
Programming
Excel with VBA

A Practical Real-World Guide
—
Flavio Morgado

www.allitebooks.com

http://www.allitebooks.org

 Programming
Excel with VBA

 A Practical Real-World Guide

 Flavio Morgado

www.allitebooks.com

http://www.allitebooks.org

Programming Excel with VBA: A Practical Real-World Guide

Flavio Morgado
Rio de Janeiro, Brazil

ISBN-13 (pbk): 978-1-4842-2204-1 ISBN-13 (electronic): 978-1-4842-2205-8
DOI 10.1007/978-1-4842-2205-8

Library of Congress Control Number: 2016957877

Copyright © 2016 by Flavio Morgado

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction
on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Cover image designed by FreePik

Managing Director: Welmoed Spahr
Lead Editor: Gwenan Spearing
Technical Reviewer: Fabio Claudio Ferracchiati
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal, James Markham,
Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Mark Powers
Copy Editor: Kim Wimpsett
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
 orders-ny@springer -sbm.com , or visit www.springer.com . Apress Media, LLC is a California LLC and the sole
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com , or visit www.apress.com .

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–
eBook Licensing web page at www.apress.com/bulk-sales .

Any source code or other supplementary materials referenced by the author in this text are available to
readers at www.apress.com/9781484222041 . For detailed information about how to locate your book’s source
code, go to www.apress.com/source-code/ . Readers can also access source code at SpringerLink in the
Supplementary Material section for each chapter.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/9781484222041
http://www.apress.com/source-code/
http://www.allitebooks.org

 To my beloved sons, Georgia and Diego.

 You are the light of my life!

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Author ...xv

About the Technical Reviewer ...xvii

Acknowledgments ..xix

Introduction ..xxi

 ■Chapter 1: Understanding Visual Basic for Applications (VBA) 1

 ■Chapter 2: Programming the Microsoft Excel Application Object 81

 ■Chapter 3: Programming the Microsoft Excel Workbook Object 149

 ■Chapter 4: Programming the Microsoft Excel Worksheet Object 185

 ■Chapter 5: Programming the Microsoft Excel Range Object 239

 ■Chapter 6: Special Range Object Properties and Methods 333

 ■Chapter 7: Using Excel as a Database Repository ... 427

 ■Chapter 8: Creating and Setting a Worksheet Database Class 495

 ■Chapter 9: Exchanging Data Between Excel Applications 603

 ■Chapter 10: Using the Windows API .. 711

 ■Chapter 11: Producing a Personal Ribbon Using RibbonEditor.xlam 761

Afterword .. 779

Index ... 783

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Author ...xv

About the Technical Reviewer ...xvii

Acknowledgments ..xix

Introduction ..xxi

 ■Chapter 1: Understanding Visual Basic for Applications (VBA) 1

What Is Macro Code? ... 1

The VBA Environment ... 2

Modules: The VBA Documents .. 3

Standard and Class Modules .. 6

The VBA Language ... 7

Procedures: The VBA Code .. 7

Using Function and Sub Procedures ... 7

Variable Declaration ... 18

Variable Scope and Lifetime ... 27

Create a Flow Chart for the Algorithm of Complex Procedures .. 32

Comment Your Code! .. 36

Using Public Code Module Variables .. 38

Public Procedures and Variables Constitute the Module Interface ... 40

Using Enumerators ... 40

Passing Arguments by Reference or by Value .. 42

Using a Naming Convention ... 42

Using Property Procedures ... 46

Property Procedures Allow Greater Control of Private Variables .. 48

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

viii

VBA Statements, Functions, and Instructions... 48

Using VBA Instructions.. 49

Using Event Procedures ... 54

Using Class Modules .. 57

Declaring and Raising Events on Object Code Modules ... 58

Using VBA UserForms ... 59

The VBA Me Keyword .. 64

Evoking a VBA Procedure from an Excel Worksheet .. 64

Two Special VBA Functions: MsgBox and InputBox .. 67

Using MsgBox() .. 67

Using InputBox .. 72

Dealing with VBA Errors ... 75

The On Error Resume Next Instruction ... 76

Setting an Error Trap ... 76

Protecting Your VBA Code ... 77

Conclusion .. 78

Summary .. 78

 ■Chapter 2: Programming the Microsoft Excel Application Object 81

The Microsoft Excel Object Model .. 81

The Application Object.. 82

Using Application Properties to Control the Way the Excel Interface Behaves 87

Using Application Methods to Show Excel File Dialogs .. 88

Using Application Events to React to User Actions ... 125

Chapter Summary .. 147

 ■Chapter 3: Programming the Microsoft Excel Workbook Object 149

The Workbook Object ... 149

Using Workbook Object Events ... 151

Setting Workbook Object References ... 164

Chapter Summary .. 184

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

ix

 ■Chapter 4: Programming the Microsoft Excel Worksheet Object 185

The Worksheet Object .. 185
Using Worksheet Object Events .. 188

Referring to Worksheets ... 191

Using Worksheet Object Properties and Methods .. 197

Chapter Summary .. 237

 ■Chapter 5: Programming the Microsoft Excel Range Object 239

The Range Object ... 239

Using the Application.Range Property .. 243

Using Range Object Properties and Methods ... 245
Updating the UserForm Interface ... 247

Resizing the Selected Range .. 254

Changing the Range Reference .. 257

Using the Names Collection ... 258
Hiding Named Ranges .. 260

Resizing Named Ranges ... 262

Using Name Object Properties and Methods .. 265
Recovering Name Object Properties ... 269

Adding a New Name Object .. 278

Selecting Items in the lstNames ListBox .. 290

Editing an Existing Name Object .. 306

Resizing an Existing Name Object .. 317

Performing Multiple Name Properties Changes ... 322

Changing the Name.RefersTo Property ... 326

Chapter Summary .. 332

 ■Chapter 6: Special Range Object Properties and Methods 333

Defi ning a Range with VBA ... 333
Using the Range.End Property .. 335

Using the Range.CurrentRegion Property ... 336

Moving Through a Range with VBA ... 336

Creating the USDA Range Name ... 339

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

x

Sorting Range Names... 341

Using Cascading Data Validation List Cells .. 343

The USDA Food Composer.xlsm Worksheet Application ... 345

Creating USDA Worksheet Range Names ... 347

Finding the Last Worksheet Used Cell .. 353

Finding the Last Worksheet Row/Column with Range.End ... 353

Finding the Last Worksheet Row/Column with Worksheet.UsedRange .. 354

Warning: Range.End Method and Hidden Rows .. 356

Finding Range Information ... 358

The Range.Find Method .. 359

The Range.AutoFilter Method ... 379

Finding Food Items with the Range.Sort Method.. 396

Using frmSearchFoodItems.xlsm ... 415

Showing Selected Food Item Common Measures .. 417

Returning the Selected Food Item .. 419

Researching for a Selected Food Item .. 423

Chapter Summary .. 425

 ■Chapter 7: Using Excel as a Database Repository ... 427

The Worksheet Database Storage System ... 427

The BMI Companion Chart .. 428

The BMI Companion Chart_Database.xlsm Excel Application 433

Parameterization of BMI Chart Data ... 438

Changing BMI Chart Data ... 441

Saving the Last Selected Record .. 444

Saving BMI Chart Data .. 444

Loading BMI Chart Data .. 470

Deleting BMI Chart Data ... 471

Associating Database Procedures to Worksheet Button Controls .. 477

Making Copies of the BMI Chart Worksheet ... 478

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

xi

The USDA Food Composer_Database.xlsm Excel Application 479
Changing Database Constant Values .. 483

Saving Recipe Data ... 484

Saving Recipe Nutritional Information in My_Recipes Range Name .. 486

Deleting a Recipe Data ... 487

Things That Are Worth Being Mentioned ... 488

Chapter Summary .. 493

 ■Chapter 8: Creating and Setting a Worksheet Database Class 495

Creating a Database Class ... 495
Steps 1 and 2: Create the Database Class Module ... 496

Step 3: Create an Object Variable to Capture Worksheet Events .. 497

Steps 4 and 5: Change Constant Names to Variable Declarations .. 498

Step 6: Save Database Properties as Range Names .. 501

Step 7: Use the Class_Initialize() Event to Read Database Properties ... 503

Referencing the clsDatabase Class .. 504

Improving the clsDatabase Class Interface .. 506
Improving the Object Model.. 507

Using the SheetDBEngine Class ... 532
Producing Data Navigation Controls ... 536

Setting the Worksheet Database Class .. 540
Implementing the Worksheet Database Wizard .. 540

Using the SheetDBEngine Class and frmDBProperties ... 601

Conclusion .. 601

Chapter Summary .. 601

 ■Chapter 9: Exchanging Data Between Excel Applications 603

Updating the USDA Worksheet ... 603

Using the USDA Food List Creator Application .. 604

The USDA Worksheet Updating Method .. 606

Using the USDA Food Composer_SheetDBEnginebasUSDA.xlsm Application 607

Warning About USDA Worksheet Updates .. 620

Using the USDA Food Composer_SheetDBEnginefrmUSDA.xlsm Application 622

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

xii

Managing Worksheet Application Data ... 641

The frmManageRecipes_Initialize() Event ... 643

Inserting Copies of the My Recipes Sheet Tab .. 648

Selecting Desired Recipes .. 653

Saving Recipe Nutritional Information in the My_Recipes Range Name .. 655

Exporting and Importing Recipe Data ... 667

Deleting Recipes from This Workbook .. 699

Exporting/Importing Recipes with Database Copy/Paste Methods... 703

Conclusion .. 709

Chapter Summary .. 709

 ■Chapter 10: Using the Windows API .. 711

The Microsoft Windows API .. 711

Using Declare Statements .. 712

Constants Declaration .. 713

Window Handles ... 713

Class Instance Handle .. 714

Creating a Timer Class ... 714

The TimerProc() Procedure .. 718

Using the Timer Class ... 718

UserForm Handle .. 720

Setting Bit Values ... 721

Animating the UserForm Window ... 722

The Animate() Procedure ... 724

Manipulating the UserForm Window .. 729

The UserForm Title Bar ... 730

The Appearance() Procedure ... 732

The UserForm Transparency ... 737

■ CONTENTS

xiii

Applying a Skin to a UserForm ... 743

Device Contexts .. 744

Changing the UserForm Shape Using Windows Regions .. 745

The Skin() Procedure ... 748

The frmSkin UserForm.. 753

The USDA Food Composer_frmAbout.xlsm Application .. 755

Conclusion .. 758

Chapter Summary .. 759

 ■Chapter 11: Producing a Personal Ribbon Using RibbonEditor.xlam 761

How Personal Ribbon Information Is Stored ... 762

Using RibbonEditor.xlam... 762

Adding Tabs, Groups, and Buttons Using the RibbonX Add-In .. 767

Removing the CustomUI.xml File from a Workbook Application ... 775

Producing a Nice Ribbon with RibbonEditor.xlam ... 776

Conclusion .. 777

Chapter Summary .. 777

Afterword .. 779

Index ... 783

xv

 About the Author

 Flavio Morgado is a food engineer with a master’s degree in food science and technology. He is also a VBA
professional developer, a technical writer, an English to Brazilian Portuguese technical translator, and a
professor at UNIFESO – Centro Universitário Serra dos Órgãos in the city of Teresopolis in Rio de Janeiro,
Brasil.

 He has written more than 30 books (and translated an equal number) — all published just in Brazil.
 Flavio lives in Teresopolis; when he is not teaching, writing, or developing a love of something (or

somebody…), he is running or riding his mountain bike throughout the Teresopolis Mountains, followed by
his 11 dogs (2016’s dog count).

xvii

 About the Technical Reviewer

 Fabio Claudio Ferracchiati is a senior consultant and a senior analyst/developer using Microsoft
technologies. He works for BluArancio (www.bluarancio.com). He is a Microsoft Certified Solution
Developer for .NET, a Microsoft Certified Application Developer for .NET, a Microsoft Certified Professional,
and a prolific author and technical reviewer. Over the past ten years, he’s written articles for Italian and
international magazines and coauthored more than ten books on a variety of computer topics.

http://www.bluarancio.com/

xix

 Acknowledgments

 This book shows how to improve worksheet applications using Visual Basic for Applications (VBA). A great
part of it was inspired or is based on content and knowledge available for free on the Internet.

 So, I like to thank the existence of these VBA Internet sites (in alphabetical order):

• Better Solutions: www.bettersolutions.com/

• Excel Matters: http://excelmatters.com/

• ExcelVBA: http://excelevba.com.br/

• Mr. Excel: www.mrexcel.com

• Microsoft System Development Network (MSDN): https://msdn.microsoft.com/

• Ozgrid: www.ozgrid.com/VBA/find-method.htm

• Pearson Software Consulting: www.cpearson.com/

• Ron de Bruin Excel Automation: www.rondebruin.nl/win/section2.htm

• StackExchange: http://stackexchange.com/

• StackOverflow em Português: http://pt.stackoverflow

• StackOverflow: http://stackoverflow

• VB-fun.de: www.vb-fun.de/

 And thanks for the existence of these nutrient Internet sites (in alphabetical order):

• Agricultural Research Serving of United States: www.ars.usda.gov

• EatingWell: www.eatingwell.com/

• Food and Agriculture Organization for the United Nations: www.fao.org

• National Heart, Lung, and Blood Institute: www.nhlbi.nih.gov

• The Dash Diet Eating Plan: dashdiet.org

• Wikipédia: www.wikipedia.com

 I also want to thank Microsoft and all the people on the Microsoft Excel development team for giving
us Excel—a superb piece of software that is versatile and powerful. As a professional developer, I know how
difficult it is to produce something so good, even though it is not perfect, but what is? Please Microsoft,
receive my most profound respect and compliments.

http://www.bettersolutions.com/
http://excelmatters.com/
http://excelevba.com.br/
http://www.mrexcel.com/
https://msdn.microsoft.com/
http://www.ozgrid.com/VBA/find-method.htm
http://www.cpearson.com/
http://www.rondebruin.nl/win/section2.htm
http://stackexchange.com/
http://pt.stackoverflow
http://www.vb-fun.de/
http://www.ars.usda.gov/
http://www.eatingwell.com/
http://www.fao.org/
http://www.nhlbi.nih.gov/
http://www.wikipedia.com/

xxi

 Introduction

 This book was created to teach you how to use Visual Basic for Applications (VBA) to automate worksheet
applications.

 It is a code book that was written to teach everyone, including people with zero experience in
programming and people with decent programming knowledge, how to use and apply programming
techniques to better interact with the users of your Microsoft Excel solutions in a more professional way.

 It uses some ready-made worksheet applications as practical examples of how you can produce solid,
precise, and reliable worksheet applications based on VBA programming.

 First I’ll introduce you to the VBA environment and the language structure and show you some basic
examples that will take you on a consistent journey through the Excel object model. All the proposed
examples use VBA to teach you how to interact with the Excel object model and its many properties,
methods, and events.

 As a basic strategy to teaching Excel VBA programming, this book uses the VBA Immediate window
to first test each proposed Excel feature before showing how to use it in a code procedure. It is full of
programming examples whose complexity grows from the book’s beginning to its end. This means it was
written to be read one chapter at a time, with each chapter using the knowledge of previous chapters to
provide a jump on your programmer skills.

 My teaching strategy is to show a UserForm interface or code procedure step-by-step and to comment
on all its instructions, one at a time, to give you a better understanding of how the VBA code can use good
programming techniques to produce the desired result, with clear, concise, and reusable code.

 What’s in the Book
 This book is divided into 11 chapters, each one approaching Excel VBA programming with a new
complexity. To get a big picture of what you will find inside it, here is a summary of each chapter:

• Chapter 1 , “Understanding Visual Basic for Applications (VBA),” is intended to
show you the VBA metaphor, including how to use VBA integrated development
environment (IDE) and the VBA language structure. It is a basic chapter to show you
a first approach to VBA and a programming language.

• Chapter 2 , “Programming the Microsoft Excel Application Object,” touches on
the first programmable object in the Microsoft Excel object model hierarchy: the
 Application object, which represents the Microsoft Excel application window, with
some of its main properties, methods, and events. In this chapter, you will learn
about the FileDialog , GetOpenFileName , GetSaveAsFileName , and OnTime methods;
when the Application object events fire; and how to use a Class module to watch
and/or control whether a worksheet tab name can be changed, as a first approach to
producing VBA objects.

http://dx.doi.org/10.1007/978-1-4842-2205-8_1
http://dx.doi.org/10.1007/978-1-4842-2205-8_2

■ INTRODUCTION

xxii

• Chapter 3 , “Programming the Microsoft Excel Workbook Object,” talks about the
second layer of the Microsoft Excel object model, which represents the Workbooks
collection and contains all the open Workbook objects inside the main Excel window.
You will learn about how and when the Workbook object events fire and will see
the VBA UserForm and its controls, learning how to use the ListBox control and its
interface (properties, methods, and events) to interact with the Workbook object
using VBA code.

• Chapter 4 , “Programming the Microsoft Excel Worksheet Object,” touches on the
third object level in the Excel object model hierarchy: the Worksheet object , which
represents the sheet tab in a Excel workbook file. It also shows how its programmable
interface is composed (it properties, methods, and events). In this chapter, you will
use again a VBA UserForm to learn how to add, delete, copy, move, rename, sort, and
change sheet tab visibility inside a workbook file. You will also learn the many ways
(and the preferable one) to reference sheet tabs in the VBA code and how to control
the “cascade events” phenomenon that happens with VBA objects.

• Chapter 5 , “Programming the Microsoft Excel Range Object,” talks about the deepest
object inside the Excel object model hierarchy: the Range object, which can represent
any number of cells inside a Worksheet object . Using another UserForm interface,
you will learn how to programmatically define the cell addresses that compose any
selected range, how to use VBA to name a range (using the Names collection), how to
use the VBA Collection object, and how to produce a similar interface to the Excel
Name Manager interface using VBA, improving the Excel interface by allowing you to
change the range name visibility inside the workbook file.

• Chapter 6 , “Special Range Object Properties and Methods,” expands your knowledge
about the Range object by covering the Cells and CurrentRegion properties and
the End , OffSet , Find , AutoFilter , Sort Copy , and PasteSpecial methods, using
again the UserForm approach. At the end of this chapter you are presented with the
 frmFindFoodItems UserForm that uses most of this knowledge to find food items in
the USDA food table using different search criteria (by food item name or nutrient
content).

