
ffi rs.indd 05/05/2016 Page i

PROFESSIONAL CLOJURE

INTRODUCTION . xv

CHAPTER 1 Have a Beginner’s Mind . 1

CHAPTER 2 Rapid Feedback Cycles with Clojure . 31

CHAPTER 3 Web Services . 53

CHAPTER 4 Testing . 99

CHAPTER 5 Reactive Web Pages in ClojureScript . 129

CHAPTER 6 The Datomic Database . 169

CHAPTER 7 Performance . 217

INDEX . 235

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 05/05/2016 Page iii

PROFESSIONAL

Clojure

Jeremy Anderson
Michael Gaare
Justin Holguín

Nick Bailey
Timothy Pratley

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 05/05/2016 Page iv

Professional Clojure

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2016 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-26727-0
ISBN: 978-1-119-26728-7 (ebk)
ISBN: 978-1-119-26729-4 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is
sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional ser-
vices. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with stan-
dard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such
as a CD or DVD that is not included in the version you purchased, you may download this material at http://
booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2016934964

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 05/05/2016 Page v

ABOUT THE AUTHORS

JEREMY ANDERSON is a developer at Code Adept, a West Michigan–based software
consultancy focused on delivering high-quality software through providing software
development, agile coaching, and training services. He is a Clojure enthusiast and
contributor to a few different Clojure libraries. He is very passionate about teaching
others how to program and volunteers to help teach computer science to area
high-school and middle-school students.

MICHAEL GAARE is the platform technical lead at Nextangles, a fi nancial technology
startup. He’s been using Clojure professionally since 2012 to build web services,
data processing systems, and various libraries—not frameworks! In his spare time,
he enjoys spending time with his wife and two daughters, and his hobby is opera
singing.

JUSTIN HOLGUÍN is a software engineer at Puppet Labs, where he specializes in
Clojure back-end services. Justin has a passion for functional programming and a spe-
cial interest in technologies that improve software reliability, such as advanced type
systems and property-based testing.

NICK BAILEY is a Clojure enthusiast and the maintainer of the Clojure java.jmx
library. He is a software architect at DataStax, where he uses Clojure to build
enterprise-level software for managing distributed databases. He was introduced to
Clojure in 2010 and has been a fan ever since.

TIMOTHY PRATLEY is a Clojure contributor and advocate. Clojure has been his language
of choice since 2008. He develops solutions in Clojure, ClojureScript, and Clojure-
Android at his current role at Outpace Systems, Inc. He has 15 years of professional
software development experience during which he has used many languages, frame-
works, and databases. He loves Clojure, Datomic, pair programming, and thinking.

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 05/05/2016 Page vi

ABOUT THE TECHNICAL EDITORS

JUSTIN SMITH is a full-time Clojure developer who is active in the online Clojure community. His
day job is 100% Clojure development.

ZUBAIR QURAISHI is a UX/Design and marketing hacker based in Denmark who has sold 2 startups
and invested in over 30 startups over the last 20 years. He has been using Clojure and ClojureScript
for the last 5 years. He has worked in many startups and Fortune 500 companies based in the
United States, Europe, and Asia. You can fi nd his blog is at www.zubairquraishi.com.

ALEX OTT is a software architect in Intel Security (formerly McAfee), based in Paderborn, Germany.
He works in the area of information security and has been using Clojure since release 1.0 (2009) to
build prototypes, internal services, and open source projects, like Incanter.

DOUG KNIGHT has been programming computers professionally for 18 years, using Microsoft tech-
nologies for most of that time. He switched to Ruby on Rails in 2014 when he joined LivingSocial,
and in 2015 he added Clojure as part of his work for the company.

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 05/05/2016 Page vii

PROJECT EDITOR
Charlotte Kughen

TECHNICAL EDITOR
Justin Smith
Zubair Quraishi
Alex Ott
Doug Knight

PRODUCTION EDITOR
Barath Kumar Rajasekaran

COPY EDITOR
Troy Mott

MANAGER OF CONTENT DEVELOPMENT
AND ASSEMBLY
Mary Beth Wakefi eld

PRODUCTION MANAGER
Kathleen Wisor

MARKETING MANAGER
Carrie Sherrill

PROFESSIONAL TECHNOLOGY & STRATEGY
DIRECTOR
Barry Pruett

BUSINESS MANAGER
Amy Knies

EXECUTIVE EDITOR
Jim Minatel

PROJECT COORDINATOR, COVER
Brent Savage

PROOFREADER
Nancy Bell

INDEXER
Nancy Guenther

COVER DESIGNER
Wiley

COVER IMAGE
©d8nn/Shutterstock

CREDITS

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 05/05/2016 Page ix

ACKNOWLEDGMENTS

JEREMY WOULD LIKE TO THANK God, fi rst and foremost, for granting him the gifts that he has in
order to do the things that he loves. Secondly, Jeremy thanks his family for being so supportive and
understanding of him locking himself in his offi ce to frantically write on evenings and weekends.
Next, thanks to Christina Rudloff and Troy Mott for all the hard work they’ve done to put this
project together and for inviting him onto this writing team, and thanks also to all the authors who
helped make this project a reality. Finally, thanks to all the technical reviewers for taking the time to
read and provide valuable feedback in the early stages of this book.

NICK WOULD LIKE TO THANK EVERYONE involved in making this book a reality: Troy and Christina
for organizing, his fellow authors for writing and reviewing, and the technical reviewers for
great feedback. He would also like to thank DataStax for giving him a chance to write Clojure
professionally.

MICHAEL WOULD LIKE TO THANK LARA, Charlotte, and Juliette for their love, support, and under-
standing; Keith for his valuable assistance; Christina and Troy for their patience and the oppor-
tunity to write about a terrifi c subject; and Rich for creating something so interesting to write
about—not to mention work with.

JUSTIN WOULD LIKE TO THANK HIS FAMILY for bootstrapping him and, among countless other things,
encouraging his love of books and computers. He would also like to thank his many brilliant friends
and colleagues at Puppet Labs, where he has been inspired and challenged to master Clojure bit by
bit, day by day.

TIMOTHY WOULD LIKE TO THANK SHIN Nee for being the ultimate collaborator. He would like to
thank you, the reader, for exploring how programming can be better; the Clojure community
for providing a friendly, helpful, and pleasant ecosystem to exist in; and his parents for the many
 opportunities they crafted into his life.

www.allitebooks.com

http://www.allitebooks.org

ftoc.indd 05/04/2016 Page xi

CONTENTS

INTRODUCTION xv

CHAPTER 1: HAVE A BEGINNER’S MIND 1

Functional Thinking 2
Value Oriented 2
Thinking Recursively 5
Higher Order Functions 8
Embracing Laziness 11
When You Really Do Need to Mutate 12
Nil Punning 15
The Functional Web 16

Doing Object-Oriented Better 16
Polymorphic Dispatch with defmulti 18
Defi ning Types with deftype and defrecord 20
Protocols 21
Reify 22

Persistent Data Structures 23
Shaping the Language 27
Summary 29

CHAPTER 2: RAPID FEEDBACK CYCLES
WITH CLOJURE 31

REPL-Driven Development 32
Basic REPL Usage with Leiningen 32
Remote REPLs with nREPL 34
REPL Usage with a Real Application 35
Connecting Your Editor to a REPL 39

Reloading Code 40
Reloading Code from the REPL 40
Automatically Reloading Code 43
Writing Reloadable Code 49

Summary 51

CHAPTER 3: WEB SERVICES 53

Project Overview 53
Namespace Layout 54

www.allitebooks.com

http://www.allitebooks.org

xii

CONTENTS

ftoc.indd 05/04/2016 Page xii

Elements of a Web Service 55
Libraries, Not Frameworks 55
HTTP 55
Routing 64
JSON Endpoints 70

Example Service 74
Create the Project 75
Additional Namespaces 75
Default Middleware 77
The Storage Protocol 78
Handlers 83
Middleware 88
Routes 89

Deployment 94
Using Leiningen 94
Compiling an Uberjar or Uberwar 95
Hosting 96

Summary 97

CHAPTER 4: TESTING 99

Testing Basics with clojure.test 100
with-test 101
deftest 101
are 102
Using Fixtures 103

Testing Strategies 104
Tests Against DB 104
Testing Ring Handlers 106
Mocking/Stubbing Using with-redefs 108
Redefi ning Dynamic Vars 110
Record/Replay with VCR 111

Measuring Code Quality 112
Code Coverage with Cloverage 112
Static Analysis with kibit and bikeshed 114
Keeping Dependencies Under Control 116

Testing Framework Alternatives 119
Expectations 119
Speclj 119
Cucumber 120
Kerodon 126

Summary 127

www.allitebooks.com

http://www.allitebooks.org

xiii

CONTENTS

ftoc.indd 05/04/2016 Page xiii

CHAPTER 5: REACTIVE WEB PAGES IN CLOJURESCRIPT 129

ClojureScript Is a Big Deal 129
A First Brush with ClojureScript 131

Starting a New ClojureScript Project 132
Getting Fast Feedback with Figwheel 132
Creating Components 134
Modeling the Data 135
Responding to Events and Handling State Change 136
Understanding Errors and Warnings 137
Namespace Layout 141
Styling 141
Form Inputs and Form Handling 142
Navigation and Routes 145
HTTP Calls: Talking to a Server 147
Drag and Drop 149
Publishing 150

Reagent in Depth 151
Form 1: A Function That Returns a Vector 151
Form 2: A Function That Returns a Component 152
Form 3: A Function That Returns a Class 153
Sequences and Keys 154
Custom Markup 155
Reactions 156
A Note on Style 158

Testing Components with Devcards 159
Interop with JavaScript 162
One Language, One Idiom, Many Platforms 164
Things to Know About the Closure Compiler and Library 164
Modeling State with DataScript 165
Go Routines in Your Browser with core.async 166
Summary 167

CHAPTER 6: THE DATOMIC DATABASE 169

Datomic Basics 170
Why Datomic? 170
The Datomic Data Model 172
Querying 175
Transactions 181

www.allitebooks.com

http://www.allitebooks.org

xiv

CONTENTS

ftoc.indd 05/04/2016 Page xiv

Indexes Really Tie Your Data Together 183
Datomic’s Unique Architecture 187

Modeling Application Data 188
Example Schema for Task Tracker App 188
Entity ids and Partitions 196

Datomic’s Clojure API 197
Basic Setup 197
Experimenting in the REPL 200

Building Applications with Datomic 206
User Functions 206
Account Functions 209
Task Functions 210
Deployment 213
The Limitations 214

Summary 215

CHAPTER 7: PERFORMANCE 217

What Is Performance? 219
Choosing the Right Data Structure Is a Prerequisite
for Performance 219
Benchmarking 221

Timing Slow Things 221
Use Criterium for Timing Fast Things 223
Use Test Selectors for Performance Tests 225

Parallelism 225
Memoization 226
Inlining 227

Persistent Data Structures 228
Safe Mutation with Transients 228
Profi ling 229
Avoiding Refl ection with Type Hinting 230
Java Flags 232
Math 232
Summary 232

INDEX 235

fl ast.indd 05/03/2016 Page xv

 INTRODUCTION

WHAT IS CLOJURE?

Clojure is a dynamic, general-purpose programming language, combining the
approachability and interactive development of a scripting language with an
effi cient and robust infrastructure for multithreaded programming. Clojure is a
compiled language, yet remains completely dynamic—every feature supported
by Clojure is supported at runtime. Clojure provides easy access to the Java
frameworks, with optional type hints and type inference, to ensure that calls to
Java can avoid refl ection.

Clojure is a dialect of Lisp, and shares with Lisp the code-as-data philosophy and
a powerful macro system. Clojure is predominantly a functional programming
language, and features a rich set of immutable, persistent data structures. When
mutable state is needed, Clojure offers a software transactional memory system
and reactive Agent system that ensure clean, correct, multithreaded designs.

—Rich Hickey, author of Clojure

This quote from Rich Hickey, the creator of Clojure, captures what Clojure is. Many people equate
Clojure with functional programming, but much like Lisp, its predecessor, it’s a general-purpose
language that will support you no matter what paradigm you decide to program in.

Clojure is, however, very opinionated and offers great support for programming in a functional
manner, with its focus on immutable values and persistent data structures. You may be surprised
to know that Clojure also offers the ability to do object-oriented programming, which we cover in
this book.

WHO IS THIS BOOK FOR?

This book was written with the professional programmer in mind. This means you should have
experience programming in a language, and you should know the basic syntax and concepts in
Clojure, and be ready to take Clojure programming to the next level. Our goal is to take you from
a Clojure beginner to being able to think like a Clojure developer. Learning Clojure is much more
than just learning a new syntax. You must use tools and constructs much differentely than anything
you may be familiar with.

xvi

INTRODUCTION

fl ast.indd 05/03/2016 Page xvi

DEMO APPLICATION SOURCE CODE

You can access the source code from the Wiley website at www.wiley.com/go/
professionalclojure or at our demo application via Github at https://github
.com/backstopmedia/clojurebook.

A powerful programming language is more than just a means for instructing
a computer to perform tasks. The language also serves as a framework within
which we organize our ideas about processes.

—Structure and Interpretation of Computer Programs

This book assumes some prior knowledge of Clojure and programming in general, but does not
assume profi ciency in Clojure. It will cover a broad scope of topics from changing the way you think
and approach programming to how you integrate the REPL into your normal development routine
to how you build real world applications using Ring and ClojureScript.

WHAT WILL YOU LEARN?

Our goal is to provide you with some real world examples of how to apply your Clojure knowledge
to your day-to-day programming, not just theory and academia.

Chapter 1
In Chapter 1, you will learn about Clojure’s unique view on designing programs. You’ll discover
some of the things that set Clojure apart from other languages, for example, how immutability is the
default, and how Clojure qualifi es as object-oriented programming.

Chapter 2
In Chapter 2, you will learn how to become profi cient with the REPL and various tips and tech-
niques for interacting with your actual application through the REPL. You’ll learn how to run your
code and tests from the REPL as well as how to write code that is easily reloaded from the REPL
without having to restart it.

Chapter 3
In Chapter 3, you learn about building web services with Compojure, and the various concepts
involved such as routes, handlers, and middleware. You will build a complete web service, and then
learn various techniques for deploying your new application.

xvii

INTRODUCTION

fl ast.indd 05/03/2016 Page xvii

Chapter 4
Chapter 4 covers testing in Clojure, focusing primarily on the clojure.test testing library. You’ll
learn various techniques for many common testing scenarios, along with tools to help measure the
quality of your code.

Chapter 5
In Chapter 5, you will learn how to build a task management web application similar to the popular
Trello application in ClojureScript. You’ll also learn the techniques for sharing functions between
both your server-side and client-side applications.

Chapter 6
Chapter 6 takes a look at Datomic and how it applies the concept of immutability to databases.
You’ll learn the basics of how to model data in a Datomic database and how to extract that infor-
mation. Then you’ll apply this knowledge to building a database to support the task management
application from Chapter 5.

Chapter 7
In Chapter 7, you’ll take a look at performance and how to make your Clojure code execute faster.
You’ll discover how with a little work you can tweak your Clojure code to be as fast as Java code.

TOOLS YOU WILL NEED

Just as in any good adventure or journey, having the right tools makes things go much smoother.
Fortunately, to work through the examples in this book, you only need three things: Java,
Leiningen, and a good text editor.

Java
Most computers these days come with Java pre-installed, but in order to run the examples contained
in this book you need to make sure you have installed a recent version. The code examples in this
book were written with and confi rmed to work with JDK 1.8.0_25. For instructions on how to
download and install the proper JDK for your platform, see the documentation at Oracle’s JDK
download page: (http://www.oracle.com/technetwork/java/javase/downloads/index.html).

Leiningen
Leiningen, according to their website (http://leiningen.org), is the most contributed-to Clojure
project. For those of you coming from a background in Java, Leiningen fi lls a similar role that

xviii

INTRODUCTION

fl ast.indd 05/03/2016 Page xviii

Maven does for the Java world, only without all of the XML, and you can avoid wanting to pull
your hair out. It helps you manage the dependencies for your project and declaratively describe your
project and confi guration, and provides access to a wealth of plugins for everything from code
analysis to automation, and more. Leiningen makes your Clojure experience much more enjoyable.

Fortunately, getting Leiningen up and running is a fairly simple task. You’ll want to install the latest
version available, which at the time of this writing is 2.5.3. Please refer to the Leiningen website for
instructions particular to your programming environment.

Editors
Once you have Leiningen installed, the only thing left to do is to make sure you have a good text
editor to effi ciently edit your Clojure code. If you have a favorite editor, just use what you’re already
comfortable with. However, if your editor doesn’t support basic things like parentheses balancing,
integration with the REPL, syntax highlighting, or properly indenting Clojure code, you may want
to consider one of the editors below.

Emacs
Emacs is the favored editor of many grizzled veterans. It has a long history with Lisp. Even though
it has a steep learning curve, it is considered by many to be very powerful, and no other editor is as
extensible. There are many custom Emacs confi gurations designed to help ease the learning curve,
such as Emacs Prelude (https://github.com/bbatsov/prelude), which also contains a sensible
default confi guration for developing in many languages, including Clojure.

LightTable
LightTable (http://lighttable.com) began life as a Kickstarter project with a unique new
vision of how to integrate the code editor, REPL, and documentation browser for Clojure. It has
delivered on those promises and then some and has gained popularity among many in the Clojure
community.

Cursive (IntelliJ)
If you’re already comfortable with using any of the various JetBrains IDEs, you’ll be happy to know
that there is a plugin for IntelliJ called Cursive (https://cursive-ide.com). Besides having good
integration with nREPL, it also stays true to its reputation and contains excellent refactoring sup-
port, as well as debugging and Java interop.

Counterclockwise (Eclipse)
For those who are familiar with Eclipse, there is Counterclockwise (http://doc.ccw-ide.org),
which can be installed as either an Eclipse plugin or a standalone product. Counterclockwise boasts
many of the same features as the previous editors, integration with the REPL, and ability to evaluate
code inline.

xix

INTRODUCTION

fl ast.indd 05/03/2016 Page xix

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

NOTE Notes indicates notes, tips, hints, tricks, and/or asides to the current
discussion.

As for styles in the text:

 ➤ We highlight new terms and important words when we introduce them.

 ➤ We show code within the text like so: persistence.properties.

 ➤ We show all code snippets in the book using this style:

 FileSystem fs = FileSystem.get(URI.create(uri), conf);
 InputStream in = null;
 try {

 ➤ URLs in text appear like this: http://<Slave Hostname>:50075.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code man-
ually, or to use the source code fi les that accompany the book. All of the source code used in this
book is available for download at www.wiley.com. Specifi cally for this book, the code download is
on the Download Code tab at:

www.wiley.com/go/professionalclojure

You can also search for the book at www.wrox.com by ISBN (the ISBN for this book is 9781119267171
to fi nd the code. And a complete list of code downloads for all current Wrox books is available at
www.wiley.com/dynamic/books/download.aspx.

NOTE Because many books have similar titles, you may fi nd it easiest to search
by ISBN; this book’s ISBN is 978-1-119-26727-0.

Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

xx

INTRODUCTION

fl ast.indd 05/03/2016 Page xx

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration, and at the same time, you will be helping us provide even
higher quality information.

To fi nd the errata page for this book, go to www.wiley.com/go/ and click the Errata link. On
this page you can view all errata that has been submitted for this book and posted by Wrox
editors.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the informa-
tion and, if appropriate, post a message to the book’s errata page and fi x the problem in subsequent
editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at http://p2p.wrox.com. The forums are a
web-based system for you to post messages relating to Wrox books and related technologies and
interact with other readers and technology users. The forums offer a subscription feature to e-mail
you topics of interest of your choosing when new posts are made to the forums. Wrox authors, edi-
tors, other industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com, you will fi nd a number of different forums that will help you, not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

 1. Go to http://p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

NOTE You can read messages in the forums without joining P2P, but in order to
post your own messages, you must join.

xxi

INTRODUCTION

fl ast.indd 05/03/2016 Page xxi

 Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to This Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

c01.indd 04/23/2016 Page 1

Have a Beginner’s Mind
WHAT’S IN THIS CHAPTER?

 ➤ Understanding the differences between imperative and functional
programming

 ➤ Learning how to think more functionally

 ➤ Discovering Clojure’s unique perspective on object-oriented
programming

If your mind is empty, it is always ready for anything, it is open to
everything. In the beginner’s mind there are many possibilities, but in the
expert’s mind there are few.

—Shunryu Suzuki

Over the past thirty years many popular programming languages have more in common with
each other than they have differences. In fact, you could argue that once you have learned one
language, it’s not diffi cult to learn another. You merely have to master the subtle differences
in syntax, and maybe understand a new feature that isn’t present in the language that you’re
familiar with. It’s not diffi cult to call yourself a polyglot programmer when many of the top
languages in use today are all so similar.

Clojure, on the other hand, comes from a completely different lineage than most of the popu-
lar languages in use today. Clojure belongs to the Lisp family of programming languages,
which has a very different syntax and programming style than the C-based languages you are
probably familiar with. You must leave all of your programming preconceptions behind in
order to gain the most from learning Clojure, or any Lisp language in general.

1

Professional Clojure. Jeremy Anderson, Michael Gaare, Justin Holguín, Nick Bailey and Timothy Pratley
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

2 ❘ CHAPTER 1 HAVE A BEGINNER’S MIND

c01.indd 04/23/2016 Page 2

Forget everything you know, or think you know about programming, and instead approach it as if
you were learning your very fi rst programming language. Otherwise, you’ll just be learning a new
syntax, and your Clojure code will look more like Java/C/Ruby and less like Clojure is designed to
look. Learning Clojure/Lisp will even affect the way you write in other languages, especially with
Java 8 and Scala becoming more popular.

FUNCTIONAL THINKING

C, C++, C#, Java, Python, Ruby, and even to some extent Perl, all have very similar syntax. They
make use of the same programming constructs and have an emphasis on an imperative style of pro-
gramming. This is a style of programming well suited to the von Neumann architecture of comput-
ing that they were designed to execute in. This is probably most apparent in the C language, where
you are responsible for allocating and de-allocating memory for variables, and dealing directly with
pointers to memory locations. Other imperative languages attempt to hide this complexity with
varying degrees of success.

In computer science, imperative programming is a programming paradigm that
uses statements that change a program’s state.

This C-style of programming has dominated the programming scene for a very long time, because
it fi ts well within the dominant hardware architectural paradigm. Programs are able to execute
very effi ciently, and also make effi cient use of memory, which up until recently had been a very real
constraint. This effi ciency comes at the cost of having more complex semantics and syntax, and it is
increasingly more diffi cult to reason about the execution, because it is so dependent upon the state
of the memory at the time of execution. This makes doing concurrency incredibly diffi cult and error
prone. In these days of cheap memory and an ever growing number of multiple core architectures, it
is starting to show its age.

Functional programming, however, is based on mathematical concepts, rather than any given com-
puting architecture. Clojure, in the spirit of Lisp, calls itself a general-purpose language; however, it
does provide a number of functional features and supports the functional style of programming very
well. Clojure as a language not only offers simpler semantics than its imperative predecessors, but it
also has arguably a much simpler syntax. If you are not familiar with Lisp, reading and understand-
ing Clojure code is going to take some practice. Because of its heavy focus on immutability, it makes
concurrency simple and much less error prone than having to manually manage locks on memory
and having to worry about multiple threads reading values simultaneously. Not only does Clojure
provide all of these functional features, but it also performs object-oriented programming better
than its Java counterpart.

Value Oriented
Clojure promotes a style of programming commonly called “value-oriented programming.”
Clojure’s creator, Rich Hickey, isn’t the fi rst person to use that phrase to describe functional

Functional Thinking ❘ 3

c01.indd 04/23/2016 Page 3

programming, but he does an excellent job explaining it in a talk titled The Value of Values that he
gave at Jax Conf in 2012 (https://www.youtube.com/watch?v=-6BsiVyC1kM).

By promoting this style of value-oriented programming, we are focused more on the values than
mutable objects, which are merely abstractions of places in memory and their current state.
Mutation belongs in comic books, and has no place in programming. This is extremely powerful,
because it allows you to not have to concern yourself with worrying about who is accessing your
data and when. Since you are not worried about what code is accessing your data, concurrency now
becomes much more trivial than it ever was in any of the imperative languages.

One common practice when programming in an imperative language is to defensively make a copy
of any object passed into a method to ensure that the data does not get altered while trying to use
it. Another side effect of focusing on values and immutability is that this practice is no longer nec-
essary. Imagine the amount of code you will no longer have to maintain because you’ll be using
Clojure.

In object-oriented programming, we are largely concerned with information hiding or restrict-
ing access to an object’s data through encapsulation. Clojure removes the need for encapsulation
because of its focus on dealing with values instead of mutable objects. The data becomes semanti-
cally transparent, removing the need for strict control over data. This level of transparency allows
you to reason about the code, because you can now simplify complex functions using the substitu-
tion model for procedure application as shown in the following canonical example. Here we simplify
a function called sum-of-squares through substituting the values:

(defn square [a] (* a a))
(defn sum-of-squares [a b] (+ (square a) (square b))

; evaluate the expression (sum-of-squares 4 5)

(sum-of-squares 4 5)
(+ (square 4) (square 5))
(+ (* 4 4) (* 5 5))
(+ 16 25)
41

By favoring functions that are referentially transparent, you can take advantage of a feature called
memorization. You can tell Clojure to cache the value of some potentially expensive computation,
resulting in faster execution. To illustrate this, we’ll use the Fibonacci sequence, adapted for Clojure,
as an example taken from the classic MIT text Structure and Interpretation of Computer Programs
(SICP).

(defn fib [n]
 (cond
 (= n 0) 0
 (= n 1) 1
 :else (+ (fib (- n 1))
 (fib (- n 2)))))

https://www.youtube.com/watch?v=-6BsiVyC1kM

4 ❘ CHAPTER 1 HAVE A BEGINNER’S MIND

c01.indd 04/23/2016 Page 4

If you look at the tree of execution and evaluate the function for the value of 5, you can see that
in order to calculate the fi fth Fibonacci number, you need to call (fib 4) and (fib 3). Then, to
calculate (fib 4), you need to call (fib 3) and (fib 2). That’s quite a bit of recalculating values
that you already know the answer to (see Figure 1-1).

fib 5

fib 4

fib 3
fib 2

fib 2

fib 3

fib 1

1

fib 2 fib 1 fib 1 fib 0

011fib 1

1

fib 0

0

fib 1 fib 0

1 0

FIGURE 1-1

Calculating for (fib 5) executes quickly, but when you try to calculate for (fib 42) you can see
that it takes considerably longer.

(time (fib 42))
"Elapsed time: 11184.49583 msecs"
267914296

You can rewrite a function to leverage memorization to see a signifi cant improvement in the execu-
tion time. The updated code is shown here:

(def memoized-fib
 (memoize (fn [n]
 (cond
 (= n 0) 0
 (= n 1) 1
 :else (+ (fib (- n 1))
 (fib (- n 2)))))))

When you fi rst run this function, you’ll see how the execution doesn’t happen any faster; however,
each subsequent execution instantaneously happens.

user> (time (memoized-fib 42))
"Elapsed time: 10586.656667 msecs"

Functional Thinking ❘ 5

c01.indd 04/23/2016 Page 5

267914296
user> (time (memoized-fib 42))
"Elapsed time: 0.10272 msecs"
267914296
user> (time (memoized-fib 42))
"Elapsed time: 0.066446 msecs"
267914296

This is a risky enhancement if you do this with a function that relies on a mutable shared state.
However, since our functions are focused on values, and are referentially transparent, you can lever-
age some cool features provided by the Clojure language.

Thinking Recursively
Recursion is not something that is taught much in most imperative languages. Contrast this with
most functional languages, and how they embrace recursion, and you will think more recursively. If
you are unfamiliar with recursion, or struggle to understand how to think recursively, you should
read The Little Schemer, by Daniel P. Friedman and Matthias Felleisen. It walks you through how
to write recursive functions using a Socratic style of teaching, where the two authors are engaged in
a conversation and you get to listen in and learn.

Let’s take a look at a trivial example of calculating a factorial. A typical example in Java might look
like the code shown below. You start by creating a local variable to store the ultimate result. Then,
loop over every number, one-by-one, until you reach the target number, multiplying the last result
by the counter variable defi ned by the for loop, and mutating the local variable.

public long factorial(int n) {
 long product = 1;
 for (int i = 1; i <= n; i++) {
 product *= i;
 }
 return product;
}

Because of Clojure’s focus on values and immutable structures, it relies on recursion for looping and
iteration. A naïve recursive defi nition of a factorial in Clojure may look like the following:

(defn factorial [n]
 (if (= n 1)
 1
 (* n (factorial (- n 1)))))

If you trace the execution of the factorial program with an input of 6, as shown next, you see that
the JVM needs to maintain each successive operation on the stack as n increases, until the factorial
reaches a point where it returns a value instead of recurring. If you’re not careful, you’ll likely end
up with a stack overfl ow. This style of recursion is often called linear recursion.

(factorial 6)
(* 6 (factorial 5))
(* 6 (* 5 (factorial 4)))

6 ❘ CHAPTER 1 HAVE A BEGINNER’S MIND

c01.indd 04/23/2016 Page 6

(* 6 (* 5 (* 4 (factorial 3))))
(* 6 (* 5 (* 4 (* 3 (factorial 2)))))
(* 6 (* 5 (* 4 (* 3 (* 2 (factorial 1))))))
(* 6 (* 5 (* 4 (* 3 (* 2 1)))))
(* 6 (* 5 (* 4 (* 3 2))))
(* 6 (* 5 (* 4 6)))
(* 6 (* 5 24))
(* 6 120)
720

To resolve this dilemma, rewrite your function in a tail recursive style using the special operator
called recur, which according to the documentation, “does constant-space recursive looping by
rebinding and jumping to the nearest enclosing loop or function frame.” This means that it tries to
simulate a tail call optimization, which the JVM doesn’t support. If you rewrite the preceding facto-
rial example using this style, it looks something like the following:

(defn factorial2 [n]
 (loop [count n acc 1]
 (if (zero? count)
 acc
 (recur (dec count) (* acc count)))))

In this version of the factorial function, you can defi ne an anonymous lambda expression using
the loop construct, thus providing the initial bindings for the local variables count to be the value
passed into the factorial function to start the accumulator at 1. The rest of the function merely
consists of a conditional that checks the base case and returns the current accumulator, or makes
a recursive call using recur. Notice how in the tail position of the function this program doesn’t
require the runtime to keep track of any previous state, and can simply call recur with the calcu-
lated values. You can trace the execution of this improved version of the factorial as seen here:

(factorial2 6)
(loop 6 1)
(loop 5 6)
(loop 4 30)
(loop 3 120)
(loop 2 360)
(loop 1 720)
720

The call to factorial2 take fewer instructions to fi nish, but it doesn’t need to place new calls on
the stack for each iteration, like the fi rst version of factorial did.

But what happens if you need to perform mutual recursion? Perhaps you want to create your own
version of the functions for determining if a number is odd or even. You could defi ne them in terms
of each other. A number is defi ned as being even if the decrement of itself is considered odd. This
will recursively call itself until it reaches the magic number of 0, so at that point if the number is
even it will return true. If it’s odd it will return false. The code for the mutually recursive functions
for my-odd? and my-even? are defi ned here:

(declare my-odd? my-even?)

(defn my-odd? [n]

Functional Thinking ❘ 7

c01.indd 04/23/2016 Page 7

 (if (= n 0)
 false
 (my-even? (dec n))))

(defn my-even? [n]
 (if (= n 0)
 true
 (my-odd? (dec n))))

This example suffers from the same issue found in the fi rst example, in that each successive recursive
call needs to store some sort of state on the stack in order to perform the calculation, resulting in
a stack overfl ow for large values. The way you avoid this problem is to use another special opera-
tor called trampoline, and modify the original code to return functions wrapping the calls to your
recursive functions, like the following example:

(declare my-odd? my-even?)

(defn my-odd? [n]
 (if (= n 0)
 false
 #(my-even? (dec n))))

(defn my-even? [n]
 (if (= n 0)
 true
 *(my-odd? (dec n))))

Notice the declare function on the fi rst line. We can call the function using the trampoline opera-
tor as shown here:

(trampoline my-even? 42)

If the call to a function, in this case my-even?, would return another function, trampoline will
continue to call the returned functions until an atomic value gets returned. This allows you to make
mutually recursive calls to functions, and not worry about blowing the stack. However, we’re still
left with one problem. If someone wishes to use the version of my-even? and my-odd?, they must
have prior knowledge to know they must call them using trampoline. To fi x that you can rewrite
the functions:

(defn my-even? [n]
 (letfn [(e? [n]
 (if (= n 0)
 true
 #(o? (dec n))))
 (o? [n]
 (if (= n 0)
 false
 #(e? (dec n))))]
 (trampoline e? n)))

(defn my-odd? [n]
 (not (my-even? n)))

We’ve effectively hidden away the knowledge of having to use trampoline from our users.

8 ❘ CHAPTER 1 HAVE A BEGINNER’S MIND

c01.indd 04/23/2016 Page 8

Higher Order Functions
One of the many qualities that defi ne a language as being functional is the ability to treat functions
as fi rst class objects. That means functions can not only take values as parameters and return values,
but they can also take functions as parameters as well. Clojure comes with a number of commonly
used higher order functions such as map, filter, reduce, remove and iterate, as well as providing
you with the tools to create your own.

In Java, for example, if you want to fi lter a list of customers that live in a specifi c state, you need to
create a variable to hold the list of fi ltered customers, manually iterate through the list of customers,
and manually add them to the local variable you created earlier. You have to specify not only what
you want to fi lter by, but also how to iterate through the list.

public List<Customer> filterByState(List<Customer> input, String state) {
 List<Customer> filteredCustomers = new ArrayList<>();

 for(Customer customer : input) {
 if (customer.getState().equals(state)) {
 filteredCustomers.put(customer);
 }
 }

 return filteredCustomers;
}

This Clojure example deals less with how to do the fi ltering, and is a bit more concise and declara-
tive. The syntax may look a little strange, but you are simply calling the fi lter function with an
anonymous function telling what you should fi lter on and fi nally the sequence you want to fi lter
with.

(def customers [{:state "CA" :name "Todd"}
 {:state "MI" :name "Jeremy"}
 {:state "CA" :name "Lisa"}
 {:state "NC" :name "Rich"}])
(filter #(= "CA" (:state %)) customers)

One common design pattern that exists in object-oriented programming, the Command pattern,
exists as a way to cope with the lack of fi rst class functions and higher order functions. To imple-
ment the pattern, you fi rst defi ne an interface that defi nes a single method for executing the com-
mand, a sort of pseudo-functional object. Then you can pass this Command object to a method to
be called at the appropriate time. The downfall of this is that you need to either defi ne several con-
crete implementations to cover every possible piece of functionality you would need to execute, or
defi ne an anonymous inner class wrapping the functionality.

public void wrapInTransaction(Command c) throws Exception {
 setupDataInfrastructure();
 try {
 c.execute();
 completeTransaction();
 } catch (Exception condition) {
 rollbackTransaction();
 throw condition;
 } finally {

Functional Thinking ❘ 9

c01.indd 04/23/2016 Page 9

 cleanUp();
 }
}

public void addOrderFrom(final ShoppingCart cart, final String userName,
 final Order order) throws Exception {
 wrapInTransaction(new Command() {
 public void execute() {
 add(order, userKeyBasedOn(userName));
 addLineItemsFrom(cart, order.getOrderKey());
 }
 });
}

In Clojure you have the ability to pass functions around the same as any other value, or if you just
need to declare something inline you can leverage anonymous lambda expressions. You can rewrite
the previous example in Clojure to look like this code:

(defn wrapInTransaction [f]
 (do
 (startTransaction)
 (f)
 (completeTransaction)))

(wrapInTransaction #(
 (do
 (add order user)
 (addLineItemsFrom cart orderKey))))

To put it another way, with imperative languages you usually have to be more concerned with how
you do things, and in Clojure you’re able to focus more on the what you want to do. You can defi ne
abstractions at a different level than what is possible in most imperative languages.

Partials
In object-oriented programming there are many patterns for building up objects in steps by using
the Builder Pattern, or many related types of objects using the Abstract Factory Pattern. In Clojure,
since the primary method of abstraction is the function, you also have a mechanism to build new
functions out of existing ones with some of the arguments fi xed to a value by using partial.

The canonical example of how to use partial, shown here is a bit trivial.

(def add2 (partial + 2))

For a better example, we’ll take a look at the clojure.java.jdbc library. In the following listing is
an example showing a typical pattern for defi ning the connection properties for your database, and
a few simple query wrappers. Notice how every call to jdbc/query and jdbc/insert! takes the
spec as its fi rst parameter.

(ns sampledb.data
 (:require [clojure.java.jdbc :as jdbc]))

(def spec {:classname "org.postgresql.Driver"

10 ❘ CHAPTER 1 HAVE A BEGINNER’S MIND

c01.indd 04/23/2016 Page 10

 :subprotocol "postgresql"
 :subname "//localhost:5432/sampledb"})

(defn all-users []
 (jdbc/query spec ["select * from login order by username desc"])))

(defn find-user [username]
 (jdbc/query spec ["select * from login where username = ?" username]))

(defn create-user [username password]
 (jdbc/insert! spec :login {:username username :password password :salt
 "some_salt"}))

There is a bit too much repetition in this example, and it only contains three functions for querying
the database. Imagine how many times this occurs in a non-trivial application. You can remove this
duplication by using partial, and creating a new function with this fi rst parameter already bound
to the spec variable as shown here:

(ns sampledb.data
 (:require [clojure.java.jdbc :as jdbc]))

(def spec {:classname "org.postgresql.Driver"
 :subprotocol "postgresql"
 :subname "//localhost:5432/sampledb"})

(def query (partial jdbc/query spec))
(def insert! (partial jdbc/insert! spec))

(defn all-users []
 (query ["select * from login order by username desc"])))

(defn find-user [username]
 (query ["select * from login where username = ?" username]))

(defn create-user [username password]
 (insert! :login {:username username :password password :salt "some_salt"}))

Another useful way to use partial is for one of the higher order functions such as map, which
expects a function with exactly one argument to apply to the objects in a collection. You can use
partial to easily take a function that would normally require more than one argument and create
a new one specifying any number of them so that it now only requires one. For example, the * func-
tion used for multiplying numbers doesn’t make much sense with only one argument, but you can
use partial to specify what you want to multiply each item by as shown here:

(defn apply-sales-tax [items]
 ((map (partial * 1.06) items)))

The only real downside to partial is that you are only able to bind values to parameters in order,
meaning that the parameter order is important. If you want to bind the last parameter to a function,
you can’t leverage partial. Instead, you can defi ne another function that wraps the original func-
tion call or leverages a lambda expression.

Functional Thinking ❘ 11

c01.indd 04/23/2016 Page 11

Function Composition
Another useful piece of functionality is the ability to compose multiple functions together to make a
new function. Once again, Clojure shows its functional roots based in mathematics. As an example,
if you had a function called f and another called g, you could compose them together such that the
output from f is fed as the input to g, in the same way you can leverage pipes and redirects on the
Unix command line and compose several functions together. More specifi cally, if you have a func-
tion call that looks like (g (f (x)), you can rewrite it to read as ((comp g f) x).

To provide a more practical example, say you wanted to minify some JavaScript, or read in a
JavaScript fi le and remove all of the new lines and extra whitespace, so that it requires less informa-
tion to transfer from the server to the browser. You can accomplish this task by composing the com-
mon string functions provided by Clojure, str/join, str/trim, str/split-lines, as shown here:

 (defn minify [input]
 (str/join (map str/trim (str/split-lines input))))

This can then be rewritten using the comp function to look like the following:

(def minify (comp str/join (partial map str/trim) str/split-lines))

Notice how the ordering of the functions passed to comp retain their original order of the last func-
tion being applied fi rst, working your way back to the beginning of the list. Also we modifi ed it a bit
to leverage partial with the map and str/trim functions, to create a function that operates on a
collection, since str/trim only operates on a single string.

Embracing Laziness
Clojure itself is not considered to be a lazy language in the same sense that a language like Haskell
is; however, it does provide support for creating and using lazy sequences. In fact, most of the built
in functions like map, filter, and reduce generate lazy sequences for you without you probably
even knowing it. You can see this here:

user> (def result (map (fn [i] (println ".") (inc i)) '[0 1 2 3]))
#'user/result

user> result
.
.
.
.
(1 2 3 4)

When you evaluate the fi rst expression, you don’t see any output printed to the console. Had this
been a non-lazy sequence, you would have seen the output printed to the screen immediately,
because it would have evaluated the println expression at the time of building the sequence.
Instead, the output is not printed until you ask Clojure to show you what is in the result symbol, and
it has to fully realize what’s inside the sequence. This is exceptionally useful, because the computa-
tion inside the function that you pass to map may contain some fairly expensive operation, and that

12 ❘ CHAPTER 1 HAVE A BEGINNER’S MIND

c01.indd 04/23/2016 Page 12

expensive operation by itself may not be an issue. Yet, when the operation is executed, the execution
of your application can be slowed by several or even hundreds of times.

Another useful example of a lazy sequence in action is when representing an infi nite set of numbers.
If you have a set of all real numbers, or a set of all prime numbers, you can set all of these numbers
in the Fibonacci sequence as shown here.

(def fib-seq
 (lazy-cat [1 1] (map + (rest fib-seq) fib-seq)))

(take 10 fib-seq)
-> (1 1 2 3 5 8 13 21 34 55)

This sequence is defi ned using a lazy sequence, and next you will ask Clojure to give you the fi rst
10 numbers in a sequence. In a language that did not support this level of laziness, this type of data
modeling would simply not be possible.

Another example of how this can be useful is by infi nitely cycling through a fi nite collection. For
example, if you want to assign an ordinal value to every value in a collection for an example group
of a list of people into four groups, you can write something similar to the following:

(def names '["Christia" "Arline" "Bethann" "Keva" "Arnold" "Germaine"
 "Tanisha" "Jenny" "Erma" "Magdalen" "Carmelia" "Joana"
 "Violeta" "Gianna" "Shad" "Joe" "Justin" "Donella"
 "Raeann" "Karoline"])

user> (mapv #(vector %1 %2) (cycle '[:first :second :third :fourth]) names)
[[:first "Christia"] [:second "Arline"] [:third "Bethann"] [:fourth "Keva"]
 [:first "Arnold"] [:second "Germaine"] [:third "Tanisha"] [:fourth "Jenny"]
 [:first "Erma"] [:second "Magdalen"] [:third "Carmelia"] [:fourth "Joana"]
 [:first "Violeta"] [:second "Gianna"] [:third "Shad"] [:fourth "Joe"]
 [:first "Justin"] [:second "Donella"] [:third "Raeann"] [:fourth "Karoline"]]

If you map over multiple collections, you will apply the function provided to the fi rst item in the fi rst
collection, the fi rst item in each successive collection, and then the second and so forth, until one of
the collections is completely exhausted. So, in order to map the values :first, :second, :third,
and :fourth repeatedly over all the names, without having to know how many names exist in the
collection, you must fi nd a way to cycle over and over repeatedly through the collection. This is
what cycle and infi nite lazy collections excel at.

When You Really Do Need to Mutate
Just because Clojure favors dealing with values doesn’t mean you completely do away with mutable
state. It just means you greatly limit mutable state, and instead use quarantine in your specifi c area
of code. Clojure provides a few mechanisms to manage mutable state.

Atoms
Using Atoms is the fi rst and simplest mechanism for handling mutable state provided by Clojure.
Atoms provide you with a means to manage some shared state in a synchronous, uncoordinated,

www.allitebooks.com

http://www.allitebooks.org

Functional Thinking ❘ 13

c01.indd 04/23/2016 Page 13

or independent manner. So, if you need to only manage a single piece of mutable state at a time,
then Atoms are the tool you need.

Up to this point, we’ve primarily focused on values; however, Atoms are defi ned and used in a
 different way. Since Atoms represent something that can potentially change, out of necessity they
must represent some reference to an immutable structure. An example of how to defi ne an Atom is
shown here.

user> (def app-state (atom {}))
#'user/app-state
user> app-state
#atom[{} 0x1f5b7bd9]

We’ve defi ned an Atom containing an empty map with a stored reference in app-state. As you can
see by the output in the repl, the Atom stores a memory location to the map. Right now it doesn’t
do a whole lot, so let’s associate some values into the map.

user> (swap! app-state assoc :current-user "Jeremy")
{:current-user "Jeremy"}
user> app-state
#atom[{:current-user "Jeremy"} 0x1f5b7bd9]
user> (swap! app-state assoc :session-id "some-session-id")
{:current-user "Jeremy", :session-id "some-session-id"}
user> app-state
#atom[{:current-user "Jeremy", :session-id "some-session-id"} 0x1f5b7bd9]

To modify app-state, Clojure provides you with two different functions called swap! and reset!,
both of which atomically modify the value pointed to by the app-state reference. The swap! func-
tion is designed to take a function that will operate on the value stored in the reference, and will
swap out the value with the value returned as a result of executing the function. In the preceding
example we provided swap! with the assoc function to associate a new value into the map for a
given keyword.

To simply replace the value referenced in app-state you can use the reset! function, and provide it
with a new value to store in the Atom as shown here:

user> (reset! app-state {})
{}
user> app-state
#atom[{} 0x1f5b7bd9]

You can see that the app-state now references an empty map again.

Now that you know how to store the shared state in your Atom, you may be wondering how you get
the values back out. In order to access the state stored in your Atom, use the deref/@ reader macro
as shown here:

user> (swap! app-state assoc :current-user "Jeremy" :session-id "some-session-id")
{:current-user "Jeremy", :session-id "some-session-id"}
user> (:current-user @app-state)
"Jeremy"
user> (:session-id @app-state)

14 ❘ CHAPTER 1 HAVE A BEGINNER’S MIND

c01.indd 04/23/2016 Page 14

"some-session-id"
user> (:foo @app-state :not-found)
:not-found

Once you de-reference your Atom using the deref/@ reader macro, you can then interact with your
app-state, just as if it were a map again.

Refs
While Atoms provide you with a means to manage some shared mutable state for a single value,
they are limited by the fact that if you need to coordinate changes between multiple objects, such
as the classic example of transferring money from one account to another, you need to use transac-
tion references or Refs for short. Transaction references operate similar to how you would expect
database transactions to use a concurrency model called Software Transactional Memory, or STM.
In fact, Refs fulfi ll the fi rst three parts required for ACID compliancy: Atomicity, Consistency, and
Isolation. Clojure does not concern itself with Durability, however, since the transactions occur in
memory.

To illustrate why you can’t just use Atoms for coordinated access, consider the following example.

user> (def savings (atom {:balance 500}))
#'user/savings
user> (def checking (atom {:balance 250}))
#'user/checking
user> (do
 (swap! checking assoc :balance 700)
 (throw (Exception. "Oops..."))
 (swap! savings assoc :balance 50))
Exception Oops... user/eval9580 (form-init1334561956148131819.clj:66)
user> (:balance @checking)
700
user> (:balance @savings)
500

Here two Atoms called savings and checking are defi ned, and we attempt to modify both of them
in a do block. We are, however, throwing an exception in between updating the two Atoms. This
causes our two accounts to get out of sync. Next, let’s look at the same example using Refs.

user> (def checking (ref {:balance 500}))
#'user/checking
user> (def savings (ref {:balance 250}))
#'user/savings
user> (dosync
 (commute checking assoc :balance 700)
 (throw (Exception. "Oops..."))
 (commute savings assoc :balance 50))
Exception Oops... user/eval9586/fn--9587 (form-init1334561956148131819.clj:6)
user> (:balance @checking)
500
user> (:balance @savings)
250

As you can see, you create Refs and read values out of them similar to how we did that with Atoms
earlier. There are a few minor differences, however, in how you update the value stored in the Ref.

Functional Thinking ❘ 15

c01.indd 04/23/2016 Page 15

We use commute rather than swap!, and all update operations must perform on the Refs within a
dosync block.

Nil Punning
If you’re at all experienced in Java, you are very familiar with the dreaded NullPointerException.
It’s probably one of the most prolifi c errors encountered when developing in Java, so much so that
the inventor of the Null reference, Tony Hoare, even gave a talk several years ago stating how big
of a mistake it was (http://www.infoq.com/presentations/Null-References-The-Billion-
Dollar-Mistake-Tony-Hoare). It seems odd that everything else, with the exception of primitive
values, is an Object, except for null. This has led to several workarounds in languages, such as
Optional in Java, null safe object navigation in Groovy, and even in Objective-C you send messages
to nil and then just happily ignore them.

Clojure, being a Lisp, adopts the philosophy of nil punning. Unlike Java, nil has a value, and it
simply means “no answer.” It can also mean different things in different contexts.

When evaluated as a Boolean expression, like many other dynamic typed languages, it will be equiv-
alent to false.

user> (if nil "true" "false")
"false"

nil can also be treated like an empty Seq. If you call first on nil, you get a returned nil, because
there is no fi rst element. If you then call last on nil, you also unsurprisingly get nil. However,
don’t assume that nil is a Seq, because when you call seq on nil you will get a false return.

user> (first nil)
nil
user> (last nil)
nil
user> (second nil)
nil
user> (seq? nil)
false

Unlike many other Lisps, Clojure does not treat empty lists, vectors, and maps as nil.

user> (if '() "true" "false")
"true"
user> (if '[] "true" "false")
"true"
user> (if '{} "true" "false")
"true"

Because nil can take on many meanings, you must be mindful to know when nil means false and
when it means nil. For example, when looking for a value in a map, the value for a key can be nil.
To determine whether or not it exists in the map, you have to return a default value.

user> (:foo {:foo nil :bar "baz"})
nil
user> (:foo {:foo nil :bar "baz"} :not-found)
nil
user> (:foo {:bar "baz"} :not-found)
:not-found

http://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare
http://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare

16 ❘ CHAPTER 1 HAVE A BEGINNER’S MIND

c01.indd 04/23/2016 Page 16

Unlike Java, nil is everywhere and for functions return nil. Most functions are/should be written
to handle a passed in nil value. “Using nil where it doesn’t make sense in Clojure code is usually
a type error, not a NullPointerException, just as using a number as a function is a type error.”
(http://www.lispcast.com/nil-punning)

The Functional Web
It’s interesting to see how web programming has evolved over the years. Many different paradigms
have come and gone, with some better than others, and yet we haven’t seen the end of this evolu-
tion. In the early days of the dynamic web back in the 1990s we saw technologies such as CGI, and
languages such as Perl, PHP, and ColdFusion come into popularity. Then, with the rise of object-
oriented programming, distributed object technologies such as CORBA and EJB rose up, along with
object-centric web service technology such as SOAP, as well as object-focused web programming
frameworks such as ASP.NET and JSF.

Recent years have seen a shift toward a more RESTful, micro-service based architecture. Nobody
uses CORBA anymore, and even SOAP is a dirty word in many circles. Instead, web programming
has started to embrace HTTP and its stateless nature and focus on values. Similar to how functional
programming has gained popularity because of the rise in number of cores in modern day computers
and the necessity of concurrent programming, the web also needs ways to deal with scaling horizon-
tally rather than just vertically.

So what qualities, if any, does web programming in recent years share with functional program-
ming? At its heart, your endpoints can be thought of as functions that take an HTTP request and
transform them into an HTTP response. The HTTP protocol itself is also stateless in nature. True,
there are things like cookies and sessions, but those merely simulate some sort of state through a
shared secret between the client and server. For the most part, the REST endpoints can be thought
of as being referentially transparent, which is why caching technologies are so prevalent.

That’s not to say there aren’t aspects of web programming that are not very functional. Obviously, it
would be very diffi cult to get anything done without modifying some state somewhere. However, it
seems like web programming shares as much if not more in common with functional programming
than it does with object-oriented programming. In fact, you may fi nd that there’s much more oppor-
tunity for composability and reuse than with the component-based technologies that have fallen out
of favor.

DOING OBJECT-ORIENTED BETTER

Object-oriented programming promised reusable components, and in many ways failed to deliver.
Functional programming delivers on this promise where object-oriented programming couldn’t. It
may surprise you, but Lisp has been doing object-oriented programming since before Java existed.
Most object-oriented languages, by defi nition, defi ne everything as being an object. The problem
is that, by forcing everything to fi t into this mold of everything being an object, you end up with

http://www.lispcast.com/nil-punning

Doing Object-Oriented Better ❘ 17

c01.indd 04/23/2016 Page 17

objects that exist only to “escort” methods, as cleverly explained in the excerpt from Steve Yegge’s
post Execution in the Kingdom of Nouns below.

In Javaland, by King Java’s royal decree, Verbs are owned by Nouns. But they’re
not mere pets; no, Verbs in Javaland perform all the chores and manual labor in
the entire kingdom. They are, in effect, the kingdom’s slaves, or at very least the
serfs and indentured servants. The residents of Javaland are quite content with
this situation, and are indeed scarcely aware that things could be any different.

Verbs in Javaland are responsible for all the work, but as they are held in
contempt by all, no Verb is ever permitted to wander about freely. If a Verb is to
be seen in public at all, it must be escorted at all times by a Noun.

Of course “escort,” being a Verb itself, is hardly allowed to run around naked;
one must procure a VerbEscorter to facilitate the escorting. But what about
“procure” and “facilitate?” As it happens, Facilitators and Procurers are both
rather important Nouns whose job is the chaperonement of the lowly Verbs
“facilitate” and “procure,” via Facilitation and Procurement, respectively.

The King, consulting with the Sun God on the matter, has at times threatened to
banish entirely all Verbs from the Kingdom of Java. If this should ever to come
to pass, the inhabitants would surely need at least one Verb to do all the chores,
and the King, who possesses a rather cruel sense of humor, has indicated that his
choice would be most assuredly be “execute.”

The Verb “execute,” and its synonymous cousins “run,” “start,” “go,”
“justDoIt,” “makeItSo,” and the like, can perform the work of any other Verb
by replacing it with an appropriate Executioner and a call to execute(). Need
to wait? Waiter.execute(). Brush your teeth? ToothBrusher(myTeeth).go(). Take
out the garbage? TrashDisposalPlanExecutor.doIt(). No Verb is safe; all can be
replaced by a Noun on the run.

http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns

.html

At the heart of object-oriented programming is the concept of organizing your programs through
creating classes containing the interesting things about a particular object and the things your
objects can do. We call these things classes. We can then create more specialized versions of a class
through inheritance. The canonical example of this is describing a program that is responsible for
describing shapes (see Figure 1-2).

http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns
http://steve-yegge.blogspot.com/2006/03/execution-in-kingdom-of-nouns.html

18 ❘ CHAPTER 1 HAVE A BEGINNER’S MIND

c01.indd 04/23/2016 Page 18

Rectangle
length
width
area()

Shape
area()

Square
side
area()

Triangle
base
height
area()

Circle
radius
area()

FIGURE 1-2

In the diagram in Figure 1-2 you can see that a generic class of Shape is defi ned, and then several
classes that inherit from shape are created, with each defi ning their own implementation of area().
The drawing application sends a message to each of the shapes asking for the area, so at runtime the
application determines which implementation to call based on what type of shape it is. This is more
commonly known as polymorphism. The key takeaways here are that the behavior belongs to and is
defi ned by the classes themselves, and the methods are invoked on a particular object, and the spe-
cifi c implementation is then decided by the class of the object.

Polymorphic Dispatch with defmulti
Clojure, like many Lisps before it, takes a radically different approach to polymorphism by leverag-
ing a concept called generic functions. This opens up a whole world of possibilities that just were
not possible, and for the most part are still not possible, in object-oriented languages. In Clojure,
you are not limited to runtime polymorphism on types alone, but also on values, metadata, and rela-
tionships between one or more arguments and more.

To rewrite our example above you would start by defi ning a generic function for area as shown
here.

(defmulti area (fn [shape & _]
 shape))

The generic function consists of fi rst a name for the generic function, then a dispatch function to
help Clojure fi gure out which implementation to call. In this case it’s going to inspect the value of
the fi rst argument to our function. Then you can implement the various area functions for our dif-
ferent types of shapes like the following.

(defmethod area :triangle
 [_ base height]
 (/ (* base height) 2))

Doing Object-Oriented Better ❘ 19

c01.indd 04/23/2016 Page 19

(defmethod area :square
 [_ side]
 (* side side))

(defmethod area :rectangle
 [_ length width]
 (* length width))

(defmethod area :circle
 [_ radius]
 (* radius radius Math/PI))

Here you’ve defi ned four implementations for the area function. You do this by, instead of defi n-
ing them using defn, using the special form defmethod, followed by the name of the generic func-
tion, and the value from the dispatch function that you would like to match on. Notice how in the
parameter lists for each of these functions, you can safely ignore the fi rst parameter being passed in
because it was only used for purposes of dispatch. You can see the actual usage of these below.

user> (area :square 5)
25
user> (area :triangle 3 4)
6
user> (area :rectangle 4 6)
24
user> (area :circle 5)
78.53981633974483

So, you may be wondering how this is any better than what we already have in object-oriented
programming. Let’s take a look at another example. Suppose you were creating a function that
needed to apply a 5% surcharge if a customer lives in New York and a 4.5% surcharge if they live in
California. You could model a very simplistic invoice as shown here.

{:id 42
 :issue-date 2016-01-01
 :due-date 2016-02-01
 :customer {:name "Foo Bar Industries"
 :address "123 Main St"
 :city "New York"
 :state "NY"
 :zipcode "10101"}
 :amount-due 5000}

Writing a similar method that handles this logic in Java would look something like the following.

public BigDecimal calculateFinalInvoiceAmount(Invoice invoice) {
 if (invoice.getCustomer().getState().equals("CA")) {
 return invoice.getAmount() * 0.05;
 } else if (invoice.getCustomer.getState().equals("NY")) {
 return invoice.getAmount() * 0.045;
 } else {
 return invoice.getAmount();
 }
}

20 ❘ CHAPTER 1 HAVE A BEGINNER’S MIND

c01.indd 04/23/2016 Page 20

In order to add another state that is needed to add a surcharge for, you must modify this method
and add another else if conditional. If you wrote this example in Clojure, it would look like the
following.

(defmulti calculate-final-invoice-amount (fn [invoice]
 (get-in invoice [:customer :state])))

(defmethod calculate-final-invoice-amount "CA" [invoice]
 (let [amount-due (:amount-due invoice)]
 (+ amount-due (* amount-due 0.05))))

(defmethod calculate-final-invoice-amount "NY" [invoice]
 (let [amount-due (:amount-due invoice)]
 (+ amount-due (* amount-due 0.045))))

(defmethod calculate-final-invoice-amount :default [invoice]
 (:amount-due invoice))

Now, if sometime in the future you decide to add a surcharge to another state, you can simply add
another defmethod to handle the logic specifi c to that case.

Defi ning Types with deftype and defrecord
If you come from a background in object-oriented languages, you may feel compelled to immedi-
ately start defi ning a bunch of custom types to describe your objects, just as you would if you were
designing an application in an object-oriented language. Clojure strongly encourages sticking to
leveraging the built in types, but sometimes it’s benefi cial to defi ne the data type so you can lever-
age things like type-driven polymorphism. In most programs written in object-oriented languages,
the classes you defi ne generally fall into one of two categories: classes that do interesting things, and
classes that describe interesting things.

For the fi rst of these things Clojure provides you with the deftype, and for the latter you can use
defrecord. Types and records are very similar in how they’re defi ned and used, but there are some
subtle differences (see Table 1-1).

TABLE 1-1: deftypes and defrecords

DEFTYPE DEFRECORD

Supports mutable fi elds. Does not support mutable fi elds.

Provides no functionality other than
constructor.

Behaves like a PersistentMap and provides default
implementations for:

 ➤ Value based hashCode and equals

 ➤ Metadata support

 ➤ Associative support

 ➤ Keyword accessors for fi elds

Doing Object-Oriented Better ❘ 21

c01.indd 04/23/2016 Page 21

DEFTYPE DEFRECORD

Provides reader syntax for instanti-
ating objects using a fully qualifi ed
name and argument vector. Passes
argument vector directly to construc-
tor. For example: #my.type[1 2
"a"].

Provides additional reader syntax to instantiate objects
using a fully qualifi ed name and argument map. For
example: #my.type{:a "foo" :b "bar"}.

Provides a special function
->YourType, where YourType is
the name of your custom type, that
passes its arguments to the construc-
tor of your custom type.

Provides a special function, map->YourRecord, where
YourRecord is the name of your custom record, that
takes a map and uses it to construct a record from it.

Before looking at how to defi ne and use deftype and defrecord, you must fi rst look at protocols.

Protocols
If you’re at all familiar with Java, you can think of protocols as being very similar to interfaces.
They are a named set of functions and their arguments. In fact, Clojure will generate a correspond-
ing Java interface for each of the protocols you defi ne. The generated interface will have methods
corresponding to the functions defi ned in your protocol.

So, let’s revisit the Shapes example from earlier. If you create a protocol for Shapes, it looks some-
thing like the following.

(defprotocol Shape
 (area [this])
 (perimeter [this]))

Next, create records for Square and Rectangle that implement the protocol for Shape as shown
here.

(defrecord Rectangle [width length]
 Shape
 (area [this] (* (:width this) (:length this)))
 (perimeter [this] (+ (* 2 (:width this)) (* 2 (:length this)))))

(defrecord Square [side]
 Shape
 (area [this] (* (:side this) (:side this)))
 (perimeter [this] (+ (* 4 (:side this)))))

Then create and call the functions to calculate the area as shown here.

user> (def sq1 (->Square 4))
#'user/sq1
user> (area sq1)
16
user> (def rect1 (->Rectangle 4 2))

22 ❘ CHAPTER 1 HAVE A BEGINNER’S MIND

c01.indd 04/23/2016 Page 22

#'user/rect1
user> (area rect1)
8

Alternatively, you can also create your records using the map->Rectangle and map->Square func-
tions as shown here.

user> (def sq2 (map->Square {:side 3}))
#'user/sq2
user> (def rect2 (map->Rectangle {:width 4 :length 7}))
#'user/rect2
user> (into {} rect2)
{:width 4, :length 7}
user> rect2
#user.Rectangle{:width 4, :length 7}
user> (into {} rect2)
{:width 4, :length 7}
user> (:width rect2)
4
user> (:length rect2)
7
user> (:foo rect2 :not-found)
:not-found

Also, recall that earlier records were discussed, which are basically wrappers around
PersistentMap. This of course means that you can interact with your records as if they were maps
in Clojure. You can access the members of your Rectangle object just as if it were a map, and you
can even construct new maps from it using into.

Reify
Sometimes you want to implement a protocol without having to go through the trouble of defi ning a
custom type or record. For that, Clojure provides reify. A quick example of this can be seen here.

(def some-shape
 (reify Shape
 (area [this] "I calculate area")
 (perimeter [this] "I calculate perimeter")))

user> some-shape
#object[user$reify__8615 0x221f1bd "user$reify__8615@221f1bd"]
user> (area some-shape)
"I calculate area"
user> (perimeter some-shape)
"I calculate perimeter"

You can think of reify as the Clojure equivalent of doing anonymous inner classes in Java. In fact,
you can use reify to create anonymous objects that extend Java interfaces as well.

Persistent Data Structures ❘ 23

c01.indd 04/23/2016 Page 23

PERSISTENT DATA STRUCTURES

With most imperative languages, the data structures you use are destructive by nature, replacing
values in place. This becomes problematic because if you use destructive data structures, you can-
not long pass them around with the confi dence that nothing else has come along and modifi ed the
values.

For example, if you update the second index of the list L1, shown above, in a language such as Java,
you see that the value is updated in place and the list L1 is no longer the same list as before. So any-
thing that may have been using L1 for calculations will have changed as well (see Figure 1-3).

1

L1

3 4 52

1

L1'

3 4 52
42

FIGURE 1-3

Clojure, on the other hand, continues with its tradition of focusing on values, and implements many
of its data collections in a persistent manner, meaning that any time you do something to modify a
collection, it returns a shiny new collection that may also share some of its structure with the origi-
nal. You may be thinking to yourself that sharing elements between structures like this would be
problematic, but because the elements themselves are immutable, you don’t need to be concerned.

The example in Figure 1-4 shows a similar update using a persistent list data structure. Notice how
when you update the second index in the list L1, you instead create a new list L2, thus creating new
copies of all the nodes up to the point where we’re updating. This then shares structure with the rest
of the original list.

1

L1

3 4 52

1

L2

42

FIGURE 1-4

24 ❘ CHAPTER 1 HAVE A BEGINNER’S MIND

c01.indd 04/23/2016 Page 24

If you were to append a list L2 to the end of L1, it would be returned L3, which is basically a copy
of L1 with the exception of the last node that then points to the beginning of L2. This maintains the
integrity of both L1 and L2, so any function that was previously using them can continue to do so
without worrying about the data being changed out from under them.

