228 2/28/2012 4:16:29 PM2/28/2012 4:16:29 PM

McClure c08.indd V2 - 02/03/2012

Getting Turn-by-Turn Directions x 229

GETTING TURN-BY-TURN DIRECTIONS

I’m sure that by now, you are thinking that Android has great features in the operating system,
and you are ready to start using them. So, let’s take two features presented in the chapter, voice
 recognition and the sensors, to produce a turn-by-turn set of driving directions, or navigation from
the current point.

One of the great features of mobile devices is that they are, in fact, mobile. This opens myriad
options. Imagine that the user is getting into his or her car. You want the phone to provide a set of
turn-by-turn directions, but only once the device is on a magnetic plate in the user’s car. Once the
device is placed on that magnetic plate, the user is presented with driving directions to the location
from the current location.

If you decide to try this and you crash your car or end up at the wrong location,
it’s your fault, not mine.

You will need to make sure that location services is available on your test system
and is working properly.

The fi rst step is to present the user with a voice recognition input by starting the voice recognition
intent (Listing 8-10).

LISTING 8-10: Opening the voice recognition applet

private void SetupVoice()
{
 // Check to see if a recognition activity is present
 PackageManager pm = PackageManager;
 IList<ResolveInfo> activities = pm.QueryIntentActivities(new
 Intent(RecognizerIntent.ActionRecognizeSpeech), 0);
 if (activities.Count > 0)
 {
 Intent intent = new Intent(RecognizerIntent.ActionRecognizeSpeech);
 intent.PutExtra(RecognizerIntent.ExtraLanguageModel,
 RecognizerIntent.LanguageModelFreeForm);
 intent.PutExtra(RecognizerIntent.ExtraPrompt, “Where do you want to go?”);
 StartActivityForResult(intent, VOICE_RECOGNITION_REQUEST_CODE);
 }
}

This code is contained in MagneticSensors\MagneticSensors\Activity1.cs

This code opens the voice recognition activity asking the user where he or she wants to go, as shown
in Figure 8-9.

c08.indd 229c08.indd 229 2/28/2012 4:16:30 PM2/28/2012 4:16:30 PM

McClure c08.indd V2 - 02/03/2012

230 x CHAPTER 8 PROGRAMMING WITH THE DEVICE HARDWARE

FIGURE 8-9

After the program knows where the user wants to go, the next step is to make it so the app
recognizes when the device is attached to a magnetic plate. The magnetic fi eld sensor can detect a
change or increase in the magnetic fi eld around the device. The sensor API will be presented with
these changes (Listing 8-11).

LISTING 8-11: Detecting magnetic fi elds

public void OnSensorChanged(SensorEvent e)
{
 if ((e.Sensor.Type == SensorType.MagneticField) &&
 (lat.HasValue) && (lon.HasValue))
 {
 var mVals = e.Values;
 var x = mVals[0];
 var y = mVals[1];
 var z = mVals[2];
 var SumOfSq = Math.Pow(x, 2) + Math.Pow(y, 2) + Math.Pow(z, 2);
 var mag = Math.Pow(SumOfSq, .5);
 if ((mag > Threshold) && (!String.IsNullOrEmpty(dAddr)))
 {
 sensManager.UnregisterListener(this, magSensor);
 String url = String.Format(”http://maps.google.com/maps?saddr={0},
 {1}&daddr={2}”, lat, lon, dAddr);
 Intent intent = new Intent(Android.Content.Intent.ActionView,
 Android.Net.Uri.Parse(url));
 StartActivity(intent);
 count++;

c08.indd 230c08.indd 230 2/28/2012 4:16:31 PM2/28/2012 4:16:31 PM

McClure c08.indd V2 - 02/03/2012

Getting Turn-by-Turn Directions x 231

 }
 if (count > 1)
 {
 sensManager.UnregisterListener(this, magSensor);
 }
 }
}

This code is contained in MagneticSensors\MagneticSensors\Activity1.cs

When the magnetic fi eld intensity reaches a certain level, the program opens the driving direc-
tions, as shown in the preceding code. One interesting point that I have found while developing this
application is that because the magnetic fi eld sensor detects a large number of changes, there needs
to be some check to keep from overloading the system with calls to the mapping activity while the
application is displaying the directions. If the mapping intent is running and it receives additional
information via the sensor event listener, this tends to cause problems and overload the mapping
application. So, once the mapping intent is started, the application stops listening for the magnetic
fi eld changes.

Listing 8-12 shows the rest of the code.

LISTING 8-12: Driving directions from the current location

using System;
using System.Collections.Generic;
using Android.App;
using Android.Content;
using Android.Content.PM;
using Android.Runtime;
using Android.Views;
using Android.Widget;
using Android.OS;
using Android.Net;
using Android.Hardware;
using Android.Locations;
using Android.Speech;

namespace MagneticSensors
{
 [Activity(Label = “Driving Directions”, MainLauncher = true)]
 public class Activity1 : Activity,
 ISensorEventListener, ILocationListener
 {
 int count = 1;
 double Threshold = 50.0;
 Sensor magSensor;
 SensorManager sensManager;
 string dAddr = String.Empty;
 double? lat, lon;
 LocationManager lm;

continues

c08.indd 231c08.indd 231 2/28/2012 4:16:31 PM2/28/2012 4:16:31 PM

McClure c08.indd V2 - 02/03/2012

232 x CHAPTER 8 PROGRAMMING WITH THE DEVICE HARDWARE

 private const int VOICE_RECOGNITION_REQUEST_CODE = 1234;

 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

 // Set our view from the “main” layout resource
 SetContentView(Resource.Layout.Main);
 Button btn = FindViewById<Button>(Resource.Id.MyButton);
 btn.Click += new EventHandler(btn_Click);
 Button so = FindViewById<Button>(Resource.Id.StartOver);
 so.Click += new EventHandler(so_Click);
 SetupForLookup();
 }

 void so_Click(object sender, EventArgs e)
 {
 count = 1;
 SetupVoice();
 }

 private void SetupForLookup()
 {
 SetupSensorAndLocation();
 SetupVoice();
 }

 private void SetupVoice()
 {
 // Check to see if a recognition activity is present
 PackageManager pm = PackageManager;
 IList<ResolveInfo> activities = pm.QueryIntentActivities(
 new Intent(RecognizerIntent.ActionRecognizeSpeech), 0);
 if (activities.Count > 0)
 {
 Intent intent = new Intent(
 RecognizerIntent.ActionRecognizeSpeech);
 intent.PutExtra(RecognizerIntent.ExtraLanguageModel,
 RecognizerIntent.LanguageModelFreeForm);
 intent.PutExtra(RecognizerIntent.ExtraPrompt,
 “Where do you want to go?”);
 StartActivityForResult(intent, VOICE_RECOGNITION_REQUEST_CODE);
 }
 }

 private void SetupSensorAndLocation()
 {
 String service_name = Context.SensorService;
 sensManager = (SensorManager)GetSystemService(service_name);
 magSensor = sensManager.GetDefaultSensor(SensorType.MagneticField);
 Criteria cr = new Criteria();

LISTING 8-12 (continued)

c08.indd 232c08.indd 232 2/28/2012 4:16:32 PM2/28/2012 4:16:32 PM

McClure c08.indd V2 - 02/03/2012

Getting Turn-by-Turn Directions x 233

 cr.Accuracy = Accuracy.Coarse;
 cr.PowerRequirement = Power.Low;
 cr.AltitudeRequired = false;
 cr.BearingRequired = false;
 cr.SpeedRequired = false;
 cr.CostAllowed = true;
 String serviceString = Context.LocationService;
 lm = (LocationManager)GetSystemService(serviceString);
 string bestProvider = lm.GetBestProvider(cr, false);
 Location l = lm.GetLastKnownLocation(bestProvider);
 lat = l.Latitude;
 lon = l.Longitude;
 lm.RequestLocationUpdates(bestProvider, 5000, 10f, this);
 }

 void btn_Click(object sender, EventArgs e)
 {
 this.Finish();
 }

 protected override void OnDestroy()
 {
 base.OnDestroy();
 sensManager.UnregisterListener(this, magSensor);
 lm.RemoveUpdates(this);
 }
 public void OnAccuracyChanged(Sensor sensor, int accuracy)
 {
 //throw new NotImplementedException();
 }

 protected override void OnActivityResult(int requestCode,
 Result resultCode, Intent data)
 {
 if (requestCode == VOICE_RECOGNITION_REQUEST_CODE &&
 resultCode == Result.Ok)
 {
 IList<String> matches = data.GetStringArrayListExtra(
 RecognizerIntent.ExtraResults);
 if (matches.Count > 0) {
 dAddr = matches[0];
 sensManager.RegisterListener(this, magSensor, SensorDelay.Ui);
 }
 }
 base.OnActivityResult(requestCode, resultCode, data);
 }

 public void OnSensorChanged(SensorEvent e)
 {
 if ((e.Sensor.Type == SensorType.MagneticField) &&
 (lat.HasValue) && (lon.HasValue))
 {
 var mVals = e.Values;
 var x = mVals[0];

continues

c08.indd 233c08.indd 233 2/28/2012 4:16:32 PM2/28/2012 4:16:32 PM

McClure c08.indd V2 - 02/03/2012

234 x CHAPTER 8 PROGRAMMING WITH THE DEVICE HARDWARE

 var y = mVals[1];
 var z = mVals[2];
 var SumOfSq = Math.Pow(x, 2) + Math.Pow(y, 2) + Math.Pow(z, 2);
 var mag = Math.Pow(SumOfSq, .5);
 if ((mag > Threshold) && (!String.IsNullOrEmpty(dAddr)))
 {
 sensManager.UnregisterListener(this, magSensor);
 String url = String.Format(
 “http://maps.google.com/maps?saddr={0},{1}&daddr={2}”
 , lat, lon, dAddr);
 Intent intent = new Intent(Android.Content.Intent.
 ActionView, Android.Net.Uri.Parse(url));
 StartActivity(intent);
 count++;
 }
 if (count > 1)
 {
 sensManager.UnregisterListener(this, magSensor);
 }
 }
 }

 public void OnLocationChanged(Location location)
 {
 lat = location.Latitude;
 lon = location.Longitude;
 }

 public void OnProviderDisabled(string provider)
 { }

 public void OnProviderEnabled(string provider)
 { }

 public void OnStatusChanged(string provider, Availability status,
 Bundle extras)
 { }
 }
}

This code is contained in MagneticSensors\MagneticSensors\Activity1.cs

Figure 8-10 shows the driving directions from my offi ce in Knoxville, Tennessee, to Atlanta, Georgia.

You might be wondering what happens when the phone doesn’t understand the address. Thankfully,
by using the built-in activity, you have this situation taken care of for the program. The built-in map

LISTING 8-12 (continued)

c08.indd 234c08.indd 234 2/28/2012 4:16:32 PM2/28/2012 4:16:32 PM

McClure c08.indd V2 - 02/03/2012

Summary x 235

activity provides the user with a choice of addresses that might be the destination, as shown in
Figure 8-11.

SUMMARY

This chapter has looked at integrating with various features in a device. These features can be used
to present the users with information about their surroundings as well as provide information to
the users in unique and very useful ways. Hopefully, developers will be able to use these and other
features of the devices to create engaging applications. Some of the device features that have been
demonstrated are:

 ‰ Sensors help the user determine acceleration on a device, heading, orientation, and other pieces
of information that are particular to the device’s environment.

 ‰ Vibration tells the user that an event has occurred on the device.

 ‰ Network connectivity is performed with Bluetooth and WiFi.

 ‰ Voice recognition allows the user to perform an operation based on voice input. This was
used with the sensor magnetometer to pr ovide the user with turn-by-turn driving
directions.

FIGURE 8-11FIGURE 8-10

c08.indd 235c08.indd 235 2/28/2012 4:16:32 PM2/28/2012 4:16:32 PM

c08.indd 236c08.indd 236 2/28/2012 4:16:32 PM2/28/2012 4:16:32 PM

McClure c09.indd V2 - 02/14/2012

9
Using Multimedia — Audio,
Video, and the Camera

WHAT’S IN THIS CHAPTER?

 ‰ Playing audio and video

 ‰ SurfaceView and video playback

 ‰ Recording audio and video

 ‰ Recording video and taking pictures

 ‰ Reading and modifying image exif data

 ‰ Adding media to the media store

 ‰ Using voice recognition

Multimedia generally encompasses all the fun, non-text content: pictures, sound, video, and
the like. This chapter shows you how to deal with this content in Mono for Android. Android
takes its open philosophy into the realm of multimedia and has no bias for media providers.
This ensures a broad range of support for image, audio, and video formats, which can be
accessed locally or streamed to the device.

This chapter focuses on playing and recording audio and video using the available APIs. This
chapter also covers voice input for your applications.

To effectively run the sample code in this chapter, you will need to use an actual Android
device, as the emulator does not support the camera and those examples that use the camera
will fail.

c09.indd 237c09.indd 237 2/28/2012 4:17:31 PM2/28/2012 4:17:31 PM

McClure c09.indd V2 - 02/14/2012

238 x CHAPTER 9 USING MULTIMEDIA — AUDIO, VIDEO, AND THE CAMERA

ANDROID MEDIA CLASSES

The following table provides a list of the Android media classes that are wrapped by Mono
for Android to perform the magic in this chapter. Also, you will use the MediaPlayer and
MediaRecorder along with the ExifInterface in examples in this chapter.

TABLE 9.1: Android Media Classes

CLASS DESCRIPTION

AsyncPlayer Plays an audio URI, but loading and preparing the audio is

done on a background thread to prevent the foreground

thread from blocking and performing slowly.

AudioFormat Provides access to a number of audio format and channel

confi guration constants.

AudioManager Provides access to volume and ringer mode control.

AudioRecord Manages the audio resources for Java applications to record

audio from the platform’s audio input hardware.

AudioTrack Manages and plays a single audio resource for Java

applications.

CamcorderProfile Retrieves the predefi ned camcorder profi le settings for cam-

corder applications.

CameraProfile Retrieves the predefi ned still image capture (JPEG) quality

levels (0 to 100) used for low, medium, and high quality set-

tings in the Camera application.

ExifInterface Reads and writes exchangeable image fi le format (exif) tags in

a JPEG fi le.

FaceDetector Identifi es the faces of people in a bitmap graphic object.

FaceDetector.Face Contains all the information identifying the location of a face

in a bitmap.

JetPlayer Provides access to JET content playback and control.

MediaMetadataRetriever Provides a unifi ed interface for retrieving frame data and

metadata from an input media fi le.

MediaPlayer Controls playback of audio/video fi les and streams.

MediaRecorder Records audio and video.

MediaRecorder.AudioEncoder Defi nes the audio encoding used by the MediaRecorder.

c09.indd 238c09.indd 238 2/28/2012 4:17:33 PM2/28/2012 4:17:33 PM

McClure c09.indd V2 - 02/14/2012

Playing Audio and Video x 239

CLASS DESCRIPTION

MediaRecorder.AudioSource Defi nes the audio source used by the MediaRecorder.

MediaRecorder.OutputFormat Defi nes the output format used by the MediaRecorder.

MediaRecorder.VideoEncoder Defi nes the video encoding used by the MediaRecorder.

MediaRecorder.VideoSource Defi nes the video source used by the MediaRecorder.

MediaScannerConnection Provides a way for applications to pass a newly created or

downloaded media fi le to the media scanner service.

Ringtone Provides a quick way to play a ringtone, notifi cation, or similar

types of sounds.

RingtoneManager Provides access to ringtones, notifi cations, and other types of

sounds.

SoundPool Manages and plays audio resources for applications.

ThumbnailUtils Generates routines for the media provider.

ToneGenerator Provides methods to play DTMF tones (ITU-T

Recommendation Q.23), call supervisory tones (3GPP TS

22.001, CEPT), and proprietary tones (3GPP TS 31.111).

Android Online Documentation

PLAYING AUDIO AND VIDEO

Playing audio and video is handled by the MediaPlayer object. This object conveniently abstracts
the handling of specifi c media types from the developer. This section investigates the media player,
the formats it supports, and how it is controlled.

Media Player Supported Formats

So, what is the media player, and how do you control it?

The media player supports the following formats:

 ‰ Audio

 ‰ AAC LC/LTP

 ‰ HE-AACv1 (AAC+)

 ‰ HE-AACv2 (Enhanced AAC+)

 ‰ AMR-NB

 ‰ AMR-WB

c09.indd 239c09.indd 239 2/28/2012 4:17:33 PM2/28/2012 4:17:33 PM

McClure c09.indd V2 - 02/14/2012

240 x CHAPTER 9 USING MULTIMEDIA — AUDIO, VIDEO, AND THE CAMERA

 ‰ MP3

 ‰ MIDI

 ‰ Ogg Vorbis

 ‰ PCM/WAVE

 ‰ FLAC (as of Android 3.1)

 ‰ Video

 ‰ H.263

 ‰ H.264 AVC

 ‰ MPEG-4 SP

 ‰ VP8

Playing back any of this media with the MediaPlayer object is a fi ve-step process:

1. Initialize a MediaPlayer object.

2. Prepare the media player for playback.

3. Start the playback.

4. Optionally pause or stop the playback before completion.

5. Complete the playback.

For a more detailed review of the MediaPlayer object, refer to the Android doc-
umentation at http://developer.android.com/reference/android/media/
MediaPlayer.html.

Programming Audio Playback

So, how do you play back audio? As shown in the following code snippet, there are four ways to
instantiate a new player object:

Context appContext = this;
MediaPlayer resourcePlayer = MediaPlayer.Create(appContext,
Resources.Raw.my_audio);
MediaPlayer filePlayer = MediaPlayer.Create(appContext,
Android.Net.Uri.parse(“file://”+ Android.OS.Environment.ExternalStorageDirectory
 +”/localfile.mp3”));
MediaPlayer urlPlayer = MediaPlayer.Create(appContext,
Android.Net.Uri.parse(“http://site.com/audio/audio.mp3”));
MediaPlayer contentPlayer = MediaPlayer.Create(appContext,
Settings.System.DefaultRingtoneUri);

You can see from this snippet that the four ways to instantiate a MediaPlayer object are to use
the static Create function and pass in the application context and one of the following additional
parameters:

c09.indd 240c09.indd 240 2/28/2012 4:17:33 PM2/28/2012 4:17:33 PM

McClure c09.indd V2 - 02/14/2012

Playing Audio and Video x 241

 ‰ A resource identifi er (Resources.Raw.my_audio)

 ‰ A URI to a local fi le using the file:// schema (“file://”+ Android.OS.Environment
.ExternalStorageDirectory +”/localfile.mp3)

 ‰ A URI to an online audio resource as a URL (http://site.com/audio/audio.mp3)

 ‰ A URI to a local content provider row (Settings.System.DefaultRingtoneUri)

The following program illustrates how to play back audio using each of these four techniques. First,
create a new default project using SimpleAudioPlayback as the project name and solution name.
After creating the new project, edit the strings resources as follows:

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <string name=”PlayFromId”>Play Music with Resource Id</string>
 <string name=”PlayFromNet”>Play Music from Internet</string>
 <string name=”PlayFromFile”>Play Music from File</string>
 <string name=”PlayFromProvider”>Play Music from Content Provider</string>
 <string name=”ApplicationName”>SimpleAudioPlayback</string>
</resources>

SimpleAudioPlayback program code snippets are in the SimpleAudioPlayback folder.

Having edited the strings, open main.axml and change the layout to the following:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 >
<Button
 android:id=”@+id/PlayFromIdButton”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/PlayFromId”
 />
<Button
 android:id=”@+id/PlayFromNetButton”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/PlayFromNet”
 />
<Button
 android:id=”@+id/PlayFromFileButton”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/PlayFromFile”
 />
<Button
 android:id=”@+id/PlayFromProviderButton”
 android:layout_width=”fill_parent”

c09.indd 241c09.indd 241 2/28/2012 4:17:34 PM2/28/2012 4:17:34 PM

McClure c09.indd V2 - 02/14/2012

242 x CHAPTER 9 USING MULTIMEDIA — AUDIO, VIDEO, AND THE CAMERA

 android:layout_height=”wrap_content”
 android:text=”@string/PlayFromProvider”
 />
</LinearLayout>

Change the body of Activity1 to the following:

protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

 // Set our view from the “main” layout resource
 SetContentView(Resource.Layout.Main);

 // Get our button from the layout resource,
 // and attach an event to it
 Button playFromIdButton =
 FindViewById<Button>(Resource.Id.PlayFromIdButton);
 Button playFromNetButton =
 FindViewById<Button>(Resource.Id.PlayFromNetButton);
 Button playFromFileButton =
 FindViewById<Button>(Resource.Id.PlayFromFileButton);
 Button playFromProviderButton =
 FindViewById<Button>(Resource.Id.PlayFromProviderButton);

 playFromIdButton.Click += delegate
 {
 MediaPlayer idPlayer = new MediaPlayer();
 if (idPlayer != null) {
 idPlayer.SetDataSource(this.Resources.OpenRawResourceFd
 (Resource.Raw.monoforandroid).FileDescriptor);
 idPlayer.SetOnCompletionListener(this);
 idPlayer.Prepare();
 idPlayer.Start();
 }
 };

 playFromNetButton.Click += delegate
 {
 Android.Net.Uri uri = Android.Net.Uri.Parse
(“http://www.aspnetpodcast.com/PodcastFiles/MonoforAndroid.mp3”);
 MediaPlayer netPlayer = new MediaPlayer();
 if (netPlayer != null) {
 netPlayer.SetDataSource(this, uri);
 netPlayer.SetOnCompletionListener(this);
 netPlayer.Prepare();
 netPlayer.Start();
 }
 };

 playFromFileButton.Click += delegate
 {
 Android.Net.Uri uri = Android.Net.Uri.Parse(“file://”
 + Android.OS.Environment.ExternalStorageDirectory

c09.indd 242c09.indd 242 2/28/2012 4:17:34 PM2/28/2012 4:17:34 PM

McClure c09.indd V2 - 02/14/2012

Playing Audio and Video x 243

 + “/monoforandroid.mp3”);
 MediaPlayer filePlayer = new MediaPlayer();
 if (filePlayer != null) {
 filePlayer.SetDataSource(this, uri);
 filePlayer.SetOnCompletionListener(this);
 filePlayer.Prepare();
 filePlayer.Start();
 }
 };

 playFromProviderButton.Click += delegate
 {
 MediaPlayer player = new MediaPlayer();
 if (player != null) {
player.SetDataSource(this,Settings.System.DefaultRingtoneUri);
 player.SetOnCompletionListener(this);
 player.Prepare();
 player.Start();
 }
 };
 }
public void OnCompletion (MediaPlayer player)
{
 player.Stop();
 player.Release();
}

Finally, change the declaration of Activity1 to the following:

[Activity(Label = “Simple Audio Playback”, MainLauncher = true)]
public class Activity1 : Activity, MediaPlayer.IOnCompletionListener

In this straightforward example, the layout is changed to have four buttons, one for each play-
back type. Activity1 implements IOnCompletionListener so that when a player completes,
OnCompletion is called, and the resources are released for the player.

There are some points to note before executing this code related to the playback from web, playback
from fi le, and playback ringtone. If the fi le on the web is not available at the specifi ed URL, then
playback will not occur. In the play from fi le example you have to copy the fi le to /sdcard for the
example to work. And in the playback ringtone example, some phones may loop forever, and the
OnCompletion callback will never be called, which is a minor annoyance.

A couple more points are worth mentioning. One is that the Prepare function blocks while the
media player is preparing content. This may not be signifi cant for local content, but it could be when
getting content from the web.

The solution is to use PrepareAsync, which asynchronously prepares the content and then calls the
Prepared event handler when the content is ready. The handler could then call Start to play the
audio as soon as it’s ready. The following code snippet illustrates this:

mediaPlayer.Prepared += new EventHandler(mediaPlayer_Prepared);
mediaPlayer.PrepareAsync();

c09.indd 243c09.indd 243 2/28/2012 4:17:34 PM2/28/2012 4:17:34 PM

McClure c09.indd V2 - 02/14/2012

244 x CHAPTER 9 USING MULTIMEDIA — AUDIO, VIDEO, AND THE CAMERA

Then, in mediaPlayer_Prepared , the following code executes:

mediaPlayer.start();

Another point is that instead of using the static MediaPlayer.Create function to instantiate the
media player, you could use the new operator to create a new MediaPlayer object and then assign
the related values to the MediaPlayer object. The following snippet shows this methodology:

mediaPlayer = new MediaPlayer();
mediaPlayer.SetDataSource(“http://site.com/androidaudio.mp3”);
mediaPlayer.Prepare();
mediaPlayer.Start();

Which format you use is simply a matter of personal preference.

Programming Video Playback

Displaying video is slightly more complicated than playing back audio because video requires a dis-
play surface. This display surface is commonly acquired via the SurfaceView component, but you
may also confi gure a custom surface and link to your own custom controls to manage the video.
Here you will use the SurfaceView.

The SurfaceView object is the simplest means of playing back video. After you have instantiated the
object, you call one function to initialize playback:

mediaPlayer.SetDataSource(“http://www.aspnetpodcast.com/VideoFiles/
VideoTestForMonoForAndroid.mp4”);

This function takes a URI, which could be directed at either a local provider or a remote source.
The following program demonstrates how the media player and the SurfaceView component work
together to display video.

The program, SimpleVideoPlayback, starts from the default program, as before. Then you change
the string resources to the following:

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <string name=”PlayButton”>Play Video</string>
 <string name=”ApplicationName”>SimpleVideoPlayback</string>
</resources>

SimpleVideoPlayback program code snippets are in the SimpleVideoPlayback folder.

This time you will launch a second activity that contains the video layout, so create the video layout
in a fi le called Video.axml:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:id=”@+id/VideoLayout”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>

c09.indd 244c09.indd 244 2/28/2012 4:17:34 PM2/28/2012 4:17:34 PM

McClure c09.indd V2 - 02/14/2012

Playing Audio and Video x 245

 <Button
 android:id=”@+id/CloseButton”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”Close Window”
 />

 <SurfaceView
 android:id=”@+id/VideoSurface”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_gravity=”center”
 />

</LinearLayout>

Here you have a simple layout for a button and a SurfaceView that will display the video. Here’s
the Main.axml layout:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 >
<Button
 android:id=”@+id/PlayButton”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/PlayButton”
 />
</LinearLayout>

This is also a simple layout with just a play button that will be used to launch your video activity,
the code for which is shown here:

[Activity(Label = “Video Activity”)]
public class VideoActivity : Activity, ISurfaceHolderCallback
{
 MediaPlayer mediaPlayer;

 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

 // Create your application here
 SetContentView(Resource.Layout.Video);

 mediaPlayer = new Android.Media.MediaPlayer();
 SurfaceView surface = (SurfaceView)FindViewById(Resource.Id.VideoSurface);
 var holder = surface.Holder;
 holder.AddCallback(this);
 holder.SetType(Android.Views.SurfaceType.PushBuffers);

c09.indd 245c09.indd 245 2/28/2012 4:17:35 PM2/28/2012 4:17:35 PM

McClure c09.indd V2 - 02/14/2012

246 x CHAPTER 9 USING MULTIMEDIA — AUDIO, VIDEO, AND THE CAMERA

 holder.SetFixedSize(300, 200);
 Button closeButton = FindViewById<Button>(Resource.Id.CloseButton);
 closeButton.Click += new EventHandler(closeButton_Click);
 }

 void closeButton_Click(object sender, EventArgs e)
 {
 this.Finish();
 }

 public void SurfaceCreated(ISurfaceHolder holder)
 {
 try
 {
 mediaPlayer.SetDisplay(holder);
mediaPlayer.SetDataSource(“http://www.aspnetpodcast.com/VideoFiles/
VideoTestForMonoForAndroid.mp4”);
 mediaPlayer.Prepared += new EventHandler(mediaPlayer_Prepared);
 mediaPlayer.PrepareAsync();
 }
 catch (System.Exception e)
 {
 Android.Util.Log.Debug(“MEDIA_PLAYER”, e.Message);
 Toast.MakeText(this, e.Message, ToastLength.Short).Show();
 }
 }

 void mediaPlayer_Prepared(object sender, EventArgs e)
 {
 mediaPlayer.Start();
 }

 public void SurfaceDestroyed(ISurfaceHolder holder)
 {
 mediaPlayer.Release();
 }

 public void SurfaceChanged(ISurfaceHolder holder, int i, int j, int k) { }
}

Here the activity creates the video layout and gets the SurfaceView from that layout. Also, the
activity implements the ISurfaceHolderCallback interface that allows you to react to changes in
the surface and tie these changes to the behavior of the media player. So, you can see that as soon as
the surface is created, the media player is confi gured, and when the surface is destroyed, the media
player is released.

Following this you make some changes to Activity1 that enable you to start playing the video:

[Activity(Label = “Simple Video Playback”, MainLauncher = true)]
public class SimpleVideoActivity : Activity
{
 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

c09.indd 246c09.indd 246 2/28/2012 4:17:35 PM2/28/2012 4:17:35 PM

McClure c09.indd V2 - 02/14/2012

Recording Audio and Video x 247

 // Set our view from the “main” layout resource
 SetContentView(Resource.Layout.Main);

 // Get our button from the layout resource,
 // and attach an event to it
 Button playButton = FindViewById<Button>(Resource.Id.PlayButton);
 playButton.Click += new EventHandler(playButton_Click);
 }

 void playButton_Click(object sender, EventArgs e)
 {
 Intent i = new Intent();
 i.SetClass(this, typeof(VideoActivity));
 i.AddFlags(ActivityFlags.NewTask);
 StartActivity(i);
 }
}

This is a simple implementation. Activity1 has been renamed SimpleVideoActivity, and in the
OnCreate function you wire up the playButton_Click event. playButton_Click then launches
VideoActivity. At this point you are ready to run.

Controlling Playback

Once the video is playing you can start and stop the video with the Start and Stop functions, but
you can also control playback with the Pause and SeekTo functions.

The MediaPlayer provides the CurrentPosition and Duration properties to tell you where you
are in the playback and how long the media is.

Managing Playback Output

There are three ways you can affect playback output:

 ‰ Looping: Looping is a bool and will determine whether the MediaPlayer will loop to the
beginning when it reaches the end of the media.

 ‰ SetVolume: SetVolume takes a fl oat between 0 and 1 to set the playback volume. Setting the
volume to 0 would result in no sound, while setting the volume to 1 would result in maxi-
mum volume.

 ‰ SetScreenOnWhilePlaying: SetScreenOnWhilePlaying also takes a Boolean parameter and
will prevent the screen from turning off for power savings while the media is playing back.

RECORDING AUDIO AND VIDEO

In this section you will learn how to record audio and video. We will discuss using intents to record
video and see how to use the media recorder.

c09.indd 247c09.indd 247 2/28/2012 4:17:35 PM2/28/2012 4:17:35 PM

McClure c09.indd V2 - 02/14/2012

248 x CHAPTER 9 USING MULTIMEDIA — AUDIO, VIDEO, AND THE CAMERA

The easiest way to capture audio and video is to use intents to launch the video recorder. This
method allows you to control the storage location along with the video recording quality, while still
letting the native application handle all other controls for the video.

When you need more fi ne-grained control, the MediaRecorder object lets you control all aspects of
the recording process.

Before any media can be recorded in Android, the following uses-permissions must be added to
the program manifest:

<uses-permission android:name=”android.permission.RECORD_AUDIO”/>
<uses-permission android:name=”android.permission.RECORD_VIDEO”/>

Using Intents to Record Video

As mentioned previously, using an intent to launch the built-in video recorder is the easiest way to
record video. The media recorder also can be used, as described in the next section. But if all you
want to do is grab some moving pictures, there is no need to reinvent the wheel.

The following example extends the SimpleVideoPlayback program to record video. You start by
adding a new VideoRecordLayout:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:id=”@+id/VideoRecordLayout”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>

 <Button
 android:id=”@+id/CloseButton”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”Close Window”
 />

</LinearLayout>

Code for this example of video recording is in the SimpleVideoPlayback folder.

Also, you change the main layout to have another button to call your new VideoRecord activity:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 >
<Button
 android:id=”@+id/PlayButton”
 android:layout_width=”fill_parent”

c09.indd 248c09.indd 248 2/28/2012 4:17:35 PM2/28/2012 4:17:35 PM

McClure c09.indd V2 - 02/14/2012

Recording Audio and Video x 249

 android:layout_height=”wrap_content”
 android:text=”@string/PlayButton”
 />
<Button
 android:id=”@+id/RecordButton”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/RecordButton”
 />
</LinearLayout>

In addition, you need to add the string value for the record button to Strings.xml:

<string name=”RecordButton”>Play Video</string>

You then add the new VideoRecordActivity:

[Activity(Label = “Video Record Activity”)]
public class VideoRecordActivity : Activity
{
 private const int RECORDVIDEO = 1;
 private const int HIGHVIDEOQUALITY = 1;
 private const int MMSVIDEOQUALITY = 0;

 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);
 SetContentView(Resource.Layout.VideoRecord);

 // Create your application here
 Button closeButton = FindViewById<Button>(Resource.Id.CloseButton);
 closeButton.Click += new EventHandler(closeButton_Click);
 RecordVideo(null);
 }

 void closeButton_Click(object sender, EventArgs e)
 {
 this.Finish();
 }

 private void RecordVideo(Uri outputpath)
 {
 Intent intent =
 new Intent(Android.Provider.MediaStore.IntentActionVideoCamera);
 if (outputpath != null)
 intent.PutExtra(Android.Provider.MediaStore.ExtraOutput,
 outputpath.LocalPath);

 intent.PutExtra(Android.Provider.MediaStore.ExtraVideoQuality,
 HIGHVIDEOQUALITY);
 StartActivityForResult(intent, RECORDVIDEO);
 }

 protected override void OnActivityResult(int requestCode,
 Result resultCode, Intent data)

c09.indd 249c09.indd 249 2/28/2012 4:17:36 PM2/28/2012 4:17:36 PM

McClure c09.indd V2 - 02/14/2012

250 x CHAPTER 9 USING MULTIMEDIA — AUDIO, VIDEO, AND THE CAMERA

 {
 base.OnActivityResult(requestCode, resultCode, data);
 if (requestCode == RECORDVIDEO)
 {
 if ((data != null) && (data.Data != null))
 {
 Android.Net.Uri recordedVideo = data.Data;
 // TODO Do something with the recorded video
 }
 }
 }
}

Before we move on, we should note that the code above relies on the default
video recorder having a button to indicate that recording is complete. If you
have to use the back button to exit your video recording session, the ResultCode
will be “Cancelled” and no data will be returned.

Finally, you need to wire up the new button on the main activity to launch your new activity:

[Activity(Label = “Simple Video Playback”, MainLauncher = true)]
public class SimpleVideoActivity : Activity
{
 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

 // Set our view from the “main” layout resource
 SetContentView(Resource.Layout.Main);

 // Get our button from the layout resource,
 // and attach an event to it
 Button playButton = FindViewById<Button>(Resource.Id.PlayButton);
 playButton.Click += new EventHandler(playButton_Click);

 Button recordButton = FindViewById<Button>(Resource.Id.RecordButton);
 recordButton.Click += new EventHandler(recordButton_Click);
 }

 void playButton_Click(object sender, EventArgs e)
 {
 Intent i = new Intent();
 i.SetClass(this, typeof(VideoActivity));
 i.AddFlags(ActivityFlags.NewTask);
 StartActivity(i);
 }

 void recordButton_Click(object sender, EventArgs e)
 {
 Intent i = new Intent();
 i.SetClass(this, typeof(VideoRecordActivity));

c09.indd 250c09.indd 250 2/28/2012 4:17:36 PM2/28/2012 4:17:36 PM

McClure c09.indd V2 - 02/14/2012

Recording Audio and Video x 251

 i.AddFlags(ActivityFlags.NewTask);
 StartActivity(i);
 }
}

Now when you run and select the record button, you begin recording video.

Using the Media Recorder

This section examines how to use the MediaRecorder object instead of an intent to record video.

Confi guring Video Recording

The following snippet comes from the SimpleMediaRecorder application, which is available for
download.

 mediaRecorder = new MediaRecorder();

 // Set input sources
 mediaRecorder.SetAudioSource(AudioSource.Mic);
 mediaRecorder.SetVideoSource(VideoSource.Camera);

 // Set output format
 mediaRecorder.SetOutputFormat(OutputFormat.Default);

 // Set audio and video encoding
 mediaRecorder.SetAudioEncoder(AudioEncoder.Default);
 mediaRecorder.SetVideoEncoder(VideoEncoder.Default);

 var outputFile = System.IO.Path.Combine
 (Android.OS.Environment.ExternalStorageDirectory.ToString(),
 “myvideooutputfile.mp4”);
 if (System.IO.File.Exists(outputFile))
 System.IO.File.Delete(outputFile);
 System.IO.File.Create(outputFile);

 // Set the output file
 mediaRecorder.SetOutputFile(outputFile);

 // Prepare
 mediaRecorder.Prepare();

The MediaRecorder example code is in the SimpleMediaRecorder folder.

As you can see, the fi rst line instantiates a new MediaRecorder. Then you set the audio and video
sources, which here are set to the built-in mic and camera. Here the output format is set to the
default along with the audio and video encoding.

c09.indd 251c09.indd 251 2/28/2012 4:17:36 PM2/28/2012 4:17:36 PM

McClure c09.indd V2 - 02/14/2012

252 x CHAPTER 9 USING MULTIMEDIA — AUDIO, VIDEO, AND THE CAMERA

Then the output fi le is set. Here it is hard-coded, but in your application, it would be useful to pro-
vide the user an input for a fi le name. Finally, the media recorder is prepared with all of the prior
settings and recording begins with the call to start.

The following snippet shows how to terminate recording and release the MediaRecorder resources.

 // Stop
 mediaRecorder.Stop();

 // Release resources
 mediaRecorder.Release();

Previewing Video Recording

While the previous example works, one thing you probably noticed is that there is no running pre-
view of the images that are captured. So how do you enhance the application to show a preview of
the frames as they are captured?

First you add the following SurfaceView to the main.axml layout.

<SurfaceView
 android:id=”@+id/Surface”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_gravity=”center” />

Then in the OnCreate function you add the following code to initialize the SurfaceView.

 // Initialize the surface view
 SurfaceView surface = (SurfaceView)FindViewById(Resource.Id.Surface);
 var holder = surface.Holder;
 holder.AddCallback(this);
 holder.SetType(Android.Views.SurfaceType.PushBuffers);
 holder.SetFixedSize(300, 200);

Notice the call to AddCallback. You will add the ISurfaceHolderCallback interface to the
MediaRecorderActivity as follows:

public class MediaRecorderActivity : Activity, ISurfaceHolderCallback

Then you will need to implement three functions to fulfi ll the contract on
ISurfaceHolderCallback.

 public void SurfaceCreated(ISurfaceHolder holder)
 {
 if (mediaRecorder == null)
 {
 mediaRecorder = new MediaRecorder();

 // Set input sources
 mediaRecorder.SetAudioSource(AudioSource.Mic);
 mediaRecorder.SetVideoSource(VideoSource.Camera);

 // Set output format

c09.indd 252c09.indd 252 2/28/2012 4:17:36 PM2/28/2012 4:17:36 PM

McClure c09.indd V2 - 02/14/2012

Recording Audio and Video x 253

 mediaRecorder.SetOutputFormat(OutputFormat.Default);

 // Set audio and video encoding
 mediaRecorder.SetAudioEncoder(AudioEncoder.Default);
 mediaRecorder.SetVideoEncoder(VideoEncoder.Default);

 // Set the output file
 mediaRecorder.SetOutputFile(Android.OS.Environment
 .ExternalStorageDirectory + “/myoutputfile.mp4”);

 // Set preview display
 mediaRecorder.SetPreviewDisplay(holder.Surface);

 // Prepare
 mediaRecorder.Prepare();
 }
 }

 public void SurfaceDestroyed(ISurfaceHolder holder)
 {
 mediaRecorder.Release();
 }

 public void SurfaceChanged(ISurfaceHolder holder, int i, int j, int k) { }

And fi nally you need to update the button to allow for starting and stopping the recording.

 button.Click += delegate { if (!recording) StartRecording(); else
 StopRecording(); };

Where StartRecording and StopRecording are defi ned as follows:

 void StartRecording()
 {
 // Start
 mediaRecorder.Start();
 recording = true;
 }

 void StopRecording()
 {
 // Stop
 mediaRecorder.Stop();
 recording = false;
 }

And with that you can record video with a preview window.

Audio Recording

While the example in the previous section recorded both audio and video at once, you can actually
use the MediaRecorder to record one or the other separately. So, if you set an audio source and
don’t set a video source the MediaRecorder will simply record audio.

c09.indd 253c09.indd 253 2/28/2012 4:17:37 PM2/28/2012 4:17:37 PM

McClure c09.indd V2 - 02/14/2012

254 x CHAPTER 9 USING MULTIMEDIA — AUDIO, VIDEO, AND THE CAMERA

To play back the recorded audio you use the same techniques that were illustrated with the
MediaPlayer object.

IMAGES AND USING THE CAMERA

This section investigates the use and control of the camera. It also reviews the image support built
into Android. Android supports these image formats:

 ‰ JPEG

 ‰ GIF

 ‰ PNG

 ‰ BMP

Using Intents to Take Pictures

As with video, the simplest way to take a picture with the camera is to fi re an intent to launch the
default camera activity. You will continue to use the SimpleVideoPlayback program as an example
to demonstrate this functionality.

You start by adding a new Photo.axml layout:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:id=”@+id/VideoRecordLayout”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>

 <Button
 android:id=”@+id/PhotoCloseButton”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”Close Window”
 />

</LinearLayout>

Code for this example of taking pictures is in the SimpleCamera folder.

Then you add a new string value:

<string name=”PhotoButton”>Photograph</string>

Then you add a new button to the Main.axml layout:

<Button
 android:id=”@+id/PhotoButton”

c09.indd 254c09.indd 254 2/28/2012 4:17:37 PM2/28/2012 4:17:37 PM

McClure c09.indd V2 - 02/14/2012

Images and Using the Camera x 255

 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/PhotoButton”
 />

Then you create your new PhotoActivity:

[Activity(Label = “Photo Activity”)]
public class PhotoActivity : Activity
{
 private static int TAKE_PICTURE = 1;
 private Uri outputFileUri;

 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

 // Create your application here
 SetContentView(Resource.Layout.Photo);
 Button closeButton = FindViewById<Button>(Resource.Id.PhotoCloseButton);
 closeButton.Click += new EventHandler(closeButton_Click);
 saveFullImage();
 }

 void closeButton_Click(object sender, EventArgs e)
 {
 this.Finish();
 }

 private void getThumbailPicture()
 {
 Intent intent = new Intent(Android.Provider.MediaStore.ActionImageCapture);
 StartActivityForResult(intent, TAKE_PICTURE);
 }

 private void saveFullImage()
 {
 Intent intent = new Intent(Android.Provider.MediaStore.ActionImageCapture);

 string file =
 System.IO.Path.Combine(Android.OS.Environment.ExternalStorageDirectory.ToString(),
 Android.OS.Environment.DirectoryDcim.ToString(),
 “test.jpg”);

 outputFileUri = Android.Net.Uri.Parse(file);
 intent.PutExtra(Android.Provider.MediaStore.ExtraOutput, outputFileUri);
 StartActivityForResult(intent, TAKE_PICTURE);
 }

 protected override void OnActivityResult(int requestCode, Result
 resultCode, Intent data)
 {
 base.OnActivityResult(requestCode, resultCode, data);
 if ((requestCode == TAKE_PICTURE) && (resultCode == Result.Ok))

c09.indd 255c09.indd 255 2/28/2012 4:17:37 PM2/28/2012 4:17:37 PM

McClure c09.indd V2 - 02/14/2012

256 x CHAPTER 9 USING MULTIMEDIA — AUDIO, VIDEO, AND THE CAMERA

 {
 // Check if the result includes a thumbnail Bitmap
 if (data != null)
 {
 if (data.HasExtra(“data”))
 {
 var thumbnail = data.GetParcelableArrayExtra(“data”);
 // TODO Do something with the thumbnail
 }
 else
 {
 // TODO Do something with the full image stored
 // in outputFileUri
 }
 }
 }
 }

}

So, what you have done so far is three things. First, you created a layout for the new
PhotoActivity. Second, you added a button to the main layout that you will use to launch the
PhotoActivity. Finally, you defi ned the PhotoActivity itself, which displays the layout and han-
dles the intents to take a picture.

So now, you wire up the photo button in the Main.axml layout:

[Activity(Label = “Simple Video Playback”, MainLauncher = true)]
public class SimpleVideoActivity : Activity
{
 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

 // Set our view from the “main” layout resource
 SetContentView(Resource.Layout.Main);

 // Get our button from the layout resource,
 // and attach an event to it
 Button playButton = FindViewById<Button>(Resource.Id.PlayButton);
 playButton.Click += new EventHandler(playButton_Click);

 Button recordButton = FindViewById<Button>(Resource.Id.RecordButton);
 recordButton.Click += new EventHandler(recordButton_Click);

 Button photoButton = FindViewById<Button>(Resource.Id.PhotoButton);
 photoButton.Click += new EventHandler(photoButton_Click);
 }

 void playButton_Click(object sender, EventArgs e)
 {
 Intent i = new Intent();
 i.SetClass(this, typeof(VideoActivity));
 i.AddFlags(ActivityFlags.NewTask);

c09.indd 256c09.indd 256 2/28/2012 4:17:37 PM2/28/2012 4:17:37 PM

McClure c09.indd V2 - 02/14/2012

Images and Using the Camera x 257

 StartActivity(i);
 }

 void recordButton_Click(object sender, EventArgs e)
 {
 Intent i = new Intent();
 i.SetClass(this, typeof(VideoRecordActivity));
 i.AddFlags(ActivityFlags.NewTask);
 StartActivity(i);
 }

 void photoButton_Click(object sender, EventArgs e)
 {
 Intent i = new Intent();
 i.SetClass(this, typeof(PhotoActivity));
 i.AddFlags(ActivityFlags.NewTask);
 StartActivity(i);
 }

You have now done two simple things: you added an event handler to handle the click event for the
button that will launch the PhotoActivity, and you defi ned the photoButton_Click function,
which is the target of the event handler.

Now you’ve added picture-taking to your repertoire.

Controlling the Camera

If you want to control the camera directly, you can do so with the use of the Camera class, which is
found in Android.Hardware. It provides direct control over all aspects of the hardware available on
the device. To get the camera you make a call to Camera.Open:

Camera camera = Camera.Open();

You can then interrogate and control the camera until you are done, at which point you should call
camera.Release(); to release the camera resources.

Managing Camera Settings and Picture Options

This section dives into the camera settings and picture options and how to control them. To change
the camera’s parameters you use the Camera.Parameters object, as shown in the following snippet:

Camera camera = Camera.Open();
Camera.Parameters parameters = camera.GetParameters();
ArrayList whiteBalanceModes = (ArrayList)parameters.SupportedWhiteBalance;
camera.Release();

In this snippet the camera is opened and a call to GetParameters is made, which returns a Camera
.Parameters object. In this case the supported white balance modes are found by referencing
SupportedWhiteBalance. Given that different cameras may support different features, it is always a
good policy to interrogate the hardware to discover what’s supported before setting parameter values.

c09.indd 257c09.indd 257 2/28/2012 4:17:37 PM2/28/2012 4:17:37 PM

McClure c09.indd V2 - 02/14/2012

258 x CHAPTER 9 USING MULTIMEDIA — AUDIO, VIDEO, AND THE CAMERA

The following properties indicate the camera’s supported features as of API version 9(2.3.3):

 ‰ SupportedWhiteBalance ‰ SupportedPictureFormats

 ‰ SupportedSceneModes ‰ SupportedJpegThumbnailSizes

 ‰ SupportedPreviewSizes ‰ SupportedFocusModes

 ‰ SupportedPreviewFrameRates ‰ SupportedFlashModes

 ‰ SupportedPreviewFormats ‰ SupportedColorEffects

 ‰ SupportedPictureSizes ‰ SupportedAntibanding

The following properties can be set on the Camera.Properties object:

 ‰ Antibanding ‰ MaxZoom

 ‰ ColorEffect ‰ MinExposureCompensation

 ‰ ExposureCompensation ‰ PictureFormat

 ‰ ExposureCompensationStep ‰ PictureSize

 ‰ FlashMode ‰ PreviewFormat

 ‰ FocalLength ‰ PreviewFrameRate

 ‰ FocusMode ‰ PreviewSize

 ‰ HorizontalViewAngle ‰ SceneMode

 ‰ JpegQuality ‰ VerticalViewAngle

 ‰ JpegThumbnailQuality ‰ WhiteBalance

 ‰ JpegThumbnailSize ‰ Zoom

 ‰ MaxExposureCompensation ‰ ZoomRatios

It’s important to note that none of the settings will take effect until a call to Camera
.SetProperties is made with the updated properties object.

The Camera object also supports a number of interface callbacks to allow for notifi cation of events
while the camera is in operation:

 ‰ Camera.IAutoFocusCallback ‰ Camera.IPictureCallback

 ‰ Camera.IErrorCallback ‰ Camera.IPreviewCallback

 ‰ Camera.

IOnZoomChangeListener

 ‰ Camera.IShutterCallback

The following two sections look at code that shows how to use the callbacks to monitor autofocus
and image preview.

c09.indd 258c09.indd 258 2/28/2012 4:17:37 PM2/28/2012 4:17:37 PM

McClure c09.indd V2 - 02/14/2012

Images and Using the Camera x 259

Monitoring Autofocus

Monitoring the autofocus on the camera is pretty straightforward. You implement the
IAutoFocusCallback interface on the activity in question, and you receive autofocus notifi cations.
The following snippet shows how this is done:

 [Activity(Label = “SimpleCamera”, MainLauncher = true)]
 public class SimpleCameraActivity : Activity,
 Android.Hardware.Camera.IAutoFocusCallback,
 Android.Hardware.Camera.IPictureCallback,
 Android.Hardware.Camera.IPreviewCallback,
 Android.Hardware.Camera.IShutterCallback,
 ISurfaceHolderCallback
 {
 Android.Hardware.Camera camera;
 String PICTURE_FILENAME = “picture.jpg”;

 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

 // Set our view from the “main” layout resource
 SetContentView(Resource.Layout.Main);

 SurfaceView surface = (SurfaceView)FindViewById(Resource.Id.Surface);
 var holder = surface.Holder;
 holder.AddCallback(this);
 holder.SetType(Android.Views.SurfaceType.PushBuffers);
 holder.SetFixedSize(300, 200);

 // Get our button from the layout resource,
 // and attach an event to it
 Button button = FindViewById<Button>(Resource.Id.MyButton);
 button.Click += delegate
 {
 Android.Hardware.Camera.Parameters p = camera.GetParameters();
 p.PictureFormat = (int)Format.Jpeg;
 camera.SetParameters(p);
 camera.TakePicture(this,this,this);
 };

 }

 public void OnAutoFocus(bool focused, Android.Hardware.Camera camera)
 {
 if (focused)
 {
 Toast.MakeText(this, “Focused”, ToastLength.Short);
 }
 }

Code for this snippet is in the SimpleCamera folder.

c09.indd 259c09.indd 259 2/28/2012 4:17:37 PM2/28/2012 4:17:37 PM

McClure c09.indd V2 - 02/14/2012

260 x CHAPTER 9 USING MULTIMEDIA — AUDIO, VIDEO, AND THE CAMERA

In this code, SimpleCameraActivity implements the IAutoFocusCallback interface. After the
camera is opened, OnAutoFocus is called. It’s also worth noting that if the camera on the device
does not have an autofocus, OnAutoFocus is called with the focused parameter set to true.

Using the Camera Preview

Using the camera preview is a somewhat more involved process. During previewing, a series of
frames are sent to the callback function. To be of any use they need to be displayed on a surface,
much like video.

So, continuing to work with the simple camera project used in the previous section of the chapter,
you add a surface view to the main layout:

<SurfaceView
 android:id=”@+id/Surface”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_gravity=”center” />

Then you make sure that the SimpleCameraActivity implements both Camera.IPreviewCallback
and ISurfaceHolderCallback:

public class SimpleCameraActivity : Activity, Camera.IAutoFocusCallback,
 Camera.IPictureCallback, Camera.IPreviewCallback, ISurfaceHolderCallback

Next, in the OnCreate function you get hold of and initialize the SurfaceView object you added to
the layout:

 SurfaceView surface = (SurfaceView)FindViewById(Resource.Id.Surface);
 var holder = surface.Holder;
 holder.AddCallback(this);
 holder.SetType(Android.Views.SurfaceType.PushBuffers);
 holder.SetFixedSize(300, 200);

Finally, the functions required by both of the interfaces are implemented:

 public void SurfaceCreated(ISurfaceHolder holder)
 {
 try
 {
 camera = Android.Hardware.Camera.Open();
 Android.Hardware.Camera.Parameters p = camera.GetParameters();
 p.PictureFormat = (int)Format.Jpeg;
 camera.SetParameters(p);
 camera.AutoFocus(this);
 camera.SetPreviewCallback(this);
 camera.Lock();

c09.indd 260c09.indd 260 2/28/2012 4:17:38 PM2/28/2012 4:17:38 PM

McClure c09.indd V2 - 02/14/2012

Images and Using the Camera x 261

 camera.SetPreviewDisplay(holder);
 camera.StartPreview();
 }
 catch (IOException e)
 {
 Android.Util.Log.Debug(“SIMPLECAMERA”, e.Message);
 }
 }

 public void SurfaceDestroyed(ISurfaceHolder holder)
 {
 camera.Unlock();
 camera.StopPreview();
 camera.Release();
 }

 public void SurfaceChanged(ISurfaceHolder holder, int i, int j, int k) { }

 public void OnPreviewFrame(byte[] data, Android.Hardware.Camera camera)
 {
 //TODO: Display preview
 }

Code for the snippets in this section are in the SimpleCamera folder.

Now, as soon as the surface is created, the camera is opened, and the preview frames are bound to
the surface. On each preview frame, OnPreviewFrame is called. When the surface is destroyed, the
camera stops previewing, and the resources for the camera are released.

Taking a Picture

To capture the picture that is taken, you implement the IPictureCallback interface:

 public void OnPictureTaken(byte[] data, Android.Hardware.Camera camera)
 {
 // Save the image JPEG data to the SD card
 FileOutputStream outStream = null;
 File dataDir = Android.OS.Environment.ExternalStorageDirectory;

 if (data!=null)
 {
 try
 {
 outStream = new FileOutputStream(dataDir + “/” + PICTURE_FILENAME);
 outStream.Write(data);
 outStream.Close();
 }

c09.indd 261c09.indd 261 2/28/2012 4:17:38 PM2/28/2012 4:17:38 PM

McClure c09.indd V2 - 02/14/2012

262 x CHAPTER 9 USING MULTIMEDIA — AUDIO, VIDEO, AND THE CAMERA

 catch (FileNotFoundException e)
 {
 Android.Util.Log.Debug(“SIMPLECAMERA”, e.Message);
 }
 catch (IOException e)
 {
 Android.Util.Log.Debug(“SIMPLECAMERA”, e.Message);
 }

 File file = new File(dataDir + “/” + PICTURE_FILENAME);
 try {

 ExifInterface exif = new ExifInterface(file.CanonicalPath);
 // Read the camera model and location attributes
 exif.GetAttribute(ExifInterface.TagModel);
 float[] latLng = new float[2];
 exif.GetLatLong(latLng);
 // Set the camera make
 exif.SetAttribute(ExifInterface.TagMake, “My Phone”);
 exif.SetAttribute(ExifInterface.TagDatetime,
 System.DateTime.Now.ToString());
 }
 catch (IOException e) {

 Android.Util.Log.Debug(“SIMPLECAMERA”, e.Message);
 }
 }
 else
 {
 Toast.MakeText(this, “No Image Captured”, ToastLength.Long);
 }
 }

Code for this snippet is in the SimpleCamera folder.

This snippet contains the OnPictureTaken function, which is defi ned by IPictureCallback. When
the picture is taken, the function is called, and the image data is written to storage. The data’s for-
mat is controlled by the ImageFormat property in the CameraProperties object.

Reading and Writing JPEG Exif Values

Now that you are capturing the image from the camera, how do you go about adding information,
such as the time or location of the picture, to the image itself? If the image is a JPEG, there is an
interface with which to do exactly this.

ExifInterface allows you to change the exif (exchangeable image fi le format) data on a JPEG
image. You can set a number of metadata tags; refer to the documentation for a full list. The follow-
ing snippet shows how you can set the date and get the location where a picture was taken:

c09.indd 262c09.indd 262 2/28/2012 4:17:38 PM2/28/2012 4:17:38 PM

McClure c09.indd V2 - 02/14/2012

Adding New Media to the Media Store x 263

File file = new File(dataDir + “/” + PICTURE_FILENAME);
try {

 ExifInterface exif = new ExifInterface(file.CanonicalPath);
 // Read the camera model and location attributes
 exif.GetAttribute(ExifInterface.TagModel);
 float[] latLng = new float[2];
 exif.GetLatLong(latLng);
 // Set the camera make
 exif.SetAttribute(ExifInterface.TagMake, “My Phone”);
 exif.SetAttribute(ExifInterface.TagDatetime, System.DateTime.Now.ToString());
}
catch (IOException e) {

 Android.Util.Log.Debug(“SIMPLECAMERA”, e.Message)
}

In this example, you have added the ability to tag JPEG images generated by the camera through the
ExifInterface. While this example uses only TagMake and TagDatetime, you can experiment with
other available tags like those for latitude and longitude.

ADDING NEW MEDIA TO THE MEDIA STORE

This section examines the media store and looks at how new content can be added to it. The media
store provides metadata for all the available media on the device on both the internal and external
storage. Any media created by your application is, by default, inaccessible to other apps, so it is a
good idea to put your media into the store so that it will be available.

There are two ways to get data into the media store. The fi rst is to let the media scanner automati-
cally analyze your fi le and add it. The other method is to manually add a record to the proper con-
tent provider.

Using the Media Scanner

The media scanner scans a fi le for you to determine its mime type and add it to the media store.
However, you don’t use the media scanner directly; you obtain a connection to it using the
MediaScannerConnection class.

The following snippet shows how MediaScannerConnection is opened with a call to Connect.
Then the fi le is scanned with a call to ScanFile. Finally, when the scan is completed, the connection
is closed with a call to Disconnect.

The calls to MediaScannerConnection are all asynchronous. So the activity
implements the IMediaScannerConnectionClient interface for notifi cation of
when the connection is established and when the scans are complete.

c09.indd 263c09.indd 263 2/28/2012 4:17:38 PM2/28/2012 4:17:38 PM

McClure c09.indd V2 - 02/14/2012

264 x CHAPTER 9 USING MULTIMEDIA — AUDIO, VIDEO, AND THE CAMERA

[Activity(Label = “MediaStoreExamples”, MainLauncher = true)]
public class MediaStoreActivity : Activity,
 MediaScannerConnection.IMediaScannerConnectionClient
{
 MediaScannerConnection msc;

 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

 // Set our view from the “main” layout resource
 SetContentView(Resource.Layout.Main);
 msc = new MediaScannerConnection(this, this);

 // Get our button from the layout resource,
 // and attach an event to it
 Button button = FindViewById<Button>(Resource.Id.ScanButton);
 button.Click += delegate {
 msc.Connect();
 };
 }

 public void OnMediaScannerConnected()
 {
 msc.ScanFile(Android.OS.Environment.ExternalStorageDirectory +
 “/myoutputfile.mp4”, null);
 }
 public void OnScanCompleted(string path, Android.Net.Uri uri)
 {
 msc.Disconnect();
 }
}

Code for this snippet is in the MediaStoreExamples folder.

Adding New Media to the Store

If you want to add more metadata, or you don’t want to rely on the media scanner, you can add
your content to the appropriate media store content provider yourself.

The following code snippet comes from the MediaStoreExamples download and shows how to add
media to the store ‘manually.’

 Button addButton = FindViewById<Button>(Resource.Id.AddButton);
 addButton.Click += delegate
 {
 ContentValues values = new ContentValues();
 values.Put(MediaStore.MediaColumns.Title, “Hiking Notes”);
 values.Put(MediaStore.MediaColumns.Data,

c09.indd 264c09.indd 264 2/28/2012 4:17:39 PM2/28/2012 4:17:39 PM

McClure c09.indd V2 - 02/14/2012

Speech Recognition x 265

 Android.OS.Environment.ExternalStorageDirectory +
 “/myoutputfile.mp4”);
 values.Put(MediaStore.Audio.Media.ContentType, “audio/amr”);

 ContentResolver resolver = this.ContentResolver;
 Android.Net.Uri uri =
 resolver.Insert(MediaStore.Audio.Media.ExternalContentUri, values);

 this.SendBroadcast(new Intent(Intent.ActionMediaScannerScanFile, uri));
 };

Here we see the ContentValues object populated with data relevant to the mp4 fi le that is about to
be added to the content resolver. Then the content resolver is retrieved and the values are inserted
into the resolver. Finally, a broadcast is sent notifying any potential receivers of the newly added fi le.

SPEECH RECOGNITION

This section covers how to integrate speech recognition into an application. Ever since Android 1.5
(API level 3), Android has supported voice input and speech recognition. The RecognizerIntent
class provides the API that makes this happen. Before running the following code, you need to
ensure that you have Google Voice Search installed.

To get input from the voice recognition system, you start a new activity for the result:

int VOICE_RECOGNITION = 0;

protected override void OnCreate(Bundle bundle)
{
 base.OnCreate(bundle);

 // Set our view from the “main” layout resource
 SetContentView(Resource.Layout.Main);

 // Get our button from the layout resource,
 // and attach an event to it
 Button button = FindViewById<Button>(Resource.Id.MyButton);

 button.Click += new EventHandler(button_Click);
}

void button_Click(object sender, EventArgs e)
{
 Intent intent = new Intent(RecognizerIntent.ActionRecognizeSpeech);

 // Specify free form input
 intent.PutExtra(RecognizerIntent.ExtraLanguageModel,
 RecognizerIntent.LanguageModelFreeForm);

c09.indd 265c09.indd 265 2/28/2012 4:17:39 PM2/28/2012 4:17:39 PM

McClure c09.indd V2 - 02/14/2012

266 x CHAPTER 9 USING MULTIMEDIA — AUDIO, VIDEO, AND THE CAMERA

 intent.PutExtra(RecognizerIntent.ExtraPrompt,
 “to see something cool”);
 intent.PutExtra(RecognizerIntent.ExtraMaxResults, 1);
 intent.PutExtra(RecognizerIntent.ExtraLanguage, Locale.English);

 StartActivityForResult(intent, VOICE_RECOGNITION);
}

Protected override void OnActivityResult (int requestCode, int resultCode,
 Intent data) {

 if (requestCode == VOICE_RECOGNITION)
 {
 if (resultCode == Result.Ok) {

 Toast.MakeText(this, data.Extras.ToString(), ToastLength.Long).Show();
 }
 }
}

Code for this snippet is in the SimpleVoiceRecognition folder.

In addition to creating the new intent of type RecognizerIntent.ActionRecognizeSpeech, a num-
ber of extras are added to the intent.

 ‰ ExtraLanguage specifi es the locale for recognition. The recognition engine works on only a
subset of locales, however.

 ‰ ExtraMaxResults limits the number of responses that the recognition engine returns.

 ‰ ExtraPrompt displays some additional text on the speech prompt screen.

 ‰ ExtraLanguageModel tells the recognition engine what model to use to parse the spoken
text. Currently there are two models: one that is free-form (which we use here), and another
for web search.

SUMMARY

In this chapter you have learned about the multimedia aspects of the Android phone and how to
control the multimedia systems. We covered how to play audio and video. We showed how audio
can be bundled with an application as part of the raw resources. We saw how to play back video
using the SurfaceView and a custom video surface.

We also looked at recording audio and video. First we used intents to launch the built-in recording
applications. Then we examined how to use the media recorder to accomplish the same goals. In
addition, we looked at the camera and how to control it. First we used intents to launch the built-in
camera for results. Then we looked at how the camera hardware can be directly controlled using the
Camera object. Along the way we looked at how the exif data on a JPEG image captured with the
camera can be examined or modifi ed using the ExifInterface class.

c09.indd 266c09.indd 266 2/28/2012 4:17:39 PM2/28/2012 4:17:39 PM

McClure c09.indd V2 - 02/14/2012

Summary x 267

Also covered was how to add any media created by your app to the media store by using the media
scanner or by adding the information directly.

We wrapped up with a quick look at how to use voice recognition as an input into your applications.

Including multimedia in your application is something that often gives it polish. Going beyond
simple keyboard input and including voice recognition, or enabling pictures for a note-taking appli-
cation, will help give your applications that something extra. Hopefully, this chapter has assisted
you in seeing beyond the virtual keyboard.

c09.indd 267c09.indd 267 2/28/2012 4:17:39 PM2/28/2012 4:17:39 PM

c09.indd 268c09.indd 268 2/28/2012 4:17:39 PM2/28/2012 4:17:39 PM

McClure c08.indd V2 - 02/03/2012

10
Talking to Other Applications
and Libraries

WHAT’S IN THIS CHAPTER?

 ‰ Allowing Mono for Android to talk with other applications using

intents

 ‰ Having your applications integrate with other third-party applications

 ‰ Accessing the Android Address Book

This chapter discusses the ways in which you can use Mono for Android to talk to other appli-
cations on the Android device, both those built into the device and those downloaded from the
Android application stores. It also describes how to access the device’s contacts and insert and
edit contacts without having to rebuild a common UI.

The secret behind interfacing with any application on the device is the Intent method. This
method handles where and what to open when you pass in an Intent and a Type or URI
object for the method to know how to work with the intent. When the method is called, the
app suspends in its normal fashion and carries out the appropriate action based on the infor-
mation the intent has been passed.

ANDROID APPLICATION INTEGRATION

This section shows you how to integrate Android built-in applications into your own application.

Opening the Browser

Opening a webpage in the native browser is a good place to start. The most likely reason for
you to close your app and open the browser is because you want a website to be displayed.

c10.indd 269c10.indd 269 2/28/2012 4:18:04 PM2/28/2012 4:18:04 PM

McClure c08.indd V2 - 02/03/2012

270 x CHAPTER 10 TALKING TO OTHER APPLICATIONS AND LIBRARIES

A user could then use the device’s Back button to return to your application. As with most of the
examples in this section, you can use this functionality by starting an intent as a new activity. The
following code displays a website:

var intent = new Intent(Intent.ActionView);
intent.SetData(Android.Net.Uri.Parse(“http://wrox.com”));
StartActivity(intent);

You can download relevant code from this chapter at this book’s website at
www.wrox.com. The Chapter10Examples project contains all the code snippets in
this chapter and can be found at Chapter10Examples\Chapter10Examples.sln
in this chapter’s code download.

The fi rst line instantiates a new Intent object. You can see that the type of action you pass into the
constructor is a View. This basically means to display whatever data is set for the intent. The sec-
ond line sets the data value. The data property is of type Android.Net.Uri, which is similar to the
.NET version. You can use the Parse method to return a Uri from the URL string.

The Intent constructor has an overload method, which you can use to pass in the “data”
Android.Net.Uri so that you do not need to manually set the data. This makes your code look like
the following:

var intent = new Intent(Intent.ActionView,
 Android.Net.Uri.Parse(“http://wrox.com”));
StartActivity(intent);

When this code runs, you should fi nd that the application you were in has closed. You are taken to
the Wrox website, as shown in Figure 10-1.