• Chapter 7 , “Using Excel as a Database Repository,” presents you with a
programmable approach to implementing a database storage system to store
worksheet data as database records in unused worksheet rows, based on a data
validation list cell and range names. This chapter uses all the knowledge gathered
so far to produce a standard code module full of procedures that use module-level
constant values to define the database parameters, allowing you to adapt it to any
worksheet application design.

• Chapter 8 , “Creating and Setting a Worksheet Database Class,” expands the
database code module to a Class module that uses range names to store the
database properties inside unused worksheet rows. It defines the SheetDBEngine
class interface, showing how to implement its properties, methods, and events.
To allow you to easily use the SheetDBEngine class, this chapter also presents the
 frmDBPRoperties UserForm , which was produced as a database wizard, to help
implement the database storage system on any worksheet application.

http://dx.doi.org/10.1007/978-1-4842-2205-8_3
http://dx.doi.org/10.1007/978-1-4842-2205-8_4
http://dx.doi.org/10.1007/978-1-4842-2205-8_5
http://dx.doi.org/10.1007/978-1-4842-2205-8_6
http://dx.doi.org/10.1007/978-1-4842-2205-8_7
http://dx.doi.org/10.1007/978-1-4842-2205-8_8

■ INTRODUCTION

xxiii

• Chapter 9 , “Exchanging Data Between Excel Applications,” answers important
questions regarding how to programmatically update worksheet-based tables from
where the worksheet application gathers its data. It teaches how to update the USDA
worksheet to any version released by the ARS-USDA web page, using either a simple,
silent procedural approach or a UserForm that reacts to the updating process, finding
food item name inconsistencies between two releases of SRxx.accdb or SRxx.
mdb Microsoft Access database nutrient tables. You will be also presented with the
 frmManage UserForm to allow mass operation on the worksheet database so you
can delete and save recipe nutrient data and export and import recipes, using VBA
automation.

• Chapter 10 , “Using the Windows API,” takes your VBA knowledge gathered so
far in this book to the next level by teaching you how to understand and use the
Windows application programmable interface (API), based on dynamic linked
libraries (DLLs) and C++ procedures. The API can be declared and called from
within a VBA project. In this chapter, you will learn how to implement a Timer class
to create programmable timer objects and how to change the UserForm appearance
by removing its title bar; adding a resizable border and minimize, restore, and
maximize buttons; and adding transparency and creating a fade effect. You’ll also
learn how to animate a UserForm when it loads and how to apply a skin effect to
change the UserForm shape.

• Chapter 11 , “Producing a Personal Ribbon Using RibbonEditor.xlam,” uses the
RibbonX VBA add-in developed by Andy Pope as free software to produce a
personalized ribbon with tools that interact with your worksheet application, giving
it a professional appearance.

• The afterword is a brief testimony of the path used to write this book, with my
insights about how I imagined it and created it step-by-step, with trial-and-error
experimentation as I learned the Excel object model.

 This Book’s Special Features
 Programming Excel 2016 with VBA was designed to give you all the information you need to understand how
to replicate a behavior, insert a formula, define an interface, and so on, without making you wade through
ponderous explanations and interminable background. To make your life easier, this book includes various
features and conventions to help you get the most of the book and Excel itself.

• Steps : Throughout the book each Excel task is enumerated in step-by-step
procedures.

• Commands : I used the following style for Excel commands: Conditional Formatting
button in Styles area on the Home tab of the ribbon (this mean you must click the
Conditional Formatting button that you find in the Styles group of the Home tab).

• Menus : To indicate that you click the File menu and then select Save, I use File ➤ Save.

http://dx.doi.org/10.1007/978-1-4842-2205-8_9
http://dx.doi.org/10.1007/978-1-4842-2205-8_10
http://dx.doi.org/10.1007/978-1-4842-2205-8_11

■ INTRODUCTION

xxiv

• Functions : Excel worksheet functions appears in capital letters and are followed
by parenthesis: IF() . When I list the arguments you can use with a function, they
will appear in a bullet list of items, using the same order that they appear inside the
function arguments list to explain the meaning of each one.

• Rows, columns, cell address, ranges, and sheet names : Excel rows, columns, cell
address, range names, and sheet names appear using an Arial font to detach them
from the text.

 This book also uses the following box to call attention to important (or merely interesting) information:

 ■ Attention The Attention box presents asides that give you more information about the topic under
discussion. These tidbits provide extra insights that give you a better understanding of the task at hand, offer
complementary information about the issue that is being currently discussed, or even talk about an unexpected
Excel behavior regarding a given task.

 Web Site Extras
 All the examples presented in this book are available at www.apress.com/9781484222041 as ZIP files for
each book chapter. In addition to the example workbooks or worksheet applications, I’ll post any updates,
corrections, and other useful information related to this book.

 Your Feedback Is (Very) Important!
 Before you continue reading, I would like to say that your opinion is important to me. I really don’t know
how many of you will write to me to give any feedback, but I hope I can answer everyone and, whenever
possible, resolve any questions or problems that arise. Since I have many other duties, sometimes it may take
a little while so I can answer you, but I promise to do my best. Please feel free to write to me at the following
e-mail: flaviomorgado@gmail.com .

http://www.apress.com/9781484222041

1© Flavio Morgado 2016
F. Morgado, Programming Excel with VBA, DOI 10.1007/978-1-4842-2205-8_1

 CHAPTER 1

 Understanding Visual Basic for
Applications (VBA)

 This chapter will teach you how to program Microsoft Excel using Visual Basic for Applications code
procedures. It will show you how to interact with the VBA integrated development environment (IDE), show
how VBA programming code works, and give lots of examples. This introduction is for people who do not know
anything about VBA and want to get started. If you already have some experience, you can skip to Chapter 2 .

 You can obtain all the procedure code in this chapter by downloading the Chapter01.zip file
from the book’s page at Apress.com, located at www.apress.com/9781484222041 , or from http://
ProgrammingExcelWithVBA.4shared.com .

 What Is Macro Code ?
 There was a time in computer usage that if you needed to accomplish a series of successive commands
in software, you could use the appropriate program syntax to type the menu commands to follow, one
command per row, and then make the program execute them, row by row. In the DOS age of the early 1980s,
the spreadsheet program called Lotus 123 called this method a macro , and since then, every time a program
tries to allow the user to implement such a resource to execute any desired number of successive menu
commands, the convention is to say that the program is following a macro code .

 The first versions of Windows and all Microsoft Office applications (including Microsoft Excel) could
implement this sort of automation by recording successive series of actions performed on the interface using
the keyboard or the mouse.

 Until 1994 when Microsoft Excel was on version 3.0, each Microsoft Office application had its own way to
store its macro codes, meaning that these codes were not interchangeable between Office applications. In other
words, Word has its own set of commands, PowerPoint had another set, and Excel had yet another one. At this
time you needed to be very specialized to read and understand each Microsoft Office application macro code.

 Everything changed in 1995, when Microsoft released Microsoft Visual Basic 4; its IDE used the VBA
language and made it part of all Microsoft Office 6 applications. From this time on, all Microsoft Office
applications were capable of being programmed using a single language, allowing all applications to interact
with each other. Even though this code was produced with VBA as a true programming language, the term
 macro code stuck to this sort of application automation and continues to be used today.

Electronic supplementary material The online version of this chapter (doi: 10.1007/978-1-4842-2205-8_1)
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-2205-8_2
http://www.apress.com/9781484222041
http://programmingexcelwithvba.4shared.com/
http://programmingexcelwithvba.4shared.com/
http://dx.doi.org/10.1007/978-1-4842-2205-8_1

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

2

 Although you can consider Excel macro code to be any kind of code automation created to interact with
Excel and its environment, you can divide the code into two types of VBA code.

• Excel macros : The VBA code created by Excel itself when you activate Excel macro
recording and execute any successive actions on its interface

• VBA programming code : The code you create by hand to implement the same
automation, but with more control and many times with more efficiency

 In this book I will teach you how to understand and create your own VBA code procedures so you can
take greater control of your worksheet applications.

 The VBA Environment
 Before you begin to learn the Visual Basic for Applications language, you must acquaint yourself with the
 VBA IDE ; this is the place where you can create and test the VBA code of any Microsoft Office application.

 There are two ways to open the VBA IDE.

• By going to the Microsoft Excel Developer tab and then clicking the Visual Basic
button, as shown in Figure 1-1

• By pressing Alt+F11 in any Microsoft Office application

 Figure 1-1 shows the Developer tab on the Excel ribbon with the Visual Basic command button.

 To show the Excel Developer tab, follow these steps:

 1. Click the Excel File tab and select Options to show the Excel Options dialog box.

 2. Select the Customize Ribbon option.

 3. In the right list box, check the Developer tab (Figure 1-2).

 4. Click OK to close the Excel Options dialog box.

 Figure 1-1. This is the Excel Developer tab, where you will find, among other tools, the Visual Basic command
button to activate the Visual Basic IDE

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

3

 Figure 1-3 shows the Visual Basic IDE that you can activate by pressing Alt+F11 or by clicking the Visual
Basic command on the Excel Developer tab.

 ■ Attention You can turn on the visibility of the Project Explorer, the Properties window, and the Immediate
window using the appropriate commands in the Visual Basic View menu item.

 Modules : The VBA Documents
 VBA works this way on Office documents: each document created by any Microsoft Office application has
one specific VBA object attached to it called a code module . It is almost impossible to dissociate the object
from the code module, and if this happens (which is rare but possible), the file becomes corrupted and
unusable until you fix it by deleting the offending object.

 Figure 1-2. To show the Developer tab on the Excel ribbon, select File ➤ Options, click Customize Ribbon, and
check the Developer option in the right list box

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

4

 Excel has the ability to open workbook files, which are a special kind of file made up of one or more
worksheets (called Sheet1, Sheet2, and Sheet3). Indeed, each new file created by Microsoft Office 2003
or later versions has by default three blank worksheets (although you can configure Excel to create new
workbooks with 1 to 100 blank worksheets).

 ■ Attention To configure the number of blank worksheets a new Excel workbook (or Excel file) has, select
File ➤ Option, select “Include this many sheets” option, and indicate how many worksheets you desire. Note,
however, that every workbook must have at least one worksheet inside it.

 From VBA’s point of view, each Excel object has its own code module: one for the entire workbook (it is
the last object on the Microsoft Excel Objects branch of the Project Explorer tree , named ThisWorkbook) and
one for each worksheet inserted by default on the workbook, named with the same worksheet name (Sheet1
to Sheet3 on a default workbook with three blank worksheets). They are always positioned at the beginning
of the Microsoft Excel Objects branch of the Project Explorer tree (Figure 1-4).

 Figure 1-3. This is the Visual Basic IDE that you use to write and follow VBA procedures and codes, with the
Project Explorer, the Properties window, the Immediate window, and the Code window (for Book1, Sheet1)
visible

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

5

 To see the VBA code module associated with each default Excel object, double-click the code
module in the Project Explorer tree . Figure 1-3 shows the Sheet1 code module, while Figure 1-5 shows the
 ThisWorkbook code module opened in the VBA IDE.

 Figure 1-4. Every Excel file, or Excel workbook, has at least one code module associated with the workbook
(named ThisWorkbook) and one code module for each worksheet, having the same name of the sheet tab. They
are all shown on the Project Explorer tree

 Figure 1-5. This is the VBA code module associated with the Excel workbook file. By default it is called
ThisWorkbook, and every Excel file has just one of them

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

6

 Standard and Class Modules
 Although no Excel object can be dissociated from its code module, you can create independent code
modules that are not associated with any object using the VBA Insert ➤ Module and Insert ➤ Class Module
menu commands. Figure 1-6 shows that after you execute VBA Insert ➤ Module, a new Module branch of
independent code modules is created inside the Project Explorer tree , with the new Module1 code module
already selected in the VBA interface.

 ■ Attention You can change the focus from one code module to another by double-clicking the Project
Explorer tree or by using VBA Windows menu command to select it from among any open code module windows.

 Note that whenever you select any Excel object in the VBA Project Explorer tree , all its properties are
shown in the Properties window , even if the code module is closed. Later in this book I will talk about some
interesting code module properties associated with just the VBA IDE or with the object itself (properties
associated with the worksheet or workbook object).

 This VBA structure of different code module windows is part of any Excel macro-enabled workbook,
even if you don’t use them! They are the documents that can be manipulated just by the VBA IDE, and it is
where all the action will occur to control the automation of your Excel solution.

 Figure 1-6. This is the VBA IDE after a new independent code module called Module1 was created using the
VBA Insert ➤ Module menu command

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

7

 ■ Attention To delete any module or class module inserted in the VBA structure of an Excel file, right-click
its name on the Project Explorer tree and select Remove <Module Name> in the pop-up menu. You will be
prompted to export the code module code before you delete it from the workbook structure.

 Class Modules
 Class modules are a special type of code module that allows the creation of a programmable “object.” Using
 Class modules, you can trap other existing VBA objects (like the Excel Application object, UserForm , and
so on), create your own objects, define behavior using Property procedures and methods represented by
 Public and Sub procedures, and raise events (automatically respond to user actions). Consider a Class
module as a code repository that can be reused, creating many instances of the class for the same purpose,
where all instances share the same base code. The Class module is the core module of object-oriented
programming in VBA, and you will see it in action later in this book.

 The VBA Language
 Like any other programming language, VBA executes individual statements one at a time from the first row
after the procedure declaration to the last row.

 You should strive to write procedure code using VBA strict syntax rules with one statement per row. The
shorter the procedure code is (the fewer rows it has), the faster it executes and the easier it is to understand.

 To know how to write VBA code, you must understand its syntax for variable declarations, its
instructions, and its functions.

 Procedures: The VBA Code
 Procedures are the heart of any programming language. They are responsible for executing the actions you
need to grant a given functionality to your application.

 You use VBA code modules to write the procedures that must be executed; there are three types of
procedures:

• Function procedures : These can return a value when finishing execution.

• Sub procedures : These can’t return a value.

• Property procedures : These are a special pair of procedures with the same name that
can implement an object property.

 For now we will stay with the concept of Function and Sub procedures. Property procedures will be
addressed later in this chapter.

 Using Function and Sub Procedures
 You may ask why Function and Sub procedures exist, and my answer is that they are a holdover from the
very first programming language. They allow a programmer to divide the executing code into reusable parts.
The main code is executed by one procedure (Function or Sub), while any reusable can is executed by a Sub
procedure, thus reusing its code.

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

8

 For our usage, let’s just stay with this simple definition: use a Function procedure whenever you want
to return a value, and use a Sub procedure whenever you want to execute any necessary and successive
programming steps without returning any value (and this Sub procedure eventually can be reused by other
procedures).

 Both Function and Sub procedures have specific syntax rules for any VBA code module: a begin
statement that indicates its scope (Public or Private), its name, its argument list (if any), the type of
returned value for Function procedures, and an End statement.

 The following VBA code fragment declares a simple Function procedure named FindFoodITem()
(note that it has a return value declared as Boolean):

 Function FindFoodItem() as Boolean
 [Statements]
 FindFoodItem = <FunctionResult>
 End Function

 ■ Attention In this book, everything that appears inside the < > characters means the name you must give
to the procedure or argument it represents.

 The following is another VBA code fragment declaring a Sub procedure named FindFoodItem() (note
that it does not return a value):

 Sub FindFoodItem()
 ...
 End Sub

 ■ Attention In the same VBA code module there can be only one FindFoodItem() procedure, declared as a
 Function or Sub procedure.

 The following is the complete VBA syntax necessary to declare a Function procedure (optional parts of
the Function declaration are between brackets):

 [Public | Private | Friend | Static] Function <FunctionName> ([Optional] [Arg1[[as
Type],...) [As<Type>]
 [Statements]
 <FunctionName> = <FunctionResult>
 End Function

 In this code:

 [Public | Private | Friend | Static] : These are VBA keywords to specify the
scope of the Function procedure. Note that they are between brackets, meaning
that they are optional. If you don’t use a VBA keyword, the Function will be
considered Private , meaning that it can be accessed only by the procedures
inside the code module where it belongs. If you use the keyword Public to
declare a Function procedure, it will be capable of being accessed from other
procedures in any other code module of your workbook application.

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

9

 ■ Attention The Friend keyword is used only on Class modules to create procedures that are public to
all Excel objects on the same workbook while it is private to the code. The Static keyword indicates that all
variables declared inside the Function procedure will keep their values between function calls.

 <FunctionName> : This is the name you want to associate with the Function
procedure. It must begin with a letter and have no spaces or reserved characters.
A good programming practice for Function names is to use a clear name that
indicates what it executes. It must be made up of concatenated names, where
each name must begin with a capital letter like Function FindFoodItem() .

 [Optional] [Arg1] : Both Function and Sub procedures must be followed by a
pair of parentheses, which may contain one or more declared arguments that the
function can receive. These arguments are the values upon which the function
will operate. VBA allows you to pass optional arguments if you precede them
with the Optional keyword (meaning that you are not obliged to pass them to the
procedure). Once one argument is declared as Optional , all others that follow it
must also be declared as Optional .

 [As <Type>]: Arguments for Function and Sub procedures, as the values
returned by a Function procedure, can be of a specific type. They can be an
integer or real number, a text string, a date, a logical value, or an object. If you
do not specify the type expected to be received by an argument or returned by a
 Function , the type will be considered as the Variant data type, which is a special
kind of VBA data that is polymorphic, meaning it can represent any data type.

 End Function : This must be the last function statement indicating to VBA where
the code procedure ends.

 To declare a Sub procedure, you use the following syntax. Note that it is almost identical to the Function
procedure declaration, except it doesn’t return a value (it doesn’t have the [As Type] part of the Function
declaration) and has an End Sub statement to indicate its finish.

 [Public, Private] Sub <SubName> ([Optional] [Arg1[[as Type],…)
 [Statements]
 End Sub

 Calculating Age in Years
 Let’s try to write a simple VBA procedure to calculate the age in years of any person. How we can do that?

 We need simple basic information: the person’s date of birth! Since your computer always has the
current date, we can use it to count the number of days between these two dates (current date minus date of
birth) and do some math to express the result in years.

 Before we try to create this simple procedure, you need to know a basic concept regarding how VBA
treats date values.

