
ffi rs.indd 05/12/2016 Page i

PROFESSIONAL SCALA

INTRODUCTION . xv

CHAPTER 1 Language Features . 1

CHAPTER 2 Functional Programming . 19

CHAPTER 3 Java Compatibility . 37

CHAPTER 4 Simple Build Tool . 45

CHAPTER 5 Maven . 63

CHAPTER 6 Scala Style/Lint . 79

CHAPTER 7 Testing . 85

CHAPTER 8 Documenting Your Code with Scaladoc . 95

CHAPTER 9 Type System . 139

CHAPTER 10 Advanced Functional Programming . 165

CHAPTER 11 Concurrency . 179

CHAPTER 12 Scala.js . 205

INDEX . 215

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 05/12/2016 Page iii

PROFESSIONAL

Scala

Aliaksandr Bedrytski
Janek Bogucki

Alessandro Lacava
Matthew de Detrich

Benjamin Neil

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 05/12/2016 Page iv

Professional Scala

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2016 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-26722-5
ISBN: 978-1-119-26725-6 (ebk)
ISBN: 978-1-119-26726-3 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is
sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional ser-
vices. If professional assistance is required, the services of a competent professional person should be sought. Neither the
publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred
to in this work as a citation and/or a potential source of further information does not mean that the author or the pub-
lisher endorses the information the organization or Web site may provide or recommendations it may make. Further, read-
ers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work
was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with stan-
dard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media such
as a CD or DVD that is not included in the version you purchased, you may download this material at http://book-
support.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2016937234

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 05/12/2016 Page v

ABOUT THE AUTHORS

ALIAKSANDR BEDRYTSKI is a passionate software engineer at Worldline Lyon, France. Even though
it’s been more than four years since he discovered Scala, he’s still in love with the language and is
trying to push its boundaries every day. In his spare time he’s learning something new about space,
physics, and bleeding edge technologies. He is currently working as a lead developer on a data-
analysis project featuring Hadoop, Spark-Scala, Hive, and other Big Data tools.

JANEK BOGUCKI is a co-founder at Inferess Inc. and principal consultant (Machine Learning and
Scala) at Combination One. He has a background in mathematics with an ongoing interest in com-
puter science, data science, machine learning, graph theory, and development methodologies. He
lives in Kent, UK with his wife Rebecca, son Theo, two cats, one dog, and a variable number of
chickens.

ALESSANDRO LACAVA holds a degree in telecommunications engineering. He’s had extensive
experience with OOP before becoming very passionate about functional programming. He is cur-
rently working as a lead designer and developer on different types of applications using mainly,
but not only, Scala. He’s also a contributor of pretty famous open source projects, such as shape-
less and cats.

MATTHEW DE DETRICH is a tech lead for Monetise Pty Ltd, where he primarily works on full stack
applications with backends written in Scala. Matthew has a passion for designing, building, and
integrating complex multi-domain systems from the ground up. In his spare time he is exploring
new developments in the Scala space, such as Scala.js.

BENJAMIN NEIL is a full stack engineer at AppThis LLC. He is a polyglot engineer who has had the
privilege of working the past eight years making websites, services, and tools for amazing compa-
nies. He is obsessed with Scala, Vim, DevOps, and making services scale smoothly.

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 05/12/2016 Page vi

ABOUT THE TECHNICAL EDITORS

JACOB PARK is a Scala and Typesafe enthusiast; he embraces Akka, Play, and Spark, all with
Scala, to solve various problems regarding distributed systems with additional technologies such as
Cassandra and Kafka. As a believer in open-source software, he contributes to various projects on
GitHub related to Akka and Cassandra: https://github.com/jparkie. When he’s not working,
Jacob can be found at various Scala and Typesafe conferences and meetups, either as an attendee or
a presenter.

ARIEL SCARPINELLI is a senior Java developer at VirtualMind and is a passionate developer with
more than 15 years of professional experience. He currently leads four agile teams for a U.S.-based
enterprise SaaS company. He has experience in a lot of languages but is currently focused on Java
and JavaScript with some PHP and Python.

RADU GANCEA is a software engineer and consultant at Eloquentix with a Java background (also C/
C++). He is involved in projects in the energy and advertising sectors. His current focus is on Scala
and other JVM languages and frameworks.

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 05/12/2016 Page vii

 PROJECT EDITOR
Charlotte Kughen

TECHNICAL EDITORS
Jacob Park
Ariel Scarpinelli
Radu Gancea

PRODUCTION EDITOR
Barath Kumar Rajasekaran

COPY EDITOR
Troy Mott

MANAGER OF CONTENT DEVELOPMENT
AND ASSEMBLY
Mary Beth Wakefi eld

PRODUCTION MANAGER
Kathleen Wisor

MARKETING MANAGER
David Mayhew

PROFESSIONAL TECHNOLOGY & STRATEGY
DIRECTOR
Barry Pruett

BUSINESS MANAGER
Amy Knies

EXECUTIVE EDITOR
Jim Minatel

PROJECT COORDINATOR, COVER
Brent Savage

PROOFREADER
Nancy Bell

INDEXER
Nancy Guenther

COVER DESIGNER
Wiley

COVER IMAGE
©Sergey Nivens/Shutterstock

CREDITS

www.allitebooks.com

http://www.allitebooks.org

ftoc.indd 05/11/2016 Page ix

CONTENTS

INTRODUCTION xv

CHAPTER 1: LANGUAGE FEATURES 1

Static Types and Type Inference 2
Implicit Parameters, Conversions, and Their Resolution 3
Case Class, Tuples, and Case Object 5
Abstract Class, Traits, and Sealed 6

Pattern Matching 8
Statements Are Expressions 9
String Interpolation 9
Scala Collections, immutable and mutable 10
For Comprehension 12

Packages, Companion Objects, Package Objects,
and Scoping 13

AnyVal, AnyRef, Any, and the Type Hierarchy 16
Summary 17

CHAPTER 2: FUNCTIONAL PROGRAMMING 19

Immutability 20
Pure Functions 22
Recursion 23
Higher-Order Functions 26
Core Collection Methods 27

Methods Returning a Collection 29
Methods Returning a Value 31

Currying and Partially Applied Functions 32
Null Handling (Option) 34
Strict versus Non-Strict Initialization 35
Summary 36

CHAPTER 3: JAVA COMPATIBILITY 37

Scala and Java Collections 37
Interfaces and Traits 40
Scala/Java Enumerations 42
Summary 43

www.allitebooks.com

http://www.allitebooks.org

x

CONTENTS

ftoc.indd 05/11/2016 Page x

CHAPTER 4: SIMPLE BUILD TOOL 45

Basic Usage 46
Project Structure 47
Single Project 47
Scopes 49
Custom Tasks 50
Dependencies 50
Resolvers 51

Advanced Usage 52
Advanced Dependencies 53
Testing in the Console 55

Release Management 56
Deploying to Sonatype 56
Packaging with SBT-Native-Packager 58
Creating a Docker Image 59
Common SBT Commands 60
Useful Plugins 61

Summary 62

CHAPTER 5: MAVEN 63

Getting Started with Maven and Scala 64
Introducing scala-maven-plugin 67
Adding Library Dependencies 70
Using the REPL 71
Getting Help 72
Running Tests 72
Joint Compilation with Java 74
Accelerating Compilation with Zinc 76
Summary 77

CHAPTER 6: SCALA STYLE/LINT 79

Scala with Style 79
Scaliform 81
Scapegoat 82
WartRemover 82
Scoverage 84
Summary 84

www.allitebooks.com

http://www.allitebooks.org

xi

CONTENTS

ftoc.indd 05/11/2016 Page xi

CHAPTER 7: TESTING 85

ScalaTest 86
Unit Tests 87
Integration Testing 87

Data-Driven Tests 88
Performance Testing 89
Acceptance Testing 90
Mocks 92

Load Testing 93
Summary 94

CHAPTER 8: DOCUMENTING YOUR CODE WITH SCALADOC 95

Why Document Your Code? 96
Revealing the Benefi ts 96
Bookending the Continuum 96
Choosing What to Document 96

Scaladoc Structure 97
Overall Layout 97
Index Pane 98
Content Pane 100

Invoking the Scaladoc Tool 106
Wiki Syntax 108

Formatting with Inline Wiki Syntax 108
Structuring with Block Elements 110
Linking 113
Locating Scaladoc 117

Tagging 117
Everyday Tagging 117
Tagging for Groups 123
Advanced Tagging 125

Invoking scaladoc: Additional Options 132
Integrating Scaladoc Creation with Your Project 133

Confi guring Maven 133
Confi guring SBT 134

Publishing Scaladoc 134
Tables and CSS 136
Summary 138

www.allitebooks.com

http://www.allitebooks.org

xii

CONTENTS

ftoc.indd 05/11/2016 Page xii

CHAPTER 9: TYPE SYSTEM 139

What Is a Type System? 140
Static versus Dynamic Typing 140
What Static Type Systems Are Good For 141
What Dynamic Type Systems Are Good For 141

Scala’s Unifi ed Type System 141
Value Classes 143

Polymorphism 145
Subtype Polymorphism 145
Parametric Polymorphism 146
Ad Hoc Polymorphism 146

Bounds 149
Context Bounds 149
Upper and Lower Bounds 150
Variance 151

Other Niceties 155
Self-Type Annotations 155
Self-Recursive Types 158
Abstract Type Members 159
Dynamic Programming 161
Structural Types 161
Dynamic Trait 162

Summary 164

CHAPTER 10: ADVANCED FUNCTIONAL PROGRAMMING 165

Higher-Kinded Types 165
Functional Design Patterns 167

Functor 167
Applicative Functor 170
Monad 172
Semigroup 173
Monoid 174

Summary 176

CHAPTER 11: CONCURRENCY 179

Synchronize/Atomic Variables 181
Future Composition 184
Parallel Collections 187
Reactive Streams 192
STM 195

www.allitebooks.com

http://www.allitebooks.org

xiii

CONTENTS

ftoc.indd 05/11/2016 Page xiii

Actors (Akka) 198
Spark 200
Summary 202

CHAPTER 12: SCALA.JS 205

Scala.js and Its Design 205
Getting Started: Scala.js with SBT 206
Scala.js Peculiarities 210
Webjars and Dealing with the Frontend Ecosytem 211
Summary 213

INDEX 215

fl ast.indd 05/10/2016 Page xv

 INTRODUCTION

A working knowledge of Scala puts you in demand. As both the language and applications expand,
so do the opportunities for experienced Scala programmers—and many positions are going unfi lled.
Major enterprises across industries are using Scala every day, in a number of different applications
and capacities. Professional Scala helps you update your skills quickly to start advancing your
career.

Scala bridges the gap between functional and object-oriented programming, and this book details
that link with a clear discussion of both Java compatibility and the read-eval-print loop used in
declarative programming. You’ll learn the details of Scala testing, design patterns, concurrency, and
much more as you build the in-demand skill set required to utilize Scala in a real-world production
environment.

WHO THIS BOOK IS FOR

This book is for experienced programmers who already have some understanding of the Scala
language and are looking for more depth. You should have a basic working knowledge of the lan-
guage because this book skips over the fundamentals of programming, and the discussion launches
directly into practical Scala topics.

WHAT THIS BOOK COVERS

This book explains everything professional programmers need to start using Scala quickly and
effectively.

 ➤ Link functional and object-oriented programming.

 ➤ Master syntax, the SBT interactive build tool, and the REPL workfl ow.

 ➤ Explore functional design patterns, the type system, concurrency, and testing.

 ➤ Work effectively with Maven, Scala.js, and more.

HOW THIS BOOK IS STRUCTURED

This book was written in three parts. The fi rst part of the book discusses language structure includ-
ing syntax, practical functional programming, and Java compatibility.

The second part of the book takes the reader through tooling, including discussions of SBT, Maven,
lint tools, testing, and Scaladoc. The last portion of the book continues to examine Scala through
advanced topics such as polymorphism, dynamic programming, concurrency, Scala.js, and more.

xvi

INTRODUCTION

fl ast.indd 05/10/2016 Page xvi

WHAT YOU NEED TO USE THIS BOOK

For this book, we have used Scala version 2.11.7. The source code for the samples is available for
download from the Wrox website at www.wrox.com/go/professionalscala or from GitHub at
https://github.com/backstopmedia/scalabook.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

NOTE Notes indicate notes, tips, hints, tricks, and/or asides to the current
discussion.

As for styles in the text:

 ➤ We highlight new terms and important words when we introduce them.

 ➤ We show code within the text like so: persistence.properties.

 ➤ We show all code snippets in the book using this style:

 FileSystem fs = FileSystem.get(URI.create(uri), conf);
 InputStream in = null;
 try {

 ➤ We show URLs in text like this:

http://<Slave Hostname>:50075

SOURCE CODE

As you work through the examples in this book, you may choose either to type in all the code man-
ually, or to use the source code fi les that accompany the book. All the source code used in this book
is available for download at www.wrox.com. Specifi cally for this book, the code download is on the
Download Code tab at:

www.wrox.com/go/professionalscala

You can also search for the book at www.wrox.com by ISBN (the ISBN for this book is
9781119267225 to fi nd the code. And a complete list of code downloads for all current Wrox books
is available at www.wrox.com/dynamic/books/download.aspx.

xvii

INTRODUCTION

fl ast.indd 05/10/2016 Page xvii

NOTE Because many books have similar titles, you may fi nd it easiest to search
by ISBN; this book’s ISBN is 978-1-119-26722-5

Once you download the code, just decompress it with your favorite compression tool. Alternatively,
you can go to the main Wrox code download page at www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration, and at the same time, you will be helping us provide even
higher quality information.

To fi nd the errata page for this book, go to

www.wrox.com/go/professionalscala

and click the Errata link. On this page you can view all errata that has been submitted for this
book and posted by Wrox editors.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll
check the information and, if appropriate, post a message to the book’s errata page and fi x the
 problem in subsequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at http://p2p.wrox.com. The forums are a
web-based system for you to post messages relating to Wrox books and related technologies and
interact with other readers and technology users. The forums offer a subscription feature to e-mail
you topics of interest of your choosing when new posts are made to the forums. Wrox authors, edi-
tors, other industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com, you will fi nd a number of different forums that will help you, not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

 1. Go to http://p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

xviii

INTRODUCTION

fl ast.indd 05/10/2016 Page xviii

 3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and
complete the joining process.

NOTE You can read messages in the forums without joining P2P, but in order to
post your own messages, you must join.

 Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to This Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

c01.indd 05/10/2016 Page 1

Language Features
WHAT’S IN THIS CHAPTER?

 ➤ Outlining various control structures in Scala

 ➤ Using various tools in the standard library

 ➤ Mastering inheritance and composition in Scala

Scala borrows many of its syntax and control structures from various other languages.
Methods are declared in Algol/C style with the addition of features such as optional braces,
and semicolons to reduce code boilerplate.

Scala syntax also has features such as expressions for statements, local type inference, suffi x/
infi x notation, and implicit return statements, which make typical idiomatic Scala code look
like dynamic languages such as Lisp/Python/Ruby, but with the added benefi t of strong static
typing.

The expressive nature of Scala’s syntax is useful to create custom DSL’s, with the most notable
example being Scala’s own XML library. Scala also features several forms of inheritance
(traits, classes, objects), which can be combined in various ways to structure composition in
your code in a more natural and elegant way. This combined with a strong support for func-
tional programming, syntactic sugar (for comprehension), and type inference makes it possible
to create very terse domain specifi c code that is also type safe.

This chapter provides a broad overview of the various parts of Scala’s design and syntax, as
well as the features that are expected in modern generic programming languages (control of
scoping, string interpolation, encapsulation, and modules).

1

Professional Scala. Aliaksandr Bedrytski, Janek Bogucki, Alessandro Lacava, Matthew de Detrich and Benjamin Neil
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

2 ❘ CHAPTER 1 LANGUAGE FEATURES

c01.indd 05/10/2016 Page 2

STATIC TYPES AND TYPE INFERENCE

Scala is fi rst and foremost a statically typed language, which is similar to other statically typed
 languages you can annotate types for:

 ➤ Variable declarations

 ➤ Method/function arguments

 ➤ Method/function return values

 ➤ Various types of data structures

Below is a code sample to demonstrate these types of annotations:

val s: String // type definition on variable declaration
def doSomething(s: String) // type definition in a parameter
def doSomething: String // type definition for return type of a function
class SomeClass(s: String) // type definition in a class constructor definition
type MyString = String // type aliasing

A signifi cant reason why Scala requires mandatory type signatures is that it’s very diffi cult to pro-
vide a practical implementation of global type inference in a statically typed language that supports
subtyping. Thankfully, while Scala mandates that you provide type signatures for method param-
eters and type defi nitions, for variable declarations inside function/method bodies it features local
type inference. This drastically reduces the amount of boilerplate code when it comes to function/
method bodies. Here is an example of local type inference in action.

def doSomething(input: String) = {
val l = List(1,3,5)
val summed = l.sum
val asString = summed.toString + input
asString.toUpperCase
}

As you can see for variable declarations, you don’t need to specify their respective types. To manually
specify the types, do the following:

def doSomething(input: String): String = {
val l: List[Int] = List(1,3,5)
val summed: Int = l.sum
val asString: String = summed.toString + input
asString.toUpperCase()
}

One bonus of specifying types for function arguments is that they also act as a form of
 documentation, which is particularly helpful. Return types of functions are also optional;
however, it is encouraged to annotate them for documentation/clarity reasons. Due to Scala’s
generic code functionality, it is possible to have expressions that return different values in
 unexpected scenarios. One good example is Int’s versus Double:

def f = 342342.43

def f_v2 = 342342

Static Types and Type Inference ❘ 3

c01.indd 05/10/2016 Page 3

f == 342342 // returns true

f_v2 == 342342 // return false

Since f and f_v2 don’t have their return types annotated, we aren’t aware of what types they can
return (let’s assume you don’t know what the actual values of f and f_v2 are). This means that the f
== 342342 expression returns something else compared to f_v2 == 342342. If, however, you know
the return types of f and f_v2, you can do the following:

def f: Double = 342342.43

def f_v2: Int = 342342

As a user, you know that the return type of f is a Double, so don’t compare it with an Int when
asking for equality (since it’s a Float by extension you should provide custom equality with a delta).

Manual type signatures can also be used to force the type of a declaration. This is similar to the
typecast feature in languages like Java or C; however, it’s more powerful due to type conversions
available in Scala. A simple example in Scala is to assign a Long type to an integer literal.

val l: Long = 45458

By default, if you use a number literal in Scala it defaults to an Int. Note that it is also possible to
use the number based suffi x like so:

val l = 45458L

Arguably, the type annotation is more idiomatic, especially for custom types that may not have lit-
eral operators.

Implicit Parameters, Conversions, and Their Resolution
Scala has an incredibly powerful feature called implicits. When you ask for a value implicitly, such
as a method parameter, or the implicit keyword you are telling the Scala compiler to look for
a value that has the same type in scope. This is unlike the explicit value, where you need a type to
specify when it’s called/used. A practical use case for implicits is providing an API key for a REST
web service. The API key is typically only provided once, so an implicit is a good use case in this
instance, since you only need to defi ne and import it once.

case class ApiKey(id: String)

Since implicits are found by their type you need to create a new type, in this case ApiKey. Now let’s
defi ne a method that makes a HTTP call.

import scala.concurrent.Future

def getUser(userId: Long)(implicit apiKey: ApiKey): Future[Option[User]] = ???

In order to call this function you must make sure that an implicit ApiKey is visible in the scope. Let’s
fi rst make an instance of ApiKey and place it in an object.

4 ❘ CHAPTER 1 LANGUAGE FEATURES

c01.indd 05/10/2016 Page 4

object Config {
 implicit val apiKey = ApiKey(System.getenv("apiKey"))
}

Whenever you call getUser, ApiKey needs to be visible, and the code should look something like
this:

import Config._ // This imports everything in Config, including implicits

object Main extends App {
val userId = args(0).toLong
 getUser(userId)
}

It’s also possible to supply an implicit argument explicitly.

object Main extends App {
 val userId = args(0).toLong
 val apiKey = ApiKey(args(1))
 getUser(userId)(apiKey)
}

Implicits can be used to make automatic conversions between types; however, such usage is consid-
ered advanced and should be done sparingly, because it’s easy to abuse code that uses these features.
A prominent use of implicit conversions is in DSLs. For example, if you have a trivial DSL that
attempts to represent SQL queries, you might have something like this:

Users.filter(_.firstName is "Bob")

In this case, _.firstName may be a different type from a String (in this example, let’s say it has
type Column[String]). And it can only work on types of Column[String]:

val columnStringImplementation = new Column[String] {
 def is(other: Column[String]): EqualsComparison = ???
}

To compare two instances of Column[String] (to see if they are equal) you want an implicit con-
version of String to Column[String], so that you don’t have to write:

Users.filter(_.firstName is ColumString("Bob"))

To do this you need to defi ne the following:

implicit def stringToColumnStringConverter(s: String): Column[String] = ???

In this case, when you import your stringToColumnStringConverter, it will automatically con-
vert any instances of String to Column[String] if it’s required to do so. Since the is method only
works on Column[String], the compiler will try to see if there is an implicit conversion available
for the String “BoB,” so it can satisfy the method signature for is.

Implicit classes are a type safe solution that Scala provides for monkey patching (extending an exist-
ing class, or in Scala’s case, a type without having to modify the existing source of the type). Let’s
try this by adding a replaceSpaceWithUnderScore method to a String.

Static Types and Type Inference ❘ 5

c01.indd 05/10/2016 Page 5

object Implicits {
 implicit class StringExtensionMethods(string: String) {
 def replaceSpaceWithUnderScore = string.replaceAll(" ","_")
 }
}

Like the previous example, you need to import this class to make it available:

import Implicits._
"test this string".replaceSpaceWithUnderScore // returns test_this_string

Case Class, Tuples, and Case Object
Scala has a feature called case class, which is a fundamental structure to represent an immutable
data. A case class contains various helper methods, which provide automatic accessors, and methods
such as copy (return new instances of the case class with modifi ed values), as well as implementa-
tions of .hashCode and equals.

case class User(id: Int, firstName: String, lastName: String)

User(1,"Bob","Elvin").copy(lastName = "Jane") // returns User(1,"Bob","Jane")

These combined features allow you to compare case classes directly. Case classes also provide a
generic .toString method to pretty print the constructor values.

User(1,"Bob","Elvin").toString // returns "User(1,Bob,Elvin)"

Scala also has tuples, which work similarly to Python’s tuples. A nice way to think of tuples is a case
class that has its fi elds defi ned positionally (i.e., without its fi eld name), and there is no restriction on
a tuple requiring the same type for all of its elements. You can construct tuples by surrounding an
expression with an extra set of parenthesis:

val userData = (5,"Maria", "Florence") //This will have type Tuple3
 [Int,String,String]

You can then convert between tuples and case classes easily, as long as the types and positions match:

val userData2: Tuple3[Int,String,String] = User.unapply(User(15,"Shelly",
"Sherbert")).get
val constructedUserData: User = User.tupled.apply(userData2) // Will be
User(15,"Shelly","Sherbert").

Tuples are a handy way to store grouped data of multiple types, and they can be destructured using
the following notation:

val (id, firstName, lastName) = userData2

Note that tuples also provide an _index (where index is the position) and methods to access the ele-
ments of the tuple by position (in the example above, ._2 would return “Shelly”). We recommend
that you use the deconstruction mentioned above, since it’s clearer what the fi eld is meant to be.

For internal and local use, tuples can be quite convenient due to not needing to defi ne something like
a case class to store data. However, if you fi nd yourself constantly structuring/destructing tuples,
and/or if you have methods returning tuples, it’s usually a good idea to use a case class instead.

6 ❘ CHAPTER 1 LANGUAGE FEATURES

c01.indd 05/10/2016 Page 6

Abstract Class, Traits, and Sealed
In the previous chapter we discussed case classes. Apart from immutability (and other benefi ts),
one of the primary uses of case classes is for creation of ADTs (known as Algebraic Data Types).
Algebraic data types allow you to structure complex data in a way that is easy to decompose, and it
is also known as the visitor pattern in Java. Here is an example of how you can model a video store:

sealed abstract class Hemisphere
case object North extends Hemisphere
case object South extends Hemisphere

sealed abstract class Continent(name: String, hemisphere: Hemisphere)

case object NorthAmerica extends Continent("North America", North)
case object SouthAmerica extends Continent("South America", South)
case object Europe extends Continent("Europe", North)
case object Asia extends Continent("Asia", North)
case object Africa extends Continent("Africa", South)
case object Australia extends Continent("Australia", South)

You can then easily use Pattern Matching (explained in greater detail in the next section) to extract
data, and doing so looks similar to this:

val continent: Continent = NorthAmerica
continent match {
case Asia => println("Found asia")
case _ =>
}

You may also notice the keyword “sealed.” Sealed in Scala means that it’s not possible for a class/
case class/object outside of the fi le to extend what is sealed. In the example above, if Continent was
defi ned in a fi le called Continent.scala, and in Main.scala you tried to do the following, Scala
produces a compile error.

case object Unknown extends Continent

The advantage of sealed is that since the compiler knows all of the possible cases of a class/trait/
object being extended, it’s possible to produce warnings when pattern matching against the cases of
the sealed abstract class. This also applies to Traits, not just sealed abstract classes.

Traits that allow Scala to implement the mixin pattern are another one of Scala’s most powerful
features. Traits, at a fundamental level, allow you to specify a body of code that other classes/traits/
objects can extend. The only real limitation is that Traits can’t have a primary constructor (this is to
avoid the diamond problem). You can think of them as interfaces, except that you can provide defi -
nition for certain methods that you wish (and you can extend as many traits as you want).

A good use case for a trait is in a web framework, where traits are often used as a composition
model for routes. Suppose you have trait defi ned as the following:

trait LoginSupport {self: Controller =>
 lazy val database: Database
 def login(userId) = {

Static Types and Type Inference ❘ 7

c01.indd 05/10/2016 Page 7

 //Code dealing with logging in goes here
 afterLogin()
}
def logout() = {
 //Code dealing with logging out goes here
}
def afterLogin: Unit = {
}
}

Here a trait is defi ned that allows you to mixin login/logout functionality, but there are a few
interest points here. The fi rst is the self: Controller =>. This dictates that only a class of type
Controller can extend the LoginSupport trait. Furthermore, there is a reference to this type
through the self variable. This is actually an example of inversion of control, which is a basic tech-
nique needed to do simple DI (Dependency Injection) in Scala. This form of DI is statically checked,
and doesn’t need any dependency on external libraries, or features like macros.

The next important thing to note is the val database: Database. It’s up to the class/trait/object
extending LoginSupport to provide an implementation of database, which is ideally what you want
(the LoginSupport trait shouldn’t need to know how the database is being instantiated).

def login and def logout provide implementations for login and logout respectively. You then
have an implementation of afterLogin(), which is called after you login() a user. Now let’s
assume you have a controller, or something like:

class ApplicationController(implicit val database: Database) extends LoginSupport
{self:
Controller =>
}

Inside this class, you now have access to the login, logout, and afterLogin methods. Doing just
the above however, would generate a compile error, since you haven’t defi ned the database. Using an
assumption that the database is being passed into the ApplicationController (let’s say implicitly),
you can do this:

class ApplicationController(implicit val database: Database) extends LoginSupport
{
}

You can provide an instance of the database as a constructor for ApplicationController, and it
will be used by the LoginSupport. Alternatively, you can do this:

class ApplicationController2 extends LoginSupport {self: Controller =>
lazy val database: Database = Config.getDb
}

Similar to extending in Java classes, you can actually override one of these methods. In this case you
can execute something after the user logins:

class ApplicationController3(implicit val database: Database) extends
LoginSupport{self:
Controller =>
override def afterLogin() = Logger.info("You have successfully logged in!")
}

8 ❘ CHAPTER 1 LANGUAGE FEATURES

c01.indd 05/10/2016 Page 8

As you can see, traits are incredibly fl exible. They allow you to cleanly split responsibility (i.e., what
is implemented by the trait versus what is needed, but not implemented).

PATTERN MATCHING

Pattern matching is one of the most used features in the Scala language. It provides a Swiss Army
knife of capabilities that are the most common ways of inspecting and dealing with object data.

Pattern matching has the ability to deal with the following:

 ➤ Equality comparison. Similar to the switch statement, pattern matching allows you to
branch out different executions, which depend on the value of a variable. Scala’s pattern
matching, however, has far better capabilities than just equality checking. It can be combined
with if statements to allow for more fi ne-grained branching, and it’s also the primary way to
deconstruct ADTs (Abstract Data Types).

 ➤ Typesafe forced casting. Pattern matching can be used to do safe type casting. In Java,
manual checks with isInstanceOf need to be made to ensure that safe cast is being applied.
Pattern matching allows you to do this pattern in a safe way.

 ➤ Destructive assignment of case classes and types that provide Unapply. Destructive assign-
ment, loosely speaking, is the ability to inspect the contents of a type and act on them as they
are being deconstructed. This is also used to deal with Option in a type safe way and can aid
construction of immutable data structures such as a List (reference link).

The beautiful thing about pattern matching is that all of the above capabilities can be combined to
deconstruct complex business logic, as this example shows:

sealed abstract class SomeRepresentation
case class NumberRepr(number: Double) extends SomeRepresentation
case class StringRepr(s: String) extends SomeRepresentation
val s: SomeRepresentation = NumberRepr(998534)
s match {
case NumberRepr(n) if n > 10 => println("number is greater than 10, number is $n")
case NumberRepr(n) => println("number is not greater than 10, number is $n")
case StringRepr(s) => println("is a string, value is $s")
}

This example demonstrates switching on an ADT, destructuring the values inside the ADT, and also
matching on those destructured values. Pattern matching has the wildcard operator (_) which is the
fallback if all other options are exhausted (in Java this is default). A good example of this is an actor:

case class StringMessage(s: String)
case class IntMessage(i: Int)
class SomeActor extends Actor {
 def receive = {
 case StringMessage(s) => println("message received, it's a string
 of value $s")
 case IntMessage(i) => println("message received, its an int of value $i")
 case _ => println("unknown message")
}
}

Pattern Matching ❘ 9

c01.indd 05/10/2016 Page 9

Another use of pattern match is in the construction of partial functions, which is particularly pow-
erful when combined with methods like collect:

val l: List[Any] // List of values/references of any possible type
l.collect{
 case i: Int if i % 2 == 0 => i
 case s: String => s.length
}

In the case above, collect will grab all items from the list only if they happen to be an even num-
ber of type Int OR if the item is of type String, then the length of the Stringis returned. Pattern
matching also provides a typesafe way of dealing with Option values.

val param: Option[String]
param match {
 case Some(s) => "parameter found, its value is $s"
 case None => "no parameter is found"
}

Statements Are Expressions
In Scala, any statement is also an expression. This is particularly powerful, since it represents a
consistent way of working with branching of expressions (especially when combined with pattern
matching as described before).

import scala.concurrent.Future
val parameter: Option[String] = ???
val httpCall: Future[String] = parameter match {
case Some(s) => Http.get("/api/doSomething/$s")
case None => Future("No parameter supplied")
}

The important thing to note here is that you are making sure that the return result of the statement
is of type Future (so you can reuse this as a proper value later on).

NOTE Scala uses the least upper bound in determining what the return type of a
statement is. This means that it’s possible to get the returning type of an expres-
sion to be Any, AnyVal or AnyRef. For example, if you have an if expression
that has an evaluation of one branch to be a String, and another Int, the result-
ing type will be Any.

String Interpolation
String interpolation provides a performant, concise, and typesafe way to print out values in the
middle of string literals. The basic way to use the $ is to print the value of a variable:

s"the value of this variable is $s"

10 ❘ CHAPTER 1 LANGUAGE FEATURES

c01.indd 05/10/2016 Page 10

It’s also possible to use block syntax so you can interpolate expressions, and not just values:

log.info(s"The id of the current user is ${user.id}")

Scala Collections, immutable and mutable
In the previous example, you can see the usage of methods like .map and .flatMap. These are actu-
ally fundamental patterns in functional programming, and they are used frequently in Scala as part
of its collection framework. Scala collections are one of the few languages that provide a generic,
strongly/statically typed framework for collections that also deal with type transformations. Let’s
start off with one of the most fundamental types in Scala, the List.

A List in Scala represents an immutable List, whereas a Seq represents an arbitrary sequence (can
be mutable or immutable). Below is an example of how to use list:

val l = List(3,6,2342,8)

The type of this expression is List[Int]. One thing to note is that you can use the Seq constructor
like so:

val s = Seq(3,6,2342,15)

Seq’s default constructor is an immutable List, so in fact these expressions are equal. However, as
stated before, a Seq can represent any sequence whereas a List is much more strict.

def listLength(l: List[_]) = l.length
def sequenceLength(s : Seq[_]) = s.length

It is perfectly legitimate to pass any sequence into sequenceLength (this can mean a Vector, a
mutable list, or even a String), however, if you try to pass these types in listLength, you get a
compile error. This is very powerful, as it allows you to specify the required granularity that is
needed for collections, but it can also be dangerous. Consuming a list, while doing the map that is
mutable versus immutable, can have unintended consequences.

.map allows you to apply an anonymous function to every element in a collection, with the item
being replaced with the returning value of that anonymous function.

val l = List(3,6,2342,8)
l.map(int => int.toString) // Result is List("3","6","2342","8")

The example above converts every number to a String, which shows you how Scala on a simple
level deals with converting types from within a collection (in this case Int -> String). One of the
great things about the Scala collection library is that it provides implicit conversions that allow you
to do complex transformations.

val m = Map(
"3" -> "Bob",
"6" -> "Alice",
"10" -> "Fred",
"15" -> "Yuki"
)

Pattern Matching ❘ 11

c01.indd 05/10/2016 Page 11

This Map will have the type Map[String,String]. However, let’s say that you want to con-
vert the keys to a String, while at the same time splitting out the names into its characters (i.e.
Array[Char]).

A fi rst naive solution to the problem can be:

val keys = m.keys.map{key => key.toInt}.to[List]
val values = m.values.map{name => name.toCharArray}
(keys zip values).toMap

As you can see, this attempt is quite wordy, and it’s also ineffi cient. You have to manually get the
keys/values out of the map and transform them. Then you have to manually zip the keys with the
values and convert them to a map. A more idiomatic solution is:

m.map{case (key,name) => key.toInt -> name.toCharArray }

This version is defi nitely more readable and succinct than the former, but you may be wondering
how this works behind the scenes. Below is the defi nition of map from the Scala collections library.

def map[B, That](f: A => B)(implicit bf: CanBuildFrom[Repr, B, That]): That

While this looks quite complex, the thing to note here is the implicit bf: CanBuildFrom[Repr,
B, That]. This brings an implicit CanBuildFrom, which allows the Scala collection library to trans-
form between different types to produce the desired results.

In this case, when you call the .map on the Map[String], the argument to the anonymous function
is actually a tuple (which you destruct with the case statement).

m.map{x => ...} // x is of type Tuple[String,String], with the first String being
 a key, and the second value
m.map{case (key,value) => ... } // Deconstruct the Tuple[String,String]
 immediately. key is of type String, as is value

If you return a tuple in the anonymous function that you place in map, CanBuildFrom will handle
the conversion of Tuple2 as a key-value pair for the Map you originally operated off. The -> syntax
you noticed earlier is actually an alias to construct a tuple:

implicit final class ArrowAssoc[A](private val self: A) extends AnyVal {
 @inline def -> [B](y: B): Tuple2[A, B] = Tuple2(self, y)
 def →[B](y: B): Tuple2[A, B] = ->(y)
}

In other words, key.toInt -> name.toCharArray is the same as (key.toInt,name.toCharArray).
This means the return type of {case (key,name) => key.toInt -> name.toCharArray }
is Tuple2[Int,Char[Array]], so all that happens is you go from Map[String,String] to
Map[Int,Array[Char]] in the fi nal expression.

You may ask at this point, what would happen if you return a completely different type, such as if
you return an Int instead of a Tuple2[A,B] (where A and B are arbitrary types). Well, it so hap-
pens that the map has its (key,value) entry replaced with just a value, so you end up converting
from a Map to an Iterable.

12 ❘ CHAPTER 1 LANGUAGE FEATURES

c01.indd 05/10/2016 Page 12

This means that m.map{case (_,value) => value } is the same as m.values, and m.map{case
(key,_) => key } is the same as m.keys. A lot of these powerful transformations are possible due
to CanBuildFrom, so you can implement equivalent functionality in other strongly, statically typed
languages. This needs to be implemented into the actual compiler (in Scala, the collection is a
standard Scala library that is included by default in the Scala distribution).

For Comprehension
You may have noticed earlier that when you composed map’s and flatMap’s, you end up with unde-
sirable nesting (i.e., a horizontal pyramid). for comprehension is a very powerful feature to deal
with such issues.

import scala.util._

def firstTry: Try[String] = Success { "first response" }
def secondTry(string: String): Try[Int] = Failure { new
IllegalArgumentException(s"Invalid length ${string.length}")
}
def finalTry(int: Int): Try[String] = Success { int.toString }

firstTry.map{result =>
 s"value from firstResult: $result"
}.flatMap{anotherResult =>
 secondTry(anotherResult).map{finalResult =>
 finalTry(finalResult).map(_.toUpperCase)
 }
}

The equivalent for comprehension for this statement would be:

for {
 result <- firstTry
 anotherResult = s"value from firstResult: $result"
 secondResult <- secondTry(anotherResult)
 finalResult <- finalTry(secondResult)
} yield finalResult.uppercase

The for comprehension has completely fl attened out the above comprehension, making the inten-
tion very clear. for comprehension also provides syntactic sugar over filter/withFilter. A good
example of this is shown using the Range class:

for (i <- 1 to 10000 if i % 2 == 0) yield i

This provides you with the all of the even numbers up to 10,000. The equivalent without the for
comprehension is:

 (1 to 10000).withFilter(i => i % 2 == 0)

c01.indd 05/10/2016 Page 13

Packages, Companion Objects, Package Objects, and Scoping ❘ 13

PACKAGES, COMPANION OBJECTS, PACKAGE OBJECTS,
AND SCOPING

Another fantastic feature of Scala is how it provides access controls and encapsulation in every verti-
cal of the language. This goes from controlling scoping on the package level to controlling scoping
down to a module level.

At the highest level, Scala provides packages that work the same way they do in Java. In essence,
packages are a purely static construct, which the compiler can use to group a collection of .scala
source fi les. Packages can’t be referenced in runtime apart from providing them as an import. So,
packages are often used to collect source fi les on a very high level. As an example, the Scala Futures
are contained within scala.concurrent, with scala.concurrent being the package.

The benefi t of packages is that they are purely static, and packages can be combined with completely
separate dependencies as long as there are no confl icts in naming. As an example, if you want to
make your own version of Future (let’s call it ImprovedFuture), you can do the following:

package scala.concurrent

trait ImprovedFuture {
 // Implementation goes here
}

If you package this as a dependency, and include it in one of your projects, you can import both
the standard Future, our ImprovedFuture, and everything else under the namespace scala
.concurrent.

The other namespacing utility that Scala has is called objects. In contrast to packages, objects have
an actual runtime type representation. Another common name for objects is singletons. A singleton
is a class that can only ever have one global instance, which is also automatically instantiated.

object MyObject {
 // Implementation goes here
}

MyObject has a type called MyObject$ at runtime. In actual Scala code, this type can also be
retrieved by calling the .type method (i.e. MyObject.type). This pattern essentially provides
“dynamic” modules, or in other words, allows you to deal with packages within your own code.
For example, you can make a function that accepts MyObject and does something with it:

def doSomething(myObject: MyObject)

A more realistic example is to create a module that a function can work with. As an example, let’s
create a trait that defi nes logging:

trait LoggerImplementation {
 def publishLog(level:String, message: String)
}

14 ❘ CHAPTER 1 LANGUAGE FEATURES

c01.indd 05/10/2016 Page 14

Now since this is just a trait, you need some way to instantiate it, so let’s create a MyLogger object:

object ConsoleLogger extends LoggerImplementation {
 def publishLog(level: String, message: String) = {
 println(s"level: $level, message: $message")
}

object Implicits {
 implicit lazy val consoleLogger = ConsoleLogger
}
}

This provides an interface, and you have also provided an implementation as an object. Since it is
an object, you don’t have to worry about instantiating ConsoleLogger, you can just import it. Now
let’s defi ne a logger trait:

trait Logger {
 def log(level: String, message: String)(implicit loggerImplementation:
 LoggerImplementation) = {
 loggerImplementation.publishLog(level,message)
}
}

Now let’s create a basic Main function to test out logger:

import ConsoleLogger.Implicits._

object Main extends App with Logger {
 log("info","This is a log statement"
}

In this case, ConsoleLogger represents a module (i.e., an implementation of a Logger). If you
remove the ConsoleLogger.Implicits. _ import, you get a compile error saying something similar
to the following:

error: could not find implicit value for parameter loggerImplementation:
 this.LoggerImplementation

There is also a notion of companion objects, which is an object that also references a class of the
same name and path. In this sense, companion objects work the exact same way that normal objects
do, but the difference is that a class can access the private members of a companion object directly.

object MyClass {
private val statement = "This is a statement"
}

case class MyClass (additionalStatement: String) {
def printStatement = println(s"$additionalStatement ${MyClass.statement}")
}

As with sealed traits, companion objects have to be defi ned in the same fi le that their companion class
is defi ned in. Factory and instantiation related code is commonly placed within companion objects.

c01.indd 05/10/2016 Page 15

Packages, Companion Objects, Package Objects, and Scoping ❘ 15

NOTE When using the Scala REPL, you need to defi ne the companion and its
object within another enclosing object. The REPL is unable to properly deter-
mine a companion object if it’s evaluated separately and without an enclosing
object.

Scala also offers another feature called package objects. Package objects are similar to packages
described earlier; however, they don’t have limitations regarding structures, which normally can’t be
top level (such as implicit classes, implicit conversions, or type aliases). Normally, you would have
to place these constructs inside an object and then manually import them. As an example, you may
have some type alias like:

package mypackage
object InternalTypeAliais {
 type Number = BigDecimal
 type Price = BigDecimal
}

To use these types, you then have to explicitly import the InternalTypeAliases. An alternative is
to use a package object, and you can defi ne it like so.

package mypackage
package object internalTypeAliases {
type Number = BigDecimal
 type Price = BigDecimal
}

Now, anything inside of mypackage automatically has reference to the content defi ned inside of
internalTypeAliases. This feature also means that package objects are commonly used inside a
package, such as util functions, implicit conversions, and factory methods without having to deal
with massive lists of import statements.

Scala, also similar to Java, provides various access control modifi ers that allow designers to restrict
how code is accessed (the only real exception is that in Scala, everything is public unless specifi ed
otherwise). You may have noticed earlier the keyword private, which essentially means that the
value can only be accessed within the object itself (and a companion object if it’s defi ned). The other
access modifi er is protected, which means the value can only be accessed within the class and any of
its subclasses.

object Internals {
 private val privateInt = 1 //Can only be accessed within Internals, or
 a companion case class Internals if it's defined
 protected val protectedInt = 5 //Can only be accessed within Internals, or
 a companion case class Internals, or any subclass of Internals
}
object MoreInternals extends Internals {
 val publicInt = protectedInt + 10 // Is public
 val publicInt2 = privateInt + 5 // Does not compile

www.allitebooks.com

http://www.allitebooks.org

16 ❘ CHAPTER 1 LANGUAGE FEATURES

c01.indd 05/10/2016 Page 16

}

object Main {
 print(Internals.privateInt) // Does not compile
 print(MoreInternals.publicInt)
}

The usage of access modifi ers is important in library and API design, and they are an important
principle in encapsulation. Combined with Scala’s already powerful features regarding modules, it’s
possible to provide both extensibility and restriction as desired.

 AnyVal, AnyRef, Any, and the Type Hierarchy
Unlike languages like Java and C, Scala makes a specifi c distinction between value’s (also known as
primitive types) and references in the type system generically. This allows you to specify your own
custom values (in a limited fashion).

NOTE Scala also has the Object type, which is a type alias for AnyRef that is
carried over from Java for compatibility reasons.

An AnyVal in Scala represents a value that is not boxed, i.e., they are represented as actual values.
Common types that inherit AnyVal include number types (Int, Long, Double, and Float) as well
as other types like Boolean. Since the memory representation of these types is often very small, it’s
much more effi cient to store just the actual value in the host system, rather than a reference to the
value.

Since Scala 2.10, you can defi ne your own AnyVal types by extending the AnyVal class. Previously
in the implicit section of this chapter we defi ned an ApiKey class, and the defi nition is repeated
below.

case class ApiKey(id: String)

If you want to turn it into a value type, simply make it extend AnyVal:

case class ApiKey(id: String) extends AnyVal

Now whenever ApiKey is instantiated, you won’t get a performance penalty due to boxing, yet
you still have the benefi ts of treating ApiKey as a different type. You can write functions that take
ApiKey, instead of having to deal with String.

NOTE The usage for ApiKey previously forced you to create a new type due to
the usage of implicits.

Summary ❘ 17

c01.indd 05/10/2016 Page 17

There are limitations when it comes down to using AnyVal (http://docs.scala-lang.org/
overviews/core/value-classes.html#limitations), and these limitations are mainly due to
the underlying host (in this case, the JVM).

As opposed to AnyVal, Scala also has the concept of AnyRef, which represents a reference to an
object. Essentially any instantiated variable that isn’t an AnyVal has to be an AnyRef (either directly,
or indirectly by the type hierarchy). One notable difference with AnyRefs is how to treat both equal-
ity and identity. Since AnyRef stores a reference to either a value or another object, rather than the
actual value itself, there are different ways to treat equality. Typically, languages such as C and Java
use reference equality to deal with the comparison of non-primitive types, which often means meth-
ods have to be separately defi ned to deal with equality by its contents (also known as deep or struc-
tural equality).

Similarly, methods often need to be defi ned to allow an effi cient representation of the reference as a
value (this is known as hashCode in Java).

In Scala, as in other functional languages such as ML and Haskell, deep equality is used by default
for comparison with structures such as case classes, rather than just comparing whether the two
objects have the same reference. The same also applies for hashCode.

case class Example(s: String)

Example("test") == Example("test") // returns true

val a = Example("test")
val b = Example("test")

a == b // Also returns true

class Example2(s:String)

val c = new Example2("test")
val d = new Example2("test")

c == d // Returns false

Finally, you have the Any type, which basically denotes that the type can be either a reference or a
value. Any is the supertype of every other type in Scala (that is, everything can be of type Any). This
in stark contrast to Java, which although it has an Object type, it doesn’t have a type to represent
values.

SUMMARY

As you can see in this introductory chapter, Scala is a language that has quite a few orthogonal fea-
tures, which when combined together, provide a highly extensible language that is able to provide
expressive and rich libraries, while also being largely correct.

18 ❘ CHAPTER 1 LANGUAGE FEATURES

c01.indd 05/10/2016 Page 18

The advanced type system, combined with implicit parameters and subtyping, allows you to apply
type safety to very complex business logic, giving the ability for the Scala compiler to detect errors
before they get pushed into production. The type system also provides a powerful form of documen-
tation, allowing you to get an initial overview of a library, as well as the powerful and accurate type
completion in IDEs, that types provides. Advanced usage of types will be looked at in greater detail
in Chapter 9.

Scala also provides the necessary tools to improve performance without too much sacrifi ce in
expressiveness and abstractions. AnyVal vs AnyRef is an example of such a feature. Case classes,
case objects, and sealed traits set up the basis required to model GADTs, an elegant solution to
model data structures and ASTs. Pattern matching, essentially a souped-up switch statement whose
power is unmatched in many modern languages, gives you a unifi ed solution to many problems,
such as deconstructing data structures as well as safe runtime type casts.

A comprehensive collection library provides a vast array of both mutable and immutable data
structures with a common interface to maximize reusability, as well as consistency of methods and
functions used when calling typical collection methods. It also provides a transformation between
different data structures. A functional design underpins the collection methods, which pave the way
for the basis of functional programming, which is explored in Chapter 2, and much more advanced
material in Chapter 10.

Finally, the explicit control that Scala gives you over both runtime and static modularization of
code provides a principal way to approach many issues that are applicable in modern and large scale
systems, including, but not limited to, dependency injection and loosely coupled modules. The SBT
build tool (explained in greater detail in Chapters 4 and 12) allows you to structure, segment and
control how your code is loaded and injected. The SBT tool also excels at supporting the creation of
artifacts and the deploying of binaries.

The combination of modularity and functional concepts form the base design of Scala as a lan-
guage, that is, “Unifying functional and object-oriented programming,” which is a direct quote
from Martin Ordersky, the creator of the Scala programming language.

 While this chapter has gone over many of these features to give a general overview, Scala itself has
an almost boundless ability to express code in the most desirable fashion. Due to the huge breadth
that is available in the Scala language, the later chapters in this book go into greater depth for a
smaller range of essential topics, to help pave the way for you to enhance your programming experi-
ence, plus a more fundamental basis for Scala knowledge.

c02.indd 05/12/2016 Page 19

Functional Programming
WHAT’S IN THIS CHAPTER?

 ➤ Understanding the advantages of functional programming
compared to the traditional imperative code

 ➤ Providing ways to improve readability of your code by using
declarative programming

 ➤ Handling null-pointer exceptions in a functional way

 ➤ Improving the application through refactoring to the functional
style

Object-oriented programming has been a standard in large-scale applications for many years,
and it isn’t going to change any time soon. The advantage of Scala is that it allows you to
choose functional programming, without abandoning the good parts of object-oriented archi-
tecture. It is possible to program in Scala in the same way that you program in Java. Sure,
there would be some different keywords here and there, but the overall structure would be the
same. You may start by writing your application in a boring imperative style, and then trans-
forming it to the immutable-functional one.

When a “functional feature” comes to an imperative object-oriented language (see streams in
Java 8), you may want to reject it at fi rst. But then, after trying it for some time, you fi nd that
you can’t develop without it. This chapter provides you with hints about the advantages of
functional programming, but it’s up to you to decide whether or not functional programming
is your cup of tea.

The previous chapter covered Scala’s syntax, and in this chapter we discuss the classical pil-
lars of functional programming language, and how they can be implemented using Scala.
Sometimes there will be object-oriented/imperative counterparts, to show you the difference
between the two styles of coding.