FIGURE 10-1

c10.indd 270c10.indd 270 2/28/2012 4:18:08 PM2/28/2012 4:18:08 PM

McClure c08.indd V2 - 02/03/2012

Android Application Integration x 271

You can achieve a similar solution by using the Android.Webkit.WebView class to include websites
directly within your application without the need for the app to close. To do this, you can simply
add a WebView tag into your existing layout. To make this clearer in the example, a new activity
called WebActivity is created to handle the new WebView code and a new layout called WebView is
used. Listing 10-1 shows the new layout WebView.axml.

LISTING 10-1: Layout for WebView.axml

<?xml version=”1.0” encoding=”utf-8”?>

<LinearLayout
 xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 >

 <WebView
 android:id=”@+id/webView”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 />

</LinearLayout>

This code is contained in Chapter10Examples\Chapter10Examples\Resources\layout\WebView.xaml

From here, you can then hook up the WebView in the WebActivity.cs to load a new URL. One of
the things that happens when you tell the WebView to load the URL is that it will create a new intent
to do this. Since you want your application to handle the WebView, you will need to implement a
WebViewClient to handle the ShouldOverrideUrlLoading method to prevent this by overriding its
functionality. When this event gets fi red, you can run the same LoadUrl method for the view and
return true to indicate that you have handled the UrlLoading yourself.

When the WebView is displayed and you click to navigate to different pages, as you click the back
button, the WebView disappears and returns back to the previous intent. You can override the
OnKeyDown method on your activity and check to see if the button that was pressed was indeed
the Back button and that the WebView can go back to previous pages. Listing 10-2 shows the
WebActivity in full.

LISTING 10-2: Activity for handling a WebView

[Activity(Label = “Web Activity”)]
public class WebActivity : Activity
{

 private WebView webView;

 protected override void OnCreate(Bundle bundle)

continues

c10.indd 271c10.indd 271 2/28/2012 4:18:09 PM2/28/2012 4:18:09 PM

McClure c08.indd V2 - 02/03/2012

272 x CHAPTER 10 TALKING TO OTHER APPLICATIONS AND LIBRARIES

 {

 base.OnCreate(bundle);

 // Set our view from the “main” layout resource
 SetContentView(Resource.Layout.WebView);

 webView = FindViewById<WebView>(Resource.Id.webView);
 webView.SetWebViewClient(new MyWebViewClient());
 webView.LoadUrl(“http://www.wrox.com”);

 }

 public override bool OnKeyDown(Keycode keyCode, KeyEvent e)
 {

 if (keyCode == Keycode.Back && webView.CanGoBack())
 {
 webView.GoBack();
 return true;
 }
 return base.OnKeyDown(keyCode, e);

 }

 public class MyWebViewClient : WebViewClient
 {

 public override bool ShouldOverrideUrlLoading(WebView view, string url)
 {

 view.LoadUrl(url);
 return true;

 }
 }
}

This code is contained in Chapter10Examples\Chapter10Examples\WebActivity.cs

Opening E-mail

Opening e-mail works much like you expect it to; you use the mailto: protocol.

var intent = new Intent(Intent.ActionView,
 Android.Net.Uri.Parse(“mailto:chris@example.com”));
StartActivity(intent);

LISTING 10-2 (continued)

c10.indd 272c10.indd 272 2/28/2012 4:18:09 PM2/28/2012 4:18:09 PM

McClure c08.indd V2 - 02/03/2012

Android Application Integration x 273

The emulator by default does not have any mail accounts confi gured. This
causes a fallback message saying Unsupported action, That action is cur-
rently not supported when you start an activity with this intent. To test this
method, you can set up an e-mail account in the emulator. This lets you continue
testing e-mail-based activities.

As the mailto: protocol states, you can also pass in the commands bcc, cc, subject, and body.
This populates the necessary fi elds in the standard mail template. The Android SDK ignores the
from command normally used with the mailto: protocol, so it will not work. Here is an example of
the extra commands being used:

var intent = new Intent(Intent.ActionView,
 Android.Net.Uri.Parse(“mailto:chris@example.com?cc=other@example.com
 &subject=Wrox&body=Mono for Android “));
StartActivity(intent);

As with the browser example, the application again closes,
and an e-mail compose message is displayed, as shown in
Figure 10-2.

Making a Telephone Call

Using the tel: protocol, you can use the built-in tele-
phone functionality of an Android device by using the
following Intent example. This example shows hyphens
within the number. If you do not enter any hyphens, they
are automatically added when the Android device parses
the URI.

var intent = new Intent(Intent.ActionDial,
 Android.Net.Uri
.Parse(“tel:1-408-867-5309”));
StartActivity(intent);

By using this method, you only prompt the user to dial a
number, as shown in Figure 10-3. If you wanted to, you
could set the intent action to Intent.ActionCall, which
immediately calls the entered number. This would then get
displayed to the user as Figure 10-4.

var intent = new Intent(Intent.ActionCall,
 Android.Net.Uri.Parse(“tel:1-408-867-5309”));
StartActivity(intent);

FIGURE 10-2

c10.indd 273c10.indd 273 2/28/2012 4:18:09 PM2/28/2012 4:18:09 PM

McClure c08.indd V2 - 02/03/2012

274 x CHAPTER 10 TALKING TO OTHER APPLICATIONS AND LIBRARIES

Since this could cause a user to spend money on a call, the application must ask permission to per-
form this task with the CALL_PHONE permission. Make sure your application has the following per-
mission added to the AndroidManifest.xml fi le:

<uses-permission android:name=”android.permission.CALL_PHONE” />

Sending a Text/SMS Message

The sms: protocol enables you to open an SMS message activity to send an SMS message. Again,
you can use a new intent and pass in the number that you want to send an SMS message to:

var intent = new Intent(Intent.ActionView,
 Android.Net.Uri.Parse(“sms:1-408-867-5309”));
StartActivity(intent);

This next example shows how to open a new text message with the passed-in number and the text
you want to put into the message using the PutExtra method on the intent. Even though the sms:
protocol says to use body to pass in body text to an SMS message, Android does not use this and
instead uses sms_body to pass in the message body. Figure 10-5 displays the message after the intent
has been used.

var intent = new Intent(Intent.ActionView,
 Android.Net.Uri.Parse(“sms:1-408-867-5309”));
intent.PutExtra(“sms_body”, “Message Body”);
StartActivity(intent);

FIGURE 10-3 FIGURE 10-4

c10.indd 274c10.indd 274 2/28/2012 4:18:10 PM2/28/2012 4:18:10 PM

McClure c08.indd V2 - 02/03/2012

Android Application Integration x 275

Whilst you can allow the user to explicitly send a text
message, the Android platform allows you to send SMS
messages directly from the application. This allows you
to potentially build a replacement SMS application that
 can be tailored to your liking.

To programmatically send a SMS message, you can use the
SMSManager class, which provides useful methods to send
SMS/Text messages. Listing 10-3 shows the code to create a
PendingIntent to pick up an event when the text message is
sent and the code to initiate the sending of the text message.
The pending intent class called SentSMS needs to be created as
a broadcast receiver, so Listing 10-4 sets this receiver up.

LISTING 10-3: Sending a text message programmatically

PendingIntent sentPendingIntent = PendingIntent.GetBroadcast(this, 300, new
 Intent(this, typeof(SentSms)), 0);

var smsManager = SmsManager.Default;

smsManager.SendTextMessage(“ATelephoneNumber”, null, “This is an automated
 SMS”, sentPendingIntent, null);

LISTING 10-4: Creating the SentSMS broadcast receiver

[BroadcastReceiver]
public class SentSms : BroadcastReceiver
{
 public override void OnReceive (Context context, Intent intent)
 {
 if(this.ResultCode == (int) Result.Ok)
 {
 Android.Util.Log.Debug(“Mono for Android”,”Result OK”);
 }
 else if (this.ResultCode == (int) SmsResultError.GenericFailure)
 {
 Android.Util.Log.Debug(“Mono for Android”, “Generic Failure”);
 }
 else if (this.ResultCode == (int) SmsResultError.NoService)

FIGURE 10-5

continues

c10.indd 275c10.indd 275 2/28/2012 4:18:11 PM2/28/2012 4:18:11 PM

McClure c08.indd V2 - 02/03/2012

276 x CHAPTER 10 TALKING TO OTHER APPLICATIONS AND LIBRARIES

 {
 Android.Util.Log.Debug(“Mono for Android”, “No Service”);
 }
 else if (this.ResultCode == (int) SmsResultError.NullPdu)
 {
 Android.Util.Log.Debug(“Mono for Android”, “Null Pdu”);
 }
 else if (this.ResultCode == (int) SmsResultError.RadioOff)
 {
 Android.Util.Log.Debug(“Mono for Android”, “Radio Off”);
 }
 }
}

This code is contained in Chapter10Examples\Chapter10Examples\Activity1.cs

You need explicit permission to send a SMS message programmatically, as this
may have an additional cost to the user running the application. To allow per-
mission, make sure you add the following line in the AndroidManifest.xml fi le:

<uses-permission android:name=”android.permission.SEND_SMS”/>

Opening a Location in the Maps Application

To load the Maps application from within a native Android app, you simply use a normal website
link to Google Maps. You can use a few query string parameters when creating a Google Maps
URL, such as q for a search query and saddr and daddr for the source and destination address,
respectively. This example loads a map of Manchester, United Kingdom:

var intent = new Intent(Intent.ActionView,
 Android.Net.Uri.Parse(“http://maps.google.com/maps?q=Manchester,UK”));
StartActivity(intent);

If you are running this in the emulator with the Google API add-on, you get a prompt to open the
map in either the browser or the Maps application, as shown in Figure 10-6. This would be the
same on a device that has the Google Maps application installed.

The ability to have maps within your own application without closing your application is also avail-
able with the Google APIs and Maps API within that. You will see how to use this in Chapter 13.

Opening a YouTube Video

As you saw previously with the Maps example, you just use a normal URL to open the Maps appli-
cation; this principle is the same when you want to play a YouTube video. You can use either of the
two YouTube URLs in the following example code. You need to use the video identifi er to play the

LISTING 10-4 (continued)

c10.indd 276c10.indd 276 2/28/2012 4:18:11 PM2/28/2012 4:18:11 PM

McClure c08.indd V2 - 02/03/2012

Android Application Integration x 277

video. The variable in the following code snippet, youTubeUrl, is an example of the type of URL
that will open a YouTube video. As with the Google Maps example, in the simulator the link opens
the browser and plays the video, whereas on the device it opens the YouTube application. Of course,
the Google YouTube application must be installed.

var videoId = “QHy0nBYwIKM”;
var youTubeUrl = String.Format(“http://youtube.com/watch?v={0}”, videoId);
var url = Android.Net.Uri.Parse(youTubeUrl);
var intent = new Intent(Intent.ActionView, url);
StartActivity(intent);

FIGURE 10-6

Opening the Market

A great way to promote applications you have built is to allow a user to link directly to an app from
one of your apps. To do this, you can use the market:// protocol, which allows you to search the
store for different criteria and get detailed information about an application.

To display a list of applications by a certain developer, you can use the following code example to
open the Android Market application and display a list of applications by that developer:

var publisher = “Google Inc.”;
var url = Android.Net.Uri.Parse(
 String.Format(”market://search?q=pub:{0}”, publisher)
);
var intent = new Intent(Intent.ActionView, url);
StartActivity(intent);

The publisher needs to be exact, because the search will not return partial results.

c10.indd 277c10.indd 277 2/28/2012 4:18:11 PM2/28/2012 4:18:11 PM

McClure c08.indd V2 - 02/03/2012

278 x CHAPTER 10 TALKING TO OTHER APPLICATIONS AND LIBRARIES

This example requires the Android Market application because you are using the
features of the Android Market, the sample code will not work on the emulator.
The emulator does not include the Android Market.

You can use the market://search?q=pname:package-name protocol to search for a package name;
again, only exact matches will show up. Here is an example of searching for the Google Earth
package name:

var packageName = “com.google.earth”;
var url = Android.Net.Uri.Parse(
 String.Format(”market://search?q=pname:{0}”, packageName)
);
var intent = new Intent(Intent.ActionView, url);
StartActivity(intent);

If you wanted to provide a way to search through the Market and allow for partial matches,
you could use just the q query string variable. Here is an example of searching for Google
on the Market:

var searchTerm = “Google”;
var url = Android.Net.Uri.Parse(
 String.Format(”market://search?q={0}”, searchTerm)
);

var intent = new Intent(Intent.ActionView, url);
StartActivity(intent);

If you know the full package name of the application you want to display, you can just show a detail
page of the application straight from your application. Use details instead of search, and pass in
the package name as the id. Here’s an example:

var packageName = “com.google.earth”;
var url = Android.Net.Uri.Parse(
 String.Format(“market://details?id={0}”, packageName)
);
var intent = new Intent(Intent.ActionView, url);
StartActivity(intent);

APPLICATION INTEGRATION

In addition to opening native Android applications from your own app, you can open applications
written by third-party companies. These third-party applications need to optionally expose a pro-
tocol so that they can interact with other applications (this method is explained in the next section).
Because applications can pick and choose how to implement a protocol, they also need to provide
documentation on how to use their protocols.

Finding a particular application’s website and fi guring out how to implement its protocol can be
diffi cult. It is worth checking the application or developer’s website to see if it offers any information

c10.indd 278c10.indd 278 2/28/2012 4:18:12 PM2/28/2012 4:18:12 PM

McClure c08.indd V2 - 02/03/2012

Application Integration x 279

on how to integrate with the application. One great example of how to do this comes from a Twitter
application for Android called HootSuite.

Simple Integration with HootSuite and Other Twitter Applications

HootSuite is a popular Twitter and Facebook social network application for Android. Because of
this, many users commonly use it as their method of sending tweets. You could spend a lot of time
building Twitter integration directly into your application, but an easier way to do this is to inte-
grate with a familiar app for the user instead.

HootSuite provides an intent that lets you send text to the application and then go on to send a
tweet. To do this, you use the ActionSend intent action and type “application/twitter”. You
then pass in the text you want to send as the tweet and start an activity with the CreateChooser
method. This allows your application to pick up future applications that support Twitter. The fol-
lowing code shows how you would do this:

var intent = new Intent(Intent.ActionSend);
intent.PutExtra(Intent.ExtraText, “Sending a tweet to another application”);
intent.SetType(“application/twitter”);
StartActivity(Intent.CreateChooser(intent, “Select Twitter application”));

This code is included in the Tweet Sender example application in TweetSender\TweetSender\TweetSenderActivity.cs

Enabling your application to open other applications can be useful, as can enabling your application
to be opened by other applications.

Confi guring Your Intent Filters

To enable your application — or, more specifi cally, your activity — to be opened by other applications,
you need to confi gure intent fi lters. They allow other applications to use intents to launch activities that
are exposed this way. This is similar to how you have been using these intents in the start of the
chapter.

An intent fi lter is an attribute that you add to your activity and set different properties for. This
attribute then gets converted into XML that is then merged into the AndroidManifest.xml fi le,
which is traditionally where the intent fi lters are exposed in your application.

For this example, you want to create a Twitter application that accepts when people send text for a
tweet and then sends that on to Twitter. The application will behave similarly to HootSuite in how
it handles getting a new tweet. First, you want to add the intent fi lter attribute to the application’s
activity. Since you want the user to send a tweet through text, you want the application to be avail-
able only in that case. You can add the attribute like so:

[IntentFilter (new[]{Intent.ActionSend},
 Categories=new[]{Intent.CategoryDefault})]
[Activity(Label = “Tweet Receiver”, MainLauncher = true)]
public class TweetReceiverActivity : Activity {
 // Application code.
}

This code is included in the Tweet Receiver example application in TweetReceiver\TweetReceiver\TweetReceiverActivity.cs

c10.indd 279c10.indd 279 2/28/2012 4:18:12 PM2/28/2012 4:18:12 PM

McClure c08.indd V2 - 02/03/2012

280 x CHAPTER 10 TALKING TO OTHER APPLICATIONS AND LIBRARIES

The constructor for the IntentFilter attribute takes an array of actions that the application will
listen for like a normal intent. Because you want the user to send the tweet, this action is set to
Intent.ActionSend. When an intent is called to match a fi lter, the intent must match at least one
of the set actions in the IntentFilter. The category is also set to Default; this is the category for
when an intent is called. You also set the Data properties on the intent fi lter to further fi lter the
intent.

Now that the intent fi lter is set up on the send action, you need to set up an application that can call
into the application. Following the HootSuite example, this looks like the following:

var intent = new Intent(Intent.ActionSend);
intent.PutExtra(Intent.ExtraText, “Sending a tweet to another application”);
StartActivity(Intent.CreateChooser(intent, “Select Twitter application”));

This code is included in the Tweet Sender example application in TweetSender\TweetSender\TweetSenderActivity.cs

Using the CreateChooser method allows other applications with the ActionSend method to match
and optionally be chosen.

Handling Incoming Intent Requests

With the intent fi lter in place, you will want to handle incoming requests from these intents in the
activity. Since you can set up multiple intent requests, you need to make sure that each request is
handled correctly. When the intent request comes in, you can check the intent’s action directly
against an expected action. For this application, you can check if the action matches
Intent.ActionSend.

If this matches, the intent contains a bundle, which contains extra information that was passed in
with the intent that can be extracted. Since you should have received the Intent.ExtraText value,
you get back the string from the bundle, and then you can use it in your application however you
want. Putting together all this information, you should get something like the following:

var action = this.Intent.Action;
if(Intent.ActionSend == action)
{
 //We have text for a tweet.
 var sentText = this.Intent.Extras.GetString(Intent.ExtraText);
 Toast.MakeText(this, sentText, ToastLength.Long).Show();
}

This code is included in the Tweet Receiver example application in TweetReceiver\TweetReceiver\TweetReceiverActivity.cs

INTEGRATING WITH CONTACTS

Contacts are a key part of any device, and this is no different on Android devices. Accessing this
information can be useful within your application. You may want to allow users to see a list of their
friends so that they can send a link to your application, for example.

c10.indd 280c10.indd 280 2/28/2012 4:18:12 PM2/28/2012 4:18:12 PM

McClure c08.indd V2 - 02/03/2012

Integrating with Contacts x 281

To get access to the Contacts list, you need to use the ManagedQuery method and the
ContactsContract.Contacts.ContentUri URI to go through each of the contacts
on the device (see Listing 10-5). From here you can use the GetString method and the
GetColumnIndex method from the cursor index to display the user’s name and ID using the
Log.Info method.

You need explicit permission to read through the contact list. To allow permis-
sion, make sure you add the following line in the AndroidManifest.xml fi le:

<uses-permission android:name=“android.permission.READ_CONTACTS”/>

LISTING 10-5: Accessing contacts

var uri = ContactsContract.Contacts.ContentUri;
var cursor = ManagedQuery(uri, null, null, null, null);
if(cursor.Count > 0)
{
 while(cursor.MoveToNext())
 {
 Log.Info(“Mono for Android”, “Id = {0}”, cursor.GetString(
cursor.GetColumnIndex(BaseColumns.Id)));
 Log.Info(“Mono for Android”, “Name = {0}”,cursor.GetString(
cursor.GetColumnIndex(ContactsContract.ContactsColumns.DisplayName)));
 Log.Info(“Mono for Android”, “==============”);
 }
 cursor.Close();
}

This code is contained in ContactExample\ContactExample\Activity1.cs

When you start with Android development, the Android emulator contains no
contacts. To make sure Listing 10-5 works, add at least one person to the emula-
tor. You can do this by clicking the Contact icon in the Application list, clicking
the menu button, and selecting New Contact.

Since the Contacts API is really just a wrapper around a SQLite table, you need to use ColumnIndex
to get back columns from the database. Since a user can have many phone numbers or e-mail
addresses, these are stored in a separate table linked to the main contacts table. To display the extra
information, you can use the provided content URIs to get it back, as shown in Listing 10-6. Since
you need to know the ID of the current contact, the phone and e-mail information is extracted while
the existing cursor iterates over each contact.

c10.indd 281c10.indd 281 2/28/2012 4:18:13 PM2/28/2012 4:18:13 PM

McClure c08.indd V2 - 02/03/2012

282 x CHAPTER 10 TALKING TO OTHER APPLICATIONS AND LIBRARIES

LISTING 10-6: Accessing phone and e-mail information

var uri = ContactsContract.Contacts.ContentUri;
var cursor = ManagedQuery(uri, null, null, null, null);
if(cursor.Count > 0)
{
 while(cursor.MoveToNext())
 {
 var contactId =
 cursor.GetString(cursor.GetColumnIndex(BaseColumns.Id));
 Log.Info(“Mono for Android”, “Id = {0}”, contactId);
 Log.Info(“Mono for Android”, “Name = {0}”, cursor.GetString(
cursor.GetColumnIndex(ContactsContract.ContactsColumns.DisplayName)));

 if(cursor.GetInt(cursor.GetColumnIndex(
 ContactsContract.ContactsColumns.HasPhoneNumber)) == 1)
 {
 var phoneCursor = ManagedQuery(
 ContactsContract.CommonDataKinds.Phone.ContentUri,
 null,
 “CONTACT_ID” + “ = “ + contactId,
 null,
 null);

 while(phoneCursor.MoveToNext())
 {
 var number = phoneCursor.GetString(
 phoneCursor.GetColumnIndex(
 ContactsContract.CommonDataKinds.Phone.Number));

 var type = (PhoneDataKind) phoneCursor.GetInt(
 phoneCursor.GetColumnIndex(“DATA2”));

 Log.Info(“Mono for Android”,
 “Telephone: {0} - {1}”, number, type.ToString());
 }
 phoneCursor.Close();
 }

 var emailCursor = ManagedQuery(
 ContactsContract.CommonDataKinds.Email.ContentUri,
 null,
 “CONTACT_ID” + “ = “ + contactId,
 null,
 null);

 while(emailCursor.MoveToNext())
 {
 var email = emailCursor.GetString(
 emailCursor.GetColumnIndex(“DATA1”));

 Log.Info(“Mono for Android”, “E-mail: {0}”, email);

c10.indd 282c10.indd 282 2/28/2012 4:18:13 PM2/28/2012 4:18:13 PM

McClure c08.indd V2 - 02/03/2012

Integrating with Contacts x 283

 }
 emailCursor.Close();
 Log.Info(“Mono for Android”, “==============”);

 }
 cursor.Close();
}
else
{
 Toast.MakeText(this, “No contacts found”, ToastLength.Long).Show();
}

This code is contained in ContactExample\ContactExample\Activity1.cs

If you wanted to search for a user with a certain name, you could use the ContactsContract
.Contacts.ContentFilterUri URI and append the name you wanted to fi lter into your search
query. The following code shows how you would use this to search for all the contacts that match
the partial name of Fred:

var filterUri = ContactsContract.Contacts.ContentFilterUri;
var uri = Android.Net.Uri.WithAppendedPath(filterUri, “Fred”);

var cursor = ManagedQuery(uri, null, null, null, null);
Toast.MakeText(this, ”Found ” + cursor.Count + ” people with Fred in their
 name”, ToastLength.Long).Show();

This code is contained in ContactExample\ContactExample\Activity1.cs

Accessing the contacts programmatically can be useful for the most part, but hand-cranking UI
components on top of this takes a long time when you really just want the default behavior that
users expect from their Android devices. Fortunately you can reuse your knowledge of intents to
manipulate and view contact information.

Displaying Contact Details

To display a contact’s detail from your application, you can use the Intent class and the content
URIs provided by the ContactsContract class. To display a person when you know his or her ID,
you just create a new intent pointing to the ID appended to the content URI. The following code
shows how to create this intent. Figure 10-7 shows the contact’s detail view. Make sure you have a
contact with an ID of “1” in your contacts so that the sample will work:

// Display contact detail for ID 1
var contactUri = ContactsContract.Contacts.ContentUri;
var uri = Android.Net.Uri.WithAppendedPath(contactUri, “1”);

var intent = new Intent(Intent.ActionView, uri);
StartActivity(intent);

This code is contained in ContactExample\ContactExample\Activity1.cs

c10.indd 283c10.indd 283 2/28/2012 4:18:13 PM2/28/2012 4:18:13 PM

McClure c08.indd V2 - 02/03/2012

284 x CHAPTER 10 TALKING TO OTHER APPLICATIONS AND LIBRARIES

Notice that you could continue to edit this contact because it is displaying part of the native Android
device and not an activity in your application.

Picking a Contact

To allow users to select a particular contact from a list of all their contacts, you use the Intent
.ActionPick intent type. To allow the activity to pick up on the user who was picked, use the
StartActivityForResult method, and use a unique integer to resolve the result when you get back
the result. The following code uses 100 as this unique integer. When the picker is loaded, you see a
list of all users, similar to the list shown in the Contacts application (see Figure 10-8).

// Display contact picker
var intent = new Intent(Intent.ActionPick,
 ContactsContract.Contacts.ContentUri);
this.StartActivityForResult(intent, 100);

This code is contained in ContactExample\ContactExample\Activity1.cs

Since the intent was set off from the StartActivityForResult method, you need to handle this by
overriding the OnActivityResult method. To do this, you can use the intent’s data as the URI to
pass straight back into a ManagedQuery to get the selected contact:

protected override void OnActivityResult (int requestCode, Result resultCode,
 Intent data)
{
 if(requestCode == 100)
 {
 if (data != null)

FIGURE 10-8FIGURE 10-7

c10.indd 284c10.indd 284 2/28/2012 4:18:14 PM2/28/2012 4:18:14 PM

McClure c08.indd V2 - 02/03/2012

Integrating with Contacts x 285

 {
 var cursor = ManagedQuery(data.Data, null, null, null, null);
 if(cursor.Count > 0)
 {
 cursor.MoveToFirst();
 Toast.MakeText(this, “Got contact “ +
 cursor.GetString(
 cursor.GetColumnIndex(
 ContactsContract.ContactsColumns.DisplayName)
), ToastLength.Long).Show();
 }
 }
 else
 {
 Toast.MakeText(this, “No contact picked”, ToastLength.Long).Show();
 }
 }
}

This code is contained in ContactExample\ContactExample\Activity1.cs

Creating a New Contact

Adding a new contact into the device is fairly similar to the other ways of hooking into the
contact functionality. This intent provides the same view that you would see in the Contacts app
(see Figure 10-9).

FIGURE 10-9

Using the PutExtra methods and the ContactsContract.Intents.Insert properties on the intent,
you can pass in extra information that you already know about the new contact (such as a name or

c10.indd 285c10.indd 285 2/28/2012 4:18:14 PM2/28/2012 4:18:14 PM

McClure c08.indd V2 - 02/03/2012

286 x CHAPTER 10 TALKING TO OTHER APPLICATIONS AND LIBRARIES

e-mail address). It is worth noting that you can add only a fi rst name to the contact. Due to Android
limitations, you cannot set the fi rst and last name using this method. You do this as follows:

// Insert a new contact
var intent = new Intent(Intent.ActionInsert,
 ContactsContract.Contacts.ContentUri);
intent.PutExtra(ContactsContract.Intents.Insert.Name, “Chris Hardy”);
intent.PutExtra(ContactsContract.Intents.Insert.Phone, “1-408-867-5309”);
intent.PutExtra(ContactsContract.Intents.Insert.Email,
 “chrisntr@gmail.com”);
this.StartActivityForResult(intent, 150);

This code is contained in ContactExample\ContactExample\Activity1.cs

You use the StartActivityForResult method to call this because you are only presenting a Create
New Contact screen to the user. The user may choose not to add a new contact, so to programmati-
cally fi nd out if the user added a new contact, you use the resultCode to see if the user canceled the
activity or the activity result returned an OK. The following code shows this in action:

protected override void OnActivityResult (int requestCode, Result resultCode,
 Intent data)
{
 if (resultCode == Result.Ok)
{
 // TODO: Handle successful contact being added.
 }
 else if (resultCode == Result.Canceled)
 {
 // TODO: Handle no new contact getting added.
 }
}

This code is contained in ContactExample\ContactExample\Activity1.cs

Creating a New Contact or Adding to an Existing Contact

Sometimes you may have some information that you want to associate with a contact that
already exists in your contact list. Or maybe you want to create a new contact with this new infor-
mation. You can modify the intent so that the type it expects is ContactsContract.Contacts
.ContentItemType, and the intent action can be changed to ActionInsertOrEdit. Now when the
user initiates the intent, he or she sees the screen shown in Figure 10-10.

This screen allows the user to either create a new contact or use the list to pick a contact to add
the extra information to. If the user selects the New Contact button at the top, the experience is the
same as if the user were creating a new contact, as shown earlier. If the user selects an existing

c10.indd 286c10.indd 286 2/28/2012 4:18:14 PM2/28/2012 4:18:14 PM

McClure c08.indd V2 - 02/03/2012

Summary x 287

contact, the information you passed in either gets added or overwrites the existing content. The user
can then save or revert (cancel) this action and return to the application.

var intent = new Intent(Intent.ActionInsertOrEdit);
intent.SetType(ContactsContract.Contacts.ContentItemType);

intent.PutExtra(ContactsContract.Intents.Insert.Name, “Chris Hardy”);
intent.PutExtra(ContactsContract.Intents.Insert.Phone, “1-408-867-5309”);

intent.PutExtra(ContactsContract.Intents.Insert.Email,
 “chrisntr@gmail.com”);
this.StartActivityForResult(intent, 150);

This code is contained in ContactExample\ContactExample\Activity1.cs

FIGURE 10-10

SUMMARY

Allowi ng native Android applications to talk to each other is a great way to create a consistent and
intuitive user experience. Allowing access to the user’s contact list can enable unique application
experiences, can help your application make a much more personal connection with the user, and
can give you access to key features of the phone such as calling a number or sending a text
message — making your applications stand out from the rest.

c10.indd 287c10.indd 287 2/28/2012 4:18:15 PM2/28/2012 4:18:15 PM

c10.indd 288c10.indd 288 2/28/2012 4:18:15 PM2/28/2012 4:18:15 PM

McClure c11.indd V2 - 02/07/2012

11
Developing Background
Services and
Asynchronous Code

WHAT’S IN THIS CHAPTER?

 ‰ The life cycle of a service

 ‰ Getting it done with threads

 ‰ Using services and activities

 ‰ Working with the UI

 ‰ Communicating with notifi cations

 ‰ Setting alarms

 ‰ Cloud to Device Messaging (C2DM)

Unlike some other mobile operating systems, Android allows and even encourages the use of
background processing using a variety of mechanisms to do things independently of a user inter-
face. This allows applications to listen for broadcast intents from other applications or services,
stay updated on location data, and even communicate over the Internet with other services, all
without requiring the application’s user interface to be running.

Separating the user interface from background processing is critical in creating effi cient
applications. There’s no need to hold memory for a user interface when all your application is
doing is polling a web service.

Android provides several mechanisms for processing in the background. Services don’t
even need to always be running. Android can wake up a service to do its processing in the
background based on a scheduled time or interval, or when another thread or application
broadcasts an intent in which the service is interested.

c11.indd 289c11.indd 289 2/28/2012 4:19:18 PM2/28/2012 4:19:18 PM

McClure c11.indd V2 - 02/07/2012

290 x CHAPTER 11 DEVELOPING BACKGROUND SERVICES AND ASYNCHRONOUS CODE

In this chapter you learn all about services and running code in the background, outside of the
main application thread. You discover how to communicate updates from your background code
to the user through notifi cations, as well as how to communicate with your activity user interface.
You also explore effi cient ways to make your background services poll at intervals with alarms.
Finally, you will be introduced to Google’s new Cloud to Device Messaging architecture for push
notifi cations.

THE LIFE CYCLE OF A SERVICE

Since services are meant to be used as a mechanism for executing code without user interaction, it
should be no surprise that they are considered more important than user interface activities that
are not currently visible to the user. When the operating system needs to reclaim more memory, it
kills services only in the most dire situations. Even then, it is possible to ask the operating system to
restart your service if it needs to be temporarily killed.

A service can be started multiple times, once for each time StartService is called for a particular
service. For each time a service is started, it passes an intent and a unique ID for the call to start it.

Creating Your First Service

Throughout this chapter, you will be working with different implementations of services and UIs
that search Twitter for tweets containing the hash tag #MonoDroid. Listing 11-1 shows the simple
Tweet and Search classes that will be referenced in each of the samples you work with. They are
beyond the scope of this chapter, but it should not be diffi cult to become familiar with how they
work at a basic level.

LISTING 11-1: Helper classes

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Json;
using System.Web;

namespace Chapter11.Twitter
{
 public class Tweet
 {
 public long Id { get; set; }
 public string ProfileImgUrl { get; set; }
 public string Text { get; set; }
 public string FromUser { get; set; }
 }

 public class Search
 {
 public static List<Tweet> SearchTweets(long sinceId, params string[] terms)

c11.indd 290c11.indd 290 2/28/2012 4:19:21 PM2/28/2012 4:19:21 PM

McClure c11.indd V2 - 02/07/2012

The Life Cycle of a Service x 291

 {
 var tweets = new List<Tweet>();

 var query = string.Format(“{0}?q={1}&since_id={2}&lang=en”,
 “http://search.twitter.com/search.json”,
 HttpUtility.UrlEncode(string.Join(“ OR “, terms)),
 sinceId);

 var data = (new WebClient()).DownloadString(query);

 var jsonObj = JsonObject.Parse(data) as JsonObject;
 var jsonResults = jsonObj[“results”] as JsonArray;

 foreach (var jsonItem in jsonResults)
 {
 tweets.Add(new Tweet()
 {
 Id = (long)jsonItem[“id”],
 ProfileImgUrl = jsonItem[“profile_image_url”].ToString(),
 Text = jsonItem[“text”].ToString(),
 FromUser = jsonItem[“from_user”].ToString()
 });
 }

 return tweets;
 }
 }
}

This code is contained in Chapter11.Twitter\Search.cs

For your fi rst service, you will create a straightforward service that simply searches for tweets each
time it is started. This is done by subclassing the service class, as shown in Listing 11-2.

LISTING 11-2: Your fi rst service

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Android.App;
using Android.Content;
using Android.OS;
using Android.Runtime;
using Android.Views;
using Android.Widget;
using Chapter11.Twitter;

namespace Chapter11.FirstService
{
 [Service]
 public class FirstService : Service

continues

c11.indd 291c11.indd 291 2/28/2012 4:19:21 PM2/28/2012 4:19:21 PM

McClure c11.indd V2 - 02/07/2012

292 x CHAPTER 11 DEVELOPING BACKGROUND SERVICES AND ASYNCHRONOUS CODE

 {
 List<Tweet> tweets = new List<Tweet>();

 public override IBinder OnBind(Intent intent)
 {
 throw new NotImplementedException();
 }

 public override StartCommandResult OnStartCommand(Intent intent,
 StartCommandFlags flags, int startId)
 {
 var startCmdResult = base.OnStartCommand(intent, flags, startId);

 tweets = Search.SearchTweets(0, ”#MonoDroid”);

 foreach (var tweet in tweets)
 Android.Util.Log.Info(“CHAPTER-11”,
 string.Format(“{0} - {1}: {2}”, tweet.Id,
 tweet.FromUser, tweet.Text));
 Toast.MakeText(this, “Tweets Refreshed!”, ToastLength.Short).Show();

 return startCmdResult;
 }
 }
}

This code is contained in Chapter11a.FirstService\FirstService.cs

Throughout this chapter’s code samples, you will see the Twitter hashtag
#MonoDroid referenced. Mono for Android was initially known to the commu-
nity as MonoDroid. Many references to it still use this name, such as IRC
channels, open source projects, and tweets.

Subclassing the service class requires that you override the OnBind method (which you will
learn about in the section “Communication with the UI: Using the Binder and service Connection
Method”). In this example, you need not worry about what that method does, but your code will
not compile without overriding this method. It wouldn’t be very useful to have a service that didn’t
do anything, so you can see that OnStartCommand has been overridden as well. This is the main
entry point for your service, and it is a method that may be called multiple times. The parameters
include an intent that caused the service to start (it may contain relevant extras), a fl ag indicating if
the service is being started as a Retry or Redelivery from a failed attempt, and a startId unique to
the request to start.

The OnStartCommand method must return a StartCommandResult bitmask value. It tells the
operating system how the service wants to be managed — specifi cally, if the service is killed by the

LISTING 11-2 (continued)

c11.indd 292c11.indd 292 2/28/2012 4:19:21 PM2/28/2012 4:19:21 PM

McClure c11.indd V2 - 02/07/2012

The Life Cycle of a Service x 293

operating system after it has been started (for example, in low-memory conditions). There are sev-
eral possible enum fl ags:

 ‰ NotSticky: The service is taken out of started state, and no intents are redelivered if it is
killed by the OS.

 ‰ RedeliverIntent: The service is scheduled for restart, and intents are redelivered if killed by
the OS.

 ‰ Sticky: The service should be left in its started state, and no intents are redelivered if it is
killed by the OS.

 ‰ StickyCompatible: Does not guarantee that service’s start method will be called again if
killed by the OS. This exists for compatibility with APIs older than Level 5 (Android 2.0).

 ‰ ContinuationMask: A bitmask of values returned. This value is not necessary for returning
a StartCommandResult, but rather for reading different bitmasks from the returned value.
You should not normally need to use this.

Prior to API Level 5 (Android 2.0), OnStart(Intent intent) was used instead
of OnStartCommand. You should override both if you plan to support older
platforms.

Another important thing to note is the [Service] attribute decorating the class. If you’ve done any
Java Android development, you might know that services need to be declared in the manifest fi le.
Mono for Android automatically generates the correct service defi nitions in the manifest fi le if you
use the [Service] attribute to decorate your service classes.

Prioritizing Services

Your service wants to keep running; it has inertia. services always have higher priority than activi-
ties, which are not visible to the user. If an activity is currently in use and is visible to the user (a
foreground activity), it has the highest priority and should never be terminated. A service, then, has
the next-highest priority.

Sometimes you might want your service to maintain a higher priority than its default, meaning that
it should have the equivalent priority to a foreground activity. An example might be a VoIP applica-
tion or a music player. You can start a service in the foreground (or move a running service to the
foreground) status by using the Service.StartForeground(int id, Notification n) method.
It expects, as parameters, a notifi cation ID (unique within your application) and a Notification
object (which should be an ongoing notifi cation). This raises your service to foreground status and
prevents it from being killed to free up memory except for the most dire low-memory conditions.
Similarly, the Service.StopForeground(bool removeNotification) method is used to remove
the service from foreground status, which expects a bool parameter indicating whether to remove
the ongoing notifi cation passed into the StartForeground call. Listing 11-3 shows how to priori-
tize a service.

c11.indd 293c11.indd 293 2/28/2012 4:19:22 PM2/28/2012 4:19:22 PM

McClure c11.indd V2 - 02/07/2012

294 x CHAPTER 11 DEVELOPING BACKGROUND SERVICES AND ASYNCHRONOUS CODE

Prior to API Level 5 (Android 2.0), you need to use SetForeground(bool
isForeground) to change the foreground status on your service.

LISTING 11-3: Prioritizing a service

var notification = new Notification(
 Android.Resource.Drawable.SymActionEmail,
 “Prioritized Service!”);
Notification.Flags = NotificationFlags.ForegroundService;

var pendingIntent = PendingIntent.GetActivity(this, 0,
 new Intent(this, typeof(MainActivity)),
 PendingIntentFlags.UpdateCurrent);

notification.SetLatestEventInfo(this, “Prioritized Service”,
 “Prioritized Service running”, pendingIntent);

StartForeground(1, notification);
NotificationManager.FromContext(this).Notify(0, notification);

This code is contained in Chapter11b.PrioritizingServices\PriorityService.cs

USING THREADS FOR ASYNCHRONOUS PROCESSING

It may not be immediately obvious, but the fact that services are running does not
 automatically mean that your code is running in the background. In fact, by default,
the methods that your service overrides are executed on the main application thread.
This means that if you call StartService(...) from your activity, your service’s
OnStartCommand(...) method is called, but your activity blocks calling this method on your
service. If you’re not careful, you could tie up your user interface while starting a service if you
do a lot of processing in the OnStartCommand(...). For this reason, it is important to move
any lengthy processing routines to a different thread. There are several ways to accomplish this
task in Mono for Android:

 ‰ Manual threading: Using the System.Threading namespace, you can spawn threads
 manually as needed to do background work.

 ‰ System.Threading.Tasks: Mono provides a namespace which abstracts threading, for
executing code asynchronously, and in parallel.

 ‰ IntentService: This is a special subclass of service that does processing in the
 background whenever a new intent arrives. It starts and stops as required and handles the
asynchronous plumbing for you.

c11.indd 294c11.indd 294 2/28/2012 4:19:22 PM2/28/2012 4:19:22 PM

McClure c11.indd V2 - 02/07/2012

Using Threads for Asynchronous Processing x 295

Android contains a class called AsyncTask that can also be used to execute
code asynchronously. This class can also be used in Mono if it is necessary for
interfacing with other Java methods. There are several .NET ways to accomplish
asynchronous patterns, so the AsyncTask is not typically required.

Threading Manually

If you are familiar with threading in .NET, the code shown in Listing 11-4 should make you feel
right at home. It shows how you can use the System.Threading.Thread object to execute code
in the background. The service utilizes a single Thread object. Each time the service is started, the
thread instance is checked to see if it has been created or is still running. If it’s not running, or has
not yet been created, a new thread instance is generated and started. The thread executes the ser-
viceWorker() method. If the thread is already running, no new thread is created.

LISTING 11-4: Using manual threading

using System;
using System.Threading;
using Android.App;
using Android.Content;
using Android.OS;
using Android.Runtime;
using Android.Views;
using Android.Widget;
using Chapter11.Twitter;

namespace Chapter11.ManualThreading
{
 [Service]
 public class ThreadedService : Service
 {
 int startCount = 0;
 Thread worker = null;
 Handler handler = new Handler();

 public override IBinder OnBind(Intent intent)
 {
 throw new NotImplementedException();
 }

 public override StartCommandResult OnStartCommand(Intent intent,
 StartCommandFlags flags, int startId)
 {
 var startCmdResult = base.OnStartCommand(intent, flags, startId);

 startCount++;

continues

c11.indd 295c11.indd 295 2/28/2012 4:19:23 PM2/28/2012 4:19:23 PM

McClure c11.indd V2 - 02/07/2012

296 x CHAPTER 11 DEVELOPING BACKGROUND SERVICES AND ASYNCHRONOUS CODE

 if (worker == null || !worker.IsAlive)
 {
 worker = new Thread(new ThreadStart(serviceWorker));
 worker.Start();
 }

 return startCmdResult;
 }

 void serviceWorker()
 {
 while (startCount > 0)
 {
 startCount--;

 var tweets = Search.SearchTweets(0, ”#MonoDroid”);

 foreach (var tweet in tweets)
 Android.Util.Log.Info(”CHAPTER-11”, string.Format(
 ”{0} - {1}: {2}”, tweet.Id, tweet.FromUser, tweet.Text));

 handler.Post(() =>
 {
 Toast.MakeText(this, ”Tweets Refreshed!”,
 ToastLength.Short).Show();
 }); }

 this.StopSelf();
 }
 }
}

This code is contained in Chapter11c.ManualThreading\ThreadedService.cs

This service has a single worker thread that is started if it’s not already running, in the
OnStartCommand override, after startCount is incremented. The worker thread loops while
startCount is greater than 0 and decrements it after each iteration. If the service is already run-
ning, startCount is incremented so that the loop is run as many times as the service has been
requested to start.

You may have noticed the use of a Handler in Listing 11-4 to display a Toast. Since a Toast
causes a change in the UI, it needs to be displayed on the main application thread. The
TaskService uses a Task, which uses threading to refresh tweets without blocking the main appli-
cation thread. (Remember that a service runs on the main application thread.) In an Activity
you would typically use RunOnUiThread() to interact with the UI from another thread. In a ser-
vice, this method is not available, but a Handler instance can be used to Post() code to be run
on the main application thread. It is important to note that the Handler must be instantiated from
the main application thread.

LISTING 11-4 (continued)

c11.indd 296c11.indd 296 2/28/2012 4:19:24 PM2/28/2012 4:19:24 PM

McClure c11.indd V2 - 02/07/2012

Using Threads for Asynchronous Processing x 297

Utilizing System.Threading.Tasks

One of the features that Mono brings to Android is the System.Threading.Tasks (formerly
known as the Parallel Extensions) namespace. This namespace is designed to help execute code
 asynchronously, and in parallel. This has become important on personal computers with the
advent of multiple core processors. This same pattern will also hold true for mobile devices, as
more and more computers with multiple core processors are released. Using this namespace is an
easy way to make your code execute asynchronously, as well as take advantage of multicore power
in devices.

Listing 11-5 shows an example of using the Task pattern to execute code in a service
 asynchronously. It also uses the Parallel.ForEach pattern to iterate over the tweets returned from
the search. If the device running the code has multiple cores, the loop is able to process multiple
items at the same time, without any additional code on your part.

LISTING 11-5: Implementing System.Threading.Tasks

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

using Android.App;
using Android.Content;
using Android.OS;
using Android.Runtime;
using Android.Views;
using Android.Widget;

using Chapter11.Twitter;

namespace Chapter11.Tasks
{
 [Service]
 public class TaskService : Service
 {
 List<Tweet> tweets = new List<Tweet>();
 Handler handler = new Handler();

 public override IBinder OnBind(Intent intent)
 {
 return default(IBinder);
 }

 public override StartCommandResult OnStartCommand(Intent intent,
 StartCommandFlags flags, int startId)
 {
 var result = base.OnStartCommand(intent, flags, startId);

 Task.Factory.StartNew(() =>
 {

continues

c11.indd 297c11.indd 297 2/28/2012 4:19:24 PM2/28/2012 4:19:24 PM

McClure c11.indd V2 - 02/07/2012

298 x CHAPTER 11 DEVELOPING BACKGROUND SERVICES AND ASYNCHRONOUS CODE

 tweets = Search.SearchTweets(0, ”#MonoDroid”);

 Parallel.ForEach<Tweet>(tweets, (Tweet tweet) =>
 {
 Android.Util.Log.Info(”CHAPTER-11”, string.Format(
 ”{0} - {1}: {2}”, tweet.Id, tweet.FromUser, tweet.Text));
 });

 handler.Post(() =>
 {
 Toast.MakeText(this, ”Tweets Refreshed!”,
 ToastLength.Short).Show();
 });
 });

 return result;
 }
 }
}

This code is contained in Chapter11d.Tasks\TaskService.cs

Implicit Threading with the IntentService

Android has a class called IntentService that the previous listing mimics quite closely. It is a
special type of service that moves processing to another thread. It also uses only a single thread
that does all the processing of any intents queued from calls to the OnStartCommand method.
When IntentService has no more work to do (no more queued intents), it stops itself and waits
for the next time something calls for it to start. Listing 11-6 shows how you would implement
IntentService to do the same job as the service shown in Listing 11-5.

LISTING 11-6: Implementing IntentService

using System;
using System.Collections.Generic;
using Android.App;
using Android.Content;
using Android.OS;
using Android.Runtime;
using Android.Views;
using Android.Widget;
using Chapter11.Twitter;

namespace Chapter11.IntentServiceSample
{
 [Service]
 public class IntentServiceSample : IntentService
 {

LISTING 11-5 (continued)

c11.indd 298c11.indd 298 2/28/2012 4:19:24 PM2/28/2012 4:19:24 PM

McClure c11.indd V2 - 02/07/2012

Communicating with the UI x 299

 List<Tweet> tweets = new List<Tweet>();
 Handler handler = new Handler();

 protected override void OnHandleIntent(Intent intent)
 {
 tweets = Search.SearchTweets(0, “#MonoDroid”);
 foreach (var tweet in tweets)
 Android.Util.Log.Info(“CHAPTER-11”, string.Format(
 “{0} - {1}: {2}”, tweet.Id, tweet.FromUser, tweet.Text));

 handler.Post(() =>
 {
 Toast.MakeText(this, “Tweets Refreshed!”, ToastLength.Short)
 .Show();
 });
 }
 }
}

This code is contained in Chapter11e.IntentServiceSample\IntentServiceSample.cs

You can see that there’s not much to implementing the IntentService and that it does a lot of
heavy lifting. This is a great class, and you should use it whenever possible.

COMMUNICATING WITH THE UI

In most apps, a service isn’t much use unless it can communicate with the user interface to let it know
when changes or updates have occurred. With Android, you should consider that the user interface
is responsible for communicating with the service, because at any given time your activity may not
be in the foreground. Consider that your service may be running and have new data to share with an
activity at any time, but it would be a waste of resources trying to update an activity if it’s paused or
has been destroyed. A number of methods can be used to communicate with services:

 ‰ Binding with the binder and service connection

 ‰ Using a broadcast receiver when the activity is active

 ‰ Registering for a static event in the activity

Using the Binder and Service Connection Method

The binder and service connection method is a standard Android way to obtain a reference to the
actual instance of a service. With a reference to the service, you can call public methods, change
properties, and register for instance events as a means of communicating with the service from
an activity. To create a binding, your service must override and implement the OnBind method. It
should return an instance of a class implementing IBinder. In Listing 11-7, you subclass the Binder
class to simply store a strongly typed reference to the service itself.

On the activity side, you need to create an instance of a class implementing IServiceConnection,
which requires OnServiceConnected and OnServiceDisconnected method implementations. In

c11.indd 299c11.indd 299 2/28/2012 4:19:25 PM2/28/2012 4:19:25 PM

McClure c11.indd V2 - 02/07/2012

300 x CHAPTER 11 DEVELOPING BACKGROUND SERVICES AND ASYNCHRONOUS CODE

Listing 11-7 you create an implementation that exposes a Connected event that passes along the
binder instance. The activity registers for the connected event and, in that event, wires instance
events on the service instance itself. Finally, the activity must bind to the service in the OnResume
override and unbind on the OnPause override so that it does not maintain a connection to the ser-
vice when it is not in the foreground. Since you used the AutoCreate bind fl ag, there is no need to
explicitly start the service. This is done automatically if the service is not already running.

LISTING 11-7: Binding a service to an activity

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Android.App;
using Android.Content;
using Android.OS;
using Android.Runtime;
using Android.Views;
using Android.Widget;

using Chapter11.Twitter;

namespace Chapter11.UICommunication
{
 [Service]
 public class BindingTweetService : IntentService
 {
 public event Action NewTweetsFound;

 public List<Tweet> Tweets { get; set; }
 public long LastSinceId { get; set; }

 private TweetServiceBinder binder;

 public BindingTweetService()
 : base()
 {
 this.Tweets = new List<Tweet>();
 this.LastSinceId = 0;

 this.binder = new TweetServiceBinder(this);
 }

 public override IBinder OnBind(Intent intent)
 {
 base.OnBind(intent);
 return binder;
 }

 protected override void OnHandleIntent(Intent intent)
 {
 this.Tweets = Search.SearchTweets(LastSinceId,

c11.indd 300c11.indd 300 2/28/2012 4:19:25 PM2/28/2012 4:19:25 PM

McClure c11.indd V2 - 02/07/2012

Communicating with the UI x 301

 “#MonoDroid”);

 if (this.Tweets.Exists(t => t.Id > LastSinceId))
 {
 if (this.NewTweetsFound != null)
 this.NewTweetsFound();
 }
 }

 public class TweetServiceBinder : Binder
 {
 public TweetServiceBinder(BindingTweetService service)
 {
 this.ServiceInstance = service;
 }

 public BindingTweetService ServiceInstance
 {
 get;
 private set;
 }
 }

 public class TweetServiceConnection : Java.Lang.Object, IServiceConnection
 {
 public event Action<BindingTweetService> Connected;

 public event Action Disconnected;

 public void OnServiceConnected(ComponentName className,
 IBinder serviceBinder)
 {
 if (this.Connected != null)
 this.Connected((serviceBinder as
 TweetServiceBinder).ServiceInstance);
 }

 public void OnServiceDisconnected(ComponentName className)
 {
 if (this.Disconnected != null)
 this.Disconnected();
 }
 }

 [Activity(Label = “CH11 Binding Service”, MainLauncher=true,
 LaunchMode=Android.Content.PM.LaunchMode.SingleTask)]
 public class BindingActivity : Activity
 {
 TweetServiceConnection serviceConnection;

 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

 SetContentView(Resource.Layout.Main); continues

c11.indd 301c11.indd 301 2/28/2012 4:19:25 PM2/28/2012 4:19:25 PM

McClure c11.indd V2 - 02/07/2012

302 x CHAPTER 11 DEVELOPING BACKGROUND SERVICES AND ASYNCHRONOUS CODE

 Button button = FindViewById<Button>(Resource.Id.myButton);
 button.Text = “Check Tweets via Service”;

 button.Click += delegate
 {
 StartService(new Intent(this, typeof(BindingTweetService)));
 };

 serviceConnection = new TweetServiceConnection();
 serviceConnection.Connected += (BindingTweetService svc) =>
 {
 Toast.MakeText(this, “Bound to Service!”,
 ToastLength.Short).Show();

 svc.NewTweetsFound += () =>
 {
 foreach (var tweet in svc.Tweets)
 Android.Util.Log.Info(“CHAPTER-11”, string.Format(
 “{0} - {1}: {2}”, tweet.Id, tweet.FromUser,
 tweet.Text));
 RunOnUiThread(() =>
 {
 Toast.MakeText(this, “Tweets Refreshed!”,
 ToastLength.Short).Show();
 });
 };
 };
 }

 protected override void OnResume()
 {
 base.OnResume();

 var serviceIntent = new Intent(this, typeof(BindingTweetService));
 BindService(serviceIntent, serviceConnection, Bind.AutoCreate);
 }

 protected override void OnPause()
 {
 UnbindService(serviceConnection);

 base.OnPause();
 }
 }
 }
}

This code is contained in Chapter11f.UICommunication\Binding.cs

As you can see, this is a fairly verbose way of talking to a service, but it does provide ultimate
control since you eventually obtain a reference to the actual typed instance of the service.

LISTING 11-7 (continued)

c11.indd 302c11.indd 302 2/28/2012 4:19:25 PM2/28/2012 4:19:25 PM

McClure c11.indd V2 - 02/07/2012

Communicating with the UI x 303

The tricky part of binding a service is that you have no guarantee of when the binding will be
 completed. This is why you created the Connected event in the service connection class. With
 lambdas and anonymous methods, this pattern works quite well, since the service instance variable
is in scope for the anonymous event handler for the NewTweetsFound event.

As you will see in Listings 11-8 and 11-9, this isn’t the only way to accomplish communication
between a service and a UI. However, since this is a built-in mechanism for such communication, you
may fi nd yourself needing to use it if you want to make your applications talk to services that you did
not write yourself or that were not written using Mono for Android.

Using the Broadcast Receiver Method

Android applications can use another common method that involves a BroadcastReceiver. In C#
you can take advantage of this mechanism by subclassing BroadcastReceiver to expose a Receive
event. In the override for OnReceive in BroadcastReceiver, the Receive event is fi red. The activity
then registers for the Receive event and can do its UI updates when the event is raised. Listing 11-8
shows this technique in action.

LISTING 11-8: BroadcastReceiver in an activity

using System;
using Android.App;
using Android.Content;
using Android.OS;
using Android.Runtime;
using Android.Views;
using Android.Widget;
using Android.Content.PM;

namespace Chapter11.UICommunication
{
 [Activity(Label = “CH11 UI Broadcast Rec”, MainLauncher=true,
 LaunchMode=Android.Content.PM.LaunchMode.SingleTask)]
 public class BroadcastActivity : Activity
 {
 const string ACTION_NEW_TWEETS = “action.NEW_TWEETS”;

 ActivityBroadcastReceiver broadcastReceiver;
 Button buttonNewestId;

 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

 SetContentView(Resource.Layout.Main);

 buttonNewestId = FindViewById<Button>(Resource.Id.myButton);
 buttonNewestId.Click += delegate
 {
 StartService(new Intent(this, typeof(BroadcastService)));
 };
 broadcastReceiver = new ActivityBroadcastReceiver();

continues

c11.indd 303c11.indd 303 2/28/2012 4:19:25 PM2/28/2012 4:19:25 PM

McClure c11.indd V2 - 02/07/2012

304 x CHAPTER 11 DEVELOPING BACKGROUND SERVICES AND ASYNCHRONOUS CODE

 broadcastReceiver.Receive += (Context context, Intent intent) =>
 {
 var lastSinceId = intent.GetLongExtra(“oldSinceId”, 0);
 var tweets = Twitter.Search.SearchTweets(lastSinceId,
 “#MonoDroid”);

 foreach (var tweet in tweets)
 Android.Util.Log.Info(“CHAPTER-11”, string.Format(
 “{0} - {1}: {2}”, tweet.Id, tweet.FromUser, tweet.Text));
 Toast.MakeText(this, “Tweets Refreshed!”, ToastLength.Short)
 .Show();
 };
 }

 protected override void OnResume()
 {
 base.OnResume();

 RegisterReceiver(broadcastReceiver,
 new IntentFilter(ACTION_NEW_TWEETS));
 }

 protected override void OnPause()
 {
 UnregisterReceiver(broadcastReceiver);

 base.OnPause();
 }
 }

 public class ActivityBroadcastReceiver : BroadcastReceiver
 {
 public event Action<Context, Intent> Receive;

 public override void OnReceive(Context context, Intent intent)
 {
 if (this.Receive != null)
 this.Receive(context, intent);
 }
 }
}

This code is contained in Chapter11f.UICommunication\BroadcastActivity.cs

You’ll notice that the activity dynamically registers an IntentFilter for the broadcast receiver in
the OnResume override. It also unregisters the receiver in the OnPause override. This ensures that no
broadcasts are received as soon as the activity is paused, wasting resources.

On the service side, Listing 11-9 shows how to notify the broadcast receiver. To make this work, you
need to defi ne a common action: something the server can broadcast and that the broadcast receiver
listens for.

LISTING 11-8 (continued)

c11.indd 304c11.indd 304 2/28/2012 4:19:25 PM2/28/2012 4:19:25 PM

McClure c11.indd V2 - 02/07/2012

Communicating with the UI x 305

LISTING 11-9: Sending broadcasts from a service

using System;
using System.Linq;
using Android.App;
using Android.Content;
using Android.OS;
using Android.Runtime;
using Android.Views;
using Android.Widget;
using Chapter11.Twitter;

namespace Chapter11.UICommunication
{
 [Service]
 public class BroadcastService : IntentService
 {
 public const string ACTION_NEW_TWEETS = “action.NEW_TWEETS”;

 public long LastSinceId { get; set; }

 public BroadcastService() : base()
 {
 this.LastSinceId = 0;
 }

 protected override void OnHandleIntent(Intent intent)
 {
 var lastSinceId = this.LastSinceId;

 var tweets = Search.SearchTweets(lastSinceId, “#MonoDroid”);

 this.LastSinceId = tweets.Max(t => t.Id);

 if (tweets.Exists(t => t.Id > lastSinceId))
 {
 var newTweetsIntent = new Intent(ACTION_NEW_TWEETS);
 newTweetsIntent.PutExtra(“oldSinceId”, lastSinceId);

 SendBroadcast(newTweetsIntent);
 }
 }
 }
}

This code is contained in Chapter11f.UICommunication\BroadcastService.cs

Using the Static Event Method

An alternative method of communicating is to use static events. This is a very .NET way of think-
ing, but it can work well. All you need to do is defi ne a static event somewhere. You can do this for
both directions of communication: from the activity to the service, and vice versa, as shown
in Listing 11-10.

c11.indd 305c11.indd 305 2/28/2012 4:19:25 PM2/28/2012 4:19:25 PM

McClure c11.indd V2 - 02/07/2012

306 x CHAPTER 11 DEVELOPING BACKGROUND SERVICES AND ASYNCHRONOUS CODE

LISTING 11-10: Using static events for communication

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Android.App;
using Android.Content;
using Android.OS;
using Android.Runtime;
using Android.Views;
using Android.Widget;
using Chapter11.Twitter;

namespace Chapter11.UICommunication
{
 [Service]
 public class StaticEventService : IntentService
{
 public static event Action<List<Tweet>> NewTweetsFound;

 public long LastSinceId { get; set; }

 public StaticEventService()
 : base()
 {
 this.LastSinceId = 0;
 }

 protected override void OnHandleIntent(Intent intent)
 {
 var lastSinceId = this.LastSinceId;

 var tweets = Search.SearchTweets(LastSinceId, “#MonoDroid”);
 this.LastSinceId = tweets.Max(t => t.Id);

 var newTweets = from t in tweets
 where t.Id > lastSinceId
 select t;

 if (newTweets != null && newTweets.Count() > 0 && NewTweetsFound !=
 null)
 NewTweetsFound(newTweets.ToList());
 }
 }

 [Activity(Label = “CH11 Static Events”, MainLauncher=true,
 LaunchMode=Android.Content.PM.LaunchMode.SingleTask)]
 public class StaticEventActivity : Activity
 {
 Action<List<Tweet>> newTweetsAction;

 protected override void OnCreate(Bundle bundle)
 {

c11.indd 306c11.indd 306 2/28/2012 4:19:26 PM2/28/2012 4:19:26 PM

McClure c11.indd V2 - 02/07/2012

Communicating with the UI x 307

 base.OnCreate(bundle);

 SetContentView(Resource.Layout.Main);

 var button = FindViewById<Button>(Resource.Id.myButton);
 button.Text = “Refresh Tweets”;

 button.Click += delegate
 {
 StartService(new Intent(this, typeof(StaticEventService)));
 };

 newTweetsAction = (List<Tweet> tweets) => {
 foreach (var tweet in tweets)
 Android.Util.Log.Info(“CHAPTER-11”, string.Format(
 “{0} - {1}: {2}”, tweet.Id, tweet.FromUser, tweet.Text));
 RunOnUiThread(() =>
 {
 Toast.MakeText(this, “Tweets Refreshed!”,
 ToastLength.Short).Show();
 });
 };
 }
 protected override void OnResume()
 {
 base.OnResume();

 StaticEventService.NewTweetsFound += newTweetsAction;
 }

 protected override void OnPause()
 {
 StaticEventService.NewTweetsFound -= newTweetsAction;

 base.OnPause();
 }
 }
}

This code is contained in Chapter11f.UICommunication\StaticEvents.cs

This code sample includes a service and an activity. The service is a simple IntentService that
exposes a static event called NewTweetsFound. Each time OnHandleIntent is called, the ser-
vice looks for new tweets since the last ID. If it fi nds new tweets, it raises the NewTweetsFound
event.

The activity defi nes an action in OnCreate for what it should do when it is notifi ed of new tweets.
In this example, it doesn’t actually do anything with the information, but you could put code here
to update your ListAdapter or display the newest tweet. The important part of this activity is in
the OnResume and OnPause methods. In OnResume, the static event from the service is wired to the
Action you previously created. In the OnPause override, the event is unregistered. This prevents
the activity from receiving raised events when it is not in the foreground.

c11.indd 307c11.indd 307 2/28/2012 4:19:26 PM2/28/2012 4:19:26 PM

McClure c11.indd V2 - 02/07/2012

308 x CHAPTER 11 DEVELOPING BACKGROUND SERVICES AND ASYNCHRONOUS CODE

Static members are kept in memory for the entire life of the application. It is bad
practice to store anything but references or primitive types in static variables.

NOTIFYING THE USER WITH NOTIFICATIONS

Now that you’ve learned how to use services and how to communicate between the UI and those
services, a piece is still missing. What happens if your service has new information to share with
your activity, but your activity is not the foreground activity?

It would be rude of you to demand that your activity of tweets show up without the user’s asking
to see it, just because you found new tweets. This is where Notifi cations are useful. Notifi cations
provide a platform-standard way to unobtrusively notify the user when an application has a change
in state. The user can choose when to address these notifi cations so that she isn’t interrupted in her
current task against her wishes.

In case you are unfamiliar with them, Notifi cations are what you see in the expanded status bar
(when you swipe from the status bar at the top of your device’s screen downward). You can set
several properties of a Notifi cation, including the following:

 ‰ Sound: The sound you want played on the device as soon as the notifi cation is presented to
the user.

 ‰ Vibrate: An array of type long indicating a succession of vibration lengths. For example,
long[] { 100, 100 } would vibrate twice for 100 milliseconds. Using this requires
the Vibrate permission in the Android Manifest, which can be selected in your project’s
properties in the Android Manifest section.

 ‰ CaptionTitle: Title text of the notifi cation in the expanded status bar view.

 ‰ CaptionDescription: Description text of the notifi cation in the expanded status bar view.

 ‰ TickerText: Text that is shown in a ticker style on the status bar when your notifi cation fi rst
appears.

 ‰ ContentIntent: A PendingIntent that is run after the notifi cation is tapped.

 ‰ DeleteIntent: A PendingIntent that is run after the notifi cation is cleared from the
expanded status bar.

 ‰ ContentView: The view for the notifi cation in the expanded status bar.

 ‰ LedARGB: If the device supports it, the color of the LED to show when a notifi cation has not
been seen.

 ‰ LedOnMS: How long, in milliseconds, the LED should fl ash on for.

 ‰ LedOffMS: How long, in milliseconds, the LED should fl ash off for.

 ‰ Icon: The icon for the notifi cation.

 ‰ Number: The number of events that a notifi cation represents. This number is overlaid on the
icon if it is more than 1.

c11.indd 308c11.indd 308 2/28/2012 4:19:26 PM2/28/2012 4:19:26 PM

McClure c11.indd V2 - 02/07/2012

Notifying the User with Notifi cations x 309

 ‰ When: A timestamp for when the notifi cation should be displayed. By default the timestamp is
immediate.

 ‰ Flags: A bitmask of various options defi ning some additional characteristics of a notifi cation
for how it is displayed and what happens when a user taps the notifi cation.

 ‰ AutoCancel: The notifi cation is automatically canceled as soon as the user taps it in
the expanded status bar.

 ‰ ForegroundService: Indicates that the notifi cation represents a foreground service.
This is set automatically on the notifi cation when you use StartForeground().

 ‰ Insistent: Causes the audio for the notifi cation to be repeated until the notifi cation
is canceled or the expanded status bar is opened.

 ‰ NoClear: If set, the notifi cation is not canceled if the user taps the Clear all button in
the expanded status bar.

 ‰ OngoingEvent: Indicates an event that is ongoing, such as a telephone call.

 ‰ OnlyAlertOnce: Causes the sound, LED, and vibration to occur only once.

 ‰ ShowLights: Indicates that LED should be used, which means you should set values
for LedOnMS and LedOffMS.

To create a notifi cation, you need to create a new instance of the Notification class. In the
 constructor you specify the Icon and TickerText. Any time you make a change to a notifi cation,
you need to call the Notification object’s SetLatestEventInfo method, passing in a context, title
text, description, and PendingIntent to be used when the notifi cation is tapped. You should also
call SetLatestEventInfo before the fi rst time you display it.

To display the notifi cation, you need to use the NotificationManager. You can create notifi cations
from anywhere you have a context, such as an activity or service. Listing 11-11 shows how to dis-
play a simple notifi cation.

LISTING 11-11: Creating a simple notifi cation

var notificationManager = NotificationManager.FromContext(this);

var notification = new Notification(Android.Resource.Drawable.SymActionEmail,
 “Notification ticker...”);

notification.Vibrate = new long[] { 100, 200, 300 };
notification.Number = 2;
notification.LedOnMS = 1000;
notification.LedOffMS = 2000;
notification.Flags = NotificationFlags.AutoCancel | NotificationFlags.ShowLights;

var intent = new Intent(this, typeof(MyActivity));

var pendingIntent = PendingIntent.GetActivity(this,
 0, intent, PendingIntentFlags.CancelCurrent);

continues

c11.indd 309c11.indd 309 2/28/2012 4:19:27 PM2/28/2012 4:19:27 PM

McClure c11.indd V2 - 02/07/2012

310 x CHAPTER 11 DEVELOPING BACKGROUND SERVICES AND ASYNCHRONOUS CODE

notification.SetLatestEventInfo(this,
 “Notification Title”,
 “Notification description...”,
 pendingIntent);

notificationManager.Notify(Notify(1, notification);

This code is contained in Chapter11g.Notifi cations\MainActivity.cs

You will notice that the code creates a PendingIntent, using an intent that was previously
created, to show an activity. It’s also clear that you can pass data via the intent’s extras. In this
way, you could easily pass some data from a service to the activity displayed
by PendingIntent.