 To Windows—and all its applications—any date is just a consecutive counting of the number of days
since 01/01/1900. The first day of the 20 th century is considered as day 1, and any later date is a consecutive
day counting from it (earlier dates are negative values). I am writing these words on 02/17/2014, and this
date is considered by Windows as day 41,687, meaning that it has been 41,687 days since January, 1, 1900.

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

10

 ■ Attention You can easily get the number for any date by typing it in any Excel cell and changing the cell
format from Date to General number.

 By subtracting two different valid dates, you will receive the number of days between the two dates.
Dividing this result by 365 days per year, you will get the difference in years, right?

 ■ Attention For your information, a valid Date value is one that has no more 30 days in April, June, September,
and November; has no more than 29 days in February on lap years (28 days in normal years); has no more than
31 days in January, March, May, July, August, October, and December; and has a month value between 1 and 12.

 The next Function procedure code calculates any person’s age in years by receiving the person’s date of
birth as an argument to the procedure:

 Function AgeInYears(DateOfBirth)
 AgeInYears = (Date - DateOfBirth) / 365
 End Function

 ■ Attention Extract the AgeInYears.xlsm macro-enabled workbook from the Chapter01.zip file to test this
function procedure.

 To build this AgeInYears function, follow these steps:

 1. In the VBA interface of any Excel worksheet, choose the Insert ➤ Module menu
command to create a new standard code module.

 2. Make the VBA Properties window visible by executing the View ➤ Properties
Window menu command.

 3. In the Property window, type basAgeInYears for the Name property of this new
code module.

 4. Insert in the basAgeInYears code module a new Public Function procedure by
executing the Insert ➤ Procedure menu command. In the Add Procedure dialog
box, type AgeInYears as the procedure name and select Function on Type and
Public on Scope.

 5. Click OK to create the Function AgeInYears() procedure structure in the
 basAgeInYear module (Figure 1-7).

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

11

 6. Insert the DateOfBirth argument between the Function procedure parentheses
to tell VBA that this function must receive an argument to operate on. Your
function must become like this:

 Function AgeInYears(DateOfBirth)

 End Function

 7. Inside the procedure code (between the Function declaration and the End
Function instructions), press Tab to indent the code, type the function name
exactly as declared, and enter the = sign to tell VBA that the function value will be
attributed by the right side of the equation.

 Function AgeInYears(DateOfBirth)
 AgeInYears =
 End Function

 8. Calculate the number of days between the System date and the DateOfBirth
argument by subtracting from the VBA Date() function the DateOfBirth value
(evolve this subtraction between parentheses to assure that this subtraction
operation will be executed first, before any other math). Your function code will
look like this:

 Figure 1-7. To create the AgeInYears function procedure, first create a new code module and change its Name
property to basAgeInYears. Then use the Insert ➤ Procedure menu command to create a Public Function
procedure structure and name it as the AgeInYears function

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

12

 ■ Attention You may be wondering why you are naming the code module with the bas prefix. This is good
programming practice. “Bas” comes from “Basic” and as you will see later is the recommended prefix for all
normal code modules inserted on any VBA project.

 Function AgeInYears(DateOfBirth)
 AgeInYears = (Date - DateOfBirth)
 End Function

 ■ Attention VBA will automatically take any parenthesis pair you type before the Date() function.

 9. Now that you have calculated the days past between these two dates, divide this
result by 365 (assuming a constant 365 days per year value). Your function will
look like this:

 Function AgeInYears(DateOfBirth)
 AgeInYears = (Date - DateOfBirth) / 365
 End Function

 Test Procedure Codes Using VBA Immediate Window
 Since the first Basic programming language, every time you want to return the value of a Function procedure
or variable on the programming environment (or computer screen), you must use a question mark (?) as the
print character just before the function/variable name.

 Use the VBA Immediate window to print Function or Variable values or to execute any Sub or Function
procedure, following these two simple rules:

• To return Function procedures or Variable values, type ? and the Function procedure
name in the Immediate window, followed by an opening parenthesis and a closing
parenthesis (if it does not require arguments). If the function requires one or more
arguments, type them between the parentheses, separating arguments with a comma (,).

• To execute Sub of Function procedures, discarding a return value, do not type the
? character. Type just the Sub or Function procedure name, without the opening
and closing parentheses. If the Sub or Function procedure requires one or more
arguments, type them after the Sub of Function name, without parentheses,
separating the arguments with comma characters.

 Since the AgeInYears() code procedure is a Function procedure (which returns a value) and requires the
 DateOfBith as an argument to the function to calculate and return a value, you can test it this way in the VBA
Immediate window (note that I typed #4/25/1961# for the DateOfBirth argument, as shown in Figure 1-8):

 ?AgeInYears (#4-25-1961#)

 ■ Attention You have to put the date argument between hash marks (#) so Visual Basic can understand that
you are passing a valid date to the DateOfBirth argument of the Function procedure. If you do not do this,
VBA will interpret that you want to first calculate the result of the expression 4-25-1961 = -1982 and will pass
it to the Function argument. Since this is a negative value, when you subtract it from the system date, VBA will
effectively add 1,982 days to your computer’s current date, miscalculating the person’s age.

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

13

 The number you see behind the ?AgeInYears(#4-25-1961#) procedure call in the VBA Immediate
window of Figure 1-8 is the age in years returned by the AgeInYears() function procedure for my age at
February 17, 2014—around 52.85 years!

 ■ Attention When you type the opening parenthesis after the Function procedure name in the Immediate
window, VBA immediately shows the DateOfBirth argument to tell you that this function expects to receive
some information (any optional argument will be shown between brackets, as shown in Figure 1-9).

 Figure 1-8. Use the VBA Immediate window to execute any Function or Sub procedure code. Type ? followed
by the Function procedure or Variable name followed by parentheses and press Enter. VBA will execute the
procedure and return a value

 Figure 1-9. Whenever you type the opening parenthesis after any procedure name in the VBA environment,
all arguments required by the code procedure will be shown to you

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

14

 ■ Attention Although a Function procedure always returns a value, VBA allows you to discard it by calling it
as a Sub procedure (which never returns value) by simply calling its name inside other procedure code without
attributing its value to a test condition or variable declaration. Alternatively, you can use the VBA Call keyword
to explicitly indicate that a procedure code is being called, discarding its return value (if any).

 In this book I will use the Call keyword to call Sub procedures in order to follow good programming practices.

 Using Your Function Procedure Inside Excel
 Now that you have created the Function AgeInYears() procedure, let’s try to see how it performs in Excel
by following these steps:

 1. Select any worksheet in the same workbook that you wrote the AgeInYears()
code procedure.

 2. In cell A1 , type Date of Birth ; in cell B1 , type Age in Years .

 3. In cell A2 , type any valid date (such as your date of birth). If you want, continue to
type more dates of birth below cell A2 .

 4. In cell B2 , type this formula:

 =AgeInYears(A2)

 5. Press Enter to calculate in cell B2 the age in years for the date of birth typed in
cell A2 . If you typed any other dates of birth below cell A2 , drag the cell B2 selector
down to propagate its formula.

 Figure 1-10 shows Sheet1 of the AgeInYears.xlsm workbook that you can extract from the Chapter01.
zip file with some calculated ages in years using the AgeInYears() function procedure.

 Figure 1-10. You can test any function procedure code that returns a value using Excel worksheet cells. Sheet1
from the AgeInYears.xlsm workbook calculates many ages in years using the Function AgeInYear() procedure
created on module basAgeInYear of this workbook

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

15

 ■ Attention I really don’t know why Excel capitalized the E in the =AgeInYEars(A2) formula…

 Executing Code Procedures Step-by- Step
 VBA executes code procedures at lightning speeds using your computer processor. To force VBA to execute
any procedure code one step at a time, use VBA breakpoints to stop the code execution and follow it step-by-
step. Let’s do it on the AgeInYears() function procedure to see how it performs. Just follow these steps:

 1. Activate VBA by pressing the Alt+F11 function key (or click the VBA button of the
Developer tab).

 2. Insert a breakpoint on any procedure code by clicking the gray bar at the left of
the instruction where you want the code to stop.

 3. VBA will put a maroon dot on the left of the code instruction.

 Figure 1-11 shows that I clicked at the left of the AgeInYears() function procedure declaration
instruction to insert a breakpoint when the function starts.

 You can insert as many breakpoints as you want on any code procedure. To remove a breakpoint, just
click it again.

 ■ Attention To remove all breakpoints on every code procedure of your entire VBA project, execute the
Debug ➤ Clear All Breakpoints menu command (or press Ctrl+Shift+F9).

 By putting a breakpoint on the Function AgeInYears() procedure declaration, every time Excel tries
to execute it, VBA will immediately stop the code execution at this point.

 Figure 1-11. Use the gray bar at the left of the procedure code instruction where you want to insert a
breakpoint to force VBA to stop the code

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

16

 You can test the breakpoint you put on the AgeInYears() function procedure in Excel using one of
these two approaches:

• By executing again the Function procedure code from the Excel Immediate
window (you can just put the blinking VBA cursor on this procedure call inside the
Immediate window and press Enter)

• By editing any Excel formula cell that uses the AgeInYears() function and pressing
Enter

 Whenever you try one of these two methods, the AgeInYears() function will be executed again, and
VBA will stop the execution on the breakpoint inserted on the procedure declaration, putting the entire row
instruction in yellow. It is said that VBA has entered Break mode (Figure 1-12).

 Whenever VBA enters Break mode , you can use the code module or use the Immediate window to
inspect any variable value.

 I called the AgeInYear() function procedure by editing the cell B2 formula of the Sheet1 worksheet
and pressing Enter, meaning that according to the formula inserted on this cell, Excel has passed to the
 DateOfBirth argument the value typed in cell A2 of the Sheet1 worksheet.

 While the procedure is executing in Break mode , point the mouse to the DateOfBirth argument and
VBA will show you the value that the argument had received (Figure 1-13).

 Figure 1-12. When you try to execute any VBA procedure code that has a breakpoint , VBA will stop the code
execution on the breakpoint and format the entire instruction row in yellow

 Figure 1-13. When VBA enters Break mode , point the mouse cursor to any procedure argument (or value used
inside the procedure) to see how VBA is evaluating it. The DateOfBirth argument had received the 4/25/2014
date value

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

17

 When VBA has entered Break mode, you can continue executing the procedure code in two different ways:

• Press F8 to execute just the instruction in yellow. Press F8 continuously to execute
one instruction at a time until the code ends.

• Press F5 to exit VBA Break mode and execute all the procedure code from the
currently detached yellow instruction to the end of the code.

 Try to press F8 to initiate the AgeInYear() function procedure and put the VBA focus on its first (and
only) instruction. You can continue to inspect any procedure value by just pointing the mouse to it or by
selecting part of the code and watching its evaluation. Figure 1-14 shows what happens when you point the
mouse to the Date instruction, when you drag the mouse over the (Date - DateOfBirth) expression and
point the mouse to this selection, and when you drag the mouse to select the right-side equation expression
and point the mouse to it.

 Figure 1-14. When VBA enters Break mode, you can point to any function or variable or select any complete
expression by dragging and pointing the mouse over it to see how VBA will evaluate it

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

18

 Press F8 one more time to attribute the right side of the equation to the value of the AgeInYear function
procedure. VBA will select the End Function instruction, ending the code execution when you press F8 one
more time (Figure 1-15).

 ■ Attention Don’t forget to remove the breakpoints in your code after you have inspected your VBA code. Use
the Debug ➤ Remove All Breakpoints VBA menu command to do it quickly!

 Variable Declaration
 A variable is a programming expression, meaning a place in the computer memory where a value is stored.
Since this value can change, its content can vary.

 Every time you write a Function or Sub procedure that receives an argument, you are indeed creating a
variable with the name of the argument (such as the DateOfBirth argument of the AgeInYears() function
procedure).

 To take a better control of the values used inside the code procedure, you can use the recommended
strategy of making partial calculations, storing them in variables, and then using the variable results in
further calculations, effectively making the code clear and easy to follow in VBA Break mode.

 Besides the variables automatically created on the procedure code declaration, you can use the VBA Dim
declaration statement syntax to create new variables, as shown here:

 [Dim | Private | Public] <VariableName> <as Type>

 In this code:

 Dim : Can be used inside or outside code procedures to create private variables to
the procedure or code module.

 Private : Can be used just outside code procedures to create private code
module variables (in the Declaration section of any code module).

 Public : Can be used just outside code procedures to create Public code module
variables (in the Declaration section of any code module).

 Figure 1-15. You can inspect the value that any Function procedure will return by executing the code
attribution instruction in Break mode and pointing the mouse to the function name. This is one of the best
ways to know whether a function code procedure is working as expected

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

19

 <VariableName>: Is the name associated to the variable being created. It must
contain only alphabetic characters, decimal digits, and underscores (_); it must
begin with an alphabetic character or an underscore; and it must contain at least
one alphabetic character or decimal digit if it begins with an underscore.

 As Type : Specifies the variable data type.

 Inside any code procedure you can use the Dim statement only to declare a variable name (Dim comes
from “ Dimension”). The next procedure code uses the Dim statement to create the procedure-level variable
named Years . It then receives the number of years that have passed between the system date (returned by
the VBA Date() function) and the DateOfBirth argument. The Years variable value is then attributed as
the AgeInYears1() function procedure value.

 Function AgeInYears1 (DateOfBirth)
 Dim Years
 Years = (Date - DateOfBirth) / 365
 AgeInYears1 = Years
 End Function

 Implicit vs. Explicit Variable Declaration
 By default VBA has the bad habit of allowing you to use a variable without declaring it. This is called an
 implicit declaration. When this happens, you do not need to declare the variable you want to use. Just write
its name on any operation inside a procedure code and VBA will automatically create it for you.

 Carefully look at the next code for the Function AgeInYears2() procedure.

 ■ Attention Both Function AgeInYears1() and AgeInYear2() procedures can be found inside the
 AgeInYears_Implicit Declaration.xlsm macro-enabled workbook that you can extract from the
 Chaper01.Zip file.

 Function AgeInYears2 (DateOfBirth)
 Dim DaysCount
 DaysCount =Date - DateOfBirth
 AgeInYears2 = DayCount / 365
 End Function

 Looking at the AgeInYears2() function, you can see that it uses a different strategy to calculate the age
in years from any date of birth. It first uses the VBA Dim statement to declare the DaysCount variable on the
first procedure instruction and then uses this variable to store the number of days between the system date
and the DateOfBirth argument.

 Dim DaysCount
 DaysCount =Date - DateOfBirth

 In the last procedure row, the DaysCount variable value is then divided by 365 to calculate the age in
years, and this result is defined as the Function AgeInYears2() procedure return value.

 AgeInYears2 = DayCount / 365

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

20

 Did you notice something wrong with the last code row of this function procedure? Look again…
 Yes, it has an error: the DaysCount variable was misspelled as DayCount (without an s after Day). Since

VBA is operating in its implicit variable declaration mode, it automatically creates the DayCount variable at
this moment, which has no value, and the AgeInYears() function returns… zero!

 Figure 1-16 shows Sheet1 worksheet and the basAgeInYears code module from the AgeInYears_
Implicit Declaration.xlsm macro-enabled workbook. Sheet1 uses the functions AgeInYears1() and
 AgeInYears2() to calculate the age in years in columns B (Age in Years 1) and C (Age in Years 2) for each
date of birth in column A . Note that the Age in Years 2 column shows zero for the calculated ages!

 The lesson is quite simple: besides declaring variable names, you must always tell VBA to avoid using
implicit declaration mode.

 Using Option Explicit
 You can force VBA to require the explicit declaration of all variables used inside a code module by typing
 Option Explicit as the first code module instruction. Alternatively, you can ask VBA to always insert this
instruction on every new code module by following these steps:

 1. In the VBA interface, execute the menu command Tools ➤ Options.

 2. Select the Require Variable Declaration option.

 3. Click OK to update the changes.

 From now on, every time you open or create a new module, it will insert on its very first row the
instruction Option Explicit , meaning that all variables must be explicitly declared (Figure 1-17).

 Figure 1-16. The Function AgeInYears2() procedure of the AgeInYears_Implicit Declaration.xlsm macro-
enabled workbook has incorrectly misspelled the DaysCount variable on the last procedure row, leading to a
“bug” in the procedure result

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

21

 ■ Attention All code modules that had already been opened inside VBA before you checked the Require
Variable Declaration option will not be automatically updated with the Option Explicit statement. You must
manually insert it as the first module instruction, before any variable or procedure declaration.

 Try to insert the Option Explicit statement on the first row of basAgeInYears of the AgeInYears_
Implicit Declaration.xlsm macro-enabled workbook to force VBA to catch the variable misspelling error of
the AgeInYears2() function procedure.

 Once you have typed the Option Explicit statement, you can make VBA search for any misspelled
variable name by using the VBA Debug ➤ Compile VBA Project menu command or you can try to edit any
formula cell of column C (Age In Years 2) of the Sheet1 worksheet. VBA will immediately find and detach the
misspelled DayCount variable, stopping the code execution until you fix it (Figure 1-18)!

 Figure 1-17. Select the Require Variable Declaration check box in the VBA Option dialog box to make new
code modules automatically receive the Option Explicit declaration when it begins. All code modules that you
had open before this action must manually receive on its first line of code the Option Explicit declaration

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

22

 Variable Types
 When you declare a variable name as an argument to any procedure or inside the procedure code using the
VBA Dim statement, you are reserving a memory place to the value it will hold.

 VBA has a default data type for variables called the Variant type; this is a special type of variable that
can hold any kind of data such as numbers, text, dates, arrays, and objects. Any time you declare a variable
and do not specify its type (or declare a Function procedure and do not declare the data type it must return),
you are telling VBA that it must create a Variant type variable (or return a Variant value).

 The Variant type is great! But since it can hold any kind of data, it reserves additional memory, meaning
that for long operations, your processor will do more effort to manipulate its data. Variables with the Variant
data type are the only ones that can represent some special values like Empty , Error , Nothing , and Null .

 Good programming practices recommend that you must declare the variables with the exact type they
will hold (or even better, with the smaller possible data type, so it can use the minimum amount of memory
necessary to store it content).

 Table 1-1 lists the VBA data types, the range of values they can hold, and the number of bytes each one
takes in computer memory.

 Figure 1-18. Use the VBA Require Variable Declaration option and the Option Explicit statement on the first
line of every code module to make VBA search and find any misspelled variable name inserted on your code

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

23

 Table 1-2 classifies all numeric VBA data types by its footprint on computer memory or by its size.

