
ffi rs.indd 04/20/2016 Page i

PROFESSIONAL HADOOP®

INTRODUCTION . xix

CHAPTER 1 Hadoop Introduction . 1

CHAPTER 2 Storage . 15

CHAPTER 3 Computation . 47

CHAPTER 4 User Experience . 67

CHAPTER 5 Integration with Other Systems . 89

CHAPTER 6 Hadoop Security . 109

CHAPTER 7 Ecosystem at Large: Hadoop with Apache Bigtop 141

CHAPTER 8 In-Memory Computing in Hadoop Stack . 161

GLOSSARY . 183

INDEX . 187

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 04/20/2016 Page iii

PROFESSIONAL

Hadoop®

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 04/20/2016 Page v

PROFESSIONAL

Hadoop®

Benoy Antony
Konstantin Boudnik

Cheryl Adams
Branky Shao
Cazen Lee
Kai Sasaki

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 04/20/2016 Page vi

Professional Hadoop®

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2016 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-26717-1
ISBN: 978-1-119-26718-8 (ebk)
ISBN: 978-1-119-26720-1 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is
sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional ser-
vices. If professional assistance is required, the services of a competent professional person should be sought. Neither the
publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred
to in this work as a citation and/or a potential source of further information does not mean that the author or the pub-
lisher endorses the information the organization or Web site may provide or recommendations it may make. Further, read-
ers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work
was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with stan-
dard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media
such as a CD or DVD that is not included in the version you purchased, you may download this material at http://
booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2016934264

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other countries,
and may not be used without written permission. Hadoop and Apache Hadoop are registered trademarks of The Apache
Software Foundation. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not
associated with any product or vendor mentioned in this book.

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 04/20/2016 Page vii

ABOUT THE AUTHORS

BENOY ANTONY is an Apache Hadoop committer and has contributed features
related to security and HDFS. He is the founder of DataApps (http://dataApps.
io), a company that specializes in creating applications for big data. He maintains a
Hadoop Security wiki at http://HadoopSecurity.org. Benoy is a Hadoop architect at
eBay where he focuses on enhancing security and availability on eBay’s Hadoop clus-

ters without limiting user productivity. He regularly speaks at conferences like Hadoop Summit.

DR. KONSTANTIN BOUDNIK, co-founder and CEO of Memcore.io, is one of the early
developers of Hadoop and a co-author of Apache Bigtop, the open source framework
and the community around creation of software stacks for data processing projects.
With more than 20 years of experience in software development, big- and fast-data
analytic, Git, distributed systems and more, Dr. Boudnik has authored 15 US patents

in distributed computing. Dr. Boudnik contributed to a dozen of open source projects in the area of
distributed computing and data processing. He has helped and championed a number of successful
Apache projects in the area.

CHERYL ADAMS is a senior cloud data and infrastructure architect. Her work
includes supporting healthcare data for large government contracts; deploying
production-based changes through scripting, monitoring, and troubleshooting; and
monitoring environments using the latest tools for databases, web servers, web API,
and storage.

BRANKY SHAO is a software engineer at eBay where he is building real time applica-
tions with Elasticsearch, Cassandra, Kafka, and Storm. He has been working with
the Hadoop ecosystem technologies since 2010. He has extensive experience design-
ing and implementing various software including distributed systems, data integra-
tion, framework/APIs, and web applications. He is passionate about open source and

is a contributor to the Cascading project.

CAZEN LEE is a software architect at Samsung SDS. He is currently in charge of the
Hadoop module for Samsung’s big data platform. Prior to joining Samsung, Cazen
served as a developer and architect for the integrated data warehouse layer in the fi nan-
cial industry, including work with Samsung Life Insurance and Korea Securities Finance
Corp. He is also interested in both machine learning and neural network models.

www.allitebooks.com

http://www.allitebooks.org

KAI SASAKI is a Japanese software engineer who is interested in distributed comput-
ing and machine learning. Currently he is working at Treasure Data Inc., launched by
Japanese entrepreneurs based in Silicon Valley. Although the beginning of his career
didn’t start with Hadoop or Spark, his interest in middleware and the fundamental
technologies that support a lot of these types of big data services and the Internet drove

him toward this fi eld. He has been a Spark contributor, developing mainly MLlib and ML libraries.
Nowadays, he is trying to research the great potential of combining deep learning and big
data. He believes that Spark can play a signifi cant role even in artifi cial intelligence within the
big data era. You can fi nd him on GitHub at https://github.com/Lewuathe.

ABOUT THE AUTHORS

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 04/20/2016 Page ix

ABOUT THE TECHNICAL EDITORS

SNEHAL NAGMOTE is a staff software engineer for the search infrastructure team at Walmart Labs.
Some of his responsibilities include building data platform applications using the big data stack, and
using tools such as Hadoop, Hive, Kafka, Flume, and Spark. Currently, he is focusing on building a
near real time indexing data pipeline using Spark Streaming and Kafka.

RENAN PINZON is a software architect at NeoGrid and has been working with Hadoop there for
more than three years. He has a lot of experience with mission-critical software and data process-
ing/analysis. He started using Hadoop for real-time processing (HBase + HDFS) and then started to
use it in data analysis with RHadoop, Pig, Crunch, and is now moving to Spark. He also has been
working with search engines using Apache Solr for real-time indexing and search as well as using
Elasticsearch outside of Hadoop. Despite his professional experience being more in software devel-
opment, he has a strong background in infrastructure, mainly in regard to Hadoop where he has
been working tuning applications.

MICHAEL CUTLER has deep experience with the Hadoop ecosystem since building one of the UK’s
earliest Hadoop Clusters for BSkyB in 2008 after successfully pitching CXO management for inno-
vation funding to explore the tools and techniques, which have now become known as big data. He
has real world experience in training predictive models from huge multi-terabyte datasets across
diverse business use cases as: automated fraud detection, fault prediction and classifi cation, recom-
mendations, click-stream analysis, large scale business simulations and modeling. Michael was an
invited speaker on machine learning at Hadoop World in New York. He is well connected in the
open source ecosystem and is a regular speaker at data science and big data events in London.

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 04/20/2016 Page xi

PROJECT EDITOR
Charlotte Kughen

TECHNICAL EDITORS
Snehal Nagmote
Renan Pinzon
Michael Cutler

PRODUCTION EDITOR
Barath Kumar Rajasekaran

COPY EDITOR
Troy Mott

MANAGER OF CONTENT DEVELOPMENT &
ASSEMBLY
Mary Beth Wakefi eld

PRODUCTION MANAGER
Kathleen Wisor

MARKETING MANAGER
David Mayhew

PROFESSIONAL TECHNOLOGY & STRATEGY
DIRECTOR
Barry Pruett

BUSINESS MANAGER
Amy Knies

EXECUTIVE EDITOR
Jim Minatel

PROJECT COORDINATOR, COVER
Brent Savage

PROOFREADER
Nancy Bell

INDEXER
Nancy Guenther

COVER DESIGNER
Wiley

COVER IMAGE
silvrock/Shutterstock

CREDITS

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 04/20/2016 Page xiii

ACKNOWLEDGMENTS

 Special thanks to the massive contributions to the Hadoop project by all the volunteers who spent
their time to move the Apache Bigtop project forward, helping it to become a true integration hub of
the 100% open source Apache data processing stack!

A special thanks also to the volunteers who spent their time to move the Apache Ignite project for-
ward and helping it to become a real core of open source in-memory computing.

And a special thanks goes to Gridgain for their donation of the production grade software to the
Apache Software Foundation. It was both a challenge and an honor to transform this project into
the Apache TLP.

www.allitebooks.com

http://www.allitebooks.org

ftoc.indd 04/20/2016 Page xv

CONTENTS

INTRODUCTION xix

CHAPTER 1: HADOOP INTRODUCTION 1

Business Analytics and Big Data 2
The Components of Hadoop 2
The Distributed File System (HDFS) 2
What Is MapReduce? 3
What Is YARN? 4

What Is ZooKeeper? 4
What Is Hive? 5
Integration with Other Systems 6

The Hadoop Ecosystem 7
Data Integration and Hadoop 9

Summary 13

CHAPTER 2: STORAGE 15

Basics of Hadoop HDFS 16
Concept 16
Architecture 19
Interface 22

Setting Up the HDFS Cluster in Distributed Mode 26
Install 26

Advanced Features of HDFS 30
Snapshots 30
Offl ine Viewer 32
Tiered Storage 37
Erasure Coding 39

File Format 41
Cloud Storage 44
Summary 45

CHAPTER 3: COMPUTATION 47

Basics of Hadoop MapReduce 47
Concept 48
Architecture 50

How to Launch a MapReduce Job 54

www.allitebooks.com

http://www.allitebooks.org

xvi

CONTENTS

ftoc.indd 04/20/2016 Page xvi

Writing a Map Task 55
Writing a Reduce Task 56
Writing a MapReduce Job 57
Confi gurations 59

Advanced Features of MapReduce 60
Distributed Cache 60
Counter 62
Job History Server 63

The Difference from a Spark Job 64
Summary 65

CHAPTER 4: USER EXPERIENCE 67

Apache Hive 68
Hive Installation 69
HiveQL 70
UDF/SerDe 73
Hive Tuning 75

Apache Pig 76
Pig Installation 76
Pig Latin 77

UDF 79
Hue 79

Features 80
Apache Oozie 81

Oozie Installation 82
How Oozie Works 84
Workfl ow/Coordinator 85
Oozie CLI 88

Summary 88

CHAPTER 5: INTEGRATION WITH OTHER SYSTEMS 89

Apache Sqoop 90
How It Works 90

Apache Flume 93
How It works 93

Apache Kafka 97
How It Works 98
Kafka Connect 100
Stream Processing 101

Apache Storm 102
How It Works 103

xvii

CONTENTS

ftoc.indd 04/20/2016 Page xvii

Trident 105
Kafka Integration 105

Summary 107

CHAPTER 6: HADOOP SECURITY 109

Securing the Hadoop Cluster 110
Perimeter Security 110
Authentication Using Kerberos 112
Service Level Authorization in Hadoop 116
Impersonation 119
Securing the HTTP Channel 121

Securing Data 124
Data Classifi cation 125
Bringing Data to the Cluster 125
Protecting Data in the Cluster 129

Securing Applications 134
YARN Architecture 134
Application Submission in YARN 134

Summary 138

CHAPTER 7: ECOSYSTEM AT LARGE: HADOOP
WITH APACHE BIGTOP 141

Basics Concepts 142
Software Stacks 142
Test Stacks 143
Works on My Laptop 143

Developing a Custom-Tailored Stack 144
Apache Bigtop: The History 144
Apache Bigtop: The Concept and Philosophy 145
The Structure of the Project 146
Meet the Build System 147
Toolchain and Development Environment 148
BOM Defi nition 148

Deployment 149
Bigtop Provisioner 149
Master-less Puppet Deployment of a Cluster 150
Confi guration Management with Puppet 152

Integration Validation 154
iTests and Validation Applications 154
Stack Integration Test Development 155
Validating the Stack 157

xviii

CONTENTS

ftoc.indd 04/20/2016 Page xviii

Cluster Failure Tests 158
Smoke the Stack 158

Putting It All Together 159
Summary 159

CHAPTER 8: IN-MEMORY COMPUTING
IN HADOOP STACK 161

Introduction to In-Memory Computing 162
Apache Ignite: Memory First 164

System Architecture of Apache Ignite 165
Data Grid 165
A Discourse on High Availability 167
Compute Grid 168
Service Grid 169
Memory Management 169
Persistence Store 170

Legacy Hadoop Acceleration with Ignite 170
Benefi ts of In-Memory Storage 171
Memory Filesystem: HDFS Caching 171
In-Memory MapReduce 172

Advanced Use of Apache Ignite 175
Spark and Ignite 175
Sharing the State 176
In-Memory SQL on Hadoop 177
SQL with Ignite 178
Streaming with Apache Ignite 180

Summary 181

GLOSSARY 183

INDEX 187

fl ast.indd 04/20/2016 Page xix

INTRODUCTION

Hadoop is an open source project available under the Apache License 2.0. It has the ability to
manage and store very large data sets across a distributed cluster of servers. One of the most
 benefi cial features is its fault tolerance, which enables big data applications to continue to
operate properly in the event of a failure. Another benefi t of using Hadoop is its scalability. This
programming logic has the potential to expand from a single server to numerous servers, each
with the ability to have local computation and storage options.

WHO IS THIS BOOK FOR?

This book is for anyone using Hadoop to perform a job that is data related, or if you
have an interest in redefi ning how you can obtain meaningful information about any
of your data stores. This includes big data solution architects, Linux system and
big data engineers, big data platform engineers, Java programmers, and database
administrators.

If you have an interest in learning more about Hadoop and how to extract specifi c elements
for further analysis or review, then this book is for you.

WHAT YOU NEED TO USE THIS BOOK

You should have development experience and understand the basics of Hadoop, and should now
be interested in employing it in real-world settings.

The source code for the samples is available for download at www.wrox.com/go/
professionalhadoop or https://github.com/backstopmedia/hadoopbook.

HOW THIS BOOK IS STRUCTURED

This book was written in eight chapters as follows:

Chapter 1: Hadoop Introduction

Chapter 2: Storage

Chapter 3: Computation

Chapter 4: User Experience

Chapter 5: Integration with Other Systems

xx

INTRODUCTION

fl ast.indd 04/20/2016 Page xx

Chapter 6: Hadoop Security

Chapter 7: Ecosystem at Large: Hadoop Stack with Apache Bigtop

Chapter 8: In-Memory Computing in Hadoop Stack

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number
of conventions throughout the book.

As for styles in the text:

 ➤ We highlight new terms and important words when we introduce them.

 ➤ We show code within the text like so: persistence.properties.

 ➤ We show all code snippets in the book using this style:

 FileSystem fs = FileSystem.get(URI.create(uri), conf);
 InputStream in = null;
 try {

 ➤ We show URLs in text like this:

 http://<Slave Hostname>:50075

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code
 manually, or to use the source code fi les that accompany the book. All the source code used in this
book is available for download at www.wrox.com. Specifi cally for this book, the code download is
on the Download Code tab at:

www.wrox.com/go/professionalhadoop

You can also search for the book at www.wrox.com by ISBN (the ISBN for this book is 9781119267171)
to fi nd the code. And a complete list of code downloads for all current Wrox books is available at
 www.wrox.com/dynamic/books/download.aspx.

NOTE Because many books have similar titles, you may fi nd it easiest to search
by ISBN; this book’s ISBN is 978-1-119-26717-1.

Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

xxi

INTRODUCTION

fl ast.indd 04/20/2016 Page xxi

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration, and at the same time, you will be helping us provide even
higher quality information.

To fi nd the errata page for this book, go to

www.wrox.com/go/professionalhadoop

and click the Errata link. On this page you can view all errata that have been submitted for this
book and posted by Wrox editors.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the informa-
tion and, if appropriate, post a message to the book’s errata page and fi x the problem in subsequent
editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at http://p2p.wrox.com. The forums are a
web-based system for you to post messages relating to Wrox books and related technologies and
interact with other readers and technology users. The forums offer a subscription feature to e-mail
you topics of interest of your choosing when new posts are made to the forums. Wrox authors,
 editors, other industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com, you will fi nd a number of different forums that will help you, not only
as you read this book, but also as you develop your own applications. To join the forums, just
follow these steps:

 1. Go to http://p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join, as well as any optional information you wish
to provide, and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and
 complete the joining process.

NOTE You can read messages in the forums without joining P2P, but in order to
post your own messages, you must join.

xxii

INTRODUCTION

fl ast.indd 04/20/2016 Page xxii

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to This Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

c01.indd 03/29/2016 Page 1

Hadoop Introduction
WHAT’S IN THIS CHAPTER?

 ➤ The components of Hadoop

 ➤ The roles of HDFS, MapReduce, YARN, ZooKeeper, and Hive

 ➤ Hadoop’s integration with other systems

 ➤ Data integration and Hadoop

Hadoop is an essential tool for managing big data. This tool fi lls a rising need for businesses
managing large data stores, or data lakes as Hadoop refers to them. The biggest need in busi-
ness, when it comes to data, is the ability to scale. Technology and business are driving orga-
nizations to gather more and more data, which increases the need to manage it effi ciently. This
chapter examines the Hadoop Stack, as well as all of the associated components that can be
used with Hadoop.

In building the Hadoop Stack, each component plays an important role in the platform. The
stack starts with the essential requirements contained in the Hadoop Common, which is a col-
lection of common utilities and libraries that support other Hadoop modules. Like any stack,
these supportive fi les are a necessary requirement for a successful implementation. The well-
known fi le system, the Hadoop Distributed File System or HDFS, is at the heart of Hadoop,
but it won’t threaten your budget. To narrow your perspective on a set of data, you can use the
programming logic contained within MapReduce, which provides massive scalability across
many servers in a Hadoop cluster. For resource management, you can consider adding Hadoop
YARN, the distributed operating system for your big data apps, to your stack.

ZooKeeper, another Hadoop Stack component, enables distributed processes to coordinate
with each other through a shared hierarchical name space of data registers, known as znodes.
Every znode is identifi ed by a path, with path elements separated by a slash (/).

There are other systems that can integrate with Hadoop and benefi t from its infrastructure.
Although Hadoop is not considered a Relational Database Management System (RDBMS),

1

Professional Hadoop®. Benoy Antony, Konstantin Boudnik, Cheryl Adams, Branky Shao, Cazen Lee and Kai Sasaki
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

2 ❘ CHAPTER 1 HADOOP INTRODUCTION

c01.indd 03/29/2016 Page 2

it can be used along with systems like Oracle, MySQL, and SQL Server. Each of these systems has
developed connector-type components that are processed using Hadoop’s framework. We will
review a few of these components in this chapter and illustrate how they interact with Hadoop.

Business Analytics and Big Data
Business Analytics is the study of data through statistical and operational analysis. Hadoop allows
you to conduct operational analysis on its data stores. These results allow organizations and compa-
nies to make better business decisions that are benefi cial to the organization.

To understand this further, let’s build a big data profi le. Because of the amount of data involved,
the data can be distributed across storage and compute nodes, which benefi ts from using Hadoop.
Because it is distributed and not centralized, it lacks the characteristics of an RDBMS. This allows
you to use large data stores and an assortment of data types with Hadoop.

For example, let’s consider a large data store like Google, Bing, or Twitter. All of these data stores
can grow exponentially based on activity, such as queries and a large user base. Hadoop’s compo-
nents can help you process these large data stores.

A business, such as Google, can use Hadoop to manipulate, manage, and produce meaningful
results from their data stores. The traditional tools commonly used for Business Analytics are not
designed to work with or analyze extremely large datasets, but Hadoop is a solution that fi ts these
business models.

The Components of Hadoop
The Hadoop Common is the foundation of Hadoop, because it contains the primary services
and basic processes, such as the abstraction of the underlying operating system and its fi lesystem.
Hadoop Common also contains the necessary Java Archive (JAR) fi les and scripts required to start
Hadoop. The Hadoop Common package even provides source code and documentation, as well as a
contribution section. You can’t run Hadoop without Hadoop Common.

As with any stack, there are requirements that Apache provides for confi guring the Hadoop
Common. Having a general understanding as a Linux or Unix administrator is helpful in setting this
up. Hadoop Common, also referred to as the Hadoop Stack, is not designed for a beginner, so the
pace of your implementation rests on your experience. In fact, Apache clearly states on their site that
using Hadoop is not the task you want to tackle while trying to learn how to administer a Linux
environment. It is recommended that you are comfortable in this environment before attempting to
install Hadoop.

The Distributed File System (HDFS)
With Hadoop Common now installed, it is time to examine the rest of the Hadoop Stack. HDFS
delivers a distributed fi lesystem that is designed to run on basic hardware components. Most
businesses fi nd these minimal system requirements appealing. This environment can be set up
in a Virtual Machine (VM) or a laptop for the initial walkthrough and advancement to server
deployment. It is highly fault-tolerant and is designed to be deployed on low-cost hardware. It
provides high throughput access to application data and is suitable for applications having
large datasets.

c01.indd 03/29/2016 Page 3

Hadoop Introduction ❘ 3

Hardware failures are unavoidable in any environment. With HDFS, your data can span across
thousands of servers, with each server containing an essential piece of data. This is where the fault
tolerance feature comes into play. The reality is that with this many servers there is always the risk
that one or more may become nonfunctional. HDFS has the ability to detect faults and quickly per-
form an automatic recovery.

HDFS is optimally designed for batch processing, which provides a high throughput of data access,
rather than a low latency of data access. Applications that run on HDFS have large datasets. A typi-
cal fi le in HDFS can be hundreds of gigabytes or more in size, and so HDFS of course supports large
fi les. It provides high aggregate data bandwidth and scales to hundreds of nodes in a single cluster.

Hadoop is a single functional distributed system that works directly with clustered machines in
order to read the dataset in parallel and provide a much higher throughput. Consider Hadoop as a
power house single CPU running across clustered and low cost machines. Now that we’ve described
the tools that read the data, the next step is to process it by using MapReduce.

What Is MapReduce?
MapReduce is a programming component of Hadoop used for processing and reading large data
sets. The MapReduce algorithm gives Hadoop the ability to process data in parallel. In short,
MapReduce is used to compress large amounts of data into meaningful results for statistical analy-
sis. MapReduce can do batch job processing, which is the ability to read large amounts of data
numerous times during processing to produce the requested results.

For businesses and organizations with large data stores or data lakes, this is an essential component
in getting your data down to a manageable size to analyze or query.

The MapReduce workfl ow, as shown in Figure 1-1, works like a grandfather clock with a number of
gears. Each gear performs a particular task before it moves on to the next. It shows the transitional
states of data as it is chunked into smaller sizes for processing.

RESOURCE MANAGER

CLIENT YARN
DISTRIBUTED DATA

PROCESSING

SCHEDULER APPLICATION
MANAGERS

DATA
NODE

NODE MANAGER

APP
MASTERCONTAINER

JOURNAL
NODE

SHARED
EDIT
LOGS

OR

ACTIVE
NAMENODE

HDFS
DISTRIBUTED DATA STORAGE

M
A

ST
E

R
SL

A
V

E
S

STANDBY
NAMENODE

SECONDARY
NAMENODE

NODE
MANAGER

DATA NODE

APP
MASTERCONTAINER

DATA
NODE

NODE MANAGER

APP
MASTERCONTAINER

FIGURE 1-1

4 ❘ CHAPTER 1 HADOOP INTRODUCTION

c01.indd 03/29/2016 Page 4

The capabilities of MapReduce make it one of the most used batch-processing tools. The fl exibility
of this processor opens the door to use its leverage against existing systems. MapReduce will allow
its users to process unlimited amounts of data of any type that’s stored in HDFS by dividing work-
loads into multiple tasks across servers that are run in parallel. MapReduce thus makes Hadoop a
powerhouse tool.

With the recent developments in Hadoop, another component, called YARN, is now available that
can be used to further leverage your Hadoop Ecosystem.

What Is YARN?
The YARN Infrastructure (Yet Another Resource Negotiator) is the framework responsible for pro-
viding the computational resources (memory, CPUs, etc.) needed for executing applications.

What features or characteristics are appealing about YARN? Two important ones are Resource
Manager and Node Manager. Let’s build the profi le of YARN. First consider a two level cluster
where Resource Manager is in the top tier (one per cluster). The Resource Manager is the master.
It knows where the slaves are located (lower tier) and how many resources they have. It runs sev-
eral services, and the most important is the Resource Scheduler, which decides how to assign the
resources. The Node Manager (many per cluster) is the slave of the infrastructure. When it starts,
it announces itself to the Resource Manager. The node has the ability to distribute resources to the
cluster, and its resource capacity is the amount of memory and other resources. At run-time, the
Resource Scheduler will decide how to use this capacity. The YARN framework in Hadoop 2 allows
workloads to share cluster resources dynamically between a variety of processing frameworks,
including MapReduce, Impala, and Spark. YARN currently handles memory and CPU and will
coordinate additional resources like disk and network I/O in the future.

WHAT IS ZOOKEEPER?

ZooKeeper is another Hadoop service—a keeper of information in a distributed system environ-
ment. ZooKeeper’s centralized management solution is used to maintain the confi guration of a
distributed system. Because ZooKeeper is maintaining the information, any new nodes joining will
acquire the up-to-date centralized confi guration from ZooKeeper as soon as they join the system.
This also allows you to centrally change the state of your distributed system just by changing the
centralized confi guration through one of the ZooKeeper clients.

The Name service is a service that maps a name to some information associated with that name. It is
similar to Active Directory being a name service that maps the user id (name) of a person to certain
access or rights within an environment. In the same way, a DNS service is a name service that maps
a domain name to an IP address. By using ZooKeeper in a distributed system you can keep track of
which servers or services are up and running and look up their status by name.

If there is a problem with nodes going down, ZooKeeper has an automatic fail-over strategy via
leader election as an off-the-shelf support solution (see Figure 1-2). Leader election is a service that

What Is Hive? ❘ 5

c01.indd 03/29/2016 Page 5

can be installed on several machines for redundancy, but only one is active at any given moment. If
the active service goes down for some reason, another service rises to do its work.

LEADER SERVICE

DELETE ZNODECREATE ZNODE

AQUIRE
LOCK

OFFLINE
TASK 1

OFFLINE
TASK 2

OFFLINE
TASK 3

OFFLINE
TASK 4

OFFLINE
TASK 5

RELEASE
LOCK

SERVER 1 SERVER 2

ZOOKEEPER

SERVER 3

FIGURE 1-2

ZooKeeper allows you to process more data, more reliably and in less time. ZooKeeper can help you
build more robust systems. A managed database cluster can benefi t from centralized management
services in terms of name services, group services, leader election, confi guration management, and
more. All of these coordination services can be managed with ZooKeeper.

WHAT IS HIVE?

Hive was originally designed to be a part of Hadoop, but now it is a standalone component. It is
being mentioned briefl y here, because some users fi nd it benefi cial to use it in addition to the stan-
dard Hadoop Stack.

We can briefl y summarize Hive in this way: It is a data warehouse infrastructure built on top of
Hadoop for providing data summarization, query, and analysis. If you are longing for the database
experience and missing the structure (see Figure 1-3) of a relational environment when working
with Hadoop, this might be your solution. Keep in mind this is not to be compared to a traditional
database or data structure. Nor can it replace your existing RDBMS environment. Hive provides a
conduit to project structure onto this data, and queries the data using a SQL-like language called
HiveQL.

6 ❘ CHAPTER 1 HADOOP INTRODUCTION

c01.indd 03/29/2016 Page 6

JDBC/ODBC

CLI Hive Thrift
Server

Map Reduce

HDFS

Hive Web
Interface

Parser

Execution

Planner

Optimizer Metastore

M
S

C
lie

ntDRIVER

FIGURE 1-3

INTEGRATION WITH OTHER SYSTEMS

If you work in the technical fi eld, you are well aware that integration is an essential part of any suc-
cessful implementation. Generally, through some discovery process or planning session, organiza-
tions can pinpoint a need to manage big data more effectively. Subsequent steps involve making the
determination as to how you will be implementing Hadoop into your existing environments.

Organizations implementing or considering Hadoop are likely introducing it into an existing envi-
ronment. To gain the most benefi t it is important to understand how Hadoop and your existing
environment can work together, and what opportunities are available to leverage your existing
environment.

To illustrate, consider a well-known building toy that allows you to create new toys based on con-
necting bricks together. There are endless possibilities of what you can create by simply connecting

Integration with Other Systems ❘ 7

c01.indd 03/29/2016 Page 7

bricks together. The key component is the connector dots that exist on every brick. Similar to the
toy bricks, vendors have developed connectors to allow other enterprise systems to connect to
Hadoop. By using the connectors, you will be able to leverage your existing environments by bring-
ing Hadoop into the fold.

Let’s review some of the components that have been developed to integrate Hadoop with other sys-
tems. You should consider any leverage that you may gain by using these connectors within your
environment. Clearly when it comes to integration, you must be your own SME (Subject Matter
Expert) regarding the systems within your environment.

These connectors for Hadoop will likely be available for the latest release of the system within your
environment. If the systems you would like to leverage with Hadoop are not on the latest release
for your application or database engine, you need to factor in an upgrade in order to use the full
features of this enhancement. To avoid disappointment, we recommend a complete review of your
system requirements to avoid frustration and disappointment. The ecosystem of Hadoop brings
everything together under one technical roof.

The Hadoop Ecosystem
Apache calls their integration an ecosystem. The dictionary defi nes an ecosystem as a community of
living organisms in conjunction with the nonliving components of their environment (things like air,
water, and mineral soil) interacting as a system. The technology-based ecosystem has similar attri-
butes. It is a combination of product platforms defi ned by core components made by the platform
owner and complemented by applications made by autonomous (machines that act independently
from humans) companies in the periphery (surrounding a space).

Hadoop’s open source and enterprise ecosystem continues to grow based on the wide variety of
products available from Apache, and a large number of vendors providing solutions for integrating
Hadoop with enterprise tools. HDFS is a primary component of the ecosystem. Because Hadoop
has a low commodity cost, it is easy to explore the features of Hadoop either through a VM or set-
ting up a hybrid ecosystem within your existing environment. It is an excellent way to review your
current data methodologies with Hadoop solutions and its growing vendor pool. By leveraging
these services and tools, Hadoop’s ecosystem will continue to evolve and eliminate some of the road
blocks associated with the analytics processing and managing of large data lakes. Hadoop integrates
into the architectural layers of the data ecosystem by using some of the tools and services discussed
in this chapter.

One ecosystem is the Horton Data Platform (HDP). HDP helps you get started with Hadoop by
using a single-node cluster in a virtual machine, as illustrated in Figure 1-4. Because Hadoop is a
commodity (little to no additional cost) solution, HDP gives you the ability to deploy to the cloud or
within your own data center.

HDP gives you the data platform foundation to build your Hadoop infrastructure, including a long list
of Business Intelligence (BI) and other related vendors. The platform is designed to deal with data from
many sources and formats, allowing you to design your own custom solution. The list of resources is
too large to defi ne here, but it is highly recommended that you obtain this information directly from
the vendor. The beauty of selecting a product like HDP is that they are one of the leading committers
with Hadoop. This opens more doors for using Hadoop with multiple database resources.

8 ❘ CHAPTER 1 HADOOP INTRODUCTION

c01.indd 03/29/2016 Page 8

APPLICATIONS*

DATA SYSTEMS*

*Check with vendor. Resources may vary.

SOURCES*

HADOOP
DATA Access

YARN
Data Management

DEV & DATA TOOLS*

OPERATIONAL TOOLS*

INFRASTRUCTURE*

G
O

V
E

R
N

A
N

C
E

 &
IN

TE
G

R
A

TI
O

N

SE
C

U
R

IT
Y

O
P

E
R

A
TI

O
N

S

FIGURE 1-4

HDP is considered an ecosystem because it creates a community of data, bringing Hadoop and addi-
tional tools together.

Cloudera (CDH) creates a similar ecosystem for its data platform. Cloudera sets the stage with the
ability to integrate structured and unstructured data. Using the platform-delivered unifi ed services,
Cloudera opens the doors to process and analyze several different data types (see Figure 1-5).

PROCESS, ANALYZE, & SERVE

BATCH SQL STREAM

UNIFIED SERVICES

RESOURCE MANAGEMENT
(YARN) SECURITY

NOSQLRELATIONAL
FILESYSTEM

(HDFS)

STRUCTURED UNSTRUCTURED

STORE

INTEGRATE

SEARCH SDK

FIGURE 1-5

Integration with Other Systems ❘ 9

c01.indd 03/29/2016 Page 9

Data Integration and Hadoop
Data Integration is a key step in the Hadoop solution architecture. A number of vendors use open
source integration tools to easily connect Apache Hadoop to hundreds of data systems without hav-
ing to write code. This is a defi nite plus if you are not a programmer or developer by trade. Most of
these vendors use a variety of open source solutions for big data integration that natively supports
Apache Hadoop, including connectors for HDFS, HBase, Pig, Sqoop, and Hive (see Figure 1-6).

Mainframes

REAL TIME

CDC

BATCH

WEB SERVER

ACCESS DATA

POWER CENTER

INGEST DATA

HADOOP

HDFS

HIVE

PRE-PROCESS

Power
Exchange

DATABASE, Data Warehouse

Message Queues, Email,
Social Media

ERP, CRM

FIGURE 1-6

Hadoop-based applications are well balanced and have the ability to focus on the Windows plat-
form and integrate well with the Microsoft BI tools such as Excel, Power View, and PowerPivot, cre-
ating unique ways for the easy analysis of massive amounts of business information.

This does not mean that Hadoop or the other data platform solutions do not run in a non–Windows
based environment. It would be prudent to review your current or planned environment to deter-
mine the best solution. A data platform or data management platform is just what it says it is. It is a
centralized computing system for collecting, integrating, and managing large sets of structured and
unstructured data.

10 ❘ CHAPTER 1 HADOOP INTRODUCTION

c01.indd 03/29/2016 Page 10

 In theory, either HortonWorks or Cloudera could be the platform you have selected along with
the RDBMS connector that works with your current data environment and Hadoop. Most vendors
have highly detailed information regarding system requirements. In general, a signifi cant number
of tools will mention a Windows operating system or a Windows-based component, because of the
breadth of Windows-based BI tools available. Microsoft SQL Server is the leading Windows tool
for database services. Organizations using this enterprise tool are no longer limited by big data.
Microsoft has the ability to work and integrate with Hadoop by providing fl exibility and enhanced
connectivity for Hadoop, Windows Server, and Windows Azure. Informatica software, using the
Power Exchange Connector along with Hortonworks, optimizes the entire big data supply chain on
Hadoop, turning data into actionable information to drive business value.

The modern data architecture, for example, is increasingly being used to build large data pools. By
combining data management services into a larger data pool, companies can store and process mas-
sive amounts of data across a wide variety of channels including social media, clickstream data, server
logs, customer transactions and interactions, videos, and sensor data from equipment in the fi eld.

Hortonworks or Cloudera Data Platforms, along with Informatica, allows companies to optimize
their ETL (Extract, Transform, Load) workloads with long-term storage and processing at scale in
Hadoop.

The integration of Hadoop along with enterprise tools allows organizations to use all of the data
internally and externally for an organization to achieve the full analytical power that drives the suc-
cess of modern data-driven businesses.

Hadoop Applier, another example, provides real-time connectivity between MySQL and Hadoop’s
Distributed File System, which can be used for big data analytics—for purposes like sentiment anal-
ysis, marketing campaign analysis, customer churn modeling, fraud detection, risk modeling, and
many others. Many widely used systems, such as Apache Hive, also use HDFS as a data store (see
Figure 1-7).

Fetch Real-Time Data Row Data

Write inserts
in real time

Populate Hive Tables

BINLOG API

MYSQL SERVER

HADOOP APPLIER

Hadoop Eco-
System

Datafile in
HDFS

HIVE

FIGURE 1-7

Oracle has developed an offering for its fl agship database engine and Hadoop. It is a collection
of useful tools to assist with integrating Oracle’s services with the Hadoop stack. The Big Data

Integration with Other Systems ❘ 11

c01.indd 03/29/2016 Page 11

Connectors Suite is a collection of tools that have the ability to provide a deep dive into the informa-
tion discovery waters of analytics and a fast integration of all the data stored within your infrastruc-
ture. All tools are considered scalable, which fi ts nicely into your environment if you are a current or
future Oracle customer. Oracle has several tools in their suite, but we will only feature a few of them
in this chapter.

Oracle XQuery for Hadoop (see Figure 1-8) runs a process, based on transformations expressed
in the XQuery language, by translating them into a series of MapReduce jobs, which are executed
in parallel on the Apache Hadoop cluster. The input data can be located in a fi lesystem accessible
through the Hadoop Distributed File System (HDFS), or stored in Oracle’s NoSQL Database. Oracle
XQuery for Hadoop can write the transformation results to Hadoop fi les, to the Oracle NoSQL
Database, or to the Oracle Database.

MySQL Slaves

MySQL Applier
(reads binlogs from Master)

(Hadoop Cluster Slave)
MySQL

Replication Master

MySQL Regular

FIGURE 1-8

Oracle SQL Connector for the Hadoop Distributed File System (HDFS) is a high speed connec-
tor for loading or querying data in Hadoop with the Oracle Database (see Figure 1-9). Oracle SQL
Connector for HDFS pulls data into the database; the data movement is initiated by selecting data
via SQL in the Oracle Database. Users can load data into the database, or query the data in place in
Hadoop, with Oracle SQL via external tables. Oracle SQL Connector for HDFS can query or load
data in text fi les or Hive tables over text fi les. Partitions can also be pruned while querying or load-
ing from Hive-partitioned tables.

Another Oracle solution, the Oracle Loader for Hadoop, is a high performance and effi cient connec-
tor to load data from Hadoop into the Oracle Database. Oracle Loader for Hadoop pushes data into
the database as data transfers are initiated in Hadoop (see Figure 1-10). Oracle Loader for Hadoop
takes advantage of Hadoop compute resources to sort, partition, and convert data into Oracle-
ready data types before loading. Pre-processing data on Hadoop reduces database CPU usage when
loading data. This minimizes the impact on database applications and alleviates competition for
resources, which is a common issue when ingesting large data volumes. It makes the connector par-
ticularly useful for continuous and frequent loads.

12 ❘ CHAPTER 1 HADOOP INTRODUCTION

c01.indd 03/29/2016 Page 12

• Query and join data on HDFS database resident
 data

• Load into the database using SQL if required
• Automatic load balancing to maximize
 performance

ORACLE CLIENT
HDFS

SQL Query

• Access and analyze data in place on HDFS

.

.

. . . .

Access or load into the
database in parallel using
external table mechanism

ORACLE DATABASE

External
Table

ODCH

ODCH

ODCH

ODCH

FIGURE 1-9

• Load directly into in-memory table
• Kerberos authentication

• Convert to Oracle format on Hadoop
 —save database CPU

• Automatic load balancing
• Parallel load, optimized for Hadoop

Text

JSON

More...

Compressed Files Sequence Files

Hive Log Files

• Load specific hive partitions

FIGURE 1-10

Oracle R Connector for Hadoop enables rapid development with R-style debugging capabilities of
parallel R code on user desktops, supported by simulating parallelism (see Figure 1-11). The con-
nector enables analysts to combine data from several environments—client desktop, HDFS, Hive,
Oracle Database, and in-memory R data structures—all in the context of a single analytic task

Summary ❘ 13

c01.indd 03/29/2016 Page 13

execution, thus simplifying data assembly and preparation. Oracle R Connector for Hadoop also
provides a general computation framework for the execution of R code in parallel.

ORACLE R
CLIENT

HADOOP

MAP MAP

REDUCE REDUCE

HDFS

Leverage MapReduce for R
Calculations

MAP MAP

FIGURE 1-11

If Oracle is your organization’s tool of choice, you have a suite of tools to choose from, as described
in this section. They have partnered with Hadoop, and the Oracle site is well documented and
allows you to download any of the previously mentioned connectors as well as confi gure them to
work with the Hadoop ecosystem.

SUMMARY

By using the Hadoop Stack, you leverage the best practices in enterprise Hadoop, combined with
a mix of programming and high-level tools. Most clusters are on your premises today, but service
providers are giving even more options for data to exist in the Cloud. SQL, relational, and non-
relational data stores can now leverage functionality using Hadoop.

Hadoop has established itself for the long haul when it comes to data. This is very fi tting, because
data continues to grow over time. It uses pre-existing enterprise systems that can expand into
Hadoop’s data platform. Companies and developers within the open source community are design-
ing and defi ning the best practices for Hadoop-based large scale enterprise data. The businesses, as
well as the IT community, are deeply concerned with scalability for all data types. With Hadoop,
companies are no longer confi ned to expensive enterprise solutions or pricey warehouse appliances.

www.allitebooks.com

http://www.allitebooks.org

14 ❘ CHAPTER 1 HADOOP INTRODUCTION

c01.indd 03/29/2016 Page 14

Hadoop is not a replacement for the existing data rich environments that populate most organiza-
tions. When you consider Hadoop, it is important to consider aspects like MapReduce or YARN,
which are making huge strides in deep data analysis and advanced analytics. Hadoop provides
real-time processing of big data, which can provide an immediate impact on decisions that can
affect your bottom line. Various industries, from fi nance to healthcare, can get immediate benefi ts
from using the Hadoop Stack, or any of its related components. It pushes the limit of what was
previously thought to only be achieved with a data mining tool. It literally makes you look at data
differently. Hadoop has provided the bridge that does not replace but improves how organizations
look at data. Hadoop removes limitations and continues to cover new ground in all aspects of
development.

Understanding Hadoop’s storage system allows you to leverage data integration and business ana-
lytics to consolidate large data lakes and analyze all data types, which are not dependent on their
current source. Having a complete understanding of Hadoop’s platform allows its users to process a
vast amount of scalable data in real time delivering optimum analytics. The beauty of Hadoop’s stor-
age process is that there is no additional storage or computing expense. There are only gains, such as
increased data accuracy and analytics. The next chapter will detail the aspects of Hadoop’s storage.

c02.indd 04/20/2016 Page 15

Storage
WHAT’S IN THIS CHAPTER?

 ➤ Providing the basic concept and architecture of HDFS

 ➤ Usage of HDFS CLI for operation

 ➤ Showing how to set up HDFS clusters and the default of
confi gurations

 ➤ Advanced features of HDFS including future releases

 ➤ Popular fi le formats used by HDFS

Hadoop is not only a data analysis platform but it also handles storage, because you need a
place to store data before you can analyze it. Hadoop is a distributed system, and the work-
load requirements on a distributed system are often different from web applications or con-
sumer applications. The popular Hadoop-implemented specifi c storage system is called HDFS
(Hadoop Distributed File System). As the name suggests, HDFS is a fi lesystem. The data on
HDFS can be a fi le or a directory, like the ordinal fi lesystems that you use every day. You
might be familiar with the usage and interface of HDFS, but it is built on a totally different
architecture for achieving high availability and scalability.

In this chapter, we will introduce the basic concept and the usage of HDFS. In most cases,
the Hadoop MapReduce application accesses the data on HDFS. So, improving the HDFS
cluster often immediately improves the MapReduce performance. In addition, other external
frameworks, such as Apache HBase and Apache Spark, can also access HDFS data for their
workload. Therefore, HDFS provides fundamental functionality for the Hadoop ecosystem,
and although HDFS was developed during the initial Hadoop era, it continues to be a cru-
cial component. In this chapter we cover important and advanced features of HDFS. This
advanced functionality makes HDFS data more reliable and more effi cient to access. One of
these functions is Erasure Coding, which drastically saves storage capacity in comparison with
ordinal replication HDFS. Although this function has not yet been released, it is actively being
developed, and is important to examine.

2

Professional Hadoop®. Benoy Antony, Konstantin Boudnik, Cheryl Adams, Branky Shao, Cazen Lee and Kai Sasaki
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

16 ❘ CHAPTER 2 STORAGE

c02.indd 04/20/2016 Page 16

BASICS OF HADOOP HDFS

One challenge with implementing HDFS is achieving availability and scalability at the same time.
You may have a large amount of data that can’t fi t on a single physical machine disk, so it’s neces-
sary to distribute the data among multiple machines. HDFS can do this automatically and transpar-
ently while providing a user-friendly interface to developers. HDFS achieves these two main points:

 ➤ High scalability

 ➤ High availability

Some of the machines in the HDFS cluster can be broken at any time due to a broken disk or a
power shutdown. HDFS will continue providing its service and the required data, even if some of
the nodes are unavailable. HDFS effi ciently provides all required data to an application. This is a
requirement because there are many types of applications running on Hadoop processes, and also
because there is a huge amount of data stored on HDFS. This may require the full use of the net-
work bandwidth or disk I/O operations. HDFS must even provide this same performance when the
data stored on HDFS is growing.

Let’s examine the basic concepts and architecture of HDFS that provide these requirements for its
distributed storage system.

Concept
HDFS is a storage system that stores large amounts of data to be sequentially accessed. HDFS
data doesn’t fi t into a random-access pattern. Here are three important points about HDFS
characteristics:

 ➤ Huge fi le: In the HDFS context, huge means hundreds of megabytes, or even gigabytes, and
more. HDFS is specialized for huge data fi les. Therefore, a lot of small fi les hinder HDFS
performance because its metadata consumes a lot of memory space on the master component
called NameNode, which is explained in the next section.

 ➤ Sequential access: Both read and write operations in HDFS should be handled sequentially.
Random access hurts HDFS performance because of network latency. But reading the data
once and writing it many times is a suitable situation for an HDFS use case. MapReduce and
other execution engines can effi ciently read HDFS fi les any number of times as long as fi les
are read sequentially. HDFS puts an emphasis on the throughput of total access, rather than
low latency. It is more important to achieve high throughput than to achieve low latency,
because the total time for reading all data relies on throughput metrics.

 ➤ Commodity hardware: Hadoop HDFS does not require specialized hardware made for big
data processing or storage because many IT vendors already provide this. If Hadoop requires
a specifi c type of hardware, the cost of using Hadoop will increase, and scalability will perish
due to the diffi culty of always buying the same hardware.

HDFS manages the stored data with block units similar to a standard fi lesystem. Each block has
a limited, maximum size confi gured by HDFS, which defi nes how fi les that would span multiple
blocks are divided. The default block size is 128MB. Each fi le is separated into 128MB blocks when
written on the HDFS (see Figure 2-1). A fi le that’s smaller than the block size does not occupy the

Basics of Hadoop HDFS ❘ 17

c02.indd 04/20/2016 Page 17

total block. A 100MB fi le keeps only 100MB on one HDFS
block. The block is an important abstraction of HDFS. The
blocks are distributed across multiple nodes, so that you can cre-
ate a fi le larger than the disk size of a single node. Thus, you can
create any size of fi le thanks to the abstraction of the blocks that
are used to store the fi le.

In addition to this abstraction, one other thing HDFS does that
is different from typical fi lesystems is to simplify the overall
structure. The abstraction of the block’s organization also sim-
plifi es the disk management. Because blocks are a fi xed size, cal-
culating the number of blocks that fi t into a single physical disk
is easy (divide the disk size by the block size). This means the
overall capacity of each node is also easily calculated (by adding
the block capacity of each disk). So, the capacity of the entire
cluster is also easy to determine. To manage the combination of
the blocks and metadata, HDFS is divided into two subsystems.
One system manages the metadata, including the name of the
fi le, directory, and other metadata. The other system is used to
manage the underlying block organization as blocks are spread across the nodes, and the other is for
managing blocks and the corresponding node list. The two systems can be separated by the block
abstraction.

The key to the power and fl exibility of HDFS is the effi cient use of commodity hardware. Rather
than relying on expensive, specialized hardware, you can use low-cost commodity hardware instead.
Although this low-cost hardware is more likely to fail, HDFS works around this by providing an
abstraction layer that overcomes the potential for failure. In a normal system where all of the day’s
data is stored on a single disk, a failure of that disk creates a loss of this data. In a distributed sys-
tem, where there are multiple nodes using the same commodity hardware, it’s also possible that the
entire node would fail, perhaps due to power supply, CPU, or network failure.

Most systems that support High Availability (HA) of the data do so by replicating the entire data
structure, usually across two nodes. This ensures that if one node, or data source, fails, the other
node or copy of the data can be used in its place. HDFS expands on this by making use of the data
block abstraction. Instead of replicating the data once, by default in HDFS, data is replicated twice,
making a total of three copies of each block. To improve upon this even further, rather than replicat-
ing all of the blocks on, for example, node A to node B, HDFS distributes the blocks across multiple
nodes (see Figure 2-2).

For example, imagine a large fi le that would normally occupy three blocks on an HDFS fi lesystem,
and we have 5 nodes in the Hadoop cluster. Copy 1 of block 1 might be stored physically on nodes
A, B and C; block 2 on nodes B, C and D, and block 3 on nodes D, E and A.

This distribution of the data is made possible by the block abstraction, and also ensures that the
data will remain available even if two nodes in the system fail, because the additional copies of
the data blocks are spread across multiple nodes. The fi le can still be recreated by using the copies
on the other nodes that are still running. For example, if nodes B and C failed, we can still recover
the three blocks from nodes A and D. Of course these replicas must be distributed among differ-
ent nodes, as described in Figure 2-2.

File

block1 block2 block3

block4 block5 block6

128MB

HDFS
FIGURE 2-1

18 ❘ CHAPTER 2 STORAGE

c02.indd 04/20/2016 Page 18

Block-1

Block-1
Block-1

Block-2
Block-2File

Block-2 Block-2 Block-1

Block-3

Block-3

Block-3

Machine

1. Separate into blocks

2. Replicate blocks

HDFS

Block-3

FIGURE 2-2

If more than two replicas are lost, then the failure of one machine can cause the total loss of data.
Hadoop controls this by putting each replica on a different machine, and by enabling the number of
replicas of each block to be confi gurable. You can change the replication factor with the dfs.rep-
lication confi guration, but when you increase the replication factor you decrease available disk
capacity (because you have to store N copies of each block). An application accessing the data uses
only one of the blocks, since the other blocks are merely copies to be used in the event of a failure.
The distribution of data is not used to improve performance (see Figure 2-3).

To improve fault tolerance further, HDFS can be confi gured to take into account the physical topol-
ogy of the data and how it is stored, and the location of each machine within the racks used to
house modern server hardware. The machines in the data center are usually put in a rack or some
type of container for storing server machines. One rack can store dozens of machines. The machines
are usually close in proximity and also close in network context. The connection between the
machines in the same rack is more effi cient than the connection between the machines across racks.
By providing HDFS with the physical architecture, the performance and resilience of the distributed
fi le system is improved. Blocks can be distributed across multiple nodes in the same rack, and bet-
ter, across multiple racks, so that if an entire rack of servers fails, the blocks have been distributed in
such a way that the data is not lost.

This process also takes into account the improved connectivity available within a single rack.
Consequently, putting all replicas on one rack is very effi cient because there is no restriction of net-
work bandwidth between the racks. For example, the fi rst replica (replica1) is put on the same node
where the client is running. The second replica (replica2) is put on another machine in a different rack.
The third replica is put on a different machine in the same rack where the second replica is located.

Basics of Hadoop HDFS ❘ 19

c02.indd 04/20/2016 Page 19

The result is that HDFS provides a good balance between maximizing network performance within
racks and supporting fault tolerance across the racks.

FIGURE 2-3

Architecture
Hadoop HDFS uses a master-slave architecture. The master server is called the NameNode, and it is
responsible for managing the metadata of the fi lesystem, such as fi lename, permission, and creation
time. All HDFS operations—such as write, read, and create—are fi rst submitted to NameNode.
NameNode does not store the actual data. Instead, slave servers called DataNodes store the individ-
ual blocks that make up a fi le. By default, there is only one Active NameNode in an HDFS cluster.
Losing the NameNode can lead to the loss of your data because it stores the only copy of the block
allocation.

To improve the fault-tolerance, HDFS can use a high-availability architecture and support one or
more backup NameNodes that contain copies of the metadata and block allocation information.
Any number of machines can be DataNodes in one HDFS cluster, and in most Hadoop clusters the
majority of nodes will be DataNodes, often numbering in the thousands of servers in the larger clus-
ters. The overview of the relationship between NameNode and DataNodes is covered next.

NameNode has a class that retains the information to manage the relationship between fi le and
blocks: FSNamesystem. This class keeps information that is necessary to manage the mapping

20 ❘ CHAPTER 2 STORAGE

c02.indd 04/20/2016 Page 20

from fi le to blocks. Each fi le is represented as an INode, which is the term used by all fi lesystems
including HDFS to refer to the key fi lesystem structure. INodes are put under FSDirectory in a tree
structure. INode can represent both fi le, directory, and other entities on the fi lesystem. The con-
crete correspondence relationships between INode and blocks are delegated to a structure called
the BlocksMap included in the BlockManager. As described in the architecture overview (see Figure
2-4), the NameNode manages the relationship between INode and blocks.

1. Edits rotation

edits

edits.new

fsimage

edits fsimage

fsimage.ckpt

edits fsimage

2. Pulling files

NameNode Secondary NameNode

4. Back to NameNode

3. Merge

FIGURE 2-4

All metadata is managed in memory while the NameNode is running normally. But, in order for the
metadata to remain persistent, the NameNode must write the metadata to a physical disk. Without
this operation, the metadata and block structure will be lost if the NameNode crashes. A periodic
checkpoint is used to write metadata, and the edit log (a record of all of the individual changes) on
disk and is usually handled by a new node called a secondary NameNode. A secondary NameNode
is almost the same as the normal NameNode except that the secondary NameNode can’t behave
as a NameNode. The only task the secondary NameNode is expected to handle is to periodically
merge metadata changes and the current snapshot of the information stored on disk.

The merging task is often heavy and time consuming. It is not effi cient for the NameNode to merge
this information by itself, since it has to handle the general requests for metadata and fi le informa-
tion for the running cluster. So, the Secondary NameNode handles the merging for NameNode
using the periodic checkpoint process. If the NameNode experiences a failure, you need to run the
checkpoint manually, but the process often takes a lot of time. HDFS will remain unavailable until
the merging process is complete. Therefore, the regular checkpoint process is indispensable for a
healthy HDFS cluster.