Finally, to show the notifi cation, you must use the NotificationManager instance’s Notify
method. This requires you to pass an identifi er as well as your notifi cation object. The identifi er
should be unique to your application, because you will need it if you want to explicitly change or
update the notifi cation later.

Scheduling Intents with Alarms and the IntentService

Suppose you want to poll the Twitter API every so often to check for new tweets. You could create a
sticky service that has a thread constantly running, sleeping between times that it should check for
updates. This would work, but it is not the most effi cient way to get the job done. Android provides
an alarm mechanism that allows you to schedule intents to be processed at a specifi c interval. This
works well with the IntentService to process on demand, and it doesn’t require that your service
run constantly.

You can set alarms using the AlarmManager in three ways:

 ‰ Set schedules a one-time alarm.

 ‰ SetRepeating schedules an alarm that repeats.

 ‰ SetInexactRepeating schedules an alarm that repeats, but with inexact trigger time
requirements. An example is an alarm that repeats every hour but doesn’t have to occur at
exactly the top of each hour.

Each kind of alarm requires similar parameters:

 ‰ AlarmType determines which clock is used to schedule the start of an alarm. The following
types are available:

 ‰ ElapsedRealtime is the milliseconds since system boot. This type of alarm waits to
go off until the next time the device is awake.

 ‰ ElapsedRealtimeWakeup is the milliseconds since system boot. It causes the device
to wake up as soon as the alarm goes off.

LISTING 11-11 (continued)

c11.indd 310c11.indd 310 2/28/2012 4:19:27 PM2/28/2012 4:19:27 PM

McClure c11.indd V2 - 02/07/2012

Notifying the User with Notifi cations x 311

 ‰ Rtc is the milliseconds in UTC time. This type of alarm waits to go off until the next
time the device is awake.

 ‰ RtcWakeup is the milliseconds in UTC time. It causes the device to wake up as soon
as the alarm goes off.

 ‰ TriggerAtTime is the time to trigger the alarm, based on the AlarmType.

 ‰ Interval is used only for repeating alarms. You can specify an exact interval or use one of
the following constants from AlarmManager:

 ‰ IntervalDay

 ‰ IntervalHalfDay

 ‰ IntervalFifteenMinutes

 ‰ IntervalHalfHour

 ‰ IntervalHour

 ‰ PendingIntent is the pending intent that is run when the alarm goes off.

If you use one of the AlarmManager interval constants to schedule your inexact
repeating alarm, the operating system phase-aligns other alarms with similar
intervals to reduce the number of times the device has to wake up. If you do not
use one of the interval constants with SetInexactRepeating, the alarm is set
as if you had called SetRepeating.

Typically, you would use an alarm to schedule a PendingIntent for a BroadcastReceiver or, in
this case, an IntentService. Listing 11-12 shows how to set an inexact repeating alarm.

LISTING 11-12: Creating an inexact repeating alarm

var alarmManager = context.GetSystemService(Context.AlarmService) as AlarmManager;

var serviceIntent = new Intent(context, typeof(TweetSearchService));

alarmManager.SetInexactRepeating(AlarmType.Rtc,
 0, AlarmManager.IntervalFifteenMinutes,
 PendingIntent.GetService(context,
 0, serviceIntent, PendingIntentFlags.CancelCurrent));

This code is contained in Chapter11h.Alarms\MainActivity.cs

The AlarmManager is used to set an inexact repeating alarm using the real-time clock and a 0 value
(meaning that the alarm should be set immediately). A PendingIntent is used to tell the alarm it
should run the TweetSearchService at the scheduled interval of 15 minutes.

c11.indd 311c11.indd 311 2/28/2012 4:19:27 PM2/28/2012 4:19:27 PM

McClure c11.indd V2 - 02/07/2012

312 x CHAPTER 11 DEVELOPING BACKGROUND SERVICES AND ASYNCHRONOUS CODE

It is important to note that scheduled alarms are not persisted on rebooting a device. To schedule
your alarm at boot time, you should register a BroadcastReceiver that has an IntentFilter for
the action android.intent.action.BOOT_COMPLETED. Your BroadcastReceiver could set the
alarm directly when it receives this intent, or it could pass the intent to a service that then schedules
the alarm.

Push Notifi cations Using Cloud to Device
Messaging (C2DM)

Push notifi cations are a necessity on the iOS platform, simply because developers do not have the
option of running a background service. On Android, however, background services have been a
big part of the architecture of an application since the fi rst API release. So why did Google decide to
create a push notifi cation service for Froyo (API 8, Android 2.2)? There are at least a couple of sce-
narios where push notifi cations can be used to conserve battery life and system memory:

 ‰ VoIP/instant messaging: Typically, this type of application must run a service constantly to
maintain a socket connection to the remote server. Usually these applications run as a fore-
ground service, which means that they are always in memory, and always running, to avoid
losing their critical connections to the Internet server. This is costly because it uses more CPU
cycles and more memory, since the service is always running.

 ‰ Polling: Twitter clients and RSS feed readers may use a polling technique in which their
service wakes up at a regular interval to contact a server to see if new data needs to be pro-
cessed. This means that the application needs to wake up to look for new data even if none is
available to be processed.

This wouldn’t be so bad if you had just one or two of these types of applications running, but when
you have more applications like these, you can see how this scenario quickly fails at scaling.

Instead, Google has designed a service called Cloud to Device Messaging (C2DM) that utilizes a sin-
gle C2DM service running in the background. It maintains a single network connection to Google’s
servers but receives notifi cations for multiple applications. It wakes up these other applications when
a new message arrives for them to process.

The benefi t of using C2DM is that you incur the cost of maintaining only a single network con-
nection and keeping a single service running for as many applications as can receive push notifi ca-
tions. Google achieves this by having third-party application servers funnel notifi cations through
its C2DM servers using a simple web service API, as shown in Figure 11-1. Even in a polling sce-
nario, it is conceivable that a third-party application server could do the polling work at a regular
interval and send push notifi cations when the Android device has new data to process.

Of course, using C2DM for your application means that you need to set up and maintain your own
application server(s). It also means that your Android application must include logic to register with
C2DM and then send the registration to your application server so that it knows which devices to
send push notifi cations to. Much more overhead occurs on the development side when using C2DM
compared to putting the logic right in the Android application. But with more and more Internet-
centric applications coming out, your users will thank you for saving them battery life and system
resources!

c11.indd 312c11.indd 312 2/28/2012 4:19:28 PM2/28/2012 4:19:28 PM

McClure c11.indd V2 - 02/07/2012

Notifying the User with Notifi cations x 313

Android Apps

3rd-party
Servers

Without Google’s C2DM With Google’s C2DM

Google
C2DM
Server

3rd-party
Servers

Internet

Internet

Internet

Android Apps

FIGURE 11-1

It’s important to remember that you must have a Google Apps–compatible
device to be eligible to register for C2DM. This means that you must use a
Google API when creating your emulator, or use a device with the Android
Market on it to debug C2DM.

Listening for C2DM in Your Application

To receive C2DM messages, you need to register for a few permissions in your manifest file.
Currently, some of these permissions can be set up via the project properties by checking off
the appropriate permissions properties. However, you need to set up custom permissions by
adding a manifest to your project, if you have not already done so, and then manually add
these lines:

<permission android:name=”__PackageName__.permission.C2D_MESSAGE”
 android:protectionLevel=”signature” />
<uses-permission android:name=”__PackageName__.permission.C2D_MESSAGE” />

Note that you must use your app’s package name instead of __PackageName__. This listing dem-
onstrates creating a custom permission, and declaring your application’s use of it, so that only your
application can receive C2DM messages intended for it.

To register for C2DM, you must start the C2DM service with an intent it can handle:

//Create our intent, with a pending intent to our app’s broadcast
Intent registrationIntent = new Intent(“com.google.android.c2dm.intent.REGISTER”);
registrationIntent.PutExtra(“app”, PendingIntent.GetBroadcast(context, 0,
 new Intent(), 0));

c11.indd 313c11.indd 313 2/28/2012 4:19:28 PM2/28/2012 4:19:28 PM

McClure c11.indd V2 - 02/07/2012

314 x CHAPTER 11 DEVELOPING BACKGROUND SERVICES AND ASYNCHRONOUS CODE

registrationIntent.PutExtra(“sender”, senderIdEmail);

//Start intent
context.StartService(registrationIntent);

The intent uses a specifi c action defi ned by C2DM and adds an app extra referring to your
 application’s PendingIntent. It also adds a sender string extra. This must be the sender ID e-mail
(or role e-mail) you whitelisted with Google’s C2DM servers. (You’ll read more about this in the
next section.)

Unregistering from C2DM is even easier. You create an intent with a specifi c action and the app
extra parameter, as you did in registering:

Intent unregIntent = new Intent(“com.google.android.c2dm.intent.UNREGISTER”);
unregIntent.PutExtra(“app”, PendingIntent.GetBroadcast(context, 0, new Intent(),
 0));
context.StartService(unregIntent);

Next, to start receiving C2DM information, you need to create a BroadcastReceiver implemen-
tation. In Listing 11-13, the BroadcastReceiver implementation registers to receive intents for
Registration and Message C2DM broadcasts. Then it passes them to an IntentService that
handles the message differently, depending on the intent’s action and extras.

LISTING 11-13: Receiving C2DM events

using System;
using Android.App;
using Android.Content;
using Android.OS;
using Android.Runtime;

namespace Chapter11.C2DM
{
 [BroadcastReceiver(Permission = “com.google.android.c2dm.permission.SEND”)]
 [IntentFilter(new string[] { “com.google.android.c2dm.intent.RECEIVE” },
 Categories = new string[] { “chapter11i.c2dm” })]
 [IntentFilter(new string[] { “com.google.android.c2dm.intent.REGISTRATION” },
 Categories = new string[] { “chapter11i.c2dm” })]
 public class C2DMBroadcastReceiver : BroadcastReceiver
 {
 public override void OnReceive(Context context, Intent intent)
 {
 var svcIntent = new Intent(context, typeof(C2DMService));

 svcIntent.PutExtras(intent.Extras);
 svcIntent.PutExtra(“c2dm_action”, intent.Action);

 context.StartService(svcIntent);
 }
 }

 [Service]

c11.indd 314c11.indd 314 2/28/2012 4:19:28 PM2/28/2012 4:19:28 PM

McClure c11.indd V2 - 02/07/2012

Notifying the User with Notifi cations x 315

 public class C2DMService : IntentService
 {
 Handler handler;

 public override void OnCreate()
 {
 base.OnCreate();
 handler = new Handler();
 }

 protected override void OnHandleIntent(Intent intent)
 {
 var action = intent.GetStringExtra(“c2dm_action”);

 if (action == “com.google.android.c2dm.intent.REGISTRATION”)
 {
 var unregistered = intent.GetStringExtra(”unregistered”);
 var error = intent.GetStringExtra(”error”);

 if (!string.IsNullOrEmpty(error))
 Error(intent.Extras);
 else if (string.IsNullOrEmpty(unregistered))
 Registered(intent.GetStringExtra(”registration_id”));
 else
 Unregistered();

 }
 else if (action == “com.google.android.c2dm.intent.RECEIVE”)
 {
 Message(intent.Extras);
 }
 }

 void Registered(string registrationId)
 {
 //Send the registration id to your server...
 handler.Post(() =>
 {
 Toast.MakeText(this, “C2DM - Registered - “ + registrationId,
 ToastLength.Short).Show();
 });
 }

 void Unregistered()
 {
 //Tell your server to stop sending messages to this device
 handler.Post(() =>
 {
 Toast.MakeText(this, “C2DM - Unregistered”,
 ToastLength.Short).Show();
 });
 }

 void Message(Bundle extras)
 {

continues

c11.indd 315c11.indd 315 2/28/2012 4:19:28 PM2/28/2012 4:19:28 PM

McClure c11.indd V2 - 02/07/2012

316 x CHAPTER 11 DEVELOPING BACKGROUND SERVICES AND ASYNCHRONOUS CODE

 //Create a Notification to alert the user
 handler.Post(() =>
 {
 Toast.MakeText(this, “C2DM - Msg Received”,
 ToastLength.Short).Show();
 });
 }

 void Error(Bundle extras)
 {
 //Determine the error, and handle it
 handler.Post(() =>
 {
 Toast.MakeText(this, “C2DM - Error”,
 ToastLength.Short).Show();
 });
 }
 }
}

This code is contained in Chapter11i.C2DM\C2DMBroadcastReceiver.cs

Of course, this listing is incomplete, because it doesn’t do anything to handle the incoming intents.
When you receive a registration ID, you should notify your server that is responsible for sending
C2DM messages about this update. You may want to store the registration ID in a preference or fi le
for future reference at this point. You may also want to send the device ID along with the registra-
tion ID to your server. You should be prepared to do this whenever you receive this intent, because
Google may choose to create a new registration ID occasionally, without explicitly asking for it!

Similarly, when you fi nd out that unregistration has happened, you should tell your server to stop
sending C2DM messages using that registration ID.

Several errors can happen during registration. You can retrieve the “error” string extra to get a
description of the error. Here are the possible errors:

 ‰ SERVICE_NOT_AVAILABLE: The registration service cannot be reached, so you need to try
again later.

 ‰ ACCOUNT_MISSING: No Google accounts are set up on the device. At least one Google
account is required to be set up on the device. You should tell your user to set one up at
this point.

 ‰ AUTHENTICATION_FAILED: The user should fi x his or her Google account information,
because the device failed to authenticate the account.

 ‰ TOO_MANY_REGISTRATIONS: The device has too many applications registered with C2DM.
This should be rare, but you might consider asking the user to remove some applications
with C2DM enabled in this case.

LISTING 11-13 (continued)

c11.indd 316c11.indd 316 2/28/2012 4:19:29 PM2/28/2012 4:19:29 PM

McClure c11.indd V2 - 02/07/2012

Notifying the User with Notifi cations x 317

 ‰ INVALID_SENDER: The sender ID e-mail you specifi ed in your registration request is invalid or
has not been whitelisted with Google yet.

 ‰ PHONE_REGISTRATION_ERROR: The device does not support C2DM, such as a device without
Android 2.2 or later.

Sending a C2DM Message from Your Server

Now that your application is set up to receive messages from the Google C2DM service, you need to
set up a process on a server that sends messages. You need several critical pieces of information to
be able to send C2DM messages.

First, go to Google’s C2DM Registration site at http://code.google.com/android/c2dm/
signup.html to get your application whitelisted for sending C2DM messages using Google’s
servers. This form has two critical pieces of information you should pay close
attention to:

 ‰ The name of your Android app or the Package Name needs to be identical to the
Package Name property in your Android Manifest — the same one you used in your
BroadcastReceiver’s IntentFilter categories.

 ‰ The role account e-mail is a Google account e-mail address (such as a Gmail account) that
you will use to send messages from the server. It is recommended that you create a new
account for this.

The role account e-mail is also called the sender ID. It is important not to use
the same e-mail as the “receiver” e-mail account you test with on your device, or
messages will not be received. The most foolproof method is to create an account
specifi cally for the server to use.

After you have registered with Google, you are ready to start sending C2DM messages to the
application you created earlier.

On your server, you can use any programming platform you want to send messages, because the
mechanism to deliver these messages to Google’s servers is simple HTTP protocol.

Sending a C2DM message to Google’s servers requires a few steps:

1. You need to construct an HTTP post to the Client Login URL at https://www.google.com/
accounts/ClientLogin. The HTTP response body will include a string containing the AuthID
if you sent the proper data in your request. This request should contain the following post
request variables:

 ‰ Email is the sender ID e-mail you whitelisted with Google.

 ‰ Passwd is the Google account password to log in to the sender ID e-mail account.

 ‰ accountType should be the value GOOGLE_OR_HOSTED.

c11.indd 317c11.indd 317 2/28/2012 4:19:29 PM2/28/2012 4:19:29 PM

McClure c11.indd V2 - 02/07/2012

318 x CHAPTER 11 DEVELOPING BACKGROUND SERVICES AND ASYNCHRONOUS CODE

 ‰ service should be the value ac2dm.

 ‰ source should be the application ID or Package Name you whitelisted with Google.

 2. Using your AuthID, you need to construct another HTTP post for each C2DM message you
want to send. This request should contain several pieces of information:

HTTP request headers:

 ‰ ContentType is application/x-www-form-urlencoded.

 ‰ UserAgent is something to uniquely identify your server application to Google.

 ‰ Authorization: GoogleLogin auth=<authID> where <authid> is the AuthID you
received in the response from the previous HTTP request.

HTTP post request variables:

 ‰ registration_id is the registration ID for the device you want to send a
message to.

 ‰ collapse_key is a value you can use to collapse messages that have the same key so
that only the newest one is displayed. A value is required.

 ‰ delay_while_idle, if true, indicates that C2DM should deliver the message only
when the device is not idle.

 ‰ data.<any_name>, where <any_name> specifi es the key in a key/value pair that you
intend to be passed as an extra in the intent received by your C2DM Android appli-
cation. This is a way to pass small pieces of data to your application from the server.

You can fi nd more information on the C2DM server protocol from Google’s offi cial C2DM docu-
mentation at http://code.google.com/android/c2dm/index.html#server.

An open source project called C2DM-Sharp (https://github.com/Redth/
C2DM-Sharp) contains libraries for both sending C2DM messages from a
server and receiving messages in your Mono for Android app.

Listing 11-14 contains a complete code sample of how to send a C2DM message through Google’s
servers using C# code. You can run this sample from a server or your local machine; it does not need
to be run on an Android device. This is how you would send notifi cations from your web service. If
you use this sample, be sure to change the fi rst four variables to refl ect your own data. In particular,
make sure your registrationId is a valid value returned from your Android application’s success-
ful registration with the C2DM servers.

LISTING 11-14: Sending a C2DM message

var googleSender = “sender@gmail.com”;
var googlePassword = “password”;
var registrationId = “registrationid”;

c11.indd 318c11.indd 318 2/28/2012 4:19:29 PM2/28/2012 4:19:29 PM

McClure c11.indd V2 - 02/07/2012

Notifying the User with Notifi cations x 319

var message = “Hello from C2DM!”;

var authUrl = @”https://www.google.com/accounts/ClientLogin”;
var c2dmUrl = @”https://android.apis.google.com/c2dm/send”;

try
{
 // First, let’s get the auth code - requires Google credentials
 var sb = new StringBuilder();
 var kvp = new NameValueCollection();
 kvp.Add(“accountType”, “GOOGLE”);
 kvp.Add(“Email”, googleSender);
 kvp.Add(“Passwd”, googlePassword);
 kvp.Add(“service”, “ac2dm”);
 kvp.Add(“source”, “long2know.chapter11.c2dm”);

 foreach (string key in kvp.Keys)
 sb.Append(string.Format(“{0}={1}&”, key, kvp[key]));

 var encoding = new ASCIIEncoding();
 byte[] data = encoding.GetBytes(sb.ToString());

 var myRequest = (HttpWebRequest)WebRequest.Create(authUrl);
 myRequest.Method = “POST”;
 myRequest.ContentType = “application/x-www-form-urlencoded”;
 myRequest.ContentLength = data.Length;
 Stream newStream = myRequest.GetRequestStream();
 newStream.Write(data, 0, data.Length);
 newStream.Close();

 var sr = new StreamReader(myRequest.GetResponse().GetResponseStream());
 string readResponse = sr.ReadToEnd();

 // Parse Auth
 Regex regAuth = new Regex(@”Auth=(.+)”, RegexOptions.IgnoreCase);

 Match matchAuth = regAuth.Match(readResponse);

 string auth = string.Empty;

 if (matchAuth.Success)
 auth = matchAuth.Groups[0].Value;
 else
 {
 throw new WebException(“Could not authenticate.”,
 new Exception(“Failed to retrieve auth, sid, or lsid”));
 }

 // Ignore SSL exceptions at this point
 ServicePointManager.ServerCertificateValidationCallback +=
 new RemoteCertificateValidationCallback((sender, cert, chain, policyErr) =>
 {
 return true;
 });

continues

c11.indd 319c11.indd 319 2/28/2012 4:19:30 PM2/28/2012 4:19:30 PM

McClure c11.indd V2 - 02/07/2012

320 x CHAPTER 11 DEVELOPING BACKGROUND SERVICES AND ASYNCHRONOUS CODE

 // Finally, let’s send the message
 sb = new StringBuilder();
 kvp = new NameValueCollection();
 kvp.Add(“registration_id”, HttpUtility.UrlEncode(registrationId));
 kvp.Add(“delay_while_idle”, “false”);
 kvp.Add(“collapse_key”, “chapter11c2dm”);
 kvp.Add(“data.message”, HttpUtility.UrlEncode(message));

 foreach (string key in kvp.Keys)
 {
 sb.Append(string.Format(“{0}={1}&”, key, kvp[key]));
 }

 data = encoding.GetBytes(sb.ToString());

 myRequest = (HttpWebRequest)WebRequest.Create(c2dmUrl);
 myRequest.Headers.Add(HttpRequestHeader.Authorization,
 string.Format(“GoogleLogin {0}”, auth));
 myRequest.Method = “POST”;
 myRequest.ContentType = “application/x-www-form-urlencoded”;
 myRequest.ContentLength = data.Length;
 newStream = myRequest.GetRequestStream();
 newStream.Write(data, 0, data.Length);
 newStream.Close();

 sr = new StreamReader(myRequest.GetResponse().GetResponseStream());
 readResponse = sr.ReadToEnd();

 string id = string.Empty;
 Regex regId = new Regex(@”id=(.+)”, RegexOptions.IgnoreCase);
 Match matchId = regId.Match(readResponse);

 if (matchId.Success)
 {
 id = matchAuth.Groups[0].Value;

 Console.WriteLine(string.Format(“Received response: {0}”, id));
 }
 else
 {
 Console.WriteLine(string.Format(“Invalid response received: {0}”,
 readResponse));
 }

}
catch (WebException e)
{
 Console.WriteLine(string.Format(“Web Exception: {0}”, e.InnerException));
}

This code is contained in Chapter11j.C2DM.Sending\Program.cs

LISTING 11-14 (continued)

c11.indd 320c11.indd 320 2/28/2012 4:19:30 PM2/28/2012 4:19:30 PM

McClure c11.indd V2 - 02/07/2012

Summary x 321

SUMMARY

In this chapter, you learned about the life cycle of a service and why services are crucial to the
architecture of your applications. You learned how to create a simple service and saw that ser-
vices are not inherently multithreaded, but simply classes. You worked with System.Threading
and System.Threading.Tasks to make your services multithreaded. Learning how to implement
IntentService enabled you to create multithreaded services with relative ease, handling intents
received from BroadcastReceivers.

You covered creating notifi cations to interact with users, and you implemented communication
between services and the UI via several methods. You also covered creating alarms that repeated
with high effi ciency to send intents at scheduled intervals to your BroadcastReceivers
and services.

Finally, you were introduced to C2DM. You saw why it is important and how to use it in your
applications. You should now feel confi dent in using services in your own applications. You have
found out just how simple they are to use and how useful they are in providing a great experience to
your applications’ users.

c11.indd 321c11.indd 321 2/28/2012 4:19:31 PM2/28/2012 4:19:31 PM

Book Title <Chapter No> V1 - MM/DD/2010 Page 322

c11.indd 322c11.indd 322 2/28/2012 4:19:31 PM2/28/2012 4:19:31 PM

McClure c12.indd V5 - 02/15/2012

12
Canvas and Drawables: Building
Custom Android Graphics

WHAT’S IN THIS CHAPTER?

 ‰ Using the Canvas object

 ‰ Understanding the drawing process and players

 ‰ Creating, animating, and transforming custom graphics

 ‰ Optimizing performance via SurfaceView

 ‰ Understanding drawables

 ‰ Using drawables as XML resources

 ‰ Making basic shapes and colors

 ‰ Creating compound drawables

 ‰ Responding to events

This chapter dives deeply into the process of creating custom graphics using Mono for
Android. In particular, we will delve into not only the different tools available to create cus-
tom graphics but also where and why to apply them.

At this point, you have covered many of the basic concepts regarding developing for Mono for
Android. From using basic resources to understanding the application life cycle to using vari-
ous views, you have all the pieces in place to create fully functional applications. With this
understanding, you can use an amalgamation of these concepts to approach the fi ner details of
creating custom graphics on the Android platform.

c12.indd 323c12.indd 323 2/28/2012 4:20:42 PM2/28/2012 4:20:42 PM

McClure c12.indd V5 - 02/15/2012

324 x CHAPTER 12 CANVAS AND DRAWABLES: BUILDING CUSTOM ANDROID GRAPHICS

The focus of this chapter is to build on your foundational understanding of the Android platform
to accomplish more advanced effects such as drawing graphics on the fl y, creating animations,
and making a more interactive interface. In particular, this chapter walks through the design and
implementation of the drawable packages that are provided in Android. Finally, we will touch on a
few different common yet advanced tasks that developers often face when working with animated
graphics.

This chapter will help you achieve a clear understanding of the Android graphics model. In addition,
this chapter covers the many ways to accomplish a single task and also why one of those approaches
may be superior to the rest in terms of performance, maintainability, and overall fl exibility of the
toolset.

WORKING WITH GRAPHICS IN MONO FOR ANDROID

You have several options when working with graphics in Mono for Android. As with any approach,
each option has its strengths and weaknesses and varies in complexity and fl exibility:

 ‰ The fi rst option is one that you should already be familiar with — working with view objects
and application resources. Views such as the ImageView and Gallery allow a developer to
quickly utilize graphic resources in an application at the expense of fl exibility. Typically, this
approach covers the majority of application use cases and enables you to go far into the pro-
cess of developing an interactive and appealing application.

 ‰ The next option, the canvas approach, involves digging a bit deeper into the view objects
and beginning to customize and extend the underlying logic of a view’s OnDraw() method.
In particular, this option requires a developer to have a basic understanding of utilizing
the canvas, bitmaps, and different graphic primitives. In a way, you may think of this as
the “low-level” approach, because you are responsible for precisely defi ning each aspect
of your graphic as it gets passed to the UI. Granted, tools are available to assist you in this
process, but it is up to the developer to make wise decisions about performance when cre-
ating or destroying graphic resources. Needless to say, performance is a large consideration
when using this approach to create graphics. An experienced developer can create some
stunning designs, but a less cautious developer can create huge performance issues, ruining
the graphic appeal.

 ‰ The last approach to utilizing graphics is to use Android’s built-in custom 2D graphics
library via drawables. The purpose of this library is to increase the fl exibility of the graphics
controls while removing some of the complexity of having to directly manage the logic of
writing the graphic to the screen.

When working with the canvas approach or using system drawables, you need to understand the
strengths and weaknesses of each approach. Although they do have quite a bit of overlap in terms
of functionality, their applications can be quite different from one another. For instance, the canvas
approach is often the desired approach for video game designers or for applications that have very
high graphics demands. By being able to control the creation, lifetime, and destruction of various
resources, developers can push the Android device to its limits.

On the other hand, drawables are prevalent throughout the entire Mono for Android framework.
Not only do they expose sets of methods for working with graphics themselves, but they also are

c12.indd 324c12.indd 324 2/28/2012 4:20:46 PM2/28/2012 4:20:46 PM

McClure c12.indd V5 - 02/15/2012

Using the Canvas Object x 325

accepted by many framework-level methods and processes. This makes drawables an effi cient and
convenient way to communicate graphic instructions throughout an application.

Although graphics are a core aspect of the Android library, the documentation on
this topic is rather sparse. Several modifi cations and additions have been made to
the graphics libraries between versions, which only exacerbates the issue.

Of course, the key to dealing with this is having a good measure of patience,
as well as having some great resources (such as this book!) at your disposal. In
addition, graphics objects in Android work much like those found in HTML5,
such as the HTML5 canvas. You can use the documentation in this case as
well to help gain perspective on how these objects may work in Android,
because Android follows many of the same naming conventions and general
functionality.

USING THE CANVAS OBJECT

One of the main options for working with graphics in Mono for Android is to work directly with
the graphic output itself rather than relying on abstractions. This approach gives you a great deal
of fl exibility in terms of performance and usability. In addition, this approach is not overly compli-
cated, assuming that you have a basic understanding of how graphics are rendered on the Android
platform. With this understanding, and by following a few basic rules, developers can create amaz-
ing applications and games using the Canvas object.

Using the Canvas object to draw is dependent on the interactions of several key items. These com-
bine to make a direct channel in which a developer can pipe instructions from the graphics classes
directly to the Android device. These key items include the following:

 ‰ Graphics primitives are a basic type of object that can be used as a medium to express differ-
ent types of graphical instructions. Whether they take the form of basic images such as PNG
or JPG or point-by-point mappings via paths, these primitives give you great fl exibility in
defi ning shapes, colors, and other graphical features in a wide variety of methods.

 ‰ The View object acts as the medium by which a canvas can connect to the overall application
life cycle. As with almost everything else in Android, the View object serves as a container
for various events that can be triggered by the requesting application. When customizing
a Canvas object, a view’s OnDraw() method is used as the override for the view’s drawing
command.

 ‰ The Canvas object represents the interface through which you can pass instructions on how
to draw the graphic. This object contains a variety of tools and properties to act as the link
between graphic primitives and the underlying Bitmap object.

 ‰ The Paint object represents an abstracted defi nition of stylistic effects that can be applied
across most graphic primitives. This effect can include color, border, and transparency.

 ‰ The Bitmap object is the underlying image on which the canvas draws. After the canvas has
completed its work, the Bitmap object is presented to the UI in the appropriate scale for the
user to experience.

c12.indd 325c12.indd 325 2/28/2012 4:20:46 PM2/28/2012 4:20:46 PM

McClure c12.indd V5 - 02/15/2012

326 x CHAPTER 12 CANVAS AND DRAWABLES: BUILDING CUSTOM ANDROID GRAPHICS

It’s important to understand the relationship between each of these items, because it is the founda-
tion for almost all graphics work in Mono for Android. Figure 12-1 depicts this relationship.

OnDraw() PNG, GIF, Text
Colors, Shaders,

Font Styles,
Outlines

canvas.Draw(Primitive, Paint)

Graphics and styles
are drawn, pixel by

pixel.

Drawn to UI

View Graphics Primitives Paint

Canvas

Bitmap

Device

FIGURE 12-1

Graphics Primitives

Graphics primitives are a generic way to describe different formats or instructions for how to draw
something. This is a rather loosely defi ned group of tools that are unifi ed in their purpose, which is
to draw. Within the framework are several different kinds of base primitives.

Table 12-1 lists many of the basic primitives. Although some of the uses are obvious, it is a good
idea to have a working knowledge of each available option. You may fi nd some overlap in function-
ality between items, such as a path and a shape. You could represent almost any shape via the Path
object. But this would be much more work, and you would lose the advantage of all the additional
transformation methods that a shape object would have at its disposal.

c12.indd 326c12.indd 326 2/28/2012 4:20:46 PM2/28/2012 4:20:46 PM

McClure c12.indd V5 - 02/15/2012

Using the Canvas Object x 327

TABLE 12-1: Common Graphics Primitives

GENERAL

NAME

DESCRIPTION

Shape

objects

Shape objects include basic geometric shapes such as ovals, circles, and rectangles.

These shapes can be defi ned using the Canvas object, but they should not be

confused with the objects in the Android.Graphics.Shapes namespace, which is

used with drawables.

Colors Colors are represented in many ways throughout Mono for Android. In this instance,

a color primitive usually refers to the color’s integer value via alpha, red, green, blue

(ARGB) values.

Images When working with the Canvas object directly, image formats are ultimately

expressed via the versatile bitmap image class. Using a BitmapFactory object,

resources such as PNG and JPEG can be converted into the appropriate bitmap

format.

Paths,

points, arcs,

and lines

Paths, points, arcs, and lines are objects that are defi ned by underlying coordinates.

Using the provided points, the framework renders full shapes, aff ording you great

fl exibility in creating custom, scalable art.

Text Although text may not seem to be a graphic primitive, text-as-art is one of the most-

used drawing tasks. By using text as a graphic primitive, a developer can customize

logos and text art with minimal eff ort, allowing for some unique interactions with dif-

ferent gradients or skew fi lters to create a unique text presentation.

Graphic primitives offer the greatest opportunity to make clean, high-performance code. The pro-
cess of infl ating or spinning up a graphic primitive is quite expensive and should always be handled
with care. For example, keeping a graphic description in memory is much cheaper than re-creating it
upon every request.

The Canvas Object

The canvas serves as the interface by which a developer can communicate graphic intentions to the
underlying Bitmap object. Although this may sound like it could be a complex process, it is greatly
simplifi ed by the fact that the canvas exposes many different draw functions, each of which supports
a different graphic primitive.

It is not by chance that a Canvas object is named so. The reason for this is that it helps to think of
this object as an artist’s canvas. With each drawX() call, the platform essentially creates another
layer of paint on the canvas that will eventually be the application’s background. The draw method
can be called several times and with different primitives. This offers a great deal of fl exibility,

c12.indd 327c12.indd 327 2/28/2012 4:20:47 PM2/28/2012 4:20:47 PM

McClure c12.indd V5 - 02/15/2012

328 x CHAPTER 12 CANVAS AND DRAWABLES: BUILDING CUSTOM ANDROID GRAPHICS

because you aren’t restricted to a single primitive to express a graphic. Another good analogy for
how the canvas works is to think of its being able to support multiple layers, as with different draw-
ing applications such as GIMP, Paint.NET, and Photoshop.

The Canvas object also has two important functions: Save() and Restore(). The purpose of these
functions is to create snapshots of the current canvas state to be accessed later. Essentially, a Canvas
object can be saved with a set of drawings completed on it, and then altered as much as possible,
and then fully reinstated to the previous saved state via the Restore() method. Although this may
sound like a minor achievement, it is a great way to reduce code clutter and increase readability
when working with repetitive patterns or colors. Finally, these methods can be used to increase
application performance when used in the right context.

Finally, the Canvas object exposes some functionality to allow a developer to translate, skew, or
adjust the graphic’s underlying matrix. By using a canvas’s translate() and skew() methods, you
can reform and reshape a canvas drawing without incurring the overhead cost of creating a new
Canvas object or graphic primitive. This too will be covered in more depth shortly.

When working with different advanced tactics with the Canvas object, you
need to be familiar with the Matrix object and how it relates to the canvas. The
Matrix object represents a rectangular array or table of numbers (in the case of
Mono for Android, it’s a 3-by-3 matrix dimension). Matrices can be used for
various tasks. It uses them to achieve exact transformations from one object to
another by preserving the relative distance and colinearity between points on
that shape. This is known as affi ne transformation.

Using this technique, the framework can quickly apply many transformations to
a single graphic, whether that transformation is to rotate, scale, clip, refl ect, or
skew. You can read more about matrices and affi ne transformations at:

 ‰ Wikipedia — transformation matrix:
http://en.wikipedia.org/wiki/Transformation_matrix

 ‰ Wikipedia — affi ne transformation:
http://en.wikipedia.org/wiki/Affine_transformation

Even if you do not have occasion to directly use a matrix with the Canvas object,
it is good to have a working understanding of what happens when the canvas
.Translate() or other transformation methods are called.

The Paint Object

The Paint object represents stylistic effects that can be applied to a graphic primitive. In a sense, the
term paint is a great simplifi cation of everything that the Paint class can do. At its most basic, the
Paint class can be used to express a color. Building on that, paints can be used to express concepts
such as shaders, transparency, strokes, antialiasing, masks, color fi lters, and many other effects.

c12.indd 328c12.indd 328 2/28/2012 4:20:48 PM2/28/2012 4:20:48 PM

McClure c12.indd V5 - 02/15/2012

Using the Canvas Object x 329

When you use the Paint object in conjunction with the Canvas object, the Paint object is often
treated as a resource separate from the Shape object it will apply to. The reason is that it allows
for a signifi cant separation of concerns. Also, a single Paint object can be used to help defi ne an
infi nite number of different graphic primitives, whether they are text, images, or paths. In terms
of HTML design, you could think of the canvas as the HTML markup and the Paint object as
the CSS layout.

In addition to the Paint object’s generic functionality, it has several handle methods pertaining to
working with text-based primitives. The Paint object greatly expands the capabilities of producing
text-as-art by providing quite a few tools to assist in the drawing, measuring, and styling of text.

When you are working with the Paint object, one of the most important choices is whether to use
antialiasing. This is the process of “tricking” the eye into thinking that text or the edges of an image
are smooth rather than being composed of hard, square edges. To achieve this, a system employs a
number of techniques, such as sampling and blending or using slight color distortion. Although this
greatly improves the graphic’s overall quality (and readability in the case of text), it comes at the
cost of performance. You should use antialiasing with care with many objects, although text-based
graphics generally are a great target. Listing 12-1 is a basic example of how to use the Paint object
to draw styles for a text blurb.

LISTING 12-1: Using the Paint object

Paint p = new Paint()
{
 AntiAlias = true,
 Color = Color.CornflowerBlue,
 TextSize = 20,
 UnderlineText = true
};

canvas.DrawText(“Mono for Android is awesome!”, 10, 10, p);

The Bitmap Object

If a canvas is the medium by which graphics are communicated, the Bitmap object is the fi nal work
of art that is born from that communication. When the drawing methods are complete, it is the
Bitmap object that is ultimately presented to the user interface and, therefore, the end user. The
Bitmap object is always a requirement when working with a canvas.

The difference between a bitmap graphic primitive and the Bitmap object that the Canvas object
draws on can be confusing. In truth, there is no difference. The Bitmap object contains the tools
necessary to write to each pixel within the fi nal rendered image. As such, it is essentially the lowest
common denominator between all graphics types.

For the most part, you probably won’t need to work directly with a Bitmap object. However, if the
need does arise, the tools are certainly there to manually tweak and confi gure the underlying bit-
map for a canvas. This is achieved by creating a new Bitmap object, adjusting it according to the

c12.indd 329c12.indd 329 2/28/2012 4:20:49 PM2/28/2012 4:20:49 PM

McClure c12.indd V5 - 02/15/2012

330 x CHAPTER 12 CANVAS AND DRAWABLES: BUILDING CUSTOM ANDROID GRAPHICS

specifi cations, and then passing it as a primitive to the appropriate Canvas object. In addition, you
can simply create a new Canvas object and pass the bitmap instance to it instead.

The bitmap lets you work directly with some pretty advanced topics, such as different compression
techniques (.png/.jpg), directly requesting each byte or pixel in the bitmap, differing scaling scenar-
ios, and a few other tools. As you might imagine, these tools are powerful, but their usage scenarios
are beyond the scope of this chapter.

Bringing It All Together

Now that you understand the basic players, we can see them in action. Of course, the best way to
understand the Canvas object and its associated pieces is to work with it. The following section does
just that by presenting a use-case scenario and walking through the entire process of conceptualiz-
ing, creating, and completing a custom graphic.

A Path Primer

Before we walk through creating custom graphics, you should become familiar with the Path object.
The following examples use the Path object as their primary graphic primitive. The reason for this
is not only to expose one of the more complex graphic primitives but also to emulate the process
of creating a graphic primitive at the lowest level. If you are already familiar with Path, feel free to
skip to the next section.

Paths are simple geometric instructions that are built by defi ning a series of different points and then
specifying either lines or curves to draw from one point to another. Each defi ned point represents a
place on the graphic where the fl ow of the current line or curve is altered.

After the points have been selected, simple paths can be defi ned using Path.LineTo(pointX,
pointY) to defi ne in which direction and how far to draw the line. In Listing 12-2, the Path object
is used to construct a simple square.

LISTING 12-2: Creating a basic shape using the Path object

public class Square:View
{
 public Square(Context context) : base(context) { }

 protected override void OnDraw(Canvas canvas)
 {
 Path SquarePath = new Path();

 SquarePath.LineTo(50, 0);
 SquarePath.LineTo(50, 50);
 SquarePath.LineTo(0, 50);

 SquarePath.Close();

c12.indd 330c12.indd 330 2/28/2012 4:20:49 PM2/28/2012 4:20:49 PM

McClure c12.indd V5 - 02/15/2012

Using the Canvas Object x 331

 canvas.DrawPath(SquarePath, new Paint(){ Color = Color.CornflowerBlue});
 }
}

Graphics_Canvas\Graphics_Canvas\Square.cs

The fi rst thing to note in this code is a class that inherits from the View class. Within the view, the
OnDraw() method is overridden to take command of the canvas drawing method. Much of the time,
this is the typical technique for drawing directly on the canvas. If this view were added to an appli-
cation and loaded, you would see a small, simple square.

Looking at the Path object, several commands indicate movement, such as LineTo(), MoveTo(),
QuadTo(), CubicTo(), and ArcTo(). Each of these actions represents a movement from the current
point to the one specifi ed. Unless it is changed, the Path object assumes that the drawing’s initial
point is at the canvas’s origin, Point(0,0).

The Path.Close() function is used to close the current contour. If the Close() method is not called
on the origin point, a line is drawn between the closing point and the origin.

When working with points in the graphics realm, don’t make the mistake of con-
fusing them with points on the Cartesian plane that are used in algebra. When you
are working with graphics, the y-axis is inverted to that of the Cartesian plane.
This means that the (x,y) coordinates in the lower-right portion of the canvas are
(+,+) and the (x,y) coordinates in the upper left are (-,-), as shown in Figure 12-2.

(− ,−) (+ ,−)

(− ,+) (+ ,+)

Figure 12-2

Case 1: Creating a Custom Graphic

Imagine that you were recently hired to work on the development team for the W3C (World
Wide Web Consortium). Recently, many people have expressed interest in the upcoming HTML5

c12.indd 331c12.indd 331 2/28/2012 4:20:49 PM2/28/2012 4:20:49 PM

McClure c12.indd V5 - 02/15/2012

332 x CHAPTER 12 CANVAS AND DRAWABLES: BUILDING CUSTOM ANDROID GRAPHICS

specifi cation. In fact, your peers at the W3C have created a visually appealing graphic to represent
HTML5 as a way to help spread the word about this new territory, as shown in Figure 12-3. As
a way to assist in their efforts, you have been given the task of writing an app that uses the new
HTML5 logo.

FIGURE 12-3

In a new Mono for Android project, add a new class called HTML5Logo. As with the previous square
example, the HTML5Logo class needs to inherit from the View object to get access to the Canvas
object to draw on. To complete the inheritance, add an appropriate constructor and override the
OnDraw() method. When complete, the class should look like Listing 12-3.

LISTING 12-3: Creating a custom view for the HTML5 logo

public class HTML5Logo : View
{

 protected Context _context;

 public int Scale { get; set; }

 public HTML5Logo(Context context, int Scale): base(context)
 {
 this._context = context;
 this.Scale = Scale;
 }

 protected override void OnDraw(Canvas canvas)
 {
 }
}

Graphics_Canvas\Graphics_Canvas\HTML5Logo.cs

In addition to the default structure, properties were added for Scale and Context. Although you
should be familiar with the process of saving the context state of an overridden view Context prop-
erty, the Scale property acts as a multiplier for the overall dimensions of HTML5Logo to allow for a dif-
ference in scale of the object during initialization. Now it is time to begin creating the custom graphic.

HTML5 logo by the
World Wide Web Consortium:
www.w3.org

c12.indd 332c12.indd 332 2/28/2012 4:20:50 PM2/28/2012 4:20:50 PM

McClure c12.indd V5 - 02/15/2012

Using the Canvas Object x 333

Looking at the logo, consider the different types of graphic primitives you could leverage to express
the graphic intention. At fi rst glance, the logo can be broken into three separate sections: the back-
ground shield, the shield refl ection, and the graphic 5 that overlies them both. Due to the simple,
angular nature of this logo, the Path primitive would be an effi cient tool to express the different
parts of this graphic.

You might wonder why we don’t just use an image rather than going to the
trouble of making a Path object. In fact, the image approach would be the better
choice in most cases. However, since we are focusing on creating custom graph-
ics, this section uses the path approach to re-create this graphic from scratch.

To keep things as simple as possible, the HTML5Logo will be divided into three distinct pieces that
will be defi ned by three distinct Path objects. Although the entire graphic could be handled differ-
ently, this approach keeps everything clean and readable.

Begin by defi ning the HTML5Logo shield background. Create a method called
DrawHTML5Background(), and accept a canvas as a parameter. This method encapsulates the pro-
cess of drawing the shield background directly on the canvas. Listing 12-4 shows how this method
should appear.

LISTING 12-4: Drawing the HTML5 background path

private void DrawHTML5Background(Canvas canvas)
{
 Path HTML5Background = new Path();

 HTML5Background.LineTo(Scale, 0);
 HTML5Background.LineTo((int)(Scale * .914), (int)(Scale * 1.015));
 HTML5Background.LineTo((int)(Scale / 2), (int)(Scale * 1.115));
 HTML5Background.LineTo((int)(Scale * .087), (int)(Scale * 1.015));
 HTML5Background.Close();

 var HTML5Paint = new Paint() { AntiAlias = true,
 StrokeWidth = 3, Color = new Color(228, 76, 39) };

 canvas.DrawPath(HTML5Background, HTML5Paint);
}

Graphics_Canvas\Graphics_Canvas\HTML5Logo.cs

In this method, a new Path object is created, and four points are added. In addition to the origin
of (0,0), each of these points represents one of the corners of the background shield of the HTML5
logo. Notice that every point is based on a ratio of the point’s coordinate according to the Scale
value. The reason for this is that it allows the entire background to be quickly sized during initial-
ization of the object. Looking at the points, you might wonder where the point values came from to

c12.indd 333c12.indd 333 2/28/2012 4:20:50 PM2/28/2012 4:20:50 PM

McClure c12.indd V5 - 02/15/2012

334 x CHAPTER 12 CANVAS AND DRAWABLES: BUILDING CUSTOM ANDROID GRAPHICS

defi ne the shield. In this case, they were measured using a web measuring tool and roughly rounded
to represent the right location.

Finally, the Paint object is created using the darker orange color, and the Path is added to the
Canvas object. Since this image is more important than the others, antialiasing has been turned on.

The next piece to tackle is to add the appropriate calls to create the gleam overlay on the shield.
Create a method called DrawHTML5InnerBackground, again accepting the Canvas object as the
parameter. Listing 12-5 displays the appropriate code for this method.

LISTING 12-5: Drawing the HTML5 inner background path

private void DrawHTML5InnerBackground(Canvas canvas)
{
 Path HTML5InnerBackground = new Path();

 HTML5InnerBackground.MoveTo(Scale / 2, (int)(Scale * .078));

 HTML5InnerBackground.LineTo((int)(Scale * .915), (int)(Scale * .078));
 HTML5InnerBackground.LineTo((int)(Scale * .829), (int)(Scale * .948));
 HTML5InnerBackground.LineTo((int)(Scale / 2), (int)(Scale * 1.032));

 var HTML5Paint = new Paint() { AntiAlias = true,
 StrokeWidth = 3, Color = new Color(240, 101, 42) };

 canvas.DrawPath(HTML5InnerBackground, HTML5Paint);
}

Graphics_Canvas\Graphics_Canvas\HTML5Logo.cs

This method behaves much like the previous draw method. Notice that rather than starting at the
origin, the MoveTo() function is used to start the Path at the appropriate point. Again, the Scale
property is used to calculate all these points to allow for dynamic sizing.

The fi nal portion of the custom graphic is the number 5 that will overlay the entire graphic. At fi rst
glance, this may seem to be a simple matter of overlaying a text primitive of the right scale onto
the graphic. However, this is not quite so simple — for two main reasons. First, trying to fi nd the
corresponding font to match the logo precisely would be diffi cult. Second, the fact that the logo
has a two-tone color means that paint objects will need to be applied to different sections of the
text object. Again, we will turn to the Path object to solve this problem. Create a method called
DrawHTML5Text(), accepting a canvas as a parameter. In this method, add the code shown in
Listing 12-6 to the class.

LISTING 12-6: Drawing the HTML5 text path objects

private void DrawHTML5Text(Canvas canvas)
{
 //Set up our Paints, since these objects will be shared between quadrants.
 Paint White = new Paint() { AntiAlias = true, StrokeWidth = 3,
 Color = Color.White };

c12.indd 334c12.indd 334 2/28/2012 4:20:51 PM2/28/2012 4:20:51 PM

McClure c12.indd V5 - 02/15/2012

Using the Canvas Object x 335

 Paint OffWhite = new Paint { AntiAlias = true, StrokeWidth = 3,
 Color = new Color(235, 235, 235) };

 //Quadrant #1
 var Path_Q1 = new Path();
 Path_Q1.MoveTo(Scale / 2, (int)(Scale * .212));
 Path_Q1.LineTo((int)(Scale * .809), (int)(Scale * .212));
 Path_Q1.LineTo((int)(Scale * .797), (int)(Scale * .326));
 Path_Q1.LineTo((int)(Scale / 2), (int)(Scale * .326));

 canvas.DrawPath(Path_Q1, White);

 //Quadrant #2
 var Path_Q2 = new Path();

 Path_Q2.MoveTo((int)(Scale * .203), (int)(Scale * .212));
 Path_Q2.LineTo((int)(Scale / 2), (int)(Scale * .212));
 Path_Q2.LineTo((int)(Scale / 2), (int)(Scale * .326));
 Path_Q2.LineTo((int)(Scale * .328), (int)(Scale * .326));
 Path_Q2.LineTo((int)(Scale * .345), (int)(Scale * .472));
 Path_Q2.LineTo((int)(Scale / 2), (int)(Scale * .472));
 Path_Q2.LineTo((int)(Scale / 2), (int)(Scale * .591));
 Path_Q2.LineTo((int)(Scale * .235), (int)(Scale * .591));

 canvas.DrawPath(Path_Q2, OffWhite);

 //Quadrant #3
 var Path_Q3 = new Path();

 Path_Q3.MoveTo((int)(Scale / 2), (int)(Scale * .472));
 Path_Q3.LineTo((int)(Scale * .786), (int)(Scale * .472));
 Path_Q3.LineTo((int)(Scale * .751), (int)(Scale * .852));
 Path_Q3.LineTo((int)(Scale / 2), (int)(Scale * .899));
 Path_Q3.LineTo((int)(Scale / 2), (int)(Scale * .783));
 Path_Q3.LineTo((int)(Scale * .641), (int)(Scale * .754));
 Path_Q3.LineTo((int)(Scale * .658), (int)(Scale * .591));
 Path_Q3.LineTo((int)(Scale / 2), (int)(Scale * .591));

 canvas.DrawPath(Path_Q3, White);

 //Quadrant #4
 var Path_Q4 = new Path();

 Path_Q4.MoveTo((int)(Scale * .249), (int)(Scale * .646));
 Path_Q4.LineTo((int)(Scale * .365), (int)(Scale * .646));
 Path_Q4.LineTo((int)(Scale * .371), (int)(Scale * .754));
 Path_Q4.LineTo((int)(Scale / 2), (int)(Scale * .783));
 Path_Q4.LineTo((int)(Scale / 2), (int)(Scale * .899));
 Path_Q4.LineTo((int)(Scale * .27), (int)(Scale * .852));

 canvas.DrawPath(Path_Q4, OffWhite);
}

Graphics_Canvas\Graphics_Canvas\HTML5Logo.cs

c12.indd 335c12.indd 335 2/28/2012 4:20:51 PM2/28/2012 4:20:51 PM

McClure c12.indd V5 - 02/15/2012

336 x CHAPTER 12 CANVAS AND DRAWABLES: BUILDING CUSTOM ANDROID GRAPHICS

Looking at this listing, it is pretty amazing how a simple number can take the most time to express
via Path. However, do not feel too daunted, because it is really four simple Paths used to represent a
whole. Since the number in the logo is two-toned, two different Paint objects are needed to express
its colors. Initially in this method, the Paint objects are initialized and named White and Offwhite
so that they can be reused in each section. Then the number graphic is separated into four quadrants
based on color and location in the graphic. For each quadrant, a Path object is created. As each path
is created, it is drawn on the Canvas object.

With those methods in place, modify the OnDraw() method so that it calls all three of these methods
in the correct order. Listing 12-7 gives an example.

LISTING 12-7: Overriding the OnDraw() method for the HTML5 logo view

protected override void OnDraw(Canvas canvas)
{
 DrawHTML5Background(canvas);
 DrawHTML5InnerBackground(canvas);
 DrawHTML5Text(canvas);
}

Graphics_Canvas\Graphics_Canvas\HTML5Logo.cs

The HTML5Logo view is now complete. Within the startup activity of this project, create a new
instance of HTML5Logo, and set it as your content view. The resulting OnCreate() method should
resemble Listing 12-8.

LISTING 12-8: Overriding the OnCreate() method in the main activity

protected override void OnCreate(Bundle bundle)
{
 base.OnCreate(bundle);

 var targetView = new HTML5Logo(this, 100);
 SetContentView(targetView);
}

Graphics_Canvas\Graphics_Canvas\GraphicsCanvasDemo.cs

With this in place, run the project. Figure 12-4 displays the expected end result.

Case 2: Responding to Events

After you complete the new HTML5Logo view, your peers at the W3C have a new request. Although it
is a nice-looking graphic sitting on your Android screen, they would like to be able to do something
with it. They suggest making the graphic draggable so that you can move it about the screen with
your fi nger.

In the same project that was used in the previous example, create a new class called
HTML5Logo_Draggable. In this class, you will leverage your work from the previous example,
inheriting from the HTML5Logo class (and thus inheriting from the View class as well).

c12.indd 336c12.indd 336 2/28/2012 4:20:51 PM2/28/2012 4:20:51 PM

McClure c12.indd V5 - 02/15/2012

Using the Canvas Object x 337

The process of making a custom graphic draggable is not too complicated. Since the
HTML5Logo_Draggable class already inherits from the View class, you can leverage the OnTouchEvent
method of the View to listen for and respond to any touch events.

The OnTouchEvent method of the View class listens for any
type of touch registered on the device. As a way to ascertain the
type of touch that triggered the event, OnTouchEvent accesses
a parameter of type MotionEvent. The class is the key compo-
nent when working with touch events.

The MotionEvent class exposes several members that are key to
being able to respond to a touch event on an Android device:

 ‰ The Action integer is used to describe the kind
of action that took place using the values of the
MotionEventAction enumeration. Using this enumera-
tion, you can quickly determine if this was an initial
press, a fi nger drag, and so on.

 ‰ The GetX() and GetY() functions return the exact
coordinates where the user pressed initially. Also,
there are several other variations of the x, y coordinate
values, such as nonadjusted coordinates or historical
coordinates.

 ‰ The Downtime value returns the total amount of time in
milliseconds (ms) that has elapsed since the user initially
pressed the device.

Finally, you may notice that the OnTouchEvent is a Boolean rather than a simple method. The rea-
son for this is to enable other handlers to try to respond to this touch event if this handler fails to
accommodate for it. If this returns true, no other handlers get the opportunity to respond to this
touch event.

In addition to using OnTouchEvent, the new class needs a few tracking variables to help
determine where the logo is currently located on the Android device’s screen. Within your
HTML5Logo_Draggable class, add four fl oat fi elds named Current_X, Current_Y, Previous_X, and
Previous_Y. These will be used to track positions.

Next, go ahead and override the OnTouchEvent of the underlying View class. Within this class, you
will check the MotionEvent object to see how the view has been touched. Listing 12-9 details the
code used to accomplish this.

LISTING 12-9: Setting up the HTML5Logo_Draggable class

public class HTML5Logo_Draggable : HTML5Logo
{
 private float Current_X;
 private float Current_Y;

FIGURE 12-4

continues

c12.indd 337c12.indd 337 2/28/2012 4:20:52 PM2/28/2012 4:20:52 PM

McClure c12.indd V5 - 02/15/2012

338 x CHAPTER 12 CANVAS AND DRAWABLES: BUILDING CUSTOM ANDROID GRAPHICS

 private float Previous_X;
 private float Previous_Y;

 public HTML5Logo_Draggable(Context context, int Scale)
 : base(context, Scale)
 {
 this.Scale = Scale;
 }

 public override bool OnTouchEvent(MotionEvent e)
 {
 int Action = (int)e.Action;
 switch (Action)
 {
 case (int)MotionEventActions.Down:
 Previous_X = e.GetX();
 Previous_Y = e.GetY();
 break;
 case (int)MotionEventActions.Move:
 Current_X += e.GetX() - Previous_X;
 Current_Y += e.GetY() - Previous_Y;

 Previous_X = e.GetX();
 Previous_Y = e.GetY();

 Invalidate();
 break;
 }

 return true;
 }
}

Graphics_Canvas\Graphics_Canvas\HTML5Logo_Draggable.cs

Using the Action enumeration within the MotionEvent class, the OnTouchEvent method listens for
two specifi c kinds of events:

 ‰ MotionEventActions.Down is triggered upon the fi rst touch on the view. This is used to
track the initial point at which the screen is touched.

 ‰ MotionEventActions.Move is used to express that the touch point has moved (that is, the
touching fi nger has been dragged across the device’s surface).

Using these two events, you can establish a baseline of when and where the fi rst touch happens
against where the next touch event occurs.

Using the GetX() and GetY() functions of the MotionEvent class, you can begin to adjust the
graphic’s position according to the user’s fi nger strokes. Within the fi rst case statement, the previ-
ous coordinates are updated to the initial touch point. Consider this as establishing a baseline for

LISTING 12-9 (continued)

c12.indd 338c12.indd 338 2/28/2012 4:20:52 PM2/28/2012 4:20:52 PM

McClure c12.indd V5 - 02/15/2012

Using the Canvas Object x 339

the overall motion consideration, because it gives you a marker to measure how far the user intends
to drag the object. Within the second case statement, the system throws a Move event. To update
the graphic’s position, the function uses the last point coordinates (which represent the initial touch
point) and updates the current point coordinates using the GetX() and GetY() functions of the
MotionEvent class.

Finally, the Invalidate() function is called. It is used to force the view to redraw itself as soon as
possible.

The Invalidate() call on a view does not behave quite as many new Android
developers may expect. When the Invalidate() method is called, it essentially
sends a request to the Android OS to redraw the screen as soon as possible.
Typically, this means that the Android OS waits until the main application
thread is idle before it attempts to redraw.

The Invalidate() function is excellent for standard application needs.
However, if you are creating a graphics-intensive or gaming application, there
are better approaches than this, which will be partially covered in the next
section.

With these items in place, only one more item needs to be changed. Using the current position
coordinates, you now know the point to which each Move event intends to move our graphics.
Furthermore, you know that your OnDraw() event will be called by every touch event, due to the
Invalidate() function’s being added to the OnTouchEvent(). Now, you simply need to update the
position of the item on every OnDraw() method to match the current coordinates. You can achieve
this by overriding the OnDraw() event and using the canvas.Translate() method. Listing 12-10
shows how this is done.

LISTING 12-10: Translating a canvas’s position

protected override void OnDraw(Canvas canvas)
{
 canvas.Translate(Current_X, Current_Y);
 base.OnDraw(canvas);
}

Graphics_Canvas\Graphics_Canvas\HTML5Logo_Draggable.cs

This example leverages the Translate method of the Canvas object to update the graphic’s posi-
tion. This method is used to move the origin of the Canvas object to another position in the screen’s
space. In this case, it updates the graphic’s position to the user’s expected position based on the dis-
tance of his or her touch drag.

If you were to run the emulator at this point, you would see a screen much like the previous demo.
However, you will fi nd that it moves across the screen as you drag your fi nger. Also note that, if you

c12.indd 339c12.indd 339 2/28/2012 4:20:52 PM2/28/2012 4:20:52 PM

McClure c12.indd V5 - 02/15/2012

340 x CHAPTER 12 CANVAS AND DRAWABLES: BUILDING CUSTOM ANDROID GRAPHICS

touch the center of the screen, far from the actual image, the image still drags at the same pace as
you do. The reason is that the view currently fi lls the entire screen because the view bounds have no
limits.

With the new application running, drag the logo wildly and quickly. Assuming that you are running
on the emulator with approximately 512MB of allocated memory, you may fi nd that the application
quickly crashes with a random error, usually during the build methods of the HTML5Logo class. This
occurs because you have made a poor performance decision in regards to your implementation of
the OnDraw() method.

Within the current logic, this application re-creates the HTML5Logo graphic every time this graphic
is drawn. Although this may be acceptable for stationary graphics, as seen in Case 1, it becomes a
major performance hit when OnDraw() is called rapidly. The problem occurs because the OnDraw()
event is wired to the OnTouchEvent method. In particular, as you begin to drag it more quickly and
erratically, the device has to work much harder, creating a new graphic instance for every motion.
Since the HTML5Logo graphic is static, it would be easier on the system if you saved a single instance
of the graphic, rather than re-creating it upon every request.

To fi x this issue, you will modify the underlying HTML5Logo class that your current class inherited
from. Within this class you add a property called HTML5Bitmap and give it the type of Bitmap. This
will be used to store the graphic in memory after it has been created for the fi rst time.

Next, create a function called CreateHTML5Bitmap, giving it a return type of Bitmap. This function
will be used to create an instance of our graphic on demand. Finally, you can refactor the OnDraw()
event so that it checks to see if the HTML5Bitmap property is null and creates the new bitmap as
needed. Listing 12-11 displays these adjustments.

LISTING 12-11: Saving an HTML5 Bitmap object in memory for better performance

public Bitmap HTML5Bitmap { get; set; }

protected override void OnDraw(Canvas canvas)
{
 if (HTML5Bitmap == null) HTML5Bitmap = CreateHTML5Bitmap();

 canvas.DrawBitmap(HTML5Bitmap, 0, 0, null);
}

protected Bitmap CreateHTML5Bitmap()
{
 var tempCanvas = new Canvas();
 var CurrentBitmap = Bitmap.CreateBitmap(Scale,
 (int)(Scale*1.115), Bitmap.Config.Argb8888);
 tempCanvas.SetBitmap(CurrentBitmap);

 DrawHTML5Background(tempCanvas);
 DrawHTML5InnerBackground(tempCanvas);

c12.indd 340c12.indd 340 2/28/2012 4:20:53 PM2/28/2012 4:20:53 PM

McClure c12.indd V5 - 02/15/2012

Using the Canvas Object x 341

 DrawHTML5Text(tempCanvas);

 return CurrentBitmap;
}

Graphics_Canvas\Graphics_Canvas\HTML5Logo.cs

Within the new CreateHTML5Bitmap() method, a new Bitmap object is created using the
CreateBitmap() static function of the Bitmap class. As a part of this call, you must include the
height, width, and confi guration settings of the new Bitmap, which have already been fi gured out
by the previous efforts. As with the other calls, the height and width are set according to the Scale
property, ensuring that the created Bitmap is the same size as the target graphic. Also, the
Bitmap.Config setting is used to specify the screen’s pixel confi guration.

The BitmapConfig of Argb8888 (also known as Argb32) refers to the color and
alpha capabilities of a particular image. Each 8 in the name represents the
number of bits that this confi guration uses to express the values for the color’s
alpha, red, green, and blue values. The higher the number of supported bits, the
more color variations supported.

In addition, this method creates a new Canvas object. Since you want to predraw the logo, a new
Canvas object ensures that you do not alter the actual Canvas object in any way. By using the
SetBitmap() method of the new Canvas object, the function ensures that all writes to this canvas
go directly onto the target bitmap.

Finally, call the draw functions that were once in the OnDraw() method, thereby drawing the custom
graphic on the target bitmap. By returning the instance of the CurrentBitmap object, you now have
an in-memory Bitmap that you can use many times.

The CreateHTML5Bitmap() function initially may seem backwards, since it
creates not only a new Bitmap object but also a new Canvas object. However, it
is important to remember that a Canvas object is a communication channel by
which developers can pass graphic instructions to a Bitmap.

In this case, we are leveraging the toolset of a new Canvas object to make the
creation of an in-memory Bitmap much simpler. Also, by using a new Canvas
object, we can avoid skewing the actual Canvas object that the application is
passing to us.

With this modifi cation in place, the application should run with much greater effi ciency, and the
random system errors should no longer be an issue. Run the project, and drag around the logo as
erratically and quickly as you desire.

c12.indd 341c12.indd 341 2/28/2012 4:20:53 PM2/28/2012 4:20:53 PM

McClure c12.indd V5 - 02/15/2012

342 x CHAPTER 12 CANVAS AND DRAWABLES: BUILDING CUSTOM ANDROID GRAPHICS

Case 3: Animating Custom Graphics

Finally, you complete the dragging demo for your peers at the W3C. Due to all the excitement about
your awesome work, the big boss downloads your app and works with it himself. He likes what he
sees, but then he has a stroke of genius. Rather than being draggable, he thinks it should bounce
around the screen on its own. No one has done that before, so it will blow everyone away! You
begin the process of animating the HTML5 logo so that it will bounce around the screen.

To accomplish this task, two different areas need to be adjusted:

 ‰ First, the HTML5 graphic needs a way to track its current location and also be able to move
itself upon every update call via the view’s Invalidate() method. This is similar to the
work completed in the previous section when the user’s drag motions were tracked.

 ‰ The second change is that the activity needs to create a timed loop to systematically call the
Invalidate() method at correct intervals. This loop will be similar to the kind of loops
needed for running gaming applications, in which a timed update needs to occur to simulate
motion.

Tracking a Graphic’s Location

In the same application that was used in the previous two examples, create a new class called
HTML5Logo_Bouncing. In this class, inherit from the HTML5Logo class so that it can leverage the
drawing optimizations that were implemented in the previous example.

Within this class, add several properties to help track the moving logo:

 ‰ A Point object called CurrentPosition: This fi eld will store where the graphic is currently
located on the fi eld.

 ‰ A private Enum called AxisDirection: Within this enumeration, create two items called
Positive and Negative. Set the Positive value to 0 and the Negative to 1. Although an
enumeration is not essential, it’s a nice, visual way to track the current direction in which the
logo is moving.

 ‰ Two private AxisDirection enumerations called VerticalAxisDirection and
HorizontalAxisDirection: The purpose of these variables is to track whether the graphics
are moving in a positive or negative direction on each axis. Every time the graphic encounters
a “bounce condition,” the values are inverted, beginning motion in the opposite direction.

 ‰ A private int called Velocity: As can be inferred, this is used to control the speed at which
the graphic moves. Specifi cally, it tells the graphic how far to move between each call to the
OnDraw() method.

With those values in place, you need to override the OnDraw() function so that it handles the logo’s
motion. In addition to being in control of rendering the view, the OnDraw() method is used to move
the object according to its velocity as well as handle any bounce conditions. This way, external calls
only have to worry about calling the view’s Invalidate function rather than dealing with other
information.

c12.indd 342c12.indd 342 2/28/2012 4:20:54 PM2/28/2012 4:20:54 PM

McClure c12.indd V5 - 02/15/2012

Using the Canvas Object x 343

Listing 12-12 displays all the appropriate modifi cations to the HTML5Logo_Bouncing class as well as
the implementation of the bouncing logic in the OnDraw() override.