2

Professional Scala. Aliaksandr Bedrytski, Janek Bogucki, Alessandro Lacava, Matthew de Detrich and Benjamin Neil
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

20 ❘ CHAPTER 2 FUNCTIONAL PROGRAMMING

c02.indd 05/12/2016 Page 20

So, what are the main characteristics of a functional programming language? It should be transpar-
ent, it should have higher order functions and tools to better work with recursion (to use it without
being afraid of stack overfl ows), its functions should be side-effect free, and there should be a pos-
sibility of curing and non-strict (also known as lazy) evaluation. This is not a fi nal defi nition of
functional programming, because it varies from language to language (with Haskell being the most
known standard), but it covers the basics. You will see how those techniques can increase your pro-
ductivity, as well as the readability and the safety of your code.

There are two kinds of people coming to Scala: Java developers who want a more powerful and
expressive language that has better tools for working with concurrent systems, and Haskell develop-
ers looking for Haskell on a JVM. Due to the limitations of JVM that can’t be avoided, the latter
group will be disappointed with its capabilities. Those limitations are, however, outside of the scope
of this chapter, because they are nonexistent for someone beginning this adventure in functional
programming.

 IMMUTABILITY

Programming languages have a different approach to immutability: some of them embrace it and
don’t allow any mutable state, and others allow it only through constants that, arguably, are seman-
tically different from a simple immutable value. Scala allows both approaches through val and var
keywords. Let’s look at an abstract example of swapping values in variables that makes mutable
state more obvious:

var a = 1
var b = 2
// ... other code goes here, but something happens, we need to swap
var c = a // a = 1 b = 2
a = b // a = 2 b = 2
b = c // a = 2 b = 1

If you have not seen this pattern before, this code may seem cryptic to you. Also, there is a state of
uncertainty at the line with a = b, where a thread accessing the values of a and b will see a = 2
and b = 2. This is something you wouldn’t expect to see (it should be either a = 1 b = 2 at the
 beginning or a = 2 b = 1 after the swapping).

So, how can you better handle this situation? It may seem obvious, but wouldn’t it be preferable to
use additional values:

// todo: find real world example with meaningful names
val a = 1
val b = 2
// something happens, we need to swap
val c = a
val d = b

Instead of reusing old variables, you can create new values with a new semantic meaning (from new
value’s name) and immutability. As these are now constant values, you will remain assured that all
the way through the method, the values of a and b will stay the same, no matter how you use them.
But what about a more real life example:

Immutability ❘ 21

c02.indd 05/12/2016 Page 21

var users = dao.findAll()
// ... here goes some code that uses users variable
// so that the next line cannot be directly chained ...
users = users.filter(_.age >= 18)
// ... reusing the same users variable through the rest of the method ...

In this code adult users are selected. A small schema of what this operation looks like is shown in
Figure 2-1.

users =

users =

FIGURE 2-1

The darker part of the rectangle is the part that was fi ltered out of the users variable. As you can
see (see Figure 2-2), the developer didn’t take time to create another variable with a more appropri-
ate name, because it wasn’t needed, but if the immutable values were used, it would have been a
requirement.

val users = dao.findAll()
// ... here goes some code that uses users variable
// so that the next line cannot be directly chained ...
val adults = users.filter(_.age >= 18)
// reusing adults that stays the same during the rest of the method

users =

users =

adults =

FIGURE 2-2

Here you may see that even after the transformation the user variable has the same value and mean-
ing as before, and the result is stored in a new variable, with a name that is semantically correct.

As a rule of thumb, whenever you have a computation that may be given a name, assign it to a new
value with that name. It’s far better than a commentary, because it makes your code more readable.
This is especially useful when breaking chained methods into meaningful pieces.

But val alone does not guarantee immutability. In the following code only val is used, but the value
is not the same during the execution:

val string = new StringBuilder()
string.append("ab")
println(string) // "ab"
string.append("cd")
println(string) // "abcd"

22 ❘ CHAPTER 2 FUNCTIONAL PROGRAMMING

c02.indd 05/12/2016 Page 22

When you are using mutable structures, you lose all of the benefi ts of val for some small improve-
ments in performance that will be negated by the time spent debugging your code. You can read the
“mutable vs immutable collections” explanation in Chapter 1.

When everything is stateless (no variables or mutable structures) there is also another benefi t:
your code becomes thread-safe, and it may be called from different threads without any synchro-
nization needed.

Although avoiding var at all cost may be great (you can use tools like http://www.scalastyle
.org/ to enforce this rule), there may be some cases where var may seem like a necessity. But before
going with var, look to see if there is no alternative implementation in the part of code you are
working on: the forced use of a var (outside of Scala library internals) is usually a sign of a “code
smell.”

 PURE FUNCTIONS

Pure functions, also known as “side-effect free,” are functions that take some value as an input and
return a value without using any outside scope for the computations. Such functions are also called
“referentially transparent.” That means a call to a side-effect free function may be directly replaced
with its returned value. How can you fi nd out if a function is not pure? If it accesses an outside
scope or database, mutates input values, prints anything, or returns Unit, it has side effects. As an
example of such functions, consider this:

def helloWorld(): Int = {
 println("Hello")
 println("World")
 42
}

The function is not side-effect free, because it can’t be replaced with its return value, a number 42,
as there are still calls to a println() that do something, such as showing a string in the terminal.
This is why it is not referentially transparent. This function, however, is pure:

def add(a: Int, b: Int): Int = a + b

It doesn’t use any outside scope and it can be directly replaced with its return value, add(1, 2),
which can be replaced with 3 without any consequences. Otherwise, if the add() function stores
something in the database, it can’t be possible to replace the call with the results so easily.

The benefi ts of pure functions are:

 ➤ Improved testability: Your code doesn’t need any mocks or dependency injections. A simple
call to the function with predefi ned input values will always return the same result no matter
what happens outside of it.

 ➤ Improved readability: Methods are loosely coupled because there is no shared scope between
them. You will not break the functionality by creating another pure function. Also method
signatures are more explicit in side-effect free functions.

 ➤ Improved performance: If your pure function is computation heavy, you may add caching to
prevent it from recomputing the same value twice.

Recursion ❘ 23

c02.indd 05/12/2016 Page 23

 ➤ Improved concurrency: Side-effect free functions are thread safe, because they don’t use
any shared scope. This is especially important in concurrent code, as you will see in
Chapter 11. But for instance, imagine calling the helloWorld() function above by many
threads at the same time. It would be impossible to predict in what order the words “Hello”
and “World” would be printed!

Though pure functions are great, it’s often impossible to create an application without using func-
tions with side effects. For instance, every access to a database is a side effect. The solution to this
problem is to extract side-effect free code into separate functions with meaningful names and keep
them as small as possible. For example, instead of:

def extractAdultUserNames(): List[String] = {
 val users = dao.findAll()
 users.filter(_.age >= 18).map(_.name)
}

You can do:

def extractAdultUserNames(users: List[User]): List[String] =
users.filter(_.age >= 18).map(_.name)

val users = dao.findAll()
extractAdultUserNames(users)

As you may see, in this oversimplifi ed example, we refactored the extractAdultUserNames method
so that it is now side-effect free. As a benefi t, this method is now far less painful to test (no need to
mock dao dependency injection); it may be used in concurrent structures (in a map() method of a
parallel collection for example). It also has a more accurate and meaningful signature (just judging
by the input type and the output type we can guess how the method works).

Because of the abundance of the mutable state in imperative languages, very few talk about side-
effect free methods outside of functional programming. Even if the concept of pure function is hard
to gasp at fi rst, it may greatly improve your code once applied.

 RECURSION

Recursion is rarely used in imperative languages, except for some canonical cases like tree traversal
or for writing a Fibonacci function during your job interview. It seems that such functions are
often feared because of the complexity they bring, and the potential problems with stack overfl ow.
Surprisingly enough in functional languages, recursion is one of the main ways of doing unbounded
loops, because these languages do not have a while construct. Scala doesn’t remove while from
your toolbox; instead it gives you tools to handle recursion and use it to your own advantage.

Let’s see why while is considered a bad practice, with this minimalistic example:

var flag = true

while (flag){
 println(flag)
 flag = false
}

24 ❘ CHAPTER 2 FUNCTIONAL PROGRAMMING

c02.indd 05/12/2016 Page 24

Easy, right? Also very familiar. So, what’s wrong with this code? First of all, it’s mutable: there is
a var that cannot be directly replaced with a val. Secondly, the block inside the while is not side-
effect free, it should somehow modify the scope outside of it; otherwise the condition will always
be true and the while loop will never end. These two issues were discussed previously in this chap-
ter. Lastly, it is diffi cult to extract the block inside while into a separate method due to the closure
(the link to the external fl ag variable). Otherwise, you need to mutate the variable that is passed in
parameters, which is generally considered a poor practice.

So, doing while is bad, but is recursion better? Let’s take for a fact that any while can be written in
a recursive way, so you can prove it by creating whileFunc(), which does exactly the same thing as
while, but recursively:

def whileFunc[T](block: => T, condition: => Boolean): Unit = {
 if (condition) {
 block
 whileFunc(block, condition)
 }
}

// and an example of usage:
var i = 0

whileFunc({
 println(i)
 i = i + 1
}, i < 10) // the boolean statement will be re-evaluated as it is a call-by-name

This code will print numbers from 0 to 9. It is a challenge to convince anyone that this code is bet-
ter than the 4 lines in the while loop. Not only this, but the code will still get stack overfl ow if you
increase the condition number. So, how can you deal with this problem? You can use a tail recur-
sion: a recursive function that has a call to itself as the last call. Here is a classical example of a
recursive function representing a factorial:

def fact(n: Int): Int = {
 if (n < 1) 1
 else n * fact(n - 1)
}

But this is not tail recursive: as you can see, the last call to that function isn’t a call to fact();
instead it’s a call to *. To make it a tail recursive you need to modify its signature:

@tailrec
def fact(n: Int, acc: Int = 1): Int = {
 if (n < 1) acc
 else fact(n - 1, acc * n)
}
fact(6) // returns 720

This last call is to the fact() function, and the @tailrec annotation verifi es that the function is
tail-recursive during compilation. If it is, the compiler can transform it into its while version, so that

Recursion ❘ 25

c02.indd 05/12/2016 Page 25

the “stack overfl ow” exception is no longer an issue. To better see the benefi ts of a recursive
function, consider this code:

val ids = List(0, 3, 4, 7, 9) // generally those Ids are stored in the database
var generatedId = 0 // or null, doesn't matter

do {
 generatedId = scala.util.Random.nextInt(10)
} while (ids.contains(generatedId))

println(generatedId)

The code is not hard, but everything is here: mutable state, side effects, and a variable declaration
outside of the while block. Let’s refactor it in a functional way:

val ids = List(0, 3, 4, 7, 9) // generally those Ids are stored in the database

@tailrec
def generateId(currentIds: List[Int]): Int = {
 val id = scala.util.Random.nextInt(10)

 if (currentIds.contains(id)) generateId(currentIds)
 else id
}

println(generateId(ids))

Even if you only use recursion once in a blue moon, this code shouldn’t be a problem. There is no
modifi cation of outside scope, which is an elegant execution. Every time you enter the body of
generateId() function, you have a clean state without needing to look outside of the scope.

But sadly, not all recursive functions are easily transformed into tail recursive ones. This is a
Fibonacci function:

def fibo(n : Int): Int = {
 if (n < 2) n
 else fibo(n-1) + fibo(n-2)
}

Its defi nition is a sum of the previous two values in the Fibonacci sequence. Here is its tail-recursive
version:

@tailrec
def fibo(n: Int, a: Int = 0, b: Int = 1): Int = {
 if (n < 1) a
 else fibo(n-1, b, a+b)
}

It takes some time to understand how it works. But even if it still compiles to a while loop inter-
nally, it is still better than the actual Fibonacci’s while version:

def fiboWhile(n : Int) : Int = {
 var first = 0

26 ❘ CHAPTER 2 FUNCTIONAL PROGRAMMING

c02.indd 05/12/2016 Page 26

 var second = 1
 var i = 0

 while(i < n) {
 val result = first + second
 first = second
 second = result
 i = i + 1
 }
 first
}

So, as a rule of thumb, when dealing with while in your code, try to see if there is an alternative
using Collection API, which is discussed later in this chapter. Otherwise, fi nd a tail-recursive func-
tion that will do the job, and don’t forget about the @tailrec annotation, because it will do all of
the complicated checking for you. It will be hard at fi rst, but soon recursion won’t be a mystery
anymore.

 HIGHER-ORDER FUNCTIONS

Higher-order functions accept another function as a parameter and/or return a new one. Purely
functional programming languages don’t have any objects; instead they have functions as fi rst-class
citizens. This means that functions are not different from a normal value like a String or an Int.
And applications are made by combining them into one top-level function. As for a hybrid language
like Scala, higher order functions are most useful for removing code repetitions. Consider this sim-
plifi ed example of a stateful backend:

val authenticatedUsers = List("Alex", "Sam")

// example url /hello/{userName}
def hello(userName: String): String = {
 if (authenticatedUsers.contains(userName)) s"world $userName"
 else "Unauthorized access"
}

// example url /foo/{userName}
def foo(userName: String): String = {
 if (authenticatedUsers.contains(userName)) s"bar $userName"
 else "Unauthorized access"
}

println(s"request to /hello/Alex: ${hello("Alex")}")
println(s"request to /hello/David: ${hello("David")}")
println(s"request to /foo/Alex: ${foo("Alex")}")

The server-side has a list of authenticated users, so when the client-side requests hello() action, the
server checks fi rst if the user is authenticated and then returns the string generated by the business
logic. So, hello() and foo() methods are nearly identical, it’s just the domain logic that is a bit dif-
ferent. Let’s extract a higher order function that will handle user authorization in one place:

def userAwareAction(userName: String,
 authUsers: List[String],

Core Collection Methods ❘ 27

c02.indd 05/12/2016 Page 27

 f: String => String): String = {
 if (authUsers.contains(userName)) f(userName)
 else "Unauthorized access"
}

and the refactored methods hello() and foo():

val authenticatedUsers = List("Alex", "Sam")

def hello(userName: String): String = userAwareAction(userName, authenticatedUsers,
 userName => s"world $userName")

def foo(userName: String): String = userAwareAction(userName, authenticatedUsers,
 userName => s"bar $userName")

In addition to the removed repetitions, you can create the method userAwareAction()without
side-effects, so it has all of the advantages we’ve discussed, such as the testability without needing
to mock anything. Aside from that, this method may also be moved to the parent controller so that
any child controller can benefi t from it. In this case, if you need to change the way a user is authen-
ticated, such as fetch this information from a database instead of a list, or modify the reply in case
authentication failed with a “403” page instead of just a String, you can do it in one place from
now on.

To summarize, if you are dealing with an application that has a lot of code repetitions, look for
a higher order function that will contain the common code. The next part of the chapter covers
higher order functions that help you with writing more meaningful and declarative code applied to
collections.

As for the part where a method returns a function, that is covered in the section about currying.

 CORE COLLECTION METHODS

Collections, including sequences, sets, and maps, may be considered one of the most used data
structure in programming languages. In fact, some languages are entirely constructed from lists
and primitives; just look at Lisp! Functional programming languages contain quite a number of
 collection methods, so it is important to know them. In imperative languages you are used to
 dealing with collections using loops. For example, to transform a collection of User objects into a
collection of users’ names, you can do the following:

case class User(name: String, age: Int)

val users = List(User("Alex", 26), User("Sam", 24))

var names = List[String]()

for (user <- users){
 names = names :+ user.name
}

println(users)

28 ❘ CHAPTER 2 FUNCTIONAL PROGRAMMING

c02.indd 05/12/2016 Page 28

A common pattern is to take an element from one array, transform it, and insert it into another.
Let’s put aside the version with while, because we already know why it is considered bad. But look
at the previous code: doesn’t it have the same problems? It has a mutable state coupled with side
effects, and poor method extraction. The fact that this is called micro management is another rea-
son and looks like what is shown in Figure 2-3.

Input Output

FIGURE 2-3

You need to transform the pile in Figure 2-3 on the left into the pile on the right. When doing for
loops, you are telling each one of the workers to go to the fi rst pile, take the box, change its color,
go to the second pile, and put it there. This is for every loop and iteration. This is quite tiresome for
real life management. Why not just tell them to transform this pile of white boxes into the dark ones
and leave them to do their job? Luckily, in functional programming there is a function that does
such a thing. It is called map(), and here is how you can refactor the previous iterative code:

val users = List(User("Alex", 26), User("Sam", 24))

var names = users.map(user => user.name)

Or its shortened and, arguably, more concise version:

var names = users.map(_.name)

The function that is passed to the method is called lambda expression. If at fi rst the map() doesn’t
sound like a “transform” to you, don’t worry, because after time in functional programing, you will
fi nd it normal because the map() method is everywhere. But there is more on this in Chapter 10 on
monaïdic types.

The second most common operation on a collection is ridding it of unwanted elements:

val users = List(User("Alex", 12), User("Sam", 22))

var adults = List[User]()

for (user <- users){
 if (user.age >= 18) {
 adults = adults :+ user
 }
}

println(users)

Here you are like club security checking everyone personally, instead of just fi ltering the fl ow:

val adults = users.filter(_.age >= 18)

Core Collection Methods ❘ 29

c02.indd 05/12/2016 Page 29

By now the benefi t of declarative programming should be obvious, and the iterative version of the
method is no longer needed to prove it. You may say that this is less debuggable, but in a modern
IDE, you already have a possibility to directly debug lambda expressions.

The Collection API is divided into two categories: methods that return other collections (including
maps) and methods that return values. When doing an operation on an iterable that sounds like it
may be already implemented in the core library, you should have a refl ex of going to the correspond-
ing API section (like this one: http://www.scala-lang.org/api/current/index.html#scala
.collection.Seq for Seq) and to look up if there is already an implementation.

The following is a list of selected methods returning a collection. They are not sorted in any particu-
lar order, but it is useful to know that they exist as they are implemented in many functional pro-
gramming languages. More often than not, the purpose of the method may be guessed from its name,
but if it’s not obvious, the description and the example will better describe the function’s goal.

 Methods Returning a Collection
map() and filter() methods have been covered, but there is another function that is useful called
flatmap(). As an example, let’s transform a text fi le into a list of words from it:

val shakespeare = List(
 "Words are easy",
 "like the wind",
 "faithful friends",
 "are hard to find"
)

val words: List[String] = shakespeare.flatMap(line => line.split(" "))

The function that is passed as a parameter to the flatMap() should return the same type of collec-
tion as the shakespeare’s value type. In this case, it returns an Array of words (that is implicitly
transformable into a List) for each line. As a result, you have a list of words that is then “fl attened”
into a single concatenated list of words. If you already have a collection of collections as a value,
you may fl atten it without any flatMap. This is often useful when there is no way to change a map()
method into a flatMap():

val wordsNotFlattened: List[Array[String]] = shakespeare.map(_.split(" "))
val words: List[String] = wordsNotFlattened.flatten

The distinct method takes no parameters and returns a collection of the same type without repeti-
tions. It may be often replaced with a cast to a Set, because it can be semantically better:

val listWithRepetitions = List("Alex", "Alex", "Sam")

println(listWithRepetitions.distinct) // prints List(Alex, Sam)
println(listWithRepetitions.toSet) // prints Set(Alex, Sam)

The groupBy() method is handy when working with a collection of structures that have a unique
identifi er each. This is particularly useful while analyzing the contents of a database table:

30 ❘ CHAPTER 2 FUNCTIONAL PROGRAMMING

c02.indd 05/12/2016 Page 30

case class User(identifier: String, likes: String)

val users = List(User("Alex", "Kiwi"),
 User("Sam", "Banana"),
 User("Alex", "Apple"))
val likesByUser = users.groupBy(_.identifier)
/* likesByUser contains:
Map(
 Alex -> List(User2(Alex,Kiwi), User2(Alex,Apple)),
 Sam -> List(User2(Sam,Banana))
)*/

The partition() method is not used very often, but it is nice to know that it exists. When applied
to a collection, it accepts a function-predicate returning a Boolean and outputs a tuple with two
values: the fi rst one is a collection of elements for which the predicate is true, and the second one
is with the elements that are left. So, technically, it is the equivalent of doing two filter() opera-
tions, but only in one traversal:

val (moreThanTwo, lessOrEqualThanTwo) = List(1, 2, 3, 4).partition(_ > 2)

If you need to sort a collection that contains only standard Scala’s “primitives” (String, Int, etc.),
you may apply a sorted method to it. However, more often than not, you are dealing with more
complex elements that may not be sorted in that manner easily as they are not “primitives.” Luckily
there are two methods that may help you: sortBy() and sortWith(). The former accepts a func-
tion that takes an element from the collection and returns a “primitive” that may be ordered (the
age in our case as it is an integer). The latter accepts a function with two parameters that decides if
the fi rst element passed to it is less than the second one:

List(3, 4, 1, 2).sorted

case class User(name: String, age: Int)

val users = List(User("Alex", 26), User("Sam", 24), User("David", 25))

users.sortBy(_.age)
users.sortWith((a, b) => a.age < b.age) // same as sortBy example,
 but more flexible

If your collection is already sorted, but you need it in a different order, you may do it with the
reverse method:

List(3, 4, 1, 2).sorted.reverse // returns List(4, 3, 2, 1)

Sometimes when traversing over a collection, you need to know the index of the element you are
working with. The only way to do it in a functional way is to transform your collection using
zipWithIndex() into a list of tuples where each element is made of a corresponding index and a
value. After that you may iterate over it as you would do with any list containing tuples.

Core Collection Methods ❘ 31

c02.indd 05/12/2016 Page 31

 Methods Returning a Value
One of the most known methods returning a value is, of course, foreach(). It returns a Unit value
that is a sure sign of side effects. That’s why it would be better to avoid it if a better alternative is
available. Here is an example of how you can print the contents of a list one element at a time:

List(1, 2, 3).foreach(println)

There are a few mathematical methods that are just nice to be aware of so that you won’t reimple-
ment them again. The three of them that come immediately to mind are sum(), max(), and min().
They do exactly what their names stand for and don’t work with certain types, like how sum()
won’t work with a collection of String out of the box.

Useful methods returning Boolean are contains(), along with its variations: exists() and
forall(). The former returns true if the element passed in parameters is included into the collec-
tion, yet the latter returns true only if the predicate (a function that accepts an element and returns a
Boolean) is true for all elements in the collection. The exists() method is similar, but verifi es if the
predicate is true for at least one element:

List(1, 2, 3).contains(1) // returns true
List(1, 3, 5).exists(_ % 2 == 0) // returns false
List(2, 4, 6).forall(_ % 2 == 0) // returns true

The second example tries to fi nd at least one even number, and the third example verifi es if all the
numbers in the collection are even.

The find() method, as its name suggests, returns an option containing the fi rst element that the
predicate (passed as a parameter) holds true. We will talk more about Option (Some and None) later
in this chapter. Here is an example:

List(1, 2, 4, 6).find(_ % 2 == 0) // returns Some(2)

Two other handful methods are count() and mkString(). The fi rst one accepts a predicate and
counts the elements for which the predicate is true. The second one transforms a collection into a
String with a parameter as a delimiter between the elements:

List(1, 2, 4, 6).count(_ % 2 == 0) // returns 3
List(1, 2, 4, 6).mkString("|") // returns "1|2|4|6"

Finally, there are some methods that are somehow complicated for developers coming from
imperative programming languages, but they are still useful to know to be able to read functional
code. The most noteworthy are the fold() and reduce() methods. fold()’s signature is quite
complex, but it boils down to fold(initialAccumulatorValue)((accumulator, element) =>
newAccumulator). In the currying part of the chapter we will discuss what that parentheses mad-
ness is all about, but for now treat it as if fold() accepted two parameters: the initial value of the

32 ❘ CHAPTER 2 FUNCTIONAL PROGRAMMING

c02.indd 05/12/2016 Page 32

accumulator and the lambda expression that transforms current accumulator and an element of the
collection into a new accumulator. Here is how you can rewrite the sum() method with fold():

fold(0)((acc, value) => acc + value)

Here each element is added to the accumulator with the initial value as zero (as the sum of an empty
list is zero). The reduce() method is often referred to in the “map-reduce” model, that’s why it may
be a little more recognizable. It’s essentially the same thing as fold(), but without an initial value,
because it is deduced from the operation on the fi rst two values. Here is the sum() equivalent:

reduce((acc, value) => acc + value)

If you apply reduce on an empty list, it will throw an error. So, is there any need to use reduce()
instead of sum()? Not in the slightest, but imagine that you would like to divide the elements in the
collection between them. The best way is to use the reduce() method, or fold() if the collection
may be empty:

List(1, 2, 3).reduce(_ / _)
List(1, 2, 3).fold(1)(_ / _)

To conclude, you can see how the collection API helps to remain immutable and side-effect free.
Its wide variety of methods helps you write readable and elegant code. That said, you should prefer
readability above everything else. If you see that a version with for will be easier to read, use it
without hesitation:

val listX = List(1, 2, 3)
val listY = List(1, 2, 3)

for {
 x <- listX
 y <- listY
} yield (x, y)

listX.flatMap(x => listY.map(y => (x, y)))

The version with for is clearly more readable.

 CURRYING AND PARTIALLY APPLIED FUNCTIONS

Partially applied functions or currying (also known as Schönfi nkelization, thanks to the work of
mathematician Moses Schönfi nkel) are, one of the most diffi cult concepts to put into practice among
those mentioned in this chapter. It is often used for code factorization, local dependency injection,
or simply to improve code readability.

As an example, let’s take this add method:

def add(a: Int, b: Int) = a + b

Currying and Partially Applied Functions ❘ 33

c02.indd 05/12/2016 Page 33

It may seem to be quite useless, but if you have add5 and add7 in your code, you can simplify their
defi nition with a more generalized one using partially applied functions:

def add5 = add(5, _: Int)
def add7 = add(7, _: Int)

add5(3) // returns 8
add7(2) // returns 9

Here you have the adding logic in one place: inside the add() function. If someday it changes, you
can take care of it by changing the add() method, similarly to the technique you already saw in the
section on higher order functions. We can also write the add() function using currying:

def add(a: Int)(b: Int) = a + b

def add5 = add(5) _
def add7 = add(7) _

So, what’s the difference? These two are essentially the same, but the curry version is used more
because it is visually better when the second parameter is a function, because you can use curly
braces instead of parentheses:

def using[T](fileName: String)(f: List[String] => T): T = {
 val file = scala.io.Source.fromFile("file.txt").getLines().toList
 f(file)
}

val words = using("Hello.txt") { lines =>
 lines.flatMap(_.split(" "))
}

Let’s see another example where currying is useful. Imagine you have a huge list of users and you
need to modify each user into some other value. This transformation is handled by a transform()
method that takes an instance of Confi g and a user to output the same user with a slightly changed
name:

def transform(config: Config, user: User): User = {
 user.copy(name = s"${user.name} ${config.userNameSuffix}")
}

val transformedUsers = users.map(user => transform(config, user))

And here is a version with currying:

def transform(config: Config)(user: User): User = {
 user.copy(name = user.name + config.userNameSuffix)
}

val transformedUsers = users.map(transform(config))

34 ❘ CHAPTER 2 FUNCTIONAL PROGRAMMING

c02.indd 05/12/2016 Page 34

As you can see, other than the added parentheses, there were no changes to the function. This is
cleaner, but a bit harder to read if you don’t know about the syntax.

It is possible that you are already using partially applied functions, when dealing with Maps. Using
pattern matching, you can use this syntax:

val usersWithId = Map(1 -> User("Alex", 27), 2 -> User("Sam", 23))

val users = usersWithId.map{ tup => s"${tup._1}: ${tup._2.name}" }
 // extracting user's name prepended with her id

But this is ugly. You can use pattern matching instead of accessing tuple’s cryptic properties (_1, _2
and so on):

val usersNames = usersWithId.map{ user => user match {
 case (id, value) => s"$id ${value.name}" // using "user" for the value would
 be bad because we already have a "user" as a parameter
 }
}

And here is a version with a partially applied function (with Scala compiler’s help):

val usersNames = usersWithId.map {
 case (id, user) => user.name
}

To conclude, use currying when you need to “prepare” functions with some dependencies. Also
use it when it makes a more readable code thanks to the curly braces for functional parameters.
Partially applied functions may be useful in conjunction with pattern matching to avoid useless
repetitions.

 NULL HANDLING (OPTION)

Scala has a very neat way to avoid nulls. In fact, if there was no need to keep the compatibility with
Java, it’s certain that Scala would remove null from the language altogether. Pure functional pro-
gramming languages don’t have null at all, but instead they have a Maybe type that is represented
in Scala by Option. Consider this method signature:

def findUserById(id: Int): User

Let’s say you don’t have access to its internals, and here is an example of this usage:

val user = findUserById(10)

Would you check the resulting user value for being null? If not, have you considered what happens
if the user doesn’t exist and you try to access the name with user.name, which throws the famous
NullPointerException. Instead let’s defi ne the method the other way around:

def findUserById(id: Int): Option[User]

Just by reading the signature you may guess what this method would do if it does not fi nd the user
in the database: it would return None; otherwise it would be Some(user). So, every time there is a

Strict versus Non-Strict Initialization ❘ 35

c02.indd 05/12/2016 Page 35

possibility of an absence of the result, use Option. There are different ways to handle this type, and
you may do it immediately:

findUserById(10) match {
 case Some(user) => user.name
 case None => "anonymous"
}

// or
val user = findUserById(10).getOrElse(User("anonymous", 0))

Or you may just modify the value inside the Option and leave the handling of None to the layer
above.

val name: Option[String] = findUserById(10).map(_.name)

The map() here will transform the result from Option[User] to Option[String] containing the
user’s name. If there is no user, the fi nal result is still None. It is easier to understand if you imagine
Option as a sort of list that is either empty or containing one element.

If you are dealing with something that may return null, just wrap it into an Option, and it will
transform the returned null into None. Also, never use the Option’s get() method, because it will
throw an exception if the element is None, effectively replacing NullPointerException problem
with a similar one.

 STRICT VERSUS NON-STRICT INITIALIZATION

It’s worth writing a few words on a non-strict initialization. There are two kinds of it: lazy values
and call-by-name parameters. There is a “code smell” when you know you need the former:

class foo{
 var database = _

 def bar() = {
 database = initDb()
 // ... the rest of the code that uses database here ...
 }
}

Here we didn’t initialize the confi guration directly because it would consume a connection from a
connection pool, or it would simply throw an exception (cannot be initialized in the constructor).
You may also notice a var and a null that are bad, and were discussed previously in this chapter.
All of these problems can be solved using lazy:

class foo{
 lazy val database = initDb()

 def bar() = {
 // ... the rest of the code that uses configuration here ...
 }
}

www.allitebooks.com

http://www.allitebooks.org

36 ❘ CHAPTER 2 FUNCTIONAL PROGRAMMING

c02.indd 05/12/2016 Page 36

Other than a benefi t, which is an immutable code without null instances, the initialization of the
database value becomes thread-safe (it uses double-checked locking internally), so different workers
accessing the value won’t see an uninitialized database.

Call-by-name parameters are useful when there is a need to wrap your code with some initializa-
tions. For instance, if you want to measure code execution with System.nanoTime, the solution is to
do the following:

def measure[T](code: => T): String = {
 val start = System.nanoTime
 code
 val end = System.nanoTime
 s"It took ${end - start} nanoseconds to execute the code"
}

measure(1 + 1)

In the measure() function, the code passed in parameters will be executed only when called in the
body of the function. This provides better fl exibility of what code to test. As a note, in Chapter 9
you will see that there is a better tool for micro-benchmarking than nanoTime.

 SUMMARY

This chapter covered the basic building blocks of functional programming. Functional code was
compared to its imperative counterpart, and new techniques were detailed that help you write more
readable and maintainable code.

Immutability makes it possible to create a thread-safe, stateless code that insists on writing more
intermediate values with meaningful names, making the code more readable. Free functions were
also covered that don’t change the external scope, providing referential transparency that makes
unit testing a breeze. Details about why while is bad, and how the recursion may be used for some-
thing more than just traversing recursive structures, were also covered.

Higher order functions help you write more concise, declarative code, as you saw in the section
about the collection API. Higher order functions also provide you with tools to factorize your
code more effectively.

We examined two useful features of functional programming: the Option type and lazy execution.
The former helps you avoid NullPointerExceptions , and provides a way to describe a function
that may have an absent value just by its return type, while the latter is a nice way to bypass value
initialization until later when it’s needed.

c03.indd 05/05/2016 Page 37

Java Comp atibility
WHAT’S IN THIS CHAPTER?

 ➤ Converting back and forth between Java and Scala collections

 ➤ Understanding the relations between Java interfaces and Scala
traits

 ➤ Using Scala with enumerations

 Right from the start, the creators of Scala took the Java compatibility issue very seriously. This
makes a lot of sense, given all of the already existent Java libraries that are out there.

 This chapter starts by showing you how to convert Java collections to Scala and vice versa.
It covers how Scala traits relate to Java interfaces, and details how both things can cooperate.
 Java enums are then mapped into the Scala world. You’ll see that, in Scala, you have more
than one alternative.

 SCALA AND JAVA COLLECTIONS

Collections are probably one of the more used APIs, both in Scala and Java. When interoperat-
ing with a Java library it’s important to know how you can go from a Java collection to a Scala
one and back again.

In the scala.collection package, there are two objects that can be used for this purpose,
namely JavaConversions and JavaConverters.

The former provides a bunch of implicit conversions supporting interoperability between Scala
and Java collections. For example, Java’s List does not have a map method, but you can still
call map on it thanks to the implicit conversion into ArrayBuffer:

import java.util.{ArrayList => JArrayList, List => JList}

import scala.collection.JavaConversions._
import scala.collection.mutable

3

Professional Scala. Aliaksandr Bedrytski, Janek Bogucki, Alessandro Lacava, Matthew de Detrich and Benjamin Neil
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

38 ❘ CHAPTER 3 JAVA COMPATIBILITY

c03.indd 05/05/2016 Page 38

val javaList: JList[Int] = new JArrayList()
javaList.add(42)
javaList.add(1)

val asScala = javaList.map(_ + 1)
println(s"Java List to Scala: $asScala")

The output is as follows:

Java List to Scala: ArrayBuffer(43, 2)

JavaConversions provide two-way implicit conversions among the following types:

scala.collection.Iterable <=> java.lang.Iterable
scala.collection.Iterable <=> java.util.Collection
scala.collection.Iterator <=> java.util.{ Iterator, Enumeration }
scala.collection.mutable.Buffer <=> java.util.List
scala.collection.mutable.Set <=> java.util.Set
scala.collection.mutable.Map <=> java.util.{ Map, Dictionary }
scala.collection.concurrent.Map <=> java.util.concurrent.ConcurrentMap

There are also the following one-way implicit conversions:

scala.collection.Seq => java.util.List
scala.collection.mutable.Seq => java.util.List
scala.collection.Set => java.util.Set
scala.collection.Map => java.util.Map
java.util.Properties => scala.collection.mutable.Map[String, String]

JavaConverters, on the other hand, extends the Java and Scala collections by adding to them
the asScala and asJava methods, respectively. It is newer than JavaConversions and makes the
conversions explicit.

As a rule of thumb, always remember that explicit is better than implicit. For this reason prefer
JavaConverters to JavaConversions, unless you have a very good reason not to.

Table 3-1 shows the available conversions from Scala to Java collections, while Table 3-2 shows the
other way around. Note that in both tables s.c stands for scala.collection, while j.u stands for
java.util.

TABLE 3-1: From Scala to Java

TYPE METHOD RETURNED TYPE

s.c.Iterator asJava j.u.Iterator

s.c.Iterator asJavaEnumeration j.u.Enumeration

s.c.Iterable asJava java.lang.Iterable

s.c.Iterable asJavaCollection j.u.Collection

s.c.mutable.Buffer asJava j.u.List

Scala and Java Collections ❘ 39

c03.indd 05/05/2016 Page 39

TYPE METHOD RETURNED TYPE

s.c.mutable.Seq asJava j.u.List

s.c.Seq asJava j.u.List

s.c.mutable.Set asJava j.u.Set

s.c.Set asJava j.u.Set

s.c.mutable.Map asJava j.u.Map

s.c.Map asJava j.u.Map

s.c.mutable.Map asJavaDictionary j.u.Dictionary

s.c.mutable.

ConcurrentMap

asJavaConcurrentMap j.u.concurrent.ConcurrentMap

TABLE 3-2: From Java to Scala

TYPE METHOD RETURNED TYPE

j.u.Iterator asScala s.c.Iterator

j.u.Enumeration asScala s.c.Iterator

java.lang.Iterable asScala s.c.Iterable

j.u.Collection asScala s.c.Iterable

j.u.List asScala s.c.mutable.Buffer

j.u.Set asScala s.c.mutable.Set

j.u.Map asScala s.c.mutable.Map

j.u.concurrent.

ConcurrentMap

asScala s.c.mutable.ConcurrentMap

j.u.Dictionary asScala s.c.mutable.Map

j.u.Properties asScala s.c.mutable.Map[String, String]

You can easily rewrite the previous example using JavaConverters:

import scala.collection.JavaConverters._
import java.util.{ArrayList => JArrayList, List => JList}

val javaList: JList[Int] = new JArrayList()
javaList.add(42)
javaList.add(1)

val asScala = javaList.asScala.toList.map(_ + 1)
println(s"Java List to Scala: $asScala")

40 ❘ CHAPTER 3 JAVA COMPATIBILITY

c03.indd 05/05/2016 Page 40

Here you import JavaConverters instead of JavaConversions, and explicitly convert the Java
List to Scala using the asScala method.

Note also that, as shown in Table 3-2, calling asScala on a Java List you get back a mutable
Buffer. Since we love living in an immutable world when it comes to functional programming, we
converted the Buffer into an immutable Scala List by calling toList on it.

Finally, this is the output:

Java List to Scala: List(43, 2)

INTERFACES AND TRAITS

Interoperability problems in collections are what makes Java libraries hard to use in Scala code.
But what about general things like classes, interfaces, and traits? Given that Scala’s collection of
 language features is a superset of Java’s ones, the use of Java libraries in your Scala projects is easy
and straightforward. Classes and abstract classes are already present in Scala, and an interface is
just a trait without any method implementations. Here is how it works:

// Java interface
public interface CompatibilityInterface {
 public void print();
}

// Scala implementation
class ScalaClass extends CompatibilityInterface{
 override def print() = println("lorem ipsum")
}

(new ScalaClass).print()

// Java class
public class CompatibilityClass {
 public void print(){
 System.out.println("lorem ipsum");
 }
}

// Scala implementation
class ScalaClass extends CompatibilityClass

(new ScalaClass).print()

If you need to use the Java library in your project, you shouldn’t have any problems at all. But if you
need to export your Scala code so that it can be used in Java, there may be some complications. For
instance, the following example won’t compile:

// Scala trait
trait ScalaTrait {
 def print() = println("lorem ipsum")
}

Interfaces and Traits ❘ 41

c03.indd 05/05/2016 Page 41

// Java class
public class JavaUseOfTrait implements ScalaTrait {}

// Java application
public class JavaApplication {
 public static void main(String[] args) {
 JavaUseOfTrait j = new JavaUseOfTrait();
 j.print(); // This will not work!
 }
}

To be more precise, it will throw the following exception: Error: com.professionalscala.ch3
.java.JavaUseOfTrait is not abstract and does not override abstract method

print() in com.professionalscala.ch3.ScalaTrait. Java can’t fi nd the implementation that is
provided in the trait. To understand why it is the case, you must open the folder with the generated
byte-code (for example “project/target/scala-2.11/classes/com/professionalscala/ch3”) and see how
Java sees the compiled code:

ch3 $: javap ScalaTrait
public interface com.professionalscala.ch3.ScalaTrait {
 public abstract void print();
}

As you may note, for Java ScalaTrait is only an interface without any implementation. This is the
case because Scala’s byte-code should be compatible with Java 6, but this version does not have any
method implementations in the interface (by contrast to Java 8). So these methods should be stored
somewhere else. You may have already noticed the compiled .class fi le named ScalaTrait$class
.class, let’s see what it contains:

ch3 $: javap ScalaTrait\$class
public abstract class com.professionalscala.ch3.ScalaTrait$class {
 public static void print(com.professionalscala.ch3.ScalaTrait);
}

Here’s where the implementation is located, but notice that the method is static and it accepts an
instance of ScalaTrait. How can you use it in your Java code? Here is where it becomes somewhat
complicated:

public class JavaUseOfTrait implements ScalaTrait {
 @Override
 public void print(){
 ScalaTrait$class.print(this);
 }
}

You should implement the generated interface and use Trait’s implementation in the overridden
method. This is how a Scala class that extends ScalaTrait looks like when decompiled by javap.

Now let’s talk about static methods. Scala’s object methods are plainly transformed into static ones:

class ScalaObject {
 def say() = println("Hello")
}

42 ❘ CHAPTER 3 JAVA COMPATIBILITY

c03.indd 05/05/2016 Page 42

object ScalaObject{
 def print() = println("World!")
}

Decompilation yields the following result:

ch3 $: javap ScalaObject
public class com.professionalscala.ch3.ScalaObject {
 public static void print();
 public void say();
 public com.professionalscala.ch3.ScalaObject();
}

As you see, the resulting class contains methods from both Scala’s class and its companion object.

To wrap up, any Java library should work in Scala out of the box. Other than type casting, as in
the case of collections, there is nothing else that is problematic. The usage of Scala’s traits in Java,
however, needs some knowledge about how the trait is compiled to the byte-code. If you need your
library to be usable on both platforms, you should consider this specifi c case and create some adapt-
ers for Java developers.

SCALA/JAVA ENUMERATIONS

Unfortunately, there is not a direct translation from Java to Scala in terms of Enumeration. You can
split your project to include enumeration using Java enumerations by having Java fi les just for using
Java enumeration. However, if you can handle a slight paradigm shift in how to utilize enumerations,
you can enact one of two Scala-based alternatives. The fi rst is an example of using an object to an
encapsulated number of objects that extend a sealed trait.

sealed trait Color { val hex }

object Color {
 case object Red extends Color { val hex = "#FF0000" }

 case object Yellow extends Color{ val hex = "#ffff00" }

 case object Green extends Color{ val hex = "#00ff00" }
}

While this implementation doesn’t give you the ability to iterate over the inner objects (although you
can add that either through a macro or list addendum), you get the immediate benefi t of being able
to use case matches. Another positive is the ability to create even more custom fi eld values for the
enumerated type, which can be quite handy depending on the enumeration you are attempting.

To try out the other method of creating enumerations in Scala, you only need to create an object and
extend the scala.Enumeration abstract class.

object Colors extends Enumeration {
 val Red, Yellow, Green = Value
}

Summary ❘ 43

c03.indd 05/05/2016 Page 43

Note how we left off the hex implementation, because that would require the creation of an abstract
class to accommodate that lost functionality. Even if you had added that additional functionality,
you would still lose the ability to do a non-exhaustive search, which makes pattern matching less
ideal. That said, you inherently maintain the ability to iterate over those values. This can be helpful,
and you’ll note that the actual implementation is much simpler to understand.

SUMMARY

 This chapter examined collections, which are used in APIs in both Scala and Java. You also exam-
ined the available conversions between Scala and Java collections. Given that Scala’s collection
of features is a superset of Java’s features, it helps make it more straightforward when using Java
libraries in your Scala projects. Unfortunately, there is not a direct translation from Java for Scala in
terms of enumerations, but there are Scala-based alternatives that were covered. These are all exam-
ples that illustrate how the creators of Scala took the Java compatibility issue very seriously.

c04.indd 05/05/2016 Page 45

Simple Build Tool
WHAT’S IN THIS CHAPTER?

 ➤ Choosing a scala version

 ➤ Adding Library dependencies

 ➤ Using the REPL

 ➤ Running a program

 ➤ Running tests

The Simple Build Tool, or simply SBT, is a robust tool that uses the Scala language with an
easy interface to create simple or complex behaviors within your project. While using SBT you
can create a project with little to no confi guration, and you can package/publish JARs and be
presented with a very powerful shell that can be used to test your code from the outside.

With so many features, it’s not hard to see why SBT is known as the de facto build tool for
compiling, testing, and packaging Scala services and applications. Therefore, learning how to
use and extend SBT for your own projects results in a very maintainable and extensible project.

To give a comparison, most developers have experiences in using build tools such as npm,
gradle, and bundler. SBT allows you to pull in different dependencies, set up custom tasks,
interact with external repositories, and even create your own testing frameworks through a
slick DSL. All that’s required is getting a basic understanding of the concepts to which SBT
subscribes. Then build toward an understanding of how these techniques can support very
small to very large scale Scala code bases. This is of course the purpose of this chapter.

While going over these techniques, keep in mind that the tool presented here is vast, and that
confi gurations can become extremely customized toward your own goals. In this chapter we’ll
focus on the maintainable benefi ts of a highly structured SBT environment, and provide exam-
ples that support good SBT usage.

4

Professional Scala. Aliaksandr Bedrytski, Janek Bogucki, Alessandro Lacava, Matthew de Detrich and Benjamin Neil
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

46 ❘ CHAPTER 4 SIMPLE BUILD TOOL

c04.indd 05/05/2016 Page 46

First, make sure that you have downloaded and installed SBT from the main website, currently
http://www.scala-sbt.org/download.html, and follow the instructions for your particular
 platform. At the time of writing the current version number is SBT 13.9, but classically SBT has
been very good about supporting backward comparability—so if you are on a later version, you
should be able to follow along.

SBT Confi gs
SBT has a lot of fl exibility around confi guring where you want to keep your global settings and
plugins for your projects. By default this content is stored in the following locations:

~/.sbtconfig:

This fi le is deprecated, since it was used for global settings that should be moved into /usr/local/etc/
sbtopts.

~/.sbt/0.13/plugins/:

Here you can install a plugin for use in all projects.

~/.sbt/0.13/global.sbt:

Here you defi ne global settings for plugins.

/usr/local/etc/sbtopts:

You’ll need to modify to adjust global settings applied to SBT on startup, for example, to change
your debug port or max memory.

BASIC USAGE

SBT doesn’t require a build defi nition fi le for simple programs, nor does it require that the fi le be
placed in a standard directory structure. So, for quick scripting it can be easy to touch a fi le, add the
main method, then start coding away.

For example, let’s create a Scala fi le that does a simple factorial computation, since that’s the rave in
interviews on Scala:

1 object Factorial {
2 def main(args: Array[String]): Unit = {
3 println(factorial(5))
4 }
5
6 def factorial(n: Int): Int = {
7 if(n == 0){ 1 }
8 else{ n * factorial(n-1) }
9 }
10 }

 ➤ It’s important to pay attention to the main signature, since if you return anything but a unit,
SBT will be unable to fi nd the main method.

 ➤ By default SBT will compile and build the project with the same version of Scala that SBT
was run with.

Basic Usage ❘ 47

c04.indd 05/05/2016 Page 47

The next step is to run the SBT command in the same folder where the fi le exists and to use the run
command. You should see a result of 120. This is just a simple example of running a Scala program
through SBT, and more advanced usage of the SBT console will be provided as we go along.

If you decide to create multiple Scala fi les with main methods in that same folder and use the run
command, SBT will automatically give you a choice of which fi le to run. This can be great when you
have a test for your application and want to have a few choices on which example app to run.

Please take a look at https://github.com/milessabin/shapeless. Switch to the examples proj-
ect and then execute the run command. It gives you a good breakdown of all the code examples that
correlate to the features of the project. This same pattern is used in the code base used for this book,
to create more interesting coding samples.

Project Structure
While the setup of a simple code snippet using SBT doesn’t require any special ceremony other than
having SBT run in the same directory as a Scala fi le with a main method, you’ll quickly fi nd that
having some order to your upcoming project will make a good deal of sense. As such, the folder lay-
out for any basic single Scala project should resemble the following:

src/
 main/
 resources/
 <files to include in main jar here>
 scala/
 <main Scala sources>
 java/
 <main Java sources>
 test/
 resources
 <files to include in test jar here>
 scala/
 <test Scala sources>
 java/
 <test Java sources>

In the event you need to add more directories to this model, such as the main or test folders, SBT
will by default or ignore those custom directories.

Single Project
When fi rst starting out with using SBT it can be helpful to implement the setup of a bare bones build
fi le, and work toward a more complex example. SBT 13.9 has some nice improvements on another
earlier version (mostly in a more opinionated multi-project setup). Using the previous example, you
can create a build.sbt fi le in the same directory as the Factorial.scala fi le.

 1 lazy val root =
 2 (project in file("."))
 3 .settings(
 4 name := "Factorial",
 5 version := "1.0.0",
 6 scalaVersion := "2.11.7"
 7)

48 ❘ CHAPTER 4 SIMPLE BUILD TOOL

c04.indd 05/05/2016 Page 48

You can now start up SBT again in interactive mode using the run command, which will still result
in a 120. So, what changed? During the startup of SBT, an immutable map describing the build per-
sisted within SBT that was fed from the build defi nition that was just provided.

For example, within the SBT prompt you can type out any of the values that were just provided:

 > name
 [info] Factorial
 > version
 [info] 1.0.0
 > scalaVersion
 [info] 2.11.7

What has occurred is that a build fi le defi nes a sequence of Setting[T], in this case Setting[String],
as name, version, etc. This feeds into SBT’s immutable map of settings for each key/value on startup.
You can also use those settings to expand out the build.sbt fi le programmatically and break up the set-
tings easily into their own variable by abstracting the fi le out a bit further:

 1 lazy val buildSettings = Seq(
 2 organization := "com.professionalscala",
 3 version := "1.0.0",
 4 scalaVersion := "2.11.7"
 5)
 6
 7 lazy val root =
 8 (project in file("."))
 9 .settings(buildSettings)
 10 .settings(
 11 name := "Factorial",
 12 description := s"${name.value} using ${scalaVersion.value}"
 13)

 ➤ You may notice that the code provided is using lazy val, which is purely to avoid order
problems during the SBT startup process. You can use val, lazy val, or defs as well.

By doing this breakup of buildSettings in another variable, the technique allows reuse across
other project defi nitions. Not only that, but since SettingKey’s are computed, once on startup you
can setup some interesting behaviors. If, for example, you create a build on Jenkins, you can have
Jenkins increment an environment variable for a minor build version of the project. This is useful
after deploying out to your cluster.

 3 version := {
 4 val minorV =
 Option(System.getenv.get("currentMinorRelease"))
 .getOrElse("0").toInt
 5 s"1.0.${minorV}"
 6 },

Basic Usage ❘ 49

c04.indd 05/05/2016 Page 49

The above would result in the version being 1.0.0 unless Jenkins incremented the environment, in
which case the output would be “1.0.1.” It’s useful to remember that settingsKeys can be modifi ed
for any number of unique situations within your project. So far we have only used Setting Keys in
the project defi nition, but it’s important to note that there are three kinds of keys that can be used:

 ➤ SettingKey[T]: A key for a value computed once (the value is computed when loading the
project, and kept around)

 ➤ TaskKey[T]: A key for a value, called a task, that has to be recomputed each time, potentially
with side effects

 ➤ InputKey[T]: A key for a task that has command line arguments as input

Scopes
When working with SBT, one of the concepts to understand is “scope.” Each key type can have an
associated value in more than one context, which is described as a “scope.”