 Table 1-1. VBA Variable Data Types (in Alphabetical Order)

 Data Type Range of Values Memory Usage

 Boolean True or False where 0 = False , -1 = True . 1 byte

 Byte 0 through 255 (unsigned). 1 byte

 Currency -922,337,203,685,477.5808 to
922,337,203,685,477.5807 (4 decimals precision).

 2 bytes

 Date 0:00:00 (midnight) on January 1, 0001, through
11:59:59 PM on December 31, 9999.

 8 bytes

 Double (double-precision
floating-point)

 -1.79769313486231570E+308 through
-4.94065645841246544E-324 † for negative
values.
 4.94065645841246544E-324 through
1.79769313486231570E+308
 † for positive values.

 8 bytes

 Integer -32,768 through 32,767 (signed). 1 byte

 Long (long integer) - 2,147,483,648 through 2,147,483,647 (signed). 2 bytes

 Object Any type can be stored in a variable of type
 Object .

 4 bytes on 32-bit CPU
 8 bytes on 64-bit CPU

 Single (single-precision
floating-point)

 -3.4028235E+38 through -1.401298E-45 † for
negative values.
 1.401298E-45 through 3.4028235E+38 † for
positive values.

 4 bytes

 String (variable-length) 0 to approximately 2 billion Unicode characters. Varies

 User-Defined (structure) Each member of the structure has a range
determined by its data type and independent of
the ranges of the other members.

 Varies

 Variant 0 through 65,535 (unsigned). Varies

 † In scientific notation, E refers to a power of 10. So, 9.23E+2 signifies 9.23 x 10 2 or 923, and 9.23E-2 signifies
9,23/10 2 or 0.0923.

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

24

 As you can see from Table 1-2 , the smallest possible numeric integer data type is Boolean (which can
hold just 0 or -1), followed by Byte (0 to 256), Integer (maximum integer value = 32,767), and Long , which is
the greatest integer data type (maximum value = 2,147,483,647).

 On the real side of the numerical data types, the one with less precision is Currency , using just four
digits for its decimal part (using all other digits for an enormous integer part), followed by Date (yes, the Date
type is a real number that uses a precision with up to 15 decimal digits), Single , and Double . This last one is
the greatest real number that you can manipulate with VBA.

 Let’s look now to the new versions of the Function AgeInYears1() and Function AgeInYears2()
procedures from the basAgeInYears code module of the AgeInYears_Explicit Declaration.xlsm macro-
enabled workbook (also inside the Chapter01.zip file), which now has all variable names declared with its
adequate data types.

 Function AgeInYears1 (DateOfBirth as Date) as Single
 Dim Years as Single
 Years = (Date - DateOfBirth) / 365
 AgeInYears1 = Years
 End Function

 Function AgeInYears2 (DateOfBirth as Date) as Single
 Dim DaysCount as Long
 DaysCount =Date - DateOfBirth
 AgeInYears2 = DayCount / 365
 End Function

 Table 1-2. VBA Numeric Data Types Ordered by Its Size

 Data Type Number Type Range of Values

 Boolean Integer -1 = True , 0 = False

 Byte Integer 0 to 255

 Integer Integer -32,768 to 32,767

 Long integer - 2,147,483,648 through 2,147,483,647

 Currency Real Ideal for monetary calculations using up to 4 decimals precision;
 -922,337,203,685,477.5808 to 922,337,203,685,477.5807

 Date REAL Date/time calculations, where the Integer part holds the number
of days past from 1/1/1900 and the Decimal part, with up to 15 digits
precision, holds the hour regarding the number of milliseconds past
from midnight

 Single Real -3.4028235E+38 through -1.401298E-45 for negative values;
 1.401298E-45 through 3.4028235E+38 for positive values

 Double Real -1.79769313486231570E+308 through -4.94065645841246544E-324 for
negative values;
 4.94065645841246544E-324 through 1.79769313486231570E+308 for
positive values

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

25

 Note the following:

• Both functions declare just one argument, DateOfBirth as Date . This guarantees
that just valid dates can be received by these functions. Any Excel formula cell that
uses an invalid date will receive error code #VALUE! . Any function call from the VBA
Immediate window will receive a VBA message error (“Compile Error: Expected
expression,” as shown in Figure 1-19).

• Both functions declare a return value as Single , meaning that they return a single
precision floating-point number (the integer part is the number of years; the decimal
part is proportional to 12 months).

• AgeInYears1() declares Years as Single , so the Years variable can store floating-
point values (real numbers with an integer and a decimal part).

• AgeInYears2() declares DaysCount as Long , so DaysCount can store a number that
is long enough to represent any person’s age in days.

 I will now discuss each of these two Function procedures in consideration of each data type, so you can
understand the reason to use them on each declared variable.

 Begin paying attention that both functions return a Single data type as specified on its declaration
instruction; this is the smallest possible real number that uses up to six decimal floating-point precision.

 Function AgeInYears1() uses as a strategy the calculation of the years between two consecutive
dates. Since this value is a real number with an integer part representing the years portion of the age and the
decimal part representing the percentage of 12 months of age, it must be declared with any data type that is
capable of representing a real number.

 Looking at Table 1-1 , you will notice that the Single data type takes 4 bytes of computer memory and is
the smaller Real number you can use with a good decimal floating-point precision. That’s why AgeInYears1
() declares the Years variable with the Single data type: it is the smallest possible real number that is also
in accordance with the AgeInYears1() return data type.

 Figure 1-19. When any procedure argument has a specific data type, VBA will raise different errors in Excel.
If you try to use an invalid date in the VBA Immediate window, you will receive a Compile error, but when you
use the invalid date from an Excel formula, Excel will receive a #VALUE! error code

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

26

 ■ Attention You can use the Currency data type to declare the Years variable using just 2 bytes of computer
memory. But as a rule of thumb, programmers use the Currency data type just for monetary values.

 Whenever you need a Real value, try to use the Single data type. Reserve the Double data type to such
calculations that need greater precision or can result in very big numbers.

 Function AgeInYears2() , besides being declared as using the Single data type as its return value,
uses another strategy: it first calculates the number of days between two consecutive days. Since this number
is an integer value, the DaysCount variable was declared with the Long data type, which is one that can hold a
large number of ages using a days counting.

 On the last procedure instruction, the DaysCount as Long integer value is divided by 365, leading to a
 Real value that is converted to Single precision—the data type used to declare the procedure!

 ■ Attention If you are wondering why I do not use the Integer data type, it is because its maximum value
can’t be greater than 32,767 (or 32,767 days of age). Dividing this number by 365 days per year, you can
achieve just about 89.8 years of age. Any people older than these ages will generate a days count greater than
this value, leading to a VBA error called an overflow error.

 Overflow is an error that happens when you try to attribute to a numeric variable a value that is greater than it
can contain.

 Array Declares
 You can declare arrays in VBA using the Dim statement and adding to the variable name a pair of parentheses
that may include the array dimensions. The next statement declares the Ages() as Variant array that can
contain up to ten elements:

 Dim Ages(0 to 9) as Variant

 By default, VBA arrays are zero-based, meaning that the first array item has index = 0. Ages() can use
indexes Ages(0) to Ages(9) , storing up to ten different Variant values.

 The next statement declares a bidimensional array that can receives just the String data type:

 Dim Peoples(1,9) as String

 VBA does not allow a fixed-size array to change its dimensions, but you can declare a dynamic array
using just parentheses to indicate that it represents an array.

 Dim varAges() as String

 Use the VBA Redim() statement to change the first array dimension at run time (you cannot change
the array data type):

 Redim varAges(200)

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

27

 ■ Attention Since a Variant variable can receive anything, it can also be considered as an array (or be
associated with another array variable) and be redimensioned using the Redim statement.

 Alternatively, you can use a VBA Array() function to create an array based on some values.

 Dim MyValues as Variant
 MyValues = Array(10, 20, 30)

 ■ Attention I will use arrays in many examples of this book. For now this basic knowledge is enough.

 Variable Scope and Lifetime
 Besides the data type, each variable has a scope —or a lifetime in your code procedure.

 Variables declared inside any code procedure with a Dim statement have just the procedure scope,
being created with it declaration instruction and being destroyed when the procedure ends. Both the Years
and DaysCount variables of the functions AgeInYears1() and AgeInYears2() are created inside its code
procedures and destroyed as the procedure ends.

 ■ Attention To extend the lifetime of any variable to the time your application is active, use the Static
statement to declare it inside any code procedure (or declare a Static procedure).

 Using the Static Statement to Hold Any Variable Value
 The next Function AgeInYears3() procedure declares the Static Years as Single variable so it can hold
its last value between procedure calls.

 ■ Attention The function AgeInYears3() procedure can also be found in the basAgeInYears module of the
 AgeInYears_Explicit Declaration.xlsm macro-enabled workbook.

 Note that the Function AgeInYears3() procedure has a totally different approach. By using the
 Optional keyword to declare the DateOfBirth argument as the Variant data type (instead of the Date data
type), it can now be avoided—the user of this function is not obliged to pass any value to the function.

 Function AgeInYears3 (Optional DateOfBirth as Variant) as Single
 Static Years as Single
 If Not IsEmpty(DateOfBirth) then
 Years = (Date - DateOfBirth) / 365
 End If
 AgeInYears3 = Years
 End Function

 Note that after the declaration of the Static Years variable, the procedure code uses the IF statement
to verify with the VBA IsEmpty() function if the DateOfBirth argument has any value (or is empty).

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

28

 Static Years as Single
 If Not IsEmpty (DateOfBirth) then

 ■ Attention Just the Variant data type can receive the Empty value (in other words, can return True or
 False to the IsEmpty() VBA function).

 The IsEmpty (DateOfBirth) function will return True whenever the optional DateOfBirth argument is
missing and False otherwise. The IF statement then makes a logical test using Not IsEmpty (DateOfBirth)
to verify that the argument is missing. DateOfBirth i s not missing ; it executes the code right after the
IF statement, and the Years variable is recalculated using the same method discussed for the Function
AgeInYears1() procedure.

 On the last procedure row, the Years variable is returned as the Function result, being calculated or not
on the last procedure call!

 AgeInYears3 = Years
 End Function

 The Function AgeInYears3() procedure usage can be demonstrated using the Sheet2 worksheet of
the AgeInYears_Explicit Declaration.xlsm macro-enabled workbook (Figure 1-20). Note that column B ,
Age in Years 3, calculates the age in years using this formula in cell B2 .

 =AgeInYears3(A2)

 You must edit the cell B2 formula and press Enter so the Static Years variable of AgeInYears3() has a
value defined. Then drag cell B2 down to cell B3 . Since A3 is empty, the AgeInYears3() function procedure
uses the Static Years variable value to return the last calculated value for cell B3 .

 ■ Attention If you drag cell B3 selector down, every other row will receive the last calculated age in years
because of the static nature of the Years variable.

 Microsoft Excel does not execute your Function procedures when it opens the workbook where it resides
unless you use the Application .Volatile method to force its recalculation. You must edit any formula cell
that uses your Function procedure so the Static value of any variable is determined again.

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

29

 ■ Attention You can use the Static keyword on any procedure declaration to indicate to VBA that every
procedure variable has a static (or persistent) value between function calls. The next example of the
 AgeInYears4() function procedure follows this strategy, indicating that both the DaysCount and Years
variables holds its values between function calls:

 You can test the Function AgeInYears4() procedure on the Sheet3 worksheet of the AgeInYears_Explicit
Declaration.xlsm macro-enabled workbook.

 Using Code Module Variables
 You already know that a Static variable holds its values between procedure calls; in other words, its values
persist while your workbook is open.

 Figure 1-20. This is Sheet2 of the AgeInYears_Explicit Declaration.xlsm macro-enabled workbook. It uses the
Function AgeInYears3() procedure that has declared as Optional the DateOfBirth argument, with the Variant
data type, and as Static the Years variable, meaning that it does not lose its value between function calls

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

30

 But there is a problem with Static variables: you can use just one inside the procedure where it was
declared. What about using the variable value with more than one procedure code? This is where the code
module variables enter the action!

 Code module variables are the ones declared at the top of any code module, outside any procedure
code. They can be of these two types:

• Private to the code module : All variables declared with the Dim or Private statement
on the Declarations section of any code module. The value can be used by all
procedure codes of the same module.

• Public to all code modules : If it is declared with the Public statement and its value
is available for every code module of your VBA project, you can access it from
anywhere!

 As a programmer you will use code mode variables when you want to make intermediate calculations in
one procedure and store them outside the procedure code so they can be used with other procedures of your
application.

 Using Private Code Module Variables

 Suppose for a moment that the DaysCount and Years values used to calculate the age in years were derived
from complex calculations that can made only once for a given data of birth (this is not the case for such
simple values). In this case, you must declare both the DaysCount and Years variables as private module
variables so their calculated value can be easily accessed from other procedures of the same module.

 The next example of the AgeInYears5() function procedure from the module basAgeInYears of the
 AgeInYears_Explicit Declaration_PrivateModuleVariables.xlsm Excel macro-enabled workbook (also
inside Chapter01.zip) shows this concept for you.

 Option Explicit

 Dim DaysCount As Integer
 Dim Years As Single

 Public Function AgeInYears5(DateOfBirth As Variant) As Single
 DaysCount = Date - DateOfBirth
 Years = DaysCount / 365
 AgeInYears5 = Years
 End Function

 Do you see the difference? Now since both the DaysCount and Years variables have been declared in
the Declaration section of the basAgeInYears module, their values will remain on your computer memory
while the workbook is open and can be accessed from any other code procedure inserted in basAgeInYears .

 This is the case for the AgeInWeeks() procedure of the basAgeInYears module, which uses the
 DaysCount variable value to return the number of weeks lived so far for anyone whose date of birth was
already processed by the AgeInYears5() procedure.

 Public Function AgeInWeeks(Optional DateOfBirth As Variant) As Single
 If Not IsMissing(DateOfBirth) Then
 DaysCount = Date - DateOfBirth
 End If
 AgeInWeeks = DaysCount / 7
 End Function

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

31

 ■ Attention Both the DaysCount and Years module variables can be declared using the Private VBA
statement (instead of Dim) as an indication that they can be accessed from procedures created inside the
 basAgeInYears module.

 You may wondering why VBA has this ambiguous way to declare a private module variable. The answer is
because up to Visual Basic 4, VBA uses just Dim to declare local variables and the retired statement Global
to declare public variables. When Visual Basic 4 arrived, Microsoft discarded the Global statement and used
just Private and Public as ways to declare module variables. Dim still works, though, because it has been
traditionally used by all basic languages.

 Note that the Function AgeInWeeks() procedure declares an Optional DateOfBirth as Variant
argument so you can calculate the age in weeks without needing to first calculate the age in years.

 ■ Attention I want to call your attention to the fact that this is just a didactic example of a bad use of code
module variables. If you try to use the Function AgeInWeeks() procedure on any worksheet to calculate
the age in weeks for more than one date of birth without passing it the DateOfBirth argument, it eventually
may fail to calculate, returning the last calculated AgeInYears() or AgeInWeek() values. Sheet1 of the
 AgeInYears_Explicit Declaration_PrivateModuleVariables.xlsm Excel macro-enabled workbook shows
how this can happen (Figure 1-21).

 Figure 1-21. This is Sheet1 from AgeInYears_Explicit Declaration_PrivateModuleVariables.xlsm Excel macro-
enabled workbook using the Function AgeInWeeks() procedure from basAgeInYears. Since both DaysCount
and Years variables were declared as code module variables, their values remain while the workbook is open.
Note that column B uses the Function AgeInYears5() procedure to calculate the age in years for the associated
date of birth in column A, returning constant error #VALUE! on cells B4:B8 because these rows do not receive
the DateOfBirth argument. But the Function AgeInWeeks() procedure continues to return the last calculated
because of the last value stored on the DaysCount code module variable

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

32

 Create a Flow Chart for the Algorithm of Complex Procedures
 Whenever you need to create more complex procedures, a good idea is to create a flow chart to represent the
instructions that your code must follow before trying to implement it on VBA.

 Let’s suppose you want to express the age as a literal expression in years and months based on
the DaysCount and Years code module variables from basAgeInYears of the AgeInYears_Explicit
Declaration_PrivateModuleVariables.xlsm Excel macro-enabled workbook. The idea is that based on any
date of birth, you express the age for a person with 52 years and 10 months this way: 52y, 10m .

 How can you do that?
 Here’s an example using a Years = 52.88492966 value:

 1. Take the integer part of the Years variable (52) and concatenate it the y suffix for
the literal age expression.

 52y;

 2. Take the decimal part of the Years variable (0.88492966) and multiply it by 12 to
find the months part of the age.

 52.88492966 - 52 = 0.88492966 x 12 = 10.61916

 3. Verify whether the integer part of the month is greater than zero. If it is,
concatenate a comma to the literal age in years (52y), the integer part of the
months, and the m suffix.

 52y, 10m

 4. Return this result as the literal expression for the age (return value of the
 Function procedure).

 Figure 1-22 shows the flow chart that represents all the operations that must be followed by any
procedure code to return the literal expression of the age in years and months. You read this flow chart by
following the arrows, the same way the procedure code will do.

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

33

 Note on the flow chart that the diamond represents the logical test needed to verify whether the months
part is greater than zero. If it is, the months literal expression is calculated and concatenated to the years part
of the age. If it is not, the literal age part is returned.

 Figure 1-22. This is the flow chart for all steps needed to calculate the literal expression of the age, adding the
suffix y to the years part and the suffix m to the month part (if any)

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

34

 The next Function AgeInYearMonth() procedure does the same operations to return the literal expression
of the age based on the Years Module variable already calculated using the AgeInYears5() function procedure:

 If you follow the AgeInYearMonth() function procedure, you will see all the steps pictured on the flow
chart of Figure 1-22 . But it has some programming techniques that deserve consideration, mentioned here:

• The AgeInYearMonth() function procedure returns a String value and declares
an optional argument DateOfBirth as Variant , which will be tested inside the
procedure using the VBA Not IsMissing() expression to verify whether it was
received.

• If IsMissing(DateOfBirth) is false, Not IsMissing(DateOfBirth) is true
(DateOfBirth is not missing), and it recalculates the DaysCount and Years code
module variables.