One thing to note here is that HDFS can now support a high-availability (HA) structure. The
Hadoop cluster can operate with two NameNodes operating in an HA architecture. One is the
active NameNode and the other is the standby NameNode. They share the in-memorying block
and log fi les through the quorum journal manager. Thanks to sharing metadata between the active
NameNode and the standby NameNode, the standby NameNode can become active immediately
when failover happens. NameNode is not a Single Point of Failure (SPOF) anymore. In addition,

Basics of Hadoop HDFS ❘ 21

c02.indd 04/20/2016 Page 21

the standby NameNode can play a role as a Secondary NameNode, performing the required peri-
odic checkpoint process. It is not necessary to confi gure a Secondary NameNode and a Standby
NameNode. The recommended confi guration is to use the HA Standby NameNode, which auto-
matically provides the Secondary NameNode functionality.

The sync process with journal nodes and active NameNode is shown in Figure 2-5. You need to
avoid the so-called “split brain” situation in this architecture. A split brain occurs when the standby
NameNode becomes active, but the old failed NameNode is technically still available within the
cluster. This can be a really serious problem, because the metadata of the HDFS name system can
be corrupted by inconsistent updating operations issued by the active NameNode and standby
NameNode.

2. Sync edits log

1. Write edits log
Quorum Journal

Manager
Quorum Journal

Manager

Active NameNode

Journal Node Journal Node Journal Node

Standby NameNode

FIGURE 2-5

To help prevent this situation, the quorum manager uses an epoch number. When the standby node
tries to become active, it increments the epoch number for all of the journal nodes. The number of suc-
cesses of the increment operation needs to be more than a fi xed number that is usually a majority num-
ber of journal nodes. If both active NameNode and standby NameNode try to increment the number,
both can succeed. But, the writing (authoritative) NameNode includes the NameNode’s epoch number
with the metadata. The receiver of the journal node accepts the operation and the epoch number; if the
epoch number receives the NameNode, the epoch number of the NameNode that matches the journal
nodes is the one used as the valid operation. The entire negotiation process and validation with the
epoch number and each operation are taken care of automatically by Hadoop, and it is not up to either
the developers or administrators to control the operation.

The detail of confi guration for setting up HA NameNode is described here: (http://
hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/

HDFSHighAvailabilityWithQJM.html). It is necessary to prepare two machines for active and
standby NameNodes, and at least three journal node machines. Since edit log modifi cation has to
be written on the majority of journal nodes, the number of journal nodes is recommended to be an
odd number (3, 5, 7, etc.). When you are running N journal nodes in your HDFS cluster, your HDFS
system tolerates at most (N − 1) / 2 failures in order to operate normally.

22 ❘ CHAPTER 2 STORAGE

c02.indd 04/20/2016 Page 22

Interface
HDFS provides several types of interfaces for fi lesystem users. The most basic one is the command-
line tool included in Hadoop HDFS. Command-line tools can be separated into two categories: the
fi lesystem shell interface and the admin tool for HDFS.

 ➤ File system shell: This tool provides various types of shell-like commands that directly
interact with HDFS data. You can read or write fi le data with the shell tool. Also, you can
access the data stored in other storage systems such as HFTP, S3, and FS that HDFS is now
supporting.

 ➤ Java API: This is the most basic API. File system shells and most other interfaces use the Java
API internally. In addition, the API is also used by many applications running on HDFS.
When you write an application that accesses HDFS data, you should use the Java API.

 ➤ WebHDFS: WebHDFS provides an HTTP REST API through NameNode. WebHDFS sup-
ports all fi lesystem operations, including Kerberos authentication. You can enable WebHDFS
with dfs.webhdfs.enabled=true.

 ➤ libhdfs: Hadoop provides a C library called libhdfs that is transplanted from the Java fi lesys-
tem interface. In spite of its name, libhdfs can access any type of the Hadoop fi lesystem, not
only HDFS. libhdfs calls a fi lesystem client implemented in Java through the Java Native
Interface (JNI).

NOTE Some APIs provided by the Java client are not fully implemented in
libhdfs because of a development delay. A pre-built binary distributed by the
Apache project is 32-bit binary. If you use libhdfs on another platform, you have
to build it yourself.

Let’s examine the basic usage of the command-line interface and the Java API. The command-line
interface is provided by the bin/hdfs script, and it’s deprecated. A current command-line tool is used
through bin/hadoop fs <args>. The fi lesystem shell provides a POSIX-like interface, and the full
commands are listed in Tables 2-1, 2-2 and 2-3. (http://hadoop.apache.org/docs/current/
hadoop-project-dist/hadoop-common/FileSystemShell.html).

TABLE 2-1: Read Operations

COMMAND USAGE DESCRIPTION

cat hadoop fs -cat <URI> Copies the content of source paths to
stdout

copyToLocal hadoop fs -copyToLocal

<Source URI> <Local URI>
Copies a fi le onto the local fi lesystem

Basics of Hadoop HDFS ❘ 23

c02.indd 04/20/2016 Page 23

COMMAND USAGE DESCRIPTION

cp hadoop fs -cp <Source URI>

<Dest URI>
Copies a fi le from the source path to
the dest path and is the same as the cp
command

ls hadoop fs -ls <URI> Returns the stat of the fi le or directory

fi nd hadoop fs -find <URI> Returns all fi les that match a given speci-
fi ed expression

get hadoop fs -get <Source URI>

<Dest URI>
Copies a fi le from the source path to the
dest path in a local fi le system

tail hadoop fs -tail <URI> Displays the last kilobytes of the fi le to
output

TABLE 2-2: Write Operations

COMMAND USAGE DESCRIPTION

appendToFile hadoop fs -appendToFile

<Local URI> <dest URI>
Append some local fi le data to the dest
URI fi le

copyFromLocal hadoop fs -copyFromLocal

<Local URI> <Remote URI>
Copies a fi le from the remote fi lesystem
to the local fi lesystem

put hadoop fs -put <Local URI>

...<Remote URI>
Copies fi les from the local fi lesystem to
the remote fi lesystem

touch hadoop fs -touchz <URI> Create a fi le that has zero length

TABLE 2-3: Other Operations

COMMAND USAGE DESCRIPTION

chmod hadoop fs -chmod <URI> Change the permission of fi les

chown hadoop fs -chown <URI> Change the owner of fi les

df hadoop fs -df <URI> Display free space under a specifi ed URI

du hadoop fs -du <URI> Display the size of fi les contained in a given
directory

continues

24 ❘ CHAPTER 2 STORAGE

c02.indd 04/20/2016 Page 24

COMMAND USAGE DESCRIPTION

mv hadoop fs -mv <Source URI>

... <Dest URI>
Move fi les from source to destination

rm hadoop fs -rm <URI> Remove fi les of a given URI

rmdir hadoop fs -rmdir <URI> Remove directories of a given URI

stat hadoop fs -stat <URI> Display statistics of a given URI

You might be familiar with most of the CLI commands. They are for fi lesystem users, and many of
the commands can manipulate a stored fi le or directory. In addition, HDFS provides the commands
for administrators of the HDFS cluster, called dfsadmin. You can use it with bin/hdfs dfsadmin
<sub command>. The full list of admin commands is written here: (http://hadoop.apache.org/
docs/current/hadoop-project-dist/hadoop-hdfs/HDFSCommands.html#dfsadmin).

The Java fi lesystem API is helpful if you want to do programming or access HDFS data from your
application. The fi lesystem API also encapsulates the authentication process and the interpretation
of a given confi guration. Let’s create a tool that reads fi le data and outputs it to stdout. You need
to know how to write a Java program and how to use Maven in order to build the tool. We assume
that you have this knowledge. The dependency should be written as follows:

 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-client</artifactId>
 <version>2.6.0</version>
 </dependency>

Of course, the version of Hadoop can change according to your Hadoop cluster. Our tool is named
MyHDFSCat. The concrete implementation is shown here:

import org.apache.hadoop.conf.Configuration;
 import org.apache.hadoop.conf.Configured;
 import org.apache.hadoop.fs.FileSystem;
 import org.apache.hadoop.fs.Path;
 import org.apache.hadoop.io.IOUtils;
 import org.apache.hadoop.util.Tool;
 import org.apache.hadoop.util.ToolRunner;
 import java.io.InputStream;
 import java.net.URI;

public class MyHDFSCat extends Configured implements Tool {
 public int run(String[] args) throws Exception {
 String uri = null;
 // Target URI is given as first argument
 if (args.length > 0) {
 uri = args[0];
 }
 // Get the default configuration put on your HDFS cluster

TABLE 2-3: (continued)

Basics of Hadoop HDFS ❘ 25

c02.indd 04/20/2016 Page 25

 Configuration conf = this.getConf();
 FileSystem fs = FileSystem.get(URI.create(uri), conf);
 InputStream in = null;
 try {
 in = fs.open(new Path(uri));
 IOUtils.copyBytes(in, System.out, 4096, false);
 } finally {
 IOUtils.closeStream(in);
 }
 return 0;
 }

 public static void main(String[] args) throws Exception {
 int exitCode = ToolRunner.run(new MyHDFSCat(), args);
 System.exit(exitCode);
 }
}

You can compile the implementation with mvn package -DskipTests. The next thing to do is to
upload the JAR fi le to your cluster. You can see the JAR fi le under the target directory of the proj-
ect root. Just before running MyHDFSCat, upload the target fi le to HDFS.

$ echo "This is for MyHDFSCat" > test.txt
$ bin/hadoop fs -put test.txt /test.txt

You can use the jar subcommand of the hadoop command to run your Java class included in the
JAR fi le. The JAR fi le is myhdfscat-0.0.1-SNAPSHOT.jar. (The way of constructing the HDFS clus-
ter will be described in the next section.) Running the command of MyHDFSCat can look like this:

$ bin/hadoop jar myhdfscat-0.0.1-SNAPSHOT.jar MyHDFSCat hdfs:///test.txt
This is for MyHDFSCat

You can do other operations, not only reading fi le data, but also writing, deleting, and referring sta-
tus info from the HDFS fi le. Here you can see that the example tool for referring the FileStatus is
the same as MyHDFSCat.

Import org.apache.hadoop.conf.Configuration;
 import org.apache.hadoop.conf.Configured;
 import org.apache.hadoop.fs.FileStatus;
 import org.apache.hadoop.fs.FileSystem;
 import org.apache.hadoop.fs.Path;
 import org.apache.hadoop.util.Tool;
 import org.apache.hadoop.util.ToolRunner;
 import java.net.URI;
public class MyHDFSStat extends Configured implements Tool {
 public int run(String[] args) throws Exception {
 String uri = null;
 if (args.length > 0) {
 uri = args[0];
 }
 Configuration conf = this.getConf();
 FileSystem fs = FileSystem.get(URI.create(uri), conf);
 FileStatus status = fs.getFileStatus(new Path(uri));
 System.out.printf("path: %s\n", status.getPath());

26 ❘ CHAPTER 2 STORAGE

c02.indd 04/20/2016 Page 26

 System.out.printf("length: %d\n", status.getLen());
 System.out.printf("access: %d\n", status.getAccessTime());
 System.out.printf("modified: %d\n", status.getModificationTime());
 System.out.printf("owner: %s\n", status.getOwner());
 System.out.printf("group: %s\n", status.getGroup());
 System.out.printf("permission: %s\n", status.getPermission());
 System.out.printf("replication: %d\n", status.getReplication());

 return 0;
 }

 public static void main(String[] args) throws Exception {
 int exitCode = ToolRunner.run(new MyHDFSStat(), args);
 System.exit(exitCode);
 }
}

You can run MyHDFSStat in the same way as MyHDFSCat. The output will look like this:

$ bin/hadoop jar myhdfsstat-SNAPSHOT.jar \
 com.lewuathe.MyHDFSStat hdfs:///test.txt
path: hdfs://master:9000/test.txt
length: 18
access: 1452334391191
modified: 1452334391769
owner: root
group: supergroup
permission: rw-r--r--
replication: 1

You can write a program to manipulate HDFS data. If you have no HDFS cluster yet, you should
launch your HDFS cluster. We will explain how to set up a distributed HDFS cluster next.

SETTING UP THE HDFS CLUSTER IN DISTRIBUTED MODE

Now that you understand the overview architecture and interface of HDFS, it is time to learn about
launching your HDFS cluster. To do this, it is necessary to procure several machines prepared for
each component role in an HDFS cluster. One machine should be created for the master machine
where NameNode and ResourceManager are installed. The other machines should be created for
slave machines where DataNode and NodeManager are installed. The total number of servers is
1 + N machines, where N is dependent on the scale of your workloads. The HDFS cluster can be
set up in secure mode. We will omit the detail of a secure Hadoop cluster because it is explained
in Chapter 6. So, this time we will set up a normal HDFS cluster. As a prerequisite, please make
sure all servers are installed with Java 1.6+ before starting the Hadoop installation. The tested
JDK versions of the Hadoop project are listed on this page: (http://wiki.apache.org/hadoop/
HadoopJavaVersions).

Install
To start, go ahead and download the Hadoop package from the mirror site (http://hadoop
.apache.org/releases.html). Use BUILDING.txt included in the Hadoop source directory if

Setting Up the HDFS Cluster in Distributed Mode ❘ 27

c02.indd 04/20/2016 Page 27

you want to build the Hadoop package from the source fi le. The Hadoop project provides a Docker
image for building the Hadoop package: start-build-env.sh is used for that purpose. If you have
already installed Docker on your machine, you can build an environment, including all dependen-
cies for building the Hadoop package:

$./start-build.env.sh
$ mvn package -Pdist,native,docs -DskipTests -Dtar

The built package is put under hadoop-dist/target/hadoop-<VERSION>-SNAPSHOT.tar.gz, if
you install the package under /usr/local:

$ tar -xz -C /usr/local
$ cd /usr/local
$ ln -s hadoop-<VERSION>-SNAPSHOT hadoop

HDFS confi gurations are put in core-default.xml and etc/hadoop/core-site.xml, hdfs-
default.xml, and etc/hadoop/hdfs-site.xml. The former is the default value for HDFS, and the
latter is for specifi c confi gurations for your cluster. You should not change hdfs-default.xml, but
you can modify hdfs-site.xml if necessary. In addition, there are several environmental variables
that must be set.

export JAVA_HOME=/usr/java/default
export HADOOP_COMMON_PREFIX=/usr/local/hadoop
export HADOOP_PREFIX=/usr/local/hadoop
export HADOOP_HDFS_HOME=/usr/local/hadoop
export HADOOP_CONF_DIR=/usr/local/hadoop/etc/hadoop

These variables are used in the hadoop or hdfs script to launch daemons where you fi nd the exec
script or confi guration fi les. The actual confi gurations for each daemon are written in core-site
.xml and hdfs-site.xml. As the name specifi es, core-site.xml is for the Hadoop Common pack-
age, and hdfs-site.xml is for the HDFS package. First, fs.defaultFS is necessary in order to
specify the HDFS cluster used in the hadoop script.

<configuration>
 <property>
 <name>fs.defaultFS</name>
 <value>hdfs://<Master hostname>:9000</value>
 </property>
</configuration>

The hadoop script is used for launching MapReduce jobs and the dfsadmin command. Thanks to
the fs.defaultFS confi guration, the system can detect where the HDFS cluster is, only you should
write in core-site.xml. The next step is adding hdfs-site.xml.

<configuration>
 <property>
 <name>dfs.replication</name>
 <value>1</value>
 </property>
</configuration>

dfs.replication specifi es the minimum replication factor for each block on HDFS. Since the
default value is set to three, it is not necessary to set it again here. The confi gurations that are
related to the NameNode daemon are listed in Table 2-4.

28 ❘ CHAPTER 2 STORAGE

c02.indd 04/20/2016 Page 28

TABLE 2-4: NameNode Daemon Confi gurations

PARAMETER NOTES

dfs.namenode.name.dir Meta data such as fsimage or edits logs are stored in this directory
of the NameNode machine

df.hosts / dfs.hosts.
excluded

List of permitted/excluded DataNodes

dfs.blocksize Specifi es the block size of the HDFS fi le

dfs.namenode.handler.
count

The number of threads that it handles

Since the same confi guration fi les are distributed among HDFS clusters to both NameNode and
DataNodes in many cases, the confi gurations for DataNodes can be written in hdfs-site.xml (see
Table 2-5).

TABLE 2-5: DataNode Daemon Confi gurations

PARAMETER NOTES

dfs.datanode.data.dir DataNode stores actual block data under the specifi ed directory.
Multiple directories can be set with a comma separated list of
directories.

After writing confi gurations for the HDFS cluster, it is necessary to format it if it’s the fi rst time to
launch the HDFS cluster on that machine.

$ bin/hdfs namenode -format

Once NameNode is formatted, you can start the HDFS daemons. The launch commands are
included in the hdfs script for both NameNode and DataNodes.

On NameNode machine
 $ bin/hdfs namenode
On DataNode machine
 $ bin/hdfs datanode

You can launch these processes as a daemon by using upstart (http://upstart.ubuntu.com/)
and daemontools (https://cr.yp.to/daemontools.html). If you want to launch NameNode and
DataNodes (see Figure 2-6) as a daemon, there are utility scripts in the Hadoop source code.

On NameNode machine
 $ sbin/hadoop-daemon.sh --config $HADOOP_CONF_DIR --script hdfs start namenode
On DataNode machine
 $ sbin/hadoop-daemon.sh --config $HADOOP_CONF_DIR --script hdfs start datanode

Setting Up the HDFS Cluster in Distributed Mode ❘ 29

c02.indd 04/20/2016 Page 29

After launching the HDFS cluster, you can see the NameNode UI at http://<Master
Hostname>:50070.

FIGURE 2-6

NameNode also has a metric API provided by JMX. You can see the metrics that show con-
fi guration parameters of the HDFS cluster and information of resource usage. This is shown in
http://<Master Hostname>:50070/jmx. The JMX metrics will be useful for cluster monitoring
and profi ling cluster performance. When it is necessary to shut down the HDFS cluster, you can do
that in the same way.

On NameNode machine
 $ sbin/hadoop-daemon.sh --config $HADOOP_CONF_DIR --script hdfs stop namenode
On DataNode machine
 $ sbin/hadoop-daemon.sh --config $HADOOP_CONF_DIR --script hdfs stop datanode

DataNode also has a web UI at the port number 50075. You can see http://<Slave
Hostname>:50075. This is the basic way to set up the HDFS cluster. But, it might be reasonable to
use some Hadoop distribution such as CDH from Cloudera or HDP from Hortonworks in many
cases on an enterprise usage. These packages include a set up manager called Cloudera Manager or
Ambari. These are reasonable options for setting up your HDFS cluster. The details are here:

 ➤ Cloudera Manager: https://www.cloudera.com/content/www/en-us/products/
cloudera-manager.html

 ➤ Apache Ambari: http://ambari.apache.org/

30 ❘ CHAPTER 2 STORAGE

c02.indd 04/20/2016 Page 30

ADVANCED FEATURES OF HDFS

The content shown so far is basically enough to set up and try HDFS. But, there are several features
you should know in order to reliably perform operations on HDFS. HDFS often stores business
critical data. So, it is very important to run a stable HDFS cluster. We will explain some advanced
features of HDFS in this section. The list includes features that are not released yet. For example,
Erasure Coding is under active development, yet it is merged into the master branch. Although we
cannot use it with a release version, it stores your data more effi ciently and saves you money. HDFS
is progressing even now so we will show you some of that here.

Snapshots
HDFS snapshot copies a data in the fi lesystem at some point in time. A snapshot can be taken for a
subtree or the entire fi lesystem. Snapshot can usually be used for data backup for protection against
some failures or disaster recovery, and snapshot is read-only data, because it is meaningless if you
can modify the snapshot data after it is created. HDFS snapshot was designed to copy data effi -
ciently, and the main effectiveness of making HDFS snapshot includes:

 ➤ Creating a snapshot takes constant time order O(1), excluding the inode lookup time,
because it does not copy actual data but only makes a reference.

 ➤ Additional memory is used only when the original data is modifi ed. The size of additional
memory is proportional to the number of modifi cations.

 ➤ The modifi cations are recorded as the collection in reverse chronological order. The current
data is not modifi ed any more, and the snapshot data is computed by subtracting the modifi -
cations from the current data.

Any directory can create its own snapshot once it is set as snapshottable. There is no limitation of
the number of snapshottable directories in one fi lesystem, and a snapshottable directory can have at
most 65536 snapshots at the same time. Administrators can set any directory to snapshottable, and
any user can create a snapshot once it’s set as snapshottable by the administrator. One thing to note
is that a nested snapshottable directory is not currently allowed. So, a child whose parent is already
snapshottable can’t be set as snapshottable. Let’s explain how to create a snapshot on HDFS along
with some administrator operations.

A snapshot directory is created under its own directory. Snapshot is also an HDFS directory, includ-
ing all data that exists when the snapshot is created. One snapshottable directory can keep multiple
snapshots, and they can be identifi ed with a unique name defi ned at the time they are created. So,
let’s look at how to use snapshot in your HDFS directory. There are two types of commands in a
snapshot operation. One is for users and the other is for administrators.

$ bin/hadoop fs -mkdir /snapshottable
$ bin/hdfs dfsadmin -allowSnapshot /snapshottable

An administrator command will allow snapshots. Although it seems like there is no change with an
-allowSnapshot command, it allows users to create snapshots at any time. The creation of a snap-
shot can be done by using the fs -createSnapshot command.

$ bin/hadoop fs -put fileA /snapshottable
$ bin/hadoop fs -put fileB /snapshottable

Advanced Features of HDFS ❘ 31

c02.indd 04/20/2016 Page 31

$ bin/hadoop fs -createSnapshot /snapshottable
$ bin/hadoop fs -ls /snapshottable/
Found 2 items
-rw-r--r-- 1 root supergroup 1366 2016-01-14 07:46 /snapshottable/fileA
-rw-r--r-- 1 root supergroup 1366 2016-01-14 08:27 /snapshottable/fileB

fileA and fileB are normally stored under /snapshottable. But, where is snapshot? We cannot see
the snapshot directory, only the ls command, but we can fi nd it by specifying the full path to a
snapshot directory called .snapshot.

$ bin/hadoop fs -ls /snapshottable/.snapshot
Found 1 items
drwxr-xr-x - root supergroup 0 2016-01-14 07:47 /snapshottable/.snapshot/↵
s20160114-074722.738

All fi les stored when snapshot is taken are stored under the directory.

$ bin/hadoop fs -ls /snapshottable/.snapshot/s20160114-074722.738
Found 2 items
-rw-r--r-- 1 root supergroup 1366 2016-01-14 07:46 /snapshottable/.snapshot/↵
s20160114-074722.738/fileA
-rw-r--r-- 1 root supergroup 1366 2016-01-14 07:46 /snapshottable/.snapshot/↵
s20160114-074722.738/fileB

These fi les will no longer be modifi ed. So if the fi les/directories once snapshotted are needed, all you
have to do is to move or copy the data to a normal directory. The big advantage of using the HDFS
snapshot is that you don’t need to know any new commands or operations, because they are only
HDFS fi les. Any operations you can do to normal HDFS fi les/directories can also be done to snap-
shot fi les/directories.

Next, let’s take another snapshot and see the difference of modifi cation after a fi rst snapshot.

$ bin/hadoop fs -put fileC /snapshottable
$ bin/hadoop fs -ls /snapshottable
Found 3 items
-rw-r--r-- 1 root supergroup 1366 2016-01-14 07:46 /snapshottable/fileA
-rw-r--r-- 1 root supergroup 1366 2016-01-14 08:27 /snapshottable/fileB
-rw-r--r-- 1 root supergroup 1366 2016-01-14 08:27 /snapshottable/fileC
$ bin/hdfs -createSnapshot /snapshottable

You can see the second snapshot under the /snapshottable directory.

$ bin/hadoop fs -ls /snapshottable/.snapshot
Found 2 items
drwxr-xr-x - root supergroup 0 2016-01-14 07:47 /snapshottable/.snapshot/↵
s20160114-074722.738
drwxr-xr-x - root supergroup 0 2016-01-14 08:30 /snapshottable/.snapshot/↵
s20160114-083038.580

The snapshotDiff command can be used to check the total modifi cation that is done to the snap-
shottable directory. It does not show the actual contents that are modifi ed, but it is enough to check
the overview of modifi cations.

$ bin/hdfs snapshotDiff /snapshottable s20160114-074722.738 s20160114-083038.580
Difference between snapshot s20160114-074722.738 and snapshot s20160114-083038.580 ↵
under↵
 directory /snapshottable:
M .
+ ./fileC

32 ❘ CHAPTER 2 STORAGE

c02.indd 04/20/2016 Page 32

The fi rst characters of each line represent the modifi cation types, which are listed in Table 2-6.

TABLE 2-6: snapshotDiff Modifi cation Types

CHARACTER MODIFICATION TYPE

+ The fi le/directory has been created

– The fi le/directory has been deleted

M The fi le/directory has been modifi ed

R The fi le/directory has been renamed

Note the difference between deletion and rename. It is regarded as a deletion if the result fi le after
renamed goes to the outside of a snapshottable directory. It is regarded as a rename only if the fi le
is kept on a snapshottable directory. HDFS snapshot provides a simple way to keep copies of fi le/
directory at a time. Although it is useful, HDFS snapshot is not recommended to be used as a full
backup. As you know, HDFS snapshot is only an HDFS fi le/directory. Snapshot data has the same
fault tolerance and availability to the fi le/directory of HDFS. So, the full backup must be provided
with more safe and secure storage.

The full instruction of the HDFS snapshot is described at: http://hadoop.apache.org/docs/
current/hadoop-project-dist/hadoop-hdfs/HdfsSnapshots.html.

Offl ine Viewer
The offl ine edit viewer and image viewer provide a way to see the current state of the fi lesystem by
only checking the edits log and fsimage fi les. All you need is two fi les. It does not stop the HDFS
service to check the name system state. In addition, the offl ine viewer only depends on fi les. It is
not necessary to operate the HDFS service to check with offl ine viewers. As described earlier, there
are two types of fi les managed by the HDFS service: the edits log and fsimage. So there are also
two types of offl ine viewers corresponding to these fi les: the offl ine edits viewer and offl ine image
viewer. In this section, you learn how to use these offl ine viewers and their command usage.

First, let’s explain the offl ine edits viewer, which is included as a subcommand of the hdfs
command:

$ bin/hdfs oev
Usage: bin/hdfs oev [OPTIONS] -i INPUT_FILE -o OUTPUT_FILE
Offline edits viewer
Parse a Hadoop edits log file INPUT_FILE and save results
in OUTPUT_FILE.

Advanced Features of HDFS ❘ 33

c02.indd 04/20/2016 Page 33

Required command line arguments:
-i,--inputFile <arg> edits file to process, xml (case
 insensitive) extension means XML format,
 any other filename means binary format
-o,--outputFile <arg> Name of output file. If the specified
 file exists, it will be overwritten,
 format of the file is determined
 by -p option

Optional command line arguments:
-p,--processor <arg> Select which type of processor to apply
 against image file, currently supported
 processors are: binary (native binary format
 that Hadoop uses), xml (default, XML
 format), stats (prints statistics about
 edits file)
-h,--help Display usage information and exit
-f,--fix-txids Renumber the transaction IDs in the input,
 so that there are no gaps or invalid
 transaction IDs.
-r,--recover When reading binary edit logs, use recovery
 mode. This will give you the chance to skip
 corrupt parts of the edit log.
-v,--verbose More verbose output, prints the input and
 output filenames, for processors that write
 to a file, also output to screen. On large
 image files this will dramatically increase
 processing time (default is false).

Generic options supported are
-conf <configuration file> specify an application configuration file
-D <property=value> use value for given property
-fs <local|namenode:port> specify a namenode
-jt <local|resourcemanager:port> specify a ResourceManager
-files <comma separated list of files> specify comma separated files to be copied to↵
 the map reduce cluster
-libjars <comma separated list of jars> specify comma separated jar files to include↵
 in the classpath.
-archives <comma separated list of archives> specify comma separated archives to be↵
 unarchived on the compute machines.

The general command line syntax is
command [genericOptions] [commandOptions]

The offl ine edits viewer is a converter that can convert unreadable binary edits log fi les into readable
fi les, such as XML. Let’s assume you have a fi lesystem like the one shown in Figure 2-7.

www.allitebooks.com

http://www.allitebooks.org

34 ❘ CHAPTER 2 STORAGE

c02.indd 04/20/2016 Page 34

/

/somedir

README.txt

/otherdir

FIGURE 2-7

You can see the results here using this fi lesystem.

$ bin/hdfs oev -i ~/edits_inprogress_0000000000000000001 -o edits.xml
$ cat edits.xml
<?xml version="1.0" encoding="UTF-8"?>
<EDITS>
 <EDITS_VERSION>-64</EDITS_VERSION>
 <RECORD>
 <OPCODE>OP_START_LOG_SEGMENT</OPCODE>
 <DATA>
 <TXID>1</TXID>
 </DATA>
 </RECORD>
 <RECORD>
 <OPCODE>OP_MKDIR</OPCODE>
 <DATA>
 <TXID>2</TXID>
 <LENGTH>0</LENGTH>
 <INODEID>16386</INODEID>
 <PATH>/tmp</PATH>
 <TIMESTAMP>1453857409206</TIMESTAMP>
 <PERMISSION_STATUS>
 <USERNAME>root</USERNAME>
 <GROUPNAME>supergroup</GROUPNAME>
 <MODE>504</MODE>
 </PERMISSION_STATUS>
 </DATA>
 </RECORD>
 <RECORD>
 <OPCODE>OP_MKDIR</OPCODE>
 <DATA>
 <TXID>3</TXID>
 <LENGTH>0</LENGTH>
 <INODEID>16387</INODEID>
 <PATH>/tmp/hadoop-yarn</PATH>

Advanced Features of HDFS ❘ 35

c02.indd 04/20/2016 Page 35

 <TIMESTAMP>1453857409411</TIMESTAMP>
 <PERMISSION_STATUS>
 <USERNAME>root</USERNAME>
 <GROUPNAME>supergroup</GROUPNAME>
 <MODE>504</MODE>
 </PERMISSION_STATUS>
 </DATA>
 </RECORD>
 <RECORD>
...

Although this is only part of the output, you can see how each operation performed on HDFS is
recorded in the fi le. It is useful to investigate the current HDFS state at the binary level. In addition,
the offl ine edits viewer can convert back to binary with the XML fi le.

$ bin/hdfs oev -p binary -i edits.xml -o edit

You can specify the conversion algorithm with -p (processor) option. You can use binary when you
want to go back to binary format. The candidates of the option are binary, XML, and stats, but
XML is the default. You can see the statistics of each operation with the stats option:

$ bin/hdfs oev -p stats -i edits.xml -o edit_stats
$ cat edits_stats
 VERSION : -64
 OP_ADD (0): 1
 OP_RENAME_OLD (1): 1
 OP_DELETE (2): null
 OP_MKDIR (3): 8
 OP_SET_REPLICATION (4): null
 OP_DATANODE_ADD (5): null
 OP_DATANODE_REMOVE (6): null
 OP_SET_PERMISSIONS (7): 1
 OP_SET_OWNER (8): null
 OP_CLOSE (9): 1
 OP_SET_GENSTAMP_V1 (10): null
 OP_SET_NS_QUOTA (11): null
 OP_CLEAR_NS_QUOTA (12): null
 OP_TIMES (13): null
 OP_SET_QUOTA (14): null
 OP_RENAME (15): null
 OP_CONCAT_DELETE (16): null
 OP_SYMLINK (17): null
 ...

Keep in mind that you can’t change the stats fi le back to an XML or binary fi le, because it loses
some information. So, when should you use the offl ine edits viewer? If you can read edits log then
you can also edit it. If the edits log fi le has been broken by accident, but remains partially intact, you
can restore the original fi le by manually rewriting the edits log. In that case, fi rst you need to con-
vert the edits log into XML, and then you can edit the XML fi le as you like if you have a true opera-
tion sequence, making it back to binary format. After getting back to binary format, HDFS can read
it once it’s restarted. But in some cases, the manual editing of the edits log can cause further serious
problems, such as a typo or invalid operation types. Please pay attention to the manual operation if
you have to do this.

36 ❘ CHAPTER 2 STORAGE

c02.indd 04/20/2016 Page 36

There is one more very similar tool called the offl ine image viewer. The offl ine edits viewer is for
viewing the edits log in a readable format. In the same way, the offl ine image viewer is for view-
ing fsimage in a readable format. The offl ine image viewer enables you to not only view image fi le
contents, but also to access through the WebHDFS API to analyze and examine it deeply. It is usu-
ally necessary to run a checkpoint to create an fsimage fi le. But, you can do it manually too. If you
have fsimage on your cluster, you do not need to do run the checkpoint. Saving a current HDFS
namespace into fsimage can be done via the savesNamespace command.

$ bin/hdfs dfsadmin -safemode enter
Safe mode is ON
$ bin/hdfs dfsadmin -saveNamespace
Save namespace successful
$ bin/hdfs dfsadmin -safemode leave
Safe mode is OFF

Although we won’t explain the detail of safe mode here, it is a command to make the HDFS read-
only mode do maintenance. Otherwise write operations can occur using HDFS while saving the
namespace in the fsimage fi le. After leaving safe mode, you can see the new fsimage fi le under the
HDFS NameNode root directory.

$ ls -l /tmp/hadoop-root/dfs/name/current
-rw-r--r-- 1 root root 214 Jan 27 04:41 VERSION
-rw-r--r-- 1 root root 1048576 Jan 27 04:41 edits_inprogress_0000000000000000018
-rw-r--r-- 1 root root 362 Jan 27 01:16 fsimage_0000000000000000000
-rw-r--r-- 1 root root 62 Jan 27 01:16 fsimage_0000000000000000000.md5
-rw-r--r-- 1 root root 970 Jan 27 04:41 fsimage_0000000000000000017

The latest fsimage fi le is fsimage_0000000000000000017. Launch the WebHDFS server with the
offl ine image viewer using the oiv command.

$ bin/hdfs oivl -i fsimage_0000000000000000017
16/01/27 05:03:30 WARN channel.DefaultChannelId: Failed to find a usable hardware↵
 address from the network interfaces; using random bytes: a4:3d:28:d3:a7:e5:60:94
16/01/27 05:03:30 INFO offlineImageViewer.WebImageViewer: WebImageViewer started. ↵
 Listening on /127.0.0.1:5978. Press Ctrl+C to stop the viewer.

You can simply access the server by specifying the webhdfs schema.

$ bin/hadoop fs -ls webhdfs://127.0.0.1:5978
bin/hadoop fs -ls webhdfs://127.0.0.1:5978/
Found 3 items
drwxr-xr-x - root supergroup 0 2016-01-27 01:20 webhdfs://127.0.0.1:5978/↵
otherdir
drwxr-xr-x - root supergroup 0 2016-01-27 01:20 webhdfs://127.0.0.1:5978/↵
somedir
drwxrwx--- - root supergroup 0 2016-01-27 01:16 webhdfs://127.0.0.1:5978/tmp

This is similar to the directory structure shown in Figure 2-7. WebHDFS provides the REST API
through HTTP. So, you can access the offl ine image viewer through wget, curl, and other tools.

curl -i http://127.0.0.1:5978/webhdfs/v1/?op=liststatus
HTTP/1.1 200 OK
content-type: application/json; charset=utf-8
content-length: 690
connection: close

Advanced Features of HDFS ❘ 37

c02.indd 04/20/2016 Page 37

{"FileStatuses":{"FileStatus":[
{"fileId":16394,"accessTime":0,"replication":0,"owner":"root","length":0,
"permission":"755","blockSize":0,"modificationTime":1453857650965,"type":
"DIRECTORY","group":"supergroup","childrenNum":0,"pathSuffix":"otherdir"},
{"fileId":16392,"accessTime":0,"replication":0,"owner":"root","length":0,
"permission":"755","blockSize":0,"modificationTime":1453857643759,"type":
"DIRECTORY","group":"supergroup","childrenNum":1,"pathSuffix":"somedir"},
{"fileId":16386,"accessTime":0,"replication":0,"owner":"root","length":0,
"permission":"770","blockSize":0,"modificationTime":1453857409411,"type":
"DIRECTORY","group":"supergroup","childrenNum":1,"pathSuffix":"tmp"}
]}}

There is one more offl ine image viewer command due to the internal layout change of fsimage. The
offl ine image viewer uses a lot of memory and loses some functions. If you want to avoid this prob-
lem, use the offl ine image viewer legacy (oiv_legacy), which is the same as the oiv command in
Hadoop 2.3.

Tiered Storage
The storage capacity required for enterprise usage is rapidly increasing, whereas the data stored in
Hadoop HDFS is growing exponentially. The cost of data storage is also increasing. While mak-
ing use of data earns a lot of money and grows businesses, data management costs a lot of time
and money. Tiered storage is an idea designed to use storage capacity more effi ciently. According
to HDFS-6584 (https://issues.apache.org/jira/browse/HDFS-6584), this feature is called
Archival Storage in HDFS. Keep in mind that the data frequency usage is not always the same. Some
data is frequently used from the workload, such as MapReduce jobs, and others are rarely used
because they become old. Archival storage defi nes a new metric called temperature in terms of the
frequency of accessing the data. The frequently accessed data is categorized as HOT. It is better to
put HOT data on memory or SSD in order to increase the total throughput of workloads. The data
is rarely accessed and categorized into COLD data, which can be put on slow disk or archive stor-
age. You can achieve a reasonable amount of cost savings, because using a slow disk provides more
benefi ts than using a low latency disk. So, archival storage provides you an option for easily manag-
ing this type of heterogeneous storage system.

There are two concepts that should be known in advance: storage types and storage policies.

 ➤ Storage types: Storage types represent a physical storage system. This is originally introduced
by HDFS-2832, aiming to use various types of a storage system under HDFS. Currently
ARCHIVE, DISK, SSD and RAM_DISK are supported. ARCHIVE is a type of machine that has
high density storage, but little compute power. RAM_DISK is supported for putting a single
replica in memory. Their names do not necessarily represent the actual physical storage, even
if you can confi gure their types arbitrarily according to your hardware.

 ➤ Storage policies: Blocks can be stored on multiple heterogeneous storages, according to the
storage policy. Embedded policies are as follows.

 ➤ Hot: The data that is frequently used should stay on the Hot policy. When a block is
Hot, all replicas are stored in DISK.

 ➤ Cold: The data that is no longer used on a daily basis should stay on Cold policy.
Moving Hot data to Cold data is the usual case. When a block is Cold, all blocks are
stored in ARCHIVE.

38 ❘ CHAPTER 2 STORAGE

c02.indd 04/20/2016 Page 38

 ➤ Warm: This policy is between the Hot and Cold policy. When a block is Warm, some
of its replicas are stored in DISK and the remaining replicas are stored in ARCHIVE.

 ➤ All_SSD: When a block is All_SSD, all blocks are stored in SSD.

 ➤ One_SSD: When a block is One_SSD, one replica is stored in SSD. The remaining
replicas are on DISK.

 ➤ Lazy_Persist: When a block is Lazy_Persist, the single replica is stored in memory.
The replica is fi rst written on RAM_DISK and then persisted in DISK.

The preceding list is summarized in Table 2-7.

TABLE 2-7: Policy Details

POLICY ID POLICY NAME BLOCK PLACEMENT (N REPLICAS)

15 Lazy_Persist RAM_DISK: 1, DISK: n - 1

12 All_SSD SSD: n

10 One_SSD SSD: 1, DISK: n - 1

7 Hot (default policy) DISK: n

5 Warm DISK: 1, ARCHIVE: n - 1

2 Cold ARCHIVE: n

The fi le policy can be specifi ed with the command dfsadmin -setStoragePolicy. The list in Table
2-7 can be seen with bin/hdfs storagepolicies -listPolicies:

$ bin/hdfs storagepolicies -listPolicies
Block Storage Policies:
BlockStoragePolicy{COLD:2, storageTypes=[ARCHIVE], \
 creationFallbacks=[], replicationFallbacks=[]}
BlockStoragePolicy{WARM:5, storageTypes=[DISK, ARCHIVE], \
 creationFallbacks=[DISK, ARCHIVE], replicationFallbacks=[DISK, ARCHIVE]}
BlockStoragePolicy{HOT:7, storageTypes=[DISK], \
 creationFallbacks=[], replicationFallbacks=[ARCHIVE]}
BlockStoragePolicy{ONE_SSD:10, storageTypes=[SSD, DISK], \
 creationFallbacks=[SSD, DISK], replicationFallbacks=[SSD, DISK]}
BlockStoragePolicy{ALL_SSD:12, storageTypes=[SSD], \
 creationFallbacks=[DISK], replicationFallbacks=[DISK]}
BlockStoragePolicy{LAZY_PERSIST:15, storageTypes=[RAM_DISK, DISK], \
 creationFallbacks=[DISK], replicationFallbacks=[DISK]}

In addition, you need to write some type of confi guration for HDFS cluster.

Advanced Features of HDFS ❘ 39

c02.indd 04/20/2016 Page 39

 ➤ dfs.storage.policy.enabled: Enabling/Disabling the archival storage feature on your
cluster. The default value is true.

 ➤ dfs.datanode.data.dir: This is a comma separated storage location. It specifi es which
directory corresponds to which policy. For example, you can specify the /tmp/dn/disk0 as
DISK policy with [DISK]file:///tmp/dn/disk0.

Archival storage is a solution to reduce the unnecessary usage of storage capacity. Using storage
effi ciently has a huge impact on cost savings, and eventually even on business performance. So, the
HDFS project is now progressing with development to solve the problem.

Erasure Coding
HDFS Erasure Coding has not been released yet. This project is under active development. The pur-
pose of Erasure Coding is the same as Archival storage; it enables you to more effi ciently use storage
capacity. Erasure coding takes an approach similar to a RAID parity drive system. So, Erasure cod-
ing achieves fault tolerance by creating parity blocks instead of replication. This means original data
can be reconstructed with other blocks. Reconstructing original data takes time, and can be costly,
due to the computing cost of decoding. Erasure coding can achieve a relatively higher fault tolerance
than an ordinal replication system on HDFS. The basic architecture of Erasure coding is described
next.

In a replication context, a block is replicated and distributed across the cluster. Since a block is usu-
ally copied to three replicas, the overhead of storage capacity is 2x, and the redundancy of each
block is 3x. This is usually good for the workload itself, because it is necessary to fetch only one
replica to obtain a block data. You cannot use only one third of the storage capacity of a whole clus-
ter because of the overhead of storage capacity. On the other hand, Erasure coding divides a block
into 9 blocks that have different data than the original block. 6 blocks are called data blocks and 3
blocks are called parity blocks. The total number of data blocks is the same as the original data. So,
any 6 blocks out of 9 blocks can reconstruct any other blocks. This means that you can lose at most
3 corresponding blocks, because you can generate the whole data if 6 blocks remain on the storage
system. The overhead of storage capacity is 1.5x (= all 9 blocks / 6 data blocks). The redundancy of
each block is 3x, because you can lose any 3 blocks. The coding algorithm used in this case is called
Reed-Solomon (see Table 2-8), which is the default algorithm used in Erasure coding.

TABLE 2-8: Reed-Solomon in Erasure Coding

3 REPLICATION (6,3) REED-SOLOMON

Maximum Toleration 2 3

Disk space usage 3x 1.5x

Client-DataNode connection (write) 1 9

Client-DataNode connection (read) 1 6

40 ❘ CHAPTER 2 STORAGE

c02.indd 04/20/2016 Page 40

As you can see in Table 2-8, the connections that are necessary for reading and writing in the
Reed-Solomon case are larger than the replication cases, because Reed-Solomon always requires
you to create all 9 blocks when writing, and to read at least 6 blocks to reconstruct original data
(see Figure 2-8). This is the cost of using Erasure coding in your cluster. Therefore, Erasure coding
should be used infrequently with Cold data. Since Cold data is not used on a daily basis, you might
consider reducing the storage cost of keeping cold data, even if it sacrifi ces some throughput or
latency, which can be done using. Erasure coding.

Block

Block

Block Block

Block

Data Data Parity

Parity

Parity

Replication Erasure Coding

Data Data

Data Data

FIGURE 2-8

Let’s briefl y examine some Erasure coding. The Erasure coding feature was merged into the trunk
branch of the HDFS source code repository. If you can build it, you can also try Erasure coding in
the same way. Since the explanation about how to build HDFS is written in BUILDING.txt in the
source tree, we will omit that detail here.

First, you need to specify which directory is for Erasure coding. The hdfs command provides the
erasurecode subcommand for this purpose:

$ bin/hdfs erasurecode
Usage: hdfs erasurecode [generic options]
 [-getPolicy <path>]
 [-help [cmd ...]]
 [-listPolicies]
 [-setPolicy [-p <policyName>] <path>]
 [-usage [cmd ...]]

The policy in the Erasure coding context indicates the algorithm used for calculating data blocks
and parity blocks. You can confi rm what types of policies are supported using the -listPolicies
option.

$ bin/hdfs erasurecode -listPolicies
RS-6-3-64k

File Format ❘ 41

c02.indd 04/20/2016 Page 41

RS-6-3-64k specifi es the algorithm using Reed-Solomon that has 6 data blocks and 3 parity blocks
with a 64KB coding unit. You can set the Erasure coding directory using the -setPolicy option:

$ bin/hadoop fs -mkdir /ecdir
$ bin/hdfs erasure code -setPolicy
$ bin/hdfs erasurecode -setPolicy -p RS-6-3-64k /ecdir
EC policy set successfully at hdfs://master:9000/ecdir

All new data put on /ecdir is automatically created according to the Erasure coding algorithm.

$ bin/hadoop fs -put README.txt /ecdir
$ bin/hdfs erasurecode -getPolicy /ecdir
ErasureCodingPolicy=[Name=RS-6-3-64k, Schema=[ECSchema=[Codec=rs, numDataUnits=6, ↵
 numParityUnits=3]], CellSize=65536]

You can check that the blocks are separated into nine blocks from the web UI of NameNode (see
Figure 2-9).

FIGURE 2-9

The interface of the Erasure coding fi le is not changed. You can do any operations with Erasure
coded fi les, as well as ordinal replication fi les. Thus, Erasure coding provides a new way to more
effi ciently manage storage capacity. We look forward to seeing the release of the Erasure coding fea-
ture in future HDFS versions.

FILE FORMAT

HDFS can store any type of data, including text data in binary format, including even image
or audio fi les. HDFS was initially and currently developed to be used by MapReduce. So, the
fi le format that fi ts to the MapReduce or Hive workload is usually used. You can achieve better

42 ❘ CHAPTER 2 STORAGE

c02.indd 04/20/2016 Page 42

performance by using the appropriate fi le format for your workload. The detail on how to use these
fi le formats will be described in the following chapters. In this section, we briefl y introduce some
types of fi le formats that are usually used by HDFS and MapReduce. It is necessary, however, to
know the purpose of the workload and to specify the necessity. For example, the necessity may be
to fi nish the job in 10 minutes or fi nish processing the job with 10TBs of input data. The purpose
and necessity decide not only the job execution engine, such as MapReduce, but also the storage fi le
format. In addition, it is also important to specify the frequency of updating the data in HDFS, or
the size of input data in order to choose the compression algorithm. Let’s look at some points here
before choosing the fi le format.

 ➤ SequenceFile: SequenceFile is a binary format that contains key/value pairs, and it is the for-
mat included in the Hadoop project. SequenceFile supports a custom compression codec that
can be specifi ed by CompressionCodec. There are three different formats for SequenceFile.
All of these types share the common header that contains the metadata of actual data, such
as version, key/value class name, compression codec, etc. The three data formats are:

 ➤ Uncompressed SequenceFile format

 ➤ Record-compressed SequenceFile format

 ➤ Block-compressed SequenceFile format

 ➤ The uncompressed format is the most simple and easy to understand. Each record is rep-
resented as a key/value pair. The record-compressed format compresses the record data,
where each record is represented as a key and a compressed value pair (see Figure 2-10).
The block-compressed format compresses many records at once. SequenceFile retains a
synchronization marker between some of the records. It is essential to use SequenceFile in a
MapReduce job, because MapReduce requires a splittable fi le format to distribute each task.
Since SequenceFile is supported by Hive by default, it is not necessary to write a specifi c set-
ting. SequenceFile is a row-oriented format, and the API documentation of SequenceFile is
written here: (https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/io/
SequenceFile.html).

Header Record Record

Record length Key length

Uncompressed format

Record-Compressed format

Key Value

Record length Key length Key Compressed Value

Record Record Record Recordmarkermarker

FIGURE 2-10

File Format ❘ 43

c02.indd 04/20/2016 Page 43

 ➤ Avro: Avro is very similar to SequenceFile. Avro was started in order to achieve portability
that can’t be obtained by SequenceFile. Avro can be used by various types of programming
languages: C/C++, C#, Java, Python, and more. Avro is a self-described data format, and
it has a metadata that includes a schema of contained records. In addition, Avro supports
the compression of contained data just as well as SequenceFile can. So Avro is also a row-
oriented storage format. In addition, the Avro fi le also retains a splittable synchronization
marker. The Avro schema is usually written in a *.avsc fi le. If the fi le is put on a class
path, you can load any custom schema. Though the API of using the *.avsc fi le directly is a
generic method, you can also generate the specifi c API code by using the Avro Maven plugin
(avro-maven-plugin). The latest getting started guide for Avro is here: (https://avro.
apache.org/docs/1.7.7/gettingstartedjava.html).

 ➤ Parquet: Parquet is a columnar storage format for Hadoop frameworks. Parquet is a format
for achieving nested name space in a columnar format, and is inspired by the Dremel paper:
(http://research.google.com/pubs/pub36632.html). This nested space feature is the
main advantage of using Parquet, compared to using XML/JSON. In addition, it can effi -
ciently store sparse data that contains a lot of null fi elds. The encoding/decoding specifi cation
is described here: (https://github.com/Parquet/parquet-mr/wiki/The-striping-and-
assembly-algorithms-from-the-Dremel-paper). Parquet uses Thrift as its serialization
format. Ordinary columnar-oriented databases require you to often read columnars from
multiple machines. It increases the cost of I/O due to its network accessing requirement.
Parquet defi nes row groups and column chunks. A row group is a logical collection of rows
that also consists of some column chunks, which are chunks for a specifi c column. Since
they are guaranteed to be contiguous in a fi le, it is possible to reduce the cost of a multiple
reading I/O. A fi le contains some columns for each record, so it might not be necessary to
read another fi le in order to fetch another column if a current Parquet fi le already contains
it. There are several implementations of Parquet. They are listed on https://github.com/
apache/parquet-mr. You can use Parquet in MapReduce, Hive, or Pig without writing new
code. Adapting Parquet can help you achieve good performance and reduce the development
cost at the same time.

 ➤ ORCFile: ORCFile is an optimized version of RCFile. ORCFile is also a columnar storage fi le
format. Though ORCFile initially was developed inside the Hive project, it doesn’t currently
depend on the Hive metastore. The original RCFile has limitations, because it does not retain
its semantics and type information. ORCFile is a completely self-describing fi le format that
also supports nested type data. It makes use of type information for a reader and writer that
provides compression techniques such as dictionary encoding, bit packing, and delta encod-
ing. One characteristic of the ORCFile is that it keeps minimum and maximum values for
each column of a set of rows, although a query doesn’t need to access actual column data by
using this statistical data. ORCFile is mainly stored in HDFS and read by Hive queries. So,
the index of data is written at the end of the fi le because HDFS does not support changing
the data after it is written. If your main workload is through Hive, then ORCFile is the best
candidate for your storage.

These fi le formats that we have explored are primarily used by HDFS. Since they are also actively
developed, you will see more of them implemented in the future. Of course, the storage fi le format

44 ❘ CHAPTER 2 STORAGE

c02.indd 04/20/2016 Page 44

should fi t your workload, meaning you have to choose the storage fi le format used in your HDFS.
Now let’s cover some of the important points for choosing storage fi le formats.

 ➤ Query engine: If your SQL engine does not support ORCFile, you cannot use ORCFile. You
have to choose the storage fi le format supported by your query engine or application frame-
work such as MapReduce.

 ➤ Updating frequency: Columnar storage format does not fi t into high frequency updated
data, because it requires the use of a whole fi le. It is necessary to take into consideration the
requirements of data updating.

 ➤ Splittability: The data must be splittable in order to be distributed for each task. This is a
critical problem if you are considering using a distributed framework such as MapReduce.

 ➤ Compression: You may want to reduce the storage cost rather than the throughput or latency
of the workload. It is necessary to investigate the compression supported by each fi le format
further in this case.

This list should be helpful when choosing the storage fi le format for use in your HDFS. Make sure
you run the benchmark and also measure the performance of each candidate with your actual use
cases.

CLOUD STORAGE

In this last section, we will introduce some cloud services that provide storage on HDFS. We covered
how to use HDFS and how to construct an HDFS cluster. But it is not always the best option to use
HDFS, because of the cost of maintenance and hardware used in HDFS. Therefore, using a cloud
service to fi t your enterprise requirements can be a good idea. You may be able to reduce not only
the money to buy hardware and network equipment, but also the time to set up a cluster and main-
tain it. Here is a list of major services that are providing cloud storage on HDFS.

 ➤ Amazon EMR: Amazon Elastic MapReduce is a cloud service for Hadoop. It provides an
easy way to create Hadoop clusters on EC2 instances and to access HDFS or S3. You can use
major distributions on Amazon EMR such as Hortonworks Data Platform, and MapR distri-
butions. The launching process is automated and simplifi ed by Amazon EMR, and HDFS can
be used to store intermediate data generated while running a job on an Amazon EMR cluster.
Only input and fi nal output are put on S3, which is the best practice for using EMR storage:
(http://aws.amazon.com/documentation/elastic-mapreduce/).