A scope can be overwritten in each sub-project through the use of the multi-project build.sbt fi les
found in those multi-project directories. This enables different build settings, different packaging,
and can allow for different values to be held within.

Scope axis is the phrase SBT uses to distinguish how particular settings or behaviors work together.
The Scope axes are:

 ➤ Projects

 ➤ Confi gurations

 ➤ Tasks

In the most basic terms, scope allows different values to apply to various events within SBT. For
example, if you want to disable scaladoc generation in a play application, you can add the following:
http://stackoverflow.com/a/21491331.

 // Disable scaladoc generation
 publishArtifact in (Compile, packageDoc) := false,
 publishArtifact in packageDoc := false,
 sources in (Compile,doc) := Seq.empty,

The fi rst line above shows that the key publishArtifact, when doing a compile or packagingDoc
task, is instructed to NOT generate the projects documentation.

You typically will only need to muck with a scopes values if the plugin, custom code, or framework
is doing something undesired, while you are in the life-cycle of development. Normally, you won’t
need to touch these values.

50 ❘ CHAPTER 4 SIMPLE BUILD TOOL

c04.indd 05/05/2016 Page 50

Custom Tasks
Custom tasks or TaskKey’s can be useful in developing out build automation, and later creating
 custom plugins for SBT. Without going too heavily into creating a plugin for SBT, let’s go over a very
basic example inside the SBT interactive shell.

> set TaskKey[java.util.UUID]("newId") := { java.util.UUID.randomUUID }

Execute that task by using the show command:

> show newId
[info] b43726fa-0c73-4e6c-ba7d-6c386f03a969
> show newId
[info] 91256835-8d62-446e-ae61-690304472c50

Now you have an easy generator for new uuid’s if you don’t already have uuidgen available on your
local environment.

Say, for example that you need a task that requires some information from the box it was currently
running on, and that information couldn’t be obtained through other Java libraries. You can build a
custom task to accomplish this as well:

> set TaskKey[String]("getUname", "get the uname") := { Process("uname -a")!! }
> show getUname
[info] Linux bucket 3.13.0-75-generic ...

Moving those custom tasks into your build only involves a slight change to the syntax within the
build.sbt fi le.

val getUname = TaskKey[String]("getUname", "gets the local machines uname")
lazy val root =
 (project in file("."))
 .settings(buildSettings)
 .settings(
 name := "Factorial",
 getUname := {
 Process("uname -a")!!
 },
 description := "a simple factorial"
)

After reloading SBT, you can then use show genUname to see the same result as the previous console
execution results.

Dependencies
When working with the build fi le, you want to bring in third-party dependencies. This task can be
accomplished with little effort by adding the JAR directly to the lib/ directory (in the base folder) as
unmanaged dependencies, or by adding the dependency directly to the build.sbt fi le as a managed
dependency.

 val http4sVersion = "0.11.2"
 lazy val commonSettings = Seq(
 resolvers ++= Seq(

Basic Usage ❘ 51

c04.indd 05/05/2016 Page 51

 Resolver.sonatypeRepo("releases"),
 Resolver.sonatypeRepo("snapshots")
),
 libraryDependencies ++= Seq(
 "org.http4s" %% "http4s-blaze-server" % http4sVersion,
 "org.http4s" %% "http4s-dsl" % http4sVersion,
 "org.http4s" %% "http4s-circe" % http4sVersion
)
)

Note the libraryDependencies section: since each of those entries directly maps to a formula simi-
lar to patterns, you may see a maven xml fi le.

groupId %% artifactId % version % scope

This pattern is used to look up the POM and JAR fi les stored on either the defi ned or default ivy2/
maven repositories. Using the repo1.maven.org repository as an example, you can follow each stage
of the formula being applied and then see how those endpoints line up when they are being pulled:

 ➤ GroupId = https://repo1.maven.org/maven2/org/http4s/

 ➤ ArtifactId = https://repo1.maven.org/maven2/org/http4s/
http4s-blaze-server_2.11/

 ➤ Version = https://repo1.maven.org/maven2/org/http4s/
http4s-blaze-server_2.11/0.11.2/

The double percentage sign is used to specify a lookup for a binary compatible version of the
http4s-blaze-server, and was also used in the ArtifactId to silently append 2.11 onto that
string. You can also specify a single percentage sign, which would be an exact string match, rather
than depending on SBT to append the version of Scala to the lookup.

 "org.http4s" % "http4s-blaze-server_2.11" % http4sVersion

The above is an equivalent to using the double percentage signs. It’s also worth noting that you may
fi nd some libraries using triple percentage signs, which is indicative of a scalajs dependency. More
about that can be found in the Webjars section of the Scalajs chapter later in this book.

Resolvers
In the same way the above examples exposed third party dependencies, it can be necessary to spec-
ify third party repositories. This can be helpful if you are working with a third party library and
need snapshots rather than stable releases. SBT comes with a few predefi ned repositories that can be
found at http://www.scala-sbt.org/0.13/docs/Resolvers.html—but in most cases simply fol-
lowing the above example will be enough to clear up any missing dependencies.

In the event you are unable to fi nd the repository that has the dependencies, you are attempting to
add to your local ivy cache. You can do a manual search for them using the maven central repository
(http://search.maven.org/) and looking up the dependency by its GroupId or ArtifactId.
Once you’ve found the correct dependency, the information page will provide you with resolver and
matching libraryDependency code for including that dependency in your build.sbt fi le.

52 ❘ CHAPTER 4 SIMPLE BUILD TOOL

c04.indd 05/05/2016 Page 52

ADVANCED USAGE

Often when building services in Scala, the problem of needing a multi services or a shared library
of common code between said services will arise. As an option you can make this shared code into
a completely separate project, and then include that as a dependency within the other sub projects.
However, when a core library is being actively developed, that technique can create confusion and
result in breakage within your code base.

As an alternative, SBT provides the means to set up a multi project, which gives you the fl exibility
to create a shared library. This can depend on the dependencies apart from the other sub projects
and enables other core programmers to expand the shared library with more confi dence that those
changes won’t break other sub projects depending on that core.

Unlike the single project setup, folders in the base directory are going to take on another form,
where you can move the src folder under a common name for the service that it refl ects. Such a
folder structure may look similar to the following:

common/
 src/
 main/
 test/
services-a/
 src/
 main/
 test/
 resources/
services-b/
 src/
 main/
 test/
 resources/

Figuring out the locations of the build.sbt fi les is a crux, since nothing stops you from having all of
your build.sbt fi les stay in the root folder. We advise against this, however, and place build.sbt fi les
into each of those sub-projects. During your compiling/building of the root project, all of the sub-
project SBT fi les will merge together with the build defi nition for the entire project.

This is especially helpful if you prefer to run things under one large umbrella application, or run
projects from their sub project view in the interactive console. It is helpful to keep build.sbt fi les in
each sub-project, since when you attempt to package your application you can be specifi c about the
dependencies and relationships of those sub projects—keeping them isolated for deployments.

After moving the common code into that sub directory you’ll need to make a slight change to the
root build.sbt fi le to specify the other sub-projects as projects.

lazy val buildSettings = Seq(
 organization := "com.example",
 version := "0.1.0",
 scalaVersion := "2.11.7"
)

lazy val core = (project in file("core"))

Advanced Usage ❘ 53

c04.indd 05/05/2016 Page 53

 .settings(buildSettings)
 .settings(
 // other settings
)

lazy val service = (project in file("services-a"))
 .settings(buildSettings)
 .settings(
 // other settings
)

lazy val services-b = (project in file("services-b"))
 .settings(buildSettings)
 .settings(
 // other settings
)

Notice that the build settings are included in each of the services now defi ned. This will ensure that
the basic information of organization and Scala version are defi ned for all projects, meaning they
will be easier to maintain.

Modifi cations made in the sub-projects build.sbt fi les will be refl ected in the SBT console as well. So,
now you need to learn about how to depend on different sub-projects for using the core library in
other sub-projects, which can be accomplished by using the dependOn method call:

lazy val services-a = (project in file("services-a"))
.dependsOn(core)
.settings(buildSettings)
 settings(
 // other settings
)

Code in the core library will be accessible by services-a. This will allow you to run a task on the
top level project that will force the other aggregated projects to also run the same task. You can add
the aggregate method onto the service project in the same way as the dependsOn method.

Advanced Dependencies
A quick note on keeping things sane while doing large multi project builds: It’s possible to have
each build.sbt in each sub-project defi ne its individual dependencies and also use the core projects
 dependencies as a dependedOn project that brings in the remainder. In doing this, however, duplica-
tion will arise between all of these fi les. In that case, creating a dependencies Scala fi le within the
project folder project/Dependencies.scala can create a one stop shop when you want to add and
update dependencies.

//Dependencies.scala
import sbt._

object Dependencies {
 // Versions
 lazy val akkaVersion = "2.3.8"
 lazy val http4sVersion = "0.11.2"

54 ❘ CHAPTER 4 SIMPLE BUILD TOOL

c04.indd 05/05/2016 Page 54

 // Libraries
 val akkaActor = "com.typesafe.akka" %% "akka-actor" % akkaVersion
 val akkaCluster = "com.typesafe.akka" %% "akka-cluster" % akkaVersion
 val specs2core = "org.specs2" %% "specs2-core" % "2.4.14"
 val blazeServer = "org.http4s" %% "http4s-blaze-server" % http4sVersion
 val http4sDSL = "org.http4s" %% "http4s-dsl" % http4sVersion
 val http4sCirce = "org.http4s" %% "http4s-circe" % http4sVersion
 val psql = "postgresql" % "postgresql" % "9.1-901.jdbc4"
 val quill = "io.getquill" %% "quill-async" % "0.2.1"

 // Projects
 val http4s = Seq(
 blazeServer, http4sDSL, http4sCirce
)

 val db = Seq(
 psql, quill
)
 val backendDeps =
 Seq(akkaActor, specs2core % Test) ++ http4s ++ db
}

To use them within your sub-projects, you only need to specify them under that group’s individual
settings.

//root build.sbt
import Dependencies._

scalaVersion in Global := "2.11.7"

lazy val buildSettings = Seq(
 organization := "com.example",
 description := "the root description.",
 version := "1.0.0",
 scalaVersion := "2.11.7"
)

resolvers ++= Seq(
 Resolver.sonatypeRepo("releases"),
 Resolver.sonatypeRepo("snapshots")
)

lazy val core =
 (project in file("core"))
 .settings(buildSettings)

lazy val servicesa =
 (project in file("services-a"))
 .settings(buildSettings)
 .dependsOn(core)
 .aggregate(core)

lazy val servicesb =
 (project in file("services-b"))

Advanced Usage ❘ 55

c04.indd 05/05/2016 Page 55

 .settings(buildSettings)
 .settings(libraryDependencies ++= backendDeps)
 .dependsOn(core)
 .aggregate(core)

Using this technique ensures that only the dependencies that you want for a sub-project are included
per project.

Testing in the Console
By placing tests in the corresponding test directories in either a single or multi-project, you can use
SBT to run through those tests with ease. First, you need to get a testing library and add it as a man-
aged dependency. For this example you’re going to use specs2, since it comes standard in a few pop-
ular Scala frameworks, and also has many similarities to scalatest. Start by adding the dependency
to the Dependencies.scala fi le under the root project folder.

libraryDependencies ++= Seq("org.specs2" %% "specs2-core" % "3.7" % "test")

With that dependency defi ned, you’ll need to either reload or restart SBT so that the dependency can
be loaded up. Now, assuming you have tests in the standard paths of your project, you can begin by
using test, test-only, and test-quck.

The test task takes no arguments, but once executed it will traverse all projects and fi nd any tests
that are in the correct locations, and then it runs all tests. The test-only task is useful when you
have a particular test you want to run.

test-only com.example.FactorialSpec
The test-quick task allows similar behavior to test-only, but only under the following
circumstances:

 ➤ The tests that failed on the previous run

 ➤ The tests that were not run before

 ➤ The tests that have one or more transitive dependencies, maybe in a different project,
recompiled

Remember, you can always prepend the test task execution with a tilda sig, which will re-test the
specifi ed tests after a change in your codebase.

Another nice fi x that can enable a cleaner style within the testing side of your codebase is to fi lter on
tests that adhere to a fi lename convention and only run those tests. For example, add the following
to your build SBT:

testOptions in Test := Seq(Tests.Filter(s => s.endsWith("Spec")))

Generating Documentation
If you have been documenting your code using valid scaladoc syntax, you can use the SBT doc com-
mand to start generating Scala documentation in the target folder of your application. Running this

56 ❘ CHAPTER 4 SIMPLE BUILD TOOL

c04.indd 05/05/2016 Page 56

from the root project will also pull in the sub-project documentation as well. There are a few
settings that can be helpful before generating the Scala documentation, which is discussed at length
in Chapter 8.

RELEASE MANAGEMENT

Before packaging your application, you’ll need to decide if you are going to use the project as
a dependency in another project, or if you are creating an application that will be stand alone.
Assuming the former, you can use the command SBT package, which will create a simple JAR that
contains the main artifact of your package. Then add that new JAR fi le to the lib folder of your
other project as an unmanaged dependency.

That approach is the best, since you’re going to end up having to manually migrate that JAR fi le
every time you want to create updates. A better solution is to use the command sbt publish-
local. That will store the new JAR inside your ivy2 cache (if you want to publish to your local
maven repo, you can use the command publish-m2) and can then be referenced by your other proj-
ect, by adding the dependency entry into your SBT or dependencies Scala fi le.

If you want to build an executable JAR with all of the included dependencies of your project, you’ll
need to use the sbt-assembly plugin and then invoke the command sbt assembly. This is consid-
ered a fat/uber JAR, because it’s an all in one solution for deployment. You can then run it by using
the command :

java -jar your.jar com.example.MainMethod

Your new Scala project should now be running properly. Thanks JVM.

Deploying to Sonatype
The Sonatype Nexus is a repository manager. It gives you a place to store all of the packaged JARs
you create, and gives you a single place to then share those JARs with other developers. You can
also set up your own local sonatype repo for your company by following the steps here: https://
books.sonatype.com/nexus-book/reference/install.html, but the following documentation
is for deploying to the central sonatype nexus.

If you have already read over the documentation and terms of service provided at http://central
.sonatype.org/pages/ossrh-guide.html, and you have received email notice from sonatype
about provisioning your repo, you can start setting up SBT to deploy to your repo.

First, you need to PGP sign your artifacts for the sonatype repository, using the sbt-pgp plugin. To
do this, add the following to your ~/.sbt/0.13/plugins/gpg.sbt fi le:

addSbtPlugin("com.jsuereth" % "sbt-pgp" % "1.0.0")

This document assumes that you have already created a PGP key, and that you have sent the key to
the keyserver pool.

Release Management ❘ 57

c04.indd 05/05/2016 Page 57

Next, to publish to the maven repo, you’ll need to add the settings:

publishMavenStyle := true

Add this to either the sub project or the root project. Then you’ll need to add the repositories for
pushing to sonatype:

publishTo := {
 val nexus = "https://oss.sonatype.org/"
 if (isSnapshot.value)
 Some("snapshots" at nexus + "content/repositories/snapshots")
 else
 Some("releases" at nexus + "service/local/staging/deploy/maven2")
}

The next step is getting the POM metadata that isn’t generated by SBT into the build. This can be
accomplished by using pomExtra:

pomExtra := (
 <url>http://sample.org</url>
 <licenses>
 <license>
 <name>MIT-style</name>
 <url>http://opensource.org/licenses/MIT</url>
 <distribution>repo</distribution>
 </license>
 </licenses>
 <scm>
 <url>git@github.com:sample/sample.git</url>
 <connection>scm:git:git@github.com:sample/sample.git</connection>
 </scm>
 <developers>
 <developer>
 <id>sample</id>
 <name>John Doe</name>
 <url>http://github.com/sample</url>
 </developer>
 </developers>)

Finally, you need to add your credentials. This is normally handled from within the ~/.sbt/0.13/
sonatype.sbt.

credentials += Credentials("Sonatype Nexus Repository Manager", "oss.sonatype.org",
 "<your username>", "<your password>")

Then, in SBT, you can run the publishSigned task that will package and deploy your application
right from the interactive console. Assuming all goes well, you have just deployed your fi rst artifact
to Nexus.

58 ❘ CHAPTER 4 SIMPLE BUILD TOOL

c04.indd 05/05/2016 Page 58

Packaging with SBT-Native-Packager
The sbt-native-packager plugin can be useful, if not essential, in the packaging of your shiny new
micro service, allowing all you need to package and deploy your services or applications to almost
any environment. As of writing this you can deploy out to:

 ➤ Universal zip,tar.gz, xz archives

 ➤ deb and rpm packages for Debian/RHEL based systems

 ➤ dmg for OSX

 ➤ msi for Windows

 ➤ Docker images

Choosing which environment to deploy to will depend on your business needs. That stated, this
chapter focuses on deployment to Debian packages and Docker instances, since both are fairly
standard.

Creating a Debian Package
First, append to your project/plugins.sbt fi le the following:

addSbtPlugin("com.typesafe.sbt" % "sbt-native-packager" % "x.y.z")

Then, from within your root build.sbt fi le, append:

enablePlugins(JavaServerAppPackaging)

It’s worth mentioning that if you are currently using the Play framework, sbt-native-packager is
already installed, but it will require that you add the following to create Debian packages:

enablePlugins(DebianPlugin)

Also, you will need to have installed the following system packages to provide native package
creation:

 ➤ dpkg-deb

 ➤ dpkg-sig

 ➤ dpkg-genchanges

 ➤ lintian

 ➤ fakeroot

Once completed, you’ll also have to make sure that the build.sbt for the sub project contains at the
minimum the following lines:

name := "Services-A"
version := "1.0"
maintainer := "John Doe <jdoe@example.com>"
packageSummary := "The greatest test service ever"
packageDescription := "Lorem ipsum of ipsum Lorem"

Release Management ❘ 59

c04.indd 05/05/2016 Page 59

After that fi nal step you only need to restart SBT and give packaging your application a try. In the
SBT console navigate to one of the sub project created earlier, such as project services-a, and use
the command debian:packageBin. This will by default create the native Debian package, which
can be installed using dpkg, located in the target directory of the subproject.

The above steps are great for getting a native build out, but in terms of customization, there are a
few steps you can take to make the build a bit more informative. You can specify dependencies that
your build will require by adding the following to your build.sbt:

debianPackageDependencies in Debian ++= Seq("java8-runtime", "bash (>= 2.05a-11)")

You can also recommend packages by adding the following:

debianPackageRecommends in Debian += "cowsay"

Finally you can hook into the debian package life-cycle by adding the preinst, postinst, prerm, or
postrm hooks into your build SBT fi le:

import DebianConstants._
maintainerScripts in Debian := maintainerScriptsAppend(
 (maintainerScripts in Debian).value)(
 Preinst -> "echo 'Thanks for installing Service-A'",
 Postinst -> s"echo 'installed ${(packageName in Debian).value}'"
)

Or you can add those hooks into your project’s fi le structure:

src/debian/DEBIAN

You may also need to add specifi c extra defi nitions to your build. This can be accomplished by mod-
ifying your build.sbt and appending bashScriptExtraDefines:

bashScriptExtraDefines += """addJava "-Djava.net.preferIPv4Stack=true""""

Now that you’ve created a Debian package, you can follow similar instructions and create a Docker
image.

Creating a Docker Image
Docker, as described in the documentation, “is an open platform for developing, shipping
and running applications” through containers, which are a sandbox for images. To get a
more general introduction to Docker you can visit the documentation: https://docs.docker.com/
engine/understanding-docker/ or visit https://www.youtube.com/watch?v=aLipr7tTuA4,
which has a really easy introduction to the technology.

Similar to the setup for the debian packager, you’ll need to modify the build.sbt for the sub-project
to include:

enablePlugins(DockerPlugin)

Once completed, you’ll need to set some default confi gurations in build.sbt:

 packageName in Docker := "service-b"
 version in Docker := "latest"

60 ❘ CHAPTER 4 SIMPLE BUILD TOOL

c04.indd 05/05/2016 Page 60

There are some other customizations that you can use, such as specifying the base image, the
Docker repository, or the specifi c image customizations. You can view those settings at http://
www.scala-sbt.org/sbt-native-packager/formats/docker.html, but here is a basic setup:

 .settings(
 packageName in Docker := "service-b",
 version in Docker := "latest",
 NativePackagerKeys.dockerBaseImage := "dockerfile/java:oracle-java8",
 NativePackagerKeys.dockerExposedPorts := Seq(9000, 9443),
 NativePackagerKeys.dockerExposedVolumes := Seq("/opt/docker/logs"),
)

One issue that’s common, especially when working with multi project setups and creating Docker
containers, is that you may end up wanting to create a Docker image for the root project. By default
the creation of the Docker image for the root project will aggregate and generate Docker images for
all of the sub projects.

One way to get around this is to disable the aggregation in Docker from within the root project
defi nition:

lazy val root = (project in file("."))
 .enablePlugins(DockerPlugin)
 //...(any other plugins or settings)
 .settings(//see above
 packageName in Docker := "root-project",
 version in Docker := "latest",
 NativePackagerKeys.dockerBaseImage := "dockerfile/java:oracle-java8",
 NativePackagerKeys.dockerExposedPorts := Seq(4000, 4443),
 NativePackagerKeys.dockerExposedVolumes := Seq("/opt/docker/logs"),
)
 .dependsOn(servicesa).aggregate(servicesa)
 .dependsOn(servicesb).aggregate(servicesb)
 .dependsOn(core).aggregate(core)
 .settings(// the below will disable the subproject docker generation
 aggregate in Docker := false
)

Publishing the Docker image can be broken down in one of two ways. docker:publishLocal will
build the image using the local Docker server or docker:publish, which will do the same as pub-
lishLocal, and will then push the image to the confi gured remote repository.

Common SBT Commands
When you fi rst start SBT, you can run standard tasks that come built into SBT. It’s worth noting
that you can use the ~ symbol to watch for changes within your code base.

Common Commands
 ➤ clean—Deletes fi les produced by the build

 ➤ compile—Compiles sources

 ➤ console—Starts the Scala interpreter

Release Management ❘ 61

c04.indd 05/05/2016 Page 61

 ➤ run—Runs a main class, along with any command line arguments

 ➤ test—Executes all tests

 ➤ testOnly—Executes the tests provided as arguments

 ➤ testQuick—Executes the tests that failed before

 ➤ update—Resolves and optionally retrieves dependencies, producing a report

 ➤ Reload—Reloads the project in the current directory

REPL Commands
 ➤ consoleProject—Starts the Scala interpreter with the sbt build defi nition on the classpath

and useful imports

 ➤ consoleQuick—Starts the Scala interpreter with the project dependencies on the classpath

Package Commands
 ➤ package—Produces the main artifact, such as a binary JAR, which is typically an alias for

the task that actually does the packaging

 ➤ packageBin—Produces a main artifact, such as a binary JAR

 ➤ packageDoc—Produces a documentation artifact, such as a JAR containing API
documentation

 ➤ packageSrc—Produces a source artifact, such as a JAR containing sources and resources

Documentation-Related Commands
 ➤ doc—Generates API documentation

Publish Commands
 ➤ publish—Publishes artifacts to a repository

 ➤ publishLocal—Publishes artifacts to the local Ivy repository

 ➤ publishM2—Publishes artifacts to the local Maven repository

Useful Plugins
 ➤ sbt-dependency-graph https://github.com/jrudolph/sbt-dependency-graph:

Creates a nice graph to visualize a project’s dependencies. Really interesting for seeing
where all of the cyclic references are in a project and getting an idea of why a project is
 taking a long time to compile.

 ➤ sbt-revolver https://github.com/spray/sbt-revolver:

When invoked, it creates a fork of the application in the background, which is great for fast
background starting/stopping of applications and re-triggered starts. This is usually the fi rst
plugin added in this chapter to a new project, since it helps development move along quickly

62 ❘ CHAPTER 4 SIMPLE BUILD TOOL

c04.indd 05/05/2016 Page 62

and doesn’t require an alternative like dcevm. It’s worth noting that Jrebel is no longer
 supported by sbt-revolver.

 ➤ tut https://github.com/tpolecat/tut:

A documentation tool for Scala that reads markdown fi les and results in being able to write
documentation that is typechecked and run as part of your build. The plugin really shines
when creating tutorials that need to be typechecked by default.

 ➤ sbt-updates https://github.com/rtimush/sbt-updates:

Used to fi nd updates for all of your project dependencies. This is great for Monday morning,
when you want to check out all of the updates that are now available.

 ➤ sbt-git https://github.com/sbt/sbt-git:

Installing this plugin means never having to leave the interactive console to check in a fi le.
More importantly, having git at your command from within SBT can allow you to write
custom tasks from within SBT that interact with git.

 ➤ sbt-musical https://github.com/tototoshi/sbt-musical:

One of the just-for-fun plugins, and assuming you are on a Mac with iTunes open, you can
use this plugin to play music whenever you want for any task. Simply add the ♪ prefi x before
any command.

 ➤ ammonite-repl http://lihaoyi.github.io/Ammonite/:

Another favorite plugin, this is truly a great way to experience the console in SBT or in
standalone mode. Ammonite boasts the ability to dynamically load ivy dependencies/arti-
facts, multiline edits, pretty printed output, and much more. You should place this in your
global.sbt fi le:

~/.sbt/0.13/plugins/build.sbt

 ➤ sbt-release https://github.com/sbt/sbt-release:

This is a customizable release process management. It is an all-in-one solution for setting up
steps to distribute or manage releases. It can include release notes and check tests and it can
do a number of remarkable things, all in an easy to digest DSL.

SUMMARY

 You should now have a good understanding of how to use the Simple Build Tool with the Scala
language to simplify complex behaviors within your project. SBT helps you package/publish JARs
and also provides a powerful shell that can be used to test your code. You can see why SBT is the de
facto build tool for compiling, testing, and packaging Scala services and applications. Take advan-
tage of this popular tool and you will better enjoy your Scala experience.

c05.indd 04/18/2016 Page 63

Maven
WHAT’S IN THIS CHAPTER?

 ➤ Compiling and testing Scala with Maven

 ➤ Exploring the REPL

 ➤ Mixing Java and Scala at compile time

 ➤ Reducing development cycle times

While Scala has established itself as the de facto language of choice in certain areas, for
 example streaming analytics, many organizations still carry a technological or political legacy
that prevents wholesale tooling and language transitions. In this situation incremental change
is your ally. In concrete terms, you might not be able to use SBT and Scala, but if you are
already working in a Maven based environment you can add Scala and learn how to coex-
ist with Java source code in the same project with little disruption. Using Scala with Maven
requires no additional installation activities, thereby preserving any current Jenkins builds you
might have confi gured.

In this chapter, you will learn how to work with Maven to manage your Scala-based project.
Along the way, you can see how Maven is extended to support Scala to a similar level as Java,
how you can use Scala at an interactive prompt, and how you can slash compile times via
confi guration.

This chapter recognizes that no build lifecycle is complete without a dash of testing, so you
will fi nd out how to integrate ScalaTest with the assistance of Maven. You will learn how to
leverage the power of compilation as a service, and see how Java and Scala sources can be
combined in the same project.

5

Professional Scala. Aliaksandr Bedrytski, Janek Bogucki, Alessandro Lacava, Matthew de Detrich and Benjamin Neil
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

64 ❘ CHAPTER 5 MAVEN

c05.indd 04/18/2016 Page 64

GETTING STARTED WITH MAVEN AND SCALA

This chapter assumes you have prior experience working with Maven and you are familiar with the
key notions of goals, phases, lifecycles, dependencies, plugin confi guration, and the use of Maven
from the command line. You should also be familiar with using Maven from your IDE.

If you need a Maven refresher, head off to https://maven.apache.org for a couple of hours and
resume this chapter once you are up to speed. As a further preparation, you should have Maven
installed, and be able to execute the command shown here.

$ mvn --version
Apache Maven 3.3.9
 (bb52d8502b132ec0a5a3f4c09453c07478323dc5; 2015-11-10T16:41:47+00:00)
Maven home: /usr/share/maven3
Java version: 1.8.0_60, vendor: Oracle Corporation
Java home: /usr/lib/jvm/java-8-oracle/jre
Default locale: en_GB, platform encoding: UTF-8
OS name: "linux", version: "3.13.0-63-generic", arch: "amd64", family: "unix"

Any version of Maven from 3.0.5 onward should be fi ne.

With these prerequisites met you are ready to work through the examples below to create a Scala
aware Maven project.

Step 1. Start by adding a minimal POM at the root level of your project folder as shown below.
Name the fi le pom.xml, which stands for Project Object Model.

<?xml version="1.0" encoding="UTF-8"?>
<project
 xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd
>
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.scalacraft</groupId>
 <artifactId>professional-scala</artifactId>
 <version>0.1.0-SNAPSHOT</version>

 <properties>
 <scala.version>2.11.7</scala.version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.scala-lang</groupId>
 <artifactId>scala-library</artifactId>
 <version>${scala.version}</version>
 </dependency>
 <dependency>
 <groupId>org.scala-lang</groupId>

https://maven.apache.org

Getting Started with Maven and Scala ❘ 65

c05.indd 04/18/2016 Page 65

 <artifactId>scala-compiler</artifactId>
 <version>${scala.version}</version>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>net.alchim31.maven</groupId>
 <artifactId>scala-maven-plugin</artifactId>
 <version>3.2.2</version>
 <executions>
 <execution>
 <id>compile</id>
 <goals>
 <goal>compile</goal>
 <goal>testCompile</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

You should take a moment to run this. Only the fi nal part of the output is shown next.

$ mvn clean install

[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 1.739s
[INFO] Finished at: Tue Jan 26 22:18:52 GMT 2016
[INFO] Final Memory: 11M/245M
[INFO] --

Process finished with exit code 0

Provide some Scala source code to put this POM to work.

Step 2. Create a source directory layout as shown here.

$ mkdir -p src/main/scala/com/scalacraft/professionalscala/chapter5
$ mkdir -p src/test/scala/com/scalacraft/professionalscala/chapter5

NOTE Create this folder hierarchy using the tools of your choice, but if you are
on Windows then an easy and non-disruptive route to gaining access to a com-
pact Unix environment is offered by Git BASH, which is available for download
from https://git-for-windows.github.io/. Equally you can use Powershell,
CMD, or your IDE.

https://git-for-windows.github.io

66 ❘ CHAPTER 5 MAVEN

c05.indd 04/18/2016 Page 66

The fi rst directory will contain your main application code, or the second test code. Now, enter the
Scala class Probe as shown below, into the main source code hierarchy.

package com.scalacraft.professionalscala.chapter5

class Probe {
 def touchdown: Unit = println("Hello, New World!")
}

Step 3. Build the project and confi rm some compilation took place.

$ mvn clean install

[INFO] BUILD SUCCESS

$ find target/ -name *.class
target/classes/com/scalacraft/professionalscala/chapter5/Probe.class

EXTERNAL MAVEN INSTALLATIONS

IDE bundled versions of Maven are used by default. Convenient though this is, to
ensure the same experience on the command line as in the IDE, confi gure your IDE
to use the external installation.

IDEA—File ➪ Settings ➪ Maven

Eclipse—Window ➪ Preferences ➪ Maven ➪ Installations

Before you learn about the details of the Maven plugin that enables the compilation, be sure to
jump onto the command line and spark up the Scala REPL via the plugin’s console goal. Create an
instance of Probe and send a message to it.

$ mvn scala:console
Type in expressions to have them evaluated.
Type :help for more information.

scala> import com.scalacraft.professionalscala.chapter5._
import com.scalacraft.professionalscala.chapter5._

scala> new Probe touchdown
Hello, New World!

scala>

EPFL we have a touchdown!

Introducing scala-maven-plugin ❘ 67

c05.indd 04/18/2016 Page 67

LOCATING THE SOURCE CODE

How does the plugin know where to fi nd the source code? The plugin applies
documented defaults for many confi guration items, including the mainSourceDir
property. The default values for all confi guration items are documented at http://
davidb.github.io/scala-maven-plugin/plugin-info.html. In the case of
mainSourceDir the default is ${project.build.sourceDirectory}/../scala.
The project.build.sourceDirectory is the name of a property inherited implic-
itly from the Maven Super POM.

INTRODUCING SCALA-MAVEN-PLUGIN

By the end of this section you will have a working overview of the essentials of the scala-maven-
plugin. Through running some examples, you will gain a compact, but practical overview.

The scala-maven-plugin is the de facto Maven plugin for working with Scala under Maven. Along
one dimension it can be thought of as being an adapter sitting between Maven and the Scala com-
piler. However, that is not the sum of it. In later sections you will see how the plugin goes beyond a
simple compiler adapter. First, let’s examine an illustration of the adapter aspect. Follow these steps
to start unpeeling the plugin behavior beginning with the link from POM confi guration through to
the Scala compiler.

Step 1. Add some confi guration to the plugin execution using the <configuration> element as
shown here.

<plugin>
 <groupId>net.alchim31.maven</groupId>
 <artifactId>scala-maven-plugin</artifactId>
 <version>3.2.2</version>
 <executions>
 <execution>
 <id>compile</id>
 <goals>
 <goal>compile</goal>
 <goal>testCompile</goal>
 </goals>
 <configuration>
 <displayCmd>true</displayCmd>
 </configuration>
 </execution>
 </executions>
</plugin>

http://davidb.github.io/scala-maven-plugin/plugin-info.html
http://davidb.github.io/scala-maven-plugin/plugin-info.html

68 ❘ CHAPTER 5 MAVEN

c05.indd 04/18/2016 Page 68

When displayCmd is true, the command line used to invoke the Scala compiler is dumped to the
Maven log.

Step 2. Build the project.

$ mvn clean install

Scrutinize the logging output until you locate the dumped command line. This is formatted below
for clarity. The fi nal line is of the most relevance for this discussion.

[INFO] cmd:
C:\Program Files\Java\jdk1.8.0_66\jre\bin\java
-Xbootclasspath/a:
C:\Users\jdb\.m2\repository\org\scala-lang\scala-library\2.11.7\
 scala-library-2.11.7.jar;
C:\Users\jdb\.m2\repository\org\scala-lang\scala-compiler\2.11.7\
 scala-compiler-2.11.7.jar;
C:\Users\jdb\.m2\repository\org\scala-lang\scala-reflect\2.11.7\
 scala-reflect-2.11.7.jar;
C:\Users\jdb\.m2\repository\org\scala-lang\scala-library\2.11.6\
 scala-library-2.11.6.jar;
C:\Users\jdb\.m2\repository\org\scala-lang\modules\scala-parser-combinators_2.11\
 1.0.4\scala-parser-combinators_2.11-1.0.4.jar;
C:\Users\jdb\.m2\repository\org\scala-lang\scala-library\2.11.4\
 scala-library-2.11.4.jar;
C:\Users\jdb\.m2\repository\org\scala-lang\modules\scala-xml_2.11\
 1.0.4\scala-xml_2.11-1.0.4.jar
 -classpath
C:\Users\jdb\.m2\repository\net\alchim31\maven\scala-maven-plugin\3.2.2\
 scala-maven-plugin-3.2.2.jar
scala_maven_executions.MainWithArgsInFile scala.tools.nsc.Main
C:\Users\jdb\AppData\Local\Temp\scala-maven-1801724026178648094.args

You may have spotted the presence of multiple versions of the same libraries in the bootstrap JARs.
This is not known to cause any problems. If you see this and are curious you can join the scala-
maven-plugin community at https://groups.google.com/forum/#!forum/maven-and-scala
and fi nd out more.

The main class is MainWithArgsInFile, which calls scala.tools.nsc.Main, supplying the con-
tents of an args fi le as the arguments to the compiler class in scala.tools.nsc.Main. This is
shown below where you can see the plugin is handling the details of mapping the POM confi gura-
tion to equivalent compiler options.

-classpath
C:\Users\jdb\.m2\repository\org\scala-lang\scala-library\2.11.7\
 scala-library-2.11.7.jar;
C:\Users\jdb\.m2\repository\org\scala-lang\scala-compiler\2.11.7\
 scala-compiler-2.11.7.jar;
C:\Users\jdb\.m2\repository\org\scala-lang\scala-reflect\2.11.7\
 scala-reflect-2.11.7.jar;
C:\Users\jdb\.m2\repository\org\scala-lang\modules\scala-xml_2.11\
 1.0.4\scala-xml_2.11-1.0.4.jar;

https://groups.google.com/forum/#!forum/maven-and-scala

Introducing scala-maven-plugin ❘ 69

c05.indd 04/18/2016 Page 69

C:\Users\jdb\.m2\repository\org\scala-lang\modules\scala-parser-combinators_2.11\
 1.0.4\scala-parser-combinators_2.11-1.0.4.jar

-d
C:\Users\jdb\workspaces\main\professional-scala\target\classes
C:\Users\jdb\workspaces\main\professional-scala\src\main
 \scala\com\scalacraft\professionalscala\chapter5\Probe.scala

NOTE The sole purpose of MainWithArgsInFile is to work around Windows
command line size limitations.

Exercise the link from POM to compiler once more.

Step 3. Add the compiler options shown here to the plugin confi guration section.

<configuration>
 <args>
 <arg>-verbose</arg>
 <arg>-Xgenerate-phase-graph</arg>
 <arg>phase-graph</arg>
 </args>
 <displayCmd>true</displayCmd>
</configuration>

Step 4. Build the project.

$ mvn clean install

The logging output is excerpted below showing the effect of adding -verbose.

[INFO] [loaded package loader lang in 14ms]
[INFO] [loaded package loader annotation in 1ms]
[INFO] [promote the dependency of lazyvals: erasure => posterasure]
[INFO] [promote the dependency of explicitouter: tailcalls => specialize]
[INFO] Phase graph of 25 components output to phase-graph*.dot.

Step 5. Check the temporary args fi le to see the POM confi guration passed through to the compiler
command. The head of the args fi les is shown:

-verbose
-Xgenerate-phase-graph
phase-graph
-classpath

To see a compiler generated phase diagram, point your browser to https://goo.gl/O7kGiv.

This concludes the nickel tour of the scala-maven-plugin from a compiler adapter perspective. You
now know how to dive through the layers from the POM to the compiler should the need ever arise.
To see the full range of options applicable to the compiler visit http://davidb.github.io/scala-
maven-plugin/compile-mojo.html. You will see further compiler options in use later.

https://goo.gl/O7kGiv
http://davidb.github.io/scala-maven-plugin/compile-mojo.html
http://davidb.github.io/scala-maven-plugin/compile-mojo.html
http://davidb.github.io/scala-maven-plugin/compile-mojo.html

70 ❘ CHAPTER 5 MAVEN

c05.indd 04/18/2016 Page 70

NOTE The nsc in scala.tools.nsc.Main stands for “New Scala Compiler.”
What naming-related lessons can be drawn from history? In the world of Java
there was a time when NIO stood for “New IO” but then it became “Non-
blocking IO.” You have been warned about the ephemerality of “New” prefi xes!

ADDING LIBRARY DEPENDENCIES

Now that you have Maven compiling your code, pull in an additional Scala library by adding a new
dependency that you will need for the REPL section. Follow these steps to add atto, an incremental
text-parsing library, into your project as a dependency.

Step 1. Isolate the library version into the <properties> section as shown below.

<properties>
 <scala.version>2.11.7</scala.version>
 <atto.version>0.4.2</atto.version>
</properties>

Factoring out library versions into properties is an advisable practice from a maintenance point of
view.

Step 2. Navigate to the <dependencies> section and add the new dependency shown here.

<dependency>
 <groupId>org.tpolecat</groupId>
 <artifactId>atto-core</artifactId>
 <version>${atto.version}</version>
</dependency>

Step 3. Build the project.

$ mvn clean install

You will see the POM and JAR for atto-core being downloaded and then the build will complete
as before. All of this may appear somewhat pedestrian, and that is in fact the point. Using Scala
libraries in Maven is exactly the same as using Java libraries.

NOTE There are a number of good practices worth weaving into your Maven
life. Entry-level best practices include using modules to organize projects, defi n-
ing properties to factor out artifact versions, and depending on release versions
of third-party libraries instead of snapshots. Search for “Maven: The Complete
Reference” to get extensive documentation from the creators and maintainers of
Maven.

At times you may hear it said that the key best practice for Maven is to switch
to SBT. You won’t see that option pursued further in this chapter for obvious
reasons.

Using the REPL ❘ 71

c05.indd 04/18/2016 Page 71

USING THE REPL

How else can the plugin power up your everyday development activities? One way is by providing
frictionless access to the Scala REPL with a classpath matching your project. Build up your acquain-
tance with this powerful Scala feature by following these steps. Note that the Scala console is not a
Maven feature. What you see in the following is how Maven understands your project dependencies
when running the console via a plugin goal.

Step 1. In the root level of your project folder run Maven specifying the console goal, which is pro-
vided by the scala-maven-plugin. The console output has been edited for brevity.

$ mvn scala:console
[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building professional-scala 0.1.0-SNAPSHOT
[INFO] --
[INFO]
[INFO] --- scala-maven-plugin:3.2.2:console (default-cli) @ professional-scala ---
Welcome to Scala version 2.11.6 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_60).
Type in expressions to have them evaluated.
Type :help for more information.

scala>

Step 2. Type in these commands. Start with imports that use atto-core:

scala> import atto._
import atto._
scala> import Atto._
import Atto._ ^

Now defi ne a val. This is a parser combinator that parses a dot.

scala> val dot = char('.')
dot: atto.Parser[Char] = '.'

Next, build up a version number parser using predefi ned parsers from the library and your own dot
parser.

scala> val versionParser = many(digit) ~ dot ~ many(digit)
versionParser: atto.Parser[((List[Char], Char), List[Char])] =
 ((many(digit)) ~ '.') ~ many(digit)

To cap it all off throw a string at the parser and review the output.

scala> versionParser parseOnly "2.11"
res0: atto.ParseResult[((List[Char], Char), List[Char])] =

 Done(,((List(2),.),List(1, 1)))

The Scala console is a powerful ally and with Maven integration simplifying access, you will be able
to explore new libraries interactively with no classpath management beyond the POM.

72 ❘ CHAPTER 5 MAVEN

c05.indd 04/18/2016 Page 72

GETTING HELP

Help is available for the scala-maven-plugin through the standard Maven help plugin. Execute this
command to see a summary of the plugin goals. Append -Ddetail to see an expanded version of the
help. The results are summarized in Table 5-1.

$ mvn help:describe -Dplugin=net.alchim31.maven:scala-maven-plugin

TABLE 5-1: Plugin Goals

GOAL DESCRIPTION

add-source Add more source directories to the POM.

cc Continuously compile the main and test sources. For use on the CLI only.

cctest Continuously compile the main and test sources then run unit test cases. For
use on the CLI only.

compile Compile the main Scala sources.

console Run the Scala console with all project classes and dependencies available.

doc Produce Scala API documentation.

doc-jar Create a jar of non-aggregated Scaladoc for distribution.

help Display the Scala compiler help.

run Run a Scala class using the Scala runtime.

script Run a Scala script.

testCompile Compile the test Scala sources.

RUNNING TESTS

You need to test your space probe before deploying it. Do this now via the ScalaTest Maven plugin.
Follow the steps below to add the plugin, create, and run the smoke test.

Step 1. Add a dependency on ScalaTest to your POM. The details are shown below. Drop these
changes into the appropriate POM locations.

<properties>
 <scala.version>2.11.7</scala.version>
 <atto.version>0.4.2</atto.version>
 <scalatest.version>2.2.6</scalatest.version>
</properties>

<dependency>
 <groupId>org.scalatest</groupId>

Running Tests ❘ 73

c05.indd 04/18/2016 Page 73

 <artifactId>scalatest_2.11</artifactId>
 <version>${scalatest.version}</version>
</dependency>

Step 2. Confi gure scalatest-maven-plugin by adding the plugin confi guration shown below. Position
this <plugin> element after the existing scala-maven-plugin.

<plugin>
 <groupId>org.scalatest</groupId>
 <artifactId>scalatest-maven-plugin</artifactId>
 <version>1.0</version>
 <configuration>
 <reportsDirectory>
 ${project.build.directory}/surefire-reports
 </reportsDirectory>
 <junitxml>.</junitxml>
 <filereports>${project.artifactId}.txt</filereports>
 <!-- W: Suppress ANSI color codes -->
 <!-- T: Failed test reminders with short stack traces -->
 <stdout>WT</stdout>
 </configuration>
 <executions>
 <execution>
 <id>test</id>
 <goals>
 <goal>test</goal>
 </goals>
 </execution>
 </executions>
</plugin>

Step 3. Enter the unit test shown here into the test source code hierarchy.

package com.scalacraft.professionalscala.chapter5

import org.scalatest.{FlatSpec, Matchers}

class ProbeSpec extends FlatSpec with Matchers {

 behavior of "A Probe"

 it should "touchdown without puffing out smoke" in {
 new Probe touchdown
 }
}

Step 4. Build the project

$ mvn clean install

The test report will complete. Your report will be similar to this one.

Run starting. Expected test count is: 1
ProbeSpec:
A Probe

74 ❘ CHAPTER 5 MAVEN

c05.indd 04/18/2016 Page 74

Hello, New World!
- should touchdown without puffing out smoke
Run completed in 285 milliseconds.

With your probe now trundling toward the launch pad, let’s move onto other matters.

NOTE Before you can have certainty in fi nding failure with tests, you must test
for failure with certainty.

Exactly what does that mean? Make sure the tests you think are running actu-
ally are running. In this case a simple way to achieve this is to temporarily throw
a spanner into your probe by modifying the touchdown method to throw an
exception.

def touchdown: Unit = ???

Run the test, and confi rm that your unit test failed, then revert the method. This
protects against going forward with a misconfi gured POM that is not running
tests. Under a test driven development methodology this step is superfl uous.

JOINT COMPILATION WITH JAVA

Scala is interoperable with Java and you may fi nd you have a requirement to mix Java and Scala
source code in the same Maven project. In this case you will be well served by the joint compilation
capabilities of the Scala compiler, which is confi gurable using scala-maven-plugin. Follow these steps
to get a feel for the joint compilation set up. Along the way you will encounter the following players:

 ➤ Transmitter: Java interface

 ➤ Probe: Scala class extending Java interface

 ➤ CoreProbe: Java class extending Scala class

Step 1. Create a source directory for your Java code.

$ mkdir -p src/main/java/com/scalacraft/professionalscala/chapter5/

Step 2. Add a Java interface in this directory as shown here.

package com.scalacraft.professionalscala.chapter5;

public interface Transmitter {
 byte[] transmit();
}

Step 3. Implement the Java interface in the Scala Probe class following this example here.

class Probe extends Transmitter {
 def touchdown: Unit = println("Hello, New World!")

Joint Compilation with Java ❘ 75

c05.indd 04/18/2016 Page 75

 override def transmit(): Array[Byte] = (0xda7a * 0xfeed).toString getBytes
}

Step 4. Build the project and confi rm all classes were compiled to bytecode.

$ find -name *class
./target/classes/com/scalacraft/professionalscala/chapter5/Probe.class
./target/classes/com/scalacraft/professionalscala/chapter5/Transmitter.class
./target/test-classes/com/scalacraft/professionalscala/chapter5/
 ProbeSpec$$anonfun$1.class
./target/test-classes/com/scalacraft/professionalscala/chapter5/ProbeSpec.class

At this point you have a Scala class implementing a Java interface. What happens if you then have a
requirement to extend a Scala class with a Java class? Try it.

Step 5. Add CoreProbe in the Java source directory as shown below.

package com.scalacraft.professionalscala.chapter5;

public class CoreProbe extends Probe {}

Building the project at this point ends in a compilation error.

 [ERROR] COMPILATION ERROR :
 [ERROR] \professional-scala\src\main\java\com\scalacraft\professionalscala\
 chapter5\CoreProbe.java:[3,31] error: cannot find symbol

This error occurs because by default maven-compiler-plugin is executed before scala-maven-plugin.
To unlock the benefi ts of joint compilation, you need to instruct Maven to execute the Scala com-
piler before the Java compiler. Follow the remaining steps to achieve the utopia of joint compilation.

Step 1. Modify the <executions> element of the scala-maven-plugin to stipulate the lifecycle phase
to which the two Scala compilation goals are tied. The exact code to achieve this is shown below.

<plugin>
 <groupId>net.alchim31.maven</groupId>
 <artifactId>scala-maven-plugin</artifactId>
 <version>3.2.2</version>
 <executions>
 <execution>
 <id>compile</id>
 <phase>process-resources</phase>
 <goals>
 <goal>compile</goal>
 </goals>
 </execution>
 <execution>
 <id>test-compile</id>
 <phase>process-test-resources</phase>
 <goals>
 <goal>testCompile</goal>
 </goals>
 </execution>
 </executions>
</plugin>

76 ❘ CHAPTER 5 MAVEN

c05.indd 04/18/2016 Page 76

The criteria for selecting the process-resources phase are twofold:

 1. Must be before the compile phase to ensure precedence over the Java compile goal.

 2. Must be as close to the compile phase as possible to preserve the semantics of the build life-
cycle as much as possible.

Step 2. Confi rm the project builds and check for the expected class fi les.

$ find -name *class
./target/classes/com/scalacraft/professionalscala/chapter5/CoreProbe.class
./target/classes/com/scalacraft/professionalscala/chapter5/Probe.class
./target/classes/com/scalacraft/professionalscala/chapter5/Transmitter.class
./target/test-classes/com/scalacraft/professionalscala/chapter5/
 ProbeSpec$$anonfun$1.class
./target/test-classes/com/scalacraft/professionalscala/chapter5/ProbeSpec.class

You now have the option to mix Java and Scala freely within the same project. Pause to refl ect on
the options this brings. You can now test Java code with ScalaTest.

ACCELERATING COMPILATION WITH ZINC

Zinc is a Lightbend project that provides access to compilation as a service. This can reduce your
project compilation time signifi cantly. Zinc is based on the incremental compiler that is part of SBT
and scala-maven-plugin supports easy integration with the zinc service. In this section, you will
work through the steps required to install and start the zinc server, and then confi gure your project
to use the service. At the end are sample compile times charted to show the difference between com-
piling with and without zinc.

Step 1. Download and install zinc to ~/Apps or some other directory of your choice. Zinc can be
downloaded from https://github.com/typesafehub/zinc.