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

35

• If this is true, it will use the last calculated value already stored on these code module
variables:

• Also note that AgeInYearMonth() declares the variables as they appear in the code.
The first variable used is YearsInteger as Integer , followed by Age as String and
 Months as Single .

• The procedure then uses the VBA Int() function to take the integer part of the
 Years variable without rounding it and attributes it to the YearsInteger variable.

 YearsInteger = Int(Years)

 ■ Attention The VBA Int() function never rounds results when it takes off the integer part of any real number.
To round the result, just attribute any real number to an Integer variable or use the VBA CInt() function.

 CInt() means “convert to integer.”

• Now that YearsInteger holds the integer part (not rounded) of the Years variable,
the procedure concatenate the y suffix to the Age as String variable value to
create the literal age in years expression. Note that VBA uses the & character as the
concatenation operator.

 Age = YearsInteger & "y"

• The Age string variable now holds the literal age in the years expression, and the
procedure will calculate the number of months of the age. It does this by subtracting
from Years its integer part (the YearsInteger variable value) and attributing the result to
the Months variable, declared as Single , which is a type that can hold decimal values.

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

36

• Now that the Months variable holds the decimal value of the age, it calculates the age
in months by multiplying Months * 12 and uses the VBA CInt() function to round
the result to the next greatest integer.

 Months = CInt(Months * 12)

• The Months variable now has the months expression of the age, and the code uses
another IF() structure to verify that it is greater than zero. If it is, it concatenates a
comma, the Months variable, and the m suffix to the Age variable (note that it concatenates
to the Age variable the value that Age has stored from previous operations).

 If Months > 0 Then
 Age = Age & ", " & Months & "m"
 End If

• The procedure then uses the Age string variable as the function return result.

 AgeInYearMonth = Age
 End Function

 Comment Your Code!
 All the explanations that I’m giving for the inner workings of the Function AgeInYearMonth() procedure
can be done inside the procedure code by using VBA comments.

 To insert a comment on any procedure row, just begin the row (or the comment) with a single quote
character. Everything you type before the single quote on the same row will be considered as a comment and
will be ignored by VBA, which automatically displays comments in green.

 Inside basAgeInYears from the AgeInYears_Explicit Declaration_PrivateModuleVariables.xlsm
Excel macro-enabled workbook you will find the Function AgeInYearMonth() procedure, which has many
comments to explain how it works (Figure 1-23).

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

37

 When you comment your code, you can document the steps you use to achieve a solution, which will
make it easier for you or any others in the future to follow the logic behind the code. Yes, the procedure will
become bigger, but the steps will become clearer!

 ■ Attention By commenting your procedure code, you end up validating it. Think about comments as the
procedure quality control system.

 You can see the Function AgeInYearMonth() procedure in action by selecting the Sheet2 tab
worksheet from the AgeInYears_Explicit Declaration_PrivateModuleVariables.xlsm Excel macro-
enabled workbook. Note that since its DateOfBirth argument is optional, whenever it is missing on the
 Function procedure call, it will use the last calculated value of the Years variable, which may return wrong
results to the worksheet (Figure 1-24).

 Figure 1-23. Use the single quote character to insert comments on your code procedures so you can easily
understand and maintain it in the future

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

38

 Using Public Code Module Variables
 Use Public module variables when you want to store values that can be accessed by any procedure
of your VBA project. The basAgeInYear module from the AgeInYears_Explicit Declaration_
PublicModuleVariables.xlsm Excel macro-enabled workbook uses this strategy to declare the DaysCount ,
 Years , Weeks , and Age as Public variables (Figure 1-25).

 When you declare a Public variable on a standard module, you can verify or change its value
from the VBA Immediate window. Take a look at the Sheet1 worksheet from the AgeInYears_Explicit
Declaration_PublicModuleVariables.xlsm Excel macro-enabled workbook, which uses the AgeInYears6() ,
 AgeInWeeks2() , and Function AgeInYearMonth2() procedures from basAgeInYears . It has just two rows
of formulas, with two different dates of birth. Since it uses the Public module variables Age , DaysCount ,
 Weeks , and Years to store its values, they will hold the last calculation regarding the date of birth of cell A3
(4/25/1961, as shown in Figure 1-26).

 Figure 1-24. This is Sheet2 worksheet from the AgeInYears_Explicit Declaration_PrivateModuleVariables.
xlsm Excel macro-enabled workbook that uses the Function AgeInYearMonth() procedure to return a literal
expression of the age in years and months (if any). Note that whenever there is no DateOfBirth argument, the
procedure continues to return the last calculated value (stored in the Years code module variable)

 Figure 1-25. When you declare Public variables in any module, their value can be accessed and changed from
anywhere in your VBA project

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

39

 You can verify the values of any Public variable declared on a standard module by typing ? followed by
the variable name in the VBA Immediate window. Use the comma character to separate different variable
names and print them on the same row of the VBA Immediate window (Figure 1-27).

 ■ Attention Note that Excel does not execute any Function procedure when it opens your workbook, unless
it has the Application .Volatile instruction. In such cases you must edit any formula cell that uses it so all
public variables will be updated by VBA.

 Since you can inspect any public variable value, you can also change its value using the VBA Immediate
window. Just type the variable name followed by a = character, then type its new value, and press Enter to
update it (Figure 1-28).

 Figure 1-26. Sheet1 from the AgeInYears_Explicit Declaration_PublicModuleVariables.xlsm Excel macro-
enabled workbook uses AgeInYears6(), AgeInWeeks2(), and Function AgeInYearMonth2() procedures from
basAgeInYears, which base their calculations on Public module variables, whose values will hold the last
calculated Excel formula

 Figure 1-27. Use the VBA Immediate window to inspect the value of any Public variable while your workbook
is open. You can inspect more than one variable on a single row, separating them with comma characters

 Figure 1-28. You can also use the VBA Immediate window to change the value of any public variable declared
on a standard module (or to change the value of any variable of a running procedure using a VBA breakpoint).
Use the = character to attribute it with the desired value and check the value to confirm the change

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

40

 ■ Attention As you will see later in this chapter, you can protect the value of the variables whose value must
be accessible by any code module of your VBA project by implementing a Property procedure associated with
a Private code module variable.

 Public Procedures and Variables Constitute the Module Interface
 All Public variables (and Public procedures) can be accessed in the VBA Immediate window by using this
syntax: code module name, a dot, and the public variable name:

 ?<CodeModuleName>.<VariableName>

 You can verify that this is true by typing ?basAgeInYears . (note the dot after the module name) in
the VBA Immediate window; you will see all public declarations appear in alphabetical order as interface
members of the basAgeInYears code module (Figure 1-29).

 By object rule convention, a property is just a value, while a method is an action performed by
the object. Looking at the basAgeInYears module interface on Figure 1-29 , you can note that Age ,
 DaysCount , Weeks , and Years are considered properties (using the hand property icon), while AgeInWeeks ,
 AgeInYearMonth , and AgeInYears6 are considered methods (using the running green method icon).

 ■ Attention Any Public variable is considered a property, even though it is not associated to a Property
procedure.

 Using Enumerators
 Many VBA functions require that you use appropriate numeric values as arguments, and they are already
coded in the VBA language. For example, there is a constant value associated with each day of the week
on the enumerator called vbDayOfWeek . If you type vbDayofWeek. in the VBA Immediate window (note the
dot after the vbDayOfWeek enumerator name), VBA will promptly show all the members of this enumerator,
representing each weekday in its quick list information (Figure 1-30).

 Figure 1-29. When you declare public variables or procedures, they will appear as interface members of the
code module in the VBA Immediate window

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

41

 To create such a structure of numeric constant values associated to declared names, you must use a
VBA Enum instruction, which has this syntax:

 ||Public| |Private| Enum <EnumerationName> [As DataType]
 Member_1
 …
 Member_n
 End Enum

 In this code:

 EnumerationName : This is the name you want to give to the enumerator, following
the same rules for variable names.

 DataType : This is optional; it is the data type returned by any enumerator
member. By default it receives the Integer data type but can be specified as Byte ,
 Integer , or Long .

 Member1 to n : These are the names of each member of the enumerator.

 Any enumerator created by you must be declared on the Declaration section of the code module, as
public or private.

 When you declare an enumerator, you must type the End Enum instruction to indicate to VBA where it
finishes or VBA will raise an error code. You can assign any numerical value to each enumeration member,
or you can assign just the value of the first member and VBA will assign increments of 1 to each successive
member. The next declaration creates the Gender enumerator, assigning 1 to the Male member, meaning that
 Female will automatically receive value = 2:

 Enum Gender
 Male = 1
 Female
 End Enum

 In this book, I will call your attention to this important and simple programming technique whenever
an enumerator can be used to make the code easier to read, follow, or use.

 Figure 1-30. Type vbDayOfWeek. (note the dot after the enumerator) in the VBA Immediate window to see all
its members, representing each weekday

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

42

 Passing Arguments by Reference or by Value
 Procedure arguments are implicit declared by reference but can be explicit declared by value , using this syntax:

 Sub MyProcedure(arg1 as variant, ByVal arg2 as variant)
 ...
 End Sub

 In this example code, the arg1 argument is declared by reference , while the arg2 argument is declared
 by value . Declaring procedure arguments by reference means that the memory address of the argument
is received by the procedure, which can then change the memory address value. Procedure arguments
declared using the ByVal keyword are converted to the current value before being passed to the calling
procedure and do not suffer any change when the code executes.

 In this book most procedure arguments will be implicitly declared by reference , and I will bring it to your
attention whenever a by value reference can be used.

 ■ Attention You can use the VBA ByRef keyword to explicitly indicate that a procedure argument is declared
by reference, which is not necessary.

 Most VBA functions declare their arguments by value , meaning that they will not be changed by the calling
function.

 Using a Naming Convention
 If you take a good look at all the DaysCount and Years variables used in the procedure examples described
so far, you will note that you can’t identify the data type or scope just by the variable name. You need to look
at where and how it was declared to see if the variables have a specific data type (or received the default,
polymorphic Variant data type) or, if it is a procedure, are a private or public module variable.

 By using a naming convention, anyone can identify the scope and type of a variable just by reading its
name. This is a recommended programming practice, and the most widespread naming convention for
programming objects used on VBA procedures are the Reddick name conventions (earlier known as Reddick-
Lezinsky naming convention), which are based on the Hungarian conventions invented by Charles Simonyi, a
programmer who worked at Xerox PARC circa 1972–1981 and who later became chief architect at Microsoft.

 The Reddick VBA naming conventions (RVBA) for programming objects (variables, controls, forms,
reports, and so on) use a prefix to qualify the scope of a variable, a tag to qualify the type of the object,
followed by the object name that uses one or more capitalized words, without spaces or underscores to
separate them. The basic structure of the RVBA is as follows:

 <prefix><tag><ObjectName>

 Tables 1-3 to 1-6 show the prefix and tags used by the RVBA rules to define the variable scope, variable
type, some Excel programmable object tags, and UserForm control tags.

 ■ Attention You can find all the latest Reddick naming conventions by searching Google or by extracting
 Reddick Naming Conventions 6.01.pdf from the Chapter01.zip file.

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

43

 Table 1-3. Reddick Naming Conventions for Variable Scope

 Variable Scope Prefix

 Procedure variable No prefix

 Local static variable s

 Module-level variable m

 Public variable in a UserForm or Sheet module p

 Public variable in a standard module g

 Table 1-4. Reddick Naming Convention Tags for Variable Data Type

 Variable Type Tag

 Byte byt

 Boolean bln

 Currency cur

 Date dat

 Decimal dec

 Double dbl

 Integer int

 Long lng

 Object obj

 Single sng

 String str

 Variable Type Tag

 Type (user-defined) typ

 Variant var

 Table 1-5. Reddick Naming Convention Tags for Some Excel Programmable Objects

 Excel Object Tag

 Class module cls

 Standard module bas

 UserForm frm

 Range Rng or rg

 Worksheet Wks or ws

 Workbook Wkb or wb

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

44

 By using the prefixes and tags in Tables 1-3 to 1-6 , you can rewrite some Function procedure codes to
acquaint yourself with good programming practices for writing clear, concise, and professional code structures.

 Let’s start with the Function AgeInYears2() procedure that uses just two variables: DateOfBirth and
 DaysCount . Using the RVBA naming conventions, its variables should be declared this way:

 Function AgeInYears2 (datDateOfBirth as Date) as Single
 Dim lngDaysCount as Long

 lngDaysCount =Date - datDateOfBirth
 AgeInYears2 = lngDayCount / 365
 End Function

 Note that now the procedure argument is named datDateOfBirth , receiving the dat tag, so you can
easily see that it was declared with the Date type. The same happened to lngDaysCount : it receives the lng
tag because it was declared with the Long type. Since both variables are local to the procedure code, none of
them received a scope prefix.

 Now look at Function AgeInYears3() , which declared the Years variable as Static :

 Function AgeInYears3 (Optional datDateOfBirth as Variant) as Single
 Static ssngYears as Single

 If Not IsEmpty(datDateOfBirth) then
 ssngYears = (Date - datDateOfBirth) / 365
 End If
 vAgeInYears3 = ssngYears
 End Function

 Note that now you use the s prefix plus the sng tag to indicate that the ssngYear variable was declared
as Static with the Single data type!

 Table 1-6. Reddick Naming Convention Tags for UserForm Controls

 UserForm Control Type Tag

 Control (generic) ctl

 Checkbox chk

 ComboBox cbo

 CommandButton cmd

 Frame fra

 Image img

 Label lbl

 ListBox lst

 OptionButton opt

 Shape shp

 Tab control tab

 TextBox txt

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

45

 The Function AgeInYears5() procedure was the first to use private module-level variables, and
according to the RVBA naming conventions, they must be declared this way:

 Option Explicit

 Dim mintDaysCount As Integer
 Dim msngYears As Single

 Public Function AgeInYears5(datDateOfBirth As Variant) As Single
 mintDaysCount = Date - datDateOfBirth
 msngYears = mintDaysCount / 365
 AgeInYears5 = msngYears
 End Function

 Now the private module variables received the m prefix (to indicate m odule scope) plus the int or
 sng tag to indicate the data type. When you look at the procedure code, you can easily recognize that
 mintDaysCount is a module with an Integer data type variable, while the msngYears is a module with a
 Single data type variable.

 To end this RVBA naming conventions exercise, note how the Function AgeInYears6() procedure
from Figure 1-25 should be rewritten to adapt to best programming practices:

 Option Explicit

 Public gintDaysCount As Integer
 Public gsngYears As Single
 Public gsngWeeks As Single
 Public gstrAge As String

 Public Function AgeInYears6(datDateOfBirth As Variant) As Single
 gintDaysCount = Date - datDateOfBirth
 gsngYears = gintDaysCount / 365
 AgeInYears6 = gsngYears
 End Function

 This time all Public standard module variables were declared with the g prefix followed by a specific
data type tag. Now, every time you face such variable names in code, like gsngYears , you can easily spot that
they are global (Public variables from a standard module) Single data type variables!

 From now on, all procedures in this book will use such naming conventions to name variables,
modules, forms, controls, and variables.

 ■ Attention As an Excel developer, whenever you need to create a public Function procedure that will
be used directly on Excel worksheet formulas, you must avoid adding tag data types to name the procedure
arguments. Microsoft Excel functions do not use tagged data types to identify the type of its arguments, and it
would be strange to most Excel users to find tagged arguments when they use your Function procedures on
their formulas. For example, the Function AgeinYears() procedure will be better accepted by a wider user
audience if it asks for a DateOfBirth argument instead of dat DateOfBirth argument.

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

46

 Using Property Procedures
 Although you can access any Public variable from Excel interface formulas, any procedure of your VBA
project can eventually change its value when it shouldn’t.

 To avoid the direct manipulation of Public variables in any code module, VBA offers a third procedure
type called Property . This is the one that is used to define and return the value of a private module variable.

 To implement a property, VBA uses a pair of different procedure types: a Property Let procedure to
define the property value and a Property Get procedure to return the property value. You can insert this
pair of Property procedures by executing the VBA Insert ➤ Procedure menu command and selecting the
property type. Figure 1-31 shows how to implement a public property named Years with assistance from the
VBA Add Procedure dialog box.

 Property procedures work like this:

• Use the Propery Let procedure (the one that receives the vNewValue argument) to
store the property value.

• Use the Property Get procedure (with no arguments) to return the property value.

 Since you must store the property value using the Property Let procedure, declare a Private module
variable to hold the property value, and use the Property Get procedure to return the Private variable
value. The next listing shows how to implement such a Years Property procedure that manipulates the
 Private msngYears as Single module-level variable:

 Private msngYears as Single

 Public Property Get Years() As Single
 Years = msgnYears
 End Property

 Public Property Let Years(ByVal vNewValue As Single)
 msngYears = vNewValue
 End Property

 Figure 1-31. Use the VBA Insert ➤ Procedure dialog box to create the pair of Property Let and Get procedures
to implement a property on any code module

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

47

 Please note that the msngYears variable is a Private variable and as such can be accessed from inside
the module where it is declared. Also note that the Property Let Years() procedure vNewValue as
Single argument must have the same data type returned by the Property Get Years() procedure (also
declared as Single) or VBA will generate a compile error.

 Once the Years Property procedures have been implemented on the basAgeInYears code module,
you can change or verify the value using the VBA Immediate window. You can find such an example by
using the AgeInYears_Explicit Declaration_PropertyProcedure.xlsm macro-enabled workbook also
found inside the Chapter01.zip file. Use this syntax to set the Years property by executing the Property Let
procedure (Figure 1-32):

 basAgeInYears.Years = 50

 And use this syntax from the VBA Immediate window to verify the value of the Years property by
executing the Property Get procedure:

 ?basAgeInYears.Years
 50

 Note that basAgeInYears from the AgeInYears_Explicit Declaration_PropertyProcedure.xlsm
macro-enabled workbook implements the Years property using Public procedures for both Property Get
Years() and Property Let Years() , allowing you to recover or set the property value using the VBA
Immediate window.

 But the properties Age , DaysCount , and Week implement just the Property Get procedure as a Public
procedure, keeping the Property Let procedure as Private . This way they can be changed only from any
code procedure inside the basAgeInYears value or from the VBA Immediate window; you cannot change
them from another code module.

 ■ Attention Here is a secure way to create a Read Only Property procedure: implement the Property Let
procedure as Private to the code module. You can also implement just the Property Get() procedure and
let your code directly interact with the private variable to set the property value.