Let’s take a look at another example (see Figure 1-5), but this time we’ll look at a simplistic binary
search tree. If you start with a tree L1 and attempt to add the value 6 to the tree, you see that copies
of all the nodes are made containing the path to where you want to add the new node. Then in the
new root node (L2), you simply point to the right sub-tree from L1.

1

L1 L2

3 4 5 62

1

L3

32

FIGURE 1-5

Next, let’s take a look at how to implement the binary tree in Clojure. Start by defi ning a protocol
called INode as shown here.

(defprotocol INode
 (entry [_])
 (left [_])
 (right [_])
 (contains-value? [_ _])
 (insert-value [_ _]))

Let’s examine a few pieces of functionality for the example. Let’s look at functions that retrieve the
left and right sub-trees, regardless of whether the value exists in our tree, with the ability to add
new values to the tree. Once you have the protocol defi ned, you can begin to implement the binary
search tree by defi ning a new type using deftype as shown below.

(deftype Node [value left-branch right-branch]
 INode
 (entry [_] value)
 (left [_] left-branch)
 (right [_] right-branch)
 (contains-value? [tree v]
 (cond
 (nil? tree) false
 (= v value) true
 (< v value) (contains-value? left-branch v)
 (> v value) (contains-value? right-branch v)))
 (insert-value [tree v]
 (cond
 (nil? tree) (->Node v nil nil)
 (= v value) tree
 (< v value) (->Node value (insert-value left-branch v) right-branch)
 (> v value) (->Node value left-branch (insert-value right-branch v)))))

Persistent Data Structures ❘ 25

c01.indd 04/23/2016 Page 25

So let’s try out the new code.

user> (def root (Node. 7 nil nil))
#'user/root
user> (left root)
nil
user> (right root)
nil
user> (entry root)
7
user> (contains-value? root 7)
true

So far so good. Now let’s see if the tree contains 5.

user> (contains-value? root 5)
IllegalArgumentException No implementation of method: :contains-value? of protocol:
 #'user/INode found for class: nil clojure.core/-cache-protocol-fn
 (core_deftype.clj:554)

What happened? If you investigate the error message it’s trying to tell you that nil doesn’t imple-
ment the protocol and thus it doesn’t know how to call the function contains-value? on nil. You
can fi x this by extending the protocol onto nil as shown here.

(extend-protocol INode
 nil
 (entry [_] nil)
 (left [_] nil)
 (right [_] nil)
 (contains-value? [_ _] false)
 (insert-value [_ value] (Node. value nil nil)))

This now allows you to refactor the Node type to remove the redundant checks for nil to look like
the following.

(deftype Node [value left-branch right-branch]
 INode
 (entry [_] value)
 (left [_] left-branch)
 (right [_] right-branch)
 (contains-value? [tree v]
 (cond
 (= v value) true
 (< v value) (contains-value? left-branch v)
 (> v value) (contains-value? right-branch v)))
 (insert-value [tree v]
 (cond
 (= v value) tree
 (< v value) (Node. value (insert-value left-branch v) right-branch)
 (> v value) (Node. value left-branch (insert-value right-branch v)))))

Now that we have that fi xed, let’s try this out again.

user> (contains-value? root 5)
false

26 ❘ CHAPTER 1 HAVE A BEGINNER’S MIND

c01.indd 04/23/2016 Page 26

Excellent. Now let’s create a tree with a few more nodes.

user> (def root (Node. 7 (Node. 5 (Node. 3 nil nil) nil) (Node. 12
 (Node. 9 nil nil) (Node. 17 nil nil))))
#'user/root

The above code should produce a tree with the same structure as L1 shown in Figure 1-6.

L1

7

5

3 9

12

17

FIGURE 1-6

You can validate that assumption with the following commands.

user> (left root)
#object[user.Node 0x5cedcfe8 "user.Node@5cedcfe8"]
user> (entry (left root))
5
user> (entry (left (left root)))
3
user> (entry (right root))
12
user> (entry (right (right root)))
17

As you can see, when you ask for the value of the left sub-tree from root, you get the value 5, and
when you ask for the left of that sub-tree, you get the value 3. Now, let’s take a look at the identity
value for the left and right sub-trees from root respectively.

user> (identity (left root))
#object[user.Node 0x5cedcfe8 "user.Node@5cedcfe8"]
user> (identity (right root))
#object[user.Node 0x124ee325 "user.Node@124ee325"]

Your values may differ slightly from above, but they should look similar. Next, let’s add a new value
of 6 to the tree, which should be inserted to the right of the 5 node. After you insert the new value,
take a look at the identity values again from the root node of the new tree you just created.

user> (def l (insert-value root 6))
#'user/l

Shaping the Language ❘ 27

c01.indd 04/23/2016 Page 27

user> (identity (left l))
#object[user.Node 0x167286ec "user.Node@167286ec"]
user> (identity (right l))
#object[user.Node 0x124ee325 "user.Node@124ee325"]

You should see that a new Node for the left sub-tree of our tree is created, but the new list is point-
ing at the same instance of the right sub-tree as the original tree did. The result of the inserts should
now produce the structure shown in Figure 1-7. With the original list still intact, the new list shares
some structure with the original.

L1

7 7

5

5

6

9 17

12

3

L2

FIGURE 1-7

If you want to read more about the way that Clojure implements some of its persistent
data structures, there are a pair of great articles explaining the implementation details found
at http://blog.higher-order.net/2009/02/01/understanding-clojures-persis
tentvector-implementation and http://blog.higher-order.net/2009/09/08/
understanding-clojures-persistenthashmap-deftwice.

SHAPING THE LANGUAGE

You may have heard at one point in time Lisp being described as a “programmable programming
language,” and that Lisp is homoiconic, or even how “code is data, data is code.” What does this
really mean for you as a programmer though? If you have a background in C, you may be familiar
with the term “macro”; however, as stated earlier in this chapter, forget everything you think you
know about macros. Macros in Clojure are a much more powerful construct than what is available
in any imperative language. This is so powerful that entire books have been written on macros alone
(see Let Over Lambda and Mastering Clojure Macros).

Macros in Clojure allow you to rewrite the normal syntax rules of Clojure in order to shape the
language to fi t your problem domain. While some languages offer some sort of mechanism to do
metaprogramming, and the ability to modify default behavior, none of them exhibit quite the power
of Clojure’s macro system. Many frameworks in other languages seem to abuse this power, and this

http://blog.higher-order.net/2009/02/01/understanding-clojures-persis
http://blog.higher-order.net/2009/09/08
http://blog.higher-order.net/2009/02/01/understanding-clojures-persistentvector-implementation
http://blog.higher-order.net/2009/09/08/understanding-clojures-persistenthashmap-deftwice

28 ❘ CHAPTER 1 HAVE A BEGINNER’S MIND

c01.indd 04/23/2016 Page 28

often leads to tricky to fi nd bugs and confusion about where certain functionality comes from. So,
you must exercise caution when deciding whether or not to use a macro.

So, what exactly constitutes a good use of macros and what doesn’t? One exemplary example of
how you can leverage macros to create a powerful and expressive DSL is the routes library in the
Compojure framework. The routes library defi nes macros for creating ring handler mappings using
a grammar that make perfect sense in this context. We see an example of the defroutes macro
coupled with the various macros that map to the HTTP verbs:

(defroutes app-routes
 (GET "/" [] (index))
 (GET "/books" [] (get-books))
 (GET "/books/:id" [id] (find-book id))
 (POST "/books" [title author] (add-book title author))

By leveraging macros, Compojure is able to change the semantics of how the language works.
It allows you to defi ne the mapping between URL and handler in a more natural fashion. The
defroutes macro allows you to create a named set of routes, in this case called app-routes. Then
a list of routes is provided that is evaluated by Ring until it fi nds one that matches. The routes them-
selves are defi ned using a macro that allows you to specify the HTTP verb, followed by the route,
with the ability to defi ne path variable bindings. Next we list any variables that will be bound.
These can come from URL parameters, or in the case of the POST route, from the form parameters
in the request. Finally, you are able to either defi ne the actual handler inline, if it’s simple enough, or
have the route dispatch to a function defi ned elsewhere.

Another fi ne example of the power of macros and how you can build a natural fl uent API is the
Honey SQL library found at https://github.com/jkk/honeysql. It allows you to defi ne SQL
queries using Clojure’s built in data structures and then provides a multitude of functions and mac-
ros that transform them into clojure.java.jdbc, and compatible parameterized SQL that you
can then pass directly to jdbc/query, jdbc/insert!, and the like. Let’s take a look at one of the
examples from their documentation.

(def sqlmap {:select [:a :b :c]
 :from [:foo]
 :where [:= :f.a "baz"]})
(sql/format sqlmap)

=> ["SELECT a, b, c FROM foo WHERE (f.a = ?)" "baz"]

Honey SQL even defi nes a helper function called build that helps you defi ne these map objects as
shown below.

(sql/build :select :*
 :from :foo
 :where [:= :f.a "baz"])

=> {:where [:= :f.a "baz"], :from [:foo], :select [:*]}

Leveraging the build function allows you to still use the same style of specifying the query; however,
it doesn’t require all of the extra brackets as before, making it just that much more concise.

https://github.com/jkk/honeysql

Summary ❘ 29

c01.indd 04/23/2016 Page 29

Clojure also offers some really nice metaprogramming abilities through defprotocol. Protocols are
similar to Java interfaces in that they defi ne a specifi c set of functions and their signatures, and even
generate a corresponding interface that you can use in Java, which we’ll cover later. The other thing
you can do with protocols, though, is extend existing types, including fi nal classes in Java. This
means that you can add new methods to things like Java’s String class as shown here.

(defprotocol Palindrome (is-palindrome? [object]))

(extend-type java.lang.String
 Palindrome
 (is-palindrome? [s]
 (= s (apply str (reverse s)))))

(is-palindrome? "tacocat")

=> true

You can see how to defi ne a protocol called Palindrome, and defi ne it as having a single function
called is-palindrome?. Next, extend the java.lang.String class to add functionality to Java’s
built-in String class. Then, show it in action by calling is-palindrome? with the value "tacocat".

As mentioned before, this level of modifying the language and types should be carefully considered
before you decide to use it. It often leads to the same problems mentioned before with overuse of
metaprogramming facilities and a lack of clarity about where things may be defi ned, especially when
you can get by with just defi ning a regular function.

Clojure offers some very powerful ways to shape the language to the way you want to work. How
you decide to use it is mostly a matter of personal preference.

SUMMARY

 In this chapter you have seen how Clojure is different than most other mainstream languages in use
today. As defi ned at the beginning of the chapter, if you don’t come at it with a clear mind and learn
how to do things the Clojure way, you’ll simply be writing the same old code in a different syntax.
Enlightenment will not come overnight; however, if you do approach it with an open mind it will
likely fundamentally change the way you think about programming in general. As stated by Eric
Raymond, “Lisp is worth learning for the profound enlightenment experience you will have when
you fi nally get it; that experience will make you a better programmer for the rest of your days, even
if you never actually use Lisp itself a lot.”

c02.indd 04/23/2016 Page 31

Rapid Feedback Cycles
with Clojure

WHAT’S IN THIS CHAPTER?

 ➤ Understanding why rapid feedback cycles are important

 ➤ Achieving rapid feedback with Clojure’s built-in tools

 ➤ Leveraging your existing tool set to speed up the feedback process

Hopefully you found Chapter 1 to be a good overview of Clojure and why it is an ideal choice
for your development language. Clojure’s approach to functional programming, laziness,
mutability, and other concepts make it a good candidate for web development. You’ve likely
chosen Clojure for many of these reasons, but an important part of being successful with any
language is being productive.

There are multiple aspects that factor into your productivity with a given language, but per-
haps one of the most important aspects is feedback. Decreasing the amount of time spent wait-
ing on feedback is a critical part of improving your productivity in any language. Shortening
the feedback cycle is a problem that is addressed not only by specifi c languages and the tooling
for that language but by development methodologies in general. Ideas like agile programming,
continuous integration, and test-driven development have shorter feedback cycles as one of
their goals.

Of course, high-level approaches to developing projects like these are outside the scope of this
book. This chapter dives into how you can be more productive with Clojure in your day-to-
day work—specifi cally, how you can decrease the length of your feedback cycle with Clojure
both by how you approach development with Clojure and by leveraging the tools provided by
Clojure and its ecosystem.

2

Professional Clojure. Jeremy Anderson, Michael Gaare, Justin Holguín, Nick Bailey and Timothy Pratley
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

32 ❘ CHAPTER 2 RAPID FEEDBACK CYCLES WITH CLOJURE

c02.indd 04/23/2016 Page 32

REPL-DRIVEN DEVELOPMENT

A REPL is a tool found in many programming languages and is commonly used for quick feedback
while developing. Even if you haven’t heard the term REPL before, you’ve almost certainly used one
before without knowing it. Any time you’ve used a command line, you’ve used a REPL.

NOTE REPL stands for read-eval-print loop and is a tool common to various
programming languages.

When you hear the term REPL-driven development, you may think of it similarly to other develop-
ment methodologies, such as test-driven development. REPL-driven development, however, is not so
much a strict set of practices and guidelines for development as it is a recognition that the REPL is
a useful tool to leverage regardless of your development process. Even if you are already following
a methodology like test-driven development, leveraging the REPL to speed your feedback leads to
more productivity. This section covers the basics of working with the REPL in a Clojure project as
well as how you can integrate a REPL with some tools you may already be familiar with.

Basic REPL Usage with Leiningen
If you are familiar with Clojure, then you are also likely very familiar with one of its more popular
build tools: leiningen. Otherwise, you should visit http://leiningen.org/ and make sure you
have leiningen installed on your machine before you continue. Let’s go ahead and create a new leini-
ngen project so you can play with the REPL (lein is the script used within leiningen).

lein new compojure chapter2
cd chapter2
lein repl
nREPL server started on port 61908 on host 127.0.0.1 - nrepl://127.0.0.1:61908
REPL-y 0.3.5, nREPL 0.2.6
Clojure 1.7.0
Java HotSpot(TM) 64-Bit Server VM 1.8.0_45-b14
 Docs: (doc function-name-here)
 (find-doc "part-of-name-here")
 Source: (source function-name-here)
 Javadoc: (javadoc java-object-or-class-here)
 Exit: Control+D or (exit) or (quit)
 Results: Stored in vars *1, *2, *3, an exception in *e

user=>

Now you’ve created a new Clojure project named chapter2 and started a REPL within that project.
Already, the REPL has conveniently provided some clues as to how you can quickly start developing
the application. You can see that there are useful tools available for looking up Clojure documenta-
tion, Clojure source code, and even Java documentation. Let’s go ahead and try a few of them out.

user=> (doc map)

http://leiningen.org
nrepl://127.0.0.1:61908

REPL-Driven Development ❘ 33

c02.indd 04/23/2016 Page 33

clojure.core/map
([f] [f coll] [f c1 c2] [f c1 c2 c3] [f c1 c2 c3 & colls])
 Returns a lazy sequence consisting of the result of applying f to
 the set of first items of each coll, followed by applying f to the
 set of second items in each coll, until any one of the colls is
 exhausted. Any remaining items in other colls are ignored. Function
 f should accept number-of-colls arguments. Returns a transducer when
 no collection is provided.
nil
user=> (find-doc #"map.*parallel")

clojure.core/pmap
([f coll] [f coll & colls])
 Like map, except f is applied in parallel. Semi-lazy in that the
 parallel computation stays ahead of the consumption, but doesn't
 realize the entire result unless required. Only useful for
 computationally intensive functions where the time of f dominates
 the coordination overhead.
nil

Not only can you easily fi nd the documentation for functions and macros that you already know
but you can use find-doc to look up things in the documentation for which you have forgotten the
function or macro name. In this example, we couldn’t remember what the parallel version of map
was called, but passing a simple regular expression to find-doc helped us quickly fi nd what we
needed. We were able to use source to quickly look and see how pmap works under the hood:

user=> (source pmap)
(defn pmap
 "Like map, except f is applied in parallel. Semi-lazy in that the
 parallel computation stays ahead of the consumption, but doesn't
 realize the entire result unless required. Only useful for
 computationally intensive functions where the time of f dominates
 the coordination overhead."
 {:added "1.0"
 :static true}
 ([f coll]
 (let [n (+ 2 (.. Runtime getRuntime availableProcessors))
 rets (map #(future (f %)) coll)
 step (fn step [[x & xs :as vs] fs]
 (lazy-seq
 (if-let [s (seq fs)]
 (cons (deref x) (step xs (rest s)))
 (map deref vs))))]
 (step rets (drop n rets))))
 ([f coll & colls]
 (let [step (fn step [cs]
 (lazy-seq
 (let [ss (map seq cs)]
 (when (every? identity ss)
 (cons (map first ss) (step (map rest ss)))))))]
 (pmap #(apply f %) (step (cons coll colls))))))
nil

You can see from the line rets (map #(future (f %)) coll) that each invocation of the function
passed to map is being run in a separate thread. Given the overhead of creating new threads, pmap

www.allitebooks.com

http://www.allitebooks.org

34 ❘ CHAPTER 2 RAPID FEEDBACK CYCLES WITH CLOJURE

c02.indd 04/23/2016 Page 34

probably isn’t useful unless the function you are applying is intensive. Of course, the documentation
states that, but being able to dive in and understand why is incredibly useful.

Lastly, look at the javadoc function. As mentioned in Chapter 1, Clojure’s interoperability with
Java means that you often use Java objects and methods directly rather than use a Clojure interface.
It is incredibly useful to be able to quickly open relevant documentation in these situations. In the
source for pmap, you can see the use of the Java class Runtime to get the number of processors, so
this example looks up the Java documentation for that class (see Figure 2-1).

user=> (javadoc Runtime)
true

FIGURE 2-1

As you can see the, the javadoc function automatically launched the confi gured default browser
and loaded the documentation for the specifi ed class. This will prove invaluable as you are develop-
ing Clojure code, especially if you are coming from a background with limited Java experience.

Remote REPLs with nREPL
When you start a REPL with lein, there is actually a lot more going on behind the scenes than may
be immediately obvious. Rather than just starting a single REPL process, lein is actually starting a
REPL server in the background and is also starting a client to connect to that server. In the previous
section, you may have noticed the following line printed when we started our REPL.

nREPL server started on port 61908 on host 127.0.0.1 - nrepl://127.0.0.1:61908

First, you can see that something called an nREPL server is starting, which uses the Clojure
library tools.nrepl (https://github.com/clojure/tools.nrepl). The tools.nrepl library
provides an easy interface for starting, stopping, and interacting with a REPL over the network
(the n in nREPL stands for network). So you can see that when we started our REPL earlier with

nrepl://127.0.0.1:61908
https://github.com/clojure/tools.nrepl

REPL-Driven Development ❘ 35

c02.indd 04/23/2016 Page 35

lein an nREPL server was started automatically on a randomly picked port. When we are working
in our REPL, we aren’t actually evaluating our code in the client process; we are submitting it to
the nREPL server for evaluation and displaying the result. It’s easy to verify this by connecting two
REPLs to the same server. First an initial REPL is started and a hello world function is created:

lein repl :start :host localhost :port 60000
nREPL server started on port 60000 on host localhost - nrepl://localhost:60000
...
user=> (defn hello-world [name]
 #_=> (println (format "Hello %s!" name)))
#'user/hello-world

Then a second REPL pointed at the same server is started and the hello world function is called:

lein repl :connect localhost:60000
Connecting to nREPL at localhost:60000
...
user=> (hello-world "Nick")
Hello Nick!

As you can see, the function defi ned in the fi rst REPL is also available in the second REPL instance
because they are connected to the same server. In practice, connecting to a single REPL server
simultaneously from multiple clients while developing may not be particularly useful. In fact, it may
even lead to confusion if one client is changing code in use by another client. Simply having a REPL
that runs remotely is rather useful, though. For one thing, you can start a REPL in the background
without a client and connect to it on demand without needing to start a server again. Running lein
repl :headless :host localhost :port 60000 starts a REPL server without a client whereas
lein repl :connect localhost:60000 connects to that server.

In addition to simply running a REPL server in the background, you can also embed a REPL into
your applications. This allows you to debug your application interactively while it is running.
Starting a REPL server programmatically with the tools.nrepl library is simple:

user=> (use '[clojure.tools.nrepl.server :only (start-server stop-server)])
nil
user=> (start-server :port 7888)
#'user/server

Generally speaking, though, it’s not wise to run a REPL server in a production application. Because
that would pose potential security concerns, you generally want to run a REPL server in your appli-
cation only while you are developing.

The next section of this chapter describes an example of confi guring an application to start a REPL
server automatically during development.

REPL Usage with a Real Application
At this point we’ve covered the REPL and some simple applications. Now, let’s build a simple appli-
cation to demonstrate leveraging the REPL in a more realistic scenario. Earlier you created a lein
project named “chapter2” by running lein new compojure chapter2. This created a new project

nrepl://localhost:60000

36 ❘ CHAPTER 2 RAPID FEEDBACK CYCLES WITH CLOJURE

c02.indd 04/23/2016 Page 36

using the compojure (https://github.com/weavejester/compojure) project template. If you
open src/chapter2/handler.clj in your editor of choice, you should see the following:

(ns chapter2.handler
 (:require [compojure.core :refer :all]
 [compojure.route :as route]
 [ring.middleware.defaults :refer [wrap-defaults site-defaults]]))

(defroutes app-routes
 (GET "/" [] "Hello World")
 (route/not-found "Not Found"))

(def app
 (wrap-defaults app-routes site-defaults))

At the moment this application is just a sample hello world app. But, let’s build a to-do list applica-
tion with a simple REST based interface. For now, the to-do list will be fairly simple. Create the fi le
src/chapter2/core.clj with the following contents:

(ns chapter2.core)

(def id-atom (atom 0))
(defn next-id [] (swap! id-atom inc))

(def tasks (atom (sorted-map)))

(defn get-tasks
 "Get all tasks on the to-do list"
 []
 @tasks)

(defn add-task
 "Add a task to the to-do list. Accepts a string describing the task."
 [task]
 (swap! tasks assoc (next-id) task))

(defn remove-task
 "Removes a task from the to-do list. Accepts the id of the task to remove."
 [task-id]
 (swap! tasks dissoc task-id))

You now have an extremely simple to-do list that stores the tasks on the list in memory. Of course,
with a real application you’d want to use some sort of persistent storage for your tasks. Before you
modify src/chapter2/handler.clj to defi ne the REST API for the to-do list, let’s test it out from
the REPL. First, make some modifi cations to the lein project to make development easier. Tell lein
what the main class of the application is by adding :main chapter2.core, and add some depen-
dencies to make development and testing easier. Edit your project.clj so that it contains:

(defproject chapter2 "0.1.0-SNAPSHOT"
 :description "FIXME: write description"
 :url "http://example.com/FIXME"
 :min-lein-version "2.0.0"
 :dependencies [[org.clojure/clojure "1.7.0"]

https://github.com/weavejester/compojure
http://example.com/FIXME

REPL-Driven Development ❘ 37

c02.indd 04/23/2016 Page 37

 [compojure "1.4.0"]
 [ring/ring-defaults "0.1.5"]
 [ring/ring-json "0.4.0"]]
 :plugins [[lein-ring "0.9.7"]]
 :ring {:handler chapter2.handler/app}
 :main chapter2.core
 :profiles
 {:dev {:dependencies [[clj-http "2.0.1"]
 [javax.servlet/servlet-api "2.5"]
 [ring/ring-mock "0.3.0"]]}})

Now, when you start a REPL, you’ll notice that lein automatically puts you in the chapter2.core
namespace. Let’s test out the simple to-do list from the REPL.

lein repl
...
chapter2.core=> (doc add-task)

chapter2.core/add-task
([task])
 Add a task to the to-do list. Accepts a string describing the task.
nil
chapter2.core=> (add-task "Buy more milk.")
{1 "Buy more milk."}
chapter2.core=> (add-task "Take out the trash.")
{1 "Buy more milk.", 2 "Take out the trash."}
chapter2.core=> (add-task "File taxes.")
{1 "Buy more milk.", 2 "Take out the trash.", 3 "File taxes."}
chapter2.core=> (doc remove-task)

chapter2.core/remove-task
([task-id])
 Removes a task from the to-do list. Accepts the id of the task to remove.
nil
chapter2.core=> (remove-task 2)
{1 "Buy more milk.", 3 "File taxes."}
chapter2.core=> (get-tasks)
{1 "Buy more milk.", 3 "File taxes."}
chapter2.core=>

You can leverage the tools you learned about earlier in the chapter like doc to see your own inter-
nal documentation, and then easily check to see how the code works. Now that we’ve verifi ed this
simple to-do list is working, we’ll modify our compojure app to provide a REST interface for inter-
acting with the app. The updated src.chapter2.handler is:

(ns chapter2.handler
 (:require [chapter2.core :as tasks]
 [compojure.core :refer :all]
 [compojure.route :as route]
 [ring.middleware.defaults :refer [wrap-defaults api-defaults]]
 [ring.middleware.keyword-params :refer [wrap-keyword-params]]
 [ring.middleware.json :refer [wrap-json-response]]))

38 ❘ CHAPTER 2 RAPID FEEDBACK CYCLES WITH CLOJURE

c02.indd 04/23/2016 Page 38

(defroutes api-routes
 (GET "/api/tasks" []
 {:body (tasks/get-tasks)})
 (POST "/api/tasks" {{task :task} :params}
 {:body (tasks/add-task task)})
 (DELETE "/api/tasks/:task-id" [task-id]
 {:body (tasks/remove-task (Integer/parseInt task-id))})
 (route/not-found "Not Found"))

(def app
 (-> api-routes
 (wrap-defaults api-defaults)
 wrap-json-response))

All you need to do now to run the application is run lein ring server-headless. That will run
the application on port 3000, and you can again head to the REPL to test things out. Let’s use the
clj.http library as a quick and easy way to test the REST API.

chapter2.core=> (require '[clj-http.client :as client])
nil
chapter2.core=> (:body
 #_=> (client/get "http://localhost:3000/api/tasks" {:as :json}))
{}
chapter2.core=> (:body
 #_=> (client/post "http://localhost:3000/api/tasks"
 #_=> {:form-params {:task "Buy milk."} :as :json}))
{:1 "Buy milk."}
chapter2.core=> (:body
 #_=> (client/post "http://localhost:3000/api/tasks"
 #_=> {:form-params {:task "Take out trash."} :as :json}))
{:1 "Buy milk.", :2 "Take out trash."}
chapter2.core=> (:body
 #_=> (client/post "http://localhost:3000/api/tasks"
 #_=> {:form-params {:task "File taxes."} :as :json}))
{:1 "Buy milk.", :2 "Take out trash.", :3 "File taxes."}
chapter2.core=> (:body
 #_=> (client/delete "http://localhost:3000/api/tasks/2" {:as :json}))
{:1 "Buy milk.", :3 "File taxes."}
chapter2.core=>

So far we’ve been using a REPL outside of the application to develop, but as covered earlier, you also
have the option to embed a REPL directly inside of the application. The lein ring (https://github
.com/weavejester/lein-ring) you’ve been using to start the application makes starting an embed-
ded REPL extremely simple. Update project.clj to tell lein ring to also start a REPL server.

(defproject chapter2 "0.1.0-SNAPSHOT"
 :description "FIXME: write description"
 :url "http://example.com/FIXME"
 :min-lein-version "2.0.0"
 :dependencies [[org.clojure/clojure "1.7.0"]
 [compojure "1.4.0"]
 [ring/ring-defaults "0.1.5"]
 [ring/ring-json "0.4.0"]]
 :plugins [[lein-ring "0.9.7"]]

https://github.com/weavejester/lein-ring
https://github.com/weavejester/lein-ring

REPL-Driven Development ❘ 39

c02.indd 04/23/2016 Page 39

 :ring {:handler chapter2.handler/app
 :nrepl {:start? true
 :port 60000}}
 :main chapter2.core
 :profiles
 {:dev {:dependencies [[clj-http "2.0.1"]
 [javax.servlet/servlet-api "2.5"]
 [ring/ring-mock "0.3.0"]]}})

Now when you run lein ring server-headless, you can connect the REPL to the running appli-
cation. This allows you to directly inspect and modify the internal data structures and functions
while the application is still running.

lein repl :connect localhost:60000
...
user=> (ns chapter2.core)
nil
chapter2.core=> (require '[clj-http.client :as client])
nil
chapter2.core=> (:body
 #_=> (client/post "http://localhost:3000/api/tasks"
 #_=> {:form-params {:task "Buy milk."} :as :json}))
{:2 "Buy milk."}
chapter2.core=> (:body
 #_=> (client/post "http://localhost:3000/api/tasks"
 #_=> {:form-params {:task "Take out trash."} :as :json}))
{:2 "Buy milk.", :3 "Take out trash."}
chapter2.core=> (defn clear-all-tasks [] (swap! tasks empty))
#'chapter2.core/clear-all-tasks
chapter2.core=> (clear-all-tasks)
{}
chapter2.core=> (:body (client/get "http://localhost:3000/api/tasks" {:as :json}))
{}
chapter2.core=>

By connecting a REPL to the running application, you can create a new function for clearing out the
task list and verify that the function works without having to restart the application.

Connecting Your Editor to a REPL
 So far we avoided calling out any specifi c editors or IDEs to use while writing the Clojure applica-
tion. Generally speaking, any editor is a viable candidate to use while developing Clojure. Practically
speaking though, making the right choice in an editor can drastically improve your experience and
shorten your feedback loop. Of course, there are the normal concerns with language support for
Clojure in your choice of editor. In addition to that, choosing an editor that provides REPL support
out of the box or through plugins will prove invaluable during development.

The home page for tools.nrepl (https://github.com/clojure/tools.nrepl) handily lists the
editors that are known to support tools.nrepl already. As you can see, there are plugins for popu-
lar editors like Emacs, Vim, Eclipse, IntelliJ, and Atom. Unsurprisingly, you can also see the top
three development environments from the 2014 State of Clojure Survey (https://cognitect
.wufoo.com/reports/state-of-clojure-2014-results/): Emacs, IntelliJ, and Vim.

https://github.com/clojure/tools.nrepl
https://cognitect.wufoo.com/reports/state-of-clojure-2014-results/):
https://cognitect.wufoo.com/reports/state-of-clojure-2014-results/):

40 ❘ CHAPTER 2 RAPID FEEDBACK CYCLES WITH CLOJURE

c02.indd 04/23/2016 Page 40

The benefi t of connecting your editor of choice to an nREPL server is gaining much of the same
functionality that we’ve discussed so far directly inside your editor, rather than in a separate REPL
process. By connecting your editor to a REPL you can easily look up documentation, view source,
and evaluate code directly from the editor.

We won’t go into the specifi cs of setting up each editor to connect to a REPL, but instead simply
recommend that you take a moment to set up the editor you are most familiar with and confi gure
nREPL support. The plugins for nREPL support for Emacs, IntelliJ, and Vim, are cider (https://
github.com/clojure-emacs/cider), cursive (https://cursive-ide.com/), and fi replace
(https://github.com/tpope/vim-fireplace).

RELOADING CODE

So far we’ve touched on leveraging the REPL for rapid feedback while developing new Clojure code,
but in the real world it’s much more common during your day-to-day development that you will
modify existing code, rather than writing brand new code from scratch. As you’ve seen, the REPL is
a great tool, but it isn’t necessarily a replacement for your preferred editor or IDE.

As you’ve made changes in your editor, you’ve been forced to reload your application or REPL
in order to view those changes. Ideally, you can develop code normally in your editor and reload
changed code in other places without interrupting your workfl ow. Luckily, Clojure makes this pro-
cess simple for all parts of the workfl ow, from your REPL to your tests. In this section you’ll see the
different ways code reloading can smooth your development process, as well as how best to struc-
ture your code for reloading.

Reloading Code from the REPL
For the fi rst demonstration of reloading code, let’s see how you can reload code from your external
REPL process to avoid having to restart the REPL server when you want to see changes that have
been made outside the REPL. Before you get started with the example, update your project.clj to
pull in the dependencies you’ll need for examples later in this section. Update your project.clj to:

(defproject chapter2 "0.1.0-SNAPSHOT"
 :description "FIXME: write description"
 :url "http://example.com/FIXME"
 :min-lein-version "2.0.0"
 :dependencies [[org.clojure/clojure "1.7.0"]
 [compojure "1.4.0"]
 [ring/ring-defaults "0.1.5"]
 [ring/ring-json "0.4.0"]]
 :plugins [[lein-ring "0.9.7"]]
 :ring {:handler chapter2.handler/app
 :nrepl {:start? true
 :port 60000}}
 :main chapter2.core
 :profiles
 {:dev {:dependencies [[clj-http "2.0.1"]
 [javax.servlet/servlet-api "2.5"]

https://github.com/clojure-emacs/cider
https://github.com/clojure-emacs/cider
https://cursive-ide.com
https://github.com/tpope/vim-fireplace

Reloading Code ❘ 41

c02.indd 04/23/2016 Page 41

 [org.clojure/tools.namespace "0.2.11"]
 [ring/ring-mock "0.3.0"]]}})

Now, load your to-do list application from the previous section into the REPL.

lein repl
...
chapter2.core=> (add-task "Buy Milk.")
{1 "Buy Milk."}
chapter2.core=> (add-task "Take out the trash.")
{1 "Buy Milk.", 2 "Take out the trash."}
chapter2.core=> (get-tasks)
{1 "Buy Milk.", 2 "Take out the trash."}

Add some functionality to your to-do list application. Ideally, a to-do list application allows you to
keep multiple lists of tasks that you want to track, rather than just a single list of all tasks. In your
editor, update src/chapter2/core.clj to allow keeping separate lists of tasks.

(ns chapter2.core)

(def id-atom (atom 0))
(defn next-id [] (swap! id-atom inc))

(def tasks (atom (sorted-map)))

(defn get-task-lists
 "Get the names of all created task lists."
 []
 (keys @tasks))

(defn get-tasks
 "Get all tasks on the specified to-do list."
 [list-name]
 (get @tasks list-name))

(defn add-task
 "Add a task to the specified to-do list. Accepts the name of
 the list and a string describing the task."
 [list-name task]
 (swap! tasks assoc-in [list-name (next-id)] task))

(defn remove-task
 "Removes a task from the specified to-do list. Accepts the name
 of the list and the id of the task to remove."
 [list-name task-id]
 (swap! tasks update-in [list-name] dissoc task-id))

 You can now track multiple lists to add and remove tasks from. If you go back to the REPL that
you opened previously, however, you can see that the changes made aren’t yet refl ected in the REPL,
so you can still use the previous versions of your functions.

chapter2.core=> (add-task "File Taxes.")
{1 "Buy Milk.", 2 "Take out the trash.", 3 "File Taxes."}

42 ❘ CHAPTER 2 RAPID FEEDBACK CYCLES WITH CLOJURE

c02.indd 04/23/2016 Page 42

Luckily, the Clojure require function that you are already familiar with includes a fl ag for reload-
ing a given namespace. Without leaving your REPL, reload the chapter2.core namespace and see
the changes that have been made in your editor:

chapter2.core=> (require 'chapter2.core :reload)
nil
chapter2.core=> (add-task "Pay electric bill.")

ArityException Wrong number of args (1) passed to:
 core/add-task clojure.lang.AFn.throwArity (AFn.java:429)
chapter2.core=> (doc add-task)

chapter2.core/add-task
([list-name task])
 Add a task to the to-do list. Accepts a string describing the task.
nil
chapter2.core=> (add-task "bills" "Pay electric bill.")
{"bills" {1 "Pay electric bill."}}
chapter2.core=> (get-tasks "bills")
{1 "Pay electric bill."}

Unfortunately, using require to reload namespaces can often present problems. Simply pass-
ing :reload to require will only reload the namespace(s) specifi ed. If you make changes to
multiple fi les that depend on each other, you need to remember to reload all of the namespaces
you changed, or you will see compilation errors. There is also the :reload-all option that you
can pass to require, which will not only reload the namespace specifi ed, but the namespaces it
depends on. Even that isn’t necessarily perfect though. If you change the public method signatures
of a namespace, you still need to remember to reload every namespace that depended on the one
you changed. There is no way for require to automatically know which namespaces need to be
reloaded.

Luckily, there is a Clojure library named tools.namespace (https://github.com/clojure/
tools.namespace) that you can leverage to solve these problems. You may have noticed, that
tools.namespace was the dependency added to project.clj in the beginning of this section.
Before we demonstrate using tools.namespace, let’s add some more functionality to the application
and see how simply reloading with require can go wrong. You’ve already updated chapter2.core
to allow the application to create and track multiple task lists, but you haven’t updated the API yet.
Also, since you’ve added the ability to create multiple lists, but not the ability to remove lists, let’s
add that functionality as well. The function to remove lists to add to chapter2.core.clj is:

(defn remove-list
 "Delete an entire list of tasks at a time. Accepts the name of
 the list to delete."
 [list-name]
 (swap! tasks dissoc list-name))

And the new chapter2.handler.clj:

(ns chapter2.handler
 (:require [chapter2.core :as tasks]
 [compojure.core :refer :all]
 [compojure.route :as route]
 [ring.middleware.defaults :refer [wrap-defaults api-defaults]]

https://github.com/clojure/tools.namespace
https://github.com/clojure/tools.namespace

Reloading Code ❘ 43

c02.indd 04/23/2016 Page 43

 [ring.middleware.keyword-params :refer [wrap-keyword-params]]
 [ring.middleware.json :refer [wrap-json-response]]))

(defroutes api-routes
 (GET "/api/tasks/:list-name" [list-name]
 {:body (tasks/get-tasks list-name)})
 (POST "/api/tasks/:list-name" {{list-name :list-name task :task} :params}
 {:body (tasks/add-task list-name task)})
 (DELETE "/api/tasks/:list-name" [list-name]
 {:body (tasks/remove-list list-name)})
 (DELETE "/api/tasks/:list-name/:task-id" [list-name task-id]
 {:body (tasks/remove-task list-name (Integer/parseInt task-id))})
 (route/not-found "Not Found"))

(def app
 (-> api-routes
 (wrap-defaults api-defaults)
 wrap-json-response))

You’ve now updated both src/chapter2/core.clj and src/chapter2/handler.clj. If you reload
just the handler namespace, you’ll immediately see a compilation error, because the compiler won’t
be able to fi nd the remove-list function that was added.

chapter2.core=> (require 'chapter2.handler :reload)

CompilerException java.lang.RuntimeException:
 No such var: tasks/remove-list, compiling:(chapter2/handler.clj:15:12)

Of course, in this specifi c example, you can use :reload-all in order to reload the dependencies of
chapter2.handler, but rather than remembering that ourselves, let’s leverage tools.namespace
instead.

chapter2.core=> (require '[clojure.tools.namespace.repl :refer [refresh]])
nil
chapter2.core=> (refresh)
:reloading (chapter2.core chapter2.handler chapter2.handler-test)
:ok

Behind the scenes, tools.namespace builds a graph of all the namespace dependencies in the proj-
ect and uses that graph to reload everything in the correct order. You can see how useful this will
be when developing larger Clojure applications, despite the current app being fairly simple. While
tools.namespace is a handy tool to have, it certainly isn’t a complete solution to every issue. Even
the refresh function won’t be able to successfully reload the project if you’ve accidentally intro-
duced syntax errors into your code base during development. If you get REPL into an unknown
state and you are uncertain what code is actually loaded or running, restarting your REPL com-
pletely and starting from scratch is a perfectly viable solution.

Automatically Reloading Code
So far when the act of reloading code has been a manual process. You fi rst update the application
through your editor, save the code, and then manually reload that code in your REPL. This is an
incredibly useful way to rapidly get feedback about your development. In fact, this approach is so

44 ❘ CHAPTER 2 RAPID FEEDBACK CYCLES WITH CLOJURE

c02.indd 04/23/2016 Page 44

common that Clojure libraries and tools recognize this and make it even easier by removing the
manual step.

Reloading a Running Application
Earlier in the chapter, you ran the REST API for the to-do list application by running lein ring
server-headless. This automatically serves the API defi ned in src/chapter2/handler.clj
on port 3000 on your local machine. In addition to serving the API though, the lein ring plugin
automatically checks for changes in the local Clojure code when it receives new API requests, and
reloads the application before processing those requests. Let’s see this in action by expanding the
functionality of your to-do list while the application is running. First, let’s run the application:

lein ring server-headless
Started nREPL server on port 60000
2016-01-19 20:37:37.787:INFO:oejs.Server:jetty-7.6.13.v20130916
2016-01-19 20:37:37.818:INFO:oejs.AbstractConnector:Started
 SelectChannelConnector@0.0.0.0:3000
Started server on port 3000
...

Let’s also verify that it’s working the way it should using the clj-http library.

lein repl
...
chapter2.core=> (require '[clj-http.client :as client])
nil
chapter2.core=> (:body
 #_=> (client/post "http://localhost:3000/api/tasks/chores"
 #_=> {:form-params {:task "Take out the trash."} :as :json}))
{:chores {:1 "Take out the trash."}}
chapter2.core=> (:body
 #_=> (client/post "http://localhost:3000/api/tasks/chores"
 #_=> {:form-params {:task "Mow the lawn."} :as :json}))
{:chores {:1 "Take out the trash.", :2 "Mow the lawn."}}
chapter2.core=> (:body
 #_=> (client/get "http://localhost:3000/api/tasks/chores"
 #_=> {:as :json}))
{:1 "Take out the trash.", :2 "Mow the lawn."}

Now, let’s add some functionality to the to-do list. In addition to simply tracking a single task as a
string describing the task, it might also be useful to track when a task was created. Let’s start track-
ing when a task was created in addition to just the task. We’ll create a Clojure record to represent
tasks and give it a creation-time fi eld. The new version of src/chapter2/core.clj is:

(ns chapter2.core)

(def id-atom (atom 0))
(defn next-id [] (swap! id-atom inc))

(def tasks (atom (sorted-map)))
(defrecord Task [task creation-time])

mailto:SelectChannelConnector@0.0.0.0:3000

Reloading Code ❘ 45

c02.indd 04/23/2016 Page 45

(defn now
 "Returns a java.util.Date object representing the current time."
 []
 (new java.util.Date))

(defn get-task-lists
 "Get the names of all created task lists."
 []
 (keys @tasks))

(defn get-tasks
 "Get all tasks on the specified to-do list."
 [list-name]
 (get @tasks list-name))

(defn add-task
 "Add a task to the specified to-do list. Accepts the name of
 the list and a string describing the task."
 [list-name task]
 (swap! tasks assoc-in [list-name (next-id)] (Task. task (now))))

(defn remove-list
 "Delete an entire list of tasks at a time. Accepts the name of
 the list to delete."
 [list-name]
 (swap! tasks dissoc list-name))

(defn remove-task
 "Removes a task from the specified to-do list. Accepts the name
 of the list and the id of the task to remove."
 [list-name task-id]
 (swap! tasks update-in [list-name] dissoc task-id))

While updating the to-do list application to also track task creation times, your application has con-
tinued running in the background. Let’s test out the API again after making the changes.

chapter2.core=> (:body
 #_=> (client/post "http://localhost:3000/api/tasks/chores"
 #_=> {:form-params {:task "Mow the lawn."}
 #_=> :as :json}))
{:chores {:1 {:task "Mow the lawn.", :creation-time "2016-01-20T03:23:55Z"}}}
chapter2.core=> (:body
 #_=> (client/post "http://localhost:3000/api/tasks/chores"
 #_=> {:form-params {:task "Take out the trash"}
 #_=> :as :json}))
{:chores {:1 {:task "Mow the lawn.",
 :creation-time "2016-01-20T03:23:55Z"},
 :2 {:task "Take out the trash",
 :creation-time "2016-01-20T03:24:06Z"}}}
chapter2.core=> (:body
 #_=> (client/get "http://localhost:3000/api/tasks/chores"
 #_=> {:as :json}))
{:1 {:task "Mow the lawn.", :creation-time "2016-01-20T03:23:55Z"},
 :2 {:task "Take out the trash", :creation-time "2016-01-20T03:24:06Z"}}

46 ❘ CHAPTER 2 RAPID FEEDBACK CYCLES WITH CLOJURE

c02.indd 04/23/2016 Page 46

As you can see, the new version of chapter2.core has been automatically reloaded and added tasks
now also have a creation-time.

Reloading Tests
One part of the development cycle that we haven’t really touched on yet is testing. Testing is a broad
subject both in general and from a Clojure perspective. Because of that, there is an entire chapter of
this book dedicated to testing in Clojure. Chapter 4 provides an in depth look into testing libraries,
writing tests, testing strategies, and more.

This chapter focuses on the development process and how you can shorten feedback cycles with
Clojure. No matter what your thoughts are on testing, it’s certainly an important part of the devel-
opment cycle. You can also leverage Clojure’s code reloading capabilities during the testing phase of
the development cycle. This section focuses briefl y on leveraging code reloading as part of testing,
but for more on testing see Chapter 4.

Of course, in order to dive into testing as it relates to reloading, you fi rst have to write some
tests. Let’s go ahead and add some tests for the chapter.core namespace. Create the
fi le test/chapter2/core_test.clj and add the tests there.

(ns chapter2.core-test
 (:require [clojure.test :refer :all]
 [chapter2.core :refer :all]))

(defn clear-tasks-fixture [f] (swap! tasks empty) (f))
(use-fixtures :each clear-tasks-fixture)

(deftest test-get-task-lists
 (testing "No task lists."
 (is (empty? (get-task-lists))))
 (testing "Creating task lists."
 (add-task "list1" "task1")
 (is (= ["list1"] (get-task-lists)))
 (add-task "list2" "task2")
 (is (= ["list1" "list2"] (get-task-lists)))))

(deftest test-get-tasks
 (testing "Empty task list"
 (is (empty? (get-tasks "list1"))))
 (testing "Non-empty task lists."
 (add-task "list1" "task1")
 (is (= 1 (count (get-tasks "list1"))))
 (is (= "task1" (:task (second (first (get-tasks "list1"))))))
 (add-task "list1" "task2")
 (is (= 2 (count (get-tasks "list1")))))
 (testing "Duplicate tasks are allowed"
 (add-task "list2" "task1")
 (is (= 1 (count (get-tasks "list2"))))
 (add-task "list2" "task1")
 (is (= 2 (count (get-tasks "list2"))))))

For now, you’ve added two fairly simple test cases. Also, when you created the project, lein helpfully
created a test fi le automatically for the handler namespace. Since we aren’t concerned with testing
that part of our application at the moment, let’s delete the fi le test/chapter2/handler_test.clj

Reloading Code ❘ 47

c02.indd 04/23/2016 Page 47

in order to focus on the tests for the core namespace. After deleting handler_test.clj you can run
tests with lein test, and you should see the tests pass.

lein test

lein test chapter2.core-test

Ran 2 tests containing 9 assertions.
0 failures, 0 errors.

Now, let’s examine the reloading aspect of testing. There are actually multiple tools out there, but
let’s use the plugin lein-test-refresh (https://github.com/jakemcc/lein-test-refresh).
The fi rst step is to add the plugin to project.clj. Update the :plugins section of project.clj to
add the lein-test-refresh plugin.

(defproject chapter2 "0.1.0-SNAPSHOT"
 :description "FIXME: write description"
 :url "http://example.com/FIXME"
 :min-lein-version "2.0.0"
 :dependencies [[org.clojure/clojure "1.7.0"]
 [compojure "1.4.0"]
 [ring/ring-defaults "0.1.5"]
 [ring/ring-json "0.4.0"]]
 :plugins [[lein-ring "0.9.7"]
 [com.jakemccrary/lein-test-refresh "0.12.0"]]
 :ring {:handler chapter2.handler/app
 :nrepl {:start? true
 :port 60000}}
 :main chapter2.core
 :profiles
 {:dev {:dependencies [[clj-http "2.0.1"]
 [javax.servlet/servlet-api "2.5"]
 [org.clojure/tools.namespace "0.2.11"]
 [ring/ring-mock "0.3.0"]]}})

Now, you can run the plugin with lein test-refresh.

lein test-refresh
Retrieving com/jakemccrary/lein-test-refresh/0.12.0/lein-test-refresh-0.12.0.pom
 from clojars
Retrieving jakemcc/clojure-gntp/0.1.1/clojure-gntp-0.1.1.pom from clojars
Retrieving com/jakemccrary/lein-test-refresh/0.12.0/lein-test-refresh-0.12.0.jar
 from clojars
Retrieving jakemcc/clojure-gntp/0.1.1/clojure-gntp-0.1.1.jar from clojars

*************** Running tests ***************
:reloading (chapter2.core chapter2.handler chapter2.core-test)

Testing chapter2.core-test

Ran 2 tests containing 9 assertions.
0 failures, 0 errors.

Passed all tests
Finished at 22:39:24.091 (run time: 1.806s)

https://github.com/jakemcc/lein-test-refresh

48 ❘ CHAPTER 2 RAPID FEEDBACK CYCLES WITH CLOJURE

c02.indd 04/23/2016 Page 48

The plugin starts up, runs the tests, and instead of exiting, continues watching your project fi les for
changes so that as you make changes to your source code, your tests will run automatically. Let’s
test it out by letting lein test-refresh continue running and updating the behavior of your
application slightly. Currently, your to-do list allows adding the same task to a list multiple times.
The current test case explicitly tests that this behavior works. Instead, it might be more useful to
ignore an attempt to add a duplicate task to a list. In the spirit of test driven development, let’s
update the tests to refl ect the new desired behavior before you update the application. The new
test/chapter2/core_test.clj is:

(ns chapter2.core-test
 (:require [clojure.test :refer :all]
 [chapter2.core :refer :all]))

(defn clear-tasks-fixture [f] (swap! tasks empty) (f))
(use-fixtures :each clear-tasks-fixture)

(deftest test-get-task-lists
 (testing "No task lists."
 (is (empty? (get-task-lists))))
 (testing "Creating task lists."
 (add-task "list1" "task1")
 (is (= ["list1"] (get-task-lists)))
 (add-task "list2" "task2")
 (is (= ["list1" "list2"] (get-task-lists)))))

(deftest test-get-tasks
 (testing "Empty task list"
 (is (empty? (get-tasks "list1"))))
 (testing "Non-empty task lists."
 (add-task "list1" "task1")
 (is (= 1 (count (get-tasks "list1"))))
 (is (= "task1" (:task (second (first (get-tasks "list1"))))))
 (add-task "list1" "task2")
 (is (= 2 (count (get-tasks "list1")))))
 (testing "Duplicate tasks are not allowed"
 (add-task "list2" "task1")
 (is (= 1 (count (get-tasks "list2"))))
 (add-task "list2" "task1")
 (is (= 1 (count (get-tasks "list2"))))
 (add-task "list2" "task1")
 (is (= 1 (count (get-tasks "list2"))))))

As soon as you save this new version of the test, you should notice how the running lein test-
refresh process detects the changes and re-runs the tests, but this time with failures.

...
Finished at 22:39:24.091 (run time: 1.806s)

*************** Running tests ***************
:reloading (chapter2.core-test)

Testing chapter2.core-test

FAIL in (test-get-tasks) (core_test.clj:30)

Reloading Code ❘ 49

c02.indd 04/23/2016 Page 49

Duplicate tasks are allowed
expected: (= 1 (count (get-tasks "list2")))
 actual: (not (= 1 2))

FAIL in (test-get-tasks) (core_test.clj:32)
Duplicate tasks are not allowed
expected: (= 1 (count (get-tasks "list2")))
 actual: (not (= 1 3))

Ran 2 tests containing 10 assertions.
2 failures, 0 errors.

Failed 2 of 10 assertions
Finished at 22:50:42.699 (run time: 0.032s)

Immediately you see that the tests have failed as expected. Given that the startup time of the JVM
can approach 10s of seconds in some cases when calling lein test manually, this approach of
automatically reloading code and running tests can greatly help your productivity. Now that you’ve
updated the tests with the desired behavior, go ahead and fi x the currently broken code. The updated
add-task function looks like:

(defn add-task
 "Add a task to the specified to-do list. Accepts the name of
 the list and a string describing the task."
 [list-name task]
 (letfn [(maybe-add-task [current-list]
 (if (some #(= task (:task (second %1))) current-list)
 current-list
 (assoc current-list (next-id) (Task. task (now)))))]
 (swap! tasks update list-name maybe-add-task)))

The new function scans your list of tasks and verifi es that there isn’t an existing task by that name
already in your task list before adding it. This approach isn’t particularly elegant, but it suits this
simple application, and as you can see from the updated output of lein test-refresh, it satisfi es
your updated test case.

...
Finished at 22:50:42.699 (run time: 0.032s)

*************** Running tests ***************
:reloading (chapter2.core chapter2.handler chapter2.core-test)

Testing chapter2.core-test

Ran 2 tests containing 10 assertions.
0 failures, 0 errors.

Passed all tests
Finished at 23:58:22.477 (run time: 0.048s)

Writing Reloadable Code
The fi nal topic on reloading code relates to how you develop and structure the code you are writing,
rather than the tools available for reloading it. Even if you are using intelligent tooling for reloading

50 ❘ CHAPTER 2 RAPID FEEDBACK CYCLES WITH CLOJURE

c02.indd 04/23/2016 Page 50

code, it is possible to write code that is not particularly reload friendly. The current to-do list appli-
cation already falls into this trap by creating a global state in the chapter2.core namespace. Both
id-atom and tasks in src/chapter2/core.clj represent a global state that is not reload friendly.
Let’s demonstrate what we mean via the REPL.

lein repl
...
chapter2.core=> tasks
#object[clojure.lang.Atom 0x36d0c4df {:status :ready, :val {}}]
chapter2.core=> (add-task "chores" "Mow lawn.")
{"chores"
 {1 #chapter2.core.Task{:task "Mow lawn.",
 :creation-time #inst "2016-01-20T06:49:55.503-00:00"}}}
chapter2.core=> (add-task "chores" "Take out trash.")
{"chores"
 {1 #chapter2.core.Task{:task "Mow lawn.",
 :creation-time #inst "2016-01-20T06:49:55.503-00:00"},
 2 #chapter2.core.Task{:task "Take out trash.",
 :creation-time #inst "2016-01-20T06:50:02.155-00:00"}}}
chapter2.core=> tasks
#object[clojure.lang.Atom 0x36d0c4df
{:status :ready,
 :val
 {"chores"
 {1 #chapter2.core.Task{:task "Mow lawn.",
 :creation-time #inst "2016-01-20T06:49:55.503-00:00"},
 2 #chapter2.core.Task{:task "Take out trash.",
 :creation-time #inst "2016-01-20T06:50:02.155-00:00"}}}}]
chapter2.core=> (require 'chapter2.core :reload)
nil
chapter2.core=> tasks
#object[clojure.lang.Atom 0x779599ec {:status :ready, :val {}}]

In this example you add some tasks to your task list and then see that reloading your namespace
erases the list of tasks, because (def tasks (atom (sorted-map))) is re-evaluated when you
reload the namespace. When developing in the REPL, this behavior isn’t particularly harmful or
confusing. If code is being reloaded outside of the REPL, though, this can be problematic. If you
add multiple tasks to your task list via the REST API, and then change the documentation on one
of your functions in chapter2.core, you will be unpleasantly surprised when the next API request
returns an empty task list because the namespace was reloaded. One potential solution is to use
defonce, which only evaluates if the specifi ed var doesn’t exist. However, while that solution helps
the problem when reloading with require, it does not when reloading with tools.namespace.
When reloading with tools.namespace, you are actually unloading the previous versions of your
namespaces, and then loading them completely from scratch. If you switch chapter2.core to use
defonce instead of def, you see the following:

lein repl
...
chapter2.core=> tasks
#object[clojure.lang.Atom 0x13312d27 {:status :ready, :val {}}]
chapter2.core=> (add-task "chores" "Mow the lawn.")
{"chores"
 {1 #chapter2.core.Task{:task "Mow the lawn.",

Summary ❘ 51

c02.indd 04/23/2016 Page 51

 :creation-time #inst "2016-01-20T07:06:10.705-00:00"}}}
chapter2.core=> (add-task "chores" "Take out the trash.")
{"chores"
 {1 #chapter2.core.Task{:task "Mow the lawn.",
 :creation-time #inst "2016-01-20T07:06:10.705-00:00"},
 2 #chapter2.core.Task{:task "Take out the trash.",
 :creation-time #inst "2016-01-20T07:06:22.358-00:00"}}}
chapter2.core=> (require 'chapter2.core :reload)
nil
chapter2.core=> tasks
#object[clojure.lang.Atom 0x13312d27
{:status :ready,
 :val
 {"chores"
 {1 #chapter2.core.Task{:task "Mow the lawn.",
 :creation-time #inst "2016-01-20T07:06:10.705-00:00"},
 2 #chapter2.core.Task{:task "Take out the trash.",
 :creation-time #inst "2016-01-20T07:06:22.358-00:00"}}}}]
chapter2.core=> (require '[clojure.tools.namespace.repl :refer [refresh]])
nil
chapter2.core=> (refresh)
:reloading (chapter2.core chapter2.handler chapter2.core-test)
:ok
chapter2.core=> tasks
#object[clojure.lang.Atom 0x27eab9ff {:status :ready, :val {}}]
chapter2.core=>

When you reloaded your namespace with require you avoided wiping out tasks, but reloading
with tools.namespace again wiped it out. Really your only foolproof approach to writing com-
pletely reloadable code is to avoid global state altogether. The homepage for tools.namespace even
describes some approaches to avoiding global state (https://github.com/clojure/tools
.namespace#reloading-code-preparing-your-application). Luckily there is also a library
called component (https://github.com/stuartsierra/component) that incorporates some of
those concepts and provides a framework for structuring your application to avoid global state. We
won’t dive into the intricacies of components in this book; however, it is well worth investigating to
help structure your code to avoid global state. Besides just the problems global state introduces for
code reloading, it can also make your applications harder to understand.

Using a library like component and writing your application to avoid global state completely will
require some additional effort and discipline in your development. You may decide in some of your
applications that the extra cost isn’t worth it, which may be valid. However, getting into the habit of
avoiding global state while developing will eventually become easier and pay off over time.

SUMMARY

 Getting feedback rapidly while developing is one of the most important factors in developer produc-
tivity. Clojure presents distinct advantages in this area, both in the design of the language and in the
tooling in the Clojure ecosystem. In this chapter we dove into some basics for getting feedback while
developing Clojure, some ways to leverage tooling in the Clojure ecosystem for rapid feedback, and
some ways to approach structuring your code to make getting feedback easier. All of these will help
make you a more productive Clojure developer.

https://github.com/clojure/tools.namespace#reloading-code-preparing-your-application
https://github.com/clojure/tools.namespace#reloading-code-preparing-your-application
https://github.com/stuartsierra/component

c03.indd 04/28/2016 Page 53

Web Services
WHAT’S IN THIS CHAPTER?

 ➤ Understanding a project overview

 ➤ Mastering elements of a Clojure web service

 ➤ Crafting a link shortener example project

 ➤ Deploying a Clojure web service

Clojure is a great general-purpose language, but it really shines when it comes to web services.
Clojure’s characteristic focus on immutable data structures, safe concurrency, and code re-use
allows you to write services that are composable, reliable, and expressive.

In this chapter, we’ll introduce the fundamental abstractions common to virtually all Clojure
services: HTTP handlers, middleware, and routing. You’ll use the popular Compojure tem-
plate, which is based on Ring for HTTP abstraction and Compojure for routing. After a tour
of the building blocks of a web service, you’ll actually write one from start to fi nish: a storage-
backed link shortener. The service will let users submit a full URL and a short name, then
redirect requests to that short name back to the original URL. Finally, we’ll briefl y cover some
of the popular options for deploying Clojure web services in development or production, either
locally or to the cloud.

PROJECT OVERVIEW

For this example project, you’re going to use the standard compojure template:

lein new compojure example-project

3

Professional Clojure. Jeremy Anderson, Michael Gaare, Justin Holguín, Nick Bailey and Timothy Pratley
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

54 ❘ CHAPTER 3 WEB SERVICES

c03.indd 04/28/2016 Page 54

The result is something very similar to the default template, but with a few extras:

 1. An added dependency for Compojure, a popular request routing library

 2. A development-only dependency on ring-mock for testing

 3. The lein-ring plugin to easily start a server with lein ring server

 4. Service-oriented example code and tests

At this point, it would be a good idea to take a few minutes to browse through the project, espe-
cially the src/example_project/handler.clj and test/example_project/handler_test.clj
fi les, and see if you can examine what’s going on. While you’re exploring the code, keep the follow-
ing questions in mind:

 ➤ What URLs will this web service handle, and what will the responses look like?

 ➤ Do you think the tests will pass?

 ➤ How do you think you might add a new endpoint?

Afterward, run lein ring server to start the example service and automatically open a browser
(see Figure 3-1):

~/src/chapter3$ lein ring server
2016-01-30 13:43:11.821:INFO:oejs.Server:jetty-7.6.13.v20130916
2016-01-30 13:43:11.853:INFO:oejs.AbstractConnector:Started
 SelectChannelConnector@0.0.0.0:3000
Started server on port 3000

FIGURE 3-1

As a bonus challenge, try adding a /film endpoint that recommends your favorite movie, then add
a test to make sure it works. Once you’re done experimenting, continue on to read about namespace
layout in a Clojure web service.

Namespace Layout
Like the default template, the compojure template sets up just one core namespace—example-

project.handler. We’ll get to handlers in an upcoming section, but let’s cover now how to orga-
nize a web service into namespaces.

First, take a quick look at the project.clj fi le, and note the following line:

:ring {:handler example-project.handler/app}

mailto:SelectChannelConnector@0.0.0.0:3000

Elements of a Web Service ❘ 55

c03.indd 04/28/2016 Page 55

It’s important that :handler be associated with a reference to a ring handler. For now, the impor-
tant thing to remember is that you’ll always want to know where your default handler is to provide
an accurate reference.

We’ll go into more depth about namespace layout when working on the example project later in this
chapter, but for the rest of this section think about what kinds of functions might belong in separate
namespaces and why.

ELEMENTS OF A WEB SERVICE

Web services in Clojure are constructed differently than services in many other languages. First, the
Clojure community has largely come to a consensus that heavy-duty web frameworks are unneces-
sary at best and harmful at worst. Instead, web services are made out of an ad hoc collection of
libraries that handle common tasks like HTTP abstraction, routing, and serialization.

Let’s examine some popular options for Clojure web services, focusing on a deep understanding of
the fundamental abstractions that these services are built from. By the end of this section, you’ll be
able to tackle a real world example that makes use of everything you learn here.

Libraries, Not Frameworks
One thing you may notice about Clojure compared to other languages is that the community tends
to shy away from heavy duty, opinionated web frameworks like Rails, Django, and Play. Instead,
a Clojure project will typically make use of a number of smaller libraries that fi ll limited roles, like
routing, database interactions, and templating.

Decoupling these distinct tasks allows you to combine the libraries that work for you, or substitute
your own code at will, and build a project that doesn’t require you to bend your logic to fi t the
assumptions made by the author of a given framework.

This fl exibility does, of course, come at a cost. Using, say, four libraries instead of one framework
means that you’re going to have at least four times as many decisions to make. The still-growing
Clojure community is also more fractured than other communities, with fewer experts per library to
go around.

It’s also possible that you’ll run into compatibility issues between libraries, although this rarely hap-
pens in practice. In general, the separation of concerns between libraries makes it pretty easy to
ensure that they all work together.

HTTP
On some level, a web service is really just a way to turn HTTP requests into HTTP responses.
That’s a gross oversimplifi cation, but it’s also a very helpful thing to remember. You’ve already seen
how Clojure excels at turning input data into useful output data using (mostly) pure functions, so
wouldn’t it be nice to apply those same techniques to requests and responses?

56 ❘ CHAPTER 3 WEB SERVICES

c03.indd 04/28/2016 Page 56

Well, most Clojure web services use a library called Ring, which lets you treat requests like a normal
hash map, with keys for the request method, URI, query string, etc. You write functions that take
request maps and return response maps, which have keys for the status, body, and headers. A func-
tion from request to response is called a handler, which is an essential concept in Ring.

NOTE A handler is a function that takes an HTTP request and returns an
HTTP response.

Ring Requests
Here’s an example GET request from guest123 to http://localhost/index.html:

{:server-port 80,
 :server-name "localhost",
 :remote-addr "guest123",
 :uri "/index.html",
 :query-string nil,
 :scheme :http,
 :request-method :get,
 :headers {"host" "localhost"}}

We’ll be talking a lot about Ring requests in upcoming sections, but for now the important thing
is to get a general idea of what they look like. If you’ve written web services before, you should see
what’s going on in the example above. Remember, since this is a normal Clojure map, we can access
these fi elds using the key as a function, such as (:request-method request) would return :get. If
you want to get the value of the host header, you can use (get-in request [:headers "host"]),
and so on.