Step 2. Start zinc as shown here:

$ ~/Apps/zinc-0.3.9/bin/zinc -nailed -scala-home ~/lib/scala-2.11.7 -start

The -nailed option runs the service as a daemon. You should specify the location of a Scala distri-
bution using the -scala-home option. Starting zinc only needs to be done once.

Step 3. Update the scala-maven-plugin compiler confi guration to delegate compilation to the zinc
server. Follow the confi guration below. The pertinent options are recompileMode and useZinc-
Server. Both options must be present for the zinc server to be used.

<configuration>
 <recompileMode>incremental</recompileMode>
 <useZincServer>true</useZincServer>
</configuration>

Step 4. Build your project and look at the compilation logging. It will be similar to the logging out-
put below.

[INFO] Using zinc server for incremental compilation
[warn] Pruning sources from previous analysis, due to incompatible CompileSetup.

https://github.com/typesafehub/zinc

Summary ❘ 77

c05.indd 04/18/2016 Page 77

[info] Compiling 30 Scala sources to /home/jdb/workspaces/main/professional-scala
 /target/classes...
[warn] there were 5 deprecation warnings; re-run with -deprecation for details
[warn] there was one feature warning; re-run with -feature for details
[warn] two warnings found
[info] Compile success at 31-Jan-2016 21:02:19 [1.602s]

So is it faster? Your mileage may vary, but for your convenience Figure 5-1 charts the time in sec-
onds to compile the project from Chapter 8 with and without zinc. The quicker times are zinc times.

1

0

1

2

3

4

co
m

p
ila

ti
o

n
ti

m
e

(s
ec

s)

5

6

2 3
iteration #

compilation with/without zinc

4 5

FIGURE 5-1

SUMMARY

 Maven supports building mixed Scala and Java projects courtesy of the Scala Maven plugin. This
plugin has eleven goals that provide support for compilation, documentation, testing, project con-
fi guration, scripting, and a project aware REPL.

A minimum viable POM that gets your Scala project building can be defi ned with a handful of
XML elements. This confi guration can be augmented to perform a range of tasks spanning docu-
mentation generation, unit test integration and more.

The Scala Maven plugin delegates to the Scala compiler in a way that you can pick apart should the
need arise. The plugin provides convenient defaults with many confi guration options allowing you
to tailor the build to your scenarios. Some confi guration relates to Maven while other confi guration
is specifi c to the compiler or scaladoc.

With a couple of confi g additions you can start to win back compilation time by throwing your
sources onto the Zinc compiler. Other build tools for Scala include SBT, Gradle, and Pants Build
System. These tools are in many ways improvements over Maven. But Maven enjoys the advantage
of wide currency within the existing Java development world—a key advantage in a change adverse
culture.

c06.indd 05/05/2016 Page 79

Scala Style/Lint
WHAT’S IN THIS CHAPTER?

 ➤ Understanding Scala style tools

 ➤ Using Lint tooling

 ➤ Mastering tools of the trade

Code smell is often defi ned “as certain structures in code that indicate violation of funda-
mental design principles and negatively impact design quality.” Code smells are not bugs, but
instead are indications that the structure of code hasn’t been fully fl eshed out, or was rushed
to accommodate features at the cost of code quality. These are indications of a weakness in
design and must be handled with a good eye, equally good coding habits, and help from strong
style/lint tooling.

This translates to testing your Scala application, meeting its functional and business require-
ments, and also working to ensure that your code has no structural problems. Luckily, the
open source world has created some extremely well programmed and maintained styling/
lint tooling for Scala. You can use them to increase the reliability and effi ciency of your
 applications/services, in effect allowing your code over its life cycle to become easier to main-
tain, understand, and extend.

This chapter takes you through the setting up of the most popular tools for styling and linting.
It will also show you how to automate linting, and give your code the best possible chance to
stay within current coding conventions.

SCALA WITH STYLE

The fi rst tool to integrate into this book’s sample project is a little plugin called scalastyle
(http://www.scalastyle.org/). Scalastyle “examines your Scala code and indicates poten-
tial problems with it.” This can become very benefi cial, since new code and more sections

6

Professional Scala. Aliaksandr Bedrytski, Janek Bogucki, Alessandro Lacava, Matthew de Detrich and Benjamin Neil
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

http://www.scalastyle.org

c06.indd 05/05/2016 Page 80

80 ❘ CHAPTER 6 SCALA STYLE/LINT

are added. To start working with scalastyle, your best bet is to install the SBT plugin by adding the
 following to your project/plugins.sbt:

addSbtPlugin("org.scalastyle" %% "scalastyle-sbt-plugin" % "0.8.0")

You’ll need to then run the following command to generate the scalastyle-confi g.xml into the root
directory:

sbt scalastyleGenerateConfig

After that fi le has been generated you can take a look into it and note that any of the rules can
be modifi ed to fi t your individual needs. For a full breakdown of those rules, you can check out
the Scalastyle: Implemented Rules page located here: http://www.scalastyle.org/rules-
0.8.0.html. You can now run sbt scalastyle, which will generate a target/scalastyle-result.xml
that also gives back feedback in the CLI for any style errors that arise during the check.

One of the nicer features of scalastyle is the ability to share a single scalastyle confi guration fi le
across multiple projects by supplying a scalastyleConfigUrl in your build SBT. Typically, you can
use the s3cmd to connect to a private s3 bucket, which can be set up similar to the example from the
scalastyle documentation:

lazy val updateScalaStyle = taskKey[Unit]("updateScalaStyle")

updateScalaStyle := {
 val secretKey = sys.env.get("S3_SECRET_KEY")
 val accessKey = sys.env.get("S3_ACCESS_KEY")
 val configUrl = "s3://bucket_name/configs/scalastyle-config.xml"
 (secretKey, accessKey) match {
 case (Some(sk), Some(ak)) =>
 val result: Int = file("target/scalastyle-config.xml") #< s"s3cmd
 --secret-key=$sk --access-key=$ak get $configUrl" !

 case _ =>
 println(s"Was unable to retrieve secretKey: $secretKey or accessKey:
 $accessKey from system variables")
 }
}

This will attempt to grab the Scala style confi guration fi le from s3 when you execute the
 updateScalaStyle task. You can also automate the task during a compile or test run by adding the
following:

(scalastyle in Compile) <<= (scalastyle in Compile) dependsOn updateScalaStyle

(scalastyle in Test) <<= (scalastyle in Test) dependsOn updateScalaStyle

Another customization feature that is available to you is the ability to create your own rules and add
them inside the scalastyle-confi g.xml. To accomplish this it can be helpful to create a utility class
within the project using scalastyle.

http://www.scalastyle.org/rules-0.8.0.html
http://www.scalastyle.org/rules-0.8.0.html

Scaliform ❘ 81

c06.indd 05/05/2016 Page 81

SCALIFORM

Scaliform is a code formatting utility, which can be used to keep all of your code in a single
style. With a wide range of confi guration options, any Scala project can immediately benefi t by
 adding this dependency. The library can be used as a standalone CLI tool available here:
https://github.com/scala-ide/scalariform. Or it can be integrated into SBT through a plugin
by adding the following to your projects build SBT fi le:

resolvers += "Sonatype OSS Releases" at "https://oss.sonatype.org/service/
 local/staging/deploy/maven2"

addSbtPlugin("org.scalariform" % "sbt-scalariform" % "1.6.0")

After this, you can start up SBT and run the following:

sbt scalariformFormat

This will go through the code in your project and format according to the default settings of scali-
form. Usually it’s worth some discussion within your team before applying styling and coming to a
consensus for which advanced options you may want to include in the code base for a meaningful
discussion.

The below advanced confi guration has resulted in the least amount of bikeshedding, since the styl-
ing is conservative enough not to raise many issues.

//build.sbt
import scalariform.formatter.preferences._
import com.typesafe.sbt.SbtScalariform

SbtScalariform.scalariformSettings

ScalariformKeys.preferences := ScalariformKeys.preferences.value
 .setPreference(AlignSingleLineCaseStatements, true)
 .setPreference(DoubleIndentClassDeclaration, true)
 .setPreference(placeScaladocAsterisksBeneathSecondAsterisk, true)
 .setPreference(IndentLocalDefs, true)
 .setPreference(IndentPackageBlocks, true)
 .setPreference(IndentSpaces, 2)
 .setPreference(MultilineScaladocCommentsStartOnFirstLine, false)

The phrase SbtScalariform.scalariformSettings will by default start formatting your project
when the compile task or test:compile is run. If you only want to use Scalariform when invoked,
make sure you use defaultScalariformSettings instead. This can be helpful if you don’t want
to have your code restructuring itself after every compile. That said, when using editors like vim or
sublime, it can be a reassuring sight to see your code automatically reformatting itself after you save
while having a watch on the compile task.

https://github.com/scala-ide/scalariform

82 ❘ CHAPTER 6 SCALA STYLE/LINT

c06.indd 05/05/2016 Page 82

SCAPEGOAT

Another popular lint tool for your arsenal is Scapegoat, a younger project than scalastyle, but with
some great linting operations (and a huge list of 107 inspections) that can benefi t any code base.
Scapegoat will fi nd issues with code and report them to the console and generate html/xml reports
that can give you some good feedback in your browser.

To install, you only need to add the autoplugin to your project/plugin.sbt:

addSbtPlugin("com.sksamuel.scapegoat" %% "sbt-scapegoat" % "1.0.4")

Now specify the version in your build via:

scapegoatVersion := "1.1.0"

Now you only need to invoke the scapegoat task in SBT to have it generate the above reports, which
you’ll fi nd in target/scala-2.11/scapegoat-report. The scapegoat task by default will regenerate those
reports after each invocation, but you can customize the report generation to only account for
changes between runs by changing the setting scapegoatRunAlways to false.

One of the nice features of Scapegoat is the ability to suppress a warning by using the java.lang
.SuppressWarning annotation around any method that you want the linter to skip over. This can
be benefi cial when you’re aware that the code you’re writing is breaking the rules, but that it is for
the greater good.

Class Temp {
 @SuppressWarnings(Array("BigDecimalDoubleConstructor"))
 def test() = {
 val x: BigDecimal = BigDecimal(1.2)
 x
 }
}

The reason to like scapegoat is because it does one thing really well. It checks your code for struc-
tural errors and announces them loudly when you run the scapegoat task. It gives you immediate
feedback, which is good to have on any project that doesn’t already have any structural analysis
tooling.

WARTREMOVER

Probably the easiest to customize out of the lint tools reviewed so far, WartRemover is a stable inclu-
sion into your linting stack. First install the SBT plugin:

addSbtPlugin("org.brianmckenna" % "sbt-wartremover" % "0.14")

When running WartRemover for the fi rst time, all of the checks and patterns are turned off by
default. This allows you to slowly start leveling up the heat on what “warts” you want to start
 verifying and fi xing. You can do this by adding a small confi guration to the build.sbt.

wartremoverErrors ++= Warts.unsafe

WartRemover ❘ 83

c06.indd 05/05/2016 Page 83

Then it’s only a matter of running run or compile and getting feedback from the compiler. If you
want to ensure that things were confi gured properly, run the task wartremoverErrors, which shows
you a list of warts that have been loaded into SBT. You can also add a quick wart to your code to
test that the auto-plugin has hooked in properly:

var i = 100

Now compile and watch WartRemover do its magic.

Aside from the quick setup of WartRemover, you can take a quick tour of the current list of warts
by visiting https://github.com/puffnfresh/wartremover, or start creating your own. Following
the example provided by the WartRemovers github page, let’s break down what it’s doing to create
your own:

//full example
import org.brianmckenna.wartremover.{WartTraverser, WartUniverse}

object Unimplemented extends WartTraverser {
 def apply(u: WartUniverse): u.Traverser = {
 import u.universe._
 import scala.reflect.NameTransformer

 val notImplementedName: TermName = NameTransformer.encode("???")
 val notImplemented: Symbol = typeOf[Predef.type].member(notImplementedName)
 require(notImplemented != NoSymbol)
 new Traverser {
 override def traverse(tree: Tree) {
 tree match {
 case rt: RefTree if rt.symbol == notImplemented =>
 u.error(tree.pos, "There was something left unimplemented")
 case _ =>
 }
 super.traverse(tree)
 }
 }
 }
}

During execution of the above code, WartTraverser is going to check out any code that has a method
that is implementing ??? and throws an error with the line stating “There was something left
unimplemented.” If you are not familiar with the Scala refl ection libraries, you can get some back-
ground by checking out the Scala documentation here: http://docs.scala-lang.org/overviews/
reflection/symbols-trees-types.html. This will give you some insight into the require state-
ment from the above code snippet:

require(notImplemented != NoSymbol)

NoSymbol is “is commonly used in the API to denote an empty or default value.”

val notImplementedName: TermName = NameTransformer.encode("???")
val notImplemented: Symbol = typeOf[Predef.type].member(notImplementedName)
require(notImplemented != NoSymbol)

https://github.com/puffnfresh/wartremover
http://docs.scala-lang.org/overviews
http://docs.scala-lang.org/overviews/reflection/symbols-trees-types.html

84 ❘ CHAPTER 6 SCALA STYLE/LINT

c06.indd 05/05/2016 Page 84

This is working as a guard to detect that the method contains that ??? symbol. While this can be
a little confusing when you fi rst start to implement your own warts or anti-pattern checks in your
code base, it can become highly benefi cial.

SCOVERAGE

Statement coverage is a white box testing technique, which involves the execution of all the state-
ments at least once in the source code. It is a metric, which is used to calculate and measure the
number of statements in the source code that have been executed. Why would you want that in
Scala? Often in your Scala statements you may end up creating a truly magnifi cent one liner. It is
one of those one-liners that may impress your friends, like so (adapted from http://rosettacode
.org/wiki/FizzBuzz#One-liner_geek):

def fizzBuzz(): Seq[String] = for (i <- 1 to 100) yield(Seq(15 -> "FizzBuzz",
 3 -> "Fizz", 5 -> "Buzz").find(i % _._1 == 0).map(_._2).getOrElse(i.toString))

Since so much is going on in this line, getting back information about if this line is covered through
a test is nearly impossible. You should split the functionality up and create a unit test that is able to
test each of the sections. However, thanks to Scoverage you won’t have too.

Basically, all you have to do is write regular unit tests! Then, Scoverage (a tool that offers aforesaid
statement and branch coverage) can be used to give you a report of how much of your code base has
been covered.

The setup is straightforward. First, you add:

addSbtPlugin("org.scoverage" % "sbt-scoverage" % "1.3.5")

Then you go into the SBT console and type coverage and then type test, which will generate a report
of your code base with percentage of complete coverage for each fi le. The green represents coverage
and the red represents missing coverage. Depending on how many unit tests you’ve used while devel-
oping your project, this will refl ect that commitment in the report.

One of the nice things with Scoverage is that it has integrations with Sonarqube (http://www
.sonarqube.org/#), which is a “central place to manage code quality.” If you haven’t used it
before, it can be seen in the demo here: https://nemo.sonarqube.org/. Sonarqube is a really nice
way to start getting visibility on your code coverage and a great way to show off just how much
technical debt you’ve been able to crunch through.

SUMMARY

 This chapter has covered many of the most popular styling/lint tooling to be used with Scala.
These tools come from the open source world, and they of course increase the effi ciency of your
Scala applications and services. Be sure to try these tools, whether it is Scaliform, Scapegoat,
WartRemover, or Scoverage, since they will make your Scala code easier to maintain.

http://rosettacode
http://www.sonarqube.org/#
http://www.sonarqube.org/#
https://nemo.sonarqube.org
http://rosettacode.org/wiki/FizzBuzz#One-liner_geek

c07.indd 04/18/2016 Page 85

Testing
WHAT’S IN THIS CHAPTER?

 ➤ Introducing Scala testing frameworks

 ➤ Using property based testing

 ➤ Tapping into unit testing

 ➤ Applying integration testing

 ➤ Mastering mocking services

Learning to write tests is one of the foundations that leads to a reliable and maintainable
code base. With frameworks like ScalaTest, Spec2 and other mature frameworks, this chapter
examines some of the most popular ways to create tests that can provide value to the longevity
of your code.

Let’s quickly review the common terminology for the categories of tests that are covered:

 ➤ Unit Tests: Single pieces of code that you want to test, which are usually best for iden-
tifying failures in functions and algorithms.

 ➤ Integration Tests: Shows the major system components working together properly.
There are no mock objects, and everything is real as it would be in the live system.

 ➤ Acceptance Tests: Basically these are “your feature stories,” asking yourself if you built
the right thing based on the business requirements.

 ➤ Property Tests: Tests the behavior of a function using generated inputs to “stress test”
the validity of a piece of code.

 ➤ Test-Driven Development (TDD): writing tests ahead of the feature (that’s it!), which is
handy when you want to describe the actions of a feature before you start implement-
ing. You then rely on refactoring to create a suite of tests at a low level of regression.

7

Professional Scala. Aliaksandr Bedrytski, Janek Bogucki, Alessandro Lacava, Matthew de Detrich and Benjamin Neil
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

86 ❘ CHAPTER 7 TESTING

c07.indd 04/18/2016 Page 86

 ➤ BDD (Business-Driven Development): writing tests in a more natural semantic way. Really
it’s the same as TDD, with the test descriptions being as human readable as possible, as well
as a stronger focus on the “feature” rather than the function.

 ➤ DDD (Domain-Driven Development): Is a software development approach that attempts to
bridge a project’s core domain and logic with collaboration between technical and domain
experts.

 ➤ ATDD (Acceptance Test-Driven Development: A methodology similar to TDD, but
different.

These glossary terms are now out of the way. The world of testing in Scala is fairly large and it takes
a good deal of time to understand what frameworks your code base may benefi t from. Even if you
don’t end up using all of the techniques, it’s always benefi cial to give them a try. Each test you write
for yourself and your team will help you learn the functionality and limitations of your code base.
At the end of the day this will help you and your team grow. So don’t get frustrated!

SCALATEST

ScalaTest (http://www.scalatest.org/) is a fl exible and popular testing framework for both Java
and Scala. It takes the best parts of Cucumber, while integrating with a rich feature set of tools to
extend SBT, Maven, scalaCheck, Intellij, and the list goes on to accommodate almost any testing
requirement. It even provides extensions to write in all of the popular testing methodologies for you
or your team, no matter what the previous background. Are you used to writing tests from Ruby’s
Rspec tool? You can use FunSpec and experience the same advantages. Coming from testing in Play
using specs2? You can use WordSpec to simulate the same advantageous testing style.

The biggest bonus of using ScalaTest is that you have freedom to work out what standard you want
to start writing your tests in without having to download a ton of different libraries and testing each
individually. With ScalaTest it’s as easy as plugging in the dependency and getting to work writing
tests to verify your code base. To get started, add the following dependencies to your build.sbt fi le or
Dependencies.scala fi le:

libraryDependencies ++= Seq("org.scalactic" %% "scalactic" % "2.2.6",
 "org.scalatest" %% "scalatest" % "2.2.6" % "test")

It’s recommended to include the “SuperSafe Community Edition” Scala compiler plugin, which
“will fl ag errors in your ScalaTest (and Scalactic) code at compile time.” It’s worth noting that scala
2.11.7 does have some of that functionality included, which can be added to the fi le ~/.sbt/0.13/
global.sbt:

resolvers += "Artima Maven Repository" at "http://repo.artima.com/releases"

Finally, add the autoplugin to your project’s plugins.sbt fi le:

addSbtPlugin("com.artima.supersafe" % "sbtplugin" % "1.1.0-RC6")

That’s it for the setup. Be sure to read from their website about the subject: http://www
. scalatest.org/user_guide/selecting_a_style.

http://www.scalatest.org
http://www
http://www.scalatest.org/user_guide/selecting_a_style

Integration Testing ❘ 87

c07.indd 04/18/2016 Page 87

UNIT TESTS

Unit tests are the zerg of the testing world. They are to be used as much as possible for testing indi-
vidual chunks of code with little variance between input and output. As such, if bugs are found from
quality assurance, it’s usually a good idea to write down the bug as a unit test and solve it so that in
the future you can be sure that any new features don’t end up breaking a previously found issue. For
example, you can setup a simple unit test using the funSpec like the following:

class ExampleSpec extends FunSpec {
 describe("Adding 1 to 1") {
 it("should equals 2"){
 assert(1+1 == 2)
 }
 }
}

This asserts that 1 plus 1 equals 2, but with matchers you can use should be instead of assert:

class ExampleSpec extends FunSpec with Matchers{
 describe("Adding 1 to 1") {
 it("should equals 2"){
 1+1 should be(2)
 }
 }
}

Or you can test for an error being thrown:

"A number error" should "throw a divide by zero" in {
 a[java.lang.ArithmeticException] should be thrownBy {
 1 / 0
 }
 }

You can also test for type inheritance:

sealed trait Animal
sealed trait Mineral
object Cat extends Animal
"An object" should "be inherit properly" in {
 val cat = Cat
 cat shouldBe a [Animal]
 cat should not be a [Mineral]
}

There are a plethora of other small tests you can perform, but the main thing to get out of unit tests
is that they are a fantastic way to get one-to-one matches for expected outputs of a function.

INTEGRATION TESTING

Integration testing is an umbrella term that can encompass data-driven tests, performance tests
(benchmarking like ScalaMeter: https://scalameter.github.io/), and acceptance tests that use

www.allitebooks.com

https://scalameter.github.io
http://www.allitebooks.org

88 ❘ CHAPTER 7 TESTING

c07.indd 04/18/2016 Page 88

Selenium DSL. Each one gives you a better understanding of your system at sub production levels,
and can be insightful given certain criteria.

Data-Driven Tests
As stated earlier, these are tests that hook into data to throw them against a system in your code-
base. Consider the object HorseOfCourse:

object HorseOfCourse{

 def isHorseOrMrEd: Animal => String = {
 case PaintHorse => "horse"
 case MrEd => "mr ed"
 case _ => "not a horse or mr ed"
 }

 def apply(x: Animal) = isHorseOrMrEd(x)

}

You can set up a few tests that ensure the proper test validation for horses and Mr. Ed:

val allHorses = Array(PaintHorse, PaintHorse, MrEd)

"A Horse" should "always be a horse" in {
 for(horse <- allHorses.filter(_ == PaintHorse)){
 horse should be (PaintHorse)
 }
}

it should "unless its the famous Mr. Ed" in {
 val mrEd = allHorses contains MrEd
 mrEd should be (true)
}

it should "understand the difference between horses" in {
 for(horse <- allHorses){
 val isItAHorse = HorseOfCourse(horse)
 horse match {
 case PaintHorse => isItAHorse should be("horse")
 case MrEd => isItAHorse should be("mr ed")
 case _ => isItAHorse should be("not a horse or mr ed")
 }
 }
}

These sorts of tests can be bit cumbersome, since you build up more input from end users.
However, that’s part of the benefi t, since you’re using all that user input to then drive the tests in
your suite. Along those same lines, property testing has huge value when creating data-driven tests
in lieu of real data from logs or QA, since property tests can generate the inputs, leaving you only
having to worry about the tests and underlying code (and possibly tweaking the generator). Let’s
take a quick look over property testing in ScalaTest. Given a simple class that generates the sum of
a series:

Integration Testing ❘ 89

c07.indd 04/18/2016 Page 89

import scala.language.postfixOps

object MathFun {
 def sumOfSeries(range: Int): Double = {
 1 to range map (x => 1.0 / (x * x)) sum
 }
}

Using this simple sum, you can then create a property test to determine if there are any holes in the
logic.

import org.scalatest._
import org.scalatest.prop.GeneratorDrivenPropertyChecks

class MathFunSpec extends WordSpec with GeneratorDrivenPropertyChecks
 with Matchers {

 implicit override val generatorDrivenConfig = PropertyCheckConfig
 (minSuccessful = 3)

 "A series of numbers" should {
 forAll { (n: Int) =>
 whenever (n > 1) { MathFun.sumOfSeries(n) should be > 0.0 }
 }
 }
}

You’ll note that the minSuccessful is set to a small value for a successful threshold, but this test
should quickly fail. The sum of ranges has no protection for an extremely large number or a zero,
neither of which we prepared for, which is the beauty of using property-based checking (this can
also give your CPU a run for its money).

def sumOfSeries(range: Int): Double = {
 if(range <= 0) 0.0
 else if (range >= 32767) 0.0
 else {
 1 to range map (x => 1.0 / (x * x)) sum
 }
}

While these are not the best defaults, they will accommodate the edge cases that property checking
has found.

Performance Testing
Usually, when it comes to micro benchmarking you shouldn’t try to over optimize your code until
the system/application has been completed. When it comes to all of the different libraries and
approaches for getting something done in Scala, there should be no fundamental issue getting an
idea of what the performance of each approach produces, even if those results vary to some degree
based on hardware. To those ends, a micro benchmarking framework such as ScalaMeter (https://
scalameter.github.io/) can be incredibly useful in fi nding ineffi ciencies in code, and help you
start taking a granular approach to the logic you build in your systems.

https://scalameter.github.io
https://scalameter.github.io

90 ❘ CHAPTER 7 TESTING

c07.indd 04/18/2016 Page 90

To get started, add the following to your build.sbt:

resolvers += "Sonatype OSS Snapshots" at
 "https://oss.sonatype.org/content/repositories/snapshots"

libraryDependencies += "com.storm-enroute" %% "scalameter" % "0.8-SNAPSHOT"

testFrameworks += new TestFramework("org.scalameter.ScalaMeterFramework")

logBuffered := false

You can use the 0.7 ScalaMeter version if you prefer a stable version, but always check Maven,
because these versions may have changed. You will also want to disable parallel execution in tests,
which we usually disable in the SBT console before running benchmarking tests. You can also have
the build.sbt fi le set to disable this by default using the following setting:

parallelExecution in Test := false

After that setup you can begin writing some inline benchmarking. A good feature that has been
introduced in 0.7 is to wrap any function or method with the measure method and instantly get
feedback on the performance of that code. This feature can be a great asset while writing code that
can be executed. For a quick example, let’s borrow for the ScalaMeter examples:

import org.scalatest.FunSuite
import org.scalameter._

class InlineBenchmarkTest extends FunSuite {
 test("Should correctly execute an inline benchmark") {
 val time = measure {
 for (i <- 0 until 100000) yield i
 }
 println(s"Total time: $time")
 }
}

Hopefully this gives you a small look into how to integrate ScalaMeter into your project, because
that integration can give you some fantastic looks into bottlenecks and other performance-based
issues early on in your coding.

Acceptance Testing
Acceptance testing is a methodology that also has concrete support in ScalaTest. Usually, the best
way to think about acceptance testing is the same way you would think about black box testing,
where you need to test an external API, a web page, or really anywhere you want to simulate actions
in your system as if it were in production. Using a tool like Selenium is one way you can create a
phantom user to interact with your application or external API—collect results and then provide
feedback in terms of a real user running through the acceptance criteria of your application.

To start, you may want to take a look at the Selenium documentation from ScalaTest that is avail-
able (http://www.scalatest.org/user_guide/using_selenium). To get started using Selenium
we’ll need to modify the library dependencies in the build.sbt fi le.

libraryDependencies += "org.seleniumhq.selenium" % "selenium-java"
 % "2.35.0" % "test"

http://www.scalatest.org/user_guide/using_selenium

Integration Testing ❘ 91

c07.indd 04/18/2016 Page 91

You can then reload SBT and compile it to fetch that dependency. Next, you can simulate an API to
then test with Selenium. Let’s use http4s with the blaze server to set up a quick API.

import org.http4s.HttpService
import org.http4s.dsl._
import org.http4s.server.blaze.BlazeBuilder

object Api extends App{
 val service = HttpService {
 case GET -> Root / "testRoute" =>
 Ok("This is a test route")
 }
 BlazeBuilder.bindHttp(8080)
 .mountService(service, "/")
 .run
 .awaitShutdown()
}

Go ahead and start that up in SBT and check it out in your browser by going to http://
localhost:8080/testRoute, where you should see the phrase “This is a test route.” You can
 automate this test by creating the Selenium Test as follows:

import org.scalatest.{ShouldMatchers, FlatSpec}
import org.scalatest.selenium.HtmlUnit

class ApiSpec extends FlatSpec with ShouldMatchers with HtmlUnit {

 val host = "http://localhost:8080/"

 "This is a test route" should "should have the test content" in {
 go to (host + "testRoute")
 pageSource should be ("This is a test route")
 }
}

The DSL for Selenium makes it incredibly easy to read the logic within this test. Basically “go to”
a URL, then check that the source is the proper phrase. While this is somewhat simplistic, you can
do some fairly impressive testing. In the next example, you will do a search on Google for the rotten
tomatoes score for Groundhog Day, use the cssSelector to fi nd the rating fi eld from the search
results, and make sure it’s about a 90% rating.

"This is a google search for Groundhog Day" should "should be greater than 90%"
 in {
 go to "http://www.google.com"
 click on "q"
 textField("q").value = "Groundhog Day Rotten Tomatoes"
 submit()
 eventually {
 val rawRating = find(cssSelector("div.f.slp")).get.underlying.getText
 val rating = rawRating.replaceAll("\n","").replaceAll(" Rating:
 ","").replaceAll("%.*$","").toInt
 rating should be > 90
 }
}

http://localhost:8080/testRoute
http://localhost:8080/testRoute

92 ❘ CHAPTER 7 TESTING

c07.indd 04/18/2016 Page 92

You’ll need to add the Eventually trait, since the search takes a moment for HtmlUnit to complete.

import org.scalatest.concurrent.Eventually

You should now have an idea of just how easy it is to get some feedback for the internal and exter-
nal APIs within your system, and you can start using Selenium to make sure the results you see are
within normal working parameters.

Mocks
Given how common they are in testing, let’s examine stubs and mocks. Stubs are a simulation of an
object’s behavior, and mocks are an expectation of what a stub will produce. With ScalaTest and
a mockito dependency, you can achieve simple testing of traits, classes, and objects by “training”
those asserts to see what expectations you can get out of them.

In terms of how stub/mock testing works in Scala, let’s use the mockito library and implement some
basic tests for a bowling league service.

First, add the following library dependency to the build.sbt:

"org.mockito" % "mockito-all" % "1.10.19"

Then, let’s add the trait for the bowling league service:

trait BowlingLeague {
 val leagueName: String
 val leagueRules: LeagueRules

 def addTeamToLeague(team: Team): Future[Boolean]
 def removeTeamFromLeague(team: Team): Future[Boolean]

 def teamStandings() : Future[Standings]
}

You can start “mocking” out the adding and removing of leagues from the service:

class BowlingLeagueSpec
 extends FunSuite
 with ShouldMatchers
 with MockitoSugar
 with ScalaFutures {

 val players: Seq[Player] = Seq(
 Player("Charlie", "Brown", 100),
 Player("Linus", "Pelt", 105),
 Player("Lucy", "Pelt", 125),
 Player("Sally", "Brown", 85)
)

 val testTeam = Team(
 "Pea Shooters",
 players
)

Load Testing ❘ 93

c07.indd 04/18/2016 Page 93

 test("Adding a team") {
 val bowlingLeague = mock[BowlingLeague]

 when(bowlingLeague.addTeamToLeague(testTeam)).thenReturn(Future(true))

 val addTeam = bowlingLeague.addTeamToLeague(testTeam)

 addTeam.futureValue should equal(true)
 }

 test("Removing a team") {
 val bowlingLeague = mock[BowlingLeague]

 when(bowlingLeague.addTeamToLeague(testTeam)).thenReturn(Future(true))
 when(bowlingLeague.removeTeamFromLeague(testTeam)).thenReturn(Future(true))

 val remTeam = bowlingLeague.removeTeamFromLeague(testTeam)

 remTeam.futureValue should equal(true)
 }
}

By creating a mock of the bowling service, you can create an expectation of what adding and
 removing a team from league methods does. In the above code, you add an expectation that adding
a team will return a future of true. This is a great way to skip having a hermetic server that is actu-
ally connecting to a database for a bowling league service, and just ensures that your interface is
working properly.

LOAD TESTING

Using load testing within your application can fi nd memory leaks and slow code paths, and can help
you fi nd issues in your application before launching in production. Performance testing provides
insight into how your application will perform under a controlled amount of stress. For load testing
in Scala, let’s examine the fantastic Gaitling project.

Gaitling is a load testing tool that allows you to write scenarios in Scala to stress test your applica-
tion. While this product is typically used for testing the speed and effi ciency of internal APIs, you
can customize Gaitling for other protocols as well. To get started you’ll need to add the Gaitling
dependency to your SBT build:

"io.gatling.highcharts" % "gatling-charts-highcharts" % "2.1.7" % "test",
"io.gatling" % "gatling-test-framework" % "2.1.7" % "test"

Also, add the SBT plugin, by placing the following in project/plugins.sbt:

addSbtPlugin("io.gatling" % "gatling-sbt" % "2.1.5")

Then, much as we coded up the tests for Selenium, begin by creating the scenario for the load test:

import io.gatling.core.scenario.Simulation
import io.gatling.core.Predef._

94 ❘ CHAPTER 7 TESTING

c07.indd 04/18/2016 Page 94

import io.gatling.http.Predef._

import scala.concurrent.duration._

class ApiSim extends Simulation {
 val numUsers = 100
 val host = "http://127.0.0.1:8080"

 val httpConf = http.baseURL(host)

 val scn = {
 scenario(s"testing the testResource ($host)")
 .exec(
 http("testRouteSim")
 .get("/testRoute")
 .check(status.is(200)
)
)
 }

 setUp(scn.inject(rampUsers(numUsers) over 10.seconds)).protocols(httpConf)
}

The above code is attempting to check the /testRoute for a 200 status code 100 times, and then
reporting back the request time metrics along with other helpful information. This includes response
time distribution, response time percentiles, the number of requests per second, and the path to the
report that displays at the end of the simulations run. While expanding your own simulations, this
provides a result similar to when we used ScalaMeter, which provides a benchmark for how much
traffi c your application can handle at a small level.

Load testing also helps you manage production levels of traffi c in a simulated stage environment
where you can set up “clusters” of gatling boxes to test the infrastructure. The only downside is that
currently there is no way to correlate that information other than SCP’n the results to a central box
or to your laptop, and then running the report against all of the logs generated by gatling.

SUMMARY

You now have a better understanding of the tools necessary to test your Scala code. This chapter
covered the many benefi ts of using ScalaTest, and also examined the benefi ts of using unit testing,
integration testing, data-driven testing, and performance and acceptance testing. We also exam-
ined stubs, which are a simulation of an object’s behavior; and mocks, which are an expectation of
what a stub will produce. Load testing allows you to hunt down memory leaks and slow code paths
prior to launching your app in production, and the Gaitling project is used in load testing. As with
all other languages, it is important to test out all of your Scala code, and the tools described in this
chapter will help.

c08.indd 05/05/2016 Page 95

Documenting Your Code
with Scaladoc

WHAT’S IN THIS CHAPTER?

 ➤ Understanding the structure of Scaladoc documentation

 ➤ Applying wiki syntax and tags

 ➤ Generating API documentation from commented source code

 ➤ Publishing your API documentation on the web

 ➤ Learning advanced documentation techniques

Code documentation can take many forms, ranging from manually authored web pages,
README.md fi les, and generated API docs to no documentation at all. The nature of the
code and the intended audience have a role to play in choosing what is right for your project.
Suppose you have decided to document your code using Scaladoc. What’s next? In this chapter
you will learn about how to use Scaladoc syntax and the associated tooling to create docu-
mentation from Scaladoc comments embedded in your source code.

To get started you need to know what can be documented and what the formatting and link-
ing options are. You also need to be aware of the tooling options you can apply to generate the
API docs. Once you have your documentation generated, you need to know what to do next to
expose it to a wider audience.

You will also learn about the structure of Scaladoc, both at the source level and in the ren-
dered form. What options exist for generating the documentation from the command line, or
from Maven or SBT? What are the limits of wiki syntax? Examples in this chapter will illus-
trate these general rules.

8

Professional Scala. Aliaksandr Bedrytski, Janek Bogucki, Alessandro Lacava, Matthew de Detrich and Benjamin Neil
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

96 ❘ CHAPTER 8 DOCUMENTING YOUR CODE WITH SCALADOC

c08.indd 05/05/2016 Page 96

WHY DOCUMENT YOUR CODE?

“Lack of documentation is becoming a problem for acceptance.”

—Wietse Venema, creator of Postfix

Creating high quality useful documentation is a time consuming business. You might reasonably ask
the question: Why bother? You have to decide where on the documentation continuum you want to
land. Should you provide no documentation at all because the unit tests are adequate documentation?
Or go with comprehensive documentation that has embedded REPL examples? Factors that feed into
your decision include the type of project you are developing, the anticipated project lifecycle, any
coding guidelines in force, the expected audience, and the cost of creating the documentation and
taking it forward through project iterations. This section will help you make these decisions.

Revealing the Benefi ts
Scaladoc plays a critical role making your code accessible to others, particularly when the luxury of
face-to-face contact is not an option. With a few concise words and pointed examples, you can ori-
ent the user and get them on a productive track. Scaladoc is an especially good choice for document-
ing library code. As an example of effective Scaladoc, take a look at the documentation for the Scala
Standard Library Regex class (http://www.scala-lang.org/api/current/#scala.util
.matching.Regex). With a handful of code examples linked with explanatory text, the class
becomes immediately accessible.

Scaladoc is far from the only option for documentation. Some libraries fl ourish while eschew-
ing Scaladoc almost entirely. Scaladoc sports the key advantage of being embedded in your code
and supporting a simple wiki syntax. Nearly all documentation authoring can be accomplished
without switching out of your IDE.

Bookending the Continuum
As a Scala developer you already have a good idea of what makes for useful documentation. This
helps when you start authoring your own documentation.

Some projects, such as ScalaTest, are ahead of the documenation curve (http://doc.scalatest
.org/2.2.6/index.html#org.scalatest.FlatSpec). But how is this layout achieved? You will
fi nd out later in this chapter. Let’s fi rst examine Scala documentation in general.

Choosing What to Document
Let’s explore what type of documentation is useful. If you have coding guidelines that stipulate proj-
ect documentation requirements then you’ll want to use the remainder of this chapter to learn how
to unleash the power of Scaladoc. If you have no guidelines, then consider creating a set of docu-
mentation objectives.

http://www.scala-lang.org/api/current/#scala.util.matching.Regex
http://www.scala-lang.org/api/current/#scala.util.matching.Regex
http://doc.scalatest.org/2.2.6/index.html#org.scalatest.FlatSpec
http://doc.scalatest.org/2.2.6/index.html#org.scalatest.FlatSpec

Scaladoc Structure ❘ 97

c08.indd 05/05/2016 Page 97

If, on the other hand, you are developing a library for others to use, you will need to determine if
Scaladoc can form part of the adoption path for your end users. If you decide to take this route,
later sections in this chapter cover the inclusion of examples in Scaladoc.

One fi nal question to explore is whether you have the opportunity to add Scaladoc after develop-
ment activities are complete. If the answer is no, then document the code incrementally as you
develop it. An advantage of interlacing documentation and development is that there is less context
switching. Even when your planned activities include a later documentation phase, you should eval-
uate bringing this forward and document as you code. The results are better and the net effort will
be lower. Let’s dive into Scaladoc and discover the many advantages of implementing it.

SCALADOC STRUCTURE

Scaladoc refers to three different things: the command line tool scaladoc, source code comments
with wiki syntax and tags, and the generated documentation viewed in a browser. The meaning will
normally be clear from the context. In this section you will see a breakdown of the structural ele-
ments of the generated documentation, and you will learn how to use the Scaladoc UI.

NOTE Throughout this section you will be shown examples taken from the
Scala Standard Library 2.11.7 API docs available at http://www.scala-lang
.org/api/.

Overall Layout
The generated Scaladoc is a collection of HTML pages that can be viewed with a browser. The fi les
can reside locally or they can be published on the web. Options for web publication are covered later
in this chapter.

These are the fi les and directory you see after generating the documentation using the scaladoc
command:

$ ls -1 scaladocs/
com/
deprecated-list.html
index/
index.html
index.js
lib/
package.html

Navigate to http://www.scala-lang.org/api/ and take a look at the overall layout of the page.
You will see in Figure 8-1 how it is divided into two sections: the index pane and the content pane.

http://www.scala-lang
http://www.scala-lang.org/api
http://www.scala-lang.org/api/

98 ❘ CHAPTER 8 DOCUMENTING YOUR CODE WITH SCALADOC

c08.indd 05/05/2016 Page 98

FIGURE 8-1

The index pane is where you search the documentation. The content pane displays documentation
grouped by class, trait, object or package. The UI is unsurprising to use, but investing a few minutes
studying each element will pay off. Time to dive in.

Index Pane
Your entry point into the documentation is the index pane shown in Figure 8-2. This pane is parti-
tioned into the search fi eld, the full index, the kind fi lter, and fi nally the entities grouped under the
package they belong to.

FIGURE 8-2

Searching for Entities
When you type text into the search box, the list of entities is restricted. The fi ltering behavior dif-
fers based on the presence or not of capital letters in the search text (see Figure 8-3). When the query
term is all lower case, the fi lter is case insensitive and contains a match on the fully qualifi ed name
of each entity.

Scaladoc Structure ❘ 99

c08.indd 05/05/2016 Page 99

This example shows packages, classes, and traits.

FIGURE 8-3

Including one or more capital letters in the query term applies a camel case match (see Figure 8-4).

FIGURE 8-4

The query box has a hidden feature in Scaladoc generated from Scala 2.11.7. Append a dollar to
your query term and this works in the same way as if it were part of a regular expression. For exam-
ple, Map$ will match AbstractMap not ImmutableMapFactory.

NOTE Use Alt-/ to jump to the query box. This also works for the query box on
the content pane.

Indexing It All
Underneath the query box you will fi nd a horizontal list of clickable letters bookended by a hash
and the word deprecated (see Figure 8-5). Clicking any of these elements will show a listing of enti-
ties, methods, functions, and public and protected vals and vars.

100 ❘ CHAPTER 8 DOCUMENTING YOUR CODE WITH SCALADOC

c08.indd 05/05/2016 Page 100

FIGURE 8-5

When you click R you will see what is shown in Figure 8-6.

FIGURE 8-6

Under each entry are links to the entities that contain the entry. You should be aware that when the
default Scaladoc generation options are used, nested types will not be found from the query box. An
example of this can be found in the Z section where Zero is shown contained in Duration, but que-
rying for Z does not show Zero.

NOTE Although protected variables are listed in the index, they are not
 visible on the content pane. An example of this is the log val from the
scala. collection.mutable.History class.

Occupying the next slot down you will encounter the kind fi lter. This toggles between hiding pack-
ages and not hiding them. This is useful when you are seeking an overview of the packages. Once
you have arrived at the package of interest, click show to reveal the contained entities.

When you have restricted the display to packages, entering query text will automatically turn off the
package restriction.

Figure 8-7 shows the index pane restricted by query text with some packages collapsed. This fi gure
also serves to illustrate the entities type indicator: O for object, C for class, and T for trait. Two col-
umns suffi ce for this as a class, and a trait cannot share the same name in the same package. The O,
C, and P letters are clickable and navigate the content pane directly to the entity type. Clicking the
entity name navigates to the class or trait unless there is only an object for the name.

Content Pane
The content pane is on the right (see Figure 8-8). After you have clicked on a package, class, trait,
or object, information about the selected entity is displayed here. The pane is divided into three

Scaladoc Structure ❘ 101

c08.indd 05/05/2016 Page 101

sections: top level information, fi ltering and ordering options, and entity member details. Each sec-
tion is described in the following text. Before you step though the process of adding Scaladoc to the
example project, a quick tour of the notable features of the content pane is in order. ParMap from
the standard library has this documentation.

FIGURE 8-7

Top-Level Information
Depending on what you select, you will be presented with information regarding a class, a trait, an
object, or a package. The types of information that are shown depend on both the type of entity and
the entity itself. Objects, for example, will not include a Known Subclasses section because objects
do not have subclasses.

Starting from the top and working down you will see a large letter: O, C, T, or P denoting Object,
Class, Trait, or Package respectively. Next to this is the entity name. The large letter is clickable. If
you start at a class Foo, which has a companion object, clicking the C navigates to the object Foo,
and the letter switches to O. One way to think about this is that clicking takes you to the next entity
related by name if such an entity exists. There are a limited set of such relationships that can exist:

 ➤ Class and Object

 ➤ Trait and Object

Over to the right (see Figure 8-8) you fi nd the label Related Docs: introducing links to the related
entity if it exists and a link to the package the entity is in. Hover the mouse over the top right to
reveal a hidden Scaladoc feature. A link icon appears. Right click and copy to obtain a link to use
to navigate directly to the entity page you are currently on. Permalinks are also available for each
entity member. See Figure 8-9 for an example.

102 ❘ CHAPTER 8 DOCUMENTING YOUR CODE WITH SCALADOC

c08.indd 05/05/2016 Page 102

FIGURE 8-8

Scaladoc Structure ❘ 103

c08.indd 05/05/2016 Page 103

FIGURE 8-9

Following the entity name is the entity signature. This corresponds to the code you fi nd in a source
fi le without the template body. Class parameters, variance annotations, optional superclass, and
mixins will be seen here. Hovering over a name will show the fully qualifi ed version of the name.

Residing under the entity signature is the class, trait, object, or package level documentation. The
text here is derived from the Scaladoc comments the author added to the entity before the entity
header. Beneath the main comment are the type parameter comments, then the attribute block con-
taining, in this case: Self Type, Source, and Since. Later you will see the full list of tags and wiki
syntax you can use to directly control the content of the sections described in this paragraph.

Moving down from the attribute block you can see Linear Supertypes that show the supertypes in
linearization order. Known Subclasses is self-explanatory. Type Hierarchy shows a view of the type
hierarchy centered around the current entity. It shows the directly declared supertype and mixins,
implicit views to other types, and some subclasses.

The boxes are clickable and will switch the content pane to the new entity. If you select a package,
the Content Hierarchy will be shown. There is also a type hierarchy diagram that shows the entities
contained directly in the package. Click the diagram to have it pop up in a larger window.

Filtering and Ordering Options
After the diagrams you are presented with controls for fi ltering and ordering the member documen-
tation that occupies the remainder of the content pane. The fi rst element is the query box.

NOTE Use Alt-/ to jump to query box.

Try this out:

 ➤ Navigate to http://www.scala-lang.org/api/current/#package.

 ➤ Use the index pane fi lter to fi lter by LL.

 ➤ Pick LinkedList.

 ➤ Enter head into the content pane query box. You will see method with head in the method
name or description.

 ➤ Add tail to the content page query box. The box now contains “head tail” and the listed
members swells to include tail and a few other methods.

 ➤ Replace the query box content with withFilter.

http://www.scala-lang.org/api/current/#package

104 ❘ CHAPTER 8 DOCUMENTING YOUR CODE WITH SCALADOC

c08.indd 05/05/2016 Page 104

When you added tail into the query box, you saw a demonstration of the additive nature of the con-
tent pane query box. The query for withFilter included WithFilter in turn, demonstrating the
case insensitivity of the content pane query. Remember, you saw that the index page search was case
sensitive.

 Underneath the query box are buttons controlling the ordering. This will be touched on momen-
tarily. First a word about the Inherited buttons. Deselecting an inherited entity removes its member
from display, but that’s not the sum of it. There is valuable interaction with the query box to remem-
ber. For a member to show, it must satisfy the query box fi lter and be in an entity that is selected.
Try this now:

 ➤ Remain on LinkedList.

 ➤ Enter ++ in the query box.

 ➤ Note the presence of the ++ method.

 ➤ Deselect TraversableLike.

++ is removed from view when TraversableLike is deselected.

The ordering options commonly seen are: Alphabetic, By Inheritance. There is another option that
can be seen by navigating to the package documentation for scala.langauge, which is shown in
Figure 8-10.

FIGURE 8-10

You can see two groups in use: Language Features and Experimental Language Features. These
groups are defi ned by Scaladoc tags. You will be fi nding out how to defi ne your own groups later.

Scaladoc Structure ❘ 105

c08.indd 05/05/2016 Page 105

THE CLASS OF A THOUSAND METHODS BEGINS WITH A SINGLE DEF

Filtering and ordering of entity members is a welcome feature when working with
Scala where there is a tendency toward rich APIs with numerous methods.

Pop quiz: Which class in the Standard Library has the most methods? Would you
have guessed Byte with over 600 methods? Here’s the proof:

$ for f in $(find -name '*.html'); do echo $(grep -c 'def' $f) $f
; done|
 sort -rn|head -3
667 ./library/scala/Byte.html
581 ./library/scala/Char.html
558 ./library/scala/Short.html

Entity Member Details
A member can be a constructor, a method, a type, a type alias, or a value. The documentation pro-
vided for each member will be covered in depth when you learn how to add Scaladoc yourself. Here,
an important aspect of the alphabetic member ordering is described. Knowing the logic behind the
default ordering will allow you to benefi t more deeply from any API documentation you study.

Take a look at the documentation for Set from the Standard Library. In Alphabetic mode the mem-
bers are grouped under Instance Constructors, Type Members, Abstract Value Members, Concrete
Value Members, and Shadowed Implicit Value Members. Within each group the members are
ordered alphabetically. If you were looking at an entity with a member for each category you would
see the groups from Table 8-1.

TABLE 8-1: Entities by Category

GROUP DESCRIPTION

Instance Constructors Primary and auxiliary constructors.

Can included deprecated constructors.

Type Members Type aliases, traits and classes.

Can included deprecated members.

Abstract Value Members Abstract methods and values.

Can included deprecated members.

continues

106 ❘ CHAPTER 8 DOCUMENTING YOUR CODE WITH SCALADOC

c08.indd 05/05/2016 Page 106

GROUP DESCRIPTION

Value Members/Concrete
Value Members

Concrete methods and values.

Excludes shadowed implicit members and deprecated members.

When the Abstract Value Members group is not empty this
group is called Concrete Value Members; otherwise it is Values
Members.

Shadowed Implicit Value
Members

Shadowed or ambiguous implicits.

Excludes any deprecated members.

Deprecated Value Members Deprecated concrete value members.

The trait StringLike from the Standard Library uses fi ve of the six alphabetic groups. See Figure 8-11.

FIGURE 8-11

Entity member information is included in this order: Instance Constructors, Type Members,
Abstract Value Members, Value Members/Concrete Value Members, depending on presence of
abstract value members, Shadowed Implicit Value Members, and Deprecated Value Members.

INVOKING THE SCALADOC TOOL

Scaladoc generation is realized at the command line by the scaladoc tool. In the following exercise
you will create Scaladoc for Universe.scala, which is shown here:

package com.scalacraft.professionalscala.chapter8.cosmos

object Universe {
 type Cluster = String
 def getClusters: Seq[Cluster] = Nil
}

TABLE 8-1 (continued)

Invoking the Scaladoc Tool ❘ 107

c08.indd 05/05/2016 Page 107

Create the Scaladoc for Universe.scala by following these steps:

Step 1. Open a command prompt.