 Figure 1-32. You can set or verify any Public property that implements both the Property Let and Property
Get procedures using the VBA Immediate window. Note that the code module name followed by a dot must
precede the property name

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

48

 Property Procedures Allow Greater Control of Private Variables
 You are probably wondering what the difference is between using a Private or Public variable and a
 Property procedure to do the same task to hold and return a value.

 The answer to this question is quite simple. By using Property procedures, you can take great control of
what is stored on your private module variable or even validate the value before you store it.

 For example, let’s suppose that you want to avoid invalid values being attributed to the Years variable,
such as negative years or years greater than 130. You can do this by refining the code of the Property Let
Years() procedure, like this:

 Public Property Let Years(ByVal vNewValue As Single)
 If vNewValue > 0 and vNewValue <=130 then
 msngYears = vNewValue
 End If
 End Property

 Or you can allow the Years property to be set just once for your entire project, using a Property Let
Years() procedure like this:

 Public Property Let Years(ByVal vNewValue As Single)
 If msngYears <> 0 then
 If vNewValue > 0 and vNewValue <=130 then
 msngYears = vNewValue
 End If
 End If
 End Property

 Note that this last code procedure still validate the vNewValue argument to be greater than zero and
lower than 130. But this time, it will be set just once.

 In the next chapter of this book, we will use such approaches to create some Property procedures, and
I will call your attention whenever I feel that it will be useful to your full comprehension of the code strategy
used to program Excel with VBA.

 VBA Statements , Functions, and Instructions
 VBA like any other programming language has a lot of defined statements and a large array of ready-made
functions and instructions that you will use to program your procedure code. The differences between them
are as follows:

• A statement is a code structure that you can strictly follow to execute a given task one
or many times, such the If.. Then… Else… End If set of instructions that you saw
in previous examples.

• A VBA function is a ready-made Function Procedure implemented by VBA, which
may receive one or more arguments, process them, and return a value. They are
grouped by many different categories, such as Math, String, Conversion, Date and
Time, Financial, File and Folder Manipulation, and so on.

• A VBA instruction is a ready-made Sub Procedure implemented by VBA that
performs an action without returning a value.

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

49

 In this book, we will use specific VBA statements, functions, and instructions to make special code
operations, and as such I will call your attention to what is the function’s purpose, it syntax, and why I used it
to create the code.

 Let’s see some special cases of VBA instructions that will be used to interact with your code procedures.

 Using VBA Instructions
 VBA statements are the core of the VBA programming language, allowing you to declare variables and
procedure types, implement logical decisions in your code, and execute loops that repeatedly execute a code
section to perform a given action.

 These are the two types of VBA instructions used inside code procedures:

• Instructions used to perform a logical decision

• Instructions used to execute a loop

 VBA Logical Decision Instructions
 The most common VBA logical decision instructions are as follows:

• If... End If

• Select Case... End Select

 Making Decisions with If…End If Instructions

 The If... End If VBA instructions have these basic instructions (elements inside brackets are optional):

 If <Condition1> Then
 [Code Statements1]
 [ElseIf <Condition2> Then]
 [Code Statements2]
 [Else]
 [Code Statments3]
 End If

 The If... End If instruction basically executes a logical test on the Condition1 statement and, if it
returns True , branches your code to execute the [Code Statements1] code part.

 If Condition1 is evaluated as False , you can either do nothing by just closing the If branch with the
 End If statement, execute an alternative Else clause (and its [Code Statements3] code part), or even make
another set of tests using a successive ElseIf <Condition2> Then statement.

 The If instruction has an obligatory syntax of making a valid logical test on Condition1 and then closes
the branch with the End If statement. It is advised to indent your code inside the If… instruction to never
forget to type the End If of the last If instruction.

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

50

 You can nest an If instruction inside the Then , Else , or ElseIf clause of an outer If instruction. The
next code statement shows two nested If ...End If instructions. Note that the code uses indentation to
visually set where each If Instruction ends with its associated End If instruction.

 You can use the If... End If instruction to make as many logical tests as you want by using the
optional ElseIf <Condition n> Then clause, and if any logical test is evaluated as True , you can also plan
an emergency action using the Else clause that will always be executed whenever all previous tests fail.

 The next code fragment verifies whether the KeyPress variable contains the key code for the F1 , F2 , F3 ,
and F4 function keys, and if this is true, it calls the Procedure1 procedure. If the KeyPress variable has any
other keyboard key code, it executes the Procedure2 procedure on the Else clause.

 If KeyPress = vbKeyF1 then
 Call Procedure1
 ElseIf KeyPress = vbKeyF2 then
 Call Procedure1
 ElseIf KeyPress = vbKeyF3 then
 Call Procedure1
 ElseIf KeyPress = vbKeyF4 then
 Call Procedure1
 Else
 Call Procedure2
 End if

 This last procedure can be rewritten using just one, extent logical test to verify whether the KeyPress
variable is either F1 , F2 , F3 , or F4 , using the OR operator:

 If KeyPress = vbKeyF1 OR KeyPress = vbKeyF2 OR KeyPress = vbKeyF3 OR KeyPress = vbKeyF4 then
 Call Procedure1
 Else
 Call Procedure2
 Endif

 Note that you must compare the KeyPress variable value with the desired VBA function key constant.
Every time you need to do this kind of long logical test, it may be better to use the Select Case instruction.

 Making Decisions with the Select Case …End Select Instruction

 The Select Case instruction allows you to use a simple test structure by making many different tests in one
code row. It has this general form:

 Select Case <condition>
 Case <value1>
 [Code Statments1]
 [Case <value2>]
 [Code Statments2]

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

51

 [Case Else]
 [Code Statments3]
 End Select

 The Select Case instruction allows you to make an inference about the <condition> just once, then
use the Case option to verify whether Condition fits the case, and finally execute a different set of code
statements. Note that it also has a [Case Else] instruction that will be executed when every other Case
instruction fails (or returns False).

 The last procedure used to test the KeyPress variable against the F1 , F2 , F3 , or F4 function keys can be
rewritten this way using the Select Case instruction:

 Select Case KeyPress
 Case vbKeyF1, vbKeyF2, vbKeyF3, vbKeyF4
 Call Procedure1
 Case Else
 Call Procedure2
 End Select

 Shorter, isn’t it? It does the same test and makes the same decision. It is up to you to select the If… End
If or Select Case instructions.

 Note that the Select Case instruction has an obligatory syntax of verifying a variable value or making a
logical test on Condition and then closes the branch with the End Select statement. For every Select Case
instruction there must exist an End Select statement, and as such, you may indent your code to never forget
to type it.

 Using the same technique described for the If.. End If instruction, you can also nest a Select Case
instruction inside any Case instruction of an outer Select Case . The next code statement shows a nested
 Select Case instruction inside an outer Select Case instruction. Note that the code uses indentation to
visually set where each Select instruction ends with the associated End Select instruction.

 VBA Looping Statements
 A loop statement is a programmable structure that allows code to be executed until a condition is met, such
as processing all the cells of a given Excel range.

 VBA uses four types of loop statements: For...Next , For Each...Next , While...End , and Do...Loop .
These will be used throughout this book.

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

52

 The For…Next Statement

 The For...Next loop statement iterates through the code a maximum number of times. It has this syntax:

 For counter [As datatype] = start To end [Step step]
 ' Statement block to be executed for each value of counter.
 [Exit For]
 Next [counter]

 In this code:

 Counter : This must be an integer data type that supports the greater-than or
equal (>=), less-than or equal (<=), and addition (+) operators.

 start, end, step : These must be integer data types that set the iteration values
of the start, end, and step counter defining the loop length. The optional step can
be positive or negative. If it is omitted, it is taken to be 1.;

 Exit [For] : You use this instruction to exit the For...Next loop at any moment.
The Exit instruction alone (without For) will also work.

 Whenever VBA finds a For...Next loop, it will process the loop incrementing the counter argument by
the step value. When the counter passes the end value (either positive or negatively), it will terminate the
loop, passing control to the statement following the Next statement.

 To end the loop before the counter passes the end argument, use an Exit For statement inside the loop.
 The next code processes a For...Next loop 100 times, using the Cells method to process the first 100

column A cells and exiting the loop if it finds a cell value that is greater than 1000:

 For intI = 1 to 100
 If Cells(intI, 1) > 1000 then
 Exit For
 End If
 Next

 The For Each…Next Statement

 The For Each...Next loop differs from the For...Next statement by processing each element in a
collection, instead of a specified number of times. It has this syntax:

 For Each elementvariable [As datatype] In collection
 ' Statement block to be executed for each value of elementvariable.
 Next [elementvariable]

 Where

 elementvariable : This must be such that each element of the collection can be
converted to a data type. You can always declare it as Variant .

 Exit For : You use this instruction to exit the For...Next loop at any moment.

 The For Each... Next iteration loop sets the variable elementvariable to each element in the
collection (beginning from the first element), executing the statement block until all collection elements
have been processed. Then it terminates and passes control to the statement following the Next statement.

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

53

 The next code examples uses a For Each…Next instruction to loop through all Range.Cells collections
of the MyRange range name:

 Dim rg as Range
 For Each rg in Range(“MyRange”).Cells
 ...
 Next

 The While…End and Do…Loop Statements

 The While...End and Do...Loop statements differ from the For...Next statements by not determining a
maximum number of interactions; also, they cannot define a step and may or may not use a conditional test
when the loop begins or ends to define the duration. They have this syntax:

 While condition
 [Exit While]
 [statements]
 End

 Do { While | Until } condition
 [statements]
 [Exit Do]
 Loop { While | Until } condition

 In this code:

 While , Until : These are instructions that indicate whether the loop must last
until While condition = True (the loop ends when condition = False) or
 Until condition is true (the loop last while condition = False). They can be
used on the beginning or end of the Do...Loop statements.

 condition : This is a logical test, a Boolean variable, or a number that can be
evaluated to True or False (just 0 = False).

 Exit [While [, Exit [Do] : These are used to exit the Loop at any moment. The
 Exit instruction alone (without While or Do) will also work.

 Be careful to guarantee that the condition becomes True or False , according to the test made, to not
enter on a perpetual loop, which will freeze your computer until you press Ctrl+Break to put VBA in Break
mode and do a step-by-step code iteration with the F8 function key to solve the problem.

 These simple While...End and Do...Loop statements have no duration specified. The conditional test
is made inside the loop in this way:

 While
 If condition then Exit While
 End
 Do
 If condition then Exit Do
 Loop

 To guarantee that the Do...Loop statements will be executed at least one time, use the While or Until
instruction at the end of the loop.

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

54

 Do
 [statements]
 [Exit Do]
 Loop Until Condition = True

 By putting the test condition on the beginning of the Do…Loop statement, it behaves like a While…End
statement, where the inner instructions may never be executed.

 Do While Condition = False
 [statements]
 [Exit Do]
 Loop

 You will see plenty of examples of all these loop instructions in later chapters.

 Using Event Procedures
 Events are special VBA Sub procedures that you can use to take action whenever events happen. Any
Microsoft Office application fires events in response of user actions. For example, when you open an Excel
workbook, the Workbook _ Open () event fires, and if you create any code inside the Workbook _ Open () event
code, you can make something happen whenever the workbook is opened.

 The same thing happens when you close the workbook (the Workbook _ BeforeClose event fires), when
you select another sheet tab (the Worksheet_ Activate event fires), or even when you select another cell (the
 Worksheet_SelectionChange event fires) and change the cell value (the Worksheet_Change event fires).

 You cannot control when the event fires, but as a programmer, being aware that a given Event procedure
exists allows you to take control of your worksheet application by writing VBA code inside the event
procedure associated with the user action performed on the interface.

 To see the Workbook _ Open event procedure, open a new Excel workbook and double-click the
 ThisWorkbook object in the Project Explorer tree to show its code module. Click the ComboBox located at the
top-left corner of the code module window (where you read (General)) and select the only object it has:
 Workbook . When you do this, it will automatically select and create the default event procedure structure
inside the ThisWorkbook code module: Workbook _ Open () (Figure 1-33).

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

55

 Note that the Workbook _ Open event has the structure of a common Sub procedure and is declared as a
 Private procedure, meaning that it can be accessed only by the code inserted inside the ThisWorkbook code
module. Also note that this event has no argument.

 The Workbook object of the ThisWorbook code module has a lot of different events that fire against the
user action. They can be found by keeping the Workbook object selected on the left ComboBox of the code
module window while expanding the right ComboBox list.

 Try to select the BeforeClose event of any the Workbook object to make VBA automatically create the
structure of the Sub Workbook _ BeforeClose () event procedure. This will fire every time the user tries to
close the workbook or the Excel window (Figure 1-34).

 Figure 1-33. In the ThisWorksheet code module, select the Workbook object on the top-left list box to
automatically create the object default event procedure: Sub Workbook _ Open . This event fires whenever the
workbook is opened and is up to you insert any code on it

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

56

 ■ Attention You cannot modify (add or delete) the arguments of any object event procedure automatically
created by VBA, but you can use or change any argument value inside the event procedure to make the Excel
environment react to the proposed change.

 Note that the Sub Workbook _ BeforeClose () event procedure has a Cancel argument, declared as
 Boolean . For your knowledge, on the VBA environment every event procedure that has a Cancel argument
means that the event can be canceled if you change the Cancel argument to True (Cancel = True) inside the
event procedure code.

 Since the Workbook _ BeforeClose () event procedure fires whenever you try to close the workbook
(which will happen when you try to close the file or close Excel), this means that if anywhere inside the
 Workbook _ BeforeClose () event procedure you set Cancel = True , the workbook (or Excel) will not be
closed. I will use this trick later in this book.

 The next code fragment inserted on the ThisWorkbook code module to the Workbook _ BeforeClose ()
event procedure changes the Cancel argument to True , avoiding the workbook to be closed by any means:

 Private Sub Workbook _ BeforeClose (Cancel As Boolean)
 Cancel = True
 End Sub

 ■ Attention An event procedure Argument , like the Cancel argument from the Workbook _ BeforeClose ()
event, is a value that is received by the code associated with the event. The Cancel argument was declared
as Boolean , meaning that it can be either True or False . The default value is False (or zero), and since you
can change the value (and Excel can perceive this change), programmers always refer to this argument as
“received” by the Excel interface to the procedure.

 Figure 1-34. While the ThisWorkbook code module has the Workbook object selected in the top-left list box,
click the right list box to show all events fired by the workbook object and select the BeforeClose event to force
VBA to create the code procedure structure

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

57

 Some event procedures can pass different types of arguments, related to what happens to the
worksheet. To show the Sheet1 object code module, double-click it in the VBA Project Explorer tree . Select
the Worksheet object on the top-left ComboBox of the code module window to create the default event
procedure: the Sub Worksheet_SelectionChange () event (Figure 1-35).

 Note that this time VBA passes to the Sub Worksheet_SelectionChange () event procedure an Excel
object declared as Target as Range . This time you do not have a value by itself but an entire object interface
that you can manipulate inside the event procedure (like the range value, cells font, color, and so on).

 In the following chapters, you will interact with Excel in a deeper way, using the Application , Workbook ,
and Worksheet events as examples so you can understand how to use them to automate your Excel solutions
with VBA code.

 Using Class Modules
 A Class module is like any other module on appearance, but it can create a programmable object that can
be reused when it is declared as an object variable inside other code modules.

 The public Sub and Function procedures declared inside a Class module will become the object methods,
while the public variables or public Property procedures will become the properties. The Class module’s Name
property will be used as the object name, so you can reference it on other code modules by its name.

 Let’s suppose you created a class whose property Name = Time r, which allows you to create and set any
timers you want. If this class has a public variable named Interval and a public Sub Enabled() procedure,
it has an Interval property (in miliseconds) and an Enabled method. The Class module code will be like this
(Sub Enabled() still has no instructions):

 Option Explicit

 Public Interval as Integer

 Figure 1-35. In the Sheet1 code module, select the Worksheet object on the top-left list box to force VBA to
create the code structure of it default event procedure: the Worksheet_SelectionChange () event

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

58

 Public Sub Enabled()
 ...
 End Sub

 Supposing that all the code inside Public Sub Enabled() creates a timer that will fire at each
 Interval value (defined in milliseconds), you can create a new Timer object on any other code module by
declaring an object variable whose type is the Timer calls it on the module Declaration section:

 Option Explicit
 Dim mTimer1 as Timer

 You use another procedure to instantiate the class using VBA Set and New keywords.

 Public Sub BeginTimer
 Set mTimer = New Timer
 mTimer.Interval = 3000
 mTimer.Enabled
 End Sub

 This last instruction will be enough to create the mTimer1 timer that will fire every three seconds
(3000 miliseconds). In later chapters, you will be presented with different Class modules that create
interesting programmable objects.

 Declaring and Raising Events on Object Code Modules
 Events are code procedures that fire when a condition is met. As explained in the section “Using Event
Procedures” earlier in this chapter, most Excel programmable objects have a rich set of events that you can
program to react to a given situation or user action.

 By using the VBA Event keyword, you can declare Private and Public events on any object code module
(such as an Excel object like Thisw orkbook or Sheet1 code modules or inside any UserForm or Class module),
like you declare a Sub or Function procedure, with all the arguments it needs (if any), using this syntax:

 [Private | Public] Event <EventName> [([Arg1 [as Type]], ..., [Argn [as Type]])

 In this code:

 Arg1, ..., Arg n : These are the optional event argument names and types.

 To raise any event declared inside an object module, use the VBA RaiseEvent instruction that has this
syntax:

 RaiseEvent <EventName>

 In this code:

 EventName : This is an event declared with the Event keyword on the object or
class module that you want to raise on the object interface.

 To use the events exposed by any Class module , you must declare an object variable to represent it
using the VBA WithEvents keyword, like so:

 Dim WithEvents <VariableName> as <ClassName>

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

59

 In this code:

 VariableName : This is the variable name that represents an instance of the Class
module .

 ClassName : This is the Name property of the Class module that identifies the class
object.

 ■ Attention In Chapter 2 , you will find good examples about how to expose Class module events.

 Using VBA UserForms
 The last VBA object that I will use on this book is the UserForm object. UserForm is the only VBA structure
that may be visible on Excel by allowing you to create forms that interact with your solution.