Not all requests are that simple. Here’s a POST request from localhost to http://localhost/links
with a body:

{:remote-addr "localhost",
 :headers
 {"host" "localhost",
 "content-type" "application/x-www-form-urlencoded",
 "content-length" "28"},
 :server-port 80,
 :content-length 28,
 :content-type "application/x-www-form-urlencoded",
 :uri "/links",
 :server-name "localhost",
 :query-string nil,
 :body #object[java.io.ByteArrayInputStream]...,
 :scheme :http,
 :request-method :post}

Most of this example is fairly clear: You have some extra headers relating to the body
(as expected), so the :request-method now says :post, the :uri key gives the path to the
links endpoint, etc. What may be a bit surprising is that the :body key now points to a java
.io.ByteArrayInputStream. This class has some gotchas covered later, in addition to a string
and a native data structure.

Elements of a Web Service ❘ 57

c03.indd 04/28/2016 Page 57

Ring Responses
Ideally, every request should be met with a response, and Ring represents those with maps as well.
Here’s a simple Hello World response map:

{:status 200,
 :headers {"Content-Type" "text/html; charset=utf-8"},
 :body "Hello World"}

As you can see, HTTP responses are much simpler than requests—all you have to worry about are
the status code, the headers, and the body. For some responses, the body is expected to be blank.
Take a typical 302 redirect, such as:

{:status 302,
 :headers {"Location" "http://example.com"},
 :body ""}

Here, the important content is included under the “Location” header, rather than the body. Note
that the body is still included, even though it’s just the empty string. This is a practice that you
should observe in your own responses, and Ring’s built-in response helpers will add it for you where
appropriate.

Now that you’ve seen both request and response maps, you can begin to think of your web service
as a series of functions from the former to the latter. If you remember nothing else, remember that a
function that takes a request and returns a response is called a handler.

Response Helpers
A 404 Not Found response from the example project will look something like this:

{:status 404,
 :headers
 {"Content-Type" "text/html; charset=utf-8",
 "Set-Cookie"
 ("ring-session=855650aa-6209-48af-944f-177cac7fad56;Path=/;HttpOnly"),
 "X-XSS-Protection" "1; mode=block",
 "X-Frame-Options" "SAMEORIGIN",
 "X-Content-Type-Options" "nosniff"},
 :body "Not Found"}

Although it’s possible to write a response map by hand, it’s usually not done that way. Instead, the
process is typically broken down into two main phases:

 1. Create the response using helpers from the ring.util.response namespace.

 2. Apply middleware to outgoing responses to add common headers.

In the case of the compojure template, nearly all the preceding map is created by a combination of
compojure.route/not-found and ring.middleware.defaults/wrap-defaults, both of which
we’ll cover later in this chapter.

For now, though, let’s look at how to use the ring.util.response helpers to create a similar map:

(require '[ring.util.response :as ring-response])
(def my404

58 ❘ CHAPTER 3 WEB SERVICES

c03.indd 04/28/2016 Page 58

 (-> (ring-response/response "Not found")
 ;; returns a basic response map with "Not found" in the body
 (ring-response/status 404)
 ;; updates the status of the response to 404
 (ring-response/content-type "text/html")
 ;; adds the Content-Type header to the response
 (ring-response/charset "utf-8")
 ;; extends the Content-Type header to include the character set
))

With the notable exception of ring.util.response/response (which takes only a body), most of
the helper functions take a response map as their fi rst argument. What this means in practice is that
you’ll almost always use them with the -> (thread-fi rst) macro, so you can read the whole expression
as a series of updates to the immutable response map.

After evaluating the above forms, my404 looks like this:

{:status 404,
 :headers {"Content-Type" "text/html; charset=utf-8"},
 :body "Not found"}

It’s still missing a lot of the headers from the template’s 404 response, but it’s the job of the middle-
ware to handle those.

You should take a moment to browse the ring.util.response namespace once or twice to get
an idea of what you can do with Ring responses without having to reinvent the wheel, so to speak.
You’ll fi nd that most of the functions are short and accomplish one task reliably, which makes them
great examples for your own helpers.

Testing Ring Handlers
One of the great things about Ring is how easy it is to test. Recall how one of the added benefi ts of
the compojure template is that it automatically adds a dependency on ring-mock. This section cov-
ers how ring-mock is used to test ring handlers without having to start a live HTTP server.

First of all, run lein test in the project directory (if you haven’t already) to verify that they do
pass. Once you’re satisfi ed, look at how the tests actually work:

(ns chapter3.handler-test
 (:require [clojure.test :refer :all]
 [ring.mock.request :as mock]
 [chapter3.handler :refer :all]))

(deftest test-app
 (testing "main route"
 (let [response (app (mock/request :get "/"))]
 (is (= (:status response) 200))
 (is (= (:body response) "Hello World"))))

 (testing "not-found route"
 (let [response (app (mock/request :get "/invalid"))]
 (is (= (:status response) 404)))))

Elements of a Web Service ❘ 59

c03.indd 04/28/2016 Page 59

Notice that app is being called like a function (because handlers are functions), but it’s being passed
the mock/request thing. Let’s see what happens if you evaluate (mock/request :get "/") in a REPL:

{:server-port 80,
 :server-name "localhost",
 :remote-addr "localhost",
 :uri "/",
 :query-string nil,
 :scheme :http,
 :request-method :get,
 :headers {"host" "localhost"}}

It’s a Ring request map! Only this one has a lot of the boring stuff fi lled in for us, which makes the
tests much easier to read. Let’s continue by evaluating the whole expression (app (mock/request
:get "/")):

{:status 200,
 :headers {"Content-Type" "text/html; charset=utf-8"},
 :body "Hello World"}

If you guessed that this is a Ring response map, you’re absolutely correct. Once again, you can
clearly see that Ring handlers are ordinary Clojure functions that take a (request) map as a param-
eter and return a (response) map. What’s interesting is that these tests are avoiding actual HTTP
transport by just calling the handlers directly—there’s no network traffi c involved.

The ring.mock.request/request function can just as easily generate a :post request, which will
be very helpful later when we talk about ByteArrayInputStreams. Try it out with (mock/request
:post "/foo" "Hello, this request has a body"):

{:remote-addr "localhost",
 :headers {"host" "localhost", "content-length" "30"},
 :server-port 80,
 :content-length 30,
 :uri "/foo",
 :server-name "localhost",
 :query-string nil,
 :body
 #object[java.io.ByteArrayInputStream 0x6e9da8f2 "java.io.ByteArrayInputStream..."],
 :scheme :http,
 :request-method :post}

Another thing that’s worth remarking on is that there’s only one handler for our entire (small)
application: app. That’s a result of Compojure doing its job, which is to compose handlers for vari-
ous routes into a single handler that can answer any request it gets. This is covered more in the
“Routing” section.

The ring-mock library only includes a few functions, most of which fi ne-tune the requests generated
by ring.mock.request/request by updating headers, adding query parameters, and more. If you
fi nd yourself needing to create more sophisticated requests in your tests, have a quick look at the
ring.mock.request namespace fi rst to see if it has what you need.

60 ❘ CHAPTER 3 WEB SERVICES

c03.indd 04/28/2016 Page 60

Ring Middleware
Recall that handlers are functions that turn a request into a response, and they are the fundamental
concept in Ring. The term middleware refers to a function that takes a handler and returns a han-
dler. Because middleware has the same type for its parameter and return value, you can stack them
indefi nitely—middleware upon middleware upon middleware, until you get down to a basic handler.

Catching Exceptions
Let’s say, for example, that you want to make sure that an uncaught exception in your service
doesn’t actually crash the whole thing. Instead, you’d probably prefer to return a 500 response and
keep trying to service other requests. You could diligently add a try/catch to each individual handler
and return the 500 there, but that would result in a lot of needless code duplication.

NOTE Thankfully, Ring won’t really let an uncaught exception from a handler
crash the service. But you probably won’t want to use the built-in catchall any-
way, so it’s worth learning how to write your own.

Using middleware for that purpose, separate that logic and apply it at whatever level in the applica-
tion you want. Here’s a plan for the 500 middleware, which is called wrap-500-catchall:

 1. We take a handler as a parameter.

 2. We’re returning a new handler, so we’ll need to start with something like (fn [request] ...).

 3. At this point, both the handler and the request are in scope, so we could just call (handler
request).

 4. You want to wrap that in a try/catch expression.

 5. The catch body should always return a 500 response and otherwise swallow the exception
(although you would normally log it as well).

Middleware functions are usually named wrap-x, because each one is a sort of transparent layer
around a handler. You can keep wrapping a handler with middleware indefi nitely, and it’s not
uncommon to see ten or more layers, although that can be pretty unwieldy!

Here’s one possible implementation of the wrap-500-catchall middleware:

(defn wrap-500-catchall
 "Wrap the given handler in a try/catch expression, returning a 500 response if
 any exceptions are caught."
 [handler] ;; we want to take a handler as a parameter
 (fn [request] ;; we're also returning a handler
 (try (handler request)
 ;; middleware almost always calls the handler that's passed in
 (catch Exception e
 (-> (ring-response/response (.getMessage e))
 ;; place the exception's message in the body
 (ring-response/status 500)
 ;; set the status code to 500
 (ring-response/content-type "text/plain")

Elements of a Web Service ❘ 61

c03.indd 04/28/2016 Page 61

 ;; there's no HTML here, so we'll use text/plain
 (ring-response/charset "utf-8")
 ;; and update the character set
)))))

Let’s add a new route that throws an exception for us. Routing is covered in more detail in the next
section, but now you can get something working with just a single line in the app-routes defi nition
in handler.clj:

(defroutes app-routes
 (GET "/" [] "Hello World")
 (GET "/trouble" [] (/ 1 0)) ;; this won't end well!
 (route/not-found "Not Found"))

Add the defi nition of wrap-500-catchall directly below app-routes, then use it to wrap app:

(def app
 (wrap-500-catchall (wrap-defaults app-routes site-defaults)))

This works because app is a handler, and all middleware takes a handler and returns a handler.

Let’s verify that the middleware does what you might expect by writing a test.

(deftest catchall-test
 (testing "when a handler throws an exception"
 (let [response (app (mock/request :get "/trouble"))]
 (testing "the status code is 500"
 (is (= 500 (:status response))))
 (testing "and the body only contains the exception message"
 (is (= "Divide by zero" (:body response)))))))

If you want to see this for yourself in your browser, kill the Ring server process (if it’s running) and
run lein ring server again. Now, when you visit http://localhost:3000/trouble, you should
see a “Divide by zero” message, while the other routes continue to work as usual.

Converting Request Bodies
The wrap-500-catchall middleware only affects the response, but you can also use middleware
to prepare the request before the handlers even see it. Remember the Ring Request section above,
where you saw that the :body key contains a java.io.ByteArrayInputStream? Well, run lein
repl from the project directory so you can investigate that class a little bit:

user=> (require '[ring.mock.request :as mock])
nil
user=> (def request-with-body (mock/request :post "/" "This is the request body"))
#'user/request-with-body
user=> (:body request-with-body)
#object[java.io.ByteArrayInputStream 0x71e6fe51 "java.io.ByteArrayInputStream@..."]

At this point you can see that the body is a java.io.ByteArrayInputStream, but you can’t see
what its contents are. For that, you can call Clojure’s slurp function.

user=> (slurp (:body request-with-body))
"This is the request body"

62 ❘ CHAPTER 3 WEB SERVICES

c03.indd 04/28/2016 Page 62

Slurping the body does indeed return the string. But what if you slurp it again?

user=> (slurp (:body request-with-body))
""

That is disastrous. Slurping a ByteArrayInputStream also empties its contents. It turns out that,
unlike almost everything else you deal with in Clojure, java.io.ByteArrayInputStream objects
are mutable—simply reading their contents as a string leaves them blank. You can carefully work
around that fact every time you process a request with a body, or you can write a new middleware
so that you don’t have to worry about it. Here’s a plan:

 1. It’s middleware, thus taking a handler as a parameter.

 2. Start with (fn [request] ...) for the return value.

 3. If the request doesn’t have a body, call (handler request).

 4. Otherwise, instead of just calling (handler request), you will replace the request’s :body
with the slurped version, eliminating the need to ever worry about ByteArrayInputStreams
in the rest of the application.

 5. Finally, call the handler with the prepared version of the request.

Here’s a basic implementation of the middleware, which you can call wrap-slurp-body:

(defn wrap-slurp-body
 [handler]
 (fn [request]
 (if (instance? java.io.InputStream (:body request))
 (let [prepared-request (update request :body slurp)]
 (handler prepared-request))
 (handler request))))

Note that you’re checking for instances of java.io.InputStream, a superclass of java
.io.ByteArrayInputStream. Although you’ve only seen ByteArrayInputStreams so far,
the fact is that Ring will sometimes pass other subclasses of InputStream, but they can all be
read with slurp and suffer from the same mutability issue, so this is a much safer approach.

Normally you would use a route that takes a body in order to test this, but it’s not quite time to do
that with Compojure (that’s coming up in the next section). That said, there’s nothing stopping you
from writing a simpler handler and testing it. Let’s write a handler that just echoes the body back:

(defn body-echo-handler
 [request]
 (if-let [body (:body request)] ;; remember, not all requests have bodies!
 (-> (ring-response/response body)
 (ring-response/content-type "text/plain")
 (ring-response/charset "utf-8"))
 ;; if there's no body, let's call this a 400 (Bad request)
 (-> (ring-response/response "You must submit a body with your request!")
 (ring-response/status 400))))

Elements of a Web Service ❘ 63

c03.indd 04/28/2016 Page 63

Now let’s wrap the handler in some middleware to give you something to use for tests:

(def body-echo-app
(-> body-echo-handler
 wrap-500-catchall
 wrap-slurp-body))

And fi nally, add the tests themselves to handler_test.clj:

(deftest slurp-body-test
 (testing "when a handler requires a request body"
 (testing "and a body is provided"
 (let [response (body-echo-app (mock/request :post "/" "Echo!"))]
 (testing "the status code is 200"
 (is (= 200 (:status response)))
 (testing "with the request body in the response body"
 (is (= "Echo!" (:body response)))))))
 (testing "and a body is not provided"
 (let [response (body-echo-app (mock/request :get "/"))]
 (testing "the status code is 400"
 (is (= 400 (:status response))))))))

Even though you’re not using it yet, you might as well wrap the main app in wrap-slurp-body as
well. At the same time, let’s clean it up a bit with the thread-fi rst macro:

(def app
 (-> app-routes
 (wrap-defaults api-defaults)
 wrap-slurp-body
 wrap-500-catchall))

It can be a pain, but you often have to pay attention to the order in which you apply middleware. As
each middleware function wraps the handler, that new middleware becomes the fi rst thing to see the
request. So, even though it’s last in the list, wrap-500-catchall is the fi rst thing to get called when
a request is being answered. Let’s consider a slightly different order for a moment:

(def app
 (-> app-routes
 wrap-500-catchall
 (wrap-defaults api-defaults)
 wrap-slurp-body))

In this case, the wrap-500-catchall middleware only applies to app-routes directly—it will never
see exceptions thrown by wrap-defaults or wrap-slurp-body. That may or may not be what you
would want in your own application, but the important thing is to be aware of the effect that order-
ing can have on your middleware.

Middleware is a powerful abstraction around both requests and responses. When your middleware
is doing its job, your handlers can be smaller and more focused, which is key to writing clean,

64 ❘ CHAPTER 3 WEB SERVICES

c03.indd 04/28/2016 Page 64

maintainable web services. It’s easy to compose middleware by stacking it on top of your handlers,
but remember that the last middleware you apply will be the fi rst to be called when there’s a request.

Routing
Imagine a simple web service with two endpoints: a /links endpoint that responds to GET and
POST requests, and a /links/{ID} endpoint, which may support GET and DELETE. The routing
library is responsible for examining an incoming request and passing it along (with any relevant
data) to a function of your choosing.

If you look again at the request maps in the HTTP section, you can probably begin to imagine how
this would work—examine the :request-method and :uri keys in the request map, and if they
match an endpoint in your application then pass the request map along to the appropriate function
to return a response.

You could do that manually, but hardly anybody does. Instead, by offl oading that work to a routing
library, you will keep your code much cleaner and easier to reason about. By far, the most popular
Clojure routing library is Compojure. It’s well documented, fairly straightforward, and very fl exible.

Composing Routes
The chapter3.handler namespace already has three Compojure routes defi ned under app-routes:

(defroutes app-routes
 (GET "/" [] "Hello World")
 (GET "/trouble" [] (/ 1 0))
 (route/not-found "Not Found"))

The defroutes macro is purely a convenience around def (you’ve seen) and routes (will be cov-
ered in depth soon). Just to prove there’s no other magic involved, let’s revise this bit of code to
eliminate the use of defroutes:

(def app-routes
 (routes
 (GET "/" [] "Hello World")
 (GET "/trouble" [] (/ 1 0))
 (route/not-found "Not Found")))

Now that the structure is easier to see, let’s talk about what’s going on here. Although it might not
look much like it right now, remember that app-routes is a handler. That is, app-routes takes a
Ring request map and returns a response map.

That fact alone gives you a good idea of what routes does: It takes some number of Compojure
routes and turns them into a single handler. But what are the routes individually? Have a guess, then
open up a REPL in the project directory:

user=> (require '[compojure.core :refer :all])
nil
user=> (def get-foo (GET "/foo" [] "Hello from foo"))
#'user/get-foo
user=> (require '[ring.mock.request :as mock])
nil

Elements of a Web Service ❘ 65

c03.indd 04/28/2016 Page 65

user=> (get-foo (mock/request :get "/foo"))
{:status 200,
 :headers {"Content-Type" "text/html; charset=utf-8"},
 :body "Hello from foo"}

As you can see, GET (and indeed, the PUT/POST/DELETE/etc.) returns a handler. In this case,
you’ll test it out with a request that the handler was ready for—a simple GET request to /foo. Let’s
jump back to the REPL and see what happens if the route doesn’t match:

user=> (get-foo (mock/request :get "/"))
nil

Well, nil isn’t a valid Ring response, so it would be a really bad idea to use this handler directly.
Let’s look again at app-routes:

(def app-routes
 (routes
 (GET "/" [] "Hello World")
 (GET "/trouble" [] (/ 1 0)) ;; this won't end well!
 (route/not-found "Not Found")))

Now that you know that each route is a handler that can return nil, you can fully deduce the pur-
pose of the routes function: to combine multiple handlers, sending the request to each one until a
valid response (not nil) is returned.

This is the fi rst function that can turn two or more handlers into one, and it’s about time! You don’t
want to write one huge handler all at once to represent the application; it’s much more reasonable to
split it up and handle one route at a time.

Writing Routes
Here again are some simple Compojure routes:

(defroutes app-routes
 (GET "/" [] "Hello World")
 (GET "/trouble" [] (/ 1 0)) ;; this won't end well!
 (route/not-found "Not Found"))

There’s defi nitely a common structure here:

 ➤ HTTP verb, like GET, PUT, POST, DELETE

 ➤ A path

 ➤ A parameter vector

 ➤ The body of the response

Most of the time, Compojure routes resemble Clojure functions. Instead of defn, each route is intro-
duced with the HTTP verb it responds to. Standing in for the function name is the path, which can
contain abstract segments such as :id. Like an ordinary function, a route must have a (possibly
empty) parameter vector, which supports the standard destructuring forms. Finally, you can defi ne
the result of matching the route by providing an expression to evaluate.

66 ❘ CHAPTER 3 WEB SERVICES

c03.indd 04/28/2016 Page 66

The routes above are extremely simple, which is good when trying not to dive too deep into routing,
but now it’s time to jump in with both feet. Let’s bring the echo handler into Compojure:

(defroutes app-routes
 (GET "/" [] "Hello World")
 (GET "/trouble" [] (/ 1 0))
 (POST "/echo" [:as request] (body-echo-handler request))
 (route/not-found "Not Found"))

This fi nally gives you something more interesting to look at in the parameter vector, so let’s focus
on that fi rst. You may recognize :as, which is part of Clojure’s standard destructuring syntax.
Normally, :as x would take all of the parameters and wrap them up in a collection called x. In
Compojure specifi cally, :as is a nice shortcut to get the entire Ring request as a parameter so that it
can be passed off to a handler. The request can have any name, but in this case it’s hard to imagine a
reason not to call it request. Once you have the request in scope, call the old body-echo-handler
directly.

Let’s revisit the tests for app-routes and add a couple for the newly integrated echo endpoint:

(deftest test-app
 (testing "main route"
 (let [response (app (mock/request :get "/"))]
 (is (= (:status response) 200))
 (is (= (:body response) "Hello World"))))

 (testing "echo route"
 (let [response (app (mock/request :post "/echo" "Echo!"))]
 (is (= 200 (:status response)))
 (is (= "Echo!" (:body response))))

 (let [response (app (mock/request :post "/echo"))]
 (is (= 400 (:status response)))))
 (testing "not-found route"
 (let [response (app (mock/request :get "/invalid"))]
 (is (= (:status response) 404)))))

This works for POST, but this handler is used to accepting any request that contains a body. You
can work your way back up to the old functionality like this:

(defroutes app-routes
 (GET "/" [] "Hello World")
 (GET "/trouble" [] (/ 1 0))
 (POST "/echo" [:as request] (body-echo-handler request))
 (PUT "/echo" [:as request] (body-echo-handler request))
 (DELETE "/echo" [:as request] (body-echo-handler request))
 (route/not-found "Not Found"))

Or maybe this doesn’t work. This amount of code duplication is unforgivable, even in this small
example project. Let’s take advantage of another routing function that Compojure provides:

(defroutes app-routes
 (GET "/" [] "Hello World")
 (GET "/trouble" [] (/ 1 0)) ;; this won't end well!
 (ANY "/echo" [:as request] (body-echo-handler request))
 (route/not-found "Not Found"))

Elements of a Web Service ❘ 67

c03.indd 04/28/2016 Page 67

Now you can match any HTTP request to the /echo path. Let’s verify that by adding a few more
requests to the tests for the echo route:

(deftest test-app
 (testing "main route"
 (let [response (app (mock/request :get "/"))]
 (is (= (:status response) 200))
 (is (= (:body response) "Hello World"))))

 (testing "echo route"
 (let [response (app (mock/request :post "/echo" "Echo!"))]
 (is (= 200 (:status response)))
 (is (= "Echo!" (:body response))))

 (let [response (app (mock/request :put "/echo" "Hello!"))]
 (is (= 200 (:status response)))
 (is (= "Hello!" (:body response))))

 (let [response (app (mock/request :patch "/echo" "Goodbye!"))]
 (is (= 200 (:status response)))
 (is (= "Goodbye!" (:body response))))

 (let [response (app (mock/request :post "/echo"))]
 (is (= 400 (:status response)))))
 (testing "not-found route"
 (let [response (app (mock/request :get "/invalid"))]
 (is (= (:status response) 404)))))

There’s more to do here to clean up the echo handler. Although convenient, it’s usually unneces-
sary to pass along the entire request to a Compojure route handler. In this case, all the echo handler
actually needs is the body, which may be nil. Leave echo-body-handler in place, but write a new
function that doesn’t rely on any extraneous data:

(defn echo ;; based on echo-body-handler
 [body]
 (if (not-empty body) ;; excludes nil and the empty string
 (-> (ring-response/response body)
 (ring-response/content-type "text/plain")
 (ring-response/charset "utf-8"))
 ;; if there's no body, let's call this a 400 Malformed
 (-> (ring-response/response "You must submit a body with your request!")
 (ring-response/status 400))))

Notice how the function is renamed to echo. Since it no longer takes a full request map, it would be
misleading to give it a name with handler in it. Also, since it only takes the body as a parameter, it
doesn’t make sense to also put body in the name. So that leaves you with echo. Unfortunately, the
tests are also failing now, so you need to update app-routes to only pass the body along to this
function:

(defroutes app-routes
 (GET "/" [] "Hello World")
 (GET "/trouble" [] (/ 1 0)) ;; this won't end well!
 (ANY "/echo" [:as {body :body}] (echo body))
 (route/not-found "Not Found"))

68 ❘ CHAPTER 3 WEB SERVICES

c03.indd 04/28/2016 Page 68

Notice how the request was replaced with {body :body}. The latter is also standard destructuring
syntax, roughly translating to “take whatever’s in the :body key and bind it to body.” Leave the :as
there to make sure that you’re destructuring the request map; otherwise you’ll get an error about an
unexpected binding form. Go ahead and run the tests again to make sure everything’s back in work-
ing order with the newly refactored handler.

Compojure Responses
You may have noticed that Compojure doesn’t seem to mind if a string is returned instead of a
proper ring response map. This is not practical most of the time because you need to add a bit more
with the request. Still, it’s worth taking note of exactly how Compojure is able to turn that string
into a Ring response, since you can extend that behavior to other types that might be more useful.

Compojure uses the compojure.response/Renderable protocol for this purpose. The protocol
defi nes a single method, render, which returns a proper Ring response. You can take a look at the
compojure.response namespace to see how this method is defi ned for nil, strings, maps, etc.

Path Variables
At the beginning of this section, a route is mentioned with an abstract segment: /links/{ID},
where {ID} is an extra parameter that the handler can use. Compojure also makes this quite easy
with a little bit of magic:

(defroutes app-routes
 (GET "/" [] "Hello World")
 (GET "/trouble" [] (/ 1 0))
 (GET "/links/:id" [id] (str "The id is: " id))
 (ANY "/echo" [:as {body :body}] (echo body))
 (route/not-found "Not Found"))

Here you have a new route, /links/:id, with just [id] for the parameter vector. When Compojure
matches a route, any segments that start with a colon are treated as abstract path segments and
added to the request map. You can access them through the request yourself, but Compojure also
adds a more convenient way—providing the name of the segment in the parameter vector. That
means that you can’t use, say, [link-id] for the parameter name; it wouldn’t have matched.

Let’s write some tests to verify that the /links/:id endpoint actually works:

(deftest links-test
 (testing "the links/:id endpoint"
 (testing "when an id is provided"
 (let [response (app (mock/request :get "/links/foo123"))]
 (testing "returns a 200"
 (is (= 200 (:status response)))
 (testing "with the id in the body"
 (is (re-find #"foo123" (:body response)))))))
 (testing "when the id is omitted"
 (let [response (app (mock/request :get "/links"))]
 (testing "returns a 404"
 (is (= 404 (:status response))))))
 (testing "when the path is too long"
 (let [response (app (mock/request :get "/links/foo123/extra-segment"))]

Elements of a Web Service ❘ 69

c03.indd 04/28/2016 Page 69

 (testing "returns a 404"
 (is (= 404 (:status response))))))))

As the tests show, the route will only match if there is exactly one segment for :id—anything else
will result in a 404.

Routes and Middleware
Using middleware to your advantage is always a good idea, but you don’t always want to apply the
same middleware to every route. For example, you don’t actually need to apply the wrap-slurp-
body middleware to all of the routes just because the /echo endpoint relies on it. Instead, you can
group routes and apply middleware in multiple stages. First, split off the /echo route from the rest
of app-routes:

(def body-routes
 (-> (routes
 (ANY "/echo" [:as {body :body}] (echo body)))
 (wrap-routes wrap-slurp-body)))

(defroutes non-body-routes
 (GET "/" [] "Hello World")
 (GET "/trouble" [] (/ 1 0)) ;; this won't end well!
 (GET "/links/:id" [id] (str "The id is: " id))
 (route/not-found "Not Found"))

Note that we’re wrapping body-routes directly, rather than at a later stage. This works well concep-
tually, since any route that gets grouped under body-routes is going to need this middleware and
other routes probably won’t. This pattern isn’t possible with the defroutes macro because there’s
no way to sneak in the middleware between def and routes in that case.

The other very important note here is that even though you can call wrap-slurp-body on the route,
you’ll instead pass it as an argument to wrap-routes. The rationale for this has to do with the way
that Compojure combines handlers. When you pass multiple handlers to routes, they each get
called with the request map until one of them returns a response. If one of those handlers somehow
mutates the request map (which wrap-slurp-body does, because it consumes the original body),
then subsequent handlers will see the mutated version.

The wrap-routes function is an essential workaround for this problem. It ensures that the given
middleware is only applied when the route actually matches, meaning that it will only be called once
per request. You should use wrap-routes whenever you’re applying middleware with the routes
function.

Moving on, instead of wrapping only app-routes in the remaining middleware, you can combine
body-routes with app-routes. First, combine body-routes and app-routes into a single handler
with the routes function:

(def app-routes
 (routes body-routes non-body-routes))

Next, remove wrap-slurp-body from the app, since it has already been applied to the routes that
require it:

(def app
 (-> app-routes

70 ❘ CHAPTER 3 WEB SERVICES

c03.indd 04/28/2016 Page 70

 wrap-500-catchall
 (wrap-defaults api-defaults)))

It’s very rare that all of your routes will need exactly the same middleware in exactly the same order,
so always think about that when grouping routes together. You can always wrap handlers in middle-
ware and you can always group handlers with routes, so you’ll often see a sort of group-wrap-
group-wrap-group-wrap pattern that slowly combines handlers into a single application.

JSON Endpoints
Most web services are going to produce and/or consume serialized data structures. Since JSON is
by far the most common serialization format for modern web services, it is used in this chapter.
Nonetheless, you can easily substitute XML (even on a per-request basis) or something more experi-
mental like Cognitect’s new Transit.

Although there’s an offi cial Clojure JSON library (clojure.data.json), you’ll be using the much more
popular Cheshire, which is more fl exible and performant. Cheshire allows you to defi ne JSON seri-
alization methods for your own custom data types and it supports streaming, lazy decoding, and
pretty-printed JSON output.

Let’s add Cheshire as a dependency to the project so we can try it out. Update the :dependencies
section in project.clj like so:

:dependencies [[org.clojure/clojure "1.7.0"]
 [compojure "1.4.0"]
 [ring/ring-defaults "0.1.5"]
 [cheshire "5.5.0"]] ;; new line

Then require it in handler.clj:

(ns chapter3.handler
 (:require [compojure.core :refer :all]
 [ring.util.response :as ring-response]
 [compojure.route :as route]
 [cheshire.core :as json] ;; new line
 [ring.middleware.defaults :refer [wrap-defaults site-defaults
 api-defaults]]))

And also require it in handler_test.clj:

(ns chapter3.handler-test
 (:require [clojure.test :refer :all]
 [ring.mock.request :as mock]
 [cheshire.core :as json] ;; new line
 [chapter3.handler :refer :all]))

Accepting JSON Data
Now that we’re equipped to deal with JSON, let’s write some middleware to handle parsing a
JSON-encoded body, thus returning a 400 response if it’s malformed:

(defn wrap-json
 [handler]
 (fn [request]

Elements of a Web Service ❘ 71

c03.indd 04/28/2016 Page 71

 (if-let [prepd-request (try (update request :body json/decode)
 (catch com.fasterxml.jackson.core.JsonParseException e
 nil))]
 (handler prepd-request)
 ;; we'll only get here if there's a parse error
 (-> (ring-response/response "Sorry, that's not JSON.")
 (ring-response/status 400)))))

One thing to note is that this middleware assumes that the body is going to be a string, which means
it’ll have to be applied before wrap-slurp-body (remember, applied fi rst means called second). Let’s
write a handler that turns a JSON-encoded body into a Clojure map:

(defn handle-clojurefy
 [request]
 (-> (:body request) ;; extract the body of the request
 str ;; turn it into a string
 ring-response/response ;; wrap it in a response map
 (ring-response/content-type "application/edn"))) ;; set the Content-Type

Note the proper Ring handler is written here, rather than taking any of the shortcuts that
Compojure opens up. This is usually the right thing to do—full Ring handlers are easier to test inde-
pendently and they tend to be more explicit. In this case, returning a response map makes it possible
to set the Content-Type to application/edn. If you’re not familiar with EDN (Extensible Data
Notation), it’s essentially Clojure’s built-in object serialization standard, and it can be a convenient
way to pass data between Clojure services over HTTP.

Let’s add the /clojurefy endpoint to body-routes, since it does require a body. You will wrap it
with the wrap-json middleware right in the route defi nition:

(def body-routes
 (-> (routes
 (ANY "/echo" [:as {body :body}] (echo body))
 (POST "/clojurefy" [] (wrap-json handle-clojurefy)))
 wrap-slurp-body))

Remember the compojure.response/Renderable protocol? Well, it turns out that you can use it
to skip the whole [:as request] bit. When you use a full-fl edged Ring handler for the body of a
route, Compojure assumes it’s a handler and automatically passes it the request map. It looks a little
strange, but it works, and the alternative looks even stranger:

(POST "/clojurefy" [:as request] ((wrap-json handle-clojurefy) request)) ;; weird!

Also note that wrap-json is placed where it can only see requests that have matched the
/clojurefy route. This way it won’t affect the /echo endpoint, which really doesn’t care if the
request contains valid JSON.

Finally, let’s write some tests to see if this is successful:

(deftest json-test
 (testing "the /clojurefy endpoint"
 (testing "when provided with some valid JSON"
 (let [example-map {"hello" "json"}
 example-json (json/encode example-map)
 response (app (-> (mock/request :post "/clojurefy" example-json)

72 ❘ CHAPTER 3 WEB SERVICES

c03.indd 04/28/2016 Page 72

 ;; note, we must set the content type of the request
 (mock/content-type "application/json")))]
 (testing "returns a 200"
 (is (= 200 (:status response)))
 (testing "with a Clojure map in the body"
 (is (= (str example-map) (:body response)))))))
 (testing "when provided with invalid JSON"
 (let [response (app (-> (mock/request :post "/clojurefy" ";!:")
 (mock/content-type "application/json")))]
 (testing "returns a 400"
 (is (= 400 (:status response))))))))

The tests pass, so all is good! Let’s move on to returning JSON responses.

Returning JSON Data
Returning JSON is a bit easier than accepting it. You don’t have to worry about problems with pars-
ing; you just need to set the content type and encode the body. Here’s a simple middleware function
that should take care of this:

(defn wrap-json-response
 [handler]
 (fn [request]
 (-> (handler request) ;; call the handler first
 (update :body json/encode) ;; then encode the body
 (ring-response/content-type "application/json")))) ;; and set Content-Type

Most of the middleware written for this book so far alters incoming requests, so this is a little bit
different. Instead of calling the handler last, you call it fi rst. For the rest of the thread-fi rst form let’s
work with the response map. Thread the response through update to encode the body, then use
ring.util.response/content-type to apply the correct Content-Type header.

Now, let’s write a handler that returns a JSON object with some basic information about the system
it’s running on:

(def handle-info
 (wrap-json-response
 (fn [_] ;; we don't actually need the request
 (-> {"Java Version" (System/getProperty "java.version")
 "OS Name" (System/getProperty "os.name")
 "OS Version" (System/getProperty "os.version")}
 ring-response/response))))

This is yet another way to wrap a handler. Since there is only one handler that returns JSON, there’s
no real problem with wrapping it this closely. If you had a few more routes like this, you’d want to
compose them and then wrap the combined handler.

This handler uses the System/getProperty method to fetch some details about the host that the
service is running on. You may not want to expose this information generally, but it’s a useful thing
to know about and a perfectly good source of structured data to encode.

Now let’s add a route for the /info endpoint:

Elements of a Web Service ❘ 73

c03.indd 04/28/2016 Page 73

(defroutes non-body-routes
 (GET "/" [] "Hello World")
 (GET "/trouble" [] (/ 1 0)) ;; this won't end well!
 (GET "/links/:id" [id] (str "The id is: " id))
 (GET "/info" [] handle-info)
 (route/not-found "Not Found"))

In this case, it will be more interesting to run lein ring server and check out http://localhost:
3000/info, but let’s write some tests anyway:

(deftest json-response-test
 (testing "the /info endpoint"
 (let [response (app (mock/request :get "/info"))]
 (testing "returns a 200"
 (is (= 200 (:status response))))
 (testing "with a valid JSON body"
 (let [info (json/decode (:body response))]
 (testing "containing the expected keys"
 (is (= #{"Java Version" "OS Name" "OS Version"}
 (set (keys info))))))))))

One thing to note here is that the keys function makes no guarantees about the order that the keys are
in, so you’ll use a set comparison to make sure that you don’t need any such guarantees. As long as the
map has exactly the keys “Java Version,” “OS Name,” and “OS Version” in any order, the test will pass.

Using ring-json
Writing your own JSON middleware is great practice, but the fact is that this has already been done
for you. The ring-clojure organization maintains a very helpful library called ring-json (https://
github.com/ring-clojure/ring-json). This library already provides a default 400 response, as
well as middleware for JSON requests and JSON responses.

So, in the interest of not reinventing the wheel, let’s refactor the code to use the ring-json library.
First, add it as a dependency to project.clj:

:dependencies [[org.clojure/clojure "1.7.0"]
 [compojure "1.4.0"]
 [ring/ring-defaults "0.1.5"]
 [ring/ring-json "0.4.0"] ;; add this
 [cheshire "5.5.0"]]

Then require ring.middleware.json in handler.clj:

(ns chapter3.handler
 (:require [compojure.core :refer :all]
 [ring.middleware.json :as ring-json] ;; add this
 [ring.util.response :as ring-response]
 [ring.util.request :as ring-request]
 [compojure.route :as route]
 [cheshire.core :as json]
 [ring.middleware.defaults :refer [wrap-defaults api-defaults]]))

We have a slightly different middleware situation right now because ring-json’s version of wrap-
json-body stringifi es the request body for us; making wrap-slurp-body obsolete for JSON

http://localhost:
https://github.com/ring-clojure/ring-json
https://github.com/ring-clojure/ring-json

74 ❘ CHAPTER 3 WEB SERVICES

c03.indd 04/28/2016 Page 74

routes. Let’s go ahead and move the /clojurefy endpoint out of body-routes and into its own
 json-routes var while you replace wrap-json with ring-json/wrap-json-body:

(def json-routes
 (routes
 (POST "/clojurefy" [] (ring-json/wrap-json-body handle-clojurefy))))

(def body-routes
 (-> (routes
 (ANY "/echo" [:as {body :body}] (echo body)))
 (wrap-routes wrap-slurp-body)))

You’ll also need to update app-routes to include json-routes:

(def app-routes
 (routes json-routes body-routes non-body-routes))

Next, you’ll replace wrap-json-response middleware with ring-json/wrap-json-response:

(def handle-info
 (ring-json/wrap-json-response
 (fn [_] ;; we don't actually need the request
 (-> {"Java Version" (System/getProperty "java.version")
 "OS Name" (System/getProperty "os.name")
 "OS Version" (System/getProperty "os.version")}
 ring-response/response))))

Once those changes are made, you can delete both of the hand-crafted JSON middleware functions
and re-run the tests. The functionality hasn’t changed in any particularly signifi cant way, so they
all pass.

JSON endpoints need not be especially daunting, provided you’re smart about the abstractions that
are available. Use middleware for parsing and encoding, but be very careful about applying it only
where necessary and always think twice about the order in which middleware is applied. Avoid writ-
ing your own middleware if there’s already a good open source solution for it. Although this section
focused on JSON, you can easily apply the exact same principles to any other form of serialization.

EXAMPLE SERVICE

In this section, you’ll be writing a link shortening service. In the process, you’ll see how a CRUD
(Create Read Update Destroy) app can work in Clojure. Your service will support the following
endpoints:

 ➤ POST /links—Submit a URL and receive a shortened URL.

 ➤ GET /links/:id—Redirect to the URL associated with the ID.

 ➤ PUT /links/:id—Update the URL associated with the ID.

 ➤ DELETE /links/:id—Delete the shortened link.

 ➤ GET /links—Retrieve a listing of all IDs and their associated URLs in JSON format.

Example Service ❘ 75

c03.indd 04/28/2016 Page 75

This project is a great way to illustrate main elements of every Clojure web service, including storage
and testing. By the end of this chapter, you’ll also have a great starting point for experimenting with
more advanced features like authentication and database integration.

Create the Project
If you were following along with the earlier sections, that’s great! We’re still starting over, though.
Set that project aside and start a new one with this familiar command:

lein new compojure ch3shortener

Have a look around in the project to familiarize yourself with what’s available. There is only one
namespace right now, and that’s ch3shortener.handler. The next section lays out the project
deliberately to make the namespaces clean and focused.

Additional Namespaces
The overview section used a single-namespace approach, because you were just trying a few things
out and getting familiar with the concepts involved in Clojure web services. But it’s time to start
taking things more seriously, and that means separating our project into well-defi ned namespaces.

There are two main concerns when you’re planning namespace layout: separation and dependencies.
Separation is about keeping namespaces focused and keeping functions and data where you expect
to fi nd them. It doesn’t sound complicated, but it often requires a lot of thought.

But you can’t always just separate namespaces based on what they do. The layout has to also refl ect
the relationships between different pieces of code. Whenever one namespace requires, uses, or
imports another, it creates a dependency relationship. Let’s look at the namespace declaration for
ch3shortener.handler:

(ns ch3shortener.handler
 (:require [compojure.core :refer :all]
 [compojure.route :as route]
 [ring.middleware.defaults :refer [wrap-defaults site-defaults]]))

This namespace depends on three others: compojure.core, compojure.route, and ring.middle-
ware.defaults. We know that none of those namespaces depend on this one, but what if one of
them did? Well, Clojure doesn’t allow that sort of thing. If namespace A requires namespace B, then
B can’t also require A. That type of situation is called a cyclic dependency, and avoiding it is one of
the main reasons to break namespaces up.

You’ve already seen how a web service is generally composed of handlers, routes, and middleware.
The three concerns are pretty conceptually distinct, so that alone already suggests that they should
be in different namespaces.

What clinches it, though, is the fact that they don’t have any mutual dependencies. Think about it
this way:

 ➤ Middleware shouldn’t depend on handlers or routes.

 ➤ Handlers depend on middleware, but not routes.

 ➤ Routes depend on handlers, and maybe middleware.

76 ❘ CHAPTER 3 WEB SERVICES

c03.indd 04/28/2016 Page 76

So you’re unlikely to get in a situation where your handlers namespace requires the middleware
namespace and vice versa. Since the three roles are well defi ned and don’t have cyclic dependencies,
you should almost certainly maintain them in separate namespaces.

You’re also going to create an application namespace to serve as the new entry point for our
service. This namespace will be responsible for handling confi guration, initializing resources, and
returning a master handler that contains all of the routes you want to serve.

Middleware
You’re undoubtedly going to need some middleware for this project, so let’s create a new fi le at src/
ch3shortener/middleware.clj with these contents:

(ns ch3shortener.middleware)

It’s not much to look at for now, but it’s a start. You should also be prepared to write middleware
tests, so create another fi le attest/ch3shortener/middleware_test.clj with these contents:

(ns ch3shortener.middleware-test
 (:require [ch3shortener.middleware :refer :all]
 [clojure.test :refer :all]))

Even though you haven’t done it yet, you can test middleware independently. Doing so helps you
 fi gure out whether a given bug is caused by the middleware itself, middleware ordering, or the han-
dler. You’ll have a look at that strategy later on when there is some middleware to test.

Routes
The routes namespace should look like a high-level overview of the endpoints your service makes
available. It’s important to have a good place to start when you’re looking to add or update an exist-
ing route. Let’s create the routes' namespace at src/ch3shortener/routes.clj and copy over
the routes themselves from handler.clj:

(ns ch3shortener.routes
 (:require [ch3shortener.handler :as handler]
 [ch3shortener.middleware :as mw]))

(defroutes app-routes
 (GET "/" [] "Hello World")
 (route/not-found "Not Found"))

You won’t have independent tests for routes, so this is all you need for now.

Application
The application namespace is about to unseat ch3shortener.handler as the main point of entry
for our service. Create the fi le src/ch3shortener/application.clj with the following contents:

(ns ch3shortener.application
 (:require [ring.middleware.defaults :refer [wrap-defaults site-defaults]]
 [ch3shortener.routes :as routes]))

(def app
 (wrap-defaults routes/app-routes site-defaults))

Example Service ❘ 77

c03.indd 04/28/2016 Page 77

This should look familiar, since it’s basically just the rest of the ch3shortener.handler namespace
with the added dependency on ch3shortener.routes. Similarly, let’s create test/ch3shortener/
application_test.clj and move the existing handler tests there:

(ns ch3shortener.application-test
 (:require [ch3shortener.application :refer :all]
 [clojure.test :refer :all]
 [ring.mock.request :as mock]))

(deftest test-app
 (testing "main route"
 (let [response (app (mock/request :get "/"))]
 (is (= (:status response) 200))
 (is (= (:body response) "Hello World"))))

 (testing "not-found route"
 (let [response (app (mock/request :get "/invalid"))]
 (is (= (:status response) 404)))))

The last thing you need to do to make ch3shortener.application/app the main handler for your
service is to update the :ring section in project.clj:

 :ring {:handler ch3shortener.application/app}

This confi guration option tells Ring which handler to use when starting a server with lein ring
server. Once you update the setting, try that command out and verify that everything still works.
You should see exactly the same behavior as before, only with better namespaces!

Handlers
Well, you should have just about gutted ch3shortener.handler by now. If you’ve copied out
(but not deleted) app-routes and app, it’s time to get rid of them. Here’s what handler.clj looks
like now.

(ns ch3shortener.handler
 (:require [ring.util.request :as req]
 [ring.util.response :as res]))

You need to be prepared to deal with requests and responses, but there is nothing to do just yet.
That’s fi ne, since there will be plenty to do here later. Let’s also make sure that handler_test.clj
is similarly empty:

(ns ch3shortener.handler-test
 (:require [clojure.test :refer :all]
 [ring.mock.request :as mock]
 [ch3shortener.handler :refer :all]))

Default Middleware
Let’s take a look at the defi nition of app in ch3shortener.application:

(def app
 (wrap-defaults routes/app-routes site-defaults))

78 ❘ CHAPTER 3 WEB SERVICES

c03.indd 04/28/2016 Page 78

Ring comes with ring.middleware.defaults/wrap-defaults, which is some general-purpose
middleware that sets your service up to behave pretty reasonably out of the box. The second argu-
ment there, site-defaults, is a confi guration map that tells wrap-defaults that you’re creating a
website, and turns on the following options (among others):

 ➤ Anti-forgery tokens

 ➤ Session support

 ➤ Cross-site scripting protection

 ➤ Static resource serving

These are meant to represent the best practices for browser-based sites, but they don’t apply to the
service you’re writing now. You don’t want to have to worry about anti-forgery tokens and you
won’t have any static assets to serve.

Luckily, you can just swap in a set of options that better suits your own needs. Just change site-
defaults to api-defaults in both places as it appears:

(ns ch3shortener.application
 (:require [ring.middleware.defaults :refer [wrap-defaults api-defaults]]
 [ch3shortener.routes :as routes]))

(def app
 (wrap-defaults routes/app-routes api-defaults))

Using the api-defaults saves a bit of work here and there by automatically setting the content type
and charset, without getting bogged down in the extra stuff you don’t need from site-defaults.
It’s a good balance, but you can upgrade to secure-api-defaults if you want to use SSL.

Confi guring Ring’s default middleware is one of the fi rst really important decisions you can make
in your application, and it’s worth taking some time to get it right. The built-in confi gurations cover
several common use cases, but don’t be afraid to modify them yourself—they’re just Clojure maps.

The Storage Protocol
It’s time to introduce state. The service is going to need to store and retrieve data, specifi cally to
associate IDs with full URLs. This section contains the creation, implementation, and testing of a
fairly typical storage protocol.

Why a Protocol?
Clojure’s protocol system is based on, but not identical with, Java’s interfaces. Protocols defi ne a set
of methods that can have different implementations for different types of data. Since one type can
implement any number of different protocols, it also serves as a form of multiple inheritance.

The key feature in this context is the ability to abstract away the exact storage implementation.
During early development, it’s very convenient to keep your application state in memory—this
makes it easy to iterate on schemas and storage methods, simplifi es testing, and generally speeds
things along.

Example Service ❘ 79

c03.indd 04/28/2016 Page 79

When you’re running into production, however, using in-memory storage is suddenly a huge hin-
drance. You don’t really have data persistence, access can be ineffi cient, and you don’t have all of the
features of a proper database.

Using a storage protocol provides the best of both worlds, albeit at a cost. Once you defi ne what it
means to be an instance of application storage, you can have a quick and easy implementation that
uses a Clojure atom to use during development, then later on when you have a better understand-
ing about the storage contract and requirements, you can write a second implementation using the
database of our choice and seamlessly substitute it in. If you’re smart about testing, you can even
demonstrate that both implementations are functionally interchangeable.

On the other hand, using a storage protocol rather than specifi c storage functions adds complexity
to the sample application, because there is an extra layer of indirection between the application code
and the storage code. This makes it impossible for your editor or IDE to jump directly to the imple-
mentation of a storage method, since it won’t be resolved until runtime. It also introduces the possi-
bility for divergence between implementations, which is a very pernicious form of technical debt.

These drawbacks apply to protocols in general, and we urge you to think pretty hard about whether
a protocol is really necessary for any given task. That said, it’s almost always a good idea to use a
protocol for storage in a stateful web service like this one, unless you’re absolutely sure you’ll only
ever need one storage implementation.

Creating the Storage Protocol
Our storage protocol is not a handler, a route, or an application, so you need a new namespace.
Let’s create src/ch3shortener/storage.clj:

(ns ch3shortener.storage)

(defprotocol Storage
)

Pause for a moment to think about what you need from storage:

 ➤ Create a link with the supplied ID and URL.

 ➤ Retrieve a link, given its ID.

 ➤ Update a link, given its ID and URL.

 ➤ Delete a link, given its ID.

 ➤ List all known links.

Translate them into fi ve storage methods:

(defprotocol Storage
 (create-link [this id url]
 "Store the url under the id. Returns the id if successful, nil if the id is
 already in use.")

80 ❘ CHAPTER 3 WEB SERVICES

c03.indd 04/28/2016 Page 80

 (get-link [this id]
 "Given an ID, returns the associated URL. Returns nil if there is no associated
 URL.")

 (update-link [this id new-url]
 "Updates id to point to new-url. Returns the id if successful, nil if the id
 has not yet been created.")

 (delete-link [this id]
 "Removes a link with the given ID from storage, if it exists.")

 (list-links [this]
 "Returns a map of all known IDs to URLs."))

Testing Protocol Implementations
Even though you can’t really test a protocol without an implementation, it’s not too early to start
writing tests. You know it’s important to use tests to show the equivalence of different protocol
implementations, and writing these tests ahead of time will help guide the development of your in-
memory storage implementation.

The point of using a protocol is to avoid worrying too much about individual implementations, and
testing should refl ect that. The same exact tests should pass, regardless of the underlying implemen-
tation, or else there’s probably something wrong. The key here is to write a testing function, rather
than a normal test expression. Let’s create test/ch3shortener/storage_test.clj:

(ns ch3shortener.storage-test
 (:require [ch3shortener.storage :refer :all]
 [clojure.test :refer :all]))

(defn is-valid-storage ;; note, not deftest
 "Given an implementation of the Storage protocol, assert that it fulfills the
 contract."
 [stg]
 (let [url "http://example.com/clojurebook"
 id "book"]
 (testing "can store and retrieve a link"
 (testing "create-link returns the id"
 (is (= id (create-link stg id url)))

 (testing "and it won't overwrite an existing id"
 (is (nil? (create-link stg id "bogus")))
 (is (= url (get-link stg id))))))

 (testing "can update a link"
 (let [new-url "http://example.com/nevermind"]
 (update-link stg id new-url)
 (is (= new-url (get-link stg id)))))

 (testing "can delete a link"
 (delete-link stg id)

Example Service ❘ 81

c03.indd 04/28/2016 Page 81

 (is (nil? (get-link stg id)))))

 (testing "can list all links"
 (let [id-urls {"a" "http://example.com/a"
 "b" "http://example.com/b"
 "c" "http://example.com/c"}
 ids (doseq [[id url] id-urls]
 (create-link stg id url))
 links (list-links stg)]

 (testing "in a map"
 (is (map? links))

 (testing "equal to the links we created"
 (is (= id-urls links)))))))

It may seem strange that the function’s name starts with is, but it’s helpful for functions that con-
tain is assertions to be marked this way. You can choose to defi ne a valid-storage predicate that
returns true or false, but then you lose granularity that comes from having separate assertions for
each of the expected behaviors.

The is-valid-storage function won’t do anything until you call it, so the tests will continue to
pass for now. But once you do have a concrete storage implementation, you will need to call this
function in a deftest form and then know if it passes. For now, keep this around and you can use it
for reference while writing the in-memory implementation.

In-Memory Storage
It’s time to write a storage implementation. You can put this in the existing storage namespace, but
it’s a good idea to keep each implementation separate. Let’s create src/ch3shortener/storage/
in_memory.clj:

(ns ch3shortener.storage.in-memory
 (:require [ch3shortener.storage :refer :all]))

You can implement each storage method inline in one big reify expression, but that would be
pretty hard to read. Instead, let’s write functions for each storage method one at a time, using the
method* naming convention so you don’t clash with the storage methods themselves. Each of the
functions takes a storage atom (!stg) as a parameter, and most also take a url and/or id.

First, let’s handle create-link:

(defn create-link*
 [!stg id url]
 (when-not (contains? @!stg id)
 (swap! !stg assoc id url)
 id))

Remember to check fi rst to see whether the id is already in storage, and if not then nil will be
returned. The when-not macro is a big help here, and it also tells later developers that the function
could return nil.

82 ❘ CHAPTER 3 WEB SERVICES

c03.indd 04/28/2016 Page 82

Let’s move on to get-link, which is almost embarrassingly simple:

(defn get-link*
 [!stg id]
 (get @!stg id))

The storage contract specifi es that get-link can return nil, so use get without the optional not-
found argument. The update-link implementation is a nice mirror image of create-link:

(defn update-link*
 [!stg id url]
 (when (contains? @!stg id)
 (swap! !stg assoc id url)
 id))

This changes when-not to when, since the methods have opposite requirements. Let’s move on to
delete-link:

(defn delete-link*
 [!stg id]
 (swap! !stg dissoc id)
 nil)

There’s no need to check whether the link actually exists, just simply ensure that it doesn’t.
Returning nil at the end isn’t strictly required, but otherwise swap! will return the entire link map,
which is not helpful.

Our last storage method to implement is also the simplest:

(defn list-links*
 [!stg]
 @!stg)

You can do something even shorter, like (def list-links* deref), but this defi nition is clearer.

Finally, it’s time to write a constructor for the storage implementation. The plan here is to construct
a blank storage atom and close over it with reify:

(defn in-memory-storage
 []
 (let [!stg (atom {})]
 (reify Storage
 (create-link [_ id url] (create-link* !stg id url))
 (get-link [_ id] (get-link* !stg id))
 (update-link [_ id url] (update-link* !stg id url))
 (delete-link [_ id] (delete-link* !stg id))
 (list-links [_] (list-links* !stg)))))

The reify function takes a protocol and some number of method defi nitions and returns an object
with those defi ned methods. Since the !stg atom is in scope when reify is called, each of those
methods will keep a reference to it for the lifetime of the storage object.

The constructor takes no options, but that’s just because it’s the simplest possible working storage
implementation. A more realistic option for production use involves a database, and the construc-
tor needs to take parameters for at least the database host and credentials. In a typical application,

Example Service ❘ 83

c03.indd 04/28/2016 Page 83

those credentials would come from environment variables and read at runtime using a library like
environ.

Now you can test this using the is-valid-storage function defi ned earlier. Add the following to
the end of test/ch3shortener/storage_test.clj:

(deftest in-memory-storage-test
 (let [stg (in-memory/in-memory-storage)]
 (is-valid-storage stg)))

Three leisurely lines is all it takes now to test a new storage implementation! It’s unlikely that this
form will change; instead, new tests should go in the is-valid-storage function to enforce consis-
tency across implementations.

Separating storage into its own protocol is great for fl exibility and it enforces a strict separation
of concerns. The rest of the sample application can only use storage methods that are defi ned (and
hopefully tested) ahead of time. Testing storage implementations with a single function provides
assurance of consistency while minimizing code duplication.

Handlers
With the storage backend for your service in place, you can write handlers that rely on it. Thanks
to the storage protocol, these handlers don’t worry about whether the data’s stored in an atom, a
database, or a message board—they just call the protocol methods on whatever storage object gets
passed in.

Let’s now take a look at handler.clj and handler_test.clj.

get-link
The get-link handler should take an id and return one of two possible responses:

 ➤ If the link is found in storage, return a 302 redirect to the URL.

 ➤ If the link is not found, return a 404 response.

First, let’s require the storage namespace in order to use storage methods:

(ns ch3shortener.handler
 (:require [ring.util.request :as req]
 [ring.util.response :as res]
 [ch3shortener.storage :as st]))

Now implement get-link, using ring.util.response helpers to do most of the work:

(defn get-link
 [stg id]
 (if-let [url (st/get-link stg id)]
 (res/redirect url)
 (res/not-found "Sorry, that link doesn't exist.")))

You may notice that this is more of a “handler” than a handler. That is to say, it doesn’t take a full
request object, just a link ID. That’s okay; you just need to make sure to call it the right way when
you add a route for it later on.

84 ❘ CHAPTER 3 WEB SERVICES

c03.indd 04/28/2016 Page 84

Let’s add a test to handler_test.clj to make sure that this does what it should. For this test you
need a storage object, so you’ll also need to require the in-memory-storage function and the stor-
age namespace:

(ns ch3shortener.handler-test
 (:require [clojure.test :refer :all]
 [ring.mock.request :as mock]
 [ch3shortener.handler :refer :all]
 ;; add the following two requirements
 [ch3shortener.storage.in-memory :refer [in-memory-storage]]
 [ch3shortener.storage :as st]))

(deftest get-link-test
 (let [stg (in-memory-storage)
 id "test"
 url "http://test.gov"]
 ;; store a link directly for the test
 (st/create-link stg id url)

 (testing "when the ID exists"
 (let [response (get-link stg id)]
 (testing "the result is a 302"
 (is (= 302 (:status response)))
 (testing "with the expected URL in the Location header"
 (is (= url (get-in response [:headers "Location"])))))))

 (testing "when the ID does not exist"
 (let [response (get-link stg "bogus")]
 (testing "the result is a 404"
 (is (= 404 (:status response))))))))

The tests pass, so you are on the right track. Let’s move on to the next handler, create-link.

create-link
This handler takes a response with a POST body and returns one of two responses:

 ➤ If the ID isn’t taken, return a 200 response with the short URL.

 ➤ If the ID is taken, return a 422 (unprocessable) response.

(defn create-link
 [stg id {url :body}]
 (if (st/create-link stg id url)
 (res/response (str "/links/" id))
 (-> (format "The id %s is already in use." id)
 res/response
 (res/status 422))))

Testing this can be awkward because it reads the body as if it’s a string, but there is no middleware
in place yet to make that happen. For the purposes of testing the handler, let’s stringify the body by
adding this test to handler_test.clj:

(deftest create-link-test
 (let [stg (in-memory-storage)

www.allitebooks.com

http://www.allitebooks.org

Example Service ❘ 85

c03.indd 04/28/2016 Page 85

 url "http://example.com"
 request (-> (mock/request :post "/links/test" url)
 ;; since we haven't added middleware yet
 (update :body slurp))]
 (testing "when the ID does not exist"
 (let [response (create-link stg "test" request)]
 (testing "the result is a 200"
 (is (= 200 (:status response)))

 (testing "with the expected body"
 (is (= "/links/test" (:body response))))

 (testing "and the link is actually created"
 (is (= url (st/get-link stg "test")))))))

 (testing "when the ID does exist"
 (let [response (create-link stg "test" request)]
 (testing "the result is a 422"
 (is (= 422 (:status response))))))))

With these tests passing, it’s one more handler down, and three to go.

update-link
The update-link handler should have a very similar form to create-link. It should take an ID
and a body containing a URL, then:

 ➤ If the ID exists in storage, return a 200 with the shortened URL.

 ➤ If the ID doesn’t exist in storage, return a 404 response.

(defn update-link
 [stg id {url :body}]
 (if (st/update-link stg id url)
 (res/response (str "/links/" id))
 (-> (format "There is no link with the id %s." id)
 res/not-found)))

As promised, this is extremely similar to the create-link handler. The tests will also be pretty
similar, including the :body workaround:

(deftest update-link-test
 (let [stg (in-memory-storage)
 url "http://example.com"
 request (-> (mock/request :put "/links/test" url)
 ;; since we haven't added middleware yet
 (update :body slurp))]
 (testing "when the ID does not exist"
 (let [response (update-link stg "test" request)]
 (testing "the result is a 404"
 (is (= 404 (:status response))))))

 (testing "when the ID does exist"
 (st/create-link stg "test" url)
 (let [new-url "http://example.gov"

86 ❘ CHAPTER 3 WEB SERVICES

c03.indd 04/28/2016 Page 86

 request (assoc request :body new-url)
 response (update-link stg "test" request)]
 (testing "the result is a 200"
 (is (= 200 (:status response)))

 (testing "with the expected body"
 (is (= "/links/test" (:body response))))

 (testing "and the link is actually updated"
 (is (= new-url (st/get-link stg "test")))))))))

Testing the handlers directly can really pay off later. If you run into a problem while testing the
full application, the status of the handler tests will tell you a lot about what might be causing the
failures.

delete-link
This is another pseudo-handler, since it only needs the storage object and link ID. It also can’t really
fail, so don’t worry about an error response. Since you won’t have any useful information to report
back to the caller, just return a 204 (no content) response. Here’s a nice, quick implementation:

(defn delete-link
 [stg id]
 (st/delete-link stg id)
 (-> (res/response "")
 (res/status 204)))

Note, the empty string is returned, rather than omitting the body entirely. This is standard practice
for responses that don’t have a body. The tests are just a little bit more involved:

(deftest delete-link-test
 (let [stg (in-memory-storage)
 id "test"
 url "http://example.com/foo"]
 (testing "when the link exists"
 (st/create-link stg id url)
 (let [response (delete-link stg id)]
 (testing "the response is a 204"
 (is (= 204 (:status response))))

 (testing "the link is deleted"
 (is (nil? (st/get-link stg id))))))

 (testing "when the link does not exist"
 (let [response (delete-link stg "bogus")]
 (testing "the response is still 204"
 (is (= 204 (:status response))))))))

You’re almost done writing the handlers, but there is still one more to go.

Example Service ❘ 87

c03.indd 04/28/2016 Page 87

list-links
This handler is going to return a JSON response, so it’s time to add a couple of new dependencies to
project.clj:

 :dependencies [[org.clojure/clojure "1.7.0"]
 [compojure "1.4.0"]
 [ring/ring-defaults "0.1.5"]
 ;; add these two:
 [ring/ring-json "0.4.0"]
 [cheshire "5.5.0"]]

Both of these libraries were mentioned before, but to review: The ring/ring-json library contains
middleware that you can use to help return a JSON response, while cheshire is a more general-
purpose JSON library that you’ll be using in tests.

Let’s require wrap-json-response in the handler namespace fi rst:

(ns ch3shortener.handler
 (:require [ring.util.request :as req]
 [ring.util.response :as res]
 [ring.middleware.json :refer [wrap-json-response]] ;; new line
 [ch3shortener.storage :as st]))

Since there is a plan to have one JSON route, you might as well wrap the handler directly, so let’s
write the fi nal handler:

(defn list-links
 "Returns a handler! Call the handler if you want a response."
 [stg]
 (wrap-json-response
 (fn [_] ;; we don't need the request at this point
 (res/response (st/list-links stg)))))

This function is defi nitely a little odd, since it closes over the storage object and returns a handler,
so calling the handler is going to take some extra parentheses. The advantage to doing it this way is
that you can wrap the inner handler with wrap-json-response directly, avoiding any need to man-
ually encode the body or set the content type. All you have to do is put the map into the response
body and you’re done.

Let’s have a look at the tests. First, add one more dependency to the handler-test namespace:

(ns ch3shortener.handler-test
 (:require [clojure.test :refer :all]
 [ring.mock.request :as mock]
 [ch3shortener.handler :refer :all]
 [ch3shortener.storage.in-memory :refer [in-memory-storage]]
 [ch3shortener.storage :as st]
 [cheshire.core :as json])) ;; add this

88 ❘ CHAPTER 3 WEB SERVICES

c03.indd 04/28/2016 Page 88

Use cheshire to decode the response from the new handler. After that, add the list-links-test
to the end of the namespace:

(deftest list-links-test
 (let [stg (in-memory-storage)
 id-urls {"a" "http://link.to/a"
 "b" "http://link.to/b"
 "c" "http://link.to/c"}]
 (doseq [[id url] id-urls]
 (st/create-link stg id url))

 (let [handler (list-links stg)
 response (handler (mock/request :get "/links"))
 parsed-links (json/decode (:body response))]
 (testing "the response is a 200"
 (is (= 200 (:status response))))

 (testing "with a body that decodes to the original map"
 (is (= id-urls parsed-links))))))

Note how we’re calling (list-links stg) to get the handler, not a response. Proceed to call the
handler with the kind of request expected (even though it doesn’t use the request), and then parse
the response as JSON.