 ➤ Treasure Data Service: Treasure Data is a fully managed cloud data platform. You can easily
import any type of data on a storage system managed by Treasure Data, which uses HDFS
and S3 internally, but encapsulates their detail. You do not have to pay attention to these
storage systems. Treasure Data mainly uses Hive and Presto as its analytics platform. You
can write SQL to analyze what is imported on a Treasure Data storage service. Treasure Data
is using HDFS and S3 as its backend and makes use of their advantages respectively. If you
do not want to do any operation on HDFS, Treasure Data can be a best choice: (http://
www.treasuredata.com).

Summary ❘ 45

c02.indd 04/20/2016 Page 45

 ➤ Azure Blob Storage: Azure Blob Storage is a cloud storage service provided by Microsoft.
The combination of Azure Blob Storage and HDInsight provides a full-featured HDFS com-
patible storage system. A user who is used to HDFS can seamlessly use Azure Blob Storage.
A lot of Hadoop ecosystems can operate directly on the data that Azure Blob Storage man-
ages. Azure Blob Storage is optimized to be used by a computation layer such as HDInsight,
and it provides various types of interfaces, such as PowerShell and of course Hadoop HDFS
commands. The developers who are already comfortable using Hadoop can get started eas-
ily with Azure Blob Storage: (https://azure.microsoft.com/en-us/documentation/
services/storage/).

SUMMARY

This chapter covered the HDFS basic architecture and the role it plays among all Hadoop ecosys-
tems, including Spark, Tez, Hive, and Pig. In short, HDFS is a basic system of all big data infra-
structures. Operating HDFS can be hard work and requires a skillful DevOps engineer to make the
system reliable in your company. This chapter should help you during your daily operational work
on the HDFS cluster. In addition, this chapter covered some descriptions about advanced features
of HDFS. Of course we didn’t cover all of the HDFS features. For a full list of features, see the
offi cial documentation: (http://hadoop.apache.org/docs/current/hadoop-project-dist/
hadoop-hdfs/HdfsUserGuide.html). You won’t fi nd more about Erasure coding in this guide
because Erasure coding hasn’t been released yet. We strongly recommend that you don’t currently
use Erasure coding in production, but trying usage and bug reports are always welcome. Please wait
for this coming release for one of the biggest features in HDFS!

c03.indd 04/20/2016 Page 47

Computation
WHAT’S IN THIS CHAPTER?

 ➤ Explaining the architecture of Hadoop MapReduce components

 ➤ Setting up a MapReduce job

 ➤ Details of MapReduce operations

 ➤ Spark job and MapReduce differences

In the previous chapter we set up a Hadoop integrated storage system, where we
stored huge amounts of data to be used by a distributed computation engine. Hadoop
MapReduce is the major distributed computation framework that has been used for a
long time. Hadoop MapReduce is an actual open source implementation of MapReduce,
supported by various types of companies and individuals. The reliability and results of
Hadoop MapReduce for enterprise usage is outstanding among many of the distributed
computation frameworks.

In this chapter, we will introduce the basic concept of MapReduce, and the details of imple-
menting Hadoop MapReduce. Hadoop MapReduce is easily understood by engineers who are
familiar with distributed computation or high performance computing. If you have suffi cient
knowledge in that area, please skip this fi rst section about the basics of MapReduce.

BASICS OF HADOOP MAPREDUCE

Hadoop MapReduce is an open source version of a distributed computational framework
originally introduced by Google. MapReduce enables you to easily write general distributed
applications on Hadoop, and the MapReduce computational model is so general that you can
write almost any type of process logic used in enterprise. Here we will explain the basic con-
cepts and purposes of the MapReduce framework needed to write a MapReduce application.
We will then introduce the concrete architecture of Hadoop MapReduce.

3

Professional Hadoop®. Benoy Antony, Konstantin Boudnik, Cheryl Adams, Branky Shao, Cazen Lee and Kai Sasaki
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

48 ❘ CHAPTER 3 COMPUTATION

c03.indd 04/20/2016 Page 48

Concept
There are three primary features that MapReduce is trying to solve:

 ➤ High scalability

 ➤ High fault tolerance

 ➤ High level interface to achieve these two points

MapReduce does not achieve high scalability with distributed processing and high fault tolerance
at the same time. Distributed computation is often a messy thing, so it is diffi cult to write a reliable
distributed application by yourself. There are various kinds of failures that are introduced when dis-
tributed applications are running: Some servers might fail abruptly, whereas some disks may get out
of order. Keep in mind that writing code to handle failures by yourself is very time consuming and
can also cause new bugs in your application.

Hadoop MapReduce, however, can take care of fault tolerance. When your application fails, the
framework can handle the cause of failure and retry it or abort. Thanks to this feature, the applica-
tion can complete its tasks while overcoming failures.

Hadoop MapReduce is integrated with HDFS, which was introduced in Chapter 2. The MapReduce
framework handles the input and output between your application and HDFS. You don’t have to
write I/O code between these two frameworks. HDFS can also handle block failure, and as long
as you use HDFS with MapReduce, you don’t have to pay attention to storage layer failure. On the
contrary, you should not use a storage system that doesn’t take disk failure or node failure into con-
sideration with the MapReduce framework. Otherwise, the reliability and scalability of your appli-
cation will worsen.

The MapReduce application is divided into several phases, which are described in the following list
and illustrated in Figure 3-1. The tasks you must write are map and reduce, but the other tasks are
managed by the MapReduce framework.

 ➤ map: Read the data from a storage system such as HDFS.

 ➤ sort: Sort the input data from the map task according to their keys.

 ➤ shuffl e: Divide the sorted data and repartitioning among cluster nodes.

 ➤ merge: Merge the input data sent from mapper on each node.

 ➤ reduce: Read the merged data and integrate them into one result.

Hadoop MapReduce defi nes all sort, shuffl e, and merge operations in advance. You must write
the map and reduce operations, which are defi ned by Mapper and Reducer. Hadoop MapReduce
prepares a suffi cient abstraction for the distributed programming model. Basically, the data type
MapReduce can manipulate is a tuple that contains a key and a value. You can use any type of key
or value as long as they are serializable, but you must pass the data between Mapper and Reducer in
the tuple format. Mapper converts an input record into a tuple that has a key and a value, and you
can defi ne which part needs to be extracted from the input data by Mapper. Mapper has a method

Basics of Hadoop MapReduce ❘ 49

c03.indd 04/20/2016 Page 49

named map for converting input data. Keep in mind that the output tuple data type from the Mapper
class is not necessarily the same as the input data type.

+

+

Map Sort Shuffle Merge Reduce

partitionA-1

partitionB-1

partitionA-2

partitionB-2

Data A
partitionA-1

partitionA-2

partitionB-1

partitionB-2
Data B

Data A
partitionA-1

partitionA-2

partitionB-1

partitionB-2
Data B

FIGURE 3-1

The outputs from the Mapper class are transferred to Reducers.
Tuples that have the same key are all transferred to the same
Reducer. Therefore, if a tuple has a “Dog” text as a key and is
transferred to reducer1, the next tuple that has a “Dog” as its
key must be transferred to reducer1 (see Figure 3-2). If it is nec-
essary to aggregate some type of value, you should set the same
key in the Mapper class. For example, if you want to count the
number of appearances of each word in text, a key should be
the word itself in the Mapper class. The same words are transferred to the same Reducer, and the
Reducer can take the sum of the total tuples transferred from Mappers.

Figure 3-3 shows the overall abstraction of data fl ow in MapReduce. As you can see, the important
notion in the MapReduce data fl ow is a key-value tuple. Once a record in the storage system is con-
verted into a key-value tuple by Mapper, the MapReduce system manipulates the data according to
the key-value tuple abstraction as described in Figure 3-3.

Reducer1("Dog" , 1)

("Cat" , 1)

("Dog" , 1)
Reducer2

FIGURE 3-2

50 ❘ CHAPTER 3 COMPUTATION

c03.indd 04/20/2016 Page 50

You may think that this programming model is not
powerful and fl exible, given that the only things you
can defi ne are how to convert input data into key-value
tuples, and how to get results from aggregated tuples.
But, you can write many types of applications that are
needed for daily data analysis. This has certainly been
proven by Hadoop use cases in many companies. A
concrete MapReduce application will be written later in
this chapter.

Architecture
Hadoop MapReduce currently runs on YARN, which
is a resource manager developed by the Hadoop project.
YARN manages the whole resource of your Hadoop
cluster, as well as the scheduling of each application submitted by each user. YARN is a general
resource management framework, which is not specifi c to the MapReduce application. Recently,
a lot of framework applications such as Spark, Storm, and HBase are able to run on YARN. An
overview of YARN and the MapReduce application is shown in Figure 3-4.

1. Submit a job

4. Launch tasks

NodeManager

MRAppMaster

NodeManager

ResourceManagerMapReduce client

YarnChild

MapTask or
ReduceTask5. Report status

2. Launch an Application Master
3. Require necessary resource

for the application

FIGURE 3-4

Figure 3-4 illustrates the use of both YARN and the MapReduce framework. YARN compo-
nents are permanent daemons that keep running after applications have fi nished. Let’s examine
ResourceManager and NodeManager:

 ➤ ResourceManager: ResourceManager manages whole memory and CPU cores of the YARN
cluster. ResourceManager decides how much memory and how many CPU cores can be

record

map

shuffle

reduce

(key1, value1)

(key1, result)

(key1, [value1, value2, value3])

FIGURE 3-3

Basics of Hadoop MapReduce ❘ 51

c03.indd 04/20/2016 Page 51

given to each application. After fi nishing the application, ResourceManager collects log fi les
generated through each task so that you can fi nd the cause of any failures in your applica-
tion. ResourceManager is a master server of the YARN cluster, and there is usually one
ResourceManager in one YARN cluster.

 ➤ NodeManager: NodeManager manages concrete tasks. After requesting to launch a process
called a container for each task from the application master, NodeManager will do this
same thing on each node. NodeManager is a slave server in a YARN cluster. Increasing
servers in a YARN cluster often means increasing servers managed by NodeManager. The
total capacity of YARN clusters in terms of memory and CPU cores is determined by the
number of slaves managed by NodeManagers.

Components shown in Figure 3-4 are temporary, and are necessary only when an application is run-
ning. They are diminished after an application has successfully fi nished. The fl ow of submitting a
MapReduce application on YARN is also described in Figure 3-4.

 1. Requesting to submit an application using ResourceManager. When the request fi nishes
successfully, the job client uploads resource fi les such as any JARs and confi gurations on
HDFS.

 2. ResourceManager submits a request to a NodeManager to launch a container for the
application master that manages the whole progress of this application. In the case of the
MapReduce framework, MRAppMaster plays a role as an application master.

 3. MRAppMaster requests the ResourceManager to provide the necessary resources.
ResourceManager replies with the number of containers and the list of available
NodeManagers.

 4. According to the given resource from ResourceManager, MRAppMaster launches contain-
ers on NodeManagers. NodeManagers launch a process called YarnChild in a MapReduce
application, and YarnChild runs a concrete task such as Mapper or Reducer.

 5. While the application is running, MapTask and ReduceTask report the progress to
MRAppMaster. MRAppMaster knows the whole progress of the application thanks to the
given status report from each task. The progress can be seen with the ResourceManager
web UI, because ResourceManager knows where MRAppMaster is running.

After the application fi nishes, MRAppMaster, and each task process, will clean up temporary data
generated from the running application. The log fi les are collected by the YARN framework or the
history server (which will be explained in the following section) and archived on HDFS. It is neces-
sary to investigate the cause of any failures introduced by your application, which is the overview of
the whole process of the MapReduce application on YARN. You know the importance of resource
management in distributed applications such as MapReduce. The number of memory and CPU cores
must be shared successfully among applications running on one YARN cluster. This resource distri-
bution is managed by the scheduler in ResourceManager. Currently there are two implementations
of scheduler on YARN:

 ➤ Fair scheduler: Fair scheduler tries to distribute the same resource to each user in a fi xed
span. It does not mean that a user who submits more jobs than other users can obtain
more resources than other average users. Each user has a resource pool for their own jobs,
which are put in the resource pool. If a resource pool can’t receive suffi cient resources, the

52 ❘ CHAPTER 3 COMPUTATION

c03.indd 04/20/2016 Page 52

Fair scheduler can kill a task that uses too many resources and gives the resources to the
resource pool that cannot receive enough resources in a span.

 ➤ Capacity scheduler: Capacity scheduler prepares job queues for all users. Each queue is
a priority FIFO (First In First Out). The queues have a hierarchical structure, so a queue
might be a child of another queue. Thanks to assigning each queue to an organization, you
can make the utilization of a maximum cluster guarantee suffi cient capacity for each orga-
nization’s SLA. Users or organizations can regard a queue as a separated cluster for their
own workload. In addition to this, Capacity scheduler can also provide free resources to any
queue beyond its capacity. Applications can be assigned to a queue running below capacity
at the future time by the scheduler. You write capacity-scheduler.xml to confi gure the
scheduler settings. The root queue is a pre-defi ned queue, and all queues are children of the
root queue.

The root queue has a full capacity for your cluster. The children of the root queue divide the
 capacity according to each assignment set by capacify-scheduler.xml. You can make queues
under the root like the following:

<property>
 <name>yarn.scheduler.capacity.root.queues</name>
 <value>a,b,c</value>
 </property>
<property>
 <name>yarn.scheduler.capacity.root.b.queues</name>
 <value>b1,b2,b3</value>
 </property>

As you know, when you want to make a queue a
under root queue, you have to set yarn.sched-
uler.capacity.root.queues=a. The name of
queues can be set hierarchically, so you can set the
child of queue a like yarn.scheduler.capacity.
root.a.queues=a1,a2. The resource capacity of a
queue can also be set with yarn.scheduler
.capacity.<queue-path>.capacity. The total
capacity of the same layer queues must be 100% as
shown in Figure 3-5. In this description, queue b2
can be assigned 0.4(40%) * 0.7(70%) = 0.28(28%)
resources of the whole cluster. You can set the maxi-
mum and minimum resource for each queue. Capacity scheduler can guarantee minimum
resources for each organization to satisfy their SLA (Service Level Agreement).

Later in this chapter we will cover the MapReduce architecture, which describes the shuffl e and sort
mechanism that is a core system of MapReduce. MapReduce guarantees that all inputs to reducer
are sorted by key. This is done in a shuffl e phase between map and reduce phases. A shuffl e phase
often affects the whole performance of the MapReduce application. Understanding the detail of the
shuffl e is useful for optimizing your MapReduce application.

The MapReduce application needs to read an input fi le from a fi lesystem such as HDFS. Hadoop
MapReduce uses a class called InputFormat to defi ne how each map task reads the input fi le.

root

b1

a b c

b2 b3

30% 30%
40%

20% 10%
70%

FIGURE 3-5

Basics of Hadoop MapReduce ❘ 53

c03.indd 04/20/2016 Page 53

Each map task processes a segment of the input fi le defi ned by InputFormat. The segment is called
InputSplit, and InputSplit is processed by a map task. InputSplit has a length of a segment
in a byte unit, and a list of hostnames where the InputSplit is located. InputSplit is transpar-
ently generated by InputFormat, and you don’t have to pay attention to the implementation of
InputSplit in many cases, given how InputSplit can be had by InputFormat#getSplits. This
is called by a job client, which creates the split meta information on HDFS. An application master
fetches the split meta information from the HDFS directory after launch. The application master
passes the split meta information to each map task to read the corresponding fi eld. The fl ow of the
split info is described in Figure 3-6.

1. Write spill file
in background

2. Merge spill files
into a partitioned file

3. To Reducers

InputSplit

map

buffer

sorted
file

sorted
file

sorted
file

FIGURE 3-6

A map task reads a split of the input fi le. Split is a segment of the whole input fi le, as described
earlier. The size of split is usually the same as the size of the block size of the fi lesystem, such
as HDFS. You can write your own InputFormat class if you want to use the new text fi le
format Hadoop MapReduce does not yet support. When a buffer is fi lled beyond a confi gured
threshold (mapreduce.map.sort.spill.percent), the buffer content will be output on a disk.
The fi le is called a spill fi le (see Figure 3.6). The writing on the disk can be done in the back-
ground, so it does not block map processing unless the memory buffer is not fi lled. Just before
writing the spill fi le, the records are sorted for making partitions to distribute the next reducers.
The spill fi les are merged into one fi le, if there are several spill fi les, before sending the output
to reducers. The merged fi le is also sorted and separated into partitions, which will be sent to a
corresponding reducer.

It is also effi cient to compress map output, because it reduces the time to write map output on the
disk and to transfer to reducers. You can enable map output compressed with mapreduce.map
.output.compress=true. The default value is false, and the codec used by the map output
 compression can be set with mapreduce.map.output.compress.codec.

54 ❘ CHAPTER 3 COMPUTATION

c03.indd 04/20/2016 Page 54

A reducer must fetch all of the output from mappers to complete the application, and the reduce
task has threads for copying output data from mapper to the local disk. The number of threads
can be controlled by mapreduce.reduce.shuffle.parallel.copies. The default value is 5, and
the copy phase is conducted in parallel. When an output of the mapper is suffi ciently small, which
can be stored in the memory buffer, it will be stored in memory. Otherwise, it will be written to
disk (see Figure 3-7). After fi nishing the copying of all data from mapper, the reduce task starts its
merge phase. All map output that is in memory or on disks should be converted to a format that
the reducer can read. Records have already been sorted by map tasks. In the merge phase, reduce
tasks merge into one fi le. But the fi nal fi le passed to reducer is not necessarily one fi le, nor even one
disk. The input of reducer can be on both disk or memory if the overhead of merging to the last fi le
is larger than the overhead of passing the data as it is to reducer. The input to reducer can be con-
trolled by mapreduce.task.io.sort.factor. This value represents the number of open fi les when
the merging starts at the same time. If the output of mappers are 50 and io.sort.factor is 10, the
count of the merging cycle can be 5 (50 / 10 = 5). The reduce task tries to merge fi les with as few
cycles as possible.

merged file merged file

reducer

1. Fetch partitions from mappers

2. Merge partions

3. Input to reducer

partition partition partition partition

FIGURE 3-7

Shuffl e is the most resource consuming process in the MapReduce application. Making shuffl e
phases more effi cient often means directly making effi cient MapReduce applications. Understanding
the overview of the architecture of the MapReduce application will help you when tuning your
MapReduce application.

HOW TO LAUNCH A MAPREDUCE JOB

We will now cover how to write a concrete MapReduce application based on the knowledge shown
in previous sections. Hadoop MapReduce is a simple Java program. It is necessary to understand the
basic knowledge of writing Java programs and compiling them, except for the MapReduce archi-
tecture described in previous sections, in order to develop a MapReduce application. The actual
MapReduce applications are included in the Hadoop project under hadoop-mapreduce-examples.

c03.indd 04/20/2016 Page 55

How to Launch a MapReduce Job ❘ 55

If you installed Hadoop correctly, you can fi nd the JAR fi le for examples under $HADOOP_HOME/
share/hadoop/mapreduce/hadoop-mapreduce-examples-*-.jar. You can see the example
application with the JAR command.

$ $HADOOP_HOME/bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-↵
 3.0.0-SNAPSHOT.jar

An example program must be given as the fi rst argument. Valid program names are:

 ➤ aggregatewordcount: An Aggregate based map/reduce program that counts the words in
the input fi les.

 ➤ aggregatewordhist: An Aggregate based map/reduce program that computes the histogram
of the words in the input fi les.

 ➤ bbp: A map/reduce program that uses Bailey-Borwein-Plouffe to compute exact digits of Pi.

 ➤ dbcount: An example job that counts the pageview count from a database.

 ➤ distbbp: A map/reduce program that uses a BBP-type formula to compute exact bits of Pi.

 ➤ grep: A map/reduce program that counts the matches of a regex in the input.

 ➤ join: A job that effects a join over sorted, equally partitioned datasets.

We will describe a transitional hello world program of MapReduce: the word count application. The
word count application counts the number of appearances of each word found in documentation. In
other words, we expect the output of this application to look like the following:

"wordA" 1
"wordB" 10
"wordC" 12

Let’s continue by writing the map task.

Writing a Map Task
The input fi le is assumed to be a simple text fi le. One thing to do in map task is to conduct a
 morphological analysis. English text can be separated with the Java StringTokenizer.

import org.apache.hadoop.io.IntWritable;
 import org.apache.hadoop.io.Text;
 import org.apache.hadoop.mapreduce.Mapper;
 import java.io.IOException;
 import java.util.StringTokenizer;

public class TokenizerMapper
 extends Mapper<Object, Text, Text, IntWritable> {
 private final static IntWritable one
 = new IntWritable(1);
 private Text word = new Text();
 @Override
 protected void map(Object key, Text value, Context context) throws ↵
 IOException, InterruptedException {
 StringTokenizer iterator
 = new StringTokenizer(value.toString());

56 ❘ CHAPTER 3 COMPUTATION

c03.indd 04/20/2016 Page 56

 while (iterator.hasMoreTokens()) {
 word.set(iterator.nextToken());
 context.write(word, one);
 }
 }
 }

Map task must inherit the Mapper class in Hadoop MapReduce. Mapper receives the key and value
type of input and output as generics. Hadoop MapReduce uses TextInputFormat as the default
InputFormat, and TextInputFormat makes splits in bytes. Each record is a key-value tuple whose
keys are offset from the start of the fi le, with text values, except for terminal characters. For example,
take a look at this example:

My name is Kai Sasaki. I'm a software
 engineer living in Tokyo. My favorite
 things are programming and scuba diving.
 Every summer I go to Okinawa to dive into the blue
 ocean. I'm looking forward to the beautiful summer.

This text is passed to Mapper through TextInputFormat with 5 tuples.

(0, "My name is Kai Sasaki. I'm a software")
 (38, "engineer living in Tokyo. My favorite")
 (75, "things are programming and scuba diving.")
 (115, "Every summer I go to Okinawa to dive into the blue")
 (161, "ocean. I'm looking forward to the beautiful summer.")

Each key is an offset from the start position of the fi le. This is not the line number of the fi le.
TokenizerMapper defi nes the input key and value as Object and Text.

Map task in this case only records the appearance of a word. Map output is a tuple that has a
word itself as a key and the count 1 as a value. The output of the TokenizerMapper task looks
like this:

("My", 1)
 ("name", 1)
 ("is", 1)
 ("Kai", 1)
 ...

The outputs are sent to reduce task as described in the previous section. Tuples that have the same
keys are collected by a reducer, and same word tuples are all collected by one reducer. It is neces-
sary to aggregate all tuples that have the same word key in one machine to calculate the total count.
Although some types of application don’t need to reduce a task, the workload that is doing aggrega-
tion requires a reduce task after a map task.

Writing a Reduce Task
Just like the map task that is an inherited Mapper class, the reduce task class inherits the Reducer
class. Reducer also receives the generics to specify the key and value type of input and output.

import org.apache.hadoop.io.IntWritable;
 import org.apache.hadoop.io.Text;
 import org.apache.hadoop.mapreduce.Reducer;

c03.indd 04/20/2016 Page 57

How to Launch a MapReduce Job ❘ 57

 import java.io.IOException;
public class CountSumReducer extends
 Reducer<Text, IntWritable, Text, IntWritable> {
 private IntWritable result = new IntWritable();
 @Override
 protected void reduce(Text key,
 Iterable<IntWritable> values, Context context)
 throws IOException, InterruptedException {
 int sum = 0;
 for (IntWritable value : values) {
 sum += value.get();
 }
 result.set(sum);
 context.write(key, result);
 }
 }

Reduce task receives a key and a list of values, so reduce is called for the same key. The input to the
reduce task can be written like this:

("My", [1, 1, 1, 1, 1, 1])

All that reduce task has to do is calculate the sum of the list of values. The output is also a tuple
whose key is a word (Text), and value is a total count of appearance (IntWritable). The output is
written with Context#write. To store results IntWritable is reused in the reduce task because it is
resource consuming to re-create the IntWritable object over the time the reduce method is called.

We have now fi nished writing a map task and a reduce task class. The last thing to write is the Job
class to submit an application on the Hadoop cluster.

Writing a MapReduce Job
The Job class has a setting for referring a map task, a reduce class, and the confi guration values and
input/output path.

 import org.apache.hadoop.conf.Configuration;
 import org.apache.hadoop.fs.Path;
 import org.apache.hadoop.io.IntWritable;
 import org.apache.hadoop.io.Text;
 import org.apache.hadoop.mapreduce.Job;
 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
 public class WordCount {
 public static void main(String[] args)
 throws Exception {
 Configuration conf = new Configuration();
 Job job = Job.getInstance(conf, "Word Count");
 job.setJarByClass(WordCount.class);
 // Setup Map task class
 job.setMapperClass(TokenizerMapper.class);
 job.setCombinerClass(CountSumReducer.class);
 // Setup Reduce task class
 job.setReducerClass(CountSumReducer.class);

58 ❘ CHAPTER 3 COMPUTATION

c03.indd 04/20/2016 Page 58

 // This is for output of reduce task
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);
 // Set input path of an application
 FileInputFormat
 .addInputPath(job, new Path("/input"));
 // Set output path of an application
 FileOutputFormat
 .setOutputPath(job, new Path("/output"));
 System.exit(job.waitForCompletion(true) ? 0 : 1);
 }
}

The Job class can be instantiated by the Job.getInstance static method. The Hadoop
MapReduce runtime has to fi nd the classes for executing the MapReduce application on the dis-
tributed cluster. The classes needed to run the application are archived in a JAR format, and the
Job#setJarByClass method specifi es the JAR fi le including the WordCount class. The Hadoop
MapReduce runtime fi nds the necessary class path automatically with this setting. Map task and
reduce task classes are set with setMapperClass and setReducerClass. Combiner is a class used
often in the merge phase between map task and reduce task. It is enough to set the reduce class as a
combiner class, because it contributes mainly optimization for compressing output of the map task.
The result must not be different, regardless of whether or not you set the combiner class. The input
and output of a MapReduce application is specifi ed as a fi lesystem directory, so the input directory
can include multiple input fi les that are normal text fi les in a WordCount application. The output
directory includes the result fi le and the status of an application.

 -rw-r—r-- 1 root supergroup 0 2016-01-01 23:04 /output/_SUCCESS
 -rw-r--r-- 1 root supergroup 1306 2016-01-01 23:04 /output/part-r-00000

The result fi le is part-r-XXXXX.

It is better to use Apache Maven to compile the Hadoop MapReduce application. The dependency
needed to import is hadoop-client. It is necessary to write below the dependency in your
pom.xml fi le.

 <dependencies>
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-client</artifactId>
 <version>2.6.0</version>
 </dependency>
 </dependencies>

Next, compile using the maven command.

$ mvn clean package -DskipTests

The necessary fi le to run your MapReduce application is the JAR archive, including all of the classes
that you wrote. The JAR archive must be uploaded on a client or a master node of the Hadoop
cluster. You can run the application with the hadoop jar command.

$ $HADOOP_HOME/bin/hadoop jar \
 /path/to/my-wordcount-1.0-SNAPSHOT.jar \
 my.package.WordCount

c03.indd 04/20/2016 Page 59

How to Launch a MapReduce Job ❘ 59

Confi gurations
The MapReduce application has a lot of confi gurations. Some of them are for optimizing perfor-
mance, and some of them are the host name or port number of each component. It is usually benefi -
cial to change the confi guration in order to improve the performance of the application. Although
it is often enough to use the default value for the ordinal workload, let’s go over how to change the
confi gurations for each application.

Hadoop prepares a utility interface for giving confi guration values from the command line.
The interface is Tool, and it has an interface to run an override method. The interface is
necessary to run the MapReduce application using ToolRunner, which can handle pars-
ing command line arguments and options. By combining with the Configured class, the
ToolRunner set up confi guration object is automatically based on the given confi guration
from the command line. The sample WordCount application implemented with ToolRunner
is written here.

import org.apache.hadoop.conf.Configuration;
 import org.apache.hadoop.conf.Configured;
 import org.apache.hadoop.fs.Path;
 import org.apache.hadoop.io.IntWritable;
 import org.apache.hadoop.io.Text;
 import org.apache.hadoop.mapreduce.Job;
 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
 import org.apache.hadoop.util.Tool;
 import org.apache.hadoop.util.ToolRunner;
public class WordCountTool
 extends Configured implements Tool {
 public int run(String[] strings) throws Exception {
 Configuration conf = this.getConf();
 // Obtain input path and output path from
 // command line options
 String inputPath
 = conf.get("input_path", "/input");
 String outputPath
 = conf.get("output_path", "/output");
 Job job = Job
 .getInstance(conf, conf.get("app_name"));
 job.setJarByClass(WordCount.class);
 job.setMapperClass(TokenizerMapper.class);
 job.setCombinerClass(CountSumReducer.class);
 job.setReducerClass(CountSumReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);
 FileInputFormat
 .addInputPath(job, new Path(inputPath));
 FileOutputFormat
 .setOutputPath(job, new Path(outputPath));
 return job.waitForCompletion(true) ? 0 : 1;
 }

 public static void main(String[] args)
 throws Exception {

60 ❘ CHAPTER 3 COMPUTATION

c03.indd 04/20/2016 Page 60

 int exitCode
 = ToolRunner.run(new WordCountTool(), args);
 System.exit(exitCode);
 }
 }

The confi gurations can be given by using the -D property=value format on the command line.
WordCountTool requires the application name, input path and output path. You can pass these con-
fi gurations with the hadoop jar command.

$ $HADOOP_HOME/bin/hadoop jar \
 /path/to/hadoop-wordcount-1.0-SNAPSHOT.jar \
 your.package.WordCountTool \
 -D input_path=/input \
 -D output_path=/output \
 -D app_name=myapp

The confi guration can be restored from every task by using the Context#getConfiguration
method. The necessary information to run your application can be set on the Configuration
object. Therefore, almost all confi gurations must be passed with the Configuration object.
But there may be times when you want to pass a relatively large resource for your application,
such as binary data, rather than a string. This data can be passed from the command line cor-
rectly, but so too can a large confi guration that pressures a task in JVM memory. It is wasteful
to pass custom resources to each task, and the solution to this problem will be introduced in the
next section.

ADVANCED FEATURES OF MAPREDUCE

Let’s now examine some of the advanced MapReduce features that you can tap into.

Distributed Cache
Distributed cache distributes read-only data to slave nodes for each task that can use the data. The
distributed data is archived in slave nodes. The copy process runs only once to save network band-
width inside the cluster, and ToolRunner can specify the fi les to be distributed in a cluster using the
-files option.

$ $HADOOP_HOME/bin/hadoop jar \
 /path/to/hadoop-wordcount-1.0-SNAPSHOT.jar \
 your.package.WordCountTool \
 -files /path/to/distributed-file.txt

The distributed fi le can be put on any fi lesystem that is integrated in Hadoop, such as the local
fi lesystem, HDFS, and S3. If you do not specify the schema, the distributed fi le is automatically
found on the local fi lesystem. You can specify archive fi les such as JAR, ZIP, TAR, and GZIP fi les
by using the -archives option. You can also add classes on the task JVM class path by using the
-libjars option.

Advanced Features of MapReduce ❘ 61

c03.indd 04/20/2016 Page 61

Distributed fi les can be private or public, and this designation determines how the distributed fi les
are used on the slave nodes. A private version of distributed fi les is cached onto the local directory,
and is only used by a user who submits an application with the distributed fi le. These fi les cannot be
accessed by applications submitted by other users. So, the public version of a distributed fi le is put in
the global directory that can be accessed by all users, and this accessibility is achieved by the HDFS
permissions system.

Distributed fi les are then accessed by each task, and the restore can be done with a relative fi le path.
In the above case, the fi lename is distributed-file.txt. You can obtain this resource fi le using
the ordinal reading of a text fi le:

new File("distributed-file.txt")

ToolRunner (correctly GenericOptionsParser) automatically handles the distributed cache mecha-
nism. You can use the distributed cache API specifi cally for your application, and there are two
types of APIs for distributed cache. One is an API for adding distributed cache to your application.
The other is an API for referring a distributed cache data from each task. The former can be set
with the Job class, and the latter can be set with the JobContext class.

public void Job#addCacheFile(URI)
public void Job#addCacheArchive(URI)
public void Job#setCacheFiles(URI[])
public void Job#setCacheArchives(URI[])
public void Job#addFileToClassPath(Path)
public void Job#addArchiveToClassPath(Path)

In the list, the addCacheFile and setCacheFiles methods add the fi les to the distributed cache.
These methods do the same to the -files option on the command line. addCacheArchive
and setCacheArchives do the same to the -archives option from the command line, just as
addFileToClassPath does the same to the -libjars option. One major difference between
using options on the command line and the Java API shown above is that the Java API does not
copy a distributed fi le on HDFS from the local fi lesystem. So, if you specify a fi le with the -files
option, ToolRunner automatically copies the fi le on HDFS. But, you have to always specify the
HDFS (or S3, etc.) path, because the Java API cannot fi nd the distributed fi le on the local fi le
 system by itself.

These APIs are for referring distributed cache data:

public Path[] Context#getLocalCacheFiles()
public Path[] Context#getLocalCacheArchives()
public Path[] Context#getFileClassPath()
public Path[] Context#getArchiveClassPath()

These APIs return the distributed fi le paths of corresponding fi les, and they are used from the
Context class, and passed to the map task and reduce task respectively. Mapper and Reduce have
a setup method to initialize objects used in each task. The setup method is called once before the
map function.

 String data = null;
 @Override
 protected void setup(Context context)

62 ❘ CHAPTER 3 COMPUTATION

c03.indd 04/20/2016 Page 62

 throws IOException, InterruptedException {
 Path[] localPaths = context.getLocalCacheFiles();
 if (localPaths.length > 0) {
 File localFile = new File(localPaths[0].toString());
 data = new String(Files.readAllBytes(localFile.toPath()));
 }
 }

With Hadoop 2.2.0, getLocalCacheFiles and getLocalCacheArchives are deprecated. It is
recommended to use getCacheFiles and getCacheArchives instead.

Counter
It is necessary to obtain custom metrics as the need arises in order to tune your application. For
example, it is necessary to know the number of read/write operations in order to reduce I/O over-
load, and the total number of splits and records are useful to optimize input data size. Counter pro-
vides a functionality to collect any type of metrics to measure the performance of your application,
and you can set application-specifi c counters. It is useful to know how many invalid records are
included in the data set for improving data set quality. In this section we will describe how to use
pre-defi ned counters and user-defi ned counters.

Here are some types of pre-defi ned counters in Hadoop MapReduce.

 ➤ File System counters: The metrics around fi lesystem operations. This counter includes like
number of bytes read, number of bytes written, number of read operations, and number of
write operations.

 ➤ Job counters: The metrics about job execution. This counter includes the number of
launched map tasks, launched reduce tasks, rack-local map tasks, and total time spent by
all map tasks.

 ➤ MapReduce framework counters: The metrics are managed mainly by the MapReduce frame-
work. This counter includes the number of combined input records, spent CPU time, and
elapsed garbage collection time.

 ➤ Shuffl e errors counter: The metrics count the number of errors that occurred in the shuffl e
phase such as BAD_ID, IO_ERROR, WRONG_MAP, and WRONG_REDUCE.

 ➤ File input format counters: The metrics about InputFormat used by an application. This
counter includes the bytes read by each task.

 ➤ File output format counters: The metrics about OutputFormat used by an application. This
counter includes the bytes written by each task.

These counters are counted by each task and the total of the job. These counter values are automati-
cally calculated by the MapReduce framework.

In addition to these counters, you can also defi ne custom counters by yourself. Counter has a
group name and a counter name, and counters can be used through the Context#getCounter
method.

context.getCounter("WordCounter", "total word count").increment(1)

Advanced Features of MapReduce ❘ 63

c03.indd 04/20/2016 Page 63

The output can be confi rmed by the console just after the job has fi nished, or the web UI of the Job
history server that is described in the next section.

WordCounter
 total word count=179

You can also obtain counter values from the command line: hadoop job -counter.

Job History Server
The Job history server aggregates log fi les generated from each task in your application. It is neces-
sary to see log fi les to debug the application and ensure it is running correctly. The log fi les of an
application usually are removed when the application has fi nished, but it is necessary to collect log
fi les before they are removed, and the Job history server does this. The server aggregates all logs for
each application and stores them in HDFS. You can see the logs of past applications through the
web UI (see Figure 3-8). The default post number of the Job history server is 19888. You can access
http://<Resource Manager hostname>:19888.

FIGURE 3-8

The log fi les are stored in the path confi gured by mapreduce.jobhistory.intermediate-
done-dir and mapreduce.jobhistory.done-dir. Log fi les are categorized into two types:
intermediate fi les and done fi les. Intermediate fi les are unfi nished application logs. These log
fi les are for the application running right now. Done fi les are for applications that are fi nished.
After the application has fi nished, the Job history server moves intermediate fi les to the done
directory.

The Job history server provides a REST API to enable users to get the overall information
and statuses about applications. Table 3-1 contains the list of APIs for obtaining MapReduce
related information.

64 ❘ CHAPTER 3 COMPUTATION

c03.indd 04/20/2016 Page 64

TABLE 3-1: APIs for MapReduce information

AVAILABLE INFO REST API URI

List Jobs http://<Job history server hostname>/ws/v1/history/mapreduce/jobs

Job information http://<Job history server hostname>/ws/v1/history/mapreduce/jobs/<Job ID>

Confi guration
of Job

http://<Job history server hostname>/ws/v1/history/mapreduce/jobs/
<Job ID>/conf

List Tasks http://<Job history server hostname>/ws/v1/history/mapreduce/jobs/
<Job ID>/tasks

Task information http://<Job history server hostname>/ws/v1/history/mapreduce/jobs/
<Job ID>/tasks/<Task ID>

List Task Attempts http://<Job history server hostname>/ws/v1/history/mapreduce/jobs/
<Job ID>/tasks/<Task ID>/attempts

Task Attempts
information

http://<Job history server hostname>/ws/v1/history/mapreduce/jobs/
<Job ID>/tasks/<Task ID>/attempts/<Attempt ID>

The Attempts ID specifi es the actual execution of each task. One task might have several attempts
where some failures have occurred. There are more APIs provided by the Job history server, and all
of the APIs are listed in the offi cial document here: (http://hadoop.apache.org/docs/current/
hadoop-mapreduce-client/hadoop-mapreduce-client-hs/HistoryServerRest.html).

You can also check the counter values incremented by your application tasks. Next we’ll take a look
at Apache Spark and see briefl y how it compares to Hadoop MapReduce.

THE DIFFERENCE FROM A SPARK JOB

Apache Spark is a next generation framework for distributed processing. Spark improves some disadvan-
tages that Hadoop MapReduce originally faced. Launching JVMs for operating each task, and writing
intermediate fi les on distributed fi lesystem between each task, often causes a huge overhead. The overhead
cannot fi t with the machine learning workload that is doing the calculations. Spark was introduced as a
new general on-memory distributed computational engine, but Spark is now a unique ecosystem and com-
munity. The main difference between Hadoop MapReduce and Spark job is shown here in Table 3-2.

TABLE 3-2: Differences between Hadoop MapReduce and Spark job

HADOOP MAPREDUCE SPARK JOB

Write intermediate data on HDFS On-memory processing

Java API and Hadoop streaming Scala, Java, Python, and R

Running on YARN Running on YARN, Mesos, and Standalone

Set only map task and reduce task Flexible abstraction of tasks

Summary ❘ 65

c03.indd 04/20/2016 Page 65

The main advantage of Spark jobs is the sophisticated API and the workload speed that is has. The
number of core lines you have to write in a Spark job are usually smaller than those for a MapReduce
application. Although writing a Spark application in Scala or Python requires some knowledge about
closure or lambda functions, it can enable you to write distributed applications more easily. This is the
example of an application of counting words that we wrote in a previous section.

val wordCounts = textFile
 .flatMap(line => line.split(" "))
 .map(word => (word, 1))
 .reduceByKey((a, b) => a + b)
wordCounts.collect

This is one of the biggest reasons why Spark gets so much attention from data scientists and data
engineers. But one thing to note here is that Spark is a relatively new platform compared to Hadoop
MapReduce. In terms of scalability and reliability, Hadoop MapReduce often defeats a Spark appli-
cation, so it is best to decide which platform to use based on your workload.

SUMMARY

 In this chapter, we explained the basics of Hadoop MapReduce. Understanding the basic architecture
of Hadoop MapReduce helps you develop better applications. Hadoop MapReduce relies on other
distributed frameworks such as HDFS or YARN. Although omitted here, MapReduce can also run on
new frameworks. Apache Tez and Apache Spark can also work as an execution engine supporting a
MapReduce application, so the number of users of the MapReduce framework continues to grow.

We also covered how to write a MapReduce application, showing how MapReduce is a simple
framework, but it can provide suffi cient fl exibility to develop and to write any kind of distributed
platform applications.

Finally, in order to compare and know the difference between MapReduce and a relatively new
 platform, we examined Apache Spark, which is currently under active development, and is
worthwhile paying attention to.

c04.indd 04/22/2016 Page 67

User Experience
WHAT’S IN THIS CHAPTER?

 ➤ Using Hive for data warehouse

 ➤ Using Pig for data analysis

 ➤ Using Hue for web-based analysis

 ➤ Using Oozie for job management

The Hadoop MapReduce program is designed to process a large amount of data at a low
cost. Hadoop has been in use for almost 10 years, and it was initially used to focus on mas-
sive parallel processing. As covered in Chapter 3, however, it’s tiresome to use the MapReduce
program every time you need to process and analyze data. A lot of code, builds, and deploy
processes are required to perform just a simple word count program, and developers get tired
of frequently occurring repetitive tasks. And non-developers, such as data analysts or general
users, who don’t have a strong development background, struggle to use this method in their
environment.

General users don’t need to know every detail about MapReduce operating principles or
shuffl e phases, such as having to know the operational principles of Oracle, in order to extract
the desired value from a database. The framework of Hadoop MapReduce makes developers
concentrate on logic by dividing the work into fault-tolerance and node management. Hadoop-
related projects, on the other hand, can provide an interface that you can use on data fl ows,
regardless of any complex events.

This chapter focuses on how the Hadoop ecosystem works to improve user experiences. The
Hadoop ecosystem has been developed continuously, so it benefi ts from cluster provisioning,
data collection, analysis, and visualization. It isn’t necessary to build your architecture using
the whole ecosystem that is shown in Figure 4-1. Most of the analysis can proceed smoothly
with just a combination of a few ecosystems. And in the case of simple data analysis, DBMS
or Excel can actually be more effi cient. Therefore, you must choose the right ecosystem for the

4

Professional Hadoop®. Benoy Antony, Konstantin Boudnik, Cheryl Adams, Branky Shao, Cazen Lee and Kai Sasaki
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

68 ❘ CHAPTER 4 USER EXPERIENCE

c04.indd 04/22/2016 Page 68

characteristics of your data. In this chapter we will cover Hive, Pig, Hue, and Oozie, since these are
typically used with Hadoop. Let’s start by fi rst looking at Apache Hive.

Platform Administrator

Flume

Oozie Scheduling Hue Web UI

Data Analyst Business
Decision-makers

Pig Hive Spark Visualization Tool

Service Raw Data Data Mart ReportCleansed
Data

Data
Warehouse

Data flow

FIGURE 4-1

APACHE HIVE

Apache Hive is similar to the SQL language. Hive doesn’t always follow ANSI SQL grammar, but
it can convert SQL grammar to MapReduce jobs to use a parallel processing mechanism for the
Hadoop ecosystem. This is benefi cial not only for a database administrator who runs an existing
legacy system, but also for casual users who use SQL. Since Hadoop is basically an application for
handling data, and most data warehouse applications have implemented the SQL language, Hive is
the most famous and widely used project among Hadoop ecosystems.

A simple Hive architecture diagram is shown in Figure 4-2.

Hive

Metastore

2. Get metadata 3. Send metadata

4. Generate excution plan

User

Hadoop Cluster

Job
Tracker

Storage Layer

HDFS S3

Map Tasks Reduce
Tasks

1. Excute Query

7. Fetch result

5. Excute job

6. Job done

FIGURE 4-2

Apache Hive ❘ 69

c04.indd 04/22/2016 Page 69

Before using Hive, consider the following:

 ➤ Hive is not a Relational Database Management System (RDBMS). Although it uses a SQL-
like language, most jobs become converted into MapReduce jobs, following the nature of
MapReduce. For example, unlike RDBMS where a simple SELECT COUNT (*) instantly
converts the result, Hive needs the startup because it can take a long time for map and reduce
to launch. Also, COMMIT and ROLLBACK are not yet supported, which are crucial for online
transactional purposes.

 ➤ Hive works on fi les. Hive data exists in the form of HDFS or AWS S3 fi les, and a Hive table
or partition exists in a physical form at the fi le location. Therefore, the dataset possessed by
Hive can be converted by external factors, and it’s also possible to load the external data.

 ➤ Using the built-in functions of Hive, it may be diffi cult to obtain the desired result. For this
case, Hive supports User Defi ned Function (UDF) and Serializer/Deserializer (SerDe). This
will be dealt with in more detail later in this chapter.

Hive Installation
This book provides a Hive 1.2.1 installation example. The latest version of Hive can be downloaded
from the following URL: http://hive.apache.org/downloads.html.

 1. Download Hive and uncompress:

$ wget http://www.us.apache.org/dist/hive/hive-1.2.1/apache-hive-1.2.1-bin.tar.gz
 apache-hive-1.2.1-bin.tar.gz
$ tar xvfz apache-hive-1.2.1-bin.tar.gz

 2. Set the environment variable (or add it to your shell profi le):

$ cd apache-hive-1.2.1-bin
$ export HIVE_HOME=$PWD
$ export PATH=$HIVE_HOME/bin:$PATH
$ export HADOOP_HOME=<your_hadoop_home> to conf/hive-env.sh

 3. Set the confi guration variable:

Create conf//hive-site.xml according to conf/hive-default.xml, except for the
<property> section.

Add properties that you need to hive-site.xml. The list for all of the properties is found here:

https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties

 4. Set the metastore confi guration.

Hive uses the embedded Derby database with the default metastore, but in the production
environment it is recommended that you use a different database. These confi gurations
show how to use the Metastore with MySQL:

 <property>
 <name>javax.jdo.option.ConnectionDriverName</name>
 <value>com.mysql.jdbc.Driver</value>
 <description>Driver class name for a JDBC metastore</description>
 </property>

70 ❘ CHAPTER 4 USER EXPERIENCE

c04.indd 04/22/2016 Page 70

 <property>
 <name>javax.jdo.option.ConnectionURL</name>
 <value>jdbc:mysql://dbAddress/metastore</value>
 <description>JDBC connect string for a JDBC metastore</description>
 </property>
 <property>
 <name>javax.jdo.option.ConnectionUserName</name>
 <value>hiveuser</value>
 <description>Username to use against metastore database</description>
 </property>
 <property>
 <name>javax.jdo.option.ConnectionPassword</name>
 <value>password</value>
 <description>password to use against metastore database</description>
 </property>

HiveQL
As mentioned earlier, Hive defi nes a process with a SQL-like language. This is called the Hive
Query Language (HiveQL). The Data Defi nition Language (DDL) and Data Manipulation
Language (DML) exist similarly to SQL. We will cover DDL and DML later in this chapter. Click
on this link if you are interested in seeing the complete description of HiveQL:

https://cwiki.apache.org/confluence/display/Hive/LanguageManual

Hive Command Line Options
HiveQL-executing methods are used most frequently through the use of the command line. In the
Hive batch mode, one or more SQL queries from a fi le are distinguished by a semicolon, and can be
executed directly by the user with the Query as a factor. The interactive shell mode is the conver-
sation type that is usually used when running the ad hoc query. Table 4-1 lists the command line
options most often used in batch mode.

TABLE 4-1: Batch mode command line options

OPTION DESCRIPTION EXAMPLES

-e <quoted-query-string> SQL from command line hive -e 'SELECT a.col

from tab1 a'

-f <filename> SQL from fi les hive -f /home/hive/

hiveql.hql

--hiveconf <property=value> Using Hive confi guration
variables

hive --hiveconf

fs.default.

name=localhost

--hivevar <key=value> Using Hive variables hive --hivevar

tname="user"

Apache Hive ❘ 71

c04.indd 04/22/2016 Page 71

In the Hive interactive shell mode, the property can be defi ned by the set order as well as the execu-
tion of Hive QL or the JAR fi le used for UDF (see Table 4-2). It is also possible to execute an OS
order by attaching “!” before the command, or to fulfi ll the HDFS-related command through DFS.

TABLE 4-2: Hive interactive shell mode properties

COMMAND DESCRIPTION EXAMPLES

exit or quit Exiting the interactive shell exit;

set <key>=<value> Sets the value of a
confi guration variable

set hive.exec.parallel=true;

add JAR <Jar file

location>
Adds jar fi le to distributed cache add jar s3://mybucket/abc.

jar

list JAR Shows a list of JAR that already
added to distributed cache

list jar;

source <HQL file

location>
Executes a HQL script from
fi le system

source /home/hadoop/ex.hql

Data Defi nition Language
Data Defi nition Language (DDL) statements are used to defi ne and modify data structures such as
create, alter, or drop database/table schemas. It is useful to divide fi les based on the duty and sched-
ule under the classifi ed folders by projects when managing documents in the computer. It is also
convenient to designate the bundle of relevant datasets by table, and to bind the relevant tables to
manage by database when it comes to Hive. This method has been widely used in the past.

You can think of it as the database being a set of related tables. Hive uses the default database,
until you assign a database to use as the USE <database_name> statement. You can use the SCHEMA
keyword instead of the DATABASE keyword when running any database related commands. Here are
some simple database command examples:

 ➤ CREATE DATABASE statement: This uses the IF NOT EXISTS clause, even though the database
with the same name exists, and does not return an error. You can add a descriptive comment
using the COMMENT command. When creating a database, it creates a db_name.db directory
under the directory defi ned in hive.metastore.warehouse.dir (default value: /user/hive/
warehouse). You can change the position to be stored using the LOCATION command.

CREATE DATABASE [IF NOT EXISTS] db_name
 [COMMENT database_comment]
 [LOCATION database_path]
 [WITH DBPROPERTIES (key1=value1, ...)];

 ➤ ALTER DATABASE statement: This is a command to modify key-value pairs in DBPROPERTIES,
but you can’t change its location or database name.

ALTER DATABASE db_name
SET DBPROPERTIES (key1=value1, ...);

72 ❘ CHAPTER 4 USER EXPERIENCE

c04.indd 04/22/2016 Page 72

 ➤ DROP DATABASE statement: Remember that you can’t drop the database unless there are no
existing tables in the database. If you want to drop the database and its entire table, append
the CASCADE keyword to the end of the command.

DROP DATABASE [IF EXISTS] db_name [CASCADE];

Hive does not use the data of a completely formatted form like RDBMS. It just reads and writes
the fi le. Therefore, it is important to defi ne the table schema in accordance with the form of
inserted data. Hive Table DDL can designate the terminate key of the row format to process the
input fi le format of various forms, and prevents the full scan of the entire data by designating
the partition. In addition, using the ORC (Optimized Row Columnar) and Parquet fi le format,
should allow column-oriented data processing. The following example demonstrates how to use
the table command.

 ➤ CREATE TABLE statement: It defi nes the table schema. Hive supports various types of column
data types such as String, Int, Timestamp, etc. In addition, nested types like Arrays and Maps
are also supported. These complex data types can pack a lot of data into a single column, but
it can cause performance degradation when running repetitive operations.

CREATE [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]table_name(
 column_name data_type, ...)
[COMMENT table_comment]
[PARTITIONED BY (col_name data_type, ...)]
[STORED AS file_format]
[LOCATION table_path]

 ➤ ALTER TABLE statement: It enables you to change the table schema and includes table name,
add/delete/modify columns, partition information, SerDe properties, etc.

ALTER TABLE table_name
SET property_name property_value

 ➤ DROP TABLE Statement: It deletes table information from the metastore. Remember that in
the case of Managed Table, it will delete the table location’s data (fi le), but for the External
Table it only deletes metadata.

DROP TABLE [IF EXISTS] table_name

Hive keeps the partition information in metastore, but the new partition can be directly added to
the fi le system. Because Hive can’t know about this new partition information, HiveQL targets this
partition and returns a null. In this case, the user can add the partition manually by ALTER TABLE
table_name ADD PARTITION commands or check the whole partition using MSCK REPAIR TABLE
table_name.

Data Manipulation Language
Data Manipulation Language (DML) statements are used to work with the data in tables. SELECT,
INSERT, UPDATE, and DELETE are some well-known examples. It is diffi cult to describe all of the
instructions here, so we will cover features assuming that you already have a basic knowledge
of SQL.

Apache Hive ❘ 73

c04.indd 04/22/2016 Page 73

 ➤ Dynamic partition inserts: When using the INSERT data in a partitioned table, it can be
used to manually specify the partition. But it is diffi cult to manage after the partition item
has increased. In that case, you can use a dynamic partition insert statement by enabling
the hive.exec.dynamic.partition confi guration to true. With HiveQL you can use
dynamic partitions instead of using the multiple statement, and manually specifying the
country code.