LISTING 12-12: Creating the HTML5Logo_Bouncing view

public class HTML5Logo_Bouncing : HTML5Logo
{
 private Point CurrentPosition = new Point(1, 1);

 private enum AxisDirection { Positive = 0, Negative = 1 };

 private AxisDirection VerticalAxisDirection = AxisDirection.Positive;
 private AxisDirection HorizontalDirection = AxisDirection.Positive;
 private int Velocity = 2;

 public HTML5Logo_Bouncing(Context context, int Scale)
 : base(context, Scale)
 {
 this.Scale = Scale;
 this._context = context;
 }

 protected override void OnDraw(Canvas canvas)
 {
 if (HTML5Bitmap == null) HTML5Bitmap = CreateHTML5Bitmap();

 //TODO: Do not include in production code!!
 Console.WriteLine(String.Format(
 “Logging Message: CanvasWidth: {0}, BitMapWidth: {1},
 Current X / Y: {2} / {3}”,
 canvas.Width, HTML5Bitmap.Width, CurrentPosition.X, CurrentPosition.Y));

 //X-Axis
 if(CurrentPosition.X >= this.Width - HTML5Bitmap.GetScaledWidth(canvas))
 {
 HorizontalDirection = AxisDirection.Negative;
 } else if (CurrentPosition.X <= 0) {
 HorizontalDirection = AxisDirection.Positive;
 }

 if (HorizontalDirection == AxisDirection.Positive)
 {
 CurrentPosition.X += Velocity;
 } else {
 CurrentPosition.X -= Velocity;
 }

 //Y-Axis
 if (CurrentPosition.Y >= this.Height -
 HTML5Bitmap.GetScaledHeight(canvas))
 {

continues

c12.indd 343c12.indd 343 2/28/2012 4:20:54 PM2/28/2012 4:20:54 PM

McClure c12.indd V5 - 02/15/2012

344 x CHAPTER 12 CANVAS AND DRAWABLES: BUILDING CUSTOM ANDROID GRAPHICS

 VerticalAxisDirection = AxisDirection.Negative;
 }
 else if (CurrentPosition.Y <= 0)
 {
 VerticalAxisDirection = AxisDirection.Positive;
 }

 if (VerticalAxisDirection == AxisDirection.Positive)
 {
 CurrentPosition.Y += Velocity;
 }
 else
 {
 CurrentPosition.Y -= Velocity;
 }

 canvas.Translate(CurrentPosition.X, CurrentPosition.Y);
 canvas.DrawBitmap(HTML5Bitmap, 0, 0, null);
 }
}

Graphics_Canvas\Graphics_Canvas\HTML5Logo_Bouncing.cs

Within this listing, the OnDraw() method has several different key behaviors going on within it. As
you may recognize from the last example, this function starts by checking to see if the underlying
graphic has been drawn. Just as with the draggable demo, it is vital that this program tries to run as
lean as possible, which means that you want to take this performance hit only once.

After that, a quick logging message writes some key values to the Console window. Because quite a
few different variables move at once in this call, this will help you track the motion of the graphic
as well as your underlying conditional logic. Even though we are not in the business of writing bugs,
this is a great way to track them down if they occur.

Within the next section of the OnDraw() methods are two code blocks with comment labels of
X-Axis and Y-Axis. These sections are used to track the current direction in which the bitmap should
be moving, at both a horizontal and vertical level. Basically, these check to see if the graphic is in the
bounds of the screen. If not, it reverses the direction in which the graphic is moving, which brings the
graphic back into the screen bounds. Since the origin of this graphic is at (0,0), half the bounce con-
dition checks to see if the graphic has moved below these values. The second bounce condition is the
difference between the overall length of a canvas and the scaled length of the graphic. This way, the
graphic bounces as soon as any point touches a screen edge, rather than just the origin point.

To get the graphic’s height and width, this function uses the bitmap’s
GetScaledWidth() and GetScaledHeight() functions. The purpose of using
these functions is that they always return the bitmap’s true size, even if the
canvas or other method has applied a scaling effect to the graphic.

In most cases, just about every graphic receives some kind of scaling effect as it
is passed to the screen. Therefore, it is a good idea to use the scaled values.

LISTING 12-12 (continued)

c12.indd 344c12.indd 344 2/28/2012 4:20:54 PM2/28/2012 4:20:54 PM

McClure c12.indd V5 - 02/15/2012

Using the Canvas Object x 345

Finally, the last section of the method offsets the corresponding location of the graphic, using the
AxisDirection settings to determine whether to move it in a positive or negative direction. In
these areas, the Velocity variable is used to know how many points to shift the graphic. Once the
CurrentPosition point has been updated, use the Translate() method to move the canvas to the
correct location. The View object now should be ready for action. This completes the fi rst task.

Redrawing the Canvas at Regular Intervals

The second task is to adjust the activity so that it calls the view’s Invalidate() function at regu-
lar intervals. This can be accomplished in a variety of ways, but the gist is to create a separate
thread in the activity’s OnCreate() function and call a looping function. Using Thread.Sleep(),
update the View object at appropriate intervals. Listing 12-13 shows a basic implementation of
this process.

LISTING 12-13: Creating an update loop for the HTML5Logo_Bouncing view

[Activity(Label = “Graphics_DemoTrials”, MainLauncher = true)]
public class GraphicsSample : Activity
{

 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);
 var targetView = new HTML5Logo_Bouncing(this, 100);

 SetContentView(targetView);
 ThreadPool.QueueUserWorkItem(o => RunLoop(targetView));
 }

 private void RunLoop(View TargetView)
 {
 while (true)
 {
 Thread.Sleep(10);
 RunOnUiThread(() => TargetView.Invalidate());
 }
 }
}

Graphics_Canvas\Graphics_Canvas\GraphicsCanvasDemo.cs

In this listing, a new method called RunLoop() has been created. Using an endless loop, this
thread sleeps for 10 ms and then calls the Invalidate() function on the appropriate view. The
RunOnUiThread() function is used for the Invalidate() function because this is a requirement for
it to work as intended.

Now, run the application and view the results. Figure 12-5 outlines the logo’s expected path. To
adjust the speed of the logo’s movement, adjust the Thread.Sleep() value or the Velocity variable
within the HTML5Logo_Bouncing class. Remember that the Invalidate() call is more of a sugges-
tion to redraw rather than a direct command. Therefore, speed and velocity settings may not be
completely accurate, because the redraw depends on the Android OS to initiate.

c12.indd 345c12.indd 345 2/28/2012 4:20:55 PM2/28/2012 4:20:55 PM

McClure c12.indd V5 - 02/15/2012

346 x CHAPTER 12 CANVAS AND DRAWABLES: BUILDING CUSTOM ANDROID GRAPHICS

FIGURE 12-5

At this point, you should have a fully functioning application. Although it works as intended, one
more task must be added. Since this is a constantly running loop, you should follow a few steps
to make sure that it is a good citizen on the device. Specifi cally, the loop should stop trying to run
anytime the application is moved into the background. This is achieved by adding a Boolean vari-
able called IsRunning and by overriding the OnPause() and OnResume() methods. Listing 12-14
displays this technique.

LISTING 12-14: Managing the run loop

public Boolean IsRunning = true;

protected override void OnPause()
{
 IsRunning = false;
 base.OnPause();
}

protected override void OnResume()
{
 IsRunning = true;
 base.OnResume();
}

private void RunLoop(View TargetView)
{
 while (IsRunning)

c12.indd 346c12.indd 346 2/28/2012 4:20:55 PM2/28/2012 4:20:55 PM

McClure c12.indd V5 - 02/15/2012

Using the Canvas Object x 347

 {
 Thread.Sleep(10);
 RunOnUiThread(() => TargetView.Invalidate());
 }
}

Graphics_Canvas\Graphics_Canvas\GraphicsCanvasDemo.cs

In this example, the application has been given the ability to clean up its resource usage with just a
few lines of code. The OnPause() and OnResume() functions are called when the application goes
into and comes back from the background. Using the IsRunning Boolean, these two functions let
the application track when it is in a running state. By replacing the true condition on the while
loop with IsRunning, the application will no longer try to update the TargetView graphic when the
application is moved into the background.

Case 4: Improving Performance Using SurfaceView

After setting up the bouncing image view, you feel that your job is complete, and you deploy the
view to your testers. After a few days, you start to get complaints because the application seems ran-
domly sluggish, especially when the users are working with other UI elements. You must fi gure out a
better way to display this view that has faster performance.

Although using a custom view is an excellent way to draw graphics onto the device, this method
has one major drawback. All typical views are drawn using the GUI thread. Even though you can
handle much of the processing on a background thread, the fi nal drawing function of a typical view
cannot run on any other thread but the GUI. This is why the previous example needed to use the
RunOnUiThread() call to start the view invalidation process.

When you are in a situation in which you are rapidly invalidating (updating) a custom view, this can
begin to bog down the GUI thread. Also, if the view’s OnDraw() method is particularly heavy or is try-
ing to render animations, this greatly inhibits the performance of the GUI thread. Since the GUI thread
is used for all user activities (fi nger presses, text entry, or accelerometer responses), this situation can
lead to a bad user experience, because your graphic can become choppy or the interface can freeze.

Thankfully, there is a great way to work around this issue. Whereas typical views are forced to
render on the UI thread, a special type of object called a SurfaceView can update on a background
thread. The SurfaceView can accomplish this because it has a dedicated surface assigned to it
within the view hierarchy. Using a SurfaceView, you can fully implement animations and graphics
without impacting overall application interface responsiveness.

When using a SurfaceView, you need to keep a few key things in mind:

 ‰ A SurfaceView is not the perfect solution. Using a SurfaceView comes at a price — it
requires additional memory consumption to function. Therefore, a developer needs to
balance the cost versus the gain before moving to a SurfaceView.

 ‰ Sometimes it is better to try a custom view before moving to a SurfaceView. Since the setup
and functionality of a SurfaceView is similar to that of a custom view, it is a small matter to
convert a custom view into a SurfaceView. This will be demonstrated in a moment.

c12.indd 347c12.indd 347 2/28/2012 4:20:56 PM2/28/2012 4:20:56 PM

McClure c12.indd V5 - 02/15/2012

348 x CHAPTER 12 CANVAS AND DRAWABLES: BUILDING CUSTOM ANDROID GRAPHICS

 ‰ When using a SurfaceView, you move fully into a threading situation. Make sure that any
variable or state storage access is thread-safe.

 ‰ SurfaceViews are less forgiving of errors or memory leaks than their custom view cousins.
Take great care to correctly set up and clean up SurfaceView implementations so that you
do not inadvertently leave the surface in an unusable state.

The SurfaceView class contains all the methods and events needed to create a custom SurfaceView
object. This view actually inherits from the View class but adds a couple of additional properties.
Also within this class are methods to control the z-order of how the SurfaceView is placed within
the view hierarchy. Similar to what you fi nd with CSS style sheets, z-order in the SurfaceView
allows a developer to overlay a surface above or below the actual window on which typical views
are rendered. Finally, the SurfaceView adds a property to reference the underlying ISurfaceHolder
instance associated with this object.

The ISurfaceHolderCallback can be implemented on a SurfaceView to give a developer access to
events and changes that occur to the surface. This interface is key to creating stable and functional
SurfaceView objects. It exposes the following main events:

 ‰ SurfaceCreated is called right after the surface is created. This event is key because it indi-
cates when the drawing process can occur. Attempting to draw to the surface before this
event can have serious side effects, such as application locks or crashes.

 ‰ SurfaceDestroyed is called just before the SurfaceView is destroyed. Again, it is critical
to avoid trying to draw anything to the surface when it does not exist. Consequently, this is
where you will want to place any stop-processing logic.

 ‰ SurfaceChanged is called when changes have occurred to the surface structure, such as a
difference in surface width or height. This allows a developer the opportunity to display
changes, such as moving from a portrait display to a landscape.

With a new understanding of the SurfaceView object, you can now update the HTML5 logo so
that it will run smoothly in the background. Within the same project as the previous example,
add a new class called HTML5Logo_SurfaceView.cs. In this class, you need to inherit from the
SurfaceView object and implement ISurfaceHolderCallback.

To set this new implementation to work properly, you need to slightly modify the same code
examples that you used in the previous case. However, you do not have the luxury of simply inherit-
ing from the HTML5Logo class. Listing 12-15 is the full implementation of the SurfaceView class.
Portions that were covered in previous sections are marked with appropriate comments.

LISTING 12-15: Setting up the HTML5Logo SurfaceView

public class HTML5Logo_SurfaceView : SurfaceView, ISurfaceHolderCallback
{
 public Bitmap HTML5Bitmap { get; set; }
 public int Scale = 100;
 private int Velocity = 2;
 private Point CurrentPosition = new Point(1, 1);

c12.indd 348c12.indd 348 2/28/2012 4:20:56 PM2/28/2012 4:20:56 PM

McClure c12.indd V5 - 02/15/2012

Using the Canvas Object x 349

 public Boolean IsRunning = false;

 private enum AxisDirection { Positive = 0, Negative = 1 };

 private AxisDirection VerticalAxisDirection = AxisDirection.Positive;
 private AxisDirection HorizontalDirection = AxisDirection.Positive;

 public HTML5Logo_SurfaceView(Context context): base(context)
 {
 this.Holder.AddCallback(this);
 }

 protected Bitmap CreateHTML5Bitmap()
 {
 //Same as previous examples...
 }

 protected override void OnDraw(Canvas canvas)
 {
 canvas.DrawColor(Color.Black);
 canvas.DrawBitmap(HTML5Bitmap, CurrentPosition.X, CurrentPosition.Y,
 null);
 }

 protected void UpdatePosition(Canvas canvas)
 {
 //Refactored from previous OnDraw() examples.
 //This will update the moving canvas’s horizontal and vertical
 //directions.
 }

 private void RunLoop()
 {
 Canvas c = null;

 while (IsRunning)
 {
 try
 {
 c = this.Holder.LockCanvas();

 UpdatePosition(c);
 this.OnDraw(c);
 }
 finally
 {
 if (c != null) this.Holder.UnlockCanvasAndPost(c);
 }
 }
 }

 public void SurfaceCreated(ISurfaceHolder holder)
 {
 IsRunning = true;

continues

c12.indd 349c12.indd 349 2/28/2012 4:20:56 PM2/28/2012 4:20:56 PM

McClure c12.indd V5 - 02/15/2012

350 x CHAPTER 12 CANVAS AND DRAWABLES: BUILDING CUSTOM ANDROID GRAPHICS

 ThreadPool.QueueUserWorkItem(o => RunLoop());
 }

 public void SurfaceDestroyed(ISurfaceHolder holder)
 {
 IsRunning = false;
 }

 public void SurfaceChanged(ISurfaceHolder holder,
 int format, int width, int height)
 {
 }

 private void DrawHTML5Text(Canvas canvas)
 {
 //Same as previous examples...
 }

 private void DrawHTML5InnerBackground(Canvas canvas)
 {
 //Same as previous examples...
 }

 private void DrawHTML5Background(Canvas canvas)
 {
 //Same as previous examples...
 }
}

Graphics_Canvas\Graphics_Canvas\HTML5Logo_SurfaceView.cs

Several parts of this listing should look familiar. In fact, all the code in the previous example was
moved to this SurfaceView implementation and slightly modifi ed. This includes the following:

 ‰ The logic to draw the HTML5 bitmap.

 ‰ The logic to keep a single instance of the HTML5 bitmap in memory between requests.

 ‰ The logic to update the position of the moving bitmap. This was refactored slightly into the
UpdatePosition() method to clean up the OnDraw() method.

 ‰ The tracking variables to control velocity and scale.

In addition to these familiar methods, a few minor additions build on the same concepts as the
previous example, but in a slightly different location:

 ‰ The constructor of this class adds a callback to the ISurfaceHolder object. This wires any
ISurfaceHolder events to trigger within the instance of this class.

 ‰ The SurfaceCreated callback of the ISurfaceHolder class has been implemented. Within
this class, you use the same IsRunning Boolean to indicate that the system can begin to run
the drawing routines. As mentioned, this is important because you need to ensure that you

LISTING 12-15 (continued)

c12.indd 350c12.indd 350 2/28/2012 4:20:56 PM2/28/2012 4:20:56 PM

McClure c12.indd V5 - 02/15/2012

Using the Canvas Object x 351

do not try to draw to a null surface. After IsRunning is set to true, you use similar logic
found in the previous example to queue a new background thread to start the looping draw
updates.

 ‰ The SurfaceDestroy callback of the ISurfaceHolder is implemented. Just as with the cre-
ate method, you fl ip the switch for the IsRunning variable to stop the drawing loop.

In addition, two key updates need special attention. The RunLoop() method represents the drawing
routine used to create the animation effect of the HTML5Logo bitmap. Within this method, you create
a new Canvas object. Then a while loop is initiated, checking the IsRunning Boolean to ensure that
you are allowed to write to the SurfaceView.

Next, a try/catch block is added. The reason for this block is that, to draw to a Canvas object, the
SurfaceHolder needs to be locked. When the Holder.LockCanvas() function is called, the surface
is locked so that it can be updated. In addition, this function returns a Canvas object so that the
bitmap can be updated and the canvas can be drawn on, as was done in previous examples. Last,
the finally block is used to be sure that the SurfaceHolder will always be unlocked, even in the
event of an error. This is important, because the view cannot render properly if the SurfaceHolder
is locked.

Finally, the OnDraw() method looks similar to what we have come to expect. However, the initial
draw command is a bit curious, because it seems odd to have to draw a black canvas before drawing
the rendered bitmap. The reason for this is that the Canvas object is treated a little differently in a
SurfaceView. Rather than being “blank” when you receive it, the SurfaceHolder returns the same
Canvas object that was used in the previous draw commands. If you do not “blank” it out, you will
draw your new HTML5Logo bitmap on a canvas that already has all the previous incarnations of it.
This can result in an amusing error in which you have a long, snaking chain of HTML5 logos across
your screen.

The code sample is ready to be tested. By either copying in the omitted results or downloading
this sample project, fi nish updating your SurfaceView class so that it contains all the appropri-
ate logic. Then update the Activity’s OnCreate method to treat an instance of this class as the
content view.

With all of this in place, run your example. You should be greeted by a bounding HTML5 logo that
is running full throttle across the screen. The motion should be signifi cantly smoother and should
not impact the performance of the overall application interface.

Selecting the Best Approach

Within the previous examples, we walked through different use cases for animation techniques
when interacting with the Canvas object. Specifi cally, we outlined two different approaches: overrid-
ing the View object or using the special SurfaceView class. Although these situations are somewhat
contrived, they do exemplify the fact that selecting the best approach is often an iterative process
and involves systematically testing the fi nal result until you achieve the desired effect. In extreme
cases, it can be quite clear which approach would be best; however, there are many cases in which
one approach is as functional and performant as another.

When trying to decide whether to use an overridden, custom Canvas object or the SurfaceView
object, you can consider a few key questions to assist in the selection process.

c12.indd 351c12.indd 351 2/28/2012 4:20:57 PM2/28/2012 4:20:57 PM

McClure c12.indd V5 - 02/15/2012

352 x CHAPTER 12 CANVAS AND DRAWABLES: BUILDING CUSTOM ANDROID GRAPHICS

 ‰ How complex is the graphic or animation effect? Typical views and custom views are best for
simple graphics or animation effects. If you are working on a very small one-time animation
or if your effect is simple and linear, a custom view will make for a simple and elegant solu-
tion. As examples become more complex and resource-heavy, a SurfaceView is better suited
to deal with heavy requirements.

 ‰ How much is your application currently utilizing the UI thread? A custom view approach
needs to utilize the UI thread in order to redraw itself. If you are building some kind of back-
ground animation to an application that needs the UI thread for other purposes, this can
make your application sluggish and unresponsive. Use a SurfaceView in situations where the
UI thread is expected to be used for other purposes.

 ‰ How essential is precision and timing for the animation? As just stated, you need to call the
Invalidate() function to request that the UI thread redraw the view for a custom view.
This makes custom views poor choices for precision-dependent applications, such as action
games. Use a SurfaceView in situations where you need the ability to precisely adjust and
draw your graphics.

With these items in mind, you should have enough information to make a guess as to what the best
approach would be for your animation needs. Despite this, making the right selection can some-
times be a trial-and-error process as you begin to add more features or more demands to your draw-
ing process.

THE 2D GRAPHICS LIBRARY

In cases in which a developer does not want to work directly with the Canvas object, Android has a
custom built-in 2D graphics library. This library does a great deal of heavy lifting and extends the
capabilities of the underlying types. In fact, you have been working with this library already via the
Resources class that leverages the 2D graphics library when using these items.

When working with the 2D graphics library on the Mono for Android platform, you will primar-
ily deal with a special kind of resource known as a drawable. As you might guess, the Drawable
class comprises a set of tools and functions for anything related to drawing. This can be custom
art described programmatically or via XML fi les, physical image resources on the device, or a
combination.

Drawables give a developer an amazing assortment of abilities. The framework has dozens of differ-
ent implementations of these classes, each serving a specifi c need.

USING DRAWABLES

Drawables are used to describe anything that can be drawn in the Mono for Android platform.
Although this functionality clearly overlaps with that of using graphic primitives and the canvas,
these two groupings have some key differences:

c12.indd 352c12.indd 352 2/28/2012 4:20:57 PM2/28/2012 4:20:57 PM

McClure c12.indd V5 - 02/15/2012

Using Drawables x 353

 ‰ Drawables introduce a bit of overhead compared to working with the canvas directly. This
has been stated several times; however, it is a key point. Do not be afraid to use draw-
ables — just be aware of where and how you use them. By understanding the pros and cons
of each option, you can make wise decisions about where and how to use them.

 ‰ Drawables can be expressed within the XML syntax of layouts. Using this, you can declare
your Drawable object within layout fi les but still maintain them via code. This can greatly
simplify the coding process and encapsulate drawables into reusable chunks.

Drawables play an important role in the framework. In addition to providing the mechanism to cre-
ate universal style settings, drawables are often used as a generic way to pass graphical information
between your code and the different framework toolsets.

Drawables as XML Resources

Although it is perfectly acceptable to defi ne drawables via code, drawables are often utilized via
XML expressions. Once a drawable has been defi ned via XML, it can be leveraged like any other
drawable resource. This allows drawables to have a universal defi nition while still being accessible
to any part of the system. When this feature is used correctly, it can make universal edits quite sim-
ple. In fact, many drawables are used to assist in global application defi nition, much the way CSS is
used to make HTML styling universal across a website.

The process of defi ning an XML-based drawable is simple. You do so by adding an XML fi le
under the Resources/Drawable directory and adding the appropriate syntax. After this fi le is
added, the platform identifi es it as a drawable resource, naming it according to the XML fi le-
name, minus the fi le extension. Once it recognizes the XML drawable as a resource, the drawable
can be accessed using the typical methods that are used with standard drawable types, as shown
in Listing 12-16.

LISTING 12-16: Declaring a drawable via XML and C#

<!-- Via XML Syntax in a Layout -->
<Button android:id=”@+id/SomeButton”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:background=”@drawable/yourcustomdrawablename “
 android:text=”Click Me!”/>

// Via code declaration:
View SomeView = new View(this);
SomeView.SetBackgroundDrawable(Resource.Drawable.YourCustomDrawableName);

Note that the resource reference in the XML syntax is lowercase. Android requires that all drawable
resource references be lowercase. Mono for Android does quite a bit of work to support different
cases of resource declarations, but not in the case of layout fi les. Using uppercase names within a
drawable XML declaration will result in a complier error.

c12.indd 353c12.indd 353 2/28/2012 4:20:57 PM2/28/2012 4:20:57 PM

McClure c12.indd V5 - 02/15/2012

354 x CHAPTER 12 CANVAS AND DRAWABLES: BUILDING CUSTOM ANDROID GRAPHICS

Using the drawable as an XML resource, you can easily create uniform layouts and backgrounds
while maintaining the full fl exibility of customized graphics.

For the following examples in this section, the XML declaration is the preferred
means of expressing drawables. This does not imply that XML is the preferred
way to work with drawables. Rather, the XML syntax is one of the unique
features of drawables that makes it a handy toolset. In addition, the drawable
implementation via code is rather straightforward, and using XML affords a
change of pace.

Simple and Compound Drawables

The framework has dozens of drawables. Since they are simple to extend and implement, modifi ed
implementations are prevalent throughout the framework as well as in several other third-party
libraries. Consequently, any attempt to catalog or list every drawable type would be diffi cult and
well beyond the scope of this chapter.

Despite their numbers, drawables tend to fall between two different delineations — simple draw-
ables and compound drawables. Basically, compound drawables can merge several drawables within
one unit, whereas simple drawables are singular units that provide a singular function. In addition
to containing multiple units, compound drawables often offer transformative functionality that can
be applied to their underlying units. When used in conjunction with one another, these two draw-
able types can be quite powerful and can provide a developer with scalable, crisp graphics that do
not have the same kind of memory footprint as fi le-based resources.

Drawables in Action

Taking an approach similar to the one in the canvas section of this chapter, the following sections
walk you through several use-case scenarios for XML-based drawables. Each use case expands a bit
on the underlying lessons of the previous case in the hopes of building a complete story about how
to interact with drawables in your application.

Case 1: Using Default Drawables

You have decided to create a simple application to assist with working with Android drawables.
Within this application, you decide to display several rows of the Android robots, jokingly calling
them your robot army. In addition to making sleek, stylistic robots, you want to add a bit of interac-
tion with each individual robot.

To get started, create a new project called GraphicsDrawables_RobotArmy. Next, you need to
choose a robot to use as a graphic for your robot army. For the sake of simplicity, this example uses
a copy of the Android robot. Rename it “androidrobot,” and add it as a drawable resource to the
application’s Resources/Drawable folder.

c12.indd 354c12.indd 354 2/28/2012 4:20:57 PM2/28/2012 4:20:57 PM

McClure c12.indd V5 - 02/15/2012

Using Drawables x 355

With a quick search, you will fi nd a number of variations on the Android robot.
This example uses a converted version of the Android robot displayed on the
Google Branding page: www.android.com/branding.html.

Feel free to use whatever image you choose; however, ensure that it is in PNG
format. In addition, the image should have a transparent background, because
many of the examples that are covered will be hidden by an opaque background.

A modifi ed version of the Android robot image is included as part of the down-
loadable content for this project.

Once you have added the image for the robot to the application, you can begin the process of displaying
a list of robots. Open the Main.axml fi le for this project. Rather than using the default LinearLayout,
you will use a TableLayout to make listing the multitudes of robots much simpler.

Modify the Main.axml fi le, replacing the root layout with a TableLayout control. Next, add a
TableRow node within the table layout, creating space for the fi rst row of the upcoming robot army.

Finally, add four ImageButtons to the newly created TableRow, referencing the androidrobot
drawable as the image source. When complete, the Main.axml fi le should look like Listing 12-17.

LISTING 12-17: Creating the table layout

<?xml version=”1.0” encoding=”utf-8”?>
<TableLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 android:stretchColumns=”*”
 >
 <TableRow>
 <ImageButton android:src=”@drawable/androidrobot” />
 <ImageButton android:src=”@drawable/androidrobot” />
 <ImageButton android:src=”@drawable/androidrobot” />
 <ImageButton android:src=”@drawable/androidrobot” />
 </TableRow>
</TableLayout>

Graphics_Drawables\Graphics_Drawables\Resources\Layout\Main.axml

This layout is pretty typical of most table layouts. Within the table row, you create four robot
instances. Rather than using a simple image control to display the robot graphics, you use the
ImageButton. This helps you satisfy the need to add interactivity to each robot instance.

Finally, modify the activity’s OnCreate() method so that it properly displays the contents of the
Main.axml fi le. When complete, the resulting code resembles Listing 12-18.

c12.indd 355c12.indd 355 2/28/2012 4:20:57 PM2/28/2012 4:20:57 PM

McClure c12.indd V5 - 02/15/2012

356 x CHAPTER 12 CANVAS AND DRAWABLES: BUILDING CUSTOM ANDROID GRAPHICS

LISTING 12-18: Setting up the activity’s OnCreate() method

protected override void OnCreate(Bundle bundle)
{
 base.OnCreate(bundle);
 SetContentView(Resource.Layout.Main);
}

Graphics_Drawables\Graphics_Drawables\GraphicsDrawablesDemo.cs

With these steps complete, run the application and view the results. Using the default drawable
tooling, you can quickly prototype version 1 of your robot army. Figure 12-6 shows how the result
should appear.

FIGURE 12-6

Despite the fact that the robots may be somewhat plain, you accomplished your two tasks with very
little work!

Case 2: Adding Polish with the Shape Drawable

Although the application does have a row of robots that are interactive, they are still quite lacklus-
ter. In particular, the default look of the ImageButton is unappealing with its blocky corners and
slate gray background. You decide that version 2 of your robots could stand an improvement in their
overall style. You want to replace the blocky background with something sleek that has more taste-
ful colors.

c12.indd 356c12.indd 356 2/28/2012 4:20:58 PM2/28/2012 4:20:58 PM

McClure c12.indd V5 - 02/15/2012

Using Drawables x 357

Using the default properties of the ImageButton, you could begin to spruce up the fi nal result of the
ImageButton class by adding background colors, different spacing settings, and so on. However,
this approach has two major drawbacks:

 ‰ Although the ImageButton does expose an impressive number of customization options, it
cannot compare to the fl exibility of using a custom drawable.

 ‰ Manually adjusting the attributes for each robot is manageable for the fi rst four. However,
as your robot army begins to grow to 8, 12, and 16 robots, this will result in quite a bit of
repetitive code. Not only would the resulting layout be considerably larger, but it also would
be a nightmare to update one setting on all the robots.

Rather than going with this approach, you can use a universal defi nition for each robot. This can be
accomplished using a custom shape drawable.

Shape drawables are the one-stop-shopping source for drawing basic shapes on an Android device.
They can be used to draw a wide variety of shapes, including ovals, rectangles, and arcs. Essentially,
most of the shapes defi ned in the Android.Graphics.Shapes class can be drawn using a shape
drawable.

In addition to creating general shapes, shape drawables contain tooling to assist in the application of
other styles, such as borders, colors, and spacing of the fi nal shape object.

As with any drawable, the shape drawable can be defi ned via code or XML. If you were to use a
code-based shape drawable in this example, you would be forced to iteratively apply the drawable to
each instance of a robot. You would succeed in defi ning the background in a single location for uni-
versal updates; however, this approach would still be rather tedious to apply. Rather than using this
approach, you can declare the drawable via XML and allow the controls to specify where to use it.

As noted, drawables can be expressed via XML or within code. Consider the fol-
lowing questions when choosing an approach:

Under what circumstances do you plan to use the drawable? When you work
a lot with XML-based layouts and other XML-based drawables, the XML
approach of using a drawable is handy. It has nice synergy with the other
resources and is much less verbose than the code-based approach.

What features do you require from the drawable? Although the XML-based
and code-based approaches offer some great tooling, the code-based approach
is much more powerful because it offers a greater variety of options. In many
cases, these additional options are not hard requirements for the usage scenario,
but sometimes you can’t get around having to use the code-based approach.

On a fi nal note, the drawable namespace is an excellent example of an area in
which Android could vastly improve its documentation. In particular, some
advanced usages of the XML-based approach require much patience and trial
and error to achieve the desired results.

c12.indd 357c12.indd 357 2/28/2012 4:20:58 PM2/28/2012 4:20:58 PM

McClure c12.indd V5 - 02/15/2012

358 x CHAPTER 12 CANVAS AND DRAWABLES: BUILDING CUSTOM ANDROID GRAPHICS

To get started, you create a new XML fi le within the Resources/Drawable directory, naming it
RobotBackground.xml. Within this XML fi le, declare the shape drawable by using the <shape>
node. Because the shape object is a generic container for many different shape types, the shape node
exposes a property to defi ne what kind of shape to render via the android:shape attribute. In this
example, you use rectangle as the value. Other options are oval, line, and ring.

The shape XML object can contain several optional subnodes. These subnodes are additional
drawables that can be associated with the shape or are ways to defi ne how the shape is rendered.
This example initially uses the following three subnodes of the shape object:

 ‰ The corners node lets you create rounded corners for the shape object. This subnode has
several attributes that allow a developer to set the overall corner radius or specifi cally target
individual corners. As you might imagine, this node is not appropriate for every shape type,
but it adds a nice touch to objects with otherwise hard corners.

 ‰ The solid node lets you specify a color drawable to associate with the shape drawable.
This node works with any shape type and is a simple way to establish a base color for the
object.

 ‰ The stroke node lets you create an outline of the shape object. Additional properties include
common items such as setting the stroke’s width and color.

Using these elements, create a shape specifi cation that would be appropriate to use as the back-
ground of each robot ImageButton. While working with these, bear in mind that any specifi cations
made here are automatically shaped and scaled to the appropriate size of the object they are applied
to. When you are fi nished, the fi nal version of the fi le should resemble Listing 12-19.

LISTING 12-19: Creating the robot background drawable

<?xml version=”1.0” encoding=”utf-8” ?>

<shape xmlns:android=”http://schemas.android.com/apk/res/android”
 android:shape=”rectangle”>
 <corners android:radius=”5dp” />
 <solid android:color=”#30577F”></solid>
 <stroke android:width=”1dp” android:color=”#FFFFFF” />
</shape>

Graphics_Drawables\Graphics_Drawables\Resources\Drawable\RobotBackground.xml

Within this code, the shape is defi ned as a rectangle with a blue background. The corners of the
rectangle are set to be slightly rounded. Finally, the entire shape has a white border of minimal
thickness.

Next, switch back to the Main.axml fi le. Rather than updating ‘version 1’ of the robot army,
make a second row of robots to create a comparison point between version 1 and version 2 of the
robot army.

c12.indd 358c12.indd 358 2/28/2012 4:20:59 PM2/28/2012 4:20:59 PM

McClure c12.indd V5 - 02/15/2012

Using Drawables x 359

Create a second TableRow by copying and pasting the information for the fi rst TableRow in the
layout. Within the second row, set the android:background property so that it uses the new
robotbackground drawable as its background (do not forget to make sure it is lowercase). Finally,
add a small amount of margin to each individual image to put a bit of space in the layout.
Listing 12-20 shows how this new row should appear.

LISTING 12-20: Defi ning the robot background drawable in table view

<TableRow>
 <ImageButton android:src=”@drawable/androidrobot” android:layout_margin=”2dp”
 android:background=”@drawable/robotbackground” />
 <ImageButton android:src=”@drawable/androidrobot” android:layout_margin=”2dp”
 android:background=”@drawable/robotbackground” />
 <ImageButton android:src=”@drawable/androidrobot” android:layout_margin=”2dp”
 android:background=”@drawable/robotbackground” />
 <ImageButton android:src=”@drawable/androidrobot” android:layout_margin=”2dp”
 android:background=”@drawable/robotbackground” />
</TableRow>

Graphics_Drawables\Graphics_Drawables\Resources\Layout\Main.axml

Once this code is in place, the application should display eight robots within the robot army applica-
tion, as shown in Figure 12-7. The fi rst row represents the unmodifi ed fi rst version of the robot army.
The second row is the newly added robot troops, using the custom drawable shape as the background.

FIGURE 12-7

c12.indd 359c12.indd 359 2/28/2012 4:20:59 PM2/28/2012 4:20:59 PM

McClure c12.indd V5 - 02/15/2012

360 x CHAPTER 12 CANVAS AND DRAWABLES: BUILDING CUSTOM ANDROID GRAPHICS

Case 3: Using the Gradient Drawable

Looking at the second version of the robot army, you can see that they are a vast improvement over
version 1. However, you are not completely satisfi ed with the end result. You decide that if you were
to add a nice gradient as the background to each robot, they would look trendier and more robot 2.0.

With gradient drawables you can create a large variety of gradients. In code-based scenarios, gradi-
ents are often used via the Shader class, which can be applied as a type of style on the Paint object.
This approach is not used in this code sample, but when you work with code-based drawables,
check out the Shader and ShaderFactory classes to fi nd more information on displaying gradients.

For XML-based scenarios, gradients are expressed as a subnode of the shape XML drawable by
using the <gradient> node. When you use the XML declaration of the gradient, you can defi ne sev-
eral different properties, as shown in Table 12-2.

TABLE 12-2: Gradient Drawable Attributes

ATTRIBUTE NAME DESCRIPTION

angle The angle attribute allows you to specify the overall angle at which the

gradient is drawn. Acceptable values are in 45-degree increments.

Note: Angle values for this might seem counterintuitive. Starting at 0

degrees, the gradient has the start color on its left and the end color

on its right. As the value of the angle increases, the gradient rotates

counterclockwise.

centerColor This optional value can be used to create a three-point gradient. In addi-

tion to accepting hexadecimal values, this property can accept names of

other color resources.

centerX and centerY These fl oat values indicate the center of the gradient. This value applies

only to gradient types in which the concept of “center” is appropriate.

endColor Specifi es the color value at which the gradient will end. In addition to

accepting hexadecimal values, this property can accept names of other

color resources.

gradientRadius When you use a radial gradient, this value indicates the gradient’s radius

value. This fl oat value enables you to control the gradient’s overall size

and, consequently, how quickly the gradient transitions from start to end

colors.

startColor Specifi es the color value at which the gradient starts. In addition to accept-

ing hexadecimal values, this property can accept names of other color

resources.

type Indicates the type of gradient. Acceptable values are linear, radial,

and sweep.

c12.indd 360c12.indd 360 2/28/2012 4:21:00 PM2/28/2012 4:21:00 PM

McClure c12.indd V5 - 02/15/2012

Using Drawables x 361

When working with gradients, you may encounter a scenario in which the ren-
dered gradient no longer looks smooth but appears to have rings or lines stacked
on one another (depending on the type). This effect is known as banding.

Typically, banding occurs when one color meets another within a gradient and
the transition lacks the proper “noise” to make it appear to be blended. One way
to combat banding on an Android device is to turn on dithering for the bitmap,
drawable, or view on which you are applying the gradient.

Another possible reason for banding is that the pixel format of the rendering
device or bitmap is too low. By increasing the PixelFormat of the device win-
dow or image to 32-bit (RGBA_8888), you increase the number of available colors
to smooth the transition from the start to end colors.

Create a new XML fi le in the Resource/Drawable directory, and name it RobotBackground_
Gradient.xml. Within this fi le, paste the contents of the previous drawable fi le, RobotBackground
.xml. Within the new fi le, add a <gradient> node as a subnode to the shape declaration. When
creating the gradient, specify its type as a linear gradient, and set its angle so that it that moves from
the top to the bottom of the shape. Finally, add color values for the center, start, and end colors.
Listing 12-21 displays what the gradient declaration could look like.

LISTING 12-21: Introducing the gradient drawable

<gradient
 android:type=”linear”
 android:startColor=”#FFFFFF”
 android:centerColor=”#30577F”
 android:endColor=”#30577F”
 android:angle=”270”/>

Graphics_Drawables\Graphics_Drawables\Resources\Drawable\RobotBackground_Gradient.xml

Looking at this declaration, you can see that the added colors are intended to create a kind of
“gleam” effect on the robot ImageButtons. The top of the button has a white glossy effect that dith-
ers out somewhere around the middle of the button. By setting the angle to 270 degrees, you indi-
cate that the linear gradient will fl ow from top to bottom.

Switching to the Main.axml fi le, you can go through the process of creating a version 3 of your
robot army. As in the previous section, copy the contents of the previous TableLayout and paste
them as a new, third row in the TableLayout.

For each ImageButton in the new TableRow, adjust the android:background attribute to use the
robotbackground_gradient drawable rather than what they use in the previous example. When it
is complete, the XML layout for the new third row should look like Listing 12-22.

c12.indd 361c12.indd 361 2/28/2012 4:21:00 PM2/28/2012 4:21:00 PM

McClure c12.indd V5 - 02/15/2012

362 x CHAPTER 12 CANVAS AND DRAWABLES: BUILDING CUSTOM ANDROID GRAPHICS

LISTING 12-22: Defi ning the robot background gradient in table view

<TableRow>
 <ImageButton android:src=”@drawable/androidrobot” android:layout_margin=”2dp”
 android:background=”@drawable/robotbackground_gradient” />
 <ImageButton android:src=”@drawable/androidrobot” android:layout_margin=”2dp”
 android:background=”@drawable/robotbackground_gradient” />
 <ImageButton android:src=”@drawable/androidrobot” android:layout_margin=”2dp”
 android:background=”@drawable/robotbackground_gradient” />
 <ImageButton android:src=”@drawable/androidrobot” android:layout_margin=”2dp”
 android:background=”@drawable/robotbackground_gradient” />
</TableRow>

Graphics_Drawables\Graphics_Drawables\Resources\Layout\Main.axml

With this in place, run your application. When it loads, you have a comparative view of the fi rst
three iterations of the robot army. Assuming that all goes well, the device’s fi nal output should look
like Figure 12-8.

FIGURE 12-8

Case 4: Using the Compound Drawable

After looking over the third version of the robot army, you discover a problem. Previously, you cre-
ated a gradient effect as the background for each ImageButton that represented a robot. Although
this effect improved the previous look, the intent of this effect was to create something of a “gleam”

c12.indd 362c12.indd 362 2/28/2012 4:21:00 PM2/28/2012 4:21:00 PM

McClure c12.indd V5 - 02/15/2012

Using Drawables x 363

on the top of the button to add depth and style to the robot display. Looking over the result, you can
see that you succeeded in creating a stylistic but fl at image. You decide that you need to take steps to
add more depth to the next version of the robot.

In the previous sections, you created a robot army using the simple drawables of image and shape.
Leveraging the framework, you added an image drawable of the robot multiple times, creating sev-
eral rows of robots with increasingly complex background styling. Then, by using a shape XML
resource, you adjusted the look of those multiple robots quickly and effi ciently.

Although much can be accomplished with the use of a single drawable, this approach does have
its limitations. What if you wanted more advanced integration between different drawables?
What if you wanted to create overlay effects, thereby adding depth to the fi nal image? What if you
wanted a way to defi ne attributes on a set of drawables while keeping their defi nitions separate
from one another? When you reach this point, compound drawables can take your application
to the next level.

As stated earlier in this chapter, compound drawables are a type of drawable that specializes in
working with sets of other drawables. Although many have their own types of drawing actions, they
excel at creating interaction points between one drawable and another. Consequently, they can act
as a binding force between multiple drawable declarations, often merging them into a new and more
interactive drawable.

To illustrate the use of compound drawables, we’ll continue with the robot army example. In the last
version, the gradient effect failed to please. Adding a simple gradient created a nice but fl at-looking
robot rather than adding depth. To fi x this issue, you need to modify a couple of things:

 ‰ Rather than having a single background that is part gradient, you need two distinct back-
grounds. One is the solid, simple background that you used in the second example. The other
is an overlay that represents the gradient effect.

 ‰ To complete the effect, the overlying background needs to look as if it is not part of the other
background. If you add a bit of transparency to the overlay, the underlying background will
look as if it has curvature and depth.

Unfortunately, this kind of interaction is impossible with simple drawables. No matter how
ingenious you are (short of importing an image resource), the resulting image will always be
fl at, or the entire layer will end up with some kind of transparency. However, this challenge is
easily met via a compound drawable known as LayerDrawable, which can be used to manage a
collection of underlying drawables. Using a list-based approach, items within a LayerDrawable
are rendered one at a time, working from the fi rst item to the last item in its collection. In an
object-oriented understanding, you can think of a LayerDrawable as something akin to
an array.

In addition, LayerDrawable has one aspect that sets it apart from many of the other list-like con-
trols in Mono for Android. Unlike other listing controls such as LinearLayout, items within a
LayerDrawable do not offset their draw position based on the ending position of the previous item.
Rather, items in a LayerDrawable are drawn starting from the same origin point, unless instructed
to do otherwise.

c12.indd 363c12.indd 363 2/28/2012 4:21:01 PM2/28/2012 4:21:01 PM

McClure c12.indd V5 - 02/15/2012

364 x CHAPTER 12 CANVAS AND DRAWABLES: BUILDING CUSTOM ANDROID GRAPHICS

When working with the placement of drawables within the LayerDrawable, you
can often run into unexpected results if you do not intend the drawables to fully
overlap one another. The reason for this is that drawables typically are scaled to
fi ll the space allocated to them, often despite offset values that are given.

Some drawables don’t have a clear workaround to this issue. But workarounds
are sometimes possible. For example, when you are working with basic draw-
ables such as bitmaps, you can avoid the scaling issue by setting the gravity of
the underlying bitmap to center. Although this case is documented within the
Android developer docs, the overall documentation for this area is frustrat-
ingly light.

The XML declaration for a LayerDrawable is achieved using the <layer-list> node. Within this
node, each “layer” of drawable is defi ned using a subelement tag of <item>.

The item node is a fl exible container that can be used in two ways. First, the item exposes an attri-
bute called android:drawable. You can use this attribute to specify the drawable that should be
drawn, using the same drawable syntax that is used throughout Mono for Android, @drawable\
drawable_name. The second option is to defi ne a custom drawable within the item node by adding
any drawable declaration in XML.

Finally, an item node exposes several properties that allow you to defi ne custom offsets for the top,
bottom, left, and right of the item. This gives you some fl exibility in regards to how each drawable is
drawn onto the Canvas object.

Using the same GraphicsDrawable_RobotArmy project, you can begin to make the next ver-
sion of your robot. Add a new XML fi le to the Resources/Drawable directory, naming it
RobotBackground_GradientOverlay.xml.

Within this fi le, add the declaration for a LayerDrawable using the XML syntax of <layer-list>.
Within this drawable, you will add two item subnodes to contain the following objects:

 ‰ A reference to the RobotBackground drawable gives you the basic, solid background for
the robot ImageButton. Since you want a solid color for the initial background, this is the
perfect resource to use. In addition, this is a good example of resource chaining. Even though
this situation requires the merging of several drawables, you are not forced to hold the defi ni-
tion for a particular drawable in two different places.

 ‰ A new shape object forms the defi nition of the overlying gradient. Although this shape object
will share the values for the corners and strokes of the original RobotBackground shape, this
will have a special gradient to create the overlay effect. Next, to create a transparent effect,
you add alpha blending information to the color hexadecimal string. In this case, you want a
semitransparent white moving into a fully transparent white.

With these things in mind, add the two items to the <layout-list> node. When you’re done, the
result should look like Listing 12-23.

c12.indd 364c12.indd 364 2/28/2012 4:21:01 PM2/28/2012 4:21:01 PM

McClure c12.indd V5 - 02/15/2012

Using Drawables x 365

LISTING 12-23: Creating a layout list

<?xml version=”1.0” encoding=”utf-8” ?>
<layer-list xmlns:android=”http://schemas.android.com/apk/res/android” >
 <item android:drawable=”@drawable/robotbackground”></item>
 <item>
 <shape xmlns:android=”http://schemas.android.com/apk/res/android”
 android:shape=”rectangle”>
 <corners android:radius=”5dp” />
 <stroke android:width=”1dp” android:color=”#FFFFFF” />
 <gradient
 android:type=”linear”
 android:startColor=”#88FFFFFF”
 android:centerColor=”#00FFFFFF”
 android:endColor=”#00FFFFFF”
 android:angle=”270”/>
 </shape>
 </item>
</layer-list>

Graphics_Drawables\Graphics_Drawables\Resources\Drawable\RobotBackground_GradientOverlay.xml

This listing is not too different from the previous examples, other than the fact that
LayoutDrawable lets you defi ne two simple drawables within one resource fi le. In regards to the
new shape drawable, note the gradient’s start, center, and end colors. As you can see, these col-
ors specify the alpha transparency by adding two additional digits to the start of the hexadecimal
string. Since a value of FF indicates opaque and 00 indicates transparent, this example uses a middle
value of 88 as a start and becomes fully transparent somewhere near mid-image.

Now that the new drawable has been defi ned, go to the Main.axml fi le and copy the last row in the
table layout. Paste in a new row, and adjust the background properties of each ImageButton so that
they use the new drawable as their background. Listing 12-24 shows the updated row values.

LISTING 12-24: Defi ning the robot background gradient overlay in table view

<TableRow>
 <ImageButton android:src=”@drawable/androidrobot” android:layout_margin=”2dp”
 android:background=”@drawable/robotbackground_gradientoverlay” />
 <ImageButton android:src=”@drawable/androidrobot” android:layout_margin=”2dp”
 android:background=”@drawable/robotbackground_gradientoverlay” />
 <ImageButton android:src=”@drawable/androidrobot” android:layout_margin=”2dp”
 android:background=”@drawable/robotbackground_gradientoverlay” />
 <ImageButton android:src=”@drawable/androidrobot” android:layout_margin=”2dp”
 android:background=”@drawable/robotbackground_gradientoverlay” />
</TableRow>

Graphics_Drawables\Graphics_Drawables\Resources\Layout\Main.axml

c12.indd 365c12.indd 365 2/28/2012 4:21:01 PM2/28/2012 4:21:01 PM

McClure c12.indd V5 - 02/15/2012

366 x CHAPTER 12 CANVAS AND DRAWABLES: BUILDING CUSTOM ANDROID GRAPHICS

After you add these items, run the application and check out the fi nal result. You should see a new
version of robot that looks stylistic, as if it has depth (see Figure 12-9).

FIGURE 12-9

Case 5: Interacting with a Custom Drawable

Finally, the latest model of the robot army is visually perfect. When you look at the previous itera-
tions, you can see that the robots’ appearance has improved signifi cantly. Now it is time to put on
the fi nishing touches — giving the robots life so that they can interact with the device user.

As a way to help improve the utility of the robots, you want them to respond to being prodded by a
fi nger. Specifi cally, you want them to give a visual cue that they have been pressed by updating the
background color of the appropriate robot. Even though you could use a code-based approach by
adding event handlers in C# to respond to the OnTouchEvent, you can do this in a much simpler and
XML-based way by using the StateList drawable.

The StateList drawable, much like LayerDrawable, serves as a container for other drawables.
Unlike LayerDrawable, StateList does not draw all the drawables contained within it at all times.
Rather, it contains the logic to selectively draw the specifi c drawable items that satisfy certain pre-
defi ned conditions.

Whereas a LayerDrawable acts like an array, a StateList acts much like a C#
switch or series of if statements. When conditions are satisfi ed, the drawable
associated with that switch is drawn. However, unlike a switch, several different
cases can be true at the same time, resulting in multiple drawables being drawn.

c12.indd 366c12.indd 366 2/28/2012 4:21:02 PM2/28/2012 4:21:02 PM

McClure c12.indd V5 - 02/15/2012

Using Drawables x 367

A StateList is defi ned using the <selector> tag. Just as with LayerDrawable, StateList uses
the <item> subnode to defi ne what drawables are part of the list. These items have several custom
attributes specifi c to StateList that allow the developer to check for certain conditions. Table 12-3
shows the different possible conditions that may be checked against.

TABLE 12-3: State List Conditions

CONDITION DESCRIPTION

state_pressed Toggles if the item has been pressed

state_focused Toggles if the item has focus by being highlighted via trackball or D-pad

state_selected Toggles if the item is in a selected state, as with tabs or menus

state_checkable Toggles if the item is checkable

state_checked Toggles if the item has been checked

state_enabled Toggles if the item can receive touch events

state_window_focused Toggles if the item is in the foreground

Using these attributes, a developer has a great deal of fl exibility in creating complex drawing behav-
iors. Each item can have any number of condition attributes. In addition, remember that you can
specify behavior if the condition is true or if the condition is false. This gives you almost 100 differ-
ent options that you can test for!

To give the newest model of the robot army a bit of life, you need to accomplish two things.

 ‰ First, you need to create a couple of extra resources that will represent a robot’s “pressed” state.

 ‰ Next, you need to add the new StateList drawable to the code base, linking the appropri-
ate drawables to the appropriate state conditions.

Within the GraphicsDrawables_RobotArmy project, navigate to the Resources/Drawable direc-
tory and make a copy of RobotBackground.xml, renaming it RobotBackground2.xml. Within the
new fi le, alter the background color of the shape drawable to a color of your choice. You can do this
by changing the android:color property of the <solid> node in the shape XML declaration. In
this case, you use the color #E01B4C to give the robot image a red background.

Next, make a copy of RobotBackground_GradientOverlay.xml, naming it RobotBackground_
GradientOverlay2.xml. You want to modify this fi le slightly so that the fi rst shape in the list refers
to the newly created background, RobotBackground2. If you wanted to avoid repeating code, you
could refactor the gradient overlay background so that the second shape in each referred to the same
drawable in a separate XML drawable fi le. However, for the sake of simplicity, leave the markup as
is for this example.

With these things in place, you now have the appropriate resource chains set up so that you can
clearly defi ne the expected behavior. Thanks to the reusability of resource layouts, these modifi ca-
tions make for a clean, simple layout for the StateList.

c12.indd 367c12.indd 367 2/28/2012 4:21:02 PM2/28/2012 4:21:02 PM

McClure c12.indd V5 - 02/15/2012

368 x CHAPTER 12 CANVAS AND DRAWABLES: BUILDING CUSTOM ANDROID GRAPHICS

Add a fi nal drawable to the Resources/Drawable directory called RobotBackground_StateAware
.xml. Within this fi le, create two item nodes. The fi rst item node should be active when there is no
pressed state, and the other should be active when pressed. Within each item, assign the correct
background drawable to its matching state representation. Listing 12-25 shows the proper declara-
tion for the StateList drawable.

LISTING 12-25: Creating a state list

<?xml version=”1.0” encoding=”utf-8” ?>
<selector xmlns:android=”http://schemas.android.com/apk/res/android” >
 <item android:drawable=”@drawable/robotbackground_gradientoverlay”
 android:state_pressed=”false”/>
 <item android:drawable=”@drawable/robotbackground_gradientoverlay2”
 android:state_pressed=”true”/>
</selector>

Graphics_Drawables\Graphics_Drawables\Resources\Drawable\RobotBackground_StateAware.xml

As shown in the listing, the fi rst gradient overlay drawable is the default state of the robot
ImageButton. However, when pressed, the second gradient overlay drawable becomes active, high-
lighting the robot in red.

For the last step, update the Main.axml fi le to include a new series of robots. Copy the previous row,
and paste in the new row of robots, updating the background property of these robots to use the
RobotBackground_StateAware drawable. When you are done, the code should look like Listing
12-26, which depicts the fi nal row’s XML syntax.

LISTING 12-26: Defi ning the robot background state aware in table view

<TableRow>
 <ImageButton android:src=”@drawable/androidrobot” android:layout_margin=”2dp”
 android:background=”@drawable/robotbackground_stateaware” />
 <ImageButton android:src=”@drawable/androidrobot” android:layout_margin=”2dp”
 android:background=”@drawable/robotbackground_ stateaware” />
 <ImageButton android:src=”@drawable/androidrobot” android:layout_margin=”2dp”
 android:background=”@drawable/robotbackground_ stateaware” />
 <ImageButton android:src=”@drawable/androidrobot” android:layout_margin=”2dp”
 android:background=”@drawable/robotbackground_ stateaware” />
</TableRow>

Graphics_Drawables\Graphics_Drawables\Resources\Layout\Main.axml

Finally, launch the application and test the results. The last two rows in the application should
appear identical. However, when you press any individual robot in the last row, it alters its color to
the second drawable’s settings. Figure 12-10 displays the expected result if the second robot in the
last row is pressed.

c12.indd 368c12.indd 368 2/28/2012 4:21:02 PM2/28/2012 4:21:02 PM

McClure c12.indd V5 - 02/15/2012

Summary x 369

Red background

Blue background

FIGURE 12-10

SUMMARY

Graphics on the Android platform have the fl exibility to accomplish tasks that range from simple,
such as adding shaders and overlays, to complex, such as creating a fully animated 2D interaction.
Despite this range of fl exibility, Android’s graphics story is quite unifi ed. At the most basic level,
working with graphics on Android essentially means working with views, resources, and primitives.
All other, more advanced interactions build on this fi rm foundation, creating a full story.

One of the biggest strengths of Android graphics is their ability to generate CSS-like capabilities,
using XML declarations as a way to generate separate, functional graphic units that can be easily
applied and referenced throughout the entire application. This chapter has explored many different
concepts:

 ‰ You have learned when to use the Canvas object versus when to use Android drawables.

 ‰ You have learned about performance considerations when utilizing different resources and
various methods of keeping your memory footprint low.

 ‰ You have learned how to make custom animations on an Android device and also the basics
of creating updating loops that are used in many game-development scenarios.

c12.indd 369c12.indd 369 2/28/2012 4:21:03 PM2/28/2012 4:21:03 PM

McClure c12.indd V5 - 02/15/2012

370 x CHAPTER 12 CANVAS AND DRAWABLES: BUILDING CUSTOM ANDROID GRAPHICS

 ‰ You have learned how to handle different threading situations in Android and the appropri-
ate time to use each different tool at your disposal.

 ‰ You have learned how to create custom drawables via XML syntax.

 ‰ You have learned how to reuse drawable declarations and create CSS-like styles to apply
globally to your application.

 ‰ You have learned how to use compound drawable types to quickly handle state, image over-
lays, and other complex drawable interactions.

Finally, you have learned the foundations of how to begin using Android graphics in a real and
intricate way. Even though graphics in general is a vast subject, using the information found in
this chapter, you can begin building your graphics education to include many topics that were
not covered here, such as 3D animation, animation drawables, and maintaining frame rates in
game loops.

c12.indd 370c12.indd 370 2/28/2012 4:21:03 PM2/28/2012 4:21:03 PM

McClure c13.indd V2 - 02/15/2012

13
Working with Location
Information

WHAT’S IN THIS CHAPTER?

 ‰ Understanding location-based services

 ‰ Choosing a location provider

 ‰ Finding a device’s location

 ‰ Using geocoding to convert an address into a latitude and longitude

 ‰ Using reverse geocoding to convert a latitude and longitude into an

address

 ‰ Confi guring proximity alerts

 ‰ Using Google Maps

The display of location-specifi c information such as maps, addresses, and points of interest is
a natural feature for mobile devices such as Android. Outside of some niche markets, location-
specifi c information has never had great success on the desktop, primarily because a desktop
PC is stuck in a single location. Mobile devices, on the other hand, are carried wherever the
user goes. Therefore, as GPS technology has become smaller and cheaper, it has found its way
into the cell phone market.

When smartphones appeared, their mapping and location applications were a couple of the
key selling features — a perfect example of the possibilities presented by a multitouch user
interface. Figure 13-1 shows the basic map application in an HTC EVO 4G.

Few other mobile devices had previously made navigating maps as elegant as the pinch-to-
zoom, pinch-to-pan operation of maps on the Android screen.

c13.indd 371c13.indd 371 2/28/2012 4:22:09 PM2/28/2012 4:22:09 PM

McClure c13.indd V2 - 02/15/2012

372 x CHAPTER 13 WORKING WITH LOCATION INFORMATION

FIGURE 13-1

This chapter shows you how to incorporate that same user experience for location and
mapping into your own Mono for Android applications.

UNDERSTANDING LOCATION BASICS

Before you start looking at the mapping capabilities of Android and Mono for Android, here are
some mapping terms that are used throughout this chapter:

 ‰ Latitude: The Y value of a location (90 to –90 degrees north to south).

 ‰ Longitude: The X value of a location (180 to –180 degrees east to west).

 ‰ Heading: Compass direction expressed in degrees (0 to 360).

 ‰ GPS: Global Positioning System. A collection of satellites using radio signals to enable
Earth-based receivers to determine their location with a high degree of accuracy.

 ‰ Geocoding: Resolving a search string (such as an address, business, or landmark name) to a
geographic location (latitude/longitude).

 ‰ Reverse geocoding: Finding the “human-readable” address for a specifi c latitude/longitude
location.

c13.indd 372c13.indd 372 2/28/2012 4:22:12 PM2/28/2012 4:22:12 PM

McClure c13.indd V2 - 02/15/2012

Understanding Location Basics x 373

Mono for Android provides easy access to these and other services to determine the user’s location
and heading and to map these services.

Determining Location

The location of a device is expressed in latitude and longitude and is typically determined by a
GPS device. Consumer GPS devices were previously limited to bulky car navigation systems but
are now small enough to fi t inside a cell phone. These GPS services in a phone can fall into the
following areas:

 ‰ Devices can calculate location information using cell tower triangulation. Using cell tower
triangulation tends to provide a general area response; however, it is fairly low power.

 ‰ Some devices have dedicated GPS hardware within the device. The dedicated GPS hardware
provides the most accuracy; however, it also uses the most power.

 ‰ There are services that will perform a lookup based on WiFi and known geographic
location.

This means that a large proportion of Android OS devices have some sort of location services capa-
bility that you can program against.

Because Android uses different technologies to determine the device’s position, the data’s
availability and accuracy can vary widely. The accuracy of this data depends on what
technology is in the device. Devices with GPS capability can determine a very accurate latitude/
longitude position under the right conditions (usually outdoors with a clear view of the sky).
When no GPS is available and cell tower or wireless network information is used, the data is
much less accurate. Each different data source offers a differing level of accuracy, from a few
feet to a few miles.

Android location-enabled applications have options in performing location lookups. The
applications will consider the accuracy of the data they receive to ensure they don’t present mislead-
ing information. Thankfully, Android provides a Criteria class. This class allows the system to
best determine the location provider to use based on the needs of the application.

Location-Based Data Interruptions

Sometimes Android is unable to provide data for several reasons:

 ‰ A GPS reading cannot be taken because the user is inside or otherwise out of range of GPS
signals.

 ‰ Other location providers cannot be accessed, such as cell towers or WiFi network
information.

c13.indd 373c13.indd 373 2/28/2012 4:22:12 PM2/28/2012 4:22:12 PM

McClure c13.indd V2 - 02/15/2012

374 x CHAPTER 13 WORKING WITH LOCATION INFORMATION

 ‰ The user has prevented the device from supplying data to your application. To prevent
applications from accessing a user’s location without his or her knowledge, the application
asks the user’s permission upon installation before sending the data to your application. This
location preference is stored within the AndroidManifest.xml fi le.

 ‰ The user has disabled location services. For privacy or battery-saving reasons, location
services can be turned off in Settings. You should always check whether location services
are available and for any error condition (including the user’s denying access) before
using location data in your code. It is possible to determine if location services are avail-
able. If they have been turned off and your application attempts to access location data,
a message is displayed to prompt the user to turn Location Manager back on.

Using Location-Based Services

Location-based services (LBS) is a general term that encompasses all the technologies associated
with the device’s location. Android provides two main LBS components:

 ‰ Location Manager provides options when working with LBS. Typically, developers program
to the Location Manager, and it communicates with the various providers installed on the
device. With the Location Manager, a developer can do the following:

 ‰ Determine the device’s current location.

 ‰ Track the device’s movement.

 ‰ Interact with the various Location Providers on the device.

 ‰ Interact with proximity alerts. This includes detecting when the device moves into
and out of a defi ned proximity.

 ‰ Location Providers represent the different location-fi nding technologies.

Confi guring Location-Based Applications on the Emulator

Obtaining the location of a device depends on the device providing the necessary support.
Unfortunately, the Android emulator does not have this hardware. Luckily, the emulator provides
the capabilities to test location-based applications without device hardware. The emulator lets a
developer work with emulated Location Providers and allows the developer to test applications with-
out a physical device.

DDMS is the Dalvik Debug Monitoring Service. It provides debugging services and is provided
by the Android SDK. Some of the services that DDMS provides are device screen capture, logging
information, thread and heap information, location spoofi ng, and other debugging services. In this

c13.indd 374c13.indd 374 2/28/2012 4:22:12 PM2/28/2012 4:22:12 PM

McClure c13.indd V2 - 02/15/2012

Understanding Location Basics x 375

chapter, we are interested in the location data spoofi ng capabilities of DDMS. The location spoofi ng
is available on the Emulator Control tab.

Figure 13-2 shows the Manual tab in the DDMS, which allows the developer to use specifi c latitude/
longitude pairs. This is location data spoofi ng.

FIGURE 13-2

There are other ways to confi gure the DDMS. Figure 13-3 shows the confi guration using the
Keyhole Markup Language (KML) tab. As soon as the points are loaded, selecting a point allows
the emulator to simulate being at that location. In addition, it is possible to simulate being at a series
of locations sequentially.

c13.indd 375c13.indd 375 2/28/2012 4:22:13 PM2/28/2012 4:22:13 PM

McClure c13.indd V2 - 02/15/2012

376 x CHAPTER 13 WORKING WITH LOCATION INFORMATION

FIGURE 13-3

KML is a fi le format that is used to describe geographic data. This data can be used inside many
of Google’s applications. In this case, KML data is used within the Android emulator. KML is an
XML-defi ned format.

To see the KML setup fi le that is a part of this chapter’s download, look in the
kml/test.kml fi le. The chapter download is available at www.wrox.com.

c13.indd 376c13.indd 376 2/28/2012 4:22:13 PM2/28/2012 4:22:13 PM

McClure c13.indd V2 - 02/15/2012

Selecting a Location Provider x 377

SELECTING A LOCATION PROVIDER

As noted earlier in the chapter, Android devices can use multiple technologies to determine the
device’s current location. These technologies vary according to the device. Each technology has
capabilities that function differently in terms of power consumption, accuracy, device heading, alti-
tude, and other items.

To get an instance of a specifi c provider, calling LocationManager’s .GetProvider method and
passing the provider’s name returns an instance:

String providerName = LocationManager.GpsProvider;
LocationProvider gpsProvider;
String serviceString = Context.LocationService;
lm = (LocationManager)GetSystemService(serviceString);
gpsProvider = (lm.GetProvider(providerName));

This can be useful for obtaining the features and abilities of a given provider.

Determining Which Providers Are Available

The LocationManager class provides the LocationManager.GpsProvider and LocationManager
.NetworkProvider static string constants for common Location Providers. Android devices may
have any provider. To obtain a list of all enabled providers on the device, make the following call:

IList<string> providers = lm.GetProviders(true);

Finding Location Providers with Criteria

The providers are typically different on different Android devices. Therefore, it’s unlikely that a
developer will want to hard-code with only one specifi c provider. It’s more common to use a set of
criteria that are passed to Android and then have Android determine the best provider to use.

The Criteria class is used to request a provider that most accurately meets the application’s
requirements. The criteria can be set according to the following:

 ‰ Accuracy of the location

 ‰ Desired power requirements

 ‰ Altitude: Does the provider provide altitude information?

 ‰ Bearing/heading: Does the provider provide bearing/heading information?

 ‰ Speed: Does the provider provide speed information?

 ‰ Cost: Is there a fi nancial cost?

Code Listing 13-1 creates a Criteria class, sets its values, and uses it to get location updates.

c13.indd 377c13.indd 377 2/28/2012 4:22:13 PM2/28/2012 4:22:13 PM

McClure c13.indd V2 - 02/15/2012

378 x CHAPTER 13 WORKING WITH LOCATION INFORMATION

LISTING 13-1: Finding location providers based on criteria

cr = new Criteria();
cr.Accuracy = Accuracy.Coarse;
cr.PowerRequirement = Power.Low;
cr.AltitudeRequired = false;
cr.BearingRequired = false;
cr.SpeedRequired = false;
cr.CostAllowed = true;
String serviceString = Context.LocationService;
lm = (LocationManager)GetSystemService(serviceString);
bestProvider = lm.GetBestProvider(cr, false);
lm.RequestLocationUpdates(bestProvider, 5000, 500f, this);

You can fi nd this code in the LocationListener project.

In this case, the activity must implement Android.Locations.ILocationListener. Listing 13-2
shows the methods that the activity implements:

LISTING 13-2: Implementing Android locations

public void OnLocationChanged(Location location)
{
 this.RunOnUiThread(() => tvLat.Text = location.Latitude.ToString());
 this.RunOnUiThread(() => {
 tvLon.Text = location.Longitude.ToString();
 GetAddress(location.Latitude, location.Longitude);
 });
}

public void OnProviderDisabled(string provider)
{
}

public void OnProviderEnabled(string provider)
{
}

public void OnStatusChanged(string provider, Availability status, Bundle extras)
{
}

You can fi nd this code in the LocationListener project.

To get location information, the application needs access to the location permissions. This can be set
by selecting the entries in the project’s Required Permissions interface, as shown in Figure 13-4. The
fi gure shows the project properties for setting AssemblyManifest.xml.

c13.indd 378c13.indd 378 2/28/2012 4:22:13 PM2/28/2012 4:22:13 PM

McClure c13.indd V2 - 02/15/2012

Geocoding x 379

FIGURE 13-4

Additionally, the permission issue can be set directly in the AndroidManifest.xml fi le:

<uses-permission android:name=”android.permission.ACCESS_FINE_LOCATION” />
<uses-permission android:name=”android.permission.ACCESS_COARSE_LOCATION” />

The ACCESS_FINE_LOCATION permission uses more battery than the ACCESS_
COARSE_LOCATION permission.