 Many Excel add-ins use the VBA UserForm object to collect and execute VBA code on the selected
worksheet, like the Data Analysis ToolPak that you can install in Excel to execute some interesting statistical
operations, such as Descriptive Statistical analysis of your data, ANOVA with single and Two-factor, with
or without replication, Correlation, Covariance, Histogram, Moving average, T-Test, and so on. All these
operations use a VBA UserForm to interact with Excel and your data to calculate and return the desired
results. Figure 1-36 shows the Data Analysis UserForm , where you can select among the many statistical
analysis available. Figure 1-37 shows the Descriptive Statistics UserForm interface as implemented by the
Analysis ToolPak add-in.

 Figure 1-36. This is the Analysis ToolPak UserForm interface where you can select many different statistical
analysis to perform on your Excel worksheet data

http://dx.doi.org/10.1007/978-1-4842-2205-8_2

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

60

 Such dialog box interfaces are first created on your workbook by using the VBA Insert ➤ UserForm
command. When you do this, another branch will appear on the VBA Project Explorer Tree called Forms.
The UserForm1 object window will be selected in the VBA IDE, which will also show the Toolbox, which is
where you can select many different controls to compose your UserForm interface (Figure 1-38).

 Figure 1-37. This is the Descriptive Statistics interface, implemented on a VBA UserForm object by the
Analysis ToolPak Excel add-in

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

61

 Every UserForm object has its own code module that you can show by double-clicking the UserForm
background. Like any other code module window, you can use it to create Function , Sub , and Event
procedures, and like every VBA object, the UserForm also has its own set of Event procedures, like UserForm_
Initialize () , UserForm_Activate() , and so on, from where you can control how it will work to interact
with the users of your application.

 Figure 1-38. When you use VBA Insert ➤ UserForm menu command, VBA will insert a new Project Explorer
branch called Forms, with the new UserForm selected. It will show the standard UserForm interface and will
make the VBA Toolbox visible so you can select the controls you want to use to create your UserForm interface

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

62

 To load any UserForm using VBA code, you must use the UserForm object’s Show method in this way
(note the dot concatenating the UserForm1 object with the Show method):

 UserForm1 .Show

 To unload any UserForm , use the VBA Unload method in this way (where UserForm1 is the name of the
 UserForm object you want to unload):

 Unload UserForm1

 ■ Attention To unload any UserForm using VBA code inside the UserForm code module, you can use the
 VBA Me keyword to make the UserForm code module refer to itself. Such code is commonly created inside a
 CommandButton control that you put on the form to close it when the user clicks in this way:

 Unload Me

 Since you need to reference the Show method of the UserForm object via VBA to load it, it must be made
from an external procedure, usually inserted on an independent code module, like the ShowUserForm() Sub
procedure inserted on the basUserForm code module of the UserForm.xlsm Excel macro-enabled workbook
that you can extract from the Chapter01.zip file. It has this simple code:

 Public Sub ShowUserForm1()
 UserForm1.Show
 End Sub

 You can test this procedure by typing its name in the VBA Immediate window and pressing Enter,
making the UserForm1 window appear in the Excel interface. Since every UserForm is by default a modal
window, you can’t use the VBA Immediate window to close it using the Unload method. The user of your
application needs to manually close the UserForm by clicking the Close button, pressing Alt+F4, or clicking
some CommandButton control such as the one placed on the UserForm1 interface shown in Figure 1-39 , which
executes this simple code:

 Private Sub CommandButton1_Click()
 Unload Me
 End Sub

 Figure 1-39 shows the VBA code modules for the UserForm1 with the CommandButton1_Click event
procedure that fires whenever the button is clicked to unload the UserForm1 , as well as the ShowUserForm1()
Sub procedure from basUserForm from the UserForm.xlsm Excel macro-enabled workbook.

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

63

 For now I just want you to understand that the heart of the VBA environment resides in code modules
where you can write your own Function or Sub procedure codes, or you can use the structure of the Excel
event procedures and UserForm objects to execute any code regarding the actions the users perform in your
application interface.

 In the next chapters, you will make plenty use of VBA UserForm objects to create user interfaces to Excel
objects, exploring the properties, methods, and events.

 Figure 1-39. This is the UserForm1 code module with the CommandButton1_Click event procedure and the
ShowUserForm1 Sub procedure from the basUserForm code module used to load the UserForm1 in the Excel
interface

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

64

 The VBA Me Keyword
 The VBA Me keyword represents the code module where it is declared. In the previous section, it was used to
indicate a UserForm to unload itself.

 Use the Me keyword in an object code module to make the code refer to itself (the object), whether it be
the ThisWorkbook , Sheet1 , UserForm1 , or any standard module or the Class module .

 There is a great advantage to using Me in VBA. When you type Me and a dot (Me .), VBA will show all
object interfaces, including the properties, methods, and events, allowing you to gain time writing the code.

 And when using Me to refer to the UserForm from the code module, it will also show you all the control
names on the VBA list interface, making it easy to correctly reference them in the code. That is why you will
see so many Me .- prefixed control names throughout this book!

 Evoking a VBA Procedure from an Excel Worksheet
 To evoke a VBA procedure from any Excel worksheet, you must call it from any Excel event procedure or
allow it to be executed by a user action by putting a Button control on the worksheet that must execute
the procedure. To insert a Button control on any worksheet, just follow these steps (I will use the Sub
ShowUserForm1() procedure from basUserForm of the UserForm.xlsm workbook as an example):

• On the Developer tab, select Insert ➤ Button (Form control), as shown in Figure 1-40 .

• Drag the mouse over the worksheet to define the size of the Command button you
are inserting.

• Excel will open the Assign Macro dialog box, which is where you choose Public Sub
procedures available on your VBA project.

• Select the Public procedure you want to associate to the Button control’s Click
event (in this case ShowUserForm1 , as shown in Figure 1-41).

 Figure 1-40. To allow the user to execute specific Public procedures from your Excel solution, on the Developer
tab select the Insert ➤ Button (Form control) command and drag the button over the worksheet

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

65

• Click OK to terminate the association. Excel will name the Button control as Button1 .

• Once the Button control is associated with the desired Public Sub procedure, it is
inserted on Edit mode over you worksheet so you can change the caption and size
(Figure 1-42).

 Figure 1-41. In the Assign Macro dialog box, select the Public Sub procedure you want to associate with the
Click event of the Button control

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

66

• To exit the Edit mode, just click any worksheet cell and then click the Button control to
try the associated code (in this case, it must open UserForm1 , as shown in Figure 1-43).

 ■ Attention Just Public Sub procedures from Standard modules are automatically shown by the Assign
Macro dialog box. To associate any other Public Function procedure from ThisWorkbook , any Sheet object,
or any standard module, type the object name followed by a dot and the Public procedure name in the “Macro
name” text box of the Assign Macro dialog box and press Enter. Excel will check the procedure existence before
associating it to the Button control.

 Figure 1-42. To allow the user to execute a specific Public procedure from your Excel solution, on the
Developer tab select the Insert ➤ Button (Form control) command and drag the button over the worksheet

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

67

 Two Special VBA Functions: MsgBox and InputBox
 VBA has two special functions that you will use often to interact with the user of your application: MsgBox ()
and InputBox() . The first one is used to grant messages and capture user decisions, while the second is used
to receive user input.

 Using MsgBox ()
 Use the VBA MsgBox () function to show an information dialog box to the user and eventually let the user
decide what to do by pressing a button. The MsgBox () function syntax is as follows:

 MsgBox (Prompt as String, Buttons as Long, Title as String) as Long

 In this code:

 Prompt : This is required; it is the message that will be shown by the dialog box,
with a maximum length of about 1,024 characters depending on the width of
the characters used. To break the Prompt message in lines, concatenate it with
the VBA constant VBCrLf , which consists of a carriage return and line feed
characters.

 Figure 1-43. Since the Button was intended to execute the ShowUserForm1 Public Sub Procedure, it was
named as Open UserForm, and when you click it, you will see the UserForm1 interface modal floating over the
selected worksheet

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

68

 Buttons : This is optional; it is a numeric expression that is the sum of up to four
different values that specify the buttons to display, the icon style to use, the default
button when the user presses Enter, and the modality of the dialog box. When
omitting the button’s value, a default value of zero will show just the OK button.

 Title : This is optional. This is the expression displayed in the title bar of the
dialog box. If you omit the title, the application name will be placed in the title
bar.

 The VBA MsgBox () function will return the code of the button selected by the user, according to the
Table 1-7 values.

 Tables 1-8 to 1-11 describe the VBA constant and values used by the Buttons argument of the MsgBox ()
function.

 Table 1-7. Button Constants and Values Clicked on the Dialog Box Displayed by the VBA MsgBox () Function

 Bottom Pressed Constant Name Constant Value

 OK vbOk 1

 Cancel vbCancel 2

 Abort vbAbort 3

 Retry vbRetry 4

 Ignore vbIgnore 5

 Yes vbYes 6

 No vbNo 7

 Table 1-8. Buttons Constant and Values Displayed by the VBA MsgBox () Function

 Buttons Displayed Constant Name Constant Value

 OK button only vbOKOnly 0

 OK and Cancel vbOKCance 1

 Abort, Retry, and Ignore vbAbortRetryIgnore 2

 Yes, No, and Cancel vbYesNoCancel 3

 Yes and No vbYesNo 4

 Retry and Cancel vbRetryCancel 5

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

69

 Let’s try a simple MsgBox () function with just a “Hello World” message and the OK button. In the VBA
Immediate window, type this code:

 MsgBox “Hello World”

 When you press Enter, VBA will show the dialog box you see in Figure 1-44 and will discard the code
returned by the MsgBox () function, because you did not type ? (the print character) in the Immediate
window before the instruction.

 Table 1-11. Application Modal Constants and Values for the Dialog Box Displayed by the VBA MsgBox ()
Function

 Modality of the Dialog Box Constant Name Constant Value

 Modal dialog box. The user must respond to the
message box before continuing work in the current
application.

 vbApplicationModal 0

 System modal dialog box. All applications are
suspended until the user responds to the message box.

 vbSystemModal 4096

 Table 1-9. Icon Constants and Values Displayed by the VBA MsgBox () Function

 Icon Displayed Constant Name Constant Value

 vbCritical 16

 vbQuestion 32

 vbExclamation 48

 vbInformation 64

 Table 1-10. Default Selected Button (from Left to Right) Constants and Values on the Dialog Box Displayed
the VBA MsgBox () Function

 Default Selected Button Buttons Displayed Constant Value

 First button is default vbDefaultButton1 0

 Second button is default vbDefaultButton2 256

 Third button is default vbDefaultButton3 512

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

70

 Although it seems too difficult to dominate the VBA MsgBox () function with the many different
possible constants, it isn’t. You can take advantage of VBA constant lists and easily select the buttons, icons,
default button, and modality of the message box to be displayed while writing your code. Do not forget that
you must select just one constant of each possible type (button, icon, default button, and modality).

 Try the next exercise in the VBA Immediate window to show a dialog box with the Critical icon and
three buttons: Abort, Retry, and Ignore:

 1. Type ? MsgBox (in the Immediate window (VBA will display the argument list for
the function).

 2. Type the Prompt argument between double quotes (like “Message string”), press
the comma key, and watch VBA offer all possible constants for the Buttons
argument. Select the first constant, vbAbortRetryIgnore , meaning that the
dialog box will show three buttons: Abort, Retry, and Ignore. The MsgBox ()
function call will become the following:

 ? MsgBox (“Message string”, vbAbortRetryIgnore)

 3. After selecting the vbAbortRetryIgnore constant, press the + character and select
the vbCritical constant to show the associated Critical icon. The MsgBox ()
function call will become the following:

 ? MsgBox (“Message string”, vbAbortRetryIgnore+vbCritical)

 4. Having select vbAbortRetryIgnore+vbCritical constants, press again the +
character and select the vbDefaultButton2 constant, meaning that the default
button will be Retry.

 ? MsgBox (“Message string”, vbAbortRetryIgnore+vbCritical+vbDefaultButton2

 5. Press another comma key and type the Title argument string between double
quotes (the title of the dialog box). Press a closing parenthesis to finish the
 MsgBox () function.

 ? MsgBox ("Message string", vbAbortRetryIgnore+vbCritical+vbDefaultButton2,
“Dialog box title”)

 Figure 1-44. Use the VBA Immediate window to test the MsgBox () function. If you do not type the ? character
before the function name or surround the arguments with parentheses, the return value will be discarded

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

71

 6. Press Enter to generate the desired dialog box.

 7. Note that the Ignore button (second dialog box button) is selected by default.
Press Enter or click the Abort or Ignore button and watch the constant value
returned by the VBA MsgBox () function in the Immediate window (Figure 1-45).

 Figure 1-45. Using the VBA Immediate window to test the MsgBox () function, you can take advantage of the
VBA quick list feature to select the constant you want for the button, icon, default button, and modality of the
dialog box that will be displayed

 To control the message string format granted by the MsgBox () Prompt argument, you must use the
VBA constant vbCrLf (meaning carriage return and line feeding) to break the message into different lines.

 The file MsgBox .xlsm Excel macro-enabled workbook that you can extract from the Chapter01.zip file
has this code inserted on the Workbook _ Open event procedure of the ThisWorkbook object, meaning that it
will fire every time the workbook is opened:

 Private Sub Workbook _ Open ()
 Dim strMsg As String
 Dim strTitle As String

 strMsg = "File MsgBox .xlsm" & vbCrLf
 strMsg = strMsg & "ThisWorkbook object" & vbCrLf
 strMsg = strMsg & " Workbook _ Open Event has fired"
 strTitle = " MsgBox () function test"
 MsgBox strMsg, vbInformation, strTitle
 End Sub

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

72

 Note that the Workbook _ Open event code declares two string variables: strMsg to hold the message box
string and strTitle to hold the title string. It then uses the VBA constant vbCrLf to insert two line breaks on
the strMsg variable containing the message string. Also note that it successively concatenates strMsg to the
previous value to compose the three-line string shown by MsgBox () (bold in the next code):

 strMsg = "File MsgBox .xlsm" & vbCrLf
 strMsg = strMsg & "ThisWorkbook object" & vbCrLf
 strMsg = strMsg & " Workbook _ Open Event has fired"

 The dialog box you receive every time the MsgBox .xlsm workbook is opened is shown in Figure 1-46 .

 Using InputBox
 The VBA InputBox () function is used to collect user data, allowing the user to type a value that will be used
on your code procedure. It has this syntax:

 InputBox(prompt[, title] [, default] [, xpos] [, ypos] [, helpfile, context])

 In this code:

 Prompt : This is r equired; it is the message that will be shown by the dialog box,
with a maximum length of about 1,024 characters, depending on the width of the
characters used. To break the Prompt message into lines, use the VBA constant
 VbCrLf , which consists of a carriage return character and line feed character.

 Title : This is optional; it is the expression displayed on the title bar of the dialog
box. If you omit the title, the application name will be placed on the title bar.

 DefaultResponse : This is optional; it is a string expression representing the
default value that the dialog box will show, if no other input is provided. By
omitting this value, the displayed text box will be empty.

 Xpos : This is optional; it is a numeric expression that specifies the distance (in
pixels), of the left edge of the dialog box from the left edge of the screen.

 Ypos : This is optional; it is a numeric expression that specifies the distance (in
pixels), of the top edge of the dialog box from the top edge of the screen.

 HelpFileContext : This is the number of the Help Context page that will be
shown if the user presses the F1 key (if any).

 Figure 1-46. This is the dialog box created by the MsgBox () function inserted on the Workbook _ Open event
procedure of the ThisWorkbook object, which will appear every time the workbook is opened

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

73

 ■ Attention If you omit XPos and YPos , the dialog box will be centered on the screen.

 The InputBox() function always returns a string value. It will show a dialog box with just a text box
with two buttons, OK and Cancel, where the user must type the required value or press Enter to accept the
 DefaultResponse argument (if supplied). If the user presses Cancel or if the text box is empty when the user
presses Enter (or clicks OK), InputBox() will return an empty string (represented by two successive double
quotes). Any other value will be returned as a string and must be treated as well.

 As with the MsgBox () function, you can use the VBA Immediate window to test how InputBox()
performs. Since InputBox() is used to return a value, you must always type the ? character on the
Immediate window to watch the value it returns. The next code will exhibit an InputBox() asking for the
user to type a numeric value (Figure 1-47):

 ?InputBox("Please type a numeric value", "Amount required")

 Note in Figure 1-47 that 2300 was typed in the InputBox() text box, and this value was returned by the
function to the Immediate window.

 When you ask the user to input using the InputBox() function, you must validate whether something
has been typed (since the user can click the OK button without typing anything or click the Cancel button;
both situations returning an empty string), whether the data has the expected type (like a date or numeric
value), or whether it is inside the expected range (for numeric values).

 The InputBox.xlsm Excel macro-enabled workbook that you can extract from the Chapter01.zip file
has the following code inserted on the Workbook _ Open () event procedure of the ThisWorkbook object
(meaning that it will fire every time the workbook is opened) to ask the user to type his birthdate):

 Figure 1-47. Use the VBA Immediate window to test the InputBox() function. The value you type in the text
box will be returned by the function

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

74

 Private Sub Workbook _ Open ()
 Dim strMsg As String
 Dim strTitle As String
 Dim strDate As String

 strTitle = "Birthday date needed!"
 strMsg = "Please, type your Birhday date:"
 strDate = InputBox(strMsg, strTitle)
 If Len(strDate) Then
 If IsDate(strDate) Then
 strMsg = "You have now " & AgeInYearMonth(CVDate(strDate)) & "!"
 strTitle = "Welcome to MyApplication!"
 MsgBox strMsg, vbInformation, strTitle
 End If
 End If
 End Sub

 Whenever the InpuBox.xlsm workbook is opened, the Workbook _ Open event fires and a InputBox()
asks for the user’s birthdate.

 strTitle = "Birthday date needed!"
 strMsg = "Please, type your Birhday date:"
 strDate = InputBox(strMsg, strTitle)

 The user answer to the input box and the next line of code verify whether something has been typed by
the user, using the VBA Len() function to verify the length of the string returned:

 If Len(strDate) Then

 The VBA Len() function returns the number of characters any string variable has. Since the VBA
zero means False and anything else means True , if nothing had been typed or if the user clicked the
Cancel button, strDate will be a zero-length string, Len(strDate) will return zero (0) or False , and the If
Len(strDate)… End If structure will end the Workbook _ Open event.