The fi rst, last, and most important thing to remember about handlers is that they are ordinary
Clojure functions that take and return maps. The Clojure standard library comes with dozens of
functions that work on maps, and those functions can help you write handlers. Additionally, Ring
itself comes with a wealth of useful handler-specifi c functions, found in ring.util.request and
ring.util.response.

Middleware
We have middleware to handle the JSON responses, but you need to bring back wrap-slurp-body.
Let’s add it to src/ch3shortener/middleware.clj:

(ns ch3shortener.middleware
 (:import [java.io InputStream]))

(defn wrap-slurp-body
 [handler]
 (fn [request]
 (if (instance? InputStream (:body request))
 (let [prepared-request (update request :body slurp)]
 (handler prepared-request))
 (handler request))))

There were no specifi c tests for this middleware before, but you can add some by switching over to
test/ch3shortener/middleware_test.clj:

(ns ch3shortener.middleware-test
 (:require [ch3shortener.middleware :refer :all]
 [ring.mock.request :as mock]
 [clojure.test :refer :all]))

Example Service ❘ 89

c03.indd 04/28/2016 Page 89

(deftest wrap-slurp-body-test
 (let [body "This is a body."
 request (mock/request :post "/foo" body)
 expected-request (assoc request :body body)
 identity-handler (wrap-slurp-body identity)]

 (testing "when given a request with a ByteArrayInputStream body"
 (let [prepared-request (identity-handler request)]
 (testing "the body is turned into a string"
 (is (= body (:body prepared-request)))

 (testing "and the rest of the request is unchanged"
 (is (= expected-request prepared-request))))))

 (testing "when given a request that has no body"
 (let [no-body (mock/request :get "/")]
 (testing "there's no effect"
 (is (= no-body (identity-handler no-body))))))

 (testing "applying the middleware a second time has no effect"
 (let [request (mock/request :post "/foo" body)]
 (is (= expected-request
 (-> request
 identity-handler
 identity-handler)))))))

Rather than testing the middleware with a real handler, use the middleware to wrap Clojure’s iden-
tity function. All identity does is return its argument, so when the wrapped “handler” is passed
a request, you get the prepared request back. It’s a neat trick that works well as long as your middle-
ware doesn’t ever expect a Ring response.

The tests should demonstrate that the middleware ignores requests with missing bodies and requests
where the body isn’t an InputStream, but otherwise converts the body into the right string. With
that out of the way, let’s move onto routes.

Routes
The handlers are tested and ready, but we haven’t served anything over HTTP! That’s because you
still need to set up some routes. This is the last step before you can run the server locally, and it is
time to do it.

These routes have something that was missing from the earlier examples—a data dependency. Much
like the in-memory-storage constructor, you’re going to write a function that closes over a depen-
dency and returns the thing you actually want, which is a Compojure handler.

Here’s an empty version, just to have something to start with. Go ahead and add this to the bottom
of src/ch3shortener/routes.clj:

(defn shortener-routes
 [stg]
 (routes
 (route/not-found "Not Found")))

90 ❘ CHAPTER 3 WEB SERVICES

c03.indd 04/28/2016 Page 90

It’s important to have this function defi ned early, though, because the tests going forward will hap-
pen at the application-level from now on.

Let’s move over to src/ch3shortener/application.clj, where two changes must be made. First,
construct a storage object to pass into the handler; then use that to get the Compojure routes:

(ns ch3shortener.application
 (:require [ring.middleware.defaults :refer [wrap-defaults api-defaults]]
 [ch3shortener.storage.in-memory :refer [in-memory-storage]]
 [ch3shortener.routes :as routes]))

(def app
 (let [stg (in-memory-storage)
 app-routes (routes/shortener-routes stg)]
 (wrap-defaults app-routes api-defaults)))

This temporarily breaks almost every application test we have, so let’s clear out test/ch3short-
ener/application_test.clj a little bit:

(deftest test-app
 (testing "not-found route"
 (let [response (app (mock/request :get "/invalid"))]
 (is (= (:status response) 404)))))

Once that’s done, we’ll have a storage-backed 404 service that you can run with lein ring
server. As we add routes over the course of the rest of the section, they’ll also become active as
soon as you re-run lein ring server, so feel free to try them out.

POST /links/:id
Let’s start with the C in CRUD, POST /links/:id. The handler written for this endpoint takes an
ID and the request body, but the body has to be turned into a string fi rst. Let’s add the route and the
middleware to shortener-routes:

(defn shortener-routes
 [stg]
 (-> (routes
 (POST "/links/:id" [id :as request] (handler/create-link stg id request))
 (route/not-found "Not Found"))
 (wrap-routes mw/wrap-slurp-body)))

The create-link handler takes both the id and the full request map, so grab the former by match-
ing on its name in the binding vector and the latter using :as destructuring.

Notice that you’re indiscriminately wrapping everything with wrap-slurp-body for now, and that
you’re using wrap-routes to do it. With these tests it’s safe to use wrap-slurp-body, but you need
to use wrap-routes to make sure the middleware only gets called when a route matches. Otherwise,
you’re risking destroying the contents of a request body.

In terms of tests, make sure that the route is matching and behaving somewhat expectedly. Let’s add
a simple example to the ch3shortener.application-test namespace:

(deftest test-app
 (let [url "http://example.com/post"

Example Service ❘ 91

c03.indd 04/28/2016 Page 91

 id "test"
 path (str "/links/" id)]
 (testing "creating a link"
 (let [response (app (mock/request :post path url))]
 (is (= 200 (:status response)))
 (is (= path (:body response))))))

 (testing "not-found route"
 (let [response (app (mock/request :get "/invalid"))]
 (is (= (:status response) 404)))))

You don’t have a way to test whether creating the link is effective yet, but you will soon. Until then,
the fact that the handler and the storage layer are both tested should give you some confi dence that
things are going well.

GET /links/:id
Now that you can create short links, it’s time to actually use them. Let’s add a route that will redi-
rect you to the URL you want when you give it a short link ID. Add this to shortener-routes:

(defn shortener-routes
 [stg]
 (-> (routes
 (POST "/links/:id" [id :as request] (handler/create-link stg id request))
 (GET "/links/:id" [id] (handler/get-link stg id))
 (route/not-found "Not Found"))
 (wrap-routes mw/wrap-slurp-body)))

Augment the tests to verify that both link creation and retrieval work:

(deftest test-app
 (let [url "http://example.com/post"
 id "test"
 path (str "/links/" id)]
 (testing "creating a link"
 (let [response (app (mock/request :post path url))]
 (is (= 200 (:status response)))
 (is (= path (:body response)))))

 (testing "visiting a link"
 (testing "when the link exists"
 (let [response (app (mock/request :get path))]
 (testing "returns a 302"
 (is (= 302 (:status response)))

 (testing "with the correct location"
 (is (= url (get-in response [:headers "Location"])))))))

 (testing "when the link does not exist"
 (let [response (app (mock/request :get "/links/nothing"))]
 (testing "returns a 404"
 (is (= 404 (:status response))))))))

 (testing "not-found route"
 (let [response (app (mock/request :get "/invalid"))]
 (is (= (:status response) 404)))))

92 ❘ CHAPTER 3 WEB SERVICES

c03.indd 04/28/2016 Page 92

This is called an MVP (Minimum Viable Product). You can now shorten a link and redirect to it
when asked to do so. You still need to implement updating, deleting, and listing.

PUT /links/:id
It’s time to implement the mirror-universe version of link creation: link updating. This should be
easy since it’s so similar to POST /links/:id. Just add this line to shortener-routes:

(defn shortener-routes
 [stg]
 (-> (routes
 (POST "/links/:id" [id :as request] (handler/create-link stg id request))
 (PUT "/links/:id" [id :as request] (handler/update-link stg id request))
 ;; new
 (GET "/links/:id" [id] (handler/get-link stg id))
 (route/not-found "Not Found"))
 (wrap-routes mw/wrap-slurp-body)))

Add this new deftest form to the end of ch3shortener.application-test:

(deftest link-updating
 (let [id "put"
 url "http://example.com/putTest"
 path (str "/links/" id)]

 (testing "when the link does not exist"
 (let [response (app (mock/request :put path url))]
 (testing "the response is a 404"
 (is (= 404 (:status response))))))

 (testing "when the link does exist"
 (app (mock/request :post path "http://example.post"))
 (let [response (app (mock/request :put path url))]
 (testing "the response is a 200"
 (is (= 200 (:status response))))))))

You are now up to CRU on the CRUD scale, so just a little further to go.

DELETE /links/:id
This should be getting routine by now. Add a single line to shortener-routes:

 (DELETE "/links/:id" [id] (handler/delete-link stg id))

And a quick test to make sure it works:

(deftest delete-link
 (let [id "thing"
 url "http://example.com/thing"
 path (str "/links/" id)]

 (testing "when the link doesn't exist"
 (let [response (app (mock/request :delete path))]
 (testing "the result is a 204"
 (is (= 204 (:status response))))))

Example Service ❘ 93

c03.indd 04/28/2016 Page 93

 (testing "when the link does exist"
 (app (mock/request :post path url))
 (let [response (app (mock/request :delete path))]
 (testing "the response is still a 204"
 (is (= 204 (:status response)))

 (testing "and the link is now a 404"
 (is (= 404 (:status (app (mock/request :get path)))))))))))

GET /links
All right, it’s time for the fi nal endpoint in the example service. You may remember that this handler
is a little different, because you need to call the function to construct it. Well, thankfully Compojure
handles that perfectly well without you having to do anything particularly unusual. Go ahead and
add this line somewhere inside shortener-routes:

 (GET "/links" [] (handler/list-links stg))

When Compojure matches this route, it evaluates the form on the right and checks the type of the
return value. If it’s a function, it assumes that it’s a handler and passes it the request map. In this
case, the form does evaluate to a handler, so everything’s fi ne.

In order to test this, you’ll need cheshire again, so add this line to the application-test
namespace declaration:

(ns ch3shortener.application-test
 (:require [ch3shortener.application :refer :all]
 [clojure.test :refer :all]
 [ring.mock.request :as mock]
 [cheshire.core :as json] ;; add this
 [clojure.string :as str]))

Then add this somewhere else in the fi le:

(deftest list-links
 ;; first make sure there are some links to list
 (let [id-urls {"a" "http://example.com/a"
 "b" "http://example.com/b"
 "c" "http://example.com/c"}]
 (doseq [[id url] id-urls]
 (app (mock/request :post (str "/links/" id) url)))

 (let [response (app (mock/request :get "/links"))
 parsed-body (json/decode (:body response))]
 (testing "the response is a 200"
 (is (= 200 (:status response)))

 (testing "and the decoded body contains all of the links we added"
 (is (= id-urls
 (select-keys parsed-body ["a" "b" "c"]))))))))

That concludes the implementation of the link-shortener, from start to fi nish. It may be simple, but
it has a solid foundation and a well-defi ned structure that make it a good codebase to iterate on and

94 ❘ CHAPTER 3 WEB SERVICES

c03.indd 04/28/2016 Page 94

expand. The minimal storage implementation is ready to be swapped out for something more robust
if and when that becomes necessary. The majority of the functions are short and focused, taking
ordinary Clojure data as arguments and returning ordinary Clojure data structures, which helps to
make it accessible to developers without much specialized experience.

Finally, tests at multiple levels of composition (handlers, middleware, routes) give you confi dence
that the application works as designed—and they’ll help narrow down the root cause if something
does show unexpected behavior. If you add other storage implementations, you can test that they
truly are interchangeable with just a few lines of code.

If you’re feeling up to the challenge, now would be a great time to experiment with adding authenti-
cation, writing a new storage implementation, or adding a front end for the service in Clojurescript!
There’s no substitute for creative tinkering, and now that you understand the fundamentals, you’ll
be able to take this project in any direction that interests you.

DEPLOYMENT

So far, you’ve mainly interacted with the shortener service by calling the handler in tests with ring-
mock in this chapter. You may also have used lein ring server and experimented a bit, but you
don’t want to be one of the people who use that command for a production web service.

In this section, let’s examine a few other options for running a Clojure web service, either in devel-
opment, a production server of your own, or a cloud hosting service like Heroku.

Using Leiningen
You’ve already seen lein ring server (or lein ring server-headless), but it’s worth pointing
out that this option is actually pretty fl exible. First, all of the lein ring functionality is provided
by the creatively-named lein-ring plugin. The options we’re about to cover here are actually han-
dled by that plugin rather than by Ring directly, so keep that in mind.

You saw earlier that you can set the default Ring handler in project.clj with this line:

:ring {:handler example-project.handler/app}

But that’s just the start. A more complete set of lein-ring options looks more like this:

:ring {:init example-project.app/init ;; called when the handler starts
 :destroy example-project.app/destroy ;; called when the handler exits
 :adapter example-projects.app/adapter-opts ;; passed to the ring adapter
 :handler example-project.handler/app}

The :init and :destroy keys should both point to functions that can be called with no arguments
to initialize and dispose of any resources your handlers might need at runtime. In general, you prob-
ably won’t see these used very frequently. It’s usually a better idea to handle your application setup
and teardown yourself, preferably using something like Stuart Sierra’s component or Puppet Labs’
trapperkeeper, both of which are designed to manage the lifecycles of long-running services.

Deployment ❘ 95

c03.indd 04/28/2016 Page 95

The :adapter key, if present, should point to a map of options that will be passed to the Ring
adapter. The term “adapter” in Ring parlance is essentially the HTTP server itself. Ring uses Jetty
by default, and it’s quite good for most purposes, but it is swappable. Whether you choose to substi-
tute the adapter or not, you may want to further confi gure the adapter to listen on a different port,
tune the number of threads available for requests, or encrypt traffi c using specifi c SSL certifi cates.
Note that this will have no effect if you compile your project into a WAR fi le.

The lein ring server process listens on the fi rst open port it fi nds, starting at 3000 and counting
up. If you would prefer for it to listen to a different port, you can either add the port as a command-
line argument (e.g., lein ring server 8080), or change it in the confi guration map like this:

:ring {:handler example-project.handler/app
 :port 8080}

It’s not a good idea to try to use this to run on port 80, or any other privileged port. Doing so would
require you to run lein as root, which is actively discouraged by Leiningen. If you do want to run
on a port below 1024, you’re much better off building an uberjar and running that.

Using the lein-ring plugin is very convenient during development, but it has some clear disadvan-
tages. Running anything in Leiningen has a performance cost, since it uses JVM options that pri-
oritize startup time over general speed. The restriction against running on a privileged port, though
not insurmountable, makes things at least unpleasant. In general, lein ring server is not suitable
for use in production.

Compiling an Uberjar or Uberwar
The preferred way to deploy a dedicated Clojure web service is as an uberjar. An uberjar is a JAR
(Java Archive) fi le that contains not only your project, but every single dependency, including all of
the Clojure compiler and standard library.

In most Clojure projects, you create an uberjar using the lein uberjar command. Ring projects
are slightly different, since they need to include a main function to start a server and register the
application handler, but creating them is almost as easy when you’re using lein-ring. Instead of lein
uberjar, just run lein ring uberjar. Once you have the uberjar, you can run it with java -jar
project-name.jar. Take the shortener service developed earlier as an example:

~/src/ch3shortener$ lein ring uberjar
Compiling ch3shortener.application.main
Created target/ch3shortener-0.1.0-SNAPSHOT.jar
Created target/ch3shortener-0.1.0-SNAPSHOT-standalone.jar
~/src/ch3shortener$ java -jar target/ch3shortener-0.1.0-SNAPSHOT-standalone.jar
2016-02-03 01:51:11.225:INFO:oejs.Server:jetty-7.x.y-SNAPSHOT
2016-02-03 01:51:11.287:INFO:oejs.AbstractConnector:Started
 SelectChannelConnector@0.0.0.0:3000
Started server on port 3000

The port here is determined either by the :port setting in the :ring map or the :adapter settings,
if any. In this case it’s using the default of 3000 (or the next available).

mailto:SelectChannelConnector@0.0.0.0:3000

96 ❘ CHAPTER 3 WEB SERVICES

c03.indd 04/28/2016 Page 96

Uberjars are great because they’re portable to any system with Java installed; you don’t necessarily
need to worry about whether or how another web server is installed and confi gured, nor any other
dependencies. Even though it’s common to use another web server like Nginx or Apache to proxy to
your Clojure service, it’s not always necessary.

In some organizations, there may already be infrastructure in place to run Java WAR (Web Archive)
fi les. In that case, there’s a WAR counterpart to the uberjar called an uberwar. Creating it is, as
you’d expect, as simple as lein ring uberwar. Running the uberwar is considerably more compli-
cated, and is almost entirely dependent on the application server running the WAR fi le.

Hosting
If you have access to a shell on your target host, your deployment options are limitless. In the sim-
plest case, you can get away with simply confi guring your service to run on the appropriate port and
running the uberjar directly.

But you can’t always rely on that level of access to the host, and you may not want to. If you want
to run your application on AWS (Amazon Web Services) Elastic Beanstalk or Heroku, you’ll have to
jump through another hoop or two initially, but ultimately you’ll spend far less time managing the
confi guration of your server.

Heroku
Heroku is a PaaS (Platform as a Service) solution for serving web applications written in almost any
language, including Clojure. It’s a favorite of hobbyists because it offers a free tier that’s suitable for
personal or demonstration use, but also easily scales up for more serious projects.

Heroku has excellent support for deploying Ring-based Clojure applications like the link shortener
from earlier in this chapter. The exact steps for deploying are subject to change at any time, so it’s
best to follow Heroku’s offi cial documentation for Clojure services.

Amazon Elastic Beanstalk
Amazon Elastic Beanstalk is a PaaS offered by Amazon as part of the AWS (Amazon Web Services)
collection of products. It doesn’t have the same kind of offi cial support for Clojure that Heroku
does, but that hasn’t stopped the Clojure community from adopting it as a platform.

There are two main approaches to deploying to Elastic Beanstalk. The fi rst takes advantage of Java
interoperability to use Amazon’s own Java API. The most convenient way to do this is with the
lein-beanstalk plugin, which adds new Leiningen tasks for deploying to AWS. Once you add the
plugin to your project and provide your AWS credentials, it’s as simple as lein beanstalk deploy
{environment}.

The second method relies on Docker, a lightweight virtualization technology that relies on the
Linux kernel for process isolation rather than running a full virtual machine. Elastic Beanstalk sup-
ports running software from Docker containers, so once you containerize your Clojure service you
can run it on AWS or several other cloud providers.

Summary ❘ 97

c03.indd 04/28/2016 Page 97

SUMMARY

Writing web services in Clojure the right way is a real joy, in no small part because of the simple,
powerfully composable abstractions that Clojure service developers work with. Once you under-
stand request and response maps, you can understand handlers. And once you understand handlers,
you can understand middleware. Combine those with routes and you’re unstoppable!

The libraries we’ve covered here are popular, but they’re far from the only ones you’ll see in the
Clojure ecosystem. Although frameworks are not especially popular, there are certainly some
commonly-used libraries that veer into that territory. Take Liberator, for instance. Liberator is a
Clojure library that takes a much more active role in the defi nition of your API by encouraging you
to adhere to the HTTP specifi cations in a very defi ned way. Liberator resources (a form of special-
ized handler) resemble a map of functions marked by keywords like :handle-ok, :malformed?,
and :delete. Liberator will pass a request through these functions is a painstakingly documented
order to determine what type of response to return.

For example, instead of choosing to return a 400 error, as was done in the shortener earlier, it will
return a 400 response if and only if it has defi ned a :malformed? predicate that returns true. If the
predicate returns false, Liberator will then call the :authorized? function (if defi ned), followed by
:allowed?. The fl ow is complicated enough that developers on projects that use Liberator have invari-
ably bookmarked the Liberator decision graph, of which this is just a small portion (see Figure 3-2):

authorized?

true

true

true

true

valid-content-header?

valid-entity-length?

is-options?

known-content-type?

true

allowed?

FIGURE 3-2

98 ❘ CHAPTER 3 WEB SERVICES

c03.indd 04/28/2016 Page 98

 Although it removes a lot of fl exibility from a project, Liberator has its uses and it can make a
complicated API much easier to maintain. It’s based on Ring, so it’s fully compatible with any Ring
middleware, and it works well with Compojure or other Ring-based routing libraries.

Luminus, a “micro-framework” for Clojure, has also garnered some attention. It’s based mainly on
the same libraries covered in this chapter—Ring and Compojure—while packaging a few others,
and imposing a specifi c project structure and layout. It also provides great out-of-the-box support
for deployment. Luminus seeks to walk the line between convenience and fl exibility, and many
developers really like it.

Once you understand the fundamental abstractions of Clojure web services, you’ll fi nd that it’s
much easier to choose the libraries that help you the most without getting in your way. There’s no
one approach that works for every project, and being able to mix and match libraries to suit your
needs is one of the great advantages that Clojure offers that other languages can’t match.

c04.indd 04/23/2016 Page 99

Testing
WHAT’S IN THIS CHAPTER?

 ➤ Introducing the basics of testing in Clojure

 ➤ Understanding common testing strategies

 ➤ Leveraging code quality tools to improve your code

There are few topics in the software development world more polarizing than testing. Almost
everybody agrees that testing software is a necessary activity, and to develop software profes-
sionally without testing would be irresponsible. In some communities such as the Ruby on
Rails community, they advocate test driven development, or TDD, and due to their heavy
focus on testing they have pioneered and inspired many testing frameworks and techniques.

Some people may get the impression that many in the Clojure community are not serious
about testing, or even fl at out anti-testing; however, nothing could be further from the truth.
Many of the maintainers and developers in the community are very much in favor of testing,
and they feel it would be irresponsible to deliver software without quality tests proving that
your software does as it intends.

No amount of testing can make up for not being able to reason about your code. Having tests
alone doesn’t mean that you are safe from defects and able to confi dently make changes to
your code. You must fi rst have a deep understanding of what constitutes a good test for your
particular problem.

This chapter covers the basics of testing Clojure code using the clojure.test framework. The
chapter also details examples that are more diffi cult and investigates some common testing
strategies, such as how to handle external dependencies and things outside of your control to
make your tests more deterministic.

4

Professional Clojure. Jeremy Anderson, Michael Gaare, Justin Holguín, Nick Bailey and Timothy Pratley
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

100 ❘ CHAPTER 4 TESTING

c04.indd 04/23/2016 Page 100

The chapter then moves on to the topic of how to measure code quality and identify areas of concern,
so that you can help reduce technical debt. You will also measure your test coverage using the clover-
age plugin, run static analysis against your code using the kibit plugin, and identify low hanging fruit
using the bikeshed plugin. You will also learn how to keep a close eye on the dependencies of your
project and make sure they’re up to date using lein-deps and lein-ancient.

Finally, because we realize that there are other alternatives out there besides clojure.test, this
chapter takes a quick survey of other testing tools available for Clojure. You’ll also examine frame-
works such as expectations, frameworks that are inspired by the popular testing frameworks from
the Ruby world such as speclj, and frameworks such as cucumber that have been ported to the
JVM and have excellent Clojure support.

TESTING BASICS WITH CLOJURE.TEST

When it comes to testing in Clojure there are many choices you can make, but the de facto standard
seems to be the clojure.test library, and for good reasons. It is the testing library that is included
with the Clojure runtime itself, meaning that you need to just have Clojure installed in order to
make use of it. It’s also simple in its API, meaning that you can learn what you need to know very
quickly. Don’t let its simplicity fool you though; there is a lot of depth to this library, which supports
various styles of testing.

At the heart of the library you’ll fi nd the is macro. This seemingly simple construct is what allows
you to make assertions about any expression you would like. Just keep in mind that the expression
itself is evaluated according to Clojure’s rules for determining truthiness that was discussed earlier
in Chapter 1. An example of how to use this macro is shown here:

user> (require '[clojure.test :refer :all])
nil
user> (is (= 4 (+ 2 2)))
true
user> (is (= 4 (+ 2 2 3)))

FAIL in clojure.lang.PersistentList$EmptyList@1 (form-init2032220466808583016.
clj:1)
expected: (= 4 (+ 2 2 3))
 actual: (not (= 4 7))
false
user>

You may also specify an optional second argument to the is macro providing a documentation
string like the following:

(is (= 3 (+ 1 1)) "Only for large values of 1")

This will include the message in the test output report if this test fails.

There are basically two ways to write tests using the clojure.test library. The fi rst is to use the
with-test macro and the second, more common way, is to use the deftest macro.

Testing Basics with clojure.test ❘ 101

c04.indd 04/23/2016 Page 101

with-test
The with-test macro is a way to package up your tests as metadata with your function:

(with-test
 (defn my-add [x y]
 (+ x y))
 (is (= 4 (my-add 2 2)))
 (is (= 7 (my-add 3 4))))

In this example, we’ve defi ned a function that will be available to call as if you didn’t wrap it using
the with-test macro. Evaluating the expression above will not actually run the tests. In order to
run the tests, you must use the function run-tests as shown here:

user> (run-tests)

Testing user

FAIL in (my-add) (test.clj:7)
expected: (= 7 (my-add 3 5))
 actual: (not (= 7 8))

Ran 1 tests containing 2 assertions.
1 failures, 0 errors.
{:test 1, :pass 1, :fail 1, :error 0, :type :summary}

While it is nice to have the ability to keep the tests close to the code, you are having to pollute your
namespace by requiring clojure.test inside of your production code.

deftest
A better way to write tests is to use the deftest macro. The main benefi t to using deftest over
with-test is that it allows you to defi ne your tests in a separate namespace from the function you
are trying to test, which will feel more familiar to people experience with testing frameworks like
JUnit or RSpec. The other benefi t is that when you go to package up your application and distribute
it, you’re not also packaging up all of your tests to distribute along with it. You can see a rewritten
example of the my-add function using deftest:

(ns ch4.core-test
 (:require [clojure.test :refer :all]))

(defn my-add [x y]
 (+ x y))

(deftest addition
 (testing
 (is (= 4 (my-add 2 2)))
 (is (= 7 (my-add 3 4)))))

ch4.core-test> (run-tests)

102 ❘ CHAPTER 4 TESTING

c04.indd 04/23/2016 Page 102

Testing ch4.core-test

Ran 1 tests containing 2 assertions.
0 failures, 0 errors.
{:test 1, :pass 2, :fail 0, :error 0, :type :summary}

You can also nest the testing macro arbitrarily deep to create multiple contexts similar to a style
made popular by RSpec:

(deftest addition
 (testing "using let to bind x to 2"
 (let [x 2]
 (is (= 4 (my-add x 2)))
 (is (= 7 (my-add x 5)))
 (testing "and y to 3"
 (let [y 3]
 (is (= 5 (my-add x y)))))))
 (testing "adding negative numbers"
 (is (= -3 (my-add -10 7)))
 (is (= 5 (my-add 10 -5)))))

If you were to change the test for (is (= 5 (my-add x y))) to be incorrect, such as (is (= 6
(my-add x y))), then the test runner will simply append the strings following the testing macro to
give you a context where the test is failing.

Testing ch4.core-test

FAIL in (addition) (core_test.clj:15)
using let to bind x to 2 and y to 3
expected: (= 6 (my-add x y))
 actual: (not (= 6 5))

Ran 1 tests containing 5 assertions.
1 failures, 0 errors.
{:test 1, :pass 4, :fail 1, :error 0, :type :summary}

As you can see in the output, the error occurs inside of the addition test, but more specifi cally:
using let to bind x to 2 and y to 3.

are
If typing is over and over in the same testing block feels like you’re violating DRY (Don’t Repeat
Yourself) principles, then you’re in luck. There is also a macro called are, which allows you to
defi ne a template and provide concrete examples:

(deftest addition
 (testing
 (are [expected actual] (= expected actual)
 7 (my-add 2 5)
 4 (my-add 2 2)))
 (testing "adding negative numbers"
 (are [expected actual] (= expected actual)
 5 (my-add 10 -5)
 -3 (my-add -10 7))))

Testing Basics with clojure.test ❘ 103

c04.indd 04/23/2016 Page 103

As you can see—because the test in the is macro follows a similar pattern—you can clean it up a
bit and provide a more concise defi nition to the test. If you later discover another example you want
to test for one of these functions, you can simply add the two parameters to your list of examples,
instead of having to duplicate an entire is macro.

Using Fixtures
If you’re at all familiar with other testing frameworks, you may be asking yourself right now, “How
do I execute setup and teardown code in my tests?” If you need to set up some sort of state before
running tests, such as inserting data into a database, you need to leverage fi xtures to do so. The way
to defi ne fi xtures in clojure.test is to defi ne a normal function, which takes a single argument, or
a function. The body of the fi xture function then performs any setup tasks that need to occur before
executing the function passed to the fi xture, before performing any cleanup after calling the passed
function. To tell clojure.test to execute these functions around your tests, just hook them into
the testing lifecycle by using the use-fi xtures form as shown here:

 (ns ch4.core-test
 (:require [clojure.test :refer :all]
 [ch4.core :refer :all]))

(defn my-add [x y]
 (+ x y))

(defn my-sub [x y]
 (- x y))

(deftest addition
 (is (= 4 (my-add 2 2))))

(deftest subtraction
 (is (= 3 (my-sub 7 4))))

(defn once-fixture [f]
 (println "setup once")
 (f)
 (println "teardown once"))

(defn each-fixture [f]
 (println "setup each")
 (f)
 (println "teardown each"))

(use-fixtures :each each-fixture)
(use-fixtures :once once-fixture)

Fixtures that are specifi ed with the :each keyword are run around every deftest macro defi ned,
and fi xtures confi gured with the :once keyword are executed only once for all tests defi ned. You
can see the output below after running lein test.

Testing ch4.core-test
setup once
setup each

104 ❘ CHAPTER 4 TESTING

c04.indd 04/23/2016 Page 104

teardown each
setup each
teardown each
teardown once

Ran 2 tests containing 2 assertions.
0 failures, 0 errors.
{:test 2, :pass 2, :fail 0, :error 0, :type :summary}

Notice that you only see setup once being output at the very beginning of the test execution, then
teardown once being executed at the very end.

TESTING STRATEGIES

In some ways, testing in Clojure is much easier than testing in any imperative language. Because
of Clojure’s focus on values and immutability, many classes of tests simply fade away into
 obscurity. For example, in many other languages, because there are methods that are executed
solely for their side effects, you have to rely on a testing construct called a spy to verify that some
interaction between the objects under test happened. In Clojure, you should be concerned with the
values that are returned from the functions, so you don’t generally need to concern yourself with
such tests.

Let’s examine some of the likely scenarios that you’ll encounter when testing your Clojure applica-
tions. You will use the sample code that can be found at https://github.com/backstopmedia/
clojurebook. This sample application is a simple ROI (Return On Investment) calculator that
interacts with the Yahoo Financial APIs in order to retrieve historical stock pricing information.
It’s simple enough so you don’t get bogged down in too many details; however, it illustrates most of
the testing and design concepts covered in the rest of this chapter. Hopefully, you’ll see how much
 simpler testing in Clojure seems when compared to other testing ecosystems.

In an ideal world, all tests would be simple and isolated, but in the real world, you’re often required
to interact with some sort of external service in order to get things done. Whether you’re running
queries against a database, fetching some data from the fi le system, or calling a web service, your
tests should be repeatable and not dependent on the availability of these services. In the next few
sections we’ll discuss strategies to help in mitigating this non-deterministic behavior.

Tests Against DB
When it comes to testing against a database, there are usually two schools of thought. The fi rst is to
start with a pristine database, then set up whatever data you’ll need for the test, and once the test is
done, do it all over again. One problem with this approach is that as your application gets larger, it
will cause your tests to run slower and slower. The other issue is that sometimes you don’t have the
luxury of starting with a clean database. Finally, you may require entirely too much data to exist in
the database in order to run meaningful tests, so it would be cumbersome to try and manage that.

The other option is to have each of your tests run inside a transaction, and then have that
 transaction automatically rolled back at the end of your test run. To illustrate, let’s create a simple
 database and table to hold a list of stock symbols you may want to use with the sample application.

https://github.com/backstopmedia
https://github.com/backstopmedia/clojurebook

Testing Strategies ❘ 105

c04.indd 04/23/2016 Page 105

Let’s begin by opening up the REPL by typing lein repl in the root of your project. First, create a
variable to hold the database connection information:

user=> (def db "postgresql://localhost:5432/fincalc")
#'user/db

Now you can go ahead and create the table using the following command.

user=> (sql/db-do-commands db (sql/create-table-ddl :stocks [:symbol "varchar(10)"]
))
(0)

This will create a table with a single column named symbol and mark it as being the primary key
for the table. Once that is created, go ahead and populate it with some data using the following
command.

(sql/insert! db :stocks {:symbol "AAPL"}
 {:symbol "MSFT"}
 {:symbol "YHOO"}
 {:symbol "AMZN"}
 {:symbol "GOOGL"}
 {:symbol "FB"})

Here are two simple database functions that you want to test:

(ns fincalc.db
 (:require [clojure.java.jdbc :as sql]))

(defn get-symbols [db-spec]
 (map :symbol (sql/query db-spec ["select * from stocks"])))

(defn add-symbol [db-spec sym]
 (sql/insert! db-spec :stocks {:symbol sym}))

Now let’s take a look at the code for the test.

(ns fincalc.db-test
 (:require [clojure.test :refer :all]
 [clojure.java.jdbc :as sql]
 [fincalc.db :refer :all]))

(declare ^:dynamic *txn*)

(def db "postgresql://localhost:5432/fincalc")

(use-fixtures :each
 (fn [f]
 (sql/with-db-transaction
 [transaction db]
 (sql/db-set-rollback-only! transaction)
 (binding [*txn* transaction] (f)))))

(deftest retrieve-all-stocks
 (testing
 (is (some #{"AAPL"} (get-symbols *txn*)))
 (is (some #{"YHOO"} (get-symbols *txn*)))))

106 ❘ CHAPTER 4 TESTING

c04.indd 04/23/2016 Page 106

(deftest insert-new-symbol
 (testing
 (add-symbol *txn* "NOK")
 (is (some #{"NOK"} (get-symbols *txn*)))))

(deftest inserted-symbol-rolled-back
 (testing
 (is (not (some #{"NOK"} (get-symbols *txn*))))))

In this example, you can see that you can leverage the use-fixtures functionality provided by
clojure.test. This fi xture is initiating a transaction, then immediately marking it as db-set-
rollback-only!. This ensures that the transaction is rolled back regardless of what happens in the
test function. This will help ensure that the tests are good citizens, and that you don’t leave the data-
base in an inconsistent state. As you can see in the insert-new-symbol test, the new stock symbol
“NOK” is added to the database, so when calling get-symbols you can see that it exists in the list
of stocks. In the very next test, however, you’ll check to see if it exists in the table to make sure the
previous insert has indeed been rolled back.

Testing Ring Handlers
When developing web apps in Clojure using Ring, your handlers are simple functions. This means
that you can test them as you would any other function. For example, if you want to test the /api/
stocks endpoint in the sample application that returns a list of stock symbols stored in the database
as a JSON array, you can write a test like the one here, which you can fi nd in the test/fincalc/
api_test.clj fi le:

(ns fincalc.api-test
 (:require [fincalc.api :refer :all]
 [cheshire.core :as json]
 [clojure.test :refer :all]))

(deftest get-all-stocks
 (testing
 (is (some #{"AAPL"} (json/parse-string (all-stocks))))))

As you can see, you can test the all-stocks function as if it were any normal function, which it really
is. Testing your Ring handlers as simple functions will only get you so far. This does nothing to
ensure that your URL mappings and request parameter bindings are behaving as expected. It also
does not allow you to test other things such as HTTP response code, headers, or other things about
the actual response. To better enable this level of testing you can leverage the ring-mock library.
Rewrite the above test to be a bit better:

(ns fincalc.api-test
 (:require [fincalc.handler :refer [app]]
 [fincalc.api :refer :all]
 [cheshire.core :as json]
 [clojure.test :refer :all]
 [ring.mock.request :as mock]))

Testing Strategies ❘ 107

c04.indd 04/23/2016 Page 107

(deftest get-all-stocks
 (testing
 (is (some #{"AAPL"} (json/parse-string (all-stocks))))))

(deftest get-all-stocks-ring-mock
 (let [response (app (mock/request :get "/api/stocks"))]
 (is (= (:status response) 200))
 (is (some #{"AAPL"} (json/parse-string (:body response))))))

The ring-mock library allows you to construct mock HTTP requests to pass to your application
object you’ve defi ned in the src/fincalc/handler.clj fi le, as if the servlet container were making
a real request. While the ring-mock library is nice, it does have its limitations. If you need to test
complex interactions, or things that rely on some session state, you’ll have a hard time using the
ring-mock library alone. To allow this level of testing, there is another library you can use called
the peridot (https://github.com/xeqi/peridot) library. Peridot is a testing library that is based
on the Rack::Test suite from Ruby.

Not only does Peridot allow you to test your handlers by calling their endpoints, it also allows you
to test complex interactions across multiple requests, because it maintains cookies and sessions for
you across requests. It manages to do this by use of the threading macro ->, which it’s designed
around. This means that you can do things like authenticate in one request, then call a secured end-
point without having to mock or do devious things to simulate an authenticated state.

To illustrate how to use the Peridot library, let’s create a simple example. Here is a sample defi nition
of a simple Ring handler:

(ns simple-api.handler
 (:require [compojure.core :refer :all]
 [compojure.route :as route]
 [ring.middleware.session :as session]
 [ring.middleware.defaults :refer [wrap-defaults site-defaults]]))

(defn login [req]
 (let [user (get-in req [:params :user])
 session (get-in req [:session])]
 {:body "Success"
 :session (assoc session :user user)}))

(defn say-hello [{session :session}]
 (if (:user session)
 {:body (str "Hello, " (:user session))}
 {:body "Hello World"}))

(defroutes app-routes
 (GET "/" req say-hello)
 (POST "/login" req login)
 (route/not-found "Not Found"))

(def app
 (-> app-routes session/wrap-session))

https://github.com/xeqi/peridot

108 ❘ CHAPTER 4 TESTING

c04.indd 04/23/2016 Page 108

Here are two very simple endpoints. The fi rst is the /login endpoint, which is simply going to store
a user in the session. The second endpoint is the /, which will return a generic Hello World if no
user is stored in the session, and a more personalized one if there is. Here is the test code showing
how to leverage Peridot:

(ns simple-api.handler-test
 (:require [clojure.test :refer :all]
 [peridot.core :refer :all]
 [simple-api.handler :refer :all]))

(deftest test-app
 (testing "main route logged in user"
 (let [response (:response (-> (session app)
 (request "/login"
 :request-method :post
 :params {:user "Jeremy"})
 (request "/")))]
 (is (= (:status response) 200))
 (is (= (:body response) "Hello World"))))

 (testing "main route"
 (let [response (:response (-> (session app)
 (request "/")))]
 (is (= (:status response) 200))
 (is (= (:body response) "Hello World")))))

As you can see, you can exercise a test that spans multiple requests.

Mocking/Stubbing Using with-redefs
Sometimes, though, you don’t want your tests to interact with external services. In those instances,
you need to leverage some sort of mocking/stubbing technique. In Clojure you have that ability built
right into the language itself with two functions called with-redefs and with-redefs-fn. To illus-
trate, let’s take a look at the src/fincalc/core.clj fi le:

(ns fincalc.core
 (:require [clj-time.core :as t]
 [clj-time.format :as f]
 [cemerick.url :refer (url)]
 [cheshire.core :as json]
 [clj-http.client :as client]))

(defn today []
 (t/today))

(defn one-year-ago
 ([] (one-year-ago (today)))
 ([date] (t/minus date (t/years 1))))

(defn yesterday []
 (t/minus (today) (t/days 1)))
...

Testing Strategies ❘ 109

c04.indd 04/23/2016 Page 109

You can see the two methods here that are very dependent on the current date. You can test these:

(ns fincalc.core-test
 (:require [clojure.test :refer :all]
 [clj-time.core :as t]
 [fincalc.core :refer :all]))

(deftest date-calculations
 (testing "1 year ago"
 (is (= (t/minus (t/today) (t/years 1)) (one-year-ago)))))

If you look at this test above, it exhibits a distinct code smell known as The Ugly Mirror (http://
jasonrudolph.com/blog/2008/07/30/testing-anti-patterns-the-ugly-mirror/). If the test
itself mirrors the exact implementation as the actual code, then it’s not a very useful test. So how
do you rewrite this test to more accurately express the intent of the test without having to resort to
mirroring the implementation? You can leverage Clojure’s built in ability to mock functions using
 with-redefs as shown here:

(ns fincalc.core-test
 (:require [clojure.test :refer :all]
 [clj-time.core :as t]
 [fincalc.core :refer :all]))

(deftest date-calculations
 (testing "1 year ago"
 (is (= (t/minus (t/today) (t/years 1)) (one-year-ago)))))

(deftest date-calculations-with-redefs
 (with-redefs [t/today (fn [] (t/local-date 2016 1 10))]
 (testing "1 year ago"
 (are [exp actual] (= exp actual)
 (t/local-date 2015 1 10) (one-year-ago)
 (t/local-date 2015 1 1) (one-year-ago (t/local-date 2016 1 1))))
 (testing "yesterday"
 (is (= (t/local-date 2016 1 9) (yesterday))))))

As you can see, the date calculations have been rewritten to test using with-redefs. You make use
of it in the same way that you use let and let* to defi ne local variables. Using with-redefs creates
a local binding that will call your mock implementation of a function within the form; then when
execution leaves the form, the local binding goes out of scope and Clojure rebinds the original func-
tion as it was before.

You must take great care when using with-redefs, because running tests concurrently could per-
manently change the binding if you aren’t careful. This occurs when the execution of your code is
complete and it tries to rebind the function or variable back to its original value. If there are many
threads executing at once, the function or variable may have already had its binding changed, so
when with-redefs gets executed again, it will store off what it thinks is the original implementa-
tion of the function. Then when it is fi nished executing, it will rebind the bogus implementation as
illustrated here from the ClojureDocs for with-redefs:

user> (defn ten [] 10)
#'user/ten

http://jasonrudolph.com/blog/2008/07/30/testing-anti-patterns-the-ugly-mirror
http://jasonrudolph.com/blog/2008/07/30/testing-anti-patterns-the-ugly-mirror

110 ❘ CHAPTER 4 TESTING

c04.indd 04/23/2016 Page 110

user> (doall (pmap #(with-redefs [ten (fn [] %)] (ten)) (range 20 100)))
...
user> (ten)
79

This is more of an issue if your actual code, not your tests, uses with-redefs. However, this may be
what you’re experiencing, if you are seeing inconsistent behavior in your tests that are making heavy
use of with-redefs.

Redefi ning Dynamic Vars
Another technique for mocking out your dependencies involves using dynamic vars and changing
the binding during the execution of your tests. This provides the thread safety that is missing when
using with-redefs; however, you must now defi ne your functions that you may want to mock out
as being dynamic. You can rewrite the date functions from earlier to show this technique:

(ns fincalc.core
 (:require [clj-time.core :as t]
 [clj-time.format :as f]
 [cemerick.url :refer (url)]
 [cheshire.core :as json]
 [clj-http.client :as client]))

(defn ^:dynamic today []
 (t/today))

(defn one-year-ago
 ([] (one-year-ago (today)))
 ([date] (t/minus date (t/years 1))))

(defn yesterday []
 (t/minus (today) (t/days 1)))

Notice the only thing that had to change in the source was to add the ^:dynamic decoration to the
today function? Now you can update your tests:

(ns fincalc.core-test
 (:require [clojure.test :refer :all]
 [clj-time.core :as t]
 [fincalc.core :refer :all]))

(deftest date-calculations
 (testing "1 year ago"
 (is (= (t/minus (t/today) (t/years 1)) (one-year-ago)))))

(deftest date-calculations-with-redefs
 (binding [today (fn [] (t/local-date 2016 1 10))]
 (testing "1 year ago"
 (are [exp actual] (= exp actual)
 (t/local-date 2015 1 10) (one-year-ago)
 (t/local-date 2015 1 1) (one-year-ago (t/local-date 2016 1 1))))
 (testing "yesterday"
 (is (= (t/local-date 2016 1 9) (yesterday))))))

Testing Strategies ❘ 111

c04.indd 04/23/2016 Page 111

NOTE Again, you didn’t have to make drastic changes to the test code, since you
just replaced with-redefs with binding so everything behaves as it did earlier.

Record/Replay with VCR
If your application makes use of external APIs that return a signifi cant amount of data, sometimes
mocking is not a feasible solution. The sheer amount of setup code that would be required is time
consuming not only to create, but to maintain if you need to change it later on. As an example, let’s
create a function that will call the Yahoo Finance APIs to fetch data about stocks, and return the
closing price for a given stock on a given day. Knowing that this data changes quite frequently, how
in the world can you test that your function returns the correct data? Mocking and stubbing would
work; however, the tests would be littered with all kinds of noise for setting up the mock data to be
returned from the service.

Instead, you can use a library called vcr-clj (https://github.com/gfredericks/vcr-clj) to
record and play back calls to this external service. Here is the src/fincalc/core.clj fi le that
 contains the test functions:

(ns fincalc.core
 (:require [clj-time.core :as t]
 [clj-time.format :as f]
 [cemerick.url :refer (url)]
 [cheshire.core :as json]
 [clj-http.client :as client]))

(defn ^:dynamic today []
 (t/today))

(defn one-year-ago
 ([] (one-year-ago (today)))
 ([date] (t/minus date (t/years 1))))

(defn yesterday []
 (t/minus (today) (t/days 1)))

(defn build-yql [sym date]
 (let [formatted-date (f/unparse-local-date (f/formatters :year-month-day) date)]
 (str "select * from yahoo.finance.historicaldata where symbol = \"" sym "\"
 and startDate = \"" formatted-date "\" and endDate = \""
 formatted-date "\"")))

(defn build-get-url [sym date]
 (-> (url "https://query.yahooapis.com/v1/public/yql")
 (assoc :query {:q (build-yql sym date)
 :format "json"
 :env "store://datatables.org/alltableswithkeys"})
 str))

https://github.com/gfredericks/vcr-clj
https://query.yahooapis.com/v1/public/yql
store://datatables.org/alltableswithkeys

112 ❘ CHAPTER 4 TESTING

c04.indd 04/23/2016 Page 112

(defn get-close-for-symbol [sym date]
 (loop [close-date date retries 5]
 (let [result (get-in
 (json/parse-string
 (:body (client/get (build-get-url sym close-date))))
 ["query" "results" "quote" "Adj_Close"])]
 (if (and (nil? result) (> retries 0))
 (recur (t/minus close-date (t/days 1)) (dec retries))
 (read-string result)))))

(defn roi [initial earnings]
 (double (* 100 (/ (- earnings initial) initial))))

As you can see, you’re making a call to the Yahoo API by issuing a GET request in the get-close-
for-symbol function. In order to test this and have repeatable results, you can record and replay the
results from this HTTP request by wrapping the test using the with-cassette macro:

(ns fincalc.core-test
 (:require [clojure.test :refer :all]
 [clj-time.core :as t]
 [vcr-clj.clj-http :refer [with-cassette]]
 [fincalc.core :refer :all]))

...

(deftest vcr-tests
 (with-cassette :stocks
 (is (= 97.129997 (get-close-for-symbol "AAPL" (t/local-date 2016 1 17))))
 (is (= 29.139999 (get-close-for-symbol "YHOO" (t/local-date 2016 1 17))))))

Each time you run these tests, vcr-clj will check to see if there is a cassette in the /cassettes
directory of the project, and if that cassette contains a recorded request that matches the HTTP
request being called. If it does exist, it will simply return the previously recorded results. That way
you can be sure that every time you call fetch-stock-price, it will return the same stock data as
before. You could even disconnect from the network altogether and your tests will still run and pass.

If for some reason you wish to record new results, you simply delete the fi le in the /cassettes
directory with the corresponding fi lename of the cassette you wish to re-record.

MEASURING CODE QUALITY

Having a comprehensive suite of quality tests is certainly a good thing to have when developing
software, but how can you be certain that it’s enough? Sometimes just measuring test coverage is not
enough, and sometimes you need to analyze your code to identify potential bugs and improvements
that can be made to the overall quality of your code. In this next section you’ll get to peek at a few
useful tools to help you with that.

Code Coverage with Cloverage
Code coverage, while being a useful metric, is not a golden hammer (http://c2.com/cgi/
wiki?GoldenHammer). Unfortunately, it is a metric that is often misused and misrepresented.

http://c2.com/cgi/wiki?GoldenHammer
http://c2.com/cgi/wiki?GoldenHammer

Measuring Code Quality ❘ 113

c04.indd 04/23/2016 Page 113

It will not guarantee that your code is free of defects if you somehow achieve 100 percent code
coverage.

When used properly though, it is a very useful metric to help identify what areas of your code you
may have overlooked when testing, especially if those areas that are lacking coverage are of high
risk.

In order to measure code coverage in your Clojure projects, you need to leverage a tool called
 cloverage (https://github.com/lshift/cloverage). As of this writing, cloverage only sup-
ports measuring code coverage with the clojure.test library. In order to use the plugin, you can
add [lein-cloverage "1.0.6"] to the :plugins section of your ~/.lein/profiles.clj fi le.
Once you have added that you will be able to run lein cloverage in your project directory. After
it’s done running your tests, you’ll see a nice summary printed out to the console:

Loading namespaces: (fincalc.views.contents fincalc.api fincalc.db fincalc.core
fincalc.handler fincalc.views.layout)
Test namespaces: (fincalc.api-test fincalc.core-test fincalc.db-test
fincalc.handler-test fincalc.views.contents-test)
Loaded fincalc.core .
Loaded fincalc.db .
Loaded fincalc.api .
Loaded fincalc.views.layout .
Loaded fincalc.views.contents .
Loaded fincalc.handler .
Instrumented namespaces.

Testing fincalc.api-test

Testing fincalc.core-test

Testing fincalc.db-test

Testing fincalc.handler-test

Testing fincalc.views.contents-test

Ran 10 tests containing 18 assertions.
0 failures, 0 errors.
Ran tests.
Produced output in /Users/jeremy/Projects/clojure/fincalc/target/coverage .
HTML: file:///Users/jeremy/Projects/clojure/fincalc/target/coverage/index.html

| :name | :forms_percent | :lines_percent |
|------------------------+----------------+----------------|
fincalc.api	29.41 %	55.56 %
fincalc.core	59.78 %	71.43 %
fincalc.handler	51.13 %	68.42 %
fincalc.views.contents	55.04 %	50.00 %
fincalc.views.layout	53.26 %	100.00 %
Files with 100% coverage: 1

Forms covered: 54.39 %
Lines covered: 68.06 %

https://github.com/lshift/cloverage
file:///Users/jeremy/Projects/clojure/fincalc/target/coverage/index.html

114 ❘ CHAPTER 4 TESTING

c04.indd 04/23/2016 Page 114

Cloverage will also output an HTML report that you can drill down into and see exactly what lines
of code have been covered by tests and which haven’t. Figure 4-1 shows the HTML summary page,
which can be found in the target/coverage folder of your project.

FIGURE 4-1

Then if you click on the hyperlink for an individual namespace, it will drill down into the coverage
report and show you the actual line-by-line coverage as shown in Figure 4-2.

FIGURE 4-2

In Figure 4-2 you can see that we’ve managed to test the all-stocks function suffi ciently, but have
not tested the body of the calculate function. The cloverage plugin provides many options for how
it measures coverage, as well as what format to output your report in to support various continuous
integration servers. All of these options can be found in the parse-args function in the cloverage
.clj source fi le within the project (https://github.com/lshift/cloverage/blob/master/
cloverage/src/cloverage/coverage.clj#L78). Unfortunately, the project doesn’t provide much
in the way of documenting them elsewhere.

Static Analysis with kibit and bikeshed
A couple of very useful libraries that fall under the same category as cloverage, but should not
be considered competing libraries, are kibit and bikeshed. Both provide static analysis of your
code to help identify potential problems and make suggestions about your coding style to ensure it
adheres to Clojure’s best practices; they will, however, report different things about your code.

https://github.com/lshift/cloverage/blob/master/cloverage/src/cloverage/coverage.clj#L78
https://github.com/lshift/cloverage/blob/master/cloverage/src/cloverage/coverage.clj#L78

Measuring Code Quality ❘ 115

c04.indd 04/23/2016 Page 115

The fi rst plugin to look at is lein-kibit (https://github.com/jonase/kibit), and to use this
plugin you can add [lein-kibit "0.1.2"] to the :plugins section of your ~/.lein/profiles
.clj fi le. You can then run the analysis against your project by running lein kibit in your project
directory. The output shown in the following snippet is a result of running lein kibit against the
ring-core project:

At /Users/jeremy/Projects/clojure/ring/ring-core/src/ring/middleware/session.clj:61
:
Consider using:
 (update-in response [:cookies] merge cookie)
instead of:
 (assoc response :cookies (merge (response :cookies) cookie))

At /Users/jeremy/Projects/clojure/ring/ring-core/src/ring/middleware/session.clj:
102:
Consider using:
 (session-response (handler new-request) new-request options)
instead of:
 (-> (handler new-request) (session-response new-request options))

At /Users/jeremy/Projects/clojure/ring/ring-core/src/ring/util/request.clj:58:
Consider using:
 (clojure.string/join (:body request))
instead of:
 (apply str (:body request))

You can see that kibit is primarily concerned with code style. It makes helpful suggestions about
how you can improve your Clojure code to follow a style more in line with the community. There
are some limitations, though, and you’re likely to get some false positives returned in the analysis.

The second plugin to look at is the bikeshed plugin (https://github.com/dakrone/lein-
bikeshed). This plugin is installed like other plugins discussed in this section. Simply add [lein-
bikeshed "0.2.0"] to the :plugins section of your ~/.lein/profiles.clj fi le. Then you can
run lein bikeshed in your project directory. Once again we’ll look as some output from running
lein bikeshed against the ring-core library:

Checking for lines longer than 80 characters.
Badly formatted files:
/Users/jeremy/Projects/clojure/ring/ring-core/src/ring/middleware/cookies.clj:23:
:doc "Attributes defined by RFC6265 that apply to the Set-Cookie header."}
/Users/jeremy/Projects/clojure/ring/ring-core/src/ring/middleware/cookies.clj:81:
(instance? DateTime value) (str ";" attr-name "=" (unparse rfc822-formatter value))
/Users/jeremy/Projects/clojure/ring/ring-core/src/ring/middleware/file.clj:25:
(let [opts (merge {:root (str root-path), :index-files? true, :allow-symlinks?
false} opts)]
...

Checking for lines with trailing whitespace.
Badly formatted files:
/Users/jeremy/Projects/clojure/ring/ring-core/src/ring/middleware/params.clj:56:
Accepts the following options:
/Users/jeremy/Projects/clojure/ring/ring-core/src/ring/util/response.clj:20:

https://github.com/jonase/kibit
https://github.com/dakrone/lein-bikeshed
https://github.com/dakrone/lein-bikeshed

116 ❘ CHAPTER 4 TESTING

c04.indd 04/23/2016 Page 116

"Returns a Ring response for an HTTP 302 redirect. Status may be
...

Checking for files ending in blank lines.
No files found.

Checking for redefined var roots in source directories.
No with-redefs found.

Checking whether you keep up with your docstrings.
120/159 [75.47%] functions have docstrings.
Use -v to list functions without docstrings

Checking for arguments colliding with clojure.core functions.
#'ring.middleware.cookies/write-value: 'key' is colliding with a core function
#'ring.middleware.multipart-params.temp-file/do-every: 'delay' is colliding
with a core function
...

The bikeshed plugin runs several different inspections. The fi rst few inspections deal with the
 formatting of your source fi les, whether you have lines containing more than 80 characters long,
trailing whitespace, or fi les ending with blank lines. These are of course simple housekeeping tasks.
The next inspection checks to see if you are potentially introducing bugs into your code by using
with-redefs. Then bikeshed checks to see if you’re a good citizen with your code and ensures
that you defi ne docstrings on all of your functions. This last check is probably the most impor-
tant, because it points out areas in your code where you are facing potential namespace collisions
and may need to adjust your :requires statements in your fi les to exclude certain functions in
namespaces you’re requiring, or rename functions you are defi ning. You should take each and every
one of these warnings seriously, and determine whether or not they need to be addressed.

Keeping Dependencies Under Control
Sometimes you run across strange bugs due to mismatched versions of dependencies. Even if you
only directly depend on a small handful of libraries, the transient dependency graph can quickly
become unwieldy. Leiningen provides you with the tools to help keep tabs on all of this. In order to
retrieve a graph of all of the libraries your project depends on, you simply type lein deps :tree in
your project directory. Leiningen will then gladly provide you with a multitude of information. The
following snippet is from the output of running lein deps :tree on the sample project:

Possibly confusing dependencies found:
[lein-ring "0.9.7"] -> [org.clojure/data.xml "0.0.8"] -> [org.clojure/clojure
"1.4.0"]
 overrides
[lein-kibit "0.1.2"] -> [jonase/kibit "0.1.2"] -> [org.clojure/core.logic
"0.8.10"] -> [org.clojure/clojure "1.6.0"]
 and
[lein-ancient "0.6.8"] -> [jansi-clj "0.1.0"] -> [org.clojure/clojure "1.5.1"]
 and
[lein-ancient "0.6.8"] -> [version-clj "0.1.2"] -> [org.clojure/clojure "1.6.0"]
 and
[lein-ancient "0.6.8"] -> [rewrite-clj "0.4.12"] -> [org.clojure/clojure "1.6.0"
:exclusions [org.clojure/clojure]]
 and

Measuring Code Quality ❘ 117

c04.indd 04/23/2016 Page 117

[lein-ancient "0.6.8"] -> [ancient-clj "0.3.11" :exclusions [com.amazonaws/aws-
java-sdk-s3]] -> [org.clojure/clojure "1.7.0" :exclusions [joda-time
org.clojure/clojure]]
 and
[lein-kibit "0.1.2"] -> [jonase/kibit "0.1.2"] -> [org.clojure/clojure "1.6.0"]

Consider using these exclusions:
[lein-kibit "0.1.2" :exclusions [org.clojure/clojure]]
[lein-ancient "0.6.8" :exclusions [org.clojure/clojure]]
[lein-ancient "0.6.8" :exclusions [org.clojure/clojure]]
[lein-ancient "0.6.8" :exclusions [org.clojure/clojure]]
[lein-ancient "0.6.8" :exclusions [org.clojure/clojure]]
[lein-kibit "0.1.2" :exclusions [org.clojure/clojure]]

As you can see, this shows you the few libraries that can potentially cause issues. It is telling you
that several of the libraries included in your project depend on confl icting versions of org.clojure/
clojure, and it gives you a helpful suggestion to mitigate this potential issue. The rest of the output
is shown here:

 [cheshire "5.5.0"]
 [com.fasterxml.jackson.core/jackson-core "2.5.3"]
 [com.fasterxml.jackson.dataformat/jackson-dataformat-cbor "2.5.3"]
 [com.fasterxml.jackson.dataformat/jackson-dataformat-smile "2.5.3"]
 [tigris "0.1.1"]
 [cider/cider-nrepl "0.10.0-20151127.123841-44"]
 [org.tcrawley/dynapath "0.2.3" :exclusions [[org.clojure/clojure]]]
 [clj-http "2.0.0"]
 [commons-codec "1.10" :exclusions [[org.clojure/clojure]]]
 [commons-io "2.4" :exclusions [[org.clojure/clojure]]]
 [org.apache.httpcomponents/httpclient "4.5" :exclusions [[org.clojure/clojure]]]
 [commons-logging "1.2"]
 [org.apache.httpcomponents/httpcore "4.4.1" :exclusions [[org.clojure/clojure]]]
 [org.apache.httpcomponents/httpmime "4.5" :exclusions [[org.clojure/clojure]]]
 [potemkin "0.4.1" :exclusions [[org.clojure/clojure]]]
 [clj-tuple "0.2.2"]
 [riddley "0.1.10"]
 [slingshot "0.12.2" :exclusions [[org.clojure/clojure]]]
 [clj-time "0.11.0"]
 [joda-time "2.8.2"]
 [clojure-complete "0.2.3" :exclusions [[org.clojure/clojure]]]
 [com.cemerick/url "0.1.1"]
 [pathetic "0.5.0"]
 [com.cemerick/clojurescript.test "0.0.4"]
 [org.clojure/clojurescript "0.0-1586"]
 [com.google.javascript/closure-compiler "r2180"]
 [args4j "2.0.16"]
 [com.google.code.findbugs/jsr305 "1.3.9"]
 [com.google.guava/guava "13.0.1"]
 [com.google.protobuf/protobuf-java "2.4.1"]
 [com.googlecode.jarjar/jarjar "1.1"]
 [org.apache.ant/ant "1.8.2"]
 [org.apache.ant/ant-launcher "1.8.2"]
 [org.json/json "20090211"]
 [org.clojure/google-closure-library "0.0-2029-2"]
 [org.clojure/google-closure-library-third-party "0.0-2029-2"]
 [org.mozilla/rhino "1.7R4"]

118 ❘ CHAPTER 4 TESTING

c04.indd 04/23/2016 Page 118

 [com.gfredericks/vcr-clj "0.4.6" :scope "test"]
 [fs "1.3.3" :scope "test"]
 [org.apache.commons/commons-compress "1.3" :scope "test"]
 [org.clojure/data.codec "0.1.0" :scope "test"]
 [compojure "1.4.0"]
 [clout "2.1.2"]
 [instaparse "1.4.0" :exclusions [[org.clojure/clojure]]]
 [medley "0.6.0"]
 [org.clojure/tools.macro "0.1.5"]
 [ring/ring-codec "1.0.0"]
 [ring/ring-core "1.4.0"]
 [commons-fileupload "1.3.1"]
 [crypto-equality "1.0.0"]
 [crypto-random "1.2.0"]
 [org.clojure/tools.reader "0.9.1"]
 [hiccup "1.0.5"]
 [javax.servlet/servlet-api "2.5" :scope "test"]
 [org.clojure/clojure "1.7.0"]
 [org.clojure/java.jdbc "0.4.1"]
 [org.clojure/tools.nrepl "0.2.12"]
 [org.postgresql/postgresql "9.4-1201-jdbc41"]
 [ring/ring-defaults "0.1.5"]
 [ring/ring-anti-forgery "1.0.0"]
 [ring/ring-headers "0.1.3"]
 [ring/ring-ssl "0.2.1"]
 [ring/ring-jetty-adapter "1.2.1"]
 [org.eclipse.jetty/jetty-server "7.6.8.v20121106"]
 [org.eclipse.jetty.orbit/javax.servlet "2.5.0.v201103041518"]
 [org.eclipse.jetty/jetty-continuation "7.6.8.v20121106"]
 [org.eclipse.jetty/jetty-http "7.6.8.v20121106"]
 [org.eclipse.jetty/jetty-io "7.6.8.v20121106"]
 [org.eclipse.jetty/jetty-util "7.6.8.v20121106"]
 [ring/ring-servlet "1.2.1"]
 [ring/ring-mock "0.3.0" :scope "test"]

In the ever-changing world of software development, it’s diffi cult to keep up with every version of
every dependency of your project or library. Thankfully, someone has gone to the trouble to create
a very useful plugin named lein-ancient that will look through each of the dependencies listed
in your project.clj and determine whether or not there are newer versions available. In order to
leverage this plugin just add [lein-ancient "0.6.8"] to the :plugins section in your ~/.lein/
profiles.clj. Once you have added this, you can run the lein-ancient command in your project
directory. If there are any dependencies out of date in your project, you’ll see them listed similar to
the output shown here:

WARNING: update already refers to: #'clojure.core/update in namespace:
clj-http.client, being replaced by: #'clj-http.client/update
[ring/ring-jetty-adapter "1.4.0"] is available but we use "1.2.1"
[org.clojure/java.jdbc "0.4.2"] is available but we use "0.4.1"
[org.postgresql/postgresql "9.4.1207"] is available but we use "9.4-1201-jdbc41"

Empowered with this knowledge, you can decide whether or not you want to update your
dependencies.

Testing Framework Alternatives ❘ 119

c04.indd 04/23/2016 Page 119

TESTING FRAMEWORK ALTERNATIVES

Testing frameworks and styles of testing are very much a personal preference. Fortunately, there are a
number of different testing frameworks available to you. In this last section, let’s examine a few of these
frameworks briefl y, comparing and contrasting them to what was discussed earlier in this chapter.

Expectations
Expectations (http://jayfields.com/expectations/) is probably one of the simplest testing frame-
works available. It is based on clojure.test, but it’s stripped down to the very basics of testing and
rooted in the belief that each test should test one and only one thing. To use expectations in your proj-
ect, you can add [expectations "2.0.9"] to the :dependencies section in your project.clj and
[lein-expectations "0.0.7"] to the :plugins section. Then you can write your tests as shown here:

(ns sample.test.core
 (:use [expectations]))

(expect 2 (+ 1 1))
(expect [1 2] (conj [] 1 2))
(expect #{1 2} (conj #{} 1 2))
(expect {1 2} (assoc {} 1 2))

As you can see, the entirety of the framework revolves around a single construct, expect. This
 single macro is extremely fl exible and powerful, but don’t let its simplicity fool you. As you may have
guessed by now, you can run these tests by executing lein expectations in the root of your project.