Step 2. Change directory to professional-scala/src/main/scala/com/scalacraft/professionalscala/
chapter8/cosmos.

Step 3. Invoke scaladoc passing the source fi les to process as arguments.

$ scaladoc -d output Universe.scala
model contains 7 documentable templates

Your Scaladoc is now generated and ready for viewing. List the output directory content fi rst.

$ ls -1F output
com/
index/
index.html
index.js
lib/
package.html

SCALADOC COMMAND OPTIONS

The scaladoc tool shares many options with scalac tool. You will see this when dis-
playing the scaladoc help,

$ scaladoc -help

If you look past the scaladoc section down to the scalac section you will fi nd the -d
option. It’s not obvious.

Step 4. Now open index.html in a browser. You will be greeted with a complete set of Scaladoc for
your one fi le project. This is shown in Figure 8-12.

FIGURE 8-12

108 ❘ CHAPTER 8 DOCUMENTING YOUR CODE WITH SCALADOC

c08.indd 05/05/2016 Page 108

WIKI SYNTAX

You can use wiki syntax to provide some visual fl air to your documentation. The wiki syntax
options are few and simple, and can be divided into two groups:

 ➤ Inline formatting

 ➤ Block elements

The following examples will take you through the essential techniques, leaving you with practical
experience applicable to your everyday documentation tasks.

Formatting with Inline Wiki Syntax
Follow these steps to start your journey into the world of Scaladoc formatting. Start with some
inline formatting examples.

If you would prefer not to enter the examples, but would still like to follow along, then you can use
the source code present in the Git repo identifi ed at the introduction section of the book.

Step 1: Create a class Galaxy in the same package as Universe,

package com.scalacraft.professionalscala.chapter8.cosmos

class Galaxy

Step 2: Add a class comment using each of the inline wiki syntax options:

/**
 * All inline styles: '''bold''', ''italic'', `monospace`, __underline__,
 ^superscript^, ,,subscript,,.
 */
class Galaxy

Step 3: Generate the Scaladoc from the command line, this time supplying a shell glob to identify all
the source fi les in the current directory:

$ scaladoc -d output *.scala
model contains 8 documentable templates

Step 4: Load the Scaladoc for Galaxy in your browser and compare the outcome to Figure 8-13.

FIGURE 8-13

NOTE Start your block comment with /**. This is required for the comment to
be processed as Scaladoc.

Wiki Syntax ❘ 109

c08.indd 05/05/2016 Page 109

Table 8-2 details the syntax for inline styling.

TABLE 8-2: Wiki Syntax and Effects

WIKI SYNTAX EFFECT

''' — three single quotes Embolden enclosed text

'' — two single quotes Italicize enclosed text

` — single backquote Monospace enclosed text

_ _ — two underscores Underline enclosed text

^ — single circumfl ex Superscript enclosed text

,, — two commas Subscript enclosed text

Nesting Inline Styles
Inline styles can be nested in the majority of cases as shown in Figure 8-14. One notable exception is
the failure to nest bold inside italic where an extraneous single quote escapes into the page.

FIGURE 8-14

If you are interested to learn the details of Scaladoc parsing, clone the Scala GitHub repo and look
at CommentFactoryBase.

The source for nested formatting examples is available from the GitHub repo as misc-examples/
InlineNesting.scala.

110 ❘ CHAPTER 8 DOCUMENTING YOUR CODE WITH SCALADOC

c08.indd 05/05/2016 Page 110

Structuring with Block Elements
Now that you have worked with inline formatting, you can move on to the block element, which
occupies the next level of the Scaladoc food chain. Block elements allow you to structure your docu-
mentation in several ways to enhance the presentation at a higher level. Again, wiki syntax is used
to facilitate this (see Table 8-3). In this section you will extend Galaxy to include examples of each
of the fi ve block elements that are listed here:

 ➤ Titles

 ➤ Paragraphs

 ➤ Code blocks

 ➤ Lists

 ➤ Horizontal rules

Step 1: Return to Galaxy and extend the Scaladoc comment to match this:

package com.scalacraft.professionalscala.chapter8.cosmos

/**
 * All inline styles: '''bold''', ''italic'', `monospace`, __underline__,
 ^superscript^, ,,subscript,,.
 *
 * =Title 1: Introduction=
 *
 * Paragraph: A galaxy is a system of stars, gas and dust.
 *
 * Create a galaxy using the `new` keyword,
 * {{{
 * /* Code example */
 * val zeta = new Galaxy
 * }}}
 *
 * ----
 *
 * ==Title 2: Types==
 *
 * There are different types of galaxy,
 *
 * - Elliptical
 * A. Maffei 1
 * A. Centaurus A
 * - Spiral
 * 1. M100

Wiki Syntax ❘ 111

c08.indd 05/05/2016 Page 111

 * 1. NGC 1365
 * - Barred Spiral
 * I. NGC 1300
 * I. NGC 1073
 * - Irregular
 * i. PGC 18431
 * i. IC 559
 * - Lenticular
 * a. Messier 84
 * a. Cartwheel Galaxy
 */
class Galaxy

Step 2: Generate the Scaladoc from the command line:

$ scaladoc -d output *.scala
model contains 8 documentable templates

Step 3: Load the Scaladoc for Galaxy in your browser and compare the outcome to Figure 8-15.

FIGURE 8-15

112 ❘ CHAPTER 8 DOCUMENTING YOUR CODE WITH SCALADOC

c08.indd 05/05/2016 Page 112

TABLE 8-3: Wiki Syntax for Block Types

BLOCK TYPE WIKI SYNTAX DESCRIPTION EFFECT

Title =Title=

==Title==

===Title===

====Title====

Balanced equal signs
surrounding text.
Maximum of four
equal signs.

Produces a header. As more
equal signs are added the header
becomes smaller. Single equal
signs produce a HTML h3 header,
which is unfortunately hard to read,
so please avoid. Use two, three, or
four equal signs.

Paragraph A blank line - Starts a new paragraph.

Code {{{code
example}}}

Three opening and
closing curly braces
with code examples
inside.

Styles the code example to look
like code using a monospace font
and ignoring inline wiki syntax for
the duration of the block.

List -, 1., A., a., i., I., A list item prefi x that
includes a trailing
whitespace.

This is described in Table 8-4.

Horizontal
line

---- At least four hyphens
on an otherwise
blank line. Must be
preceded by a blank
line.

Produces a horizontal bar.

The wiki syntax options for lists deserves further explanation starting with whitespace indenting.

In the context of lists, wiki syntax whitespace is signifi cant for lists. You should use two spaces per
level. Examine the source for Galaxy and you will note there are two spaces between the asterisk
and the hyphen that introduces the fi rst item as shown here.

 * - Elliptical

The subsequent indents also use two spaces. You can use other levels of indenting, but to avoid wast-
ing time on a triviality, always use two spaces to indent lists.

Finally, lists can have unindexed or indexed items depending the choice of item prefi x. Table 8-4
catalogs the available wiki syntax for list prefi xes.

TABLE 8-4: Wiki Syntax for Lists

PREFIX DESCRIPTION RESULT

- A hyphen followed by a space Bullets

1. The digit one, a period, and a space Numerical sequence: 1., 2., 3., …

Wiki Syntax ❘ 113

c08.indd 05/05/2016 Page 113

PREFIX DESCRIPTION RESULT

I. The letter I, a period and a space Uppercase Roman numerals: I., II., III., iv.,
v., vi., …

i. The letter i, a period and a space Lowercase Roman numerals: i., ii., iii., iv.,
v., vi., …

A. The letter A, a period and a space Uppercase letters: A., B., C., …, Z., AA.,
AB., …

a. The letter a, a period and a space Lowercase letters: a., b., c., …, z., aa., ab.,
…

WARNING At the time of writing, IntelliJ IDEA 15.0.2 disrupts the whitespace
used by the list wiki syntax when Reformat Code is used. As a workaround go
into Settings, search for Formatter Control, and enable formatter markers. Then
mark the comment as shown here with @formattter:off.

// @formatter:off
/**
 * My carefully formatted Scaladoc
 */

Linking
Scaladoc supports a compact wiki syntax for generating links. To include a link to a page anywhere
on the web, you should enclose the link in square brackets followed by an optional label that the
reader will see. The Scaladoc generated from the code below is shown in Figure 8-16.

/**
 * An external link: [[http://science.nasa.gov/astrophysics/]].
 *
 * An external link with a label:
 [[http://science.nasa.gov/astrophysics/ Astrophysics]].
 */
class ExternalLinks

FIGURE 8-16

You now have external links under your belt. Follow the next steps to learn how to link to objects,
traits, classes, methods, specifi c overloads of methods, and types. These are known as entity links.

Step 1. Add the new class Starquake shown below. Make sure you use the correct package.

114 ❘ CHAPTER 8 DOCUMENTING YOUR CODE WITH SCALADOC

c08.indd 05/05/2016 Page 114

package com.scalacraft.professionalscala.chapter8.cosmos.phenom

import com.scalacraft.professionalscala.chapter8.cosmos.Magnetar
import Starquake.QuakeMagnitude

class Starquake(val magnitude: QuakeMagnitude)

object Starquake {
 /** The magnitude of a quake. */
 type QuakeMagnitude = Int
 def triggerStarquake(magnetar: Magnetar): Starquake = new Starquake(1)
}

Step 2. Add Magnetar in the package above with Scaladoc links to Starquake elements as shown
here.

package com.scalacraft.professionalscala.chapter8.cosmos

/**
 * Magnetars are commonly found within a [[Galaxy]].
 *
 * Trigger a [[phenom.Starquake]] by calling
 * [[phenom.Starquake.triggerStarquake triggerStarquake on object Starquake]]
 */
class Magnetar(galaxy: Option[Galaxy]

Step 3. Generate the Scaladoc and confi rm that it appears as shown in Figure 8-17. Note, this time
it is necessary to extend the scaladoc command arguments to include the new package phenom. Use
this list of arguments for the remainder of this chapter unless otherwise advised.

$ scaladoc -d output *.scala phenom/*.scala

Test each link.

FIGURE 8-17

Step 4. Now imagine you have a requirement to allow the magnitude of the Starquake to be passed
in. This results in a method overload. Add the new method on the Starquake object as shown here:

object Starquake {
 /** The magnitude of a quake. */
 type QuakeMagnitude = Int
 def triggerStarquake(magnetar: Magnetar): Starquake = new Starquake(1)
 def triggerStarquake(magnetar: Magnetar, magnitude: QuakeMagnitude): Starquake =
 new Starquake(magnitude)
}

Wiki Syntax ❘ 115

c08.indd 05/05/2016 Page 115

Step 5. Generate the Scaladoc. You will encounter this warning:

Magnetar.scala:3: warning: The link target "phenom.Starquake.triggerStarquake" is
 ambiguous. Several members fit the target:
(magnetar: Magnetar, magnitude: QuakeMagnitude):
 Starquake in object Starquake [chosen]
(magnetar: Magnetar): Starquake in object Starquake

The Scaladoc was created, but the method ambiguity is resolved using a strategy you were not con-
sulted about.

Step 6. Fix this pernicious behavior by selecting the method overload precisely in Magnetar. Also
add a link to the new method. See below for details.

/**
 * Magnetars are commonly found within a [[Galaxy]].
 *
 * Trigger a [[phenom.Starquake]] by calling
 * [[phenom.Starquake.triggerStarquake(magnetar:com\.scalacraft\.professionalscala
 \.chapter8\.cosmos\.Magnetar)* triggerStarquake on object Starquake]] or
 * specifying the quake magnitude with
 * [[phenom.Starquake.triggerStarquake(magnetar:com\.scalacraft\.professionalscala
 \.chapter8\.cosmos\.Magnetar,magnitude:com\.scalacraft\.professionalscala\
 .chapter8
 \.cosmos\.phenom\.Starquake\.QuakeMagnitude)* triggerStarquake on object
 Starquake]]
 */

Step 7. Generate the Scaladoc, confi rm it resembles Figure 8-18, and check the links to the Starquake
overloaded methods.

FIGURE 8-18

The Magnetars Scaladoc comment above requires some explanation. What is happening with those
lengthy type references? You can use these rules to generate disambiguated links to your own over-
loaded methods,

 ➤ Take the method signature from the source and remove all spaces.

 ➤ Drop the result type.

 ➤ Add an asterisk.

 ➤ Convert the type to the fully qualifi ed type, escaping periods with backslash.

116 ❘ CHAPTER 8 DOCUMENTING YOUR CODE WITH SCALADOC

c08.indd 05/05/2016 Page 116

NOTE The fully qualifi ed name is required when disambiguating link targets.
This is not required when the method parameter doesn’t require a package prefi x,
as is the case with Int and String. The result type is not required and the refer-
ence can be shortened if it remains unique. Do not forget the trailing asterisk.

A general theme with the syntax for links is that Scaladoc will make a best effort to fi nd a target
for a link which is convenient, but this helpfulness may have surprising outcomes. Test your
Scaladoc in a browser.

You will fi nd that this crib sheet (Table 8-5) will handle the majority of link types typically found
within a Scaladoc corpus.

TABLE 8-5: Link types

YOU WANT TO LINK

TO…

FOLLOW THIS FORMAT NOTE

A class or trait [[mypackage.Name!

optional label]]
The exclamation mark selects a class or
trait over an object of the same name.

An object [[mypackage.Name$

optional label]]
The dollar selects an object over a class
or trait of the same name.

Overloaded meth-
ods on an object

[[Target$.foo(z:Str*

optional label]]

[[Target$.foo(z:Int*

optional label]]

String and Int do not require a full
package prefi x. The amount of method
signature prefi x included can be mini-
mized while preserving uniqueness.

Overloaded meth-
ods on a class or
trait

[[Target!.foo(z:Str*

optional label]]

[[Target!.foo(z:Int*

optional label]]

The same as the object example but
showing the use of the exclamation mark
for classes and traits.

A method with type
parameters

[[[[Target$.

foo[A[_[_]]]*
If square brackets are included in the
method signature add additional layers
of opening and closing square brackets
to compensate.

Scaladoc links can be tricky to get right. To help with this, an extensive set of examples is pro-
vided in the code download for this chapter. Find the examples in misc-examples/links.scala. These
examples have been adapted from a test case in the Scala source code. The original can be found at
https://github.com/scala/scala/blob/2.11.x/test/scaladoc/resources/links.scala.

https://github.com/scala/scala/blob/2.11.x/test/scaladoc/resources/links.scala

Tagging ❘ 117

c08.indd 05/05/2016 Page 117

Locating Scaladoc
So far you have been adding and modifying Scaladoc on the top level type for the most part. Where
else can Scaladoc be placed? Although Scaladoc comments can be added anywhere whitespace is
allowed, comments will generate documentation if placed at these locations:

 ➤ Before a class, trait, or object declaration

 ➤ Before a package object declaration

 ➤ Before a method, value, or variable declaration

 ➤ Before an alias or abstract type declaration

See https://wiki.scala-lang.org/display/SW/Syntax for a more detailed account of this.

TAGGING

This section will take you through the documentation options realized through the use of tags and
annotations. Because some tags can only apply to methods, the examples will be method-centric,
although there will be exceptions.

Scaladoc tags naturally cluster into three groups that constitute the material you will explore in the
following sections:

 ➤ Everyday Tagging

 ➤ Tagging for Groups

 ➤ Advanced Tagging

NOTE Annotations are language features that are not embedded in comments.
Scaladoc will enrich your documentation by processing @deprecated and
@migration annotations. At the time of writing @migration is private to the
scala package and is not of general utility. @deprecation will be covered later.

Tags are implemented using a commercial at sign followed by a tag name. You have no doubt seen
numerous usages of tags. @return is an example. You will meet the full set of tags over the course of
the following sections.

Everyday Tagging
In this section you will add a class Star, apply relevant Scaladoc tags, and view the generated docu-
mentation. This will introduce you to the tags you will use most often in your day-to-day develop-
ment activities.

https://wiki.scala-lang.org/display/SW/Syntax

118 ❘ CHAPTER 8 DOCUMENTING YOUR CODE WITH SCALADOC

c08.indd 05/05/2016 Page 118

Step 1. Add Star as shown here.

package com.scalacraft.professionalscala.chapter8.cosmos

/**
 * Luminous sphere of plasma held together by own gravity.
 * @see [[https://en.wikipedia.org/wiki/Plasma_(physics) Plasma (Wikipedia)]]
 * @see Found in a [[Galaxy]]
 * @author <Your Name Here>
 * @author [[https://github.com/janekdb Janek]]
 * @version 13.8
 * @since 0.7
 * @todo Add `+(other: Star)` to model stellar collisions
 * @todo Add magnetic field
 * @constructor Construct a [[Star]] with the given radius
 * @param radius Initial star radius in metres
 */
class Star(var radius: Double) {

 /** @return The mass of this star in kg */
 def mass: Long = ???

 /**
 * Trigger stellar collapse.
 * @param delay Seconds to wait until collapse
 * @param blackhole If true skip white dwarf and neutron star stages
 * @throws IllegalArgumentException if `delay` is negative
 * @throws IllegalStateException if already a blackhole
 */
 def collapse(delay: Int, blackhole: Boolean): Unit = ???
}

Step 2. Generate the Scaladoc and review the output in a browser. Figure 8-19 shows the expected
output. The search pane has been removed from the fi gure to save space.

Tags fall into four groups with respect to the requirements of what must follow the tag. The sim-
plest type of tag is the standalone tag, which is exemplifi ed by @documentable. A standalone tag is
essentially a fl ag. It is present or absent. You will cover an example of a standalone tag later in the
form of @documentable. The next type of tag is the content tag. @since is a content tag. This type
of tag expects content in the form of free text following the tag name. The penultimate type of tag
is the symbol tag. This tag has a name followed by a symbol and then descriptive text. @param is an
example of a symbol tag. For @param tags the expected symbol is the name of a method parameter.
The last type of tag is a structured tag, exemplifi ed by @contentDiagram. This type of tag imposes a
syntax on the text that follows, which allows the effect of the tag to be controlled at a detailed level.

Table 8-6 explains the purpose of each tag you have used so far. You can use this as a quick
reference.

In terms of deciding where to place tags, assume Scaladoc follows the principle of least surprise.
Combine this with a tight review cycle on the generated Scaladoc and you won’t often be surprised.

Tagging ❘ 119

c08.indd 05/05/2016 Page 119

FIGURE 8-19

TABLE 8-6: Tags and Their Purposes

TAG TYPE EXAMPLE PURPOSE CARDINALITY

@author Content @author Janek Bogucki Identify author. Multiple

@constructor Content @constructor Construct
a Star

Document
the primary
constructor.

At most one

@param Symbol @param blackhole If true skip
early stages

Describe the
purpose of
the named
parameter.

At most one
per method
parameter

@return Content @return The predicted value Document the
return value.

At most one

continues

120 ❘ CHAPTER 8 DOCUMENTING YOUR CODE WITH SCALADOC

c08.indd 05/05/2016 Page 120

TAG TYPE EXAMPLE PURPOSE CARDINALITY

@see Content @see [[Starquake]] Point to addi-
tional material
including other
classes or enti-
ties, or external
links.

Multiple

@since Content @since 1.4.14 Version the
entity was
introduced in.
Include @ver-
sion if using
this.

At most one

@throws Symbol @throws
IndexOutOfBoundsException
when an attempt was made
to index outside of the
allowed range

Surface the
thrown excep-
tions a user
might need to
know about.
The description
is optional.

At most one
per thrown
exception
type

@version Content @version 1.6.18 The version of
a system or API
this entity is
part of.

At most one

@todo Content @todo Handle lower bound-
ary case

Document
gaps in imple-
mentation.

Multiple

WHERE ARE MY AUTHORS?

By default @author tags are not included in the generated Scaladoc. To include
them, add the -author fl ag as shown here.

$ scaladoc -d output -author *.scala phenom/*.scala

This is a sensible default if you are using any kind of modern VCS. @author tags
can be used on any entity: classes, traits, object, methods, val, vars, and types.

TABLE 8-6 (continued)

Tagging ❘ 121

c08.indd 05/05/2016 Page 121

@THROWS OR @THROWS?

The use of the @throws annotation offers greater type safety but does not result in
as clear Scaladoc, nor is it inherited. Generate the Scaladoc for this snippet to see
the difference.

class Throws {
 /** @throws Exception always */
 def a = throw new Exception

 @throws[RuntimeException]("always")
 def b = throw new RuntimeException
}

Before you learn how to group methods and other entities using the @group family of tags, there are
a few more everyday tags to check over. Return to Star and follow these steps.

Step 1. Add the freeze method to the end of the class as shown here.

/**
 * Use some freezers to freeze sunspots.
 * @example
 * {{{
 * val star = ...
 * val freezers = List.fill(63)(new Icecube)
 * val partiallySpentFreezers = star.freezeSunspots(freezers)
 * }}}
 * @note Do not call if collapsed
 * @note Following this the radius will be reduced
 * @tparam T A type that `freeze` can use to freeze a sunspot
 * @param freezers
 * @param freeze A function to freeze a sunspot on a star given a freezer
 * @return The freezers minus any used freezing capacity
 */
@deprecated("Use SolarKit instead", "14.0")
def freezeSunspots[T](freezers: List[T], freeze: (Star, T) => T): List[T] = ???

Step 2. Generate the Scaladoc and review the output in a browser. Figure 8-20 shows the expected
output. Only the new method is shown to avoid repetition.

Notice the threefold impact of annotating with @deprecated. The method appears in the
Deprecated Value Members section at the end of the page, the deprecation version and comment
are shown, and as part of the generic handling of annotations, the annotation is listed in the
Annotations section.

122 ❘ CHAPTER 8 DOCUMENTING YOUR CODE WITH SCALADOC

c08.indd 05/05/2016 Page 122

FIGURE 8-20

Table 8-7 explains the purpose of the newly introduced tags.

TABLE 8-7: Newly Introduced Tags and Their Purpose

TAG TYPE EXAMPLE PURPOSE CARDINALITY

@example Content @example
{{{val zeta =
…}}}

Add an example into the exam-
ples section. The wiki syntax
for code blocks in example is
optional, but often appropriate.

Multiple

@note Content @note The
option must
be non empty.

Document requirements, restric-
tions, pre and post conditions.

Multiple

@tparam Symbol @tparam T
Type of values
handled by
this pickler.

Document a type parameter. At most one
per type
parameter

NOTE Always use the annotation form of @deprecated. Although @ deprecated
will be detected when used as a Scaladoc tag, the annotation form is more useful
because it includes the version when the class or method was fi rst deprecated.
When both are present the annotation wins. There are other deprecation
annotations you can use: @deprecatedInheritance, @deprecatedName,
@ deprecatedOverriding. Consult the Scala API documentation for further
details.

Tagging ❘ 123

c08.indd 05/05/2016 Page 123

Member Permalinks
Go to any member and hover over the top right of the documentation. Right click and copy to get a
deep link directly to the method. This is illustrated in Figure 8-21.

FIGURE 8-21

Tagging for Groups
Now you have mastered the common fare of Scaladoc tagging, so it is time to ascend to more
 rarefi ed strata. In this section you will create a class that demonstrates the use of Scaladoc groups
that allow related members of an entity to be collected together.

Step 1. Add the class shown here to the project.

 package com.scalacraft.professionalscala.chapter8.cosmos

/**
 * Star Types with examples.
 *
 * @groupname Type-O Star Type 0
 * @groupdesc Type-O Blue, average solar mass: 60
 * @groupprio Type-O 10
 *
 * @groupname Type-B Star Type B
 * @groupdesc Type-B Blue, average solar mass: 18
 * @groupprio Type-B 20
 *
 * @groupname Type-K Star Type K
 * @groupdesc Type-K Orange to Red, average solar mass: 0.8
 * @groupprio Type-K 30
 */
trait StarTypes {

 /** @group Type-O */
 val `10 Lacertra`: Star

 /** @group Type-B */
 val Rigel: Star

 /** @group Type-B */
 val Spica: Star

 /** @group Type-K */

124 ❘ CHAPTER 8 DOCUMENTING YOUR CODE WITH SCALADOC

c08.indd 05/05/2016 Page 124

 val Arcturus: Star

 /** @group Type-K */
 val Aldebaran: Star
}

Step 2. Generate the Scaladoc and review the output in a browser. To take maximum advantage of
the group tags the -groups option must be supplied. Without this, the Grouped button will be miss-
ing from the Ordered section.

$ scaladoc" -d output -groups *.scala phenom/*.scala

Figure 8-22 shows the expected output. You can see vals have been listed under the group descrip-
tions corresponding to the given @group tag. Try switching between Grouped and Alphabetic.

FIGURE 8-22

Table 8-8 explains the purpose of the group tags.

TABLE 8-8: The Group Tags

TAG TYPE EXAMPLE PURPOSE CARDINALITY

@group Symbol @group InfoSec Indicate the tagged entity is
in the named group.

At most one

@groupname Symbol @groupname
InfoSec The infor-
mation security API.

Provide a label of the group.
Appears in green bar before
group description.

At most one
per group

Tagging ❘ 125

c08.indd 05/05/2016 Page 125

TAG TYPE EXAMPLE PURPOSE CARDINALITY

@groupdesc Symbol @groupdesc
InfoSec This API
handles the security
aspects of the sys-
tem. For example:
{{{ val pki = … }}}

Add descriptive text to be
used under group name.
Can include wiki syntax and
extend over several lines.

At most one
per group

@groupprio Symbol @groupprio
InfoSec -100

Associate a relative posi-
tion with a group. If group
A has a lower priority value
than group B, then group A
appears before group B.

At most one
per group

NOTE All @group* tags are optional. Use as many or as few of them as you
wish. Scaladoc employs an unsurprising defaulting scheme to fi ll in the blanks
where required. In particular, @grouppio has a default value of 0, while
ungrouped elements have an implicit priority of 1000, which means they will
always be at the bottom if you use priorities less than that.

Advanced Tagging
You have arrived at the advanced Scaladoc tags, some of which you will try out with a few more
code additions. To start with you will see how to place a simplifying lens onto any method signature
no matter how hieroglyphically rich it is, how to not repeat yourself, and how to elevate nested enti-
ties to fi rst class citizens in the context of documentation. Following that, you will gain insight into
tags that control documentation at a higher level.

“Seeing, hearing, feeling, are miracles, and each part and tag of me is a miracle.”

—“Song of Myself,” Walt Whitman

Follow these steps to get a feel for the possibilities of @define, @usecase, and @documentable.

Step 1. Add the code from the code listing below into Planet.scala. This is the Scaladoc before you
fully augment it with the new tags. A macro expansion Body is defi ned in Terraformable and used in
the @return tag. You will see the utility of this when you extend the Scaladoc with @inheritdoc.

package com.scalacraft.professionalscala.chapter8.cosmos

/**
 * @define Body Terraformable
 */
trait Terraformable[T] {

 /**

126 ❘ CHAPTER 8 DOCUMENTING YOUR CODE WITH SCALADOC

c08.indd 05/05/2016 Page 126

 * Create a terraformed copy of this $Body.
 * @param tfs A collection of [[Terraformer]]s to apply in order
 * @return A terraformed copy of this $Body
 */
 def terraform[P1 >: T, P2 <: T](implicit tfs: Seq[Terraformer[P1, P2]]): T
}

trait Terraformer[T, U] {
 def terraform[U <: T](body: T): U
}

class Planet extends Terraformable[Planet] {

 /**
 * A specialised kind of [[Planet]]
 **/
 type SpecialisedPlanet <: Planet

 /**
 * Create a new world from this planet.
 * @note May result in mass extinction of existing life
 */
 def terraform[P1 >: Planet, SpecialisedPlanet]
 (implicit tfs: Seq[Terraformer[P1, SpecialisedPlanet]]): Planet = ???
}

Step 2. Generate the Scaladoc and review the output in a browser. Figure 8-23 shows the expected
output.

FIGURE 8-23

You should make note of the following aspects of the terraform method documentation before you
add the new tags, an action that will change each of these points.

 ➤ The @return and @param tags are inherited from the Terraformable trait.

 ➤ The @return comment mentions Terraformable.

 ➤ The terraform method comment from Terraformable trait is missing.

Tagging ❘ 127

c08.indd 05/05/2016 Page 127

 ➤ The SpecialisedPlanet type alias is not a hyperlink.

 ➤ The terraform method signature is very busy with implicits and type parameters—not great
if you have an entire planetary system to get done.

Step 3. Edit Planet by adding a redefi nition of the Body macro into the class comment, a @docu-
mentable tag on the type alias, and @inhertdoc on the terraform method as shown below.

/**
 * @define Body ''candidate'' colony world
 */
class Planet extends Terraformable[Planet] {

 /**
 * A specialised kind of [[Planet]]
 * @documentable
 **/
 type SpecialisedPlanet <: Planet

 /**
 * @inheritdoc
 * Create a new world from this planet.
 * @note May result in mass extinction of existing life
 */
 def terraform[P1 >: Planet, SpecialisedPlanet]
 (implicit tfs: Seq[Terraformer[P1, SpecialisedPlanet]]): Planet = ???
}

Step 4. Generate the Scaladoc. Figure 8-24 shows the expected documentation.

FIGURE 8-24

Now review the differences.

 ➤ The inherited @return comment now mentions “candidate colony world” instead of
Terraformable.

 ➤ The terraform comment from Terraformable is now present beneath the comment defi ned
in Planet. Remember, this was defi ned as “Create a terraformed copy of this $Body.”
 @ inheritdoc contributed to this change.

128 ❘ CHAPTER 8 DOCUMENTING YOUR CODE WITH SCALADOC

c08.indd 05/05/2016 Page 128

 ➤ The effect of the redefi nition of the Body macro can be seen in both the @return comment
and the method comment.

 ➤ Macro defi nitions can contain wiki syntax.

The SpecialisedPlanet type alias is now a hyperlink.

Click SpecialisedPlanet to see that an entire page has been created as a consequence of placing
@documentable tag on the type alias. The page header is shown in Figure 8-25.

FIGURE 8-25

NOTE @documentable is equivalent to and predated by @template. We prefer
@documentable as this is clearer.

Next, you will use @usecase to simplify the terraform method signature.

WARNING @usecase will increase the maintenance effort you face when modi-
fying your classes. You are also advised to check the generated Scaladoc carefully
when using @usecase. Consult the Scala Standard Library for extensive exam-
ples of how to use @usecase at scale.

Edit Planet once more.

Step 1. Modify the comment on the terraform method as shown here.

/**
 * @inheritdoc
 * @usecase def terraform: Planet
 * Create a new world from this planet.
 * @inheritdoc
 * @note May result in mass extinction of existing life
 */
def terraform[P1 >: Planet, SpecialisedPlanet]
 (implicit tfs: Seq[Terraformer[P1, SpecialisedPlanet]]): Planet = ???

Generate the Scaladoc. Figure 8-26 shows the new documentation of the terraform method.

Tagging ❘ 129

c08.indd 05/05/2016 Page 129

FIGURE 8-26

The key differences are the introduction of the simplifi ed method signature and the demotion of the
full signature down into two collapsible sections. With details on demand your API documents will
be simple to scan through while still providing the full signature for those suffi ciently motivated to
enquire more deeply.

NOTE @inheritdoc appears twice in the Scaladoc for the terraform method
above. Removing either results in the loss of the method comment from the
mixed in Terraformable trait. You should experiment with @usecase to build a
feel for its nuances before embarking on extensive application of it.

To conclude this section you will briefl y check out the diagramming related tags: @contentDiagram
and @inheritanceDiagram. SVG-based inheritance and content diagrams are created by scaladoc
when the -diagrams fl ag is supplied. You have two types of diagrams at your disposal:

 ➤ Content for showing contained entities

 ➤ Inheritance for showing inheritance relationships

Take a look at an example of a content diagram here: http://www.scala-lang.org/api/2.11.7/
scala-reflect/index.html#scala.reflect.api.Symbols. The effects of using @contentDia-
gram in the main comment for Symbol are shown in Figure 8-27.

The diagram shows the type aliases contained in the Symbols trait. Here is an excerpt from Symbols
corresponding to the types on display in Figure 8-27.

 type Symbol >: Null <: AnyRef with SymbolApi
 type TypeSymbol >: Null <: TypeSymbolApi with Symbol
 type TermSymbol >: Null <: TermSymbolApi with Symbol
 type MethodSymbol >: Null <: MethodSymbolApi with TermSymbol
 type ModuleSymbol >: Null <: ModuleSymbolApi with TermSymbol
 type ClassSymbol >: Null <: ClassSymbolApi with TypeSymbol

http://www.scala-lang.org/api/2.11.7
http://www.scala-lang.org/api/2.11.7/scala-reflect/index.html#scala.reflect.api.Symbols

130 ❘ CHAPTER 8 DOCUMENTING YOUR CODE WITH SCALADOC

c08.indd 05/05/2016 Page 130

FIGURE 8-27

By default packages and objects will get content diagrams. For traits and classes you will need to
add the tag.

NOTE For diagram creation to work scaladoc must be able to invoke the dot
command. This is available from the graphviz package on Debian based distros.

Inheritance diagrams are generated by default for traits and classes, but when you require fi ne
grained control of the inheritance diagrams, @inheritanceDiagram can be added to allow exclu-
sionary specifi ers to be added. These can be used to remove distracting elements for the diagram. As
an example, suppose you wanted to omit superclasses from your diagrams. You can add hideSuper-
classes to the tag as shown here to achieve that.

/**
* @inheritanceDiagram hideSuperclasses
*/
class ExampleClass extends Example2 with Example3

You can use these specifi ers with @contentDiagrams as well. The specifi ers you can use are:

 ➤ hideNodes

 ➤ hideDiagram

 ➤ hideOutgoingImplicits

 ➤ hideSubclasses

 ➤ hideEdges

 ➤ hideIncomingImplicits

Tagging ❘ 131

c08.indd 05/05/2016 Page 131

 ➤ hideSuperclasses

 ➤ hideInheritedNodes

Consult the Scala source code for examples of how to use these options.

Table 8-9 summarizes the purpose of the advanced tags.

TABLE 8-9: Advanced Tags

TAG TYPE EXAMPLE PURPOSE CARDINALITY

@define Symbol @define sideEf-
fects This
method has
side effects.
You have been
__warned__!

/** $sideEffects
*/

def deleteOcean:
Unit

Create a named block
of wiki syntax text to
expand when $<name>
is encountered.

At most
one per
comment
per macro
name. Can
be rede-
fi ned closer
to point of
use

@inheritdoc Standalone @inheritdoc Extend the documenta-
tion inheritance that is
applied by default cover-
ing certain tags to also
include main comment
inheritance.

At most
one per
comment

@documentable Standalone @documentable Generate an additional
documentation page for
the tagged type alias.

At most one
per type
alias

@template Standalone @template Identical to
@documentable.

At most one
per type
alias

@usecase Symbol @usecase def
terraform: Planet

<Plus alternative
versions of other
tags>

Substitute a hand
crafted, simplifi ed
account of the method
signature. Nest full
method defi nition down
into method documenta-
tion body.

At most
once per
method
comment.

continues

132 ❘ CHAPTER 8 DOCUMENTING YOUR CODE WITH SCALADOC

c08.indd 05/05/2016 Page 132

TAG TYPE EXAMPLE PURPOSE CARDINALITY

@content-

Diagram
Structured @contentDia-

gram hideNodes
“*Api”

Create content diagram
for entities that do not
have this type of dia-
gram by default. Can
also be used to prevent
diagram creation.

At most one
per contain-
ing entity

@inheritan-

ceDiagram
Structured @inheritan-

ceDiagram
hideEdges(“*E”
-> “*A”)

Create an inheritance
diagram for entities that
do not have this type of
diagram by default. Can
also be used to prevent
diagram creation.

At most one
per entity

INVOKING SCALADOC: ADDITIONAL OPTIONS

You have seen how to specify Scaladoc within your source code. Your users are already lauding your
handsomely documented project, but that is not the end of it. There are a number of useful scaladoc
command line options you can incorporate into your tool chest to provide your efforts with a fi ne
edge (see Table 8-10). This section picks out some of those options not already covered.

NOTE To see the complete list of documented scaladoc options, invoke the tool
with the -help option.

$ scaladoc -help

TABLE 8-10: scaladoc Command-Line Options

OPTION EXAMPLE PURPOSE

-doc-footer <footer> -doc-footer
‘Copyright 2018 – H.
W. Olbers’

Add a footer to each page. By
default there is no footer.

-doc-root-content <path> -doc-root-content

docroot.txt
Provide content for the Scaladoc
landing page. Can include wiki
syntax.

-doc-title <title> -doc-title ‘Cosmic
Toolkit’

Set title. Visible as browser win-
dow or tab title.

TABLE 8-9 (continued)

Integrating Scaladoc Creation with Your Project ❘ 133

c08.indd 05/05/2016 Page 133

OPTION EXAMPLE PURPOSE

-doc-version <version> -doc-version ’13.8’ Append the version to the title.

-skip-packages

<<package1>:...:<packageN>>
-skip-packages
com.example.
internal

Do not include the nominated
packages in the generated
Scaladoc. Useful if you have
packages users do not need to
be aware of.

INTEGRATING SCALADOC CREATION WITH YOUR PROJECT

Although you have been generating Scaladoc by the direct execution of the scaladoc command line
tool, which is fi ne for tutorial purposes, you can integrate documentation creation directly into your
build tool or project management tool. In this section you will see how to confi gure Maven via a
POM, and how to achieve the same thing with SBT. If you have not already studied the SBT and
Maven chapters, now would be a good point to do so.

Confi guring Maven
Provided you have already confi gured scala-maven-plugin, you can generate the Scaladoc via a
Maven goal. Execute this code and then browse to target/site/scaladocs/index.html:

$ mvn scala:doc

If you need to elevate the structure around your build process, then adding a suitable plugin confi guration
will trigger Scaladoc generation during the Maven site phase. Take the confi guration in the code below
and add this into the project/build/plugins elements alongside the scala-maven-plugin confi guration:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-site-plugin</artifactId>
 <version>3.4</version>
 <configuration>
 <reportPlugins>
 <plugin>
 <artifactId>maven-project-info-reports-plugin</artifactId>
 <version>2.8.1</version>
 </plugin>
 <plugin>
 <groupId>net.alchim31.maven</groupId>
 <artifactId>scala-maven-plugin</artifactId>
 <version>3.2.2</version>
 <configuration>
 <jvmArgs>
 <jvmArg>-Xms64m</jvmArg>
 <jvmArg>-Xmx1024m</jvmArg>
 </jvmArgs>
 <args>
 <arg>-doc-footer</arg>

134 ❘ CHAPTER 8 DOCUMENTING YOUR CODE WITH SCALADOC

c08.indd 05/05/2016 Page 134

 <arg>${copyright}</arg>
 <arg>-groups</arg>
 <arg>-doc-title</arg>
 <arg>Cosmic Toolkit</arg>
 </args>
 </configuration>
 </plugin>
 </reportPlugins>
 </configuration>
</plugin>

Now you can generate your Scaladoc with Maven, either from within the comfort of your IDE, or
on the CLI as shown here.

$ mvn site

As before, the root page is located at target/site/scaladocs/index.html. The site goal will also gener-
ate additional project documentation unrelated to Scaladoc.

Confi guring SBT
SBT supports a doc task that generates Scaladoc from your source fi les. If you are new to SBT,
review the SBT chapter and an introduction to SBT in general. For now it’s enough to add the mini-
mal project fi le shown here to the module root level (chapter-8/):

lazy val root = (project in file(".")).
 settings(
 name := "Cosmic Toolkit",
 version := "0.1.0-SNAPSHOT",
 scalaVersion := "2.11.7"
)

val copyright = "Janek Bogucki 2015"
scalacOptions in (Compile,doc) ++=
 Seq("-doc-footer", copyright, "-groups", "-doc-title", "Cosmic Toolkit")

With that in place, call the doc task from SBT:

$ sbt doc

This will generate the same Scaladoc as the Maven confi guration.

PUBLISHING SCALADOC

You have your Scaladoc sitting under target/site/scaladocs. The next step is to publish this on the
web. By virtue of being a collection of static pages, there are few requirements on the web hosting
solutions. If you already have a web site you can upload the pages to that. Amazon Web Services S3
is another way to publish static web sites with moderately little effort. In this section you will see
how to use GitHub pages to bring your documentation to the wider world.

Publishing Scaladoc ❘ 135

c08.indd 05/05/2016 Page 135

Step 1. Create the documentation using Maven.

$ mvn clean scala:doc
$ ls -xF target/site/scaladocs/
com/ deprecated-list.html index/ index.html
index.js lib/ package.html scala/

Step 2. Create and checkout a branch called gh-pages. The --orphan option creates a branch with
no parent commit, which makes for a simpler publication history.

$ git checkout --orphan gh-pages
Switched to a new branch 'gh-pages'

Step 3. Replace the top level content of the repo with the generated Scaladocs.

$ mv * /tmp
$ cp -a /tmp/target/site/scaladocs/* .

Step 4. Commit and push the documentation to the remote repo:

$ git add --all .
$ git commit -m'Publish Scaladocs'
$ git push --set-upstream origin gh-pages

Step 5. Browse your new Scaladoc site. Navigate to <username>.github.io/<project-name>. You
will be greeted by the index page.

In this example you have seen a minimized version of the process that covers the primitives required
to get the documentation up onto GitHub pages.

As your project develops and goes through releases, you will want to consider a longer term strat-
egy that allows different versions of the documentation to coexist. You can also take advantage of
the open ended nature of GitHub pages to attain that goal. An example that accommodates mul-
tiple versions of documentation corresponding to different releases is shown in Figure 8-28. Going
beyond that there is no restriction on just publishing documentation, but that is the focus here.

FIGURE 8-28

136 ❘ CHAPTER 8 DOCUMENTING YOUR CODE WITH SCALADOC

c08.indd 05/05/2016 Page 136

TABLES AND CSS

Wiki markdown syntax is suffi cient for many presentation purposes, and when combined with
headers, paragraphs, code blocks, and bulleted lists, the structural aspects of the documentation
can be lifted considerably. However, there is no support for tabular presentation of information, and
with this structural workhorse missing from the stables there is a big gap to fi ll. So saddle up, you
will shortly be solving this problem.

The solution is actually straightforward. Scaladoc defi nes a subset of HTML tags that are passed
though unchanged. The full list of supported tags is shown in Table 8-11.

TABLE 8-11: Supported Tags in Scaladoc

abbr

acronym

address

area

a

bdo

big

blockquote

br

b

caption button

cite

code

col

colgroup

dd

del

dfn

fi eldset

form

hr em

img

input

ins

i

kbd

label

legend

map

object

optgroup

link

option

param

pre

q

samp

small

span

strong

sub

sup
select

table

tbody

td

textarea

tfoot

th

thead

tr

tt

var

Try out the tables tags by following the steps below.

Step 1. Add the StarSurvey object shown here.

package com.scalacraft.professionalscala.chapter8.cosmos

/**
 * <table style="border-collapse: collapse; border: 1px solid black">
 * <caption>Star Data</caption>
 * <colgroup>
 * <col style="background-color:LemonChiffon"/>
 * <col style="background-color:Gold"/>
 * <col style="background-color:HoneyDew"/>
 * </colgroup>
 * <tr>
 * <th style="background-color: #4CAF50; color: white">Name</th>
 * <th style="background-color: #4CAF50; color: white">Absolute Magnitude</th>
 * <th style="background-color: #4CAF50; color: white">Distance (parsecs)</th>
 * </tr>
 * <tr>
 * <td>Arcturus</td>
 * <td>-0.31</td>
 * <td>11.25</td>
 * </tr>
 * <tr>

Tables and CSS ❘ 137

c08.indd 05/05/2016 Page 137

 * <td>Vega</td>
 * <td>0.58</td>
 * <td>7.7561</td>
 * </tr>
 * <tr>
 * <td colspan="3" style="background-color: #CCCCCC">
 * Source: http://www.astronomynotes.com/starprop/s4.htm
 * </td>
 * </tr>
 * </table>
 */
object StarSurvey

Step 2. Build the Scaladoc.

$ mvn clean scala:doc

Step 3. Confi rm your Scaladoc now includes the table shown in Figure 8-29.

FIGURE 8-29

With your documentation now enriched with tables, your users will be delighted, but there is a price
to pay. Your Scaladoc is now considerably noisier than when it only used markdown. This has a
development cost that you should evaluate when deciding to break free from markdown.

CUSTOM CSS

A signifi cant amount of the markup in this example is devoted to style attributes.
It is possible to add user defi ned CSS to the Scaladoc CSS fi les, thereby allowing
the inline styles to be replaced by class and id attributes. The mechanics of achiev-
ing this are beyond the scope of this chapter. If you are interested, clone ScalaTest
(https://github.com/scalatest/scalatest), and review the build confi gura-
tion. ScalaTest is also a fi ne example of Scaladoc pushed to the extremes.

https://github.com/scalatest/scalatest

138 ❘ CHAPTER 8 DOCUMENTING YOUR CODE WITH SCALADOC

c08.indd 05/05/2016 Page 138

NOTE Some HTML tags are passed through unchanged when included in
Scaladoc. Add this to a class or method and take a look at the result, but avoid
staring directly at it.

/**
 *
 */

SUMMARY

“Voluminous documentation is part of the problem, not part of the solution”

—Tom DeMarco

 Although it is possible to produce and consume Scaladoc without a user guide, there are aspects
that are not easily discovered through everyday use. Lifting the lid on Scaladoc reveals powerful fea-
tures and options for both the author and the reader. There is no Scaladoc specifi cation to peruse.
Scaladoc is defi ned through implementation, allowing for rapid innovation but bringing the perils of
never quite knowing for sure what should and should not be possible.

The Scala Language source code is the primary source of exemplar Scaladoc. You should clone
it and take a look. If you are working with SBT, then ScalaTest is a project that demonstrates the
levers to pull to coerce Scaladoc to your exact needs.

With out-of-the-box support for grouping methods and values, and factoring out repetition with
macros, you can produce extensive documentation that is also well structured and low maintenance.
By reviewing your generated Scaladoc as you author it, you can strengthen your documentation
prowess and fi nd surprising outcomes earlier rather than later. Always test your Scaladoc links.

Maven and SBT have support for Scaladoc generation. Adding a documentation generation mode to
your build allows you to concentrate on the more interesting activities and avoid documenting the
process for generating the documentation.

With generated Scaladoc in hand you can publish to the web with negligible effort using GitHub
pages. This will expose your inline markdown outcomes to the world, or if you elected to whip out
the power tools, your glorious HTML and CSS tables.

c09.indd 05/05/2016 Page 139

Type System
WHAT’S IN THIS CHAPTER?

 ➤ Understanding Scala’s type system

 ➤ Getting to know the different types of polymorphisms

 ➤ Understanding bounds and variance

 ➤ Using other niceties of the type system

This chapter begins with an overview of type systems in general and highlights the main dif-
ference between static and dynamic typing. Then it shows the main features of the powerful
Scala type system. The different types of polymorphisms are examined showing how Scala
excels compared to Java thanks to ad hoc polymorphism through type classes. Type bounds is
another powerful concept shown in this chapter. Roughly speaking, a bound lets you restrict
the set of possible types that can be used in your data structures.

Due to the presence of both subtype and parametric polymorphism, you are forced to face,
sooner or later, the concept of variance. You’ll fi nd out how to defi ne your data structures
as covariant, contravariant or invariant, and use bounds to satisfy the compiler complaints.
You’ll also meet other Scala type system niceties such as: self-type annotations, self-recursive
types and abstract type members. Finally, you’ll see how Scala let you simulate dynamic typ-
ing that allows you to deal with some situations where static typing is not a feasible solution.

Take into account that Scala’s type system is a big subject that cannot be fully covered in
a chapter or two. You can easily write an entire book about it, and the shapeless project
(https://github.com/milessabin/shapeless) is a proof of how complex and powerful it
can be. In this book you’ll learn about Scala’s type system features that will help you survive
in your day-by-day coding sessions.

9

Professional Scala. Aliaksandr Bedrytski, Janek Bogucki, Alessandro Lacava, Matthew de Detrich and Benjamin Neil
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

https://github.com/milessabin/shapeless

140 ❘ CHAPTER 9 TYPE SYSTEM

c09.indd 05/05/2016 Page 140

WHAT IS A TYPE SYSTEM?

“A type system is a tractable syntactic method for proving the absence of certain program behaviors
by classifying phrases according to the kinds of values they compute.” This is the defi nition given by
Benjamin C. Pierce in his excellent book Types and Programming Languages.

 Put simply, a type is something that describes a set of values that have operations in common. For
instance, the type Int represents a set of integer numbers that support operations like addition, mul-
tiplication and so on.

 A good type system gives you guarantees about the soundness (correctness) of your programs. It
does not let you apply an operation to a value of the wrong type. For example, you cannot pass a
String to a function that expects a List[Int] and see it fail at runtime; a thing that can instead
happen in dynamically typed languages. For example, the following code wouldn’t compile:

 def headOrZero(xs: List[Int]): Int = xs.headOption.getOrElse(0)

 headOrZero("hello") // compile error

 You get an error similar to the following:

 [error] type mismatch;
 [error] found : String("hello")
 [error] required: List[Int]
 [error] headOrZero("hello")
 [error] ^
 [error] one error found
 [error] (core/compile:compileIncremental) Compilation failed

 In the type system jargon you say that that code doesn’t type check. The most important thing to
understand about this simple example is that, in a statically typed language, the failure happens at
compile-time while in a dynamically typed one you run across this at runtime. This is something
you, hopefully, always want to avoid.

Static versus Dynamic Typing
In this section you’ll see the advantages of both type systems. There’s a war going on between peo-
ple of both factions. We don’t like wars, but both systems have advantages and disadvantages just
like everything in life. We cannot deny, however, that from a typing point of view we’re more about
static typing. However, we understand that, sometimes, dynamic typing can be the right choice for
the problem at hand. So, in this context, our motto is: “static typing whenever possible, dynamic
typing only when really needed.”

In a statically typed language, type errors are caught by a compiler module, called type checker,
prior to running the program. A type checker just makes a conservative approximation and gives
error messages for anything that might cause a type error. This is because, analogously to the halt-
ing problem (https://en.wikipedia.org/wiki/Halting_problem), it’s not possible to build a
type checker that can exactly predict which programs will surely result in type errors.

https://en.wikipedia.org/wiki/Halting_problem

Scala’s Unifi ed Type System ❘ 141

c09.indd 05/05/2016 Page 141

In a dynamically typed language, type checking is performed at runtime, immediately before the
application of each operation, to make sure that the operand type is suitable for the operation. In a
dynamic type system values have types but variables don’t. That is, you can have a variable and
assign it a string fi rst and an int successively.