Here is a static partition insert statement example:

FROM daily_Table
INSERT OVERWRITE TABLE to_table PARTITION(dt='2016-05-26', ctCode='USA')
 SELECT col1, col2, col3 WHERE countryCode = 'USA'
INSERT OVERWRITE TABLE to_table PARTITION(dt='2016-05-26', ctCode='FRA')
 SELECT col1, col2, col3 WHERE countryCode = 'FRA'
INSERT OVERWRITE TABLE to_table PARTITION(dt='2016-05-26', ctCode='BEL')
 SELECT col1, col2, col3 WHERE countryCode = 'BEL';

And here is a dynamic partition insert statement example:

FROM daily_Table
INSERT OVERWRITE TABLE to_table PARTITION(dt='2016-05-26', countryCode)
 SELECT col1, col2, col3, countryCode;

Pay attention to the following points when using the dynamic partition insert:

 ➤ A dynamic partition can’t be the parent of a static partition.

 ➤ Problems will occur when there are broken words in values of dynamic partition.

 ➤ Performance degradation can occur when there are too many dynamic partitions.

 ➤ Multi Table/File inserts: Hive can send output into multiple tables or fi le systems with a
single statement.

FROM daily_Table
INSERT OVERWRITE TABLE to_table1 SELECT * WHERE ctCode = 'USA'
INSERT OVERWRITE TABLE to_table2 SELECT * WHERE ctCode = 'FRA'
INSERT OVERWRITE LOCAL DIRECTORY '/out/bel.out' SELECT * WHERE ctCode = 'BEL';

 ➤ Update and Delete operation: Update and Delete commands have been available since Hive
0.14, but your table has to support ACID.

UDF/SerDe
UDF and SerDe help you use Hive’s function by expanding. Both have the embodied built-in func-
tion so you can use them to reach your goals.

User Defi ned Functions
In Hive, the built in function (see Table 4-3) and the user defi ned function are called UDF. You
can inquire the list of functions currently loaded by means of SHOW FUNCTION, and you can con-
fi rm the description document on the relevant function_name by using DESCRIBE FUNCTION
<function_name>.

74 ❘ CHAPTER 4 USER EXPERIENCE

c04.indd 04/22/2016 Page 74

TABLE 4-3: Built in functions

BUILD-IN FUNCTION DESCRIPTION EXAMPLES

Mathematical
Functions

Used for the mathematical operation
such as the square root, round off, or
exponential function

round(DOUBLE a)

sqrt(DOUBLE a)

log2(DOUBLE a)

Collection Functions Functions that operate in the nested
data structure like Map or Array

size(MAP|ARRAY a)

sort_array(Array a)

Type Conversion
Functions

Use this to try to change the data type
to another type

cast('1' as DOUBLE)

Date Functions A function to extract time
information from string and Unix
time-related functions

unix_timestamp()

date_add(string

date, '1')

Conditional
Functions

Control Statement such as IF or
CASE-WHEN-THEN

nvl(value,

default_value)

case a when b then c end

String Functions String manipulation functions concat(string a,

string b...)

length(string a)

In addition, there are Built-in Aggregate Functions (UDAF) and Built-in Table-Generating Functions
(UDTF). For example, sum0 of UDAF receives a column from several rows to fulfi ll the aggregation
and the explode() of UDTF receives the array as input to return to individual rows.

When the user tries to write directly to UDF, the operation is processed in the following order:

 1. Create a new class that extends the org.apache.hadoop.hive.ql.exec.UDF class.

 2. Implement the evaluate() method.

 3. Package the JAR fi le and add it to classpath (or upload to HDFS, S3).

 4. Add the JAR fi le to the distributed cache using the ADD JAR <jar_file_name> command.

 5. Register your function name using the CREATE TEMPORARY FUNCTION AS <function_name>
AS <class_name_including_package> command.

Serializer/Deserializer
Hive accesses the data of the table through SerDe, which is an input/output interface that allows it
to handle fi les on HDFS. It shows the data read from HDFS in forms of rows and columns by means
of SerDe’s deserializer. Serializer is used when writing the fi le on HDFS. Like UDF, Hive provides
the built-in SerDes and can handle the frequently used forms by using AvroSerDe, RegexSerDe,
OpenCSVSerde, and JsonSerDe.

Apache Hive ❘ 75

c04.indd 04/22/2016 Page 75

You can write SerDe directly using the following methods:

 ➤ Create a new class that extends the org.apache.hadoop.hive.serde2.SerDe class.

 ➤ Implement deserialize() and serialize() methods.

 ➤ Package the JAR fi le and add it to classpath (or upload to HDFS, S3).

 ➤ Add the JAR fi le to the distributed cache using the ADD JAR <jar_file_name> command.

 ➤ Add the ROW FORMAT SERDE 'serde_name_including_package' clause at table creation
time or by altering the table property.

Hive Tuning
You can use Hive without a special setting, but if you understand the property of Hive, you can
improve the job’s performance through simple settings.

 ➤ Partitioning: HiveQL sets the condition with the Where clause to extract the desired
data. Since Hive accesses the fi le, if you approach the table to extract the data of a certain
date, you should refer to all fi les in the folder of the relevant table. Partitioning is used in
this situation, and it makes a physical folder under the table by subdividing into certain
conditions (date, time, national code) that are frequently used. It is created by using the
Partitioned By sentence in the Create Table statement and the folder is created in a form of
<partition>=<value> and the multi-level partitioning is also possible. If the partition con-
dition is included in the Where clause when fulfi lling the Select query, Hive reads the entire
folders belonging to Table while accessing only the folder applying to the given condition.
Most data can be divided by time and code standard information, and users are likely to
be interested only in the data belonging to a certain condition, so a well-designed partition
policy is very helpful in reducing the job performance time.

 ➤ Parallel execution: Complex HiveQL is commonly converted into a number of MapReduce
jobs. It runs sequentially by default, but sometimes it may lead to resource waste. The hive
.exec.parallel property can execute independent jobs in parallel. Either add to hive-site
.xml, or use the set hive.exec.parallel=true command to apply this option.

 ➤ Use ORC fi les: Although you select only one column when performing HiveQL, the fi le
is saved based on the row, and it accesses the entire row to read unnecessary data so the
performance decline happens. The columnar input format, such as ORC, was developed
to improve this. If you use ORC, you can obtain the advantage, such as the increase in
read/write performance, and the storage space effi ciency through compression can easily
be used. Specify STORED AS ORC with CREATE TABLE syntax, or add SET FILEFORMAT
ORC in the ALTER TABLE statement. It also supports a compression such as SNAPPY
or ZLIB.

 ➤ Small Files Problem: Hadoop is designed for high volume systems, but there are two prob-
lems when dealing with a number of split small fi les rather than large ones. These problems
are the NameNode memory problem and performance problems that affect MapReduce. In
the default input format, like TextInputFormat, each fi le should have at least one split. So,
if there is a large number of mappers launching, it can cause a JVM startup overhead.

76 ❘ CHAPTER 4 USER EXPERIENCE

c04.indd 04/22/2016 Page 76

To solve this problem, set the hive.hadoop.supports.splittable.combineinputformat
confi guration to true. Enabling this property will increase performance, because mapper can
handle more than one fi le.

APACHE PIG

Pig is a tool for analyzing the bulk dataset. It defi nes the job by the inherent language (Pig Latin).
It is similar to Hive in that it converts into MapReduce internally, yet SQL used by Hive is declara-
tive, while Pig Latin is the procedural language. Although Pig Latin is not familiar to users com-
pared to SQL, it is advantageous when performing the different treatment to split the data stream,
or by reading the anti-formal data.

A simple Pig architecture diagram is shown in Figure 4-3.

User

Hadoop ClusterPig

Job
Tracker

Storage Layer

HDFS S3

Map Tasks Reduce
Tasks

1. Excute Query

7. Fetch result

5. Excute job

6. Job done

Grunt
Parser

Oprimizer
Compiler
Execution

engine
Pig Server

2.Parser generates DAG of job after check the
syntax of submitted job

3.Optimizer generates logical plan

4.Compiler creates a series of map reduce jobs
and it is submitted to cluster by execution engine

FIGURE 4-3

Pig Installation
Next we will cover a Pig 0.15.0 installation example. The latest version of Pig can be downloaded
from the following URL: http://pig.apache.org/releases.html.

 1. Download Pig and uncompress it:

$ wget http://apache.mirror.cdnetworks.com/pig/pig-0.15.0/pig-0.15.0.tar.gz
$ tar xvfz pig-0.15.0.tar.gz

 2. Set the environment variable (or add it your shell profi le):

$ cd pig-0.15.0
$ export PIG_HOME=$PWD
$ export PATH=$PIG_HOME/bin:$PATH
$ export HADOOP_HOME=<your_hadoop_home>
$ export PIG_CLASSPATH=<your_hadoop_conf_dir>

Apache Pig ❘ 77

c04.indd 04/22/2016 Page 77

 3. Make sure that the installation was successful:

$ pig –h
Apache Pig version 0.15.0 (r1682971)
compiled Jun 01 2015, 11:44:35

Pig Latin
Pig converts the script that describes the data stream into MapReduce. Pig Latin is the language used at
this time. Pig Latin can process the data by a few codes, and can describe the job without caring about
the MapReduce structure. Also, it can be expanded by using UDF, and can use Piggy Bank that gathers
useful UDF or writes UDF directly. See the following link for a complete description of Pig Latin:

http://pig.apache.org/docs/r0.15.0/start.html.

Pig Command Line Options
A method of executing from the command line is most often used in Pig. By default, Pig runs in the
MapReduce mode, and it can be specifi ed via the -x option.

 ➤ Local mode: It runs through the pig -x local command, carrying a single JVM with the
local fi lesystem. It’s useful when prototyping and debugging your program.

 ➤ MapReduce mode: It runs through the pix -x mapreduce command or with no option. It
uses cluster computing resources and HDFS.

 ➤ Tez mode: Runs Pig on the Tez framework using the pix -x tez command.

Pig also has the Interactive shell mode and batch mode. It is distinguished by the input type.

 ➤ Batch mode: It is the way to run a fi le that is pre-written by Pig Latin. Use as the pig
<pigLatin_file_name> command. When you perform a multiquery written to the fi le, Pig
tries to run all of the jobs in the fi le, even if it fails in the middle of the job. It can be classi-
fi ed as return code: 0 is Success, 2 is failed all of the job, and 3 is a partial failure. Table 4-4
shows command-line options most often used in batch mode.

TABLE 4-4: Batch mode on the command line

OPTION DESCRIPTION EXAMPLES

-e(or -execute)

<quoted-command-string>
Command to
execute

pig -e 'sh ls'

[-f] <filename> Execute from fi les pig [-f] <pig_script_location>

-p(or -param)

<property=value>
Use Pig variables pig -p k: ey1=value1 pigLatin.

pig

-P(or -propertyFile)

<property_file>
Specify a property
fi le

pig -P pig.properties

-F(or -stop_on_failure) Stop Pig job imme-
diately when one of
multiple query failed

pig -F pig.properties

78 ❘ CHAPTER 4 USER EXPERIENCE

c04.indd 04/22/2016 Page 78

 ➤ Interactive shell mode: Execute a shell that calls Grunt, and within this, type the Pig Latin
phrase, “do the Job.” Table 4-5 shows the commands that are frequently used in the
interactive shell mode.

TABLE 4-5: Interactive shell mode commands

COMMAND DESCRIPTION EXAMPLES

fs Use the Hadoop fi le system shell fs -ls

sh Use the shell command sh ls

exec Run a Pig script. All aliases in the script
will not reference to Grunt.

exec <pig_script_location>

run Run a Pig script. All aliases will be
available to Grunt.

run <pig_script_location>

kill Kill the MapReduce job with jobid kill <job_id>

When writing Pig Latin, the processing logic is defi ned in the following order.

 1. Specifying Input Data: Data can be read using the Load statement. A = LOAD 'inputfile
.txt' USING PigStorage('\t') statement, and read inputfile.txt classifi ed as a tab
from the fi lesystem, storing it in the relation A.

 2. Defi ne Data processing that you loaded: Find out in Table 4-6 how to use the frequently used
operator.

 3. Outputting the processed data: Use the STORE command to save results to the fi lesystems or
use a DUMP command to display to the screen.

TABLE 4-6: Frequently used operators

OPERATOR DESCRIPTION EXAMPLES

FILTER Select tuples that meet the
condition

X = FILTER A BY a1 >= 2016;

FOREACH GENERATE Operation that works with specifi ed
columns

X = FOREACH A GENERATE a1,

a2;

GROUP Aggregate data to the specifi ed
fi eld

X = GROUP A BY a1;

DISTINCT Remove duplicate tuples X = DISTINCT A;

ORDER BY Sort the given data X = ORDER A BY a1;

Hue ❘ 79

c04.indd 04/22/2016 Page 79

UDF
Pig has several functions to help you with a job. In most cases, this can be solved with built-in
 functions, or provided by the Piggybank, but sometimes you may be able to solve the problem when
you must create your own function. UDF is used in this case, and it can be developed using various
languages such as Java, Python, Ruby, etc.

When the user tries to write UDF directly to use, operations can be done in the following order:

 1. Create a new class that extends the org.apache.pig.EvalFunc(or FilterFunc) class.

 2. Implement the exec() method.

 3. Package the JAR fi le and add it to the classpath (or upload to HDFS, S3).

 4. Register the JAR fi le to the distributed cache using REGISTER <jar_file_name> command.
If you use a language other than Java, paste the USING keyword behind the register statement.

HUE

Hue provides an interface that allows you to easily approach the Hadoop ecosystem using a web-
based application. It changes the way you work with HDFS or user management on CLI to the GUI.
You can execute the Hive, Impala, and Spark job directly on the web. Also, the result is automati-
cally expressed as a graph, and you can make a chart using a simple operation. If you are wondering
what functions Hue has, refer to this website:

http://demo.gethue.com/#tourStep3

A simple Hue architecture diagram is shown in Figure 4-4.

User

Job
Browser Workflow

Oozie Hive Metastore

Spark

Impala

HDFS

Resource Manager

Hbase

Query
Editor

Data
Browser

File
Browser

HUE HUE DB

FIGURE 4-4

80 ❘ CHAPTER 4 USER EXPERIENCE

c04.indd 04/22/2016 Page 80

Features
Hue is intuitive to use, and most of the functions require no learning in order to use, because it runs
a GUI environment. Given these characteristics, Hue is mainly responsible for providing the inter-
face in contact with the end user. In Figure 4-5, you can see the chart using an executed Hive query
in Hue.

FIGURE 4-5

Let’s examine the chart shown in Figure 4-5 where you can see an executed Hive query in Hue.

 ➤ Query Editor

 ➤ Hive and Pig scripts can be run directly, and Impala (MPP solution of Cloudera) is
also possible to query in.

 ➤ In addition to this, traditional DB queries, such as MySQL and Oracle, are also
possible.

 ➤ Save the written query to the fi lesystem and you can recall queries in the job history.

 ➤ Job Designer capabilities help simple Oozie workfl ow jobs to be defi ned in a graphic
environment.

Apache Oozie ❘ 81

c04.indd 04/22/2016 Page 81

 ➤ Parameterize supported. This feature is useful when performing repetitive tasks given
a variable. For example, if you obtain a count of a particular device model from a
log, it is convenient and can be reused with specifi ed variables.

 ➤ Data Browser

 ➤ The Hive metastore CRUD is possible in the data browser.

 ➤ You can visually see the structure of the database and table you manage, and you can
also check the sample data.

 ➤ Browsing tables of Hbase is possible.

 ➤ It supports the import/export job managing of the Sqoop.

 ➤ Workfl ow

 ➤ This is the Oozie job related menu. In the Dashboard you can check a list of the
workfl ow, coordinator, and bundled jobs.

 ➤ Click on each job to see the detailed view, status, job logs and submitted XML fi le.

 ➤ The Workfl ow Editor can manage the Oozie job. Even users who are not familiar
with the Oozie can easily create and apply their own logic, because unlike traditional
XML methods, it defi nes a job with an interactive UI.

 ➤ File browser

 ➤ It provides a function of managing the fi le in HDFS via the web. Create, modify,
delete, as well as a permission change, can be performed as well.

 ➤ Upload fi les with drag and drop. Uncompressing the uploaded fi le is also supported.

 ➤ Job browser

 ➤ Display the list of jobs based on information in the resource manager.

 ➤ You can click the job id to query the status of the task and the logs.

 ➤ Search by username, and containing text is also possible.

APACHE OOZIE

Oozie is a workfl ow scheduler for Hadoop. Although Hadoop jobs can be executed by connect-
ing map and reduce, the use of scheduler is required because of the inconvenience of writing and
 management in realizing the complex business logic. Since Oozie supports most jobs of the Hadoop
ecosystem (such as MapReduce, Spark, Pig, Hive, Shell, and Distcp), it is widely used.

Oozie workfl ow jobs are Direct Acyclic Graphs (DAGs) of actions and Oozie coordinator jobs can
fulfi ll repeatedly by using the parameter of the start time, end time, and frequency that received the
workfl ow jobs as a variable. It is possible to use the condition sentence, comparative sentence, and
the Expression Language (EL). Thanks to this property, it is possible to easily embody generally
used business logic, such as the input fi le check, hourly job, and various kinds of job chaining.

82 ❘ CHAPTER 4 USER EXPERIENCE

c04.indd 04/22/2016 Page 82

If you want to use Oozie, the considerations are as follows:

 ➤ Each workfl ow action creates control dependency DAG. It means that the second job is not
executed until the end of the fi rst job, and there is no circulation in the same workfl ow.

 ➤ The Oozie web console is a useful tool to get coordinator/workfl ow status information. The
Oozie web console is disabled by default because the ExtJS library has different license agree-
ments with Oozie. You can enable it in the following way:

$ mkdir libext
$ cd libext
$ wget http://extjs.com/deploy/ext-2.2.zip
$ cd ../bin
$./oozie-setup.sh prepare-war

The screenshot of the Oozie web console is shown in Figure 4-6.

FIGURE 4-6

Oozie Installation
Here is an installation example of Oozie 4.2.0. The latest version of Oozie can be downloaded from
the following URL: http://http://oozie.apache.org/.

 1. Download Oozie and uncompress it:

wget http://apache.mirror.cdnetworks.com/oozie/4.2.0/oozie-4.2.0.tar.gz
tar xvfz oozie-4.2.0.tar.gz

 2. Build and set up Oozie from source. Remove the following codehaus repository from pom
.xml before building:

<repository>
 <id>Codehaus repository</id>
 <url>http://repository.codehaus.org/</url>

Apache Oozie ❘ 83

c04.indd 04/22/2016 Page 83

 <snapshots> <enabled>false</enabled> </snapshots>
</repository>

bin/mkdistro.sh -P hadoop-2,uber -DskipTests
--cp distro/target/oozie-4.2.0-distro.tar.gz ../
cp -R distro/target/oozie-4.2.0-distro/oozie-4.2.0/ ../oozie
cd ../oozie

 3. Set the environment variable (or add it your shell profi le):

export OOZIE_HOME=$PWD
export PATH=$OOZIE_HOME/bin:$PATH

 4. Set the confi guration variable. Add properties that you need to conf/oozie-site.xml.

 5. Set the metastore and shared lib confi guration.

In general, Oozie uses an external metastore. The below confi gurations are examples of
using the Metastore with MySQL. To use the external metastore, the proper driver has to
exist in the libext folder.

<property>
 <name>oozie.service.JPAService.jdbc.driver</name>
 <value>com.mysql.jdbc.Driver</value>
</property>
<property>
 <name>oozie.service.JPAService.jdbc.url</name>
 <value>jdbc:mysql://dbAddress:port/database</value>
</property>
 <property>
 <name>oozie.service.JPAService.jdbc.username</name>
 <value>oozieuser</value>
</property>
<property>
 <name>oozie.service.JPAService.jdbc.password</name>
 <value>password</value>
</property>

 6. Set the library path and the proxy user:

<property>
 <name>oozie.service.WorkflowAppService.system.libpath</name>
 <value>hdfs://<namenode>:<port>/user/hadoop/share/lib</value>
 </property>
<property>
 <name>oozie.service.ProxyUserService.proxyuser.<oozieuser>.hosts</name>
 <value>*</value>
 </property>
<property>
 <name>oozie.service.ProxyUserService.proxyuser.<oozieuser>.groups</name>
 <value>*</value>
</property>

 7. Add the following property to conf/hadoopconf/core-site.xml:

<property>
 <name>fs.default.name</name>
 <value>hdfs://namenode:port</value>
</property>

84 ❘ CHAPTER 4 USER EXPERIENCE

c04.indd 04/22/2016 Page 84

 8. After that, create the db schema and sharelib:

bin/oozie-setup.sh db create -run
bin/oozie-setup.sh sharelib create -fs namenodeurl:port

 9. Start Oozie and check the status.

bin/oozied.sh start
bin/oozie admin -oozie http://localhost:11000/oozie -sharelibupdate

After performing the command, it is successful if the shared library list is displayed as follows:

$ bin/oozie admin -oozie http://localhost:11000/oozie -shareliblist
[Available ShareLib]
oozie
hive
distcp
hcatalog
sqoop
mapreduce-streaming
spark
hive2
pig

How Oozie Works
Apache Oozie is a web application that supports the Rest API and runs on Tomcat (see Figure 4-7).
It consists of the Oozie Server and Client and uses the metastore storage (RDBMS). You can perform
a simple workfl ow job with Oozie as follows:

 1. The Oozie Client uses the Job.properties to submit jobs to the Job Oozie Server.

 2. The Oozie Server executes the job, calling a ResourceManager.

 3. ResourceManager executes the Oozie Launcher (Map-Only Job) using the received
information.

 4. The Oozie Launcher runs the job defi ned in the workfl ow.

 5. A task invokes the callback URL to the Oozie server when it has either completed or failed.

 6. Be sure to fi nish the job.

Oozie has been prepared in accordance with a design principle that separates the scheduler and the
job. Since a Job is run by the Oozie Launcher in the cluster, such as confi guration fi les, workflow
.xml, and coordinator.xml, it should be placed on HDFS. Also, if you want to use a JAR fi le, create
a lib folder under the workflow.xml folder of HDFS, or specify oozie.libpath job.properties.

Performing a Job can be cumbersome, given how you need to add each workfl ow library, but Oozie
manages a library of commonly used job types by using sharelib. The folder structure created on
HDFS is produced similarly to the following (The latest version has been added for the version man-
agement lib_timestamp directory under lib).

 /user/oozie/share/lib/lib_20160126002346/hive
 /user/oozie/share/lib/lib_20160126002346/hive/ST4-4.0.4.jar
 /user/oozie/share/lib/lib_20160126002346/hive/activation-1.1.jar
 /user/oozie/share/lib/lib_20160126002346/hive/ant-1.9.1.jar
 /user/oozie/share/lib/lib_20160126002346/hive/ant-launcher-1.9.1.jar

Apache Oozie ❘ 85

c04.indd 04/22/2016 Page 85

Hadoop Cluster

Job
Tracker

3. Start oozie launcher

4. Execute tasks

Oozie
Launcher

Various jobs

Metastore

Oozie Server

Oozie Client

1. Submit jobs 5. Invoke callback URL

2. Execute to cluster

FIGURE 4-7

Workfl ow/Coordinator
In order to accomplish your business goals, you have to fulfi ll one or more jobs. For example, a Pig
script can bring the raw log saved in HDFS by grouping and designating it as an external table. You
can also use the script to add the partition, and conduct a Hive job, making the report and inform-
ing the user of success and failure by email. Both of these items can be bound as one workfl ow. That
is, the workfl ow is a gathering of the job, control, and the fl ow. Also, the above workfl ow is exe-
cuted regularly during a certain time, or is dependent on other workfl ow or data. The coordinator is
used to control this situation. In addition, the bundle and a set coordinator also exist, although we
won’t be discussing this here.

Workfl ow
The Oozie workfl ow is written in XML, based on xPDL (XML Process Defi nition Language), and it
consisted of two types of nodes:

 ➤ Action node: Execute the actual job such as MR, Pig, Hive, SSH, etc.

 ➤ Control fl ow node: State control such as start, fork, join, kill, and end.

By combining these nodes, you can defi ne the workfl ow. The following example is a simple Hive job
with success at the end, which leaves a failed log.

workflow.xml

<workflow-app xmlns="uri:oozie:workflow:0.3" name="sampleOozieJob">
 <start to="hive_sample_job" />
 <action name="hive_sample_job">

www.allitebooks.com

http://www.allitebooks.org

86 ❘ CHAPTER 4 USER EXPERIENCE

c04.indd 04/22/2016 Page 86

 <hive xmlns="uri:oozie:hive-action:0.2">
 <job-tracker>${jobTracker}:${jobTrackerPort}</job-tracker>
 <name-node>hdfs://${nameNode}:${nameNodePort}</name-node>
 <configuration>
 <property>
 <name>oozie.use.system.libpath</name>
 <value>true</value>
 </property>
 <property>
 <name>mapred.job.queue.name</name>
 <value>q2</value>
 </property>
 <property>
 <name>oozie.launcher.mapred.job.queue.name</name>
 <value>q1</value>
 </property>
 </configuration>
 <script>sample.hql</script>
 <param>targetDate=20160129</param>
 </hive>
 <ok to="end" />
 <error to="fail" />
 </action>
 <kill name="fail">
 <message>Job failed, [${wf:errorMessage(wf:lastErrorNode())}]</message>
 </kill>
 <end name="end" />
</workflow-app>

job.properties

jobTracker=<jobtracker_address>
nameNode=<namenode_address>
jobTrackerPort=<jobtracker_port>
nameNodePort=<namenode_port>
oozie.wf.application.path=hdfs://${nameNode}:${nameNodePort}/{location_of_workflow}
oozie.use.system.libpath=true

You can run and check the Oozie workfl ow job using the following command:

$ oozie job -oozie http://localhost:11000/oozie -config job.properties -run
job: 160106012758058-oozie-bpse-W
$ oozie job -oozie http://localhost:11000/oozie -info 160106012758058-oozie-bpse-W
Job ID : 160106012758058-oozie-bpse-W
--
Workflow Name : sampleOozieJob
App Path : hdfs://10.3.50.73:8020/user/cazen/
Status : RUNNING
Run : 0
User : hadoop
Group : -
Created : 2016-01-27 07:11 GMT
Started : 2016-01-27 07:11 GMT
Last Modified : 2016-01-27 07:11 GMT
Ended : -
CoordAction ID: -

Apache Oozie ❘ 87

c04.indd 04/22/2016 Page 87

Actions
--
ID Status Ext ID Ext Status Err Code
--
160106012758058-oozie-bpse-W@:start: OK
--
160106012758058-oozie-bpse-W@hive_sample_job RUNNING
--

Coordinator
If you carefully examine the workfl ow sample above, you can see a targetDate variable that has
passed to the job. The coordinator can perform workfl ow jobs at specifi ed times via startTime,
endTime, and also the frequency. A simple coordinator example that calls the Job at a certain time
while passing a variable is shown next:

coordinator.xml

<coordinator-app name="sample_oozie_coord" frequency="${coord:days(1)}"
start="2016-01-01T00:20Z" end="2016-12-31T00:25Z"
 timezone="UTC" xmlns="uri:oozie:coordinator:0.4">
 <action>
 <workflow>
 <app-path>hdfs://${nameNode}:${nameNodePort}/user/cazen/</app-path>
 <configuration>
 <property>
 <name>targetDate</name>
<value>${coord:formatTime(coord:dateOffset(coord:nominalTime(), -1, 'DAY'),
 'yyyyMMdd')}
</value>
 </property>
 </configuration>
 </workflow>
 </action>
</coordinator-app>

coord.properties

jobTracker=<jobtracker_address>
nameNode=<namenode_address>
jobTrackerPort=<jobtracker_port>
nameNodePort=<namenode_port>
oozie.coord.application.path=hdfs://${nameNode}:${Port}/{location_of_workflow}
oozie.use.system.libpath=true

You can run and check the Oozie coordinator job by using the following command:

$ oozie job -oozie http://localhost:11000/oozie -config coord.properties -run
job: 160106012758058-oozie-bpse-C
$ oozie job -oozie http://localhost:11000/oozie -info 160106012758058-oozie-bpse-C
Job ID : 160106012758058-oozie-bpse-C
--
Job Name : sample_oozie_coord
App Path : hdfs://10.3.50.73:8020/user/cazen
Status : RUNNING

88 ❘ CHAPTER 4 USER EXPERIENCE

c04.indd 04/22/2016 Page 88

Start Time : 2016-01-01 00:20 GMT
End Time : 2016-12-31 00:25 GMT
Pause Time : -
Concurrency : 1
--
ID Status Ext ID Err Code Created Nominal Time
160106012758058-oozie-bpse-C@1 RUNNING
--
160106012758058-oozie-bpse-C@2 READY
--
160106012758058-oozie-bpse-C@3 READY
--
160106012758058-oozie-bpse-C@4 READY
--

Oozie CLI
Oozie can be operated via the CLI, and the frequently used commands are listed next. Using an alias
and export OOZIE_URL makes it more convenient.

Run a job : oozie job -config job.properties -run
Check status : oozie job -info <job_id>
Kill a job : oozie job -kill <job_id>
Rerun a job : oozie job -rerun <coord_id> -action=<job_num>
Check err log : oozie job -errorlog <job_id>
List all coordinator : oozie jobs -jobtype coord
List all workflow : oozie jobs -jobtype wf
Validate xml : oozie validate workflow.xml
Update share library : oozie admin -sharelibupdate
Check share library : oozie admin -shareliblist

SUMMARY

 In this chapter on user experience, a project that increased the user convenience was based on the
Hadoop environment was discussed. Hive and Pig enabled you to analyze by script, without an
effort of writing the program code directly, thanks to the high level language called HiveQL and
Pig Latin. Hue enabled you to execute the analysis and HDFS fi le management that was completed
in the CLI environment by means of the web interface. Oozie helped to manage repetitive jobs in
production. These projects can be used for free under the Apache license 2.0, and can be easily
installed.

c05.indd 04/22/2016 Page 89

Integration with Other Systems
WHAT’S IN THIS CHAPTER?

 ➤ Fitting Hadoop into existing IT environments

 ➤ Connecting Hadoop with structured data stores

 ➤ Streaming data into the Hadoop Data Lake

 ➤ Moving data faster and processing data in real time

Hadoop is introduced into an organization’s IT environment when the organization needs to
more effectively manage big data. Of course databases, enterprise data warehouses, and other
IT systems already exist in your organization’s IT environment. And, it is likely that new sys-
tems, especially emerging technologies, will be added into the data center in the near future.

Before Hadoop, your organization ran analytical workloads in the data warehouse provided
by vendors such as Teradata, Netezza or Vertica. After adding Hadoop into the data center,
it is common practice to migrate the heavy Extract, Transform and Load (ETL) process to
Hadoop. First, you extract data from the source systems, such as the Relational Database
Management System (RDBMS) into HDFS (introduced in Chapter 2). You can leverage
Hadoop’s parallel processing to transform the data into target data models. Then the trans-
formed data is loaded from Hadoop into the data warehouse. Apache Sqoop, from the
Hadoop ecosystem, is the tool that can be used for this kind of integration. In this chapter we
will fi rst introduce Sqoop, to learn how it can effi ciently transfer bulk data between Hadoop
and structured data stores such as relational databases.

In addition to database systems, application servers have data your organization wants to
capture. One example is web server logs that can be collected for website user click stream
analysis, network security, and system operation monitoring. Hadoop is designed to be useful
for this kind of processing, so this chapter will also introduce Apache Flume, which is a tool
originally designed to stream server logs into Hadoop.

5

Professional Hadoop®. Benoy Antony, Konstantin Boudnik, Cheryl Adams, Branky Shao, Cazen Lee and Kai Sasaki
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

90 ❘ CHAPTER 5 INTEGRATION WITH OTHER SYSTEMS

c05.indd 04/22/2016 Page 90

Hadoop MapReduce (introduced in Chapter 3) is designed as a batch-oriented data paradigm, tak-
ing in massive bounded data sets and processing them in a batch. It does not support streaming pro-
cessing, because even the data is streamed into its storage. The batch processing naturally introduces
high latency from the time when business events occur, to the time businesses can use the analysis
results to make decisions. Business moves faster in the Internet era, so near-real time or real time
data analysis is required. New technologies are coming out from the Hadoop ecosystem to advance
the processing capability of Hadoop. For instance, Apache Spark makes it possible to process data
faster in Hadoop. Apache Ignite boosts the performance of both the computation and storage layer.
In this chapter, we will also introduce the other two cousins from the Apache family: Kafka and
Storm, which together enable moving data faster to process data in real time. In this chapter we will
take a detailed look at all of these technologies that are part of the Hadoop ecosystem.

APACHE SQOOP

Apache Sqoop is a command line tool built for effi ciently transferring bulk data between Hadoop
and structured data stores such as RDBMS, enterprise data warehouses, NoSQL and mainframe
systems. It became a top-level Apache project in March of 2012.

Sqoop was initially developed as a tool to transfer data from RDBMS to Hadoop (its name Sqoop
actually means “SQL-to-Hadoop”). It later became a standalone open source project on Github
submitted by Cloudera. It can import existing tables or databases from RDBMS into HDFS, and can
even populate tables in Hive and HBase (see Figure 5-1). This is really helpful for organizations that
have recently set up a new cluster. Conversely, Sqoop can also be used to export data from Hadoop
into external structured data stores.

FIGURE 5-1

At the time of writing, the latest stable version of Sqoop is 1.4.6. You may also be aware that the
next generation of Sqoop (a.k.a. Sqoop2) is also under active development. In this book we focus on
version 1 and do not cover any new features from Sqoop2.

How It Works
With Sqoop, you can import data from a database or a mainframe system into HDFS. For this
input, you can use either database table(s) or mainframe dataset(s). For databases, Sqoop will read
the table row-by-row into HDFS. For mainframe data sets, Sqoop will read records from each
mainframe dataset into HDFS. The output of this process yields a set of fi les containing a copy of
the imported table or data set. The import process is performed in parallel, and for this reason,

Apache Sqoop ❘ 91

c05.indd 04/22/2016 Page 91

the output will be in multiple fi les. The fi les’ format may be text delimited (CSV or TSV for example),
a SequenceFile, or Avro, etc.

After processing data in Hadoop (for example, with Hive or Pig) you may have a result data set that
you can then export to the relational database for consumption by external applications or users.
Sqoop’s export process will read a set of delimited text fi les from HDFS in parallel, parse them
into records, and insert them as new rows in a target database table, or update existing rows if you
specify the column name as an update-key.

The import process from a database to Hadoop is done in two steps as depicted in Figure 5-2.
First, Sqoop introspects the database to gather the necessary table metadata for the data being
imported. Second, there is a map-only MapReduce job that Sqoop submits to Hadoop. This
job uses DBInputFormat, which is backed with JDBC to interact with the database. With
the proper JDBC driver installed, Sqoop can interact with any database system implemented
by JDBC. DBInputFormat is a subclass of InputFormat, which can split up the input
(here in a database table) into logical InputSplits; each of the splits will be assigned to an
individual Mapper. When the Sqoop import command is invoked, it retrieves the table’s
metadata, and generates a class defi nition that can be used to de-serialize the data emitted
from DBInputFromat, and then submit the job to start importing data. The job spawn mapper
transfers data into HDFS in parallel. Sqoop also outputs to Mapper according to the specifi ed
arguments in the command line.

Import Job

Sqoop Sqoop

OutputInput

File

File

File

File

Export Job

Mapper

Mapper

Mapper

Mapper

Mapper

Mapper

Mapper

Mapper

FIGURE 5-2

The export process from Hadoop to a database is done in two steps, but in a reversed way as
depicted in Figure 5-2. The fi rst step is to introspect the database for metadata of the target table,
followed by the second step of transferring the data with a map-only job. Sqoop divides the input
dataset into splits with the help of the concrete FileInputFormat, and then uses individual map

92 ❘ CHAPTER 5 INTEGRATION WITH OTHER SYSTEMS

c05.indd 04/22/2016 Page 92

tasks to write the splits into the target table with the confi gured ExportOutputFormat. Note that
DBOutputFormat is not involved in actual write operations, but it’s only used for confi guration by
Sqoop’s default export job.

Let’s use MySQL as an example to see how to import data into HDFS:

$ $SQOOP_HOME/bin/sqoop import --connect jdbc:mysql://mysqlhost/db --table ↵
 employees --target-dir /sqoop/mysqlimport/employees
16/01/29 22:32:00 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6
16/01/29 22:32:00 INFO manager.MySQLManager: Preparing to use a MySQL streaming ↵
 resultset.
16/01/29 22:32:00 INFO tool.CodeGenTool: Beginning code generation
16/01/29 22:32:00 ERROR sqoop.Sqoop: Got exception running Sqoop: java.lang.
Runtime↵
 Exception:
 Could not load db driver class: com.mysql.jdbc.Driver
java.lang.RuntimeException: Could not load db driver class: com.mysql.jdbc.Driver

From the error message in the terminal, you can see Sqoop requires a JDBC driver to work with
the source database. Install the driver JAR under the $SQOOP_HOME/lib folder and rerun the
import command:

$ ls -l $SQOOP_HOME/lib/mysql*
-rw-r--r-- 1 sqoop hadoop 855946 Jan 29 22:34 mysql-connector-java-5.1.13.jar

$ $SQOOP_HOME/bin/sqoop import --connect jdbc:mysql://mysqlhost/db --table ↵
 employees --target-dir /sqoop/mysqlimport/employees
16/02/09 23:12:06 INFO sqoop.Sqoop: Running Sqoop version: 1.4.6
16/02/09 23:12:06 INFO manager.MySQLManager: Preparing to use a MySQL streaming ↵
 resultset.
16/02/09 23:12:06 INFO tool.CodeGenTool: Beginning code generation
16/02/09 23:12:07 WARN manager.MySQLManager: It looks like you are importing from ↵
 mysql.
16/02/09 23:12:07 WARN manager.MySQLManager: This transfer can be faster! Use the ↵
 --direct
16/02/09 23:12:07 WARN manager.MySQLManager: option to exercise a MySQL-specific ↵
 fast path.

Sqoop recognizes that the import source is MySQL, and suggests that the transfer can be faster
if you use an additional option: --direct. Transferring large volumes of data through JDBC is
often ineffi cient, since database vendors usually provide native utility tools that imports/exports
data in a more high-performance manner. With the option --direct, mysqldump can be used
by Sqoop to import data from MySQL to Hadoop, and mysqlimport can be used for the export
process. Sqoop provides a pluggable mechanism for optimal connectivity to external systems. It
provides a convenient framework for building new connectors, which can be dropped into Sqoop
installations to provide connectivity to various systems. Sqoop itself comes bundled with various
connectors that can be used for popular database and data warehousing systems. Apart from the
built-in connectors, many companies have developed their own connectors that can be plugged
into Sqoop. These range from specialized connectors for enterprise data warehouse systems to
NoSQL datastores. To leverage those native utility tools and optimal connectors in Sqoop jobs,
you need to make sure they are installed properly along with Sqoop on Hadoop worker nodes
(where the mapper tasks run).

Apache Flume ❘ 93

c05.indd 04/22/2016 Page 93

APACHE FLUME

Apache Flume is a distributed, reliable, and available service for effi ciently collecting, aggregating,
and moving large amounts of log data. It has a simple and fl exible architecture based on streaming
data fl ows. It is robust and fault tolerant with tunable reliability mechanisms and many failover and
recovery mechanisms. It uses a simple extensible data model that allows for online analytic applica-
tion. It became a top-level Apache project in June of 2012.

Sensor

ServerGeo

Social

FIGURE 5-3

Sqoop lets users ingest structure data into Hadoop, while Flume enables users to ingest high-
volume streaming data into HDFS, Hive and HBase (See Figure 5-3). Flume was initially created
by Cloudera to enable reliable and simplifi ed collection of log information from many distributed
sources, for example, web servers of large internet companies. It’s also designed to be extensible for
other typical streaming sources like sensor and machine data, geo-location data, and social media
posts. Hadoop is an ideal system to store and process a large volume and variety of those types of
data, but it’s not able to handle a large number of low-bandwidth connections and small fi les being
continuously generated. Flume is designed to address all of these challenges.

The current stable version of Flume is 1.6.0. You may fi nd that some old books, documents or web
blogs mention “Flume NG.” It is actually the current version of Apache Flume (1.x). Back in 2011 it
was the next generation of Flume, compared to the original implementation (pre 1.0) open sourced
by Cloudera in 2009. In this book, we only talk about the current version.

How It works
Flume is designed to be a fl exible distributed system to provide reliable and scalable ways of effi -
ciently collecting, aggregating and transporting large amounts of data from many different sources
to a centralized datastore. Below is the list of its key concepts. By understanding these concepts, you
can better understand the architecture of Flume and how it works:

 ➤ Event: The unit of data transported by Flume from its origination to its destination. Event
has a byte array payload accompanied by an optional header, which is a collection of string
key-value pairs.

 ➤ Client: The entity that generates events and sends them to one or multiple agents. An exam-
ple of a client is Flume log4j Appender. A client is not needed if your application embedded a
Flume agent.

94 ❘ CHAPTER 5 INTEGRATION WITH OTHER SYSTEMS

c05.indd 04/22/2016 Page 94

 ➤ Agent: The unit of Flume deployment that is a container (single JVM process) of hosting
sources, channels, sinks, and other components that enable the transportation of events from
one place to another.

 ➤ Source: The active component that receives events from a specialized place and is put into
one or multiple channels.

 ➤ Channel: The passive component that buffers incoming events from a source until they are
drained by sinks.

 ➤ Sink: The active component that pulls events out of a channel and transmits them to a fi nal
destination or the next agent in the fl ow.

 ➤ Interceptor: An optional component that can transform events before they are put into a
channel.

 ➤ Flow: The pipeline starts from the origination where the event is coming from to its fi nal
destination. The simplest fl ow has one agent.

Table 5-1 is a summary of commonly used components in the Flume agent. For a more comprehen-
sive list of components that Flume supports, you can refer to Flume’s user guide. Like Sqoop, Flume
is also designed to be extensible. The plugin-based architecture enables users to build custom com-
ponents. The fl exible architecture and those reusable components allow you to design a large range
of possible deployment scenarios.

TABLE 5-1: Common Flume Agent Components

TYPE ALIAS DESCRIPTION IMPLEMENTATION CLASS

Source

-avro Receives Avro events from upstream org.apache.fl ume.source.AvroSource

Source

-http Starts http server and turns POST
request into events

org.apache.fl ume.source.http.
HTTPSource

Source

-jms Converts JMS message into events org.apache.fl ume.source.jms.JMSSource

Source

-spooldir Monitors a directory and create events
from the data fi le under the directory

org.apache.fl ume.source.
SpoolDirectorySource

Channel

-memory Holds events in memory org.apache.fl ume.channel.
MemoryChannel

continues

Apache Flume ❘ 95

c05.indd 04/22/2016 Page 95

TYPE ALIAS DESCRIPTION IMPLEMENTATION CLASS

Channel

-fi le Persists events to local disk to avoid
data loss in memory

org.apache.fl ume.channel.fi le.
FileChannel

Channel

-kafka Buffering events with Kafka org.apache.fl ume.channel.kafka.
KafkaChannel

Sink

-avro Sends Avro events downstream org.apache.fl ume.sink.AvroSink

Sink

-hbase Writes events into HBase org.apache.fl ume.sink.hbase.HBaseSink

Sink

-hdfs Writes events into HDFS org.apache.fl ume.sink.hdfs.
HDFSEventSink

In Figure 5-4, you can see a common scenario with Flume being used in a log collection.
A large number of web servers (log producing clients) are sending data to a few tier 1 Agents,
while connecting to a tier 2 Agent, which consolidates the data that is then written
to HDFS.

Avro
Source

Agent 1

File
Channel

Avro
Sink

Avro
Source

Agent 4

File
Channel

HDFS

Avro
SinkAvro

Source

Agent 2

File
Channel

Avro
Sink

Avro
Source

Agent 3

File
Channel

Avro
Sink

Server
Web 1

Web
Server 2

Web
Server 3

Web
Server 4

Web
Server 5

Web
Server 6

Web
Server 7

Web
Server 8

Web
Server 9

FIGURE 5-4

TABLE 5-1: (continued)

96 ❘ CHAPTER 5 INTEGRATION WITH OTHER SYSTEMS

c05.indd 04/22/2016 Page 96

Each agent should be started using a Flume shell script called fl ume-ng. You need to specify the
agent name, the confi g directory, and the confi g fi le on the command line:

$ $FLUME_HOME/bin/flume-ng agent -c <config-dir> -f <config-file> -n <agent-name>

The confi guration fi le follows the Java properties fi le format, and describes the data fl ow within the
agent. Here is a template for the confi guration fi le.

list the sources, sinks and channels for the agent
<agent-name>.sources = <Source>
<agent-name>.sinks = <Sink>
<agent-name>.channels = <Channel1> <Channel2>

set channel for source
<agent-name>.sources.<Source>.channels = <Channel1> <Channel2> ...

set channel for sink
<agent-name>.sinks.<Sink>.channel = <Channel1>

properties for sources
<agent-name>.sources.<Source>.<someProperty> = <someValue>

properties for channels
<agent-name>.channels.<Channel>.<someProperty> = <someValue>

properties for sinks
<agent-name>.sources.<Sink>.<someProperty> = <someValue>

Based on the template, the Agent 4 in Figure 5-4 can be defi ned as:

agent4.sources = source-4-avro
agent4.sinks = sink-4-hdfs
agent4.channels = channel-4-file

agent4.sources.source-4-avro.channels = channel-4-file
agent4.sinks.sink-4-hdfs.channel = channel-4-file

agent4.sources.source-4-avro.type = avro
agent4.sources.source-4-avro.bind = localhost
agent4.sources.source-4-avro.port = 10000

agent4.channels.channel-4-file.type = memory
agent4.channels.channel-4-file.capacity = 1000000
agent4.channels.channel-4-file.transactionCapacity = 10000
agent4.channels.channel-4-file.checkpointDir = /mnt/flume/checkpoint
agent4.channels.channel-4-file.dataDirs = /mnt/flume/data

agent4.sinks.sink-4-hdfs.type = hdfs
agent4.sinks.sink-4-hdfs.hdfs.path = hdfs://namenode/flume/weblogs

Flume provides channel-based transactions to guarantee reliable event delivery. When an event
moves from one agent to another, two transactions are started, one on the agent that delivers the
event and the other on the agent that receives the event. The fi rst transaction is initiated by sending
agent’s sink, while the second one is initiated by receiver’s source. The commit of fi rst transaction
depends on the second transaction. The receiving agent returns a success indication if its transaction
committed properly (the event successfully put into the channel), then the sending agent commits

Apache Kafka ❘ 97

c05.indd 04/22/2016 Page 97

its transaction. This ensures guaranteed delivery semantics with the host that the fl ow makes. This
mechanism also forms the basis for failure handling in Flume. Failure can be propagated from
downstream to upstream through the fl ow. When the upstream agent is not able to pass the event
downstream (due to network connection error, for example), it starts buffering the events in its
channel. Once the connection has recovered, the buffered event will be drained out toward the
fi nal destination. The memory channel simply holds the events in memory, which is fast, but it’s not
recoverable if any crash happens. As a result, use the fi le channel, which is backed by the local fi le-
system and is recommended if you need durability and recoverability. Using a Kafka channel is even
better, because Kafka is a high-throughput distributed messaging system that keeps strong durabil-
ity and fault-tolerance guarantees. We will continue to discuss Kafka in the next section.

APACHE KAFKA

Apache Kafka is a high performance system for moving data in real time. From a high level, Kafka
looks like a messaging system—clients publish messages to Kafka and messages are delivered in mil-
liseconds. But Kafka works more like a distributed database: When you write a message to Kafka,
it is replicated to multiple servers and committed to disk. Kafka is designed as a modern distributed
system. The cluster is elastically scalable and fault tolerant, and applications can transparently scale
out to produce or consume massive distributed streams. Kafka has become a key enabler for real
time data processing.

Kafka was originally developed by LinkedIn, and subsequently became an open source project in
2011. In October 2012, it graduated from the Apache Incubator and started fl ourishing in the open
source community. Initially, Kafka was designed as an effi cient and scalable event queueing solution
for user activity tracking on LinkedIn’s website. Later it was extended to feed all activity events to
the data warehouse and Hadoop for offl ine batch analysis. Because of its high throughput, reliable
event delivery, and horizontal scalability, Kafka is being widely used as a general-purpose messaging
system to support various use cases, which include:

 ➤ Website activity tracking

 ➤ Metrics collection and monitoring

 ➤ Log aggregation

 ➤ Stream processing and real time analytics

 ➤ Internet of Things

The original engineers of Kafka departed LinkedIn and started a company named Confl uent to
focus on building out the Kafka ecosystem to broaden its community. The major product of the
company is the Confl uent Platform (see Figure 5-5), which includes Kafka as the core and several
components around Kafka to make it enterprise ready. The Confl uent Platform is open source, free
to use, and was released with an Apache license. The company provides commercial support for the
platform, so it runs the same business model as Hortonworks for Hadoop.

The latest version of Kafka is 0.9.0, whereas the latest stable version is 0.8.2.2. We are going to use
the version 0.9.0 for discussion in this section, because in this release, several new features have
been introduced, which make Kafka enterprise ready. Those features include security, user defi ned
quota, and Kafka Connect.

98 ❘ CHAPTER 5 INTEGRATION WITH OTHER SYSTEMS

c05.indd 04/22/2016 Page 98

Connectors

File
Connector

JDBC
Connector

Kafka
Connect

Apache Kafka

Hadoop
Connector

Java
Client

C/C++
Client

REST
Proxy

Schema
Registry

Clients

FIGURE 5-5

How It Works
Kafka basically provides a distributed, partitioned, and replicated commit log service to its users. It
has a simple high level design that can be depicted, as shown in Figure 5-6.

Kafka Cluster

Broker 1
Producer

Producer

Producer

Producer

Consumer

Consumer

Consumer

Consumer

Broker 2

Broker 3

FIGURE 5-6

From the architecture perspective, Kafka provides the functionality for message producing and
consuming. Topic is the category or feed name to which messages are published. Producer is the
client process that publishes messages to a Kafka topic. Messages are simply byte arrays and can
hold any object in any format, such as: String, JSON, and Avro. Consumer is the client process that

Apache Kafka ❘ 99

c05.indd 04/22/2016 Page 99

subscribes to topics. Kafka itself runs as a cluster with one or more servers, each process of which
is called a Broker. Kafka maintains feeds of messages in categories called topics. As for coordina-
tion and facilitation of distributed systems, ZooKeeper is used, for the same reason the Kafka
cluster is using it. ZooKeeper is used for managing and coordinating Kafka brokers. Starting from
0.9, ZooKeeper’s dependency from the clients (both Producer and Consumer) can be completely
removed, but it is required internally by Kafka cluster.

The topic can be partitioned, and each partition is an ordered, immutable sequence of messages
that is continually appended to—a commit log. The messages in the partitions are each assigned
a sequential id number called the offset that uniquely identifi es each message within the parti-
tion. The partition allows the log to scale beyond a size that will fi t on a single server. Each parti-
tion must fi t on the servers that host it, but a topic may have many partitions so it can handle an
arbitrary amount of data. The partitions of the log are distributed over the brokers in the cluster,
with each server handling data and requests for a share of the partitions. More partitions allow
greater parallelism. A partition can be replicated across a confi gurable number of servers for fault
tolerance. Each partition has one broker that acts as the leader, and zero or more brokers that act
as followers. The leader handles all read and write requests for the partition, while the followers
passively replicate the leader. If the leader fails, one of the followers will automatically become
the new leader (coordinated by Zookeeper). Each broker acts as a leader for some of its partitions,
and a follower for others, so the load is well balanced within the cluster. To illustrate, let’s create
a topic with a Kafka command line tool; “mytopic” is created with two partitions and two repli-
cas across two brokers:

$ $KAFKA_HOME/bin/kafka-topics.sh --create --zookeeper localhost:2181
 --replication-factor 2 --partitions 2 --topic mytopic

$ $KAFKA_HOME/bin/kafka-topics.sh --describe --zookeeper localhost:2181 --topic ↵
 mytopic
Topic:mytopic PartitionCount:2 ReplicationFactor:2 Configs:
 Topic: mytopic Partition: 0 Leader: 0 Replicas: 0,1 Isr: 0,1
 Topic: mytopic Partition: 1 Leader: 1 Replicas: 1,0 Isr: 1,0

Here is an explanation of output. The fi rst line gives a summary of all of the partitions, and each
additional line gives information about one partition.

 ➤ Leader is the broker node responsible for all reads and writes for the given partition.
Each node will be the leader for a randomly selected portion of the partitions.

 ➤ Replicas is the list of nodes that replicate the log for this partition, regardless of whether
they are the leader or even if they are currently alive.

 ➤ Isr is the set of in-sync replicas. This is the subset of the replicas list that is currently alive
and has caught-up to the leader.

The producer is responsible for choosing which message to assign to which partition within the
topic. This can be done in a round-robin fashion, simply to balance the load, or it can be done
according to some semantic partition function (based on some key in the message). The cluster
retains all messages—whether or not they have been consumed—for a confi gurable period of time
or size of data. Once the confi gured retention time or size is reached, old messages will be discarded
to free up space.

100 ❘ CHAPTER 5 INTEGRATION WITH OTHER SYSTEMS

c05.indd 04/22/2016 Page 100

The only metadata retained on a per-consumer basis is the offset. The consumer tracks the maxi-
mum offset it has consumed in each partition, and periodically commits its offset vector, so that it
can resume from those offsets in the event of a restart. Consumer can also reset the offset for con-
sumption if it needs to consume old messages. Since version 0.9.0, the Consumer offset can be man-
aged through a special compacted Kafka topic, without Zookeeper, which was seen as the potential
bottleneck in previous versions of Kafka.