Speclj
Speclj (https://github.com/slagyr/speclj), pronounced speckle, is a testing framework that
seems to be a favorite of converted Rubyists, probably because it’s heavily inspired by the RSpec
framework. Similar to RSpec, your tests are referred to as “specs” and should follow the naming
convention of being postfi xed with _spec.clj. It will follow the same convention for directories
and namespaces as before, only in a directory named spec instead of test. Here is an example
directory structure for a project that uses speclj for testing:

├── README.md
├── project.clj
├── spec
│ └── speclj_project
│ └── core_spec.clj
└── src
 └── speclj_project
 └── core.clj

In order to use speclj in your project, you’ll need to add the following confi guration to your
 project.clj fi le:

:profiles {:dev {:dependencies [[speclj "3.3.1"]]}}
:plugins [[speclj "3.3.1"]]
:test-paths ["spec"])

http://jayfields.com/expectations
https://github.com/slagyr/speclj

120 ❘ CHAPTER 4 TESTING

c04.indd 04/23/2016 Page 120

Once you have that confi gured, you can rewrite simple tests from earlier in the chapter for my-add
and my-sub as specs:

(ns speclj-project.core-spec
 (:require [speclj.core :refer :all]
 [speclj-project.core :refer :all]))

(describe "addition"
 (it "can add two numbers correctly"
 (should (= 4 (my-add 2 2)))))

(describe "subtraction"
 (it "can subtract two numbers"
 (should (= 3 (my-sub 7 4)))))

Let’s take a look at the pieces that make up the simple spec. The describe macro is the topmost
construct in your specifi cation, and is typically used to describe the context of your test. The
describe form will contain any number of specifi cations denoted by the it macro. Then within the
it form, you can make any number of assertions using should, should-not, or any of the other
variants of should. To run your specs, you simply run the command lein spec in your project
directory.

Cucumber
Cucumber (http://cukes.info) is a framework for running automated acceptance tests, designed
to support a behavior driven development style. It gained popularity in the Ruby community as a
part of the RSpec framework, but it soon forked off into its own project. Shortly after that, it was
ported to run on other platforms such as the JVM, and now runs on a number of different plat-
forms. Cucumber is designed to enable and encourage discussion between the developer and the
customer to create a sort of executable documentation using a generic language known as Gherkin.
Here is the example that is shown on the homepage of the Cucumber project:

Feature: Addition
 In order to avoid silly mistakes
 As a math idiot
 I want to be told the sum of two numbers

 Scenario: Add two numbers
 Given I have entered "50" into the calculator
 And I have entered "70" into the calculator
 When I press "add"
 Then the result should be "120" on the screen

As you can see, the language used to write these specifi cations is very much written in plain English,
and with a little training and practice it can be collaborated on, or possibly even written, by your busi-
ness users. Notice that they are written at a very high level, and should only exercise the external most
layer of your applications such as a REST API or by interacting with the browser using Selenium.

Cucumber executes code based on these feature fi les by trying to match a step from your feature fi le
to a matching step defi nition in one of your step defi nition fi les. An example step defi nition for the
feature fi le above looks like the following:

(Given #"^I have entered \"(.*?)\" into the calculator$" [arg1]
 (do-something-cool-here))

http://cukes.info

Testing Framework Alternatives ❘ 121

c04.indd 04/23/2016 Page 121

The steps defi nition consists of a macro, in this case called Given, which contains a regular expression,
with optional capture groups defi ned. These capture groups then get bound to the parameter list imme-
diately following the regular expression. The rest of the macro consists of what you need to implement
the step, whether that be to set up some state, click a link on the page, or assert some values.

Let’s start off simply by defi ning a Cucumber feature to defi ne the acceptance criteria for some
REST APIs. Below is the feature fi le defi ned for interacting with the /api/stocks endpoints that
can be found at /features/stocks_api.feature.

Feature: Stocks REST API
 As an admin
 I want to be view and modify the stocks table
 So that I can manage it appropriately

 Scenario: Get All Stocks
 When I send a GET request to "/api/stocks"
 Then the response status should be "200"
 And I should see the following JSON in the body:
 """
 ["AAPL"]
 """

 Scenario: Add New Stock
 When I send a POST request to "/api/stocks" with the following params:
 | param | value |
 | sym | NOK |
 Then the response status should be "201"
 And the response body should be empty
 And a stock with symbol "NOK" exists in the database

 Scenario: Remove Stock
 Given a stock with symbol "NOK" exists in the database
 When I send a DELETE request to "/api/stocks/NOK"
 Then the response status should be "204"
 And a stock with symbol "NOK" does not exist in the database

The fi rst time you run lein cucumber in your project you will be presented with the following
output:

Running cucumber...
Looking for features in: [/Users/jeremy/Projects/clojure/fincalc/features]
Looking for glue in: [/Users/jeremy/Projects/clojure/fincalc/features/
step_definitions]
UUUUUUUUUUU

3 Scenarios (3 undefined)
11 Steps (11 undefined)
0m0.000s

You can implement missing steps with the snippets below:

(When #"^I send a GET request to \"(.*?)\"$" [arg1]
 (comment Write code here that turns the phrase above into concrete actions)
 (throw (cucumber.api.PendingException.)))

122 ❘ CHAPTER 4 TESTING

c04.indd 04/23/2016 Page 122

(Then #"^the response status should be \"(.*?)\"$" [arg1]
 (comment Write code here that turns the phrase above into concrete actions)
 (throw (cucumber.api.PendingException.)))

(Then #"^I should see the following JSON in the body:$" [arg1]
 (comment Write code here that turns the phrase above into concrete actions)
 (throw (cucumber.api.PendingException.)))

(When #"^I send a POST request to \"(.*?)\" with the following:$"
 [arg1 arg2]
 (comment Write code here that turns the phrase above into concrete actions)
 (throw (cucumber.api.PendingException.)))

(Then #"^the response body should be empty$" []
 (comment Write code here that turns the phrase above into concrete actions)
 (throw (cucumber.api.PendingException.)))

(Then #"^a stock with symbol \"(.*?)\" exists in the database$" [arg1]
 (comment Write code here that turns the phrase above into concrete actions)
 (throw (cucumber.api.PendingException.)))

(Given #"^a stock with symbol \"(.*?)\" exists in the database$" [arg1]
 (comment Write code here that turns the phrase above into concrete actions)
 (throw (cucumber.api.PendingException.)))

(When #"^I send a DELETE request to \"(.*?)\"$" [arg1]
 (comment Write code here that turns the phrase above into concrete actions)
 (throw (cucumber.api.PendingException.)))

(Then #"^a stock with symbol \"(.*?)\" does not exist in the database$" [arg1]
 (comment Write code here that turns the phrase above into concrete actions)
 (throw (cucumber.api.PendingException.)))

This is exceptionally useful because it gives you the templates for implementing the step defi nitions
without having to remember how to write the regular expressions. You can then go ahead and copy/
paste this output directly into your steps defi nition fi le. The completed steps defi nition fi le for the
stocks API can be found at /features/step-definitions/stock_api_steps.clj:

(require '[clojure.test :refer :all]
 '[clj-http.client :as client]
 '[cheshire.core :as json]
 '[fincalc.db :as db])

(def response (atom nil))
(def base-url "http://localhost:3000")

(When #"^I send a GET request to \"(.*?)\"$" [path]
 (let [endpoint (str base-url path)]
 (reset! response (client/get endpoint))))

(When #"^I send a POST request to \"(.*?)\" with the following params:$"
 [path req-params]
 (let [endpoint (str base-url path)
 form-params (kv-table->map req-params)]
 (reset! response (client/post endpoint {:form-params form-params}))))

Testing Framework Alternatives ❘ 123

c04.indd 04/23/2016 Page 123

(When #"^I send a DELETE request to \"(.*?)\"$" [path]
 (let [endpoint (str base-url path)]
 (reset! response (client/delete endpoint))))

(Then #"^the response status should be \"(.*?)\"$" [status-code]
 (assert (= (str status-code) (str (:status @response)))))

(Then #"^I should see the following JSON in the body:$" [expected-body]
 (assert (= (json/parse-string expected-body)
 (json/parse-string (:body @response)))))

(Then #"^the response body should be empty$" []
 (assert (empty? (:body @response))))

(Given #"^a stock with symbol \"(.*?)\" exists in the database$" [sym]
 (assert (not (empty? (db/get-symbol db/db-spec sym)))))

(Then #"^a stock with symbol \"(.*?)\" does not exist in the database$" [sym]
 (assert (empty? (db/get-symbol db/db-spec sym))))

Notice how at the beginning of the steps defi nition style, we set up some global state to store our
HTTP response. Without this, since each step is defi ned as a separate function, you don’t have the
ability to query your response after making the request. In addition, notice that you’re using assert
instead of is in tests for testing correctness. This is due to the way that Cucumber works under the
covers and expects to see a java.lang.AssertionError in order to determine whether or not a step
has passed or failed. Next, defi ne a value to store the base URL for all of the HTTP requests. The next
thing to take note of is how to handle the data table in the POST step. Use the kv-table->map func-
tion to convert the data table into a map so you can pass it as :form-params in the POST request.

Now that you have the step defi nitions implemented, you can run the Cucumber tests by using lein
cucumber in the project directory. Since Cucumber executes against an actual running application,
you have to ensure that your app is running by typing lein ring server-headless in another
 terminal window; otherwise your Cucumber tests will all fail.

One other thing to watch out for is that given how the Cucumber tests run against a live running
system, there’s no good way to wrap the tests in a transaction to have them roll back as earlier in the
DB tests. Therefore, you’ll need to be mindful to clean up after yourself somehow using either the
Before and After step defi nitions, or somehow within the tests themselves.

Now that you can see how to leverage Cucumber to test your REST APIs, let’s leverage it to test
your application from end-to-end by using Selenium’s webdriver API to remotely control a web
browser such as Firefox. Start by taking a look at the feature fi le, which can be found at features/
roi_calc.feature.

@ui
Feature: ROI Calculator
 As a budding investor
 I want to be able to check the ROI on various stocks
 So that I can determine whether or not to purchase a stock

 Scenario: Link in navbar takes me to homepage
 Given I am at the "homepage"
 When I click the title bar
 Then I should be at the "homepage"

124 ❘ CHAPTER 4 TESTING

c04.indd 04/23/2016 Page 124

 Scenario: Submit a symbol for calculation
 Given I am at the "homepage"
 When I calculate the ROI for the symbol "AAPL"
 Then I should see an initial value
 And I should see a final value
 And I should see an ROI

 Scenario: Page not found
 Given I am at an invalid page
 Then I should see a message stating "Page Not Found"
 When I click on the "Home" button
 Then I should be at the "homepage"

Notice the level of abstraction used to defi ne these feature fi le steps. You don’t defi ne the feature as
fi ne-grained steps of “click this fi eld,” “type this string,” “click that button,” etc. Instead, keep it at
a high enough level that your customer would leave some of the implementation details out of the
feature. Therefore, if you have to move things around or implement them in a different way, you
don’t have to rewrite the feature fi le.

Before you can implement the steps defi nition, you need to create a helper to manage the connection
to the browser. This fi le can be found at test/fincalc/browser.clj and is shown here:

(ns fincalc.browser
 (:require [clj-webdriver.taxi :refer :all]))

(def ^:private browser-count (atom 0))

(defn browser-up
 "Start up a browser if it's not already started."
 []
 (when (= 1 (swap! browser-count inc))
 (set-driver! {:browser :firefox})
 (implicit-wait 60000)))

(defn browser-down
 "If this is the last request, shut the browser down."
 [& {:keys [force] :or {force false}}]
 (when (zero? (swap! browser-count (if force (constantly 0) dec)))
 (quit)))

For this example you’re using the Firefox browser, but you can also confi gure it to use Chromium or
even the headless PhantomJS browser if you wish. If you decide to use something other than Firefox,
all you need to do is change the :browser symbol in set-driver!. Next, let’s take a look at our
step defi nitions for the feature:

(require '[clj-webdriver.taxi :as taxi]
 '[fincalc.browser :refer [browser-up browser-down]]
 '[clojure.test :refer :all])

(Before ["@ui"]
 (browser-up))

Testing Framework Alternatives ❘ 125

c04.indd 04/23/2016 Page 125

(After ["@ui"]
 (browser-down))

(Given #"^I am at the \"homepage\"$" []
 (taxi/to "http://localhost:3000/"))

(Given #"^I am at an invalid page$" []
 (taxi/to "http://localhost:3000/invalid"))

(When #"^I click the title bar$" []
 (taxi/click "a#brand-link"))

(Then #"^I should be at the \"homepage\"$" []
 (assert (= (taxi/title) "Home")))

(When #"^I calculate the ROI for the symbol \"(.*?)\"$" [sym]
 (taxi/input-text "input[name=\"sym\"]" sym)
 (taxi/click "button[type=\"submit\"]"))

(Then #"^I should see an initial value$" []
 (taxi/wait-until #(= (taxi/title) "Results"))
 (assert (re-find #"Stock price one year ago:" (taxi/text "#initial"))))

(Then #"^I should see a final value$" []
 (assert (re-find #"The latest close was" (taxi/text "#final"))))

(Then #"^I should see an ROI$" []
 (assert (re-find #"Calculated ROI" (taxi/text "#roi"))))

(Then #"^I should see a message stating \"(.*?)\"$" [arg1]
 (assert (= "Page Not Found" (taxi/text "h1.info-warning"))))

(When #"^I click on the \"Home\" button$" []
 (taxi/click "#go-home"))

This steps fi le looks similar to what you saw earlier for the REST API, with a few differences. The
fi rst one to take note of is the usage of the Before and After macros to start and kill the browser at
the beginning and end of every Scenario. The parameter being passed to these macros, "@ui" indi-
cates that you only want to run these on Scenarios that have been tagged with the "@ui" tag in the
feature fi le, as was done above. Next, see how you can leverage the clj.webdriver.taxi library to
interact with the browser. The documentation for this API can be found at https://github.com/
semperos/clj-webdriver/wiki/Taxi-API-Documentation.

Finally, there are several different ways to output the results from the execution of lein cucumber,
and a common one is the HTML report. By default, it will simply produce output using the prog-
ress plugin, but you can specify that it should also use the HTML plugin by typing lein cucumber
--plugin html:target/cucumber --plugin progress. If you then open the HTML report in a
browser, you should see a report like what is shown in Figure 4-3.

https://github.com
https://github.com/semperos/clj-webdriver/wiki/Taxi-API-Documentation

126 ❘ CHAPTER 4 TESTING

c04.indd 04/23/2016 Page 126

FIGURE 4-3

This output can then also serve as documentation that lives on with your project and hopefully
never becomes out of date, because it is generated every time you execute your Cucumber tests.

These two simple examples should give you a good taste of what you can do with Cucumber.
Unfortunately, we can’t cover every use case or bit of the API, yet there are entire books dealing
with this subject that do an outstanding job. Most of them are written to the Ruby or Java versions
of Cucumber, but with a little effort you can translate the information to Clojure.

Kerodon
One last framework to look at is the Kerodon (https://github.com/xeqi/kerodon) framework.
It’s similar to Cucumber, in that it allows you to do acceptance level testing through the browser,
but this time using Capybara instead of Selenium. Where they differ is that Kerodon is designed
with the developer in mind, and Cucumber is designed with the product owner or business analyst
in mind. If you don’t have a product owner, business analyst, or similar type of person to collabo-
rate on acceptance tests with, the overhead of writing Cucumber features may not make sense.

If you were to write a test to exercise the ROI calculator page similar to what we did in Cucumber,
you would end up with something similar to the following:

(ns fincalc.integration.roi-calc-test
 (:require [clojure.test :refer :all]
 [kerodon.core :refer :all]
 [kerodon.test :refer :all]
 [fincalc.handler :refer [app]]))

(deftest user-can-calculate-roi-on-stock
 (-> (session app)
 (visit "/")
 (has (status? 200) "page exists")
 (within [:h2]
 (has (text? "Enter a Stock Symbol to calculate ROI on...")
 "Header is there"))
 (fill-in :input.form-control "AAPL")
 (press :button)

https://github.com/xeqi/kerodon

Summary ❘ 127

c04.indd 04/23/2016 Page 127

 (within [:h2]
 (has (text? "Results") "made it to results page"))
 (within [:#initial]
 (has (some-text? "Stock price one year ago:")))
 (within [:#final]
 (has (some-text? "The latest close was:")))
 (within [:#roi]
 (has (some-text? "Calculated ROI")))))

As you can see, the tests themselves are very fi ne grained and can get a bit verbose. So, consider
abstracting some of the behaviors out to helper functions.

One thing to keep in mind when testing with Kerodon verse using Cucumber is how you don’t need
your application running when using Kerodon, because it doesn’t run through an HTTP server.
This allows you to use things like database transactions around your tests by leveraging fi xtures.
This will also make for faster execution times compared to using Cucumber, allowing them to run
as part of your automated continuous integration suite. However, since it’s not running through an
actual browser against a running application, it may not detect and report errors stemming from
issues specifi c to a web browser.

SUMMARY

 We’ve covered a lot of information in this chapter, empowering you to more confi dently test and
improve your code. You were introduced to some common situations you’ll encounter when trying
to test your application code, from simple isolated unit tests, all the way to full end-to-end tests
using both Kerodon and Cucumber.

The intent of this chapter was not to convince you to adopt any one testing methodology—whether
it be test fi rst, test last, or test during—but to instead show you how you can test your code more
effectively. Testing, just like development itself, requires mindful practice to become comfortable
and effi cient, but keep at it and it will become like second nature.

c05.indd 04/23/2016 Page 129

Reactive Web Pages
in ClojureScript

WHAT’S IN THIS CHAPTER?

 ➤ The value proposition of ClojureScript

 ➤ Defi ning reactive view components

 ➤ Modeling state and changes to state

 ➤ Styling, routing, and server communication

 ➤ Using workfl ow tools for accelerated development

 ➤ Leveraging mature libraries in your application

If you aren’t using ClojureScript to make web pages, you are missing out. This style of pro-
gramming is fast, fun, simple, and rewarding. And when I say fast, I mean really fast. It is
a quantum leap from any other style of programming. You really have to experience it to
 appreciate it.

In this chapter you create a project, build a page, and deploy it. You build a project manage-
ment tracking web page where users can create stories, change status, and track progress of
their project. Then the chapter covers the common libraries used to leverage ClojureScript as a
platform for developing useful solutions.

First take a broader look at what ClojureScript has to offer.

 CLOJURESCRIPT IS A BIG DEAL

Interest in ClojureScript among web developers is growing strong. The two most watched pre-
sentations from the 2015 Conj conference are about ClojureScript. There is good reason for
this attention: ClojureScript is eclipsing the current alternatives for building web applications.

5

Professional Clojure. Jeremy Anderson, Michael Gaare, Justin Holguín, Nick Bailey and Timothy Pratley
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

130 ❘ CHAPTER 5 REACTIVE WEB PAGES IN CLOJURESCRIPT

c05.indd 04/23/2016 Page 130

NOTE At the time of writing, “Om Next” by David Nolen had 8,429 views and
“ClojureScript for Skeptics” by Derek Slager had 7,705 views on the ClojureTV
YouTube channel.

ClojureScript is a perfect fi t for building reactive web pages. The language idioms are aligned with
the philosophy of the successful React framework from Facebook, which is proving to be a winning
approach to building rich and robust interfaces. The React philosophy is that there should be a cen-
tral app-state, functions that render from that state to HTML elements, and a process that automat-
ically propagates change to the browser. Change propagation occurs by calculating the difference
between the results of rendering with what is currently on the page. React determines the minimal
set of updates required to transition to the new view state and applies those updates. Reactive web
pages provide view model separation without the complexity of having to enumerate transitional
behaviors. The web pages are fast to build and avoid common errors associated with state manage-
ment and callback dependencies.

Reactive pages are unlike JQuery style pages. JQuery style pages update elements directly in
response to events. You can write ClojureScript in JQuery style, but you will not be getting nearly as
much leverage. Having the leverage of a reactive view/model relationship opens new opportunities
for creating interactive experiences for your users. When you embrace the React paradigm you get
the most out of your code. In the arena of single-page applications, ClojureScript React style domi-
nates Angular, Ember, Backbone, and React because of the expressive power gained by combining
Clojure with HTML.

The interactive development story with ClojureScript is especially compelling. Code is reloaded
into the browser as soon as you save the fi le you are working on. This is better than refreshing the
browser. Instead of your application being completely reset, you maintain state throughout the
development session. This allows better focus on the part that you are currently working on. You no
longer need to click through the application to check the change you just made. Even better, you can
set up a test page that displays your components bound to many different states, which is perfect for
verifying your interface without needing to click around. The combination of fast feedback and mul-
tistate testing facilitates an interactive path for development.

ClojureScript has a simple, stable syntax consisting of only data literals, function application,
destructuring, special forms, and macros. Expressions are concise, abstractions are functional, and
values are immutable.

ClojureScript compiles to JavaScript, has convenient interop capabilities, and you can use existing
JavaScript libraries with little ceremony. You have the full reach of JavaScript and can draw upon its
vast and rich ecosystem.

The ClojureScript compiler leverages the Google Closure Compiler and Library, which provides con-
venient access to a high-quality, full-featured, and well-maintained platform. Google Closure handles
many recurring concerns well, and it does so in a cross-browser-compatible way. You rarely need to
concern yourself about cross-browser behavior when writing ClojureScript, which is fantastic.

When you’re developing, source maps link from the minifi ed JavaScript back to the ClojureScript
source code. Modern browsers support source maps, so debugging is obvious. From reading the

A First Brush with ClojureScript ❘ 131

c05.indd 04/23/2016 Page 131

developer console you can see where the error is in the original ClojureScript source code rather
than in the compiled JavaScript.

In addition to having access to JavaScript libraries, you also gain access to many Clojure libraries.
ClojureScript is not compatible with Clojure at the platform level, but it is compatible at the lan-
guage level. Hence, many libraries are available in both Clojure and ClojureScript as the same code
base, with any platform-specifi c differences handled by reader conditionals. For example, you can
use Instaparse from both Clojure and ClojureScript.

Clojure and ClojureScript have a strong community and ecosystem. There are many simple and
powerful libraries to choose from, many tools to help your workfl ow, and plenty of blogs with
helpful tips. StackOverfl ow answers are quickly answered. The IRC and Slack channels are well
populated with helpful and friendly denizens. Furthermore, an increasing number of employers are
adopting Clojure/ClojureScript stacks.

One particularly intriguing capability inherited from the Clojure world is the ability to represent
communicating sequential processes using the core.async library. Wherever you have a callback,
you can put the result on a channel and write your logic as a sequential process consuming from the
channel. This style for coordinating asynchronous actions was popularized by the Go language, and
it’s now possible in the browser.

Defi ning modules is easily achieved by specifying a namespace to target to an output fi le. The
ClojureScript compiler automatically moves remaining code to a shared module. The Google
Closure Compiler ensures the modules get only the code they need. Thus, for very large projects you
are able to break up the artifacts as you see fi t to provide the best load times for your users.

A typical ClojureScript application is smaller than a typical JavaScript application because of
the code shrinking done by advanced compilation. Dead code is removed; live code is minifi ed.
Performance is great. The result is effi cient code. In JavaScript you have to deal with a quagmire
of build tools such as grunt, gulp, node package manager, yeoman, babel, bower, and brunch. The
good news is that you need only one easily installed build tool for ClojureScript: Leiningen. You
need to install Java, but you never have to directly interact with Java.

ClojureScript has been evolving rapidly over the past several years. Now the core tooling has sta-
bilized to provide a production-ready platform for developing reactive web pages. Meanwhile new
libraries continue to push the boundaries of what is possible. This is a great time to be adopting
ClojureScript. The JavaScript equivalents require learning and being locked into complex frame-
works, whereas ClojureScript libraries are small, simple, and unentangled. ClojureScript is a better
way to make interactive interfaces. The idioms, libraries, and tooling are robust.

You are one command line away from a fast and fun coding experience!

A FIRST BRUSH WITH CLOJURESCRIPT

It’s time to dive in and build a reactive website. The goal is to write a solution for tracking the status
of tasks and assigning people to work on them. You need Java, Leiningen, and your favorite text
editor. (We used Java 1.8.0_25 and Leinigen 2.5.3.) If you are new to ClojureScript, stick with your
existing code editor. It likely has syntax highlighting, which is all you really need. Don’t get hung
up on editor integrations or learning a new IDE and key combinations; stick with an editor that is

132 ❘ CHAPTER 5 REACTIVE WEB PAGES IN CLOJURESCRIPT

c05.indd 04/23/2016 Page 132

comfortable and familiar. You don’t need a REPL or anything fancy. Fast feedback comes directly
from the browser itself.

 Starting a New ClojureScript Project
Open a terminal and type lein new figwheel whip --
--reagent. Go into the whip project directory cd whip and examine
the fi les created with the tree shown in Figure 5-1.

You see a readme fi le, a project fi le, a style sheet, index.html, and
core.cljs source fi le. Type lein figwheel to start the process that
builds and notifi es the browser of fi le changes. Position your browser
on the left and navigate to http://localhost:3449. Wait until
you see the Successfully Compiled message in the terminal and then
reload the browser. You see the Hello World! page shown in
Figure 5-2, which indicates that everything is working so far.

FIGURE 5-2

 Getting Fast Feedback with Figwheel
Open the dev console in your browser. Open the core.cljs fi le from the source directory under
whip. Position your text editor on the right so you can see the code and your page side by side. Edit
the print string on line 6 of the source code to write a new message. The browser console logs the
output immediately (see Figure 5-3).

FIGURE 5-1

A First Brush with ClojureScript ❘ 133

c05.indd 04/23/2016 Page 133

FIGURE 5-3

The current state of your application is kept inside a ratom called app-state. This is a Reagent
atom, which causes your web page to be re-rendered whenever the app-state changes.

Note that defonce does nothing when evaluated if the var is already defi ned. So app-state is not
re-created on reload. It can only be updated by either code execution or refreshing the browser.
Refreshing the browser clears everything.

The on-js-reload function is called whenever new code is loaded from any namespace. You
can remove it. Instead, annotate whip.core with ^:figwheel-always, which causes this
namespace to be reloaded when any change is detected, not necessarily in this fi le. Forcing the
main namespace to reload on any change effectively re-renders the interface.

(ns ^:figwheel-always whip.core
 (:require [reagent.core :as reagent :refer [atom]]))

When we created the project with the lein command, we used the fi gwheel template. All it did
was include the fi gwheel plug-in in our project defi nition and enable fi gwheel in the default build.
Figwheel works by establishing a websocket from your page to the build process. When any source
or resource fi les change, the build process detects them. If they are source changes, recompilation
occurs, and the new JavaScript code is loaded. If they are resource changes such as CSS, they are
also reloaded. One of the great things about fi gwheel is that you really don’t need to know very
much about it at all! So long as it is confi gured in your project, your code and resources load in the
browser as you change them.

134 ❘ CHAPTER 5 REACTIVE WEB PAGES IN CLOJURESCRIPT

c05.indd 04/23/2016 Page 134

 Creating Components
Reagent components are functions that return HTML in hiccup form. Hiccup looks quite similar
to HTML, but it’s more compact. Hiccup forms are vectors where the fi rst element is the tag, which
may be followed by an optional map of attributes and then any children, which may be hiccup
forms or values.

Our generated core.clj contains an example because hello-world is a function that returns a vec-
tor representing an <h1> tag containing some text taken from the app-state:

(defn hello-world []
 [:h1 (:text @app-state)])

Edit the example to a complete example of what hiccup can look like:

[:h1
 {:id "stories"
 :class "stories main"
 :style {:font-family "cursive"}}
 "Whip project management tool"]

Here you can see several attributes have been set: the ID, class, and style. As these are common
attributes, there is a shorthand way for adding them that expands to the same HTML elements.

[:h1#stories.stories.main
 {:style {:font-family "cursive"}}
 "Whip project management tool"]

You see that the tag can be suffi xed with an optional single ID preceded by a hash and any number
of classes preceded by periods. If an ID is specifi ed it must come as the fi rst suffi x. Unlike jQuery
where IDs are commonly used to fi nd and modify elements, React style components rarely need
an ID because they are functions of state. Note that styles expand according to CSS syntax. So the
example expands to

<h1 id="stories" class="stories main" style="font-family:cursive">
 Whip project management tool
</h1>

In your browser, right-click the text and select Inspect Element. The code has produced DOM ele-
ments, just like normal HTML.

There are several other approaches to a component defi nition, and the most wide-
spread is Om. The concepts and syntax are very similar and straightforward, so it
will be easy to understand both.

A First Brush with ClojureScript ❘ 135

c05.indd 04/23/2016 Page 135

EXERCISE

Add an SVG element to your page containing a circle of radius 20 and color green
at location 40,40.

HINT

The HTML elements to create are

<svg><circle r=20 cx=40 cy=40 fill="green"></circle></svg>

Can you express the hiccup syntax equivalent to draw the circle on your page? https://devel-
oper.mozilla.org/en-US/docs/Web/SVG/Element has a reference of shapes you might like to use.
Making games and visualizations is very convenient because you can build up SVG elements with
conditional code.

 Modeling the Data
Now you have the basics in place to render your page. How are you going to model the project
management tracking solution? Before you worry too much about how to organize the code for the
project, instead focus on what data your application will be dealing with. A project will consist of
stories. Stories have a status, which will be visualized as a lane. Users can be assigned to stories.
Stories can be moved between lanes to indicate status changes (see Figure 5-4).

Project
title

description
team

Person
title

email

Story
title

description
status

owners
tags

FIGURE 5-4

You need to be able to add stories to your app-state. It’s useful to have some example data to work
with, so create some data. There are many options available for modeling data. We suggest that you
work with nested maps where possible.

 (defonce app-state
 (reagent/atom
 {:projects
 {"aaa"
 {:title "Build Whip"
 :stories
 {1 {:title "Design a data model for projects and stories"
 :status "done"
 :order 1}

https://devel-oper.mozilla.org/en-US/docs/Web/SVG/Element
https://devel-oper.mozilla.org/en-US/docs/Web/SVG/Element

136 ❘ CHAPTER 5 REACTIVE WEB PAGES IN CLOJURESCRIPT

c05.indd 04/23/2016 Page 136

 2 {:title "Create a story title entry form"
 :order 2}
 3 {:title "Implement a way to finish stories"
 :order 3}}}}}))

You need to reload the browser for this change to take effect because of the defonce. Take some time
to think about why this is the case. It is important to be mindful of how code reloading interacts
with existing data. The code reloading model is more powerful than simply refreshing the page.
Code reloading causes execution without re-creating the entire app-state. When you want to re-
create the entire app-state, reloading the page is the way to do it.

With this data in place you can spend some time drawing a basic list of the stories that are in the
project. Create a project-board component that can be an unordered list of stories:

(defn project-board [app-state project-id]
 (into [:ul]
 (for [[id {:keys [title]}] (get-in @app-state [:projects project-id :stories])]
 [:li title])])

This for expression calculates a sequence of list item elements, which are then put into the parent
unordered list vector.

Inside the whip-main component, nest the project-board component. To nest a component, place
it in a vector as though it was a regular function call surrounded by square brackets instead of
parenthesis:

(defn whip-main [app-state]
 [:div
 [:h1 "Whip project management tool"]
 [whip-content app-state]])

Great! Now you can see your stories in your example project.

Responding to Events and Handling State Change
It’s time to make the user interface more interactive. You want to be able to complete these stories,
so add a button to do that. You attach an event handler function to the on-click attribute. In the
project-board function, in the list item form, append the hiccup to create a button:

[:button
 {:on-click
 (fn done-click [e]
 (println "You clicked me!"))}
 "done"]

Note that on-click (kebab-case) is translated as the HTML attribute onClick
(camelCase). Attributes are mapped according to a defi ned list of React attributes
(https://facebook.github.io/react/docs/tags-and-attributes.html), so
where you might expect to be able to use :autofocus, instead :auto-focus is the
right keyword to use. React looks for the camelCase attribute autoFocus.

https://facebook.github.io/react/docs/tags-and-attributes.html

A First Brush with ClojureScript ❘ 137

c05.indd 04/23/2016 Page 137

It is helpful to start with the handler function printing to the console so you can confi rm events
are occurring as you expect. Click the Done button and check the console for the expected mes-
sage. Now that you know your clicks are registered, update the app-state instead of printing to the
console.

(swap! app-state assoc-in [:projects "aaa" :stories id :status] "done")

Now conditionally render the list item based upon its status. If the status is done, show the title in
a tag, which is HTML for strikethrough. Otherwise, show the title and the button to com-
plete the task. The list item contains quite a lot of code now, so pull it out into a component called
story-card.

 (defn story-card [app-state story-id {:keys [title status]}]
 [:li.card
 (if (= status "done")
 [:del title]
 [:span
 title
 " "
 [:button
 {:on-click
 (fn done-click [e]
 (swap! app-state assoc-in [:projects "aaa" :stories id :status]
 "done"))}
 "done"]])])

Notice that you don’t update the DOM directly.
Instead you are updating the app-state, and the interface
changes fl ow out from your functional defi nitions of
how to render app-state. This feels a lot like templating,
but without moustaches {{}} and with a more Clojure-
like syntax. The components are mostly data with some
code for conditionals and transformations. Why not use
a templating approach based upon HTML instead of
hiccup? There are options to do that, but we urge you to
persist with hiccup because it provides an excellent way
to mix code and data. Hiccup forms as data are much
more amenable to data transformations (see Figure 5-5).

 Understanding Errors and Warnings
ClojureScript has useful error and warning messages. As a general approach to locating the source
of errors you will be well served by following a scientifi c approach. You can make a hypothesis, do
an experiment, refi ne to a more precise experiment by removing possible causes, and iterate until
you fi nd the actual cause, or move on to a new hypothesis when all possibilities are exhausted. This
section covers how to get notifi ed of problems, and how to read common notifi cations.

Let’s step through some common debugging scenarios. At the top of core.cljs, add an obvious error
(+ "hello" 1) and save the fi le. You will immediately see in the browser a yellow popup showing
the warning. fi gwheel declines to load code that has warnings; it just displays what went wrong
(see Figure 5-6).

FIGURE 5-5

138 ❘ CHAPTER 5 REACTIVE WEB PAGES IN CLOJURESCRIPT

c05.indd 04/23/2016 Page 138

FIGURE 5-6

The source code fi le and line number are displayed in an overlay, and you can see the warning in the
console as well. Usually the warning message, fi lename, and line number are enough to identify the
problem. In this case it is clear that you should be passing numerical arguments to the addition function.

Let’s try something a little more egregious, (defn (inc 1)). This gives you a popup indicating the
problem (see Figure 5-7). The code cannot be compiled, so is treated as an error.

FIGURE 5-7

If you like to see warnings and errors in your editor, CursiveClojure provides inline error/warning
detection and highlighting.

Now let’s look at an error that is not detected at compile time.

(rand-nth (range 0))

Here you can choose a random element from an empty sequence. The code compiles just fi ne
because there is no non-empty type to enforce that the sequence argument to rand-nth contains a
value. So fi gwheel will load the code, but when it is running you get a runtime error because there
are no items to choose from. Expand the stacktrace by clicking the triangle at the start of the error
message (see Figure 5-8).

FIGURE 5-8

A First Brush with ClojureScript ❘ 139

c05.indd 04/23/2016 Page 139

The important thing to note about the stacktrace is that again you have the fi lename and line num-
ber to guide you, but you have to do a little more work to identify the root cause. One confusing
element is that there are four lines that occur in core.cljs; however, these are actually different fi les.
The fi rst three lines are in ClojureScript itself, and only the last line is from the source fi le. You can
mouse over the fi lenames to see the full path. We recommend keeping very little code in your core
.cljs namespace, so that you can mentally ignore most lines that contain core.cljs. In this case those
lines do provide valuable hints; that the error occurred while calling rand-nth, trying to get an ele-
ment from range.

We highly recommend renaming core.cljs to main.cljs. You will save yourself a world of confusion
when looking at stacktraces, and it really is the main entry point for the browser.

Because of JavaScript restrictions, the compiled code namespaces contain $ and _ where you might
expect . or / and -, but the names make it fairly obvious what is going on. However, the fourth line
containing the problem in the code is quite opaque. Say instead that you put the code in a function
(see Figure 5-9).

(defn choose []
 (rand-nth (range 0)))
(choose)

FIGURE 5-9

Now you can see that the problem is in the whip.core/choose function. The function names are
quite useful when debugging, so you should always give functions names, even when they don’t
require them. For example, when creating event handlers on a component, instead of coding them
as (fn [e] ...), write (fn click-ok [e] ...) and then if an error is thrown you will have a far
more readable stacktrace.

The details on where the error occurs are only meaningful if you are building source maps. In the
current project.clj cljsbuild confi guration, the “dev” build creates a source map, because it is not an
optimized build. But the “min” build is set to :optimizations :advanced, so no source map is
created. This is a sensible default, avoiding any source level identifi ers being revealed in production
releases. You can enable source maps for advanced compilation as well. Indeed it is sometimes nec-
essary to create a source map enabled minifi ed build, since it is pretty much the only way to pinpoint
a missing extern, thus causing the advanced mode build to throw an error.

To enable source maps for the “min” build, add the confi guration :source-map “resources/public/js/
compiled/whip.js.map” :output-dir “resources/public/js/compiled/min.”

To run the minifi ed build, go to the terminal and cancel the current build process, then run
lein do clean, cljsbuild once to run the advanced mode compilation. Then you need to open
resources/public/index.html (see Figure 5-10).

140 ❘ CHAPTER 5 REACTIVE WEB PAGES IN CLOJURESCRIPT

c05.indd 04/23/2016 Page 140

FIGURE 5-10

The minifi ed build is much slower than the dev build, so cancel the minifi ed build and return to
using lein figwheel.

There is plenty of feedback about what went wrong, but how do you fi x it? Print debugging is very
convenient when you have code reloading on your side. As soon as you save code to print a value,
you will see it in the console. Your code needs to explicitly enable printing to the console by
calling (enable-console-print!), which we already do in core.cljs. However, let’s move that code
to a-init.cljs and require it from core.cljs. So long as it is the fi rst require, other namespaces will be
able to print as well. This is convenient because you may want to drop print statements around while
debugging. A-init should stay at the top, even after alphabetically sorting. You can also set up the build
to later remove a-init.clj from the production build. All of the print functions of Clojure will now work.

Let’s add (prn "RANGE:" (range 0)) to the source code. Upon saving you will see RANGE: (),
indicating an empty sequence. Typical errors arise from misunderstanding the shape of data. For
example, you might use the wrong keyword, or expect a map but get a sequence. So simply printing
out the data that is being passed through to failing functions is often useful.

Keep in mind that (doto x (prn "*****")) is a handy way to spy on expressions. It will return the
value of x after printing it with some stars to draw your attention. You can wrap (doto ... (prn ...))
around existing expressions to see them as the code executes, and remove the doto later by raising
the expression using structural editing in Cursive or paredit in Emacs.

If you are working with JavaScript objects, it can be convenient to use JavaScript’s built in (js/
console.log x) function because it will render a nice object explorer in the console. If you are
working with large nested maps, use (cljs.pprint/pprint m) to see a nicely formatted output on
the console.

The ClojureScript compiler’s designation of what is a warning and what is an error is somewhat
arbitrary, and has a permissive nature inherited from JavaScript. As such, it is important to be atten-
tive to warnings, which will be your main source of clues as to what is going wrong when debugging
is required. We encourage you to treat warnings as errors, because in ClojureScript, warnings are
almost always errors.

To treat warnings as errors in the build, you need the build process to return an error code when
there are warnings. To do this you can add a custom warning-handler to the project.cljs fi le under
the :cljsbuild section. Now the build system will be able to recognize and stop problems before
they make it into releasable artifacts.

 :warning-handlers
[(fn treat-warnings-as errors [warning-type env extra]

A First Brush with ClojureScript ❘ 141

c05.indd 04/23/2016 Page 141

 (when-let [s (cljs.analyzer/error-message warning-type extra)]
 (binding [*out* *err*]
 (println "WARNING:" (cljs.analyzer/message env s)))
 (System/exit 1)))]

Namespace Layout
ClojureScript and libraries like Reagent do not prescribe any particular namespace layout for your
code. However, some structure is useful for navigating your source code and isolating areas of
responsibility.

Conceptually you have a global app-state, view components, and state transition functions. Let’s put
the component rendering code in a “view” folder. You’ll have separate namespaces for the navbar,
project, projects list, and story views. The app-state and state transition functions go in the model
namespace, and be sure to leave the route dispatching in main.

A reagent component is a function that returns a hiccup vector. So let’s make a separate function for
each of those three components. Reagent components are nested in vectors. So instead of calling the
components directly by placing them inside parentheses, place them inside square brackets.

All of the namespaces are a nice comprehensible size; around 50 lines of code. It is obvious where
the rendering code is, and how it relates to the user interface. And the state manipulation is isolated
away from the rendering. Main contains the bare bones required for stitching together the views,
model, and routing.

Styling
To style markup you can use CSS or inline styles. Inline styles are standard attributes of HTML.

Where you might write an inline style in HTML as:

 Whip

You express this in hiccup as:

[:span {:style {:font-family "fantasy"}} " Whip"]

Let’s create a navbar and apply some styling.

(defn navbar [app-state]
 [:nav
 [:ul.nav-list
 [:li
 [:a
 {:href "#/"}
 [:img
 {:src "img/logo.png"}]
 [:span
 {:style {:font-family "fantasy"}}
 " Whip"]]]
 [:ul.nav-list
 {:style {:float "right"}}

142 ❘ CHAPTER 5 REACTIVE WEB PAGES IN CLOJURESCRIPT

c05.indd 04/23/2016 Page 142

 [:li
 [:a {:href "#/"} "About"]]
 [:li
 (if-let [username (:username @app-state)]
 [:a {:href "#/settings"} username]
 [:a {:href "#/login"} "Login"])]]]])

Here you see a mix of both HTML and hiccup. The ul elements have a nav-list class on them that
comes from style.css, which is included from index.html.

.nav-list {
 list-style-type: none;
 margin: 0;
 padding: 0;
 overflow: hidden;
 background-color: #383838;
}

In contrast, the span containing the application named “Whip” has an inline style specifying a font-
family “fantasy.” It is up to you how much you want to rely on classes or inline styles. A good rule
of thumb is to build up with inline styles and convert them to classes as you discover good abstrac-
tions for what they are trying to accomplish. It is rare that you know what the nesting and abstrac-
tions will be in advance. You can choose to use an established set of CSS classes. For instance you
might include bootstrap and leverage their many styles (see Figure 5-11).

FIGURE 5-11

Form Inputs and Form Handling
Forms and inputs are represented in hiccup in the same way as static HTML elements. The dif-
ference is that you can use the values that the user provides to the input elements. There are two
approaches to getting the values of input elements:

 1. Listen to the form submit event. The event target is the form itself, which contains the input
elements and their current values.

A First Brush with ClojureScript ❘ 143

c05.indd 04/23/2016 Page 143

 2. Listen to an element’s on-change event. The event target contains the element, which has the
new value of the input.

Before examining the approaches in detail, let’s think about state management. For the Whip tool,
you want the capability to add stories. You will have a form that allows users to edit the title,
description, and add members. You should use the fi rst approach and simply act on the data when
the user submits their changes. There is no use for the intermediary values as they are typed, so you
should leave their state management entirely to the input elements themselves. The sample applica-
tion code will not track the form state at all. The global state will be updated once when the submit
event is processed.

Now, consider adding a search fi lter. In this case you want to provide immediate feedback to the
user as they type their search query. So you should use the second approach and listen for changes
to the search box input, instead of waiting for a submit event. The global state will be kept in sync
with whatever the user types in the search box. We describe this state as global, because the fi lter-
ing will be done above the search box’s scope. The code that renders the stories we are fi ltering must
know the current search term.

Finally, let’s think about form validation. Say you want to enforce some constraints such as “two
stories cannot have the same title.” And you also want to highlight in red the title when it breaks
this rule, even before the submit button is pressed. This rule can be contained inside the scope of the
form as local state. You don’t need this information in other parts of the application. In Reagent, a
common way to handle local state is to close over a ratom (see the second form in the Reagent sec-
tion of this chapter). Track the current rule state for every rule, and highlight elements that have
broken rules. The submit button can be activated if there are no broken rules. To achieve this you
need to listen to the on-change events to apply the rules, and to the submit event to update the appli-
cation with the story. Keep in mind that HTML has input attributes to restrict user input, which for
basic use cases are often preferable to custom rules.

Let’s build an add story form. You need an event handler that can gather the current values in all the
input elements in the form when a user clicks “submit.” Attach to the form on-submit event, rather
than a button on-click event, because the on-submit event target is the entire form, whereas the but-
ton’s on-click event target is just the button itself.

[:form {:on-submit (fn [e])}
 [:input {:type "submit"}]]

You will want to prevent the form from performing a POST directly to the server. If you allow
the normal submit process to POST, the form to the server will cause the result page to be loaded.
Instead, let’s control the view. To prevent a form POST, call preventDefault on the event when
handling it in the on-submit handler.

 (defn add-story-form [app-state project-id status]
 [:form
 {:on-submit
 (fn add-story-submit [e]
 (.preventDefault e)
 (model/add-story!
 app-state
 project-id
 (forms/getValueByName (.-target e) "story-title")

144 ❘ CHAPTER 5 REACTIVE WEB PAGES IN CLOJURESCRIPT

c05.indd 04/23/2016 Page 144

 status))}
 [:input
 {:type "text"
 :name "story-title"}]
 [:input
 {:type "submit"
 :value "Add story"}]])

To get the current values from the inputs, use the getValueByName helper method from
goog.dom.forms in the Closure Library. There is also a toMap function, which is convenient if
you have a large form that you would like to interpret as data. The target of the event is the form
itself, so you don’t need any other external references to the form or its elements to look up their
values. Setting the name attribute on inputs allows you to access their values. You can get values
by the id or the name, but bear in mind that ids need to be unique to the entire page, whereas
names only need to be unique within the form. Using names is usually the right choice.

When the user is typing changes to a title, do you want the new title to be instantly refl ected in the
global app-state? No, you want to follow the idiom of current edits being transitory until such time
as they are submitted. So there is no need to listen to change events, and you can focus on just the
form submit event.

What about if you want to edit an existing story instead? You would want to pre-populate the form
with the current values. It may seem tempting to provide the values when rendering:

[:input {:type "text" :name "title" :value "Some story title"}]

But this has a severe limitation; the user can’t change the text in the input anymore! The user is typ-
ing, but as soon as the text changes, the difference is detected, and the DOM gets reset back to the
value specifi ed by the render function. You can close over a local atom to store the transient title.
The atom can be updated by the on-change event, and thus rendered with the new value, which
matches the current input. This works, but is completely unnecessary. Instead, you should use the
defaultValue attribute.

[:input {:default-value "Some story title"}]

This is a standard HTML input attribute that provides the initial value for an input. It will
populate the value of the element when it is mounted into the DOM. Be sure to only render the
input when you know what the default value should be. You want to avoid rendering an element
with a blank defaultValue, then updating it, because this will have no effect. For checkboxes use
defaultChecked. For options within a select element, use defaultSelected.

Now let’s look at the case where you do want to modify global app-state as the user types. Let’s
implement a search box. The main difference is that you don’t need a submit button or a form at all,
you just need an input. Bear in mind that HTML is very permissive, so while your page will work
without a form, strictly valid inputs should occur inside a form. Feel free to wrap this input in an
empty form, but if you do, you will still need to handle and suppress the submit event as the user
can press enter to submit a form without a submit button.

[:input {:type "text" :on-change (fn [e] (prn (.. e –target –value)))}]

A First Brush with ClojureScript ❘ 145

c05.indd 04/23/2016 Page 145

When you type in the search input box, the console prints out the value of the input element, which
is the target of the event. You can see the search term printed as soon as you type it. Instead of print-
ing it, let’s update app-state instead:

(swap! app-state assoc :search-term (.. e –target –value))

Now when you render the stories, you can fi lter by the search term:

(defn filter-stories [stories search-term project-id status]
 (filter
 (fn filter-match [[id story]]
 (and (= (:project-id story) project-id)
 (= (:status story) status)
 (story-search-match search-term story)))
 stories))

State management is not limited to forms, but it is something you do need to think about carefully
when working with user inputs. How you manage state can greatly affect the user’s experience. Losing
state unnecessarily, or not following the edit/apply paradigm, can be very frustrating to users.

The defi nitions of global and local state are ambiguous, but the terms come up often when discuss-
ing how and where components get and store data. Data can be held in HTML elements, in React
properties, passed in to the render function, and closed over or read from a global def. That is a lot
of places! The distinctions about how you access them are subtle, so it is helpful to be able to relate
state management concepts to the concrete examples presented. Understanding them enables you
to reason about when to use which approach, and the behavior it will produce in your user interac-
tion. As much as possible, leave state in the HTML elements and rely on data passed in to the render
function.

Avoid making assumptions about global state in your components; instead contain interactions
with global state in model centric namespace. This is the fl exible and isolated approach. It is simple
in that components do not directly interact with each other, but can still effect coordinated state
change. Keeping global state interaction out of the components allows you to replace your data rep-
resentation without rewiring all your components. It may initially seem like a bit of a chore to write
a model function that just does a swap!, but as your data model matures and changes you will fi nd
having all data shape related code co-located makes understanding your application much easier.

Navigation and Routes
The sample Whip application has three main views: the list of projects, a project’s stories, and a
story details view. In order to render different pages dependent on the state, you need to update the
whip-content function to conditionally render the relevant view. You can choose to set a view value
in the app-state and have a case statement to choose which component to render. Setting the view
value will cause a different view to show.

Browser navigation is based around URLs and back/forward. In order for users to be able to have
a comfortable navigation experience, you need to hook into the browser’s navigation mechanism.
Fortunately this is easily accomplished, thanks to the Closure library.

146 ❘ CHAPTER 5 REACTIVE WEB PAGES IN CLOJURESCRIPT

c05.indd 04/23/2016 Page 146

(doto (History.)
 (events/listen EventType/NAVIGATE model/navigation)
 (.setEnabled true))

The goog.History class allows you to listen to navigation events.

(defn navigation [event]
 (swap! app-state assoc :route (.-token event)))

The listener needs to record the token of the event. The token is the text after the # anchor in a
URL, which can be used for linking.

You can dispatch to the appropriate component directly based upon the string. This indeed works
fi ne for basic routes, but you can access some very useful features by using a routing library to parse
an anchor # tag appended to the site URL. For example, let’s consider the story-details view. We
want to pass a story-id to determine which story to show. You can write some parsing code to fi gure
out the values that you need from the URL string, but it would be better to leverage a library that
provides a well thought out abstraction for routes.

There are many good libraries to help route a string, but let’s use Bidi. Bidi defi nes routes as data,
works in both Clojure and ClojureScript, and is bidirectional (you can build routes as well as parse
them). The important thing to keep in mind is that this type of routing is exactly the same sort of
string pattern matching that occurs when you write a server side route, but the big difference is that
we will be dispatching on the string after the # anchor.

There is nothing magical about the # in a URL, which is a standard HTML mechanism for linking
to an element inside a page. It is called the fragment identifi er and tells a browser to open a page,
but moves the view to the element with the id specifi ed after the # symbol. This is how you link to a
specifi c paragraph on a web page. However it is a common technique in single page applications to
use the fragment identifi er for routing instead of providing an element with the id. It is convenient
because you can use it to link to a different state of the same page. Page fragment identifi ers are
never passed to the server on page requests; they exist only in the browser. So the server will always
serve the same page, regardless of what follows the # symbol.

Bidi routes are expressed as nested vectors. You can use maps instead, but we encourage you to
use the vector notation. The map version does not guarantee the order in which the rules will be
applied. The syntax is [pattern matched], where matched can be a result, or recur into another
vector.

 (def routes
 ["/"
 [["projects" projects/projects-list]
 [["project/" :project-id] project/project-board]
 [["story/" :story-id] story/story-details]]])

The routing root context is /. You will match against “projects” and return the projects-list
component. You will next match against “project/project-id” and return the project-board compo-
nent. Finally, you can match against “story/story-id” and return the story-detail component. To use
these routes call (bidi/match-route routes route), where route is the string you are matching,

A First Brush with ClojureScript ❘ 147

c05.indd 04/23/2016 Page 147

and routes is the data defi ned above. The result of match-route is a map containing a handler and
route-params. The handler will be the last value in the route vectors, which is a component func-
tion. The route-params are the captured key value pairs containing project-id or story-id.

(defn whip-content [app-state]
 (let [route (:route @app-state)
 {:keys [handler route-params]} (bidi/match-route routes route)]
 [(or handler projects/projects-list) app-state route-params]))

We match against the routes, and then render whichever component matches. You can have a default
in case the user types an unknown URL. The routed components get passed the route-params as a
map containing the additional id they need to render a specifi c story or project. As you can see there
is a regular structure here that extends nicely to handling multiple arguments and optional argu-
ments as well.

Routing is very powerful and concise, so it warrants contemplation. But the principles are very simple:

 1. Hook up a function to the browser navigate event.

 2. Record the token (string after the # fragment identifi er) of the URL.

 3. Dispatch to the appropriate component function on the token.

 4. Use a routing library to succinctly defi ne string patterns to match to component functions.

HTTP Calls: Talking to a Server
The goal is for teams of people to interact with the sample project tracking system and see each oth-
er’s changes. In order to accomplish this you need central storage of the data. Thus, you need a web
app to communicate with a backend server. This can be done with HTTP requests or WebSockets.

An important restriction on HTTP requests made from JavaScript in a browser is that the browser
can only communicate with the same host that served the page. This is called the same-origin policy.
A resource may only be accessed by the same scheme (http or https), from the same hostname
(domain where the page is hosted) on the same port. Your page can only make requests to the server
hosting it, so you can proxy your page requests. When your page requests resources from your host,
they can be forwarded to the third party.

There is a standard way to allow access called Cross-Origin Resource Sharing (CORS), where the
server adds a header explicitly allowing an origin access. This means you can allow access from
JavaScript on a page that you host from one server to another service running on a different port or
host that you control. But you can’t grant your JavaScript access to third party hosts. It is possible
to provide a wildcard to allow everyone access to your service, but popular service providers rarely
do. In practical terms, this means that calling the Twitter API directly from JavaScript hosted on the
Whip website is not possible.

It is a common mistake to build a ClojureScript project and host it on localhost:3449 by running
fi gwheel, and then run a Ring service in a separate project hosted on localhost:8080 and try to make
calls to this service. This will not work, because of the same-origin policy. So the easiest approach

148 ❘ CHAPTER 5 REACTIVE WEB PAGES IN CLOJURESCRIPT

c05.indd 04/23/2016 Page 148

when starting out is to host the service code in the same project. This is easily achieved by supplying
a ring handler to the fi gwheel confi guration, so that the page, the JavaScript, and the services are all
hosted from the same port.

To integrate with third party APIs, you can proxy a call to the server to the third party server. In
such a scenario, the browser loads a page from the Whip website, which runs JavaScript that sends
requests to the Whip host, which then makes a request to the third party server, and passes the
result back to the browser when it arrives.

Another approach to getting around the same-origin policy is JSONP, which is a common way to
include a script from a third party site, which will deliver a JSON object. This relies on the third
party exposing this method. For example, the Gravatar API allows JSONP requests, so you can
make them from ClojureScript using goog.net.Jsonp from the Closure Library.

(defn member-details [email]
 (doto (Jsonp. (str "//www.gravatar.com/" (md5-hash email) ".json"))
 (.send
 nil
 (fn profile-success [result]
 (model/set-member! model/app-state email
 (with-out-str (pprint/pprint ((js->clj result) "entry")))))
 (fn profile-error [error]
 (model/set-member! model/app-state email "No profile")))))

The Gravatar API allows you to look up profi le information of users by making a request to
https://www.gravatar.com/HASH.json, where HASH is calculated by taking an email address,
trimming surrounding whitespace, forcing it to lower-case,
and taking the md5 hash. You can use the result in the
“title” of the member component to make a tooltip that
shows more information about the user (see Figure 5-12).

For now, you can call a static endpoint served from a
fi le to avoid the need to create and host a server process.
Create a fi le data.edn under resources/public and put
some data in it:

{:foo "bar"}

Check that the fi le is being served by navigating to
http://localhost:3449/data.edn. Let’s add some
code to make the request. Add [goog.net.XhrIo :as
xhr] to the namespace :require form, then use xhr/send
to make the request.

(xhr/send "data.edn"
 (fn [e]
 (prn (.. e -target getResponseText))))

The most common way to make requests is cljs-http. Add [cljs-http "0.1.39"] to the
 dependencies in project.clj and restart the fi gwheel process in the terminal to pick up
the new dependency.

FIGURE 5-12

http://www.gravatar.com
https://www.gravatar.com/HASH.json

A First Brush with ClojureScript ❘ 149

c05.indd 04/23/2016 Page 149

(:require
 [cljs.core.async :refer [<!]]
 [cljs-http.client :as http])
 (:require-macros

[cljs.core.async.macros :refer [go]])

(go (let [response (<! (http/get "data.edn"))]
(prn (:status response))
(prn (:body response))))

Cljs-http is a nice way to manage HTTP requests. It uses core.async channels to deliver its results.
For now, all you need to focus on is that http/get and http/post calls should occur inside a go
form, and the result is a channel that can have its result read with <!.

EXERCISE

Call some service endpoints from this ClojureScript application.

HINT

Add {:ring-handler server/handler} to the figwheel confi guration in project.
clj, and co-locate the code from both projects.

When it comes to WebSockets, Sente is a fantastic library to establish a persistent bi-directional link
between the client and server. An example is beyond the scope of this book, but we highly recom-
mend using it when you need to stream information. The abstraction fi ts very well with reactive web
pages. It is very convenient to be able to push patches of a data model over the wire and apply it at
the other end.

Drag and Drop
You can attach drag and drop handlers by adding attributes to the story card.

{:draggable "true"
 :on-drag-start
 (fn card-drag-start [e]
 (.setData (.-dataTransfer e) "text/plain" story-id)
 (set! (.. e -dataTransfer -dropEffect) "move"))}

And attributes to the columns.

{:on-drop
 (fn drop-on-column [e]
 (.preventDefault e)
 (let [story-id (.getData (.-dataTransfer e) "text")]
 (model/set-story-status! app-state story-id status)))
 :on-drag-over
 (fn drag-over-column [e]
 (.preventDefault e)
 (set! (.. e -dataTransfer -dropEffect) "move"))}

150 ❘ CHAPTER 5 REACTIVE WEB PAGES IN CLOJURESCRIPT

c05.indd 04/23/2016 Page 150

 Publishing
It is time to publish the web page. Github Pages is an easy way to get code online. Create a new
Github repository, “git init” for the project, and commit and push all of the fi les. To publish the
built version you need to create a branch called gh-pages. Anything in this branch will be hosted
at <username>.github.io/<project>, so it should contain an index.html and the compiled
JavaScript.

This script creates a clean minifi ed build, and then makes a fresh gh-pages branch containing only
the fi les in resources/public, where the index.html and compiled code are. Replace <username> and
<project> with your Github username and project name. Put these steps into a deploy.sh, and use
this script to deploy.

#!/bin/bash
set -e
lein do clean, cljsbuild once min
cd resources/public
git init
git add .
git commit -m "Deploy to GitHub Pages"
git push --force --quiet "git@github.com:<username>/<project>.git" master:gh-pages
rm -fr resources/public/.git

Navigate to <username>.github.io/<project> to see your page. The deployed version from the
book is located at http://timothypratley.github.io/whip.

There are many good hosting options besides Github, and the steps to deploy are always straight-
forward. Push the resource/public directory containing the HTML, styles, images, and compiled
JavaScript to the hosting platform.

When deploying with a backend you may choose to structure your project such that the backend
and frontend code live in the same project. For example, you might have the Clojure Ring server
code side-by-side with ClojureScript user interface code. This can be quite convenient for develop-
ment. For deployment, the resources get can be wrapped up in the same WAR fi le with the service
code. There is one easy step to push the war to a Tomcat container or something similar.

For large applications consider separating the ClojureScript project from the backend service. The advan-
tages of having separate projects are subtle but substantial. Dependency confl icts are avoided. Building
the browser artifacts separately opens up more options for server confi guration. Testing is often easier to
reason about where a clear division has been made between the client project and the service project.

One option to consider is presenting a consistent routing layer using Nginx to avoid the CORS situ-
ation, and a reverse proxy to underlying services running on different hosts and ports. In this way
you present a single hosting entry point, but have control over how the services are confi gured inter-
nally. Only embark upon fi ne-grain routing if you truly need many services.

It is good to be aware of the ring-cors middleware library, which allows you to very easily wrap a
handler with the necessary OPTIONS request handling to allow cross-origin requests. Using this
library you can use multiple hosts without a routing layer, which can be handy for projects where
co-hosting the service and HTML artifacts is not desirable due to hosting cost structures, or the
desire to use a CDN for HTML artifacts.

mailto:git@github.com:
http://timothypratley.github.io/whip

Reagent in Depth ❘ 151

c05.indd 04/23/2016 Page 151

Ultimately your project structure will be guided by your desired deployment architecture. Clojure and
ClojureScript work very well with many popular hosting options and architecture confi gurations. There
is plenty of fl exibility in the deployment unit choice and how deployment units should communicate.

 REAGENT IN DEPTH

At this point you have at your disposal all of the tools necessary to build and deploy a fully featured
interactive webpage. It is time to expand your horizons and examine some more advanced abstrac-
tions that are available. Let’s start with a deeper dive into Reagent’s capabilities.

Break down exactly what is happening in a Reagent application:

 1. Create global state as a ratom:

(def app-state (reagent/atom {:title "An example story title"}))

 2. Create component functions:

(defn story-card [title]
 [:div "Story: " title])

 3. Defi ne a main component that uses global state and passes down values to children states:

(defn main-view []
 [story-card (:title @app-state)])

 4. Hook into the React system to make changes to the UI:

(reagent/render-component [main-view] (dom/getElement "app"))

Reagent components are functions. You write functions to render a view from an app state. React
renders to a virtual DOM, diffs with the existing DOM, and updates only what has changed
into the live DOM. Components that deref a reagent atom (ratom) will be called when the ratom
changes. The component functions produce new elements, which are compared with the existing
DOM. A set of minimal changes will be calculated and applied to the live DOM to make it match
exactly the result of component rendering.

Reagent components can be written in three forms: a function that returns a vector, a function that
returns a component, or a function that returns a React class.

Form 1: A Function That Returns a Vector
The fi rst element in the vector is either an HTML tag or a component. Components are followed by
arguments to pass to the component when it is invoked. Refer to the “Creating Components”
section for the full description of what Hiccup can represent.

(defn story-card [title]
 [:div "Story " title])

(defn main []
 [story-card "world"])

152 ❘ CHAPTER 5 REACTIVE WEB PAGES IN CLOJURESCRIPT

c05.indd 04/23/2016 Page 152

This fi rst form is the most common way to defi ne a component. It is concise and elegant, and the
syntax is regular ClojureScript. We aren’t using any libraries at all. Reagent can consume this data
to create components and hook them into the React framework.

Hiccup is expressed as data, which introduces no new words to learn in order to create elements,
call components, format strings, and so forth. Data has better editor support than string templating,
making it easier to type and format. Also, it is impossible to miss a closing HTML tag in Hiccup.

The result vector must contain a fi rst element that is either a tag or component. Beware that return-
ing a vector of several divs is not a valid Reagent component.

(defn bad []
 [[:div] [:div]])

But nesting several divs inside a parent div is valid.

(defn good []
 [:div [:div] [:div]])

Why put components in vectors instead of calling them directly? In fact calling them by using paren-
theses instead of braces works just fi ne. The problem with direct function calls is that we don’t want
every view recalculated during the render phase, only views that depend on state that has changed.
Reagent takes care of this. When you use a vector instead of a function call, it allows Reagent to
only render sub components in response to changes in ratoms that they depend on, because immedi-
ate execution has not been forced.

Form 2: A Function That Returns a Component
Consider a situation where you need to perform some initialization on a component. Perhaps you
want to be able to add stories directly from the project board view into any of the columns repre-
senting status. Having an add story form at the bottom of every column would be visually noisy.
Instead, the add story form could be brought up by clicking a button (see Figure 5-13).

FIGURE 5-13

A component can be defi ned as a function that returns a function. Use this form to close over a
ratom fl ag that indicates whether the user is adding a story or not. The fl ag will be initialized once.
The component will re-render when the fl ag changes.