If there is a need to stop listening for a location, the call to .RemoveUpdates() stops the location
updates:

lm.RemoveUpdates(this);

GEOCODING

This section describes the two types of geocoding:

 ‰ Forward geocoding is the process of obtaining a latitude and longitude from an address.

 ‰ Reverse geocoding is the process of obtaining an address from a latitude and longitude.

Forward Geocoding

Forward geocoding, also just called geocoding, allows a street address to be translated into a pair
of latitude/longitude map coordinates. This information can be used with map-based activities,
services, and other location-based applications and activities.

Geocoding lookups are done over the Internet. Because of this, the applica-
tion must get permission. This is done by adding the Internet permission in the
AssemblyManifest.xml fi le in the project. The setting is as follows:

<uses-permission android:name=”android.permission.INTERNET”/>

c13.indd 379c13.indd 379 2/28/2012 4:22:14 PM2/28/2012 4:22:14 PM

McClure c13.indd V2 - 02/15/2012

380 x CHAPTER 13 WORKING WITH LOCATION INFORMATION

Listing 13-3 shows some sample code to perform forward geocoding. The user must provide
an address. In this case, the user puts data into an EditView. The Geocoder class performs
the lookup and returns a list of Address objects from the call to GetFromLocationName.
GetFromLocationName returns a list with a maximum number of address objects. The address
object list that is returned contains as much information as can be returned. This information
might include latitude and longitude as well as the other pieces of information that might be in the
Address object.

LISTING 13-3: Forward geocoding

//There is a bug in the emulator that results in an error.
//This code works properly on a device.
var add = Convert.ToString(et.Text);
Geocoder geocoder = new Geocoder(this, Java.Util.Locale.Default);
IList<Android.Locations.Address> result = geocoder.GetFromLocationName(add, 10);
if (result != null)
{
 tvLat.Text = “Latitude: “ + result[0].Latitude.ToString();
 tvLon.Text = “Longitude: “ + result[0].Longitude.ToString();
}

You can fi nd this code in the GeoCode project.

If the data that GetFromLocationName method returns is null, no data could be found based on the
address that was input.

Forward geocoding is performed synchronously and runs over the data connec-
tion. Because it runs synchronously, the calling thread is blocked. With slow
data connections, this can cause an issue, and the user may see the Force Close
dialog box. Instead of confusing the user with this message, consider performing
the address lookup in some type of background thread or service.

Figure 13-5 shows the output of a geocode lookup for an address.

Reverse Geocoding

Reverse geocoding is the process of getting physical location information based on latitude and
longitude coordinates. To perform this lookup, a program passes a latitude and longitude to the
geocoder’s .GetFromLocation method. This method returns a list of addresses that match the loca-
tion. The list of addresses increases from most specifi c to least specifi c. Listing 13-4 exemplifi es this
process:

c13.indd 380c13.indd 380 2/28/2012 4:22:14 PM2/28/2012 4:22:14 PM

McClure c13.indd V2 - 02/15/2012

Geocoding x 381

FIGURE 13-5

LISTING 13-4: Reverse geocoding

IList<Address> al;
Geocoder geoc = new Geocoder(this, Java.Util.Locale.Default);
al = geoc.GetFromLocation(Lat, Lon, 10);
Addresstv.Text = String.Empty;

if (al != null)
{
 for(int i = 0; i < al.Count; i++)
 {
 Addresstv.Text += String.Format(“Location #{0}” +
 System.Environment.NewLine, i + 1);
 if (!String.IsNullOrEmpty(al[i].GetAddressLine(0)))
 Addresstv.Text += al[i].GetAddressLine(0) +
 System.Environment.NewLine;
 if (!String.IsNullOrEmpty(al[i].GetAddressLine(1)))
 Addresstv.Text += al[i].GetAddressLine(1) +
 System.Environment.NewLine;
 if (!String.IsNullOrEmpty(al[i].Locality))
 Addresstv.Text += al[i].Locality + System.Environment.NewLine;
 if (!String.IsNullOrEmpty(al[i].PostalCode))

continues

c13.indd 381c13.indd 381 2/28/2012 4:22:15 PM2/28/2012 4:22:15 PM

McClure c13.indd V2 - 02/15/2012

382 x CHAPTER 13 WORKING WITH LOCATION INFORMATION

 Addresstv.Text += al[i].PostalCode +
 System.Environment.NewLine;
 }
 }
 else
 {
 Addresstv.Text = “No addresses found.”;
 }

LocationListener\LocationListener\Activity1.cs

The list of addresses that is returned is populated with as much data as is known about the location.
Multiple addresses are returned, each with various degrees of specifi city. For example, one address may
have a street, city, state, and zip code. The next may have only the city, state, and zip code. The next may
have only the city. This could go on until only the country is returned, as shown in Figure 13-6.

FIGURE 13-6

CONSTRUCTING PROXIMITY ALERTS

Applications often need to know when a user or device moves into a specifi ed area or passes a cer-
tain proximity threshold. So when a user moves into or out of the general area of a certain location,
an alert should be fi red to let the system/application know.

To set up an alert for proximity, you need the following:

 ‰ Latitude and longitude of a center point

LISTING 13-4 (continued)

c13.indd 382c13.indd 382 2/28/2012 4:22:16 PM2/28/2012 4:22:16 PM

McClure c13.indd V2 - 02/15/2012

Constructing Proximity Alerts x 383

 ‰ Radius from that point

 ‰ Time period for the alert

When the device moves across the boundary defi ned by the radius and within the time frame speci-
fi ed, the alert is fi red.

Listing 13-5 sets up a proximity with a radius and permanent time frame.

LISTING 13-5: Confi guring proximity alerts

private static String MYPROXIMITY = “com.monodroid.alert”;
protected override void OnCreate(Bundle bundle)
{
 base.OnCreate(bundle);
 SetContentView(Resource.Layout.Main);
 Button button = FindViewById<Button>(Resource.Id.MyButton);
 button.Click += delegate { SetProximityAlert(); };
}

private void SetProximityAlert() {

 String locService = Context.LocationService;
 LocationManager locationManager;
 locationManager = (LocationManager)GetSystemService(locService);
 double lat = 35.89988475;
 double lng = -84.12312175;
 float radius = 100f; // meters
 long expiration = -1; // do not expire

 Intent intent = new Intent(this, typeof(RecieveProximityMessages));
 PendingIntent proximityIntent = PendingIntent.GetBroadcast(this, -1,
 intent, 0);
 locationManager.AddProximityAlert(lat, lng, radius, expiration,
 proximityIntent);
 IntentFilter filter = new IntentFilter(MYPROXIMITY);
 RegisterReceiver(new ReceiveProximityMessages(), filter);
}

ProximityAlerts\ProximityAlerts\Activity1.cs.

When the proximity is triggered by a location change, a message is sent to a class that inherits from
BroadcastReceiver. This call then processes the message. In this case, a Toast is sent to the UI.
Many other things could be done; Listing 13-6 is just one example:

LISTING 13-6: Proximity alerts BroadcastReceiver

[BroadcastReceiver(Name = “com.monodroid.alert”)]
public class ReceiveProximityMessages : BroadcastReceiver
{
public override void OnReceive(Context context, Intent intent)
{

continues

c13.indd 383c13.indd 383 2/28/2012 4:22:16 PM2/28/2012 4:22:16 PM

McClure c13.indd V2 - 02/15/2012

384 x CHAPTER 13 WORKING WITH LOCATION INFORMATION

 String locService = Context.LocationService;
 LocationManager locationManager;
 locationManager = (LocationManager)context.GetSystemService(locService);
 String key = LocationManager.KeyProximityEntering;
 Boolean entering = intent.GetBooleanExtra(key, false);
 ShowToast(context, entering);
}
void ShowToast(Context context, bool entering)
{
 var text = ”Entering: ” + entering.ToString();
 Toast.MakeText(context, text, ToastLength.Short).Show();
}
}

ProximityAlerts\ProximityAlerts\Receiver1.cs.

USING GOOGLE MAPS

To include Google Maps in your application, you need to download both Google APIs for Android
and create a virtual device that targets the Android OS with the Google APIs.

First, navigate to your Android SDK location, go to Tools, and run the Android fi le. This is the Android
SDK and AVD Manager you have used in the past. Select Available Packages and select the Google APIs
by Google Inc. for the relevant API level you want to target. An example is shown in Figure 13-7.

FIGURE 13-7

LISTING 13-6 (continued)

c13.indd 384c13.indd 384 2/28/2012 4:22:16 PM2/28/2012 4:22:16 PM

McClure c13.indd V2 - 02/15/2012

Using Google Maps x 385

Once all that is installed, create a virtual device using the Google API as the target, as shown in
Figure 13-8. Once this is set up, you will need to have a Google Maps API key to use the maps in
this application. You can download this from the Android developer website at http://code
.google.com/android/maps-api-signup.html.

FIGURE 13-8

Without an API key, the Map view will not download the tiles used to display the map.

To obtain a key, you need to specify the MD5 fi ngerprint of the certifi cate used to sign your
application. Generally, you will sign your application using two certifi cates — a default debug
certifi cate and a production certifi cate. The following sections explain how to obtain the MD5
fi ngerprint of each signing certifi cate used for your application.

Getting Your Development/Debugging MD5 Fingerprint

With Mono for Android, each application will be signed with a default debug certifi cate unique
to that application. To view map tiles while debugging you will need to obtain a Maps API key
registered via the MD5 fi ngerprint of the debug certifi cate.

Typically the debug keystore is stored in the following location:

 ‰ Windows Vista/7: C:\Users\[USERNAME]\AppData\Local\Xamarin\Mono for Android\
debug.keystore

 ‰ OSX: /Users/[USERNAME]/.local/share/Xamarin/Mono for Android/debug.keystore

c13.indd 385c13.indd 385 2/28/2012 4:22:16 PM2/28/2012 4:22:16 PM

McClure c13.indd V2 - 02/15/2012

386 x CHAPTER 13 WORKING WITH LOCATION INFORMATION

This location is created when you fi rst deploy any Mono for Android application,
so make sure that you do this fi rst before trying to create a MD5 fi ngerprint.

To fi nd the MD5 fi ngerprint of your debug certifi cate, use the keytool command from your Java
installation, as shown here:

keytool -list -alias androiddebugkey –keystore debug.keystore -storepass android
-keypass android

Getting Your Production/Release MD5 Fingerprint

Before you sign your application for release, you will need to obtain a Maps API key using the MD5
fi ngerprint for your release certifi cate.

You will need to create the certifi cate for yourself when creating a release build by using the follow-
ing command (modify as needed). This will ask you to provide information about the certifi cate and
to give passwords for the keystore and alias.

keytool -genkey -v -keystore my-release-key.keystore -alias my-android-alias
-keyalg RSA -keysize 2048 -validity 10000

Find the MD5 fi ngerprint using the keytool command and specifying the -list parameter and the
keystore and alias you will use to sign your release application.

keytool -list -alias my-android-alias -keystore my-android-keystore

You will be prompted for your keystore and alias passwords before the MD5 fi ngerprint is
returned. More information about signing your application for the Android Market can be found
in Chapter 16.

Creating the Maps-Based Activity

The Android maps library is included in Mono for Android as an assembly fi le that you can add
called Mono.Android.GoogleMaps. Since Maps require the use of the Internet and a uses-library
tag, these technicalities are handled for you in the GoogleMaps assembly with the following assem-
bly attributes:

[assembly: UsesPermission (Name = “android.permission.INTERNET”)]
[assembly: UsesLibrary (Name = “com.google.android.maps”)]

The maps package as described here is not part of the standard Android open
source project. It is provided within the Android SDK by Google and is available
on most Android devices. However, be aware that because it is a nonstandard
package, an Android device may not feature this particular library.

c13.indd 386c13.indd 386 2/28/2012 4:22:17 PM2/28/2012 4:22:17 PM

McClure c13.indd V2 - 02/15/2012

Using Google Maps x 387

Now you will want to create an activity that uses a map. When a map is used in an activity, the
activity must use the MapActivity as a subclass. This class will take care of starting and stopping
the location services for your map and the life cycle of the activity. You can have only one map activ-
ity per process running as running multiple map processes can cause unwanted issues. When you
subclass an activity with a MapActivity, you will need implement the IsRouteDisplayed method.
This is shown in Listing 13-7.

LISTING 13-7: Empty map activity

using Android.App;
using Android.GoogleMaps;
using Android.OS;

namespace MapExample
{
 [Activity (Label = “MapExample”, MainLauncher = true)]
 public class Activity1 : MapActivity
 {

 MapView mapView;

 protected override void OnCreate (Bundle bundle)
 {
 base.OnCreate (bundle);

 // Set our view from the “main” layout resource
 SetContentView (Resource.Layout.Main);

 mapView = FindViewById<MapView>(Resource.Id.mapView);

 }

 #region implemented abstract members of Android.GoogleMaps.MapActivity
 protected override bool IsRouteDisplayed {
 get {
 return false;
 }
 }
 #endregion
 }
}

MapExample\MapExample\Activity1.java

Creating a Map in a Layout File

If you run the preceding code, you will notice that no map is displayed. This is because, although we
have told the activity it will include a map, the actual map has not been added yet. You can update the
Main.axml layout fi le to include the MapView that you want to display. This is shown in Listing 13-8.

c13.indd 387c13.indd 387 2/28/2012 4:22:17 PM2/28/2012 4:22:17 PM

McClure c13.indd V2 - 02/15/2012

388 x CHAPTER 13 WORKING WITH LOCATION INFORMATION

LISTING 13-8: Main.axml layout fi le

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 >

 <com.google.android.maps.MapView
 android:id=”@+id/mapView”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 android:enabled=”true”
 android:clickable=”true”
 android:apiKey=”YourAPIKeyHere”
 />

</LinearLayout>

MapsExample\MapsExample\Resources\layout\Main.axml

As you can see from the fi nal line in the com.google.android.maps.MapView tag, there’s an attri-
bute for an apiKey. This is where you need to enter the API key that was created earlier. Hit run and
you will see something that looks like Figure 13-9.

FIGURE 13-9

Using the MapView Controller with an Overlay

The MapView has a Controller property that enables you to set the pan and zoom of the map pro-
grammatically. To do this, you have a few methods that you can utilize, such as SetZoom, which

c13.indd 388c13.indd 388 2/28/2012 4:22:17 PM2/28/2012 4:22:17 PM

McClure c13.indd V2 - 02/15/2012

Using Google Maps x 389

takes an integer between 1 (being the widest, most zoomed out) and 21 (being the closest, most
zoomed in). This can be used by calling the following method:

mapView.Controller.SetZoom(5);

As well as controlling the zoom, you may want to focus on a particular area on a map; this can be
done in two different ways.

 ‰ You can use the SetCenter method, which takes a GeoPoint parameter on the location you
want to center the map.

 ‰ Alternatively, you can use the AnimateTo method, which again takes a GeoPoint parameter,
but this will smoothly fl y from the current location to the GeoPoint set rather than jumping
straight to the location.

To display an item on a map, you will want to use an overlay that will go over the top of the cur-
rent map to display useful information in your application. The Google Maps API provides a
MyLocationOverlay for you to use, which places the current location of the user onto the overlay.
To use this overlay, you would create a new instance of the MyLocationOverlay class. You can see
this in Listing 13-9.

LISTING 13-9: MapOverlayExample layout fi le

using System;

using Android.App;
using Android.Content;
using Android.Runtime;
using Android.Views;
using Android.Widget;
using Android.OS;
using Android.GoogleMaps;

namespace MapOverlayExample
{
 [Activity (Label = “MapOverlayExample”, MainLauncher = true)]
 public class Activity1 : MapActivity
 {
 MapView mapView;
 MyLocationOverlay myLocationOverlay;

 protected override void OnCreate (Bundle bundle)
 {
 base.OnCreate (bundle);

 // Set our view from the “main” layout resource
 SetContentView (Resource.Layout.Main);

 mapView = FindViewById<MapView>(Resource.Id.mapView);
 mapView.Controller.SetZoom(19);

 myLocationOverlay = new MyLocationOverlay (this, mapView);
 myLocationOverlay.RunOnFirstFix (() => {
 mapView.Controller.AnimateTo (myLocationOverlay.MyLocation);

continues

c13.indd 389c13.indd 389 2/28/2012 4:22:18 PM2/28/2012 4:22:18 PM

McClure c13.indd V2 - 02/15/2012

390 x CHAPTER 13 WORKING WITH LOCATION INFORMATION

 });
 mapView.Overlays.Add (myLocationOverlay);
 }

 protected override void OnResume ()
 {
 base.OnResume ();

 myLocationOverlay.EnableMyLocation();
 }

 protected override void OnStop ()
 {
 base.OnStop ();

 myLocationOverlay.DisableMyLocation();
 }

 #region implemented abstract members of Android.GoogleMaps.MapActivity
 protected override bool IsRouteDisplayed {
 get {
 return false;
 }
 }
 #endregion
 }
}

MapOverlayExample\MapOverlayExample\Activity1.cs

Since MyLocationOverlay uses location data, do not forget to add in permis-
sions for either ACCESS_FINE_LOCATION or ACCESS_COARSE_LOCATION.

You can see that after we create the new myLocationOverlay object, we set up the method
RunOnFirstFix; this will fi re the event when the fi rst location of the user is fi xed. From here you
will want to use the AnimateTo method to move the map to display the location of the current user.
Since you will have a location for the current user from the overlay, you can use the MyLocation
property from the overlay and pass this into the AnimateTo method.

Once the new overlay is created and set up, you can add this to the MapView overlays by using the
Add method on the Overlays property. The OnResume and OnStop methods are used to start and
stop searching for a location when the app is open and closed, respectively. Hit run and you should
see something like Figure 13-10.

LISTING 13-9 (continued)

c13.indd 390c13.indd 390 2/28/2012 4:22:18 PM2/28/2012 4:22:18 PM

McClure c13.indd V2 - 02/15/2012

Summary x 391

FIGURE 13-10

SUMMARY

This chapter looked at location-based services in Android. Location-based services are a natural fi t
for Android. Android devices are by defi nition mobile. Getting the current location allows an appli-
cation to present the user with location-specifi c information. Along with the current location of the
device, other forms of location-based services allow for presenting helpful information to the user,
such as the approximate street address to speed up data entry. The chapter also looked into using
the Google Maps API to provide maps to be utilized in applications and how this can be used to dis-
play a user’s location. The topics covered in this chapter include:

 ‰ Using ILocationListener to get the device’s location.

 ‰ Performing geocoding to convert an address into a latitude and longitude.

 ‰ Performing reverse geocoding to convert a latitude and longitude into an address.

 ‰ Using proximity alerts for when a user passes through a boundary.

 ‰ Using a map within an activity.

 ‰ Displaying a user location on a map using overlays.

c13.indd 391c13.indd 391 2/28/2012 4:22:18 PM2/28/2012 4:22:18 PM

c13.indd 392c13.indd 392 2/28/2012 4:22:18 PM2/28/2012 4:22:18 PM

McClure c14.indd V5 - 02/15/2012

14
Internationalization
and Localization

WHAT’S IN THIS CHAPTER?

 ‰ Defi ning internationalization, localization, and globalization

 ‰ Considerations for a localization strategy

 ‰ Defi ning and selecting default resources

 ‰ Translating text and controls

 ‰ Localizing strings and other resources

 ‰ Formatting dates, numbers, and strings

Internationalization and localization are two different aspects of providing multilingual and
multicultural support for software applications. Although the exact defi nitions of these two
terms may vary, the two concepts can be broadly defi ned as follows:

 ‰ Internationalization refers to the process of globally enabling an application to handle
multicultural settings without specifi cally designing to any particular locale.

 ‰ Localization refers to the effort of designing an application to cater to the needs of a
specifi c locale by specifi cally targeting the desired locale via application code and set-
tings adjustments.

Using internationalization, you enable your application to handle a number of different lan-
guage and cultural scenarios. In many ways, you can think of internationalization as enabling
multiple-language support on more of a global application level. In the context of Mono for
Android, you can largely achieve this by leveraging the tools within the .NET Framework.
Internationalization endeavors may include the following:

 ‰ Making list storing sensitive to language

 ‰ Adhering to local specifi c formatting on different data units such as date and time

c14.indd 393c14.indd 393 2/28/2012 4:23:01 PM2/28/2012 4:23:01 PM

McClure c14.indd V5 - 02/15/2012

394 x CHAPTER 14 INTERNATIONALIZATION AND LOCALIZATION

 ‰ Adjusting for differences in symbology for items such as currency and general numbers

 ‰ Representing measurements such as temperature, weight, and distance in appropriate units

 ‰ Appropriately accepting input and displaying addresses, telephone numbers, and government
identifi cation numbers

 ‰ Properly accepting multiple text encoding formats as inputs

Using localization, you can fi ne-tune your application to target an individual culture. In conjunction
with tooling in the .NET Framework and therefore Mono for Android, the Android architecture is
designed to ease the diffi culty of this process. Localization endeavors may include the following:

 ‰ Identifying text areas and displaying them in the target language

 ‰ Customizing your layout and image-based text displays to match the target locale

 ‰ Adjusting tooltips and application fl ow to match the locale

 ‰ Adjusting the entire user interface to cater to a specifi c locale

When speaking broadly of both internationalization and localization, people often use the term glo-
balization. Since these two concepts often overlap, it is often more concise to use this term. In fact,
the .NET Framework does just this via its namespace, System.Globalization, which is used to
create multilingual applications.

Figure 14-1 shows the home menu of an Android phone under different localization settings. Using
this chapter, you can achieve similar results in your applications and increase the level of exposure
that your application has on the growing Android Market!

FIGURE 14-1

c14.indd 394c14.indd 394 2/28/2012 4:23:05 PM2/28/2012 4:23:05 PM

McClure c14.indd V5 - 02/15/2012

Selecting a Localization Strategy x 395

The terms internationalization and localization are often shortened to i18n and
L10n, respectively. The numbers refer to the number of characters between the
fi rst and last letter of each word.

SELECTING A LOCALIZATION STRATEGY

Before you begin to localize your application, you should consider several factors. In a perfect
world, we would have the time and resources to localize for every culture and locale. Unfortunately,
this is not the case. In many cases, we have to make precise and informed decisions when choosing
what to target for localization. Localization can give your application more exposure. However, the
key to a successful localization is maintaining the balance between supporting as many users as
possible and keeping your initial development time and overall development overhead low.

To keep that balance, you may want to ask yourself several questions before you begin investing
in localization:

 ‰ What is the locale of your target audience(s)? From the outset of your application develop-
ment process, you should have a general idea of who your target customers are. Are they
specifi c to a particular locale? Do specifi c features of your ideal customer make you want to
target a locale?

 ‰ What exposure do you expect for your application? Beyond the metrics found in the Android
Market, you should consider the avenues you will use to advertise your app. In addition, con-
sider the locales that your advertising partners support so that you can match those as well to
maximize your advertising initiatives.

 ‰ Does your application limit itself to particular locales? Some application types do not cater
to every locale. Often there are cultural, economic, or political reasons why an app would be
more successful in some areas than in others. Be wary of your app’s subject matter, cost, and
specifi city to a culture as you consider what locales to support.

 ‰ How will your application’s behavior vary from locale to locale? Page layout, text directions,
and even interface behavior expectations can vary from culture to culture. If you intend to
fully support a different locale, take time to understand these differences, and adjust your
application accordingly.

 ‰ What resources can you utilize that are locale-neutral? If you are working on an app that has
many different locales that you want to support, strive for locale-neutral resources. Simple
ideas, such as avoiding images with static text, can save you a great deal of time and effort in
the long run when you are supporting multiple locales.

 ‰ What resources do you have at your disposal to provide localization services? When work-
ing to provide full localization services for your application, it is easy to forget some of the
fi ner points, such as the fact that you do not fl uently speak the language for which you want
to localize. Aligning with resources who fl uently speak both your language and your target
language will ensure not only that you support the target locale but also that you sound pro-
fessional in doing so.

c14.indd 395c14.indd 395 2/28/2012 4:23:05 PM2/28/2012 4:23:05 PM

McClure c14.indd V5 - 02/15/2012

396 x CHAPTER 14 INTERNATIONALIZATION AND LOCALIZATION

 ‰ When someone tries to access your app from an unsupported locale, what does your application
do? It is impossible to accommodate every possibility. Rather than trying for the impossible,
accept that there are points where your app will fail, and ensure that it will fail gracefully.

Finally, you would be remiss not to consider the Android operating system’s current level of expo-
sure. Although Android is rapidly gaining exposure across the globe, currently it does not have the
same diversity as its competitors on other mobile platforms. Understanding who the key users of the
Android operating system are will go a long way in helping you make your localization decisions.
Here are a couple of good resources for mobile phone usage statics and locales:

 ‰ AdMob Mobile Metrics: http://metrics.admob.com

 ‰ Nielsen data: http://blog.nielsen.com/nielsenwire

UPDATING LANGUAGE AND REGIONAL SETTINGS

To test localization, you need to be familiar with the process of updating the language and regional
settings on your devices. The steps to update these settings differ, depending on whether you are
using an emulated device or testing on an actual hardware device.

You can change your local and regional settings on your physical Android device by accessing the
System Settings Í Language & Keyboard screen. Under this screen you can set your language and
region via the Select Language menu option. On this screen, the language name is displayed on the
left, and the selected region, if any, is displayed in parentheses to the right of the language. You will
notice that the user-friendly names, not the codes themselves, are displayed on this screen.

There are many other settings on the physical device that can apply to language
and regional settings. In addition, different features and additions may have
more or less support in this area, including dictionaries and custom keyboards.

When you are working with the emulator, the process of updating your language and regional set-
tings is much simpler. On your emulator home screen, you can fi nd an application named Custom
Locale. Under this application, you will fi nd a long list of different language and regional settings to
choose from, listed by their regional codes. By doing a long press on any of these items, you update
your device’s settings. Figure 14-2 shows the process of updating your emulator.

Be sure to make a note of where this application is located on your menu, or it
might be hard to fi nd your way back.

By changing these settings, you affect how the Android OS and .NET display content and the for-
matting for some types. Thankfully, both use the same language and region naming conventions to
delineate between these selections. Here are the two codes you need to change these settings:

c14.indd 396c14.indd 396 2/28/2012 4:23:06 PM2/28/2012 4:23:06 PM

McClure c14.indd V5 - 02/15/2012

Updating Language and Regional Settings x 397

 ‰ Language code: The two-letter ISO 639-1 code is the preferred method to identify languages.
Common examples are en for English, ja for Japanese, es for Spanish, fr for French, and de
for German.

 ‰ Region code: The two-character ISO 3166-1 code that identifi es a region or locale that speaks
a specifi c language. Examples are UK for the United Kingdom and US for the United States.

Combined, these two values create a locale. Although two countries may speak the same language,
they may have different approaches to the spelling of common words or the formatting of data
types, such as telephone numbers or addresses. This is why identifying the locale is important.

FIGURE 14-2

In addition to identifying locales by languages and regions, some areas have custom or special tags
used to identify them. You can defi ne custom locale tags within the emulator locale settings.

Locale identifi ers vary between .NET and the Android platform. In .NET, a
locale is defi ned as <language>-<REGION>, as in en-US. In the Android OS, the
formatting for a locale is often <language>-r<REGION>, as in en-rUS. This gets
slightly more confusing when considering Java, which prefers an underscore as
the delimiter between language and region. Additionally, most areas follow the
convention of leaving the language code in lowercase and using uppercase for
the region.

To learn more about the use of locale tags and other ISO standards, or to view a comprehensive list
of codes, visit the International Organization for Standardization at www.iso.org.

c14.indd 397c14.indd 397 2/28/2012 4:23:07 PM2/28/2012 4:23:07 PM

McClure c14.indd V5 - 02/15/2012

398 x CHAPTER 14 INTERNATIONALIZATION AND LOCALIZATION

UNDERSTANDING THE MECHANICS OF ANDROID LOCALIZATION

On the Android platform, the process of setting up for localization is simple, thanks to the adoption
of a type of design by convention for localization purposes. This design allows you to quickly create
locale-specifi c resource settings. In conjunction with the process of establishing default resources
in your application, the localization process is fully extensible and also provides quite a bit of
fail-safety.

CONVENTION VERSUS CONFIGURATION

If you’re familiar with ASP.NET MVC, you should understand the concept of
design by convention. It focuses on decreasing an application’s complexity by estab-
lishing and maintaining known conventions or accepted standards rather than
using complex confi guration techniques. In ASP.NET MVC, this is accomplished
using the provided folder structures and the framework when dealing with Models,
Views, and Controllers. The Android operating system uses a similar approach for
resource handling.

Setting Up Default Resources

The fi rst step of supporting localization is to set up default resources for your application. Resources
can be strings, graphics, layout patterns, sounds, or just about any other static fi les or data that
your application requires. A resource is considered a default resource when it is located in a nonspe-
cifi c default directory for that resource type. You can also consider these resources locale-neutral
because, hopefully, they do not contain any locale-specifi c information.

Keep in mind that if it is a resource, you can localize it. This is true of not only
text but also images, views, and other resource types.

Having a default resource is critical, because the Android operating system uses default resources
when it can fi nd no other alternatives. If a resource is not found in a given scenario, the Android
operating system throws an application exception. Considering the rate at which alternative Android
devices are being created, this is the only way to provide a measure of fail-safety or, at the very least,
an elegant failure.

Currently the Android operating system has several default folders to contain resources. None of
these folders are required to exist in order for your application to run properly; they should only
be added on an as-needed basis. Table 14-1 describes the most frequently used default folders for
localization. By placing resources in these default folders, you can ensure that the Android operat-
ing system always has a source for that resource in situations where an unsupported locale
is requested.

c14.indd 398c14.indd 398 2/28/2012 4:23:08 PM2/28/2012 4:23:08 PM

McClure c14.indd V5 - 02/15/2012

Understanding the Mechanics of Android Localization x 399

TABLE 14-1: Android Default Folders

FOLDER NAME GENERAL USAGE

drawable/ Contains image fi les or XML fi les that are used for graphics that can be drawn on

the screen.

layout/ Contains confi guration fi les that specify diff erent kinds of user interface layouts.

menu/ Contains confi guration fi les that contain the defi nitions for the Options and Context

menus and submenus.

values/ Contains XML fi les that specify basic values, such as string values, color settings,

and general styles.

xml/ Contains miscellaneous XML fi les that can be read at runtime. Typically used in

more user-defi ned contexts

You can fi nd more information about folder conventions by visiting
http://developer.android.com.

Adding Localization Support

After the default resource folders are placed, you can begin adding sup-
port for additional locales. To have a resource that targets a specifi c device
setting, you create another directory that contains the same name as the
default directory and set specifi c text. The additional text used to target a
specifi c setting is known as a confi guration qualifi er name. For localization
purposes, Android uses a <DirectoryName>-<Language>-r<region> pat-
tern for its naming convention.

In Figure 14-3, the layout directory has several different confi gurations: a
default drawable folder, a drawable folder specifi cally targeting those whose
language is set to English (en), and a drawable folder for those who not only
speak French but also live in the region of France.

In this case, if the application requested icon.png, the Android runtime would select the specifi c
folder that matched the device’s current confi guration. Assuming that your Android device was set
to en-US, you would be served icon.png under the en directory. If your locale were set to
fr-rCA, you would be served icon.png under the default drawable directory, because the locale
would not match your device settings.

Resource Selection in Detail

When an Android application is run, the Android operating system attempts to select and load the
resources that best match the Android device’s settings and current confi guration. This approach
not only simplifi es the process of supporting localization but also creates additional fl exibility in

FIGURE 14-3

c14.indd 399c14.indd 399 2/28/2012 4:23:08 PM2/28/2012 4:23:08 PM

McClure c14.indd V5 - 02/15/2012

400 x CHAPTER 14 INTERNATIONALIZATION AND LOCALIZATION

the development process, because the developer can use a system of specifi city when supporting
localization.

Android uses the following process to determine the correct resource:

1. You request a resource from within the application.

2. Android fi nds every possible directory match for that resource and eliminates anything that
confl icts with the device confi guration.

3. If several possible matches are found, Android starts with the most specifi c directory and
looks for the resource. Then it iterates through all available directories until the fi rst match is
found for the resource.

4. If no matches are found, Android falls back to the default resource.

5. If no default resources are found, Android throws an exception.

Although the folder-naming convention does simplify the process of adding support for other
locales, several other confi guration qualifi er names target different application settings. Those set-
tings may include different screen densities, screen orientation, and application modes. For every
deviation from the default resource that you need to specifi cally target, you need to create an addi-
tional directory as well as an accompanying resource. As you might imagine, managing the number
of deviations as well as fully understanding the resource selection process is critical.

Although this topic is beyond the scope of this section, Android documenta-
tion does defi ne qualifi er precedence. Since some qualifi ers are ranked higher in
consideration than others, in some situations more specifi c names could be out-
ranked by names with higher qualifi ers. See http://developer.android.com
for more information.

One major drawback of using the directory names as a convention for identify-
ing the correct resources is that it greatly limits your ability to organize resources
in any other way. In addition, currently the Android operating system does not
support subdirectories in these resources’ subfolders.

SUPPORTING MULTIPLE LANGUAGES

Typically, when developers write applications without considering localization, they often hard-code
string values within either the UI or the application code. With some applications, this can be a bad
practice, because it can lead to some very painful refactoring if you have to localize a code base that is
already complete. Furthermore, developers tend to bypass the localization process because it is perceived
as additional work or seems to be harder to maintain. In this section, you will see that not only is the
process of localizing strings simple, but it also can actually make your development process smoother.

Utilizing the Strings.xml File

To support easy translation of text values, you can use the strings confi guration fi le located under
/Resources/Values/Strings.xml. The strings.xml fi le lets you specify key-value pairs of

c14.indd 400c14.indd 400 2/28/2012 4:23:09 PM2/28/2012 4:23:09 PM

McClure c14.indd V5 - 02/15/2012

Supporting Multiple Languages x 401

strings. By using this fi le, you can separate the text to display from the actual application code. This
approach lets you swap in different desired text or languages without having to modify the view or
application code. The following code snippet is an example of the default strings.xml fi le in a new
Mono for Android application:

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <string name=”hello”>Hello World, Click Me!</string>
 <string name=”app_name”>Test</string>
</resources>

The name attribute acts as the key value to the string, and the text between the string tags is the
actual text values. As your application is compiled, the key value of the string resources is added as
a property of the special Resources class. This allows you to declaratively access your text values
and also gives you compile-time checking for existing keys.

Although the Strings.xml fi le is a simple concept, you should keep in mind a few rules when add-
ing values:

 ‰ When using a single or double quotation mark as the value for a given string, you must
escape the character properly. You can accomplish this by using the backslash (\) as an
escape character or by wrapping the entire text value in enclosing quotes that are not the
same as the type of quote character you are trying to escape. Here are two examples of using
this escape method:

<string name=”Example1”>Android\’s awesome!</string>
<string name=”Example2”>”Android’s awesome!”</string>

 ‰ The Strings.xml fi le supports the use of some formatting tags, as shown in Table 14-2.

TABLE 14-2: Valid Formatting Tags within the String Value

STYLE EXAMPLE

Bold text This is bold text!

Italic text <i>This is italic text!</i>

Underline text <u>This would be underlined!</u>

 ‰ HTML-style comments, such as <!-- This is a comment -->, are permitted within the
Strings.xml fi le as well.

Translating Text

In the fi rst example of this chapter, we will walk through the process of creating a simple translation
scenario. Starting with a default Mono for Android project in Visual Studio, open the Strings.xml
fi le located under the Resources/Values directory. Modify this fi le so that it looks like this:

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <string name=”Hello”>Hello, Mono for Android!</string>

c14.indd 401c14.indd 401 2/28/2012 4:23:09 PM2/28/2012 4:23:09 PM

McClure c14.indd V5 - 02/15/2012

402 x CHAPTER 14 INTERNATIONALIZATION AND LOCALIZATION

 <string name=”Goodbye”>Goodbye, Mono for Android!</string>
</resources>

Next, modify Main.axml by adding two button controls. These buttons will provide the mechanism
by which to display our localized strings. For the time being, give one button the text value of “Say
Hello” and the other button the text value of “Say Goodbye”. Upon completion, your code should
look something like this:

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>
<Button
 android:id=”@+id/HelloButton”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”Say Hello”/>
 <Button
 android:id=”@+id/GoodbyeButton”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”Say Goodbye”/>
</LinearLayout>

All snippets for this example can be found in Localization01.

Now that the controls are in place, you can write the application code to utilize the new string resources
you have defi ned. In the Activity1.cs fi le, replace the OnCreate function with the following code:

protected override void OnCreate(Bundle bundle)
{
 base.OnCreate(bundle);

 // Set our view from the “Main” layout resource
 SetContentView(Resource.Layout.Main);

 // Get our buttons from the layout resource,
 // and attach an event to it
 Button HelloButton = FindViewById<Button>(Resource.Id.HelloButton);
 HelloButton.Click += delegate {
 Toast.MakeText(this, Resource.String.Hello, ToastLength.Long).Show(); };

 Button GoodbyeButton = FindViewById<Button>(Resource.Id.GoodbyeButton);
 GoodbyeButton.Click += delegate {
 Toast.MakeText(this, Resource.String.Goodbye,
 ToastLength.Long).Show(); };
}

c14.indd 402c14.indd 402 2/28/2012 4:23:09 PM2/28/2012 4:23:09 PM

McClure c14.indd V5 - 02/15/2012

Supporting Multiple Languages x 403

When you add event handlers to each button’s Click event, the appropriate string values can be
displayed in a small toast window. Notice that you can access your string’s value by specifying the
appropriate key using the special Resource class.

When everything is in place, run the example. You should see the default locale for your application,
along with the two buttons you created. When you click the buttons, you see the screens shown in
Figure 14-4.

FIGURE 14-4

Now that the baseline is set up, you can begin adding localization support. Create another direc-
tory within the Resources directory, called Values-es. Within this directory, create a fi le called
Strings.xml, and add the following content to that fi le. Now your application will support transla-
tions for devices whose language settings are set to es, the language code for Spanish:

<?xml version=”1.0” encoding=”utf-8”?>
<resources>
 <!-- The keyboard shortcut for the “¡” character is Alt+0161. -->
 <string name=”Hello”>¡Hola, Mono for Android!</string>
 <!-- The keyboard shortcut for the “ó” character is Alt+0243. -->
 <string name=”Goodbye”>¡Adiós, Mono for Android!</string>
</resources>

c14.indd 403c14.indd 403 2/28/2012 4:23:09 PM2/28/2012 4:23:09 PM

McClure c14.indd V5 - 02/15/2012

404 x CHAPTER 14 INTERNATIONALIZATION AND LOCALIZATION

Now you can load your new application into your device. Before you open the application, change
your device settings to use Spanish as your primary language via the appropriate methods discussed
earlier. Then open your application and see its new, translated values (see Figure 14-5).

FIGURE 14-5

Remember, when adding resources that are to be accessed via the Resource class,
as we did in this example, be sure to change their build action to AndroidResource
so that they will be properly added to the build. You can do this by right-clicking
the target resource, selecting Properties, and changing the build action from the
confi guration screen. Failing to do this will result in compilation errors or, in this
case, utilization of the default resource rather than the one just added.

At this point, you have added translation support for your application. By using the previously
mentioned naming convention, you can begin adding support for other languages and locales. As
with other resources, requests for a string value begin at the most specifi c directory and work to
the most generic. If you have a key that is not located in a specifi c directory, but is located in your
default, the Android OS loads the default key’s value. This means that, although you have targeted
a different locale via the more-specifi c Strings.xml fi le, you do not have to give a translation for
every key in every fi le.

Translating Control Text

Now that we have established the process of assigning the Strings.xml fi le’s values in the applica-
tion code for simple toast messages, let’s look at the process of adding localization support for dif-
ferent controls. As you might imagine, the process is very similar to what we used in the preceding
examples.

c14.indd 404c14.indd 404 2/28/2012 4:23:10 PM2/28/2012 4:23:10 PM

McClure c14.indd V5 - 02/15/2012

Supporting Multiple Languages x 405

You can add localized text to a control in two ways:

 ‰ Bind the resource text to an appropriate property on the control via the application code.
This was shown in the example in the previous section.

 ‰ Use the control’s XML layout to defi ne the matching string key for the given property.

Starting from the Localization01 example, we can begin adding support for localization in con-
trols. In the preceding example, we introduced two button controls that would display a localized
text message when clicked. However, the text on the buttons themselves was hard-coded, which
requires our localized users to know what those buttons mean in English before they can get to their
translated text. Let’s fi x this mistake.

For this example, add the following lines to the Strings.xml fi le. These items will be text source
for our button text that is displayed when the application loads:

<string name=”HelloButtonText”>Hello</string>
<string name=”GoodbyeButtonText”>Goodbye</string>

If desired, we could set the control’s text property in the application code. If we were to do so, it
would look something like this:

Button HelloButton = FindViewById<Button>(Resource.id.HelloButton);
HelloButton.Text = Resource.@string.HelloButtonText;

The problem with this approach is that it is quite a bit of code to achieve a basic result. Furthermore,
as you begin adding more controls to your page, your line count increases considerably, as does your
maintenance cost.

The alternative approach is to use the control’s XML confi guration to specify the string key map-
ping to the given control’s property. This binding is accomplished using the following syntax:

@[package_name:]<resource_type>/<resource_name>

In our case, the package name is unnecessary, because the resource is located in the same package as the
one we are currently working in. Since we are referencing a text value in Strings.xml, the resource type
is String. Finally, the resource name is the string key within the Strings.xml fi le we are looking for.

To localize the button text, modify the button’s XML markup in the Resources/Layout/Main
.axml fi le. Within the XML confi guration, replace the hard-coded string value in the control’s text
property with the appropriate string key using the @string/key syntax. After you have done so,
your code should look something like this:

<Button android:id=”@+id/HelloButton”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/HelloButtonText” />
<Button android:id=”@+id/GoodbyeButton”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/GoodbyeButtonText”/>

All snippets for this example can be found in Localization02.

c14.indd 405c14.indd 405 2/28/2012 4:23:11 PM2/28/2012 4:23:11 PM

McClure c14.indd V5 - 02/15/2012

406 x CHAPTER 14 INTERNATIONALIZATION AND LOCALIZATION

If you were to run your code at this point, you would be greeted
with a screen that looked very similar to the previous example,
despite whatever localization settings you may have. By adding
the following snippet to your Resources/Values-es/Strings
.xml fi le, you add Spanish localization support for your
button text:

<string name=”HelloButtonText”>Hola</string>
<string name=”GoodbyeButtonText”>Adiós</string>

When you have completed this step, you can change your
phone’s locale settings between en and es. Figure 14-6 shows
the newly translated page.

Although the example in this section is specifi c to buttons, the
process of binding resources to any control or any control prop-
erty works in a similar fashion. By using the XML binding
syntax or by simply binding via application code, you can local-
ize almost every control in your application.

As you are adding controls to your application, it is a good practice to proac-
tively add localized strings for every text value. This not only ensures that you
have full localization support, but also makes text resources and control confi gu-
ration very easy to maintain.

LOCALIZING OTHER RESOURCES

As with strings, the process of adding localization support for other resources involves the same
steps of creating the additional locale-specifi c resource, adding it to the appropriately named direc-
tory, and referencing the resource using the Resource special class or via the proper XML syntax.
Because an Android resource can be anything from application strings to images to even views them-
selves, an Android developer has great fl exibility in defi ning what resources load for what locales.

Keeping that in mind, pick up where you left off in the preceding example (or grab the
Localization02 download) so that you can begin the process of adding other localized resources.
In the sample application, you will add two common images and their translated text captions to
the screen. Before you start adding XML markup, however, you need to defi ne the string keys and
values you will use in the example.

ADDED TO /RESOURCES/VALUES/STRINGS.XML

<string name=”RestaurantText”>Restaurant</string>
<string name=”FlagText”>Flag</string>

ADDED TO /RESOURCES/VALUES-ES/STRINGS.XML

<string name=”RestaurantText”>El Restaurante</string>
<string name=”FlagText”>Bandera</string>

FIGURE 14-6

c14.indd 406c14.indd 406 2/28/2012 4:23:11 PM2/28/2012 4:23:11 PM

McClure c14.indd V5 - 02/15/2012

Localizing Other Resources x 407

Now, it’s time to add the controls to the application. Basically, you will add two images along with
some descriptive text. For the sake of easy layout, these controls are contained in a table structure.
Add the following code to Resources/Layout/Main.axml:

<TableLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>
 <TableRow>
 <ImageView
 android:layout_height=”wrap_content”
 android:layout_width=”wrap_content”
 android:layout_margin=”5dip”
 android:src=”@drawable/flag” />
 <TextView android:id=”@+id/tvFlag”
 android:layout_height=”fill_parent”
 android:layout_width=”wrap_content”
 android:text=”@string/FlagText”
 android:gravity=”center_vertical|center_horizontal”
 android:padding=”3dip” />
 </TableRow>
 <TableRow>
 <ImageView
 android:layout_height=”wrap_content”
 android:layout_width=”wrap_content”
 android:layout_margin=”5dip”
 android:src=”@drawable/restaurant” />
 <TextView android:id=”@+id/tvRestaurant”
 android:layout_height=”fill_parent”
 android:layout_width=”wrap_content”
 android:text=”@string/RestaurantText”
 android:gravity=”center_vertical|center_horizontal”
 android:padding=”3dip” />
 </TableRow>
</TableLayout>

All snippets for this example can be found in Localization03.

As you can see, the XML confi guration contains two image controls that are looking for two
images called flag and restaurant. Since your application will not run properly without those
resources, add two appropriate images to the Resources/Drawable directory with those
same names.

Once everything is in place, run your application in the emulator. You should see the screen shown
in Figure 14-7.

For the sake of this example, assume that our target audience is not only Spanish speakers but also
those who live in Spain. The locale setting for Spanish-speaking Spain is es_ES. Add a directory
under the Resources directory called Drawable-es-rES. Finally, add an image of the Spanish fl ag
to that directory, making sure that the image name and type mirror that of the fl ag image in the
default directory.

c14.indd 407c14.indd 407 2/28/2012 4:23:11 PM2/28/2012 4:23:11 PM

McClure c14.indd V5 - 02/15/2012

408 x CHAPTER 14 INTERNATIONALIZATION AND LOCALIZATION

The sample images flag and restaurant and a copy of a Spanish fl ag image all
can be found in the Localization03 download for this chapter.

FIGURE 14-7

Now the application is ready to be tested. Run the application and change your locale to es-ES. After
you do so, you should see the screen shown on the left of Figure 14-8. Notice that the text is in Spanish
and that the screen displays the Spanish fl ag. Now, if you selected es as your choice language and left
your locale at its default location (assuming that your default region is US), you would end up with an
application that targets Spanish-speaking Americans. The image on the right shows what this confi gu-
ration would look like. Notice that the American fl ag (our default resource) loaded because the fl ag in
the Drawable-es-rES directory had a confi guration that contradicted the default region of the device.

As you are adding the fl ag images, be sure to set their content type to Android
Resource.

c14.indd 408c14.indd 408 2/28/2012 4:23:11 PM2/28/2012 4:23:11 PM

McClure c14.indd V5 - 02/15/2012

Localizing Other Resources x 409

This application displayed how you can achieve different and possibly unexpected results
when unplanned locale settings are chosen. Also, keep in mind that even though we focused
on image localization, any resource can be localized by using the Android folder-naming
convention.

FIGURE 14-8

Localizing the Menu Icon and Application Name

In the Android OS, the menu icon and the application name are what you see when your application
is on the home screen. The process of localizing that view is very simple.

For starters, localizing the icon follows the same pattern as localizing any other image. First, add a
different image called Icon.png to a more specifi c locale directory that targets that locale. Next, the
icon can be localized using the same @string/key syntax used in any controls in conjunction with
the Activity attribute.

The application name can be localized within the Activity attribute as well. Modify the Activity
attribute on your main activity class so that it mirrors the following code:

[Activity(Label = “@string/app_name”, MainLauncher = true, Icon=”@drawable/icon”)]

The Icon value will set the appropriate value in the Android manifest, using the same localization
rules as those used for any other drawable. Also, assuming that you have a corresponding key of
app_name in the appropriate Strings.xml fi le, your application name is now localized in the
same manner.

c14.indd 409c14.indd 409 2/28/2012 4:23:12 PM2/28/2012 4:23:12 PM

McClure c14.indd V5 - 02/15/2012

410 x CHAPTER 14 INTERNATIONALIZATION AND LOCALIZATION

LOCALIZATION SERVICES

It is always a good idea to have a person who is fl uent in your target language as
well as familiar with any specifi c regional dialects that you choose to support.
Although many developers tend to be multilingual in a programming sense, it is
often diffi cult to fi nd the resources to provide translations for your application text.
With that in mind, here are two good sources for translations:

 ‰ Localization services: Several sites online are dedicated to providing profes-
sional and detailed translation services for application developers as well as
numerous other professions. As with many services, their prices and quality of
service vary greatly.

 ‰ Local colleges: If your localization needs are minimal, colleges are an excellent
place to request assistance for localization services. For free or for a small cost,
college professors and classes often are happy to take on a small
translation project.

Direct translation services such as Google Translate or even word-to-word transla-
tions via dictionaries are never a good idea. These services have their place, but
they frequently make mistakes in connotation and proper sentence structure.

ADVANCED USAGE OF STRINGS.XML

Because we have extensively covered the basic usage of the Strings.xml fi le, you can incorporate
a few additional features to make the process of localization much easier. This section summarizes
these special usages.

String Array

Within Strings.xml, you can specify an array of strings that can be used for binding to list-type
controls. For the most part, this practice should be reserved for displaying data that is completely
static. Here’s the syntax for defi ning an array of strings:

<string-array name=”NameArray”>
 <item>Nathan</item>
 <item>Crystal</item>
 <item>Kitara</item>
</string-array>

In your application code, you can access this array via the special Resources class by using
Resource.Array.NameArray and binding it to the appropriate property on a listing control.

Plurals

In many applications, developers fi nd themselves in situations where they need a way to program-
matically handle the usage of plurals in their response text. One example is in search results where
you specify how many results were found. Although it is acceptable to use “(s)” to indicate a

c14.indd 410c14.indd 410 2/28/2012 4:23:13 PM2/28/2012 4:23:13 PM

McClure c14.indd V5 - 02/15/2012

Advanced Usage of Strings.xml x 411

potential plural noun, the plurals feature of Strings.xml can allow you to handle these situations
with greater fi nesse.

By using the plurals section in the Strings.xml fi le, you can specify different messages to a single
string key based on whether there are one or many results. The syntax for using this feature is as
follows:

<plurals name=”BookSearchResults”>
 <item quantity=”one”>Your search found only one book.</item>
 <item quantity=”other”>Your search found many books! Hooray!</item>
</plurals>

In this case, the quantity attribute of the item node has only two valid values. As you might guess,
one refers to when you have only a single item in the plural, and other refers to having many
results. To use this feature in code, you simply have to access the special Resource class in conjunc-
tion with the application instance of the Resources class. Here’s an example of its usage:

List<Book> BooksQuery = GetAllBooksInDatabase();
string ResultsMessage = Resources.GetQuantityString
 (Resource.plurals.BookSearchResults, BooksQuery.Count);

String Replacements

Working with dynamic strings is always a challenge, especially in localization scenarios. In many
cases, programmers fi nd themselves having to juggle several banks of intersecting strings to provide
full dynamic support. In situations like this, it is best to leverage the framework’s string-replacement
functions to do as much work as possible for you.

Imagine that you need to create a simple, localized number-counting application that returns a
localized string in conjunction with a text version of a specifi c number. In this case, you need to sup-
port only the integers 1, 2, and 3.

In a Mono for Android application (or picking up from Localization03), add the following values
to the appropriate Strings.xml fi le. These values represent the string values of the dynamic number
text you want to display.

ADDED TO /RESOURCES/VALUES/STRINGS.XML

<string-array name=”NumberArray”>
 <item>one</item>
 <item>two</item>
 <item>three</item>
</string-array>

ADDED TO /RESOURCES/VALUES-ES/STRINGS.XML

<string-array name=”NumberArray”>
 <item>una</item>
 <item>dos</item>
 <item>tres</item>
</string-array>

With these strings in place, you can create a response string in Strings.xml that is preset to
leverage .NET’s string-replacement tools. In C#, you can accomplish string replacement via the

c14.indd 411c14.indd 411 2/28/2012 4:23:13 PM2/28/2012 4:23:13 PM

McClure c14.indd V5 - 02/15/2012

412 x CHAPTER 14 INTERNATIONALIZATION AND LOCALIZATION

String.Format() static string. By using the proper index syntax, such as {0}, you can identify locations
in a template string that are to be dynamically replaced. In showing the logic for localizing the counting
response string, the following example adds localized text that will be used for the counting button itself.

ADDED TO /RESOURCES/VALUES/STRINGS.XML

<string name=”CountButtonText”>Count to three...</string>
<plurals name=”CountingResponse”>
 <item quantity=”one”>You have counted {0} time.</item>
 <item quantity=”other”>You have counted {0} times!</item>
</plurals>

ADDED TO /RESOURCES/VALUES-ES/STRINGS.XML

<string name=”CountButtonText”>Cuente hasta tres...</string>
<plurals name=”CountingResponse”>
 <item quantity=”one”>Usted ha contado {0} vez.</item>
 <item quantity=”other”>Se han contado {0} veces!</item>
</plurals>

As you can see, we have not only added support for a dynamic string, but we have also leveraged plurals
to localize the conversion from singular to multiple items. Using logic much like the previous plurals
example, we can easily support multiple localization scenarios with a little confi guration.

Next, we need to update the Resources/Layout/Main.axml by adding a button that will initiate
the counting process. Within the fi le, create a button with an ID of @+id/btnNumberCounter and
then set its text value to the appropriate string resource. When complete, the button text should look
something like the following snippet:

<Button android:id=”@+id/btnNumberCounter”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”@string/CountButtonText”/>

Finally, add the appropriate logic to the button’s CLICK event that will display a Toast message,
indicating the number of clicks that have transpired. The code to do this is as follows:

protected override void OnCreate(Bundle bundle)
{
 base.OnCreate(bundle);

 // Set our view from the “Main” layout resource
 SetContentView(Resource.Layout.Main);

 // Get our buttons from the layout resource,
 // and attach an event to it
 Button HelloButton = FindViewById<Button>(Resource.Id.HelloButton);
 HelloButton.Click += delegate {
 Toast.MakeText(this, Resource.String.Hello, ToastLength.Long).Show(); };

 Button GoodbyeButton = FindViewById<Button>(Resource.Id.GoodbyeButton);
 GoodbyeButton.Click += delegate {
 Toast.MakeText(this, Resource.String.Goodbye, ToastLength.Long).Show(); };

 Button NumberCounter = FindViewById<Button>(Resource.Id.btnNumberCounter);

c14.indd 412c14.indd 412 2/28/2012 4:23:13 PM2/28/2012 4:23:13 PM

McClure c14.indd V5 - 02/15/2012

Advanced Usage of Strings.xml x 413

 NumberCounter.Click += delegate { DisplayNumberCounterToastMessage(); };
}

public int NumberOfPresses = 0;

public void DisplayNumberCounterToastMessage()
{
 String[] NumberArray = Resources.GetStringArray(Resource.Array.NumberArray);
 NumberOfPresses =
 NumberOfPresses == NumberArray.Length ? 1 : NumberOfPresses + 1;
 string Message = string.Format(Resources.GetQuantityString(Resource
 .Plurals.CountingResponse, NumberOfPresses), NumberArray.GetValue
 (NumberOfPresses - 1));

 Toast.MakeText(this, Message, ToastLength.Short).Show();
}

A working example of this code can be found in Localization04.

After this is added, the application displays the template message with the dynamic string
value whose index is equal to the NumberOfPresses variable. In addition, this same variable
is used to indicate whether or not to pluralize the template message. In this simple example,
the application resets the press counter to 1 when the NumberOfPresses variable is equal to the
array’s length.

Run the example and try it out in both languages. You should be greeted by the following screens
(Figure 14-9)!

FIGURE 1 4-9

c14.indd 413c14.indd 413 2/28/2012 4:23:13 PM2/28/2012 4:23:13 PM

McClure c14.indd V5 - 02/15/2012

414 x CHAPTER 14 INTERNATIONALIZATION AND LOCALIZATION

WORKING WITH FORMAT CONVERSIONS

Another step in the process of supporting other locales is to respect the user’s preference for dis-
played dates, times, and numbers. This can be critical in things such as date formats, where a format
can look similar in different locales but can have very different meanings.

Since Mono for Android uses the .NET Framework as its underlying technology, supporting these
custom formats is similar to the process of supporting them in any other .NET project. The big
bonus for you as a developer is that .NET knows the locale setting set in your Mono for Android
application. Consequently, a large chunk of your work is already handled in the framework.

Formatting Dates

Providing locale-aware dates in .NET is as simple as using the DateTime object. Consider the fol-
lowing code:

DateTime LocalizedDate = DateTime.Now.ToShortDateString();

Because you used the DateTime object to identify your date, the system automatically determines the best
way to display the date according to the locale settings of the Android device. Consequently, the code to
get a short date string is identical to the one you would use to access it in a non-localized code base.

One key thing to beware of is to make sure that you do not specify custom date
format strings in your code. Using the following code, your application will no
longer utilize your application’s localized settings, because you have specifi cally
instructed the .NET runtime how to format your date:

DateTime LocalizedDate = DateTime.Now.ToString(“dd-mm-yyyy”);

Formatting Numbers and Currency

Formatting numbers and currency in .NET is very similar to the process of formatting dates. Since
.NET can refl ect the local settings of your Android device, you can use the string object’s format
function to handle your formatting issues automatically. In the following code snippet, the given
number is formatted according to the region settings of the Android device:

double BigNumber = 1234567890.11;
string FormattedNumber = String.Format(“{0:N}”, BigNumber);

// This same formatting can be achieved in an object’s ToString() method.
string FormattedNumber = BigNumber.ToString(“N”)

Depending on your locale settings, you will see varying results. Table 14-3 shows what the results
would look like in a few different locale settings.

c14.indd 414c14.indd 414 2/28/2012 4:23:14 PM2/28/2012 4:23:14 PM

McClure c14.indd V5 - 02/15/2012

Summary x 415

TABLE 14-3: Number Formatting Results

LOCALE RESULT

en-US 1,234,567,890.11

fr-FR 1 234 567 890,11

es-ES 1.234.567.890,11

In the code example, we told the framework the kind of number formatting we wanted by using a
basic number formatting specifi er. In this case, we used the N specifi er, which means that we wanted
our number to be a general number with separators. In addition to this specifi er, several others in
.NET can be used to defi ne different types of number formats. Table 14-4 shows many of the com-
mon specifi ers used for localization purposes.

TABLE 14-4: String Number Specifi ers

SPECIFIER TYPE

C Currency

D Decimal

N Number with commas

E Scientifi c number

F Fixed-point number

G General number

SUMMARY

The Android OS has become one of the large players in the mobile marketplace. People around the
world are being exposed to the Android Market as the offi cial centralized location for reviewing,
purchasing, and downloading Android applications. Therefore, it is critical for an Android devel-
oper to support as many potential customers as possible via localization.

Additionally, the process of localizing your application gives you separation of concerns, makes
updates easier to manage, and is as simple a process as any other approach. By proactively localiz-
ing your application, you will prepare yourself for an easier development experience while enabling
yourself to target a broader audience.

c14.indd 415c14.indd 415 2/28/2012 4:23:14 PM2/28/2012 4:23:14 PM

c14.indd 416c14.indd 416 2/28/2012 4:23:14 PM2/28/2012 4:23:14 PM

15
Sharing Code between Mono
for Android, MonoTouch,
and Windows Phone 7

WHAT’S IN THIS CHAPTER?

 ‰ Understanding the mobile platforms

 ‰ Using class libraries on diff erent platforms

 ‰ One class library to rule them all

 ‰ Building an application that shares code

This chapter guides you through the popular mobile platforms and shows you how you can
leverage your .NET and C# skills to develop for each platform. You also will discover how you
can share code between these platforms and the possibilities of using one assembly across all
three platforms.

To fi nish the chapter, you will create a sample application that will work across these
platforms, learning about interesting differences as you go along.

OVERVIEW OF THE THREE PLATFORMS

You can potentially develop for many mobile platforms. The three platforms I am referring
to are iOS, Android, and Windows Phone 7. Why these three? You can develop on these
platforms using C# and the .NET framework: MonoTouch for iOS, .NET on Windows Phone,
and Mono for Android on Android devices. Let’s delve into these platforms.

c15.indd 417c15.indd 417 2/28/2012 4:11:17 PM2/28/2012 4:11:17 PM

418 x CHAPTER 15 SHARING CODE BETWEEN MONO FOR ANDROID, MONOTOUCH, AND WINDOWS PHONE 7

Mono for Android

The Mono for Android default project structure should be
relatively familiar to you now, since you likely have been working
with Mono for Android through the book. Figure 15-1 shows
the default project structure. You can see that you have mscorlib,
System, System.Core, System.Xml, and System.Xml.Linq
assemblies all included by default. As well as these assemblies,
you have a Mono.Android assembly, which contains all the
bindings to the Android APIs.

By default, Mono for Android project structures also include an
Assets folder and a Resources folder. The Assets folder is the place
where you may store fi les, such as audio fi les, to be used in your
application. The Resources folder contains three other folders
(Drawable, Layout, and Values) and a Resource.designer.cs
fi le. You should be familiar with these different fi les and folders
after working through this book.

With this default project structure, you also get an Activity1.cs fi le, which sets up a main
launching activity for your application. This means that you can simply press Run on your
project, and it will build and run straight through to the Android emulator without any other
confi guration.

MonoTouch

In 2009, MonoTouch was released, which was a set of tools allowing .NET developers to develop
for the iPhone and iPod Touch. This wasn’t a way to port over Silverlight applications to run on
these devices. Instead, it was a way to develop against the iPhone SDK in a familiar way by using the
.NET framework and the C# language. To be able to develop on these devices, you need a machine
running Mac OS X. This steps up the barrier of entry somewhat compared to having integration
directly into a more familiar environment with Visual Studio.

The bindings for MonoTouch work by directly calling into the iOS SDK for iOS-specifi c APIs (such
as UI controls). MonoTouch also spins up the Mono framework and runs all .NET code through
this from C# code compiled into ARM code. This means that .NET developers can use the familiar
APIs and syntax from the .NET framework and C# programming language while being able to take
full advantage of the iOS infrastructure.

Figure 15-2 shows the default project structure of a
MonoTouch application. As you can see, the default
System, System.Core, and System.Xml assemblies are
included in our application. Comparing this to Figure
15-1, which is the Mono for Android default proj-
ect structure, you see these are common across both
platforms. They differ in that MonoTouch includes
a MonoTouch.dll reference, and Mono for Android
includes a Mono.Android.dll reference.

FIGURE 15-1

FIGURE 15-2

c15.indd 418c15.indd 418 2/28/2012 4:11:20 PM2/28/2012 4:11:20 PM

Overview of the Three Platforms x 419

These two assemblies differ on both projects because MonoTouch.dll targets the iOS APIs and
Mono.Android.dll targets the Android APIs.

Figure 15-2 also shows a Main.cs fi le, AppDelegate.cs fi le with MonoTouchApp1ViewController
.cs, and MonoTouchApp1ViewController.designer.cs and MonoTouchApp1ViewController.
xib fi les. Because MonoTouch applications are invoked through the UIApplication call, the Main
fi le manages this, then goes into the AppDelegate.cs fi le to manage any custom displaying of views.
Mono for Android has the concept of Activities. Handling an application’s loading is deferred to
an Activity, so by default your Activity1.cs fi le manages this application’s launch (as long as it is
declared with the MainLauncher attribute as true in the Activity attribute).

MonoTouch uses a UIWindow as the fi rst view of the application, and then multiple views are
loaded onto the window and pushed and popped as the application is built. This is why the
UIWindow window property is initialized. This is very different in Android, as you have learned
throughout this book. Hence the extra Resources folder, which handles how a view is laid out and
displayed.

Just like Mono for Android, MonoTouch integrates with the iOS tools that a developer using
Objective-C would use. This allows the developer to use the real iPhone/iPad simulator to get the
same experience. This of course means that MonoTouch can easily integrate when a new platform
comes out (such as the iPad device) and can continue to use the native tools. With MonoTouch,
working in Visual Studio is possible, but only to write and compile code. You can’t run your
MonoTouch application through Visual Studio; this requires a Mac machine and the iOS SDK to
work with it.

Sometimes while doing iOS development, you might need to solve a problem that you can’t quite
work out with the provided iOS APIs. You would ask the question on Stack Overfl ow, and an
Objective-C developer would answer your MonoTouch question. Because the two are so closely tied
together, it is easy to translate an Objective-C answer into a MonoTouch one.

The core libraries on the .NET side are the same as the ones that Mono for Android provides. This
means that if you have any business logic code in a MonoTouch application, it should be easy to
move over the code and reuse it on Mono for Android applications. This approach comes with some
caveats, though, as explored further throughout this chapter.

Windows Phone 7

Windows Phone 7 is the development platform that allows developers to develop in C# and the
.NET framework. Since the platform is tightly integrated with Silverlight, Visual Studio, and
Expression Blend, a developer can easily reuse his or her existing skills in a familiar environment,
especially if he or she has developed using the Silverlight toolset before.

The Windows Phone 7 default project, shown in Figure 15-3, contains many references to assem-
blies, including mscorlib, System, System.Core, and System.Xml; these are the same as the Mono
for Android references. As well, you will see Microsoft.Phone and Microsoft.Phone.Interop.
These two assemblies are the phone-specifi c APIs that you can use when programming against the
Windows Phone 7 platform. Another assembly that is included in the application that isn’t included
by default with Mono for Android is System.Windows. Since Windows Phone 7 makes heavy use of
Silverlight APIs, these are mostly covered in this assembly. They include things such as Sliders,

c15.indd 419c15.indd 419 2/28/2012 4:11:20 PM2/28/2012 4:11:20 PM

420 x CHAPTER 15 SHARING CODE BETWEEN MONO FOR ANDROID, MONOTOUCH, AND WINDOWS PHONE 7

Grids, Buttons, and other non-UI-specifi c classes such as
Observable Collections and Dispatcher to handle
multithreading (similar to the RunOnUIThread method
in Mono for Android).

The Windows Phone 7 project also contains three default
images that are used for the ApplicationIcon, the Tile icon
for the application (when it is pinned on the home screen), and
the splash screen for displaying when the application loads.
The other two fi les are .xaml fi les. App.xaml is the fi le that
is fi rst hit when the application loads and is where the setup
of the fi rst page is initialized. By default, this is set to load the
MainPage.xaml fi le, which is autocreated and set up with the
application name and page name. By default, the application
name isn’t set to a string that can be changed in a String.xml
fi le, as with Mono for Android. It is instead just hard-coded.

When you install the Windows Phone developer tools, the
program installs a Windows Phone Simulator. It has limited
functionality compared to a real device and is similar to the
iPhone simulator. Because it is a simulator, the performance can be much better or much worse than
when the application is run on a device.

Because the .NET framework is part of the Windows Phone OS, applications can be very
small — minimal to the point that an application can be around 15KB. In contrast, a compressed
MonoTouch application is about 4MB. With today’s 3G speeds and easy access to WiFi, 4MB isn’t
much of a problem.