As a distributed messaging system, Kafka is able to provide different levels of message delivery
guarantees. Kafka guarantees at-least-once delivery (messages are never lost but may be redelivered)
by default, and allows you to implement at-most-once delivery (messages may be lost, but are never
redelivered) by disabling retries on the producer, and committing its offset prior to processing a
batch of messages. Exactly-once delivery (strongest guarantee, since each message is delivered once
and only once) requires cooperation with the destination system, but Kafka provides the offset that
makes implementing this straight forward.

Kafka Connect
Kafka’s fl exible and scalable design allows Consumers to periodically consume batch data loads that
periodically bulk-load data into an offl ine system such as Hadoop.

Before Kafka 0.9, there were two ways to load Kafka messages into Hadoop: Use a customized
MapReduce job or use Kafka as source in Flume. Camus is the most famous solution of the fi rst
approach, which is also initiated in LinkedIn. From the previous section in this chapter, you have
learned how Flume works. Now, you can see how there is signifi cant overlap in the functions of
Flume and Kafka. Flume has many built-in sources and sinks, and Kafka source and sink is among
them. Flume can also use Kafka as a reliable channel. If you have already set up Flume to work
with your Hadoop cluster, then Kafka can be easily integrated with the cluster through Flume
(see Figure 5-7).

K
af

ka
 C

o
nn

ec
t

K
af

ka
 C

o
nn

ec
t

Data
Source

Data
Sink

FIGURE 5-7

Kafka Connect is a new feature added in version 0.9. It is the standard framework for Kafka con-
nectors, which standardizes integration of other data systems with Kafka, thus simplifying connec-
tor development, deployment, and management. You may realize that the primary goal of Kafka
Connect, copying data between systems, has been tackled by a variety of frameworks and tools.
So why do we need another framework? The detailed motivation and rationale can be found in the
original proposal (KIP-26) for this feature. In short, most of the existing solutions do not integrate
optimally with Kafka. Kafka Connect abstracts the common problems the third party connectors
need to solve: fault tolerance, partitioning, offset management, and message delivery semantics.

Apache Kafka ❘ 101

c05.indd 04/22/2016 Page 101

Since Kafka is becoming the de facto standard stream data store, Kafka Connect will be the
 solution to make Kafka the central hub for data exchange between different systems.

The Kakfa HDFS Connector is one of the connectors created for Kafka Connect, which moves
data from Kafka into HDFS, integrating it with Hive. The connector periodically polls data
from Kafka and writes it to HDFS. The data from each Kafka topic is partitioned by the pro-
vided partitioner and divided into chunks. Each chunk of data is represented as an HDFS fi le
with the topic, the Kafka partition, and the start and end offsets of this data chunk in the fi le-
name. If no partitioner is specifi ed in the confi guration, the default partitioner preserves the
Kafka partitioning that will be used. The size of each data chunk is determined by the number
of records written to HDFS, and the time written to HDFS and schema compatibility. This con-
nector can optionally integrate with Hive. When enabled, the connector automatically creates
an external Hive partitioned table for each Kafka topic and updates the table according to the
available data in HDFS.

The Kafka JDBC Connector is another connector shipped with Confl uent Platform. It allows load-
ing data from any JDBC-compatible database into Kafka. Data is loaded by periodically executing
a SQL query, and creating an output record for each row in the result set. By default, all tables in
a database are copied, each to its own output topic, making it easy to ingest entire databases into
Kafka. The database is monitored for new or deleted tables, and adapts automatically. When copy-
ing data from a table, the connector can load only new or modifi ed rows by specifying which col-
umns should be used to detect changes. Using HDFS and JDBC Connector together, you can build
a scalable data pipeline to export data from RDBMS and load it into Hadoop. Does it sound like
a similar functionality as Sqoop? Yes, but it is implemented in a totally different way. But unlike
Sqoop, the only destination of the database records is Hadoop. With Kafka Connect, however, the
destination could be stream processing systems, illustrating its unique feature set.

Stream Processing
Stream processing in our context is the processing
of data streams being produced as data arrives in
the system. It enables continuous computation, real
time data processing, and transformation. Kafka
provides guaranteed message delivery with low
end-to-end latency. A single Kafka broker can han-
dle hundreds of megabytes of reads and writes per
second from thousands of clients. It makes stream
processing a common use case of Kafka, because
it is the ideal system of both source and sink for
stream processing.

Stream processing can be modeled as a trans-
formation between streams, seen as a Directed
Acyclic Graph (DAG, shown in Figure 5-8). A
stream processing job continually reads from one
or more data streams, and outputs one or more
data streams of output. For example, data is

Stream A

Stream D

Stream F

Stream E

Stream B Stream C

Process 2

Process 3

Process 1

FIGURE 5-8

102 ❘ CHAPTER 5 INTEGRATION WITH OTHER SYSTEMS

c05.indd 04/22/2016 Page 102

consumed from topics of raw data and then aggregated, enriched, fi ltered, and transformed into new
Kafka topics for further consumption. Publishing data back into Kafka like this provides a number
of benefi ts. First, it decouples parts of the processing graph. One set of processing jobs may be writ-
ten by one team and another by another. And they may be built using different technologies. Most
importantly, we don’t want a slow downstream processor to be able to cause back-pressure to seize
up anything that feeds data to it. Kafka acts as this buffer between the processors that can let an
organization happily share data.

The most basic approach is writing an application, directly using the Kafka APIs, to create a custom
Consumer to read input data stream, process that input, and produce output stream as a custom
Producer. This can be done in a simple program in any programming language. However, this type
of application can be made easier and more scalable with the help of a stream processing frame-
work—such as Storm, Samza, Flink, or Spark’s Streaming module—that provides richer stream pro-
cessing primitives. All of them provide good integration with Kafka.

APACHE STORM

Apache Storm is a distributed real time computation system for processing large volumes of high-
velocity data. Storm makes it easy to reliably process unbounded streams of data, doing for stream
processing what MapReduce did for batch processing. Storm provides a simple API and enables
developers to write Storm topologies using any programming language. It adds reliable real time
processing capabilities to the Hadoop ecosystem. Using Storm, a Hadoop cluster can effi ciently pro-
cess a full range of workloads, from real time to interactive to batch.

In September 2013, Storm entered the Apache Software Foundation (ASF) as an incubator proj-
ect. It became a top level Apache project in September of 2014. There are several major branches
in Storm’s codebase: 0.9.X, 0.9.6 (the latest stable release version), and 0.10.X. 0.10.0 is another
release version that includes security, multi-tenant deployment support, and a couple of performance
improvements: 1.x is targeting the next major release (V1) and also 2.x, and the community is
actively working on merging JStorm’s codebase into Storm. JStorm was originally a fork of Storm,
where Clojure implemented the core module reimplemented in Java by Alibaba. After 4 years of
active development and production deployment at Alibaba’s scale, JStorm has been proven to be
more stable, feature rich, and better than Storm. In October 2015, JStorm was offi cially donated
to the Apache Foundation, and the community decided to merge it into Storm. In this book we are
using version 0.9.6 of Storm.

The past decade has seen a revolution in data processing. MapReduce, Hadoop, and Spark related
technologies have made it possible to store and process data at previously unthinkable scales.
Unfortunately, these data processing technologies are not real time systems, nor are they meant to
be. There’s no hack that will turn Hadoop into a real time system. Spark Streaming is still a batch
system at heart. Real time data processing has a fundamentally different set of requirements than
batch processing. However, real time data processing at a massive scale is becoming more and more
of a requirement for businesses. The lack of a “Hadoop of real time” has become the biggest hole in
the data processing ecosystem. Storm fi lls that hole. Storm is extremely fast, with the ability to pro-
cess over a million records per second per node. It is scalable, fault-tolerant, guarantees the data will
be processed, and is easy to set up and operate.

Apache Storm ❘ 103

c05.indd 04/22/2016 Page 103

Storm has many use cases: real time analytics, online machine learning, continuous computation,
distributed RPC, ETL, and more. Theoretically, Storm can integrate with any message queues and
database systems.

How It Works
As a distributed computing system, Storm follows the classic master and slave style architecture.
There is one master node that runs a daemon called Nimbus, which is responsible for distributing
a job around the cluster, assigning tasks to machines, and monitoring for failures. There are
 multiple slave nodes, each of them running a daemon called the Supervisor. The supervisor listens
for work assigned to its machine and starts and stops worker processes as necessary, based on what
Nimbus has assigned to it. All coordination between Nimbus and the Supervisors is done through
a Zookeeper cluster (see Figure 5-9). Additionally, the Nimbus and Supervisor daemons fail-fast
and are stateless, given that all state is kept in Zookeeper or on a local disk. If the Nimbus dies,
supervisors will continue to run.

Nimbus

Supervisor

Supervisor

Supervisor

Supervisor

Supervisor

Zookeeper

Zookeeper

Zookeeper

FIGURE 5-9

Storm uses two basic programming primitives to simplify distributed and parallel stream processing:
Spout and Bolt. A Spout is a source of streams. For example, Kafka can be a type of Spout. A Bolt
consumes any number of input streams, does some processing, by possibly emitting new streams or
writing data into a data store. Complex stream transformations may require multiple steps and thus
multiple Bolts (Figure 5-10). Networks of Spouts and Bolts are packaged into a Topology, which is
the top-level abstraction that you submit to Storm clusters for execution. A topology can be repre-
sented as a graph of computation. Each node is a Spout or Bolt, and edges between nodes indicate
how data should be passed around between them.

Storm uses Tuple as its key data structure to model the data being processed in a topology. A tuple is
a named list of values, and a fi eld in a tuple can be an object of any type. Out of the box, Storm sup-
ports all the primitive types, strings, and byte arrays as tuple fi eld values. It also allows you to defi ne

104 ❘ CHAPTER 5 INTEGRATION WITH OTHER SYSTEMS

c05.indd 04/22/2016 Page 104

your own type of tuple. A Spout can emit a stream of
tuples from a data source. A Bolt can do anything from
run functions, fi lter tuples, do streaming aggregations,
do streaming joins, talk to databases, and so on.

Storm can spawn multiple worker processes across dif-
ferent Supervisors for a single topology. Each worker
process is a physical JVM process that can spawn one
or more executor threads. Each executor can run one or
more actual data processing tasks for the same topol-
ogy component (Spout or Bolt). Storm API allows you
to confi gure the parallelism of a topology: number of

worker processes, number of executors, and number of tasks.

Strom provides different kinds of stream grouping strategies to allow you to defi ne how the stream
should be partitioned across tasks and how tuples should be shuffl ed from Spout to Bolt, or from
Bolt to Bolt. Here is a list of the grouping strategies:

 ➤ Shuffl e grouping: Tuples are randomly distributed across the Bolt’s tasks in a way such that
each Bolt is guaranteed to get an equal number of tuples.

 ➤ Fields grouping: The stream is partitioned by the fi elds specifi ed in the grouping. Tuples with
the same value of the specifi ed fi elds will always go to the same task.

 ➤ Partial Key grouping: The stream is partitioned by the fi elds specifi ed in the grouping, like the
Fields grouping, but are load balanced between two downstream Bolts, which provide better
utilization of resources when the incoming data is skewed.

 ➤ All grouping: The stream is replicated across all of the Bolt’s tasks.

 ➤ Global grouping: The entire stream goes to a single one of the Bolt’s tasks.

 ➤ Direct grouping: This is a special kind of grouping. A stream grouped this way means that
the producer of the tuple decides which task of the Consumer will receive this tuple. Direct
groupings can only be declared on streams that have been declared as direct streams.

 ➤ Local or shuffl e grouping: If the target Bolt has one or more tasks in the same worker pro-
cess, tuples will be shuffl ed to only those in-process tasks. Otherwise, this acts like a normal
shuffl e grouping.

A topology runs forever, or until you kill it. Storm will automatically reassign any failed tasks.
Additionally, Storm guarantees that there will be no data loss, even if machines go down and mes-
sages are dropped. Storm guarantees that every tuple emitted by Spout will be fully processed by the
topology. It does this by tracking the tree of tuples triggered by every Spout tuple, thus determining
when that tree of tuples has been successfully completed. Every topology has a “message timeout”
associated with it. If Storm fails to detect that a Spout tuple has been completed within that timeout,
then it fails the tuple and replays it later.

The Storm code base includes a sub-project storm-starter, and it’s a good place for you to get started
with Storm programming. The offi cial documentation also provides a good summary of the com-
mon Topology patterns, With the concepts introduced previously, you can build some exciting
streaming processing applications.

Bolt

Bolt

BoltSpout

Spout Bolt

FIGURE 5-10

Apache Storm ❘ 105

c05.indd 04/22/2016 Page 105

Trident
In addition to a normal API for building topologies, Storm also provides Trident API, which is a
high-level abstraction for doing real time computing on top of Storm. The concepts of Trident will
be very familiar to you, if you are familiar with high level batch processing frameworks like Pig
or Cascading. Trident lets you elegantly express real time computation while still getting maximal
performance. It allows you to build fault-tolerant real time computation in a natural way without
touching low level APIs to control the stream groupings, and to acknowledge tuples. In addition to
this, Trident adds primitives for doing stateful, incremental processing, on top of any database or
persistence store. Most importantly, Trident has consistent and exactly-once semantics, which nor-
mal APIs don’t have. If you need to build some applications that require the strongest consistency,
you should use the Trident API.

The following code snippet illustrates the word counting program implemented with Trident.

TridentTopology topology = new TridentTopology();
TridentState wordCounts =
 topology.newStream("spout1", spout)
 .each(new Fields("sentence"), new Split(), new Fields("word"))
 .groupBy(new Fields("word"))
 .persistentAggregate(new MemoryMapState.Factory(), new Count(), new Fields
 ("count"))
 .parallelismHint(6);

Assume that the topology reads an infi nite stream of sentences from Spout. With Trident’s fl uent
API, split sentence and aggregation can be done in a single line of code. The aggregated count-
ing result is then continuously persistent into a state. In this example, MemoryMapState.Factory,
means store in memory, but it can be easily replaced by Memcached, Cassandra, or some other
store. This is just a little taste of the Trident API, since you can refer to project storm-starter for
more examples.

Kafka Integration
The Storm community provides a bunch of components to integrate with other systems. Some of
them are shipped with Storm as built-in components. They are released as external modules in tan-
dem with Storm in order to maintain version compatibility. Storm version 0.9.6 includes 3 external
modules: storm-hbase, storm-hdfs, and storm-kafka. Version 0.10.0 includes even more: storm-hive,
storm-jdbc, and storm-redis etc. And more will be added in future releases.

In terms of integrating with Kafka, from Figure 5-8, it’s very clear that Kafka can act as a Spout or
a Blot. The storm-kafka module provides both implementations. Let’s take a look at the examples.
It is necessary to add the below dependencies into your application’s pom.xml fi le:

<dependency>
 <groupId>org.apache.storm</groupId>
 <artifactId>storm-core</artifactId>
 <version>${storm.version}</version>
 <scope>provided</scope>
</dependency>
<dependency>
 <groupId>org.apache.storm</groupId>

106 ❘ CHAPTER 5 INTEGRATION WITH OTHER SYSTEMS

c05.indd 04/22/2016 Page 106

 <artifactId>storm-kafka</artifactId>
 <version>${storm.version}</version>
</dependency>
<dependency>
 <groupId>org.apache.kafka</groupId>
 <artifactId>kafka_2.10</artifactId>
 <version>0.8.2.2</version>
 <scope>provided</scope>
 <exclusions>
 <exclusion>
 <groupId>org.apache.zookeeper</groupId>
 <artifactId>zookeeper</artifactId>
 </exclusion>
 <exclusion>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 </exclusion>
 </exclusions>
</dependency>

Both normal and Trident Spouts are supported:

BrokerHosts hosts = new ZkHosts(zkConnString);//kafka zookeeper
//the Zkroot will be used as root path in zookeeper to store consumer offset
 for this spout.
//The clientId should uniquely identify your spout.
SpoutConfig spoutConfig = new SpoutConfig(hosts, topicName, zkRoot, clientId);
//deserialize the message as string
spoutConf.scheme = new SchemeAsMultiScheme(new StringScheme());
//normal spout only accepts an instance of SpoutConfig
KafkaSpout kafkaSpout = new KafkaSpout(spoutConfig);

TridentKafkaConfig tridentSpoutConf = new TridentKafkaConfig(hosts, topicName);
tridentSpoutConf.scheme = new SchemeAsMultiScheme(new StringScheme());
//Trident spout takes TridentKafkaConfig
OpaqueTridentKafkaSpout spout = new OpaqueTridentKafkaSpout(tridentSpoutConf);

To write tuples into Kafka you can use the bolt storm.kafka.bolt.KafkaBolt. If you use Trident
you can use:

storm.kafka.trident.TridentState, storm.kafka.trident.TridentStateFactory

or:

storm.kafka.trident.TridentKafkaUpdater

KafkaBolt bolt = new KafkaBolt()
 .withTopicSelector(new DefaultTopicSelector("testTopic"))
 .withTupleToKafkaMapper(new FieldNameBasedTupleToKafkaMapper());//from the
 package storm.kafka.bolt.mapper

TridentKafkaStateFactory stateFactory = new TridentKafkaStateFactory()
 .withKafkaTopicSelector(new DefaultTopicSelector("testTopic"))
 .withTridentTupleToKafkaMapper(new FieldNameBasedTupleToKafkaMapper("word",
 "count"));//from the package storm.kafka.trident.mapper

Summary ❘ 107

c05.indd 04/22/2016 Page 107

SUMMARY

 This chapter provides a broad overview of how to integrate Hadoop with other systems. We intro-
duced four open source projects from the Apache family: Sqoop, Flume, Kafka, and Storm. Sqoop’s
main use case is to transfer bulk data between Hadoop and structured data stores, such as relational
databases. Flume’s main use case is to ingest data into Hadoop. Even Kafka and Storm can be used
as the bridge to connect Hadoop with other systems. All of them are designed to be extensible to
support a different data source, but they also have their own unique design and primary features.
Kafka is the key enabler for stream processing, and can be used as a central message hub. Storm is
designed to be a stream processing engine. Kafka, together with Storm, can move data faster and
process data in real time. Now, you should have a better understanding of how to fi t Hadoop into
existing IT environments and extend its capability by integrating with these technologies.

c06.indd 04/22/2016 Page 109

Hadoop Security
WHAT’S IN THIS CHAPTER?

 ➤ Securing Hadoop Cluster

 ➤ Securing Data stored in Cluster

 ➤ Securing Applications running in Cluster

Given that Hadoop is used for storing and processing an organization’s data, it is impor-
tant to secure the Hadoop cluster. The security requirements vary depending on the
sensitivity of data stored on the cluster. Some clusters are used to address a single use case
with very few users (dedicated clusters). Some other clusters are general-purpose clusters
used by many users belonging to different teams. The security requirements of a dedicated
cluster are different from that of a shared cluster. In addition to storing lots of data for
a long time, Hadoop accepts arbitrary programs from users, which are launched as
 independent Java processes on many machines in the cluster. If not properly constrained,
these programs can create unwanted effects on the cluster, data, and programs run by
other users.

When Hadoop was originally developed, the security features were limited, but over
the years, many security features have been added. New features are being developed
and existing features are being enhanced all of the time. In this chapter we will discuss
various security features supported by Hadoop. We start with perimeter security to pro-
tect the network of the Hadoop cluster. We will go over the authentication mechanism
supported by Hadoop to identify the user. Once a user is properly identifi ed, the authori-
zation rules specify the user’s privileges to consume resources and the actions that can be
performed by the user. It’s possible to apply different levels of protection to the channel
used to communicate with the cluster. Since Hadoop supports RPC and HTTP protocols

6

Professional Hadoop®. Benoy Antony, Konstantin Boudnik, Cheryl Adams, Branky Shao, Cazen Lee and Kai Sasaki
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

110 ❘ CHAPTER 6 HADOOP SECURITY

c06.indd 04/22/2016 Page 110

to service different requests, we will learn how to apply a desired quality of protection
for each protocol. In addition, we’ll identify how to transmit data securely to and from
the cluster.

Since data is the primary resource in a Hadoop cluster, features to protect that data require
 special attention. You can restrict access to this data using fi le permissions and ACLs. You
must encrypt some of this data, and so HDFS encryption helps you address this requirement.
Users can submit applications containing arbitrary data processing logic. To ensure authorization
and accountability, applications needs to be executed using the identity of the submitter. The
applications themselves can have ACLs control the users who can modify the application and
view the application status including job counters. The access to computing resources can also
be restricted using Queues and ACLs.

SECURING THE HADOOP CLUSTER

A Hadoop cluster can consist of hundreds or thousands of computers “glued” together to provide
big data storage and computing. Securing the Hadoop cluster involves taking care of a number of
things, including perimeter security, authentication of servers and users, and authorization of users
to perform actions on cluster.

 Perimeter Security
Perimeter security is comprised of mechanisms to control access to the computers that form the
cluster. A Hadoop cluster consists of hundreds or even thousands of computers, so let’s examine the
various types of cluster classifi cations (see Figure 6-1):

 ➤ Master nodes: The master nodes run Hadoop servers like NameNode and ResourceManager.

 ➤ Slave nodes: The slave nodes are the workhorse machines. Hadoop servers like DataNodes
and NodeManagers run on these machines. These machines also run user applications like
mapreduce tasks.

 ➤ Edge nodes: On edge nodes, users run Hadoop commands.

 ➤ Management nodes: Management nodes are machines from which administrators perform
installations, upgrades, fi xes, etc.

 ➤ Gateway nodes: Servers like Hue servers or Oozie servers are installed on gateway nodes.
These servers provide higher-level services on top of Hadoop.

Access to the machines inside the cluster can be restricted using fi rewalls and authorization
rules on the local systems. Firewall rules limit the machines and ports accessible from outside
the fi rewall, and authorization rules limit the users trying to connect to specifi c protocols
(see Table 6-1).

Securing the Hadoop Cluster ❘ 111

c06.indd 04/22/2016 Page 111

Clients

Management
Node

Master Node

Slave Node

Edge Node Gateway Node

FIGURE 6-1

TABLE 6-1: Node types

NODE TYPES ACCESS POLICY EXAMPLES

Edge Nodes Allow SSH from client machines for authorized
Hadoop users.

Hadoop Client
machines (CLIs)

Management Nodes Allow SSH from clients for authorized
Administrators.

Ansible/Puppet
Hosts

Gateway Nodes Allow access to well defi ned service ports
from client machines.

Allow SSH from clients for authorized
Administrators.

Hive Servers, Hue
Servers, Oozie
servers

continues

112 ❘ CHAPTER 6 HADOOP SECURITY

c06.indd 04/22/2016 Page 112

NODE TYPES ACCESS POLICY EXAMPLES

Master Nodes Allow access to well defi ned service ports
from edge nodes.

Allow SSH from management nodes for
authorized Administrators.

NameNode,
ResourceManager,
Hbase Master

Slave Nodes Allow access to well defi ned service ports
from edge nodes.

Allow SSH from management nodes for
authorized Administrators.

DataNodes,
NodeManagers,
Region Servers

Authentication Using Kerberos
Authentication is the process by which a system or service recognizes its clients. This normally
involves a client providing a proof to support its claim of an identity, and the server recognizes the
identity after verifying the proof.

Hadoop uses Kerberos for authentication. Many systems use Secure Sockets Layer (SSL) for
client-server authentication. Hadoop chose Kerberos over SSL due to the following reasons:

 ➤ Better performance: Kerberos uses symmetric key operations, and hence it is much faster
than SSL, which use asymmetric key operations.

 ➤ Simpler user management: It’s easy to revoke user access by disabling the user in the Authenti-
cation server. SSL uses revocation lists, which are diffi cult to synchronize and hence unreliable.

Kerberos Protocol
Kerberos is a strong authentication mechanism that involves three parties: client, service, and
authentication server. The authentication server has two components: Authentication Service (AS)
and Ticket Granting Service (TGS). Authentication server holds passwords belonging to all parties,
and there can be multiple clients and multiple servers. A simplifi ed interaction diagram between
 client, authentication server, and server (service) is shown in Figure 6-2.

Authentication Server

Server

Client

TGT, Server Name

Client to Server Ticket

Client to Server Ticket,
Authenticator

Auth Verification

Ticket Granting Ticket
(TGT)

User Name

FIGURE 6-2

TABLE 6-1: (continued)

Securing the Hadoop Cluster ❘ 113

c06.indd 04/22/2016 Page 113

Let’s go over the six steps involved when a client authenticates to service.

 1. A user on the client machine starts the authentication process by typing kinit. Kinit
prompts for a password for the user, and the Kerberos library on the client machine will
transform the password into a secret key. It sends the user name to the authentication
server. The authentication server looks up the user from its database, reads the password,
and transforms the password to a secret key. The authentication server generates a Ticket
Granting ticket (TGT). The TGT includes the client Id, the client network address, the
ticket validity period, and the Client/TGS session key. The TGT will be encrypted using the
secret key of the TGS. The server also sends a Client/TGS Session Key encrypted using
the secret key of the client.

 2. The client uses the secret key generated from its password to obtain the Client/TGS Session
Key. The session key is used to obtain the TGT from the message received from the
authentication server and caches TGT for later use. The session key is also cached and will
be used for communication with the TGS.

 3. When the client needs to authenticate to a server (service), the client sends its cached TGT
and server (service) name to the authentication server. It also sends an authenticator, which is
protected by encryption with the Client/TGS Session Key.

 4. TGS decrypts TGT using TGS’s secret key. The TGS obtains the Client/TGS Session Key
from the TGT. Then it validates the authenticator using a Client/TGS Session Key. After
validating the TGT, the server checks to see whether the Server (service) exists on the
authentication server’s database. If present, the TGS generates a client-to-server ticket.
The client-to-server ticket includes the client ID, client network address, validity period,
and Client/Server Session Key. The Client-to-server ticket will be encrypted using the
server’s secret key. The server also sends a Client/Server Session Key encrypted with the
Client/TGS Session Key.

 5. The client will send the client-to-server ticket to the server (service). The client also sends
an authenticator, which includes the client ID, the time stamp and is encrypted using the
Client/Server Session Key. The server (service) decrypts the client-to-server ticket using
its secret key and obtains the Client/Server Session Key. Then it verifi es the authenticator
using the Client/Server Session Key. It also reads the Client ID from the client-to-server
ticket. The server (service) increments the time stamp found in the authenticator and
sends a confi rmation message to the client. This will be encrypted using the Client/Server
Session Key.

 6. The client decrypts the confi rmation message using the Client/Server Session Key. The client
checks whether the time stamp is correct. If so, the client can trust the server (service) and
can start issuing service requests to the server (service).

Advantages of Kerberos
 1. A secure communication channel is not needed for authentication, because the password is

never transmitted from one party to another.

 2. Kerberos is stable and widely supported on all platforms.

114 ❘ CHAPTER 6 HADOOP SECURITY

c06.indd 04/22/2016 Page 114

Disadvantages of Kerberos
 1. The authentication server is a single point of failure. This can be mitigated by the presence

of multiple authentication servers.

 2. Kerberos has strict time requirements, and the clocks of the involved hosts must be
 synchronized within confi gured limits.

Kerberos Principals
An identity on a Kerberos system is termed a Kerberos principal. The principal can have multiple
components separated by /. The last component is the name of the realm, separated from the rest
of the principal by @. The realm name is used to identify the Kerberos database, which houses a
 hierarchical set of principals. The examples of Kerberos principals are:

 ➤ userA@example.com: A two part principal that identifi es userA who belongs to realm
 example.com.

 ➤ hdfs/NameNode.networkA.example.com@example.com: A three part principal that
identifi es a service running on the machine namenode.networkA.example.name. A three-
part principal is normally associated with Hadoop servers like NameNode, DataNodes,
and ResourceManager.

Kerberos assigns tickets to the Kerberos principal. In a Hadoop cluster, all of the servers and users
should have a principal, and ideally, there should be a unique principal for each server.

Kerberos Keytabs
As described earlier, the client provides a password to generate the secret key while obtaining
Kerberos tickets. But in a long running service like NameNode or DataNode, which needs to renew
tickets periodically, it is not practical for a person to provide a password whenever a new ticket is
required.

Keytabs solve this problem. The keytab is a fi le containing pairs of Kerberos principals and an
encrypted copy of that principal’s secret key. The secret key is derived from the password of the
principal. So keytab is a very sensitive fi le and should be protected in the same way as the password.
When the password of a principal changes, the keytab fi le should also be updated with the new
secret key.

All of the Hadoop servers should have a principal and keytab fi le that contains the principal and its
secret key. Hadoop servers use the keytab to stay authenticated with each other. The users who run
periodic jobs without human intervention can also use keytabs.

Simple Authentication and Security Layer (SASL)
Simple Authentication and Security Layer (SASL) is a framework for authentication and data
security that can be reused by application protocols. Different authentication mechanisms can be
plugged in to the SASL framework. An application that incorporates SASL can potentially use any
authentication mechanism supported by SASL. The mechanisms can also provide a data security
layer offering data integrity and data confi dentiality.

Securing the Hadoop Cluster ❘ 115

c06.indd 04/22/2016 Page 115

Hadoop uses SASL to incorporate the security layer for its communication protocol (RPC) and
data transfer protocol. Using SASL, Hadoop supports Kerberos and Digest-MD5 authentication
mechanisms.

The authentication sequence in Hadoop is based on SASL and it goes somewhat like this:

 1. Client connects to Server and says, “hi, I want to authenticate.”

 2. Server says: “All right! I support Digest-MD5 and Kerberos in that order of preference.”

 3. Client says: “Cool, I don’t have a Digest-MD5 token. So let’s use Kerberos. Let me send you
the Kerberos service ticket and authenticator.”

 4. Server says: “Great. That service ticket seems valid and I see that you are UserA. Let me send
you the incremented time stamp value from the authenticator.”

 5. Client Says: “Got it. Now I am sure that you have authenticated me and you are indeed
ServerA. Let’s start the application protocol now. Here is my application specifi c request.”

 6. Server Says: “Cool. Let me process that request.”

The SASL protocol in general follows this sequence:

 ➤ Client: INITIATE

 ➤ Server: CHALLENGE 1

 ➤ Client: RESPONSE 1

 ➤ Server: CHALLENGE 2

 ➤ Client: RESPONSE 2

There can be an arbitrary number of {CHALLENGE, RESPONSE} pairs until authentication is
complete.

Hadoop Kerberos Confi guration
Let’s see how to confi gure Kerberos authentication in Hadoop.

The following change in core-site.xml is required on all Hadoop servers and clients to trigger the
above mentioned SASL interaction.

<property>
 <name>hadoop.security.authentication</name>
 <value>kerberos</value>
</property>

Any client who makes a request against Hadoop needs to be sure that they have a valid Kerberos
ticket. The Hadoop servers need to specify their unique principal in the confi guration and the
location of the associated keytab. The following confi guration in hdfs-site.xml will be used by
NameNode to specify its principal and keytab.

<property>
 <name>dfs.namenode.kerberos.principal</name>
 <value>hdfs/_HOST@YOUR-REALM.COM</value>
</property>

116 ❘ CHAPTER 6 HADOOP SECURITY

c06.indd 04/22/2016 Page 116

<property>
 <name>dfs.namenode.keytab.file</name>
 <value>/etc/hadoop/conf/hdfs.keytab</value>
</property>

Note that the principal is specifi ed as hdfs/_HOST@YOUR-REALM.COM. _HOST will be substituted by
the fully qualifi ed domain name (fqdn) of the Hadoop server when the Hadoop server starts up.

Accessing a Secure Cluster Programmatically
Some use cases require accessing Hadoop via programs. When working with a secure cluster, the
clients have to authenticate to the Hadoop servers. The client has to present a valid Kerberos ticket,
and assuming that the user running the program has access to a keytab, there are two ways to make
sure that there is a valid Kerberos ticket to authenticate to the server:

 1. A utility process like k5start uses the keytab and caches a valid Kerberos ticket periodically
before the current ticket expires. The program will look up the Kerberos ticket in the cache
and use it.

 2. The program itself will use the keytab and obtain the ticket. For this, it has to use method
UserGroupInformation.loginUserFromKeytab(principal, keytabFilePath). This
method will obtain Kerberos ticket when invoked.

Service Level Authorization in Hadoop
Once a client is authenticated, the client’s identity is known. Now, authorization rules/policies can
be applied to allow or restrict access to resources. Hadoop has two levels of authorization: service
level authorization and resource level authorization. While processing a request, the service level
authorization policy is applied fi rst, right after authentication. Service level authorization determines
whether the user can access a specifi c service like HDFS. This is enforced by Access Control Lists
(ACLs) associated with the service. The resource level is more fi ne grained and is enforced with
ACLs associated with a resource like a fi le in HDFS.

Enabling Service Level Authorization
Service level authorization can be enabled via the following confi guration in core-site.xml:

<property>
 <name>hadoop.security.authorization</name>
 <value>true</value>
</property>

This confi guration needs to be present on all Hadoop servers where authorization has to
be enforced. The ACLs are specifi ed in a fi le named hadoop-policy.xml. After changing
hadoop-policy.xml, the administrator can invoke the command refreshServiceAcl to
make the changes effective without restarting any of the Hadoop services.

Benefi ts of Enabling Service Level Authorization
Service level Authorization is applied right after authentication. Hence an unauthorized access
is denied much earlier on the server. For example, an unauthorized user trying to access a fi le on

Securing the Hadoop Cluster ❘ 117

c06.indd 04/22/2016 Page 117

HDFS will be denied access right after authentication by using security.client.protocol.acl.
If service level authorization is disabled, then the HDFS namespace will be consulted to locate the
ACL associated with the fi le, and this requires more CPU cycles.

Access Control Lists
The service level authorization policy is specifi ed in terms of Access Control Lists (ACLs). An ACL
normally specifi es a list of user names and a list of group names. A user is allowed access if the user
is in the list of user names. If not, then user’s groups are fetched and checked to see if any of the
user’s groups are in the list of group names of the ACL.

The list of users and groups are a comma-separated list of names, with the two lists separated by
a space. As an example, the following entry in hadoop-policy.xml restricts access to HDFS for a
limited set of users and groups.

<property>
 <name>security.client.protocol.acl</name>
 <value>userA,userB groupA,groupB</value>
 </property>

To specify only a list of group names, a list of group names should be preceded by a space. A special
value of * implies that all users are allowed to access the service. Prior to Hadoop 2.6, * was the
default value for an ACL, which means access to that service/protocol was allowed for all users.
Starting with Hadoop2.6 and onward, it is possible to specify a default ACL value without using *
by using the property –security.service.authorization.default.acl.

Users, Groups, and Group Memberships
ACLs depend on groups to a large extent, given how there is a large number of users who need
access to a serve/protocol, so it isn’t practical to be specifi ed in the long list of users as a comma
separated list. Instead of managing a long list of user names in an ACL, it is much easier to specify
a group and add the users to the group.

How does Hadoop fetch the groups of a user? Hadoop depends on an interface named
GroupMappingServiceProvider. The implementations of this interface can be plugged in via this
confi guration:

<property>
 <name>hadoop.security.group.mapping</name>
 <value>org.apache.hadoop.security.JniBasedUnixGroupsMapping</value>
 </property>

The default implementation is ShellBasedUnixGroupsMapping, which executes the groups shell
command to fetch the group memberships of a given user.

Blocked ACLs
Using Hadoop 2.6, it is possible to specify ACLs to list the users to be blocked from accessing the
service. The format of the blocked access control list is the same as that of the access control list. The
policy key is formed by suffi xing with “. blocked”. For example, the property name of blocked access
control list for security.client.protocol.acl is security.client.protocol.acl.blocked.

118 ❘ CHAPTER 6 HADOOP SECURITY

c06.indd 04/22/2016 Page 118

For a service, it is possible to specify both an ACL and a blocked ACL. A user is authorized if the
user is in the ACL, and not in the blocked ACL. You can also specify a default value for blocked
ACLs, and if that’s not specifi ed, then an empty list will be considered as a default blocked ACL.

Specifying the following confi guration will enable everyone to access the HDFS client protocol
except for a user named userC, and members of the group named groupC:

<property>
 <name>security.client.protocol.acl</name>
 <value>*</value>
 </property>
<property>
 <name>security.client.protocol.acl.blocked</name>
 <value>userC groupC</value>
 </property>

The entry for security.client.protocol.acl can be omitted if it matches the default ACL.

Restricting Access Using Host Addresses
Access to a service can be controlled based on the IP address of the client accessing the service for
Hadoop distributions starting with Hadoop 2.7. It is possible to restrict access to a service from a set
of machines by specifying a list of IP addresses, host names, or IP-ranges. The IP-ranges can be speci-
fi ed in the CIDR format. The property name is the same as that of the corresponding ACL, except that
the word “acl” is replaced with the word “hosts.” For example, for the protocol security
. client.protocol, the property name for the hosts list will be security.client. protocol.hosts.

As an example, adding the following snippet to hadoop-policy.xml restricts access of the HDFS
client protocol to the hosts, which fall in the 162.34.31.0-162.34.31.255 IP range.

<property>
 <name>security.client.protocol.hosts</name>
 <value>162.34.31.0/24</value>
 </property>

Just like ACLs, it is possible to defi ne a default hosts list, by specifying security.service
.authorization.default.hosts. If the default value is not specifi ed, then the value * is assumed,
which gives access to all IP addresses.

You can also specify a blocked list of hosts. Only those machines that are in the hosts list, but not
in the blocked-hosts list, will be granted access to the service. The property name is derived by suf-
fi xing with .blocked. For example, the property name of the blocked hosts list for the protocol
security.client.protocol will be security.client.protocol.hosts.blocked. You can also
specify a default value for the blocked list of hosts.

The following hadoop-policy.xml entries make sure that access to the HFS client protocol is
allowed only for hosts, which fall in the 162.34.31.0-162.34.31.255 IP-range. It also makes sure
that requests from 162.34.31.111 and 162.34.31.112 are denied, even though they fall in the
IP-range specifi ed in the hosts entry.

<property>
 <name>security.client.protocol.hosts</name>
 <value>162.34.31.0/24</value>
 </property>

Securing the Hadoop Cluster ❘ 119

c06.indd 04/22/2016 Page 119

<property>
 <name>security.client.protocol.hosts.blocked</name>
 <value>162.34.31.111, 162.34.31.112</value>
 </property>

List of Service Authorization Policies
Important service authorization policies are shown in Table 6-2. The important service
 authorization policies available for YARN are shown as well.

TABLE 6-2: Service Authorization policies

POLICY NAME POLICY DESCRIPTION

security.client.

protocol.acl
ACL for HDFS Client Protocol.

Applied when invoking normal HDFS operations like listing
a directory, reading and writing fi les.

security.datanode.

protocol.acl
ACL for DataNode Protocol.

Applied when a DataNode communicates with the
NameNode.

security.inter.datanode.

protocol.acl
ACL for Inter DataNode Protocol.

Applied when a DataNode communicates
with another DataNode for block replication.

security.admin.operations.

protocol.acl
ACL applied when someone is invoking HDFS administrative
operations.

security.refresh.user.

mappings.protocol.acl
ACL applied when someone tries to the refresh the user to
group mappings.

security.refresh.policy.

protocol.acl
ACL applied when someone tries to the refresh the policies.

security.applicationclient.

protocol.acl
ACL for Application Client Protocol.

Applied when a client communicates with the YARN
ResourceManager to submit and manage applications.

security.applicationmaster.

protocol.acl
ACL for the Application Master Protocol.

Applied when YARN application masters communicate with
the ResourceManager

Impersonation
Hadoop Servers allow one user to impersonate another user. This is similar to the sudo functionality
available in Unix-based systems. This feature is useful in different cases including the following:

 ➤ With a high level service like Hive server or Hue server, you can submit jobs or make HDFS
calls on behalf of using user’s privileges.

120 ❘ CHAPTER 6 HADOOP SECURITY

c06.indd 04/22/2016 Page 120

 ➤ An administrator who needs to diagnose an issue faced by a user can impersonate that user
to accurately reproduce the issue.

 ➤ A team of users can impersonate a team account used to run periodic jobs belonging to the
team.

To impersonate a user, you must fi rst authenticate the user. In addition, the user needs permission to
impersonate another user. Impersonation can be confi gured using the properties hadoop
.proxyuser.$superuser.hosts along with either or both hadoop.proxyuser.$superuser
.groups and hadoop.proxyuser.$superuser.users in core-site.xml on Hadoop servers.

For example, the following confi guration entries allow the super user to impersonate users who are
members of either group1 or group2. The super can impersonate from only two hosts: host1 and
host2.

<property>
 <name>hadoop.proxyuser.super.hosts</name>
 <value>host1,host2</value>
 </property>
 <property>
 <name>hadoop.proxyuser.super.groups</name>
 <value>group1,group2</value>
 </property>

Just like ACLs, the special value * allows a user to impersonate any user. If * is specifi ed as the value
of hosts, then the super user can impersonate from any host. The hosts can accept *, a comma sepa-
rated list of host names, IP addresses, and IP-ranges specifi ed in the CIDR format.

After changing core-site.xml to change impersonation entries, the administrator can invoke
refreshSuperUserGroupsConfiguration to make the changes effective, without restarting any of
the Hadoop services.

Impersonation via Command Line
To impersonate another user, the super user should fi rst authenticate using kinit if the cluster is
Kerberos enabled. Next, HADOOP_PROXY_USER needs to be set to the user to be impersonated. After
that, Hadoop commands can be issued on behalf of the proxy user. A sample sequence is shown
next in which the user named super impersonates the user named joe, and issues the Hadoop com-
mand as joe.

super@chlor:~$ kinit -kt ~/super.keytab super

super@chlor:~$ klist

Ticket cache: FILE:/tmp/krb5cc_1004
Default principal: super@DATAAPPS.IO

Valid starting Expires Service principal
12/14/2015 00:14:29 12/14/2015 10:14:29 krbtgt/DATAAPPS.IO@DATAAPPS.IO
 renew until 12/15/2015 00:14:29

super@chlor:~$ export HADOOP_PROXY_USER=joe
super@chlor:~$./bin/hadoop queue -showacls

Securing the Hadoop Cluster ❘ 121

c06.indd 04/22/2016 Page 121

Queue acls for user : joe

Queue Operations
=====================
root ADMINISTER_QUEUE,SUBMIT_APPLICATIONS
admin ADMINISTER_QUEUE,SUBMIT_APPLICATIONS
regular ADMINISTER_QUEUE,SUBMIT_APPLICATIONS

Impersonation via Program
To impersonate as another user, the super user should fi rst log in if the cluster is Kerberos enabled.
Next, proxyuserUGI must be created to represent the impersonated user. After that, Hadoop
 commands can be issued using the proxy user. Sample code is shown next where the super user
impersonates a user named joe and issues a Hadoop command as joe.

 //'super' should first login
 UserGroupInformation.loginUserFromKeytab("super@DATAAPPS.IO",
 "/home/super/.keytabs/super.keytab");

 //Create ugi for joe. The login user is 'super'.
 UserGroupInformation ugi =
 UserGroupInformation.createProxyUser("joe", UserGroupInformation.↵
 getLoginUser());
 ugi.doAs(new PrivilegedExceptionAction<Void>() {
 public Void run() throws Exception {
 //Submit a job
 JobClient jc = new JobClient(conf);
 jc.submitJob(conf);
 //OR access hdfs
 FileSystem fs = FileSystem.get(conf);
 fs.mkdir(someFilePath);
 }
 }

Customizing Impersonation Authorization
As mentioned, impersonation can be controlled by adding properties such as {groups, users,
hosts} per user in the confi guration fi le. This approach, though, has limitations. For example, when
there are a large number of super users, it is diffi cult to specify each super user in the confi guration
fi le and make sure that the confi guration is distributed across all of the Hadoop servers. Hadoop
2.5 and onward allows customizing the authorization of impersonation. This can be done by imple-
menting the ImpersonationProvider interface and providing the implementation class name via
the confi guration property hadoop.security.impersonation.provider.class.

Securing the HTTP Channel
Hadoop supports access via the HTTP protocol, which provides authentication and protection for
integrity and confi dentiality. By default, there is no authentication enabled for HTTP to access. To
enable authentication, the org.apache.hadoop.security.AuthenticationFilterInitializer
initializer class should be added to the hadoop.http.filter.initializers property in core-
site.xml. The RPC protocol limits authentication to Kerberos, so it is possible to confi gure custom

122 ❘ CHAPTER 6 HADOOP SECURITY

c06.indd 04/22/2016 Page 122

authentication for access via HTTP. To confi gure this authentication, the following properties
should be in the core-site.xml in all of the nodes in the cluster. Note that the properties in
Table 6-3 are prefi xed with hadoop.http.authentication, but they are omitted for conciseness.

TABLE 6-3: core-site.xml properties

PROPERTY NAME DEFAULT VALUE DESCRIPTION

type Simple Defi nes authentication used for the
HTTP web-consoles. The supported
values are: simple | kerberos |
#AUTHENTICATION_HANDLER_CLASSNAME#.

token.validity 36000 Indicates how long (in seconds) an
authentication token is valid before it
has to be renewed.

signature.secret.file The signature secret file for signing the
 authentication tokens. The same secret should
be used for all nodes in the cluster: JobTracker,
NameNode, DataNode, and TastTracker. This
file should be readable only by the Unix user
running the daemons.

cookie.domain The domain to use for the HTTP cookie that
stores the authentication token. For authen-
tication to work correctly across all nodes
in the cluster, the domain must be correctly
set. If the value is not set, the HTTP cookie
will work only with the hostname issuing the
HTTP cookie.

simple.anonymous.

allowed
True Indicates whether anonymous requests are

allowed when using simple authentication.

kerberos.principal Indicates the Kerberos principal to be used
for the HTTP endpoint when using Kerberos
authentication. The principal short name must
be HTTP, per the Kerberos HTTP SPNEGO
specifi cation.

kerberos.keytab Location of the keytab fi le with the
credentials for the Kerberos principal
used for the HTTP endpoint.

To enable authentication other than simple or Kerberos, you must implement using the org
.hadoop.security.authentication.server.AuthenticationHandler interface, and then specify
the implementation class name as the value of hadoop.http.authentication.type.

Securing the Hadoop Cluster ❘ 123

c06.indd 04/22/2016 Page 123

Enabling HTTPS
HTTPS can be enabled for web UIs for NameNode, Resource Manager, DataNodes, and
NodeManagers. To enable HTTPS, you have to specify a policy for HDFS and YARN. To enable
HTTPS for HDFS web consoles, set dfs.http.policy to HTTPS or HTTP_AND_HTTPS.

SSL for the Hadoop server can be confi gured by setting properties in core-site.xml. The proper-
ties are shown in Table 6-4.

TABLE 6-4: core-site.xml for SSL properties

PROPERTY NAME DEFAULT VALUE PROPERTY DESCRIPTION

hadoop.ssl.require.

client.cert

False Whether client certifi cates are
required.

hadoop.ssl.hostname.

verifier

DEFAULT The hostname verifi er to provide
for HttpsURLConnections. Valid
values are: DEFAULT, STRICT,
STRICT_I6, DEFAULT_AND_
LOCALHOST and ALLOW_ALL.

hadoop.ssl.keystores.

factory.class

org.apache.hadoop.

security.ssl.FileBased

KeyStoresFactory

The KeyStoresFactory
implementation to use.

hadoop.ssl.server.conf ssl-server.xml Resource fi le from which ssl
server keystore information will
be extracted. This fi le is looked
up in the classpath, so typically
it should be in the Hadoop
conf/ directory.

hadoop.ssl.client.conf ssl-client.xml Resource fi le from which ssl
server keystore information
will be extracted. This fi le is
looked up in the classpath,
so typically it should be in the
Hadoop conf/ directory.

hadoop.ssl.enabled.

protocols

TLSv1 The supported SSL protocols
(JDK6 can use TLSv1, JDK7+ can
use TLSv1,TLSv1.1,TLSv1.2).

Keystores and Truststores
Additional SSL properties need to be confi gured in ssl-server.xml on the server side. Given how
Hadoop servers can potentially act as clients of other Hadoop servers, ssl-client.xml needs to be
set up as well. The properties include the location and passwords of the keystore and the truststore.

124 ❘ CHAPTER 6 HADOOP SECURITY

c06.indd 04/22/2016 Page 124

If the certifi cates and private keys are rotated (changed), the servers have to be restarted. This is costly
and can be avoided by specifying that the truststore and keystore have to periodically be reloaded.
Table 6-5 specifi es the keystore and truststore properties to be specifi ed in ssl-server.xml.

TABLE 6-5: ssl-server.xml keystore and truststore properties

PROPERTY NAME DEFAULT VALUE PROPERTY DESCRIPTION

ssl.server.keystore.type Jks Keystore fi le type.

ssl.server.keystore.location NONE Keystore fi le location. The user
running the Hadoop server
should own this fi le and have
exclusive read access to it.

ssl.server.keystore.password NONE Keystore fi le password.

ssl.server.truststore.type Jks Truststore fi le type.

ssl.server.truststore.location NONE Truststore fi le location. The
user running the Hadoop server
should own this fi le and have
exclusive read access to it.

ssl.server.truststore.password NONE Truststore fi le password.

ssl.server.truststore.reload.

interval

10000

(10 seconds)
Truststore reload interval, in
milliseconds.

Similar properties need to be specifi ed in ssl-client.xml to specify truststore and keystore proper-
ties when the Hadoop server is interacting as a client.

SECURING DATA

For an organization, data is a vital asset. Hadoop now allows the storing of petabytes of data in a
single system. In addition to making sure that the data is available and reliable, the data should be
made secure. Securing the data in a Hadoop cluster needs to take care of the following:

 ➤ Data should be transferred over a secure channel between the client and the Hadoop cluster.
The channel should offer confi dentiality and data integrity depending on the data classifi cation.

 ➤ When data is stored on the cluster, its access should be restricted based on the data
classifi cation.

 ➤ If the data classifi cation demands encryption, then the data should be encrypted when stored
in the Hadoop cluster. Only users who have access to the secret key should be able to decrypt
the data.

 ➤ Based on the data classifi cation, access to the data should be regularly audited.

As you can see, all security measures on the data are taken based on the classifi cation of data.

Securing Data ❘ 125

c06.indd 04/22/2016 Page 125

Data Classifi cation
Data can be classifi ed into different categories based on the sensitivity of the elements in the data,
and also based on data compliance requirements. Classifi cation of a specifi c dataset helps to deter-
mine how to transport the data in and out of the Hadoop cluster, how to restrict access to data
when stored on the cluster, and how to protect the data during processing. This data can be classi-
fi ed into the following categories:

 ➤ Public: This is information that is publicly available, so there is no need to restrict access to
this data. Information about different cities of the world available on the Internet, but stored
on the Hadoop cluster for faster data processing, fall into this category.

 ➤ Limited or private: This is information that should not be public. Such data may not
have any sensitive elements, but it should remain private since the data gives the com-
pany a competitive advantage. An example of private data could be datasets purchased
by the company from outside the company. Access to limited or private data should
be restricted.

 ➤ Confi dential: This is a data set, which contains elements that should be kept confi dential. An
example would be datasets that contain personally identifi able information (PII) such as an
email address, a phone number, etc. Access to this dataset may be restricted and the sensitive
data elements may need to be encrypted or masked.

 ➤ Restricted: This dataset contains data that should not be read by anyone other than an
approved set of users. A dataset containing fi nancial information from customers or health
records fall into this category. Access to these datasets should be strictly restricted and ele-
ments may need to be encrypted so that only approved users who have access to a secret key
should be able to read the data.

Sensitive Data Discovery
In some cases, users store data in the HDFS without properly classifying it or restricting the
access. Administrators will have to review the schema associated with the data to decide the
appropriate classifi cation. In some cases, the schema may not contain suffi cient information to
accurately classify the data. In such cases, the only option is to scan data to see if it contains
sensitive elements.

There are tools available to make this scan for sensitive elements. These tools use the YARN
framework to run applications, which scan the data and report if there are sensitive elements.
One such tool is DataApps.io’s Chlorine available at www.dataapps.io. Chlorine scans datasets
and reports the presence of sensitive elements. Chlorine supports all of the standard fi le formats,
including Avro, parquet, RC, ORC, and sequence fi les. Chlorine allows deep and quick scans, as
well as scheduled incremental scans. Chlorine also enables a user to scan for new patterns and add
custom scan logic.

Bringing Data to the Cluster
Depending on how it’s classifi ed, data should be protected in transit to and from the cluster. Sending
sensitive data over an insecure channel makes it susceptible to eavesdropping, requiring that datasets
be sent over channels that guarantee confi dentiality and integrity.

126 ❘ CHAPTER 6 HADOOP SECURITY

c06.indd 04/22/2016 Page 126

Different methods of data transfer are involved, depending on the size of the data, the nature of
data transfer, the latency, and the performance requirements. The data transfer should be secured
independent of the data channel involved based on the data’s classifi cation. The scope of the
discussion in this section is limited to transferring data securely to HDFS from another system.
The source can be another database, an application server, a Kafka queue, a Knox proxy, or another
Hadoop cluster.

Data Protocols
Hadoop supports two protocols to transfer data to HDFS.

 ➤ RPC + streaming: A client fi rst talks to the NameNode via RPC to obtain the block locations.
Then the client talks to the DataNode identifi ed by the block locations to stream the data.
Both RPC and streaming protocols are based on TCP, because this method is used when data
is transferred via the hdfs -put/get command. Use the DistCp tool, with the hdfs:/ schema
prefi x using both RPC and streaming protocols.