Reagent in Depth ❘ 153

c05.indd 04/23/2016 Page 153

(defn maybe-add-story-form [app-state project-id status]
 (let [adding? (reagent/atom false)]
 (fn a-maybe-add-story-form [app-state project-id status]
 (if @adding?
 [add-story-form app-state project-id status adding?]
 [:button
 {:on-click
 (fn add-story-click [e]
 (swap! adding? not)
 nil)}
 "Add a story"]))))

The component here is returning a function, not a vector. The outer function is called once when the
component is fi rst created. The inner function is called whenever the arguments or a ratom that it
depends on changes. The inner function returns a Hiccup vector.

Be extra careful to ensure that the inner function has exactly the same parameters as the outer func-
tion. It is easy to forget an argument or typo it, causing the outer functions argument to be used in
the inner function. Such an error can be confusing, because the outer argument is never updated.
Keep this in mind when refactoring.

Form 2 is useful when you need local state, because you can use the “let over lambda” style close over a
local ratom instead of relying on global state. The beauty of a local ratom is that each component has its
own state encapsulated. However, you can instead decide that you only want one add story form active
at any one time. In that case you need a shared ratom that indicates which column the form is currently
in. We might choose to put that state in the global app-state, or in the project-board component.

Making a strong distinction between local and global state is somewhat illusory. Don’t fret too
much about trying to localize state. But do be careful to separate display concerns from data model
concerns such as transformation, as this has a direct impact on the fl exibility of your code.

Form 3: A Function That Returns a Class
Reagent provides the create-class function to expose the underlying React lifecycle methods.

As a motivating example of how this can be useful, consider a case where you need to perform some
task after the element is mounted. You want to make the project title editable, so you can use a similar
approach to the add story form; however, there is a wrinkle. When you click to edit the project title,
autofocus puts the cursor at the start of the input box. For editing we prefer the cursor to go to the end.
In order to achieve this you need to call setSelectionRange after the input is mounted into the DOM.

(defn project-title-input [title]
 (reagent/create-class
 {:display-name "project-title"
 :component-did-mount
 (fn project-title-input-did-mount [this]
 (doto (.getDOMNode this)
 (.setSelectionRange 10000 10000)))
 :reagent-render
 (fn project-title-input-render [title]
 [:input
 {:default-value title

154 ❘ CHAPTER 5 REACTIVE WEB PAGES IN CLOJURESCRIPT

c05.indd 04/23/2016 Page 154

 :required "required"
 :auto-focus "autofocus"
 :name "project-title"}])}))

Pass a map to create-class that contains the lifecycle methods you wish to specify. Now, when the
component is mounted into the DOM, you call setSelectionRange on the DOM node. Note that
you do not need to rely on an element id lookup, as the component-did-mount lifecycle method
receives the component as the fi rst argument.

The lifecycle methods are useful for interop with JavaScript libraries that need to interact with the
element directly (threejs, google charts, select2). For example, you can subscribe to a window resize
event in componentDidMount and unsubscribe in componentWillUnmount. The resize event handler
can change the renderer for a threejs webgl scene to account for a new canvas size. You can read
about other lifecycle methods in the React documentation; they are rarely useful for a Reagent appli-
cation and should be avoided.

There is an alternate style of form 3, which is to attach the map of lifecycle methods as metadata
to a function instead of calling create-class. Avoid the metadata style, as metadata provides no
syntactic advantage. It is common to attach metadata to a var in Clojure, but Reagent looks for the
metadata on the function itself. Avoid this confusing behavior. When you need to use a class, create
it explicitly.

Sequences and Keys
Up to this point we have been creating sequences of elements by putting them into a parent vector.
But this is not always the best approach. Consider a list of story cards.

(into
 [:ul]
 (for [[story-id story] stories]
 [story-card app-state story-id story]))

The DOM elements get created with four stories.

 Implement a way to finish stories
 Build a todo list
 Draw cards to represent stories
 Create lanes to represent story status

And then the app-state is updated such that the stories are reversed in order.

 Create lanes to represent story status
 Draw cards to represent stories
 Build a todo list
 Implement a way to finish stories

In the absence of any special information, the number of DOM updates required to transition
between the forward list and reverse list is relatively large. Every element would have its

Reagent in Depth ❘ 155

c05.indd 04/23/2016 Page 155

contents replaced. However it is obvious to us that nothing really changed except the order. The
most effi cient update is to re-order the elements, not to re-create their contents.

For React to be able to re-order elements instead of blindly updating them it needs some concept of
identity. We assign a unique key to each element, and React uses this to do re-ordering effi ciently.

(doall
 (for [[story-id story] stories]
 ^{:key story-id}
 [story-card app-state story-id story]))

Now the elements are re-ordered instead of being changed in place. The same end state is
achieved with fewer updates to the DOM. Note that doall forces a lazy sequence evaluation. Lazy
sequences that deref ratoms are not allowed.

If the list of stories is short and the story HTML is small, then the difference in performance will
not be noticeable, as only a few DOM updates occur either way. But what if we encounter a very
long list of stories, and each story has several detailed fi elds associated with it like the description,
owner, and links to other parts of the system? Imagine an update that reverses this large list of
detailed stories. In such a scenario, the performance difference will be signifi cant.

EXERCISE

Create a function to generate a random story and call it to create 1000 stories, then
change the sequence code and witness the noticeable difference in performance.

To encourage keying sequences React warns you in the console about unkeyed arrays of elements.

Unkeyed: [:ul [[:li] [:li] [:li] [:li]]]

It is good practice to explicitly choose to represent a sequence either as children, or as an array of
elements with an identifying key. The latter will be more effi cient for reordering, so if you have
uniquely identifi able elements in your sequence, you should go ahead and assign a key.

Children: [:ul [:li] [:li] [:li] [:li]]
Keyed: [:ul [^3[:li] ^4[:li] ^5[:li] ^6[:li]]]

You can represent sequences in three slightly different ways. The resulting DOM elements are indis-
tinguishable. The difference is in how React will update the elements in response to changes.

Custom Markup
If you pass properties to native HTML elements that do not exist in the HTML specifi cation, React
will not render them. If you want to use a custom attribute, you need to prefi x it with data.

[:span {:awesome "maximus"}] ;; will not have the awesome attribute
[:span {:data-awesome "maximus"}] ;; will have the data-awesome attribute

The support for standard tags and attributes is comprehensive, but there is also an escape hatch. If
you need some custom markup that is not recognized by React as standard, you can dangerously set

156 ❘ CHAPTER 5 REACTIVE WEB PAGES IN CLOJURESCRIPT

c05.indd 04/23/2016 Page 156

HTML. As the name suggests, there is a danger involved with supplying HTML. The main problem
to avoid is accidentally forgetting to close a tag, or in some way creating invalid HTML.

An example of where this can be useful is when dealing with SVG. Say you want to create a simple
burn-down chart component for the projects. You can build an SVG image with lines representing
the remaining tasks over time (see Figure 5-14).

(defn burndown-chart []
 (into
 [:svg
 {:width 300
 :height :200
 :style {:border "1px solid lightgrey"}}
 [:text {:x 200 :y 30} "Burn Down"]]
 (for [i (range 9)]
 [:line
 {:x1 (* (inc i) 30)
 :y1 180
 :x2 (* (inc i) 30)
 :y2 (+ (* 15 i) (rand-int 50))
 :stroke "green"
 :stroke-width 15}])))

To add a logo image to the chart, try an SVG image tag.

[:image {:hlink:href "img/logo.png" :x 170 :y 15 :height 20 :width 20}]

But you now discover that there is no attribute mapping for the xlink:href attribute. The logo does
not show up. Instead you can specify the markup as a string.

[:g {:dangerouslySetInnerHTML
 {:__html "<image xlink:href=img/logo.png x=170
 y=15 height=20 width=20 /> "}}]]

Be very careful to close your tags when using this escape hatch! An unclosed tag will result in
strange behavior. Also note that the coverage of mapped tags and attributes is growing. When
Reagent 6 is released, you will be able to use :xlink-href, because the underlying React 14 now
supports this and many more SVG related attribute mappings.

Reactions
Reagent knows when to update React by observing ratoms. Ratoms behave similarly to atoms in
that you can watch, deref, swap!, and reset! them. Additionally, ratoms trigger rendering when they

FIGURE 5-14

Reagent in Depth ❘ 157

c05.indd 04/23/2016 Page 157

change. If you use a regular atom instead of a ratom, your interface will still render initially, but
 rendering upon change will not be triggered. So be careful to always defi ne state using the imple-
mentation of atom from reagent.core, not a regular atom.

To create a reaction, write an expression inside a (reaction ...) macro form. Reaction expres-
sions are re-evaluated when any ratom or reaction it derefs change. Components containing derefed
reactions will be re-rendered with the new result. In this way you can build up a signal graph where
changes propagate in a controlled manner.

(ns whip.view.reactions
 (:require [reagent.core :as reagent]
 [devcards.core :refer-macros [defcard-rg deftest]])
 (:require-macros [reagent.ratom :refer [reaction]]))

(def a (reagent/atom {:x 100 :y 200}))
(def b (reaction (:x @a)))
(def c (reaction (+ @b 10)))

(defn view-c []
 (prn "Rendering view-c")
 [:div
 [:div @c]
 [:button {:on-click (fn [e] (swap! a update :x inc))} "inc x"]
 [:button {:on-click (fn [e] (swap! a update :y inc))} "inc y"]])

(defcard-rg reaction-example
 [view-c])

Reactions are a very concise way to express data fl ow. Here you start with a ratom containing x
and y values. You then build a reaction b that only observes the x value. Next, introduce another
reaction c that observes the sum of b and 10. Then create a component that renders c reactively.
Observe that when you click the “inc x” button, the view is updated with the result of applying the
expressions. When you click the “inc y” button, nothing happens. Check the console to confi rm that
the “Rendering view-c” message is only printed when clicking “inc x.” This is a very good thing,
because the view does not depend on y in any way. If you were to deref a instead of c in the view, it
would be re-rendered even if y changed.

Reagent reacts to reactions and ratoms via requestAnimationFrame. So, changing many ratoms
and reactions that depend on them only results in one render phase.

Currently, when you render a project-board, you render multiple columns. For every column you
are fi ltering, all of the stories in app-state are sorted by order. Any time anything at all changes in
app-state, everything is recalculated. If you want to isolate the effects of changing app-state, you
can introduce some reactions.

When defi ning reactions, be careful to think about when they will really change. Reactions use
identical? instead of = to test whether the computation should be re-evaluated. Identical means
the same object.

For the view-c example identical? is perfect. But, in the case of fi ltering stories, the calculation
produces results that are equal but not identical. You can introduce equality semantics by remem-
bering the last calculated value in a plain atom a, and then only by returning newly calculated
results when they are not equal to a.

158 ❘ CHAPTER 5 REACTIVE WEB PAGES IN CLOJURESCRIPT

c05.indd 04/23/2016 Page 158

(defn stories-by-project-status-reaction [app-state project-id status]
 (let [search-term (reaction (:search-term @app-state))
 all-stories (reaction (:stories @app-state))
 a (atom nil)
 filtered-stories
 (reaction
 (let [b (filter-stories @all-stories @search-term project-id status)]
 (if (= b @a)
 @a
 (reset! a b))))]
 (reaction (sort-by (comp :order second) @filtered-stories))))

Reactions provide effi cient data views and change propagation, which are powerful features. But
as the application grows you need to be careful to keep the data and data access organized. The
Reframe library can help with this.

One fi nal thing to think about is that if you had chosen a different model to store the stories, you could
have avoided the need to calculate derivative values. Instead of storing all of the stories in one map by
id that is fi ltered by project and column, you could have chosen to store the stories exactly how the view
would consume them. You could have created something perfectly tailored to the view you are building.

{:projects {"project-id" {:status "in progress" [{:story :data}}}}}

If you chose to use a nested structure like this that has stories organized by project, then status, and
already sorted in a vector, then you don’t need to do any transformations at all. But you have given
up the ability to fi nd stories by their id. Clearly there are tradeoffs involved in choosing what data
is appropriate to send to the client. Often there are multiple views that overlap in the data they con-
sume. DataScript and Om are libraries that can help with this. DataScript is an in browser database,
giving the ultimate of fl exible data models. Om provides a component query and reconciler abstrac-
tion ideal for defi ning the shape of the data that the view needs from a server.

A Note on Style
Be sure you take new lines liberally.

[:button
 {:on-click
 (fn done-click [e]
 (task-done id))}
 "done"]

You could collapse this expression down to one line. However, there is a tendency for the attribute
map to grow. Also, nested vectors lend themselves to “hangers.” Git diffs are easier to understand
when you take more vertical space. You’ll fi nd it easier to be consistent if you regularly take a new
line for attribute maps and event functions.

Don’t feel the need to push all of the style code into your styles.css fi le. Inline styles are convenient
when you are building out a new interface. You already have view model separation by isolating
your component functions in a view namespace away from your state modifi cation code. So inline
styling in the view code is not a bad thing. Create classes for common styles as you discover them
and move them to your styles.css to avoid repeating the same styling throughout your code.

Testing Components with Devcards ❘ 159

c05.indd 04/23/2016 Page 159

Give event handler functions a name. It communicates intent, and error stacktraces are clearer.
When returning to the code, the name is very helpful as a summary of what the function is for.

 TESTING COMPONENTS WITH DEVCARDS

Figwheel frees you from having to click through your application while you are working on a par-
ticular feature. But isn’t it annoying now when you have to click through the application to see if
everything else is still working? Tests and examples are a great way to drive development toward
a goal and clarify design decisions. Testing user interfaces has traditionally been considered dif-
fi cult. Automation is tedious and brittle, while unit tests rarely capture the look and behavior.
Wouldn’t it be great if you could see the entire application without having to step through every
path? Devcards is a library for showcasing components in various states. You can display several
states right next to each other. Devcards is perfect for examples and testing in a web application.

So, before proceeding on to more features for the whip project management tracker, let’s add test-
ing feedback to the workfl ow. Don’t worry, this won’t be the boring style of testing you may be
expecting.

Edit the project.clj fi le. In the dependencies section add [devcards "0.2.1"]. In the cljsbuild builds
section, copy the dev build to a devcards build. Specify :devcards true in the new devcards
build’s :figwheel section. Change :compiler :output-dir to “resources/public/js/compiled/
devcards,” so that the intermediary compiled fi les do not collide with other builds. Change :asset-path
to “js/compiled/devcards”. Change :compiler :output-to to “resources/public/js/compiled/
devcards.js,” so that the fi nal artifact does not collide with other builds.

 {:id "devcards"
 :source-paths ["src"]
 :figwheel {:devcards true}
 :compiler {:main whip.core
 :asset-path "js/compiled/devcards"
 :output-to "resources/public/js/compiled/devcards.js"
 :output-dir "resources/public/js/compiled/devcards"
 :source-map-timestamp true}}

You don’t want to try and render the entire app when looking at the devcards, so modify core.cljs to
only conditionally render the entire app:

(ns whip.main (:require [goog.dom :as dom]))
(when-let [app (dom/getElement "app")]
 (reagent/render-component [whip-main] app))

In the project’s resources/public directory, copy the index.html fi le to devcards.html. Edit devcards.html.
Remove the <div id=app>...</div> element. Replace whip.js with devcards.js in the <script> tag.

Start both the dev build and the new devcards build confi gured by running in the terminal: lein
figwheel devcards dev. Check that the app still works at http://localhost:3449 and then
open a new tab and navigate to http://localhost:3449/devcards.html. Seeing this page in
Figure 5-15 indicates that everything is working so far.

160 ❘ CHAPTER 5 REACTIVE WEB PAGES IN CLOJURESCRIPT

c05.indd 04/23/2016 Page 160

FIGURE 5-15

In the view.cljs source fi le, add devcards to the namespace require. Refer the defcard macro
 [devcards.core :refer-macros [defcard-rg deftest]]. Instead of defcard, use a more specifi c
version, defcard-rg, which renders reagent components. You can defi ne a card that shows the
project-board.

(defcard-rg project-board-example
 [project-board model/app-state "aaa"])

Now you can isolate a single component to work on, instead of having to observe the entire
application.

The big idea with Devcards is that because components are functions of state, you can view them
in isolation. Imagine how you might approach this without any library support. You might create a
page and mount your component with various states. In fact, that is pretty much how you develop
any page, except that you throw away all of the intermediary code and only keep the fi nal applica-
tion. Devcards provides structure for this intuitive approach. The key concept is a macro to create
a “card.” Devcards collects cards by namespace into a navigable page showing all of the cards.
Thanks to dead code removal, you can conveniently intermingle example cards with your applica-
tion code without worrying about bloat. The cards will not be present in your production build.

Notice how we started with some example data that you were going to throw away? Now you have
a way to preserve the hard work and get the benefi t of being able to show and test the UI in the
states you have designed it for (see Figure 5-16).

(defn projects-list [app-state]
 [:div "Project List"])
(defcard-rg projects-list-example
 [projects-list model/app-state])

EXERCISE

Write the projects-list function.

HINT

See online code if you get stuck.

A string can optionally be specifi ed in a card as the fi rst argument. The string is rendered as mark-
down, so you can have richly formatted text and even format code.

(defcard test-card
 "=Hello hello"
 [hello])

Testing Components with Devcards ❘ 161

c05.indd 04/23/2016 Page 161

Refer deftest from devcards instead of test.

(ns example
 (:require [devcards :refer [deftest]])

Write a test, and see how the test is rendered into the page. Failing tests are colored red. Add an
 on-jsload hook to report a test summary to the console while developing.

Notice that you are passing the app-state around everywhere. You can instead rely on a global app-
state; but we recommend against it. Passing dependencies tends to make code more testable, in the
same way that backend functions might pass a database parameter down instead of relying on a
global variable. Depending on what you are testing, it might be convenient to share a single state for
your cards, or completely isolate them with their own state. For example, say you want to have an
example of a story card that does not change the state of the other cards. In that case, you might do
something like so:

(defn story-card-example-component []
 (let [app-state (reagent/atom example-projects)]
 (fn a-story-card-example-component []
 [story-card app-state "aaa" 2
 (get-in @app-state [:projects "aaa" :stories 2])])))

(defcard-rg story-card-example
 [story-card-example-component])

FIGURE 5-16

162 ❘ CHAPTER 5 REACTIVE WEB PAGES IN CLOJURESCRIPT

c05.indd 04/23/2016 Page 162

Let’s make a card with a complete board (see Figure 5-17).

Devcards presents cards and tests that occur in namespaces, so you can see what the components
will look like in predefi ned states. You are presented with a visual history and specifi cation of how
everything should look and behave.

TIP ClojureScript and ClojureScript libraries get updated regularly. Add [lein-
ancient "0.6.8"] to your ~/.lein/profi le.clj dependencies so that you can stay
up to date easily by executing lein ancient upgrade and lein ancient upgrade
:plugins. These commands will rewrite the versions in your project.clj to the lat-
est release. Ancient will run all tests and only save the new project.clj if they are
passed.

FIGURE 5-17

INTEROP WITH JAVASCRIPT

Interop with JavaScript from ClojureScript is similar to interop with Java from Clojure.

(.method object arg1 arg2)
(. object method arg1 arg2)
(.. object method1 (method2 arg1 arg2))

JavaScript has a global root object. To access the global root in ClojureScript, use the special js
prefi x.

Interop with JavaScript ❘ 163

c05.indd 04/23/2016 Page 163

js/window
(.setEventListener js/window (fn [e] (prn "hi")))
(js/window.setEventListener (fn ...)))

To access properties, ClojureScript differs from Clojure slightly in that you must use a dash to
indicate property access. JavaScript does not distinguish properties from methods, so the dash is
required to explicitly designate property access.

(.-property object)
(. object -property)
(.. object -property1 -property2)
(set! (.-property object) value)

You may notice that properties can be accessed another way. The below form is a quirk and will fail
advanced compilation, so avoid using it.

object.property ;; bad, don't do this
object/property ;; bad, don't do this

Array access is done with aget and aset.

(aget array index)
(aget array index1 index2 index3)
(aset array index value)
(aset array index1 index2 index3 value)

Note that you can chain access forms together.

(set! (.-foo (aget array index1)) value)

Object constructors are the same as Clojure, but note that you can use constructors from the global
JavaScript root.

(js/THREE.Vector3. 0 0 0)
(new js/THREE.Vector3 0 0 0)

Modules can be referenced and imported from the Closure Library.

(ns example
 (:import [goog.event KeyCode]))

Creating JavaScript objects can be done with js-obj or by using the special #js reader literal. These
forms are not recursive. So for nested objects, be sure that the children are specifi ed as literals also.

(js-obj ...)
#js {"key" "value"}

Be cognizant about when to use JavaScript objects and when to use ClojureScript data structures.
We recommend using ClojureScript data literals as much as possible, and only using JavaScript
objects for interop with third party libraries.

There are transformation functions to convert from ClojureScript data structures to JavaScript
objects. These are both recursive.

(clj->js)
(js->clj)

164 ❘ CHAPTER 5 REACTIVE WEB PAGES IN CLOJURESCRIPT

c05.indd 04/23/2016 Page 164

You can optionally specify :keywordize-keys true, but keep in mind that not all strings can be
keywords.

There is a penultimate escape hatch form js* that takes raw JavaScript.

(js* "some(javascript);")

JavaScript allows anything to be thrown, so the ClojureScript catch form has a special term
:default, which will match anything. Use this to catch unexpected values being thrown.

(try
 (/ :1 2)
 (catch :default ex))

You can annotate your functions with :export to prevent them being name-mangled during
advanced compilation. They will then be easily consumable from JavaScript.

(defn ^:export f []
 (+ 1 2))

To take advantage of advanced compilation, most popular JavaScript libraries have wrappers avail-
able. Wrapping additional libraries is not diffi cult. Wrapped libraries are easy to depend on, and
you benefi t from code shrinking. The best source of pre-wrapped libraries is CLJS (http://cljsjs
.github.io), which also provides instructions on how to create your own wrappers.

ONE LANGUAGE, ONE IDIOM, MANY PLATFORMS

Clojure/ClojureScript realizes the dream of being able to write your frontend code and backend code
in the same language, using the same idioms, data structures, and abstractions. Staying in the same
language is good, and it goes beyond syntax.

You can even share code directly. Files with the cljc extension are used in any platform. You can
specify platform specifi c code with #clj+.

#?(:clj Double/NaN
 :cljs js/NaN
 :default nil)
(defn build-list []
 (list #?@(:clj [5 6 7 8]
 :cljs [1 2 3 4])))

 THINGS TO KNOW ABOUT THE CLOSURE COMPILER
AND LIBRARY

ClojureScript uses the Closure Compiler to produce JavaScript. In the same way that Clojure pro-
gramming is augmented by some knowledge of the Java ecosystem, it is useful to know a little bit
about the Closure Library. There are many opportunities to leverage the platform.

http://cljsjs.github.io
http://cljsjs.github.io

Modeling State with DataScript ❘ 165

c05.indd 04/23/2016 Page 165

The most impactful feature of the Closure Compiler is that it can do advanced compilation.
Advanced mode compilation does aggressive renaming, dead code removal, and global inlining,
resulting in highly compressed JavaScript. This power comes with some restrictions. Advanced com-
pilation mode makes assumptions about the code that it optimizes, and breaking these assumptions
will result in errors. For the most part you are one layer away from those assumptions, until it comes
to interop with JavaScript libraries. JavaScript libraries must be accompanied by extern defi nitions,
or the aggressive renaming will not be matched to your interop calls. Fortunately, many popular
libraries are readily available from CLJSJS with extern defi nitions as a packaged dependency.

Most project templates confi gure a development build using no optimization, and a production
build using advanced mode compilation. Development tools like fi gwheel can only be used with no
optimizations, and these builds are very fast (typically under one second). Advanced mode produc-
tion builds on the other hand are too slow for an interactive development cycle (typically between 15
seconds to a full minute).

 The Closure Library is a rich source of helper code. The library is rigorously cross browser compat-
ible. This is a big win. You took advantage of this when you added the history listener in the naviga-
tion and routing section of this chapter. Instead of relying on browser specifi c code, use
goog.History instead. As a rule of thumb, if you fi nd yourself accessing browser features directly
via interop, consider looking for an abstraction for it in the Closure Library documentation. There
are helpers for the DOM, fi les, events, keyboard handling, form handling, components such as date
pickers, and many more. The library is comprehensive, and well worth perusing to familiarize your-
self with what is available.

 MODELING STATE WITH DATASCRIPT

DataScript is a database implementation in ClojureScript designed to be a replacement for the
 app-state of your application. It goes beyond storing your application state and stores the history
of changes to the state as well. Having a database as your app-state centralizes state access and
modifi cation around a powerful abstraction. You can create queries to view the data in different
ways. DataScript is built on the same principles as Datomic, which is explored in depth in Chapter 6.
Datascript stores data as datom tuples (entity, relationship, entity, time), which provide a history
of all changes. The main advantage of Datascript comes from fl exible Datalog queries.

Queries are expressed as data.

(def q-player
 '[:find ?s ?attrs (pull ?e [*])
 :where [?a :coach "Coach"]
 [?a :player "William"]
 [?a :attrs ?attrs]
 [?e :name "William"]
 [?e :somedata ?s]])

To use DataScript in a reactive website, you can take advantage of the ability to watch transactions.
You use the listen! function to be notifi ed of transactions. Inside the handler you respond to
changes in the database. Re-query the database whenever the data changes:

(defn bind
 ([conn q & args]

166 ❘ CHAPTER 5 REACTIVE WEB PAGES IN CLOJURESCRIPT

c05.indd 04/23/2016 Page 166

 (let [k (uuid/make-random)
 ratom (reagent/atom (apply d/q q @conn args))]
 (d/listen! conn k (fn [tx-report]
 (reset! ratom (apply d/q q (:db-after tx-report)
 args))))
 (set! (.-__key ratom) k)
 ratom)))

Here bind creates a ratom that the application can use for reactive rendering. When the database
changes, the ratom is updated, and when the ratom is updated the component re-renders, and when
the component re-renders the DOM diff occurs to update the browser elements.

(defn player []
 (bind conn q-player))

One major difference from Datomic is that DataScript does not require an upfront schema. This
makes it very approachable, because you can dive right into transactions and queries without defi n-
ing your attributes. However, a schema is necessary in order to nominate non-defaults such as the
cardinality of one to many.

 GO ROUTINES IN YOUR BROWSER WITH CORE.ASYNC

Core.async is your get out of callback hell card. Let’s take a look at the standard example of call-
back hell; a nested chain of asynchronous function calls.

getData(function(a){
 getMoreData(a, function(b){
 getMoreData(b, function(c){

This situation arises frequently in JavaScript applications because JavaScript is single threaded and
avoids blocking for operations like remote service calls. The common interface presented by the
browser for blocking actions is to return from the function call immediately, while the browser
manages the request. When the request is fulfi lled there is no way to return control to the original
call site. So when a blocking action is requested, the caller must specify a callback function to be
invoked when the action is completed. This allows you to get around the single threaded model with
asynchronous calls. But, as the number of callbacks increases, it quickly becomes diffi cult to reason
about the order of execution of our code, and how failures should be treated.

Callback hell is the eventual state of any complex callback oriented asynchronous program where
the management of callbacks gets so hard that your code becomes extremely hard to understand,
reason about, and maintain.

The problem is more than just having nested function defi nitions. The real rub comes when chang-
ing application state inside those callbacks. Consider a text input that you want to populate with a
list of completions. Fire off a request to the server with some user input, but by the time the result
arrives, it may not be relevant anymore, because the user has since replaced the text in the input.
The diffi culty using an asynchronous expression goes beyond syntax. How can you express state
and error handling in a way that is clear, logical, and testable?

Summary ❘ 167

c05.indd 04/23/2016 Page 167

Callbacks close over state and raise events, which are consumed from a queue. The state is in the
processing code. To handle all the possible interactions of the callbacks, build a state machine that
encompasses all of the possible state transitions.

Core.async provides you with an option to trade where the state lives. It presents a model of short-
lived variables in a sequential process, and allows concurrent sequential processes to communicate
with each other. The implementation of core.async is actually a bunch of sophisticated macros that
build state machines to provide the execution models written as sequential processes. While it isn’t
important to understand the implementation details, it helps to remember that in ClojureScript these
expressions are executing in a single thread in an interleaved fashion controlled by a generated state
machine.

Let’s look at a basic example where you make a web request.

 (let [ch (http/get "//whip/projects")]
 (go (hello (<! ch))))

Here http/get returns a channel. The go block defi nes a concurrent process that will pull the result
of the web request from the channel and use it. Blocking can only occur inside a concurrent process
defi ned by a go block. The result of a go block is a channel, which will deliver the last value in the
go block. In this example the result is ignored. Channels can accept and deliver values. <! is the
operator to take a value from a channel. Notice that there are no locks, no condition variables, and
no callbacks required for these kinds of expressions. They look like a thread that can block while
other threads continue.

Core.async plays well with existing JavaScript libraries. If you have an interface that requires a call-
back, just pass a callback that only puts the arguments onto a channel, and you can reframe your
logic as a sequential process consuming from the channel.

SUMMARY

 ClojureScript has many compelling features that position it as the leading option for reactive web-
page development. Interface defi nitions are concise, the reactive model is robust, there are solid
abstractions to build on, and there are many helpful libraries to leverage.

This chapter stepped through all of the important aspects of building a ClojureScript application,
developing an interactive project tracking webpage, and using several useful libraries. You saw how
ClojureScript has a unique and compelling development workfl ow.

A lot of ground was covered, from getting started through to advanced techniques. You may be feel-
ing a little overwhelmed by the breadth of topics covered in this chapter. The good news is that this
knowledge is widely applicable. ClojureScript opens up fundamental computation abstractions that
provide the leverage necessary to build large and robust web pages. But you don’t need to use all of
ClojureScript’s special powers. You can start small and build up with the confi dence that those spe-
cial powers are there when you need to reach for them.

You now have a template for building out a ClojureScript project. With this knowledge you are
ready to build any interface that a browser can support, using comfortable idioms and powerful
abstractions.

c06.indd 04/23/2016 Page 169

The Datomic Database
WHAT’S IN THIS CHAPTER?

 ➤ Introducing the Datomic Database

 ➤ Modeling domain data in Datomic

 ➤ Using Datomic from Clojure

 ➤ Leveraging Datomic to solve common problems in database-
backed applications

Datomic is a new database that offers developers new ways to think about building traditional
database-backed applications, and exciting features that make it possible to build entirely new
types of applications. It has a modern, cloud-focused design that is easy and fl exible to both
develop on and deploy. To top it off, it’s built by the same people that brought you Clojure.

Just as working with Clojure changes the way you think about programming, Datomic will
change the way you think about databases. It is defi nitely not just another variation on SQL or
another narrowly focused NoSQL system. Datomic embodies new ideas about how you think
about data and what it is like to work with a general-purpose transactional database.

In this chapter, you’ll explore how Datomic works, starting from the fundamentals like its
data model, and working up to its high-level APIs. Using examples, you’ll look at how to build
an application backed up by Datomic, ways to think about modeling domain data in Datomic,
and how to tap into the powerful Clojure API.

CHAPTER EXAMPLES AND SOURCE CODE

You can access the examples and source code for this chapter on the Wiley
website at www.wiley.com/go/professionalclojure or via Github at
https://github.com/backstopmedia/clojurebook.

6

Professional Clojure. Jeremy Anderson, Michael Gaare, Justin Holguín, Nick Bailey and Timothy Pratley
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

http://www.wiley.com/go/professionalclojure
https://github.com/backstopmedia/clojurebook

170 ❘ CHAPTER 6 THE DATOMIC DATABASE

c06.indd 04/23/2016 Page 170

DATOMIC BASICS

The idea for Datomic was hatched when Rich Hickey started thinking about what it would look
like when some of the big ideas that went into the design of Clojure were applied to a database sys-
tem. With concepts like immutable data, design focused on decomposition, and the importance of
value-oriented semantics, the idea grew into a collaboration between Rich Hickey, Stuart Halloway
(cofounder of Cognitect and Clojure core committer), and a small group of developers at Cognitect.
It was fi rst released in 2012.

Datomic doesn’t fi t cleanly into a single category. Multiple labels fi t it, including NoSQL, graph
database, distributed database, transactional store, analytics store, and logic database. It took inspi-
ration from multiple sources, but its basic goal is to be a drop-in replacement for the main cases
where you would otherwise use a relational database as a transactional store. Stuart Halloway says
that it’s targeted at the ninety-six percent use cases of relational databases, leaving off the top four
percent of high write-volume users like Netfl ix, Facebook, etc.

This raises the question: why use Datomic instead of SQL? This section examines some of the ways
that Datomic sets itself apart from this traditional and venerable technology. You’ll learn about
Datomic’s data model, query language, data-focused transaction syntax, and its design and deploy-
ment architecture.

Why Datomic?
Datomic is a powerful alternative to relational SQL-based databases that’s suitable for the vast
majority of systems currently built on these more traditional databases. It represents a re-thinking of
the role, model, structure, and nature of a database system, incorporating modern concepts of cloud
deployment, cheap storage, distributed systems, and persistent data structures/immutable data. It
offers a number of key advantages over relational databases.

 ➤ Deployment fl exibility. In contrast to monolithic relational databases, Datomic has a plug-
gable storage backend, which can use many different backing databases to store its data. This
means that, when deploying applications, you can use whatever system is most convenient
for the deployment environment and your operations infrastructure. For instance, for AWS
deployments it’s simple and natural to use the DynamoDB backend. If your organization
already runs a Cassandra, Riak, Couchbase, Infi nispan, or even a SQL database, you can use
any of those as the storage backend.

 ➤ Data-oriented design. When learning functional programming there’s often a series of
“a-ha!” moments as the elegance and simplicity of the data-oriented approach click into
place, and the advantages over models that emphasize mutation and data hiding become
clear. Datomic is animated by the same kind of mathematical beauty. Once you grasp the
data model and how to work with it, using Datomic has a liberating freedom and power. It’s
a stark contrast to relational databases, with their mutate-in-place semantics and the feeling
that you are working with data while wearing bulky and unwieldy gloves.

 ➤ Entity orientation. The central idea of relational databases is tables, but outside of very simple
toy applications it’s very rare that a table has a one-to-one correspondence with the entity it
represents. Typically it takes multiple tables to represent a single entity in realistic relational
data models. This represents a real impedance mismatch with the way developers think of

Datomic Basics ❘ 171

c06.indd 04/23/2016 Page 171

entities, and has cost untold numbers of man-years in developing ultimately awkward and
unsatisfying solutions like ORMs and query generators. By contrast, the structure of data
in Datomic’s entity model more closely matches the structure of data as a developer would
model it and work with it in an application. Datomic’s query and pull APIs also provide pow-
erful tools for elegantly pulling out complex, nested entities in a simple and declarative way.

 ➤ Read scalability. In Datomic, reads are separated from writes and decentralized. A single
Datomic database can power mixed workloads—transactional, analytical, and even batch—
while retaining low latency for transactional performance, and high throughput for analyti-
cal and batch performance. This is made possible by Datomic’s unique architecture, where
writes don’t block reads, reads don’t block one another, and you can horizontally scale your
read capability by adding more “peer” systems. Relational databases can only scale vertically
without requiring sharding and often fundamental changes to the architecture of your appli-
cation, and often require you to deploy multiple databases to power different workloads with
the increased complexity cost of data synchronization between them.

 ➤ Flexibility. The schema, data model, and query system of Datomic support an incredible
range of fl exibility. This fl exibility means that in practice your queries are rarely tied down
to a schema designed to make that specifi c query performant. It’s almost always possible to
make changes to queries or add entirely new read patterns while maintaining performance,
without changing your application data model. This typically translates to simpler applica-
tion data models and simpler application architecture. Best practices in relational databases,
on the other hand, typically call for entirely different schema designs to power, for instance,
transactional and analytical workloads, because the schema and read patterns are much more
closely tied together.

 ➤ Treat the database as a value. This is one of the big ideas of rethinking the database that
motivated Datomic. Relational databases give you a handle that you treat as an external
resource that you can send questions to and get answers. The database and the data it con-
tains are treated as a separate system, and from the perspective of the application, every
interaction with the databases is a side effect. Datomic’s immutable data model and APIs
allow you to treat the database itself and the data it contains as a value for the purposes of
reads as well as “speculative” writes. This opens up exciting possibilities for how you think
about and design your database-driven applications.

 ➤ Point-in-time access. Since the data in a Datomic database is immutable, you can perform
read operations and queries on historical versions of your data: you can get a view of your
data as it existed at any point in time.

 ➤ Upsert. Admittedly, this might seem like a lower-level detail, particularly compared to the
previous points. Upsert is a write semantic that allows you to treat the addition of new enti-
ties and changes to existing entities the same way, like a combination of a relational INSERT
and UPDATE query. If you’ve never worked with a database that supported this feature, it’s
going to forever change your outlook. Upserts elegantly solve a whole class of concurrency
and state-related issues with adding data, and allow you to use a single code path for your
writes.

It’s not all roses, of course. Everything in software is about trade-offs. The fi rst major disadvantage
is that it’s proprietary software. While there are free-as-in-beer ways to get Datomic, there is no

172 ❘ CHAPTER 6 THE DATOMIC DATABASE

c06.indd 04/23/2016 Page 172

open source version, and for any kind of real production deployment, it’s likely that you’re going to
have to pay for it.

You also need to consider the adoption effort. Datomic is very different from relational databases.
Although some of what you know about working with SQL and relational data will be able to trans-
late over to working with Datomic, there is defi nitely a learning curve. Datomic is going to be unfa-
miliar territory in many ways, and will involve some of the same kind of transformation in the way
you think about databases, as functional programming transforms the way you think about writing
programs. Building applications with Datomic requires that you and your team all get on board and
really dig in to understand how the system works.

The best way to get there is from the ground up, starting with Datomic’s data model.

The Datomic Data Model
One of the most important ingredients in the secret sauce that makes Datomic such an outstanding
database is its simple, fl exible, yet powerful data model. It’s the reason that Datomic is often called
a “database of facts,” and it closely parallels the way people normally think and talk about informa-
tion when outside the confi nes of traditional relational databases. In this section you’ll get a com-
plete look at that data model with a focus on the basic building blocks that are used and combined
in different ways to power the higher-level APIs covered later in this chapter.

A Relational Example
You’re probably already familiar with the data model of relational databases. They represent data in
tables, also called “relations” in formal terminology, with a row for each “thing” in the table and a
column for each piece of information about the thing. For example, a table of contacts might look
like what you see in Table 6-1.

TABLE 6-1: Table of contacts

ID FIRST_NAME LAST_NAME EMAIL EMERGENCY_CONTACT_ID

101 Jane Doe everywoman123@gmail.com 115

As Rich Hickey described in his talk “The Value of Values,” this is a model of information that’s
all about “place.” If you want to know Jane Doe’s email, you go to the location of Jane Doe’s row
and retrieve it from the location of the email column. If Jane Doe changes her email, you go back to
its location, delete what’s there, and replace it with the new one, but the old email lost forever. This
model quickly starts to look a lot less like what we as Clojure developers think of as data and more
like a pile of mutable references.

Infl exibility is another drawback of the relational model. You must declare the structure of all your
data in very strict terms ahead of time, and you must shoehorn the dynamic heterogeneity of the
real world into fi xed and structured tables. Relationships between things must be carefully modeled
in advance, typically requiring multiple extra tables whose sole purpose is to describe relationships
between things in other tables, and every query that uses them must be written with explicit joins,
while paying careful attention to the specifi cs of the schema.

mailto:everywoman123@gmail.com

Datomic Basics ❘ 173

c06.indd 04/23/2016 Page 173

Datomic Datoms
With that in mind, let’s compare Datomic’s data model. Datomic stores a collection of 5-tuples
called Datoms, which are its fundamental unit of data. The Datomic documentation describes it as
a database of immutable facts, and each one of these facts is expressed as a Datom, which look like
this:

[e a v t added?]

 ➤ e means “entity”. It is roughly analogous to the “id” fi eld in the previous relational table.
It contains a Datomic entity id, a Long. Also similar to the way primary keys are typically
handled in relational databases is that you don’t set entity ids directly when adding data; they
are internal to Datomic and are generated automatically by the transactor, Datomic’s writer.

 ➤ a means “attribute.” It’s a bit like a column in a relational table, or in more familiar Clojure
terms it’s like the key in a hash map. The attribute part of a Datom contains the Datomic
entity id of an attribute entity. You’ll see what this means later, in the section on schema and
modeling data.

 ➤ v means “value.” It’s similar to a cell or fi eld in a relational table. In Datomic, the value part
of a Datom contains either an entity id, if the Datom is describing a relationship between
the e entity and the v entity, in which case it’s called a “reference,” or some data value like a
string, number, date, and so forth.

Together, entity-attribute-value gives you the basic facts. Before talking about what t and added?
mean, let’s take a look at what the data from the previous relational example might look like as
Datoms with just the [e a v] part. You’ll notice that keywords are being used in the a posi-
tion rather than entity ids (Longs). In the schema section you’ll see why this is the case, and how
Datomic resolves them to the entities they refer to.

[[101 :first-name "Jane"]
 [101 :last-name "Doe]
 [101 :email "everywoman123@gmail.com"]
 [101 :emergency-contact 115]]

It’s very important to keep this [e a v] pattern in mind when thinking about data in Datomic because
Datalog—Datomic’s query language—is all about matching these patterns with variables and
values. This is covered later in the section on querying.

The t and added? parts of the Datom together are what give Datomic its immutable characteris-
tics, point-in-time query features, and database-as-a-value abstraction. This is also where Datomic
departs almost completely from the paradigm of relational databases, because there is no real rela-
tional analog for this part of the data model.

t means “transaction.” Each write to Datomic contains one or more Datoms bound in a transaction.
As part of the write process, the transaction itself is created as an entity, which has an attribute with
a timestamp that corresponds to the time of the transaction. Every Datom in the transaction has the
transaction’s entity id in the t position.

Storing transaction entities in this way as part of the data model means that every fact in the data-
base can be traced back to the exact point in time that it entered the system.

mailto:everywoman123@gmail.com

174 ❘ CHAPTER 6 THE DATOMIC DATABASE

c06.indd 04/23/2016 Page 174

added? is a Boolean fl ag that will be set to true if the Datom is an assertion, and false if it’s
a retraction. Assertion means the fact that a Datom is conveying is true as of the transaction
time, retraction means it’s no longer true. Let’s look at an example using Jane Doe and a new
attribute:favorite-color. As of the time of transaction t1, Jane Doe’s favorite color is red. The
state of the database looks like this.

[[101 :favorite-color "red" t1 true]]

We have a Datom for Jane Doe (entity id 101), which was added as part of transaction t1, and it’s
an assertion because the added? fl ag is true. Now let’s assume Jane Doe is going through a rebel-
lious teenage phase, and as of the time of transaction t2 she decides that her favorite color is no lon-
ger red, but it’s now black. Here’s the new state of the database after t2.

[[101 :favorite-color "red" t1 true]
 [101 :favorite-color "red" t2 false]
 [101 :favorite-color "black" t2 true]]

You see what happened! Rather than an update-in-place, where you would have completely deleted
the idea that Jane Doe’s favorite color was ever red, you have added a retraction Datom for that fact
since it is no longer true, and added an assertion Datom that tells you Jane’s new favorite color.

In the most regular usage of Datomic, you don’t directly deal with the complete Datom. Most of the
APIs work in terms of [e a v]—entity, attribute, and value. The transaction and added fl ag are
typically underneath an abstraction where, given a point in time of a particular transaction value,
you only see the entity, attribute, and value parts of Datoms that are true at that time. The transac-
tion and added fl ag of the Datoms are used to build a projection of the current state of the data
as of that time. For example, as of transaction t1 the state looked like this:

[[101 :favorite-color "red"]]

Whereas, as of transaction t2 the state looked like this:

[[101 :favorite-color "black"]]

This is a very important abstraction to keep in mind, because most of the time you’re working in
Datomic the t and added? parts of Datoms are abstracted away from you. There are also numerous
ways to powerfully leverage the full Datoms, and understanding the complete Datomic data model
is very important in designing systems to use it properly, so you need to be able to think about your
data in both ways.

It’s an abstraction that fi ts in powerfully with Clojure’s broader view of data and state. As a Clojure
programmer, you usually think of state as something to be carefully managed and minimized in
your systems, because you realize that much of the most tedious, error-prone, and dangerous aspects
of programming revolve around state management. The opinionated design of Clojure works very
hard to keep state to a minimum, and places more restrictive semantics around mutable state so that
developers know to handle it with care. Whenever possible, data is preferable to state.

Datomic’s data model works along very similar lines. It looks at the database as a data structure to
which you can only add additional facts, and treats state as a projection of that data structure.

Datomic Basics ❘ 175

c06.indd 04/23/2016 Page 175

Entity Maps
When using Datomic, one of the common ways that you’ll interact with data is as entity maps.
There is an API for this, which is covered in more detail in the Clojure API section, but in the mean-
time let’s examine the basic concept. You’ve already seen how to describe all of the facts about an
entity in terms of Datoms. Another way to look at that same data is in an entity map format.

Entity maps are conceptually quite simple. You start the projection of the state of an entity as of a
given transaction time—in other words, only the [e a v] parts of Datoms representing facts that
are true as of that time. After that, it’s a fairly straightforward matter to represent the Datoms about
a particular entity as a map. The one catch is where the entity id goes. In Datomic entity maps, the
entity id is in a special key called :db/id. Here’s what Jane Doe would look like as an entity map.

{:db/id 101
 :first-name "Jane"
 :last-name "Doe"
 :email "everywoman123@gmail.com"
 :emergency-contact 115}

Querying
Datalog is Datomic’s query language. It’s related to logic programming and also shares many simi-
larities with SPARQL, the semantic query language for RDF, which was one of Datomic’s infl u-
ences. It can look strange to those more familiar with SQL, but it offers several key advantages.

 ➤ Datalog queries are datastructures—in fact, they’re Clojure collections. This makes Datalog
queries far more composable, and allows you to take advantage of all of Clojure’s powerful
features for working with collections to create and modify them. Manipulating SQL queries,
on other hand, requires awkward and error-prone string concatenation and interpolation,
heavy-weight parsing and rendering code, or idiosyncratic DSLs or ORMs that limit the
expressive power of the queries you can write.

 ➤ Joins are implicit. To write queries that deal with relationships between different entities, you
only need to know that those relationships are expressed. Expressing these relationships is
simple, transparent, and follows the natural fl ow of the relationships in the data. You don’t
need detailed knowledge of the table schema, and the specifi c way each table is joined, as you
do in SQL. In Datalog, you’re working with data directly and at a higher level, rather than
with the details of how it’s expressed in tables.

 ➤ Advanced query logic is possible through rules. Datalog includes a declarative language for
expressing rules, which allows for arbitrary recursion and highly customized logic inside of
queries. Datalog’s rules let you do things in your queries that would either be completely
impossible in SQL, or would require SQL with such daunting complexity that you’d likely
never want to use it in a production system.

Datomic arrives at answers to Datalog queries through unifi cation—a concept from logic program-
ming. For those unfamiliar with this style of programming, it may be helpful to do a bit of back-
ground reading so that the concepts are not completely foreign. A fantastic resource for this is

mailto:everywoman123@gmail.com

176 ❘ CHAPTER 6 THE DATOMIC DATABASE

c06.indd 04/23/2016 Page 176

The Reasoned Schemer by Friedman, Byrd, and Kiselyov. It uses the same question-and-response
dialectic approach as their prominent book for Lisp beginners, The Little Schemer, and provides a
fun, easy-to-understand, and approachable introduction to logic programming in a Lisp-like syntax.

Syntax
There are two ways to write Datalog queries: the list form and the map form. They are semantically
equivalent, but are typically used in different scenarios. The list form is idiomatically most often
what’s used for queries written by humans, because many people fi nd it somewhat easier to read and
it requires fewer inner lists. Here’s a simple query in the list form, which will return the fi rst name
and last name of the entity whose email address is everywoman123@gmail.com.

'[:find ?first-name ?last-name
 :where [?e :email "everywoman123@gmail.com"]
 [?e :first-name ?first-name]
 [?e :last-name ?last-name]]

The map form is more often used when building queries programmatically, because it’s much easier
to destructure and manipulate the various parts of the query when they’re in map keys. This is the
same query in the map form.

'{:find [?first-name ?last-name]
 :where [[?e :email "everywoman123@gmail.com"]
 [?e :first-name ?first-name]
 [?e :last-name ?last-name]]}

The two forms are quite similar, but the map form requires that all of the query components be
wrapped in lists. You’ll notice that both forms have been quoted—the preceding '. This is required
when used in Clojure code, because queries are written using symbols, like ?first-name and
?last-name, which throw exceptions when evaluated.

Since it’s more idiomatic for queries written by humans, the list form will be used for the rest of this
chapter, except in places discussing how to build and manipulate queries programmatically.

Here is what the equivalent SQL might look like. Notice that, in this simple example, the SQL ver-
sion has at least a vague resemblance to the Datalog.

"SELECT first_name, last_name FROM contacts
 WHERE email='everywoman123@gmail.com'"

Let’s take a closer look at that simple query example.

Find… What Am I Looking For?
The “fi nd” part of the query—the fi rst line starting with :find—is roughly analogous to the
SELECT part of a SQL SELECT query. It says what you want to return, and in what format you
want it. In this example, here is the fi nd specifi cation:

:find ?first-name ?last-name

In Datalog, variables are symbols prefi xed with ?, so this fi nd specifi cation is returning the values
for the two variables ?first-name and ?last-name, as defi ned later in the where section of the
query. This type of fi nd specifi cation—where the variables are simply positionally listed after the

mailto:everywoman123@gmail.com
mailto:everywoman123@gmail.com
mailto:everywoman123@gmail.com
mailto:everywoman123@gmail.com

Datomic Basics ❘ 177

c06.indd 04/23/2016 Page 177

:find keyword—returns a “relation.” This is the most common type of fi nd specifi cation in most
queries you’ll see and write because it’s the most general form, and its behavior is the most similar to
that of SQL SELECT.

The result, when run against the earlier sample data, is a set of tuples:

#{["Jane" "Doe"]}

Returning Collections
The second type of fi nd specifi cation returns a collection of all the matches for a single variable.
Collection fi nd specifi cations are written like this:

:find [?first-name ...]

When run against the example data again, it returns this result:

["Jane"]

The equivalent SQL looks much the same as the original, only containing one SELECT column
rather than two.

Returning Only One Result
You can also write a fi nd specifi cation that has the same general behavior as the relation semantic,
but only returns the fi rst match. This is the “single tuple” specifi cation, and it is written like this:

:find [?first-name ?last-name]

With this fi nd specifi cation, the query returns the fi rst result tuple it fi nds, like this:

["Jane" "Doe"]

The SQL version adds a LIMIT clause to achieve the same behavior.

"SELECT first_name, last_name FROM contacts
 WHERE email='everywoman123@gmail.com'
 LIMIT 1"

Returning a Single Value
In some cases, it’s useful for queries to return one scalar value. For that, use the scalar fi nd specifi ca-
tion, written like this:

:find ?first-name .

This fi nd specifi cation simply returns “Jane.” The SQL version retains the LIMIT clause and only
the first_name SELECT column.

:where Is Where the Magic Happens
The body of the query, where almost all of the query logic and important structure live, are in
the where clauses. This part of the query does almost everything that you’d do in a SQL query–
conditions, joins, inner queries, fi lters. As such, there are probably more features that deal with
what you can do in the where part of a query than for any other aspect of Datalog.

mailto:everywoman123@gmail.com

178 ❘ CHAPTER 6 THE DATOMIC DATABASE

c06.indd 04/23/2016 Page 178

There’s a great breadth of topics to cover to get a full idea of what is possible in where clauses.
Truly, the level of power and fl exibility that Datalog gives you in expressing query logic here
is amazing, and throughout the rest of the chapter you’ll see a more comprehensive set of this
functionality.

You can think of the where clauses as patterns that describe what the data in the database needs to
look like to satisfy the pattern. These patterns match against the entity, attribute, and value parts of
Datoms as of a given transaction-time. Let’s fi rst get a basic grasp of what’s going on in our simple
query. The where clauses look like this:

:where [?e :email "everywoman123@gmail.com"] ;; 1
 [?e :first-name ?first-name] ;; 2
 [?e :last-name ?last-name] ;; 3

In order to return a solution, these patterns require that three Datoms exist in the database:

 1. A Datom with any entity id (which will be bound to the variable ?e), the attribute :email,
and the value everywoman123@gmail.com.

 2. A Datom with the same entity id as the previous Datom—in other words, a Datom that’s
about the entity that has the :email of everywoman123@gmail.com—has the attribute
:first-name, and has any value. The value gets bound to the variable ?first-name.

 3. A Datom with the same entity id as the previous two, the attribute :last-name, and any
value. The value is, as before, bound to a variable: ?last-name.

There are a few things to note here. When values are “bound” to Datalog variables, that same value
is used for the rest of the solution. In this case that means several things.

 ➤ If there was no Datom with attribute :email and value everywoman123@gmail.com, then
these where clauses would return no solutions. The result would be an empty set.

 ➤ The entity id bound to ?e in the fi rst pattern must also have Datoms that match the second
and third patterns. In other words, that entity-id must also have Datoms with :first-name
and :last-name; otherwise the where clauses would again return no solutions.

 ➤ If there were multiple entities that matched all of the patterns, then multiple solutions are
returned.

It’s important to understand how this variable binding and solution fi nding process works. It’s pos-
sible for patterns to match multiple Datoms and have multiple possible value bindings for Datalog
variables, and each one of these bindings is tested against the rest of the patterns in turn. If Datoms
exist in the database that satisfy all of the patterns, then that solution is considered “unifi ed” and
is returned as part of the results. This process can be recursive, since variable bindings from earlier
patterns can be linked to additional variable bindings in later patterns, which must in turn each be
tested against subsequent patterns.

Let’s go through a somewhat more involved example to see how this process works.

Variables and Joins
The initial example was fairly simple. Let’s look at one that involves data with more relationships
and a query with more variables. First, we’ll extend the data to include more than one contact, and

mailto:everywoman123@gmail.com
mailto:everywoman123@gmail.com
mailto:everywoman123@gmail.com%E2%80%94has
mailto:everywoman123@gmail.com

Datomic Basics ❘ 179

c06.indd 04/23/2016 Page 179

the concept that contacts can have friends. For simplicity, let’s keep using only the [e a v] part of
the Datoms.

[[101 :first-name "Jane"]
 [101 :last-name "Doe"]
 [101 :email "everywoman123@gmail.com"]
 [101 :friend 102]
 [101 :friend 103]
 [102 :first-name "Ada"]
 [102 :last-name "Lovelace"]
 [102 :email "firstprogramm3r@steampunk.com"]
 [102 :friend 104]
 [103 :first-name "Robert"]
 [103 :last-name "Heinlein"]
 [103 :email "dareallazarus@long.com"]
 [104 :first-name "Jane"]
 [104 :last-name "Smith]]

You still have your old friend Jane Doe, but she has two new friends. Using this data, let’s look at a
slightly more complex query.

'[:find ?first-name ?last-name
 :where [?e :email "everywoman123@gmail.com"]
 [?e :first-name ?first-name]
 [?e :last-name ?last-name]
 [?e :friend ?f]
 [?f :first-name "Robert"]
 [?f :last-name "Heinlein"]]

In this query, you are still looking for the fi rst name and last name of an entity whose email is
everywoman123@gmail.com, but you have added some more clauses. You now have a join! The
entity must also have a friend—another entity?f—whose fi rst name is “Robert” and last name is
“Heinlein.” As it happens, “Jane Doe” is friends with “Robert Heinlein,” so the result is the same as
before: #{["Jane" "Doe"]}

Let’s walk through the execution of this query to help clarify how Datalog works with multiple vari-
ables and relationships.

As before, the fi rst three patterns will match Datoms where there is an entity with the specifi ed value
for :email, which also has :first-name and :last-name, and as before you bind those to the vari-
ables ?first-name and ?last-name. The fourth pattern binds any value from a Datom with that
same entity-id and the attribute :friend to the variable ?f. This means that ?f will contain two
possible values: 102 and 103.

To satisfy the next pattern, the query will try to fi nd matches where ?f is 102 or 103. Trying 102
will not return a solution, because there is no Datom where 102 is the entity, and the :first-name
is “Robert.” But the second value, 103, will return a solution because it matches both of the last two
patterns.

This query can still be written in SQL, although it begins to look more unwieldy.

"SELECT e.first_name, e.last_name FROM contacts AS e
 INNER JOIN contacts AS f
 ON e.friend_id = f.id

mailto:everywoman123@gmail.com
mailto:firstprogramm3r@steampunk.com
mailto:dareallazarus@long.com
mailto:everywoman123@gmail.com
mailto:everywoman123@gmail.com

180 ❘ CHAPTER 6 THE DATOMIC DATABASE

c06.indd 04/23/2016 Page 180

 AND e.email = 'everywoman123@gmail.com'
 AND f.first_name = 'Robert'
 AND f.last_name = 'Heinlein'"

Going Deeper
To help you understand this more fully, let’s look at an even more complex query that shows some
more of the power of logic programming, and the use of variables across joins.

'[:find ?first-name ?last-name
 :where [?e :first-name ?first-name] ;; 1
 [?e :last-name ?last-name] ;; 1
 [?e :friend ?f] ;; 2
 [?f :friend ?g] ;; 3
 [?g :first-name ?first-name]] ;; 4

This query returns the same solutions as the previous queries—#{["Jane" "Doe"]}, but why? In
words, what this query is looking for is:

 1. The fi rst name and last name of anyone

 2. Who is friends with someone

 3. Who is friends with another person

 4. Who has the same fi rst name as the fi rst person

In the data, “Jane Doe” is friends with “Ada Lovelace” who is friends with “Jane Smith,” so “Jane
Doe” is returned as the solution. Here you start to see the magic of logic programming. You did
not have to delve into any of the mechanics of how to traverse the data, or the structure and storage
of intermediate results, or explicitly call out any joins between different entities. In this query you
declaratively describe the data pattern at a high level, so the constraints and relationships you are
interested in for the solution, and the Datalog engine, fi nds all of the answers that match.

The SQL equivalent for this query is left as an exercise to the reader.

However, with great power comes great responsibility. This particular query does almost nothing
to narrow down the possible set of matches, so as the number of contacts and size of the friends
graph in our data grows, this query will have to churn through more and more possible solutions to
fi nd the one that matches. In production systems this can become unfeasibly expensive, so exercise
caution and try to write queries that are as selective as possible, as you saw in earlier queries that
required a matching email.

Kaboom! A Combinatorial Explosion
Just as in SQL, it’s possible to write queries that will result in combinatorial explosions. Here’s one
such query.

'[:find ?first-name ?last-name
 :where [?a :first-name ?first-name]
 [?b :last-name ?last-name]]

mailto:everywoman123@gmail.com

Datomic Basics ❘ 181

c06.indd 04/23/2016 Page 181

Notice how the two patterns in the where clause are disjointed. This query returns every combina-
tion of fi rst and last name in the database.

Transactions
Now that the basics of queries in Datomic have been covered, let’s look at how you write data.
Writes are sent to Datomic in the form of “transactions,” which are data structures following
 certain rules. All transactions are expressed as lists containing data to be added or retracted.

There are two basic syntax options for how to write transactions: a lower-level list-based form that
hews closely to the format of Datoms themselves, and a higher-level map-based form. The map-
based form is essentially syntactic sugar that translates into the lower-level list-based form, so let’s
fi rst look at the list syntax.

Low-level List Syntax
The list form follows this format:

[command e a v]

 ➤ command is either :db/add or :db/retract—the fi rst means that this fact should be added to
the database, the second means it should be retracted. This will map directly to the added?
part of the Datom.

 ➤ e is an entity reference, which is an extended version of the e part of the Datom. This is cov-
ered in greater detail in the section on using Datomic in Clojure. For now, let’s simplify this
and say that it is either the entity id of an existing entity, or it’s a temporary id structure that
Datomic translates into a permanent entity id as part of the transaction.

 ➤ a and v are the same as in the previous examples.

Perhaps you’re wondering, “I see e a v and added?, but where’s t?” The answer is that it’s gener-
ated for you. Datomic automatically creates a transaction entity and attaches it to all of the Datoms
in the transaction as part of the transaction process.

For example, a transaction in list form to add the data about “Jane Doe” to the system for the fi rst
time might look like:

[[:db/add jane-temp-id :first-name "Jane"]
 [:db/add jane-temp-id :last-name "Doe"]
 [:db/add jane-temp-id :email "everywoman123@gmail.com"]]

This adds an entity for Jane with her fi rst and last name, and email, assuming you have generated a
temporary id for her with the Datomic API and bound it to jane-temp-id. Now suppose you want
to add some friends for Jane. First, you need to fi nd Jane’s actual entity id with this query.

'[:find ?jane-id .
 :where [?e :email "everywoman123@gmail.com"]]

mailto:everywoman123@gmail.com
mailto:everywoman123@gmail.com

182 ❘ CHAPTER 6 THE DATOMIC DATABASE

c06.indd 04/23/2016 Page 182

Then you can add her friends with a transaction like this:

[[:db/add heinlein-temp-id :first-name "Robert"]
 [:db/add heinlein-temp-id :last-name "Heinlein"]
 [:db/add heinlein-temp-id :email "dareallazarus@long.com"]
 [:db/add jane-id :friend heinlein-temp-id]
 [:db/add lovelace-temp-id :first-name "Ada"]
 [:db/add lovelace-temp-id :last-name "Lovelace"]
 [:db/add lovelace-temp-id :email "firstprogramm3r@steampunk.com"]
 [:db/add jane-id :friend lovelace-temp-id]]

Again, let’s assume you have generated temporary ids for the two new entities being added, and
you’ve bound Jane’s permanent id from the previous query to jane-id.

All of these transactions are assertions, so let’s take a quick look at what a retraction looks like.
Let’s assume that Jane Doe, having read some of Heinlein’s later works, is shocked by his views on
morality, and decides that she no longer wants to be his friend. First, you need to look up Heinlein’s
permanent entity id using a query—left as an exercise to the reader—quite similar to the above
query to fi nd Jane’s permanent id. The transaction to retract the friendship looks like this.

[[:db/retract jane-id :friend heinlein-id]]

You can see that the list form is somewhat verbose and unwieldy. It does offer the advantage of hav-
ing direct, low-level control over the transaction and, unlike the map form, allows you to retract
individual Datoms. However, you will almost always end up using the higher-level map form for all
your transactions, with higher-level APIs to handle things like retraction. So let’s take a look at the
map form.

Map Syntax
The map syntax is, as mentioned before, higher-level than the list syntax and it’s also generally con-
sidered more idiomatic. It represents transaction data as maps, where attributes are the keys, and
entity ids are represented by a special :db/id key, just like the format of entity maps. Let’s take a
look at the Jane transaction from before expressed in this syntax.

[{:db/id jane-temp-id
 :first-name "Jane"
 :last-name "Doe"
 :email "everywoman123@gmail.com"}]

In this form, as with entity maps, the entity id is represented by the :db/id key. Under the hood,
Datomic translates this into the list form, exactly the way it was in the previous section, before
transacting. But you can see that this is a much more concise, convenient, easy-to-read way of
expressing that transaction data.

You can also do something really nifty that would take quite a bit more work to do using the other
syntax: add Jane and her friends at the same time. Watch this:

[{:db/id jane-temp-id
 :first-name "Jane"
 :last-name "Doe"

mailto:dareallazarus@long.com
mailto:firstprogramm3r@steampunk.com
mailto:everywoman123@gmail.com

Datomic Basics ❘ 183

c06.indd 04/23/2016 Page 183

 :email "everywoman123@gmail.com"
 :friend #{{:first-name "Robert"
 :last-name "Heinlein"
 :email "dareallazarus@long.com"}
 {:first-name "Ada"
 :last-name "Lovelace"
 :email "firstprogramm3r@steampunk.com"}}}]

That’s right, the map syntax supports nesting for related entities! One thing you’ll notice is that
Mr. Heinlein and Ms. Lovelace don’t have temporary ids. That’s because Datomic will generate
them for you when building a transaction this way.

There are a few caveats to this. Don’t worry, you won’t understand them until you read about
Datomic schema, but they’re included here in case you’re reviewing this section later and want this
information all in one place. When you use the nested map syntax this way, if you don’t provide
temporary ids, then the nested entities must either be related to the containing entity via an isCom-
ponent attribute, or they must have an identity attribute. Also, their generated ids will be in the
same partition as the containing entity’s id.

Set Semantics
One thing to keep in mind: Datoms have set semantics. In other words, asserting the same [e a v]
more than once is a no-op; the Datom will only exist in the database once. As a quick example, if
you transact this data:

[{:db/id jane-id
 :first-name "Jane"
 :last-name "Doe"
 :email "everywoman123@gmail.com"}]

And then transact this data:

[{:db/id jane-id
 :first-name "Jane"}]

The second transaction will succeed and it will add a transaction entity, but it will not add another
Datom about Jane. This is covered in greater detail in the section about the Clojure API.