USING CLASS LIBRARIES TO SEPARATE THE CODE

Class libraries exist so that you can create reusable code to use across multiple projects. Most of
the time, these libraries are used across the same type of project (such as a web application proj-
ect). Since we’re talking about sharing with multiple devices, unfortunately this also means that
class libraries exist for each of the different platforms, so a different class library is needed for
MonoTouch, Mono for Android, and Windows Phone 7.

It’s time to take a deeper look at each of the class libraries and what they have to offer each
platform.

Using Preprocessor Directives

Preprocessor directives allow you to selectively compile sections of code according to predefi ned
constants in the build confi guration for that project. This generally gives you code that looks like
the following:

#if DEBUG
 var email = “debug@example.com”;
#elif
 var email = “live@example.com”;
#endif

FIGURE 15-3

c15.indd 420c15.indd 420 2/28/2012 4:11:20 PM2/28/2012 4:11:20 PM

Using Class Libraries to Separate the Code x 421

Since you are sometimes going to need to include platform-specifi c code, this can come in useful when
targeting code that works on one platform and not another. Constants (known as conditional compilation
symbols) are defi ned in PropertyGroups in your csproj fi le under the Defi neConstants tag; the following
sections will tell you what constants you should use for these for each platform and how to use them.

Mono for Android

In Mono for Android class libraries, the csproj fi le uses the following project type GUIDs:

<ProjectTypeGuids>{EFBA0AD7-5A72-4C68-AF49-83D382785DCF};
 {FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}</ProjectTypeGuids>

EFBA0AD7-5A72-4C68-AF49-83D382785DCF is the important GUID to remember because it signifi es
a Mono for Android class library project. FAE04EC0-301F-11D3-BF4B-00C04F79EFBC indicates that
this is a Windows C# project.

Also import the following line:

<Import Project=”$(MSBuildExtensionsPath)\Novell\Novell.MonoDroid.CSharp.targets”
 />

to ensure that Visual Studio knows how to build the project.

Although there is no default preprocessor directive that you should use for a Mono for Android
project, it would be safe to assume that MONOANDROID would be fi ne. You can add this to all your
PropertyGroups like so:

<DefineConstants>DEBUG;TRACE;MONOANDROID</DefineConstants>

or you can use the GUI to set the conditional compilation symbols for you, which ends up producing
the same csproj settings as editing the csproj directly. This is shown in Figure 15-4.

FIGURE 15-4

Windows Phone 7

Similar to the Mono for Android class library, the Windows Phone 7 class library has its own proj-
ect type GUID too:

<ProjectTypeGuids>{C089C8C0-30E0-4E22-80C0-CE093F111A43};
{fae04ec0-301f-11d3-bf4b-00c04f79efbc}</ProjectTypeGuids>

and it also uses the same Windows C# project GUID.

c15.indd 421c15.indd 421 2/28/2012 4:11:20 PM2/28/2012 4:11:20 PM

422 x CHAPTER 15 SHARING CODE BETWEEN MONO FOR ANDROID, MONOTOUCH, AND WINDOWS PHONE 7

The class library also has a few Silverlight/Windows Phone 7–specifi c items, but you don’t need to
worry about them when trying to use your class libraries across different platforms.

Similar to the Mono for Android project, the Windows Phone 7 class library imports two targets:

<Import Project=”$(MSBuildExtensionsPath)\Microsoft\
Silverlight for Phone\$(TargetFrameworkVersion)\
Microsoft.Silverlight.$(TargetFrameworkProfile).Overrides.targets” />

<Import Project=”$(MSBuildExtensionsPath)\Microsoft\Silverlight for Phone\
$(TargetFrameworkVersion)\Microsoft.Silverlight.CSharp.targets” />

The class library uses SILVERLIGHT and WINDOWS_PHONE as the default conditional compilation
symbols.

MonoTouch

Like the previous two class libraries, MonoTouch comes with its own GUID. Aside from that, the
Mono for Android and MonoTouch class libraries are the same.

<ProjectTypeGuids>{6BC8ED88-2882-458C-8E55-DFD12B67127B};
{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}</ProjectTypeGuids>

MonoTouch class libraries include the following line:

<Import Project=”$(MSBuildBinPath)\Microsoft.CSharp.targets” />

to allow for these to be built with MSBuild.

Like the Mono for Android class library, the MonoTouch library doesn’t use a default conditional
compilation symbol, but it has been commonplace to use MONOTOUCH as a conditional compilation
symbol for MonoTouch projects.

Now that you know the subtle differences between the three class library projects, you are ready to
take a deeper look at the code libraries they provide.

ASSEMBLIES AVAILABLE ON EACH PLATFORM

Table 15-1 lists the default assembly references that are available to each of the different class librar-
ies. Most of these are available across platforms, and others are just available for MonoTouch and
Mono for Android. For example, System.Core and System.Xml are supported on all three plat-
forms. So is every method available on each profi le? Sadly, this is not the case.

TABLE 15-1: Assembly Availability on Mobile Platforms

ASSEMBLY MONOTOUCH MONO FOR ANDROID WINDOWS PHONE 7

mscorlib Yes Yes Yes

System Yes Yes Yes

System.Core Yes Yes Yes

c15.indd 422c15.indd 422 2/28/2012 4:11:20 PM2/28/2012 4:11:20 PM

Assemblies Available on Each Platform x 423

ASSEMBLY MONOTOUCH MONO FOR ANDROID WINDOWS PHONE 7

System.Data Yes Yes No

System.Json Yes Yes No

System.Runtime.

Serialization

Yes Yes Yes

System.ServiceModel Yes Yes Yes

System.ServiceModel.Web Yes Yes Yes

System.Transactions Yes Yes No

System.Web.Services Yes Yes No

System.Xml Yes Yes Yes

System.Xml.Linq Yes Yes Yes

System.Device No No Yes

System.Observable No No Yes

System.Windows No No Yes

Although some assemblies are not included in the profi le for a specifi c platform, such as System
.Json, you can still use this assembly by directly referencing it from the Silverlight assemblies. The
fi nal section of this chapter has an example.

There is a disconnect between platforms because certain things are either restricted or simply
unavailable on the targeted platform. If you plan to write code to target multiple platforms, you
need to be aware of this. For example, let’s focus on the File class in the System.IO namespace,
which is part of the mscorlib assembly.

A common method you may use when doing fi le access with .NET is the ReadAllText method. This
method takes a string path to a fi le and an optional encoding type. Since MonoTouch and Mono for
Android use the same common code across these two platforms, we can assume that this method
will exist on both platforms.

When you go to reuse this code on Windows Phone 7, you will quickly realize that this method
doesn’t exist on this platform. You might worry about how you need to reimplement code that
exists on the .NET platform — not an easy task. Luckily the Mono project team has done this
for you — hence, the Mono framework allowing this functionality. What you can do is go to the
repository for the Mono code on GitHub at https://github.com/mono/mono/blob/master/mcs/
class/corlib/System.IO/File.cs and navigate to the code to do this.

Listing 15-1 displays the source code for the missing ReadAllText method.

c15.indd 423c15.indd 423 2/28/2012 4:11:21 PM2/28/2012 4:11:21 PM

424 x CHAPTER 15 SHARING CODE BETWEEN MONO FOR ANDROID, MONOTOUCH, AND WINDOWS PHONE 7

LISTING 15-1: The System.IO.File class displaying code for ReadAllText

//
// System.IO.File.cs
//
// Authors:
// Miguel de Icaza (miguel@ximian.com)
// Jim Richardson (develop@wtfo-guru.com)
// Dan Lewis (dihlewis@yahoo.co.uk)
// Ville Palo (vi64pa@kolumbus.fi)
//
// Copyright 2002 Ximian, Inc. http://www.ximian.com
// Copyright (C) 2001 Moonlight Enterprises, All Rights Reserved
// Copyright (C) 2004, 2006, 2010 Novell, Inc (http://www.novell.com)
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the
// “Software”), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to
// the following conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//

public static string ReadAllText (string path)
{
 using (StreamReader sr = new StreamReader (path)) {
 return sr.ReadToEnd ();
 }
}

public static string ReadAllText (string path, Encoding encoding)
{
 using (StreamReader sr = new StreamReader (path, encoding)) {
 return sr.ReadToEnd ();
 }
}

File.cs

This is nothing more than a convenience method around a StreamReader. However, it makes a big
difference when simple methods are not easily reusable across platforms. You will also notice that
WriteAllText is missing from the System.IO.File class. Again, you grab the code you need and use it
with your Windows Phone 7 projects as well as your MonoTouch and Mono for Android projects.

c15.indd 424c15.indd 424 2/28/2012 4:11:21 PM2/28/2012 4:11:21 PM

One Class Library to Rule Them All x 425

ONE CLASS LIBRARY TO RULE THEM ALL

Shouldn’t this be easier? Shouldn’t you just be able to compile one assembly and have it run every-
where? You can — sort of.

The Portable Library Tools aim to allow the reuse of code from one assembly but provides a
base set of APIs that will work across multiple platforms, whether those are .NET, Silverlight,
Xbox 360, or Silverlight for Windows Phone 7 projects. It does this by providing a limited
subset of the .NET framework that is almost guaranteed to exist on each of the platforms just
mentioned and that is most likely to exist on other platforms such as MonoTouch and Mono for
Android.

You can fi nd the portable library tools at http://bit.ly/portablelibrarytools

To see a good example of this, you can take a look at a sample application that converts an
alphanumeric telephone number into a regular telephone number. For example, the number
1-888-0CHRISNTR would translate into 1-888-024747687.

To integrate this library, fi rst you create a new portable library class project. You create a static
class with a single public method that returns the converted number as a string. For clarity reasons,
Listing 15-2 displays the class that you will want to use in the portable library.

LISTING 15-2 The telephone converter class

using System.Text;

namespace TelephoneConverter
{
 public static class TelephoneStringConverter
 {
 public static string ConvertEntryToNumber(string rawTelephoneString)
 {
 var newNumber = new StringBuilder();
 var trimmedAndReplacedTelephone =
rawTelephoneString.Trim().ToUpperInvariant().Replace(“-”, “”);
 foreach (var c in trimmedAndReplacedTelephone)
 {
 var result = ExtractNumberFromLetter(c);
 if (result == null)
 newNumber.Append(c);
 else
 newNumber.Append(result);
 }
 return newNumber.ToString();
 }

 static int? ExtractNumberFromLetter(char c)
 {
 if (c >= ‘A’ && c <= ‘C’)

continues

c15.indd 425c15.indd 425 2/28/2012 4:11:21 PM2/28/2012 4:11:21 PM

426 x CHAPTER 15 SHARING CODE BETWEEN MONO FOR ANDROID, MONOTOUCH, AND WINDOWS PHONE 7

 {
 return 2;
 }
 else if (c >= ‘D’ && c <= ‘F’)
 {
 return 3;
 }
 else if (c >= ‘G’ && c <= ‘I’)
 {
 return 4;
 }
 else if (c >= ‘J’ && c <= ‘L’)
 {
 return 5;
 }
 else if (c >= ‘M’ && c <= ‘O’)
 {
 return 6;
 }
 else if (c >= ‘P’ && c <= ‘S’)
 {
 return 7;
 }
 else if (c >= ‘T’ && c <= ‘V’)
 {
 return 8;
 }
 else if (c >= ‘W’ && c <= ‘Z’)
 {
 return 9;
 }
 return null;
 }
 }
}

TelephoneConverter\TelephoneConverter\TelephoneStringConverter.cs

The implementation of the logic is not the important part of the class. The important point is
to notice that the implementation only relies on the StringBuilder class in System.Text (and
mscorlib). When you now build the project, you see TelephoneConverter.dll in the bin
folder. This assembly can now be moved to the platform-specifi c application and referenced as an
assembly.

Now you need to build the UI-specifi c logic for each platform. For this you can just use a text box
and a clickable button and then display the result in an alert.

Mono for Android

With Mono for Android, you use a Button and an EditBox to interact with the portable library
project. You can then use an AlertDialog and associated builder to display the result to the user.

LISTING 15-2 (continued)

c15.indd 426c15.indd 426 2/28/2012 4:11:22 PM2/28/2012 4:11:22 PM

One Class Library to Rule Them All x 427

Most of the UI work is declared in the layout. Listing 15-3 displays the code that invokes the
shared code.

LISTING 15-3: Convert code implemented in a Mono for Android application

Button button = FindViewById<Button>(Resource.Id.MyButton);
EditText textBox1 = FindViewById<EditText>(Resource.Id.TextBox1);

button.Click += delegate
{
 if (!String.IsNullOrEmpty(textBox1.Text.ToString()))
 {
 var result =
 TelephoneConverter.TelephoneStringConverter.
 ConvertEntryToNumber(textBox1.Text.ToString());
 new AlertDialog.Builder(this).
 SetMessage(result).
 SetNeutralButton(“Ok”, delegate {}).Show();
 }
 else
 {
 new AlertDialog.Builder(this).
 SetMessage(“No number entered”).
 SetNeutralButton(“Ok”, delegate { });
 }
};

TelephoneConverter\MonoDroidTelephone\Activity1.cs

Most of the UI work can be found in the Main.axml fi le, so make sure you download the sample
project to see this example running in full. Figure 15-5 shows the result on the emulator.

FIGURE 15-5

c15.indd 427c15.indd 427 2/28/2012 4:11:22 PM2/28/2012 4:11:22 PM

428 x CHAPTER 15 SHARING CODE BETWEEN MONO FOR ANDROID, MONOTOUCH, AND WINDOWS PHONE 7

You can download relevant code from this chapter at this book’s website at
www.wrox.com. The Telephone Converter Mono for Android code project can be
found at TelephoneConverter\MonoDroidTelephone\MonoDroidTelephone.sln
in this chapter’s code download.

MonoTouch

You will fi nd that the MonoTouch sample doesn’t differ much from the Mono for Android version.
Just like the Mono for Android version, you need to add in the portable library project assembly and
reference it. After referencing the assembly you only have to use one line to call your portable library
project’s static class, and then you use the native alert method on the platform to display the converted
number. With the MonoTouch solution, again you can set up the UI mostly in Interface Builder (which
is part of Xcode). Download the sample project to see the code running for the MonoTouch example.
(You need a Mac to run this example and the evaluation version of MonoTouch.)

Listing 15-4 shows the code needed to handle the TouchUpInside method (the equivalent Click
method on a button in MonoTouch) and display the MonoTouch native alert message with the con-
verted number.

LISTING 15-4: Convert code implemented in a MonoTouch application

button.TouchUpInside += (sender, e) => {
 if (!String.IsNullOrEmpty(textBox1.Text.ToString()))
 {
 var result = TelephoneConverter.TelephoneStringConverter.
 ConvertEntryToNumber(textBox1.Text.ToString());
 var alert = new UIAlertView(“Call”, result, null, “Ok!”, null);
 alert.Show();
 }
 else
 {
 var alert = new UIAlertView(“Oops”, “No Number entered”, null, “Ok!”,
 null);
 alert.Show();
 }
};

TelephoneConverter\MonoTouchTelephone\MonoTouchTelephoneViewController.cs

Figure 15-6 shows the application running and successfully converting the telephone number.

You can download the relevant code from this chapter at this book’s website
at www.wrox.com. The Telephone Converter MonoTouch code project can be
found at TelephoneConverter\MonoTouchTelephone\MonoTouchTelephone
.sln in this chapter’s code download.

c15.indd 428c15.indd 428 2/28/2012 4:11:22 PM2/28/2012 4:11:22 PM

One Class Library to Rule Them All x 429

FIGURE 15-6

Windows Phone 7

In Windows Phone 7, again you just copy over the portable library assembly and get the project to
reference it. Most of the display is generated in the designer service, so you only need to hook up the
button click event in code. The button click event is shown in Listing 15-5.

LISTING 15-5: Windows Phone 7 implementation

private void button1_Click(object sender, RoutedEventArgs e)
{
 if(!String.IsNullOrEmpty(textBox1.Text))
 {
 var result = TelephoneConverter.TelephoneStringConverter.
 ConvertEntryToNumber(textBox1.Text);
 MessageBox.Show(result);
 }
 else
 {
 MessageBox.Show(“No number entered”);
 }
}

TelephoneConverter\WP7Telephone\MainPage.xaml.cs

When you enter text into the textbox and press the button, the phone number is converted, as
shown in the Windows Phone 7 emulator in Figure 15-7.

c15.indd 429c15.indd 429 2/28/2012 4:11:23 PM2/28/2012 4:11:23 PM

430 x CHAPTER 15 SHARING CODE BETWEEN MONO FOR ANDROID, MONOTOUCH, AND WINDOWS PHONE 7

FIGURE 15-7

You can download the relevant code from this chapter at this book’s website at
www.wrox.com. The Telephone Converter Windows Phone 7 code project can be
found at TelephoneConverter\WP7Telephone\ WP7Telephone.sln in this chap-
ter’s code download.

You should never use a MessageBox in a real Windows Phone 7 application,
because it is a blocking method and will cause your application to close.

Looking deeper into the Portable Library Tools, you will fi nd that the tools don’t support
XmlDocument, System.Linq.Xml, and many more commonly used .NET classes. This is done to
enable a core base that will cover the widest spread of platforms, although this makes it harder to
reuse code that uses unsupported code.

The Portable Library Tools really do make your code portable. But the library’s current limited
nature makes it hard to use the library to solve more complex code reuse, so knowing how to share
source fi les across these platforms is useful. The Portable Library Tools are defi nitely something to
keep an eye on as the project’s iterations keep coming.

c15.indd 430c15.indd 430 2/28/2012 4:11:24 PM2/28/2012 4:11:24 PM

Putting It All Together: Creating a Cross-Platform Application x 431

PUTTING IT ALL TOGETHER: CREATING A CROSS-PLATFORM

APPLICATION

At the moment, creating reusable code across Mono for Android, MonoTouch, and Windows Phone
7 with the Portable Library Tools probably won’t work for a lot of tasks, because the portable
library contains only the underlying core .NET assemblies with limited functionality. So to create a
cross-mobile platform application, this section gets into what you need to do.

To show an example of an application that shares code and also works on the three platforms
mentioned near the beginning of this chapter, I have developed a relatively straightforward Twitter
application. When the user enters a username, the application returns a list of tweets for that user.

To start the application, you will just create a new Windows Phone 7 application. From there you
can create a Windows Phone 7 class library and then share the code across the different class librar-
ies and rewrite the UI to work on Mono for Android and MonoTouch.

In the Windows Phone 7 class library, you create a generic Tweet.cs class that contains your
Twitter data. You also create a TwitterReceiver.cs class, which is a static method to go off to the
Twitter API. Then you parse the JSON results and pass them back to whatever called the method.
Listing 15-6 shows the code that will be reused in each of the applications. It’s worth noting that
this code uses the Silverlight System.Json assembly reference to parse the JSON result.

LISTING 15-6: The GetTweetsForUser implementation

public static void GetTweetsForUser
 (string userName, Action<List<Tweet>> actionResult)
{
 var client = new WebClient();
 client.DownloadStringCompleted += (s, e) =>
 {
 var listOfTweets = new List<Tweet>();
 if (e.Error != null)
 {
 actionResult(listOfTweets);
 }
 else
 {
 var jsonResults = JsonValue.Parse(e.Result);
 if (jsonResults != null)
 {
 foreach (JsonValue item in jsonResults[”results”])
 {
 var text = HttpUtility.HtmlDecode(item[”text”]);
 var user = HttpUtility.HtmlDecode(item[”from_user”]);
 var profileImage =
 HttpUtility.HtmlDecode(item[“profile_image_url”]);
 listOfTweets.Add(new Tweet() {
 FromUser = user,

continues

c15.indd 431c15.indd 431 2/28/2012 4:11:25 PM2/28/2012 4:11:25 PM

432 x CHAPTER 15 SHARING CODE BETWEEN MONO FOR ANDROID, MONOTOUCH, AND WINDOWS PHONE 7

 ProfileImageUrl = profileImage, Text = text
 }
);
 }
 }
 actionResult(listOfTweets);
 }
 };
 client.DownloadStringAsync(new
 Uri(String.Format(“http://search.twitter.com/
 search.json?q=from:{0}”, userName)));
}

TwitterUser\WindowsPhoneTwitter\TwitterHelper\TwitterReceiver.cs

To build the UI for the Twitter application on Windows Phone 7, you can use simple XAML code
to add a bindable UI and then use the code-behind to gather data for it to display. You can use a
ListBox to do this with a data template, which uses a stack panel to lay out content. The XAML
looks like Listing 15-7.

LISTING 15-7: XAML for laying out the UI on Windows Phone 7

<Button Content=”Search” Height=”72” HorizontalAlignment=”Left” Margin=”296,0,0,0”
 Name=”searchButton”
VerticalAlignment=”Top” Width=”160” Click=”SearchButtonClick” />

<TextBox Height=”72” HorizontalAlignment=”Left” Name=”userNameBox” Text=”chrisntr”
VerticalAlignment=”Top” Width=”290” />

<ListBox Name=”listBox1” Margin=”0,78,0,0” ItemsSource=”{Binding}”
DataContext=”{Binding}”>
 <ListBox.ItemTemplate>
 <DataTemplate>
 <StackPanel Orientation=”Horizontal” Height=”Auto”>
 <Image Source=”{Binding ProfileImageUrl}” Height=”73” Width=”73”
VerticalAlignment=”Top” Margin=”0,10,8,0”/>
 <StackPanel Width=”370”>
 <TextBlock Text=”{Binding FromUser}” Foreground=”#FFC8AB14”
FontSize=”28” />
 <TextBlock Text=”{Binding Text}” TextWrapping=”Wrap”
FontSize=”24” />
 </StackPanel>
 </StackPanel>
 </DataTemplate>
 </ListBox.ItemTemplate>
</ListBox>

TwitterUser\WindowsPhoneTwitter\WindowsPhoneTwitter\MainPage.xaml

You can see that you’re using the binding syntax to model against ItemsSource. In the code-behind
you call your class library and set the ItemsSource directly; there’s nothing much else to it. Since

LISTING 15-6 (continued)

c15.indd 432c15.indd 432 2/28/2012 4:11:25 PM2/28/2012 4:11:25 PM

Putting It All Together: Creating a Cross-Platform Application x 433

you’re looking for a click (or button press) when you want to load the new tweets, you hook onto
the Click event, as shown in Listing 15-8.

LISTING 15-8: The SearchButtonClick event

private void SearchButtonClick(object sender, RoutedEventArgs e)
{
 if(!String.IsNullOrEmpty(userNameBox.Text))
 {
 TwitterReceiver.GetTweetsForUser(userNameBox.Text, tweets =>
Dispatcher.BeginInvoke(() => listBox1.ItemsSource = tweets));
 }
}

TwitterUser\WindowsPhoneTwitter\WindowsPhoneTwitter\MainPage.xaml.cs

Since you’re going to be running the download method on a background thread, you need to use the
Dispatcher.BeginInvoke method to allow you to manipulate anything on the UI thread.

When you run the application, it should look something like Figure 15-8.

When you click Search, you should see something like Figure 15-9.

Again, you can download this example as part of the book’s code download
on ww.wrox.com. You can fi nd it in this chapter’s folder under the folder name
“TwitterUser,” which also includes the two projects that work with Mono for
Android and MonoTouch.

FIGURE 15-8 FIGURE 15-9

c15.indd 433c15.indd 433 2/28/2012 4:11:25 PM2/28/2012 4:11:25 PM

434 x CHAPTER 15 SHARING CODE BETWEEN MONO FOR ANDROID, MONOTOUCH, AND WINDOWS PHONE 7

To get a Mono for Android version running, you want to
create a Mono for Android project. Because the Mono for
Android project and the Windows Phone 7 projects are
incompatible, you will want to create solution folders to
split up the two kinds of projects. You can do this by
right-clicking the solution, selecting Add, and then selecting
New Solution Folder. Rename the existing solution folder
something relevant (I recommend “Windows Phone 7”),
and then move over the two Windows Phone 7 projects.
Create another solution folder for Mono for Android, and add a new Mono for Android project as
well as a new Mono for Android class library. This should leave you with something that looks like
Figure 15-10.

Since you want the Mono for Android project to use the same code you used in the Windows Phone
7 project, in your Mono for Android class library, add a reference to System.Json, as you would
have done with the Windows Phone 7 project. You then need to add “Existing fi le...” for each source
fi le used in the Windows Phone 7 class library. When you add the source fi les as existing fi les, you
need to make sure you add them via “Add As Link.” Figure 15-11 displays how this looks in Visual
Studio 2010. This means that instead of creating the fi le inside that folder, it just creates a link
directly back to the existing fi le.

FIGURE 15-11

The fi rst thing you should notice when building the new Mono for Android project is that it doesn’t
compile. This is because HttpUtility.HtmlDecode is included in the System.Windows assembly for

FIGURE 15-10

c15.indd 434c15.indd 434 2/28/2012 4:11:26 PM2/28/2012 4:11:26 PM

Putting It All Together: Creating a Cross-Platform Application x 435

Windows Phone 7. Recall that Mono for Android does not have a reference to System.Windows. To
resolve this issue, you can instead reference System.Web.Services, the location of System.Web.
HttpUtility on Mono for Android. Since you don’t want the Windows Phone 7 project to try and
resolve the System.Web namespace, you want to wrap it with the preprocessor directive to success-
fully get the application compiling. The snippet below shows how the using statements look for the
TwitterReceiver.cs fi le. (Note that you can add in MONOTOUCH and MONOANDROID, since the loca-
tion for the HttpUtility is the same on both platforms.)

using System;
using System.Collections.Generic;
using System.Json;
using System.Net;
#if MONOANDROID || MONOTOUCH
using System.Web;
#endif

To set up the UI, you need to modify the Main.axml fi le to include your EditText box and a search
Button with a ListView for displaying tweets. You should have something that looks like Listing 15-9.

LISTING 15-9: Mono for Android AXML for UI layout

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 >

<EditText android:id=”@+id/UserNameBox”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”chrisntr”
 />

<Button
 android:id=”@+id/SearchButton”
 android:layout_width=”fill_parent”
 android:layout_height=”wrap_content”
 android:text=”Search”
 />

<ListView
 android:id=”@+id/ListView”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 />
</LinearLayout>

TwitterUser\MonoDroidTwitter\MonoDroidTwitter\Resources\Layout\Main.axml

The other part of the UI you need to set up is the individual view for a row in the ListView. You
need to create a new .axml fi le that lays out a singular row and then binds against each value. This
row will contain two text fi elds and an ImageView to bind to, as shown in Listing 15-10.

c15.indd 435c15.indd 435 2/28/2012 4:11:27 PM2/28/2012 4:11:27 PM

436 x CHAPTER 15 SHARING CODE BETWEEN MONO FOR ANDROID, MONOTOUCH, AND WINDOWS PHONE 7

LISTING 15-10: View for a single item in a ListView

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:id=”@+id/widget28”
 android:layout_width=”fill_parent”
 android:layout_height=”80px”
>

<ImageView
 android:id=”@+id/imageItem”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:layout_gravity=”center_vertical”
/>

 <LinearLayout
 android:id=”@+id/linearText”
 android:layout_width=”wrap_content”
 android:layout_height=”fill_parent”
 android:orientation=”vertical”
 android:layout_marginLeft=”10px”
 android:layout_marginTop=”10px”
 >

 <TextView
 android:id=”@+id/textTop”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”TextView”
 />
 <TextView
 android:id=”@+id/textBottom”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”TextView”
 />
 </LinearLayout>
</LinearLayout>

TwitterUser\MonoDroidTwitter\MonoDroidTwitter\Resources\Layout\CustomListItem.axml

Since you don’t have any easy binding like you do in Windows Phone 7, you need to create a custom
adapter to display and bind this data. You want to create a custom array adapter to take the list and
display it accordingly. The array adapter is shown here:

public class TweetArrayAdapter : ArrayAdapter<Tweet>
{
 private readonly Activity _context;
 private readonly List<Tweet> _tweets;
 private readonly int _resource;

 public TweetArrayAdapter(Activity context, int resource, List<Tweet> tweets) :

c15.indd 436c15.indd 436 2/28/2012 4:11:27 PM2/28/2012 4:11:27 PM

Putting It All Together: Creating a Cross-Platform Application x 437

base(context, resource, tweets)
 {
 _resource = resource;
 _context = context;
 }

 public override View GetView(int position, View convertView, ViewGroup parent)
 {
 var item = GetItem(position);

 LinearLayout view;

 if (convertView == null)
 view = (LinearLayout)
 _context.LayoutInflater.Inflate(_resource, parent, false);
 else
 view = (LinearLayout) convertView;

 //Find references to each subview in the list item’s view
 var imageItem = view.FindViewById(Resource.Id.ImageItem) as ImageView;
 var textTop = view.FindViewById(Resource.Id.TextTop) as TextView;
 var textBottom = view.FindViewById(Resource.Id.TextBottom) as TextView;

 // Get image...
 var path = System.Environment.GetFolderPath
 (System.Environment.SpecialFolder.Personal);

 if (!Directory.Exists(String.Format(“{0}/twitter-images”, path)))
 Directory.CreateDirectory(String.Format(“{0}/twitter-images”, path));

 string file =
 String.Format(“{0}/twitter-images/{1}.jpg”, path, item.FromUser);

 if (System.IO.File.Exists(file))
 imageItem.SetImageURI(Android.Net.Uri.Parse(file));
 else
 {
 var wc = new WebClient();
 wc.DownloadFile(item.ProfileImageUrl, file);
 imageItem.SetImageURI(Android.Net.Uri.Parse(file));
 }

 textTop.SetText(item.FromUser, TextView.BufferType.Normal);
 textBottom.SetText(item.Text, TextView.BufferType.Normal);

 //Finally return the view
 return view;
 }
}

TwitterUser\MonoDroidTwitter\MonoDroidTwitter\Activity1.cs

From the line Get image... you may notice something a little odd. To allow the application
to display an image from the Web, fi rst you need to download the image to the device, and

c15.indd 437c15.indd 437 2/28/2012 4:11:27 PM2/28/2012 4:11:27 PM

438 x CHAPTER 15 SHARING CODE BETWEEN MONO FOR ANDROID, MONOTOUCH, AND WINDOWS PHONE 7

then you can display it in an ImageView. This means that the application can check to see if
the image exists fi rst before trying to re-download the image every time it is displayed in the
ListView.

Now that you have the adapter set up and the UI in place, you need to hook these two together
to display some real results. Since you want the web request to get the tweets on a background
thread, you want to use the ThreadPool.QueueUserWorkItem to enable this. The code to
request the tweets is similar to the Windows Phone 7 code. Listing 15-11 shows how this
adapter is set up.

LISTING 15-11: Setting up the ListView adapter

protected override void OnCreate(Bundle bundle)
{
 base.OnCreate(bundle);

 SetContentView(Resource.Layout.Main);

 var button = FindViewById<Button>(Resource.Id.SearchButton);
 var userNameBox = FindViewById<EditText>(Resource.Id.UserNameBox);
 var listView = FindViewById<ListView>(Resource.Id.ListView);

 tweet = new List<Tweet>();
 istView.Adapter = new TweetArrayAdapter
 (this, Resource.Layout.CustomListItem, tweet);

 button.Click += delegate
 {
 ThreadPool.QueueUserWorkItem(o =>
 TwitterReceiver.GetTweetsForUser(userNameBox.Text.ToString(), tweets => {
 this.RunOnUiThread(() => {
 listView.Adapter = new TweetArrayAdapter
 (this, Resource.Layout.CustomListItem, tweets);
 });
 })
);
 };
}

TwitterUser\MonoDroidTwitter\MonoDroidTwitter\Activity1.cs

When you put this all together and run the code, you should see the screen shown in Figure 15-12.
When you click Search, you should see a list of tweets, as shown in Figure 15-13.

You may notice that when you run the project, the Windows Phone 7 simulator
starts at the same time. You can modify the confi guration and optionally stop
certain types of projects from deploying. It might be worth creating different
profi les to use on the different platforms in the solution so that you can easily
switch between projects.

c15.indd 438c15.indd 438 2/28/2012 4:11:27 PM2/28/2012 4:11:27 PM

Putting It All Together: Creating a Cross-Platform Application x 439

To get the same code running in MonoTouch, you need to fi re up MonoDevelop on a Mac. As with
the Mono for Android example, you want to add in both a MonoTouch Window-based project
(which is just a default MonoTouch project) and a MonoTouch Library project. Since MonoDevelop
cannot have the same project name twice, even with different solution folders, the sample calls the
Twitter helper MonoTouch Library project MTTwitterHelper. For the layout, you can use Interface
Builder, an Apple tool that allows you to click and drag controls onto an iPhone layout. In here you
just add the layout that you are looking for (using a table view to list your data, a button, and a text
box). Figure 15-14 shows what the layout looks like.
In a similar way that you used the ArrayAdapter in the Mono for Android Twitter User applica-
tion, to bind data to your table view in MonoTouch, you want to create a custom table source to
handle displaying this data. Instead of having a GetView like you had in Mono for Android adapt-
ers, you have a GetCell method. This is where you are going to handle the binding of the data from
your list of tweets and display them appropriately. Listing 15-12 shows the implementation of the
TableViewSource class.

LISTING 15-12: Setting up the TableViewSource class

public class TweetTableViewSource : UITableViewSource
{
 public AppDelegate _delegate { get; set; }

 public TweetTableViewSource(AppDelegate delegte)
 {
 _delegate = delegte;
 }

 public override int RowsInSection (UITableView tableview, int section)
 {

FIGURE 15-13FIGURE 15-12

continues

c15.indd 439c15.indd 439 2/28/2012 4:11:28 PM2/28/2012 4:11:28 PM

440 x CHAPTER 15 SHARING CODE BETWEEN MONO FOR ANDROID, MONOTOUCH, AND WINDOWS PHONE 7

 return _delegate._tweet.Count();
 }
 public override UITableViewCell GetCell
 (UITableView tableView, NSIndexPath indexPath)
 {
 var cell = tableView.DequeueReusableCell(“myCell”);
 if(cell == null)
 {
 cell = new UITableViewCell(UITableViewCellStyle.Subtitle, “myCell”);
}

 cell.DetailTextLabel.Text = _delegate._tweet[indexPath.Row].FromUser;
 cell.TextLabel.Text = _delegate._tweet[indexPath.Row].Text;

 var path = Environment.GetFolderPath (Environment.SpecialFolder.Personal);

 if (!Directory.Exists (string.Format (“{0}/twitter-images”, path)))
 Directory.CreateDirectory (string.Format (“{0}/twitter-images”, path));

 string file = string.Format (“{0}/twitter-images/{1}”, path,
 _delegate._tweet[indexPath.Row].FromUser);

 if (File.Exists (file))
 {
 var img = UIImage.FromFile
 (string.Format (“../Documents/twitter-images/{0}”,
 _delegate._tweet[indexPath.Row].FromUser));

 if(img != null)
 cell.ImageView.Image = img;
 else
 cell.ImageView.Image = null;
 }
 else
 {
 var wc = new WebClient ();
 wc.DownloadFile (_delegate._tweet[indexPath.Row].ProfileImageUrl, file);
 this.InvokeOnMainThread (delegate {
 var img = UIImage.FromFile
 (string.Format (“../Documents/twitter-images/{0}”,
 _delegate._tweet[indexPath.Row].FromUser));
 if(img != null)
 cell.ImageView.Image = img;
 _delegate.ReloadData();
 });
 }

 return cell;
 }
}

TwitterUser\MonoTouchTwitter\MonoTouchTwitter\Main.cs

LISTING 15-12 (continued)

c15.indd 440c15.indd 440 2/28/2012 4:11:28 PM2/28/2012 4:11:28 PM

Putting It All Together: Creating a Cross-Platform Application x 441

FIGURE 15-14

Now you have created the TableViewSource class, you need to implement the button’s
TouchUpInside method to call your shared code, return back the list of tweets, and reload the table
view’s data with the new information. In MonoTouch, you use an InvokeOnMainThread delegate,
unlike in Mono for Android where you would use a RunOnUiThread method. Either way, this runs
code on the UI thread in both cases. Listing 15-13 shows the button and table view getting set up
with the TableViewSource that was created in Listing 15-12.

LISTING 15-13: Connecting up the TableViewSource with a button

public override bool FinishedLaunching (UIApplication app, NSDictionary options)
{
 // When keyboard return is pressed, hide keyboard
 userNameBox.ShouldReturn = (tf) => {
 tf.ResignFirstResponder ();
 return true;
 };

 _tweet = new List<Tweet>();

 button.TouchUpInside += (s,e) =>
 {
 var username = userNameBox.Text.ToString();
 ThreadPool.QueueUserWorkItem(o =>
 TwitterReceiver.GetTweetsForUser(username, tweets =>

continues

c15.indd 441c15.indd 441 2/28/2012 4:11:29 PM2/28/2012 4:11:29 PM

442 x CHAPTER 15 SHARING CODE BETWEEN MONO FOR ANDROID, MONOTOUCH, AND WINDOWS PHONE 7

 {
 InvokeOnMainThread(() =>
 {
 _tweet = tweets;
 tableView.ReloadData();
 });
 })
);
 };

 tableView.Source = new TweetTableViewSource(this);

 window.MakeKeyAndVisible ();

 return true;
}

TwitterUser\MonoTouchTwitter\MonoTouchTwitter\Main.cs

Now that you have hooked together the button, the shared code, and the table view, you should
notice that the code for MonoTouch is quite similar to the Mono for Android solution, despite the
fact that they target two different platforms. Now running the application should get you something
that looks a little bit like what is shown in Figure 15-15.

FI GURE 15-15

LISTING 15-13 (continued)

c15.indd 442c15.indd 442 2/28/2012 4:11:29 PM2/28/2012 4:11:29 PM

Summary x 443

To learn more about MonoTouch development, check out the Wrox book
Professional iPhone Programming with MonoTouch and .NET/C# (ISBN
978-0-470-63782-1).

Using this technique to lay out your projects lets you share code that works on all three platforms
but still allows you to use the preprocessor directives mentioned earlier to write platform-specifi c
code. This allows you to abstract complexities with, for example, a fi le system or accessing contacts
and not have the application worry about how to do so. This is something that the portable library
project will never allow you to do.

SUMMARY

In this chapter, you have learned about the main different mobile platforms and how you can
write C# and .NET code across each one. Writing for each platform allows for the reuse of a
familiar language and a common framework. However, there is still a disconnect between what
parts of the .NET framework are available on these platforms and devices and what you can and
cannot use on each.

When the Portable Library Tools come into fruition and are out in the wild with version 1.0,
library creators will hopefully start to move over to writing their libraries to work with the por-
table library. This would allow many people to use their libraries and allow the creators to write
their code only once.

c15.indd 443c15.indd 443 2/28/2012 4:11:30 PM2/28/2012 4:11:30 PM

c15.indd 444c15.indd 444 2/28/2012 4:11:30 PM2/28/2012 4:11:30 PM

McClure c16.indd V2 - 02/07/2012

16
Preparing and Publishing Your
Application to the Market

WHAT’S IN THIS CHAPTER?

 ‰ Preparing your application: best testing practices and tools

 ‰ Creating the fi nal build

 ‰ Signing your application

 ‰ Deploying to the Android Market

After spending grueling hours writing, designing, developing, and testing your application,
you’re fi nally ready to put your application on the market. Whether you are releasing a free
or for-pay application, you know that the fi rst impression your application makes on a poten-
tial user means everything toward your success. The goal of this chapter is not only to help
you successfully publish your application but also to help you ensure that your application
succeeds.

Although you have already put a signifi cant amount of work into your application, you
still have quite a few additional steps to take when approaching application publication.
Regardless, it is essential that you take your time and not cut any corners, because a few
moments of impatience can result in dismal sales or downloads. With that in mind, this chap-
ter is broken into two sections that focus on two different aspects of application publication:

 ‰ “Preparing Your Application” focuses on the steps required to get your application
ready for uploading to the application market. In addition to including the typical
checklists, this section suggests tools and processes you can use to perform the fi nal
tests for your application.

 ‰ “Publishing Your Application to the Android Market” covers how the current Android
Market works. In addition, this section walks through the process of uploading an
application and describes common gotchas in the publication process.

c16.indd 445c16.indd 445 2/28/2012 4:26:34 PM2/28/2012 4:26:34 PM

McClure c16.indd V2 - 02/07/2012

446 x CHAPTER 16 PREPARING AND PUBLISHING YOUR APPLICATION TO THE MARKET

This chapter also gives essential tips to remember while working through the publication process.
However, do not limit your endeavors to the ideas listed in this chapter. Instead, use this chapter as
a foundation to build a custom publication and maintenance strategy that makes the most of your
application and its market.

PREPARING YOUR APPLICATION

As developers, we tend to get excited as our application nears completion. In fact, we get so enthu-
siastic about our application that we sometimes skip critical steps whose omission could prove
detrimental to the success of our application in the Android Market. The purpose of this section
is to help keep this enthusiasm in check by giving you a few tips, tricks, and items to consider
before you begin the publishing process. In addition, this section spends some time covering the
steps involved in dealing with licensing issues, preparing for the fi nal deployment, and avoiding
common gotchas.

Testing Your Application

Testing is the most important step in this chapter. It is critical and essential that you fully test your
application before publication. Even though you have probably spent much time testing your appli-
cation, several steps are still important before you release your application into the wild.

Why do we stress testing so much? Beyond the obvious reasons, releasing applications into the appli-
cation market is very different from releasing applications in other areas. The phone application
market is a unique animal, both in how its users react and in what kind of hardware your applica-
tion will face. Extensive testing is important for the following reasons:

 ‰ Users are much less forgiving of phone applications than they are of other applications, such
as desktop apps. In a world in which thousands of applications compete for your users’ time,
your application needs to shine much brighter than anything around it. Simple mistakes such
as random stop errors and missing menu items can instantly ruin an otherwise good relation-
ship with a user. Nothing is worse than seeing Figure 16-1 on an application launch.

 ‰ Applications have reviews — and the users give them great weight. The worst thing that can
happen to an application is for it to be launched, only to have a bad initial rating. Users put
great stock in application reviews and often simply listen to others’ opinions rather than try-
ing an application for themselves. It can be diffi cult to recover from a bad initial review, so it
is best to avoid getting them.

 ‰ Android runs on a large variety of platforms. From tablets to TV boxes to Kindles to a large
variety of phones, Android is rapidly spreading to many different hardware platforms. Even
though your application may not need to target every one of those hardware devices, it is
important not only to test all your target audience’s devices but also to fail with grace with
unsupported modes.

We probably have driven the need for testing into the ground, but it is an important step and not
one to take lightly. Luckily, remembering a few key testing areas can help you focus on getting the
job done, and a large number of tools and utilities can help you in your testing endeavors.

c16.indd 446c16.indd 446 2/28/2012 4:26:37 PM2/28/2012 4:26:37 PM

McClure c16.indd V2 - 02/07/2012

Preparing Your Application x 447

FIGURE 16-1

Hitting the Key Testing Areas

While you are going through the testing process before publication, your focus should be a bit
broader than just debugging for errors in your application. Although general application stability is
important, you should consider several other key aspects of your application:

 ‰ UI thread performance is the number-one culprit for causing user dissatisfaction. While test-
ing your application, rigorously check to make sure that you are doing as little on the UI
thread as possible. For new Android developers, this is a common mistake. The UI thread is
often overworked because just about every process in an application runs on the UI thread
unless specifi cally handled by the developer. It is always a good idea to review your fi nal
product, making sure that you use the UI thread at the appropriate places and use back-
ground threads for the rest. The pitfalls of overusing the UI thread are covered in more depth
in Chapter 12.

 ‰ Screen orientation changes can do strange things to your layout and design. Therefore, it is
a great idea to test every view of your application in both Landscape and Portrait modes. It
is surprising how many developers can miss these items. Furthermore, if you are doing any
screen animations or anything that requires a calculation of the screen size, remember to
detect orientation changes and update any calculations accordingly.

 ‰ Different device settings on an Android device can cause unintended results in your applica-
tion. In fact, in some cases device settings can render your application unusable. Know how
your application will behave under a variety of settings. In particular, be sure to try different
values for the following settings:

c16.indd 447c16.indd 447 2/28/2012 4:26:37 PM2/28/2012 4:26:37 PM

McClure c16.indd V2 - 02/07/2012

448 x CHAPTER 16 PREPARING AND PUBLISHING YOUR APPLICATION TO THE MARKET

 ‰ Localization: How does your application behave with different language and region
settings? Are you supporting your expected user base in this way? Do you have a
default option for every resource?

 ‰ The input method (keyboard): Does your system behave correctly when supporting
different keyboard types? What if the keyboard is unavailable? Does the keyboard
disappear after text is edited? Does the keyboard complement your application
rather than blocking entry fi elds? Should you include any specialty keys or keyboard
options as part of the input methods?

 ‰ Different screen sizes and densities: This is not a device setting so much as an aspect
of a device; however, it is a good idea to treat it as a setting and test different values
on devices. Do the application’s resources refl ect the right density level? Does your
layout fl ow work correctly for different screen sizes?

 ‰ Device citizenship is another area where developers often miss important testing opportuni-
ties. The diffi cult thing with device citizenship is that it is such a broad category because it
refers to integration that your device has with the Android OS or other applications running
on the device. Thankfully, you can follow a couple basic rules that you probably heard while
growing up:

 ‰ Waste not, want not. Memory is the key resource for a mobile device because it is
a scarce resource that many different applications are vying for. In typical applica-
tion programming, you can become a little lazy, because the ever-faster hardware of
the typical PC gives you a great buffer for writing suboptimal code. Currently, the
mobile world is a different story. Therefore, focus on using as little memory as pos-
sible, for as short a period of time as possible.

Also, if memory is the key resource, the device’s battery reserves are a close second.
Be aware of how much of an impact your application has on overall battery life. Be
sure to use system resources such as GPS effi ciently. Finally, if you are writing any
kind of service, take time to use a battery profi ling application to understand the
full impact of your service on overall power consumption over time. Inordinate bat-
tery consumption is another pet peeve of many users and will quickly result in your
application’s being removed from their devices.

 ‰ Clean up after yourself. When running a process, take the time to fully handle situ-
ations in which the application no longer has focus. There is no reason to maintain
an animation if the application is no longer in the foreground. By using the correct
events in the life cycle, you can ensure that the app runs a little smoother.

In addition, be wary when using system devices such as the camera. When not using
them, release them as soon as possible to free the resource for other applications.
This is a key trait of good citizenship with other applications, because you can have
some effect on the performance of other applications in the system by consuming
system resources unwisely.

Another important part of cleaning up is to handle any unsaved user data just before
an application closes or crashes. Whether your application has been sitting in the
background long enough to be collected, or your application encounters an unex-
pected error, do your best to save pertinent data as the application is closing. Not only
does this save the user trouble, it is rather impressive when executed correctly.

c16.indd 448c16.indd 448 2/28/2012 4:26:37 PM2/28/2012 4:26:37 PM

McClure c16.indd V2 - 02/07/2012

Preparing Your Application x 449

 ‰ Finally, check your application’s dependencies on other services and resources. More impor-
tantly, check to see how your application behaves when those services and resources are not
there. Here are some things to check out:

 ‰ How does your application perform when it does not have network connections?

 ‰ What if it is missing Bluetooth or GPS?

 ‰ How does it act when it cannot access the device’s camera?

 ‰ How does your device handle situations where no SD card exists?

Elegantly dealing with these failures is one of the quickest ways to make a great impres-
sion on your application’s user. Conversely, failing to do so can quickly result in negative
feedback.

Tools for the Testing Trade

When working on a Mono for Android application, you are in a rare position. Not only can you
leverage tools found on the Android/Java side of things, but you also can leverage many of the tools
found in the Visual Studio/.NET stack. This gives you quite a bit of power to test your application in
a variety of ways.

You have numerous toolsets at your disposal. In an effort to introduce as many tools as possible,
the following sections give a high-level overview of many of the available tools and how to leverage
them in your project.

Unit Testing

It is rare today to go very far into programming without hearing about unit testing. Developers may
hold different views on various unit-testing procedures, such as the pros and cons of test-driven
development (TDD) or integration testing. Regardless, unit tests are excellent tools to assist in the devel-
opment process. Even though it may seem late in the game, it is never too late to add a few tests.

Unit testing on the Mono for Android platform still is not completely seamless. Currently no tools for
Visual Studio can assist with any kind of UI testing. Despite this, do not forget that most of Android
was built with the MVC pattern in mind. This means that you should not have diffi culty isolating a
large portion of your logic into separate layers or DLLs, affording great testability options.

With that in mind, almost any unit-testing framework that works with Visual Studio (or despite
Visual Studio) can apply to a Mono for Android class library. In addition, many of the class types
used as parameters are interfaces. Even though you may never succeed in getting 100 percent cover-
age, unit testing is a viable option when working on Mono for Android. In particular, unit testing
comes in handy as you begin to respond to user feedback, begin updating your logic, or even in spe-
cial cases such as stress testing or preventing bug regression.

DDMS

The Dalvik Debug Monitor Server (DDMS) is a specialized debugging tool created by Google that
installs with the Android SDK. Of all the tools mentioned in this section, the DDMS is probably one
of the most versatile and useful for tracking down just about any information about your running
application.

c16.indd 449c16.indd 449 2/28/2012 4:26:37 PM2/28/2012 4:26:37 PM

McClure c16.indd V2 - 02/07/2012

450 x CHAPTER 16 PREPARING AND PUBLISHING YOUR APPLICATION TO THE MARKET

The exciting thing about this tool is that it operates by connecting directly to a running emulator.
This means that it works seamlessly with both Android and Mono for Android projects. Also, it
gives information not only on the emulator, but also on any Android device connected to the com-
puter and running in Debug mode, whether that is a physical phone or tablet. Thus, this tool is an
excellent choice when you are doing the fi nal checks on your application.

In a way, the DDMS acts much like the Windows Task Manager or the activity monitor on Linux, in
that it can give you information on memory allocation, performance statistics, and other OS-related
information. Of course, this tool does much more:

 ‰ The DDMS provides tooling to track heap usage for any given process. This is a great place
to get a snapshot of your memory heap usage. Figure 16-2 gives the heap statistics used for
the SurfaceView application created in Chapter 12.

FIGURE 16-2

 ‰ The DDMS has a feature that lets you track the allocation of objects to memory. You
can delve into your running application and gauge how your classes and threads allocate
memory to different objects. The only downside of this feature is that, because Mono
for Android “translates” your application for you, it can be a bit more diffi cult to track
down which object is what in Visual Studio. Of course, this can be overcome with a small
amount of deductive reasoning, making this one of the best locations to track down mem-
ory consumption issues.

Figure 16-3 gives an example of object usage in different threads of the HTML5Logo_
Bouncing application used in Chapter 12.

 ‰ The DDMS has LogCat embedded as a window pane. Although this functionality is pro-
vided within Visual Studio via the Android Device Logging screen, this is a nice feature in the
DDMS. Unlike the Visual Studio tools, the embedded LogCat screen lets you toggle message
verbosity, quickly fi lter messages by type (warning, debug, error), or simply export selected
portions to a .csv fi le. Figure 16-4 shows the LogCat view.

c16.indd 450c16.indd 450 2/28/2012 4:26:37 PM2/28/2012 4:26:37 PM

McClure c16.indd V2 - 02/07/2012

Preparing Your Application x 451

FIGURE 16-3

FIGURE 16-4

Beyond these key features, the DDMS offers lots of great utilities: spoofi ng locations, calls, and
text messages; adjusting device states such as network connectivity, latency, and speed; and various
smaller tasks such as taking screenshots, doing method profi ling, and providing graphical layouts of
performance statistics. Figure 16-5 shows an emulator’s running memory usage.

c16.indd 451c16.indd 451 2/28/2012 4:26:38 PM2/28/2012 4:26:38 PM

McClure c16.indd V2 - 02/07/2012

452 x CHAPTER 16 PREPARING AND PUBLISHING YOUR APPLICATION TO THE MARKET

FIGURE 16-5

When you consider the massive potential of the DDMS, this tool is worth your time to investigate. It
can prove essential when you are trying to put that fi nal polish on your application’s performance.

The Emulator

Although you are probably familiar with the emulator tool by now, it has quite a few other options
you can use to test a variety of phone conditions. In addition to testing a diversity of system settings,
such as localization, the emulator has a series of command-line switches that launch it into different
states. These options vary from giving you different screen densities to simulating different phone
load scenarios. Table 16-1 is a short list of some of the available phone confi guration switches.

TABLE 16-1: Common Emulator Command-Line Switches

OPTION NAME DESCRIPTION

-dpi/-scale Scales the emulator screen size by the desired scaling factor.

-netspeed Allows the developer to specify a target network speed setting to emulate low-

versus high-speed connections.

-netdelay Specifi es network latency on the device.

-cpu-delay Can simulate a CPU under stress by applying an abstract delay factor on emulator

requests.

c16.indd 452c16.indd 452 2/28/2012 4:26:38 PM2/28/2012 4:26:38 PM

McClure c16.indd V2 - 02/07/2012

Preparing Your Application x 453

These are just a few of the typical command-line switches available for emulators. You can view a
more exhaustive list at http://developer.android.com/guide/developing/tools/emulator
.html.

In addition to the command-line switches, emulators have a variety of confi guration settings that
can be leveraged for testing, such as adding/removing SD card access. When you are testing with
emulators, it often helps to generate a suite of different emulator images to represent different states.
Although this is a bit of a pain to maintain, it’s a great way to ensure that your application behaves
consistently under certain conditions.

Finally, the testing abilities of the DDMS and the emulator overlap in some situations. Typically, the
DDMS is the faster tool for approaching a single process and testing one aspect of it. The emulator
provides a way to test many scenarios in a whole environment and has the added feature of saving
testing scenarios.

It’s important to remember that the emulator and DDMS do not replace the
need to test your application on the physical devices. Use these options for initial
testing and for scenarios in which you cannot physically access a phone type or
re-create the phone condition.

Traceviews

Another excellent tool provided by the Android SDK is Traceview, which allows you to graphi-
cally view tracing and execution data from your Android device. It accomplishes this by building
an application timeline based on the timestamps of recorded debugging messages for each run-
ning thread. When working with the timeline windows, you can slice portions of time to zoom
into and inspect deeply. These slices go down to portions of a millisecond, which gives you great
visibility into how every step of your application runs. Figure 16-6 shows the timeline view of the
Traceview tool.

FIGURE 16-6

This fi gure shows examples of the timelines on several running threads. This application uses
switching to background threads (Thread-12) to do heavy processing before pushing those updates

c16.indd 453c16.indd 453 2/28/2012 4:26:38 PM2/28/2012 4:26:38 PM

McClure c16.indd V2 - 02/07/2012

454 x CHAPTER 16 PREPARING AND PUBLISHING YOUR APPLICATION TO THE MARKET

onto the main thread. Notice how you can easily see the staggering execution between each thread,
as well as the overall time spent in each “hop.”

In addition to providing timeline information, you can use Traceview to profi le the expense and
time lapse for any given process. This is easily accomplished by selecting a spot in the timeline and
clicking the area. Traceview then fi lls the profi le window with a summary of all the time spent with
the selected method. In addition, you can move up and down the profi le window, getting a feel for
how long each individual method or group of methods takes to execute. Figure 16-7 shows a draw-
ing function’s profi le view.

FIGURE 16-7

You can see the total time spent within the selected method call. You also can view all the
underlying child methods within the selected method, giving you an excellent view of where
your longer-running requests are occurring. Finally, the Calls+RecurrCalls/Total column shows
how many calls were made to this particular method. By combining this value with the overall
time spent on a method, you can quickly realize the best places to improve your application’s
performance.

Traceview can be initiated on an application in two different ways. The fi rst and simplest way is to
start tracing via the DDMS tool. When you open the DDMS, select a given running application on a
listed device. Then start method profi ling by clicking the corresponding button in the main window
of the DDMS. This initiates tracing on your application. Once tracing is enabled, it captures the
process calls in that application. When you are ready to stop tracking, simply click the same button
that initiated tracing. The Traceview window appears with the collected data because the DDMS
tool launches Traceview automatically.

You also can initiate a tracing session through code. This is a great way to focus on one particular
function call and remove the noise of other operations. To do this, simply use the Debug class to ini-
tiate a tracing method, as shown in Listing 16-1.

c16.indd 454c16.indd 454 2/28/2012 4:26:39 PM2/28/2012 4:26:39 PM

McClure c16.indd V2 - 02/07/2012

Preparing Your Application x 455

LISTING 16-1: Writing trace information to the SD card via code

private void RunLoop(View TargetView)
{
 Debug.StartMethodTracing(“DemoTracing”);
 while (IsRunning)
 {
 Thread.Sleep(10);
 RunOnUiThread(() => TargetView.Invalidate());
 }
 Debug.StopMethodTracing();
}

When you use the Debug class to capture tracing messages, you need to ensure that your emulator
or Android device has an SD card and that your application has WRITE_EXTERNAL_STORAGE permis-
sion. With these in place, the fi le is written to the root directory of the SD card with the name you
specifi ed and the .trace fi le extension.

Stress Testing via the Application Exerciser Monkey

The Exerciser Monkey, or simply the Monkey, is an application that runs on an emulator in tandem
with the application you are developing. Using its many confi guration options, the Monkey can be
used to stress-test the application to generate a series of clicks, presses, and events on the Android
device. Each of these events occurs in a semirandom pattern.

The strength of the Monkey is that it can be executed using basic commands from within the
adb executable. In addition to specifying the number of events to generate, you can confi gure the
Monkey in three other areas:

 ‰ Constraints: Within the command-line arguments, you can constrain the Monkey to generate
events only on target packages. Furthermore, random events can also be locked down to only
certain categories of activities.

 ‰ Debugging: You can specify how the Monkey responds to numerous events, exceptions, or
time-outs. Typically, the Monkey stops functioning when it encounters an issue such as a
time-out or application error. Using the command-line arguments, you can fi ne-tune what
kinds of situations the Monkey can ignore.

 ‰ Events: This area represents the kinds of events the Monkey generates, such as touch events,
motion events, trackball events, navigation events, application switches, and a few others.
Using command-line arguments, you can lock down the frequency of these random events to
target different types of stress scenarios.

Needless to say, the Monkey is an excellent way to stress-test an application to ensure that you have
adequately handled many different touch scenarios and events. Not only is it a handy tool, but it is
also easy to use. With the emulator running, open a command window and navigate to the default
install directory of your Android SDK. Find the adb executable, located under the platform-tools
directory. Once you are there, begin a basic stress test by using the following command:

adb shell monkey -v 100

c16.indd 455c16.indd 455 2/28/2012 4:26:39 PM2/28/2012 4:26:39 PM

McClure c16.indd V2 - 02/07/2012

456 x CHAPTER 16 PREPARING AND PUBLISHING YOUR APPLICATION TO THE MARKET

Using this command, the Monkey exercises 100 random events on every package installed on the
Android device. As you might imagine, this can be quite a lengthy process. However, you can single
out a package by using the Monkey’s -p argument.

The Monkey is an excellent tool for stress testing. It’s worth the time to learn more about it. For
more information and a full list of all the possible switches, refer to the Android documentation at
http://developer.android.com/guide/developing/tools/monkey.html.

UI Testing via the Monkeyrunner

In addition to running stress tests on your application, you may fi nd that you want to specify a
series of clicks and events in a preset pattern. Although the Monkey tool can generate a series of
pseudo-random events, it cannot perform any scripted tasks. For situations such as these, you can
use another tool called Monkeyrunner.

Monkeyrunner is an interface to an API that can interact with running Android emulators. Via
this API, the Monkeyrunner can accomplish many different tasks, such as deploying applica-
tions, causing various UI/touch events, taking screenshots, and so on. Using this tool, you can
create a full suite of UI testing functions that can be performed repeatedly in a unit-testing-style
methodology.

One of the biggest challenges that a C# developer would have with using Monkeyrunner is that
instructions for it are written using Python. Consequently, this option is not for the novice
developer, but it’s well worth your time to understand and use it within your builds. For more infor-
mation about Monkeyrunner, visit the Android documentation at http://developer.android
.com/guide/developing/tools/monkeyrunner_concepts.html.

Although each of the tools described in this section can and should be used during the main
development process, they also provide a nice way to inspect your application’s overall health and
performance in prepublication scenarios. In addition, they can be used to quickly ferret out many
diffi cult application issues, such as memory leaks, threading errors, and heavy methods.

Involving Peers and Users in the Testing Process

Once you have established that your application can pass your self-imposed rigorous tests, it is gen-
erally a good idea to share some of the testing burden with your peers or any willing device user.
This can greatly increase your application’s stability by ferreting out any unexpected errors. It’s also
a great way to collect some initial user feedback and make any last-minute modifi cations.

When selecting beta users for your application, it is important to consider a few different factors.
Although it is great to have a close friend or relative review your application, you run the risk of
receiving overly positive feedback or not actually testing against your target audience. The following
list offers a few quick tips for choosing the right beta testers:

 ‰ Consider including both power users and casual users. Power users typically are willing to go
through more steps for greater functionality but can often be much less forgiving of common
mistakes. Conversely, casual users often appreciate direct, intuitive interfaces and sometimes
are less annoyed by an occasional glitch in the process fl ow.

c16.indd 456c16.indd 456 2/28/2012 4:26:39 PM2/28/2012 4:26:39 PM

McClure c16.indd V2 - 02/07/2012

Publishing Your Application to the Android Market x 457

 ‰ Consider the types of devices that your beta users will use. It is critical that you test your
application on as many different hardware devices as possible. By leveraging your beta user
base, you can satisfy your testing requirement without a signifi cant fi nancial investment in
hardware.

 ‰ Choose people who give balanced feedback. People who are ridiculously critical or who are
likely to give only positive feedback add very little value.

 ‰ Offer some initial tips on how to give feedback. Most people are not experts at giving feed-
back. “This is great” or “This is awful” is not valuable feedback. Encourage them to detail
what makes them feel this way and how they think your application could be better.

 ‰ Provide clean, easy-to-use feedback channels. Forcing your beta users to fi ll out long forms
or log in through several screens will result in less feedback. Be respectful of their time and
efforts.

 ‰ Within feedback iterations, it is acceptable to ask for focused attention on a particular aspect
of the application. However, avoid overloading the user with too many focus questions; they
can detract from the feedback value when overdone.

Establishing a testing group is a great way to help your application become a stable and usable prod-
uct. In addition, a good testing group can serve as a sanity check, especially after you publish your
application and begin receiving user feedback.

PUBLISHING YOUR APPLICATION TO THE ANDROID MARKET

Let’s assume that your application is ready to go. You have optimized it to the point that it runs
at peak performance. You have tested for and eliminated all known bugs. Finally, you have gone
through multiple iterations of feedback testers, and you believe you have an awesome application
ready to go. The last hurdle to cross is publishing your application to the Android Market.

With your application fully developed and tested, it is time to make the fi nal modifi cations to your
Mono for Android application to prepare it to be uploaded to the Android Market. Although a cou-
ple of these steps are specifi c to either Mono for Android or Visual Studio, the steps in this process
are almost identical to those of any typical Android application.

Versioning Your Application

The fi rst step of preparing your application for publication is to assign it a proper application name,
package name, version number, and version name. These values are important to your application,
because they are what the Android OS uses to identify your application, track any dependencies,
and ascertain whether a more recent version is available on the Android Market. More specifi cally,
versioning is a critical step in the publication process for several reasons:

 ‰ Versioning is useful if you intend to upgrade or maintain your application after it has been
published to the Android Market. It acts as a simple, visible cue to assign update notes and
tell the users what features are in what version.

c16.indd 457c16.indd 457 2/28/2012 4:26:39 PM2/28/2012 4:26:39 PM

McClure c16.indd V2 - 02/07/2012

458 x CHAPTER 16 PREPARING AND PUBLISHING YOUR APPLICATION TO THE MARKET

 ‰ Android uses your application’s version number to automatically inform the user that an
update of your application is available. Of course, this happens only when a user checks for
updates in the Android Market. Any other update notifi cations or version restrictions must
be handled by the developer in-application.

 ‰ Versions are used to assist in tracking dependencies and compatibility between applications.
In particular, if your application is part of a suite of applications, the application’s version
number can be leveraged to ensure that everything is using the correct build.

In Android, the version of an application can be expressed via two values. The fi rst value is
Version Name. Consider this string value to be the typical version information listing, using the
MajorVersion.MinorVersion.PointVersion pattern. The Android OS does not use this value for any-
thing other than informational purposes. This serves as a visual clue to your application users and
other services that would track updates of your application.

The other value that Android requires for versioning is the Version Code. The Android OS uses
this integer-only number to determine if one version of your application is newer than another.
Assuming that your initial release of the application is version 1, Android considers any application
with a version code greater than 1 to be an update. Since this is considered an “internal” value, this
version is invisible to the users.

In a way, the versioning system in Android is a compromise to allow developers to defi ne their own
versioning standards and styles while maintaining a simple, quick way to ascertain upgrade and
downgrade information programmatically.

Adding versioning information to your application is a basic task. In typical Android development,
you can specify an application’s version number by manually editing the Android Manifest fi le,
which acts much like the web.config fi le in ASP.NET programming. In Mono for Android, the
developers have simplifi ed this process by adding Android Manifest menu options in the applica-
tion’s Properties window.

In your application, go to the Properties window and select the Android Manifest tab. Within this
screen, you see the appropriate fi elds to edit your version number, as well as several other values, as
shown in Figure 16-8.

FIGURE 16-8

c16.indd 458c16.indd 458 2/28/2012 4:26:39 PM2/28/2012 4:26:39 PM

McClure c16.indd V2 - 02/07/2012

Publishing Your Application to the Android Market x 459

The cautious reader may have noticed that Figure 16-8 shows the name “Version
Name” rather than “Version Code” as a fi eld in the Visual Studio properties.
This is not a mistake. Although the Android Manifest expects an element of
Version Code, the Visual Studio tooling has renamed this to the more globally
used term, Version Name.

Creating the Final Build

The next step of preparing your application is to create a fi nal build within Visual Studio. As with
most applications within Visual Studio, there are at least two separate types of build confi gurations:
Debug and Release. Up to this point, you have most likely been operating under the Debug mode
confi guration.

The Debug mode confi guration is important because it is a confi guration setting that favors the
process of building and debugging an application for testing at the expense of optimization or build
size. In addition to the typical debug advantages found in any Visual Studio application, a few
aspects pertain to only Mono for Android:

 ‰ Debug builds use the Mono for Android shared runtime rather than existing as a singular
package on the development device. This means that when an application is fi rst deployed to
a debugging device, two applications are installed: the application you are working with, and
the Mono for Android runtime. The runtime includes all of Mono for Android’s libraries.
Therefore, it can be a rather large installation on the fi rst publication. But it is much smaller
and faster for subsequent application pushes, because the Mono for Android runtime has to
be deployed only the fi rst time.

 ‰ Applications deployed under the Debug confi guration are automatically signed by the Mono
for Android runtime. The Android system requires that all applications be digitally signed
with a private key that belongs to the application developer. In the case of debugging applica-
tions, a debugging key is generated and associated with your application.

The Release confi guration is used when the application is ready for deployment. Within the context
of Visual Studio, this confi guration is optimized for best performance and size. In addition, Mono
for Android no longer autosigns your builds with the developer key. Finally, the runtime chooses
what packages are required from the Mono for Android framework, bundles those with your appli-
cation, and creates a single release in the form of an .apk fi le.

With that in mind, you can begin the process of creating the fi nal build. First, change the confi gura-
tion mode in Visual Studio to Release rather than Debug. Typically, this can be accomplished by
changing the value of the appropriate drop-down list within Visual Studio’s standard toolbar.
Figure 16-9 displays this process.

c16.indd 459c16.indd 459 2/28/2012 4:26:39 PM2/28/2012 4:26:39 PM

McClure c16.indd V2 - 02/07/2012

460 x CHAPTER 16 PREPARING AND PUBLISHING YOUR APPLICATION TO THE MARKET

FIGURE 16-9

Alternatively, you can alter your confi guration settings by right-clicking the solution in the
Solution Explorer window, selecting Properties, and viewing the Confi guration section of the
property pages.