 ➤ HTTP: If the Hadoop cluster supports WebHDFS, the client can use webHDFS to transfer
data. This protocol blocks locations that are obtained over HTTP and data that is transferred
from the client to the ResourceManagers over HTTP. DistCp with webhdfs:/ or hftp:/ or the
hsftp:/ schema prefi x uses the HTTP protocol to transfer data. Similarly, HTTP based clients
can use the webhdfs REST API to obtain block locations from NameNode and stream data
to/from DataNodes.

Let’s see how to protect data transfer conducted over both of these protocols.

Securing the RPC Channel
We have described how clients authenticate to Hadoop servers using Kerberos. As described,
Hadoop uses the SASL framework in its RPC protocol to support Kerberos. But some data needs to
be protected further during transit.

SASL allows different levels of protection. These are referred to as the quality of protection (QOPs).
It is negotiated between the client and server during the authentication phase of the SASL exchange.
The QOP taps into Hadoop’s confi guration property: hadoop.rpc.protection. This property can
have values specifi ed in Table 6-6.

TABLE 6-6: Hadoop.rpc.protection properties

QUALITY OF PROTECTION (QOP) DESCRIPTION

1 Authentication Authentication only.

2 Integrity Authentication with integrity protection. Integrity
 protection prevents the tampering of requests and
responses.

3 Privacy Authentication with integrity and privacy protection.
Privacy prevents the unintended monitoring of
requests and responses.

Securing Data ❘ 127

c06.indd 04/22/2016 Page 127

This property can be specifi ed in the core-site.xml of the client and server. The SASL
authentication fails if the client and server can’t negotiate a common quality of protection.

To encrypt the requests and responses sent over RPC, the following entry needs to be in the
core-site.xml on all Hadoop servers and clients.

<property>
 <name>hadoop.rpc.protection</name>
 <value>privacy</value>
 </property>

If hadoop.rpc.protection is not specifi ed, then it defaults to authentication.

Selective Encryption to Improve Performance
 Prior to Hadoop 2.4, hadoop.rpc.protection supported specifying only a single value: one of
authentication, integrity, or privacy. To encrypt communication, hadoop.rpc.protection should
be set to privacy. In most Hadoop clusters, different types of data will be stored in the cluster. Only
a limited number of RPC communications need to be encrypted, so be sure not to set this value to
privacy results in encryption across all of the RPC communication. By doing that you risk a perfor-
mance degradation due to the cost of encrypting all RPC communication.

Starting with Hadoop 2.4, hadoop.rpc.protection can accept multiple values as a comma sepa-
rated list. To avoid performance degradation, the Hadoop server can support multiple values. While
transmitting confi dential data, clients can set the value of hadoop.rpc.protection on the client
side to privacy. Clients, when transmitting non-confi dential data, can set the hadoop.rpc.protec-
tion to authentication to avoid incurring the cost of encryption.

Here is hadoop.rpc.protection on NameNode supports multiple QOPs:

<property>
 <name>hadoop.rpc.protection</name>
 <value>authentication,privacy</value>
 </property>

And hadoop.rpc.protection on the client, sending data over an encrypted channel:

<property>
 <name>hadoop.rpc.protection</name>
 <value>privacy</value>
 </property>

And here is hadoop.rpc.protection on the client involved in non-confi dential data transfer:

<property>
 <name>hadoop.rpc.protection</name>
 <value>authentication</value>
 </property>

Note that in the above cases, the client determines the QOP. It is not always desirable for the
client to decide. In some cases, you need to encrypt all data coming from a specifi c set of hosts.
This decision logic can be plugged in by extending the class-SaslPropertiesResolver. It can be
plugged on the server or the client side via hadoop.security.saslproperties.resolver.class
in core-site.xml. SaslPropertiesResolver can provide the SASL properties as key value pairs
for each connection.

128 ❘ CHAPTER 6 HADOOP SECURITY

c06.indd 04/22/2016 Page 128

Securing the Block Transfer
Data is transferred from client machines to DataNodes via the streaming protocol. Since DataNodes
store blocks, it is important to make sure that only authorized clients should read a particular block.
To enforce authorization for block access, you need to add the following property in hdfs-site
.xml on all NameNode and DataNodes.

<property>
 <name>dfs.block.token.enable</name>
 <value>true</value>
 </property>

The client requests NameNode to access a fi le, and NameNode checks whether the client is
authorized to access the fi le based on HDFS fi le permissions and ACLs and if authorized, the
NameNode responds with the block locations. If dfs.block.token.enable is set to true, then it
returns a block token along with block location information.

When the client contacts the DataNode to read the block, the client has to submit a valid block
token. The block token contains the block ID and user identifi er protected with a secret shared
between the NameNode and the DataNode. The DataNode verifi es the block token before allowing
the client to stream the block. This handshake between client, NameNode, and DataNode makes
sure that only authorized users can download the blocks.

But this does not enforce the integrity and privacy of the block transfer. To fully secure the block
transfer, the following property needs to be set on the NameNode.

<property>
 <name>dfs.encrypt.data.transfer</name>
 <value>true</value>
 </property>

When the above property is set, the client fetches the encryption key from the NameNode before
block transfer. The DataNodes already know this key and so the client and DataNode can use the
key to set up a secure channel. SASL is internally used to enable encryption of the block transfer.

The algorithm used for encryption can be confi gured with dfs.encrypt.data.transfer.algo-
rithm. It can be set to either 3DES or RC4. If nothing is set, then the default on the system is used
(usually 3DES.) While 3DES is more cryptographically secure, RC4 is substantially faster.

Just as with RPC, setting dfs.encrypt.data.transfer to true will enable encryption for all data
transfers, even if most of them don’t need to be encrypted. This will slow down all block transfers.
In most cases, encryption needs to be done only for a subset of block transfers. Under these condi-
tions, encrypting all block transfers causes an unnecessary slowdown of the data transfers and data
processing.

In Hadoop 2.6, a major rework was done around this feature so that privacy can be enabled for
selected block transfers in a way very similar to that of RPC protocol. The QOP values {authen-
tication, integrity, privacy} can be confi gured using the dfs.data.transfer.protection
property. Like RPC, it is possible to select a QOP for each block transfer by specifying the QOP
resolution logic via the confi guration: dfs.data.transfer.saslproperties.resolver.class.
The value should be a class, which extends the class SaslPropertiesResolver.

Securing Data ❘ 129

c06.indd 04/22/2016 Page 129

Securing WebHDFS-Based Data Transfer
It is possible to transfer data to and from the HDFS using HTTP via WebHDFS. WebHDFS can be
secured by authenticating the access and encrypting the data transfer for confi dentiality.

Authentication can be confi gured with Kerberos. The properties in Table 6-7 need to be specifi ed via
dfs-site.xml to enable WebHDFS authentication.

TABLE 6-7: dfs-site.xml properties

PROPERTY NAME DESCRIPTION

dfs.web.authentication.kerberos.

principal
Indicates the Kerberos principal to be used
for the HTTP endpoint when using Kerberos
authentication. The principal short name
must be HTTP per the Kerberos HTTP SPNEGO
specifi cation.

dfs.web.authentication.kerberos.keytab Location of the keytab fi le with the credentials
for the Kerberos principal used for the HTTP
endpoint.

To use an authentication scheme other than Kerberos, you must override the dfs.web
.authentcation.filter property in dfs-site.xml. Setting dfs.http.policy to HTTPS or
HTTP_AND_HTTPS can encrypt the data transmitted using the WebHDFS protocol. There are
enhancements in WebHDFS security that enables the usage of OAUTH to gain access.

Protecting Data in the Cluster
We have discussed how to protect data, and how it comes into the Hadoop cluster by specifying the
desired quality of protection. Once the data is on the Hadoop cluster, access to the data has to be
restricted based on the data classifi cation. The following controls are available in HDFS to protect
and restrict access to data stored in HDFS.

 ➤ File Permissions—Unix like fi le permissions

 ➤ Access Control Lists (ACLS)—fi ne-grained permissions

 ➤ Encryption

Using File Permissions
HDFS has a permissions model for fi les and directories, which is very similar to the POSIX model.
Each fi le/directory has an owner and a group. Similar to POSIX, rwx permissions can be speci-
fi ed for the owner, group, and all other users. To read a fi le, r permission is required. To write or
append to a fi le, w permission is required. The x permission has no relevance for a fi le. Similarly,
r permission is required to list the contents of the directory, and w permission is required to
create or delete fi les under the directory, and x permission is required to access the children of
the directory.

130 ❘ CHAPTER 6 HADOOP SECURITY

c06.indd 04/22/2016 Page 130

The fi le permissions are suffi cient to satisfy most of the data protection requirements. As an exam-
ple, consider a dataset, which is generated by a user named marketer in the marketing division. A
bunch of users from different organizations need to use this data. Ideally, the dataset needs to be
modifi ed only by marketer and read by different users. This can be accomplished using fi le permis-
sions and groups as follows:

 1. Create a directory, say /marketing_data, to hold the fi les belonging to the marketing dataset.

 2. Generate a group, say marketing_data_readers and add users who need to read marketing
data to marketing_data_readers.

 3. Set the owner of marketing_data, and all of the fi les and directories under it, to marketer
and group to marketing_data_readers.

 4. Recursively change permissions of marketing_data to rwrr_x_ _ _. This setting allows full
control (read, write, and browse) to marketer, read capability (read and browse), to members
of marketing_data_readers, and no access to others.

To make ownership, group, and permissions changes use the following commands: chown (Change
Owner), chgrp (Change Group), and chmod (Change mode/permissions) commands can be used
respectively.

Limitations of File Permissions
While fi le permissions are suffi cient to satisfy most common access requirements, it has signifi cant
limitations. These limitations are due to the fact that it is possible to associate only one user and one
group for a fi le or a directory. Let’s go through a few cases of these limitations.

 ➤ Case 1: In the above example regarding marketing data, consider the case when more than
one user needs to read/write the data and a limited group of users need to have read only
access. It is not possible to express it in a straightforward way using fi le permissions, since
there can be only one user associated with a fi le or directory.

 ➤ Case 2: Consider the case where a set of users who already belong to sales_data_read-
ers needs to access marketing_data. These users can read marketing_data only if they are
made members of marketing_data_readers as well. While this is possible, it is easier to
specify sales_data_readers as a reader group of marketing data.

Using ACLS
To overcome the limitations of fi le permissions, HDFS supports ACLs. This is similar to POSIX
ACLs. The best practice is to use fi le permissions for most of the cases, and have a few ACLs in
cases, which demand more fi ne-grained access. HDFS ACLs are available starting with Hadoop 2.4.

Setting dfs.namenode.acls.enabled to true on the NameNode, and then restarting the
NameNode can enable ACLs. The ACLs on fi les and directories are managed using two new com-
mands added to HDFS: setfacl and getfacl.

Once ACLs are enabled, the owner can defi ne ACLs per user and per group for a fi le. The specifi ca-
tions use the form user:username:permission and group:groupname:permission. These are the
named user and named group ACLs.

Securing Data ❘ 131

c06.indd 04/22/2016 Page 131

Let’s see how ACLs can satisfy the cases described in the previous section.

 ➤ Case 1: In case1, you’d like to add a set of users to have read/write access to the dataset
and a different set to have read only access. To accomplish this, create a new group called
marketing_data_writers and add an ACL from the following form group:marketing_
data_writers:rwx. The ACL can be set on the marketing data as follows:

hdfs dfs –setfacl –R –m group:marketing_data_writers:rwx /marketing_data

 ➤ Case 2: In case 2, you want to add one more groups named sales_data_reader to have
read access to the dataset. To accomplish this, you add a group ACL. The setfacl
command is as follows:

hdfs dfs –setfacl –R –m group:sales_data_reader:r_x /marketing_data

Encrypting the Data
Encryption is the process of encoding messages using a key so that the message can then be decoded
using a key. Encryption involves an algorithm to encode a message as well as a key. The strength of
encryption depends on properly securing the keys, and the keys are stored and managed by a Key
Store. The Key Store can be a software or hardware based key management system.

Encrypting data ensures that only a client possessing a key can decrypt the message. The authoriza-
tion measures like permissions and ACLs prevent data from being accessed by unauthorized users.
But administrators who can change the authorization rules can read the data. Users who have access
to the DataNodes where data is stored can also read data. Encrypting the data makes sure that only
those who have access to the key can decrypt it. By having different sets of administrators for the
key management system and Hadoop, even administrators will not be able to read the data by side-
stepping authorization controls.

Privacy and security regulations also require an organization to encrypt sensitive data at rest. Some
examples of regulations requiring encryption are:

 ➤ Health care and HIPAA regulations

 ➤ Card payment and PCI/DSS regulations

 ➤ US government and FISMA regulations

HDFS supports the transparent encryption of the data based on the concept of an encryption zone,
which is created by the Hadoop administrator and associated with an HDFS directory. All fi les
stored in the encryption zone are stored under the directory associated with the encryption zone. All
of these fi les will be encrypted.

Hadoop KMS
HDFS encryption depends on a new Hadoop server, namely Hadoop KMS. Hadoop KMS does key
management for HDFS (see Figure 6-3). Hadoop KMS internally depends on a keystore to store
and manage its keys. Hadoop KMS communicates with the keystore using the KeyProvider API.
If the organization already has a keystore to store secret keys, then a KeyProvider interface can be
implemented to interact with keystore. The KeyProvider implementation needs to be confi gured in
Hadoop KMS to integrate the keystore with Hadoop KMS.

132 ❘ CHAPTER 6 HADOOP SECURITY

c06.indd 04/22/2016 Page 132

HADOOP KMS KEYSTORE

NameNode

DataNode

Client

Key Provider API

FIGURE 6-3

Encryption Zones
An encryption zone can be created using command line tools using the newly added crypto
subcommand. Every encryption zone has an Encryption Zone Key (EZkey), associated with it.
The EZkey serves as the master key for all fi les in the encryption zone. All keys, including EZkeys,
are stored in a keystore and Hadoop KMS accesses the keys from the keystore using KeyProvider
implementations. It is assumed that a key administrator oversees the keystore and KMS.

The key administrator must create a key in the keystore before the HDFS administrator can create
an encryption zone. The EZkey may be rotated or changed as needed. Key metadata like key and
version names, initialization vectors, and cipher information are stored in extended attributes of the
encryption zone directory.

Once Hadoop KMS is set up so that HDFS clients and NameNode can access it for key manage-
ment, encryption zones can be set up and data can be stored in the encrypted form in the encryp-
tion zones. Let us go through the full sequence of setting up an encryption zone, storing fi les in the
encryption zone, and reading fi les from the encryption zone.

To set up an encryption zone:

 1. The key administrator creates a key (Ezkey) and gives it a name, say master_key.

 2. The HDFS administrator creates a directory, which is going to contain fi les that will be
encrypted. The command will be of the form:

"hadoop fs -mkdir /path/to/dataset"

Securing Data ❘ 133

c06.indd 04/22/2016 Page 133

 3. The HDFS administrator then sets up an encryption zone associating the directory with the
master key using the following command:

hdfs crypto -createZone -keyName master_key -path /path/to/dataset

 4. The name of the key (master_key) and current version of master_key (obtained from
Hadoop KMS) are stored as an extended attribute on the directory (/path/to/dataset).

Storing Files in Encryption Zones
When storing a fi le inside an encrypted zone, a key is generated and the data is encrypted using the
key. For each fi le, a new key is generated and the encrypted key is stored as part of the fi le’s meta-
data on the NameNode. The key to encrypt the fi le is referred to as a Data Encryption Key (DEK).
The sequence is as follows:

 1. The client issues a command to store a new fi le under /path/to/dataset.

 2. The NameNode checks if the user has access to create a fi le under the specifi ed path based
on fi le permissions and ACLs. The NameNode requests Hadoop KMS to create a new key
(DEK) and also provide the name of the encryption zone key namely master_key.

 3. The Hadoop KMS generates a new key, DEK.

 4. The Hadoop KMS retrieves the encryption zone key (master_key) from the key store and
encrypts the DEK using master_key to generate the Encrypted Data Encryption Key (EDEK).

 5. The Hadoop KMS provides the EDEK to the NameNode and NameNode persists the EDEK
as an extended attribute for the fi le metadata.

 6. The NameNode provides the EDEK to the HDFS client.

 7. The HDFS client sends the EDEK to the Hadoop KMS, requesting the DEK.

 8. The Hadoop KMS checks if the user running the HDFS client has access to the encryption
zone key. Note that this authorization check is different from fi le permissions or ACLs. If the
user has permissions, then the Hadoop KMS decrypts the EDEK using the encryption key
and provides the DEK to the HDFS client.

 9. The HDFS client encrypts data using the DEK and writes the encrypted data blocks to HDFS.

Reading Files from Encryption Zones
When reading a fi le stored in an encryption zone, the client needs to decrypt the encrypted key
stored in the metadata fi le, and then use the key to decrypt the content of the blocks. The sequence
of events for reading an encrypted fi le is as follows:

 ➤ The client invokes a command to read the fi le.

 ➤ The NameNode checks if the user has authorization to access the fi le. If so, the NameNode
provides the EDEK associated with the requested fi le to the client. It also sends the encryp-
tion zone key name (master_key) and the version of the encryption zone key.

 ➤ The HDFS client passes the EDEK and encryption zone key name and version to the
Hadoop KMS.

134 ❘ CHAPTER 6 HADOOP SECURITY

c06.indd 04/22/2016 Page 134

 ➤ The Hadoop KMS checks if the user running the HDFS client has access to the encryption
zone key. If the user has access, Hadoop KMS requests the EZK from the key server and
decrypts the EDEK using the EZK to obtain the DEK.

 ➤ The Hadoop KMS provides the DEK to the HDFS client.

 ➤ The HDFS client reads the encrypted data blocks from DataNodes, and decrypts them with
the DEK.

SECURING APPLICATIONS

Once the data is stored on the Hadoop cluster, users interact with the data using a variety of mecha-
nisms. You can use MapReduce programs, Hive queries, Pig scripts, and other frameworks to pro-
cess the data. In Hadoop 2, YARN facilitates execution of the data processing logic.

Several security measures are available in Hadoop to ensure that the data processing logic doesn’t
cause unwanted effects on the cluster. Since YARN can manage computing resources, access to com-
puting resources can be controlled. Similarly, mechanisms are available for users to control access to
their applications.

In this section we’ll review how Hadoop enables applications to run using the application sub-
mitter’s identity, so that proper access controls can be enforced based on the correct identity.
We’ll go over the process of dividing the computing resources to different parties to enable
authorized users to administer and use the computing resources. We will also identity how users
can apply access controls to their data processing logic that is run as applications on
the Hadoop cluster.

YARN Architecture
Users store their data on HDFS, and the Hadoop ecosystem offers multiple frameworks or technolo-
gies to process this data. It is up to you to choose which specifi c framework to use based on your
requirements and expertise.

In Hadoop 1, there was only one framework to execute data processing logic, namely MapReduce.
Daemons like Job Tracker and Task Trackers enabled the management and scheduling of comput-
ing resources to execute the data processing logic on many DataNodes. In Hadoop 2, a generalized
application execution framework, namely YARN was added, which takes care of resource manage-
ment and scheduling (see Figure 6-4). The separation of resource management from the execution of
data processing logic enables you to use different ways of executing data processing logic, including
MapReduce, Spark, and others (see Figure 6-4).

Application Submission in YARN
You submit data processing logic as applications to the ResourceManager. During the application
submission the job resource, including JAR fi les, job confi guration, etc. is stored on HDFS
in a staging directory. The staging directory is accessible only to the user who is submitting
the application.

Securing Applications ❘ 135

c06.indd 04/22/2016 Page 135

submit

Resource
Manager

Resource Tracker
Schedule

Application Manager NodeManager

NodeManager

NodeManager

WorkerHDFS

status

status

Resource Req

status

Resource Req

submit

AppMaster Worker

WorkerAppMaster

Worker

Client

Client

FIGURE 6-4

If the cluster is a secure cluster with Kerberos authentication, then the client needs to have a valid
Kerberos ticket to authenticate to the ResourceManager. If service authorization is enabled, then
ResourceManager will verify if the user is authorized to submit applications to the Resource
Manager by applying the security.applicationclient.protocol.acl.

Controlling Access to Computing Resources Using Queues
YARN manages the computing resources of the Hadoop cluster with ResourceManager, which uses
its scheduler component to determine which application gets which resource. The scheduler logic is
pluggable, and the Capacity Scheduler and Fair Scheduler are commonly used schedulers, which are
part of the Hadoop distribution.

Capacity Scheduler supports the notion of queues to manage resources. The queues can be
hierarchical and can be modeled after the organizational hierarchy of the institution. Queue
defi nitions include ACLs to determine who can submit applications to the queue and who
can administer the queue. These ACL labels are yarn.scheduler.capacity.root.<queue-
path>.acl_submit_applications and yarn.scheduler.capacity.root.<queue-path>
.acl_administer_queue. The ACLs follow the general pattern of comma-separated lists
of users and groups. These ACLs are evaluated for an application as part of the application
submission.

136 ❘ CHAPTER 6 HADOOP SECURITY

c06.indd 04/22/2016 Page 136

Role of Delegation Tokens
During data processing, the application is divided into smaller work units and will be executed from
slave machines on YARN containers. These containers need to access HDFS to read and write data.
In a secure cluster, accessing HDFS will require users to authenticate. While Kerberos is the primary
authentication mechanism, the container will not be able to obtain the Kerberos tickets since they
don’t have the user’s credentials to obtain Kerberos tickets. To solve this problem, Hadoop supports
the usage of delegation tokens. The NameNode issues the delegation token. The delegation token
identifi es the user, so it can be used to authenticate the user. The delegation token can be obtained
only if the client authenticates using Kerberos.

The delegation token has an expiry time, and can be renewed for a confi gurable period of time.
By default, delegation tokens are valid for 24 hours and can be renewed for 7 days. It is possible to
specify a separate user as renewer for a delegation token.

The format of a delegation token is as follows:

TokenID = {ownerID, renewerID, realUserID, issueDate, maxDate, sequenceNumber, keyID}
TokenAuthenticator = HMAC-SHA1(masterKey, TokenID)
Delegation Token = {TokenID, TokenAuthenticator}

The realUserId will be set as a different user than OwnerId if a super user on behalf of the owner
obtains the delegation token. The security of the delegation token can be confi gured using a set of
properties, and these properties are specifi ed in Table 6-8.

TABLE 6-8: Security delegation token properties

PROPERTY NAME DEFAULT VALUE PROPERTY DESCRIPTION

dfs.namenode.delegation.

key.update-interval
1 day The secret key used to generate the

delegation token is updated periodically.
This property specifi es the update interval
in milliseconds.

dfs.namenode.delegation.

token.renew-interval
1 day The token validity time in milliseconds

before the token needs to be renewed.

 dfs.namenode.delegation.

token.max-lifetime
7 days The delegation token has a maximum

lifetime beyond which it cannot be
renewed anymore. This value is also
specifi ed in milliseconds.

Note that if you have an application that has to run beyond 7 days, then dfs.namenode.delega-
tion.token.max-lifetime needs to be set to a higher value. Once generated, delegation tokens are
independent of Kerberos tickets. It is honored and can be renewed even if the user’s Kerberos creden-
tials are revoked on the Kerberos KDC. To properly revoke a user from accessing Hadoop, the user
also needs to be removed from Hadoop related groups. Revoking a user’s group membership can
cause authorization checks to fail, so users will not be able to access the resources.

During the application submission, the client obtains a delegation token from NameNode, and the
ResourceManager is set as the renewer for delegation tokens. The delegation token will be stored in
HDFS as part of the application resources. The individual containers of the application retrieve the

Securing Applications ❘ 137

c06.indd 04/22/2016 Page 137

delegation token as part of the application resources and use the delegation token to authenticate
as the application submitter to HDFS to read and write fi les. Once the application is done, the
 delegation token is canceled.

Block Access Tokens
The data is stored as blocks on DataNodes and indexed by block identifi ers (block ids). To access
some data, the client needs to specify the block identifi er. In an insecure cluster, the client just
needs to specify the block identifi er. The protocol by default does not enforce authentication and
authorization, so this is a loophole since it enables unauthorized clients to access any data if they
happen to know the block identifi er corresponding to the data.

This security issue is resolved using block access tokens. To enable this feature, dfs.block.access
.token.enable should be set to true. When a client tries to access a fi le, the client fi rst contacts the
NameNode. The NameNode will authenticate the client and make sure that the client has permis-
sions to access the fi le. Instead of handing over the list of block identifi ers for blocks belonging to
the fi le, the NameNode will generate block access tokens for each block belonging to the fi le. The
Block Access Token has the following format:

 ➤ Block Access Token = {TokenID, TokenAuthenticator}

 ➤ TokenID = {expirationDate, keyID, ownerID, blockPooID, blockID, accessModes}

 ➤ TokenAuthenticator = HMAC-SHA1 (key, TokenID)

The NameNode and DataNodes share a secret key, which is used to generate the
TokenAuthenticator. The block access token is valid across all DataNodes irrespective of where the
actual block resides. The key is updated periodically and can be confi gured via the dfs.block
.access.key.update.interval property. The default value is 10 minutes, and each block access
token has a lifetime beyond which it expires. The lifetime can be confi gured using the dfs.block
.access.key.update.interval property.

Since users may have limited permissions to a fi le, the access modes in the block access token
indicate the operations permitted for a user. The access modes could be combination of
{READ, WRITE, COPY, REPLACE}.

Using Secure Containers
The data processing logic of the application is executed on different containers on different
machines. The NodeManager starts the containers, and this process is usually started as the YARN
user. By default, the process owner of any processes started by the NodeManager will be YARN.
Since the user application runs on the containers, running as YARN will enable these user appli-
cations to perform operations that only the YARN user can perform. This includes stopping the
NodeManager or other containers. The user application running as YARN can also access log fi les
belonging to other users.

In a secure cluster, YARN uses the operating system facilities to enable execution isolation for
 containers. Secure containers execute under credentials of the application submitter, which should
be different from that of the user running the NodeManager.

138 ❘ CHAPTER 6 HADOOP SECURITY

c06.indd 04/22/2016 Page 138

In a Linux environment, NodeManager uses a container executor, LinuxContainerExecutor, to
start container processes. LinuxContainerExecutor uses an external binary named container-
executor to launch containers. Container-executor is an executable, which has a setuid fl ag
set so that it can change the ownership of the container to that of the user who submitted the
application.

Since the application submitter owns container processes, the application submitter must be avail-
able on the machine running the containers. This means that all application submitters must be
available on all NodeManager machines. When there are hundreds of NodeManager machines, inte-
grating these machines with an LDAP system becomes a practical necessity.

Authorization of Applications
The ACLs can be associated with applications. For a MapReduce job, ACLs can be specifi ed along
with the job confi guration. By default, the job submitter can view and modify jobs, and queue
administrators can view and modify jobs. If any other user needs to view and modify jobs, then they
need to be specifi ed via mapreduce.job.acl-view-job and mapreduce.job.acl-modify-job. Just
like other ACLS, these ACLs also take a comma-separated list of users and groups.

Securing Intermediate Data in a MapReduce Job
Running a MapReduce job results in the storage and transfer of intermediate data, and there are
intermediate fi les stored on the local fi lesystem during merge and shuffl e phases. In some cases, it is
required to encrypt these intermediate fi les stored on the local fi lesystem. This can be achieved by
setting the mapreduce.job.encrypted-intermediate-data job property to true.

When the reducers start, they pull the map outputs for shuffl ing. In some use cases, it is desirable to
encrypt the data transfer. MapReduce supports an encrypted shuffl e capability to encrypt the shuffl e
data using HTTPS. To enable encrypted shuffl e, you must set mapreduce.shuffle.ssl.enabled
to true in the job confi guration. Note that SSL support with truststore and keystore must be enabled
on all NodeManagers. It is possible to ensure client authentication by requiring certifi cates from the
reducer side.

SUMMARY

 In this chapter we covered the many types of Hadoop security features. Securing the perimeter of
the Hadoop cluster using fi rewalls is critical to prevent unauthorized requests to Hadoop cluster. We
identifi ed the different types of machines in a Hadoop cluster and discussed the differences in secur-
ing the perimeter for these machines. The authentication of users with Kerberos was covered with a
detailed overview of the Kerberos protocol. We also covered the fi rst level of authorization available
in Hadoop–Service Level Authorization. Impersonating other users securely has many use cases in
intermediary services and applications, but we took a look at how to secure the HTTP channels
with pluggable authentication and SSL.

Data should be secured while in motion and at rest based on the classifi cation of data. We covered
the methods and confi guration to ingest data to a cluster, ensuring integrity and confi dentiality
using RPC and HTTP protocols. We also discussed the method to enable selective encryption to

Summary ❘ 139

c06.indd 04/22/2016 Page 139

avoid performance degradation. To protect the data at rest on HDFS, we reviewed the usage of fi le
permissions, ACLs, and HDFS transparent encryption.

Data is processed by launching applications on the cluster, so we discussed how YARN applies
ACLs to authorize the submission of applications at the service and queue level. We then reviewed
the role of delegation tokens used to ensure continued authentication of applications while access-
ing HDFS. And fi nally, we covered the usage of secure containers to ensure process isolation during
data processing. You should now be armed with an arsenal of security techniques to implement and
keep your Hadoop cluster secure.

c07.indd 04/20/2016 Page 141

Ecosystem at Large: Hadoop
with Apache Bigtop

WHAT’S IN THIS CHAPTER?

 ➤ Understanding basic concepts of software stacks

 ➤ Reviewing specifi cs of open source data processing stacks

 ➤ Creating your own custom stack including Apache Hadoop

 ➤ Deploying, testing, and managing confi guration

In the modern world software is becoming more and more sophisticated all of the time. The
main complexity, however, lies not in the algorithms or the tricky UI experience. It is hidden
from the end user and resides in the back—in the relations and communications between
 different parts of a software solution commonly referred to as a software stack. Why are
stacks so important, and what is so sp ecial about the Apache Hadoop data processing stack?

In this chapter you will be presented with materials to help you get a better grip of data
processing stacks powered by the software that forms the foundation of all modern Apache
Hadoop distributions. The chapter, by no means, is a complete text book on Apache Bigtop.
Instead, we will put together a quick guide on the key features of the project, and explain
how it is designed. There will be a collection of available resources that help you to grow your
expertise with the ecosystem.

Bigtop is an Apache Foundation project aimed to help infrastructure engineers, data scientists,
and application developers to develop and advance comprehensive packaging. This requires you
to test and manage the confi gurations of the leading open source big data components. Right
now, Bigtop supports a wide range of projects, including, but not limited to, Hadoop, HBase,
Ignite, and Spark. Bigtop packages RPM and DEB formats, so that you can manage and main-
tain your data processing cluster. Bigtop includes mechanisms, images, and recipes for deploy-
ing Hadoop stack from zero to many supported operating systems, including Debian, Ubuntu,

7

Professional Hadoop®. Benoy Antony, Konstantin Boudnik, Cheryl Adams, Branky Shao, Cazen Lee and Kai Sasaki
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

142 ❘ CHAPTER 7 ECOSYSTEM AT LARGE: HADOOP WITH APACHE BIGTOP

c07.indd 04/20/2016 Page 142

CentOS, Fedora, openSUSE and many others. Bigtop delivers tools and a framework for testing at
various levels (packaging, platform, runtime, etc.) for both initial deployments as well as upgrade
scenarios for the entire data platform, not just the individual components.

It’s now time to dive into the details of this exciting project that truly spans every single corner of
the modern data processing landscape.

BASICS CONCEPTS

Developers working on various applications should have a focal point where products from
different teams get integrated into a fi nal ecosystem of the software stack. In order to lower the mis-
match between the storage layer and the log analysis subsystem, the APIs of the former have to be
documented, supported, and stable. Developers of a log processing component can fi x the version of
the fi le system API by using Maven, Gradle, or another build and dependency management software.
This approach will provide strong guarantees about compatibility at the API and binary levels.

The situation changes dramatically when both pieces of the software are deployed into a real data-
center with a confi guration that is very different from one used on the developer’s laptop. A lot of
things will be different in the datacenter environment: kernel updates, operating system packages,
disk partitioning, and more. Another variable sometimes unaccounted for is the build environment
and process, tasked with producing binary artifacts for production deployment. Build servers can
have stale or unclean caches. These will pollute a product’s binaries with incorrect or outdated
 versions of the libraries, leading to different behavior in different deployment scenarios.

In many cases, software developers aren’t aware about operational realities and deployment
 conditions where their software is being used. This leads to production releases that aren’t directly
consumable by the IT. My “favorite” example of this is when a large company’s datacenters’
operation team has a 23-step cheat-sheet on how to prepare an offi cial release of a software
 application to make it deployable into a production environment.

IT professionals tasked with provisioning, deployment, and day-to-day operations of the production
multi-tenant systems know how tedious and diffi cult it is to maintain, update, and upgrade parts of
a software system including the application layer, RDBMS, web servers, and fi le storage. They no
doubt know how non-trivial the task of changing the confi guration on hundreds of computers is in
one or more datacenters.

What is the “software stack” anyway? How can developers produce deployment-ready software?
How can operation teams simplify confi guration management and component maintenance
 complexities? Follow along as we explore the answers to all of these questions.

Software Stacks
A typical software stack contains a few components (usually more than two) combined together to
create a complete platform so that no additional software is needed to support any applications.
Applications are said to “run on” or “run on top of” the resulting platform. The most common
stack examples includes Debian, LAMP, and OpenStack. In the world of data processing you
should consider Hadoop-based stacks like Apache Bigtop™, as well as commercial distributions

Basics Concepts ❘ 143

c07.indd 04/20/2016 Page 143

of Apache Hadoop™ based on the Bigtop: Amazon EMR. Hortonworks Data Platform is another
such example.

Probably the most widely known data processing stack is Apache Hadoop™, composed of HDFS
(storage layer) and MR (computation framework on top of distributed storage). This simple com-
position, however, is insuffi cient for modern day requirements. Nonetheless, Hadoop is often used
as the foundation of advanced computational systems. As a result, a Hadoop-proper stack would
be extended by other components such as Apache Hbase™, Apache Hive™, Apache Ambari™
(installation and management application), and so on. In the end, you might end up with something
like what is shown in Table 7-1.

TABLE 7-1: Extended components make up a Hadoop proper stack

hadoop 2.7.1

hbase 0.98.12

hive 1.2.1

ignite-hadoop 1.5.0

giraph 1.1.0

kafka 0.8.1.1

zeppelin 0.5.5

The million dollar question is: How do you build, validate, deploy, and manage such a “simple”
 software stack? First let’s talk about validation.

Test Stacks
Like the software stacks described above, you should be able to create a set of components with the
sole aim of making sure that the software isn’t dead on arrival and that it certainly delivers what
was promised. So, by extension: A test stack contains a number of applications combined together
to verify the viability of a software stack by running certain workloads, exposing components’
 integration points, and validating their compatibility with each other.

In the example above the test stack will include, but not be limited by, the integration testing
 applications, which ensures that Hbase v 0.98.16 works properly on top of Hadoop 2.7.1. It must
also work with Hive 1.2.1, it must be able to use the underlying Hadoop Mapreduce, work with
YARN (Hadoop resource navigator), and use Hbase 0.98.16 as the storage for external tables. Keep
in mind that Zeppelin validation applications guarantee that data scientists’ notebooks are properly
built and confi gured to work with Hbase, Hive, and Ignite.

Works on My Laptop
If you aren’t yet thinking “How in the world can all of these stacks be produced at all?” here’s some-
thing to make you go “Hmm.” A typical modern data processing stack includes anywhere between

144 ❘ CHAPTER 7 ECOSYSTEM AT LARGE: HADOOP WITH APACHE BIGTOP

c07.indd 04/20/2016 Page 144

10 and 30+ different software components. Most of them, being an independent open source
 project, have their own release trains, schedules, and road maps.

Don’t forget that you need to add a requirement to run this stack on a CentOS7 and Ubuntu 14.04
clusters using OpenJDK8, in both development and production confi gurations. Oh, and what about
that yesteryear stack, which right now is still used by the analytical department? It now needs to be
upgraded in Q3! Given all of this, the “works on my laptop” approach is no longer viable.

DEVELOPING A CUSTOM-TAILORED STACK

How can a software developer, a data scientist, or a commercial vendor go about the development,
validation, and management of a complex system that might include versions of the components
not yet available on the market? Let’s explore what it takes to develop a software stack that satisfi es
your software and operation requirements.

Apache Bigtop: The History
Apache Bigtop (http://bigtop.apache.org) has a history of multiple incarnations and revisions.
Back in 2004-2005, the creation and delivery of Sun Microsystems Java Enterprise Stack (JES) was
done with a mix of Tinderbox CI along with a build manifest describing the stack’s composition:
common libraries, software components such as directory server, JDK, application server versions,
and so on.

Another attempt to develop the stack framework concept further was taken at Sun Microsystems,
and was aimed at managing the software stacks for enterprise storage servers. The modern storage
isn’t simply Just a Bunch of Disks, but rather an intricate combination of the hardware, operat-
ing system, and application software on top of it. The framework was tracking a lot more things,
including system drivers, different versions of the operating system, JES, and more. It was,
however, very much domain-specifi c, had a rigid DB schema, and a very implementation aware
build system.

The penultimate incarnation, and effectively the ancestor of what we know today as Apache Bigtop,
was developed to manage and support the production of the Hadoop 0.20.2xx software stack at
the Yahoo! Hadoop team. With the advent of security, the combinatorial complexity blew up and it
became impossible to manage it with the existing time and resource constraints. It was very much
specifi c for Yahoo’s internal packaging formats and operational infrastructure, but in hindsight
you could see a lot of similarities with today’s open source implementation, discussed later in
this chapter.

The fi rst version of modern Apache Bigtop was initially developed by the same engineers who
implemented Yahoo!’s framework. This time it introduced the correct conceptualization of software
and test stacks. It was properly abstracted from component builds (they are different, because the
development teams are coming from different backgrounds), it has provided the integration testing
framework capable of working in a distributed environment, and it has many other improvements.
An early version of the deployment recipes and packaging was contributed by developers from
Cloudera. By Spring 2011 it was submitted to the Apache Software Foundation for incubation and
later became a top-level project.

Developing a Custom-Tailored Stack ❘ 145

c07.indd 04/20/2016 Page 145

Today, Apache Bigtop is employed by all commercial vendors of Apache Hadoop as the base
 framework for their distributions. This has a number of the benefi ts for end users, since all of the
package layouts, confi guration locations, and life-cycle management routings are done in the same
way across different distros. The exception to the latter rule is introduced by Apache Ambari and
some closed-source cluster managers, which use their own life-cycle control circuits, circumventing
the standard Linux init.d protocol.

Apache Bigtop: The Concept and Philosophy
Conceptually, Bigtop is a combination of four subsystems serving different purposes:

 1. A stack composition manifest or Bill of Materials (BOM).

 2. The Gradle build system managing artifacts creation (packages), the development environ-
ment confi guration, the execution of the integration tests, and some additional functions.

 3. Integration and smoke tests along with the testing framework called iTest.

 4. A deployment layer providing for seamless cluster deployment using binary artifacts and
the confi guration management of the provisioned cluster. Deployment is implemented via
Puppet recipes. It helps to quickly deploy a fully functional distributed cluster, secured or
non-secured, with a properly confi gured components’ subset. The composition of the fi nal
stack is controlled by user input.

Apache Bigtop provides the means and toolkit for stack application developers, data scientists,
and commercial vendors to have a predictable and fully controllable process to iteratively design,
implement, and deliver a data processing stack. Philosophically, it represents the idea of empirical
bake-in, versus a rational approach in the software development. Why are all of these complications
needed, and why not to use unit and functional tests, you might ask?

The complications are dictated by the nature of the environments where the stacks are
designed to work. Many things can have an effect on how well the distributed system works.
Permutations of kernel patch-levels and confi gurations could affect the stability. Versions of the
runtime environment, network policies, and bandwidth allocation could directly cut into your
software performance. Failures of the communication lines or services, and nuances of your
own software confi guration, could result in data corruption or total loss. In some situations a
developer needs to do an A-B test on the stack where only a single property is getting changed,
such as by applying a specifi c patch-set to Hbase and checking if the stack is still viable. In
general, it is impossible to rationalize all of those variances: You only can guarantee that a
 particular composition of a software stack works in an X environment with Y confi guration
if you have a way to empirically validate and prove such a claim. At times an already released
project has a backward incompatible change that was missed during the development, testing,
and release process. This can be discovered by a full stack integration validation with Apache
Bigtop (see Figure 7-1). Such fi ndings always lead to consequent updates, thus fi xing the issues
for the end users.

Continuous integration tools like Jenkins and TeamCity have become a part of the day-to-day
software engineering process. Naturally, using a continuous integration setup with Apache Bigtop
shortens the development cycle, and improves the quality of the software by providing another

146 ❘ CHAPTER 7 ECOSYSTEM AT LARGE: HADOOP WITH APACHE BIGTOP

c07.indd 04/20/2016 Page 146

tremendous benefi t of the quick discovery of bugs. You can quickly glance at the current issues
using information radiators like this: https://cwiki.apache.org/confluence/display/BIGTOP/
Index.

FIGURE 7-1

Now let’s proceed to a hands-on exercise of creating your own Apache data processing stack. All
examples in this chapter are based on the latest (at the time of writing) Apache Bigtop 1.1
release candidate.

The Structure of the Project
At the top-level, Bigtop has a few important moving parts. Let’s review some of them:

 ➤ build.gradle: Represents the core of the build system

 ➤ packages.gradle: Represents the core of the build system

 ➤ bigtop.bom: The default stack composition manifest

 ➤ bigtop_toolchain/: Sets up the development environments

Developing a Custom-Tailored Stack ❘ 147

c07.indd 04/20/2016 Page 147

 ➤ bigtop-test-framework/: A home of iTest, the integration testing framework

 ➤ bigtop-tests/: Contains all the code for integration and system tests along with the
Maven build to confi gure the environment and run the tests against a cluster

 ➤ bigtop-deploy/: Has all the deployment code for distributed clusters, as well as virtual
and container environments

 ➤ bigtop-packages/: Provides all the content needed for the creation of installable
binary artifacts

Let’s get into some more detail about some of them.

Meet the Build System
The Apache Bigtop build system uses Gradle (http://gradle.org/). The Bigtop source tree
includes a gradlew wrapper script, and in order to start working with Bigtop you need JDK7 or
later, and the cloned repo of the Bigtop:

git clone https://git-wip-us.apache.org/repos/asf/bigtop.git

You can also fork this from the github.com mirror: http://github.com/apache/bigtop.git.

And now, to see the list of available tasks you can simply run:

cd bigtop
./gradlew tasks

Stack components can be built all at once:

./gradlew deb or ./gradlew rpm

You can also use an explicit selection:

./gradlew allclean hive-rpm

The Bigtop build is the center of most all of the activities and functionalities in the framework.
It is used to create the development environment and the build binaries, to compile and run tests,
to deploy project artifacts to a central repository, to build the project web-site, and to do many
other things.

Bigtop has a way to specify inter-component dependencies in the stack so all upstream dependencies
are automatically built fi rst if needed. In the above example, if -Dbuildwithdeps=true is passed
in the build time, Bigtop will fi rst download and build Hadoop, and only then will it proceed with
Hive. Hadoop, however, requires ZooKeeper, so its build will precede the creation of the Hadoop
component. By default, however, Bigtop will only build the component that is explicitly specifi ed.

Bigtop provides the functionality to generate local apt and yum repositories from existing packages.
It allows a stack developer to quickly test freshly-built packages by pointing to the repo location in
the local fi lesystem. This can be done by running:

./gradlew apt|yum

A corresponding repository will be created using all of the DEB or RPM packages found under the
top-level output/ directory.

148 ❘ CHAPTER 7 ECOSYSTEM AT LARGE: HADOOP WITH APACHE BIGTOP

c07.indd 04/20/2016 Page 148

At any point, to explore all of the standard tasks available for the end user, you can execute:

./gradlew tasks

And now we are ready to check how to confi gure and work with the development environment,
which is needed to build all of the highly complex data processing software, known as the
Hadoop stack.

Toolchain and Development Environment
In order to create a stack of dozens of components, your system will need to be equipped with a lot
of development tools. Keeping track of these requirements is a full-time job. Fortunately, the devel-
opment needs for all of the supported platforms are readily provided by the Bigtop toolchain located
under the bigtop_toolchain/ top-level directory. Bigtop is using Puppet not only for deployment, but
also for its own needs, like setting up the development environment. You don’t need to be a Puppet
expert, however, to take advantage of it. Just make sure you have sudo rights and type this:

./gradlew toolchain

This will automatically install all of the packages for your system, including a correct version of the
JDK needed for the stack components.

BOM Defi nition
Bigtop provides a Bill of Materials, or a BOM fi le, that expresses what components are included,
their versions, the location of the source code and some other properties. The default BOM fi le
name is bigtop.bom, and it describes the stack that will be created. BOM is using a simple self-
documented DSL. Here’s a typical component description:

 'hbase' {
 name = 'hbase'
 relNotes = 'Apache Hbase'
 version { base = '0.98.12'; pkg = base; release = 1 }
 tarball { destination = "${name}-${version.base}.tar.gz"
 source = "${name}-${version.base}-src.tar.gz"}
 url { download_path = "/$name/$name-${version.base}/"
 site = "${apache.APACHE_MIRROR}/${download_path}"
 archive = "${apache.APACHE_ARCHIVE}/${download_path}"}
 }

As you can see, it is possible to use the already defi ned variables, pkg = base, from the same scope,
or from other sections of the BOM:

download_path = "/$name/$name-${version.base}.

The DSL processor will stop the build if any errors are detected.

The standard sources of the components are offi cial Apache project releases. You can choose, how-
ever, to build a component from elsewhere by pointing to a different location of the source archive.
The downloadable URL is automatically constructed as url.site/url.download_path/tarball.source.
So, if you want to build Hbase from a GitHub repository using branch-1.2, change the defi nition to:

 tarball { destination = "${name}-${version.base}.tar.gz"
 source = "hbase-1.2.zip" }

Deployment ❘ 149

c07.indd 04/20/2016 Page 149

 url { download_path = "apache/hbase/archive"
 site = "https://github.com/${download_path}"
 archive = site }

You can then run ./gradlew hbase-clean hbase-deb to produce a new set of binaries
for Debian.

There’s also a way to create component packages directly from a Git version control system. Please
refer to README.md in the top level folder of the Bigtop source tree for more information about
this capability. Further in the chapter, if the location of a fi le isn’t specifi ed explicitly, it can be
found in the top-level folder.

DEPLOYMENT

Evidently, having all of the tools to develop and validate the stack only allows you to build the
packages, which has little value if there’s no way to deploy it and run some workloads. Generally,
software stacks come with some means to install them (or deploy them in the case of distributed
environments), and to manage and control their components and state. And of course Bigtop provides
a couple of ways to provision your environment. The simplest one is to use the Bigtop provisioner,
which we’ll cover in more detail next. More complex cases might involve editing some confi guration
fi les, and running Puppet from the command line. We cover both cases for the benefi t of people who
manage clusters at their day jobs, and those who just need to quickly set up an environment to verify
things they are developing. Let’s start with a simple case.

Bigtop Provisioner
The Bigtop provisioner is a subsystem of the framework, which provides a convenient way to
spin up a fully distributed Hadoop cluster using virtual machines or Docker containers. It can
be found under the bigtop-deploy/vm directory of the project source tree. The most up-to date
information about this deployment method can be found at: https://cwiki.apache.org/
confluence/ display/BIGTOP/Bigtop+Provisioner+User+Guide. We will, however, explain
how it works here.

Provisioner uses Vagrant and makes cluster deployment to a virtual or containerized environment
quite uniform. Try the following to see how easy it is:

 1. Start with <BIGTOP_ROOT>/bigtop-deploy/vm/vagrant-puppet-docker vi vagrant
config.yaml

 2. Update the docker image name from bigtop/deploy:centos-6 or bigtop/deploy:debian-8
and point the repository to https://cwiki.apache.org/confluence/display/BIGTOP/
Index. Select the component you’d like to deploy: [hadoop, yarn, hbase]

 3. And type the following: ./docker-hadoop.sh --create 3

The standard provisioner comes with a pre-defi ned confi guration, and if you don’t need anything
special you can just use it. The provisioner is integrated into the build system:

./gradlew -Pnum_instances=3 docker-provisioner

150 ❘ CHAPTER 7 ECOSYSTEM AT LARGE: HADOOP WITH APACHE BIGTOP

c07.indd 04/20/2016 Page 150

Assuming that your computer has Vagrant and Docker already installed, you will get a fully dis-
tributed cluster up and running as the result of the above command. You should be able to SSH into
cluster nodes and perform the usual activities as expected. The provisioner script supports a few
more commands, so refer to the top-level README.md for the most up-to-date information. To
learn more about Hadoop provisioning with Docker we recommend the Evans Ye presentation on
the topic available from http://is.gd/FRP1MG.

 Master-less Puppet Deployment of a Cluster
For more complex cases of cluster provisioning, let’s look into the deployment system. Bigtop Puppet
recipes can be found under the bigtop-deploy/puppet directory of the project source tree. Let’s see
how Apache Bigtop allows you to quickly deploy a fully distributed software stack.

This is an advanced way of setting up a cluster, and unless you need to manage one on your own,
you can skip the rest of this section and go directly to the “Integration Validation” section. A fully
distributed deployment requires a few more steps compared to the Provisioner example above, but
essentially with a few more commands so you can spin a cluster as big as you need, with optional
High Availability for HDFS and/or YARN, and with or without security. Securing a Hadoop cluster
includes standing and setting up your own KDC server, which isn’t easy to do. As you saw in earlier
chapters, Hadoop security is a diffi cult topic involving many variables, but combined with the
security across the stack, it can quickly turn into a management nightmare. If you are interested
in the topic please familiarize yourself with the presentation by Olaf Flebbe on “How to Deploy
a Secure, Highly-Available Hadoop Platform.” The PDF slides can be downloaded from
http://is.gd/awcCoD.

One of the requirements we have for the deployment mechanism is to be able to work under differ-
ent operation environments. The specifi c host names and their roles might not be known, as in the
case of a company-wide deployment system. This is why the implementation is done as a master-less
dynamic system where all nodes have the same set of recipes, but different nodes receive their own
confi guration fi les. Once the groundwork is done, all nodes will simultaneously be brought into
their specifi c states, resulting in a working cluster with as many nodes as needed. The deployment
system collects node information using Puppet Hiera for lookup and collection modules, and jux-
taposes it with the roles defi nitions from Bigtop recipes. Here’s a high-level example of how it works:

 ➤ Bigtop provides a default topology template fi le bigtop-deploy/puppet/hieradata/site
.yaml defi ning a few key parameters of the cluster such as bigtop::hadoop_head_node,
hadoop::hadoop_storage_dirs, hadoop_cluster_node::cluster_components, and
optionally the list of bigtop::roles. Important: the head node has to be set as a fully
 qualifi ed domain name (FQDN); otherwise the node identifi cation won’t work.

 ➤ By default, the roles mechanism is turned off. All nodes in the cluster are assigned a worker
role, and the head node carries on the master role. So, the head node will run a NameNode
process and Resource Manager process, if you deploy HDFS and YARN. The set of
 components is defi ned by hadoop_cluster_node::cluster_components. If the list isn’t
set explicitly, all available packages will be installed and confi gured.

 ➤ To take advantage of the roles, set bigtop::roles_enabled: true in the site.yaml
and specify the roles as per node. This, however, might lead to a need to manage separate

Deployment ❘ 151

c07.indd 04/20/2016 Page 151

confi gurations for different nodes, especially if your cluster topology is trivial. We will cover
a possible way of handling this in the next section. The full list of roles per daemon can be
found in the bigtop-deploy/puppet/manifests/cluster.pp manifest.

 ➤ The complete list of confi guration parameters and their default values can be found in the
bigtop-deploy/puppet/hieradata/bigtop/cluster.yaml fi le.

Let’s now proceed to the deployment itself. First, you need a set of nodes for your cluster. It’s outside
of the scope of this chapter and the book to go into every single detail of the hardware provisioning.
If you’re reading this book, however, you’re probably already aware of tools like Foreman, EC2, or
others. For the simplicity of this example we won’t deal with role-based deployment, and we will
leave it out as an exercise for the reader.

Let’s say there are fi ve nodes up and running Ubuntu 14.04, with the node[1-5].my.domain as
their hostnames. Nodes will be carrying their functions as follows:

 ➤ node1 through node5 will be workers.

 ➤ node1 will serve as the head node.

 ➤ node5 will be handling the gateway functions.

The deployed stack will include HDFS, the mapred-app, the ignite-hadoop, and the Hive compo-
nents. The set of the component is minimalistic, yet functional, and we’ll be using it in the
next chapter.

Let’s start working with the node1.my.domain and clone the project Git repo under /work.
According to that layout, site.yaml will have the following content:

bigtop::hadoop_head_node: "node1.my.domain"
bigtop::hadoop_gateway_node: "node5.my.domain"
hadoop::hadoop_storage_dirs:
 - /data/1
 - /data/2
hadoop_cluster_node::cluster_components:
 - ignite_hadoop
 - hive
bigtop::jdk_package_name: "openjdk-7-jre-headless"
bigtop::bigtop_repo_uri: \
"http://bigtop-repos.s3.amazonaws.com/releases/1.1.0/
ubuntu/14.04/x86_64"

The latest versions of Bigtop have an ability to automatically detect and set the URL of the package
repo for difference platforms, but I will leave it as it is here for better clarity.