In the dynamic world, many type errors that can be caught at compile-time arise at runtime, which
is not what you really want. Imagine being called at 3:00 a.m. by your manager since your applica-
tion, after six months of being in production, broke because, due to a combination of user actions, it
fell into that branch of the programs where you have the type error.

In a static type system that simply can’t happen.

What Static Type Systems Are Good For
These are the main advantages of a statically typed language:

 ➤ Error detection. A static type system catches type errors at compile-time.

 ➤ Performance. Statically typed languages provide better performance than dynamically typed
ones. This is because the compiler can generate optimized code, plus there’s no need to per-
form type check at runtime.

 ➤ Abstractions. A good type system lets you build very reusable, polymorphic and type safe
components. This improves the modularity of your systems.

 ➤ Documentation. Last but not least, types are very good for auto documenting your code.
They let you reason about your code in terms of types, which is pretty good. Correct imple-
mentations, then, are also easier because you just need to follow the types.

What Dynamic Type Systems Are Good For
Here are the main advantages of the dynamic counterpart:

 ➤ Fast prototyping. Undoubtedly, dynamically typed languages allow faster prototyping than
static ones.

 ➤ Dealing with values whose types depends on runtime information. In these cases dynamic
typing is a huge win instead of resorting to refl ection and other convoluted tricks used in
static languages. That said, toward the end of this chapter, you’ll see what Scala has to offer
in this regard.

SCALA’S UNIFIED TYPE SYSTEM

What makes Scala stand apart from Java is, without a doubt, its powerful type system. Even if
you look at it from the only object-oriented perspective, Scala’s type system is much better than
Java’s. In this regard, Scala has a unifi ed type system in that there’s a top type, Any, and a bottom
type, Nothing. There are no orphans like the Java’s primitive types. Figure 9-1 shows Scala’s class
hierarchy.

142 ❘ CHAPTER 9 TYPE SYSTEM

c09.indd 05/05/2016 Page 142

scala.Any

scala.AnyVal

scala.Boolean

scala.Unit

scala.Null

scala.Nothing

scala.AnyRef
(java.lang.Object)

Subtype
View

java.lang.String

. . . (other Java classes). . .

. . . (other Scala classes). . .

scala.ScalaObject

scala.Double

scala.Float

scala.Long

scala.Int

scala.Short

scala.Byte

scala.Char

scala.Seq

scala.List

scala.Option

FIGURE 9-1

In Scala all values are instances of a class, included functions. For instance, the following two defi -
nitions of a function from Int to Int are equivalent. The fi rst is just syntactic sugar for the second:

scala> val f: Int => Int = _ + 1
f: Int => Int = <function1>
scala> f(42)
res1: Int = 43

scala> val f: Function1[Int, Int] = new Function1[Int, Int] {
 | override def apply(x: Int): Int = x + 1
 | }
f: Function1[Int,Int] = <function1>

scala> f(42)
res2: Int = 43

As you can see, a one-parameter function is just an instance of the Function1[A, B] class where A
is the type of the parameter and B the return type.

The superclass of all classes is Any and it has two direct subclasses. AnyVal and AnyRef represent
two different class worlds: value classes and reference classes, respectively. Value classes correspond

Scala’s Unifi ed Type System ❘ 143

c09.indd 05/05/2016 Page 143

to the primitive types of Java. So Java’s primitives are, in Scala, classes. You don’t need boilerplate
machinery to wrap primitives in wrapper classes when needed. Scala does it for you. You don’t even
have to worry about performance because, at the JVM level, Scala uses primitives wherever possible.

Scala also has the Unit type which you use in place of void. However, this is not the full story.
Scala promotes functional programming where expressions are preferred to statements. To make a
long story short, expressions always return a value, statements don’t.

For example, curly braces always wrap expressions whose value is that of the last expression or Unit.
This is important to know because it can save you from some pitfalls. For instance, the following
line of code looks like a statement but it’s actually an expression:

{ val a = 42 }

Its type is Unit, and the return value is the only inhabitant of the Unit type, that is (). Here’s the
proof:

scala> val b: Unit = { val a = 42 }
b: Unit = ()

Here’s a common pitfall:

scala> val b = if (condition) "a"

Here, condition is some boolean value. What’s the type of b? Since the compiler cannot know
whether condition will be true until runtime, it is not able to infer String as the type of b. Indeed, its
type is Any. This is because, if the condition is false, the returned value is (), of type Unit, and the
least upper bound class between String and Unit is Any.

All other classes defi ne reference types. User-defi ned classes defi ne reference types by default and
they always, indirectly, subclass AnyRef. Roughly speaking, AnyRef corresponds to java.lang
.Object.

Figure 9-1 also shows implicit conversions, called views, between the value classes.

scala> val x: Int = 'a' // implicit conversion from Char to Int
x: Int = 97

The char a is implicitly converted to Int. Since Scala 2.10, you can also write your own value
classes, which has some important consequences as you’ll see in the next section.

Value Classes
Value classes are classes that extend AnyVal instead of the default AnyRef. There are two main
advantages to this:

 ➤ Type safety. By using a value class, you introduce a new type instead of utilizing a mere Int,
for example, and the compiler can be by your side from a type safety point of view.

 ➤ No overhead. No object is allocated for value classes.

144 ❘ CHAPTER 9 TYPE SYSTEM

c09.indd 05/05/2016 Page 144

You can see it by implementing a simple value class such as the following:

class Meter(val value: Double) extends AnyVal {
 def add(m: Meter): Meter = new Meter(value + m.value)
}

If you decompile this class using javap, you will see the following signature for the add method:

public double add(double);

Hold on! In the original signature the add method takes a Meter type, where is it now? Basically,
the Meter class is not used in the fi nal bytecode. It uses, instead, the primitive type it is wrapping;
double in this case. On the other hand, if you declare your class without extending AnyVal, it will
default to implicitly extend AnyRef, which will make it a reference type:

class Meter(val value: Double) {
 def add(m: Meter): Meter = new Meter(value + m.value)
}

Indeed, if you decompile it, this is what the add method looks like:

public Meter add(Meter);

There you go! The class Meter gets back in the fi nal bytecode. So you get better type safety because
you use an ad hoc type, thus restricting the set of acceptable values, at no performance cost because
of the no allocation thingy.

The natural question that arises at this point is “Why don’t you make every class a value class?” The
answer is that you may not. There are very strict restrictions to what classes are good candidates to
become value classes:

 ➤ A value class must have only a primary constructor with exactly one val parameter whose
type is not a value class. Since Scala 2.11 the parameter can also be private val.

 ➤ It may not have specialized type parameters.

 ➤ You may not defi ne classes, traits or objects inside a value class. Also you may not defi ne the
equals and hashCode method.

 ➤ A value class must be a top-level class or a member of a statically accessible object.

 ➤ It may have only defs as members.

 ➤ It may not be extended by another class.

The most common use case for a value class is in the pimp-my-library pattern, which is when you
extend an existing type through an implicit class. For example, you can think of adding the method
stars to the Int class, which builds a string composed of N star characters, where N is the Int:

// private val allowed since Scala 2.11.0
implicit class IntOps(private val x: Int) extends AnyVal {
 def stars: String = "*" * x
}

Polymorphism ❘ 145

c09.indd 05/05/2016 Page 145

val review: String = 5 stars

println(s"review: $review")

The output is:

review: *****

Although value classes are a huge win, what makes Scala stand, as a language, is that it provides
three types of polymorphism, which is the subject of the next section.

POLYMORPHISM

Basically there are three types of polymorphism: Subtype, Parametric, and Ad hoc. Scala offers
all of them. Java, on the other hand, has just subtype and parametric polymorphism. The king of
statically typed functional programming languages, Haskell, has only parametric and ad hoc poly-
morphism. Even if this could sound more limiting than Scala you’ll see that not having subtype
polymorphism makes your life easier as a developer because you don’t need to worry about variance
(subject of the next section). Furthermore, ad hoc polymorphism is much more powerful than sub-
typing, as you’ll see when you meet type classes.

Subtype Polymorphism
This type of polymorphism is typical for object-oriented languages. The traditional example is an
abstract superclass, Shape, with subclasses Rectangle, Square and Circle:

trait Shape {
 def area: Double
}

class Rectangle(val width: Double, val height: Double) extends Shape {
 override def area: Double = width * height
}

class Square(val width: Double) extends Shape {
 override def area: Double = width * width
}

class Circle(val radius: Double) extends Shape {
 override def area: Double = math.Pi * radius * radius
}

val shape: Shape = new Rectangle(10, 5)

println(s"Area: ${shape.area}")

The output is:

Area: 50

146 ❘ CHAPTER 9 TYPE SYSTEM

c09.indd 05/05/2016 Page 146

Basically, you have a common interface and each implementation provides its own meaning for the
methods exposed by the interface—trait in Scala jargon. We won’t spend too much time on subtype
polymorphism since you are already used to it from other object-oriented languages, such as Java,
C#, C++ and so on.

Parametric Polymorphism
If subtype polymorphism is canonical in the object-oriented world, the parametric one is typical in
functional languages. Indeed, when programmers talk about polymorphism, without adding any
detail, object-oriented developers mean subtyping while functional programmers mean parametric
polymorphism.

NOTE From now on, whenever you see functional languages in the text, we
actually mean statically typed functional languages unless otherwise specifi ed.

Parametric polymorphism also exists in some object-oriented languages and sometimes it is referred
to as generic programming. For example, Java added parametric polymorphism through generics in
version 5.

Here is an example of a method that uses parametric polymorphism:

def map[A, B](xs: List[A])(f: A => B): List[B] = xs map f

The map method takes a List[A] and a function from A to B as input and returns a List[B]. As
you can see you don’t mention concrete types but rather use type parameters—hence paramet-
ric polymorphism—to abstract over types. For example you can use that method to transform a
List[Int] into a List[String] or, analogously, a List[String] into a List[Int]:

val stringList: List[String] = map(List(1, 2, 3))(_.toString)

val intList: List[Int] = map(List("1", "2", "3"))(_.toInt)

Roughly speaking, whenever your methods have type parameters, you’re using parametric
polymorphism.

Ad Hoc Polymorphism
Type classes come from the Haskell world and are a very powerful technique used to achieve ad hoc
polymorphism.

First of all, a type class has nothing to do with the concept of class of object-oriented languages. In
this regard a type class is best seen as a set of types that adhere to a given contract specifi ed by the
type class. If this is not very clear, don’t worry; an example is worth more than a thousand words.

Consider the equality concept. You know that in order to compare two instances of a given class for
equality, in Java, you need to override equals for that class. It turns out that writing a correct equal-
ity method is surprisingly diffi cult in object-oriented languages.

Polymorphism ❘ 147

c09.indd 05/05/2016 Page 147

You may know that equals belongs to Object, the superclass of all Java classes. One of the problems
is that the signature of equals is the following:

public boolean equals(Object other)

This means that you need to check, among other things, that other is an instance of the class
you’re overriding equals for, proceed by doing ugly casts and so on. Furthermore, if you override
equals you also need to override hashCode, as it’s brilliantly explained by Joshua Bloch in his book
Effective Java.

Analyzing all the problems regarding equals is out of scope, obviously. The complexity in defi ning
object equality using subtyping emerges in Chapter 30 of Programming in Scala: A Comprehensive
Step-by-Step Guide, 2nd Edition by Odersky, Spoon, and Venners. Its title is Object Equality
and it’s about 25 pages long! The authors claim that, after studying a large body of Java code, the
authors of a 2007 paper concluded that almost all implementations of equals methods are faulty.

So, that said, do you have a better alternative to compare two objects for equality? Yes, you guessed
it: type classes. The recipe of a type class is not complicated. It consists of just three ingredients.
First of all, capture the concept into a trait:

trait Equal[A] {
 def eq(a1: A, a2: A): Boolean
}

The second thing you need to do is defi ne a method that takes, implicitly, an instance of that trait.
Typically you do it within the companion object:

object Equal {
 def areEqual[A](a1: A, a2: A)(implicit equal: Equal[A]): Boolean =
 equal.eq(a1, a2)
}

The areEqual method says: “Give me two instances of any class A for which exists an implicit
instance of Equal[A] in the current scope and I’ll tell you if they are equal.” So, the last ingredient
is the defi nition of the instances of Equal[A]. For example, suppose you have the Person class and
you want a case-insensitive comparison between fi rst and last names:

case class Person(firstName: String, lastName: String)

In order to be able to compare two instances of this class you just need to implement
Equal[Person] and make it available in the current scope. We’ll do it in the Person companion
object because that’s one of the places that are searched when looking for Equal[Person] instances
in scope:

object Person {
 implicit object PersonEqual extends Equal[Person] {
 override def eq(a1: Person, a2: Person): Boolean =
 a1.firstName.equalsIgnoreCase(a2.firstName) &&
 a1.lastName.equalsIgnoreCase(a2.lastName)
 }
}

148 ❘ CHAPTER 9 TYPE SYSTEM

c09.indd 05/05/2016 Page 148

You have defi ned the Equal type class and provided an implementation for the class Person. It
sounds like a pattern and, actually, it is. In fact, in Scala, the type class concept is not fi rst class as in
Haskell. It’s just a pattern that is possible thanks to implicits.

Here you can see it in use:

val p1 = Person("John", "Doe")
val p2 = Person("john", "doe")

val comparisonResult = Equal.areEqual(p1, p2)

The value of comparisonResult is true. So, type classes let you model orthogonal concerns in a
very elegant way. Indeed, the equality concern has nothing to do with the model, Person, if you
think about it. Furthermore, the solution provided by the type class is more type safe than that pro-
vided by the equals method. That is, the areEqual method takes two instances of the same class
and not Object. You don’t need ugly downcasts or other abominations.

Talking about implicit resolution, another place inspected when looking for implicit values is the
companion object of the type class. So you could have defi ned the instance of Equal[Person] also
in the Equal companion object. A thorough analysis of implicit resolution policy is out of scope, but
can be found here http://eed3si9n.com/implicit-parameter-precedence-again. In order to
have a direct comparison with the object-oriented solution you can reimplement the shape example,
seen in the subtype polymorphism section, using type classes.

First of all, the trait that capture the concept:

trait AreaComputer[T] {
 def area(t: T): Double
}

This trait means: “Given a type T you can compute its area, which is of type Double.” You don’t say
anything about T. The following case classes, instead, represent the model:

case class Rectangle(width: Double, height: Double)

case class Square(width: Double)

case class Circle(radius: Double)

At this point you need to provide the method that takes a T and, implicitly, an implementation of the
previous trait, plus the implementations for your model:

object AreaComputer {
 def areaOf[T](t: T)(implicit computer: AreaComputer[T]): Double =
 computer.area(t)

 implicit val rectAreaComputer = new AreaComputer[Rectangle] {
 override def area(rectangle: Rectangle): Double =
 rectangle.width * rectangle.height
 }

http://eed3si9n.com/implicit-parameter-precedence-again

Bounds ❘ 149

c09.indd 05/05/2016 Page 149

 implicit val squareAreaComputer = new AreaComputer[Square] {
 override def area(square: Square): Double =
 square.width * square.width
 }

 implicit val circleAreaComputer = new AreaComputer[Circle] {
 override def area(circle: Circle): Double =
 math.Pi * circle.radius * circle.radius
 }
}

Here is a usage example:

import AreaComputer._
val square = Square(10)
val area = areaOf(square)

It seems like type classes are a nicer and more powerful alternative to subtyping and, indeed, they
are. Just think that, using type classes, you don’t need to access the source code of a class to add a
behavior. You just provide an implementation of the type class for that class and you’re done.

Type classes are so important that very famous Scala libraries you may already have heard of, such
as scalaz, cats, shapeless and so on couldn’t even exist without them. You also saw that the concept
is not that complex after all, it’s just a pattern with the same three steps applied over and over.

BOUNDS

Bounds in Scala are used for two main purposes:

 ➤ Provide evidence in the context of implicits

 ➤ Restrict the set of acceptable types

The former is served by context bounds—the latter by upper and lower type bounds.

Context Bounds
Context bounds are just syntactic sugar that lets you provide the implicit parameter list. So, a con-
text bound describes an implicit value. It is used to declare that for some type A, there is an implicit
value of type B[A] available in scope.

As an example consider the areEqual method defi ned earlier in this chapter when you saw type
classes:

def areEqual[A](a1: A, a2: A)(implicit equal: Equal[A]): Boolean = equal.eq(a1, a2)

You can, automatically, translate it to the analogous one that uses a context bound:

def areEqual[A: Equal](a1: A, a2: A): Boolean = implicitly[Equal[A]].eq(a1, a2)

150 ❘ CHAPTER 9 TYPE SYSTEM

c09.indd 05/05/2016 Page 150

You just need to:

 1. Change the type A to A: Equal.

 2. Remove the second parameter list where you defi ned your expected implicit values.

 3. Retrieve, in the body of your method, the implicit value through the implicitly keyword.

So, yes, context bound is just syntactic sugar you can use in place of explicitly defi ning the implicits
required (no pun intended). It’s just a matter of taste choosing one syntax over the other.

However, there are cases where you may not use context bounds and you’re forced to fall back on
the explicit syntax. For instance, when your implicit type depends on more than one type you’re out
of luck with the context bound approach. Take for example the concept of serialization:

trait Serializer[A, B] {
 def serialize(a: A): B
}

object Serializer {
 def serialize[A, B](a: A)(implicit s: Serializer[A, B]): B = s.serialize(a)

 // implementations of Serializer[A, B]
}

The Serializer trait encapsulates the concept of taking a type A and serializing it into the B type.
As you can see, the serialize method of the Serializer companion object could not use the con-
text bound syntax for Serializer[A, B] since it takes two type parameters.

Before closing the section on context bounds let’s show you a common trick used to allow easy
access to type class instances. Basically, you just need to defi ne an apply method on the companion
object:

object Equal {
 def apply[A: Equal]: Equal[A] = implicitly[Equal[A]]
}

This will let you rewrite the areEqual method as follows:

def areEqual[A: Equal](a1: A, a2: A): Boolean = Equal[A].eq(a1, a2)

Instead of using the implicitly[Equal[A]].eq(a1, a2) you just write Equal[A].eq(a1, a2),
which is cleaner and clearer. You can do that because, as you may already know, Equal[A] is the
same as Equal[A].apply.

Scala also has the concept of view bounds but since they were deprecated in 2.11 we won’t cover
them here.

Upper and Lower Bounds
In Scala, type parameters may be constrained by a type bound. If you defi ne your type without
using a bound there will be no restriction on the possible types one can use. Whenever you want to
restrict the type you need a type bound.

Bounds ❘ 151

c09.indd 05/05/2016 Page 151

If you think about it, it makes sense to desire a restriction over the type. After all, we love static
typing also because it lets us restrict the function domain. On the other hand, in dynamic typing a
function takes zero or more parameters of any type and returns a value of any type.

Without further ado, here is an example of upper bound:

sealed trait Animal {
 def name: String
}

case class Cat(name: String, livesLeft: Int) extends Animal

case class Dog(name: String, bonesHidden: Int) extends Animal

def name[A <: Animal](animal: A): String = animal.name

The name method is where upper bound comes into play. The A <: Animal type signature means:
“Accept any type that is an Animal or any of its subclasses.” Lower bounds work in a similar
fashion in that they restrict the type to its superclasses instead of its subclasses. The syntax is the
following:

A >: Animal

This means that the type A must be of type Animal or any of its superclasses. In this particular case
the superclass of Animal is AnyRef. While the usefulness of upper bounds is obvious, a lower bound
might sound useless at fi rst sight. However, when you meet variance in the next section, you’ll see
that you’re forced to use lower bounds to make your code work in some scenarios.

Variance
Since Scala has both subtype and parametric polymorphism you’re forced to face the concept of
variance sooner or later. Consider the following scenario:

sealed trait Fruit {
 def describe: String
}

class Orange extends Fruit {
 override def describe: String = "Orange"
}

class Apple extends Fruit {
 override def describe: String = "Apple"
}

class Delicious extends Apple {
 override def describe: String = "Apple Delicious"
}

class Box[A]

def describeContent(box: Box[Fruit]): String = ???

152 ❘ CHAPTER 9 TYPE SYSTEM

c09.indd 05/05/2016 Page 152

val oranges = new Box[Orange]

describeContent(oranges) // does not compile

When you try to compile this code you get an error similar to the following:

type mismatch;
[error] found : Box[Orange]
[error] required: Box[Fruit]
...

What’s the problem? Basically, even if Orange is a subclass of Fruit, there’s no such relationship
between Box[Orange] and Box[Fruit]. This came out of mixing subtype polymorphism—the
Fruit class hierarchy—with parametric polymorphism, Box[A]. The previous error message is not
the full story though. Indeed, the Scala compiler is kind enough to tell you what a possible fi x could
be. Indeed it continued with:

[error] Note:Orange <:Fruit, but class Box is invariant in type A.
[error] You may wish to define A as +A instead.

In this specifi c case, it actually tells you what to do. Before following its suggestion let’s see, in
Table 9-1, what are the available options when variance comes into play.

TABLE 9-1: Variance Types

VARIANCE TYPE SYNTAX MEANING

Covariant Box[+A] If B is a subtype of A, then Box[B] is also a subtype of Box[A]

Contravariant Box[-A] If B is a subtype of A, then Box[A] is also a subtype of Box[B]

Invariant Box[A] Even if B is a subtype of A, Box[A] and Box[B] are unrelated

class Box[+A]

You just need to put the plus sign before the type, that’s all. Well, not really, since nothing comes for
free. Indeed, try to make Box more interesting by adding a method to it:

class Box[+A] {
 def describe(a: A): String = ???
}

If you try to compile this code this time you’ll get the following error:

covariant type A occurs in contravariant position in type A of value a
[error] def describe(a: A): String = ???
[error] ^

This time the compiler does not tell you what to do. The very reason behind this error has its roots
in Category Theory, a branch of mathematics, which is, obviously, out of scope in a pragmatic book

Bounds ❘ 153

c09.indd 05/05/2016 Page 153

like this one. However you can, almost automatically, fi xing this type of error by following some
rules. For example, you can fi x the previous compilation error by changing the code as follows:

class Box[+A] {
 def describe[AA >: A](a: AA): String = ???
}

What are you doing here? Basically you are saying to the compiler: “Hey, I promise that my type
parameter is not simply A but AA, which is an A or one of its superclasses.” This way you satisfi ed the
contravariant position the compiler was talking about.

Now, in order to better understand variance, consider the (simplifi ed) signature of the Function1
class of the standard library:

trait Function1[-T1, +R] {
 def apply(t : T1) : R
 ...
}

As you can see it’s contravariant for its input type parameter and covariant for the output one. Some
examples will hopefully make the reason for this clearer.

Suppose you have the following function and an instance of Apple:

def f(apple: Apple, g: Apple => Apple): Fruit = g(apple)

val apple = new Apple

It’s a simple higher-order function that applies the g function to the apple object passed in.

Now, given that variance declaration for the Function1 type, experiment a bit to understand what
type of functions you can pass as g by playing with the input and output type. Of course the imple-
mentations of the examples are deliberately simple because I want you to concentrate on the vari-
ance subject, not on understanding complex implementations.

First things fi rst, consider a function that has exactly the signature required by g, that is Apple =>
Apple:

val appleFunc: Apple => Apple = x => identity(x)

Of course, you can pass appleFunc to f since it matches exactly the g signature:

f(apple, appleFunc)

No problem; it compiles as expected. Now consider the following function:

val fruitFunc: Fruit => Apple = x =>
 if (x.describe == "Apple") new Apple
 else new Delicious

154 ❘ CHAPTER 9 TYPE SYSTEM

c09.indd 05/05/2016 Page 154

It goes from Fruit to Apple. Should the function f accept this type of function as g? Yes, abso-
lutely! Since Function1 is contravariant in its input type parameter this means that it can accept the
Apple type and all its superclasses and Fruit, obviously, respects this rule.

It makes perfect sense if you think about it for a moment. What can a function, which goes from

Fruit to Apple, do on the input parameter of type Fruit? For sure—less specifi c things than on
a subtype of Fruit, such as Apple. So it’s safe passing a function with a less specifi c input type
parameter or, said differently, with a contravariant type parameter.

Now that we justifi ed the contravariant type let’s try to do the same with the covariant one. Take a
look again at the fruitFunc function. If you look closely, you’ll notice you are already exploiting
the covariance of the output type parameter for functions. Indeed, fruitFunc returns an instance of
Apple in one case and an instance of Delicious, Apple’s subclass, in all other cases. This is possible
due to the covariance of the output type.

It’s plausible for a very simple reason, that is the caller of the function expects all the methods
on Apple to be available. Now, you have the guarantee that Apple’s subclasses have, at least, all
Apple’s methods implemented. That’s the reason why the only logical choice for the output type
parameter is to be covariant.

At this point you could say: “OK, now I’m convinced that Function1 must be contravariant in its
input type parameter and covariant in its output one. But what does this have to do with the trick
used in the class Box to make it compile?” It does if you look at the class Box in a more abstract way.
Indeed, its describe method takes an input type and returns an output type. Well, you can say that it
is isomorphic to Function1! As a matter of fact consider the following code:

val box = new Box[Apple]
val f: Apple => String = box.describe

As you can see it transforms the Box’s describe method to a function through a process called eta-
expansion. If you don’t know it don’t worry about its details; just consider it a means of coercing
(converting) methods into functions.

At this point the reason the Scala compiler complained when you tried to use a covariant type in a
contravariant position should start to make sense.

Of course you could constrain A to be a subclass of Fruit and delegate the Box’s describe method to
Fruit:

class Box[+A <: Fruit] {
 def describe[AA >: A <: Fruit](a: AA): String = a.describe
}

As you can see, again, bounds to the rescue! In this case, for AA, you have a multiple bound: one to
satisfy the variance and the other to constrain it to a Fruit type.

Before closing this paragraph here is the other common type of error you can get using variance.
Consider the following class:

class ContraBox[-A] {
 def get: A = ???
}

Other Niceties ❘ 155

c09.indd 05/05/2016 Page 155

If you try to compile it you’ll get the infamous error:

contravariant type A occurs in covariant position in type => A of method get

After having reasoned about Function1 and why the return type of it makes sense to be covariant
you may already know the reason behind the previous error.

Just try to see the get method as a function () => A, that is a zero-parameter function. Can you
spot the problem now? The type returned by a function should be covariant, while A is contravari-
ant. Don’t worry you can fi x this too, this time using an upper bound:

class ContraBox[-A] {
 def get[AA <: A]: AA = ???
}

There you go; this time the code will compile.

Of course, given the practical approach that a programming book must have, we tried to oversim-
plify some concepts but, from a pragmatic point of view, we think this is more than acceptable.

If this is the fi rst time you’ve encountered the concept of variance, don’t worry if something is not
completely clear now. Working with it will become natural for you.

At this point you’ve seen enough about Scala’s type system to survive while coding in Scala.
Actually bounds, variance and ad hoc polymorphism, through type classes, are enough knowledge
to let you write very abstract and polymorphic Scala code. In the following sections you’ll see other
features of the powerful Scala type system.

OTHER NICETIES

As stated at the beginning of this chapter, Scala’s type system is a subject too complex and powerful
to be covered in a single chapter of a book. However in the following sections you’ll see other nice-
ties of the type system.

Take into account that in Scala you can do the same thing in many different ways. For example,
given a problem to model, you can do it using type classes. On the other hand, someone else may
prefer self-recursive types—you’ll see them in a bit. It depends both on the problem at hand and
the taste of the programmer. That said, it’s important to know the tools you have and equally
important to choose the right one. However this last peculiarity cannot be taught; you just learn it
through practice.

Self-Type Annotations
Self-type annotations allow you to serve, mainly, two purposes:

 ➤ Provide an alias for the this keyword.

 ➤ Impose dependencies over a class so that, in order to be instantiated, its client needs to satisfy
them otherwise the compiler will complain.

156 ❘ CHAPTER 9 TYPE SYSTEM

c09.indd 05/05/2016 Page 156

Here is an example for the fi rst case:

trait Foo { self =>
 def message: String

 private trait Bar {
 def message: String = this.message + " and Bar"
 }

 val fullMessage = {
 object bar extends Bar

 bar.message
 }
}

object FooImpl extends Foo {
 override def message: String = "Hello from Foo"
}

println(s"Message: ${FooImpl.fullMessage}")

First of all, you can see the self-type annotation right after the Foo trait declaration. You’ll see how
to use the self keyword in a bit.

Indeed, the previous code compiles but there’s an insidious bug that will make your stack explode
because of a nasty recursion. Look at the Bar trait. The programmer’s intention here was to imple-
ment the Bar’s message method as the concatenation of the Foo’s message method and the “ and
Bar” string. However, this.message refers, recursively, to Bar’s message and not to Foo’s. You can
easily fi x this by using the self alias as follows:

private trait Bar {
 def message: String = self.message + " and Bar"
}

The rest of the code remains unchanged.

The second and more important use of the self-type annotation is to provide dependencies among
types. Consider this simple example:

trait Foo {
 def message: String
}

trait Bar { self: Foo =>
 def fullMessage: String = message + " and Bar"
}

Here you’re saying: “Dear compiler, the Bar trait depends on the Foo trait. This is pretty obvious
since we’re using the message method belonging to Foo within the fullMessage method imple-
mentation. Now, if a client of this API tries to implement the Bar trait without providing also an

Other Niceties ❘ 157

c09.indd 05/05/2016 Page 157

implementation of the Foo trait, would you be so kind to raise a compilation error?” Since the com-
piler is kind it will fulfi ll your request, indeed the following attempt wouldn’t compile:

object BarImpl extends Bar

The error message is something like:

illegal inheritance;
[error] self-type BarImpl.type does not conform to Bar's selftype Bar with Foo

That basically means: “Where is my Foo implementation?” Here’s how you can fi x it:

trait MyFoo extends Foo {
 override def message: String = "Hello from Foo"
}

object BarImpl extends Bar with MyFoo

println(s"Message: ${BarImpl.fullMessage}")

Now the compiler is happy and if you run the code you get the following string printed to the
console:

Message: Hello from Foo and Bar

So, here is a little recap. The syntax for self-type annotations can be of two types:

 ➤ self =>

 ➤ self: YourType =>

The former is just an alias for the this keyword and can be useful in some situations. The latter is a
constraint that won’t make the code compile if the client does not satisfy it.

You can also impose multiple dependencies using the syntax:

self: Type1 with Type2 with Type3 ...

This means that the client needs to provide implementations for Type1, Type2, Type3 and so on in
order to make things work.

Self-type annotations are used as the foundation of the Cake Pattern, brilliantly described here
http://jonasboner.com/2008/10/06/real-world-scala-dependency-injection-di/. To tell
you the truth, we’re not the biggest fans of the Cake Pattern when it comes to dependency injection.
We prefer to use type classes or other techniques. Nevertheless, it can be useful in some situations so
we suggest you go through that article.

Self-type annotations also serve as a basis for self-recursive types, which are the subject of the next
section.

http://jonasboner.com/2008/10/06/real-world-scala-dependency-injection-di

158 ❘ CHAPTER 9 TYPE SYSTEM

c09.indd 05/05/2016 Page 158

Self-Recursive Types
One of the advantages of using a statically typed language is that you can use the type system to
enforce some constraints. Scala provides self-recursive types, also known as F-bounded polymor-
phic types that—along with self types—let you put powerful constraints to your type defi nitions.

Terminology apart, here is one of the use cases where this could be useful. Consider the following
example which does not use a self-recursive type:

trait Doubler[T] {
 def double: T
}

case class Square(base: Double) extends Doubler[Square] {
 override def double: Square = Square(base * 2)
}

So far so good; the compiler will not complain. The problem is that it won’t complain even if you
write something outrageous like the following code:

case class Person(firstname: String, lastname: String, age: Int)

case class Square(base: Double) extends Doubler[Person] {
 override def double: Person = Person("John", "Smith", 42)
}

You want to avoid something like that by enforcing a compile-time check. Enter a self-recursive
type:

trait Doubler[T <: Doubler[T]] {
 def double: T
}

By using this defi nition of Doubler you’re saying: “Hey, if someone tries to extends Doubler with a
type that doesn’t extend Doubler in turn (hence self-recursive), do not compile it.” In this case the
previous defi nition of Square, which extends Doubler[Person], wouldn’t compile.

Note that self-recursive types are not specifi c to Scala. Indeed Java uses them too. Take, for exam-
ple, the Enum defi nition:

public abstract class Enum<E extends Enum<E>>
 implements Comparable<E>, Serializable {
...
}

E extends Enum<E> in Javanese means exactly E <: Enum[E].

F-bounded polymorphic types are of great help, but sometimes they are not enough to enforce the
constraints you need. Indeed, the previous defi nition of Doubler still has one problem. Consider the
next code:

trait Doubler[T <: Doubler[T]] {
 def double: T
}

Other Niceties ❘ 159

c09.indd 05/05/2016 Page 159

case class Square(base: Double) extends Doubler[Square] {
 override def double: Square = Square(base * 2)
}

case class Apple(kind: String) extends Doubler[Square] {
 override def double: Square = Square(5)
}

Can you spot the problem? Look at the Apple defi nition, which extends Doubler[Square] instead
of Doubler[Apple].

This code compiles because it respects the constraint put by the Doubler defi nition. Indeed Square
extends Doubler so it can be used in Apple. Sometimes this is what you want in which case the self-
recursive type will do. In cases when you don’t want this to happen a self type can work this out:

trait Doubler[T <: Doubler[T]] { self: T =>
 def double: T
}

Now if you try to compile the previous defi nition of Apple, the compiler will complain by saying
something like:

error: illegal inheritance;
 self-type Apple does not conform to Doubler[Square]'s selftype Square
 case class Apple(kind: String) extends Doubler[Square] {
 ^

Abstract Type Members
In Scala, besides abstract methods and fi elds, you can also have abstract types within your trait or
abstract classes. Here is a simple example:

trait Food

class Grass extends Food {
 override def toString = "Grass"
}

class Fish extends Food {
 override def toString = "Fish"
}

trait Animal {
 type SuitableFood <: Food

 def eat(food: SuitableFood): Unit = println(s"Eating $food...")
}

class Cow extends Animal {
 type SuitableFood = Grass
}

class Cat extends Animal {
 type SuitableFood = Fish
}

160 ❘ CHAPTER 9 TYPE SYSTEM

c09.indd 05/05/2016 Page 160

Look at the defi nition of SuitableFood within the Animal trait. Using that declaration you’re just
saying: “The type SuitableFood is abstract and it’s a subclass of Food.” The classes that extend
Animal are responsible for refi ning the type defi nition. For example, Cow defi nes the Grass type as
SuitableFood. Similarly, the Cat class refi nes SuitableFood using the Fish type. Now, the follow-
ing code compiles as:

val grass = new Grass
val cow = new Cow

val fish = new Fish
val cat = new Cat

On the other hand, if you try to feed a cow with fi sh and/or a cat with grass it won’t work:

cow.eat(fish) // won't compile

cat.eat(grass) // won't compile

At this point you can object: “Hey, I could have done the same thing using a type parameter instead
of an abstract type member.” You’re right. Indeed, the Animal hierarchy could have been imple-
mented as follows:

trait Animal[SuitableFood <: Food] {
 def eat(food: SuitableFood): Unit = println(s"Eating $food...")
}

class Cow extends Animal[Grass]

class Cat extends Animal[Fish]

The result is the same. At this point the question is: “When to prefer abstract type members to type
parameters?” Well, many times it’s just a matter of taste. However, when the number of type param-
eters is not just one, the abstract type approach could make your code easier to read.

Furthermore, we use the following rule of thumb, but take it with a grain of salt and evaluate case
by case to choose which technique is best suited for the problem at hand.

We tend to use type parameters if we fi nd the type does not make sense without citing its type
parameter; otherwise we could opt for abstract types. For example, List, Option, Set and so on do
not make much sense without citing their contained type. List of what? List[Int], List[String],
and so on. On the other hand, in the previous example, Animal makes perfect sense without citing
the type. It’s more elegant even in code. You notice it more if you explicitly use a type annotation.
Compare these two declarations:

val animal: Animal = new Cow

val animal: Animal[Grass] = new Cow

Moreover, there are corner cases where abstract type members could greatly simplify the implemen-
tation of the API and its client code. For example, Bill Venners used it for ScalaTest’s fi xtures, as he
explains here: http://www.artima.com/weblogs/viewpost.jsp?thread=270195. Also, the very
famous shapeless library, where the Scala type system is pushed to the limit, makes extensive use

http://www.artima.com/weblogs/viewpost.jsp?thread=270195

Other Niceties ❘ 161

c09.indd 05/05/2016 Page 161

of abstract types. In this excellent post, Travis Brown explains brilliantly a corner case where using
abstract type members made the difference: http://stackoverflow.com/questions/34544660/
why-is-the-aux-technique-required-for-type-level-computations/34548518#34548518.

Dynamic Programming
Scala is a statically typed language, and this is a good thing, as you’ve seen so far. However, there
are times when being able to use the peculiarities of dynamically typed languages can be a big plus
for some types of problems.

In this regard, Scala provides two interesting mechanisms through which you can emulate dynamic
programming for those parts of your application that need it. The techniques we’re referring to go
by the names of Structural Types and the Dynamic trait.

Structural Types
Structural types let you accomplish the so-called duck typing, typically found in dynamic languages.
It can be summarized with a sentence: “If it looks like a duck, swims like a duck, and quacks like a
duck, then it probably is a duck.”

In duck typing, a programmer is only concerned with making sure that objects behave as demanded
of them in a given context, rather than ensuring that they are of a specifi c class.

For example, you could say that a resource is closable if its class contains the close method. Here is
how you could model this requirement using structural types:

def closeResource(resource: { def close(): Unit }): Unit = {
 println("Closing resource...")

 resource.close()
}

The duck typing incantation happens by defi ning the resource type as:

{ def close(): Unit }

It basically means: “Any type that has a zero-parameter close method, which returns Unit, is suit-
able to be passed to the closeResource method.” You can see it in action in the following example:

class Foo {
 def close(): Unit = println("Foo closed")
}

class Bar {
 def close(): Unit = println("Bar closed")
}

val foo = new Foo
closeResource(foo)

val bar = new Bar
closeResource(bar)

http://stackoverflow.com/questions/34544660
http://stackoverflow.com/questions/34544660/why-is-the-aux-technique-required-for-type-level-computations/34548518#34548518

162 ❘ CHAPTER 9 TYPE SYSTEM

c09.indd 05/05/2016 Page 162

The output is:

Closing resource...
Foo closed
Closing resource...
Bar closed

Even if structural types give you the power of duck typing, they have the advantage, over a dynami-
cally typed language, of providing some form of type safety at compile time. For example, the fol-
lowing code wouldn’t compile:

val baz = new Baz
closeResource(baz)

The error you get is something like:

[error] ...: type mismatch;
[error] found: baz.type (with underlying type Baz)
[error] required: AnyRef{def close(): Unit}
[error] closeResource(baz)
[error] ^

This is pretty self-explanatory.

You can also require the existence of more than one method. In this case it’s cleaner to defi ne a type
alias as in:

type Resource = {
 def open(): Unit
 def close(): Unit
}

def useResource(resource: Resource): Unit = {
 resource.open()

 // do what you need to do

 resource.close()
}

Well, it seems like structural types have no downside, but we know that all that glitters is not gold.
Indeed, the machinery behind structural types is the refl ection and, as such, it has a non-trivial run-
time cost. This is one of the reasons why you should strive to avoid structural types as much as you
can. For instance, both of the previous examples can be elegantly solved using type classes and, by
now, you should also know how to do it.

Dynamic Trait
Structural types let you write generic code that will work, provided that a class has the given meth-
ods. The Dynamic marker trait, on the other hand, address the somewhat dual problem. It lets you

Other Niceties ❘ 163

c09.indd 05/05/2016 Page 163

pretend that an object has fi elds and/or methods that actually do not exist at declaration time. An
example will make this clear:

import scala.language.dynamics

class Magic extends Dynamic {
 def selectDynamic(field: String): Unit = println(s"You called $field")
}

val magic = new Magic

magic.foo
magic.bar

The output of the previous code is:

You called foo
You called bar

The fi rst thing to do is import the feature, since it’s disabled by default. Alternatively, you can add it
to the scalacOptions key in your SBT build fi le as follows:

scalacOptions += "-language:dynamics"

As you can see, even if the Magic class does not contain the foo and bar fi elds, you can still call
them because it extends Dynamic. The selectDynamic method is where the calls to fi elds are rooted.
The string passed as parameter is the name of the fi eld you called.

You can also easily chain calls:

class Magic extends Dynamic {
 def selectDynamic(field: String): Magic = {
 println(s"You called $field")

 this
 }
}

val magic = new Magic

magic.foo.bar

The output will be the same as the previous example. As you may have guessed the trick here is that,
instead of Unit, the method returns this.

Apart from fi elds, you can also fake methods:

class Magic extends Dynamic {
 def applyDynamic(name: String)(args: Any*): Unit =
 println(s"method '$name' called with arguments: ${args.mkString(", ")}")
}

164 ❘ CHAPTER 9 TYPE SYSTEM

c09.indd 05/05/2016 Page 164

val magic = new Magic

magic.someMethod("foo", 42, List(1, 2, 3))

The output is:

method 'someMethod' called with arguments: foo, 42, List(1, 2, 3)

The name parameter of the fi rst section of applyDynamic is the name of the invoked method. The
args parameter of its second section is a varargs of type Any, that is any number and type of
arguments.

There are other methods you can use to build full incantations using the Dynamic trait, but we
won’t cover them for space’s sake so please refer to the Scala API for more info.

SUMMARY

It’s been a long road. The Scala type system is a very hard topic, and in this chapter you’ve seen its
most used features. Don’t worry if, at this time, something is not crystal clear. You’ll digest these
concepts while working with them.

Even from an OOP perspective, the Scala type system is superior to the Java one, since it has no dis-
tinction between primitives and reference types. This makes your code more coherent and with less
boilerplate to go back and forth from the primitive world.

You’ve also seen that Scala offers the very powerful ad hoc polymorphism through type classes.
After talking about bounds you’ve met the concept of variance that was introduced using a different
and, maybe, more friendly approach.

In the end, after covering other goodies of the type system, you’ve seen what the language has to
offer when it comes to dynamic typing. Take your deserved rest, then a deep breath. See you in the
next chapter with an advanced type system concept and a demystifi cation of the most common func-
tional design patterns.

c10.indd 04/20/2016 Page 165

Advanced Functional
Programming

WHAT’S IN THIS CHAPTER?

 ➤ Understanding advanced features of the type system

 ➤ Providing functional design pattern knowledge

 ➤ Mastering the relationship between programming and algebraic
structures

The previous chapter gave you solid foundations to move with agility among Scala’s type
system. This chapter starts by introducing an advanced type system concept that goes by the
name of higher-kinded types.

 It proceeds with an overview of the most common functional design patterns, such as functor,
applicative and monad. As you’ll see, these concepts are much easier than you might think.

 The chapter ends with an analysis of two very simple algebraic structures, showing how they
can be exploited to write very elegant code.

HIGHER-KINDED TYPES

Option or List are not proper types, but they are kinds. A kind is the type of a type construc-
tor. Simply speaking, it means that, in order to be constructed, it needs another type.

In type theory, kinds like List and Option are indicated using the following symbology:
* -> *. The star symbol stands for type. So, * -> * means: “Give me a type and I construct
another type.” Indeed, given the List kind, if you provide the Int type then your fi nal type
will be List[Int]. If you furnish a String then it’ll be a List[String] and so on. Table 10-1
shows the most commonly used kinds.

10

Professional Scala. Aliaksandr Bedrytski, Janek Bogucki, Alessandro Lacava, Matthew de Detrich and Benjamin Neil
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

166 ❘ CHAPTER 10 ADVANCED FUNCTIONAL PROGRAMMING

c10.indd 04/20/2016 Page 166

TABLE 10-1: Kinds in Type Theory

SYMBOL KIND EXAMPLES

* Simple type. Also known as nullary type
 constructor or proper type.

Int, String, Double, ...

* -> * Unary type constructor. List, Option, Set, ...

* -> * -> * Binary type constructor. Either, Function1, Map, ...

(* -> *) -> * Higher-order type operator, higher-kinded
type for friends.

Foo[F[_]], Bar[G[_]], Functor[F[_]],
Monad[M[_]], ...

So, a higher-kinded type is a type that, in order to be constructed, needs a kind that is a type con-
structor. It sounds complex, but it really isn’t. An example should help.

Suppose you want to capture, in a type class, the concept represented by the map method you’ve met
in Option, List, Set and so on. For this purpose, you can write the following abstraction:

import scala.language.higherKinds

trait Mapper[M[_]] {
 def map[A, B](ma: M[A])(f: A => B): M[B]
}

The fi rst thing to do, in order to avoid a compiler warning, is import the higher-kinded type’s fea-
ture. Alternatively, you can add it to the scalacOptions key in your SBT build fi le as follows:

scalacOptions += "-language:higherKinds"

In the previous example, Mapper is a higher-kinded type. Indeed, given M[_], which is a unary type
constructor, you can construct the Mapper type.

You’ve seen, from Table 10-1, that unary type constructors are, for example, List and Option,
so let’s go ahead and implement mapper for them. Furthermore, we’ll use the type class pattern in
order to defi ne a method that will take an instance of Mapper implicitly, just to make the things
more interesting:

object Mapper {
 def apply[M[_]: Mapper]: Mapper[M] = implicitly[Mapper[M]]

 def map[A, B, M[_]: Mapper](ma: M[A])(f: A => B): M[B] = Mapper[M].map(ma)(f)

 implicit val optionMapper = new Mapper[Option] {
 override def map[A, B](ma: Option[A])(f: A => B): Option[B] = ma.map(f)
 }

 implicit val listMapper = new Mapper[List] {
 override def map[A, B](ma: List[A])(f: A => B): List[B] = ma.map(f)
 }
}

Functional Design Patterns ❘ 167

c10.indd 04/20/2016 Page 167

Look at the map method. As you can see, the context bound can also be used with higher-kinded
types.

The Mapper companion object also contains two implicit instances, one for Option and the other
for List. The implementation is very trivial since both Option and List already have an implemen-
tation of the map method.

Follow a couple of examples of the map method in action:

import Mapper._

val as: List[Int] = List(1, 2, 3)
val bs: List[Int] = map(as)(_ + 1)

println(s"bs: $bs") // prints List(2, 3, 4)

val a: Option[String] = Some("1")
val b: Option[Int] = map(a)(_.toInt + 1)

println(s"b: $b") // prints Some(2)

As you can see, the map method can be applied, seamlessly, both to Option and List instances. Ad
hoc polymorphism, for the win.

Don’t worry if, at this stage, something is not completely clear. Working with higher-kinded types
will become second nature to you because they let you build very powerful abstractions such as
functors, applicative functors, monads and so on, which are the subjects of the next sections.

FUNCTIONAL DESIGN PATTERNS

If you’ve been using functional programming for a while you may have heard about one or all of the
following funny-looking terms: functor, applicative functor and monad.

These concepts can be examined from two different approaches: using a very abstract mathemati-
cal branch that goes by the name of Category Theory or opting for a more pragmatic approach and
leaving the theory for a later moment when you’re prepared to dig deeper into the subject.

In this book we’ll use the practical approach, trying to demystify these concepts that are, as you’ll
see, not too complex.

Functor
The fi rst evidence that these concepts are not so complex is given by the functor. Do you remember
the Mapper type class seen in the previous section? That’s a Functor. We called it Mapper just to
arrive at this demystifying moment. So, you can now rewrite the Mapper type class and companion
object as follows:

trait Functor[F[_]] {
 def map[A, B](fa: F[A])(f: A => B): F[B]
}

168 ❘ CHAPTER 10 ADVANCED FUNCTIONAL PROGRAMMING

c10.indd 04/20/2016 Page 168

object Functor {
 def apply[F[_]: Functor]: Functor[F] = implicitly[Functor[F]]

 def map[A, B, F[_]: Functor](fa: F[A])(f: A => B): F[B] = Functor[F].map(fa)(f)

 implicit val optionFunctor = new Functor[Option] {
 override def map[A, B](fa: Option[A])(f: A => B): Option[B] = fa.map(f)
 }

 implicit val listFunctor = new Functor[List] {
 override def map[A, B](fa: List[A])(f: A => B): List[B] = fa.map(f)
 }
}

Using a functor you can apply a given function to a value that is inside a context. Examples of con-
texts are: Option, List, Try, Future, and so on.

For example, the Option type represents the context of an optional value that eschews null to han-
dle the no value case. The List context is that of representing no value or, at least, one value. The
Try type represents the context of a possible failure.

Future, on the other hand, represents the context where a value may be available in the future. For
instance, suppose you have Some(42) and you want to:

 1. Extract the value 42 outside of the context (Some)

 2. Apply a function to it

 3. Put the result inside the context again

Well, that’s basically what a functor is for.

Also, you may have heard of the lift word associated with the functor concept. A functor lifts a
 simple function that goes from A to B to one that goes from F[A] to F[B], where F is the functor,
e.g. List or Option. Figure 10-1 illustrates lift, which is just the effect of map.

F[_]

F[A]

L

I

F

T

F[B]

F[_]

A B

FIGURE 10-1

Actually, you could have written the map method of Functor, equivalently, as follows:

trait Functor[F[_]] {
 def map[A, B](f: A => B): F[A] => F[B]
}
object Functor {
 def apply[F[_]: Functor]: Functor[F] = implicitly[Functor[F]]

Functional Design Patterns ❘ 169

c10.indd 04/20/2016 Page 169

 def map[A, B, F[_] : Functor](f: A => B): F[A] => F[B] = fa =>
 Functor[F].map(f)(fa)

 // ...
}

Can you see now why they say that, through a functor, you can lift a function of type A => B to one
of type F[A] => F[B]? Again, lift, another buzzword demystifi ed. The latter is the signature used
in Haskell, by the way. The problem with this signature in Scala is that its type inference is not as
good as Haskell’s. Easy up to now, isn’t it? This is not the full story, though.

In order for something to be a functor, it should satisfy a couple of laws. In formulating and elabo-
rating the laws, let’s use the latter map function signature, because it makes the reasoning easier to
follow. However, in real life, you’d stick to the previous signature because of the type inference prob-
lem aforementioned. Let’s see these laws then.

Given fa: F[A] and the identity function defi ned as follows:

def identity[A](a: A): A = a

The following laws must hold (in pseudo-code):

Law I: map(identity)(fa) = fa
Law II: map(f compose g)(fa) = map(f)(map(g)(fa))

The fi rst law states that if you map the identity function over a functor, the returned functor should
be the same as the original one. The second law states that if you have two functions, f and g, the
result of mapping their composition over fa must be the same as mapping g to fa obtaining, say, fb
and then mapping f to fb.