When you switch from Debug to Release on a Mono for Android project, the Mono Android
Options for the application should be updated simultaneously to no longer use the Shared
Runtime. To double-check this process (or to remove this default setting), go to the application’s
Properties Í Mono Android Options and ensure that the Use Shared Runtime option is clear, as
shown in Figure 16-10.

FIGURE 16-10

Your application is now ready to build. The fi nal step in the build process is to test your application
one more time in the Release confi guration.

Although you have already fully tested your application, moving to Release
mode makes a massive change to your underlying application. Therefore, quickly
deploy your application one more time, and ensure that it behaves as intended.

c16.indd 460c16.indd 460 2/28/2012 4:26:40 PM2/28/2012 4:26:40 PM

McClure c16.indd V2 - 02/07/2012

Publishing Your Application to the Android Market x 461

Signing Your Application

With a fi nal build in place, you can begin the process of signing your application. The purpose of
doing so is twofold:

 ‰ First, it ensures the application’s security during deployment. This is important, because a
signed application includes the means to verify the publisher’s identity and verify that the
downloaded application matches the actual application via a checksum.

 ‰ The second purpose is that Google uses the signing mechanism to uniquely identify the appli-
cation’s developer (or development team) and to determine if they have the permission to
update an application on the Android Market.

To sign an application, you need to generate a certifi cate. This certifi cate acts as something of an
ID or license for your application. In many cases, a certifi cate authority is required to create the
certifi cate. Certifi cate authorities can be a good thing; however, they also can be rather pricey.
Consequently, they can become an extra, needless expense for the already tightly budgeted Android
developer. Thankfully, in Android, Google allows developers to generate their own self-signed cer-
tifi cates. This not only saves you money but also gives you full authority to manage your applica-
tions’ ID(s) as you see fi t.

Creating a Private Key

Self-signing an application starts with generating a private key. The private key is the credentials by
which you can manipulate a signed application. Therefore, it is paramount that you keep your pri-
vate key safe and secure. Because a private key is used to generate a certifi cate, the terms are often
used synonymously.

Here are a few things to keep in mind about private keys and certifi cates:

 ‰ The private key is a mechanism by which an application’s certifi cate is generated. This makes
a private key something like an authentication credential or password. However, unlike
a password, you cannot “reset” a private key. If a key is lost, you must create a new one,
which in turn forces you to make a new certifi cate.

 ‰ The certifi cate and, therefore, your private key are something of an agreement between you
and your customer’s Android device. When issuing updates, the device must receive a match-
ing certifi cate from the updating software. If you have had to regenerate the certifi cate (due
to loss of your key or some other reason), the application is unable to update and installs as a
new instance instead.

 ‰ Your certifi cate and key represent you as a developer or development group. Your credibility
as a developer is tied to this key, which means that, if it is stolen and used maliciously, it is
done under your credentials.

c16.indd 461c16.indd 461 2/28/2012 4:26:40 PM2/28/2012 4:26:40 PM

McClure c16.indd V2 - 02/07/2012

462 x CHAPTER 16 PREPARING AND PUBLISHING YOUR APPLICATION TO THE MARKET

 ‰ Certifi cates and private keys can be used across multiple applications. This also is the only
means by which two applications can run within the same system process. This adds a large
amount of modular potential to your application, because you can package and group mul-
tiple pieces of applications under a single certifi cate.

 ‰ Your private key should have a validity period of 25 years or more. Currently, the Android
Market expects an application’s key to be valid through 2033.

Generating a private key for a Mono for Android application is rather simple. Within the Java SDK
that was installed with the Android SDK is a tool appropriately named keytool. Using this command-
line tool, you can quickly create a keystore for your application. A keystore is basically a database for
private keys. Table 16-2 lists the different switches that can be used when generating a keystore.

TABLE 16-2: Keytool Command-Line Options

COMMAND DESCRIPTION

-genkey Commands the tool to generate a new public and private key.

-v Enables verbose output from keytool.

-alias Specifi es an eight-character maximum alias for the generated key.

-keyalg Allows the developer to choose the encryption algorithm to use for the private key.

Currently, RSA and DSA are supported.

-dname The distinguished name that describes who created this key. In most cases, this is

your name or that of the development company you are working for. If this value is

specifi ed, it is used in the issuer and subject fi elds of the self-signed certifi cate.

-keypass Allows you to specify the key’s password. However, if this is not supplied, key-

tool prompts you to enter a password. Typically, waiting for the prompt is the more

secure method.

-validity The number of days that this key is valid. The recommended length is 25 years or

approximately 10,000 days.

-keystore The name of the keystore that will be used to contain the key.

-storepass The keystore’s password. Again, if this password is not added, keytool prompts

you to provide it.

Using keytool, you can generate the private keys for your application. Open a command window,
navigate to the installation directory of the JDK on your system, and fi nd the directory for key-
tool.exe. The default path on a Windows 7 64-bit machine is

C:\Program Files (x86)\Java\jdk<version>\bin\

c16.indd 462c16.indd 462 2/28/2012 4:26:40 PM2/28/2012 4:26:40 PM

McClure c16.indd V2 - 02/07/2012

Publishing Your Application to the Android Market x 463

Once there, use keytool.exe and the command-line arguments listed in Table 16-2 to generate your
private key. The following is a sample command for generating a private key:

keytool -genkey -v -keystore <keystore-name>.keystore -alias <key-name>
 -keyalg RSA -keysize 2048 -validity 10000

As you walk through this command, you are greeted with a series of questions that require identify-
ing information about the owner of this key. After you have answered all the questions, you should
have your own private key and keystore, as shown in Figure 16-11.

FIGURE 16-11

When you run these tools from the command line in Windows 7, make sure
that they are running with administrator privileges. Otherwise, this tool will be
unable to create the appropriate keystore fi les.

c16.indd 463c16.indd 463 2/28/2012 4:26:40 PM2/28/2012 4:26:40 PM

McClure c16.indd V2 - 02/07/2012

464 x CHAPTER 16 PREPARING AND PUBLISHING YOUR APPLICATION TO THE MARKET

Creating a Self-Signed Certifi cate

After your private key has been created, you are ready to sign your application. As in the previous
section, you can use the tooling included in the JDK to sign the application package. To complete
the signing process, you need to have three things prepared:

 ‰ The target application as an unsigned package. When you created your fi nal build, Mono for
Android created a release version of your application within the Bin\Release directory. If
you look in the directory, you will fi nd two versions of your application. One has -Signed
appended to its name. That version is meant for local deployment and testing, because it is
still signed with the autogenerated debug key. Use the unsigned version of your application.
Figure 16-12 shows these different fi les.

FIGURE 16-12

 ‰ Access to the private key and keystore that were just created. These will be used to create the
self-signed certifi cate. By default, generated keystores are saved in the same directory as the
keytool executable.

 ‰ The jarsigner tool found in the JDK. As with keytool, you use jarsigner to combine
the unsigned .apk and the private key to create a signed package for upload. In Windows 7
64-bit, jarsigner is found under C:\Program Files (x86)\Java\jdk<version>\bin\.

To use the jarsigner tool, you simply call it using the command line and provide the appropritate
arguments. The following is an example of using the jarsigner command-line tool:

jarsigner -verbose -keystore <my-keystore-name>.keystore <package .apk> <key-name>

After this is run, the system prompts you for the passwords to the keystore and the target key. You
can verify that your application signing was successful by using the -verify switch of the jar-
signer tool:

jarsigner -verify <package.apk>

Congratulations. You have now applied your own self-signed certifi cate to the application.

Aligning the Final Package

After you perform the preceding steps, you have a fully signed package. However, one more step is
needed before the process is complete. Within the Android SDK is a tool called zipalign. Provided
by Google, it is a simple tool used to ensure that your application runs as smoothly as possible.

c16.indd 464c16.indd 464 2/28/2012 4:26:41 PM2/28/2012 4:26:41 PM

McClure c16.indd V2 - 02/07/2012

Publishing Your Application to the Android Market x 465

Although technically you can deploy your application without taking this step, it is not a good idea
to bypass it unless you have good reason.

The purpose of this tool is to align uncompressed bytes within the package so that it can be read
and handled more effi ciently. For the most part, the process by which zipalign does this is not
essential to understand — beyond the fact that the net result is that your application consumes
slightly less device RAM when running.

zipalign can be found under the default installation path of your Android SDK, in the tools
directory. When running it, you basically need to provide the current project name and a name for
the output project. Here’s an example of what the zipalign tool command looks like:

zipalign -v 4 <current unaligned project>.apk<output project name>.apk

Looking at the command for the zipalign tool, you will notice a 4 after the ver-
bose switch. When using zipalign, always include that 4 and never any other
number. This command indicates the byte boundary by which the zipalign tool
optimizes the code.

For any Android application, the memory address size is 16 bits, or 4 bytes. If
you align appropriate items in code to a 4-byte boundary, Android can access
them directly using the mmap() function. This decreases the amount of overall
RAM required to run your application.

You can read more about zipalign, mmap, and memory addresses at the follow-
ing links:

 ‰ zipalign: http://developer.android.com/guide/developing/tools/
zipalign.html

 ‰ mmap: http://en.wikipedia.org/wiki/Mmap

 ‰ Memory addresses: http://en.wikipedia.org/wiki/Memory_address

With this fi nal step, your application is now signed, optimized, and ready for publication to the
Android Market!

Uploading to the Android Market

Publishing an application to the Android Market typically is a pretty quick process. To publish, you
and your application need to meet a few requirements:

 ‰ You must be registered as an Android developer. This costs $25 and takes just a few minutes.
To sign up, visit http://market.android.com/publish.

 ‰ You need an application in its fi nal build, signed, and aligned. Specifi cally, you need to
ensure that your application’s license does not expire before 2033.

 ‰ You must have properly versioned your application.

 ‰ Your application must specify both a label and an icon within its defi nition.

c16.indd 465c16.indd 465 2/28/2012 4:26:41 PM2/28/2012 4:26:41 PM

McClure c16.indd V2 - 02/07/2012

466 x CHAPTER 16 PREPARING AND PUBLISHING YOUR APPLICATION TO THE MARKET

Assuming that those things are covered, you can now publish your application! Visit the publication
site at http://market.android.com and log in using the developer credentials you specifi ed when
you signed up for your developer account.

After you log in, you can select to upload your application by choosing the Upload Application
button on the lower-right side of the page, as shown in Figure 16-13.

FIGURE 16-13

On the next screen, add the appropriate information about your application. First, you are asked to
upload a draft version of your application. The term “draft” is a little confusing. Basically, this is a
staging upload until you complete all the application information and select the Publish button at
the bottom of the page.

After uploading your .apk fi le, fi ll in the rest of the form as completely and honestly as possible
(see Figure 16-14). This information mainly pertains to what the users will see when your
application is listed on the Android Market. Take the time to include adequate screenshots,
descriptions, and other information, because they will be the fi rst things a potential user sees
about your application.

After you have fi lled in the necessary information, select the Publish button. Congratulations! You
have now published an application to the Android Market!

SUMMARY

Deploying your application is a huge milestone for any developer. It is a target for which developers
strive from the time they write their fi rst line of code. While working toward this goal, it is impor-
tant not to become overeager, because many different steps within the publication process still need
your full consideration.

Testing is by far the most important step in the publication process. Lack of testing can keep your
application from succeeding in the Android Market, thereby wasting your development efforts.
Luckily, many tools can assist you, ranging from performance monitoring to UI testing to applica-
tion testing. Finally, using a bank of beta testers is an excellent way to gauge your product’s overall
usability while ferreting out those last few bugs that you may have overlooked.

c16.indd 466c16.indd 466 2/28/2012 4:26:41 PM2/28/2012 4:26:41 PM

McClure c16.indd V2 - 02/07/2012

Summary x 467

FIGURE 16-14

After your application passes your rigorous testing process, it can be quickly deployed to the
Android Market effi ciently and securely.

c16.indd 467c16.indd 467 2/28/2012 4:26:42 PM2/28/2012 4:26:42 PM

c16.indd 468c16.indd 468 2/28/2012 4:26:42 PM2/28/2012 4:26:42 PM

17
Android Tablets

WHAT’S IN THIS CHAPTER?

 ‰ Designing a tablet user interface (UI)

 ‰ Working with the action bar to use the extra screen space eff ectively

 ‰ Working with fragments to divide the screen and use the extra real

estate eff ectively

Android 3.0 (Honeycomb) has been available since early 2011. Unfortunately, the initial
Android tablets based on Android 3.x were not well accepted in the market. Thankfully,
Android tablet shipments have ticked up with the release of Android 4.0 (Ice Cream Sandwich
(ICS)). Android 4.0 brings together features from the phone and tablet in much the same way
that the Apple iPad and iPhone operating systems were separate until iOS 4.2.

EXAMINING THE ANDROID TABLET MARKETPLACE

The tablet marketplace has seen explosive growth. Tablets have been available for many years
in the Microsoft Windows ecosystem. I can remember Pen Windows from the early 1990s. In
the early 2000s, Microsoft tried to reenergize tablet devices. Unfortunately, these efforts met
with limited success, outside of a few niche areas, and never achieved large consumer demand.
This was primarily due to the clunkiness of the hardware, with its large size and weight, as
well as the stylus, which was easy to lose.

In 2010, Apple released the iPad. This device — with its tie-in to iTunes, various book resell-
ers, size, and weight — was defi nitely accepted in the marketplace. Consumers could not
purchase enough of them. There were large lines at Apple stores. Deliveries took weeks when
ordered online.

c17.indd 469c17.indd 469 2/29/2012 12:07:08 PM2/29/2012 12:07:08 PM

470 x CHAPTER 17 ANDROID TABLETS

The iPad has many great features, including:

 ‰ Size: The iPad is smaller than a laptop but bigger than a phone, making it appropriate for
casual usage.

 ‰ Weight: The iPad is easy to carry around on the go or to meetings without having to put it
and its supporting peripherals into a bag.

 ‰ Preexisting apps: The iPad offers a large number of preexisting apps due to the fact that its
operating system is based on the Apple iPhone operating system.

 ‰ Touch: Although a stylus can be used with the iPad, fi ngers are the default input mechanism.
I know that the four stylus devices I lost over the years with various tablets makes touch-
based tablets very appealing.

It’s into this marketplace that Android’s developers started looking at how to bring Android into
the world of tablets. In early 2011, the fi rst Android tablet shipped, the Motorola Xoom. The Xoom
shipped with Android 3.0 (Honeycomb). Honeycomb is the code name for the Android operating
system that is optimized for tablet usage. Android 3.0 is a tablet-only version of Android 4.0 and is
not available from device manufacturers in a phone version.

Android 3.0 has undergone several iterations and is currently giving way to the next major update to
Android, called Ice Cream Sandwich (ICS) — also referred to as Android version 4.0. Android 4.0
is the version of Android designed to run on phones and tablets and provides a common API across
these devices. If history is any indication, it will be a while before Android 4.0 becomes available on
existing devices, and many existing devices won’t be upgraded to Android 4.0. However, that won’t
stop us from taking a look at some of the important features in Android 4.0, as well as creating
applications for Android tablets running Android 3.0 and Android 4.0.

One word of warning as you build applications that target Android tablets: A number of tablets
are 7 to 10 inches in their form factor. These tablets look like tablets; however, they run Android 2.x
as their operating system. Although these devices fi t the physical form factor for a tablet, their operat-
ing system isn’t Android 3.0 or Android 4.0. Therefore, your Android 3.0/4.0 applications won’t run
on these devices. Be aware of this during the application development process.

DESIGNING A TABLET UI

Before diving into code, it is important to think about what tablet applications need to be successful.
If you think about an Android 2.x or phone application, the UI is a set of activities and users navi-
gate through each individual activity, as necessary, to get work done. Only one activity is available
to users at a time. Users perform the work in activity A, go to activity B, select the back button to go
to activity A, may end up in activity C, and so on, until their work is complete (see Figure 17-1).

This can be a little bit jarring for users if they need to remember something from one activity screen
to another. When thinking about your tablet UI, consider how you can group together information
so that the user can be successful. For example, suppose that you have Twitter clients that support
multiple user IDs at the same time. In the part of your application that allows users to tweet, it might
be helpful to show them which Twitter ID this tweet will go to. And if the users are replying to other

c17.indd 470c17.indd 470 2/29/2012 12:07:12 PM2/29/2012 12:07:12 PM

Designing a Tablet UI x 471

users, it might be helpful for the users to see the content that they are replying to, as well as who they
are logged in as. For example, the UI fl ow could be something like that shown in Figure 17-2.

User is doneActivity C

Activity A Activity B

FIGURE 17-1

Twitterid: @wbm Tweet

Virtual Keyboard

@migueldeicaza this is GREAT! You have
made the community VERY HAPPY!

@migueldeicaza: We have just completed support for
Android Jelly Bean. Download and build something
wonderful!

FIGURE 17-2

In this example, the reply is to @migueldeicaza’s statement. You can see who you are logged in as,
so you know which account this will be posted to, and you know what exactly you are replying to.
This will give the user more context as they work on a response.

c17.indd 471c17.indd 471 2/29/2012 12:07:12 PM2/29/2012 12:07:12 PM

472 x CHAPTER 17 ANDROID TABLETS

USING THE ACTION BAR

Along with the various parts of the screen, you need to think about how users navigate within an
application. Android 2.x phone applications use a menu system that allows users to act and navi-
gate within an application. On the other hand, Android 3.0 and Android 4.0 tablet applications
offer much more screen real estate with which to work. And desktop applications in Mac OS X
and Windows have a menu system that aligns across the top of a screen. This is shown running on
Windows in Figure 17-3.

FIGURE 17-3

So, how do you implement this navigation in Android 3.0 and Android 4.0? Thankfully, there is
a facility for this, called the action bar. The action bar is a widget for activities that replaces the
Android title bar that appears at the top of a screen. By default, the application logo appears on
the left side of the screen, followed by the title of the activity. Finally, available items are displayed
within the options menu within the action bar. These items are referred to as action items. The
action items provide immediate access to important user actions. Menu items that do not appear as
action items are placed in an overfl ow menu, which is shown as a drop-down list in the action bar.
Additional features in the action bar include the ability to provide tabs for navigating between frag-
ments, to provide support for navigation with a drop-down list, and to provide action views.

The action bar is included by default in all activities that target SDK level 11. Specifi cally, the action
bar is included with all Android activities that use the “holographic” theme. This theme is included
in any application that targets Android 3.0.

c17.indd 472c17.indd 472 2/29/2012 12:07:12 PM2/29/2012 12:07:12 PM

Using the Action Bar x 473

Note that an Android application is set to target a given version of the
SDK when its android:minSdkVersion or android:targetSdkVersion
attribute is set to 11 or greater in the AndroidManifest.xml fi le. This
can be updated via the project properties in Visual Studio, as shown in
Figure 17-4.

Removing the Action Bar

You can remove the action bar in several ways:

 ‰ Use the Theme.Holo.NoActionBar Android Activity.

 ‰ If the application has a custom Android Activity theme, set the android:windowActionBar
property to false.

 ‰ Call the .Hide() method of an action bar. The .Hide() method is a companion to the
.Show() method. You can use the .Show() method to show the action bar after it has been
hidden. If the action bar is hidden, the Android operating system will update the activity so
that the content fi lls all of the screen real estate.

If you remove the action bar using a theme, the action bar will not be available at all. The call to get
the .ActionBar property will return a null.

Adding Items to the Action Bar

By default, an action item is a menu item. As you learned in Chapter 4, you can create a menu
by overriding the default action in OnCreateOptionsMenu. When users press a menu key, the
OnMenuItemSelected method is called and the program will determine which menu item was
selected. Listing 17-1 shows how to set up menu items in the action bar.

LISTING 17-1: Loading the action bar

[Activity(Label = “HCExample”, MainLauncher = true, Icon = “@drawable/icon”)]
public class Activity1 : Activity
{
 ActionBar ab;

 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

 // Set our view from the “main” layout resource
 SetContentView(Resource.Layout.Main);

 // Get our button from the layout resource,
 // and attach an event to it
 Button button = FindViewById<Button>(Resource.Id.MyButton);
 ab = this.ActionBar;

 button.Click += delegate {

FIGURE 17-4

continues

c17.indd 473c17.indd 473 2/29/2012 12:07:12 PM2/29/2012 12:07:12 PM

474 x CHAPTER 17 ANDROID TABLETS

 if (ab.IsShowing)
 {
 ab.Hide();
 }
 else
 {
 ab.Show();
 }
 };
 }

 public override bool OnCreateOptionsMenu(IMenu menu)
 {
 //return base.OnCreateOptionsMenu(menu);
 MenuInflater inflater = new Android.Views.MenuInflater(this);
 inflater.Inflate(Resource.Layout.menu, menu);
 return true;
 }

 public override bool OnOptionsItemSelected(IMenuItem item)
 {
 return base.OnOptionsItemSelected(item);
 }

 public override bool OnMenuItemSelected(int featureId, IMenuItem item)
 {
 var item1 = FindViewById(Resource.Id.item01);
 var item2 = FindViewById(Resource.Id.item02);

 if (item1.Id == item.ItemId)
 {
 Android.Util.Log.Info(”ActionBar”,
 String.Format(“Item 1 selected. Item: {0}.”, item1.Id));
 }
 if (item2.Id == item.ItemId)
 {
 Android.Util.Log.Info(“ActionBar”,
 String.Format(“Item 2 selected. Item: {0}.”, item2.Id));
 }
 return base.OnMenuItemSelected(featureId, item);
 }
}

HCExample/HCExample/Activity1.cs

Listing 17-2 shows the defi ned XML menu code to create a menu system directly in the action bar.
In this case, the menu system shows an example of using icons, submenu items, as well as the show-
AsAction attribute. The icons and submenu items were discussed in the chapter on User Interface
controls (Chapter 4).

LISTING 17-1 (continued)

c17.indd 474c17.indd 474 2/29/2012 12:07:13 PM2/29/2012 12:07:13 PM

Using the Action Bar x 475

The showAsAction attribute has the following options:

 ‰ ifRoom: If there is room for an item, it will be placed in the action bar.

 ‰ withText: The text specifi ed by the android:title attribute will be included with the item.

 ‰ never: The item will never be placed in the action bar.

 ‰ always: The item will always be placed in the action bar. Use this value with care. If you set
too many items with the always value, you can get overlapping items and confusion in the
action bar.

 ‰ collapseActionView: Introduced in API level 14, this item will be marked as collapsible.

LISTING 17-2: Action bar menu defi nition

<menu xmlns:android=”http://schemas.android.com/apk/res/android”
android:name=”Embedded Resource - Context Menu”>
 <item
 android:id=”@+id/item01”
 android:icon=”@drawable/jellyfishsmall”
 android:title=”Menu item 1”
 android:showAsAction=”ifRoom|withText”>
 <menu>
 <item
 android:id=”@+id/item06”
 android:title=”Submenu item 1”>
 </item>
 <item
 android:id=”@+id/item07”
 android:title=”Submenu item 2”>
 </item>
 <item
 android:id=”@+id/item08”
 android:title=”Submenu item 3”>
 </item>
 <item
 android:id=”@+id/item09”
 android:title=”Submenu item 4”>
 </item>
 <item
 android:id=”@+id/item10”
 android:title=”Submenu item 5”>
 </item>
 </menu>
 </item>
 <item
 android:id=”@+id/item02”
 android:checkable=”true”
 android:title=”Menu item 2”
 android:showAsAction=”ifRoom|withText”>
 </item>

continues

c17.indd 475c17.indd 475 2/29/2012 12:07:13 PM2/29/2012 12:07:13 PM

476 x CHAPTER 17 ANDROID TABLETS

 <item
 android:id=”@+id/item03”
 android:numericShortcut=”3”
 android:alphabeticShortcut=”3”
 android:title=”Menu item 3”
 android:showAsAction=”ifRoom|withText”>
 </item>
 <item
 android:id=”@+id/item04”
 android:title=”Submenu items”
 android:showAsAction=”ifRoom|withText”>
 <menu>
 <item
 android:id=”@+id/item05”
 android:title=”Submenu item 1”>
 </item>
 </menu>
 </item>
</menu>

HCExample\HCExample\Resources\Layout\menu.xml

As you can see, the action bar can have multiple top-level menu items, and each menu item can have
its own options.

Figures 17-5 and 17-6 show the action bar with menu items in it. Figure 17-5 shows what users
see when the application initially loads. Figure 17-6 shows what users see when they touch “Menu
item 1” and how the submenu items are expanded.

FIGURE 17-5

FIGURE 17-6

LISTING 17-2 (continued)

c17.indd 476c17.indd 476 2/29/2012 12:07:13 PM2/29/2012 12:07:13 PM

Using the Action Bar x 477

Using the Application Icon

You’ve probably noticed that the application’s icon appears on the left side of the action bar. This is
by default. One of the things that the application icon can do is respond to a user click. This is simi-
lar to selecting action items in the menu. Typically, you will want your application to return to the
opening/home activity when the user taps the application icon in the top left-hand portion of the
screen when the app is running. When the user performs the tap, the system will call the activity’s
OnMenuItemSelected method.

To handle tapping the App Icon, add the code in Listing 17-3 to the OnMenuItemSelected method.
The following are key parts of this code to note:

 ‰ When the App Icon is tapped, the Android.Resource.Id.Home value is passed for the id of
selected control.

 ‰ This code sample shows that a test is performed to verify that the application is not currently
displaying the start activity. If that is the case, there may/may not be a reason to go back.
This is can be left to the discretion of the application.

 ‰ If the application is currently buried down in the hierarchy of the application, the appropri-
ate fl ag will be set to clear the activities above the current one in the stack and to take the
user back to the original activity.

LISTING 17-3: Navigating to the top level activity

if (Android.Resource.Id.Home == item.ItemId)
{
 var topClass = (new Activity1()).Class;
 if (this.Class != topClass)
 {
 Intent intent = new Intent(this, topClass);
 intent.AddFlags(ActivityFlags.ClearTop);
 StartActivity(intent);
 }
}

HCExample\HCExample\Activity1.cs

Note that the ActivityFlags.ClearTop will clear all the activities above the current one in the
stack. This will remove any activities in the stack between the current one and the original class.

Navigating “Up” the Stack

Another valid use of the App Icon is to navigate “up” the stack from the user’s current activity. This
is helpful when an application is within a fairly rigid workfl ow of activities. The activities appear in
a specifi c order, like a wizard layout. In this type of workfl ow, using the App Icon to navigate to the
previous activity is perfectly valid. There are two steps necessary to get this to work:

c17.indd 477c17.indd 477 2/29/2012 12:07:13 PM2/29/2012 12:07:13 PM

478 x CHAPTER 17 ANDROID TABLETS

1. Call the action bar’s .SetDisplayHomeAsUpEnabled(true). This will add the arrow to the
App Icon.

2. Update the OnMenuItemSelected method to return to the previous activity. This can be done
by updating the code in Listing 17-4 with the correct activity.

LISTING 17-4: Pseudo code for navigating up the stack

// ActivityName is just an example name and would map to any activity
// within your application.
var actClass = (new ActivityName()).Class;
Intent i = new Intent(this, actClass);
// Add the appropiate flags as necessary
//Intent.AddFlags(ActivityFlags.BroughtToFront);
StartActivity(i);

Another option is to call the .Finish() method on the current Activity.

Adding and Using Action Items

An action view is a widget that appears in the action bar. It is a substitute for an action item. By
adding the following XML to the menu defi nition, a SearchView is added to the action bar.

 <item android:id=”@+id/menu_search”
 android:title=”Search”
 android:showAsAction=”ifRoom|withText”
 android:actionViewClass=”android.widget.SearchView” />

Figure 17-7 shows this search option.

FIGURE 17-7

c17.indd 478c17.indd 478 2/29/2012 12:07:13 PM2/29/2012 12:07:13 PM

Using the Action Bar x 479

Creating a Tabbed Interface

Besides creating a menu system in the action bar, it is possible to create a tabbed interface based on
the action bar. This can be created without using the TabWidget. The Android operating system will
adapt the action bar tabs based on screen size. The action bar’s tabs are placed on the normal action
when there is enough screen real estate. When there is not enough screen real estate, tabs will be dis-
played on a separate bar, called the stacked action bar.

The steps for the process are as follows:

 1. Associate a ViewGroup with a tab.

 2. Implement the ActionBar.ITabListener interface. This interface means that code will
implement OnTabSelected, OnTabUnselected, and OnTabReselected. These methods are
called as a user navigates through the tabs.

 3. For each tab added, defi ne a TabListener. In this specifi c example, this is handled by the
Activity class.

 4. Add each tab to an action bar by calling .AddTab.

Listing 17-5 shows some sample code to set up a simple tabbed interface in Android 3.0 on
a tablet.

LISTING 17-5: Tabbed interface code

 [Activity(Label = “HCExampleTabbedInterface”, MainLauncher = true, Icon =
 “@drawable/icon”)]
 public class Activity1 : Activity, ActionBar.ITabListener
 {
 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

 var bar = ActionBar;

 for (int i = 0; i < 3; i++)
 {
 bar.AddTab(bar.NewTab().SetText(String.Format(“Tab {0}”, i))
 .SetTabListener(this));
 }
 bar.DisplayOptions = ActionBarDisplayOptions.ShowCustom |
 ActionBarDisplayOptions.UseLogo;
 bar.NavigationMode = ActionBarNavigationMode.Tabs;
 bar.SetDisplayShowHomeEnabled(true);
 }

 public void OnTabReselected(ActionBar.Tab tab, FragmentTransaction ft)
 {
 Android.Util.Log.Info(“tab”, String.Format(“Tab ReSelected: {0}”, tab
 .Text));
 }

continues

c17.indd 479c17.indd 479 2/29/2012 12:07:14 PM2/29/2012 12:07:14 PM

480 x CHAPTER 17 ANDROID TABLETS

 public void OnTabSelected(ActionBar.Tab tab, FragmentTransaction ft)
 {
 Android.Util.Log.Info(“tab”, String.Format(“Tab Selected: {0}”,
 tab.Text));
 }

 public void OnTabUnselected(ActionBar.Tab tab, FragmentTransaction ft)
 {
 Android.Util.Log.Info(“tab”, String.Format(“Tab UnSelected: {0}”,
 tab.Text));
 }
 }

HCExampleTabbedInterface\HCExampleTabbedInterface\Activity1.cs

Figure 17-8 shows the output of the code on an Android 3.0 tablet.

FIGURE 17-8

PARTIAL SCREEN CONTROL USING FRAGMENTS

Consider an Android application running on a smartphone. With it, you think of having control of
the entire screen. The entire screen is controlled via an activity. This is done because an activity is
“about the right size” to control the application. However, a tablet application typically has much
more space associated with it. An Android tablet device typically has approximately 7 to 10 inches
of space to display content. Because of this additional space, you can provide the users with so much
more in an application.

The release of Android 3.0 (SDK 11) introduced fragments to provide the ability to support screen
sections and to reuse UI components across an application. A fragment is a portion of a UI of an
activity. You can combine multiple fragments in a single activity to create a UI, and you can use
fragments across multiple activities. Think of a fragment as a mini- or sub-activity. Fragments have
their own life cycles and receive their own events; therefore, a developer is responsible for setting
them up.

You can provide a user with so much more information that makes sense to provide within the same
screen. For example, you can provide a user with a search screen that displays a list of search results
in a simple format. When the user selects a single search item, he or she gets more detailed informa-
tion regarding the selected item. In this scenario, you could have the following:

 ‰ A SearchView in the action bar: A SearchView provides the user with a UI that displays the
search text fi eld and the button to start the search.

LISTING 17-5 (continued)

c17.indd 480c17.indd 480 2/29/2012 12:07:14 PM2/29/2012 12:07:14 PM

Partial Screen Control Using Fragments x 481

 ‰ A List/Master fragment: When the user clicks the button, a search is done against a data
source, such as Twitter, and then the data is displayed in the List fragment.

 ‰ A Detail fragment: When the user selects an item in the List fragment, the detail of the item
selected is displayed.

Figure 17-9 shows an example layout conceptually.

Search Text................... Search

Search Fragment

List Fragment Detail Fragment

FIGURE 17-9

Creating Fragments

The process to create a fragment is not that much different from creating an Android activity:

 1. Inherit classes from a fragment. The following classes can be inherited from
a fragment:

 ‰ Fragment: The fragment class is the base class for fragments. Inheriting from the
class gives the developer access to all the standard methods of a fragment.

 ‰ DialogFragment: The dialog fragment class allows for the display of a fl oating
dialog. This class is an alternative for using the dialog helper methods.

 ‰ ListFragment: The list fragment class displays a list of items that are managed by an
adapter. This is conceptually similar to a list activity.

 ‰ PreferenceFragment: The preference fragment class displays a list/hierarchy of
preference objects as a list. This is similar to a preference activity.

c17.indd 481c17.indd 481 2/29/2012 12:07:14 PM2/29/2012 12:07:14 PM

482 x CHAPTER 17 ANDROID TABLETS

 2. Implement the necessary life cycle events:

 ‰ OnCreate(): Similar to an activity’s OnCreate method, this method is called when
a fragment is created. This method is useful for initializing the UI components and
other essential items of a fragment.

 ‰ OnCreateView(): This method is called when a fragment is instructed by the
operating system that it is time to draw a UI. The method must return a view. This
view is the root of a fragment’s layout. A null can be returned if a fragment does
not have a UI.

 ‰ OnPause(): The operating system calls the OnPause method when the user is leaving
a fragment. This doesn’t mean that the fragment is necessarily destroyed; the user can
return. This method is a good place to store the user’s current session information.

Now that you understand the basics of fragments, let’s implement an example. In this example, we’ll
have two fragments named Frag1 and Frag2. These fragments are used to show how to set up a tab-
let application and then to show some communication between the two fragments. Frag1 will have
a button on it. When that button is clicked, a TextView in Frag2 is updated with the current time.
The fi rst step is to create the layout shown in Listing 17-6:

LISTING 17-6: Activity layout

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”horizontal”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 >
 <fragment android:name=”com.wallym.example.hcfrag.Frag1”
 android:id=”@+id/list”
 android:layout_weight=”1”
 android:layout_width=”100dp”
 android:layout_height=”match_parent” />
 <fragment android:name=”com.wallym.example.hcfrag.Frag2”
 android:id=”@+id/viewer”
 android:layout_weight=”2”
 android:layout_width=”100dp”
 android:layout_height=”match_parent” />
</LinearLayout>

HCFragmentExample\HCFragmentExample\Resources\Layout\Main.axml.

This layout has a linear layout of fragments. You can think of the fragments within the activity’s
layout as containers for the fragment’s respective layouts.

The next step is to create the layouts for the various fragments. Listing 17-7 shows the fragment on
the left-hand side of the screen.

c17.indd 482c17.indd 482 2/29/2012 12:07:15 PM2/29/2012 12:07:15 PM

Partial Screen Control Using Fragments x 483

LISTING 17-7: Fragment 1 layout

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 >
 <TextView
 android:id=”@+id/tv1”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”TextView 1”
 ></TextView>
 <Button android:id=”@+id/btn”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”Update”/>
</LinearLayout>

HCFragmentExample\HCFragmentExample\Resources\Layout\frag1layout.axml.

Listing 17-8 shows a simple layout on the right-hand side of the screen.

LISTING 17-8: Fragment 2 layout

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>
 <TextView
 android:id=”@+id/tv2”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=”TextView 2”
 ></TextView>
</LinearLayout>

HCFragmentExample\HCFragmentExample\Resources\Layout\frag2layout.axml.

These two fragments will be placed by the Android operating system within the activity’s containers
for each respective fragment within the activity’s layout.

Now that you have seen the layouts for the activity and the fragments, look at the code behind the
scenes (see Listing 17-9). The code for the activity, which looks very simple, loads the activity’s lay-
out and is shown next.

c17.indd 483c17.indd 483 2/29/2012 12:07:15 PM2/29/2012 12:07:15 PM

484 x CHAPTER 17 ANDROID TABLETS

LISTING 17-9: The activity’s class fi le

[Activity(Label = “HCFragmentExample”, MainLauncher = true,
 Icon = “@drawable/icon”)]
public class Activity1 : Activity
{
 int count = 1;

 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);
 SetContentView(Resource.Layout.Main);
 }
}

HCFragmentExample\HCFragmentExample\Activity1.cs.

Now that you have seen the activity, look at the fragment on the left side, which is referred to as
Frag1 (see Listing 17-10). This code will manually infl ate the layout. After creating the layout in
OnCreateView, you can create a reference to controls. With the reference to a control, you can
create the events on a control. In this situation, when the user pushes the button, a reference to
the second fragment needs to be tested for. This is performed by calling the FragmentManager’s
FindFragmentById method and passing in the container’s view ID. Finally, in the button’s click
event, you can set a property on the fragment.

LISTING 17-10: Fragment 1 source code

 public class Frag1 : Fragment
 {
 public override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

 // Create your application here
 }
 Button btn;
 Frag2 f2;
 public override View OnCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState)
 {
 base.OnCreateView(inflater, container, savedInstanceState);
 var vw = inflater.Inflate(Resource.Layout.frag1layout,
 container, true);
 btn = vw.FindViewById<Button>(Resource.Id.btn);
 btn.Click += new EventHandler(btn_Click);
 return vw;
 }

 void btn_Click(object sender, EventArgs e)
 {
 var dt = DateTime.Now.ToShortTimeString();

c17.indd 484c17.indd 484 2/29/2012 12:07:15 PM2/29/2012 12:07:15 PM

Partial Screen Control Using Fragments x 485

 if (f2 == null)
 {
 f2 = FragmentManager.FindFragmentById<Frag2>(Resource.Id.viewer);
 }
 f2.Update = dt;
 }

 public override void OnPause()
 {
 base.OnPause();
 }
 }

HCFragmentExample\HCFragmentExample\Frag1.cs.

Frag2 is a fragment with an Update property (Listing 17-11). When the Update property is set, a
TextView in the fragment is updated.

LISTING 17-11: Fragment 2 source code

 public class Frag2 : Fragment
 {
 public string Update
 {
 set { tv2.Text = value; }
 }
 TextView tv2;

 public override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

 // Create your application here
 }

 public override View OnCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState)
 {
 base.OnCreateView(inflater, container, savedInstanceState);
 var vw = inflater.Inflate(Resource.Layout.frag2layout, container,
 true);
 tv2 = vw.FindViewById<TextView>(Resource.Id.tv2);
 return vw;
 }

 public override void OnPause()
 {
 base.OnPause();
 }
 }

HCFragmentExample\HCFragmentExample\Frag2.cs.

c17.indd 485c17.indd 485 2/29/2012 12:07:16 PM2/29/2012 12:07:16 PM

486 x CHAPTER 17 ANDROID TABLETS

Figure 17-10 shows the output when a user clicks the Update button and the TextView in the second
fragment is updated with the current time.

FIGURE 17-10

More Fragments

Having covered the basics of fragments, I now want you to see a somewhat more complicated and
realistic example. This example uses a SearchView to get Twitter timelines — specifi cally, the public
timeline of @wbm. In the action bar at the top of the page, there is a SearchView control. The user
will input a Twitter user ID. After this, a search is done via a call to the Twitter Search API, and the
results are displayed in the left side of the tablet’s screen in a ListView. When the user touches an
item in the ListView, additional information is displayed on the right side of the screen. This addi-
tional information includes the Twitter avatar of the user and the date of the tweet.

The fi rst thing to do is to create the fairly simple layout for the activity, as shown in Listing 17-12.
In this code, the screen is divided into two parts, each containing a fragment. The fragment on the
left will take up one third of the screen, and the fragment on the right will take up two thirds of
the screen. This weighting is defi ned within the android:layout_width attribute. The fragments
defi ned in our layout will be containers for the fragments, as well as cue the fragments to load.

LISTING 17-12: Activity layout source code

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”horizontal”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 >
 <fragment android:name=”com.wallym.example.hcfrag.Frag1”
 android:id=”@+id/list”
 android:layout_weight=”1”
 android:layout_width=”100dp”
 android:layout_height=”match_parent” />
 <fragment android:name=”com.wallym.example.hcfrag.Frag2”
 android:id=”@+id/viewer”
 android:layout_weight=”2”
 android:layout_width=”100dp”
 android:layout_height=”match_parent” />
</LinearLayout>

HCFragmentSearch\HCFragmentExample\Resources\Layout\Main.axml.

The next step is to create the layouts for the fragments. Listing 17-13 shows the Fragment 1 source
code. It merely has a ListView.

c17.indd 486c17.indd 486 2/29/2012 12:07:16 PM2/29/2012 12:07:16 PM

Partial Screen Control Using Fragments x 487

LISTING 17-13: Fragment 1 source code

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”
 >
 <ListView
 android:id=”@id/android:list”
 android:layout_width=”match_parent”
 android:layout_height=”match_parent”
 android:background=”#00FF00”
 android:layout_weight=”1”
 android:drawSelectorOnTop=”false” />
</LinearLayout>

HCFragmentSearch\HCFragmentExample\Resources\Layout\frag1layout.axml.

The next step is to create the layout for Fragment 2. In this layout, there is an ImageView and sev-
eral TextViews. This is shown in Listing 17-14.

LISTING 17-14: Fragment 2 source code

<?xml version=”1.0” encoding=”utf-8”?>
<LinearLayout xmlns:android=”http://schemas.android.com/apk/res/android”
 android:orientation=”vertical”
 android:layout_width=”fill_parent”
 android:layout_height=”fill_parent”>
 <ImageView
 android:id=”@+id/twitterImage”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content” />
 <TextView
 android:id=”@+id/TwitterId”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=””
 ></TextView>
 <TextView
 android:id=”@+id/status”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=””
 ></TextView>
 <TextView
 android:id=”@+id/dateofstatus”
 android:layout_width=”wrap_content”
 android:layout_height=”wrap_content”
 android:text=””
 ></TextView>
</LinearLayout>

HCFragmentSearch\HCFragmentExample\Resources\Layout\frag2layout.axml.

c17.indd 487c17.indd 487 2/29/2012 12:07:16 PM2/29/2012 12:07:16 PM

488 x CHAPTER 17 ANDROID TABLETS

The layout for the action bar is listed next (Listing 17-15). In this situation, it is a single item — the
SearchView.

LISTING 17-15: Action bar source code

<menu xmlns:android=”http://schemas.android.com/apk/res/android”
android:name=”Embedded Resource - Context Menu”>
 <item android:id=”@+id/menu_search”
 android:title=”Search”
 android:showAsAction=”ifRoom|withText”
 android:icon=”@drawable/searchmag”
 android:actionViewClass=”android.widget.SearchView” />
</menu>

HCFragmentSearch\HCFragmentExample\Resources\Layout\search.axml.

Listing 17-16 shows the activity source code. The layout for the activity is loaded via
SetContentView. In the OnCreateOptionsMenu, the layout for the action bar is loaded. Once the
layout is loaded, a reference to the SearchView is created and the event for it is wired up.

LISTING 17-16: Activity source code

[Activity(Label = “HCFragmentExample”, MainLauncher = true,
 Icon = “@drawable/icon”)]
public class Activity1 : Activity
{
 SearchView sv;
 Frag1 f1;
 protected override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

 // Set our view from the “main” layout resource
 SetContentView(Resource.Layout.Main);

 // Get our button from the layout resource,
 // and attach an event to it
 }
 public override bool OnCreateOptionsMenu(IMenu menu)
 {
 //return base.OnCreateOptionsMenu(menu);
 MenuInflater inflater = new Android.Views.MenuInflater(this);
 inflater.Inflate(Resource.Layout.search, menu);
 sv = (SearchView)menu.FindItem(Resource.Id.menu_search).ActionView;
 sv.Click += new EventHandler(sv_Click);
 return true;
 }

 void sv_Click(object sender, EventArgs e)
 {
 if (f1 == null)

c17.indd 488c17.indd 488 2/29/2012 12:07:16 PM2/29/2012 12:07:16 PM

Partial Screen Control Using Fragments x 489

 {
 f1 = FragmentManager.FindFragmentById<Frag1>(Resource.Id.list);
 }
 f1.UserId = sv.Query;
 }
}

HCFragmentSearch\HCFragmentExample\Activity1.cs

Finally, you can see that when the .Click event fi res in the SearchView, the sv_Click method is
called. When the method is called, a reference is created to the loaded ListView fragment. Once the
reference exists, the .UserId property of Frag1 is assigned.

Once a value is passed to the .UserId property of Frag1, an asynchronous request is made against
the Twitter API. When a result comes back, a List<Tweet> is created. The status is then bound to
the ListView. See Listing 17-17.

LISTING 17-17: Fragment 1 source code

public class Frag1 : ListFragment
{
 Frag2 f2;
 string _uid = String.Empty;
 List<Tweet> twt;
 public string UserId
 {
 get { return _uid; }
 set
 {
 _uid = value;
 string Url =
 ”http://api.twitter.com/1/statuses/user_timeline.xml?screen_name=”
 + _uid;
 try
 {
 // Create the web request
 HttpWebRequest request = WebRequest.Create(Url) as HttpWebRequest;

 request.Method = ”GET”;
 request.ContentType = ”application/xml”;
 request.BeginGetResponse(new
 AsyncCallback(ProcessRestXmlLINQHttpResponse), request);
 }
 catch (WebException we)
 {
 Android.Util.Log.Error(”http request”, ”Exception: ” + we.Message);
 }
 catch (System.Exception sysExc)
 {
 Android.Util.Log.Error(”http request”, ”Exception: ” +
 sysExc.Message);

continues

c17.indd 489c17.indd 489 2/29/2012 12:07:16 PM2/29/2012 12:07:16 PM

490 x CHAPTER 17 ANDROID TABLETS

 }

 }
 }

 public override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);

 }
 public override View OnCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState)
 {
 base.OnCreateView(inflater, container, savedInstanceState);
 var vw = inflater.Inflate(Resource.Layout.frag1layout, container, true);
 return vw;
 }
 public override void OnPause()
 {
 base.OnPause();
 }

 void ProcessRestXmlLINQHttpResponse(IAsyncResult iar)
 {
 try
 {
 HttpWebRequest request = (HttpWebRequest)iar.AsyncState;
 HttpWebResponse response;
 response = (HttpWebResponse)request.EndGetResponse(iar);
 System.IO.StreamReader strm = new System.IO.StreamReader(
 response.GetResponseStream());
 System.Xml.Linq.XDocument xd = XDocument.Load(strm);
 twt = (from x in xd.Root.Descendants(”status”)
 where x != null
 select new Tweet
 {
 StatusId = x.Element(”id”).Value,
 UserName = x.Element(”user”).Element(”screen_name”)
 .Value,
 ProfileImage =
 x.Element(”user”).Element(”profile_image_url”)
 .Value,
 Status = x.Element(”text”).Value,
 StatusDate = x.Element(”created_at”).Value
 }).ToList<Tweet>();
 var st = new List<String>();
 foreach (Tweet t in twt)
 {
 st.Add(t.Status);
 }

 var s = new ArrayAdapter<String>(Activity,
 Android.Resource.Layout.SimpleListItem1, st.ToArray());
 Activity.RunOnUiThread(() =>

LISTING 17-17 (continued)

c17.indd 490c17.indd 490 2/29/2012 12:07:16 PM2/29/2012 12:07:16 PM

Partial Screen Control Using Fragments x 491

 {
 this.ListAdapter = s;
 }
);
 Android.Util.Log.Debug(”http response”, ”finished”);
 }
 catch (System.Exception sysExc)
 {
 Android.Util.Log.Error(”http response”, ”Exception Message: ” +
 sysExc.Message);
 Android.Util.Log.Error(”http response”, ”Exception Stack Trace: ” +
 sysExc.StackTrace);
 var iExc = sysExc.InnerException;
 while(iExc != null)
 {
 Android.Util.Log.Error(”http response”, ”Exception Message: ” +
 iExc.Message);
 Android.Util.Log.Error(”http response”, ”Exception Stack Trace: ” +
 iExc.StackTrace);
 iExc = iExc.InnerException;
 }
 }
 }

 public override void OnListItemClick(ListView l, View v, int position, long id)
 {
 base.OnListItemClick(l, v, position, id);
 if (f2 == null)
 {
 f2 = FragmentManager.FindFragmentById<Frag2>(Resource.Id.viewer);
 }
 var thisTweet = twt[position];
 f2.TId = thisTweet.UserName;
 f2.TDate = thisTweet.StatusDate;
 f2.TStatus = thisTweet.Status;
 f2.TwitterImage = thisTweet.ProfileImage;
 }
}

HCFragmentSearch\HCFragmentExample\Frag1.cs

Once an item in the ListView is a selected, several properties are updated in the Frag2. These prop-
erties will update the views in Fragment 2. In the downloading of the image, the ThreadPool is used
to download the fi le. This provides a better user experience because the download operation is per-
formed off the main thread of the application. See Listing 17-18.

LISTING 17-18: Fragment 2 source code

 public class Frag2 : Fragment
 {
 public string TId
 {
 set { twitterId.Text = value; }

continues

c17.indd 491c17.indd 491 2/29/2012 12:07:16 PM2/29/2012 12:07:16 PM

492 x CHAPTER 17 ANDROID TABLETS

 }
 public string TStatus
 {
 set { twitterStatus.Text = value; }
 }
 public string TDate
 {
 set { twitterDate.Text = value; }
 }
 public string TwitterImage
 {
 set
 {
 var imgUrl = value;
 string documents = System.Environment.GetFolderPath
 (System.Environment.SpecialFolder.Personal);
 string fileName = System.Guid.NewGuid().ToString();
 string file = System.IO.Path.Combine(documents, fileName);
 //this is a synchronous download, so its bad.
 var ptt = new PassToThread() { FileName = file,
 imageV = twitterImg, UrlToDownload = imgUrl };
 System.Threading.ThreadPool.QueueUserWorkItem(new
 System.Threading.WaitCallback(downloadImage), ptt);
 }
 }
 TextView twitterId;
 TextView twitterStatus;
 TextView twitterDate;
 ImageView twitterImg;
 public override void OnCreate(Bundle bundle)
 {
 base.OnCreate(bundle);
 }

 public override View OnCreateView(LayoutInflater inflater,
 ViewGroup container, Bundle savedInstanceState)
 {
 base.OnCreateView(inflater, container, savedInstanceState);
 var vw = inflater.Inflate(Resource.Layout.frag2layout, container,
 true);
 twitterId = vw.FindViewById<TextView>(Resource.Id.TwitterId);
 twitterStatus = vw.FindViewById<TextView>(Resource.Id.status);
 twitterDate = vw.FindViewById<TextView>(Resource.Id.dateofstatus);
 twitterImg = vw.FindViewById<ImageView>(Resource.Id.twitterImage);
 return vw;
 }

 public override void OnPause()

LISTING 17-18 (continued)

c17.indd 492c17.indd 492 2/29/2012 12:07:17 PM2/29/2012 12:07:17 PM

Partial Screen Control Using Fragments x 493

 {
 base.OnPause();
 }

 private void downloadImage(Object o)
 {
 try
 {
 var ptt = (PassToThread)o;
 var wc = new System.Net.WebClient();
 wc.DownloadFile(ptt.UrlToDownload, ptt.FileName);
 Activity.RunOnUiThread(() =>
 ptt.imageV.SetImageURI(Android.Net.Uri.Parse(ptt.FileName)));
 }
 catch (System.Net.WebException wec)
 {
 Android.Util.Log.Error(“twitter timelines”, wec.Message);
 }
 }

 private class PassToThread
 {
 public string UrlToDownload { get; set; }
 public string FileName { get; set; }
 public ImageView imageV { get; set; }
 }
 }

HCFragmentSearch\HCFragmentExample\Frag2.cs

Note that RunOnUiThread is used in this code. In and of itself this is not surprising. The key thing
to notice is that RunOnUiThread is from the .Activity property of the fragment. The .Activity
property provides access to many of the properties that developers are used to when moving from
Android 2.x phone design to the Android 3.x and later tablet design.

Figure 17-11 shows the output of the application.

F IGURE 17-11

c17.indd 493c17.indd 493 2/29/2012 12:07:17 PM2/29/2012 12:07:17 PM

494 x CHAPTER 17 ANDROID TABLETS

SUMMARY

This chapter took a short look at Android tablets in Android 3.0 and Android 4.0, including:

 ‰ Using the action bar with menu items

 ‰ Creating a search interface with the action bar

 ‰ The basics of fragments and how to divide the screen real estate to use it effectively

 ‰ Communicating between fragments in a Twitter search application

c17.indd 494c17.indd 494 2/29/2012 12:07:17 PM2/29/2012 12:07:17 PM

McClure bapp01.indd V2 - 02/06/2012

A
Tips for Developers and the
Future of Mono and Android

WHAT’S IN THIS APPENDIX?

 ‰ Reviewing best practices, hints, tips, and gotchas

 ‰ Introducing Android 3.0: Honeycomb and 4.0: Ice Cream Sandwich

 ‰ Discussing fragments support

 ‰ The future of Mono for Android

Every platform has its quirks, and Android is no different. Just because you can write in C#
for Android does not mean you are exempt from these oddities and abnormalities. This book
has noted and explained some of these Androidisms. This appendix describes some of the best
practices, tips, and gotchas that may not fi t anywhere else. You will also become acquainted
with Android 3.0: Honeycomb and 4.0: Ice Cream Sandwich. You will explore new features
that your apps can take advantage of, while learning how to maintain compatibility with older
Android versions.

Finally, the future of Mono Android will be discussed. You will get the inside scoop on where
the platform is headed, and what to expect down the road.

BEST PRACTICES, HINTS, TIPS, AND GOTCHAS

As a Mono for Android developer, there are a few hints, tips, and gotchas that you should
be aware of. The following points of information will hopefully increase your profi ciency by
keeping you from making common mistakes and help you learn some time-saving tricks:

bapp01.indd 495bapp01.indd 495 2/28/2012 4:25:09 PM2/28/2012 4:25:09 PM

McClure bapp01.indd V2 - 02/06/2012

496 x APPENDIX A TIPS FOR DEVELOPERS AND THE FUTURE OF MONO AND ANDROID

 ‰ Remove old versions from your device: It’s best practice to remove all installed Mono for
Android applications as well as any shared runtime or anything otherwise Mono-related
from your device or emulator when a new version of Mono for Android is released. Though
the team tries to make upgrades seamless, this simple practice can save a lot of headaches!

 ‰ Get familiar with ADB: Mono for Android runs on the Android toolset. Become familiar
with the various ADB command-line tools:

 ‰ adb device shows a list of currently attached devices, including all emulator sessions
that are currently running.

 ‰ adb kill-server will stop the currently running ADB server on the PC.

 ‰ adb start-server will start ADB again.

 ‰ Try out DDMS: This is a tool which is not well known. It is a graphical utility which will
list processes running on all connected devices and emulator sessions, as well as a decorated
view of adb logcat output, with the ability to create fi lters. It will allow you to track memory
allocation, heap usage, and running threads. Finally, you can use it to control the emulator,
simulating SMS messages, phone calls, and location.

 ‰ User software can cause problems: Software such as HTC Sync may cause issues for develop-
ers. Try uninstalling such software from your vendor if you run into problems.

 ‰ Emulators need larger than default partitions: By default the Android emulators you cre-
ate will start with a 64MB partition size. This is simply too small to install the Mono for
Android shared runtime and your applications on for debugging. You should either create
and start your emulators through the Mono for Android tools, or specify -partition-size
512 or larger through the command line when starting your emulators.

 ‰ Virtual keyboard: In some emulator versions, you must set keyboard support to false in the
emulator properties to allow the virtual keyboard in Android to display and be used.

 ‰ Use dots in your project name: Android requires that package names include at least one dot
(.). If you create a project with a name that does not contain a dot, Mono for Android auto-
matically creates a name that has one. In many cases this works just fi ne, but if you ever need
to refer to your package name later, confusion may arise. The best practice is to always use a
dot in your project name to avoid any such confusion.

 ‰ Use .axml fi les for your user interface instead of .xml fi les: Mono for Android recognizes
.axml as a special fi le type for defi ning Android XML layout fi les. The content is no differ-
ent from that in .xml fi les, but using this .axml extension tells Mono that it should treat the
fi le a specifi c way. The result is that you will get some IntelliSense support in Visual Studio
(see Figure A-1), and you will have better error message information when you encounter a
problem.

 ‰ Use DroidDraw for user interface creation and editing: You can edit layout fi les by hand, but
using a free tool such as DroidDraw reduces the likelihood of errors in the markup syntax.

bapp01.indd 496bapp01.indd 496 2/28/2012 4:25:12 PM2/28/2012 4:25:12 PM

McClure bapp01.indd V2 - 02/06/2012

Best Practices, Hints, Tips, and Gotchas x 497

FIGURE A-1

You can fi nd more information about DroidDraw at http://www.droiddraw
.org/.

 ‰ Turn up the MSBuild output verbosity level: If you get an error that makes no sense, try
going into Visual Studio Options, in the Projects and Solutions section, under Build and Run,
and set the MSBuild project build output verbosity to a higher level (see Figure A-2). This
should cause more meaningful errors to be output to help you debug the problem.

FIGURE A-2

bapp01.indd 497bapp01.indd 497 2/28/2012 4:25:12 PM2/28/2012 4:25:12 PM

McClure bapp01.indd V2 - 02/06/2012

498 x APPENDIX A TIPS FOR DEVELOPERS AND THE FUTURE OF MONO AND ANDROID

 ‰ View ADB logcat output in Visual Studio: Mono for Android includes a window that can be
found in Other Windows in Visual Studio called Android Device Logging (see Figure A-3).
This can be used to display the logcat output from ADB right within your IDE. Of course,
you can display logcat output by running the command adb logcat in your command
prompt (assuming you have included the platform-tools folder from your Android SDK
installation in your windows PATH variable).

FIGURE A-3

 ‰ Debugging on a physical device requires WiFi: The Mono for Android debugger requires
WiFi to be enabled on your physical device. It also requires the device to be on the same net-
work as the machine you want to debug from. The debugger connects via TCP/IP, so it won’t
work without this!

 ‰ Samsung Galaxy S devices require Android 2.2 or newer: A bug in the kernel of Android 2.1
for all Samsung Galaxy S devices causes Mono for Android not to work. You must have 2.2
or higher to run Mono on these devices.

 ‰ Beware of async code that updates the UI: Anytime you want to run code that will update
the UI, you should run it inside RunOnUIThread() to ensure that the code will be run on the
same thread as the UI. If you don’t do this, unexpected behavior will occur.

 ‰ Large assets cannot be compressed: For some reason, Android will not compress assets that
have fi le sizes greater than 1MB. The workaround is to tell Android not to compress fi le
extensions for fi les that will be larger than this. Unfortunately, fi les can be excluded only on a
per-extension basis, not on a single-fi le basis.

 ‰ Strings and CharSequences: In Android, most text display properties are not exposed as
simple string types (even in Java). This is because Android supports the notion of for-
matted text (such as a SpannableString). In Mono, all cases of this behavior include
overloads or properties, both for a simple string type and for an ICharSequence type. In
the case of a TextView, there is a Text property (string) and a TextFormatted property
(ICharSequence).

 ‰ Default debugging device: In the Visual Studio Options, in the Mono for Android section,
you can select a default device to use when debugging so that you don’t always have to select
your device from the list (see Figure A-4).

 ‰ Preserve user data between deployments: In the Visual Studio Options, in the Mono for
Android section, there is a checkbox option to data/cache between application deployments.
Use this to ensure your preferences and local fi les don’t get deleted between builds while
debugging.

bapp01.indd 498bapp01.indd 498 2/28/2012 4:25:14 PM2/28/2012 4:25:14 PM

McClure bapp01.indd V2 - 02/06/2012

Android Honeycomb (3.0) and Ice Cream Sandwich (4.0) x 499

FIGURE A-4

 ‰ Clean and rebuild: In many cases, doing a Clean and Full Rebuild of your solution can solve
problems you can’t explain. When in doubt, it is recommended you try this.

 ‰ Improve emulator performance: Try starting your emulator image manually, specifying the
parameters -no-boot-anim -scale .75 -partition-size 512. Removing the boot ani-
mation and changing the scale may increase the speed of the emulator. The partition size of
512 is needed by Mono for Android.

ANDROID HONEYCOMB (3.0) AND ICE CREAM SANDWICH (4.0)

The iPad inspired and defi ned the tablet market. The fi rst real response to the iPad — the Motorola
Xoom — arrived on the scene with Honeycomb (Android 3.0), a version of Android that never made
it to phones, as it was designed specifi cally with tablets in mind. This release brought many optimi-
zations for Android on the tablet form factor, and helped shape the release of Ice Cream Sandwich
(Android 4.0), which brought Android back to a common code base to target both phone and tablet
form factors simultaneously. As an Android developer, you should be aware of a number of new
things in these new Android versions, some of which relate specifi cally to tablets:

 ‰ Optimized home screen: The home screen for tablets (Figure A-5) now has a much larger grid
space for placing widgets and displaying a great deal more information than there would be
room for on a smaller phone display.

 ‰ Action Bar: The top of the screen always shows an Action Bar. The content of this bar can be
controlled by the application directly, so the actions on the bar can be changed depending on
the current application, as well as the context within the application.

 ‰ System Bar: Android 3.0 takes the concept of soft keys a step further by incorporating the
Home and Back buttons into the System Bar as touch screen controls, instead of requiring
them to be hardware buttons on the device. Also, the new Recent Apps button is essentially
a multitasking button. It displays a scrollable list of recently opened applications, with a

bapp01.indd 499bapp01.indd 499 2/28/2012 4:25:15 PM2/28/2012 4:25:15 PM

McClure bapp01.indd V2 - 02/06/2012

500 x APPENDIX A TIPS FOR DEVELOPERS AND THE FUTURE OF MONO AND ANDROID

snapshot of their latest display. The System Bar is always visible and rotates with the device,
so it’s always located at the bottom of the display.

FIGURE A-5

 ‰ Relocated menu and search: New applications designed for Android 3.0 and Android 4.0
can take advantage of the Action Bar to relocate menu options to the top-right corner (see
Figure A-6). This gives developers greater fl exibility as to which menu options are always
visible. With previous versions of Android, users had to just know to press a single menu but-
ton. For legacy support, applications that still require the menu button cause a menu button
to be displayed on the System Bar.

 ‰ Notifi cations: Gone is the old pull-down notifi cation bar. In its place are new growl- or toast-
like notifi cations. Notifi cations are displayed in the bottom-right corner for a few seconds
(see Figure A-7); they disappear if they are not tapped. Tapping the clock in the bottom-right
corner of the System Bar causes the notifi cations that have not been cleared to be shown
again in case you missed them.

 ‰ Two-pane UI: The Gmail app has been updated to use a two-pane interface (see Figure A-8),
much like the Mail app for the iPad. This UI can be used in other applications with the new
fragments API.

 ‰ Encryption: Google has recognized the need for encryption, which is important to many business
users. Android 3.0 has an option to encrypt the entire device with a PIN. This process takes some
time, but because it’s a must-have for some business users, the option is now available.

bapp01.indd 500bapp01.indd 500 2/28/2012 4:25:15 PM2/28/2012 4:25:15 PM

McClure bapp01.indd V2 - 02/06/2012

Android Honeycomb (3.0) and Ice Cream Sandwich (4.0) x 501

FIGURE A-6

FIGURE A-7

bapp01.indd 501bapp01.indd 501 2/28/2012 4:25:17 PM2/28/2012 4:25:17 PM

McClure bapp01.indd V2 - 02/06/2012

502 x APPENDIX A TIPS FOR DEVELOPERS AND THE FUTURE OF MONO AND ANDROID

FIGURE A-8

FRAGMENTS FOR ALL!

Android 3.0 Honeycomb achieves some of its new features with a new library containing support for
fragments. Fragments let you create user interfaces with multiple displays coexisting in a single activity.

Take, for example, the Gmail application: on an Android phone device, Gmail shows a list of
e-mails that takes up the entire screen. When the user taps an e-mail, another activity is opened with
the details of the email, removing the list of e-mails from the user’s view. Since there is more screen
real estate on a tablet, it makes sense to show both the list of e-mails and the selected e-mail’s detail
on the screen at the same time, using the fragments library.

Fragments allow you as a developer to display what are typically two or more activities on the
screen at the same time. Figure A-9 illustrates the traditional way of using multiple activities on the
left, and the new use of fragments to display multiple activities at once, on the right.

Since fragments are such an important new UI element, Google has decided to incorporate the func-
tionality into a static library that is compatible all the way back to Android 1.6. This is especially
important for tablet devices still running Android 2.2 or 2.3.

bapp01.indd 502bapp01.indd 502 2/28/2012 4:25:19 PM2/28/2012 4:25:19 PM

McClure bapp01.indd V2 - 02/06/2012

Android Version and Device Fragmentation x 503

First activity

Traditional use of activities New use of fragments

Second activity Single activity with multiple fragments

FIGURE A-9

As of the 4.0 Release, Mono for Android supports fragments only for Android
3.0 and higher. It does not yet support the fragments compatibility library. It
is expected that bindings for this library will be included in a later release, as
the Mono for Android team is currently developing a utility to help bind .jar
Android libraries to .NET. In the meantime, it is possible for you to write your
own bindings using Managed and Android Callable Wrappers, which allow you to
call Android or Java code directly. You can learn more about this on the Mono for
Android Support site created by Xamarin (http://support.xamarin.com/).

ANDROID VERSION AND DEVICE FRAGMENTATION

In just two short years, Android has gone from version 1.5 to version 3.0, with many changes to
how the platform operates on devices and the capabilities offered. From a developer’s perspective,
Google has done a good job of maintaining backwards compatibility with their APIs. Unfortunately,
it was inevitable that some Android versions contained new features unavailable in older versions
(such as Cloud 2 Device Messaging). This makes deciding when to use new features in your appli-
cation more diffi cult as a developer. You don’t want to exclude users on an older Android version;
however, you also want to give users with newer versions the best experience possible!

The versioning problem is exacerbated by the open nature of Android and the fact that many dif-
ferent manufacturers and carriers use Android on their devices. Since Google does not manufacture
their own devices, they do not have control over when (if ever) a manufacturer or carrier should
choose to offer updates to their users’ devices. This means some users simply can’t ever get the latest
version of Android on their device even though Google has released it. Other users may have to wait
for their device manufacturer to release an update to them, trailing months behind Google’s release
of the latest Android version.

bapp01.indd 503bapp01.indd 503 2/28/2012 4:25:19 PM2/28/2012 4:25:19 PM

McClure bapp01.indd V2 - 02/06/2012

504 x APPENDIX A TIPS FOR DEVELOPERS AND THE FUTURE OF MONO AND ANDROID

Google makes available the percentage of active Android devices on each version
of their operating system. You can fi nd this information at http://developer.
android.com/resources/dashboard/platform-versions.html.

The other problem developers face is device fragmentation. Again, since Google does not control
which hardware Android runs on, many different manufacturers create many different combina-
tions of hardware. Different processor speeds, memory sizes, storage capacities, and screen resolu-
tions mean a potentially infi nite combination of devices to target.

If you follow best practices for developing user interfaces on Android, in most cases, your applica-
tions should be able to scale to accommodate any screen resolution. You should also always aim to
make your application as effi cient as possible. This will help ensure your application runs smoothly
regardless of how powerful a device is.

Google is aware of these fragmentation issues and they are trying to address them in a few ways:

1. Moving applications out of the core operating system: Google has moved Gmail, Maps,
and some other applications into the Market instead of releasing updates to Android just to
address these applications. This means they can focus on updates to the core operating sys-
tem only, and hopefully release updates a bit less frequently.