Now we need to make sure that the all of the nodes have the same recipes and confi gurations.
Because Puppet modifi es the state of the system, it has to be executed under a privileged account
such as root. It would be easier if you have a password-less SSH login between all of your nodes.
Alternatively, you can manually enter the password when requested. To sync-up the project’s con-
tent, simply rsync or otherwise distribute the content of the /work folder to all of the nodes in your
cluster. In our experience, the best way to achieve this is by using pdsh and rsync. The following
commands will do the trick. Be aware, though, that you need to specify the SSH user name and the
path to the SSH key. Check with the rsync man page for more details.

152 ❘ CHAPTER 7 ECOSYSTEM AT LARGE: HADOOP WITH APACHE BIGTOP

c07.indd 04/20/2016 Page 152

export SSH_OPTS="ssh -p 22 -i /root/.ssh/id_dsa.pub -l root"
 pdsh -w node[2-5].my.domain rsync $SSH_OPTS -avz –-delete node1.my.domain:/work /

At this point, all of the nodes should have an identical /work folder. Puppet Hiera, however, must be
able to read the confi guration fi le and some other fi les from the workspace:

vi bigtop-deploy/puppet/hiera.yaml

You can then point datadir to the workspace, so the line looks like this:

:datadir: /work/bigtop-deploy/puppet/hieradata
cp bigtop-deploy/puppet/hiera.yaml /etc/puppet/hiera
pdsh -w node[2-5].my.domain rsynch $SSH_OPTS -avz –-delete
 node1.my.domain:/etc/puppet/hiera.yaml /etc/puppet/

The last preparation step is to make sure that all nodes have the required Puppet modules by
running:

pdsh -w node[1-5].my.domain 'cd /work && \
puppet apply --modulepath="bigtop-deploy/puppet/modules" -e "include
 bigtop_toolchain::puppet-modules"'

 And we are now ready for the deployment:

pdsh -w node[1-5].my.domain 'cd /work && \
puppet apply -d --modulepath="bigtop-deploy/puppet/modules:/etc/puppet/modules"
 bigtop-deploy/puppet/manifests/site.pp'

After a few minutes (your mileage might vary with different connection speeds) you should have a
fully functional Hadoop cluster with a formatted HDFS. You will also have your user directories
that are set with correct permissions, as well as other fully confi gured components with their
services up and running. The node5.my.domain now has all client binaries and libraries working
with cluster services. Enjoy!

Each release of Apache Bigtop comes with generated repo fi les for a variety of operating systems.
The set for release 1.0.0 can be found at https://cwiki.apache.org/confluence/display/
BIGTOP/Index. Similarly, release 1.1.0 will be published at https://dist.apache.org/repos/
dist/release/bigtop/bigtop-1.1.0/repos/ once the release candidate
is offi cially accepted.

Confi guration Management with Puppet
As you can see, standing up a real distributed cluster is a bit more complex than a simple provi-
sioner, but it is still trivial enough. You might end up with nodes built from different hardware
batches with different amounts of RAM and/or hard drives. The software composition of the nodes
might be dissimilar to each other, and carry their own function in the pipeline. So, a subset of the
nodes might only carry Apache Kafka nodes and serve the logs collection, whereas another subset
may be designated to the events stream processing using Apache Flink. These node confi gurations
and packages would have to be maintained or updated on different schedules; some of the mainte-
nance might require service restarts and some might not. Handling these intricacies is a full time
job. That’s why cluster orchestration is an important topic. The orchestration is quite different from
management, but both terms are often and incorrectly used interchangeably. Without getting into
too many details let’s consider orchestration to be composed of architecture, tools, and a process to

Deployment ❘ 153

c07.indd 04/20/2016 Page 153

deliver a pre-defi ned service. Management, on the other hand, provides tools and information radia-
tors for automation, monitoring, and control.

Hadoop vendors do provide some tooling to help with the management routine. These tools are
available as free and open source, and as proprietary commercial tools as well. You should be able
to easily identify them with a quick search, but we don’t recommend focusing on those tools for
three main reasons:

 1. They aren’t compatible with the standard Linux init.d (or systemd) life-cycle manage-
ment, and they use their own custom ways of standing up, confi guring, and managing
cluster services.

 2. The tools are all webUI-based and interactive, which makes scripting and automation around
them either impossible or considerably more diffi cult.

 3. These tools have their custom implementations for system management, which pretty much
disregards decades of operation experience put together by producers of Chef and Puppet.
This is a very complex topic, and professionals are sticking to well-known frameworks,
which are also well-integrated with provisional systems like Foreman.

These management tools, however, help to signifi cantly lower the entry barrier for people not
 familiar with the software in question. They hide a lot of complexities and deliver a central console
to observe and control system behavior. This of course has its own benefi ts.

So what can a professional system administrator or a DevOps engineer do? With Unix, the best
result is achieved by putting together a set of smaller tools and utilities, each being responsible for a
smaller piece of action. In our case, we should have a Version Control System (VCS) that is respon-
sible for the versioning aspect of the cluster confi guration, and Puppet to take care about the state
management of it. It is wise to use a distributed VCS, given how all of the confi guration changes
must be propagated to multiple hosts. We use Git, but you can use Subversion or Mercurial if it
suites you better.

The idea is pretty simple: Specifi c confi gurations have to be separated, and should be updated inde-
pendently. A VCS branch mechanism fi ts here perfectly, with different group or role confi gurations
living in their own branches. Now the confi gurations fi les, or their templates, as well as the versions
of the software packages, can be independently managed by people with domain expertise, which
are typically DevOps engineers. Once a stack update is validated in a testing environment, it can
be easily pushed into production, by merging or explicitly picking certain confi guration changes
between branches. As soon as the change is pushed to the VCS server, all nodes can pick it up and
consequently apply it in full isolation from each other. The state machine (Puppet or Chef) will
 automatically restart the services according to the given recipes. This process can be as fi ne grained
as needed and can easily change without massive outages of the cluster. There’s no single point of
failure either, given how there isn’t a single management host or service.

Here’s a sketch of how it works, but please note that the installation and confi guration of the Git
servers is outside the scope of this chapter. This solution has essentially three parts: VCS, cron, and
master-less Puppet. Each node in the cluster has a crontab entry to do the following:

cd /work
git pull origin/node-$ROLE-branch
puppet apply manifests/site.pp

154 ❘ CHAPTER 7 ECOSYSTEM AT LARGE: HADOOP WITH APACHE BIGTOP

c07.indd 04/20/2016 Page 154

The environment variable $ROLE might be set during the initial provisioning of the operating system
or specifi ed otherwise. The cron will execute the above set of commands as often as practical,
 keeping the nodes of the cluster in a coherent state per specifi ed confi gurations.

INTEGRATION VALIDATION

Now that we have our desirable Hadoop-based cluster up and running, we should check if it is
working as expected, and that all of the components can play nicely with each other. The best way
to fi gure this out is by running some workloads that will not only check if separate parts of the
clusters are working as expected, but will also be crossing the components’ boundaries to make sure
they are binary and API compatible. Bigtop has two ways to do this: via integration or smoke tests.
Both kinds of tests can be written in any JVM language.

You can immediately spot how a lot of tests in the Bigtop, as well as the iTest framework, are
written using the Groovy language. The main reason is because Groovy provides a unique mix of
dynamic capabilities with a strong-typed language. Being a truly polyglot language, you don’t have
to worry much about arbitrary fi le extensions. Depending upon the problem at hand, you can just
write your code in Java or Groovy. Groovy scripting is a very powerful tool, as you’ll see in the later
section discussing smoke tests. In fact, Groovy is quite deeply intertwined with the Bigtop build,
the actual deployment, and the stack. Bigtop’s build system, Gradle, is a type of Groovy DSL. We
will use a Groovy script to format an HDFS fi le system and stuff the distributed cache with all of
the expected libraries and fi les (bigtop-packages/src/common/hadoop/init-hcfs.groovy). Note how
bigtop-groovy is a standard package of the Apache Bigtop stack.

Bigtop is currently in the almost completed transition from the Maven build system to Gradle. This
proved to be more comprehensive and a better fi t for the variety of the tasks needed to be managed
in the Bigtop project. As a result, smoke tests are controlled by the Gradle build, whereas the
old-fashioned integration tests are still relying on Maven. The latter is retrofi tted into a top-level
Gradle build, but full integration is not yet fi nished. Don’t be alarmed—it is coming.

Once the transition is fi nished, instead of Maven modules as explained below, Bigtop will be using
Gradle multi-project builds, although conceptually it won’t change much for your users.

iTests and Validation Applications
All tests in Bigtop are considered to be fi rst class citizens, similar to the production code. They
aren’t really tests, but rather validation applications tuned for the particular software stack. Each
application has two parts to it:

 ➤ The application code can be found under test-artifacts/ along with its build environment
where the target dependencies are set and particular APIs are exercised.

 ➤ Maven executors start the applications. These are simple Maven modules sitting under
 test-execution/ to perform the checking and setting of the environment where needed.

The Integration validation application can use the helper functionality provided by the Bigtop
 integration test framework (iTest). It can complement both an application and its executor. iTest is
an extension to the standard JUnit v4, adding nice things like the ordered execution of tests, the

Integration Validation ❘ 155

c07.indd 04/20/2016 Page 155

ability to run tests directly from JAR fi les, and some other useful features. We won’t, however, focus
much on the iTest itself. If you are interested to learn more you can fi nd all related information
under the bigtop-test-framework/ top-level directory.

Now, tests or validation applications are much more fun. Let’s fi rst look under the hood of the
development of integration application artifacts.

Stack Integration Test Development
Each validation application is represented by a Maven module. There are two parts in the develop-
ment of any integration application: code changes and artifact deployment. But fi rst, the new appli-
cation has to be added to the test stack. As with any Maven project you need to create the module’s
structure under the bigtop-tests/test-artifacts/ folder and list it in the top-level bigtop-tests/test-
artifacts/pom.xml. The module’s Project Object Model (or POM in Maven-speak) will need to defi ne
all of the dependencies and resources it needs. The project’s top-level POM has all of the component
versions included in the stack, so in most cases modules should be able to simply list their needs in
the <dependencies> section and versions will automatically be inherited via the parent POM.

If you look into the code of existing validation applications you will notice that they may be written
as direct calls to component APIs such as Hadoop and HBase. Another possibility is to invoke
 command line utilities using the components that they themselves would provide. And the last, but
not least, approach includes the mix of both. Some of the Hadoop or HBase tests can start calling
platform APIs to bring the system into a certain state, followed up by an execution of either the
Hadoop or Hbase CLI in order to check the viability of certain functionality.

Both approaches have their own merits and purposes. The validation applications working with a
component API have a better chance of catching unexpected and incompatible changes. The pro-
gramming interfaces tend to be fi ner grained yet they may not necessarily be immediately exposed
in the user-facing functionality. As the result, a change at the API level might go unnoticed until
the software is released to the customer. And testing aimed at the API level is especially important
for publicly exposed integration layers where changes in a method semantic might not be immedi-
ately caught by the lower-level tests, yet it has all the potential to break the application contracts.
Changes of this sort most likely aren’t possible to test with a unit or functional test, because they
might require complex setups impossible to mock or emulate. In this case, integration tests provide a
valuable service for the application developers. This type of test is quite sensitive and tends to catch
a lot of issues before the code hits the production clusters. On the fl ip side, there’s a potential for a
higher maintenance cost, and they might fail every now and then.

The second kind of Bigtop validation applications are most suitable for user-facing functionality
involving command-line tooling like Hadoop, Hive, and Hbase. A good example of this kind is
TestDFSCLI.java in a Hadoop module. The test uses an external defi nition of the Hadoop CLI
command semantics and runs the Hadoop utility from the deployed cluster to validate if its func-
tionality is as advertised. These tests tend to be more stable and carry less of a burden on the
developer, but they justify the time spent on their implementation.

And now we are ready to begin with the development of a new validation application. You may need
to run the new code against an existing system to make sure it performs as expected. For the appli-
cations validating APIs, all of the code needs should be satisfi ed by the build system, and it is easy to

156 ❘ CHAPTER 7 ECOSYSTEM AT LARGE: HADOOP WITH APACHE BIGTOP

c07.indd 04/20/2016 Page 156

run and debug them in your favorite IDE. We recommend IntelliJ IDEA as the development tool of
the highest caliber, but of course you can use something else.

Whenever an integration application artifact needs to be set up for the execution, you should be able
to use the Maven deployment facility to install it either locally or to deploy it into a remote reposi-
tory server. During the development, the local installation works for most cases. You can do it by
running the following (for Hadoop tests):

./gradlew install-hadoop

Run this from the project’s top-level directory. This command will also cover the installation of all
additional helper modules and POM fi les. All artifacts JARs will be pushed into the local Maven
repo, and they are used to run the integration application. Similarly, you can deploy the artifacts to
a remote repo server using the not-yet-gradelized command:

mvn deploy -f bigtop-tests/test-artifacts/hadoop/pom.xml

This deployment will require you to confi gure your repo location and credentials using ~/.m2/set-
tings.xml. Please refer to the Maven documentation for further instructions.

If your test code relies on the client parts of a cluster application, you might need to deploy gateway
bits into your development environment. A cleverly written executor module can be very handy by
enforcing particular environmental constraints and by automatically constructing the classpath.
This route relies on both steps of the development process—development and artifact deployment—
as well as the use of the executor modules.

Before we look at the work fl ow, let’s quickly examine an integration application executor. They
can be found under test-execution. One for Hadoop is located and managed by smokes/hadoop/
pom.xml. Like the counterparts over in the artifacts section, executors are implemented as Maven
modules. Unlike the artifact modules, these involve more complex build logic using multiple plugins
and the additional common module. The latter defi nes a number of system properties commonly used
across most of the executors, such as test include and exclude patterns, the dynamic creation of the
test lists derived from the artifact JARs, and so on.

The complete fl ow of an integration application development looks as follows:

 1. Develop the code of the application as in any other software development process.

 2. Whenever the application artifact or its executor needs to be shared with other teammates,
use the Maven install/deploy feature to deliver them to a local or shared Maven repo as
explained above.

 3. The application executor can be started with a command as follows:

mvn verify -f \ bigtop-tests/test-execution/smokes/hadoop/pom.xml

 4. From the project’s top-level folder, by default, all tests matching **/Test* will be run. The
executor’s behavior can be controlled by supplying a few system properties:

 ➤ -Dorg.apache.maven-failsafe-plugin.testInclude=\

 ➤ '**/IncludingTestsMask*' to run only a subset of tests

 ➤ -Dorg.apache.maven-failsafe-plugin.testExclude=\

 ➤ '**/ExcludingTests*' to avoid running certain validation applications

Integration Validation ❘ 157

c07.indd 04/20/2016 Page 157

 5. Setting the log level to TRACE level is handy when you need to trace any issues with the
code or the logic. This can be done by specifying Dorg.apache.bigtop.itest.log4j
.level=TRACE in the runtime.

The up-to-date information about how to deploy and run integration and system tests can be found
at the project’s Wiki page.

Validating the Stack
Running the integration application in the distributed environment is quite simple once the cluster
is fully deployed and you’re familiar with all the tooling described earlier. As a convenience, we
recommend you run your integration applications from a node that isn’t a part of the worker
pool, such as a gateway node. The reason is pretty simple: The worker node might be sitting
behind a fi rewall or get fully-loaded during the validation. In both cases it might be challenging
to access it if you need to debug your code. Besides, the gateway node normally would have
all of the client binaries and libraries, so the integration applications will have all of the bits
 readily available.

Another good reason to run the tests from a designated node is to have an easier integration with
the Continuous Integration infrastructure. Taking Jenkins as an example, it is quite trivial to bring
up a Jenkins slave, or run a container inside of an existing slave, provision it with Hadoop stack
client packages, and a clone of the Bigtop repo. Once test runs are completed, Jenkins will collect
the results and present them for further processing and analysis. Trying to achieve the same results
using a regular cluster node might involve additional administrative efforts, as well as ways of
 combining the test results back in the CI server.

Per blueprints explained in the “Development” section, node5.my.domain is confi gured as the
cluster gateway. It also has the Bigtop source repo under the /work directory. Once the steps to
install the validation artifacts are completed, as shown in “Stack Integration Tests Development”
above, the gateway node will possess all libraries and POM fi les in its local Maven repo. And now
you’re ready to validate the integrity of the cluster stack.

cd /work
./gradles install-hadoop
mvn verify -f bigtop-tests/test-execution/smoke/hadoop/pom.xml

The above command will probably fail immediately with an angry message from Maven enforcer,
telling you to set up certain environment variables. At the very least the following has to be set:

export HADOOP_HOME=/usr/lib/hadoop
export HADOOP_CONF_DIR=/etc/hadoop/conf

Once the issue is dealt with it should be smooth sailing from here. If you want to validate other
components as well, you can subsequently run:

mvn verify -f bigtop-tests/test-execution/smoke/hive/pom.xml
mvn verify -f \ bigtop-tests/test-execution/smoke/ignite-hadoop/pom.xml

Or you can simply run all of the available applications in the test stack with mvn verify. If the
deployed stack has just a few components, many tests are likely to fail. When the run is completed,
the results will be available under the components’ target/ folders, as is customary with Maven
executed tests.

158 ❘ CHAPTER 7 ECOSYSTEM AT LARGE: HADOOP WITH APACHE BIGTOP

c07.indd 04/20/2016 Page 158

Cluster Failure Tests
The Bigtop’s iTest isn’t a complete distributed integration test framework if it isn’t providing
a facility to introduce faulty events into normal operation of the system. This is commonly
called fault injection and is similar to throwing a monkey wrench into a well-working
mechanism. Indeed, iTest has that monkey wrench ready. iTest currently provides three types
of distributed failure:

 ➤ Service termination failure

 ➤ Service restart failure

 ➤ Network shutdown failure

The fault injection framework requires SSH password-less access to the nodes where failures will
be introduced, as well as password-less sudo on these nodes. The latter is needed for the test to
manipulate the system events such as network interface failures, and service start/stop. For a more
detailed write-up on how to write the cluster failure tests please refer to https://cwiki.apache
.org/confluence/display/BIGTOP/Running+integration+and+system+tests#

Runningintegrationandsystemtests-ClusterFailureTests.

The current fault injection framework could be improved and extended in a variety of ways. The
Bigtop community is always on the lookout for new contributions to the project, including, but not
limited by the patches, bug fi xes, documentation improvements, and more.

Smoke the Stack
There’s a reason why integration validating applications could be deployed as Maven artifacts. A
test stack represents a particular state of the software stack. Freezing and releasing the correspond-
ing state of the test stack has numerous benefi ts. One such benefi t is to be able to repeat the valida-
tion of the software on any new deployment from the same set of binary artifacts. Let’s say you’re
spinning up development clusters from Apache Bigtop v1.1. On every provision, before the cluster is
handled to its end user, it should be quickly verifi ed. One way to do it is by running the integration
suite v1.1 from the previously published artifacts.

In a different use case, however, it might be desirable to repeatedly validate the functionality inside
of a development cycle without doing any extra steps. Recently, the Bigtop community started work-
ing toward the simplifi cation of the test system by introducing smoke tests. The main difference
between this and the integration tests described earlier is that smokes can be run directly from the
source code. Unlike the use case with integration application artifacts, no extra preparation and
deployment steps are needed.

And indeed it is quite simple. Just switch to bigtop-tests/smoke-tests/ and run:

./gradlew clean test -Dsmoke.tests=ignite-hadoop,hive –info

This will test ignite-hadoop and Hive deployments. A couple of things to keep in mind:

 ➤ Not all components are currently covered by the new smoke tests. There’s an argument that
perhaps even the existing integration validation applications should be converted into new
smokes. But is hasn’t been settled one way or another.

Summary ❘ 159

c07.indd 04/20/2016 Page 159

 ➤ Unless you’re running smoke tests from the same branch or tag that was used to produce the
components for the software stack, you might not be testing exactly what you expect. As in
the case with two kinds of integration tests, the smokes could use the lower-level public
APIs, or user-facing CLI tooling. The former case is more prone to failures if the targeted
implementation keeps changing or is merely different. So perhaps more thorough version
management discipline will have to be exercised by the user.

In general, new smoke tests are a real easy way to assess a cluster viability, verify the integration
points, and stress or load the system. We certainly look forward to new development in this part of
the project.

PUTTING IT ALL TOGETHER

Why should anyone be bothered with a framework to do things that anyone can perhaps build with
a few keystrokes and some shell scripts? Or, what about a few lines of Python and Scala code? Let’s
quickly recapture what Bigtop covers and the key functionality it provides.

 ➤ Software stack composition allows a user to defi ne a consistent presentation of a set of
software components to deliver a complete platform solution or a service. This architecture
increases the productivity and predictability of the software development by setting up a
 formal process and mechanisms at all levels of engineering organizations.

 ➤ Validation stack composition allows you to fasten together a variety of functional require-
ments delivered by the software stack via the provided integration test suites and feature-rich
integration test framework.

 ➤ Standard Linux packaging represents an easy way to install and confi gure a vertical amount
of software services with standard life-cycle management interfaces and confi gurations.

 ➤ A deployment and confi guration management framework guarantees repeatable and
controllable provisioning of software and validation stacks to achieve better levels of system
orchestration and continuous delivery of the services.

These are four key principles of the Apache Bigtop framework. The community behind the project
has invested decades of the combined experience in the system architecture and integration to
deliver this top-notch industry standard facility to provide an easy way of dealing with daily data
processing needs.

SUMMARY

Some people still might not be convinced that Apache Bigtop is the best thing since sliced bread. And
they don’t want to be burdened with all of the intricacies of a software stack development process.
After all, not everybody wants to deal with system architectures and integration design. In this case,
Apache Bigtop still can help you to build, manage, and improve the data processing pipeline.

The Bigtop community works very hard to regularly produce high quality releases of the Apache
data processing stack, including the latest most stable releases of Apache projects. The last released

160 ❘ CHAPTER 7 ECOSYSTEM AT LARGE: HADOOP WITH APACHE BIGTOP

c07.indd 04/20/2016 Page 160

version at the time of this writing is Bigtop 1.1. You can immediately start using it as was described
in the “Deployment” section of this chapter.

Beyond that, you might fi nd Bigtop’s statistical modeling applications to be of a high value for data
professionals. The source code and more information about it can be found in the bigtop-data-
generators/ folder. The framework and the use-cases are explained in great detail in the recent pre-
sentation by RJ Nowling about “Synthetic Data Generation for Realistic Analytics” available from
http://is.gd/wQ0riv.

MORE RESOURCES

Here are more useful resources where you can fi nd additional information about
the project, helpful hints, and best practices, as well as direct help from the develop-
ment community and users. The project wiki contains the information you
might fi nd useful in solving a particular situation https://cwiki.apache
.org/confluence/display/BIGTOP/. It delivers presentation slides, video tutori-
als, conference links, and more.

Bigtop blog (https://blogs.apache.org/bigtop) is a great way to receive
announcements about new releases, interesting features, and project updates.
You’re also welcome to subscribe to @ASFBigtop Twitter.

Bigtop Jenkins server (http://ci.bigtop.apache.org) has nightly built packages
for different operating systems and also refl ects on the latest test runs.

c08.indd 04/20/2016 Page 161

In-Memory Computing
in Hadoop Stack

WHAT’S IN THIS CHAPTER?

 ➤ Introduction to in-memory computing

 ➤ 30x faster MapReduce with Apache Ignite

 ➤ In-memory fi le system: HDFS caching

 ➤ Advanced use of Apache Ignite for state sharing and fast SQL

By now you are familiar with the Hadoop platform, its broader ecosystem, and some of the
computation engines on top of it. You have also learned about the benefi ts and shortcomings
of the traditional MapReduce computational framework. One benefi t is linear scalability and
the ability to process data in parallel, which comes with the cost of over-reliance on the under-
lying distributed storage. Each stage of a MapReduce job needs to be written into a fi lesystem
that increases fault tolerance. The process of sending data from the mappers to the reducers,
or so-called shuffl e stage, can take a heavy toll on the network bandwidth at the time when
intermediate data gets copied between the nodes.

This chapter will get into more advanced topics of data processing. In it we explore some
of the alternative compute engines and computing technologies, which, unlike traditional
 systems, open up a great number of benefi cial breakthroughs and new ways of leveraging
legacy platforms.

From the beginning of Hadoop’s creation there have been attempts to make the MapReduce
computation engine less complex and more available for non-programmer types. The com-
monly available system for this is Hive, described in Chapter 4. It adds a SQL engine on top
of MapReduce, providing a subset of the SQL language (HQL) for analysis of non-structured
data. Evidently, although MapReduce is the engine of the system, it is still a bottleneck.

8

Professional Hadoop®. Benoy Antony, Konstantin Boudnik, Cheryl Adams, Branky Shao, Cazen Lee and Kai Sasaki
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

162 ❘ CHAPTER 8 IN-MEMORY COMPUTING IN HADOOP STACK

c08.indd 04/20/2016 Page 162

For a few years developers have been working on improvements to this model. Apache Spark,
described in Chapter 3, provides an alternative computation engine, commonly dubbed as
MapReduce 2.0. In this system the query plans are calculated more effi ciently, and data transfor-
mations happen primarily with in-memory. As a direct result, it is possible to achieve impressive
performance gains with this new model. It isn’t without its own contentions though. Separate Spark
jobs cannot share a state, which has to be serialized to the disk to avoid data loss. The latter limita-
tion hits particularly hard when different data processing pipelines, or ETLs, are in need of sharing
results with each other. SQL processing on Spark seems like an obvious idea, and after a few trials
the community seems to be converging to use Hive HQL on top of the Spark engine. The project is
relatively new, but it’s already showing interesting potential.

No conversation about Hadoop databases should go without a reference to HBase, which also uses
HDFS as the storage, but relies on unique data organization to achieve very impressive, sometimes
close to real-time, response SLAs. This system is adopted in the solutions where short reaction time
and ability to make fast updates are needed.

With a slight exception in the case of HBase, the common theme for the systems referred to above,
as well as many others, is how they deal with the data storage. Because these are using computer
memory only for computation and always persisting the data to a slower disk storage, we call them
“disk fi rst.” But really, aren’t all of the data processing systems like this? If this is the fi rst time you
are getting into the subject, you might benefi t from reading some introductory materials starting
with Hbase and following through with some of the links in the article. Or just simply proceed with
this chapter.

INTRODUCTION TO IN-MEMORY COMPUTING

What is in-memory computing? Isn’t the term overly confusing? After all, even the fi rst generations
of computers had to load the data into some sort of memory, connected to a CPU, in order to work
on it. Thus, all of the computing is virtually done in memory. But the RAM is limited, making it dif-
fi cult for a lot of programs trying to use it. In multi-tenant and shared operating systems, a number
of processes might be competing to use RAM to keep their data objects and structures in it. Because
of the physical limitations, the software usually loads and keeps in computer memory only what it
needs right away, and pushes everything else to a disk system once the data isn’t required anymore.
However, this pattern has been a case mostly for economic reasons: The memory is quite expensive.
And being a scarce resource of any computer system it is in high demand.

At the end of 1995 RAM was averaging at US$100 per Megabyte, or roughly US$100,000 for a
Gigabyte. At the end of 2015, you can expect to pay about US$4–6 per Gigabyte of a consumer
grade DIMM3 RAM. The price came down from US$100,000 to US$5 or so—a 20,000 times
reduction. And over the same period of time the US dollar lost about 60% of its value: US$100 from
1995 could buy you $160 worth of goods today. Modern spin-drives now are going for about US$30
per Terabyte; and SSDs cost about ten times of that. What justifi es the premium in the case of RAM
is the performance. RAM is about 5,000 faster than a spin-drive, and it is still 2,500 times faster
than an SSD.

In retrospect, paying under US$6,000 per Terabyte of RAM versus US$300 for an SSD of
the same size looks like a great bargain. While it might be hard to fi nd a single system with

Introduction to In-Memory Computing ❘ 163

c08.indd 04/20/2016 Page 163

that much RAM, for the price of a new car you can build a multi-node computer cluster,
 delivering as much or even more combined memory. As with any distributed system, effectively
addressing the memory shared by multiple computers is a challenge. The benefi ts, though, are
overwhelming.

Today, more and more people are getting fi xated on big data. However, “big” is subjective and isn’t
well defi ned. Leading analytical companies have done thorough research in an attempt to identify
what “big” means in reality, rather than in a parallel universe of marketing white papers. The result
is quite the opposite of what you might expect under the infl uence of big data hype. According to
some surveys, in early 2015, the largest relevant dataset among nearly 800 companies was about
80TB. With a high probability, a dataset like this doesn’t need to be in a cluster memory all at the
same time. So, in all likelihood, an organization with a modest IT budget should even today be able
to afford in-memory processing.

Apparently, there is a demand for these types of computation nodes. Amazon has just announced
new high-performing X1 instances—virtual slices of physical servers—carrying up to 2TB of RAM.
X1 instances will be also equipped with more than 100 vCPUs. While the pricing information isn’t
available yet, it is not so diffi cult to imagine where it will go in a year, considering the high stakes
and creative competition in this space.

Modern computer architecture put forward by von Neumann and Alan Turing in 1945 is what we
are likely to have for a while, unless quantum technology makes a leap. Until then, RAM seems to
be the most promising medium of storage as both prices come down and non-volatile designs spring
to life.

On the other hand, the development of the technologies that let you “connect” the RAM across
multiple computers is extremely challenging. A quick look into the modern commercial market of
these solutions reveals that less than a dozen companies have the expertise and are innovative to the
point where they can embark on this path.

The vertical markets for the technology are huge and growing rapidly. Among typical uses of
in-memory computing across different industries are:

 ➤ Investment and retail banking

 ➤ Medical imaging processing

 ➤ Natural language processing and cognitive computing

 ➤ Real-time sentiment analysis

 ➤ Insurance claim processing and modeling

 ➤ Real-time ad platforms

 ➤ Merchant platform for online games

 ➤ Hyper-local advertising

 ➤ Geospatial/GIS processing

 ➤ Real-time machine learning

 ➤ Complex event processing of streaming sensor data

164 ❘ CHAPTER 8 IN-MEMORY COMPUTING IN HADOOP STACK

c08.indd 04/20/2016 Page 164

So, how can in-memory computing be benefi cial for the processing of massive amounts of data? Is
it practical or even possible to deal with modern volumes of data in memory? Over the rest of this
chapter we will dive deeper into a very interesting Apache Software Foundation top-level project
called Apache Ignite™.

APACHE IGNITE: MEMORY FIRST

Here’s what we consider to be a correct defi nition of in-memory computing: the middleware soft-
ware that stores data in RAM, across a cluster of computers, and processes it in parallel. As it will
immediately become evident, “stores data in RAM” is the key factor that puts IMC systems apart
from what was referred to as “disk fi rst.” In these systems RAM is considered to be the primary
storage, not only for the software code, but also for the data the code is written to work with. The
data of course needs to be somehow transferred into RAM, unless it is directly generated by the
software. And this can be achieved by different means, starting with good old loading from disk
storage, to streaming it over the network from external sources. However, once the data is in
memory, it isn’t off-loaded to the external storage to preserve the updates or changes in a state.
Instead, it is retained there and it’s immediately available to the software applications that might
need it. Clearly, at some point, the data might not fi t into the RAM anymore. In this case, part of it
needs to be evicted from RAM to the secondary storage. As we’ll see later in this chapter, Apache
Ignite has some clever ways of dealing with this.

Wait, some might say, but how is this different from JVM memory management where the garbage
collection deals with old and unused objects? First of all, the garbage collection is quite expensive
for large heap sizes. For production systems confi gured with 128+ GB of JVM heap, it is indeed very
tricky to make it work without long pauses where the memory needs to be swept from the stale data
structures. Second, garbage collection (GC) lacks the fi ne granularity of eviction: If an object isn’t
referenced by anything, it gets collected. But what can you do in the case when a large collection
fi lls the node’s RAM completely? How do you automatically get rid of just some elements in it? GC
won’t address this use case because every element of the collection is at least referenced by the col-
lection itself.

Let’s consider a more elaborate example where a collection is spanning the memory of more than
just one node. In this example, the collection is partitioned in a way that some elements are repli-
cated on the fi rst two nodes. Some other elements are replicated on the other two, and so on. In this
particular case, GC will be completely helpless. Perhaps you can resort to a distributed garbage col-
lection, but this is pretty much guaranteed to grind your system to a halt.

A more common solution is to provide a cache implementation as a way of loading/off-loading data
between persistent storage and RAM. A commonly used API standard today is described in JSR107
or JCache, and is implemented by many vendors. JCache standardizes (among other things):

 ➤ In-memory key-value store

 ➤ Basic cache operations

 ➤ ConcurrentMap APIs

 ➤ Pluggable persistence

Apache Ignite: Memory First ❘ 165

c08.indd 04/20/2016 Page 165

So, let’s see how Apache Ignite deals with all of these complexities and what you can do better by
adding an Ignite cluster into your data stack. But fi rst, let’s quickly revisit Ignite’s architecture: what
components it consists of and what functionality they have.

System Architecture of Apache Ignite
Apache Ignite has started as a data grid platform (see Figure 8-1). Data grids were a widely popular
idea in the early 2000s. But it took a massive change in the economics of the computer industry,
including the vast improvements in network hardware, as well as the dramatic drop in the prices of
RAM, to make a data grid platform affordable. Modern Apache Ignite has overgrown its own crib
and became a data fabric, combining together a data storage layer, computing and service
layers, and many more.

Data Grid Compute
Grid

Service
Grid

Streaming Hadoop
Acceleration

Data
StructuresEventsMessaging

File
System

Advanced
Clustering

FIGURE 8-1

Each piece in the puzzle plays a different role. Some of them are convenience adapters allowing
other applications and tools to be plugged into the core and take advantage of effective in-memory
cache. Others, like data grid, provide the functionality core to the platform itself. Using a cluster
RAM as the primary storage allows all of the components in the stack to collaboratively use it
without expensive roundtrips to a fi lesystem.

Data Grid
The Ignite in-memory data grid is a key value in-memory store, which enables caching data within
a distributed cluster memory (see Figure 8-2). It has been built from the ground up to linearly scale
to hundreds of nodes with strong semantics of data locality and affi nity data routing, thus reducing
redundant data noise.

Generally speaking, this layer provides the storage facility with clever replication techniques and
the ability to plug secondary storage systems for data persistence. And as you will see later in this
chapter, this is the foundation for the rest of the platform. Ignite operates with essentially a cache or,
more precisely, a distributed partitioned hash map. Every cluster node owns a portion of the data,
thus supporting the linear scalability of the storage.

Users can create as many caches as needed. A cache can be created as PARTITIONED, REPLICATED,
or LOCAL. As the name suggests, a PARTITIONED cache allows you to divide the data into partitions,
and all partitions get equally split between participating nodes (see Figure 8-3). This allows you to
store and work with multi-terabyte datasets across all cluster nodes. This type of cache fi ts well the
situations with large datasets that need to be frequently updated.

166 ❘ CHAPTER 8 IN-MEMORY COMPUTING IN HADOOP STACK

c08.indd 04/20/2016 Page 166

DB

Server Server Server

• RDBMS

• NoSQL

• HDFS

Off-Heap
Memory

On-Heap
Memory

SQL JCache Transactions Compute

On-Heap
Memory

On-Heap
Memory

Off-Heap
Memory

Off-Heap
Memory

Ignite Distributed In-Memory Cache

FIGURE 8-2

A

C

Local Client

D

Client JVM

Near
Cache

A

B B

D D

Remote
Client

A

Partitioned Cache

JVM3

Backup Backup

Primary

A

A

C B

D

D

Primary

Backup Backup

Primary Primary

JVM4

JVM1 JVM2

B

C

FIGURE 8-3

Apache Ignite: Memory First ❘ 167

c08.indd 04/20/2016 Page 167

The REPLICATED cache (see Figure 8-4) makes a copy of the data on every node in the cluster, so it
provides the highest level of data availability. Clearly, such redundancy sacrifi ces performance and
scalability. Under the hood, a replicated cache is a special variation of a partitioned cache, where
every key has a primary copy and backups on all other cluster nodes.

Replicated Cache

Client JVM

Near
Cache

A

B B

D

A A

B C D

C

D

BackupLocal Client

Remote
Client

Primary

C

A B D

Backup

Primary

JVM1 JVM2

B

A C D

Backup

Primary

JVM3

D

A B C

Backup

Primary

JVM4

A

D

FIGURE 8-4

And fi nally, the caches created in LOCAL mode have no data distribution property. As such, these are
ideal for the situations where the data is read-only, or where data needs to be refreshed at intervals.
Cluster singletons are discussed later, which can benefi t from LOCAL caches.

A Discourse on High Availability
Like other key-value stores, Ignite operates with the notion of data locality or affi nity. Unlike
others, this hashing mechanism is pluggable. Every client can determine which node a key belongs
to by plugging it into a hashing function, without a need for any special mapping servers or nodes
serving and managing the metadata. This is quite important for a number of reasons. Let’s review
some of them.

The master-less property automatically removes the Single Point Of Failure (SPOF) scenarios,
increasing the availability as well as the scalability of the fabric. SPOF is one of the common issues
with HDFS. If a NameNode cannot be reached because of a network or hardware failure, or just

168 ❘ CHAPTER 8 IN-MEMORY COMPUTING IN HADOOP STACK

c08.indd 04/20/2016 Page 168

over a long GC pause, the whole HDFS cluster becomes non-responsive. To deal with this Hadoop
provides a special HA framework. In essence, it uses Apache Zookeeper for a leader reelection
based on the ZAB protocol. When confi gured with HA support, HDFS runs active and standby
NameNodes, which are kept in sync via the Zookeeper apparatus: Once the active master is down,
the clients are forced to use a standby master that becomes active. The algorithm works well for the
primary-backup use case. This is a very common problem for single-master distributed systems. The
HDFS NameNode is a SPOF, so its high-availability framework is quite elaborate. It involves many
moving parts and signifi cantly increases the operational complexity and overall footprint of the
fi le system.

Another common yet often overlooked issue of single master (or single-active master) distributed
systems is their unfi tness for global clustering. In the case of two or more clusters working over
a WAN connection, a single master isolation leads to the loss of the service of the whole global
 system. The leader-reelection protocols like ZAB might also lead to a pretty bad complication called
split-brain. Let’s defi ne split-brain: Say the clusterA has the leader node at the moment, and clus-
terB’s nodes are the followers of it. In the case of network partitioning between the two clusters,
clusterB will initiate the reelection of a new leader. However, clusterA still has a running master.
Now, two parts of what earlier was a global cluster start diverging as the data modifi cations are not
coordinated by one, but now two isolated masters.

The Ignite data grid is a master-less system, providing better availability guarantees, as well as
 protection against split-brain situations.

Compute Grid
Distributed computations are performed in parallel fashion to gain high performance, low latency,
and linear scalability. The Ignite compute grid provides a set of simple APIs that allow users to
 distribute computations and data processing across multiple computers in the cluster. Distributed
parallel processing is based on the ability to take any computation and execute it on any set of
 cluster nodes and return the results back. This layer of the fabric has properties for load balancing,
fault tolerance, data and compute collocation, and many others.

The compute grid is what allows an application to take advantage of multiple computation nodes
in the cluster, so the execution isn’t hindered by resource contentions. Ignite lacks job scheduler in the
traditional sense of the word. There is not one designated component that tracks the cluster resource
utilization, job resources demands, and so on. All jobs are mapped to cluster nodes during the initial
tasks split or client side closure execution. Once jobs arrive at the designated nodes, they are submitted
to a thread pool, and are then executed at random. There are, however, mechanisms allowing you to
change the execution order if necessary. We will talk about the effi ciency of this approach in the sec-
tion on in-memory MapReduce.

With jobs sent directly to compute nodes and getting executed in a thread pool, a need in a cen-
tralized job manager disappears. This once again improves the overall availability of the system.
However, compute nodes still might get shut down or crashed or start running slow. For cases like
this, Ignite supports automatic job failover. In case of a crash, jobs are automatically transferred to
other available nodes and get re-executed. As a result, Ignite provides at least one guarantee, and
until there’s at least one running node, no job will be lost.

Please refer to the Ignite documentation for in-depth details on the topic.

Apache Ignite: Memory First ❘ 169

c08.indd 04/20/2016 Page 169

Service Grid
The Service Grid allows for the deployment of arbitrary user-defi ned services on the cluster. You
can implement and deploy any service, such as custom counters, ID generators, hierarchical maps,
and more. This layer allows you to control the life-cycle and cardinality of the deployed services, and
provides guarantees of continuous availability in the event of failures or topology changes. Singleton
services are an especially interesting case of cardinality control. A user can deploy three types of
singletons including:

 ➤ Node singletons

 ➤ Cluster singletons

 ➤ Key-affi nity singletons, when a service is run depending on the presence of a key

Together with the advanced clustering layer, this functionality creates a very potent system to deploy
and manage non-trivial topologies of distributed services in a cluster. Fundamentally, there are no
practical obstacles to implementing a resource allocator similar to YARN using Ignite service grid,
if anyone indeed needs yet another resource negotiator.

Memory Management
While memory management and the model used by Ignite should be discussed as a part of the Data
grid layer, let’s examine it a bit further here. As mentioned earlier, Apache Ignite provides an imple-
mentation of the JSR107 specifi cation. It goes beyond JCache, however, and provides the facilities
for data loading, querying, asynchronous mode, and many more. In order to achieve the best perfor-
mance and low-latency results, the system needs to go outside of the traditional JVM-heap and disk
storage ecosystem. We have briefl y touched on the existing issues of GC pausing with larger heap
sizes. For this particular reason the data grid adds the support for off-heap memory.

Ignite implements a multi-tiered memory management model. Generally, the following three types
of memory are supported:

 ➤ On-heap memory (JVM heap with GC)

 ➤ Off-heap memory (not managed by JVM, no garbage collection)

 ➤ Swap memory

Each tier has a higher capacity with the payoff of a higher latency than the next. Depending on the
data size and performance considerations, a user can create a cache in one of the tiers. Optionally,
the data from lower tiers can be evicted to a higher tier. Table 8-1 described the modes of creating
a cache.

TABLE 8-1: Cache creating modes

MEMORY MODE DESCRIPTION

ONHEAP_TIERED Store entries on-heap and evict to off-heap and optionally to swap.

OFFHEAP_TIERED Store entries off-heap, bypassing on-heap and optionally evicting to swap.

OFFHEAP_VALUES Store keys on-heap and values off-heap.

170 ❘ CHAPTER 8 IN-MEMORY COMPUTING IN HADOOP STACK

c08.indd 04/20/2016 Page 170

The following code snippet provides a quick look into the action:

CacheConfiguration cacheCfg = new CacheConfiguration();
cacheCfg.setMemoryMode(CacheMemoryMode.ONHEAP_TIERED);
// Set off-heap memory to 10GB (0 for unlimited)
cacheCfg.setOffHeapMaxMemory(10 * 1024L * 1024L * 1024L);
CacheFifoEvictionPolicy evctPolicy = new CacheFifoEvictionPolicy();
// Store only 100,000 entries on-heap.
evctPolicy.setMaxSize(100000);
cacheCfg.setEvictionPolicy(evctPolicy);
IgniteConfiguration cfg = new IgniteConfiguration();
cfg.setCacheConfiguration(cacheCfg);

Eviction policies are pluggable. Ignite has a ready implementation for a number of policies like LRU,
FIFO, sorted, and some others. Custom eviction policies also can be provided by the user.

The seamless up and down transitions between different memory tiers is benefi cial for application
developers. This complex logic is now available for any component via simple APIs, and better yet,
the in-memory data can be shared between the applications via simple abstractions like a fi lesystem.

Persistence Store
This feature allows for data read/write through, from, and to a persistent storage. Persistent storage
could be a relational database server like PostgreSQL, or a NOSQL system like Cassandra, or a
 distributed fi lesystem like HDFS. As an added benefi t, the Ignite CacheStore interface that simplifi es
the work with JCache CacheLoader and CacheWriter is fully transactional. Ignite offers an option of
asynchronous persistence, or write-behind for situations with a high rate of cache updates. The lat-
ter is likely to negatively impact the performance of the storage system with a high operational load.
Write-behind is a fancy term for a batch operation, where updates are accumulated for a while and
then asynchronously fl ushed into the persistent store.

Ignite also has a facility of automatic persistence to be used to retrieve and write-through domain
models from and to a relational database. Ignite comes with its own DB schema mapping wizard
supporting automatic integration with persistent stores. The utility automatically connects to an
underlying database and generates all required OR-mapping confi gurations and POJO domain
model classes. As the schema-less data formats gain more and more popularity, a similar
functionality might soon be provided for data-interchange formats like JSON.

LEGACY HADOOP ACCELERATION WITH IGNITE

As demonstrated above, all parts of Apache Ignite are useful and have a huge value-add for applica-
tion developers, both in the traditional enterprise environment, as well as for schema-on read and
streaming architectures. What might be particularly interesting for the Hadoop audience, however,
is an in-memory acceleration layer. Generally, it includes two parts:

 ➤ The in-memory fi lesystem, or the Ignite File System (IGFS), has a pluggable secondary
 fi lesystem for effective caching into a persistent storage.

 ➤ The in-memory high-performance MapReduce implementation that fully and transparently
replaces one in Hadoop. With Ignite MapReduce you don’t need JobTracker or
ResourceManager, because all of the scheduling is done via Compute Grid.

Legacy Hadoop Acceleration with Ignite ❘ 171

c08.indd 04/20/2016 Page 171

Benefi ts of In-Memory Storage
Ever since the early days of computing, disk storage was considered to be slow. If a program
had to work with a diskstore then it was viewed as a performance penalty. RAM disk was one
of the earlies technologies providing an interface to store fi les in memory. It was introduced in
1980 for the CP/M operating system. Interestingly enough, even today this technology is avail-
able on pretty much any Linux distribution as a standard tool. Ubuntu, for example, creates a
special tmpfs limited to half of the physical computer memory. The tmpfs can be mounted to
the user space and used by anyone. Quick unscientifi c microbenchmarking shows that writing
a 1GB fi le to ramdisk happens at the rate of 2.8 GB/s. Doing the same into a decent SSD drive
is a way lengthier process averaging at 2.8 MB/s, or three orders of magnitude slower. But
this is nothing new. We know that RAM is way faster than any secondary storage, as
previously discussed.

RAM disk only provides a fi lesystem abstraction. The applications that need to share the data
would have to resort to reading and writing fi les and directories, even if the data is represented by
different structures. Eventually, the data would need to be serialized into something suitable for
fi les, and then de-serialized when it’s needed. Also, advanced processing-like transactions become
tricky if possible at all in the frame of a pure fi le paradigm. And in a distributed environment, where
the data needs to be replicated and shared across multiple actors, the block-level abstraction of a fi le
system only adds to the complexity for the software system.

Evidently, while glorious, the RAM disk concept has its design limits, yet it serves its original
goals and use cases pretty well. There were, mostly academic and without any notable industry
adoption, attempts to fi nd a solution for distributed RAM disk, or to devise an implementation
of network RAM. The latter perhaps is least interesting considering its potentials for network
 congestions caused by over-the-LAN swaps.

With that in mind, we can pause for a moment and reminisce on what we know about Apache
Ignite’s distributed cache and its properties. It is a distributed key-value store, with strong con-
sistency guarantees, and simple APIs allowing plug-in to a variety of adapters. Being essentially
a distributed object store, it is well suited for block storage if needed. And this leads to an idea of
using Ignite Data Grid to provide fi lesystem caching. We have already discussed the strong persis-
tence support in Apache Ignite. The fi lesystem adapter discussed below is just one of the possible
implementations.

Memory Filesystem: HDFS Caching
HDFS and other Hadoop Compatible File Systems (HCFS) seem to be a pretty common way of
implementing a scalable distributed storage. But like any disk-based storage it will be a constant
disadvantage compared to the RAM. We have covered the diffi culties for attempting to cache
distributed content using memory technologies that are only suitable for locally stored data. With
this we will stop exploring any further the possibilities of speeding up local access via RAM cach-
ing, while facing performance and implementation challenges working with distributed content.
Instead we will look into how the fi lesystem can be implemented as a side-property of distributed
object storage.

Ignite File System (IGFS) is an in-memory fi lesystem allowing working with fi les and directories over
existing cache infrastructure. IGFS can either work as a purely in-memory fi le system, or delegate to

172 ❘ CHAPTER 8 IN-MEMORY COMPUTING IN HADOOP STACK

c08.indd 04/20/2016 Page 172

another fi lesystem (e.g., various Hadoop-like fi lesystem implementations) acting as a caching layer.
In addition, IGFS provides an API to execute MapReduce tasks over the fi lesystem data. IGFS sup-
ports regular fi le and directory operations. And being a part of the middleware platform it could be
confi gured and accessed directly from Java application code.

Apache Ignite is shipped with HCFS, like the IGFS subsystem called IgniteHadoopFileSystem.
Any client capable of working with HCFS APIs will be able to take advantage of this implementa-
tion in plug-n-play fashion, and signifi cantly reduce I/O and improve both latency and throughput.
Figure 8-5 illustrates this architecture.

YARN In-Memory MapReduce Any
Hadoop
Distro

MR HIVE PIG

IGFS

IGFS

HDFS

FIGURE 8-5

The confi guration of the IGFS is quite simple, and if you’re provisioning a cluster using Apache
Bigtop deployment it will be readily done for you. From the operational standpoint, the Ignite
process needs to have access to some of the Hadoop JAR fi les; a client needs to have a couple of
Ignite JARs to be added in its classpath. A common way to do it is by adding them into the HADOOP_
CLASSPATH environment variable. The IGFS can be accessed via its own fi lesystem URL. Here are
some examples:

igfs://igfs@node2.my.domain/
igfs://igfs@localhost/

When IGFS is confi gured to front an HCFS instance, a user can still access the latter. In this case all
benefi ts of the in-memory caching won’t be accessible.

In-Memory MapReduce
Ignite in-Memory MapReduce allows you to effectively parallelize the processing of the data
stored in any HDFS-compatible fi lesystem. It eliminates the overhead associated with job tracker
and task trackers in a standard Hadoop architecture, while providing low-latency, HPC-style
 distributed processing. The diagram in Figure 8-6 illustrates the difference between the
two implementations.

Legacy Hadoop Acceleration with Ignite ❘ 173

c08.indd 04/20/2016 Page 173

User
Application

Hadoop
Client

Ignite
Client

Hadoop
Jobtracker

Hadoop
Name Node

Hadoop
Tasktracker

Hadoop
Tasktracker

Ignite
Data Node

(IGFS)

Ignite
Data Node

(IGFS)

Hadoop Data
Node (HDFS)

Inactive Path

Ignite Execution Path Hadoop Data
Node (HDFS)

FIGURE 8-6

While there are other alternatives to MapReduce (most notably Apache Spark), Ignite’s
component is:

 ➤ Non-intrusive: No changes need to be made in the Hadoop layer.

 ➤ Completely transparent and fully compatible with the existing MapReduce protocol: User
applications don’t need to be recompiled, redeployed, or changed in any way. A simple envi-
ronment variable setting is enough to start using the new engine.

 ➤ Preserving legacy code: No development time needs to be spent on rewiring an application to
a different library or API. Better yet—there’s no need to learn a new programming language.

If you still have the cluster we’ve built and deployed in the last chapter, now is the time to dust it
off, because we’re going to use it. The way the cluster has been deployed was to include a distributed
disk storage layer (HDFS), Hive, and Apache Ignite accelerator components. There’s no trace of
either JobTracker (MR1) or YARN (MR2) software bits in our cluster. We have done this for a more
dramatic effect, because no MapReduce application would work without either of their components
in place. This includes Hive with its reliance on the MapReduce computation engine. The stack,
however, has mapred-app deployed, but it doesn’t include anything beyond MapReduce application
code examples.

Let’s see how Apache Ignite helps. During the deployment exercise in Chapter 7, Bigtop orchestra-
tion provided a few client side confi guration fi les allowing any Hadoop client to take advantage of
Ignite accelerator. By default these are set under /etc/hadoop/ignite.client.conf/ on every node of the

174 ❘ CHAPTER 8 IN-MEMORY COMPUTING IN HADOOP STACK

c08.indd 04/20/2016 Page 174

cluster where Ignite is deployed. There, you can fi nd three fi les that should already look familiar to
you: core-site.xml, mapred-site.xml, and hive-site.xml. But surprise! The fi les are way sim-
pler than you might remember from the Hadoop documentation. For the fi rst two essentially just set
new values for fs.defaultFS and mapreduce.jobtracker.address locations. And the last one is
even more trivial, so we won’t bother talking about it.

If you look into core and mapred site fi les you’ll notice that both NameNode and JobTracker
addresses are set to a localhost, instead of some arbitrary hostname. We have already touched upon
the reason in the “A Discourse on High-Availability section. Any of the nodes in a cluster can dis-
appear for one reason or another. However, in the master-less environment (or rather in the multi-
master environment) this should be of a little concern for a client application, because the request
will simply go elsewhere and be served.