If you had to read Law I as a question, it would be: “What’s the function that applied to fa gives
back fa unmodifi ed?” If you thought of the identity function you guessed it. So, this means that a
potential functor satisfi es the fi rst law if and only if:

map(identity) = identity

You can easily verify that this is true both for Option and List. For Option it means that, for
example:

Some(42).map(identity) == Some(42)
None.map(identity) == None

This is the same reasoning for List. So they respect the fi rst law. Now the second. For Option it
means:

Some(42).map(f compose g) == Some(42).map(g).map(f)
None.map(f compose g) == None.map(g).map(f)

The second law is also respected—by List too. You can say there exists a functor instance for both
Option and List.

Note that the compiler cannot enforce these laws, so you have to test them out yourself to ensure
the functorness. However, if you use functors written by others, you don’t even need to worry about

170 ❘ CHAPTER 10 ADVANCED FUNCTIONAL PROGRAMMING

c10.indd 04/20/2016 Page 170

these laws, since they should have done it on their side. For example, popular libraries such as scalaz
(https://github.com/scalaz/scalaz) and cats (https://github.com/non/cats) make sure that
every functor instance satisfi es the aforementioned laws.

Now that we have demystifi ed the functor concept let’s proceed with the applicative functor.

Applicative Functor
Before introducing the Applicative Functor (simply Applicative from now on) we want to expose the
problem it resolves.

Using a functor you can apply a given function to a value that is inside a context: Option, List,
Try, Future, and so on. Now, what if the function you want to apply is within a context as well? An
example will make this clear.

Suppose you want to write a very trivial method, based on string interpretation, that returns a func-
tion to be applied to an Int value. For instance, something like the following:

def interpret(str: String): Option[Int => Int] = str.toLowerCase match {
 case "incr" => Some(_ + 1)
 case "decr" => Some(_ - 1)
 case "square" => Some(x => x * x)
 case "halve" => Some(x => x / 2)
 case _ => None
}

The interpret method takes a String and returns an Option[Int => Int]. If the command is
not recognized it returns None. Pretty fair.

It would be nice being able to apply the function returned by interpret, which is inside the Option,
to a value wrapped in an Option too. Of course, as a result, we still want an Option. Stated differ-
ently, given:

val func: Option[Int => Int] = interpret("incr")

val v: Option[Int] = Some(42)

We want to apply the wrapped function represented by func to the wrapped value represented by v.
Applicative solves this type of problem. Here’s the defi nition of the Applicative type class:

trait Applicative[F[_]] extends Functor[F] {
 def pure[A](a: A): F[A]

 def ap[A, B](fa: F[A])(fab: F[A => B]): F[B]

 override def map[A, B](fa: F[A])(fab: A => B): F[B] = ap(fa)(pure(fab))
}

The methods exposed are pure and ap. The fi rst is needed to wrap a value into a context. The ap
method, instead, is exactly what we needed to combine func and v from the previous example.

Moreover, Applicative extends Functor. Indeed, as you can see from the previous code, by providing
pure and ap you can derive for free an implementation of the map method, required by the functor.

https://github.com/scalaz/scalaz
https://github.com/non/cats

Functional Design Patterns ❘ 171

c10.indd 04/20/2016 Page 171

NOTE If you have some diffi culty understanding the implementation of map in
terms of pure and ap, remember to always follow the types. For example, map
requires an F[A] and a function A => B. On the other hand, ap requires an F[A]
and an F[A => B]. Is there a way to transform A => B to F[A => B] just to
reuse ap and make the types align? Sure, pure is of the type A => F[A], for all
types A. The function A => B is a type, much like Int, Double and String. So,
the solution is to use pure to transform A => B to F[A => B], and you’re done.

Now, let’s provide the applicative instances for Option and List:

object Applicative {
 def apply[F[_]: Applicative]: Applicative[F] = implicitly[Applicative[F]]

 def pure[A, F[_]: Applicative](a: A): F[A] = Applicative[F].pure(a)

 def ap[A, B, F[_]: Applicative](fa: F[A])(fab: F[A => B]): F[B] =
 Applicative[F].ap(fa)(fab)

 implicit val optionApplicative = new Applicative[Option] {
 override def pure[A](a: A): Option[A] = Option(a)

 override def ap[A, B](fa: Option[A])(fab: Option[A => B]): Option[B] = for {
 a <- fa
 f <- fab
 } yield f(a)
 }

 implicit val listApplicative = new Applicative[List] {
 override def pure[A](a: A): List[A] = List(a)

 override def ap[A, B](fa: List[A])(fab: List[A => B]): List[B] = for {
 a <- fa
 f <- fab
 } yield f(a)
 }
}

Remember to always follow the types.

Now you can fi nally combine func and v thanks to Applicative:

val func: Option[Int => Int] = interpret("incr")

val v: Option[Int] = Some(42)

val result: Option[Int] = ap(v)(func)

Applicative, like Functor and all other concepts coming from Category Theory, come with some
laws that must be respected. For a matter of space, we won’t cover the applicative laws here. For the
moment, you don’t need to worry about them either. At this stage of things, you’ll use applicatives

172 ❘ CHAPTER 10 ADVANCED FUNCTIONAL PROGRAMMING

c10.indd 04/20/2016 Page 172

exposed by, say, scalaz or cats, as a user. When and if you need to write your own applicative
instances, you can then dig deeper into the applicative laws.

Monad
The moment to talk about monads arrived. By now, however, you should already know that it is a
type class with some laws to respect.

Prof. Eugenio Moggi, an Italian professor of computer science, was the fi rst to describe the general
use of monads to structure programs.

Monads can be seen as beefed up applicatives, much in the way applicatives can be seen as beefed up
functors. Indeed, here is the defi nition of the Monad type class:

trait Monad[M[_]] extends Applicative[M] {
 def unit[A](a: A): M[A]

 def flatMap[A, B](ma: M[A])(f: A => M[B]): M[B]

 override def pure[A](a: A): M[A] = unit(a)

 override def ap[A, B](fa: M[A])(fab: M[A => B]): M[B] = flatMap(fab)(map(fa))
}

The primitives required by the Monad type class are unit and flatMap.

NOTE In the Haskell literature you may fi nd the primitives under the names
return and bind, respectively. The symbol used to denote bind is >>=. Just in
case you happen to read an article about monads in Haskell, this should help.

Once you have an implementation for unit and flatMap, you get for free, the implementation of
pure and ap of the Applicative type class. Here is the Monad companion object that contains the
implementation of Monad for Option and List:

object Monad {
 def apply[M[_] : Monad]: Monad[M] = implicitly[Monad[M]]

 def flatMap[M[_] : Monad, A, B](ma: M[A])(f: A => M[B]): M[B] =
 Monad[M].flatMap(ma)(f)

 implicit val optionMonad = new Monad[Option] {
 override def unit[A](a: A): Option[A] = Option(a)

 override def flatMap[A, B](ma: Option[A])(f: A => Option[B]): Option[B] =
 ma.flatMap(f)
 }

Functional Design Patterns ❘ 173

c10.indd 04/20/2016 Page 173

 implicit val listMonad = new Monad[List] {
 override def unit[A](a: A): List[A] = List(a)

 override def flatMap[A, B](ma: List[A])(f: A => List[B]): List[B] =
 ma.flatMap(f)
 }
}

Both Option and List expose the flatMap method. Now let’s have a look at an example. Suppose
you have the following function and value:

val sqrt: Double => Option[Double] = { value =>
 val result = math.sqrt(value)

 if (result.toInt.toDouble == result) Some(result) else None
}

val perfectSquare: Option[Double] = Some(49)

The sqrt function takes a Double and, if it’s a perfect square, returns the result of applying the
square root to the number wrapped in a Some; otherwise it just returns None. You want to apply the
sqrt function to the perfectSquare value.

Follow the types. You have an Option[Double] and a function Double => Option[Double]. The
flatMap method has the following signature:

def flatMap[M[_] : Monad, A, B](ma: M[A])(f: A => M[B]): M[B]

Specifi cally, if you replace A and B with Double and M with Option you’ll soon realize you have
everything you need. Indeed:

val res: Option[Double] = flatMap(perfectSquare)(sqrt) // Some(7.0)

Again, monads have some laws that must be respected too, but we won’t cover them here for space’s
sake. Moreover, you don’t need to know them to exploit the already existent monad instances pro-
vided by scalaz and cats.

The concepts of functor, applicative, monad and many others, useful in the functional program-
ming world, are taken very seriously by pretty famous libraries such as scalaz and cats. The latter is
younger than scalaz, but better organized and documented. We recommend that you may start with
cats and then, once you have mastered some concepts, take a look at the more mature scalaz library.

Semigroup
Another concept you may have heard of is the semigroup. It comes from mathematics.

A semigroup is an algebraic structure consisting of a set together with an associative binary opera-
tion. So, a semigroup involves a set S and a binary operation.

The following properties must hold for a semigroup:

 ➤ Closure: Given two elements of S and applying the binary operation to them, the result must
also be in S.

174 ❘ CHAPTER 10 ADVANCED FUNCTIONAL PROGRAMMING

c10.indd 04/20/2016 Page 174

 ➤ Associativity: When combining more than two elements of the set, it doesn’t matter which
pairwise combination you do fi rst.

An example will make it clearer. Consider the set of integers along with the + binary operation.
Does it form a semigroup? Yes. The closure law is satisfi ed since, by summing two integers, you get
back an integer again. Also the associativity holds. Indeed, for example:

(4 + 10) + 2 = 4 + (10 + 2)

In order to see how these mathematical structures can be of help in your day-by-day coding sessions,
let’s introduce the monoid, which is just a beefed up semigroup.

Monoid
A semigroup with the identity element is called a monoid. Here’s the formal identity element
defi nition:

Identity element: There exists an element e in S such that for every element a in S, e • a = a • e
= a.

Again, does the set of integers along with the + operation form a monoid? You’ve already seen that
it forms a semigroup. If you can fi nd the identity element then it’s also a monoid. For the plus opera-
tion, the identity element, or the neutral element, is the zero. Indeed:

x + 0 = 0 + x = x, for all x being an integer.

Note that the set of integers with the * operation forms a monoid too. In this case the neutral ele-
ment is the unit. Indeed:

x * 1 = 1 * x = x, for all x being an integer

OK, enough math; let’s get back to coding and see how these mathematical concepts can make your
code cleaner and more elegant.

First, let’s capture the semigroup and monoid concepts:

trait Semigroup[A] {
 def append(a1: A, a2: A): A
}
trait Monoid[A] extends Semigroup[A] {
 def zero: A
}

Now, suppose that you want to abstract the concept of summation. That is, given a List[A], you
want to be able to sum all its elements. Scala already exposes the sum method on List, but, unfor-
tunately, it works only with numbers. So the following attempts will work:

 scala> List(1, 2, 3).sum
res0: Int = 6

scala> List(3.14, 42.6, 3).sum
res1: Double = 48.74

Functional Design Patterns ❘ 175

c10.indd 04/20/2016 Page 175

However, if you try to use sum on a List[String] it won’t work because there’s no instance of the
Numeric type class for String:

scala> List("hello", ", ", "world") .sum
<console>:8: error: could not find implicit value for parameter
num: Numeric[String]
 List("hello", ", ", "world") .sum
 ^

Can you write a more generic sum method that will also work for strings? Yes, thanks to the
monoid structure. Here is the method defi nition:

def sum[A](elements: List[A])(implicit M: Monoid[A]): A =
 elements.foldLeft(M.zero)(M.append)

Look how beautiful and elegant that is! As you already know, foldLeft expects an initial element
of type A and a binary function of type (A, A) => A. That’s what we are providing through the
monoid structure.

In order to make it work for integers you just need to provide an implicit instance of Monoid[Int]
in scope. For String, you implement Monoid[String] and make sure it’s in scope, implicitly. Let’s
do it:

object Monoid {
 def apply[A: Monoid]: Monoid[A] = implicitly[Monoid[A]]

 implicit val intMonoid = new Monoid[Int] {
 override def zero: Int = 0

 override def append(a1: Int, a2: Int): Int = a1 + a2
 }

 implicit val stringMonoid = new Monoid[String] {
 override def zero: String = ""

 override def append(a1: String, a2: String): String = a1 + a2
 }
}

As you can see, the implementation isn’t fancy. The identity element for the String type is, natu-
rally, the empty string.

Here’s the sum method in action:

val intResult: Int = sum(List(1, 2, 3))
val stringResult: String = sum(List("hello", ", ", "world"))

println(intResult)
println(stringResult)

The output is:

6
hello, world

176 ❘ CHAPTER 10 ADVANCED FUNCTIONAL PROGRAMMING

c10.indd 04/20/2016 Page 176

It seems to work like a charm. Now, suppose you want your sum function to work with Option
types too. Do you need to change anything from the previous code? No, you don’t. You just need to
provide an implementation of Monoid[Option[A]]:

implicit def optionMonoid[A: Semigroup]: Monoid[Option[A]] =
new Monoid[Option[A]] {
 def zero: Option[A] = None

 def append(f1: Option[A], f2: Option[A]): Option[A] = (f1, f2) match {
 case (Some(a1), Some(a2)) => Some(Semigroup[A].append(a1, a2))
 case (Some(a1), None) => f1
 case (None, Some(a2)) => f2
 case (None, None) => None
 }
}

What follows is an example of its use:

val optionResult: Option[String] =
 sum(List(Some("hello"), Some(", "), None, Some("world")))

println(optionResult)

The output is:

Some(hello, world)

Now some words about one interesting part of the implementation. Notice that we require an imple-
mentation of Semigroup for A so that you can use it to append the two values of type A when both
values are of type Some.

You might wonder why we require it to be a Semigroup and not a Monoid. The reason is that
you only need the append method, and it’s a good development practice to use the least powerful
abstraction that will get the job done. This makes your code more reusable. Furthermore, there
could be plausible implementations of Semigroup for some types, but not valid Monoid implementa-
tions since the zero might not make any sense in some contexts. Similarly, if your method can get
away with an applicative, don’t require a monad as evidence.

SUMMARY

 Concepts such as Functor, Applicative Functor and Monad are very useful to provide a common
interface to very different and, sometimes, unrelated context Pure algebraic structures can help you
write very elegant and reusable code.

Object-oriented design patterns let you use the same vocabulary with other OO programmers. Now
functors, applicatives, monads, and so on let you do the same thing among functional program-
mers. Some object-oriented design patterns refl ect the limitation of a language/paradigm, in terms of
expressivity. Just think that many of the classic twenty-three design patterns used in OOP are easily
implemented in functional programming through HOFs and type classes.

Summary ❘ 177

c10.indd 04/20/2016 Page 177

Finally, take into account that we approached the concepts in this chapter very pragmatically.
Of course, in doing so, we had to gloss over some details and use some terminology improperly.
From a Category Theory point of view this may not be acceptable, but we hope that this served to
help you understand the part of these concepts that you need as a programmer. This chapter was
meant as an introduction to these concepts. The fi eld is so big you can easily write an entire book
about it. Actually, if you want to deepen your knowledge about these and other advanced functional
 programming patterns you should defi nitely read the red book that is Functional Programming in
Scala—Paul Chiusano and Rúnar Bjarnason.

Oh, and remember:

 ➤ Never be scared by the buzzwords. Sometimes, the concepts behind them are not as hard as
some people love to make you believe.

 ➤ Always follow the types! They’ll never disappoint you.

c11.indd 05/12/2016 Page 179

Concurrency
WHAT’S IN THIS CHAPTER?

 ➤ Understanding why concurrent and parallel programming is hard
and why it needs a special attention

 ➤ Learning about asynchronous structures and the best practices for
dealing with concurrency

 ➤ Getting to know the ways to benchmark your solution to see
whether or not the concurrent version is faster

 ➤ Having a way of creating and understanding distributed applica-
tions with Akka framework

There is a great chance that you’ve heard about the old Moore’s law, which states that process-
ing power will double every two years. It was handy for quite some time: you could develop
your applications and if the actual performance of the software was poor, you could just wait
for a few months so that everyone would have a better computer to handle the appetites of
your application. At that time concurrency was only used to handle multitasking, as in a web
browser: when you click on a download link, it should be going in parallel, without blocking
out the main window.

Sadly, the “free lunch” is over and today to increase the fl uidity of your software it is necessary
to know how to handle more than one CPU core at the same time. This task is not easy, and
the concurrency problem is considered as one of the most diffi cult in today developer’s craft.

But wait, there is more! The long-time reign of mainframes is nearly nonexistent today, and
now we are dealing with many small servers instead of a lonely large one. Distributed systems
are no longer a scientifi c subject. Today they are used to solve complex problems by many of
the world’s top 500 technological companies. All of this is due to the fact that building one
great computer (called “vertical scaling”) is much, much more expensive than connecting a
cluster of a bunch of cheap ones (also called “horizontal scaling”). That’s why developers who

11

Professional Scala. Aliaksandr Bedrytski, Janek Bogucki, Alessandro Lacava, Matthew de Detrich and Benjamin Neil
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

180 ❘ CHAPTER 11 CONCURRENCY

c11.indd 05/12/2016 Page 180

understand and know how to handle distributed (or, at least, multi core) programming are
very valued today.

Java was created in 1995 when there was no widespread multi core or distributed applications. Even
if it is true that Java has evolved during the last years and nearly everything is available as a linkable
library, Scala has some of these tools directly out of the box. Things like monaïdic Future, Parallel
collections, Akka, and Spark were specifi cally made to be as readable and expressive as possible
when using Scala.

So why bother learning concurrency? As an example, consider that you need to query a distant
database. Why not just wait for a reply from the server and then proceed with computations? Take a
look at this schema in Figure 11-1.

Process 1

Process 2

One core
CPU

FIGURE 11-1

Here you have two processes concurrently fi ghting for CPU’s time. It’s normal, on a low level, so
the scheduler handles those things by giving each one of the processes some time according to their
priority. Now let’s see what happens when a process makes a call to a remote MongoDB database
(Figure 11-2).

Process 1

Process 2

One core
CPU

FIGURE 11-2

The second process took some of its time to make a request, but after that it did nothing but wait for
the reply. If the MongoDB is located on a separate server, it can mean that it is blocking the thread
for a quite some time as the request latency is an order of magnitude larger than the time to prepare
the request.

Now here is what it looks like when using a non-blocking, reactive MongoDB driver (Figure 11-3).

Process 1

Process 2

One core
CPU

FIGURE 11-3

Quite an improvement, don’t you think so? You are using all of the power of the processor without
blocking it. Now imagine for a second that you have thousands of threads that are doing asynchro-
nous requests on many cores. This is where the reactive (or asynchronous) programming may be
something that separates a system with non-viable performances on an expensive server from the
one that will handle nearly any number of requests on a few cheap machines.

Synchronize/Atomic Variables ❘ 181

c11.indd 05/12/2016 Page 181

In this chapter we discuss the main ways to handle concurrency in Scala. We start with a small
reminder of how this problem was solved originally, and how the concurrency model looks on a low
level. Then we gradually proceed to more advanced techniques available in which the concurrency is
handled behind powerful abstractions.

Each of the parts in this chapter may take a whole book to be described in detail, so instead we
will analyze where to use the described tool and where it should be avoided at all costs. With this
in mind, to have the best results from this chapter, don’t be afraid to experiment and launch the
examples yourself, since it’s one of the best ways to feel the unpredictability and the power of the
concurrent programming.

 SYNCHRONIZE/ATOMIC VARIABLES

Java 1.5 introduced the concurrency model that became the building bricks of today’s concurrent
abstractions in JVM languages. Even if it is rarely used in Scala (as there are better alternatives),
you should still understand how it works under the hood. As you may already know, every time you
need to execute a concurrent process, you need to create a thread:

 class CustomThread extends Thread {
 override def run(): Unit = {
 println("Custom thread is running.")
 }
 }
 val thread = new CustomThread
 thread.start()
 thread.join()
 println("Custom thread has joined.")

In this code you create a custom class that extends Thread. The start() function effectively exe-
cutes the run() method of the CustomThread class on a different system’s thread. It is the OS’s job
to fi nd an available CPU core to run the method. The join() method, on the other hand, notifi es
the main thread (the one on which the program is executed) to wait for the end of thread’s execu-
tion. As a consequence, the string “Custom thread has joined” will be always shown after “Custom
thread is running.” It’s worth noting that the main thread is not busy waiting while doing the
join(), so no additional CPU-cycles are consumed.

Now, let’s say you have a variable that two threads should modify at the same time:

 var a = 0
 class CustomThread extends Thread {
 override def run(): Unit = {
 a += 1
 }
 }
 val thread1 = new CustomThread
 val thread2 = new CustomThread
 thread1.start()
 thread2.start()

 thread1.join()
 thread2.join()
 println(a)

182 ❘ CHAPTER 11 CONCURRENCY

c11.indd 05/12/2016 Page 182

After executing this code several times, you may notice that the last line does not always show “2”,
but sometimes it’s “1” instead. What is happening here is that two threads are modifying the vari-
able at the same time: thread1 reads the value that is “0” and before it modifi es it, thread2 also
reads the value “0” of the variable. So both threads see “0” and they both add one to it to save the
fi nal value as “1”. This phenomenon is called “race conditions”: when the result of a concurrent
program depends on the order of the execution of its statements.

Luckily there is a way to handle this situation, and it’s called synchronization. Let’s explain it with
an analogy.

A while back there was a version control system called RCS. It worked as follows: when you want
to modify a fi le you should have locked it so that nobody other than you can modify it until you’re
done. What happens when you want to modify a fi le that is locked by another person? Well, you
have to wait some time, probably doing nothing but waiting. Here is how it looks applied to code
with an incrementing variable:

 var a = 0
 val obj = new Object
 class CustomThread extends Thread {
 override def run(): Unit = {
 obj.synchronized {
 a += 1
 }
 }
 }
 val thread1 = new CustomThread
 val thread2 = new CustomThread
 thread1.start()
 thread2.start()

 thread1.join()
 thread2.join()
 println(a)

In this case the last line will always print “2” no matter how many times you execute the program.
It is not possible to do a synchronize on a as it is an integer, and that’s why we introduced the new
obj value so that you could have a lock for the modifi cations on a.

The problem with this model is that you could easily stumble upon a deadlock. Consider this code:

var a = 0
val obj1 = new Object
val obj2 = new Object
class CustomThread1 extends Thread {
 override def run(): Unit = {
 obj1.synchronized {
 obj2.synchronized {
 a += 1
 }
 }
 }
}

Synchronize/Atomic Variables ❘ 183

c11.indd 05/12/2016 Page 183

class CustomThread2 extends Thread {
 override def run(): Unit = {
 obj2.synchronized {
 obj1.synchronized {
 a += 1
 }
 }
 }
}
(1 to 100).foreach(i => {
 println(s"current iteration: $i")
 val thread1 = new CustomThread1
 val thread2 = new CustomThread2
 thread1.start()
 thread2.start()
 thread1.join()
 thread2.join()
})
println(a)

If you execute this code, there is a very high chance that it will just stack on some iteration (just re-
launch it a few times if that’s not the case for you). You will have to halt the execution. What hap-
pens here is that at some moment thread1 synchronizes on obj1 when, at the same time, thread2
synchronizes on obj2. Then thread1 needs a synchronization on obj2 that is locked and thread2
needs it on obj1. Nobody can move, since we are in deadlock!

This is why the low-level model is better to be avoided. But especially for these cases SUN
 introduced so called Atomic Variables that, in some cases, may help avoid these problems with con-
current access. As an example, let’s rewrite the “counter” example where each thread tries to incre-
ment the variable:

import java.util.concurrent.atomic.AtomicInteger
var a = new AtomicInteger()
class CustomThread extends Thread {
 override def run(): Unit = {
 a.getAndIncrement()
 }
}
val thread1 = new CustomThread
val thread2 = new CustomThread
thread1.start()
thread2.start()

thread1.join()
thread2.join()
println(a)

Now no matter how many times you execute this code, it will always print “2” as the output. Sure,
you may no longer use symbolic methods like “+” or “—” when working with AtomicInteger, but
that’s what the low-level concurrent integer primitive looks like. There are other “atomic” variables
like AtomicLong, AtomicBoolean, or even AtomicRef, and they all have their specifi c use cases, but
these are outside of the scope of this chapter.

184 ❘ CHAPTER 11 CONCURRENCY

c11.indd 05/12/2016 Page 184

There should be a small word about “volatile” variables, as they are quite common in Java concur-
rency programming. Take a look at this application:

class CustomThread extends Thread {
 var flag = true
 override def run(): Unit = {
 while(flag) { }
 println("Thread terminated")
 }
}
val thread = new CustomThread
thread.start()
Thread.sleep(2000)
thread.flag = false
println("App terminated")

Here you have a main application thread that launches another custom thread. In the run() method
of the custom thread you may notice that it does a while loop infi nitely, until someone tells it to
stop. That is called “busy-waiting” and it also locks the CPU core, so never use while in a thread to
wait for something!

The problem in this application is that when you execute thread.flag = false, the thread won’t
see the change and will continue to “busy-wait” for something to change. It will work as expected
if, instead, you mark that variable with @volatile annotation, like the following:

@volatile var flag = true

In this case, the custom thread will successfully see the change of the fl ag variable and will termi-
nate the execution.

To conclude, in this section you saw why the low-level concurrent programming is considered hard
and very dangerous. In the following sections of the chapter you will see how this problem can be
solved with powerful abstractions that Scala brings to the table.

 FUTURE COMPOSITION

Nearly all modern languages have some means of an asynchronous call. For example, promises
exist in JavaScript, gorutines exist in Go, and fi bers exist in Ruby. Scala has its own asynchronous
structure called Future that is directly included in the standard library. This way other libraries that
need to use it don’t need to include other external implementations, as in Java.

Future is a container for asynchronous computations. It’s like a magic box that promises you an
object, but you must wait for some time until you open it. Consider the following code:

import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global
Future {
 print("World ")
}
print("Hello ")

Here you import the Future class that will hold your computations and you also import the
global execution context that will be discussed in a few moments. If you execute it, you will print

Future Composition ❘ 185

c11.indd 05/12/2016 Page 185

“Hello World.” While it is not guaranteed that the sequence will be printed in that order and not in
the order of “World Hello,” asynchronous computations need a separate thread from a thread pool
as well as some time scheduled by the CPU. As this manipulation takes some time, the “Hello” gets
printed before. Let’s spice it up a little bit:

for(i <- 1 to 30){
 Future{
 print("World ")
 }
 print("Hello ")
}

Now, you can’t predict anything about the resulting string except, maybe, that the fi rst word will be
“Hello.” This word continues to be printed with every loop, but the “World” word will be printed
when the Future is executed, which isn’t predictable. For an even more unpredictable output, wrap
the second print() in a Future, but be careful because your for loop may end before all of the
“futures” are fi nished, effectively halting your application with all of the uncompleted Futures.

Now let’s talk about why we imported the global ExecutionContext. Execution contexts are used
to handle a threads pool in your application that also depends on a number of cores that your CPU
has. You may create your own ExecutionContext to handle threads in another manner or to han-
dle just your database threads, but for these examples the default global one will be just fi ne. Where
is it used? Take a look at the defi nition of the Future’s factory method:

object Future {
 def apply[T](body: => T)(implicit executor: ExecutionContext): Future[T]
}

It needs an implicit executor somewhere in the scope and the import scala.concurrent
.ExecutionContext.Implicits.global does exactly that. Note that this provides a pool of a
fi nite numbers of threads, so if there are for example, 8 threads available and you create 8 Futures
that will block all of those threads, subsequent Futures will not be executed. This is called “thread
starvation.” To avoid it, when you know that you will be creating many blocking Futures, wrap the
contents into a blocking statement:

for (i <- 1 to 30) {
 Future{
 blocking {
 Thread.sleep(10000)
 println("Done")
 }
 }
}

Now let’s discuss how to work with a method that returns a Future. Imagine you have a DAO layer
in your application:

object Dao {
 def findUserById(id: Int): Future[User] = Future {
 User("Alex", 26)
 }
}

186 ❘ CHAPTER 11 CONCURRENCY

c11.indd 05/12/2016 Page 186

We defi ned a DAO with a single method returning a user by id. For the sake of simplicity, it will
return the same user every time. Normally, this method should have a type Future[Option[User]],
and as a user with a specifi c Id that may not exist, but, again, to avoid complications let’s imagine
that it will always return a user.

OK, now we have a task to show a user’s name for a specifi c id. Here’s how to do it:

import scala.util.{Success, Failure}
Dao.findUserById(1).onComplete {
 case Success(user) => println(s"User's name is ${user.name}")
 case Failure(ex) => println("An error has occurred!")
}

A callback is attached to the future, and when it’s complete, we will immediately execute either
the “success” case or the “failure” one (this happens if something throws an exception inside of a
Future). As you may notice, the onComplete() method returns a Unit type, which means that the
result of the computation in the Success case will be left there and nobody will be able to use it. But
what if you need to create a “service layer” with a method having following signature:

def retrieveUserNameById(id: Int): Future[String]

In this case you won’t do the fetch in the database, because it’s Dao’s job. But this means that you
need to fi nd a way to manipulate Future to transform it from Future[User] into Future[String].
You already know what’s a Monad from the previous chapter on advanced types, and Future also
has all of those useful methods like foreach(), map(), fold(), and others. The transformation
from Future[User] into c can be handled by a map() method:

object UserService {
 def retrieveUserNameById(id: Int): Future[String] =
 Dao.findUserById(id).map { user =>
 user.name
 }
}

Just as with Collections, map() method transforms the element inside of the Future container and
returns the wrapper with a new content. Now the top-level function will be able to use the Service
layer without knowing how the DAO is implemented:

def sayHello(): Unit = UserService.retrieveUserNameById(1).onComplete {
 case Success(name) => println(s"Hello $name !")
 case Failure(ex) => println("An error has occurred!")
}

Or its more functional version:

def sayHello(): Unit = UserService.retrieveUserNameById(1).foreach { name =>
 println(s"Hello $name !")
}

The filter() method returns the Future if its element satisfi es the predicate. If the element does
not satisfy the predicate, this method returns a failed Future:

Dao.findUserById(1).filter(_.age > 18) // Successful, with the user
Dao.findUserById(1).filter(_.name == "Sam") // Failed Future

Parallel Collections ❘ 187

c11.indd 05/12/2016 Page 187

You may be sometimes tempted to use Await.result to wait for the Future’s result like this:

val userName = Await.result(UserService.retrieveUserNameById(1), 1 second)

Don’t do it, since this will effectively block the current thread as well as the already blocked thread
that is doing the computation, thus losing all of the benefi ts of the Future! The only place it may be
appropriate is during your unit tests because you need to make sure the execution order is predictable.

And last but not least, consider using the library called “scala-async” because it may make your
code more readable, so instead of:

def calculate: Future[Int] = {
 val future1 = Future(1 + 2)
 val future2 = Future(3 + 4)
 for {
 result1 <- future1
 result2 <- future2
 } yield result1 + result2
}

You may do an, arguably, more readable version:

def calculate: Future[Int] = async {
 val future1 = Future(1 + 2)
 val future2 = Future(3 + 4)

 await(future1) + await(future2)
}

But don’t forget: these are just macros that are transformed into a version with Future upon the
compilation. In addition, scala-async has some limitations: for example, you may not use a closure
inside of an async{} statement.

This all just barely scratches the surface of the work with the Future structure. You should now
have a suffi cient knowledge of how to work with functions that compute an asynchronous result,
or how to initialize an asynchronous computation yourself.

 PARALLEL COLLECTIONS

So far you’ve learned about the ways to launch an asynchronous task. Now let’s talk about data
structures that have parallelism inside of their bones. Parallel collections were introduced in Java 8
(for streams), but they already existed in Scala even before that (since version 2.9). Parallel collec-
tions may be a great way to improve the performance of your application, but they may also make
it worse. You may think “Well, our CPU is multi-core, so let’s make all of the collection operations
parallel! What can go wrong?” Now consider following code:

(1 to 10000000).filter(_ % 2 == 0)

Would it improve the performance if you transform it into parallel computation?

(1 to 10000000).par.filter(_ % 2 == 0)

188 ❘ CHAPTER 11 CONCURRENCY

c11.indd 05/12/2016 Page 188

The small .par there does exactly that: it transforms a collection into its “parallel” counterpart. It’s
easy to see an improvement if the operation takes several dozens of minutes (in that case, parallel
or normal collections may not be the best tool to use, and you may want to consider learning about
Spark). But in this case the execution takes somewhere near 250 milliseconds. That’s too fast for
humans, so we will need to test it through micro benchmarks.

Usually, to measure how fast an expression executes, you may consider using System.nanoTime:

val start = System.nanoTime
val result = (1 to 10000000).filter(_ % 2 == 0)
println(((System.nanoTime - start) / 1000000) + " milliseconds")

Let’s see the results. Ah, a whole 4 seconds and 293 milliseconds! Quite a long time for such a small
application, so there must be an error somewhere here. Let’s execute the microbenchmark again:
2 seconds 759 milliseconds! That’s strange, the code is the same, but the execution time has 30%
difference between the two runs. We may try a version with .par, so maybe it will be considerably
faster:

val start = System.nanoTime
val result = (1 to 10000000).par.filter(_ % 2 == 0)
println(((System.nanoTime - start) / 1000000) + " milliseconds")

And now it’s 6 seconds and 438 milliseconds. At this stage you may say that the parallel collection is
clearly slower and thus, useless in this situation. But instead, let’s explain why there is such a differ-
ence between the results for three separate runs.

Scala’s code is not directly compiled into machine code as it’s done for C. Instead, it is compiled
into an intermediate state that is called a “byte-code.” That byte code is then interpreted by a JVM
machine that is different for each platform, effectively making Scala’s (and also Java’s) code cross-
platform. You should know that the JVM is intelligent and sees when you are executing the same
code more than once; in that case, it optimizes it so that subsequent executions don’t take so long.
This is called “Just In Time” compilation, or simply JIT. To take this optimization into account, use
“warmup” cycles:

var start = 0L

for (i <- 1 to 10){
 start = System.nanoTime
 (1 to 10000000).par.filter(_ % 2 == 0)
 println(((System.nanoTime - start) / 1000000) + " milliseconds")
}

And the execution will output:

$ scala chap11.scala
1891 milliseconds
628 milliseconds
1262 milliseconds
393 milliseconds
348 milliseconds
330 milliseconds

Parallel Collections ❘ 189

c11.indd 05/12/2016 Page 189

361 milliseconds
324 milliseconds
332 milliseconds
347 milliseconds

You may clearly see that the fi rst execution is not representative at all. It also takes some time for the
code to get warmed up.

There are numerous other things to keep in mind when doing micro benchmarks: run-specifi c JVM
optimizations that may not be representative at all, Garbage Collector may kick in during the execu-
tion, affecting the results, shared state problems, and so on. But it is possible to avoid some of these
problems by using a specialized library.

At the moment, the JDK 9 is not offi cially released, but we already know what new features it will
have. Among numerous improvements, there will be a micro benchmark tool called JMH (Java
Microbenchmark Harness). You may fi nd a description with quite a few examples for Java here:
http://openjdk.java.net/projects/code-tools/jmh/. But we obviously want to use it with
Scala, and there is a handy version of JMH adapted for this language called sbt-jmh: https://
github.com/ktoso/sbt-jmh. Consider learning the basics of this tool so that you won’t do optimi-
zations without some real performance numbers.

With this in mind, let’s see if the parallel version of the filter() method is better (Figure 11-4).
Both versions were executed in JMH with 20 warm up iterations, 20 measurement iterations, and
20 JVM forks (so that there is no run-specifi c JVM optimization), and here are my results on an
i7-4700HQ quad core processor with JVM version 1.8.0_66.

iterative
0

40

m
s/

op

80

120

160

filter() performance (less is better)

parallel

FIGURE 11-4

So now you know that the parallel version is faster, but not by much, and it’s up to you to decide
if the optimization is worthwhile. It is faster because the filter() operation is parallelizable:
the collection is split into several chunks, and each chunk is fi ltered separately so the results are

http://openjdk.java.net/projects/code-tools/jmh
https://github.com/ktoso/sbt-jmh
https://github.com/ktoso/sbt-jmh

190 ❘ CHAPTER 11 CONCURRENCY

c11.indd 05/12/2016 Page 190

concatenated together. Now, imagine you have a list of elements (integers in our case) and you need
to apply a parallelizable operation to it (fi nd a maximum):

val list = Random.shuffle(Vector.tabulate(5000000)(i => i)).toList
val max = list.max

This will produce a list with elements from 1 to 5000000 in a random order to fi nd the maximum
value. You might think that this is great, so why not throw a .par into it? This way you can use the
power of the multi core CPU to suit your needs:

val max = list.par.max

With happy thoughts about gained optimizations, let’s launch the same micro benchmark used for
the filter() operation (Figure 11-5).

iterative
0

50

m
s/

op

100

150

200

max() performance (less is better)

parallel

FIGURE 11-5

Now that is very strange: the parallel operation is nearly six times slower than the iterative one!
Here is why that is the case: To execute methods in parallel, the collection, as mentioned before,
needs to be split into several chunks. If the collection cannot do it in a constant time O(1) (as in the
case when we are using a List), it will fi rst be converted to such a collection (Array, Vector, Range,
etc.). The important thing is that the conversion is not parallelized, so it takes quite some time to
convert the list of fi ve million elements. Let’s see what performances you have if you use a Vector
type:

val vector = Random.shuffle(Vector.tabulate(5000000)(i => i))
val max = vector.max
val maxPar = vector.par.max

Parallel Collections ❘ 191

c11.indd 05/12/2016 Page 191

The results are shown in Figure 11-6.

iterative
0

25

m
s/

op

50

75

100

max() performance with Vector (less is better)

parallel

FIGURE 11-6

Notice that the parallel version is almost two times faster than the iterative one, but the version with
a non-parallelized list is even two times faster than that. Always micro benchmark your code before
doing .par optimizations!

Let’s talk about another pitfall. As you know, parallel operations are executed more or less at the
same time, so consider the following code:

var a = 0

(1 to 100).par.foreach(_ => a += 1)

println(a)

Can you predict what number this code will show on a multi-core CPU? It may be “100,” but this is
highly improbable, so you may bet that the number will be anything but “100” and be sure to win
it. This example looks almost the same as the one at the beginning of the chapter, when we talked
about Threads: two or more different threads are reading the same value of a (for example, 41),
then they increment it by 1 (for example, 42) and store it into the a. In the end, two or more threads
applied an increment, but the result is still the same (42). That’s why it is very important to keep
the functions side-effect free for your parallel methods, (such functions are described in detail in
Chapter 2).

As a rule of thumb, don’t blindly add .par to a collection operation in hopes that it will improve the
performances. Instead create a micro benchmark with a tool like “JMH” to measure the potential
gains. Also, be aware of the problem with “side effects” when working with parallel collections.

192 ❘ CHAPTER 11 CONCURRENCY

c11.indd 05/12/2016 Page 192

 REACTIVE STREAMS

In a chapter about concurrency it would be a shame not to talk about reactive programming. What
is it? Imagine a simple operation:

var a = 1
var b = a + 1

In normal programming languages, b will be evaluated to 2, but what if we change the code a little
bit by adding another operation:

var a = 1
var b = a + 1
a = 2

In non-reactive programming, the value of b is still 2, no matter how much you change a, b will
remain the same. b does not depend on a. But in reactive programming, the value of b does depend
on the value of a and reacts to each one of its changes. It’s more or less like Excel’s tables where
changing a value in one cell may modify everything else.

One of the most mature libraries for reactive programming is RxJava, it is maintained by Netfl ix,
and often considered a de facto standard when dealing with implementations for reactive extensions.
One of the alternatives is Akka-streams, but it is still in an experimental state at the time of writing.
We will use RxJava’s Scala-adaption, RxScala (https://github.com/ReactiveX/RxScala). To
include the library in your project, add this line to the SBT fi le:

libraryDependencies += "io.reactivex" %% "rxscala" % "0.25.1"

Here is an example of a trivial application:

println("Start")
val observable = Observable.from(1 to 100)
observable.subscribe(println(_))
println("End")

Here we may witness a simple implementation of a “Publisher/Subscriber” pattern. The code is
simply printing numbers from 1 to 100. In this case the “publisher” is the Observable and the
“subscriber” is the println() function. The interesting thing is that this output will be printed
between the words “Start” and “End.” Not quite asynchronous as we would expect, this is the
case because the Observable created with from() is synchronous by default. To make it execute on
another thread, you should provide a scheduler:

println("Start")
val observable = Observable.from(1 to 100).observeOn(IOScheduler())
observable.subscribe(println(_))
println("End")

And now the “End” word should be printed long before the number “100.”

By now you may say that observables look like a way to process a collection of elements asynchro-
nously. But is it better? As we learned from the previous part about parallel collections, we should
never trust our feelings when dealing with parallel computations; instead we should be wise and

https://github.com/ReactiveX/RxScala

Reactive Streams ❘ 193

c11.indd 05/12/2016 Page 193

create a micro-benchmark that tests our assumptions. As a test subject we will take a filter() and
sum() operations:

val observable = Observable.from(1 to 1000000)
observable.filter(_ % 2 == 0).sum.toBlocking.first

Here we transform a Range of one to a million into an Observable, then we fi lter the even numbers
from it, and fi nally, we are calculating the sum of them. toBlocking and first are needed here to
get the result of the computation without creating a separate subscription on the Observable.

In the other corner you have a standard List operation that you already saw for uncountable
amounts of time:

val list = (1 to 1000000).toList
list.filter(_ % 2 == 0).sum

It is the same operation as with Observable, but with a simpler, more readable language. We will
now benchmark those two blocks of code with JMH, using 20 warmup iterations, 20 measurement
iterations, and 20 JVM forks to get the most representative results as possible. Here they are, as
shown in Figure 11-7.

Observable
0

15

m
s/

op

30

45

60

filter + sum performance (less is better)

List

FIGURE 11-7

What a result! Observable is nearly 2.5 times slower than a List! So, with performances like that,
why should anyone consider using RxScala? In fact, there are a few things that are possible with
observables but are impossible with collections or streams. For instance, with Observable you may
do the following:

import scala.concurrent.duration._
println(s"(Thread: ${Thread.currentThread().getId}) Start")
val observable = Observable.interval(1 second).observeOn(IOScheduler()).take(5)

194 ❘ CHAPTER 11 CONCURRENCY

c11.indd 05/12/2016 Page 194

observable.subscribe(x => println(s"(Thread: ${Thread.currentThread().getId}) $x"))

Thread.sleep(6000)
println(s"(Thread: ${Thread.currentThread().getId}) End")

In this code the created Observable will emit a number every second so that a subscriber can print
it. Here is what the output will look like (thread’s id may be different for you):

(Thread: 70) Start
(Thread: 74) 0
(Thread: 74) 1
(Thread: 74) 2
(Thread: 74) 3
(Thread: 74) 4
(Thread: 70) End

As you can see, the subscription operations are done on a separate thread. The take(5) is necessary
because otherwise the subscriber won’t stop printing numbers even after the main thread has termi-
nated. As for the intervals, you are not limited to seconds, and it may be anything from nanoseconds
to hours. With RxScala it becomes easy to manipulate events that are timed in a certain manner.

The other area where RxScala shines is in merging streams. Let’s say you have several observables
coming from different sources, and you need to merge them into one to create an observer, instead
of creating separate observers for each of the Observables:

import scala.concurrent.duration._
println(s"(Thread: ${Thread.currentThread().getId}) Start")
val observable1 = Observable.interval(1 second).observeOn(IOScheduler()).take(3)
val observable2 = Observable.interval(700 millis).observeOn(IOScheduler()).take(4)
val observable3 = Observable.interval(300 millis).observeOn(IOScheduler()).take(6)
val mainObservable = Observable.from(Array(observable1, observable2,
 observable3)).flatten
mainObservable.subscribe(x => println(s"(Thread: ${Thread.currentThread()
 .getId}) $x"))
Thread.sleep(4000)
println(s"(Thread: ${Thread.currentThread().getId}) End")

And here is its output:

(Thread: 100) Start
(Thread: 108) 0
(Thread: 108) 1
(Thread: 106) 0
(Thread: 108) 2
(Thread: 104) 0
(Thread: 108) 3
(Thread: 106) 1
(Thread: 108) 4
(Thread: 108) 5
(Thread: 104) 1
(Thread: 106) 2
(Thread: 106) 3
(Thread: 104) 2
(Thread: 100) End

c11.indd 05/12/2016 Page 195

STM ❘ 195

This is not readable at all! But there is a way to make it make it more explicit, if you use a “marble
diagram” to express what is happening (Figure 11-8).

0Observable1

Observable2

Observable3

Observable.from

ObservableMain

1 2 3 4 5

0 1 2 3 4 5

0 1 2 3

0 1 3

0 1 2

0 1 22

FIGURE 11-8

The small marbles from observables are placed on the “time arrow” according to the time when
they were observed. After the merging operation, Observable.from(), you are only subscribed to
the ObservableMain value that is the combination of the 3 separate Observables. It’s like combin-
ing three lists into one, but the elements are placed according to their execution time. You may make
yourself more familiar with this kind of diagram by visiting this site: http://rxmarbles.com/.
Nearly all of Observable’s methods are described in a form of a marble diagram.

There are quite a few things to say about reactive programming with RxScala, but we are here to
decide if it is the right tool for the applications or not. If the logic of your application needs timed
executions, instead of using Thread.sleep(), use this library. Also, when you need to merge a few
streams into one, or you may imagine a marble diagram that represents events in your application,
 consider trying the RxScala library because it may make your application’s domain logic more
 natural and readable.

 STM

It would be strange not to talk about Software Transactional Memory in a chapter about concur-
rency. This technique is less known than others, but it is worth mentioning because it may solve a
particular problem you may have in your application.

Software Transactional Memory has much in common with database transactions. It is an alterna-
tive to the synchronization that “commits” a block of code potentially accessed concurrently and
rolls back the execution if two threads are trying to change the variables in the “transaction” at the
same time. The history of STM started in 1986 when Tom Knight proposed transactions on a hard-
ware level. In 1995 the STM began to live as software-only transactions. Today it is still an area of
research, but the practical implementations are widely used in frameworks such as Akka.

In this section of the chapter we will talk about a particular implementation called ScalaSTM.
This library was created by experts in STM and it is the one that is currently used in the Akka
framework. It will soon be introduced in Scala’s standard library. Do you remember the example of

http://rxmarbles.com

196 ❘ CHAPTER 11 CONCURRENCY

c11.indd 05/12/2016 Page 196

AtomicInteger from the beginning of the chapter? All of the operations with a single instance are
atomic and, thus, will work well in concurrent environments. But if you introduce another variable,
things might get complicated. And it doesn’t matter if the other variable is also AtomicInteger, the
sequence of operations where we use them both is not considered atomic itself without a proper syn-
chronization. Take a look at this code:

import java.util.concurrent.atomic.AtomicInteger
var a = new AtomicInteger()
var b = new AtomicInteger()
class CustomThread extends Thread {
 override def run(): Unit = {
 for (_ <- 1 to 30) {
 a.getAndIncrement()
 b.addAndGet(a.get())
 }
 }
}
val thread1 = new CustomThread
val thread2 = new CustomThread
thread1.start()
thread2.start()
thread1.join()
thread2.join()
println(a)
println(b)

It will print “60” for a and “1840” for b. Or “1834,” or “1844,” or even “1839.” You can’t predict
the result, because our computations are not atomic! One of the ways to handle this situation is
to use the synchronize method that was used earlier in this chapter. But this, as you already saw,
could easily lead to a deadlock. Also, programming with synchronized is quite diffi cult without
any substantial advantages. A better way to handle the situation would be to use Scala STM. To
include Scala STM in your project, add the following line to your dependencies:

"org.scala-stm" %% "scala-stm" % "0.7"

With that done, you now can modify your code so that it works as expected:

import scala.concurrent.stm._
var a = Ref(0)
var b = Ref(0)
class CustomThread extends Thread {
 override def run(): Unit = {
 for (_ <- 1 to 30) {
 atomic{ implicit txn =>
 a() = a() + 1
 b() = b() + a()
 }
 }
 }
}
val thread1 = new CustomThread
val thread2 = new CustomThread
thread1.start()

STM ❘ 197

c11.indd 05/12/2016 Page 197

thread2.start()
thread1.join()
thread2.join()
println(a.single())
println(b.single())

Great! Now in the end, you always get “60” for a and “1830” for b. So, how does it work? Notice
that instead of a plain Integer or an atomic one, you have a Ref at the variable defi nition, which
stands for “transactional reference.” A Ref variable has to be used inside a transaction (the atomic
statement), as its apply() and update() methods are requiring an implicit InTxn value:

override def apply()(implicit txn: InTxn): T = impl.get(handle)
override def update(v: T)(implicit txn: InTxn) { impl.set(handle, v) }

The way that ScalaSTM implements atomic transactions is quite complex: it keeps a log of every
“write” and “read” inside of the atomic statement and once it gets to the end of the block, it “com-
mits” the result. But it is highly possible that someone else tries to read or write the value at the
same time. In this case there is a “transactional confl ict,” and when this happens, both transactions
are canceled and executed in sequential order (you can’t predict in what exact order). Doesn’t it look
the same as database transactions?

At the last line with println(a.single()) we printed the value of a without using any atomic
statement. It is called “single-operation transaction” and it doesn’t need to be inside a transaction.

Be aware that the transaction may be rolled back and re-executed, so any side effects inside of the
atomic statement will be re-executed as well. Change the contents of the CustomThread’s run()
method to the following:

override def run(): Unit = {
 for (_ <- 1 to 10) {
 atomic{ implicit txn =>
 println(s"The value of a is ${a()}")
 a() = a() + 1
 b() = b() + a()
 }
 }
}

Here you have a println() statement that is, obviously, a side-effect. In the output of your applica-
tion you may fi nd lines that are repeated:

The value of a is 2
The value of a is 2
The value of a is 3

This means that both threads accessed the value at the same time, so the transaction was rolled back
and executed in sequential order. In this particular case, the side effect is not critical, but may not
always be like that. If you really need to use side effects inside of atomic statements, you may use
Txn.afterCommit or Txn.afterRollback statements:

override def run(): Unit = {
 for (_ <- 1 to 10) {

198 ❘ CHAPTER 11 CONCURRENCY

c11.indd 05/12/2016 Page 198

 atomic { implicit txn =>
 Txn.afterRollback { _ => println(s"Rollback!") }
 a() = a() + 1
 b() = b() + a()
 val aValue = a()
 Txn.afterCommit { _ => println(s"The value of a after commit is $aValue") }
 }
 }
}

The output may contain the following lines:

The value of a after commit is 10
The value of a after commit is 11
Rollback!
The value of a after commit is 12
Rollback!
The value of a after commit is 13

Notice that you didn’t directly use a() inside of println() because you can’t use references outside
of transactions. Instead, you need to create an intermediate value that will be used for the println().