Indexes Really Tie Your Data Together
So far the discussion has been about the data in Datomic in terms of collections of Datoms, which
is true but incomplete. To understand the way Datomic really stores data, you must go deeper. You
also may need to let go of some preconceptions that are often carried over from experiences with
relational databases and their storage model.

Generally, you don’t have to worry too much about Datomic’s indexes or how it stores data. In most
cases, straightforward use of Datomic’s high-level API without any consideration of these lower-level
details will have acceptable results. However, when doing detailed data modeling or thinking about
performance, it’s very important to be familiar enough with Datomic’s indexes that you have a good
general idea of how they will be used and how they impact what you’re doing.

mailto:everywoman123@gmail.com
mailto:dareallazarus@long.com
mailto:firstprogramm3r@steampunk.com
mailto:everywoman123@gmail.com

184 ❘ CHAPTER 6 THE DATOMIC DATABASE

c06.indd 04/23/2016 Page 184

In a relational database, data is represented in tables and these tables generally map closely to the way
data is stored on disk. The rows are generally stored in order, with a struct-like representation of their
contents. Indexing is typically managed separately, where each index is created manually over one or
more specifi c columns, with some sort of tree structure managing the indexed data with pointers to
the corresponding rows. In other words, indexes are effectively separate from the record-level data.

In Datomic, the indexes are the only representation of the data in the system. The term for that is
“covering index,” which means that the index contains all of the data, rather than a limited subset
as in relational databases. These indexes allow Datomic to quickly access data from different lookup
patterns, and enables the powerful and fl exible query system. Datomic stores data in four indexes,
plus the transaction log.

Each index is sorted and stored in a tree representation. The key distinction between the different
indexes is their sort order.

eavt Index
The eavt index represents data in a way that is conceptually similar to the way relational data-
bases store rows. Datoms in this index are fi rst sorted by entity id, so Datoms about each entity
are grouped together and then by attribute, then value, then transaction id. Datoms in this index
would be stored quite similarly to the way we’ve been representing them so far, using a dummy
transaction id:

[[101 :email "everywoman123@gmail.com" 'some-t]
 [101 :first-name "Jane" 'some-t]
 [101 :friend 102 'some-t]
 [101 :friend 103 'some-t]
 [101 :last-name "Doe" 'some-t]
 [102 :email "firstprogramm3r@steampunk.com" 'some-t]
 [102 :first-name "Ada" 'some-t]
 [102 :last-name "Lovelace" 'some-t]
 [103 :email "dareallazarus@long.com" 'some-t]
 [103 :first-name "Robert" 'some-t]
 [103 :last-name "Heinlein" 'some-t]]

Since facts about each entity are grouped together, it’s easy to retrieve all of the data about a given
entity quickly. For obvious reasons, the entity API that’s used to retrieve entity maps uses this index.
This API is covered in more detail in a later section.

All Datoms are stored in this index.

aevt Index
The aevt index groups all Datoms about an attribute together, allowing for the quick determina-
tion of which entities have values for that attribute and, secondarily, what those values are. As the
Datomic docs point out, this index is somewhat similar to a columnar store, and is one of the ways
that Datomic enables fl exible querying that supports mixed workloads. For this example data, the
index looks something like this:

[[:email 101 "everywoman123@gmail.com" 'some-t]
 [:email 102 "firstprogramm3r@steampunk.com" 'some-t]

mailto:everywoman123@gmail.com
mailto:firstprogramm3r@steampunk.com
mailto:dareallazarus@long.com
mailto:everywoman123@gmail.com
mailto:firstprogramm3r@steampunk.com

Datomic Basics ❘ 185

c06.indd 04/23/2016 Page 185

 [:email 103 "dareallazarus@long.com" 'some-t]
 [:first-name 101 "Jane" 'some-t]
 [:first-name 102 "Ada" 'some-t]
 [:first-name 103 "Robert" 'some-t]
 [:friend 101 102 'some-t]
 [:friend 101 103 'some-t]
 [:last-name 101 "Doe" 'some-t]
 [:last-name 102 "Lovelace" 'some-t]
 [:last-name 103 "Heinlein" 'some-t]]

One thing to note here is that we are making a slight oversimplifi cation. Attributes are not stored
and sorted based on their keyword name, but rather on their underlying attribute entity id. This
doesn’t make a huge amount of difference in practice, but it’s something to keep in mind.

All Datoms are stored in this index.

avet Index
The avet index is subtly different from the aevt index, in that it’s designed to very quickly retrieve
attributes with specifi c values. It’s also, as the Datomic docs point out, the most expensive index to
build and maintain. For this reason it’s optional on a per-attribute basis, whether or not Datoms are
stored in this index. Assuming indexing is enabled on all of the example attributes, here is what the
data looks like in this index:

[[:email "dareallazarus@long.com" 103 'some-t]
 [:email "everywoman123@gmail.com" 101 'some-t]
 [:email "firstprogramm3r@steampunk.com" 102 'some-t]
 [:first-name "Ada" 102 'some-t]
 [:first-name "Jane" 101 'some-t]
 [:first-name "Robert" 103 'some-t]
 [:friend 102 101 'some-t]
 [:friend 103 101 'some-t]
 [:last-name "Doe" 101 'some-t]
 [:last-name "Heinlein" 103 'some-t]
 [:last-name "Lovelace" 102 'some-t]]

The decision about whether to enable the avet index for a given attribute involves a similar tradeoff
to the decision about what columns to index in a relational database. It adds cost to writes, but
depending on the kinds of queries you’re doing, it may be essential. Any query that relies on the
specifi c value of an attribute, without knowing anything about which entity it belongs to, will be
enormously sped up by this index. Best practices here are similar to those in the relational world: if
you think you’ll query against the attribute’s value, then enable indexing.

Fortunately, if you miss out on adding an attribute to this index that you end up needing later, you
can always enable indexing on that attribute with a run-time schema update.

vaet Index
The vaet index is for representing reverse references. That is, when you have a reference-type
attribute, which means it represents a relationship between two entities, this index stores that

mailto:dareallazarus@long.com
mailto:dareallazarus@long.com
mailto:everywoman123@gmail.com
mailto:firstprogramm3r@steampunk.com

186 ❘ CHAPTER 6 THE DATOMIC DATABASE

c06.indd 04/23/2016 Page 186

relationship in the opposite direction. Naturally, this index is only enabled for reference type attri-
butes. For this example data, the vaet index might look like the following:

[[102 :friend 101 'some-t]
 [103 :friend 101 'some-t]]

You can grasp the general idea. The other indexes can be used in various ways to easily fi nd outgo-
ing entity references, but the vaet index is required to effi ciently determine incoming references.

The log
The log is structured somewhat differently from the indexes. The Datomic docs put it quite simply:
the log is an ordered collection of transactions, each of which contains an unordered set of Datoms.
Queries do not directly use the log; rather it’s accessed via several specialized APIs that can be used
as part of queries or to examine the history directly in your application.

Index structure
The above means that every Datom is stored in at least 3 and as many as 5 copies. In the past, this
kind of data replication may have been cause for concern or perhaps it was even infeasible. Indeed,
the idea that storage is scarce motivated many of the original design decisions that are now deeply
embedded in relational database designs. Today this is a rather antiquated assumption: storage is
cheap and fast. Datomic’s design makes time vs. space trade-offs in the direction of optimizing for
speed, because modern hardware and system architectures make data replication and storage size a
much lesser concern.

The indexes themselves are stored as shallow (3-level) trees, with an extremely high branching fac-
tor. The structure looks like what is shown in Figure 6-1.

Root Node

Directory Nodes

Segments

FIGURE 6-1

It’s structured as a root node, directory nodes, and segments. Datomic optimizes read performance
by keeping the root node and as many of the directory nodes in the memory of the peers and the
transactor possible to minimize the number of trips to storage.

Datomic Basics ❘ 187

c06.indd 04/23/2016 Page 187

Each of the segments contains up to approximately 50Kb of Datoms, which have been serialized to
binary using the Fressian format and then gzipped. Depending on the size of the values, each seg-
ment can contain many thousands of Datoms. This is the most important thing to grasp about how
Datomic stores data: to get at a single Datom in a given segment, the entire segment must be trans-
ferred, unzipped, and deserialized into memory. Thus, when thinking about performance, the big-
gest factor is going to be the number of segment accesses required to complete any operation.

Datomic’s Unique Architecture
One of Datomic’s main advantages is its de-constructed architecture. Traditional databases are
monolithic, performing all of their functions as part of one system running on one computer.
Datomic splits these functions up into their own components, which can be run on different systems
and even swapped out with different options.

 1. Reads. Your application’s data reads, including query logic, are performed by a Datomic
“peer,” which runs inside of your application’s process. There can be multiple peers per
Datomic database to support different components of your application.

 2. Writes. Datomic has a single writer, called the transactor. It serializes writes, providing ACID
transaction guarantees, and also supports arbitrary transaction logic to enforce data integrity,
as you’ll see in a later section. The transactor runs as its own process, often on a dedicated
system.

 3. Storage. The data and indexes that comprise a Datomic database are actually stored in
another database. This part of the system is pluggable: supported storage systems include
Amazon’s DynamoDB, Cassandra, Riak, a SQL database, and others.

 4. Optional cache. With the Datomic Pro edition, you can incorporate memcached as a cache
layer. Datomic’s immutable data structures are a natural fi t for caching since they never have
to be invalidated.

After starting up the transactor, peers connect to it over a message queue and also establish a connec-
tion to the storage system and memcached if present. To do a read, the peers access storage directly—
no coordination with the transactor is required. Peers send data to be written to the transactor, and
as writes are completed the transactor pushes a stream of the newly written data to all peers.

The peers and the transactor have two pools of memory devoted to Datomic data. The fi rst is called
the “Object Cache,” which is a hot cache of recently and frequently accessed database data. You
can independently set the size of the Object Cache on each peer and the transactor. This setting is
important when confi guring Datomic for production and involves some tradeoffs, so it’s a good idea
to take a look at the Datomic documentation section on capacity planning for more information.

The second is called the “memory index.” This is where newly transacted data is stored after it
has been written, but not yet added to the indexes. The transactor is responsible for rebuilding
the indexes, and it only does so after a confi gurable threshold of new data has been added. Newly
added data is always immediately persisted to the transaction log, but the indexes are only updated
 periodically, since this is an expensive operation. This data exists in the memory index of the peers
and the transactor until it’s been added to the indexes. Reads therefore go against a merger of what
is in the indexes and what is in the memory index.

188 ❘ CHAPTER 6 THE DATOMIC DATABASE

c06.indd 04/23/2016 Page 188

The Life and Times of a Transaction
To get a clearer understanding of the process of how data gets into Datomic and how the different
parts of the system are involved, let’s walk through the life and times of an example transaction.

 1. A peer submits a transaction to the transactor.

 2. The transactor processes transactions one at a time order of receipt, and the transaction waits
in line until its turn.

 3. The transaction is processed by the transactor, transaction functions run, temporary ids
resolved, etc.

 4. The transactor persists the transaction to the transaction log in the storage layer.

 5. The transactor adds the new Datoms to its memory index, and sends the new Datoms to
every connected peer.

 6. Some time later, the transactor begins a re-indexing job, incorporating all new Datoms into
the indexes.

MODELING APPLICATION DATA

Datomic’s schema provides a fl exible, descriptive, and easy-to-use system for describing your applica-
tion’s data. In contrast to the schema of relational databases, in which you build fi xed tables contain-
ing column defi nitions that can be used only in that table, Datomic schema is primarily concerned
with defi ning attributes that can be used with any entity. Although best practices indicate that you
should group your attributes based on the kind of entity, they are used within the application.

Like in many other databases, schema elements in Datomic need to be loaded before they are used
by the application. In order to do this, you need to build transactions containing the required parts
of each attribute entity, and then write those transactions.

Example Schema for Task Tracker App
In previous chapters, you’ve looked at various aspects of building a task tracker system. Let’s look
at how to build a schema for that in Datomic. The system will have several different types of data.
It will have the tasks themselves (users), and as in every other task tracker system, you’ll want to be
able to charge money for it so it will have accounts with charges and payments.

There are some details that aren’t covered here in the same depth as they are in Datomic’s documen-
tation, so you should review the Schema section of that documentation before moving past this sec-
tion. There is a wealth of information there.

Let’s look at the schema section by section.

Schema Basics
Let’s take a look at what a basic schema transaction contains. First, we’ll create the schema attri-
butes for the tasks. The fi rst thing a task needs is a description.

[{:db/id #db/id[:db.part/db]
 :db/ident :task/description

Modeling Application Data ❘ 189

c06.indd 04/23/2016 Page 189

 :db/cardinality :db.cardinality/one
 :db/valueType :db.type/string
 :db/doc "description of the task"
 :db.install/_attribute :db.part/db}]

The fi rst key assigns the attribute a :db/id, which is the entity id that’s required for every entity in
the system, including attributes. The value is a reader macro implemented as part of the Datomic
API, which creates a temporary entity id in the :db.part/db partition. All attribute entities are
required to be in the :db.part/db partition.

A :db/ident keyword is required for all attribute entities. It provides a universal identifi er that can
be used to refer to the attribute in queries and in transactions. In general an ident can be used any-
where an entity id is accepted. You can also give :db/ident values to data entities, in addition to
attribute entities. Be careful of abusing this feature, though, because all the :db/ident values in the
database are loaded on startup into every Datomic peer.

This attribute has the ident of :task/description. The best practices laid out in the Datomic doc-
umentation recommend that you use namespaced keywords for all your attribute idents, to organize
them into categories, and to prevent name collisions. If you haven’t read through the best practices
section of the Datomic documentation, you should probably take a few minutes and do so now. It’s
an immensely useful document that’s been distilled from the experience of nearly four years that
Datomic has been in production.

Attribute cardinality is specifi ed using the required :db/cardinality attribute. There are
two possible values for this attribute: :db.cardinality/one or :db.cardinality/many. If
it’s :db.cardinality/one, every entity can only have one value true at any given time for this
 attribute—if you try to assert a different value, then the previous value will be retracted and
replaced with the new value. Otherwise for :db.cardinality/many there is no restriction. Since
tasks should only have one title, :db.cardinality/one is the right choice.

Every attribute needs to have a :db/valueType, which specifi es the type that its v value must have.
There are two broad categories of valueTypes: reference, which means that the value must be an
entity ID, or some data type, such as string, fl oat, integer, URI, and so forth. You want your titles to
be strings, and :db.type/string is Datomic’s string type.

One optional attribute that you can use with both attribute and data entities is :db/doc. This is
broadly equivalent to a Clojure docstring or simple Javadoc, but there are no hard-coded ways in
which it is used, so you can adapt it to whatever purposes suit the needs of your application. Here,
we’ll treat this attribute as a docstring-like annotation, which is only meant to be used by developers
and other internal users.

Finally, there’s the somewhat confusing :db.install/_attribute key. Whenever you see a Datomic
attribute where the name part of the keyword begins with an underscore, you know you’re seeing a
reverse reference. Reverse references are where the entity and value parts have been swapped.

{attribute-temp-id :db.install/_attribute :db.part/db}

What this really means is this:

{:db.part/db :db.install/attribute attribute-temp-id}

The :db.install/attribute attribute is a special Datomic attribute used to add attributes to
Datomic’s schema, and attributes always need to be installed in :db.part/db.

190 ❘ CHAPTER 6 THE DATOMIC DATABASE

c06.indd 04/23/2016 Page 190

Partitions
Datomic best practices call for creating some partitions specifi c to your app, rather than using the
built-in :db.part/user that’s intended more for development and experimentation. Creating parti-
tions is simple: just create an entity with a :db/ident and the partition install command. Let’s cre-
ate two partitions: one for the tasks, and one for accounts that will contain data about users, their
accounts, and their payments and charges.

[{:db/id #db/id[:db.part/db]
 :db/ident :db.part/task
 :db.install/_partition :db.part/db}

 {:db/id #db/id[:db.part/db]
 :db/ident :db.part/account
 :db.install/_partition :db.part/db}]

Fulltext Indexing
Datomic supports fulltext indexing on specifi c attributes using a Lucene index, and supports fulltext
search on those attributes as part of queries. This can be very useful if you have one-off needs for
fulltext searching that are limited enough to not call for a dedicated search database. Let’s add a
task title attribute that is fulltext-indexed.

[{:db/id #db/id[:db.part/db]
 :db/ident :task/title
 :db/cardinality :db.cardinality/one
 :db/valueType :db.type/string
 :db/doc "title of the task"
 :db/fulltext true
 :db.install/_attribute :db.part/db}]

Use the :db/fulltext attribute to enable fulltext indexing for the title attribute. By default, it’s dis-
abled, but there are a few things to bear in mind about fulltext indexing.

 ➤ The underlying Lucene indexes are not ACID, but they are eventually consistent and will be
updated during transactor re-indexing. If your app requirements include fulltext search that’s
immediately available after data is added, then you need to use an external system for search
and your app needs to pipe searchable data into it, perhaps using Datomic’s transaction
report queue.

 ➤ The decision about whether an attribute is fulltext indexed is fi nal. It is not currently possible
to enable or disable fulltext indexing on an attribute after it’s been installed.

Enums in Datomic
Many relational databases support the concept of an enum datatype to create columns that require
one of a specifi c set of enumerated values. Datomic emulates this function using reference types and
enumeration entities. Let’s take a look at an example schema, and add a task status attribute that
takes an enum.

[{:db/id #db/id[:db.part/db]
 :db/ident :task/status
 :db/cardinality :db.cardinality/one

Modeling Application Data ❘ 191

c06.indd 04/23/2016 Page 191

 :db/valueType :db.type/ref
 :db/doc "task status - an enum"
 :db.install/_attribute :db.part/db}]

There is nothing particularly special required to create an enum attribute. Here the valueType is
set as :db.type/ref, because the enumerated values are entities, and a note was added in the attri-
butes doc to make it clear that it is specifi cally enum entities that you want to use as the refs for this
attribute.

For task status values, it would be nice if they had an attribute that provided some kind of
display label that could be used when showing the status. Let’s add an attribute that can be used
to add a label to any entity.

[{:db/id #db/id[:db.part/db]
 :db/ident :label
 :db/cardinality :db.cardinality/one
 :db/valueType :db.type/string
 :db/doc "display label of an entity"
 :db.install/_attribute :db.part/db}]

Now, let’s create the enumeration values for the task status. It’s quite simple to do: just create an
entity with a :db/ident. You need to add task statuses for “To Do,” “In Progress,” and “Done.”

[{:db/id #db/id[:db.part/task]
 :db/ident :task.status/todo
 :label "To Do"}

 {:db/id #db/id[:db.part/task]
 :db/ident :task.status/in-progress
 :label "In Progress"}

 {:db/id #db/id[:db.part/task]
 :db/ident :task.status/done
 :label "Done"}]

You’ll notice a few things here. First, since these are not schema attributes, you can’t put them in
the :db.part/db partition, so put them instead in the :db.part/task partition that was created
for the tasks earlier. Next, you’ll notice that the namespace of their ident keywords is “task.status,”
corresponding to the name of the attribute that they’re to be used with. This corresponds with the
best practice recommended for naming enumerated values in Datomic. Finally, you can give them
some display-friendly labels that the app can use, avoiding any hard-coding in the app about what
specifi c status values should be called, or about how to translate the ident keywords into something
for display.

Identity Attributes
Next, let’s look at identity attributes. These are attributes whose values are meant to be external
keys, and can be used to refer to the entity they belong to. In this way, they’re somewhat analogous
to primary keys in the relational world, although an entity can have more than one of them. It’s
very important to include identity attributes in the data model for your key domain entities.

It’s considered an anti-pattern to use Datomic’s entity id to refer to an entity, except in cases where
you just have queried for it, and it’s a particularly bad practice to ever store entity ids outside of

192 ❘ CHAPTER 6 THE DATOMIC DATABASE

c06.indd 04/23/2016 Page 192

Datomic. Entity ids are meant to be internal references inside the database, and they are not guaran-
teed to remain the same if you do a backup and restore.

Let’s give the tasks in the app an identity attribute that represents their “issue id,” which is sort of
like the ticket numbers you often see in other task and bug tracking systems.

[{:db/id #db/id[:db.part/db]
 :db/ident :task/issue-id
 :db/cardinality :db.cardinality/one
 :db/valueType :db.type/string
 :db/doc "task's issue ID, for external reference"
 :db/unique :db.unique/identity
 :db.install/_attribute :db.part/db}]

This is marked as an identity attribute by setting the :db/unique attribute to :db.unique/
identity. Setting something as an identity attribute has several effects.

 ➤ The attribute must be cardinality-one.

 ➤ Values of an identity attribute have enforced uniqueness—two entities can’t have the same
value for an identity attribute.

 ➤ The value of this attribute can be used to transparently look up the entity to which it belongs,
and using an identity attribute as part of a transaction makes that an upsert transaction.

Identity attributes are covered in more detail later in the Datomic’s Clojure API section.

Many-to-Many and Hierarchical Relationships
One of the biggest benefi ts of Datomic’s data model is the fl exibility and simplicity of expressing
relationships between entities. Datomic’s model of many-to-many relationships, in particular, is a
welcome relief to those used to the relational way of modeling them. Here are four little words that
are music to the ears of every developer who has struggled with many-to-many in SQL: “no more
join tables.”

To show how many-to-many is done in Datomic, let’s create some attributes for adding tags to
tasks. This will allow users to tag tasks with things like “Home,” “Work,” “Shopping,” “Family
Vacation,” and so forth. Let’s add the task to tag relationship, and then add a tag attribute that
allows us to give tags names.

[{:db/id #db/id[:db.part/db]
 :db/ident :task/tag
 :db/cardinality :db.cardinality/many
 :db/valueType :db.type/ref
 :db/doc "task tags"
 :db.install/_attribute :db.part/db}

 {:db/id #db/id[:db.part/db]
 :db/ident :tag/name
 :db/cardinality :db.cardinality/one
 :db/valueType :db.type/string
 :db/doc "tag's name, used as identity"
 :db/unique :db.unique/identity
 :db.install/_attribute :db.part/db}]

Modeling Application Data ❘ 193

c06.indd 04/23/2016 Page 193

You see how doing many-to-many in Datomic is as simple as adding a reference-type attribute
with cardinality-many? Since you’re not constrained by the fi xed number of columns in relational
tables, it’s simple to model the kind of data that typically requires specialized extra tables in SQL
databases.

Also, notice that you’ve made the name of tags an identity attribute. This makes them upsertable,
and will make it easier to reuse tags in multiple tasks.

Let’s next look at how to create an entity relationship that represents a hierarchy. In the task app
you want to create subtasks, which are children of the parent tasks. And perhaps those subtasks
can in turn have subtasks of their own, and so on… Some people have very complicated lives, after
all, with activities that have deep dependencies on other things being completed. Since subtasks are
often attached to parent tasks, moved around, and reorganized, let’s model the relationship on the
child side.

[{:db/id #db/id[:db.part/db]
 :db/ident :task/parent
 :db/cardinality :db.cardinality/one
 :db/valueType :db.type/ref
 :db/doc "parent of the task, establishing arbitrary hierarchy"
 :db.install/_attribute :db.part/db}]

This is a fairly straightforward attribute. It says that a task can have at most one parent, and the
parent is a reference. Thus, tasks can have parents tasks, which can in turn have parents, allowing
for hierarchies of arbitrary depth.

Datomic allows you to model relationships in either direction, so this can be modeled as :task/
subtask and be an attribute of the parent, rather than the subtask. The decision largely depends on
how you prefer to think about the relationship, and how your application will use it. In this case, the
deciding factor was that one of the key operations you want to support is assigning an existing task
to be a subtask of some other task, possibly removing it as a subtask from another task. Modeling
it this way allows this operation to be done very easily: asserting a new parent for the subtask will
automatically remove any existing parent relationship, since this is a cardinality-one attribute.

Let’s take a moment to consider something interesting about Datomic that particularly distinguishes
it from SQL. In this case we have named the parent relationship attribute such that it appears to be
task-specifi c, but there’s no reason that it has to be—Datomic won’t enforce that constraint. With a
single attribute, you could say that tasks can have “idea” entities as parents, and subtasks or com-
ments or any number of differently structured entities as children. The fl exibility of Datomic makes
these kind of heterogeneous relationships much simpler to model.

Identity versus Unique
Let’s create a simple model for users. It’s quite similar to what you might see in a relational schema,
but it has a few important differences.

[{:db/id #db/id[:db.part/db]
 :db/ident :user/login
 :db/cardinality :db.cardinality/one
 :db/valueType :db.type/string
 :db/doc "user's login name and display name"

194 ❘ CHAPTER 6 THE DATOMIC DATABASE

c06.indd 04/23/2016 Page 194

 :db/unique :db.unique/identity
 :db.install/_attribute :db.part/db}

 {:db/id #db/id[:db.part/db]
 :db/ident :user/password
 :db/cardinality :db.cardinality/one
 :db/valueType :db.type/string
 :db/doc "crypted pasword"
 :db.install/_attribute :db.part/db}

 {:db/id #db/id[:db.part/db]
 :db/ident :user/email
 :db/cardinality :db.cardinality/one
 :db/valueType :db.type/string
 :db/doc "User's email address"
 :db/unique :db.unique/value
 :db.install/_attribute :db.part/db}

 {:db/id #db/id[:db.part/db]
 :db/ident :user/account
 :db/cardinality :db.cardinality/one
 :db/valueType :db.type/ref
 :db/isComponent true
 :db/doc "The account linked to the user"
 :db.install/_attribute :db.part/db}]

This model adds four attributes: the user’s login, an encrypted password, an email address, and
a link to an account that will be modeled in a moment. For this system, separate logins are used
instead of email addresses to allow people to choose their own clever nicknames like “weavejester”
and “hyPiRion,” or more pedestrian ones like “rhickey.” We do, however, want to store people’s
email addresses and only allow one user per email address.

Notice that login is an identity attribute, and email address is modeled as a :db.unique/value
attribute. They have slightly different semantics. Identity attributes, as discussed before, enforce
uniqueness, but also allow for upserts: if you assert new data that contains an identity value that
already exists in the database, then that data updates the entity to which that identity belongs. That
means you can refer to your users by their login everywhere, and Datomic will resolve that to the
correct entity.

The other type of uniqueness is set with :db.unique/value: if you assert new data that duplicates
an existing :db.unique/value Datomic will throw an exception and the entire transaction will fail.

It’s generally bad practice to have more than one identity attribute for a single type of entity, unless
they correspond to external keys for different systems. If you need additional unique attributes for a
type of entity, you should usually use :db.unique/value attributes.

Component Relationships
An attribute can also defi ne a “component” relationship. This describes a relationship where the
component entity is owned by the parent entity, and it isn’t meant to exist independently. Datomic
retracts component entities when you retract the parent entity, and will also return data about
 component entities when you fetch data about the parent in several key parts of the API.

Modeling Application Data ❘ 195

c06.indd 04/23/2016 Page 195

Let’s set up an account system for users that will handle paid accounts and keep track of charges
and payments. First let’s add an account type attribute, modeled as an enum.

[{:db/id #db/id[:db.part/db]
 :db/ident :account/type
 :db/cardinality :db.cardinality/one
 :db/valueType :db.type/ref
 :db/doc "account type (eg paid, free), an enum"
 :db.install/_attribute :db.part/db}

 {:db/id #db/id[:db.part/account]
 :db/ident :account.type/free
 :label "Free account"}

 {db/id #db/id[:db.part/account]
 :db/ident :account.type/paid
 :label "Paid account"}]

This is just like the enum covered earlier in this chapter: a cardinality-one reference type attribute,
with entities with appropriately named idents as the enumeration values. Now let’s add in the
charges and payments, which are called “transactions” here against the account.

[{:db/id #db/id[:db.part/db]
 :db/ident :account/transaction
 :db/cardinality :db.cardinality/many
 :db/valueType :db.type/ref
 :db/isComponent true
 :db/doc "transactions (payments and charges) against the account"
 :db.install/_attribute :db.part/db}

 {:db/id #db/id[:db.part/db]
 :db/ident :transaction/type
 :db/cardinality :db.cardinality/one
 :db/valueType :db.type/ref
 :db/doc "transaction type (eg charge, payment, adjustment) - an enum"
 :db.install/_attribute :db.part/db}

 {:db/id #db/id[:db.part/db]
 :db/ident :transaction/amount
 :db/cardinality :db.cardinality/one
 :db/valueType :db.type/bigdec
 :db/doc "amount of the transaction"
 :db.install/_attribute :db.part/db}

 {:db/id #db/id[:db.part/account]
 :db/ident :transaction.type/charge
 :label "Charge"}

 {:db/id #db/id[:db.part/account]
 :db/ident :transaction.type/payment
 :label "Payment"}

 {:db/id #db/id[:db.part/account]
 :db/ident :transaction.type/adjustment
 :label "Adjustment"}]

196 ❘ CHAPTER 6 THE DATOMIC DATABASE

c06.indd 04/23/2016 Page 196

You can see the addition of three more attributes. The last two should be familiar. The fi rst is an
enum for the transaction type—either charge, payment, or adjustment for those times when you
need to correct mistakes. The second is an attribute for the transaction amount. Datomic includes
support for a decimal type corresponding with java.math.BigDecimal objects, which you’ve
used earlier to model the transaction amounts so as not to worry about any stray precision errors
from fl oats.

The fi rst attribute, :account/transaction, models transactions as components of accounts.
You do this by setting :db/isComponent to true. It has implemented here because these transac-
tions completely depend on the account for them to have any meaning, and if the account entity is
retracted it makes no sense for them to remain.

Disabling History
While Datomic is designed around the idea that data is immutable and the complete history of your
data should be available, there are some cases where you don’t want that to happen. For example,
if you have attributes with a high churn rate or represent calculations that are materialized for the
sake of convenience, sometimes it’s just not worth it to keep a history of every single value the attri-
bute has ever had.

Fortunately, Datomic allows you to disable history on a per-attribute basis. Let’s add an attribute
that will represent the current balance of the account. This is a value that will change every time
there’s any transaction, and furthermore it’s something that you cancalculate at any point by sum-
ming up all of the transactions. It can be convenient to have this value materialized, because then it’s
easier to do queries about, for example, accounts that have more than a certain balance. Here’s how
that is modeled in a Datomic schema:

[:db/id #db/id[:db.part/db]
 :db/ident :account/current-balance
 :db/cardinality :db.cardinality/one
 :db/valueType :db.type/bigdec
 :db/doc "current balance of the account"
 :db/index true
 :db/noHistory true
 :db.install/_attribute :db.part/db}]

By setting :db/noHistory to true, you have disabled history. What this means practically is that dur-
ing every indexing job, the transactor will drop both retraction Datoms and assertions that have been
retracted for this attribute, keeping only the most recently asserted value. You can see then that it’s pos-
sible for some history data about this attribute to be present between indexing jobs, so you shouldn’t
write your application logic to depend on there never being any history present for the attribute.

Entity ids and Partitions
The creation of Datomic partitions for your application data have been discussed. This is in addi-
tion to Datomic’s built-in partitions.

 ➤ :db.part/db is the partition for attributes and other schema-related data.

 ➤ :db.part/tx is the partition for transaction entities.

 ➤ :db.part/user is a partition for your use in development.

Datomic’s Clojure API ❘ 197

c06.indd 04/23/2016 Page 197

In addition to providing logical groupings, partitions also have a useful purpose in providing physi-
cal groupings. Remember that Datoms are ordered in the indexes, and reducing the number of index
segments that are retrieved as part of an operation is key to improving performance. Therefore it’s
benefi cial to have entities that are related and often retrieved together stored in the same segment
if possible, which means their entity ids need to be close together. Partitions give you a way to help
make that happen.

As discussed earlier, entity ids are Longs. The higher-order bits of the entity id come from the parti-
tion, which means that entities inside a partition are grouped together in the indexes as well. If your
application is going to create a large number of entities, particularly in one-to-many relationships, it
can be benefi cial to create multiple partitions and split these entities up logically.

To take an example from the task tracker schema, let’s say that later on you extend the system to
include enterprise support with various types of metered charges for accounts. This could result in a
large number of charge and payment transactions for the account entities. If all of the account and
transaction entities remain in a single partition, as they are in the current schema, then the perfor-
mance might suffer. Since charges and payments are added across time, you could have a situation
where it requires many segment fetches to get all of the transactions for an account.

You can solve this problem by creating multiple partitions for your accounts and distributing
account entities across these partitions. When adding charge or payment transactions, make sure
to put them in the same partition as their account. This will greatly improve the data locality when
accessing accounts and their related transactions, because it will both reduce the maximum possible
number of required segment fetches, and increase the chance of related transactions being collocated
in a single segment.

DATOMIC’S CLOJURE API

Datomic includes a fi rst-class Clojure API that makes it natural and easy to work with when build-
ing applications. In this section, you’ll learn about how to set up a project and a Datomic database,
how to use the API, and how you can write the data access layer for the example task system.

Basic Setup
You can bring in the free-as-in-beer version of the Datomic peer library, which includes an in-
memory database you can use for development, as a normal dependency in your project.clj fi le. Here’s
your basic project.clj fi le, including a dependency atom for the current version that is datomic-free.

(defproject chapter-6 "0.1.0-SNAPSHOT"
 :description "Code for Professional Clojure, Chapter 6: Datomic"
 :license {:name "Eclipse Public License"
 :url "http://www.eclipse.org/legal/epl-v10.html"}
 :dependencies [[org.clojure/clojure "1.7.0"]
 [com.datomic/datomic-free "0.9.5344"]
 [crypto-password "0.1.3"]]
 :profiles {:dev {:source-paths ["dev"]]}})

You’ll notice a few extra things here, in addition to the basic project.clj fi le from lein, that are new
with the Datomic dependency. The crypto-password library is included so user passwords can be

http://www.eclipse.org/legal/epl-v10.html

198 ❘ CHAPTER 6 THE DATOMIC DATABASE

c06.indd 04/23/2016 Page 198

encrypted. There are also an extra property defi ned for the dev profi le: the dev folder has been
added to the source paths, so you can add some code to support your development process that
won’t confl ict with the production code.

Schema and Example Data
First, let’s put the schema that was created in the previous chapter in a fi le in the resources folder of
the project, called schema.edn. This way you can easily work with it in the project.

Next, add some example data in resources/example-data.edn. You can use this data to help you
while exploring the Datomic API, developing the data access code, and later it can even form the
basis of test cases for testing.

;; A test user, with account and charges
[{:db/id #db/id[:db.part/account]
 :user/login "janed"
 ;; bcrypted "totalanon"
 :user/password "$2a$11$W2juQqRpaxVqXt4u..4qz.asyhbfR53K1a3stjQ3wpUYOCcagH8VK"
 :user/email "everywoman123@gmail.com"
 :user/account
 {:account/type :account.type/paid
 :account/transaction
 #{{:transaction/type :transaction.type/charge
 :transaction/amount 7.99M}
 {:transaction/type :transaction.type/payment
 :transaction/amount -7.99M}
 {:transaction/type :transaction.type/charge
 :transaction/amount 2.55M}}
 :account/current-balance 2.55M}}]

;; A couple of tasks
[{:db/id #db/id[:db.part/task]
 :task/title "Write to Robert about Number of the Beast"
 :task/description "He should know the first part was meandering and slow, and the
 ending was just self indulgent. \"Meet Lazarus, live happily
 ever after.\" Please!"
 :task/status :task.status/todo
 :task/issue-id "HOME-11"
 :task/tag #{{:tag/name "Home"}
 {:tag/name "Writing"}}
 :task/user {:user/login "janed"}}

 {:db/id #db/id[:db.part/task]
 :task/title "Disappear into anonymity"
 :task/description "Jane Doe can't be a public figure."
 :task/status :task.status/in-progress
 :task/issue-id "WORK-1"
 :task/tag #{{:tag/name "Work"}
 {:tag/name "Important"}}
 :task/user {:user/login "janed"}}

 ;; Add a subtask
 {:db/id #db/id[:db.part/task]
 :task/title "Pack clothes"

mailto:everywoman123@gmail.com

Datomic’s Clojure API ❘ 199

c06.indd 04/23/2016 Page 199

 :task/description "Focus on neutral colors, hoodies."
 :task/status :task.status/todo
 :task/issue-id "WORK-2"
 :task/user {:user/login "janed"}
 :task/parent {:task/issue-id "WORK-1"}}]

A test user, “janed,” has been created, so you can continue the saga of Jane Doe. Her password is
“totalanon,” but it’s been encrypted with bcrypt. She has an account with some transactions, and a
few tasks including one that’s a subtask.

Setting Up for Development
While developing you often want to quickly iterate and experiment with an in-memory database.
Let’s create a dev namespace that lets you do just that. Create a dev folder in the project root
(remember dev was added to the source-paths) and add a fi le called dev.clj to that folder, which
looks like this:

(ns dev
 (:require [clojure.java.io :as io]
 [clojure.pprint :refer (pprint)]
 [datomic.api :as d])
 (:import datomic.Util))

(def dev-db-uri
 "datomic:mem://dev-db")

(def schema
 (io/resource "schema.edn"))

(def example-data
 (io/resource "example-data.edn"))

(defn read-txs
 [tx-resource]
 (with-open [tf (io/reader tx-resource)]
 (Util/readAll tf)))

(defn transact-all
 ([conn txs]
 (transact-all conn txs nil))
 ([conn txs res]
 (if (seq txs)
 (transact-all conn (rest txs) @(d/transact conn (first txs)))
 res)))

(defn initialize-db
 "Creates db, connects, transacts schema and example data, returns conn."
 []
 (d/create-database dev-db-uri)
 (let [conn (d/connect dev-db-uri)]
 (transact-all conn (read-txs schema))
 (transact-all conn (read-txs example-data))
 conn))

mem://dev-db

200 ❘ CHAPTER 6 THE DATOMIC DATABASE

c06.indd 04/23/2016 Page 200

(defonce conn nil)

(defn go
 []
 (alter-var-root #'conn (constantly (initialize-db))))

(defn stop
 []
 (alter-var-root #'conn
 (fn [c] (when c (d/release c)))))

You can see the usage of the Datomic API, conveniently called datomic.api as a dependency. The
entire Clojure API for Datomic is in this namespace, so you will be seeing this dependency quite a
bit. The other import is datomic.Util, which includes a handy static method for reading schema
and other Datomic data from fi les.

Next, confi gure the URI for the in-memory Datomic db, datomic:mem://dev-db. The format of
URIs for a Datomic DB varies based on the type of storage medium in use, but the general format is
datomic:<type>://<connection params specific to the storage>/<db name>.

We have two utility functions, read-txs and transact-all, that deal with reading transaction
data from a fi le and writing a collection of transactions. We also have a function, initialize-
db, that sets up the database for development, adding both the schema and the example data. Let’s
return to these in a moment.

The two main functions used in our example are go and stop. The go function initializes the in-
memory database and connects to it, binding the Datomic connection object to the conn var. The
stop function drops the in-memory database and releases the connection.

This provides a nice development workfl ow: set up a database, work with it in the REPL, and reset
it to the starting state.

Experimenting in the REPL
Start up a REPL in the project, switch to the dev namespace, and initialize the development db.

user> (require 'dev)
nil
user> (in-ns 'dev)
#namespace[dev]
dev> (go)
#object[datomic.peer.LocalConnection 0x2117de53
 "datomic.peer.LocalConnection@2117de53"]

Connections and dbs
The Datomic connection object represents Datomic’s connection to both the transactor and the stor-
age layer. Since you’re using an in-memory database, both of these are in-process. You can get a db
value from a connection with the d/db function of the Datomic API.

dev> (def db (d/db conn))

So, what’s the difference between a connection and a db? The connection is a handle, and it’s used
when you are sending writes to the transactor. A db, however, has value semantics. It represents the

mem://dev-db

Datomic’s Clojure API ❘ 201

c06.indd 04/23/2016 Page 201

state of the database at a particular time. When you call d/db you get the latest state of the
database that the Datomic peer in your application knows about. You can use the db to do all kinds
of different reads.

Highlight Tour of the Read API
You can examine attributes with attribute:

dev> (d/attribute db :task/title)
#AttrInfo{:id 67 :ident :task/title :value-type :db.type/string
 :cardinality :db.cardinality/one :indexed false
 :has-avet false :unique nil :is-component false
 :no-history false :fulltext true}

You can see the transaction number, or t value as the Datomic docs describe it, of the most recent
transaction in a db with basis-t:

dev> (d/basis-t db)
1021

You can retrieve the transaction entity id for a given t value with t->tx.

dev> (d/t->tx 1021)
13194139534333

You can get low-level access to the Datoms in a specifi c index with datoms.

dev> (first (d/datoms db :aevt))
#datom[0 10 :db.part/db 13194139533312 true]
dev> ;; or seek to specific parts of the index
dev> (first (d/datoms db :aevt :db/doc :task/title))
#datom[67 62 "title of the task" 13194139534313 true]

You can then get the entity id for a given ident with entid.

dev> (d/entid db :task/title)
67

And then back again with ident:

dev> (d/ident db 67)
:task/title

The Entity API
One of the most commonly used features in Datomic is the entity API. It gives you access to entity
data in a convenient, idiomatic way for Clojure. Let’s take a look at Jane Doe. But how do you
access her record? She wasn’t given an ident, so you can’t just use that keyword. You have to access
her entity id somehow.

Here you can take advantage of a great feature of identity attributes: they can be used in place of
entity ids in every place that accepts them. When used this way, they’re called “lookup refs” and the
format is:

[attribute-name value]

202 ❘ CHAPTER 6 THE DATOMIC DATABASE

c06.indd 04/23/2016 Page 202

We know Jane’s login from the example data is “janed,” and since login is an identity attribute, you
can use that as a lookup ref for her entity. The entity API is accessed with the entity function.

dev> (d/entity db [:user/login "janed"])
{:db/id 285873023222776}

You might be thinking that this looks strange—there’s defi nitely supposed to be more data about
Jane than just an id. Now is a good time to step back and learn a few things about the entity maps
returned by Datomic’s entity API.

They are lazily loaded. Only the :db/id is present at fi rst.

 ➤ They work with most of Clojure’s map functions.

 ➤ You navigate to related entities through normal map access.

Here are some examples of how you can treat entities like maps:

dev> (def jane (d/entity db [:user/login "janed"]))
#'dev/jane
dev> (keys jane)
(:user/login :user/password :user/email :user/account)
dev> (:user/login jane)
"janed"
dev> (vals jane)
("janed" "$2a$11$W2juQqRpaxVqXt4u..4qz.asyhbfR53K1a3stjQ3wpUYOCcagH8VK"
 "everywoman123@gmail.com" {:db/id 285873023222777})
dev> (into {} jane)
{:user/login "janed", :user/password "$2a$11$W2j ...<snip>",
 :user/email "everywoman123@gmail.com", :user/account {:db/id 285873023222777}}
dev> (get-in jane [:user/account :account/type])
:account.type/paid

The Datomic API also includes a function that loads in all of the entity’s attributes, as well as every
component entity, touch. Here it is used on Jane’s account entity.

dev> (d/touch (:user/account jane))
{:db/id 285873023222777, :account/type :account.type/paid,
 :account/current-balance 2.55M,
 :account/transaction #{
 {:db/id 285873023222779, :transaction/type :transaction.type/payment,
 :transaction/amount -7.99M}
 {:db/id 285873023222778, :transaction/type :transaction.type/charge,
 :transaction/amount 7.99M}
 {:db/id 285873023222780, :transaction/type :transaction.type/charge,
 :transaction/amount 2.55M}}}

You see how the results contain all of the attributes of Jane’s account, plus all of the related transac-
tions since they’re components.

The Query API
There are two ways to access the query API: the more traditional q function, and a query function
that takes arguments in a slightly different format and supports setting a query timeout. Let’s use
the q function here, as it’s considered more idiomatic for most types queries.

mailto:everywoman123@gmail.com
mailto:everywoman123@gmail.com

Datomic’s Clojure API ❘ 203

c06.indd 04/23/2016 Page 203

Here’s a simple example, adapted from the earlier section on queries.

(d/q '[:find ?login :in $?email
 :where [?user :user/email ?email]
 [?user :user/login ?login]]
 db "everywoman123@gmail.com")
#{["janed"]}

This query looks up the login of the user with a given email. You see that q takes the query as the
fi rst parameter. After that, there are some new things here. First, you see this :in form that wasn’t
in the previous queries. This is used to specify the inputs to the query, in the same positional order
as they are passed to q.

Here the db is the fi rst argument, and it’s called $ in the inputs. This is how you refer to the db or
dbs—it’s possible to query against more than one db!—that the query is targeting. Much like the
reader-macro syntax for Clojure anonymous functions, if there’s only one input db you can just call
it $, and it’s used as the implicit database for all of your where patterns. If there are multiples, you
need to delineate them with $db1 $db2, for example, and each pattern needs to begin with the data-
source it’s targeting.

The second argument is an input binding that can be used anywhere in the query. In this query
you’re passing in the email address that you’re looking for. You can have an arbitrary number of
these inputs. You can also pass in collections, in which case you need to slightly change the format
of the input binding. Here is the same query, except this time you’re looking for a number of email
address logins.

(d/q '[:find ?login :in $ [?email ...]
 :where [?user :user/email ?email]
 [?user :user/login ?login]]
 db
 ["everywoman123@gmail.com" "john.doe@nowhere.com" "postmaster@google.com"])

Notice how this uses ?email as the binding form. This is the required format for bindings where
you’re binding a collection.

The Pull API
Often you want to fi nd some specifi c entities with a query, and then retrieve more information about
those entities. You can do this with the entity API, but that can get somewhat verbose and isn’t very
declarative and elegant, particularly when compared to the queries. To solve this problem, Datomic
introduced the pull API. This let’s you describe the “shape” of data you want to return about an
entity or entities, and you can even integrate it directly into your queries.

When you use the pull API, normal Clojure data structures are returned: vectors for collections of
results, maps for data about entities, and sets for cardinality-many relationships. Let’s look at an
example, building on the previous query, but returning the user’s login and some information about
their account.

dev> (d/q '[:find (pull ?user [:user/login
 {:user/account [{:account/type [:db/ident]}]}])
 :in $?email
 :where [?user :user/email ?email]]

mailto:everywoman123@gmail.com
mailto:everywoman123@gmail.com
mailto:doe@nowhere.com
mailto:postmaster@google.com

204 ❘ CHAPTER 6 THE DATOMIC DATABASE

c06.indd 04/23/2016 Page 204

 db "everywoman123@gmail.com")
[[{:user/login "janed", :user/account
 {:account/type {:db/ident :account.type/paid}}}]]

In pull specs, vectors specify lists of attributes to return, and the maps specify relationships. Here
you are specifying that you want the :user/login, and then in the account via the :user/account
relationship, you want the :db/ident of the :account/type.

Using pull specs as part of queries is often the best way to retrieve data that’s meant to be returned
to an external system, since the results can be directly serialized as edn and sent over the wire with-
out any further transformation.

Transactions
You can perform transactions with the transact function. It accepts a connection and the transac-
tion data, and returns a future containing a transaction result map. Let’s take a look at an example,
and what the various parts of the result map mean.

dev> (pprint @(d/transact conn [{:db/id (d/tempid :db.part/user)
 :task/title "Hello world"}]))
{:db-before datomic.db.Db@c7f1e174,
 :db-after datomic.db.Db@d62413b7,
 :tx-data
 [#datom[13194139534349 50 #inst "2016-02-06T20:22:19.369-00:00"
 13194139534349 true]
 #datom[17592186045454 67 "Hello world" 13194139534349 true]],
 :tempids {-9223350046623220340 17592186045454}}

The result map contains a :db-before key that contains the db value from immediately before
the transaction, and a :db-after key that contains the db value immediately after it. You can pull
either of these dbs directly out of the map and work with them as with any other db value. Using the
:db-after in particular is quite common.

The :tx-data key contains a collection of all of the Datoms written during this transaction. Here
you see there are two: one for the :task/title Datom that was asserted, and another for the trans-
action entity.

Finally, the :tempids key contains a mapping from the tempids created for the transac-
tion to the actual entity ids written in the database. In this case the entity created has an id of
17592186045454. Let’s see what happens when you try to assert a duplicate Datom for this entity.

dev> (pprint @(d/transact conn
 [[:db/add 17592186045454
 :task/title "Hello world"]]))
{:db-before datomic.db.Db@d62413b7,
 :db-after datomic.db.Db@10110222,
 :tx-data
 [#datom[13194139534351 50 #inst "2016-02-08T20:27:16.653-00:00"
 13194139534351 true]],
 :tempids {}}

You tried to add the Datom [17592186045454 :task/title "Hello world"], but that
Datom already existed. Notice that the transaction succeeds, but the :tx-data key only has the

mailto:everywoman123@gmail.com

Datomic’s Clojure API ❘ 205

c06.indd 04/23/2016 Page 205

Datom about the transaction entity. You can see that the Datom assertion is idempotent. If you did
the same experiment in the other direction—that is, we retracted the same Datom twice—you’d see
a similar result: only the fi rst transaction would have had that retraction Datom in its :tx-data,
and the second would only include the transaction Datom.

Time Travel Will Never Be Impossible Forever

Once confi ned to fantasy and science fi ction, time travel is now simply an
engineering problem.

—Michio Kaku

Datomic’s treatment of time as fi rst class, and the database as a value, gives you as a developer the
power of time travel. Let’s look at the more obvious type of time travel in Datomic: journeying to
the past.

Let’s start by simulating time advancing forward by adding some data. Create a new task with an
issue-id, and then use the issue-id to upsert several new values of the task’s description. Each
time you’ll capture the resulting db value.

dev> (def db1 (:db-after @(d/transact conn [{:db/id (d/tempid :db.part/user)
 :task/issue-id "Hello"}])))
dev> (def db2 (:db-after @(d/transact conn [{:db/id (d/tempid :db.part/user)
 :task/issue-id "Hello"
 :task/description "First description"}])))
dev> (def db3 (:db-after @(d/transact conn [{:db/id (d/tempid :db.part/user)
 :task/issue-id "Hello"
 :task/description "Second description"}])))

It’s time to introduce another Datomic API function: as-of, which takes a db value and a t
value—the result of calling basis-t, a transaction id, or a date—and returns a new db value that is
of that point in time. Now let’s see how you can travel back in time.

dev> (def now-db (d/db conn)) ;; get the most current db
dev> (:task/description (d/entity now-db [:task/issue-id "Hello"]))
"Second description"
dev> (:task/description (d/entity (d/as-of now-db (d/basis-t db2))
 [:task/issue-id "Hello"]))
"First description"

You can use the db from the past anywhere in the Datomic API that expects a db: even queries.

dev> (def description-query '[:find ?i . :in $?desc
 :where [?i :task/description ?desc]])
dev> (d/q description-query now-db "Second description")
17592186045446
dev> (d/q description-query (d/as-of now-db (d/basis-t db2)) "First description")
17592186045446

What’s perhaps more unexpected is that you can travel into the future—at least, into a speculative
possible future like the kind that Ebenezer Scrooge was brought to in A Christmas Carol. This is
done with the somewhat innocuously named with function in the Datomic API. It takes a db and

206 ❘ CHAPTER 6 THE DATOMIC DATABASE

c06.indd 04/23/2016 Page 206

some transaction data, and returns the result of what would occur if the data were transacted,
including a :db-after key with a new db value. This lets you chain multiple simulated transactions
together, like so:

dev> (def future-db (-> now-db
 (d/with [{:db/id (d/tempid :db.part/user)
 :task/issue-id "Hello"
 :task/description "Third description"}])
 :db-after
 (d/with [{:db/id (d/tempid :db.part/user)
 :task/issue-id "Hello"
 :task/title "Hello world"}])
 :db-after))
dev> (d/touch (d/entity future-db [:task/issue-id "Hello"]))
{:db/id 17592186045446, :task/description "Third description",
 :task/title "Hello world", :task/issue-id "Hello"}

BUILDING APPLICATIONS WITH DATOMIC

Let’s take a look at how to create the data access layer for the task tracker app.

User Functions
Start with the user code. In the application source folder, create a user.clj fi le with these initial
contents:

(ns chapter-6.user
 "Database functions for user operations"
 (:require [datomic.api :as d]
 [crypto.password.bcrypt :as password]))

(defn entity
 "Returns user entity from :db/id, string login, or arg if already
 an entity."
 [db user]
 (cond (instance? datomic.query.EntityMap x) user
 (string? user) (d/entity db [:user/login user])
 :else (d/entity db user)))

(defn id
 "Returns :db/id for a user when passed an entity, login, or long id."
 [db user]
 (:db/id (entity db user)))

This sets up our namespace declaration, including the bcrypt functionality from the crypto.pass-
word library that we’ll use to encrypt our passwords. You can also see there are two utility func-
tions intended to help support more fl exible APIs. The entity function will coerce several types of
arguments into a Datomic entity for the user. If it’s already an entity, it will return what’s passed.
If it’s a string, it assumes it’s a user login and creates an entity using the lookup ref. Otherwise, it
assumes it’s an entity id or something that can be passed directly to Datomic’s entity function.

The id helper function returns the :db/id of a user passed in any of the forms that entity accepts.

Building Applications with Datomic ❘ 207

c06.indd 04/23/2016 Page 207

Now let’s create a function to check if a login and password are correct. This function can take
advantage of the login as a lookup ref since it’s being passed in, use that to retrieve the user entity
and its encrypted password, and check the submitted plaintext password against the crypted one.

(defn check-login
 "Checks if login and password are correct, and if so returns the
 user entity."
 [db login password]
 (when-let [user (d/entity db [:user/login login])]
 (when (password/check password (:user/password user))
 user)))

Often in user registration forms, you want to quickly check if the user’s login or email address is
already taken, and if so give a message to the user that they’re not available. Let’s write two simple
functions to perform those availability checks.

(defn login-available?
 "Checks if a login is available. Returns false if already used by a
 user."
 [db login]
 (nil? (d/entity db [:user/login login])))

(defn email-available?

"Checks if an email address is available. Returns false if already
 used by a user."
 [db email]
 (nil? (d/q '[:find ?user .
 :in $?email
 :where [?user :user/email ?email]]
 db email)))

The login availability check is somewhat simpler to do since you can use login as a lookup ref. The
email check is a little more involved, since you have to perform a query. It’s a simple query, however,
that will return either a single user id matching the email, or nil if none is found.

Ensuring Data Integrity with Transaction Functions
Next, let’s add the function that creates users. Since this function needs to perform a transaction, it
will take a Datomic connection rather than db. However, there’s one nagging problem here. Since
user logins are upsertable, you need a way to ensure that the user you’re creating doesn’t have a
login that’s already in use.

You could try using the availability check function to see if it already exists. This would cover most
of the cases, but if you have a lot of experience with databases you might already see the problem
with this approach. Whenever you do a read and then a write in this way, you open yourself up to a
race condition where, in this case, a user with that login gets created by someone else between the
read and the write.

Relational databases solve this with transactions spanning both reads and writes and compli-
cated locking semantics. Datomic doesn’t need that because it solves the problem with transaction
functions.

208 ❘ CHAPTER 6 THE DATOMIC DATABASE

c06.indd 04/23/2016 Page 208

Transaction functions are run by the transactor as part of transaction processing. Datomic comes
with two built-in funtions: a compare-and-swap operation, and an entity retraction operation. But
neither of these functions quite meets our needs. What is needed is a transaction function that will
look to see if the ident value exists at the time of the transaction.

In Datomic, functions are represented as entities with a :db/fn attribute that has the value of a
Datomic function object. You can create function objects by calling the Datomic API’s function
method with a map of information about that function, or with the #db/fn reader literal with
a map in that same format. The map describes what language the function is in (either Java or
Clojure), what parameters it accepts, a string containing the function body, and optional import
and require lists.

Another nifty feature of Datomic function objects is that they are callable as regular Clojure func-
tions. Here’s a simple example that adds two numbers:

(def add
 (d/function {:lang "clojure"
 :params '[x y]
 :code "(+ x y)"}))

(add 1 2) ;; => 3

Transaction functions are a special type of Datomic function. They have some additional
requirements:

 ➤ The fi rst argument is a Datomic db.

 ➤ They should return transaction data, or throw an exception to fail the transaction.

Let’s create a transaction function that will ensure that an identity value for a given attribute doesn’t
exist, and add it to the schema fi le.

{:db/id #db/id[:db.part/task]
 :db/ident :add-identity
 :db/fn #db/fn{:lang "clojure"
 :params [db e ident-attr value]
 :code "(if (d/entity db [ident-attr value])
 (throw (ex-info (str value \" already exists for \"
 ident-attr)
 {:e e
 :attribute ident-attr
 :value value}))
 [[:db/add e ident-attr value]])"}}

This function takes a db value, an entity id to add the identity for, the identity attribute, and
the value. The function looks to see if that identity value already exists, and if so it throws an
exception. Otherwise, it returns transaction data that adds the identity to the entity id. Give it an
ident, :add-identity, so you can refer to it in transactions.

You can make use of this in the function to create users.

(defn create
 "Attempts to create a new user entity with given login, password,

Building Applications with Datomic ❘ 209

c06.indd 04/23/2016 Page 209

 and email. If paid? is true, creates a paid account and link to the
 user, otherwise creates a free account. Returns the transaction
 data if succesful. Will throw an exception if the login or email
 already belong to another user."
 ([conn login password email]
 (create conn login password email false))
 ([conn login password email paid?]
 (let [tempid (d/tempid :db.part/account)
 user-tx [{:db/id tempid
 :user/email email
 :user/password (password/encrypt password)
 :user/account {:account/type (if paid?
 :account.type/paid
 :account.type/free)}}
 ;; db function ensures login doesn't exist already
 [:add-identity tempid :user/login login]]]
 @(d/transact conn user-tx))))

You can see how the calling syntax for database functions is fairly close to the way the list-syntax
for transaction data works. The fi rst list element is the transaction function name, the following
elements are the arguments. You didn’t need to use this transaction function for emails since the
email was made with a unique value attribute, and Datomic throws an exception that aborts the
transaction if there’s a duplicate.

Account Functions
Let’s take a look at some functions that deal with the charges, payments, and balance of the users’
accounts in our app. The account model maintains two sources for an account’s current balance:
the sum of all the charges, payments, and adjustment transactions against the account; and the
:account/current-balance attribute. Keeping those in sync can be a challenge.

Here is another place that transaction functions can be helpful. Instead of manually calculating and
asserting the new balance each time you add a transaction, and opening up the risk of another pos-
sible race condition, you can let the transactor handle this for you. Here are two choices: you can
use Datomic’s compare-and-swap function, which will fail the transaction if the current balance has
changed since the time it was read, or you can create our own transaction function that automati-
cally adjusts the balance by applying the transaction amount.

Using compare-and-swap has the advantage of being built-in, but the disadvantage is that it will be
failing transactions when you really don’t need to. If you want to use it in the transaction, be sure to
add something like this:

[:db.fn/cas account-id :account/current-balance
 expected-current-balance new-balance]

Writing your own transaction function for this gives you something like:

[{:db/id #db/id[:db.part/account]
 :db/ident :account/update-balance
 :db/fn #db/fn{:lang "clojure"
 :params [db a amt]
 :code "(let [acct (d/entity db a)

210 ❘ CHAPTER 6 THE DATOMIC DATABASE

c06.indd 04/23/2016 Page 210

 balance (or (:account/current-balance acct) 0)]
 [[:db/add a :account/current-balance
 (bigdec (+ balance amt))]])"}}]

If you use this approach, here is the function to add a new transaction:

(defn add-transaction
 "Takes a conn, user or account entity, transaction type (ident of
 the enum), and amount, and adds the transaction to the user's
 account. Returns the transaction data."
 [conn user-or-account trans-type amount]
 (let [account (or (:user/account user-or-account) user-or-account)
 amount (bigdec amount)
 charge-tx [{:db/id (d/tempid :db.part/account)
 :transaction/type trans-type
 :transaction/amount amount
 :account/_transaction (:db/id account)}
 [:account/update-balance (:db/id account) amount]]]
 @(d/transact conn charge-tx)))

Youo can also add helper functions for each transaction type, such as add-charge, add-payment,
and add-adjustment.

Task Functions
Here now is coverage of the heart of the system: tasks. Let’s start with the basics of task creation
in a new namespace for the task database functions. Create a new fi le in the project’s source folder
called tasks.clj and add the basic namespace declaration, along with a few dependencies that are
needed.

(ns chapter-6.task
 (:require [clojure.string :as str]
 [datomic.api :as d]
 [chapter-6.user :as user]))

For the task creation API, the function needs to accept a connection, some reference to the user that
is creating the task, and various data for the task: a title, description, status, issue-id, tags, and the
parent task if it’s a subtask.

To keep the number of required data to the minimum, let’s say only the user and the title should be
required. The rest you can either leave empty, have a useful default, or generate ourselves.

You’ll defi nitely need an issue-id, since that’s the identity attribute. If one isn’t supplied, let’s write
a function that will generate it from the issue’s title. It will take the fi rst word of the title, capitalize
it, and try incremental numeric postfi xes until it fi nds one that doesn’t yet exist in the database.

(defn issue-id-from-title
 "Takes a db and task title, returns an issue-id using the first
 word in the title with a numeric postfix that does not already
 exist in the db."
 [db title]
 (->> (range)
 (map (partial str (.toUpperCase (first (str/split title #"\s"))) "-"))
 (remove (fn [issue-id] (d/entity db [:task/issue-id issue-id])))
 first))

Building Applications with Datomic ❘ 211

c06.indd 04/23/2016 Page 211

You can also add an entity function as you had in the user namespace to make the API more
 fl exible, for example, by accepting different forms for the parent task.

(defn entity
 "Returns task entity from :db/id, string issue-id, or arg if already
 an entity."
 [db task]
 (cond (instance? datomic.query.EntityMap task) task
 (string? task) (d/entity db [:task/issue-id task])
 :else (d/entity db task)))

Now you can add the create function. Since you’re adding an issue-id identity attribute, and it
may suffer from the same kind of race condition problems that you noticed with user logins, you
should make use of the database function you created for that.

(defn create
 "Takes a Datomic connection, a user entity, and a map with task
 info, and attempts to create a task in the database. Returns
 transaction data. Task info map has keys:

 * :title (required)
 * :description
 * :status - one of :todo, :in-progress, :done [:todo]
 * :issue-id - defaults to the the word in title with a numeric
 postfix
 * :tags - a set of strings
 * :parent - task entity, issue id, or :db/id"
 [conn user
 {:keys [title description status issue-id tags parent]
 :or {status :todo}}]
 (assert title ":title is required")
 (let [tempid (d/tempid :db.part/task)
 db (d/db conn)
 status (keyword "task.status" (name status))
 issue-id (or issue-id (issue-id-from-title db title))
 tags (some->> tags
 (map (partial hash-map :tag/name))
 (set))
 parent (entity db parent)]
 @(d/transact conn
 [(cond-> {:db/id tempid
 :task/user (:db/id user)
 :task/title title
 :task/issue-id issue-id
 :task/status status}
 description (assoc :task/description description)
 tags (assoc :task/tag tags)
 parent (assoc :task/parent (:db/id parent)))
 [:add-identity tempid :task/issue-id issue-id]])))

Notice that since tags are upsertable with :tag/name, you don’t have to care about whether they
exist or not, and you can simply assert them here and Datomic will either create them or wire up the
task with the existing ones. The :add-identity database function is the one created for user logins,
but we made it fl exible enough to work with any identity attribute.

212 ❘ CHAPTER 6 THE DATOMIC DATABASE

c06.indd 04/23/2016 Page 212

Next, you can add a straightforward function that assigns a task a new parent, supporting the oper-
ation in the example app where the user is re-organizing their tasks.

(defn set-parent
 "Sets parent of task to parent."
 [conn task parent]
 (let [db (d/db conn)]
 @(d/transact conn [[:db/add (:db/id (entity db task))
 :task/parent (:db/id (entity db task))]])))

You can add similar functions to set task’s status, and add and remove tags.

(defn set-status
 "Sets status of task to status, one of :todo :done :in-progress."
 [conn task status]
 (let [db (d/db conn)]
 @(d/transact conn [[:db/add (:db/id (entity db task))
 :task/status (keyword "task.status" (name status))]])))

(defn add-tag
 "Adds a tag to task. Tag is the string name of the tag."
 [conn task tag]
 (let [db (d/db conn)]
 @(d/transact conn [{:db/id (:db/id (entity db task))
 :task/tag #{{:tag/name tag}}}])))

(defn remove-tag
 "Removes tag from a task. Tag is the string name of the tag."
 [conn task tag]
 (let [db (d/db conn)]
 @(d/transact conn [[:db/retract (:db/id (entity db task))
 :task/tag [:tag/name tag]]])))

Now, let’s add a query function that returns all of the top-level tasks for a user. You’ll add an
optional parameter that fl ags whether the subtasks should be returned. Since you’re using the pull
API, let’s fi rst write the pull-spec.