Okay, let’s run a standard MapReduce job. There’s no need to go a fi nd some MapReduce code,
because we already have some example archives from the mapred-app component. First, let’s point
clients to the accelerator layer instead of base Hadoop:

export HADOOP_CONF_DIR=/etc/hadoop/ignite.client.conf/
export HADOOP_CLASSPATH=/usr/lib/ignite-hadoop/libs/ignite-core-1.5.jar:\/usr/↵
 lib/ignite-hadoop/libs/ignite-hadoop/ignite-hadoop-1.5.jar

The last export is required if your cluster is confi gured to use HDFS as a secondary fi lesystem. Our
Bigtop cluster is. And that’s it. You’re all set to run legacy MapReduce code with the in-memory
computation engine!

Let’s run some PI estimations. Who likes to type if they don’t have to, so we will set a variable to
point to our example JAR, followed by a standard Hadoop command:

export \
 MR_JAR=/usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar
hadoop jar $MR_JAR pi 20 20

How was it? Pretty fast? How about wordcount—a traditional Hello, World for MapReduce? We’ll
grab The Adventures of Tom Sawyer by Mark Twain and count the words in it:

wget -O - https://www.gutenberg.org/ebooks/76.txt.utf-8 | \
 hadoop fs -put – 76.txt
hadoop jar $MR_JAR wordcount 76.txt w-count

And to check the results, run:

hadoop fs -cat w-count/part-r-00000

You have probably noticed how the output of the jobs is different from what you would expect
to see with Hadoop MapReduce. But this is perhaps the only difference in the user experience.
However, performance and availability-wise, it works way faster and better without changing any-
thing in the application.

You can experiment a little to measure the time differences that can be achieved with different
jobs. By now you have an experience with the toolset, and using Bigtop deployment it is very easy
to add, confi gure, and start YARN with MR2 on your cluster. Refer to Chapter 7 to see how it is
done. Once ready, simply unset the HADOOP_CONF_DIR variable and re-run jobs with the Hadoop
MapReduce framework. My own experiments show as much as 30 times performance improve-
ments when switching to Apache Ignite in-Memory MapReduce.

Advanced Use of Apache Ignite ❘ 175

c08.indd 04/20/2016 Page 175

Similarly, it is possible to dramatically speed up Hive queries without making any changes to the
Hive or queries themselves. We will simply refer you to an article about doing this here: http://
drcos.boudnik.org/2015/10/lets-speed-up-apache-hive-with-apache.html. It includes
detailed instructions and explanations.

ADVANCED USE OF APACHE IGNITE

By now you have learned how to run existing MapReduce code with no changes or even recompila-
tion while getting a huge performance boost. The MapReduce paradigm isn’t the most sexy thing in
the computing world. After all, only so many problems can be solved with massive parallel process-
ing, which isn’t the most common approach anymore, even in the Hadoop ecosystem.

With all of the free time you now have due to MapReduce acceleration, you’re ready to go further.
This section covers a few advanced topics, but before that we want to provide a clear demarcation
between Apache Spark, a popular machine learning and computation engine, and Apache Ignite.

Spark and Ignite
On multiple occasions we’ve witnessed people being confused about alleged similarities between
Apache Ignite and Apache Spark. While these two share some commonalities being distributed
systems with computation capabilities and additional benefi ts like streaming, they are actually com-
pletely different. Initially, we called this section “Spark vs Ignite,” but then we realized that this was
a false dichotomy. These systems aren’t competing, but rather somewhat complementing each other.
Let’s review these differences in depth.

 ➤ Ignite is an in-memory computing system, e.g., the one that treats RAM as primary storage
facility. Spark only uses RAM for processing. A memory-fi rst approach is faster, because the
system can do indexing, reduce the fetch time, and avoid (de)serializations.

 ➤ Ignite’s MapReduce is fully compatible with Hadoop MR APIs, which let everyone simply
reuse existing legacy MR code, yet run it with a greater than 30x performance improvement.

 ➤ The streaming in Ignite isn’t quantifi ed by the size of an RDD. In other words, you don’t
need to fi ll an RDD fi rst before processing it; you can actually do the real streaming and CEP.
This means there are no delays in a stream content processing in the case of Ignite.

 ➤ Spill-overs are a common issue for in-memory computing systems: After all, the RAM is lim-
ited. In Spark where RDDs are immutable, if an RDD was created with its size more than 1/2
node’s RAM, then a transformation and generation of the consequent RDD is likely to fi ll
all the node’s memory, which will cause the spill-over, unless the new RDD is created on a
different node. This will eat into network bandwidth. Ignite doesn’t have this issue with data
spill-overs, because its caches can be updated in an atomic or transactional manner. Spill-
overs are still possible: The strategies to deal with it are explained in the off-heap memory
chapter of Ignite documentation.

 ➤ As one of its components, Ignite provides the fi rst-class citizen fi lesystem caching layer.

 ➤ Ignite uses off-heap memory to avoid GC pauses, and does it highly effi ciently.

 ➤ Ignite guarantees a strong consistency.

176 ❘ CHAPTER 8 IN-MEMORY COMPUTING IN HADOOP STACK

c08.indd 04/20/2016 Page 176

 ➤ Ignite fully supports SQL99 as one of the ways to process the data with full support for
ACID transactions.

 ➤ Ignite provides in-memory SQL indexes functionality, which lets you avoid full scans of
 datasets, directly leading to very signifi cant performance improvements.

 ➤ Spark focuses on advanced use-cases of machine learning (ML) and analytical data process-
ing. While training ML models, you might get into the situation where certain part of the
training is incorrect. With Spark it should be trivial to quickly retrace all of the steps up to
the point of divergence, as all inter-RDD transitions are already recorded for better fault
tolerance.

While the potential use cases for both technologies don’t seem to overlap at all, there are a few
places where Ignite can help to signifi cantly improve Spark work-fl ows.

Sharing the State
Apache Spark provides a strong property of data isolation. The prevalent design pattern around
Spark is that SparkContext is only used inside of one process (or job). While there are legitimate rea-
sons for it, a number of important cases exist where different jobs might need to share the context
and/or state. The only way to do it in Spark is to use the secondary storage, either directly or via
some sort of RAM disk layer. The former, obviously, is no good for the system performance. The
latter doesn’t help with sharing a state or context across node boundaries, and is also bound to a
fi lesystem API.

Naturally, an effi cient distributed cache could be the answer we are looking for. And fortunately,
there’s one right there. Apache Ignite provides an implementation of SparkRDD abstraction, which
allows easily sharing a state in memory across Spark jobs. The main difference between native
SparkRDD and IgniteRDD is that the latter provides a shared in-memory view on data across differ-
ent Spark jobs, workers, or applications, while native SparkRDD cannot be seen by other Spark jobs
or applications.

IgniteRDD is implemented as a live view over a distributed Ignite cache, which may be deployed
either within the Spark job executing process, or on a worker, or in its own cluster (see Figure 8-7).
Depending on the chosen deployment mode, either the shared state may exist only during the
lifespan of a Spark application (embedded mode), or it may out-survive the Spark application
(standalone mode), in which case the state can be shared across multiple Spark applications.

IgniteRDD isn’t immutable, and all changes in the cache will be immediately visible to RDD users.
Here’s the best part: The cache content can be changed via another RDD or could come from other
external sources, like different applications in the cluster. This is a very important characteristic,
because it enables Spark to be deeply integrated with tools like Hive, BI front-ends, and many more
without a smallest change to the Spark or tools in question. This is a real data collaboration made
possible by in-memory computing platform.

IgniteRDD uses the partitioned nature of underlying caches, and provides partition information to
a Spark executor. Affi nity (or locality) of the data is also available. Reading and writing is easy with
this new structure. Because IgniteRDD is a live view into a cache, the Spark application doesn’t need
to explicitly load the data, and all usual RDD API calls can be used immediately once the object
is created.

Advanced Use of Apache Ignite ❘ 177

c08.indd 04/20/2016 Page 177

Spark Application

Server Server Server

Ignite NodeIgnite NodeIgnite Node

Spark WorkerSpark WorkerSpark Worker

Spark
Job

Spark
Job

Spark
Job

Spark
Job

Spark
Job

Yarn Mesos Docker Cloud

Ignite In-Memory Shared RDDs

FIGURE 8-7

The following code fragment shows these benefi ts in action. If you want to try it yourself, please add
and deploy the spark component to the Apache Bigtop cluster from the last exercise. Then simply
follow Section 8 from the training script that we have up on the Apache Bigtop wiki.

Because IgniteRDD is mutable, it is now possible to build and rebuild its indexes. Having an index
speeds up the lookup and searches, because an application can avoid constant full scans of the data
sets. This leads us to the next advanced use case for Apache Ignite.

In-Memory SQL on Hadoop
Traditionally, SQL is perhaps the most often used language for data processing. A lot of data profession-
als are very familiar with it. This book, and this very chapter, have already touched on Apache Hive.
A very different approach and a good example of advanced SQL on Hadoop is a new Apache Incubator
project called HAWQ. In essence, it is a variation of the PostgreSQL server using HDFS for the storage. It
provides both SQL for Hadoop and the analytics MPP database. Postgres clustering has been around for
a while, and now with linear scalability of HDFS storage it defi nitely has its time in the spotlight.

Perhaps a majority of the SQL-on-Hadoop diffi culties are coming from the storage system. HDFS
has been designed and built fi rst and foremost with scalability and redundancy in mind. Data loss or
corruption is a very serious issue for distributed storage, and it has been the main design goal for the
development team. For this particular reason, the fi les are split into blocks. Multiple copies of the
blocks, or replicas, then send to different data nodes. Two logically sequential blocks of the same fi le
most likely won’t end up on the same data node, assuming you have more than a single data node
in the cluster. Query planning, especially an optimal one, becomes a real engineering and scientifi c
hassle.

178 ❘ CHAPTER 8 IN-MEMORY COMPUTING IN HADOOP STACK

c08.indd 04/20/2016 Page 178

Another underwater stone waiting to be hit by Hadoop SQL engines is the lack of decent updates
for HDFS fi les. HDFS initially was a write-once system. And if a fi le needs to get updated, a user
has to simply write a new fi le. This would contain the content of the old one plus whatever had to
be updated. Imagine how well it worked for big fi les. On a second try, HDFS was extended with a
working append operation (HDFS-265). And a few months ago, fi ve years after the second com-
ing of append, a nice truncated implementation was added as well. Updates are still tough. There a
few strategies for it, and perhaps the most interesting is implemented by HBase, yet it has its own
ineffi ciencies.

But neither HDFS nor HBase are main topics, as fascinating as they might be. The mentioned
limitations are jamming the Hadoop ecosystem into an Online Analytical Processing (OLAP)
bucket, with the exception of HBase. There’s also a couple of attempts to build transactional
support using HDFS snapshots and HDFS truncate, but it isn’t clear how much legs those have.
Time will tell.

SQL with Ignite
Updates are important for a SQL engine, and critical for an Online Transaction Processing (OLTP)
engine. As businesses start getting the taste of fast or near real-time OLAP fl ows, they often want
to tap into the speed that OLTP provides. And that is where in-memory systems are coming to play
with their unparalleled performance, ACID transaction support, and fast distributed queries. And
Apache Ignite shines here.

To start with, the querying of the data is one of the fundamental functionalities of IgniteCache.
A cache could be indexed to speed up the data lookups. If a cache sits in off-heap memory,
the index will reside in off-heap as well, improving the performance even further. Several
querying methods are provided including scan queries, SQL queries, and text-based queries
based on Lucine indexing.

By now you might have noticed that most of the cool functionalities available from Ignite are
merely clever crafted views into IgniteCache. But the data itself is managed by the same key-
value distributed store without costly transformations or transitions between the format. SQL
queries are no different. Ignite supports free-form SQL queries virtually without any limitations.
SQL syntax is ANSI-99 compliant. You can use any SQL function, any aggregation, and any
grouping, and Ignite will fi gure out where to fetch the results from. Ignite also supports distrib-
uted SQL joins. Moreover, if data resides in different caches, Ignite allows for cross-cache queries
and joins as well.

There are two main ways that query is executed in Ignite:

 ➤ If you execute the query against the REPLICATED cache, then Ignite assumes that all data
is available locally, and you can run a simple local SQL query in an H2 database engine.
The same will happen for LOCAL caches.

 ➤ If you execute the query against the PARTITIONED cache, it works like this: The query is fi rst
parsed and split into multiple map queries and a single reduce query. Then all of the map
queries are executed on all data nodes of participating caches, providing results to the reduce
node, which will in turn run the reduce query over the intermediate results.

Advanced Use of Apache Ignite ❘ 179

c08.indd 04/20/2016 Page 179

Running a SQL query on a cache is as trivial as:

IgniteCache<Long, Person> cache = ignite.cache("mycache");
SqlQuery sql = new SqlQuery(Person.class, "salary > ?");
// Find only persons earning more than 1,000.
try (QueryCursor<Entry<Long, Person>> cursor = cache.query(sql.setArgs(1000))) {
 for (Entry<Long, Person> e : cursor)
 System.out.println(e.getValue().toString());
}

While we cannot think of a place or occupation paying less than $1,000 as an example, the code
is pretty clean and self-explanatory.

The data stored in a cache is an object, with its own structure. At some level, an object structure
could be looked upon as a table schema in the relational world. But what if the object in question
has an elaborate structure with complex rules about what fi elds can be exposed and what fi elds can’t
be exposed? Apache Ignite provides transparent access to object fi elds, further reducing the network
overhead and traffi c. In order to make the fi elds visible to SQL queries, they have to be annotated
with @QuerySqlField. This adds an additional control for the data security. Building upon the
 example above, let’s change it slightly:

// Select with join between Person and Organization.
SqlFieldsQuery sql = new SqlFieldsQuery(
 "select concat(firstName, ' ', lastName), Organization.name "
 + "from Person, Organization where "
 + "Person.orgId = Organization.id and "
 + "Person.salary > ?");
// Only find persons with salary > 1000.
try (QueryCursor<List<?>> cursor = cache.query(sql.setArgs(1000))) {
 for (List<?> row : cursor)
 System.out.println("personName=" + row.get(0) +
 ", orgName=" + row.get(1));
}

As we alluded to earlier, indexing the data is important if fast queries are required. Ignite has a few
ways of creating the indexes for a single column, or a group index via annotations or API calls.
The class Person we used above might look like this:

public class Person implements Serializable {
 /** Indexed in a group index with "salary". */
 @QuerySqlField(orderedGroups={@QuerySqlField.Group(
 name = "age_salary_idx", order = 0, descending = true)})
 private int age;
 /** Indexed separately and in a group index with "age". */
 @QuerySqlField(index = true,
 orderedGroups={@QuerySqlField.Group(
 name = "age_salary_idx", order = 3)})
 private double salary;
}

Running SQL from Java or any other language is a lot of fun, as we know. But sometimes it
makes sense to be boring and simply use a good old SQL client. This is why Ignite has a way
to run the H2 debug console out of the box. This powerful tool allows you to have a great

180 ❘ CHAPTER 8 IN-MEMORY COMPUTING IN HADOOP STACK

c08.indd 04/20/2016 Page 180

introspection into the data structure, as well as to run SQL queries interactively right from the
browser. To enable this, simply start a local Ignite node with the IGNITE_H2_DEBUG_CONSOLE
system property.

If you have another favorite SQL client, you can use it directly via a standard JDBC connection.
The Ignite JDBC driver is based on the Ignite Java client. As a result, all client specifi c confi gura-
tion parameters, like SSL-security and others, can be used on a JDBC connection. To get connected
specify the JDBC URL:

 jdbc:ignite://<hostname>:<port>/<cache_name>

Port numbers, as well as the cache name, could be omitted, in which case the defaults will be used.
Everything we discussed above about exposing the object fi elds for querying and other topics is still
relevant in the case of the JDBC connection to the Ignite caches.

Apache Bigtop adds out of the box integration between Apache Zeppelin (incubating)
and Apache Ignite. Zeppelin is a project providing web-based notebooks for interactive
data analytics.

Streaming with Apache Ignite
The last topic we want to touch on is streaming, which is very important for near- and
real-time platforms to be able to work with streamed content. Because of the transient
nature of a data stream, it is vital to be able to process the data as it goes through. There
are a few very interesting open source systems in this fi eld. As with in-memory, some of
them are capable of conducting streams on the back of their fundamental data organization
(like Spark); and some of them were made with streaming as the primary design goal
(Apache Flink).

Ignite has its own streaming processing framework, and like everything else in this platform it’s
a clever layer on top of the Data Grid. A simple diagram is shown in Figure 8-8.

 ➤ Client nodes inject fi nite or continuous streams of data into Ignite caches using
Ignite Data Streamers. Data streamers are fault tolerant and provide at-least-once
semantic. Streamers are going hand-in-hand with StreamReceiver, which could be
used to introduce custom logic before adding new data. StreamTransformer allows
you to perform data transformation and updates, and StreamVisor allows you
to scan the tuples in stream and optionally execute a custom logic based on
their values.

 ➤ Data is automatically partitioned between Ignite data nodes, and each node receives
an equal amount of it.

 ➤ Streamed data can be concurrently processed directly on the Ignite data nodes in a
co-located fashion.

 ➤ Clients can also perform concurrent SQL queries on the streamed data. Ignite supports
the full set of data indexing capabilities, together with Ignite SQL, TEXT, and Predicate
based cache queries to query the streaming content.

Summary ❘ 181

c08.indd 04/20/2016 Page 181

Ignite Cache
Data Nodes

Data

Data

Ignite
Streamers

Ignite
ClientsSQL Queries

1. Process Streamed Data
 in Parallel on all Nodes

2. Process SQL Queries
 in Parallel on all Nodes

FIGURE 8-8

Streamed data can be queried via sliding windows. A stream can literally be infi nite, and trying to
query the data from the beginning of time seems to be quite impractical. Instead, you might want to
fi gure out certain properties of the dataset over a period of time. Something like “Which songs were
listened to the most in the last 12 hours?” For this, a sliding data window works perfectly. Sliding
windows are confi gured as Ignite cache eviction policies, and can be time-based, size-based, or
batch-based. You can confi gure one sliding-window per cache. However, you can easily defi ne more
than one cache if you need different sliding windows for the same data.

SUMMARY

As has been demonstrated in this chapter, Apache Ignite is a very powerful data-processing platform
providing a high-performance memory-fi rst storage system as its foundation. The distrusted key-
value store makes it extremely easy to have a variety of logic and functional live views into the data.
And the effi cient computation engine paradigm makes programmatic or SQL-based data processing
a breeze. A computation layer can be used for the acceleration of legacy Hadoop MapReduce and
tools like Hive, which uses it as the engine.

The Apache Ignite cluster can be easily scaled up and down and can seamlessly span heterogeneous
hardware environments including on-premise datacenters, both virtual and hardware, as well as
cloud deployments. This makes it ideal for quick expansion of the Ignite applications from a devel-
oper’s laptop to a cloud data center without an interruption. Built-in a high degree of fault-tolerance
and master-less architecture also makes the platform a great candidate for production systems in
mission critical environments.

Full SQL99 capabilities effectively remove the learning barrier for business analysts and business
intelligence professionals. Unlike other systems in the Hadoop ecosystem today, Apache Ignite fully
supports data indexing, and high-performance ACID transaction.

bgloss.indd 04/01/2016 Page 183

 GLOSSARY

activities A logical grouping or classifi cation of one or more jobs running on a cluster.

balancer A service ensuring that all nodes in the cluster store contain about the same amount of
data within a set range. Data is balanced over the nodes in the cluster, not over the disks in a node.

cluster (Hadoop) A set of nodes confi gured to work together based on a common Hadoop
 component stack, with HDFS and MapReduce as the foundation.

components (Hadoop architecture) The individual installed software products composing a
complete Hadoop cluster. Some components are active and include servers, such as HDFS, and some
are passive libraries. The servers of active components provide a service.

Components consist of roles that represent the different confi gurations required by the component.
They have a role on each host server. For example, HDFS roles include NameNode, secondary
NameNode, and DataNode.

DataNode A server and component role of HDFS that stores data. A DataNode performs
 fi lesystem operations assigned by the NameNode. The DataNode stores the data within a Hadoop
cluster. It is a slave node to the NameNode, which submits requests to all of the nodes within a
 cluster for fi lesystems operations.

distributed metadata Distributed metadata means that the NameNode is eliminated by storing
the metadata throughout the DataNodes in the cluster. This type of Hadoop architecture was devel-
oped to resolve the problem of a single point of failure within a Hadoop system, the NameNode.

Hadoop A batch processing infrastructure that stores fi les and distributes work across a group of
servers. The infrastructure is composed of HDFS and MapReduce components. Hadoop is an open
source software platform designed to store and process quantities of data that are too large for just
one particular device or server. Hadoop’s strength lies in its ability to scale across thousands of
commodity servers that don’t share memory or disk space.

Hadoop assigns tasks across servers (called “worker nodes” or “slave nodes”), essentially
 simultaneously running them together. This gives it the ability to analyze large quantities of data.
By balancing tasks across different location it allows bigger jobs to be completed faster.

Hadoop can be thought of as an ecosystem—it’s composed of many different components that all
work together to create a single platform. There are two key functional components within this
 ecosystem: the storage of data (Hadoop Distributed File System, or HDFS) and the framework for
running parallel computations on this data (MapReduce).

Hadoop Common Usually only referred to by programmers, Hadoop Common is a
common utilities library that contains code to support some of the other modules within the

Professional Hadoop®. Benoy Antony, Konstantin Boudnik, Cheryl Adams, Branky Shao, Cazen Lee and Kai Sasaki
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

184 ❘ GLOSSARY

bgloss.indd 04/01/2016 Page 184

Hadoop ecosystem. When Hive and HBase want to access HDFS, for example, they do so using
JARs (Java archives), which are libraries of Java code stored in Hadoop Common.

HBase HBase is a columnar database management system that is built on top of Hadoop and runs
on HDFS. Like MapReduce, HBase applications are written in Java, as well as other languages via
their Thrift database, which is a framework that allows cross-language services development. The key
difference between MapReduce and HBase is that HBase is intended to work with random workloads.

Hcatalog Table and storage management service for Hadoop data that presents a table abstraction
so that you do not need to know where or how your data is stored.

HDFS An open source fi lesystem designed to store extremely large (megabytes to petabytes) data
fi les with streaming data access patterns. HDFS splits these fi les into data blocks and distributes the
blocks across hosts (datanodes) in a cluster. HDFS enables Hadoop to store huge fi les. It’s a scalable
fi lesystem that distributes and stores data across all machines in a Hadoop cluster. Each HDFS
cluster contains the following:

 ➤ NameNode: Runs on a “master node” that tracks and directs the storage of the cluster.

 ➤ DataNode: Runs on “slave nodes,” which make up the majority of the machines within a
cluster. The NameNode instructs data fi les to be split into blocks, each of which are repli-
cated three times and stored on machines across the cluster. These replicas ensure the entire
system won’t go down if one server fails or is taken offl ine—known as “fault tolerance.”

 ➤ Client: Client machines have Hadoop installed on them. They’re responsible for loading
data into the cluster, submitting MapReduce jobs and viewing the results of the job
once complete.

Hive A data warehouse built on top of Hadoop providing data summarization, query, and
analysis. A SQL-like syntax called Hive Query Language (HiveQL) is part of Hive. HiveQL is used
to create programs that run just as MapReduce would on a cluster. In a very general sense, Hive is
used for complex, long-running tasks and analyses on large sets of data. Hive provides a mechanism
to project structure onto this data and query the data using a SQL-like language called HiveQL. At
the same time this language also allows traditional map/reduce programmers to plug in their custom
mappers and reducers when it is inconvenient or ineffi cient to express this logic in HiveQL.

HiveQL A SQL-like programming language used with Hive.

Impala Like Hive, Impala also uses SQL syntax instead of Java to access data. The difference
between Hive and Impala is speed: A query using Hive may take minutes, hours, or longer, yet a
query using Impala usually take seconds (or less).

Impala is used for analysis that you want to run and return quickly on a small subset of your data,
e.g. analyzing the sales of a large warehouse company for a single product. Impala is used as an
analytic tool on top of prepared, more structured data.

hosts Devices, such as a computer or a switch, attached to a computer or telecommunications net-
work, or a point in a network topology where lines intersect or branch.

job A mapper or reducer execution across a dataset. A job may split data to be processed across
mapper tasks for parallel processing, with a master (JobTracker) scheduling and monitoring jobs
across slaves (TaskTracker).

GLOSSARY ❘ 185

bgloss.indd 04/01/2016 Page 185

JobTracker A service that assigns MapReduce tasks to specifi c nodes in the cluster, preferably
those nodes functioning as a DataNode. JobTracker schedules mapper and reducer jobs among
TaskTrackers, with an awareness of data location.

MapReduce A process of distributing work across a cluster used by the MapReduce engine. It
processes input dataset records, mapping input key-value pairs to a set of intermediate key-value
pairs. Reducers merge a set of processed values, which share a key to smaller set of values, and com-
biners perform local (on the same host) aggregation of intermediate output, reducing the amount of
data transferred from Mapper to Reducer.

MapReduce is the process used to process the large amount of data Hadoop stores in HDFS.
Originally created by Google, its strength lies in the ability to divide a single large data processing
job into smaller tasks.

Once the tasks have been created, they’re spread across multiple nodes and run simultaneously. The
“reduce” phase combines the results together. The following nodes are used in this process:

 ➤ JobTracker: The JobTracker oversees how MapReduce jobs are split up into tasks and
divided among nodes within the cluster.

 ➤ TaskTracker: The TaskTracker accepts tasks from the JobTracker, and performs the work
and alerts the JobTracker once it’s done. TaskTrackers and DataNodes are located on the
same nodes to improve performance.

 ➤ Data locality: Map executing code on the node where the data resides. All clusters should
have the appropriate topology. Hadoop map code must have the ability to read data
locally. Hadoop must be aware of the topology of the nodes where tasks are executed.
Tasktracker nodes are used to execute map tasks, and so the Hadoop scheduler needs
information about node topology for proper task assignment. In other words, whenever
you use a MapReduce program on a particular part of HDFS data, you always want to
run that program on the node, or machine, that actually stores this data in HDFS. Doing
so allows processes to be run much faster, since it prevents you from having to move large
amounts of data around.

When a MapReduce job is executed, part of what the JobTracker does is look to see
which machines the information required for the task is located on. Once it is located, the
NameNode splits data fi les into blocks, each one replicated three times: The fi rst is stored
on the same machine as the block, while the second and third are each stored on separate
machines. This is part of Hadoop’s distributive process.

Storing the data across three machines thus gives you a much higher chance of achieving
data locality, since it’s likely that at least one of the machines will be freed up enough to
process the data stored at that particular location.

NameNode A service that maintains a directory of all fi les in HDFS and tracks where data is
stored in the cluster. Maintaining master-to-slave data nodes.

nodes An abstract unit that composes a cluster; a vertex in a graph.

Pig (Apache Pig) A programming language designed to handle any type of data. Pig helps
users to focus more on analyzing large datasets and less time writing map programs and reduce
programs.

186 ❘ GLOSSARY

bgloss.indd 04/01/2016 Page 186

Like Hive and Impala, Pig is a high-level platform used for creating MapReduce programs more
 easily. The programming language Pig uses is called Pig Latin, and it allows you to extract,
transform, and load (ETL) data at a very high level. This greatly reduces the effort if this was
written in JAVA code; PIG is only a fraction of that.

While Hive and Impala require data to be more structured in order to be analyzed, Pig allows you to
work with unstructured data. In other words, while Hive and Impala are essentially query engines
used for more straightforward analysis, Pig’s ETL capability means it can work on unstructured
data, cleaning it up and organizing it so that queries can be run against it.

slot A map or reduce computation unit on a node. Each active map or reduce task occupies one
slot, which could be a map or a reduce slot. A TaskTracker has a confi gured number of slots avail-
able, and JobTracker allocates work to the TaskTracker with available slots nearest to the data.

Stack (Hadoop) Hadoop software layers; applications that interact directly with Hadoop.

 ➤ Data processing layer; encapsulates the MapReduce framework

 ➤ Data storage layer; the fi le system (HDFS)

Sqoop ETL tool to support transfer of data between Hadoop and structured data sources.
A connection and transfer mechanism that moves data between Hadoop and relational databases.

task A mapper or reducer instance operating on a slice of data. Tasks are executed by the Hadoop
TaskTracker, which assigns tasks to nodes with resources available for executing the task. Each
active map or reduce task occupies one slot.

TaskAttempt An instance of a map or reduce task, which is identifi ed by a task ID. The
JobTracker may run a task on more than one node, either if it fails or to enable getting faster results
from another node; this adds to the number of attempts.

TaskWaiting A task state of waiting to be launched.

YARN YARN is a resource manager that was created by separating the processing engine and
resource management capabilities of MapReduce. It is an updated way of handling the delegation
of resources for MapReduce jobs. It takes the place of the JobTracker and TaskTracker. YARN
supports multiple processing models in addition to MapReduce. It is responsible for managing and
monitoring workloads, maintaining a multi-tenant environment, implementing security controls,
and managing high availability features of Hadoop.

187

bindex.indd 04/08/2016 Page 187

Symbols and Numerals
/ (slash), for separating path elements, 1
3DES, 128

A
abstraction layer, in HDFS, 17
Access Control Lists (ACLs), 117, 130–131

blocked, 117–118
add JAR command (Hive), 71
addCacheFile method, 61
agent, in Flume, 94
Aggregate Functions (UDAF), 74
All grouping, in Storm, 104
All_SSD block, 38
ALTER DATABASE statement, 71
ALTER TABLE statement, 72
Amazon

EMR (Elastic MapReduce), 44
X1 instances, 163

Apache Ambari, 29, 143
Apache Bigtop, 141–160

basics, 142–144
software stacks, 142–143

Bill of Materials (BOM), 145–146, 148–149
build system, 147–148
concept and philosophy, 145–146
deployment, 149–154

Bigtop provisioner, 149–150
history, 144–145
project structure, 146–147
project wiki, 160
projects supported, 141
toolchain and development environment, 148

Apache data processing stack, creating, 146
Apache Flume, 93–97

common agent components, 94–95
Apache HBase, 15, 143, 162
Apache Hive, 5–6, 68–76, 143

architecture diagram, 68
installing, 69–70
performance improvement for queries, 175

Serializer/Deserializer, 74–75
tuning, 75–76
user defi ned functions (UDFs), 73–74

for Pig, 79
Apache Ignite, 90, 164–170

CacheStore interface, 170
compute grid, 168
and high availability, 167–168
in-memory data grid, 165–167
in-memory MapReduce, 172–175
legacy Hadoop acceleration with, 170–175
memory management, 169–170
service grid, 169
Spark and, 175–176
SQL with, 178–180
streaming with, 180–181
support for free-form SQL queries, 178
system architecture, 165

Apache Kafka, 97–102
integration with Storm, 105–106
Kafka Connect, 100–101
stream processing, 101–102

Apache Maven, 58
in Kafka, 24

Apache Oozie, 81–88
command-line interface, 88
coordinator, 87–88
how it works, 84–85
installing, 82–83
job-related menu in Hue, 81
web console, 82
workfl ow, 85–87

Apache Pig, 76–78
Apache Spark, 4, 15, 162, 175–176

data isolation, 176–177
vs. Hadoop MapReduce, 64–65

Apache Sqoop, 89, 90–92
Apache Storm, 102–106

Kafka integration with, 105–106
Trident, 105

Apache Zeppelin, 180
appendToFile command (HDFS), 23
applications

authorization of, 138
security for, 134–138

INDEX

Professional Hadoop®. Benoy Antony, Konstantin Boudnik, Cheryl Adams, Branky Shao, Cazen Lee and Kai Sasaki
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

188

bindex.indd 04/08/2016 Page 188

Archival Storage – data integration

Archival Storage, in HDFS, 37, 39
authentication with Kerberos, 112–116
authorization

of applications, 138
customizing impersonation, 121
enforcing for block access, 128
rules, 110–111

Avro fi le format, 43
Azure Blob Storage, 45

B
batch processing

HDFS design for, 3
for Pig, 77

batch-oriented data paradigm, MapReduce as, 90
big data, 163

Hadoop for managing, 89
Big Data Connectors Suite, 10–11
Bigtop. See Apache Bigtop
Bigtop Jenkins server, 160
Bigtop Puppet, 150–152

confi guration management with, 152–154
integration validation, 154–159

Bill of Materials (BOM), in Apache
Bigtop, 145–146, 148–149

binary edits log fi les
converting into readable fi les, 33–35
edits viewer for converting from XML, 35

block access tokens, 137
block units, in HDFS, 16–17
blocked Access Control Lists (ACLs), 117–118
blocked list of hosts, 118
BlockManager, 20
blocks

relationship between INode and, 20
security for transfer, 128

BlocksMap, 20
Bolts, 103–104
Broker, in Kafka, 99
Built-in Aggregate Functions (UDAF), 74
bulk dataset, Pig for analyzing, 76
Business Analytics, and big data, 2
Business Intelligence (BI), 7

C
caches, user-created, 165
Camus, 100
Capacity Scheduler, 52, 135
cat command (HDFS), 22
channel, in Flume, 94
CHD. See Cloudera (CHD)
chgrp command, 130
chmod command (HDFS), 23, 130
chown command (HDFS), 23, 130
client, in Flume, 93
Client/Server Session key, 113

Clorine, 125
cloud storage, 44–45
Cloudera (CHD), 8, 10
Cloudera (CHD) Manager, 29
cluster orchestration, 152
clusters

bringing data to, 125–129
failure tests, 158
security for, 110–121

authentication with Kerberos, 112–116
impersonation, 119–121
perimeter security, 110–112
service level authorization, 116–119

setup in distributed mode, 26–29
Cold storage policy, 37
collection functions, in Hive, 74
Combiner class, 58
command-line interface

for Apache Oozie, 88
in HDFS, 22
impersonation via, 120–121
for Pig, 77

commit log, 99
commodity hardware, 16, 17
compression, and storage fi le format choice, 44
computation, 47–65
compute grid, in Apache Ignite, 168
computing resources, queue for controlling access, 135
conditional functions, in Hive, 74
confi dential data, 125
confi guration fi le, for Flume, 96
confi guration variable, for Hive, 70
Confl uent, 97
containers, secure, 137–138
Continuous Integration infrastructure, 157
cookie.domain property, in core-site.xml fi le, 122
copyFromLocal command (HDFS), 23
copyToLocal command (HDFS), 22
core-default.xml fi le, 27
core-site.xml fi le, 174

properties for HTTP access authentication, 122
for SSL, 123

costs of data storage, 37
Counter, 62–63
cp command (HDFS), 23
CREATE DATABASE statement, 71
CREATE TABLE statement, 72

D
daemon confi gurations, launching processes as, 28
daemontools, 28
data block abstraction, 17–18
data blocks, in replication, 39
Data Browser, in Hue, 81
Data Defi nition Language (DDL), 71–72
Data Encryption Key (DEK), 133
data fl ow, 68
data integration, Hadoop and, 9–13

189

Data Manipulation Language – Global grouping

bindex.indd 04/08/2016 Page 189

Data Manipulation Language (DML), 72–73
data movement, Kafka for, 97
data platform foundation, from HDP, 7
data security, 124–134

bringing data to cluster, 125–129
data classifi cation, 125
data protection in cluster, 129–134

data warehouse infrastructure, Hive as, 5–6
DataApps.io, Chlorine, 125
DataNodes, 19, 26

daemon confi gurations, 28
security for block transfer, 128
web UI, 29

date functions, in Hive, 74
DBInputFormat, 91
dedicated cluster, security requirements, 109
default hosts list, defi ning, 118
delegation tokens, from NameNode, 136
deployment, of Apache Bigtop, 149–154
DESCRIBE FUNCTION statement, 73
df command (HDFS), 23
dfsadmin command, 24, 27
dfsadmin -setStoragePolicy command, 38–39
dfs.replication confi guration, 18, 27
Direct Acyclic Graphs (DAGs), 81
Direct grouping, in Storm, 104
directories, snapshots of, 30
DISTINCT operator, in Pig Latin, 78
distributed computation, 48
distributed mode, HDFS cluster setup, 26–29
distributed system, confi guration maintenance, 4–5
Docker, 27

Hadoop provisioning with, 150
done fi les, 63
downloading

Hive, 70
Oozie, 82–83
Pig, 76–77

Dremel paper, 43
DROP DATABASE statement, 72
DROP TABLE statement, 72
du command (HDFS), 23

E
ecosystem, 7–8
edge nodes, 110, 111
edit log, 20

checking for fi lesystem current state, 32
encryption, 131

selective, and performance, 127
encryption zones, 132–134

reading fi les from, 133–134
storing fi les in, 133

environment variables, 157
for Hive, 70
for Oozie, 83

epoch number, for quorum journal manager, 21
Erasure Coding, 15, 39–41

etc/hadoop/core-site.xml fi le, 27
etc/hadoop/hdfs-site.xml fi le, 27
event, in Flume, 93
eviction policies, 170
Excel, 9
exec command, 78
exit command (Hive), 71
Extract, Transform and Load (ETL) process, migrating

to Hadoop, 89

F
Fair scheduler, 51–52
fault tolerance, 3, 18, 161

Erasure Coding and, 39
improving in HDFS, 19
MapReduce and, 48

Fields grouping, in Storm, 104
fi le browser, in Hue, 81
File output format counters, 62
File System counters, 62
fi le system shell, for HDFS, 22
File-input format counters, 62
fi les

permissions, 129–130
reading from encryption zones, 133–134
size, for HDFS, 16
storing in encryption zones, 133

FILTER operator, in Pig Latin, 78
fi nd command (HDFS), 23
fi rewalls, 110
Flebbe, Olaf, 150
fl ow, in Flume, 94
Flume, 93–97

common agent components, 94–95
FOREACH GENERATE operator, in Pig Latin, 78
fs command, 78
fs -createSnapshot command, 30–31
fs.defaultFS, 27
FSDirectory, 20
fsimage fi les

checking for fi lesystem current state, 32
viewing, 36–37

FSNamesystem class, 19

G
garbage collection, 164
gateway nodes, 110, 111
get command (HDFS), 23
getCacheArchives method, 62
getCacheFiles method, 62
getLocalCacheArchives method, 62
getLocalCacheFiles method, 62
global clustering, single master distributed

systems, 168
Global grouping, in Storm, 104

190

Gradle – in-memory MapReduce

bindex.indd 04/08/2016 Page 190

Gradle, 147
gradlew wrapper script, 147
Groovy language, 154
GROUP operator, in Pig Latin, 78
GroupMappingServiceProvider interface, 117
groups, and users, 117

H
HA NameNode, confi guration setup, 21
Hadoop, 143

basics, 1–2
components, 2
data integration and, 9–13
ecosystem and user experiences, 67
in-memory SQL, 177–178
integration with other systems, 6–13, 89–107

Apache Flume, 93–97
Apache Kafka, 97–102
Apache Sqoop, 90–92
Apache Storm, 102–106
Hadoop ecosystem, 7–8

JAR fi les for starting, 2
Kerberos authentication, 115–116
legacy acceleration with Ignite, 170–175
security for cluster, 110–121

authentication with Kerberos, 112–116
impersonation, 119–121
perimeter security, 110–112
service level authorization, 116–119

service level authorization in, 116–119
Sqoop for exporting data from, 90
vendor tools for management, 153
workfl ow scheduler for, 81–88

Hadoop Applier, 10
Hadoop Common, 1, 2
Hadoop Distributed File System (HDFS), 1, 2–3, 15

basics, 16–26
concept, 16–19
interface, 22–26
master-slave architecture, 19–21

cluster setup in distributed mode, 26–29
Erasure Coding, 15, 39–41
fi le format, 41–44
importing data into, 92
memory fi lesystem caching, 171–172
offl ine viewer, 32–37
read operations, 22–23
snapshots, 30–32
specifying policy for, 123
subsystems, 17
updated fi les, 178
write operations, 23

hadoop jar command, 58, 60
Hadoop JAR fi les, Ignite process access to, 172
Hadoop KMS, 131–132
Hadoop MapReduce

architecture, 50–54

basics, 47–54
concept, 48–50

Hadoop project, tested JDK versions, 26
Hadoop Stack, 1, 2
Hadoop YARN (Yet Another Resource Negotiator),

1, 4, 50, 134
application submission in, 134–138
delegation tokens, 136–137
scheduler on, 51–52

HADOOP_PROXY_USER, 120
hadoop.rpc.protection, 127
hardware, for HDFS, 2–3
HAWQ project, 177
HBase, 15, 143, 162
HDFS. See also Hadoop Distributed File System (HDFS)
HDFS cluster, shutting down, 29
hdfs command, erasurecode subcommand, 40–41
hdfs-default.xml fi le, 27
hdfs-site.xml fi le, 27
HDInsight, 45
High Availability (HA), 17

HDFS support for, 20
high scalability, 48
Hive, 5–6. See also Apache Hive
HiveQL, 5, 70–73

command-line options, 70–71
Data Defi nition Language (DDL), 71–72
Data Manipulation Language (DML), 72–73

hive-site.xml fi le, 174
Horton Data Platform (HDP), 7
HortonWorks, 10
host addresses, restricting access with, 118–119
Hot storage policy, 37
HTTP, 126

security for channel, 121–124
HTTPS, enabling, 123
HUE, 79–81

I
Ignite. See Apache Ignite
Ignite File System (IGFS), 170, 171–172
Ignite JDBC driver, 180
IgniteHadoopFileSystem, 172
IgniteRDD, 176–177
Impala, 4
impersonation, 119–121

customizing authorization, 121
via command line, 120–121
via program, 121

importing data, Sqoop for, 90–92
indexing, Ignite for, 177, 179
Informatica software, 10
information radiators, 146
in-memory computing, 161–181

basics, 162–164
defi nition, 164

in-memory MapReduce, 172–175

191

in-memory SQL – MRAppMaster

bindex.indd 04/08/2016 Page 191

in-memory SQL, on Hadoop, 177–178
in-memory storage, disk storage and performance, 171
INode, 20
InputFormat class, 52–53, 56
InputSplit segment of input fi le, 53
installing

Hadoop package, 26–29
Pig, 76–77

integration application executor, 156
IntelliJ IDEA, 156
Interactive shell mode, for Pig, 78
interceptor, in Flume, 94
intermediate data, securing, 138
intermediate fi les, 63
iTest framework, 154

J
JAR (Java Archive) fi les, 2, 58

for starting, uploading to cluster, 25
JAR command, 55
Java API, 22, 24
JCache, 164
JDBC, transferring large volumes of data, 92
Jenkins, 145
job browser, in Hue, 81
Job class, 57
job client, 53
Job counters, 62
Job History Server, 63–64
job queues, 52
journal nodes

machines for, 21
sync process and, 21

K
Kafka. See Apache Kafka
Kafka HDFS Connector, 101
Kafka JDBC Connector, 101
Kerberos, authentication with, 112–116
Kerberos principal, 114
kerberos.keytab property, in core-site.xml fi le, 122
kerberos.principal property, in core-site.xml fi le, 122
key management for HDFS, 131–132
keystores, 123–124, 131
keytabs, for Kerberos, 114
key-value tuple, 48–50
kill command, 78

L
latency, 90
Lazy_Persist block, 38
leader election, in ZooKeeper, 4–5
libhdfs (C library), 22

limited data, 125
LinkedIn, 97
list JAR command (Hive), 71
Load statement, for Pig Latin, 78
LOCAL cache, 167
Local grouping, in Storm, 104
log fi les

aggregating, 63–64
Apache Flume for managing, 93–97
connection by YARN framework, 51

ls command (HDFS), 23

M
management nodes, 110, 111
map output, compressed, 53
map task, writing, 55–56
Mapper, 48–49
mapred-site.xml fi le, 174
MapReduce, 1, 3–4, 15, 90

ACLs for job, 138
Apache Maven to compile, 58
vs. Apache Spark, 64–65
APIs for obtaining information, 63–64
as bottleneck, 161–162
confi gurations, 59–60
Counter, 62–63
distributed cache, 60–62
in-memory, 172–175
in-memory high-performance implementation, 170
Job History Server, 63–64
launching jobs, 27, 54–60
running standard job, 174
SequenceFile format for, 42
writing job, 57–58

MapReduce framework counters, 62
master key, for fi les in encryption zone, 132
master machine, 26
master nodes, 110, 112
mathematical functions, in Hive, 74
Maven, 24, 58

deployment facility, 156
maven command, 58
memory, costs of, 162–163
memory fi lesystem, caching, 171–172
memory management, in Apache

Ignite, 169–170
merging metadata changes, 20
message timeout, for Spout tuple, 104
messaging system, Kafka as, 100
metadata

merging changes, 20
persistence of, 20

Metastore confi guration, 70
for Oozie, 83

metrics, 62–63
Microsoft SQL Server, 10
MRAppMaster, 51

192

Multi Table/File inserts – rwx permissions

bindex.indd 04/08/2016 Page 192

Multi Table/File inserts, and HiveQL, 73
mv command (HDFS), 24
MySQL, importing data into HDFS, 92

N
Name service, in ZooKeeper, 4
NameNode, 16, 19–20, 26

daemon confi gurations, 28
and data loss, 19
delegation tokens from, 136
encryption key from, 128

NameNode UI, 29
JMX metric API, 29

nested name space, 43
Nimbus daemon, 103
NodeManager, 4, 26, 51

O
offl ine edits viewer, 32–35
offl ine image viewer, 36–37
oiv command, 36
One_SSD block, 38
Online Transaction Processing (OLTP), updates, 178
Oozie. See Apache Oozie
operation environments, deployment under different, 150
operational realities, software developers and, 142
Oracle Loader for Hadoop, 11–12
Oracle R Connector for Hadoop, 12–13
Oracle SQL Connector for HDFS, 11, 12
Oracle XQuery for Hadoop, 11
ORC fi les, in HiveQL, 75
ORCFile, 43
ORDER BY operator, in Pig Latin, 78

P
parallel data processing, 3
parallel execution, in HiveQL, 75
parity blocks, in replication, 39
Parquet storage format, 43
Partial Key grouping, in Storm, 104
PARTITIONED cache, 165–166

query against, 178
partitions

dynamic inserts, 73
for HiveQL, 75

path
to .snapshot directory, 31
for Oozie, 83

pdsh, 151
performance, selective encryption and, 127
periodic checkpoint, 20
persistent storage, 170
physical disk, calculating blocks fi tting, 17
Pig (Apache), 76–78

Pig Latin, 77–78
Power Exchange Connector, 10
Power View, 9
PowerPivot, 9
private data, 125
program, impersonation via, 121
Project Object Model, 155
protocols, for data transfer to HDFS, 126
proxy user, for Oozie, 83
public data, 125
Puppet

confi guration management with, 152–154
master-less deployment of cluster, 150–151

Puppet Hiera, 150
put command (HDFS), 23

Q
QOP values, 128
Query Editor, in Hue, 80–81
query engine, and storage fi le format choice, 44
queue

for access control to computing resources, 135
resource capacity of, 52

quit command (Hive), 71
quorum journal manager, 20

epoch number for, 21

R
racks, connectivity available within, 18–19
RAM, for storage, 164
RAM disk, 37, 171
random access, and HDFS, 16
RC4, 128
RCFile, 43
read operations, in HDFS, 22–23
reading fi les, from encryption zones, 133–134
reduce task, writing, 56–57
Reducer, 48–49
Reducer class, 56
Reed-Solomon coding algorithm, 39–40
REPLICATED cache, 167

query against, 178
replication, 17, 39
resource level authorization, 116
Resource Manager, in YARN, 4
Resource Scheduler, in YARN, 4
ResourceManager, 26, 50–51
restricted data, 125
rm command (HDFS), 24
rmdir command (HDFS), 24
root queue, 52
RPC + streaming, 126
RPC channel, security for, 126–127
rsync, 151–152
run command, 78
rwx permissions, 129

193

safe mode – token.validity property

bindex.indd 04/08/2016 Page 193

S
safe mode, 36
SASL (Simple Authentication and Security Layer), 114–115
savesNamespace command, 36
secondary NameNode, 20
secure cluster, accessing programmatically, 116
secure containers, 137–138
Secure Sockets Layer (SSL), 112
security, 109–139

for applications, 134–138
for block transfer, 128
for data, 124–134

bringing data to cluster, 125–129
data classifi cation, 125
protection in cluster, 129–134

for Hadoop cluster, 110–121
authentication with Kerberos, 112–116
impersonation, 119–121
perimeter security, 110–112
service level authorization, 116–119

for HTTP channel, 121–124
for WebHDFS-based data transfer, 129
YARN architecture, 134

sensitive data discovery, 125
SequenceFile fi le format, 42
sequential access, in HDFS, 16
Serializer/Deserializer, 74–75
service authorization policies, 119
service grid, in Apache Ignite, 169
service level authorization, in Hadoop, 116–119
set command (Hive), 71
setCacheFile method, 61
setMapperClass, 58
setReducerClass, 58
sh command, 78
shared cluster, security requirements, 109
shared lib confi guration for Oozie, 83, 84
sharelib, folder structure on HDFS, 84
ShellBasedUnixGroupsMapping, 117
SHOW FUNCTION statement, 73
Shuffl e errors counter, 62
shuffl e grouping, in Storm, 104
shuffl e phase, of MapReduce application, 52
signature.secret.fi le property, in core-site.xml fi le, 122
Simple Authentication and Security Layer (SASL), 114–115
simple.anonymous.allowed property, in

core-site.xml fi le, 122
Single Point of Failure (SPOF)

master-less property and, 167–168
NameNode and, 20–21

sink, in Flume, 94
slash (/), for separating path elements, 1
slave nodes, 110, 112
slave servers, 26

DataNodes as, 19
small fi les, as Hadoop problem, 75–76
smoke tests, 158–159
snapshotDiff command, 31–32
snapshots, in HDFS, 30–32

software stacks, 142–143
composition, 159
custom-tailored, 144–149
test stack for verifying, 143

source, in Flume, 94
source command (Hive), 71
Spark, 4. See also Apache Spark
SparkContext, 176
spill fi le, 53
“split brain,” 21
splittability, and storage fi le format choice, 44
Spout, 103–104
SQL, in-memory, on Hadoop, 177–178
Sqoop, 89, 90–92
SSL (Secure Sockets Layer), 112
ssl-client.xml fi le, 123
stack integration

test development, 155–157
validating stack, 157

standby NameNode, 20–21
start-build-env.sh, 27
stat command (HDFS), 24
storage, 15–45

persistent, 170
RAM for, 164
saving capacity, 15
tiered, 37–39
types, 37

storage policies, 37–38
Storm. See Apache Storm
stream grouping strategies, from Storm, 104
streaming

with Apache Ignite, 180–181
in Kafka, 101–102

string functions, in Hive, 74
StringTokenizer (Java), 55–56
Sun Microsystems Java Enterprise Stack (JES), 144
Supervisor daemon, 103
sync process, with journal nodes and active

NameNode, 21

T
table schema, defi ning, 72
Table-Generating Functions (UDTF), 74
tail command (HDFS), 23
TeamCity, 145
technologies, connecting RAM across multiple

computers, 163
temperature metric, for archival storage, 37
test stack, 158–159
Tex mode, for Pig, 77
TextInputFormat, 56
Thrift format, 43
Ticket Granting Service (TGS), for Kerberos, 112–113
tiered storage, 37–39
TokenAuthenticator, 137
TokenizerMapper task, 56
token.validity property, in core-site.xml fi le, 122

194

Tool interface – ZooKeeper

bindex.indd 04/08/2016 Page 194

Tool interface, 59
ToolRunner, 59, 61
touch command (HDFS), 23
Treasure Data Service, 44
Trident API, 105
truststores, 123–124
tuples

in Storm, 103–104
writing into Kafka, 106

type conversion functions, in Hive, 74
type property, in core-site.xml fi le, 122

U
Ubuntu, 171
uncompressed SequenceFile format, 42
updating frequency, and storage fi le format choice, 44
upstart, 28
USE <database_name> statement, 71
user defi ned functions (UDFs), 73–74

for Pig, 79
user experience, 67–88

Apache Hive, 68–76
Apache Oozie, 81–88
HiveQL, 70–73
HUE, 79–81

users
and groups, 117
impersonating, 119–121

V
Vagrant, 149
validating stack, 157

composition, 159
Version Control System (VCS), 153

W
Warm storage policy, 38
web server logs, collecting, 89
WebHDFS, 22, 36

security for data transfer, 129
WebHDFS server, launching, 36
Windows Azure, 10
Windows platform, 9
Windows Server, 10
word count application, 55, 174

ToolRunner for implementing, 59–60
Trident for implementing, 105

workfl ow, in Hue, 81
workfl ow job, with Oozie, 84
write operations, in HDFS, 23

X
XML, converting binary edits log fi les into, 33–35
xPDL (XML Process Defi nition Language), 85
XQuery language, 11

Y
Yahoo! framework, 144
YARN. See Hadoop YARN (Yet Another

Resource Negotiator)
YarnChild process, 51

Z
Zeppelin, 180
znodes, 1
ZooKeeper, 1, 4–5, 103, 168

	10.1002@9781119281320.ch0.pdf (p.1-17)
	10.1002@9781119281320.ch1.pdf (p.18-31)
	10.1002@9781119281320.ch2.pdf (p.32-62)
	10.1002@9781119281320.ch3.pdf (p.63-81)
	10.1002@9781119281320.ch4.pdf (p.82-103)
	10.1002@9781119281320.ch5.pdf (p.104-122)
	10.1002@9781119281320.ch6.pdf (p.123-153)
	10.1002@9781119281320.ch7.pdf (p.154-173)
	10.1002@9781119281320.ch8.pdf (p.174-194)
	10.1002@9781119281320.ch9.pdf (p.195-198)
	10.1002@9781119281320.ch10.pdf (p.199-206)