To conclude, you saw how it is possible to create thread-safe, deadlock-free mutable state between
threads. This is a great replacement for the synchronized statement, not only because it is safer,
but also because it is more readable. The developers of the framework did some benchmarking here:
https://nbronson.github.io/scala-stm/benchmark.html, which states that even if STM is a
tiny bit slower than tricky locks, it is much safer to use.

 ACTORS (AKKA)

Most of the Scala developers come to the language because they need to use Akka or Spark in their
project and Java is just not good enough for this job. Only a few of us are in the domain because of
Scala itself, and not because of its ecosystem. So, let’s see why those frameworks are so popular that
they make people learn a new language just to use them effi ciently.

Akka was fi rst created in 2009 and today it is more popular than Playframework, Typesafe com-
pany, or even Scala itself (judging by the number of Akka’s stickers taken at a typical programming
conference where Typesafe is participating). This framework may be used with Java, but it becomes
apparent that Akka was not created for this language, and only has some adapters making it pos-
sible to use it by Java-only developers.

Akka is one of the most popular frameworks for Actor programming and, by chance, it’s made in
Scala. Actor programming is a more natural, human way to approach concurrency problems: imag-
ine you are a manager and you are given a task to calculate Pi number up to a 1,000th decimal.
You also have 10 people under your subordination who crave to do some work for you. One of the
options could be to give all the work to your favorite co-worker and to wait quite some time until
the result is done. Another option is to use a special algorithm that precisely calculates Pi using a sum
(see Figure 11-9):

https://nbronson.github.io/scala-stm/benchmark.html

Actors (Akka) ❘ 199

c11.indd 05/12/2016 Page 199

2n + 1
n=0

(–1)n
=

∞
π

4

FIGURE 11-9

As you may see, the fact that Pi’s calculation may be done as a form of a simple sum lets you distrib-
ute your work in individual chunks. The “worker#1” will calculate n=0 to n=19, the “worker#2”
will do the calculations from n=20 to n=39, etc. In the end you just get the result from each of the
workers, add them up, and multiply the sum by four! You may even employ a worker who is not in
your offi ce, where a result is sent remotely (via TCP/IP or any other protocol).

How do Akka’s actors work? Each actor receives messages in its mail box and treats these messages
strictly in the order they were received. Not all messages are treated, but only the ones that have a
name known to the receiver. Let’s start with an elementary application that is using Akka to solve a
problem we had at the beginning of this chapter: a concurrent counter. First you need to include the
dependency into your build.sbt:

"com.typesafe.akka" %% "akka-actor" % "2.4.1"

Following that, you will need to add two fi les, one for the actor:

class CountingActor extends Actor with ActorLogging {
 var counter = 0
 def receive = {
 case "+1" =>
 counter += 1
 log.info(s"Current count is $counter")
 if (counter == 3) context.system.terminate()
 }
}

and one for the Application that will manipulate the Actor:

object ApplicationMain extends App {
 val system = ActorSystem("MyActorSystem")
 val countingActor = system.actorOf(Props[CountingActor], "pingActor")
 countingActor ! "+1"
 countingActor ! "+1"
 countingActor ! "+1"
 Await.result(system.whenTerminated, 10 seconds)
}

Pretty simple, so let’s start with the Actor’s fi le. The CountingActor has a mutable fi eld counter and
an overridden receive method. The method is of the type PartialFunction[Any, Unit], and it
means that you may send any type of message to the actor: String, Integer, a Case Class, or anything
else, and it will still receive it and try to react to it. In this case, the only message that it may react
to is a string “+1”; after receiving it, the actor will increment the counter by one, log the result, and
check if the counter is already equal to 3 to shut down the Actor platform. Notice that the actor
won’t react to a “+2” message as it, obviously, does not understand it.

200 ❘ CHAPTER 11 CONCURRENCY

c11.indd 05/12/2016 Page 200

In the application class a new actor system can be created, which initializes an instance of
CountingActor and sends a few messages. You can terminate the actor system either when the
actor increments the counter three times, or after 10 seconds. The countingActor is not actually an
instance, but a reference to the actor because it may be located on a remote machine, just as an IP
address is to an online server.

In this example, to keep it simple, we send a message to the actor from the main application
(! means “send” coming from the Actor system in the Erlang language). In real life it’s mostly actors
that communicate with other actors. What’s important here is that all communications are asyn-
chronous: actor doesn’t wait for a reply to his message. If the other actor wants to send a reply, it
will be a normal message with a reply data. The whole system is created to be scalable, so you can
initialize thousands of actors that are located on the same machine or distributed over a cluster of
servers. It’s amazing!

When working with actors, there are a few things to keep in mind, so take a look at the following
schema (Figure 11-10).

2A

B

1

FIGURE 11-10

In this case, if the message “A” was sent before the message “B” it is guaranteed that the actor “2”
will receive the messages in that exact order. Now here is another schema shown in Figure 11-11.

2A

B
C

1

3

FIGURE 11-11

In this case, even if the message “A” was sent before the message “B,” we don’t have any guarantee
that the message “A” will arrive before the message “C,” and it may also be the other way around.
This way the system becomes nondeterministic and you may need to add some code to make it more
predictable.

The Akka framework is a great way to abstract mutable state inside an isolated entity called Actor.
Everything that happens there is sequential and the information is shared through messages, asyn-
chronously. If your application may be imagined as a group of separate workers, Akka may be a
great way to improve performance as well as add a possibility of an easy horizontal scaling.

 SPARK

It’s worth mentioning Spark, which is a wonderful framework that is very helpful for those who are
working with Big Data assets. As you may know, terabytes of data can’t be treated with a simple,
well known “for loop,” since you need either a very powerful mainframe (vertical scaling) or a

Spark ❘ 201

c11.indd 05/12/2016 Page 201

bunch of low-cost servers connected together (horizontal scaling), as well as some specifi c tools to
work with them. The former approach is, often, too expensive to be used in the Big Data context,
which is why the instruments for horizontal scaling are so popular today.

Spark was created as an alternative to Hadoop’s map-reduce. From the high level standpoint, this
framework looks just like collection of methods that are executed on a distributed environment. If
applied properly, the projects using this framework are much faster and use less code than the proj-
ects that were built with plain Hadoop. For the fi rst example you will need the library to be included
in the build.sbt fi le:

"org.apache.spark" %% "spark-core" % "1.6.0"

and this code:

val conf = new SparkConf().setAppName("Simple Application").setMaster("local[4]")
val sc = new SparkContext(conf)
val readme: RDD[String] = sc.textFile("README.md")
val numAs = readme.filter(line => line.contains("a")).count()
val numBs = readme.filter(line => line.contains("b")).count()
println("Lines with a: %s, Lines with b: %s".format(numAs, numBs))

First, you need to initialize your Spark instance with the provided confi guration. “local[4]”
means that it will be executed locally with four parallel threads. The SparkContext is ready and
you need to provide it with something to compute. For this example you will read the readme fi le
from the root of the project and feed it to some fi lters. But before that, let’s talk a little bit about the
RDD[String] type.

The “RDD” it is translated as “resilient distributed dataset” and you work with it just as with a
simple collection of lines from the fi le. The distribution is transparent to you just as parallelism is
in Parallel collections. If you apply some operation to it like, for instance, the filter(), it will still
return an RDD. The important thing here is that the result of the operation is not computed until
you need to return something that isn’t an RDD. Such operations are called “actions,” and by con-
trast, the operations that return RDD are called “transformations.”

As you know, in the case of Scala’s collections even simple “transformation” operations like
 filter() or map() will need a full traversal. If the collection contains a terabyte worth of elements,
it would be a disaster to do it each time you add a new operation. Instead, Spark postpones all of the
transformations until an “action” operation is applied, such as count(), collect, or reduce().

By default, each time you apply an “action” operation, the RDD is re-computed (in this case it
is re-read from the fi le). You can use the value two times, so you need some way to speed it up.
One of the ways to do it is to cache it and keep the data mounted in memory. Don’t worry, if your
operational memory is not suffi cient, Spark will handle it by storing the remaining data inside of a
storage fi le:

val readme: RDD[String] = sc.textFile("README.md").cache()

This way the data will be kept on the cluster (in this case, in the local memory) for faster access.
Note that the type is left the same, but the operations are quicker! But remember, only use it if
the RDD is manipulated more than once, because it is better for memory management and time
execution.

202 ❘ CHAPTER 11 CONCURRENCY

c11.indd 05/12/2016 Page 202

This is just a simple example of how Spark works. The data fi le may be located on an HDFS fi lesys-
tem, in a database, as a CSV fi le, or even as a JSON extract from your MongoDB. In addition to the
problems we talked about in the section in this chapter about Parallel Collections, now you need to
worry about data locality, so that transformations don’t need to transfer a lot of data between the
servers in the cluster.

Another way of doing distributed data analysis with Spark is the Spark SQL package. If your data
can be represented as a table (it was read from an actual database table, CSV fi le, JSON fi le, etc.),
you may query it as you do in relational databases: the SQL statement will be automatically trans-
lated as a sequence of Spark’s operations. For example, analyze the following .csv fi le:

name,age
Alex,26
Sam,24
Bob,15

It will look like the following:

val conf = new SparkConf().setAppName("Simple Application").setMaster("local[4]")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
val df = sqlContext.read
 .format("com.databricks.spark.csv")
 .option("header", "true") // Use first line of all files as header
 .option("inferSchema", "true") // Automatically infer data types
 .load("src/main/resources/users.csv")
df.show() // will show current DataFrame as a table
df.registerTempTable("users")
val adults = sqlContext.sql("SELECT name FROM users WHERE age > 18")
adults.show()

The fi rst 8 lines are just Spark context initialization and fi le reading. The show() method applied to
a DataFrame prints its content in a nice table-like format. registerTempTable() makes it possible
to apply SQL queries to your dataset, so you can select adults within our users.

This was a fraction of Spark’s capabilities, but it should give you the idea if it is the tool you need
for your application. It is easy to use, fast, reliable, and it has a wonderful ecosystem that, in addi-
tion to traditional batches, let’s you work with streams of data, graphs, or even machine learning
algorithms.

 SUMMARY

Concurrent, parallel, or even distributed programming is considered to be one of the most complex
topics in today’s programming. In this chapter you saw what tools Scala has up its sleeve to deal
with it and in what situations they can be applied. Even though we only touched the surface on all
of these topics, you should be able to choose the right tools to work with your concurrent problems.

We started from the basics, where the roots of concurrent programming in Java introduced in
 version 1.5 were discussed. You saw why it is considered complicated and why it is better to use
more high-level abstractions instead of pure threads and synchronization. You also learned that if

Summary ❘ 203

c11.indd 05/12/2016 Page 203

your needs are limited to a single variable, then there is no need to use synchronize, and you should
use Atomic variables instead!

Following that we covered how you can work with an asynchronous monad called Future and how
it is convenient to work with a method that is returning it. You also saw parallel collections avail-
able in Java 8 and how it is hard to predict if adding .par can improve performance. Always bench-
marking the optimization before adding it!

We covered more exotic libraries like RxScala and ScalaSTM, both of which are useful in some spe-
cifi c situations.

Last but not least, we covered the basics of developing with Akka and Spark frameworks. Akka can
improve your application with asynchronous messaging and easier horizontal scaling if only your
domain logic may be imagined as a work of a group of actors, communicating with messages. And
Spark is a tool of choice when dealing with large-scale, distributed data.

All in all, this chapter has provided you with the fundamentals of how to choose the right tool for
the right problem. If you are not sure whether the concurrent optimization helps, pass it through a
JMH micro benchmark so you can be certain that there are some actual benefi ts.

c12.indd 05/05/2016 Page 205

Scala.js
WHAT’S IN THIS CHAPTER?

 ➤ Understanding Scala.js

 ➤ Using Webjars

 ➤ Interopting with the current JavaScript ecosystem

Scala.js is a relatively new feature in Scala that allows you to compile Scala code straight to
JavaScript, providing you with the full power of the Scala language, while being able to target
JavaScript. It also allows you to share code between the server and the client, which can dra-
matically reduce boilerplate, especially if you use one of the many pickling/serialization librar-
ies available in Scala.

This chapter also covers Webjars, which are Maven packages with installed resources. Using
Webjars, plus the powerful interoperability features that Scala.js provides, provides you with
a compelling and fresh way to tackle the highly complex area of web programming.

 SCALA.JS AND ITS DESIGN

Scala.js, foremost, is a Scala compiler. That is, it takes .scala fi les, and compiles them to an
intermediate bytecode specifi cally designed for JavaScript (.sjsir) fi les. When combined with
.sbt, you can then produce an actual .js fi le.

This means that Scala.js does not work with Java source code, nor does it work with JVM
bytecode. This means that when using Scala.js, you must use pure Scala code and any depen-
dencies that you may have also have to be written in pure Scala. For this reason, you may
have diffi culties in using Scala.js in a project that heavily uses Java (either directly or indi-
rectly). Strong integration with Scala.js and SBT means that it’s quite easy to cross compile
Scala projects. Although, you may think that this limitation is quite severe, it also means that
Scala.js provides many benefi ts that are critical in providing practical success in modern web
programming.

12

Professional Scala. Aliaksandr Bedrytski, Janek Bogucki, Alessandro Lacava, Matthew de Detrich and Benjamin Neil
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

206 ❘ CHAPTER 12 SCALA.JS

c12.indd 05/05/2016 Page 206

One of these advantages is that Scala.js uses a very accurate DCE, which is a requirement for mini-
mizing assets for the client. The reason for this accuracy is that since it works on Scala source code,
Scala.js is able to determine which methods are being used and which methods aren’t, with a much
higher dividend compared to just dealing with pure bytecode. The usage of DCEs is nothing new for
web programming (or programming in general); however how much code can be eliminated depends
on how strongly statically typed the language is and since idiomatic Scala is very strongly typed, this
is a very big benefi t. On top of this, Scala.js also uses the Google Closure Compiler for production
output. This combination means that it’s possible to reduce very large codebases (with
a lot of dependencies) to sizes that are smaller than what is possible in JavaScript.

The above however also means that Scala.js isn’t completely suited to lazy modules (i.e. modules that
are loaded lazily for a specifi c section of the site). Due to how the Scala DCE works, one would have
to include the Scala library (such as the collections library) in each lazy module you would defi ne.
Scala.js is much more suited to creating a single .js fi le, which encompasses your project, rather than
many separate .js fi les.

The usage of Scala source fi les also means that Scala.js combined with SBT also provides a mod-
ule system, which is exactly the same module system that is used for using Scala normally with
the JVM. This means that Scala.js provides an established solution to a problem that plagues the
JavaScript fragmentation in module sytems, due to there not being an established standard (AMD/
Common.js /npm/bower/require.js etc). Libraries created in Scala.js are packaged in JAR fi les, and
they use the same directory layout as the standard JVM jars. You don’t need to worry about how to
load fi les with their dependency trees (a problem that Require.js resolves), because this is all handled
by SBT.

Arguably the strongest strength of Scala.js, which is a notable difference from many other language
-> JavaScript compilers (particularly static languages), is that Scala.js has an easy-to-use FFI for
libraries written in JavaScript. This means that you don’t have to reimplement a huge amount of
the JavaScript ecosystem in Scala. There are Scala.js bindings for many popular web frameworks,
such as React and Angular. This is possible due to scala.dynamic (which allows you to dynamically
defi ne classes and methods) along with Scala facades (this allows you to enforce types on current
JavaScript libraries).

This combination allows you to provide a Scala experience while still being able to interoperate with
the current JavaScript ecosystem, as well as offering benefi ts that aren’t available in other languages.

GETTING STARTED: SCALA.JS WITH SBT

One of the easiest ways to learn how Scala.js works is to see how a cross build is set up from scratch.
Scala.js hosts a bare repo on Github at https://github.com/scala-js/scalajs-cross-compile-
example, which shows the basic structure of a Scala.js application, so let’s get started by cloning it:

git clone https://github.com/scala-js/scalajs-cross-compile-example

Before starting, it’s important to note that Scala.js is implemented as an SBT plugin, which can be
seen if you open project/plugins.sbt:

addSbtPlugin("org.scala-js" % "sbt-scalajs" % "0.6.3")

https://github.com/scala-js/scalajs-cross-compile-example
https://github.com/scala-js/scalajs-cross-compile-example
https://github.com/scala-js/scalajs-cross-compile-example

Getting Started: Scala.js with SBT ❘ 207

c12.indd 05/05/2016 Page 207

The fi rst thing you see is that the structure is slightly different compared to a typical project. In this
case, you have a root project and two subprojects (one for JVM and one for Scala.js). Code that is
within the JVM directory is only compiled for the JVM, and code that is contained within the js
directory is only compiled for JavaScript, and code in shared is compiled for all targets. If you exam-
ine the build.sbt, you can see how this is set up.

name := "Foo root project"

lazy val root = project.in(file(".")).
 aggregate(fooJS, fooJVM).
 settings(
 publish := {},
 publishLocal := {}
)

lazy val foo = crossProject.in(file(".")).
 settings(
 name := "foo",
 version := "0.1-SNAPSHOT",
 scalaVersion := "2.11.6"
).
 jvmSettings(
 // Add JVM-specific settings here
).
 jsSettings(
 // Add JS-specific settings here
)

lazy val fooJVM = foo.jvm
lazy val fooJS = foo.js

This template makes use of the sbt aggregate feature (http://www.scala-sbt.org/0.13/docs/
Multi-Project.html). The interesting thing to note here is that you can override publish and
publishLocal. This is because publishing the “root” project doesn’t make sense. When you publish,
you want to publish only the subprojects in root (which is the JVM and JavaScript build). Beneath
this, you see jsSettings and jvmSetting, which respectively allow you to specify settings for only
JavaScript, or for only the JVM. JVM settings such as “-target:jvm-1.8” when used with scalacOp-
tions are pointless when compiling for JavaScript, whereas options such as “-Ywarn-dead-code”
can be placed in shared settings.

The most obvious usecase for splitting out the settings is for dependencies. In Scala.js, dependencies
for JavaScript are packaged separately from the standard JVM Maven packages (this is also due to
the fact that Scala.js has its own notion of binary compatibility, which is separate from JVM binary
compatibility). The easiest way to see this is to run publishLocal on this current project.

[info] Done packaging.
[info] published foo_2.11 to /Users/matthewdedetrich/.ivy2/local/foo/
 foo_2.11/0.1-SNAPSHOT/poms/foo_2.11.pom
[info] published foo_2.11 to /Users/matthewdedetrich/.ivy2/local/foo/
 foo_2.11/0.1-SNAPSHOT/jars/foo_2.11.jar
[info] published foo_2.11 to /Users/matthewdedetrich/.ivy2/local/foo/
 foo_2.11/0.1-SNAPSHOT/srcs/foo_2.11-sources.jar

http://www.scala-sbt.org/0.13/docs/Multi-Project.html
http://www.scala-sbt.org/0.13/docs/Multi-Project.html

208 ❘ CHAPTER 12 SCALA.JS

c12.indd 05/05/2016 Page 208

[info] published foo_2.11 to /Users/matthewdedetrich/.ivy2/local/foo/
 foo_2.11/0.1-SNAPSHOT/docs/foo_2.11-javadoc.jar
[info] published ivy to /Users/matthewdedetrich/.ivy2/local/foo/
 foo_2.11/0.1-SNAPSHOT/ivys/ivy.xml
[info] published foo_sjs0.6_2.11 to /Users/matthewdedetrich/.ivy2/local/foo/
 foo_sjs0.6_2.11/0.1-SNAPSHOT/poms/foo_sjs0.6_2.11.pom
[info] published foo_sjs0.6_2.11 to /Users/matthewdedetrich/.ivy2/local/foo/
 foo_sjs0.6_2.11/0.1-SNAPSHOT/jars/foo_sjs0.6_2.11.jar
[info] published foo_sjs0.6_2.11 to /Users/matthewdedetrich/.ivy2/local/
 foo/foo_sjs0.6_2.11/0.1-SNAPSHOT/srcs/foo_sjs0.6_2.11-sources.jar
[info] published foo_sjs0.6_2.11 to /Users/matthewdedetrich/.ivy2/local/
 foo/foo_sjs0.6_2.11/0.1-SNAPSHOT/docs/foo_sjs0.6_2.11-javadoc.jar
[info] published ivy to /Users/matthewdedetrich/.ivy2/local/foo/
 foo_sjs0.6_2.11/0.1-SNAPSHOT/ivys/ivy.xml

As you can see, the main JVM package is specifi ed as /foo/foo_2.11/0.1-SNAPSHOT/, and then for
the JavaScript you have foo/foo_sjs0.6_2.11/0.1-SNAPSHOT. The foo_sjs0.6_2.11 means that this
package is binary compatible with Scala.js version 0.6.x.

For the example here, let’s add Scalatags as a dependency. Scalatags is a library for HTML templat-
ing; however the main interest is that it is cross-compiled for JVM and Scala.js. The documentation
states that the JVM dependency is “com.lihaoyi” %% “scalatags” % “0.5.4” whereas the Scala.js
dependency is “com.lihaoyi” %%% “scalatags” % “0.5.4”. Let’s update build.sbt to refl ect this (as
well as add some common scalacOptions as mentioned previously):

lazy val foo = crossProject.in(file(".")).
 settings(
 name := "foo",
 version := "0.1-SNAPSHOT",
 scalaVersion := "2.11.6",
 scalacOptions ++= Seq(
 "-encoding", "UTF-8",
 "-deprecation", // warning and location for usages of deprecated APIs
 "-feature", // warning and location for usages of features that should
 be imported explicitly
 "-unchecked", // additional warnings where generated code depends
 on assumptions
 "-Xlint", // recommended additional warnings
 "-Xcheckinit", // runtime error when a val is not initialized due to
 trait hierarchies (instead of NPE somewhere else)
 "-Ywarn-adapted-args", // Warn if an argument list is modified to match
 the receiver
 "-Ywarn-value-discard", // Warn when non-Unit expression results are
 unused
 "-Ywarn-inaccessible",
 "-Ywarn-dead-code"
)
).
 jvmSettings(
 libraryDependencies += "com.lihaoyi" %% "scalatags" % "0.5.4",
 scalacOptions ++= Seq(
 "-target:jvm-1.8"
)
).

Getting Started: Scala.js with SBT ❘ 209

c12.indd 05/05/2016 Page 209

 jsSettings(
 libraryDependencies += "com.lihaoyi" %%% "scalatags" % "0.5.4"
)

lazy val fooJVM = foo.jvm
lazy val fooJS = foo.js

In the preceding example, Scalatags is added as a dependency for both JVM and Scala.js, and spe-
cifi c settings for just compiling on JVM (in our case, we are setting the target to be JDK 1.8) have
also been added. This is easy to do because Scalatags is a cross compiled project. If you open up
shared/src/main/scala/MyLibrary.scala, you will see a trivial implementation.

class MyLibrary {
 def sq(x: Int): Int = x * x
}

Let’s extend this, and generate some HTML using ScalaTags:

import scalatags.Text.all._

object MyLibrary {
def template: String = (
 html(
 div(
 p("This is my template")
)
)
).render
}

Since this is contained in shared, it will be compiled for both targets. You also have to make this
visible to both targets. Let’s modify js/src/main/scala/Main.scala to look like this:

import scala.scalajs.js

object Main extends js.JSApp {
def main(): Unit = {
 val lib = new MyLibrary
 println(lib.sq(2))
 println(MyLibrary.template)
}
}

And let’s modify jvm/src/main/scala/Main.scala to look like this:

object Main extends App {
def main(): Unit = {
 val lib = new MyLibrary
 println(lib.sq(2))
 println(MyLibrary.template)
}
}

210 ❘ CHAPTER 12 SCALA.JS

c12.indd 05/05/2016 Page 210

What you have just done is modify the entry points for the project. Just as Scala has App to specify
how the application is run when you execute the .jar, Scala.js has a js.JsApp to specify the entry
point for the JavaScript application.

In SBT, if you fooJS/run you will see the output for js/src/main/scala/Main.scala, whereas run-
ning fooJVM/run will provide the output for jvm/src/main/scala/Main.scala. Extending js.jsApp
also dictates the entry point for JavaScript, and hence how the .js fi le is actually created. Running
fastOptJS will create the .js fi le in js/target/scala-2.11/foo-fastopt.js, which you can directly include
in the header in any HTML. fullOptJS runs a full optimization that creates a fi le in js/target/
scala-2.11/foo-opt.js. This takes much longer than fastOptJS; however it also generates a much
smaller fi le. It’s recommended to use fastOptJS when developing locally, since fi le size is not a con-
cern there.

At this point, you now know the basics of how Scala.js works. We have set up an example that uses
cross compilation technique (using SBT’s aggregate), and we have also learned how to separate and
share SBT settings (including dependencies). In addition we have shown how to run the program
(both in JVM and JavaScript), as well as how to generate the .js fi le, which is what is included in
the site.

SCALA.JS PECULIARITIES

Scala.js does a fantastic job in compiling most Scala code; however, there are corner cases that must
be investigated. These corner cases exist because JavaScript isn’t a very low level VM, and hence
there are restrictions on how certain code can be produced if you also want to maintain reasonable
performance.

One very good example is how numbers are treated. In the JavaScript specifi cation, there is only one
number type. However in the JVM (and hence Scala), there are numerous number types, such as
Long/Int/Float/Double. In order to avoid boxing and its associated performance penalties, Scala
.js has had to make compromises in this area. With the previous examples of numbers, Scala.js will
map most of the Scala primitive number types to the same JavaScript number type, which means
precision (and hence certain math operations) may be defi ned differently on separate platforms.

Scala.js also handles opaque types. These are types that have no actual representation in JavaScript
(the most common example of this is Char). Opaque types are essentially types that can only be
exported to JavaScript. They can’t be directly used unless you explicitly code conversions and there
also isn’t any way to manipulate the type in JavaScript. More information on this can be found here
http://www.scala-js.org/doc/interoperability/types.html.

Another area in which a difference can be found is exceptions. The JavaScript platform doesn’t
provide native support for all of the types of exceptions that can be found on the JVM, so imple-
menting them manually in JavaScript is very expensive from a performance perspective. Scala.js
provides three ways of dealing with this issue: Compliant, Unchecked and Fatal. Compliant provides
a full JVM specifi cation; however it is very slow. Unchecked means that exceptions will be thrown,
so the runtime behavior is completely undefi ned. Fatal will throw an exception; however it will
be an UndefiniedBehaviourError, instead of the original exception. More details about dealing
with exceptions can be found at http://www.scala-js.org/doc/semantics.html. The link also
describes instances where pattern matching is different among other sematic differences.

http://www.scala-js.org/doc/interoperability/types.html
http://www.scala-js.org/doc/semantics.html

Webjars and Dealing with the Frontend Ecosytem ❘ 211

c12.indd 05/05/2016 Page 211

WEBJARS AND DEALING WITH THE FRONTEND ECOSYTEM

As mentioned previously, the current web ecosystem is heavily fragmented, especially when it comes
to dealing with JavaScript modules, and their representation in fi les. It isn’t unusual for web frame-
works to create their own asset management systems. As an example, Ruby on Rails has already
gone through two different ways of managing assets. There are also competing ways to load fi les
(manually, using tools like require.js/webpack).

This problem is further complicated when having to deal with other JavaScript style languages such
as CoffeeScript, TypeScript or newer versions of EMCAScript. The combination of all of these has
also created quite complex tooling/build tools (Grunt.js, yeoman, NPM)

In Java/Scala with Webjars, these issues are practically nonexistent. Maven/Ivy already provides all
of the tooling and dependency management necessary for working with build/module management.

Just as with Scala.js, Webjars are just Maven packages. More specifi cally, they are Maven pack-
ages with resources that are installed with specifi c paths (so that they can be discovered by various
methods). Due to this simplicity, Webjars are very easy to work with. They just contain the com-
piled assets that are needed, and any dependencies are treated just as normal Maven dependencies.
Furthermore, since Maven relies on immutable artifacts as part of its core design, it avoids a lot of
issues that happen when using repositories as packages (which is common in frontend development).

The most powerful feature of Webjars, however, is the fact that they can be automatically generated
from Bower packages (as well as being manually created, or what is referred to as classic Webjars).
Webjars has a website that will convert, on demand, valid Bower packages to a Maven style pack-
age, with all of its dependencies defi ned and deploy it onto Bintray. The website (see Figure 12-1) for
converting bower packages to Webjars can be found at http://www.webjars.org/bower.

FIGURE 12-1

http://www.webjars.org/bower

212 ❘ CHAPTER 12 SCALA.JS

c12.indd 05/05/2016 Page 212

As can be seen by the screenshot, using the Webjars service to convert bower packages is very easy.
To include a Webjar into a project (regardless of whether it’s a bower Webjar or a normal classic
Webjar) you simply need to add it as a dependency in libraryDependencies. As an example, if you
want to add the latest current version of AngularJS, you simply need to add “org.webjars.bower” %
“angularjs” % “1.4.8” in your libraryDependencies in build.sbt.

At its lowest level, you can access the contents of a Webjar using .getResource. To load the angu-
lar.js fi le from the above example, you can do the following:

scala.io.Source.fromURL(getClass
.getResource("/META-INF/resources/webjars/angularjs/1.4.8/angular.js")
).mkString

This is quite a manual process and wouldn’t typically be done (it’s to demonstrate that Webjars are
just standard resources). You should use one of the helpers that are provided by various web frame-
works, and the list can be seen at http://www.webjars.org/documentation. It is recommended
that you use the web framework integration if it’s available, since the helpers often provide integra-
tions and tooling features like caching and minifi cation.

One caveat that you need to be aware of is that sometimes the dependencies that automatically get
added into the Maven package may not actually be available. This can happen due to several rea-
sons. One is that a dependency is not available on Bower because it hasn’t been converted yet. The
solution to this is issue is simple; you just need to convert the dependency to a bower Webjar using
the same process. The other cause could be that the dependency could not be converted due to a
licensing issue. Since Bower Webjars deploy onto Bintray, the system requires a valid license to be
defi ned. Bower package management allows you to specify Github repos as dependencies (and it
doesn’t mandate that a proper license be provided).

There are a couple of ways to resolve this issue. The most immediate one is to make an issue on the
relevant project’s website and ask them to provide a valid Bower license fi le. Another is to have a
look if a classic Webjar exists for that dependency. Often people use Bower dependencies that just
point to a Github repo that happens to be missing the license (even though the dependency in ques-
tion has a valid license). Thankfully, SBT gives us the tools to deal with this situation.

If you have a look at the bower Webjar for foundation, you will see that it depends on modernizr,
which isn’t available as a bower Webjar (however, it is available as a classic Webjar).

libraryDependencies ++= Seq(
 "org.webjars.bower" % "foundation" % "5.5.4" exclude
 ("org.webjars.bower", "modernizr"),
 "org.webjars" % "modernizr" % "2.8.3"
)

As you can see, we use the exclude option to prevent a dependency from being loaded by Webjars.
You can then manually load that dependency as a classic Webjar. Although this process is reminis-
cent of manual dependency management, it’s also quite rare.

The last resort is to create your own Webjar and deploy it either locally or to your own Maven
repository. Since Webjars are just Maven projects, creating them is very easy, and templates for

http://www.webjars.org/documentation

Summary ❘ 213

c12.indd 05/05/2016 Page 213

the current class Webjars can be found on the github organization page: https://github.com/
webjars.

SUMMARY

 For those of you who love to use JavaScript, this chapter has detailed some ways that you can inter-
act with Scala using the JavaScript language. By using Scala.js you now know that you can compile
Scala code straight to JavaScript. This allows you to share code between the server and the client,
which can dramatically reduce boilerplate.

This also happens to be the last chapter in this book. We hope that it has proven useful for you and
that it helps you program with Scala.

https://github.com
https://github.com/webjars

215

bindex.indd 05/11/2016 Page 215

INDEX

Symbols

$
for printing variable value, 9–10
in Scaladoc query, 99

... (wildcard operator), 8
@ (at sign), for tags, 117
-> syntax, 11

A
abstract type members, 159–161
abstract value members, 105
Acceptance Test-Driven Development (ATDD),

86
acceptance tests, 85, 90–92
actors (Akka), 198–200
ad hoc polymorphism, 145, 146–149
add() function, 33
ADTs (Algebraic Data Types), case classes for,

6–7
Akka (actors), 198–200
Akka-streams, 192
Algebraic Data Types (ADTs), case classes for,

6–7
alias, for tuple construction, 11
Amazon Web Services S3, 134
ammonite-repl, 62
annotations, 117

self-type, 155–157
anonymous function, .map to apply to collection

elements, 10
Any class, 142
Any type, 17
AnyRef class, 17, 18, 142, 143

AnyVal class, 16–17, 18, 142
value classes and, 143–145

ApiKey class, 16
Applicative Functor, 170–172
areEqual method, 147, 149–150
ArrayBuffer, implicit conversions into, 37–38
asynchronous call, 185
at sign (@), for tags, 117
ATDD (Acceptance Test-Driven Development),

86
Atomic Variables, 183
atto library, 70
@author, 119, 120
automatic conversions between types, implicits

for, 4

B
BDD (Business-Driven Development), 86
Big Data assets, Spark for, 200–202
Bloch, Joshua, Effective Java, 147
block elements, for documentation structure,

110–113
Boolean, methods returning, 31
bounds, 149–155
Bower dependencies, 212
Bower packages, 211
Brown, Travis, 160
build tool, integrating Scaladoc creation with, 133
build.sbt fi les, 47

dependencies for, 86
locations of, 52
specifying sub-projects, 52–53

buildSettings, breakup of, 48
bytecode, 188

Professional Scala. Aliaksandr Bedrytski, Janek Bogucki, Alessandro Lacava, Matthew de Detrich and Benjamin Neil
© 2016 by John Wiley & Sons, Inc. Published by John Wiley & Sons, Inc.

216

Cake Pattern – documentation

bindex.indd 05/11/2016 Page 216

C
Cake Pattern, self-type annotations and, 157
call-by-name parameters, 35–36
case classes, 5, 18

for ADTs, 6–7
destructive assignment of, pattern matching and,

8
classes, inheritance diagrams for, 130
clean command, 60
Code block type, wiki syntax for, 112
code formatting utility, 81
code repetitions, higher-order function for, 27
code smell, 79
CoffeeScript, 211
collect method, 9
Collection API, 29
collections, 18

immutable and mutable, 10–12
Java, 37–40
methods, 27–29
methods returning, 29–32
ridding of unwanted elements, 28

CommentFactoryBase, 109
companion objects, 14–15
compilation, Zinc for accelerating, 76–77
compile command, 60
compiler generated phase diagram, 69
compile-time check, enforcing, 158
concurrency, 179–203

actors, 198–200
Future composition, 185–187
parallel collections, 187–191
reactive streams, 192–195
Spark, 200–202
STM (Software Transactional Memory),

195–198
synchronize/atomic variables, 181–184

<configuration> element, for plugin, 67
console command, 60
consoleProject command, 61
consoleQuick command, 61
@constructor, 119
contains() method, 31
content pane in Scaladoc, 97–98, 100–106

entity member details, 105–106
fi ltering and ordering options, 103–105
top-level information, 101–103

content tag, 118
@contentDiagram, 118, 129–131, 132

context bounds, 149–150
contravariant type A occurs... error, 155
contravariant variance type, 152, 154
conversions, implicit, 143
converting types, 10–11
CoreProbe, adding to Java source directory, 75
count() method, 31
covariant variance type, 152, 154
CPU core, handling multiple, 179
CSS, in Scaladoc, 136–138
currying, 32–34
custom tasks, 50

D
data-driven tests, 88–89
DDD (Domain-Driven Development),

86
deadlock, 182
Debian package, creating, 58–59
debian:packageBin command, 59
@define, 125–132
dependencies

for JavaScript in Scala.js, 207
library, 70
in multi-project builds, 53–55
in SBT, 50–51
self-type annotations for, 156
specifying for build, 59

Dependencies.scala fi le, 86
@deprecated, 117, 121–122
deprecated value members, 106
DI (Dependency Injection), 7
distributed systems, 179
doc command, 61
Docker image, creating, 59–60
@documentable, 118, 125–132
documentation

creating objectives for, 96–97
generating, 55–56
locations for comments, 117
reasons for, 96–97
with Scaladoc, 95–138

structure, 97–106
tables and CSS, 136–138
tagging, 117–132

for groups, 123–125
wiki syntax, 108–117

217

bindex.indd 05/11/2016 Page 217

Domain-Driven Development – Haskell developers

block elements for structure, 110–113
formatting with inline syntax, 108–109
linking, 113–116
nesting inline styles, 109

Domain-Driven Development (DDD), 86
dot command, 130
dpkg, 59
DSLs, implicit conversions in, 4
duck typing, 161–162
dynamic programming, 161–164
dynamic trait, 162–164
dynamic typing

advantages, 141
vs. static, 140–141

E
EMCAScript, 211
empty list, error from, 32
entities, by category, 105–106
entity links, 113–114
entity signature, in Scaladoc, 103
enumerations, 42–43
equality concept, 146–149

comparison, pattern matching and, 8
errors

detecting, 18
from empty list, 32
testing for thrown, 87

eta-expansion, 154
Eventually trait, 92
@example, 122
exceptions, Scala.js and, 210
ExecutionContext, 185
exists() method, 31
explicit values, 3
expressions

measuring execution speed, 188
vs. statements, 143
statements as, 9

extractAdultUserNames method, 23

F
factorial computation, 46–47
failure with certainty, testing, 74
fastOptJS, 210
F-bounded polymorphic types, 158

Fibonacci function, 25–26
fi ltering options, in Scaladoc content pane,

103–105
find() method, 31
flatmap() function, 29

for monads, 172
fold() method, 31–32
footer, for documentation page, 132
for comprehension, 12
forall() method, 31
foreach(), 31
functional design patterns, 167–171

Applicative Functor, 170–172
functor, 167–170

functional programming, 19–36, 165–177
functions

higher-order, 26–27
partial, 9
partially applied, 32–34
pure, 22–23
return types of, 2–3

functor, 167–170
Future composition, 168, 185–187

G
Gaitling, 93
Garbage Collector, and micro benchmarks, 189
generic programming, 146
get() method, 35
.getResource, to access Webjar contents, 212
Git BASH, 65
Github, Scala.js on, 206
global settings, storage locations, 46
Google Closure Compiler, and Scala.js, 206
@group, 124
groupBy() method, 29–30
@groupdesc, 125
grouped data, tuples to store multiple types, 5
@groupname, 124
@groupprio, 125
groups, Scaladoc tagging for, 104, 123–125

H
hashCode, 17
Haskell developers, 20

218

help – memory leaks

bindex.indd 05/11/2016 Page 218

help, for scala-maven-plugin, 72
higher-order functions, 26–27
Horizontal line, wiki syntax for, 112
horizontal scaling, 179
HTTP call, method to make, 3–4

I
identity element, semigroup with, 174–176
identity function, 169
illegal inheritance error message, 157
immutability, 20–22, 36
immutable collections, 10–12
implicit conversions, 143
implicit parameters, 3–5
index, of collection element, 30
index pane, in Scaladoc, 97–100
@inheritanceDiagram, 129–131, 132
@inheritdoc, 129, 131
initialization, strict vs. non-strict, 35–36
inline wiki syntax, 108–109
InputKey, 49
instance constructors, 105
instance of class, values as, 142
integration tests, 85, 87–93
interfaces, 40–42
invariant variance type, 152
inversion of control, 7
Is method, 4

J
JAR fi les, in maven repositories, 51
Java, 180

joint compilation with, 74–76
Java collections, 37–40
Java developers, 20
Java libraries, in Scala projects, 40
JavaConversions object, 37–40
JavaConverters object, 37–40
java.lang.SuppressWarning annotation, 82
JavaScript, compiling Scala code to, 205–213
Jenkins, 48–49
JMH (Java Microbenchmark Harness), 189
Jrebel, 62
“Just In Time” compilation (JIT), 188–189
JVM machine, 188

K
kind fi lter, 100
kinds, 165–167
Knight, Tom, 195

L
%lambda expression%, 28
lazy val, 35–36, 48
libraries, for testing, 55
library dependencies, adding, 70
lift by functor, 168–169
Linear Supertypes, 103
linking, wiki syntax for, 113–116
List kind, 165, 168
List types, 10

wiki syntax for, 112–113
load testing, 93–94
login and logout, implementations for, 7
lower bounds, 150–151

M
main method, 47
mainframes, 179
MainWithArgsInFile, 68–69
.map, to apply anonymous function to collection

element, 10
map() function, 28
map method, 37
Mapper type, constructing, 166–167
map-reduce model, 32
Maven, 63–77

basics, 64–67
central repository, search for dependencies, 51
confi guring for Scaladoc, 133–134
dependencies, 212
external installations, 66
publishing to repo, 57

max() method, 31
Maybe type, 34
measure() function, 36
measure method, 90
member permalinks, 123
members, documentation, 105–106
memory leaks, fi nding, 93

219

merging streams – pure functions

bindex.indd 05/11/2016 Page 219

merging streams, 194–195
methods, static, 41–42
micro benchmarking, 89

and Garbage Collector, 189
micro management, 28
@migration annotation, 117
min() method, 31
mkString() method, 31
mockito library, 92
mocks, in testing, 92–93
modernizr, 212
Moggi, Eugenio, 172
monads, 172–173
monkey patching, 4
monoids, 174–176
mutable collections, 10–12

N
nesting inline styles, in documentation, 109
non-strict initialization, 35–36
NoSymbol, 83
@note, 122
null handling, 34–35
NullPointerException, 34
number literals, 3
numbers, Scala.js and, 210

O
Object type, 16
object-oriented programming, 19
objects, 13

content diagrams for, 130
Observable, 192–195
Odersky, Martin, 18

Programming in Scala, 147
Option, 165, 168

for Maybe type, 34–35
sum function for, 176

ordering options, in Scaladoc content pane,
103–105

P
package command, 61
package objects, 15

packageBin command, 61
packages

content diagrams for, 130
controlling scoping, 13–17
sbt-native-packager for, 58–59

packageSRC command, 61
Paragraph block type, wiki syntax for, 112
parallel collections, 187–191
parallel execution, and testing, 90
@param, 118, 119, 126
parametric polymorphism, 146
ParMap, documentation, 102
partial functions, 9
partition() method, 30
pattern matching, 8–12, 18, 34
performance, 18

parallel collections and, 187
parallel operations and conversion, 190–191
testing, 89–90

PGP signature, 56
Pi, calculating, 198–200
Pierce, Benjamin, Types and Programming

Languages, 140
Play framework, 58
plugins
<configuration> element for, 67
for SBT, 61–62
storage locations, 46

polymorphism, 145–149
POM (Project Object Model), 64–65

in maven repositories, 51
metadata, 57
source directory layout, 65–66

primitive types, and references in type system,
16

println() statement, 181–186, 197–198
private keyword, 15–16
Probe, creating instance, 66
project management, integrating Scaladoc creation

with, 133
property tests, 85, 88–89
protected variables, in Scaladoc, 100
publish command, 61
“Publisher/Subscriber” pattern, 192
publishing Scaladoc, 134–135
publishLocal command, 61
publish-m2 command, 56
publishM2 command, 61
publishSigned task, 57
pure functions, 22–23

220

query box – @see

bindex.indd 05/11/2016 Page 220

Q
query box, ordering options, 104

R
race conditions, 182
RCS version control system, 182
RDD[String] type, 201
reactive streams, 192–195
recursion, 23–26
reduce() method, 31–32
references types, 143
registerTempTable() method (Spark), 202
release management, 56–62
Reload command, 61
REPL, 71

and companion object, 15
replaceSpaceWithUnderScore method, 4–5
repositories, specifying third-party, 51
repository manager, Sonatype Nexus as, 56–57
@return, 119, 126, 127
return types

of functions, 2–3
of statements, 9

reverse method, 30
root project, Docker image for, 60
Ruby on Rails, 211
run command, 48, 61
runtime, type checking at, 141
RxJava library, 192

S
SBT. . See Simple Build Tool (SBT)
sbt publish-local, 56
sbt-assembly plugin, 56
sbt-dependency-graph, 61
sbt-git, 62
sbt-musical, 62
sbt-native-packager, 58–59
sbt-pgp plugin, 56
sbt-release, 62
sbt-revolver, 61–62
SbtScalariform.scalariformSettings, 81
sbt-updates, 62
Scala

implicits, 3–5
and Java collections, 37–40
joint compilation with Java, 74–76
syntax, 1
unifi ed type system, 141–145

Scala Standard Library Regex class,
documentation for, 96

scala-async library, 187
scalacOptions key, 166

in SBT build fi le, 163
Scaladoc

content for landing page, 132
documentation with, 95–138
HTML tags supported, 136–138
integrating creation with project, 133–134
location for, 117
options, 132–133
publishing, 134–135
structure, 97–106

content pane, 100–106
index pane, 98–100
layout, 97–98

scaladoc command line tool, 97
invoking, 106–107

additional options, 132–133
options, 107

scala.Enumeration abstract class, extending,
42–43

Scala.js, 205–213
peculiarities, 210

scala-maven-plugin, 67–70
<executions> element, 75
help for, 72

ScalaMeter, 89–90
ScalaSTM, 195
scalastyle, 79–80
scalastyle-config.xml fi le, generating, 80
Scalatags, 208–209
ScalaTest, 72–74, 86
ScalaTrait interface, 41
ScalaTrait$class.class, 41
scalaz, 170
Scaliform, 81
Scapegoat, 82
Schönfi nkelization, 32
Scoverage, 84
sealed keyword, 6
searching, in Scaladoc, 98–99
@see, 120

221

selectDynamic method – traits

bindex.indd 05/11/2016 Page 221

selectDynamic method, 163
Selenium, 90–92
self keyword, 156
self-recursive types, 158–159
self-type annotations, 155–157
semigroup, 173–174

with identity element, 174–176
Seq constructor, 10
serialization, 150
SettingKey, 49
shadowed implicit value members, 106
shared library, folder structure, 52
show command, 50
show() method (Spark), 202
Simple Build Tool (SBT), 18, 45

advanced usage, 52–56
basic usage, 46–51
commands, 60–61
confi gs, 46
confi guring for doc task, 134
dependencies, 50–51
doc task to generate Scaladoc, 134
plugins, 61–62
project structure, 47–49
resolvers, 51
scalacOptions key, 163
Scala.js as plugin, 206–210
scopes, 49
testing in console, 55–56

@since, 118, 120
single-operation transaction, 197
singletons, 13
.sjsir fi les, 205–213
Software Transactional Memory (STM), 195–198
Sonarqube, 84
Sonatype, deploying to, 56–57
sortBy() method, 30
sortWith() method, 30
source code, locating, 67
Spark, 200–202
sqrt function, 173
stack overfl ow, 24
standalone tag, 118
statement coverage, 84
static methods, 41–42
static types, 2–7
static typing

advantages, 141
vs. dynamic, 140–141

STM (Software Transactional Memory), 195–198
StringLike trait, 106
strings, interpolation, 9–10
structural types, 161–162
structured tag, 118
stubs, 92–93
subtype polymorphism, 145–146
sum() method, 31
summation, abstracting concept of, 174–176
symbol tag, 118
synchronize/atomic variables, 181–184
System.nanoTime, 188

T
tables, in Scaladoc, 136–138
tagging, in documentation, 117–132
tail recursion, 24–25
@tailrec annotation, 25–26
TaskKey, 49, 50
@template, 131
test command, 61
test-driven development (TDD), 85
testing, 85–94

acceptance tests, 90–92
data-driven, 88–89
load, 93–94
mocks in, 92–93
performance, 89–90
running, 72–74
ScalaTest, 86
terminology, 85–86

testOnly command, 61
testQuick command, 61
test-quick task, 55
this keyword, alias for, 157
thread, for concurrent process, 181
threads pool, 185
@throws, 120, 121
title, for Scaladoc, 132
Title block type, wiki syntax for, 112
@todo, 120
toString method, in case classes, 5
touchdown method, 74
@tparam, 122
traits, 6–7, 40–42

defi ning, 14
inheritance diagrams for, 130
instantiating, 14

222

transaction – zipWithIndex

bindex.indd 05/11/2016 Page 222

transaction, single-operation, 197
transform() method, 33
transformations, RDD and, 201
transparency, 20
Try type, 168
tuples, 5, 11
tut, 62
type bound, 150–151
type checker (compiler module), 140
type class, 146, 147–148
type members, 105
type mismatch error, 151–155
type system, 18, 139–164. See also kinds

abstract type members, 159–161
automatic conversions, implicits for, 4
basics, 140–141
dynamic vs. static, 140–141
List, 10
mandatory signatures, 2
self-recursive types, 158–159
self-type annotations, 155–157
testing for inheritance, 87
unifi ed type system, 141–145

typesafe forced casting, pattern matching and, 8
TypeScript, 211

U
unit primitive, for monads, 172
unit tests, 85, 87
Unit type, 143
update command, 61
upper bounds, 150–151
@usecase, 128–129, 131
userAwareAction() method, 27
user-defi ned classes, 143
uuids, generator for, 50

V
val database: Database, 7
val keyword, 20–22
value classes, 142–145

restrictions for, 144
value members, 106
values

as instance of class,
142

methods returning, 31–32
var keyword, 20–22
variables

$ for printing value, 9–10
Atomic Variables, 183
declarations, 2
protected, in Scaladoc,

100
synchronize/atomic,

181–184
volatile, 184

variance, 151–155
Venners, Bill, 160
@version, 120
vertical scaling, 179
view bounds, 150
views, 143
visitor pattern in Java, 6
void, 143
volatile variables, 184

W
WartRemover, 82–84
Webjars, 211–213
while, 23–24
white box testing technique,

84
wiki syntax, for documentation,

108–117
wildcard operator (...), 8

Z
Zinc, 76–77
zipWithIndex() method, 30

	get.pdf (p.1-15)
	get (1).pdf (p.16-33)
	get (2).pdf (p.34-51)
	get (3).pdf (p.52-58)
	get (4).pdf (p.59-76)
	get (5).pdf (p.77-91)
	get (6).pdf (p.92-97)
	get (7).pdf (p.98-107)
	get (8).pdf (p.108-151)
	get (9).pdf (p.152-177)
	get (10).pdf (p.178-190)
	get (11).pdf (p.191-215)
	get (12).pdf (p.216-224)
	get (13).pdf (p.225-232)