2. Releasing new APIs as libraries: The fragments library is compatible all the way back to
Android 1.6, meaning developers can use these new features, regardless of Android version.

3. Early access program: Google is planning to tighten control over Android by enforcing non-
fragmentation policies as a requirement for manufacturers to gain early access to future ver-
sions of Android.

Despite Google’s attempts to limit fragmentation, it is a reality that you as an Android developer
must continue to deal with. Test your applications on a variety of devices and confi gurations if pos-
sible, code with best practices in mind, and the issue of fragmentation won’t be as scary as it sounds!

WHAT’S NEXT FOR MONO FOR ANDROID?

Mono for Android 1.0 was a major milestone, with compatibility for MonoDevelop on OSX and
Visual Studio 2010 on Windows. The release came with full emulator and on-device debugging sup-
port, as well as bindings to most of the Java Android APIs (bindings are what allow us to call Java
Android API methods from .NET code). Version 1.2 brought some much needed stability improve-
ments and further bindings. Version 4.0 is the most signifi cant release to date, and it includes many
improvements over previous releases:

 ‰ Android 3.0 and Android 4.0 API support

 ‰ Google Map API bindings

 ‰ Reduced startup performance — roughly 50 percent improvement can be seen in startup
times and deployment sizes

bapp01.indd 504bapp01.indd 504 2/28/2012 4:25:20 PM2/28/2012 4:25:20 PM

McClure bapp01.indd V2 - 02/06/2012

What’s Next for Mono for Android? x 505

 ‰ Garbage collection fi xes and faster deployment for debugging

 ‰ Java 7 support

The fi rst release of Mono for Android was just the beginning, and there are already several new fea-
tures planned for future releases. Below are some of the things you can expect in upcoming Mono
for Android versions:

 ‰ More Android bindings: While most of the crucial bindings are already included in Mono
for Android, there are still some that are missing. Expect more complete coverage of the Java
Android APIs in the future.

 ‰ More .NET-oriented APIs: Java APIs don’t always translate well into optimal .NET APIs.
Expect to see more event patterns, native .NET type usage, and other .NET patterns for
the Java Android APIs. This has improved dramatically in version 4.0, with better sup-
port for .NET style events and compatibility with Java style constants for easier porting of
Java code, but the team continues to work on exposing the Android APIs in a more .NET
friendly way.

 ‰ Binding generation utility: The Mono for Android developers are working on a utility that
will allow developers to generate .NET bindings to any Java library (.jar). This means you
will be able to use any third-party Android or Java library directly in Mono for Android!

 ‰ Fragments library: Currently there are bindings to the fragments library in Mono for Android
only if you use version 4.0 and target the Android Honeycomb (3.0) API level. Hopefully,
future versions of Mono for Android will support the fragments compatibility library as well.

 ‰ Bug fi xes: There is constantly work being done to address bugs that crop up. Expect more
stable releases with fewer bugs in the future.

 ‰ GUI designer: At the time of writing, Xamarin has begun working on a graphical designer
for Android XML layouts. This should be available in the next version of Mono for
Android.

You can submit bugs that you fi nd at http://bugzilla.xamarin.com/. This is
the best way to get your issues addressed quickly!

 ‰ Performance improvements: The main focus for the initial release of Mono for Android has
been getting things working. As more bugs are fi xed, focus will naturally shift to improving
the performance of Mono for Android applications, including faster application execution
and start-up time, lower memory usage, and smaller application packages.

Using Xamarin.Mobile for Cross-Platform Mobile Functionality

One of the new initiatives that Xamarin is working on is called Xamarin.Mobile. With Mono
for Android, MonoTouch, and Windows Phone 7, it’s already possible to share some common C#
code between all three mobile platforms. However, platform-specifi c code still needs to be written
for APIs such as User Interfaces, Contacts, and Calendar. This is where Xamarin.Mobile steps in.

bapp01.indd 505bapp01.indd 505 2/28/2012 4:25:20 PM2/28/2012 4:25:20 PM

McClure bapp01.indd V2 - 02/06/2012

506 x APPENDIX A TIPS FOR DEVELOPERS AND THE FUTURE OF MONO AND ANDROID

Its aim is to create a common library for such APIs, so that you can code once for things such as
Location Services and have it work on all three platforms.

At the time of writing, Xamarin.Mobile only supports Geolocation, but there are already plans to
incorporate several other features into the library:

 ‰ Contacts

 ‰ Geolocation

 ‰ Compass and accelerometer

 ‰ Video and audio

 ‰ Notifi cations

Xamarin.Mobile should continue to make developing cross-platform mobile applications in C# a
breeze. Even if you’re only targeting Android, this library should simplify using the functionality it
contains in your Android applications.

Android has taken the mobile world by storm, and now accounts for a signifi cant share in the
mobile space. It has become a very functional and powerful product. Thanks to Mono for Android,
it is possible for you to create awesome native mobile applications for Android. With the roadmap
ahead, the future looks great for Mono for Android developers, and it only gets better from here!

bapp01.indd 506bapp01.indd 506 2/28/2012 4:25:21 PM2/28/2012 4:25:21 PM

McClure bindex.indd V1 - 02/23/2012

507

2D graphics library, 324–325, 352

A

AbsoluteLayout, 62–63, 97
accelerometer

basics, 212–214
values, 211

accuracy of sensors, 211–212
action bar (Android 3.0/4.0)

action items, adding/
using, 478

adding items to, 473–476
App Icon, 477
navigating “up” the stack,

477–478
overview of, 472–473
removing, 473
tabbed interface, creating, 479

action items, defi ned (action
bar), 472

activities (Android apps)
Activity attribute, 55
basics of, 39–40
binding services to (listing),

300–302
life cycle of, 40–42
maps-based, creating (Google

Maps), 386–387
views and, 42–44

adapter views (databinding)
basics of, 133–136
defi ned, 132
exploring in depth, 138

adapters
Bluetooth, turning on, 227

data. See data adapters
native Android, 137–138

ADB command-line tools, 496
AddSubMenu() method (menu

items), 90
AdMob Mobile Metrics, 396
AlarmManager, 310–311
alarms, scheduling intents with,

310–312
analog clocks (UIs), 76
Android

Android Market
<support-screens />

attributes, 97
android:key values, 200
AndroidManifest.xml

fi le, 55
AndroidManifest.xml

 fi le, 374, 379, 473
Android.OS.Vibrator class,

218–219
android.provider

namespace, 46
Android.Resource.Id

namespace, 144
Android-specifi c database

options, 111–113
android.util

namespace, 28, 30
Android.Webkit.WebView

class, 271
Android.Widget

namespace, 70
applications. See applications,

Android
Developer Tools, 61
development costs, 11–12

development issues, 9–10
Development Program, 12
Device Logging (Visual

Studio), 498
development products,

comparing, 2–6
emulator, confi guring, 32
history of, 8
intents, 49–50
library, creating, 31
manifest. See manifest,

Android
SDK, 10–11, 22–24, 384
Sensor Manager, referencing,

208
version 3.0 (Honeycomb),

499–502
version 4.0 (Ice Cream

Sandwich),
470, 499–502

versioning problem for
 developers, 503–504

writing native applications
for, 9

writing web-based
applications for, 9

Animal objects example (lists),
160–166

animation
AnimateTo method (Google

Maps), 389
custom graphics, 342–347
HTML5 logo example,

342–347
antialiasing, Paint object

and, 329
API key, Google Maps, 385, 388

INDEX

bindex.indd 507bindex.indd 507 2/28/2012 4:26:03 PM2/28/2012 4:26:03 PM

McClure bindex.indd V1 - 02/23/2012

508

App Icon – built-in applications

App Icon, action bar, 477
Appcelerator Titanium,

12, 14
Append mode (fi le

accessibility), 184
application integration

(native Android apps)
e-mail, opening, 272
locations, opening in maps

app, 276
market, opening with
market:// protocol,
277–278

native browsers, opening,
269–272

telephone calls, 273
text/SMS messages, sending,

274–276
YouTube videos, opening,

276–277
application integration (third-party)

HootSuite and other Twitter
apps, 279

incoming intent requests, 280
intent fi lters, confi guring,

279–280
application preferences

creating custom, 196–197
preference changes, listening

for, 202–204
preferences namespace,

197–198
preferences program

example, 197–202
processing XML,

204–205
types of, 195

applications, Android
activities, basics of, 39–40
activities and views, 42–44
activity life cycle, 40–42
Android intents, 49–50
authoring, 13
broadcast messages, 48
broadcast receivers, basics of,

47–48
broadcast receivers, life cycle

of, 49
components, defi ned, 39

content providers, basics of,
44–45

content providers, workings of,
46–47

listening for C2DM in,
313–317

localizing menu icon/
application name, 409–410

location-based. See location-
based services (LBS)

native content providers,
45–46

overview of, 38–39
preparing for publishing,

445–446. See also testing
applications for publishing;
tools for application testing

publishing. See publishing
Android applications

services, basics of, 44
talking with other apps, 269

array adapters, 137,
436–437

array of strings (strings.xml
fi le), 410

ArrayAdapter, 72–73, 158
ASMX web services, 115–116
ASP.NET

MVC, 398
web applications, 51

assemblies
AssemblyManifest.xml

fi le, 379
availability on mobile

platforms, 422–423
Mono for Android, 19–20

Assets folder (Mono for Android),
418

asynchronous operations, 127
asynchronous processing.

See threads for asynchronous
processing

asynchronous retrieval of data,
127–128

AsyncTask class, 295
Atom feed from FreshMeat, 205
audio

media player supported
formats, 239–240

playback process, 240
programming playback,

240–244
recording basics, 247–248

authoring applications, 13
AutoCompleteTextView control

(UIs), 69, 71
autofocus, 259–260
AVD Manager, 384
.axml vs. XML fi les, 496

B

background processing, UI and,
289–290

BackgroundDataSetting,
checking for changes to, 220

banding (gradients), 361
base adapters, 137
base class libraries, defi ned, 2
BaseAdapter class, 148
basic views (databinding),

defi ned, 132
binder and service connection

method, 299–303
binding

components (Android apps).
See manifest, Android

services to activities (listing),
300–302

Bitmap objects, 325–326,
329–330, 340–341

Bluetooth, 225–227
bounce conditions

(graphics), 342
broadcast receivers (Android apps)

basics of, 47–48
BroadcastReceiver

method (services),
303–305

life cycle of, 49
broadcasts, sending from services

(listing), 305
browsers, opening native, 269–272
Build Action property, 180
built-in applications, integrating.

See application integration (native
Android apps)

bindex.indd 508bindex.indd 508 2/28/2012 4:26:04 PM2/28/2012 4:26:04 PM

McClure bindex.indd V1 - 02/23/2012

509

button controls – cross-mobile platform application

button controls (UIs)
adding, 402–404
button text, 405–406
defi ned, 43, 69
for performing actions, 73

C

C# code
.NET developers and, 19
writing code for mobile

platforms, 417–420
C2DM (Cloud to Device

Messaging). See push notifi cations
using C2DM

camera
autofocus, 259–260
controlling, 257
JPEG exif values, reading/

writing, 262–263
preview, 260–261
settings and picture options,

257–259
taking pictures, 261–262
using intents to take pictures,

254–257
Canvas object. See also

HTML5 logo example
basics, 324–328
Bitmap object, 325–326,

329–330
graphics primitives, 325–327
Paint object, 325–326,

328–329
Path object, 330–331

Cartesian plane, 331
certifi cates

application signing and, 461
self-signed, 464

check box control (UIs), 69, 73
class libraries

creating reusable code with,
420–422

Portable Library Tools.
See Portable Library Tools

classes
inherited from fragments, 481
Mono for Android, 5

clock controls (UIs), 70, 76

Cloud to Device Messaging
(C2DM). See push notifi cations
using C2DM

code
creating reusable, 420–422
creating with Accelerometer,

213–214
colors, graphics primitives and, 327
Common Language Runtime

(CLR), 2
communicating with services

(Android apps), 299
compass building, 214–218
components (Android apps)

binding. See manifest, Android
communicating between

(intents), 49–50
defi ned, 39

compound drawables
defi ned, 354
examples, 362–366

confi guring
Android emulator, 32
current network

confi guration, 221
Debug build confi guration, 459
intent fi lters for application

integration, 278–280
location-based applications on

emulator, 374–376
proximity alerts (listing), 383
Release build confi guration,

459–460
ConnectivityManager, 219
constants (conditional compilation

symbols), 421
contacts

accessing (code listing), 281
adding to existing,286–287
basics, 280–281
creating new, 285–286
displaying details, 283–284
phone/e-mail information,

accessing (code listing), 282
selecting, 284–285

ContactsContract.Contacts.

ContentUri URI, 281
content providers (Android apps)

basics of, 44–45

native, 45–46
workings of, 46–47

ContentResolver functions,
46–47

context menus (UIs), 87, 90–92,
94–95

control layouts (UIs), 61–62
control text, translating,

404–406
controls (UIs)

binding data to. See cursors;
databinding in Mono for
Android

defi ned in Android
framework, 43

designing, overview of, 69–70
converting formats for localization,

414–415
convertView parameter, 164–165
Count property, 162
CreateContextMenuEvent event

(ListView), 167
Criteria class (locations),

373, 377–379
cross-mobile platform application

GetTweetsForUser

implementation (listing),
431–432

ListView adapter, setting up
(listing), 438

Mono for Android AXML for
UI layout (listing), 435

Mono for Android version,
434–435

MonoTouch version, 439
overview of, 431
SearchButtonClick event

(listing), 433
TableViewSource class,

connecting up with button
(listing), 441–442

TableViewSource class
(listing), 439–441

View for single item in a
ListView (listing),
436–438

XAML for laying out UI on
Windows Phone 7 (listing),
432–433

bindex.indd 509bindex.indd 509 2/28/2012 4:26:04 PM2/28/2012 4:26:04 PM

McClure bindex.indd V1 - 02/23/2012

510

cross-platform tools – DOM parser

cross-platform tools
considerations for selecting,

12–15
examples of, 12

CRUD (create, read, update,
delete), 108

csproj fi le, 421
currency, localization of, 414–415
cursors

adapters, 137
overview of, 139
populating spinners with,

139–147
using with galleries, 147–154

custom graphics
2D graphics library, 352
Canvas object. See Canvas

object; HTML5 logo
example

drawables. See drawables
options, 324–325

Custom Locale application, 396
customizing

application preferences,
196–197

ListView with custom list
adapter, 160

D

Dalvik Debug Monitor Service
(DDMS). See DDMS (Dalvik
Debug Monitor Service)

Dalvik Java VM, 4
Dalvik libraries, 10
Dalvik virtual machine, 39
data

adapter views and large data
sets, 134–136

asynchronous retrieval of,
127–128

displaying in grids, 177–181
displaying simple data in lists,

155–158
Enterprise Services,

accessing, 114
inserting with SQL

statements, 110

interruptions in location-based
services, 374

posting with POST, 124–125
reading with SQL statements,

108–110
retrieving with LINQ and

XML, 125–128
SOAP, using. See SOAP

(Simple Object Access
Protocol)

working with remote,
113–114

data adapters
basics of, 133–134
defi ned, 132
functions, 134–136

databases
Android-specifi c database

options, 111–113
remote SQL Server databases,

128–130
setting up (SQLite), 106–107
upgrading strategies, 110–111

databinding in Mono for Android
adapter views,

133–134, 138
adapter views and large data

sets, 134–136
data adapter functions,

134–136
data adapters,

133–134
native adapter views,

138–139
native Android adapters,

137–138
overview, 132–133

date picker control (UIs),
77–79

dates, localization of, 414
DDMS (Dalvik Debug

Monitor Service)
basics, 449–452, 496
defi ned, 374–375
vs. emulator, 453
Traceview tool and, 454

Debug build confi guration, 459
debugging

debugging/development MD5
fi ngerprint (Google Maps),
385–386

Monkey and, 455
in Monodevelop (Mono for

Android), 34
in Visual Studio (Mono for

Android), 30
deploying

in Monodevelop (Mono for
Android), 35

in Visual Studio (Mono for
Android), 31

design issues for developers, 7
design surfaces (UIs), 61
Detail fragment, 481
development, Android

costs, 11–12
design considerations, 7
development products,

comparing, 2–6
development stack

(Mono for Android), 18
development tools, 6
development/debugging

MD5 fi ngerprint
(Google Maps),
385–386

issues with, 9–10
device citizenship (testing

app), 448
device fragmentation, Android

versions and, 503–504
digital clocks (UIs), 76
directions, driving. See driving

directions
directories

naming (localization),
399, 400

used by
GetExternalFilesDir,
187–188

displaying
contact details, 283–284
data in grids, 177–181
simple data in lists, 155–158

.Dispose() method, 110
DOM parser, 204

bindex.indd 510bindex.indd 510 2/28/2012 4:26:04 PM2/28/2012 4:26:04 PM

McClure bindex.indd V1 - 02/23/2012

511

draggable graphics – grids

draggable graphics
(HTML5 logo example),
336–341

drawables, 352–369
basics, 352–353
custom drawables (examples),

366–370
drawable folder (Mono for

Android), 97
simple and compound, 354
use case scenarios. See robot

army example
as XML resources, 353–354

drawing
DrawHTML5Background()

method, 333, 334
HTML5 background path

(listing), 333–334
HTML5 text path objects

(listing), 334–335
driving directions

from current location (listing),
231–235

detecting magnetic fi elds
(listing), 230–231

voice recognition applet,
opening (listing), 229–230

DroidDraw, 11, 61, 496–497

E

Eclair (Android 2.0), 8
Eclipse plug-in for UIs, 61
Ecma Standard (Mono), 18
editing

EditText control (UIs), 69–71
manifest for Mono for Android

via Visual Studio, 54–56
elements, Android manifest, 52–54
e-mail

e-mail information, accessing
(listing), 282–283

opening, 272
emulator

application testing with,
452–453

confi guring location-based
applications on, 374–376

vs. DDMS, 453
running memory usage, 452
updating language/regional

settings with, 396
encryption in Android 3.0, 500
Enterprise Services,

accessing, 114
escape method (Strings.xml

fi le), 401
events

broadcast, 48
Monkey and, 455

Exerciser Monkey, stress testing via,
455–456

exif (exchangeable image fi le
format), 262–263

expanded menus (UIs), 87
ExternalStorageState

property, 187

F

fi le system
fi le storage example, 189–194
type and structure of, 184–188

fi lters (intent), confi guring for
application integration, 278

fi nal builds, creating, 459–460
FindFragmentById method, 484
FindViewByID() method, 143
FindViewById method, 165
folders for resources, 398–400
form elements (UIs), 61
formats

format conversions,
localization and,
414–415

image formats, 254
media player supported

formats, 239–240
formatting tags (Strings.xml

fi le), 401
forward geocoding, 379–380
fragments for screen control

basics of, 480–481, 502–503
complex example of, 486–493
creating, 481–486

FrameLayout (child controls), 63

G

galleries
Gallery view, 80
Gallery view, 139
using cursors with, 147–154

garbage collection (Mono for
Android), 22

geocoding, 372, 379–382
GetCacheDir() method, 186
GetExternalFilesDir, directories

used by, 187–188
GetFirstVisiblePosition()

function (adapters), 138
.GetFromLocation method

(geocoding), 380
GetItem() function, 153
GetLastVisiblePosition()

function (adapters), 138
GetView() function, 153
GetView() method, 136–137, 164
GitHub, 423
globalization, defi ned, 394. See also

localization (L10n)
Google Maps

development/debugging MD5
fi ngerprint, 385–386

layout fi les, creating maps in,
387–388

maps-based activities, creating,
386–387

MapView controller, using with
overlay, 388–391

production/release MD5
fi ngerprint, 386

setting up, 384–385
Google Translate, 410
GPS (Global Positioning System),

defi ned, 372
gradient drawables (HTML5 logo

example), 360–362
graphics

building custom Android,
323–370

custom. See custom graphics
grids

displaying data in, 177–181
GridView view, 139

bindex.indd 511bindex.indd 511 2/28/2012 4:26:04 PM2/28/2012 4:26:04 PM

McClure bindex.indd V1 - 02/23/2012

512

grouped lists – languages

grouped lists, 173–177
gyroscope

basics, 208
values, 211

H

hardware, Android basic, 207
hdpi pixel density, 97
head view list adapters, 138
heading, defi ned (mapping), 372
heap usage, tracking, 450
Hello Android application

building with Monodevelop,
32–35

building with Visual Studio,
26–31

.Hide() method (action bar), 473
holographic theme (Android

3.0), 472
Honeycomb (Android 3.0), 8,

499–502
HootSuite, integration with, 279
HTML5 logo example

animation, 342–347
considerations for best

approach, 351–352
custom graphics, creating,

331–336
draggable graphics, 336–341
SurfaceView object,
347–351

HTTP response of JSON with
LINQ, handling (listing), 124

I

i18n. See internationalization (i18n)
IAutoFocusCallback interface,

259–260
Icaza, Miguel de, 3
Ice Cream Sandwich (Android 4.0),

8, 499–502
icon menus (UIs), 87
icons, localizing menu, 409–410
ICursor interface, 139
ICursor object, 142
ILocationListener method, 378
image controls (UIs)

adding, 407–409
defi ned, 70
predefi ned in LinearLayout, 43
working with, 79–83

images. See also camera
graphics primitives and, 327
ImageAdapter (code listing),

178–179
ImageButton class, 80
ImageView class, 80

IMediaScannerConnectionClient

interface, 263
implicit threading with
IntentService, 298–299

Indexer property, 162
initiate, defi ned (broadcast

receivers), 48
inputType attribute (UI controls),

84–85
inserting data with SQL

statements, 110
installing

development environment on
Mac, 31–32

Java SDK, 22
Mono for Android plug-in for

Visual Studio, 25
IntelliSense, 80
intents

broadcasting, 48
communicating between

components with, 49–50
intent fi lters, confi guring for

application integration,
279–280

Intent method, 269
intent requests, handling

incoming, 280
Intent.PutExtra

method, 172
IntentService, implicit

threading with, 298–299
IntentService class, defi ned,

294
scheduling with alarms and

IntentService, 310–312
using to record video, 248–251
using to take pictures,

254–257

Interface Builder SDK tool, 11
internationalization (i18n), 393–

394. See also localization (L10n)
Invalidate() call, 339
InvokeOnMainThread delegate

(MonoTouch), 441
iPad, features of, 470
IPictureCallback interface,

261–262
ISensorEventListener interface,

209
ISharedPreferences object, 196
ItemCleared event (ListView), 166
ItemClick event (ListView), 166
ItemLongClick event

(ListView), 166
ItemSelected event, 144–145, 166

J

jarsigner tool, 464
Java SDK, installing, 22
Java.IO Namespace, 185–186
JPEG exif values, reading/writing,

262–263
JSON (JavaScript Object Notation),

120–124
just-in-time (JIT) compilation, 2

K

keyboards, testing, 448
keystore, 462–464
keytool, 461–464
KML fi le format (locations), 376

L

L10n. See localization (L10n)
languages

<language>-r<REGION>

formatting, 397
strings.xml fi le, 400–401
translating control text,

404–406
translating text, 401–404
updating for localization,

396–397

bindex.indd 512bindex.indd 512 2/28/2012 4:26:04 PM2/28/2012 4:26:04 PM

McClure bindex.indd V1 - 02/23/2012

513

latitude – Market

latitude, defi ned (mapping), 372
LayerDrawable compound

drawable, 363–364, 366
layout fi les, creating maps in

(Google Maps), 387–388
layout list, creating (code

listing), 365
layouts

defi ned, 43
optimizing (UIs), 68
XML (Android), 158

ldpi pixel density, 97
libraries

Dalvik, 10
talking with other

libraries, 269
light sensor, 208, 211
“line of business” applications,

128
LinearLayout, 43, 63–65, 161
linking apps, 277–278
LINQ and XML, retrieving data

with, 125–128
Linq XML namespace, 204
listener events, adding for spinners,

144–145
listening for C2DM in applications,

313–317
listings, code. See code listings
lists

displaying data in grids,
177–181

displaying simple data in,
155–158

grouped lists, 173–177
ListActivity, 156–157
ListAdapters, working with,

158–160
List/Master fragment, 481
ListView, customizing with

custom list adapter,
160–166

ListView control (UIs), 69
ListView events, handling,

166–168
ListView fragment, 486
ListView view, 139
nested navigation in, 171–172
overview of, 154–155

preferences screen, 168–171
locale-neutral, defi ned, 398
localization (L10n), 393–415

basics, 394
of dates, 414
default resources, 398–400
format conversions, 414–415
vs. internationalization, 393
of menu icon and application

name, 409–410
multiple language support.

See languages
of numbers and currency,

414–415
of resources, 400–401,

406–409
services, 410
strategy considerations,

395–396
strings.xml fi le, advanced

use of, 410–413
support, adding, 399
testing applications and, 448
updating language/regional

settings, 396–397
location-based services (LBS)

confi guring applications on
emulator, 374–376

data interruptions and,
373–374

determining locations, 373
fi nding providers with

criteria class, 377–379
geocoding and, 379–382
Google Maps and. See Google

Maps
mapping terms, defi ned,

372–373
overview of, 371–372
proximity alerts, constructing,

382–384
using, 374

locations
Locations Manager, 374
opening on maps apps, 276

logging
LogCat screen, 450–451
in Monodevelop (Mono for

Android), 34

in Visual Studio (Mono for
Android), 28–30

longitude, defi ned (mapping), 372
Looping (video playback), 247
looping function (HTML5 logo

example), 345–347

M

magnetic fi elds
detecting (listing), 208,

230–231
MagneticField sensor

type, 208
measuring values of, 212

mailto: protocol,
272–273

Main() function, 38
MainLauncher annotation

(activities), 27
ManagedQuery() function, 47
ManagedQuery() method,

139, 281
manifest, Android

basics, 51–54
editing for Mono for Android

via Visual Studio, 54–56
overview of, 50–51

manual threading (asynchronous
processing), 294–296

maps
creating in layout fi les (Google

Maps), 387–388
locations, opening on, 276
MapActivity subclass, 387
mapping terms, defi ned,

372–373
maps-based activities,

creating (Google Maps),
386–387

MapView controller, using with
overlay (Google Maps),
388–391

Market, Android
linking to, 277–278
market://search?q=pname:

package-name

protocol, 278
uploading to, 465–466

bindex.indd 513bindex.indd 513 2/28/2012 4:26:05 PM2/28/2012 4:26:05 PM

McClure bindex.indd V1 - 02/23/2012

514

MD5 fi ngerprint – nesting layouts

MD5 fi ngerprint (Google Maps),
385–386

mdpi pixel density, 97
media. See also multimedia

media scanner, 263–264
media store, adding new media

to, 263–265
MediaPlayer object,

239–240
MediaRecorder,

251–254
memory

management of (Mono for
Android), 21–22

memory addresses, 465
tracking allocation of objects

to, 450, 451
menus (UIs)

context menus, 90–92,
94–95

creating, 87–90
defi ning as resources, 92–95
menu icon, localization of,

409–410
menu system, overview of, 87
submenus, 90

messages
broadcast (Android apps), 48
text/SMS, sending, 274–276

mobile development, 6–7
mobile platforms. See also cross-

mobile platform application
assemblies available on,

422–423
mobile UIs, guidelines for,

59–60
Monkey, Exerciser, 455–456
Monkeyrunner, UI testing via, 456
Mono

basics of, 17–18
overview of, 3–4

Mono for Android
assemblies, 19–20
class libraries, 421
cross-mobile platform

example, 434–435
databinding in Mono for

Android. See databinding in
Mono for Android

debugging in Monodevelop, 34
debugging in Visual Studio, 30
default project structure, 418
defi ned, 18
deploying in Monodevelop, 35
deploying in Visual Studio, 31
developer hints/tricks/gotchas,

495–499
development with

Monodevelop, 31–35
fundamentals of, 4–7
future of, 504–505
Hello Android, building with

Monodevelop, 32–35
Hello Android, building with

Visual Studio, 26–31
logging in Monodevelop, 34
logging in Visual Studio,

28–30
memory management and,

21–22
Mono Tools for Visual Studio,

24–25
Mono.Android.GoogleMaps

assembly fi le, 386
Mono.Data.Sqlite assembly,

106
Mono.Data.Tds.dll

assembly, 129
MonoForAndroidPreferences

sample (code listing),
201–202

namespaces, 38
plug-in for Visual Studio,

installing, 25
Portable Library Tools and,

426–428
reasons for using, 18–20
required tools for development

environment, 22–25
talking with other applications

and libraries, 269
testing in Monodevelop, 34
testing in Visual Studio,

30–31
trade-offs of working with,

21–22
Visual Studio development

with, 25–31

working with graphics in,
324–325

MonoDevelop, 3, 6, 31
MonoDroid, 292
MonoTouch

basics of, 418–419
class library, 422
cross-mobile platform

example, 439
Portable Library Tools and,

428–429
MotionEvent class, 337–338
MSBuild output verbosity

level, 497
MSIL language, 2
multimedia. See also specifi c

multimedia formats
adding new media to media

store, 263–265
media classes, 238–239
MediaPlayer object fi ve-step

process, 240
overview of, 237

multiple screen resolutions,
supporting, 97–98

MVC pattern, 40
My Activity application, 27–28
MyLocationOverlay class, 389

N

native adapter views, 138–139
native Android adapters, 137–138
native applications, writing for

Android, 9
native browsers, opening, 269–272
native content providers (Android

apps), 45–46
navigation

from current location (listing),
231–235

detecting magnetic fi elds
(listing), 230–231

navigating “up” the stack (App
Icon), 477–478

nested (lists), 171–172
nesting layouts, avoiding

(UIs), 61

bindex.indd 514bindex.indd 514 2/28/2012 4:26:05 PM2/28/2012 4:26:05 PM

McClure bindex.indd V1 - 02/23/2012

515

.NET framework – private mode

.NET framework
accessing database tables with,

108
developers, C# language

and, 19
locale identifi ers and, 397
overview of, 2–3
unsuitability for Android, 3–4
writing code for mobile

platforms, 417–420
networking connectivity, 219–225

changes to background data
setting, 220

ConnectivityManager, 219
current network confi guration,

221
notifi cations, 221
user communication

preferences, 219–220
Wifi Manager. See Wifi

Manager
Nielsen data, 396
nodes, application/manifest, 54
notifi cations

autofocus, 259
camera, 258
creating simple, 309–310
network connectivity

notifi cations, 221
overview of, 308
properties of, 308–309
push notifi cations using Cloud

to Device Messaging.
See push notifi cations
using C2DM

scans and, 263
scheduling intents with alarms

and IntentService, 310–312
numbers, formatting in .NET,

414–415
numColumns attribute (GridView),

177
NUnit for testing applications,

30, 34

O

OnAccuracyChanged event, 211
OnBind method, 292, 299

OnCreate function (activities), 27
OnCreate() method

activity life cycle and, 41–42
for custom drawables, 356
fragments and, 482
overriding (listing), 336

OnCreateOptionsMenu method, 87
OnCreateView() method

(fragments), 482
OnDestroy() method (activities),

41–42
OnDraw() method, overriding

(listing), 336
OnMenuItemSelected

method, 477
OnPause() method

activities and, 42
fragments and, 482

OnReceive() callback method, 49
OnStartCommand method,

292–294, 298
OnTouchEvent method, 337–340
Open Handset Alliance (OHA), 8
OpenFileInput/OpenFileOutput

functions, 187, 190
orientation of devices, 208, 212,

447
overlays

overlay of background
gradient, defi ning in table
view (code listing), 365

using MapView controller with
(Google Maps), 388–391

P

Paint object, 325–326, 328–329
Parallel Extensions, 297
Parallel.ForEach pattern, 297
parsers, XML, 204
paths

basics, 330–331
graphics primitives and, 327
Path object, 330–331

permissions, allowing for contact
list, 281

phones
phone and e-mail information,

accessing (listing), 282–283

phone and tablet example
(UIs), 98–103

phone calls, 273
PhoneGap, 12

pictures
managing options, 257–258
taking pictures, 261–262
using intents to take pictures,

254–257
pixel densities, supporting (UIs),

96–97
platforms, hardware (Android), 446
playback

audio, process for, 240
audio, programming for,

240–244
MediaPlayer object fi ve-step

process, 240
video, controlling, 247
video, managing output, 247
video, programming, 244–247

plurals feature of Strings.xml,
410–411

polling technique (push
notifi cations), 312

Portable Library Tools
Mono for Android and,

426–428
MonoTouch and, 428–429
overview of, 425
Windows Phone 7 and,

429–430
POST, posting data with,

124–125
preferences

application. See application
preferences

preferences screen (lists),
168–171

private, 195
preprocessor directives, 420–421
pressure senor type values, 212
previewing

camera preview, 260–261
video, 252–253

primitives, graphics, 325–327
private keys, creating, 461–464
private mode (fi le accessibility),

184

bindex.indd 515bindex.indd 515 2/28/2012 4:26:05 PM2/28/2012 4:26:05 PM

McClure bindex.indd V1 - 02/23/2012

516

private preferences – sensors

private preferences, 195
production/release MD5

fi ngerprint, 386
Professional iPhone Programming

with MonoTouch and .NET/C#
(Wiley), 442

properties
Notifi cation, 308–309
SensorDelay enum, 209

proxies, web service, 117–119
proximity alerts, constructing

(locations), 382–384
proximity detector, 208, 212
publishing Android applications

basics, 445, 457
fi nal builds, 459–460
signing, 461–465
uploading to Market,

465–466
versioning, 457–459

push notifi cations using C2DM
listening for C2DM in

applications, 313–317
overview of, 312–313
sending C2DM messages from

server, 317–320
PutExtra methods, 286–287

Q

qualifi er precedence, 400
query() action, 47
QuickEdit sample program

(fi le storage), 189–194

R

radio button control (UIs), 69,
73–76

radio group class (UIs), 73–76
ReadAllText method, 423
reading data with SQL statements,

108–110
RecognizerIntent class, 265
recording

audio, 253–254
basics, 247–248
starting and stopping, 253
video, previewing, 252–253

video, using intents, 248–251
video, using media recorder,

251–254
recycler (Android runtime), 135
Recycler event (ListView), 167
regional settings, updating for

localization, 396–397
RegisterDataSetObserver()

method, 137
RegisterForContextMenu()

method, 90
registration of applications for

listening (sensors), 209
RelativeLayout (child controls),

65–66
Release build confi guration,

459, 460
release/production MD5 fi ngerprint

(Google Maps), 386
remote data, working with, 113–114
remote SQL Server databases,

128–130
removing virtual keyboards, 86–87
requests, handling incoming

intent, 280
Required Permissions interface,

378–379
resolution-independent UIs, 95–98
resources

defi ning menus as, 92–95
resource cursor adapter, 138
Resources folder (Mono for

Android), 418
ResourcesDesigner.cs fi le

(images), 80
/Resources/drawable

directory, 79
resources for localization

basics of, 406–409
selection of, 399–400
setting up default, 398–401
strings.xml fi le, advanced

use of, 410–413
strings.xml fi le, multiple

language support and,
400–401

support, adding, 399, 404
REST-based web services,

119–120

Restore() function (Canvas
object), 328

reverse geocoding, 372, 380–382
RhoMobile Rhodes, 12
robot army example

compound drawables, 362–366
custom drawables, 366–369
default drawables, 354–356
gradient drawables, 360–362
shape drawables, 356–359

run loops (HTML5 logo example),
346–347

RunOnUiThread() method, 296,
486, 498

runtime, Mono for Android, 18

S

Save() function (Canvas
object), 328

SAX parser, 204
scanner, media, 263–264
scheduling intents with alarms and

IntentService, 310–312
screens

controlling with fragments,
480–486

sizes and densities
(testing), 448

supporting multiple
resolutions, 97–98

supporting sizes of (UIs),
95–96

SDK tools, Android, 8, 10–11
SearchView (action bar), 478, 480
SectionedAdapter example (list

adapter), 173–177
self-signed certifi cates, 464
sensors. See also accelerometer

accessing, 209
Android Sensor Manager,

referencing, 208
basics, 235
sensor type values, 211–212
sensor types, 208
SensorDelay enum properties,

209
support, 208
using, 209–211

bindex.indd 516bindex.indd 516 2/28/2012 4:26:05 PM2/28/2012 4:26:05 PM

McClure bindex.indd V1 - 02/23/2012

517

services – System.Windows

services (Android apps)
basics of, 44
binder and service connection

method, 299–303
BroadcastReceiver method,

303–305
communicating with, 299
creating, 290–293
prioritizing, 293–294
sending broadcasts from

(listing), 305
Service.

StartForeground(int

id, Notification n)

method, 292–293
static event method, 305–308

SetCenter method (Google
Maps), 389

SetCheckable method (check
boxes), 89

SetContentView() method,
42–43, 70

SetContentView(Resource) (UIs),
60

SetEmptyView() method, 138
SetForeground(bool

isForeground), 294
SetIcon method (menu items), 89
SetScreenOnWhilePlaying

method (video), 247
SetShortcut method (menu items),

89
SetTitleCondensed() method

(menu items), 89
SetVolume method (video), 247
SetZoom method (Google Maps),

388–389
shape drawables (HTML5 logo

example), 356–359
shape objects (graphic

primitive), 327
SharedPreferences.Editor

interface, 196
shared/private application

preferences, 195
.Show() method (action bar), 473
showAsAction attribute (action

bar), 475
signing applications, 461–465

simple adapters, 137
simple drawables, 354
SimpleAudioPlayback project,

241–244
SimpleMediaRecorder application,

251
SimpleVideoPlayback project

programming playback,
244–247

recording video, 248–251
using intents to take pictures,

254–257
simulator, Android, 7, 11
skew() method (Canvas

object), 328
SMS messages, sending,

274–276
sms: protocol, 274
SOAP (Simple Object Access

Protocol)
ASMX web services and,

115–116
overview of, 115
WCF-based web services and,

116–119
specifi ers for string numbers, 415
speech recognition, 265–266
spinners

adding listener events for,
144–145

populating with cursors,
139–147

spinner adapter, 138
spinner control, 69, 71–73
Spinner view, 139
SpinnerExample project,

140–142
SQL Server remote databases,

128–130
SqlClient commands, performing

(listing), 129–130
SQLite

Android-specifi c database
options, 111–113

database upgrading strategies,
110–111

inserting data with SQL
statements, 110

overview of, 105–106

reading data with SQL
statements, 108–110

setting up databases, 106–107
setting up tables, 107–108
SQLiteOpenHelper helper

class, 111–113
stacked action bar, 479
StartActivityForResult

method,284, 286–287
StartManagingCursor()

method, 47
state lists, creating (listing), 368
StateList drawable, 366–368
states, WiFi, 224–225
static event method, communicating

with, 305–308
static properties/variables, 172
static string values

(ConnectivityManager), 221
store, media, 263–265
stress testing via Monkey, 455–456
stretchMode attribute

(GridView), 177
strings

replacement functions,
411–413

string number specifi ers, 415
strings.xml fi le

advanced use of, 410–413
multiple language support and,

400–401
submenus (UIs), 87, 90
support for Mono for Android, 7
<support-screens />

attributes (Android Market), 97
SurfaceView

HTML5 logo example,
347–351

video playback and, 244
switches, emulator command-line,

452–453
synchronous operations, 127
System.Globalization, 394
System.Threading.Tasks

namespace, 294, 297–298
System.Threading.Thread object,

295
System.Web.Services, 435
System.Windows, 435

bindex.indd 517bindex.indd 517 2/28/2012 4:26:05 PM2/28/2012 4:26:05 PM

McClure bindex.indd V1 - 02/23/2012

518

tabbed interface – UIs

T

tabbed interface, creating (action
bar), 479

table view
defi ning overlay of background

gradient in (listing), 365
defi ning robot background

drawable in (listing), 359
defi ning robot background

gradient in (listing), 362
defi ning robot background

state aware in (listing), 368
tables

setting up (SQLite), 107–108
table layout for custom

drawables (listing), 355
TableLayout (child controls),

67–68
tablets, Android

designing UIs for, 470–471
history/background of,

469–470
navigating with action bar.

See action bar (Android
3.0/4.0)

Tabular Data Stream (TDS)
application layer protocol, 129

Task pattern, 297
telephones. See also phones

making calls, 273–274
phone and e-mail information,

accessing (listing),
282–283

tel: protocol, 273–274
temperature, device, 208, 212
testing

applications, 61
in Monodevelop (Mono for

Android), 34
in Visual Studio (Mono for

Android), 30–31
testing applications for publishing

importance of, 446
key aspects of, 447–449
peers/users and, 456–457
tools for. See tools for

application testing

text
control text, translating,

404–406
graphics primitives and, 327
text path objects, drawing

(listing), 334–335
text/SMS messages, sending,

274–276
TextView control, 43,

69–70
translating for multiple

languages, 401–404
third-party applications, integrating

with. See application integration
(third-party)

threads for asynchronous processing
implicit threading with
IntentService, 298–299

manual threading, 294–296
overview of, 294–295
System.Threading.Tasks

namespace, 297–298
time picker control (UIs),

70, 77–79
tools for application testing

DDMS, 449–452
emulator, 452–453
Exerciser Monkey, 455–456
Traceview tool, 453–455
UI texting via Monkeyrunner,

456
unit testing, 449

Touch event (ListView), 167
Traceview tool, 453–455
translate() method (Canvas

object), 328
translating text for multiple

languages, 401–404
turn-by-turn driving directions,

229
Twitter

apps, integration with, 279
cross-platform application.

See cross-mobile platform
application

search application (example),
486

TwtMstr service, 124–125

U

UIs (User Interfaces)
designing for tablets, 470–471
testing via Monkeyrunner, 456
UI thread performance, 447

UIs (User Interfaces), building
AbsoluteLayout (child

controls), 62–63
Android Market
<support-screens />

attributes, 97
AutoCompleteTextView

control, 71
button control, 73
check box control, 73
clocks control, 76
context menus, 90–92, 94–95
control layouts, 61–62
controls, designing, 69–70
date picker control, 77–79
design surfaces, 61
EditText control, 70–71
FrameLayout (child

controls), 63
image controls, 79–83
layouts, optimizing, 68
LinearLayout (child controls),

63–65
menu system overview, 87
menus, creating, 87–90
menus, defi ning as resources,

92–95
mobile UI guidelines, 59–60
multiple screen resolutions,

supporting, 97–98
phone and tablet example,

98–103
pixel densities, supporting,

96–97
radio button control, 73–76
radio group class, 73–76
RelativeLayout (child

controls), 65–66
resolution-independent UIs,

95–98
screen sizes, supporting, 95–96
spinner control, 71–73

bindex.indd 518bindex.indd 518 2/28/2012 4:26:05 PM2/28/2012 4:26:05 PM

McClure bindex.indd V1 - 02/23/2012

519

unit testing – websites

submenus, 90
TableLayout (child controls),

67–68
TextView control, 70
time picker control, 77–79
View/ViewGroup objects, 60
virtual keyboards, 84–87

unit testing, 449
.UnregisterListener method,

212
UnsupportedOperationException,

138
upgrading databases, 110–111
uploading applications to Android

Market, 465–466
UrbanSpoon.com app, 212
use-case scenarios. See HTML5

logo example; robot army
example

users
application testing and,

456–457
communication preferences,

checking, 219–220
using blocks, 21
using statement, 110

V

versioning applications,
457–459

versioning problem for Android
developers, 503–504

vibration for user feedback,
218–219

videos
controlling playback, 247
managing playback output, 247
media player supported

formats, 239–240
MediaRecorder, 251–254
opening YouTube, 276–277
playback process, 240
programming playback,

244–247
recording basics, 247–248
using intents to record,

248–251

views
activities and, 42–44
adapter views, 138–139
view groups (activities), 43
view objects, graphics and,

324–326
ViewGroup class, 138
View/ViewGroup objects

(UIs), 60
virtual keyboards (UIs), 84–87, 496
Visual Studio

creating new application in,
25–26

defi ned, 2, 5, 19
development with Mono for

Android, 25–31
interface methods, 210
Mono Tools for, 24–25
versions of, 24

voice recognition
applet, opening (listing),

229–230
enabling, 227–228
using (listing), 228

VoIP/instant messaging
applications, 312

W

WCF-based web services, 116–119
web services

proxies, 117–119
using responsibly, 128

Web Services Description Language
(WSDL), 115

web-based applications, writing for
Android, 9

web.confi g (ASP.NET), 51
WebKit web browser, 9
websites, displaying,

269–270
websites, for downloading

Android SDK, 22
Google Maps API key, 385
Java SDK, 22
Mono for Android for Mac, 31
Mono for Android plug-in for

Visual Studio, 25

Mono for Mac, 31
Mono Tools for Visual

Studio, 24
MonoDevelop for Mac, 31
portable library tools, 425
SimpleMediaRecorder

application, 251
websites, for further information

affi ne transformations, 328
Android Developer site on

Providing Resources, 97
Android manifest, 55
Android User Interface

Guidelines, 60
application fundamentals

section (Android
documentation), 49

bug submissions, 505
C2DM documentation, 318
C2DM Registration with

Google, 317
C2DM-Sharp, 318
command-line switches, 453
development environment on

Mac, installing, 32
DroidDraw, 61
folder conventions, 399
garbage collection, 22
GitHub, 423
locale tags, 397
matrices, 328
MediaPlayer object, 263–264
memory addresses, 465
mobile phone usage statics

and locales, 396
Monkey, 456
Monkeyrunner, 456
Mono for Android

limitations, 13
Mono for Android

Support, 503
Mono for Windows

environment, 32
publishing applications, 466
qualifi er precedence, 400
registering as Android

developer, 465
SQLite database, 106

bindex.indd 519bindex.indd 519 2/28/2012 4:26:05 PM2/28/2012 4:26:05 PM

McClure bindex.indd V1 - 02/23/2012

520

WebView – zipalign tool

YAFFS, 184
zipalign tool, 465

WebView
Android.Webkit.WebView

class, 271
WebView, activity for handling

(listing), 271–272
WebView.axml, layout for

(listing), 271
widgets (activities), 43
Wifi Manager

basics, 221–222
WiFi connection state

changes, 225
WiFi network, identifying

(listing), 222–224
WiFi states, 224–225

Windows Communication
Foundation (WCF).
See WCF-based web services

Windows Phone 7

basics of, 419–420
class library, 421–422
Portable Library Tools and,

429–430
WorldReadable mode (fi le

accessibility), 184
WorldWritable mode (fi le

accessibility), 184
wrapper list adapter, 138
writing

JPEG exif values, 262–263
native applications, 9
web-based applications, 9

Wrox website, 270

X

Xamarin, 3
Xamarin.Mobile library, 505–506
XElement objects, 125
xhdpi pixel density, 97

XML (Extensible Markup
Language)

Layout Resource fi le, 181
layouts in Android, 158
and LINQ, retrieving data

with, 125–128
processing, 204–205
resources, drawables as,

353–354
XYZ coordinate system, 213

Y

YAFFS (Yet Another Flash File
System), 184

YouTube videos, opening, 276–277

Z

zipalign tool, 464–465

bindex.indd 520bindex.indd 520 2/28/2012 4:26:05 PM2/28/2012 4:26:05 PM

Try Safari Books Online FREE
for 15 days + 15% off
for up to 12 Months*

With Safari Books Online, you can experience
searchable, unlimited access to thousands of
technology, digital media and professional
development books and videos from dozens of
leading publishers. With one low monthly or yearly
subscription price, you get:

• Access to hundreds of expert-led instructional
videos on today’s hottest topics.

• Sample code to help accelerate a wide variety
of software projects

• Robust organizing features including favorites,
highlights, tags, notes, mash-ups and more

• Mobile access using any device with a browser

• Rough Cuts pre-published manuscripts

Read this book for free online—along with thousands of others—
with this 15-day trial offer.with this 15 d

START YOUR FREE TRIAL TODAY!
Visit www.safaribooksonline.com/wrox37 to get started.

*Available to new subscribers only. Discount applies to the
Safari Library and is valid for fi rst 12 consecutive monthly
billing cycles. Safari Library is not available in all countries.

badvert-colour.indd 1badvert-colour.indd 1 2/29/2012 5:02:10 PM2/29/2012 5:02:10 PM

http://www.safaribooksonline.com/wrox37

badvert2.indd 481badvert2.indd 481 2/28/2012 4:24:35 PM2/28/2012 4:24:35 PM

Related Wrox Books
Beginning Android Application Development
ISBN:	978-1-118-01711-1
This	full-color	guide	offers	you	a	hands-on	introduction	to	creating	Android	applications	for	the	latest	mobile	devices.	
Veteran	author	Wei	Meng	Lee	accompanies	each	lesson	with	real-world	examples	to	drive	home	the	content	he	covers.	
Beginning	with	an	overview	of	core	Android	features	and	tools,	he	moves	at	a	steady	pace	while	teaching	everything		
you	need	to	know	to	successfully	develop	your	own	Android	applications.

Beginning iOS 4 Application Development
ISBN:	978-0-470-91802-9
This	full	color	book	shows	you	how	to	take	advantage	of	all	the	new	features	of	the	iPhone	SDK	4	to	create	your	own	native	
iPhone,	iPod	Touch,	and	iPad	applications.	You’ll	explore	Apple’s	Xcode	tools,	the	Objective-C	language,	and	discover	many	
APIs	that	enhance	the	capabilities	of	the	iPhone	SDK.	The	hands-on	approach	helps	you	quickly	progress	from	building	your	
first	application	to	more	sophisticated	programs	that	use	animations,	recognize	gestures,	and	more.

Beginning iPad Application Development
ISBN:	978-0-470-64165-1
This	hands-on	approach	to	iPad	development	walks	readers	through	all	the	necessary	tools	and	skills	required	for	successful	
iPad	app	programming,	from	the	iPhone	SDK	to	Xcode	to	Objective-C	syntax.

Professional Android 2 Application Development
ISBN:	978-0-470-56552-0
Written	by	an	Android	authority,	this	resource	shows	you	how	to	leverage	the	features	of	Android	2	to	enhance	existing	
products	or	create	innovative	new	ones.	The	book	walks	you	through	a	series	of	sample	projects	that	introduces	you	to	
Android’s	new	features	and	techniques.

Professional C# 4 and .NET 4
ISBN:	978-0-470-50225-9
After	a	quick	refresher	on	C#	basics,	the	author	dream	team	moves	on	to	provide	you	with	details	of	language	and	frame-
work	features	including	LINQ,	LINQ	to	SQL,	LINQ	to	XML,	WCF,	WPF,	Workflow,	and	Generics.	Coverage	also	spans	ASP.NET	
programming	with	C#,	working	in	Visual	Studio	2010	with	C#,	and	more.	With	this	book,	you’ll	quickly	get	up	to	date	on	all	
the	newest	capabilities	of	C#	4.

Professional Flash Mobile Development: Creating Android Applications
ISBN:	978-0-470-62007-6
This	Wrox	guide	shows	Flash	and	ActionScript	developers	how	to	create	native	applications	for	Android	mobile	devices	using	
Flash	and	Flash	Builder.	Packed	with	practical	examples,	it	shows	how	to	build	a	variety	of	apps	and	integrate	them	with	core	
mobile	services	such	as	Accelerometer,	GPS,	Photo	Library,	and	more.

Professional iPhone Programming with MonoTouch and .NET/C#
ISBN:	978-0-470-63782-1
Develop	iPhone	apps	using	tools	you	already	know.	C#	and	.NET	MonoTouch	opens	the	door	for	.NET	and	C#	developers	to	
create	Apple	iPhone	and	iPad	applications	using	C#.	Written	by	a	team	of	leading	community	experts,	this	unique	book	walks	
you	through	the	process	of	writing	applications	for	the	world’s	most	exciting	mobile	platform	while	leveraging	the	features	
of	the	Microsoft	.NET	Framework.

Professional Visual Studio 2010
ISBN:	978-0-470-54865-3
Written	by	an	author	team	of	veteran	programmers	and	developers,	this	book	gets	you	quickly	up	to	speed	on	what	you	can	
expect	from	Visual	Studio	2010.	Packed	with	helpful	examples,	this	comprehensive	guide	examines	the	features	of	Visual	
Studio	2010	and	walks	you	through	every	facet	of	the	Integrated	Development	Environment	(IDE),	from	common	tasks	and	
functions	to	its	powerful	tools.

	Professional Android™ Programming With Mono For Android And .Net/C#
	Contents���������������
	Foreword
	Introduction
	Chapter 1: Introduction to Android, Mobile Devices, and the Marketplace
	Product Comparison�������������������������
	The .NET Framework�������������������������
	Mono�����������
	Mono for Android�����������������������
	Mono for Android Components����������������������������������

	Development Tools������������������������

	Mobile Development�������������������������
	Getting Around Support Issues������������������������������������
	Design Issues��������������������

	Android��������������
	History of Android�������������������������
	Writing Web-Based Applications for Android���
	Writing Native Applications for Android��
	Android Development Issues���������������������������������
	Android SDK Tools������������������������
	Android Development Costs��������������������������������

	Cross-Platform Alternatives����������������������������������
	Other Cross-Platform Tools���������������������������������
	Considerations for Selecting a Cross-Platform Tool���
	How Does the Tool Allow You to Author Your Application?��
	What Device Features Does the Tool Support?��
	What Platforms Does the Tool Support?��
	What Skill Sets Does the Tool Require?���
	What Tools Exist to Support Development?���
	How Active Are the Development Community and Support Channels?���
	What Are the Successful Application Deployments for This Tool?���

	Summary��������������

	Chapter 2: Introduction to Mono for Android��
	Before You Begin Developing����������������������������������
	What Is Mono?��������������������
	Mono Implementation Goals��������������������������������
	Mono Standards���������������������

	What Is Mono for Android?��������������������������������
	Why Do I Need Mono for Android?��������������������������������������
	Familiar Development Environment���������������������������������������
	Familiar API and Library Structure���

	What Are the Trade-Offs of Working with Mono for Android?��
	Waiting for Improvements�������������������������������
	Taking a Potential Performance Hit���
	Memory Management������������������������

	What Do I Need for the Mono for Android Development Environment?���
	Java SDK���������������
	Android SDK������������������
	Visual Studio��������������������

	Visual Studio Development with Mono for Android��
	General Setup��������������������
	Building Hello Android�����������������������������
	Logging��������������
	Debugging����������������
	Testing��������������
	Deploying����������������

	Mono for Android Development with MonoDevelop��
	General Setup��������������������
	Building Hello Android�����������������������������
	Logging��������������
	Debugging����������������
	Testing��������������
	Deploying����������������

	Summary��������������

	Chapter 3: Understanding Android/Mono for Android Applications���
	What Is an Android Application?��������������������������������������
	The Building Blocks of an Android Application��
	Activities�����������������
	Services���������������
	Content Providers������������������������
	Broadcast Receivers��������������������������

	Communicating between Components: Android Intents��

	Binding the Components: The Android Manifest���
	Android Manifest Basics������������������������������
	Editing the Manifest for Mono for Android via Visual Studio��

	Summary��������������

	Chapter 4: Planning and Building Your Application’s User Interface���
	Guidelines for a Successful Mobile UI��
	Building an Android UI�����������������������������
	Views������������
	Design Surface���������������������

	Choosing a Control Layout��������������������������������
	AbsoluteLayout���������������������
	FrameLayout������������������
	LinearLayout�������������������
	RelativeLayout���������������������
	TableLayout������������������
	Optimizing Layouts�������������������������

	Designing Your User Interface Controls���
	TextView���������������
	EditText���������������
	AutoCompleteTextView���������������������������
	Spinner��������������
	Button�������������
	Check Box����������������
	Radio Buttons and Groups�������������������������������
	Clocks�������������
	Pickers��������������
	Images�������������
	ImageView����������������
	ImageButton������������������
	Gallery��������������

	Virtual Keyboards������������������������
	Selecting Your Virtual Keyboard��������������������������������������
	Removing the Keyboard����������������������������

	Controlling Your Menus�����������������������������
	Introducing the Menu System����������������������������������
	Menus������������
	Submenus���������������
	Context Menus��������������������
	Defining Menus as a Resource�����������������������������������
	Menus������������
	Context Menus��������������������

	Resolution-Independent UI��������������������������������
	Supporting Various Screen Resources��
	Supporting Screen Sizes������������������������������
	Supporting Pixel Densities���������������������������������

	Using Android Market Support�����������������������������������
	Multiple Screen Resolution Best Practices��

	Constructing a User Interface: A Phone and Tablet Example��
	Summary��������������

	Chapter 5: Working with Data�����������������������������������
	Working with SQLite��������������������������
	Setting Up a Database����������������������������
	Setting Up Tables������������������������
	Using SQL Statements���������������������������
	Using Read/Select to Read Data�������������������������������������
	Using SQL Statements to Insert Data��

	Upgrading Strategies���������������������������
	Upgrading in Place�������������������������
	Copying Data�������������������

	Android-Specific Database Options��
	SQLiteOpenHelper�����������������������
	Storing Data Remotely����������������������������

	Working with Remote Data�������������������������������
	Accessing Enterprise Services������������������������������������
	Using SOAP�����������������
	Working with ASMX Web Services�������������������������������������
	Working with Windows Communication Foundation (WCF)��

	Using REST-Based Web Services������������������������������������
	Using JavaScript Object Notation (JSON)��
	Posting Data with POST�����������������������������

	Retrieving Data Using LINQ and XML���
	Using Asynchronous Data Retrieval��

	Using Web Services Responsibly�������������������������������������
	Working with Remote SQL Server Databases���
	Summary��������������

	Chapter 6: Binding Data to Controls��
	Databinding in Mono for Android��������������������������������������
	What Is a Data Adapter?������������������������������
	What Is an Adapter View?�������������������������������
	How Do These Items Relate to One Another?��
	Working with Adapter Views and Large Data Sets���
	Exploring Adapters in Depth����������������������������������
	Using Native Adapters����������������������������
	Exploring Adapter Views in Depth���������������������������������������
	Using Native Adapter Views���������������������������������

	Working with Cursors���������������������������
	Using a Cursor to Populate a Spinner���
	Setting Up the Spinner and Data Source���
	Using a Spinner Adapter������������������������������
	Adding a Listener Event for a Spinner��

	Using a Cursor with a Gallery������������������������������������
	Setting Up the Project�����������������������������
	Adding the Cursor������������������������
	Completing the Custom Adapter������������������������������������

	Working with Lists�������������������������
	Displaying Simple Data in a List���������������������������������������
	Working with Android’s ListAdapters��
	Customizing ListView with a Custom List Adapter��
	Handling ListView Events�������������������������������
	Preferences Screen�������������������������
	Nested Navigation������������������������
	Grouped Lists��������������������
	Displaying Data in a Grid��������������������������������

	Summary��������������

	Chapter 7: Working with the File System and Application Preferences��
	Working with the File System�����������������������������������
	File System Type and Structure�������������������������������������
	QuickEdit Sample Program: Working with a File Storage Example��

	Working with Application Preferences���
	Application Preference Types�����������������������������������
	Creating Your Own Application Preferences��
	Preferences Program��������������������������
	Listening for Preference Changes���������������������������������������
	Processing XML���������������������

	Summary��������������

	Chapter 8: Programming with the Device Hardware��
	Working with Sensors���������������������������
	Referencing the Sensor Manager�������������������������������������
	Sensor Support���������������������
	Accessing Sensors������������������������
	Using Sensors��������������������
	Understanding the Sensor Type Values���

	Responding to Acceleration���������������������������������
	Using the XYZ Coordinate System��������������������������������������
	Coding with the Accelerometer������������������������������������

	Building a Compass�������������������������
	Vibration����������������
	Networking Connectivity������������������������������
	ConnectivityManager��������������������������
	Checking User Communication Preferences��
	Checking for Changes to BackgroundDataSetting��
	Checking Current Network Configuration���
	Creating Network Connectivity Notifications��
	WifiManager������������������
	WiFi States������������������
	WiFi Changes�������������������

	Bluetooth Manager������������������������
	Working with Bluetooth State�����������������������������������

	Enabling Voice Recognition in Your App���
	Getting Turn-by-Turn Directions��������������������������������������
	Summary��������������

	Chapter 9: Using Multimedia?—?Audio, Video, and the Camera���
	Android Media Classes����������������������������
	Playing Audio and Video������������������������������
	Media Player Supported Formats�������������������������������������
	Programming Audio Playback���������������������������������
	Programming Video Playback���������������������������������
	Controlling Playback���������������������������
	Managing Playback Output�������������������������������

	Recording Audio and Video��������������������������������
	Using Intents to Record Video������������������������������������
	Using the Media Recorder�������������������������������
	Configuring Video Recording����������������������������������
	Previewing Video Recording���������������������������������
	Audio Recording����������������������

	Images and Using the Camera����������������������������������
	Using Intents to Take Pictures�������������������������������������
	Controlling the Camera�����������������������������
	Managing Camera Settings and Picture Options���
	Monitoring Autofocus���������������������������
	Using the Camera Preview�������������������������������
	Taking a Picture�����������������������
	Reading and Writing JPEG Exif Values���

	Adding New Media to the Media Store��
	Using the Media Scanner������������������������������
	Adding New Media to the Store������������������������������������

	Speech Recognition�������������������������
	Summary��������������

	Chapter 10: Talking to Other Applications and Libraries��
	Android Application Integration��������������������������������������
	Opening the Browser��������������������������
	Opening E-mail���������������������
	Making a Telephone Call������������������������������
	Sending a Text/SMS Message���������������������������������
	Opening a Location in the Maps Application���
	Opening a YouTube Video������������������������������
	Opening the Market�������������������������

	Application Integration������������������������������
	Simple Integration with HootSuite and Other Twitter Applications���
	Configuring Your Intent Filters��������������������������������������
	Handling Incoming Intent Requests��

	Integrating with Contacts��������������������������������
	Displaying Contact Details���������������������������������
	Picking a Contact������������������������
	Creating a New Contact�����������������������������
	Creating a New Contact or Adding to an Existing Contact��

	Summary��������������

	Chapter 11: Developing Background Services and Asynchronous Code���
	The Life Cycle of a Service����������������������������������
	Creating Your First Service����������������������������������
	Prioritizing Services����������������������������

	Using Threads for Asynchronous Processing��
	Threading Manually�������������������������
	Utilizing System.Threading.Tasks���������������������������������������
	Implicit Threading with the IntentService��

	Communicating with the UI��������������������������������
	Using the Binder and Service Connection Method���
	Using the Broadcast Receiver Method��
	Using the Static Event Method������������������������������������

	Notifying the User with Notifications��
	Scheduling Intents with Alarms and the IntentService���
	Push Notifications Using Cloud to Device Messaging (C2DM)��
	Listening for C2DM in Your Application���
	Sending a C2DM Message from Your Server��

	Summary��������������

	Chapter 12: Canvas and Drawables: Building Custom Android Graphics���
	Working with Graphics in Mono for Android��
	Using the Canvas Object������������������������������
	Graphics Primitives��������������������������
	The Canvas Object������������������������
	The Paint Object�����������������������
	The Bitmap Object������������������������
	Bringing It All Together�������������������������������
	A Path Primer��������������������
	Case 1: Creating a Custom Graphic��
	Case 2: Responding to Events�����������������������������������
	Case 3: Animating Custom Graphics��
	Case 4: Improving Performance Using SurfaceView��

	Selecting the Best Approach����������������������������������

	The 2D Graphics Library������������������������������
	Using Drawables����������������������
	Drawables as XML Resources���������������������������������
	Simple and Compound Drawables������������������������������������
	Drawables in Action��������������������������
	Case 1: Using Default Drawables��������������������������������������
	Case 2: Adding Polish with the Shape Drawable��
	Case 3: Using the Gradient Drawable��
	Case 4: Using the Compound Drawable��
	Case 5: Interacting with a Custom Drawable���

	Summary��������������

	Chapter 13: Working with Location Information��
	Understanding Location Basics������������������������������������
	Determining Location���������������������������
	Location-Based Data Interruptions��
	Using Location-Based Services������������������������������������
	Configuring Location-Based Applications on the Emulator��

	Selecting a Location Provider������������������������������������
	Determining Which Providers Are Available��
	Finding Location Providers with Criteria���

	Geocoding����������������
	Forward Geocoding������������������������
	Reverse Geocoding������������������������

	Constructing Proximity Alerts������������������������������������
	Using Google Maps������������������������
	Getting Your Development/Debugging MD5 Fingerprint���
	Getting Your Production/Release MD5 Fingerprint��
	Creating the Maps-Based Activity���������������������������������������
	Creating a Map in a Layout File��������������������������������������
	Using the MapView Controller with an Overlay���

	Summary��������������

	Chapter 14: Internationalization and Localization��
	Selecting a Localization Strategy��
	Updating Language and Regional Settings��
	Understanding the Mechanics of Android Localization��
	Setting Up Default Resources�����������������������������������
	Adding Localization Support����������������������������������
	Resource Selection in Detail�����������������������������������

	Supporting Multiple Languages������������������������������������
	Utilizing the Strings.xml File�������������������������������������
	Translating Text�����������������������
	Translating Control Text�������������������������������

	Localizing Other Resources���������������������������������
	Localizing the Menu Icon and Application Name��

	Advanced Usage of Strings.xml������������������������������������
	String Array�������������������
	Plurals��������������
	String Replacements��������������������������

	Working with Format Conversions��������������������������������������
	Formatting Dates�����������������������
	Formatting Numbers and Currency��������������������������������������

	Summary��������������

	Chapter 15: Sharing Code between Mono for Android, MonoTouch, and Windows Phone 7��
	Overview of the Three Platforms��������������������������������������
	Mono for Android�����������������������
	MonoTouch����������������
	Windows Phone 7����������������������

	Using Class Libraries to Separate the Code���
	Using Preprocessor Directives������������������������������������
	Mono for Android�����������������������
	Windows Phone 7����������������������
	MonoTouch����������������

	Assemblies Available on Each Platform��
	One Class Library to Rule Them All���
	Mono for Android�����������������������
	MonoTouch����������������
	Windows Phone 7����������������������

	Putting It All Together: Creating a Cross-Platform Application���
	Summary��������������

	Chapter 16: Preparing and Publishing Your Application to the Market��
	Preparing Your Application���������������������������������
	Testing Your Application�������������������������������
	Hitting the Key Testing Areas������������������������������������
	Tools for the Testing Trade����������������������������������
	Unit Testing�������������������
	DDMS�����������
	The Emulator�������������������
	Traceviews�����������������
	Stress Testing via the Application Exerciser Monkey��
	UI Testing via the Monkeyrunner��������������������������������������

	Involving Peers and Users in the Testing Process���

	Publishing Your Application to the Android Market��
	Versioning Your Application����������������������������������
	Creating the Final Build�������������������������������
	Signing Your Application�������������������������������
	Creating a Private Key�����������������������������
	Creating a Self-Signed Certificate���
	Aligning the Final Package���������������������������������

	Uploading to the Android Market��������������������������������������

	Summary��������������

	Chapter 17: Android Tablets����������������������������������
	Examining the Android Tablet Marketplace���
	Designing a Tablet UI����������������������������
	Using the Action Bar���������������������������
	Removing the Action Bar������������������������������
	Adding Items to the Action Bar�������������������������������������
	Using the Application Icon���������������������������������
	Navigating “Up” the Stack��������������������������������
	Adding and Using Action Items������������������������������������
	Creating a Tabbed Interface����������������������������������

	Partial Screen Control Using Fragments���
	Creating Fragments�������������������������
	More Fragments���������������������

	Summary��������������

	Appendix A: Tips for Developers and the Future of Mono and Android
	Best Practices, Hints, Tips, and Gotchas���
	Android Honeycomb (3.0) and Ice Cream Sandwich (4.0)���
	Fragments for All!�������������������������
	Android Version and Device Fragmentation���
	What’s Next for Mono for Android?��
	Using Xamarin.Mobile for Cross-Platform Mobile Functionality���

	Index
	Advertisements