(def task-pull-spec
 "Basic pull spec for task info."
 [:task/title :task/description {:task/status [:db/ident]}
 :task/issue-id {:task/tag [:tag/name]}])

This pull-spec includes the basic fi elds for the task, the ident of the task’s status, and the name of
all the task’s tags. Now you can add your query function.

(defn for-user
 "Returns all the top-level tasks for a user. If sub-tasks? is true,
 recursively returns the sub-tasks as well."
 ([db user]
 (for-user db user false))
 ([db user subtasks?]
 (let [pull-spec (cond-> task-pull-spec
 subtasks? (conj {:task/_parent '...}))

Building Applications with Datomic ❘ 213

c06.indd 04/23/2016 Page 213

 query '[:find (pull ?task spec)
 :in $?user spec
 :where [?task :task/user ?user]
 (not [?task :task/parent _])]]
 (d/q query db (user/id db user) pull-spec))))

If the subtasks fl ag is true, this function adds something interesting to the pull-spec. The addi-
tion of {:task/_parent '...} means that it will apply the entire pull-spec recursively using the
parent reverse reference. That is, it will recursively pull all of the task’s children, and their children,
and so forth. The ... turns it into a recursive spec, or you could have put a number there instead
to limit the recursion depth. The result is that the entire subtask tree of a task will be pulled for the
app to use or display for the user.

Also notice that you can pass pull-specs in as arguments to the query and bind them as symbols
without any special prefi x.

Finally, let’s look at how you can use the fulltext search index added for the :task/title attribute,
to search for tasks by title. You can reuse the same pull-spec created before. The query function
looks like this:

(defn search-title
 "Searches for tasks using a fulltext search on the title. Returns
 the matching tasks as well as the match score against the search
 string."
 [db user search]
 (d/q '[:find (pull ?task spec) ?score
 :in $?user ?search spec
 :where [(fulltext $:task/title ?search) [[?task _ _ ?score]]]
 [?task :task/user ?user]]
 db (user/id db user) search task-pull-spec))

Notice the use of the built-in fulltext function in the query. It accepts the db source, the attribute
to look in, and the search terms, returning a four-tuple of [?entity ?value ?tx ?score]. Since
the focus is on the entity, and the matching score for this function, we ignored the value and the tx
with underscores.

Wrapping Up
Notice that it took very little actual code to power a large amount of functionality, as shown in this
chapter. Datomic’s powerful API, and the investments made in our application data model, really
pay off when it comes to building the application and getting a lot of leverage out of concise code.

Testing is something outside of the scope of this chapter, but you can take advantage of the value
semantics of Datomic dbs, and the ease with which you can stand up in-memory Datomic databases
to write a thorough automated test suite for your application code with a minimum of machinery.

Deployment
In order to deploy a production Datomic system with a transactor and persistent store, you need to
download one of the release downloads. As of this writing, there are three tiers of Datomic license:

214 ❘ CHAPTER 6 THE DATOMIC DATABASE

c06.indd 04/23/2016 Page 214

 ➤ Datomic Free. It is, as the name implies, free of cost and doesn’t require registration. This lets
you run a transactor using the “dev” storage and a maximum of 2 peers. The “dev” storage
is actually an embedded SQL database that the peers access via the transactor.

 ➤ Datomic Pro Starter. This is also free of cost, although it requires registration and an access
code to download and use in your project. It allows you to use any of the storage backends
with a limited number of peers.

 ➤ Datomic Pro. This is the paid edition of Datomic, and is licensed by the number of peers.
It gives access to all of the features, including all of the storage backends, high-availability
transactor mode, and memcached.

Once you have a version of Datomic downloaded, you need to choose your storage backend and set
up the transactor. The Datomic documentation section on deployment is an excellent guide to this
process, and is available here: http://docs.datomic.com/deployment.html.

The Limitations
No system exists that can handle every possible use case and every possible scenario. Every system
has tradeoffs, and those tradeoffs impose limitations on how the system can be used. Datomic is no
exception. In building Datomic, Rich, Stuart, et al. made design decisions that make Datomic well
suited for use as a transactional system for storing domain data, in the way many applications use a
relational database today.

Those same design decisions place some limitations on what you can do with Datomic, and it is
helpful to know up-front what those are, and what types of use cases are not a good fi t for Datomic.

Hard (and Soft) Limits
The most obvious limitation of Datomic is that there is only one writer, the transactor. This means
that write scalability is limited to vertical scalability only, and applications built on Datomic can
only handle the write volume that the single transactor node can handle. In practice, this is not gen-
erally a critical limitation, since it’s not diffi cult to achieve hundreds of sustained writes per second
through the transactor, with bursts into the thousand-per-second range.

If your application is working at this kind of data scale, then generally you are already outside the
range where you would be able to get good performance out of a relational database without tun-
ing and designing your schema to optimize your read patterns. In other words, you’ve already given
up many of the benefi ts of a relational database, and one of the other NoSQL databases designed
around this kind of data volume might be a better fi t than Datomic.

Another limit is the number of “schema” elements. This includes both schema attributes and parti-
tions. There is a hard maximum of 2^20 of these—a little over 1 million. It is unlikely you’ll ever
reach this limit—in fact it’s likely that something has gone terribly wrong if you have—but it’s some-
thing to be aware of.

The max number of entity ids in any partition is 2^42, which is around 4.4 trillion. This is purely
a theoretical limitation, included here just so that you don’t worry about it, because it is absolutely
impossible to get this many entities into Datomic, period. Principally this is due to the fi nal, most
imposing limitation.

http://docs.datomic.com/deployment.html

Summary ❘ 215

c06.indd 04/23/2016 Page 215

There is a soft limit on the total number of Datoms in a database of around 10 billion. This includes
assertions, retractions, and history. This is a soft limit, because nothing will stop you from adding
more, and in fact Cognitect is aware of a production Datomic database with more than 14 billion
Datoms. This is a limit to be concerned with just the same for three reasons.

 ➤ Cognitect’s automated testing of Datomic includes database sizes of up to 10 billion Datoms,
so there’s reason to be confi dent that Datomic will work at that volume. Above that, how-
ever, you are offi cially in uncharted waters.

 ➤ The index data structures start to become quite bloated at this size, such that query perfor-
mance is likely to suffer and there will be increased resource demands on every peer node.

 ➤ Transactor performance will take a real hit as the number of directory nodes and segments
increase, the magnitude of which depends on how varied your write patterns are and how
well you have designed your partitions. If the transactor’s re-indexing job needs to rewrite an
excessively large number of data segments because the indexes have become very large and
your writes are spread across many segments, it is possible that it will not be able to complete
and your database will simply fall over to the point of requiring a restore from a previous
safe backup.

SUMMARY

 This chapter covered in detail how Datomic changes the way you build database-backed applica-
tions. You can see how Datomic’s emphasis on fl exibility and expressiveness is enabled by its simple,
yet powerful, data model, and innovative ideas about design and immutability. With so many new
ideas in one system, you can see how Datomic in many ways represents a fundamental rethinking of
the database.

While this chapter aimed to provide enough breadth to see what’s possible with Datomic, and
enough depth that you’re left with the information and understanding you need to begin building
applications with it, there is more to cover. The Datomic documentation is immensely valuable, with
a huge trove of valuable information. Additionally, there are a number of great presentations, blogs,
and videos that cover different aspects of Datomic and case studies.

We hope that you are now aware of the possibilities that Datomic opens up for your applications,
and a glimmer of the excitement that we feel about working with it.

c07.indd 04/09/2016 Page 217

Performance
WHAT’S IN THIS CHAPTER?

 ➤ Understanding performance

 ➤ Choosing the right data structure

 ➤ Benchmarking is important

 ➤ Profi ling, Parallelism, and Memoization

 ➤ Using low-level techniques to improve performance

We should forget about small effi ciencies, say about 97% of the time:
premature optimization is the root of all evil. Yet we should not pass up our
opportunities in that critical 3%.

—Donald Knuth

In this chapter you will implement tools and techniques to make code execute faster. How fast
can a dynamic, lazy, functional, immutable language be, you ask. Pretty fast. You can expect
Clojure code to take around 2–5 times the amount of CPU of equivalent Java code. With a
little work you can tweak it to be as fast as Java code. In turn, you can expect Java code to
perform at around 1.2 times C. This is amazing considering the high-level abstractions you get
to leverage from Clojure. Compared to dynamic languages like Ruby, Clojure is blazingly fast.

So, how does Clojure achieve such great performance? The answer is the JVM. Clojure
embraces its host platform and relies on its mature byte code optimization. The same holds
true for ClojureScript (relies on the Closure Compiler) and ClojureCLR (embraces the .NET
runtime). There is an intentional tradeoff made to embrace the underlying platform and not
completely abstract it away. The benefi t is performance and interoperability. The downside is
you have to live with some unsightly details of the underlying platform leaking into your code.

7

Professional Clojure. Jeremy Anderson, Michael Gaare, Justin Holguín, Nick Bailey and Timothy Pratley
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

218 ❘ CHAPTER 7 PERFORMANCE

c07.indd 04/09/2016 Page 218

Clojure has several advantages for producing high performance code:

 ➤ Clojure is data oriented. Choosing the right datastructure is the prerequisite for writing fast
code. Clojure encourages usage of O(1) and O(log n) data structures by providing the map,
the set, and the vector literal notation.

 ➤ Clojure is a concise language, with powerful functional abstractions. Concise expressions aid
algorithmic clarity. Being able to express algorithms succinctly is a great advantage in writing
correct and effi cient algorithms.

 ➤ Interop allows you to delegate heavy lifting tasks to Java libraries. When you really need
every drop of CPU for a task, chances are there is a library for that. If not, you always have
the option to create and use your own Java classes for critical bottlenecks in your system.

 ➤ Clojure exposes a range of options for trading off between high-level dynamic code and
annotated bare metal code.

There are also several aspects of Clojure that commonly produce poor performance. Memory
allocation is the biggest aspect to be alert to. Refl ection in tight loops commonly causes unexpected
slowness, and Clojure is often cited as slow due to its terrible startup time, which is a constant and
visible tax. There is no way around it, Clojure is just not good at that. If you look past startup time
though, you will fi nd it performs great once it is up and running.

High-level abstractions have a cost. But being able to reason with high-level abstractions is very
powerful. If you are able to identify bottlenecks, you can split your code into elegant and perfor-
mant code, and get large speed gains by tuning the performant code. You can always code with
algorithmic complexity in mind. There is no point looking up items from a sequence when you can
use a map instead. But how do you approach the performance of your code beyond that?

 ➤ Think—Thinking is by far the most important part. Defi ne your performance goals as an
implicit functional requirement for systems you build. Be very clear about what level of per-
formance is acceptable, at what point performance becomes irrelevant, and what are reason-
able system requirements to achieve the desired performance.

 ➤ Measure

 ➤ Time your suspicious functions, then benchmark, and profi le.

 ➤ Check that appropriate data structures and algorithms are used. Use transients where
data structures are built. Look for reduce calls, especially for opportunities to use
transients.

 ➤ Check your concurrency, especially if the bottleneck involves external resources.
Clojure has concise concurrency abstractions; take advantage of them.

 ➤ Memoize judiciously.

 ➤ Use type hint. For interop code that is called very frequently, refl ection costs quickly
add up and can become signifi cant.

 ➤ Measure memory allocation and garbage collection. Check your use of laziness. This
can be a source of memory consumption and garbage collection.

Choosing the Right Data Structure Is a Prerequisite for Performance ❘ 219

c07.indd 04/09/2016 Page 219

 ➤ Monitor—Monitoring is the only way to know that you are allocating system resources effec-
tively. You are unable to reach all the way down to fi rst principles of computation to fully
reason about your system because the computation stack is so complex. It is inevitable that
your system assumptions will break, so you need to monitor for it and learn from it.

WHAT IS PERFORMANCE?

A basic view of performance is how quickly your program calculates some result. A more sophisti-
cated defi nition of performance is the ratio of resources your system consumes, relative to how much
value it produces. The practical defi nition of performance might be: “The system is down, CPU
usage is at 100%, I need to fi x this right now!” It is important to think of performance in a holistic
fashion, because all of these defi nitions hold some truth, and yet in and of themselves are too myopic.

Any system is built making a trade-off between how much time was invested in creating the system,
how well it provides value, and the costs of running and maintaining it. Be aware of where the curve
pivots, and at what distance from that pivot your activities are wasteful in either direction.

Focusing too deeply on any one aspect of performance can be wasteful and even counter-productive.
It is no use spending hours annotating code with types to avoid refl ection, when using a different
data structure would have given a far better outcome. Even worse, micro-optimizing the wrong
thing can be a barrier to refactoring to a better solution.

Examining performance teaches you how your system actually works. Small changes can have huge
impacts. Software typically changes often, so it is unlikely that every change will be examined for
performance, unless you have measurement and automated tests that produce metrics.

Achieving high performance requires experimenting with code, with libraries, and with analysis
tools. Experiments are only effective when measurement is involved. Keep a record of your results as
you try new approaches.

This chapter is all about experimenting and measuring. In order to provide some examples of the
techniques, we will be measuring the performance of the example project tracking solution used
throughout this book. In order to provide self-contained examples, the focus will be on a feature for
running Monte Carlo project simulations. The idea is that you will take a project and iterate to a
new state in the project with some simple rules. This will give you one possible path that the project
could take. If you run many such simulations, you may be able to draw some insights into important
variables to control.

CHOOSING THE RIGHT DATA STRUCTURE IS A PREREQUISITE
FOR PERFORMANCE

Vectors have O(1) lookup by index. Sets and hashmaps have O(logn) lookup by key. Sequences by
contrast are O(n). Choosing the right data structure usually boils down to not doing combinatorial
sequential lookups O(n^2) or higher. Exponential complexity is the primary performance assassin
for algorithms.

220 ❘ CHAPTER 7 PERFORMANCE

c07.indd 04/09/2016 Page 220

Checking for the existence of an element in a sequence is usually a built-in feature of a language.
In Java you have indexOf. But Clojure does not have an equivalent for sequences. This is a case of
Clojure purposefully discouraging a common bad choice. When you need to check membership of
an element in a sequence, you should not be using a sequence at all. A set is the right datastructure
for testing membership.

Consider two possible data models you can design for the project simulation code. The fi rst repre-
sents the team as a list of names, and the stories as a list of stories containing details of the story and
an id. This sort of data is very much what you might expect as the result of an SQL query.

(def project1-bad
 {:title "Build a task tracking solution"
 :team '("Jeremy" "Justin" "Michael" "Nick" "Timothy")
 :stories '({:id "aaa"
 :title "Build a ClojureScript front end"
 :status "Ready"}
 {:id "bbb"
 :title "Build backend services"
 :status "Done"}
 {:id "ccc"
 :title "Tune performance"
 :status "In Progress"})})

As soon as the number of stories starts to grow, any use of the list representation will suffer dramat-
ically. It is certain that even if the list representation shows no problems, you will run into a scenario
where it just breaks down completely for a larger dataset.

A better choice is to use a set to store the team, and make the stories a map of story id to story
details. This sort of data is more like how a database might internally be structured in the sense that
using the unique identifi er as a key in a map is similar to indexing the stories.

(def project1-better
 {:title "Build a task tracking solution"
 :team #{"Jeremy" "Justin" "Michael" "Nick" "Timothy"}
 :stories {"aaa" {:title "Build a ClojureScript front end"
 :status "Ready"}
 "bbb" {:title "Build backend services"
 :status "Done"}
 "ccc" {:title "Tune performance"
 :status "In Progress"}}})

Is this really better? At such a small scale, the only difference is semantic. Using a set is explicitly
stating that only unique names are allowed in our data model. Similarly ids must be unique, because
they are keys in a map. This alone is reason enough to choose the right data structure. It communi-
cates intent.

Keeping a watchful eye for the right data structure is very different from trying to optimize your
code statements for best branch fi rst. The latter is highly situational and impossible to do without
benchmarking. The former is correct thinking that leads to effi cient algorithms. Choosing the
right data structure is never a premature optimization. Thinking about the correct data repre-
sentation helps you think about the problem domain, the data you are storing, and how that data
will be consumed. It is always worth spending the time upfront to choose a data model that best

Benchmarking ❘ 221

c07.indd 04/09/2016 Page 221

represents sensible access semantics. Do not defer thinking about the complexity implications of
data representation on some notion of it being an optimization. Choosing the right data structure
is the prerequisite for correct and performant code.

BENCHMARKING

You often know roughly what part of your system is not performing at an acceptable level. You
might have a clue such as “When the user adds a story with a very long description, the interface
hangs.” Begin by thinking about why this may be the case, how this part of the system is bottleneck-
ing, and what you can reasonably hope to achieve. We have a plan of attack and some hypotheses in
hand. So now it is time to measure, experiment, and try some techniques to improve the situation.

When constructing experiments you should keep in mind that granular measurements are more
practical than fi ne measurements. This is a truth that is easy to lose sight of as you delve into the
complexities of computer behavior. When you move down to measuring and tuning operations
instead of algorithms, you enter into a battle to optimize a complex stack of layered yet intertwined
abstractions.

These algorithms are implemented in Clojure, which in turn relies on Java classes to provide funda-
mental abstractions, which in turn relies on the Java compiler to create effi cient byte code. The JVM
goes to great length to execute the code effi ciently. The JVM inlines function calls, does hotspot
analysis, removes redundant loads, does copy propagation, and eliminates dead code. The byte code
is an abstraction around CPU instructions and memory. On the CPU itself further optimization
is occurring such as caching and common branch detection. This tall stack of abstractions allows
you to be algorithmically expressive, but along the way you sacrifi ce optimal use of computational
resources. There is a tradeoff between precise control over exactly what the hardware does, and the
ability to compose abstract concepts to express useful calculations.

Optimizations in one layer may directly counteract optimizations in another layer. So, you are
affected by both the complexity of a tall stack of abstractions, and also how those layers interact
with each other. Because of these complex interactions, performance is almost never the sum of its
parts. Micro-benchmarking operations in isolation will not accurately match the performance of the
combination of those operations.

Micro-benchmarks don’t compose, so don’t micro-benchmark everything. More detail is worse, but
making a very small change can have a large impact over a wide scope. So focus on larger scopes,
and the most heavily used functions.

Do use benchmarks to reason about performance. Don’t randomly try things to improve perfor-
mance, but instead make educated guesses about how the code can be made to run faster. Just be
cautious about any assumptions you make when it comes to overall performance in the context of
the code you will be executing in this chapter.

Timing Slow Things
Measuring slow things sounds a little boring, but most of the big performance wins covered in this
chapter are going to come from measuring slow things; fi nding unexpectedly large chunks of sunk

222 ❘ CHAPTER 7 PERFORMANCE

c07.indd 04/09/2016 Page 222

time. Slower is better when it comes to fi nding a scope of code to time. Try to organize your perfor-
mance experiments in a way that decomposes the time in halves. Binary search is an excellent way
to narrow in on the important aspects of your program.

Often you will be surprised that decomposition is nowhere near the midpoint. This surprise is a
good thing, since it means that one of the assumptions is wrong. Let’s face it, assumptions about
performance are very often wrong. The good news is that fi nding false assumptions presents an
opportunity to better understand your system, and will likely reveal a key insight to improving it.

Profi ling tools allow you to avoid having to invest heavily in up front binary time-split style tim-
ings. Profi ling automatically percolates up the scopes of code that you should investigate to discover
bottlenecks.

Performance tuning requires a lot of experimentation. So using a REPL to time and adjust functions
is convenient. Start a REPL and follow along with the examples in this book, and take some time to
stray from the examples as well. Let’s time the top level entry point.

(time (sim-project project1))

You get the fi nal stimulation state returned back to you. Above, the result you can see is a message
printed “Elapsed time: 7299.223 msecs”. The time macro is great because you can wrap any part
of your code in (time ...) to see how long it is taking. You can quickly try wrapping a few suspi-
cious expressions and discover a bottleneck that can be improved. Perhaps you suspect that a lot of
time is being spent in standup, so you can check that without changing the behavior of the code.

(defn standup [project]
 (time
 (-> project
 (complete-stories)
 (start-stories))))

Now you can see dozens of output messages like “Elapsed time: 70.007 msecs.” This certainly
seems like a good place to investigate. Ad hoc timing is often easier than going to the trouble of pro-
fi ling execution, but is less direct. Often you can quickly spot something obvious and get some quick
wins, so it is always a good place to start. Be aware that this approach has limitations and switch to
another approach when ad hoc timing is no longer yielding traction.

Depending on your environment and goals, relying on printed output can be distracting. Sometimes
you want the actual time taken as a value. Let’s adapt the time macro to return the number of mil-
liseconds as a value, so that you can make some assertions about your performance goals.

(defmacro time-msecs
 "Returns the time in msecs taken to evaluate expr."
 [expr]
 "(let [start# (. System (nanoTime))]
 ~expr
 (/ (double (- (. System (nanoTime)) start#)) 1000000.0)))

Now you can write a test to describe your goal.

(deftest slow-tests
 (is (< (b/time-msecs (sim/sim-project sim/project1))
 1000)
 "A full project simulation should take less than one second"))

Benchmarking ❘ 223

c07.indd 04/09/2016 Page 223

This approach works great for measuring calculations longer than 10 milliseconds, but breaks down
for shorter periods.

Benchmarking external resource access is less susceptible to JVM variance. It doesn’t make any
sense to worry about nanosecond accuracy when timing web service request round trips. Monitoring
is often done at the service level, which is usually perfect. You should rely on monitoring instead of
benchmarking for external resources as much as possible.

Use Criterium for Timing Fast Things
Benchmarking code is usually not as simple as calling (time (some-fn ...)). The time of execu-
tion can vary wildly, depending on how and when it is invoked due to advanced techniques such
as adaptive optimization and dynamic recompilation employed by the JVM. This becomes a big
 problem with trying to time short calculations that take less than 10 milliseconds.

Consider this puzzling case.

(time (inc 1))
"Elapsed time: 0.028 msecs"
(time (dotimes [i 1000] (inc 1)))
"Elapsed time: 0.23 msecs"

Doing 1000 times more calculations takes only 10 times as long. Clearly there is more going on than
meets the eye.

A naïve approach to writing benchmark tests might be something like start a JVM, run bench-
mark1, benchmark2, benchmark3, and shutdown. After benchmark1, the JVM is optimized for
benchmark1, but wrongly optimized for benchmark2. The name for this order dependent perfor-
mance is path dependency. Changing the ordering changes the benchmark results. You need a fresh
JVM for each benchmark to isolate them.

The Criterium library (https://github.com/hugoduncan/criterium) provides a way to work
around most of those issues. It includes a warm-up period, during which the Just-In-Time (JIT)
compiler can work its magic. The library also mitigates the effects of garbage-collection (GC) prior
to measuring the speed. Finally, it computes not just the mean time, but also upper and lower quan-
tiles, and standard deviation. You get a wealth of insightful statistics about your benchmarks to
better understand the performance profi le of the code.

Evaluation count : 18900 in 60 samples of 315 calls.
 Execution time mean : 3,574752 ms
 Execution time std-deviation : 1,127694 ms
 Execution time lower quantile : 2,304367 ms (2,5%)
 Execution time upper quantile : 5,652621 ms (97,5%)
 Overhead used : 3,443486 ns

Found 4 outliers in 60 samples (6,6667 %)
 low-severe 2 (3,3333 %)
 low-mild 2 (3,3333 %)
Variance from outliers : 96,4221 % Variance is severely inflated by outliers

Where and how should benchmarks be run? The easy answer is from the REPL. This has the same
advantages and drawbacks as using the time macro for ad hoc timing. Keep in mind that Criterium
is aimed at CPU/memory bound tasks and is not appropriate for slow functions such as IO bound

https://github.com/hugoduncan/criterium

224 ❘ CHAPTER 7 PERFORMANCE

c07.indd 04/09/2016 Page 224

operations. Trying to get 60 samples of a function that takes 10 second is going to take 10 minutes.
That’s not very interactive, nor is the additional accuracy valuable in such a scenario.

Consider using Criterium inside tests, because it is good to assert performance to avoid releasing
bugs. If you gather this data regularly you can plot performance per source control commit, to see
how your system is being affected by changes. You can make assertions using quick-benchmark,
which returns the benchmarks instead of printing a report.

To gather all of the results into a form convenient for charting, you can use a fi xture.

(defn add-results! [k results]
 (swap! benchmarks assoc-in [(:time git-commit-info) k] results))

(defn save-gathered-benchmarks [f]
 (f)
 (with-open [w (io/writer (doto (io/file "benchmarks" benchmark-filename)
 (io/make-parents)))]
 (clojure.pprint/pprint @benchmarks w)))

Then, create a macro to defi ne a benchmark to be recorded.

(defmacro bench-press [title acceptable-time & form]
 `(deftest ~(symbol (kebab/->kebab-case title))
 (testing ~title
 (let [results# (assoc (cr/quick-benchmark ~@form nil)
 :acceptable-time ~acceptable-time)]
 (add-results! ~title results#)
 (is (< (first (:mean results#)) ~acceptable-time))))))

Now you can very concisely express benchmarks that will be run in continuous integration builds.

(use-fixtures :once b/save-gathered-benchmarks)

(b/bench-press "Remove 1 done story" (* 1000 b/nsecs)
 (remove-done-stories project1))

The fi xture produces a fi le containing the full performance results relative to source control com-
mits, suitable for charting. With this information on hand, fi nding out what change introduced a
performance bottleneck is easy.

{#inst "2016-02-01T08:37:59.000-00:00"
 {:git-commit-info
 {:id "d2cbd0ded4b16300d76231b6d553edbfc3fb1668",
 :message "namespacing and adding some example improvements" ...}
 "Bug?"
 {:mean
 [3.4741639538209525E-6
 (3.3825290092479442E-6 3.5348896790521507E-6)],
 :final-gc-time 95103961,
 :execution-count 38459,
 :variance
 [1.2185041088601622E-14
 (3.4091764724026322E-15 2.3422252112283815E-14)] ...}}}}

Parallelism ❘ 225

c07.indd 04/09/2016 Page 225

Criterium is the de facto standard library for benchmarking CPU/memory bound calculation. It
addresses many of the challenges to accurately measuring the time taken for code to execute, and
how variable the time span is over many runs. Use it to measure fast things.

Use Test Selectors for Performance Tests
Tests and namespaces should be labeled to limit benchmark execution to only occur in continuous
integration test runs, or when you explicitly request them in development. Prevent benchmarks from
running in development test by default; they are too slow for interactive development. To label a
namespace or test, attach a metadata fl ag.

(deftest ^:perf slow-tests ...)

Attaching a metadata fl ag to the namespace is equivalent to labeling all of the tests in the
namespace.

(ns ^:perf mush.simulation-test ...)

You can confi gure test selectors in the project.clj fi le. Let’s set up a selector for the :perf label, and
make the default be everything except :perf tests. The default occurs when no selector is specifi ed.

:test-selectors {:perf :perf
 :default (complement :perf)}

When you execute lein test :perf, only the tests labeled with :perf are run. If you execute
lein test, only the tests not labeled with :perf are run. There is a special selector :all, which
you don’t need to specify in the confi guration. If you execute the lein test :all, then all of the
tests are run regardless of labels. Test selectors work with lein-test-refresh as well. With this
confi guration in place, you can have your CI server execute lein test :all to include your perfor-
mance tests, but not be bothered by them during interactive development.

PARALLELISM

Say that you identifi ed that calculating completion-rate is a major bottleneck, which in turn is
spending the most wall clock time in member-info.

(defn member-info [member]
 (let [history (fetch-history member)
 profile (fetch-profile member)]
 (merge history profile)))

Here you see how two external services are being queried for data. These requests will be made
sequentially; the history will be fully fetched before the profi le is requested. You can instantly
improve this by starting both requests immediately, and only returning the combined result when
both are available. One way to express this is making both requests inside a future, and deref them
for the fi nal result.

(defn member-info-better [member]
 (let [history (future (fetch-history member))

226 ❘ CHAPTER 7 PERFORMANCE

c07.indd 04/09/2016 Page 226

 profile (future (fetch-profile member))]
 (merge @history @profile)))

Now instead of waiting 21 milliseconds to get all of the data, it arrives in 11 milliseconds! Clojure
has very concise and expressive abstractions for dealing with concurrency. See pmap, pcalls,
future, and core.async.

MEMOIZATION

Caching is the wildcard of performance optimization. If your program is slow, just remember the
answers instead of recalculating them! Caching is very effective at improving performance.

Clojure’s memoize function takes a function and returns a function that does exactly the same thing
as the original function, but remembers the results per input arguments it has previously calculated.
Let’s see it in action by defi ning a function f that prints a message and returns the increment of its
argument.

(defn f [x]
 (println "Calculating...")
 (inc x))

Now defi ne g to be the memoization of function f, and call the function g with the same
input twice.

(def g (memoize f))
(g 1)
(g 1)

Notice that the message “Calculating…” is only displayed once. The second time that you call g it
does not execute the body of the function, because g was able to look up the answer in its map of
already calculated results. When the calculations occurring in the body of the function are intensive,
looking up the answer is far faster than re-calculating it.

Returning to completion-rate you will observe that this function is called many times per step, but
the return value never changes for the entire simulation. Using memoization provides a massive
improvement.

(def completion-rate-better (memoize completion-rate))

Memoization enables you to write expressively without concern for the cost of repeatedly calling a
function. With some care you can organize code according to intensive, but useful calculations, or
slow IO requests that front load work and remember the answers.

Beware! Caching can subtly change the logic of your system. Imagine if completion-rate was
affected every step. Clearly if that is the case you should then only memoize it per step. This is easy
to accomplish in this case since you can see that you only need to call the function once.

 (defn complete-stories-alternative [project]
 (let [rate (completion-rate project)]
 (reduce (fn complete-story [acc story]

Inlining ❘ 227

c07.indd 04/09/2016 Page 227

 (update-story-status acc story "Done"))
 project
 (take (rand-int (int (* rate 2)))
 (stories-by-status project "In Progress")))))

But say, instead you were relying on data fetched from the member-info function in several paths
of your simulation. Ensuring that member-info is only queried once per step would be much more
challenging. In this case you can avoid messing with the code by using a new memoization of the
function for every step. Thus, your code can remain free of the concern of resource access cost. One
way to express this is to wrap the sim-week step with a redef of member-info as a memoization.
Redundant calls are eliminated.

(defn sim-week-alternative [project]
 (with-redefs [member-info (memoize member-info)]
 (sim-week project)))

The important thing is to have a good grasp on what is both correct and fast. There are many other
ways to do small scope memoization, such as passing a memoized function to other functions to use,
so be alert for opportunities.

Beware! Memoizing everything is going to eat up more memory than you have available, resulting in
an Out of Memory failure. The domain of inputs must be bounded to some reasonable size.

The core.memoize library provides time-to-live and least-recently-used memoization, which are
well proven strategies for trading off time and memory. Most long-lived service applications will
have opportunities to cache, but need to carefully control the extent to which the cache can grow.
Think about how the cache should be controlled when you use memoization. As a rule of thumb,
most long-lived memoized functions should be created with core.memoize.

INLINING

The shape of your code can have unexpected performance implications. The Just-In-Time compiler
(JIT) will try to inline frequently called functions to avoid the overhead of invocation. The heuristic
it uses depends upon how often the function is called and how big it is. As well as removing the func-
tion call, inlining enables other optimizations by reorganizing execution.

Extracting functions can lead to better performance. Functions that are too big can’t be inlined
without bloating the call sites. Thus, smaller functions are often faster because it helps the JVM fi nd
the most effi cient inlining.

This may seem counter intuitive at fi rst. If function calls have a cost, many smaller functions should
cost more, right? Thinking this way is reasonable, but wrong. It highlights the dangers of making
assumptions about how written code actually executes at the nanosecond scale. The only real way
to know is to benchmark it.

Check for deeply nested function calls in hot code paths because there are depth limits to where the
JIT can apply inlining. For example, Ring handlers often have many middleware wrappers, which
may be preventing optimization that would otherwise occur.

228 ❘ CHAPTER 7 PERFORMANCE

c07.indd 04/09/2016 Page 228

To go deep into the impact of code shape on the byte code produced, you can use the nodisassemble
library to discover what byte code is being produced from your source code.

When you discover a hot bottleneck, it is worth experimenting with rearranging your code scopes,
because it will affect the ability of the JVM to optimize your calculations. Always do this guided by
a benchmark, and avoid assuming that a very reasonable rule of thumb actually results in the per-
formance impact you expect.

Persistent Data Structures
Amazingly, the cost of immutability is low. So low that immutability is a good default. The low cost
of updates to Clojure’s collections is achieved through an implementation of ideal hash trees. Clojure
data structures use shared structure to allow effi cient creation of new values. If you start with a
map of data and add a new key value, you are returned a new map. But that map is not a naïve copy
of the original map. Instead it is a new data structure that shares the original data, and provides
novelty.

Clojure’s built in collections perform in a wide range around half an order of magnitude slower than
their mutable counterparts. For most usages this is blazingly fast. So, they make an excellent default
because of the strong safety guarantee that immutability brings. However, if you are really search-
ing for speed, you need to be willing to use mutable collections where warranted.

Clojure programs tend to have many small maps/vectors/sets. There are small version maps (array-
maps) and vectors and sets (custom classes) that are even more effi cient. These get converted if they
expand. Generally you can be comfortable relying on Clojure to do the right thing. If these costs are
signifi cant, you can avoid them by carefully managing the types used.

Nested maps are also very commonly used in Clojure programs. This is a good thing. But there can
be occasions where nested map operations such as assoc-in and get-in may be improved by unroll-
ing. (get :a (get :b (get :c (get :d m))) is not the same thing as (get-in m [:d :c :b
:a]) in terms of the byte code produced. The latter is implemented as recursive function calls.

The ultimate way to manage the types in your program is to use protocols and records. These
constructs make no compromises in relation to the host platform. They are literally as fast as Java
classes. You do not need to leave Clojure to get the highest performing data structures possible.

A datatype is created using deftype, defrecord, or reify with explicit fi elds. They provide access
to the highest-performance primitive representation and polymorphism mechanism of the host.
Accessing fi elds in these types is faster than using maps. Records behave like maps for undefi ned
fi elds, so you can check whether your Record has accumulated unexpected key values during use by
examining the __extmap fi eld.

SAFE MUTATION WITH TRANSIENTS

The best way to make use of mutation safely is to limit the scope they exist in. So long as they don’t
escape into your program at large, they can’t cause trouble. Clojure has an explicit mechanism for
defi ning well-scoped mutation called transients.

Profi ling ❘ 229

c07.indd 04/09/2016 Page 229

The function transient returns a new, transient version of a collection, in constant time. The func-
tion persistent! returns a new, persistent version of the transient collection, in constant time.
The transient collection can’t be used after it is persisted. Any such use will throw an exception.
Consider this example for constructing a set.

(persistent! (reduce conj! (transient #{}) coll))

Clearly this is the safe use of mutation, because the mutation is limited to building up a collection,
and only an immutable version of that collection is returned for use by the rest of the program.
Clojure uses transients for creating its collections, so you don’t need to do this yourself, but you can
use the same pattern where you may otherwise be doing many modifi cations in a well-scoped way.

The secret formula to using transients is:

 1. Identify looping code that is using immutable datastructures.

 2. Inside the scope of the function use a transient accumulator.

 3. Change modifying functions to their transient equivalents.

assoc!, conj!, ‘dissoc!’, ‘disj!’, ‘pop!’.

 4. Persist before returning the result.

Let’s apply this formula to create a transient version of a function that will remove all “Done”
stories from a simulation.

(defn remove-done-stories-with-transient [stories]
 (persistent!
 (reduce
 (fn [acc story]
 (dissoc! acc (:id story)))
 (transient stories)
 (filter #(= (:status %) "Done") stories))))

PROFILING

Profi ling is observing the runtime characteristics of a program, such as time spent by function or mem-
ory consumption, in order to better understand and optimize them. The main question profi ling seeks
to answer is “Where does the program spend most of its time?” Even experienced programmers are
often surprised by the results—performance is a complex matter. Performance problems and opportu-
nities hide in unexpected places.

The JVM has a solid selection of excellent profi lers, all of which work great with Clojure programs.
The widely used profi les are:

 ➤ Java Flight Recorder and Java Mission Control

 ➤ YourKit

 ➤ VisualVM

230 ❘ CHAPTER 7 PERFORMANCE

c07.indd 04/09/2016 Page 230

Ultimately the most useful thing they produce is a table of where the time is spent in your program.
But they also have a bunch of features such as measuring memory allocations, which are extremely
useful for understanding how your code is performing. Clojure programs are especially susceptible
to memory allocation and garbage collection, so be sure to look beyond just the timing results
(see Figure 7-1).

FIGURE 7-1

AVOIDING REFLECTION WITH TYPE HINTING

Refl ection is the inspection of classes, interfaces, fi elds, and methods at runtime. Clojure is a
dynamic language in the sense that code gets compiled at runtime, but Clojure code is always com-
piled. You rarely have to deal with types in Clojure, and generally eschew them, but the compiler
will take advantage of types that it knows about. Type hinting is a special syntax to tell the compiler
precisely what methods and fi elds are being used when doing interop. Where interop is ambiguous,
the compiled code will use refl ection to discover at runtime the method or fi eld and call it.

Avoiding Refl ection with Type Hinting ❘ 231

c07.indd 04/09/2016 Page 231

Let’s take a look at an example. Imagine part of your simulation algorithm involved counting how
many stories were bugs. The defi nition of what a bug is might be to check for the string bug in the
title of a story.

(defn bug? [s]
 (not (neg? (.indexOf s "bug"))))

The intention is that the input parameter s is a string, and you will use the Java method indexOf to
see if it contains the substring "bug". The result of indexOf is -1 when the substring is not found.
The compiler has no way to know that s will be a string. So it will compile byte code that will use
refl ection to work with any input. But refl ection has a cost.

You can bind the global var *warn-on-reflection* to true in order to have the compiler notify you
that it is producing refl ection code. The easiest way to do this is to specify it in your project.clj fi le.

:global-vars {*warn-on-reflection* true}

Now, if you restart your test-refresh or repl session, you will see in the output console a refl ection
warning.

Reflection warning, mush/simulation.clj:150:3 - call to method indexOf can't be
 resolved (target class is unknown).

So let’s make a type-hinted version to benchmark against. Annotate s with ^String to indicate to
the compiler that you want to call the String instance indexOf method on s.

(defn bug?? [^String s]
 (not (neg? (.indexOf s "bug"))))

And now you benchmark both approaches to see the impact.

(def stories
 ["When the user clicks new story, the app crashes. (bug)"
 "Add a team member profile page. (feature)"
 "Build a backend service to store stories."
 "Every second story created splits into three stories. (bug)"])

(criterium.core/quick-bench
 (count (filter sim/bug? stories)))
=> Execution time mean : 739.032651 ns

(criterium.core/quick-bench
 (count (filter sim/bug?? stories)))
=> Execution time mean : 18.578044 µs

Look very carefully at the time units. 18.578 μs is 18578 ns. The type hinted version is 25 times
faster! Clearly, refl ection can have a big impact on your simulation if the bug? function is called
many times over many stories over many steps.

There is an additional benefi t to type hinting. Type hinting makes inlinable byte code. The JVM can
further optimize execution beyond simply avoiding refl ection.

Annotating types can be quite effective for bottleneck code. But it is a good style to be minimalistic
about type hinting. Avoid annotating unnecessarily, as it makes your code noisy and does not provide

232 ❘ CHAPTER 7 PERFORMANCE

c07.indd 04/09/2016 Page 232

a benefi t. Even worse, an incorrect type hint can be extremely confusing. When type hinting, focus
on input parameters, and try to avoid returning something that needs a type hint. This will help limit
the amount of hinting necessary.

JAVA FLAGS

Leinigen sets the -XX:+TieredStopAtLevel=1 fl ag set by default to optimize for startup time. You
can remove this fl ag by using the ^:replace metadata on your :jvm-opts setting.

:jvm-opts ^:replace ["-server" ;; maximize peak operating speed
 "-Xms256m" ;; heap minimum
 "-Xmx256m" ;; heap maximum
 "-XX:+AggressiveOpts" ;; point performance compiler optimizations
 "-XX:+UseCompressedOops"] ;; neutralize penalty imposed by 64 bit JVM

There is widespread disagreement about what fl ags are the best to use for Clojure and Java applica-
tions. Many fl ags are situational and get a good or bad reputation from specifi c instances of them
being useful or horrible in a particular scenario.

MATH

Clojure’s numeric stack is much more forgiving than Java’s numeric stack. Arithmetic operators are
much more powerful, but they are slower. In Java if you add two integers together that combine
to a number greater than can fi t in a result integer, you get an exception. In Clojure you get the
result upcast to the next biggest type that can hold your result. Generally this is very convenient,
but for some applications you may want to take direct control over numerical behavior for best
performance.

When dealing with numbers, things that can make for faster math are:

 ➤ unchecked-add and *unchecked-math*.

 ➤ Avoiding boxing, using primitives by casting (int x) and hinting ^int.

 ➤ Using Java arrays.

One especially interesting library for math is core.matrix, which provides several different imple-
mentations of the same matrix abstractions with different tradeoffs.

SUMMARY

 The performance of a computer program or system depends on many factors. Fortunately, Clojure
and ClojureScript have great answers to those considerations. Clojure is an abstraction of the host
platform, but there are many facilities to reach down to lower levels.

General solutions are diffi cult when it comes to performance. You should keep an open mind to nar-
rowing the scope of your solution. Defi ne your performance goals and think about what is possible

Summary ❘ 233

c07.indd 04/09/2016 Page 233

and what is acceptable. You have many tools at your disposal for optimization, so creating a plan of
attack is useful. Be ready to change your hypothesis as assumptions become invalidated, and send
your experiments in a different direction where necessary.

Be wary of making assumptions about performance based on the results of micro-benchmarks. Fast
operations are not the sum of their component operations. Focus on measuring larger scopes of code
that are important to your system. Measuring slow things is usually more valuable than measuring
fast things.

Think, measure, and monitor.

235

bindex.indd 04/19/2016 Page 235

INDEX

 Symbols and Numerals

in URL, 146

302 redirect, 57
404 Not Found response, 57–58
500 response, 60

A

Abstract Factory Pattern, 9
abstraction, in Clojure, 9
account functions, 209–210
:adapter key, in lein-ring plugin, 95
add-identity database function, 211
add-task function, 49
aget function, 163
anonymous lambda expression, 6, 9
anonymous objects, reify to create, 22
api-defaults, 78
application namespace, 76
applications

building with Datomic database, 206–215
account functions, 209–210
task functions, 210–213
user function, 206–209

data modeling, 188–197
reloading running, 44–46

app-routes, 69
tests for, 66
updating to include json-routes, 74

app-state, 133
database and, 165
modifying, 13

are macro, 102–103
area function, 18
arguments, partial as, 10
array, accessing in JavaScript, 163
:as, 66, 68
aset function, 163
as-of function, 205–206
assertion, Datom as, 174
asynchronous function calls, nested chain fo, 166

Atoms, 12–14
attributes, disabling history, 196
AWS (Amazon Web Services) Elastic Beanstalk, 96

B

benchmarking, 221–225
Bidi library, 146
bikeshed, static analysis with, 114–116
binary search, 222
body-routes, 69
bottlenecks, 218, 228
browser, helper to manage connections, 124
build helper function (Honey SQL), 28
Builder Pattern, 9
burn-down chart component, 156
byte code, 221
ByteArrayInputStream, emptying contents with slurp,

61–62

C

cache, 226–227
for Datomic, 187
for value of computation, 3

callbacks, management of, 166–167
chapter.core namespace, tests for, 46
Cheshire, 70, 88
cider, 40
classes, 17–18

Reagent function to return, 153–154
cljc extension, 164
clj-http library, 44
cljs-http, 148–149
clj.webdriver.taxi library, 125
Clojure

abstraction in, 9
advantages for performance, 218
creating uberjar, 95
data structures from pull API, 203
JSON library, 70
macros in, 27–28
math, vs. Java, 232
origins, 1

Professional Clojure. Jeremy Anderson, Michael Gaare, Justin Holguín, Nick Bailey and Timothy Pratley
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

236

Clojure API – :db.part/user

bindex.indd 04/19/2016 Page 236

protocols in, 78–79
startup time, 218
view of data and state, 174

Clojure API, 197–206
basic setup, 197–200
schema and example data, 198–199
setup for development, 199–200

ClojureScript, 129
basics, 129–131
creating components, 134–135
data modeling, 135–136
error and warning messages, 137–141
fi rst use, 131–151
form inputs and handling, 142–145
interop with JavaScript, 162–163
namespace layout, 141
navigation and routes, 145–147
responding to events, 136–137
separating from backend service, 150
starting new project, 132
styling, 141–142
updates, 162

clojure.test library
are macro, 102–103
deftest macro, 101–102
measuring code coverage, 113–114
with-test macro, 101

Closure Compiler, 164–165
cloverage, 112–114
code. See source code
Cognitect, 170
Command pattern, object-oriented programming, 8
comp function, 11
compare-and-swap operation, 209

in Datomic, 208
compilation errors, 42
Compojure, 53

framework, 28
responses, 68
routing library, 64
standard template, 53–54

core namespace, 54–55
dependency on ring-mock, 58

compojure.response/Renderable protocol, 68, 71
component library, 51
components

attributes to defi ne relationships, 194–196
Reagent function to return, 152–153
testing with Devcards, 159–162

concurrency, 2, 3
connection, vs. db, 200–201
core.async, 166–167
core.cljs, renaming, 139
“covering index,” 184
create-class function, 153–154
create-link:, 81

handler, 84–85
Criterium library, for timing fast things, 223–225
Cross-Origin Resource Sharing (CORS), 147
CRUD (Create Read Update Destory) app, 74
crypto-password library, 197–198

Cucumber, 120–126
cursive, 40

D

data fl ow, reactions to express, 157
data integrity, with transaction functions, 207–209
data structures

performance and, 219–221
persistent, 23–27, 228

databaseSee also Datomic database
creating table, 105
testing against, 104–106

Datalog, 173–174, 175–180
identity attributes, 191–192
many-to-many and hierarchical relationships, 192–193
syntax, 176

data-oriented design, Datomic and, 170
DataScript, 158, 165–166
Datomic database, 169–215

architecture, 187–188
basics, 170–172
building applications with, 206–215
Clojure API, 197–206

basic setup, 197–200
schema and example data, 198–199

data model, 172–175
data storage, 183
deployment, 213–214
disabling history, 196
entity ids and partitions, 196–197
entity maps in, 175
enums, 190–191
identity vs. unique, 193–194
indexes, 183–187
license, 213–214
limitations, 214–215
log in, 186
vs. relational databases, 170–172
vs. SQL, 193
time treated by, 205–206

datomic.api, 200
datomic.Util, 200
Datoms, 173–174

set semantics, 183
soft limit on number in database, 215

db, vs. connection, 200–201
:db-after key, 204
:db-before key, 204
:db/cardinality attribute, 189
:db/doc attribute, 189
:db/fn attribute, 208
:db/fulltext attribute, 190
:db/ident keyword, 189
:db.install/_attribute key, 189
:db/noHistory, 196
:db.part/db, 196
:db.part/tx, 196
:db.part/user, 196

237

dead code removal – getValueByName helper method

bindex.indd 04/19/2016 Page 237

dead code removal, 160
debugging, in ClojureScript, 137–141
decomposition, 222
def app, 77–78
default middleware, 77–78
defaultValue attribute, 144
defmethod, 18–19
defmulti, 18–20
defonce, 50–51
defprotocol, 29
defrecord, 20–21
defroutes macro, 28, 64
deftest macro, 101–102
deftype, 20–21, 24
delete-link, 82

handler, 86
DELETE/links/:id, 92–93
dependencies

controlling, 116–118
mocking out, 110
relationship, 75

deployment
Datomic and, 170
of web services, 94–96, 150

deref/@ reader macro, 13–14
:destroy key, in lein-ring plugin, 94
Devcards, 159–162
“divide by zero” message, 61
Django (web framework), 55
documentation, fi nding for functions, 33
drag and drop handlers, 149
dynamic vars, 110

E

:each keyword, for fi xtures, 103
eavt index, 184
echo handler, 66
echo route:, requests in tests for, 67
editor

for ClojureScript, 131–132
connecting to REPL, 39–40

EDN (extensible Data Notation), 71
Emacs, plugins for nREPL support, 40
empty lists, nil and, 15
encapsulation, 3
entity API, 201–202
entity function, 206
entity ids

maximum number of, 214
partitions and, 196–197

entity maps, 202
in Datomic, 175

entity retraction operation, in Datomic, 208
enums, 195–196

in Datomic, 190–191
errors, in ClojureScript, 137–141
events, responding to, 136–137
exceptions, catching, 60–61

Expectations framework, 119
extensible Data Notation (EDN), 71

F

factorials, calculating, 5–7
feedback, importance of, 31
Felleisen, Matthias, The Little Schemer, 5
Fibonacci sequence, 3–4
fi gwheel, fast feedback from, 132–133
fi ltering, 8
:find function, 176–177
find-doc, 33
fi replace, 40
fi xtures, testing with, 103–104
fl exibility, in Datomic, 171
form POST, preventing, 143
forms in ClojureScript, inputs and handling, 142–145
fragment identifi er (#) in URL, 146
frameworks

vs. libraries, 54–55
testing alternatives, 119–127

Cucumber, 120–126
Expectations framework, 119
Kerodon, 126–127
Speclj framework, 119–120

Friedman, Daniel P.
The Little Schemer, 5
The Reasoned Schemer, 176

fulltext function, 213
fulltext indexing, 190
function composition, 11
functional thinking, 2–16

higher order functions, 8–11
laziness, 11–12
mutable state, 12–14
nil punning, 15–16
recursion, 5–7
value-oriented programming, 2–5

functions
for issue-id, 210
names, and debugging, 139
in Reagent, 151

to return class, 153–154
to return component, 152–153
to return vector, 151–152

for tests, 80–81

G

generic functions, 18
GET request, 56

handler from, 65
get-link, 82

handler, 83–84
GET/links, 93–94
GET/links/:id, 91–92
getValueByName helper method, 144

238

Gherkin language – lein fi gwheel

bindex.indd 04/19/2016 Page 238

Gherkin language, 120
gh-pages, 150
Github Pages, 150
global state, 145

avoiding for reloadable code, 51
creating as ratom, 151

go block, 167
goog.History class, 146
Google Closure Compiler and Library, 130
Gravatar API, 148

H

Halloway, Stuart, 170
handlers, 56, 77

app-routes as, 64
create-link:, 84–85
delete-link, 86
to echo body, 62–63
get-link, 83–84
list-links, 87–88
update-link, 85–86
for web services, 83–88

hello world function, 35, 36
helper functions, of ring.util.response, 58
Heroku, 96
Hiccup, 134, 137, 152

inline style in, 141–142
Hickey, Rich, 2, 170
hierarchical relationships, and many-to-many, 192–193
high-level abstractions, 218
Hoare, Tony, 15
Honey SQL library, 28
HTML report, from cloverage, 114
HTTP, 16, 55–64

calls to server, 147–149
constructing mock requests, 107
responses, 57

I

id helper function, 206
identity, vs. unique, 193–194
identity function, 89
imperative programming, 2
indexes, 183–187

aevt index, 184–185
avet index, 185
eavt index, 184
fulltext, 190
structure, 186–187
vaet index, 185–186

infi nite cycle, through fi nite collection, 12
infi nite set of numbers, 12
:init key, in lein-ring plugin, 94
inline style, 158
inlining, 227–228

in-memory storage, 79, 81–83
INode protocol, defi ning, 24–26
IntelliJ, plugins for nREPL support, 40
interfaces, 21
interop, with JavaScript from ClojureScript, 162–163
is macro, 100
is-valid-storage function, 81, 83
iteration, recursion for, 5

J

Java
fl ags, 232
math, vs. Clojure, 232
WAR (Web Archive), infrastructure to run, 96

javadoc function, 34
JavaScript, 166

ClojureScript and, 130–131
interop from ClojureScript, 162–163
libraries, and extern defi nitions, 165
wrappers for libraries, 164

joins
in Datomic, 175
in queries, 178–180

JQuery style pages, 130
JSON data

accepting, 70–72
returning, 72–73

JSON endpoints, 70–74
JSON responses, middleware to handle, 88–89
JSONP, 148
json-routes, updating app-routes to include, 74
Just-In-Time compiler, 227
JVM, 217, 221

profi lers in, 229–230

K

Kerodon, 126–127
keys, 154–155
keys function, 73
:keywordize-keys, 164
kibit, static analysis with, 114–116
kv-table->map function, 123

L

labels, attributes to add, 191
lambda expression, anonymous, defi ning, 6
laziness, 11–12
lein, 34–35
lein-ancient plugin, 118
lein cucumber, 121–122
lein deps :tree, 116–118
lein figwheel, 132

239

lein-kibit plugin – performance

bindex.indd 04/19/2016 Page 239

lein-kibit plugin, 115
lein-ring plugin, 94

disadvantages, 95
lein ring server, 54
lein test-refresh, 47–48
lein uberjar command, 95
leiningen, 94–95, 232

REPL useage with, 32–34
 element, re-ordering, 155

Liberator, 97–98
libraries, 97

Bidi, 146
vs. frameworks, 54–55
in JavaScript, wrappers for, 164
nodisassemble, 228
peridot, 107–108
ring-mock, 106–107
Sente, 149
vcr-clj, 111–112

linear recursion, 5
/links/:id endpoint, 68–69
Lisp family of programming languages, 1, 27–29
listen! function, 165
list-links, 82

handler, 87–88
lists, function to remove, 42
local binding, with-refdefs and, 109
local state, 145
log, in Datomic, 186
login availability check, 207
logo image, adding to chart, 156
looping, recursion for, 5
Lucene index, 190
Luminus, 98

M

macros
in Clojure, 27–28
to defi ne benchmarks, 224

many-to-many relationships, and hierarchical, 192–193
map

memory storage with Atom, 13
nil and, 15
syntax, for transaction data, 182–183

map->Rectangle function, 22
map->Square function, 22
math, Clojure vs. Java, 232
memoization, 226–227
memorization, 3, 4
memory

allocation, 218
for Datomic data, 187

memory index, 187
micro-benchmarks, 221
middleware, 60–64, 76

for converting request bodies, 61–64
default, 77–78
for handling JSON responses, 88–89

order of applying, 63
ring-json library, 73–74
and routing, 69–70

mocking/stubbing using with-redefs, 108–110
mutable state, 12–14
mutation, 3

with transients, 228–229
mutual recursion, 6
MVP (Minimum Viable Product), 92

N

namespaces, 75–77
checking for collisions, 116
layout for web services, 54–55
layout in ClojureScript, 141
require to load, 42
for storage protocol, 79

navigation, in ClojureScript, 145–147
nested function calls, inlining and, 227
nested maps, 228
nested vectors, Bidi routes as, 146
nesting components, 136
new lines, in source code, 158–159
Nginx, 150
nil punning, 15–16
nodisassemble library, 228
Nolen, David, 130
nREPL, remote REPLs with, 34–35
NullPointerException (Java), 15

O

Object Cache, 187
object-oriented programming, 3, 8

improving, 16–22
objects, reify to create anonymous, 22
Om, 158
on-click, 136
on-jsload hood, for test summary report, 161
on-js-reload function, 133
optimizations, 221
Out of Memory failure, memoization and, 227

P

parallelism, 225–226
parameters, functions as, 8
parse-args function, 114
partials, 9–10
partitions, 190

entity ids and, 196–197
path variables, for routing, 68–69
performance, 217–233

benchmarking, 221–225
data structure and, 219–221

240

peridot library – ring/ring-json library

bindex.indd 04/19/2016 Page 240

inlining, 227–228
parallelism, 225–226
profi ling, 229–230
test selectors, 225
what it is, 219

peridot library, 107–108
persistent data structures, 23–27, 228
persistent! function, 229
PersistentMap, wrappers around, 22
Play (web framework), 55
polymorphism, 18
POST/links/:id, 90–91
print debugging, 140
productivity, 31
profi ling, 222, 229–230
programming, 1–2

functional thinking, 2–16
object-oriented, 3, 8

improving, 16–22
value-oriented, 2–5

programs, runtime characteristics, 229–230
project.clj, :dependencies section, 70
properties, accessing in JavaScript, 163
protocols, 21–22

in Clojure, 78–79
tests for implementation, 80–81

publishing web pages, 150–151
pull API, 203–204
pull-spec function, 212–213
Puppet Labs, trapperkeeper, 94
PUT/links/:id, 92

Q

quality of code, measuring, 112–118
queries, 165
:where in, 177–178
in Datomic, 175–180
returning collections, 177
transactions, 181–183
variables and joins, 178–180

query API, 202–203
query function, for tasks, 212
quick-benchmark, 224

R

Rails (web framework), 55
rapid feedback cycles, 31–51
ratoms, 133, 156–157, 166

creating global state as, 151
React philosophy, 130
reactive web pages, ClojureScript for, 130
Read API, 201
read scalability, in Datomic, 171
read-txs function, 200
Reagent, 151–159

custom markup, 155–156
functions, 151

to return class, 153–154
to return component, 152–153
to return vector, 151–152

reactions, 156–158
sequences and keys, 154–155

reagent component, 141
The Reasoned Schemer (Friedman, Byrd, Kiselyov), 176
recur operator, 6
recursion, 5–7
refl ection, avoiding with type hinting, 230–232
Refs, 14
reify, 22, 82
relational databases

data model, 172
vs. Datomic database, 170–172

relationships
component, attributes to defi ne, 194–196
hierarchical and many-to-many, 192–193

reloadable source code, writing, 49–51
:reload-all option, 42
reloading

source code, 40–51
tests, 46–49

remove-list function, 42–43
repetition, partial to remove, 10
REPL (read-eval-print loop)

basic usage with Leiningen, 32–34
benchmarks from, 223–224
connecting editor to, 39–40
connecting to running application, 39
development db in, 200
development with, 32–40
reloading code from, 40–43
remote, with nREPL, 34–35
usage with real application, 35–39

request bodies, middleware for converting, 61–64
request maps, 56
:request-method key, 64
:require, 75
require function, 42
reset! function, 13
response helpers, 57–58
response maps, 56
REST interface, 37–38
retraction, 174, 182
reverse references, 185–186
Ring for HTTP abstraction, 53
Ring handlers, testing, 58–59, 106–108
Ring library, 56
Ring middleware, 60–64

catching exceptions, 60–61
handler-specifi c functions, 88

ring requests, 56
Ring responses, 57
ring-json library, 73–74
ring-mock library, 106–107
ring.mock.request/request function, 59
ring/ring-json library, 87

241

ring.util.response helpers – today function

bindex.indd 04/19/2016 Page 241

ring.util.response helpers, 57–58
ROI (Return On Investment) calculator, 104, 123–125
routes, creating named set of, 28
routes function, 65
routes library, 28
routes namespace, 76
routing, 89–94

in ClojureScript, 145–147
DELETE/links/:id, 92–93
GET/links, 93–94
GET/links/:id, 91–92
and middleware, 69–70
path variables, 68–69
POST/links/:id, 90–91
principles, 147
PUT/links/:id, 92
writing routes, 65–68

routing library, 64
running application, reloading, 44–46
running tests, automatically, 48–49
runtime error, 138

S

same-origin policy, 147–148
schema elements, limit on number, 214
schema for task tracker app, 188–196

basics, 188–196
fulltext indexing, 190
partitions, 190

search fi lter, 143
secure-api-defaults, 78
Selenium, webdriver API, 123
Sente library, 149
separation, of namespaces, 75
sequences, 154–155
set

of numbers, infi nite, 12
semantics, in Datoms, 183
for testing membership, 220

shared state, storing and accessing, 13–14
shortener-routes, 90
Sierra, Stuart, 94
Slager, Derek, 130
slurp function, 61–62
Software Transactional Memory (STM), 14
sort order, of indexes, 184
source code

automatically reloading, 43–49
measuring quality, 112–118
reloading, 40–51
style, 158–159
writing reloadable, 49–51

source maps, enabling, 139
SPARQL, 175
Speclj framework, 119–120
SQL

vs. Datomic, 193
defi ning queries, 28

stack overfl ow, 5
state, modeling with DataScript, 165–166
state change, handling, 136–137
state management, 143

and user inputs, 145
static analysis, with kibit and bikeshed, 114–116
storage

constructor for implementation, 82
costs and design, 186–187
in-memory, 79, 81–83

storage protocol
creating, 79–80
for web services, 78–83

style, for source code, 158–159
sum-of-squares function, 3
SVG image tag, 156
swap! function, 13
System/getProperty method, 72

T

tail recursive style, 6
task functions, 210–213
task tracker app

data access layer for, 206
schema, 188–196

basics, 188–196
fulltext indexing, 190
partitions, 190

tasks, query function for, 212
:task/subtask, 193
:tempids key, 204
test driven development (TDD), 99
testing, 99–127

for app-routes, 66
clojure.test library for, 100–104

are macro, 102–103
deftest macro, 101–102
with-test macro, 101

components with Devcards, 159–162
with fi xtures, 103–104
framework alternatives, 119–127

Cucumber, 120–126
Expectations framework, 119
Kerodon, 126–127
Speclj framework, 119–120

for handler_test.cli, 84
JSON request and, 71–72
for middleware, 76
mocking/stubbing using with-redefs, 108–110
for protocol implementations, 80–81
reloading, 46–49
Ring handlers, 58–59, 106–108
running automatically, 48–49
strategies for, 104–112

against database, 104–106
time, Datomic treatment of, 205–206
time macro, 222
today function, :dynamic decoration for, 110

242

to-do list application – Yegge

bindex.indd 04/19/2016 Page 242

to-do list application, 36, 37, 41
global state reload friendly and, 50
tracking task creation times with, 45

toMap function, 144
tools.namespace Clojure library, 42
tools.nrepl, home page for, 39
trampoline operator, 7
transact function, 204
transact-all function, 200
transaction entities, in Datomic, 173
transaction functions, data integrity with, 207–209
transaction references (Refs), 14
transactions, 181–183

for Cucumber tests, 123
life and times, 188
list form, 181–182
map syntax, 182–183
roll back, 106

transactor, 187
transient dependency graph, 116
transients, mutation with, 228–229
transparency, 3
:tx-data key, 204
type hinting, avoiding refl ection with, 230–232
types, defi ning, 20–21, 24

U

uberjar, 95–96
Ugly Mirror, 109
unifi cation, 175
unique, vs. identity, 193–194
update-link, 82

handler, 85–86
upsert, in Datomic, 171
URI, for in-memory Datomic db, 200
:uri key, 64
user function, 206–209

V

validation, of form, 143
value-oriented programming, 2–5
variables

for database connection information, 105
in queries, 178–180

vcr-clj library, 111–112
vectors
nil and, 15
Reagent function to return, 151–152

Vim, plugins for nREPL support, 40
von Neumann architecture of computing, 2

W

warning messages, in ClojureScript, 137–141
web frameworks, Clojure and, 55
web pages, publishing, 150–151
web services, 53–98

deployment, 94–96
elements, 55–74

HTTP, 55–64
libraries vs. frameworks, 55

evolution of, 16
example service, 74–94

additional namespaces, 75–77
creating project, 75
handlers, 83–88
routes, 89–94

hosting, 96
JSON endpoints, 70–74
namespace layout, 54–55
project overview, 53–55
routing, 64–70

and middleware, 69–70
path variables, 68–69
writing routes, 65–68

storage protocol, 78–83
WebSockets, 149
:where, in query, 177–178
Whip tool, 143
whip-content function, 145
with function, 205–206
with-cassette macro, 112
with-redefs, mocking/stubbing using,

108–110
with-refdefs, 116
with-test macro, 101
workfl ow, testing feedback to, 159
wrap-500-catchall, 60–61, 63
wrap-json-response, 87
wrap-routes function, 69
wrap-slurp-body, 63, 69, 90
writing reloadable source code, 49–51
writing routes, 65–68

Y

Yahoo Finance APIs, function to call, 111
Yegge, Steve, Execution in the Kingdom of Nouns, 17

	10.1002@9781119281306.ch0.pdf (p.1-18)
	10.1002@9781119281306.ch1.pdf (p.19-47)
	10.1002@9781119281306.ch2.pdf (p.48-68)
	10.1002@9781119281306.ch3.pdf (p.69-114)
	10.1002@9781119281306.ch4.pdf (p.115-143)
	10.1002@9781119281306.ch5.pdf (p.144-182)
	10.1002@9781119281306.ch6.pdf (p.183-229)
	10.1002@9781119281306.ch7.pdf (p.230-246)
	10.1002@9781119281306.ch8.pdf (p.247-254)