 But if the user types anything, Len(strDate) will return the length of the string typed: the Len(strDate)
test will evaluate to True , and the code inside the If Len(strDate)… End If structure will be executed,
using the VBA IsDate() function to verify whether what the user typed is a valid date of birth.

 If Len(strDate) Then
 If IsDate (strDate) Then

 Again, if what the user type is not a valid date, the If IsDate(strDate)… End If structure will end the
 Workbook _ Open event, but if it is a valid date, the code will use the strMsg variable to create the message string that
will be returned by the MsgBox () function, using the AgeInYearMonth() function (created earlier in this chapter)
from the basAgeInYears module to calculate the age in year and months for the date inserted in the strDate
variable, taking care to first convert the strDate string to a valid date value using the VBA CVDate() function.

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

75

 If IsDate(strDate) Then
 strMsg = "You have now " & AgeInYearMonth(CVDate(strDate)) & "!"
 strTitle = "Welcome to MyApplication!"
 MsgBox strMsg, vbInformation, strTitle

 Figure 1-48 shows what happens when you open the InputBox.xlsm workbook and type a valid date
of birth in request to the InputBox() function. Please note that although all VBA variables had been
correctly initiated by the AgeInYearMonth() function procedure, cell A2 , B2 , and C2 formulas will not be
automatically updated. You must edit each one so their true value will be returned.

 Figure 1-48. Using the VBA InputBox () function, you may ask the user of your application to type specific
data that must be validated by the procedure code, before it gets used inside your workbook application. Note
that although Sheet1 has formulas using AgeInYears(), AgeInWeeks(), and AgeInYearMonth() functions, they
are not updated after you type the values. You must edit each cell so the values are updated by Excel

 Dealing with VBA Errors
 Let’s talk about errors that may happen on your code. They may come from many sources: bad code logic,
impossible operations (like zero division), and a handful of unexpected errors.

 The question here is that VBA will also break the code whenever an executable error is found on your
code, selecting the instruction that generates the error on the code module.

 Since this is an issue that has its own chapter in most VBA programming books, let’s review what you
can do to avoid unexpected errors:

 1. Use the On Error Resume Next instruction.

 2. Create an error trap.

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

76

 The On Error Resume Next Instruction
 Whenever an unexpected error happens in your code, VBA will issue a MsgBox () warning indicating the error
number and the message associated with it. The last generated error will be associated with the Err object, and
the error message can be retrieved by the Error(Err) function, were Err represents the last error code.

 Whenever you put the On Error Resume Next instruction in your code, all instructions after it may
generate an error, but VBA will ignore the errors, giving no message to the user. As the On Error Resume
Next instructions imply, when an error is encountered by VBA, it will ignore and resume the code on the
next instruction.

 This seems great, doesn’t it? But it is not. You have to use this instruction carefully, especially on such
occasions that intermediate calculations are expected inside the code. If some intermediate calculation step
were missed because of an On Error Resume Next instruction, the result may completely fail, returning no
result. Worse, it may return a wrong result constituting what is called a code bug.

 Sometimes you need to make a code instruction that may generate an error (such as trying to access
a range name that should exist but doesn’t) and verify whether the code generates an error, like Function
CheckRange() code:

 Function CheckRange(strRange as string) as Boolean
 Dim varValue as Variant

 On Error Resume Next

 'Try to get Range value
 varValue = Range(sstrRange).Value
 CheckRange = (Err = 0)
 End Function

 This simple function returns True or False according to the strRange existence. If it does not exist,
VBA will generate an error that will be ignored while the error code is stored on the Err object. CheckRange
= (Err = 0) is a logical test, which returns True whenever the range exists (Err = 0, no error found) and
 False otherwise.

 ■ Attention To reenable VBA errors issued inside a code procedure after an On Error Resume Next
instruction is executed, use the On Error Goto 0 (zero) statement.

 Setting an Error Trap
 Instead of disabling VBA errors in your code, you may want to set up an error trap to specify where the code
should continue whenever an unexpected error is raised.

 The error trap is defined by the On Error GoTo <label> instruction, where <label> is a code line that
has a word with no spaces and ends with a “:” character, which specifies the beginning of the error trap. The
error is then analyzed and eventually treated, and the code must continue on the same line code where it
was generated using a Resume instruction, on the next line of code using a Resume Next instruction, or may
be sent to another label using a Resume <label> instruction.

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

77

 The next Sub TestErrorTrap() procedure implements an error trap using a Select Case statement to
control any possible error code that may arise (it just implements the Else clause for all possible errors):

 This error trap will deviate the code to the TestErrorTrap_Error: label whenever an error is raised.
The error will be shown by a VBA MsgBox () function using the “Error <error code>: Error message” style
and then will continue on the procedure TestErrorTrap_End: label, which will exit the code. If no error
happens, the code will end by executing the Exit Sub statement right before the error trap.

 The error trap will be used in some procedures of this book, and you will be guided step-by-step,
whenever it happens.

 Protecting Your VBA Code
 Once you have produced solid, trustworthy code, sometimes you may want to protect your intellectual property
by keeping the VBA code of your application from being accessed and eventually changed by other people.

 To protect your VBA code, use the Tools ➤ VBAProject Properties menu command, which will show the
VBAProject - Project Properties dialog box. This dialog box has two tabs: General and Protection (Figure 1-49).

 By default, every application that implements VBA attributes the name VBAProject to the project code
(hence the menu command VBAProject Properties). You can give another name to your VBA project and
provide a description (this information will appear in the VBA Object Browser window, and if the Excel
application is saved as an Excel add-in, it will also appear on Excel Add-In dialog box). Once you change the
VBA project name, it will appear on top of the Project Explorer tree and change the menu command inside
the Tools menu.

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

78

 To protect your VBA code, just click the Protection tab, check the “Lock project for viewing” option, and
type and confirm password protection.

 From now on, the protected VBA project will ask for this password to allow access to the content.

 ■ Attention There is no absolute protection on the digital word, meaning that breaking password code
protection is just a matter of time and persistence. A simple Google search will show many tutorials about how
to break a VBA project password.

 Conclusion
 Visual Basic for Applications, despite the word Basic in its name, is not basic in any sense. It is a complete
computer programming language that touches on some important object-oriented programming principles,
offering a full set of data types, instructions, statements, and functions that you can use to control the
 Microsoft Excel object model and any other program that adopts it.

 It has a steep learning curve for first-time users. It is based on code modules that may be independent
or attached to an object, where you write Private and Public Sub , Function , and Properties procedures
to execute a defined set of instructions in successive order. It uses declared variable names of many different
data types to store intermediate results that are manipulated by the code and has a full set of language
structures to allow you to make decisions inside the code procedure.

 Summary
 In this chapter, you learned about the following:

• How VBA code works and why you should learn it to create great interfaces to
interact with the users of your Excel application

• What VBA procedures are and the difference between Function and S u b procedures

 Figure 1-49. This is the VBAProject - Project Properties dialog box, where you can give a name and
description to your VBA code, lock a project for viewing, and assign it password protection

CHAPTER 1 ■ UNDERSTANDING VISUAL BASIC FOR APPLICATIONS (VBA)

79

• That VBA procedures can receive one or more arguments that are the values from
where the code will operate

• That just VBA Function procedures can return a value

• That every procedure argument is a variable that can receive different types of values

• That some procedure arguments can be declared as Optional and, as such, are not
obliged to be passed to the procedure

• That you must declare any VBA variable using a specific data type to make better use
of your computer memory

• That just the Variant variable data type can receive Null or Empty values

• That variables have a scope and a lifetime (Static , Private , and Public variables
will keep its values between procedure calls)

• That you must use a naming convention as good programming practice to easily
recognize any variable type by just reading it name inside the procedure code

• That you can use Property procedures to validate Private variable values

• That VBA objects expose Event procedures, a special type of procedure that fires
against some user actions on an Excel interface

• That you can use VBA UserForm objects to create a dialog box to interact with the
user of your application data

• How you can insert a Button control on any worksheet to execute any Public
procedure

• How to use the VBA MsgBox () function to show a message to the user of your
application and eventually ask the user to make a decision by clicking a button

• How you can control some specifications of the MsgBox () function, like the text
string, the icon, the buttons, and which button is selected by default

• How to use the VBA InputBox () function to ask the user to type specific
information needed by your application

• How to validate the information returned by the InputBox() function before it gets
used by other procedures of your VBA project

• How to protect your VBA code with a password

 In the next chapter, you will learn how to use VBA to interact with the top-level object on a Microsoft
Excel object model: the Application object.

81© Flavio Morgado 2016
F. Morgado, Programming Excel with VBA, DOI 10.1007/978-1-4842-2205-8_2

 CHAPTER 2

 Programming the Microsoft Excel
Application Object

 Microsoft Excel exposes a set of objects that you must master to interact with the Excel application interface.
In this chapter, you will start to master VBA programming by seeing practical examples. You can obtain all the
procedure code in this chapter by downloading the Chapter02.zip file from the book’s Apress.com product
page, located at www.apress.com/9781484222041 , or from http://ProgrammingExcelWithVBA.4shared.com .

 The Microsoft Excel Object Model
 Excel offers a lot of different objects in its application programmable interface; it is a large object model.
Figure 2-1 shows one of the most simplified views of the Excel object model found on the Office Dev Center
of the Social MSDN web site; it illustrates the main Excel objects. (You can find images with much more
complexity and precision by searching Google using the words Excel Object Model Diagram .)

 Figure 2-1. This is a simplified vision of the Microsoft Excel object model diagram, showing the main objects
and the interdependent relationships

http://www.apress.com/9781484222041
http://programmingexcelwithvba.4shared.com/

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

82

 This object model shows that everything starts with the Application object, which represents Excel
itself. The next object is the Workbooks collection, where you can find a programmable reference for each
opened Excel file as a single Workbook object .

 Since each Excel workbook consists of different worksheets, each Workbook object has its own
 Worksheets collection, which keeps a programmable reference for each sheet tab the Excel file contains
using independent Worksheet objects to represent them. Since each worksheet has a collection of cells, they
are represented by the Range object.

 Every Microsoft Excel chart can be displayed in two different ways: floating over any worksheet cells or
inside its own Sheet tab. That is why the Excel object model also shows the Sheets and Charts collections,
which contain references to both the Sheets and Charts tabs.

 Confusing, isn’t it? Welcome to the world of object model programming!

 The Application Object
 As mentioned, the main Excel object is the Application object, which represents the Microsoft Excel
interface window. You use the Application object to perform some specific programmable operations in
the Excel interface, such as the following:

• Get access to some important Excel objects : Access the active workbook, active
worksheet, and what is currently selected in the Excel interface.

• Interact with Excel behavior : Set Excel screen updating on/off; fire events; set
calculation options; manipulate the Excel status bar text; set window visibility, size,
and position; and hide or show certain objects of the Excel interface, like the Excel
ribbon.

• Use file access operations : Open, save, and close workbooks, and change the file
name and folder where a workbook must be saved.

 The Excel Application object has a large programmable interface that, like any other programmable
object, can be inspected using the VBA Immediate window or the VBA Object Browser. You can use the
VBA window to inspect the properties, methods, and events of every programmable object you can access
through VBA programming code.

 To inspect the Application object interface, just type ? Application . (note the dot after Application)
in the VBA Immediate window and scroll through the object programmable interface. To use the VBA Object
Browser, press the F2 function key in the VBA environment and search for the Application object. The icons
at the left of any interface member show whether the item is a property (hand pointing), a method (running
green), or an event (yellow lightning) (Figure 2-2).

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

83

 To avoid wading through the vast Excel Application object interface, I will talk about some of the
important objects, methods, and events that we will use in this book.

 Table 2-1 lists some important Application object properties that return important Excel objects.
Table 2-2 lists some important Application object properties that control the way the Excel window behaves
while your VBA code executes. Table 2-3 lists some important Application object methods that you can use
to perform specific Excel actions.

 Figure 2-2. Use the VBA Immediate window or the Object Browser (press F2 in the VBA interface) to inspect
the programmable interface of any available object of the Excel object model

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

84

 Table 2-1. Some Important Microsoft Excel Application Object Properties That Return Important Workbook
 Objects

 Application Object Property Value Returned Represents

 ActiveCell Cell value Value of the selected cell on the selected worksheet

 ActiveChart Chart object Reference to the selected chart on the selected
worksheet

 ActivePrinter String text Name of the active printer

 ActiveSheet Sheet object Reference to the active sheet on the selected
workbook

 ActiveWindow Window object Reference to the window of the current Excel
application

 ActiveWorkbook Workbook object Reference to the selected workbook

 Selection Object Refers to the selected object in the active window,
usually the value of the selected cell

 ThisCell Range object The cell from which a user-defined function is called

 ThisWorkbook Workbook object The workbook containing the current VBA code

 Table 2-2. Some Important Microsoft Excel Application Object Properties That Control the Excel Workbook

 Application Object Property Value Used To

 DisplayAlerts Boolean Controls whether Excel displays alerts and messages
while a macro is running

 Calculation Numeric Returns or sets an XlCalculation value that
represents the calculation mode

 DisplayScrollBars Boolean Displays or hides Excel scroll bars for all workbooks

 DisplayStatusBar Boolean Displays or hides the Excel status bar

 EnableEvents Boolean Controls whether Excel events are enabled for the
specified object

 ScreenUpdating Boolean Turns on/off Excel screen updating

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

85

 Since the Application object is the top member object in the Excel interface, to use any Excel
 Application object property or method, you don’t need to explicitly reference the Application object in
your code. Although if you reference it and insert the dot character, VBA will open a quick list with all the
object interfaces, and your code will become easier to understand.

 For example, Table 2-1 shows that the Application object ActivePrinter property returns some string
text with the name of your default Windows printer. By using the VBA Immediate window, you can verify
your default printer name using two different syntaxes (Figure 2-3), as shown here:

 ?ActivePrinter
 ? Application .ActivePrinter

 Table 2-3. Some Important Microsoft Excel Application Object Methods and the Actions They Perform

 Application Object Method Action Performed

 ConvertFormula Converts an Excel formula format from R1C1 style to A1 style, and vice versa

 FileDialog Opens a File Open or Save As dialog box

 GetOpenFileName Shows the Excel Open dialog box where you select the folder and files to be
opened

 GetSaveAsFileName Shows the Excel Save As dialog box to select the folder and file to save

 InputBox Shows Excel InputBox

 Intersect Returns a range object that is the intersection of one or more ranges

 OnKey Performs a specific Public Function procedure of a Standard module when
a given key is pressed

 OnTime Performs a specific Public Function procedure on a specified time of the day

 SendKeys Send keys to the Excel interface as if they have been typed by the user

 Quit Quits the Excel interface

 Volatile When used inside a Function procedure, forces it to always recalculate

 Figure 2-3. Since the Application object is the top-level object on the Excel object model, you don’t need to
reference it when you want to refer to any of its properties or methods. You can access any property or method
with or without preceding it by Application

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

86

 Since many Application object properties cited in Table 2-1 do not return a value (they return specific
Excel object pointers), you must explicit reference some property of this returned object to print its value
in the VBA Immediate window. For example, the Application object ActiveCell property returns a Range
object. Since a Range object returns a value, you can inspect the ActiveCell value in the VBA Immediate
window, or you can specify any Range object property that returns a value to be printed. Since a Range object
has an Address property, you can print the address of the current selected cells in the VBA Immediate
window using these two different syntaxes:

 ? Application .ActiveCell.Address

 or

 ?ActiveCell. Address

 You can also navigate through the object model separating objects with a dot character (.) to print some
useful properties you need to investigate while your code is running. For example, you can get the number
of sheet tabs on the active workbook by exploring the ThisWorkbook object Worksheets collection Count
property, as follows:

 ?ThisWorkbook. Worksheets .Count

 Or you can print the number of rows of the third sheet tab (which has the same number of rows of every
other sheet tab) using this syntax (Figure 2-4):

 ?ThisWorkbook. Worksheets (3).Rows.Count

 Figure 2-4. If the Application object properties return an object reference instead of a value, you must use
some of the object properties to inspect it in the VBA Immediate window, like the Rows collection Count
property for the Worksheets collection of the Application object. You can avoid preceding the Worksheets
collection by the Application object

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

87

 Using Application Properties to Control the Way the Excel Interface
Behaves
 Some Application object properties control the way Excel behaves, and you will use them in your VBA code
to make your procedures run smoother, without disturbing the Excel environment while your code runs.

 Table 2-2 shows some of these properties, like the Application .DisplayScrollBars property,
which you can use to hide Excel scroll bars from every sheet tab, enabling the user to avoid scrolling your
application interface through all the possible worksheet cells. To set any Table 2-2 properties, you must not
use the VBA print character (?) in the Immediate window. You use the equal sign to define the property value.

 For example, try to use this syntax in the VBA Immediate window to hide the Excel scroll bars:

 Application .DisplayScrollBar = False

 Just the Application .Calculation method needs to be strictly defined to a given calculation state to
guarantee that Excel will not try to calculate the workbook while your code change cell values. To do this,
you must set the Calculation property to the xlCalculationManual constant, execute your worksheet
changes, and then set it again to xlCalculationAutomatic .

 Application .Calculation =xlCalculationManual
 ... 'Code here
 Application .Calculation = xlCalculationAutomatic

 ■ Attention Note that the Excel Application object also has a Calculate method, which forces the entire
workbook to calculate, no matter which value the Calculation property has.

 Most times when you execute the VBA code behind Excel, you notice that the Excel environment seems
to do nothing while the code is running and doing different operations over one or more worksheets. Three
different Excel properties must be disabled to guarantee that the Excel window remains unchangeable while
your code is running: Calculation , EnableEvents , and ScreenUpdating .

 To turn on/off such properties, create a simple VBA procedure that receives a Boolean argument and
change these three properties at one time, turning them off before your code runs and turning them on
again after your code finishes. The next code procedure can be used to blind the Excel interface for every
change made by your code:

 Public Sub CalculationEventsScreenUpdating (bolEnabled As Boolean)
 Application .Calculation = IIf(bolEnable, xlCalculationAutomatic, xlCalculationManual)
 Application .EnableEvents = bolEnable
 Application .ScreenUpdating = bolEnable
 End Sub

 Note on the Sub CalculationEventsScreenUpdating () procedure that the bolEnabled argument
(declared As Boolean as its three-letter prefix implies) is used to alternate the Calculation property using
the VBA IIf() function (also called Immediate If) according to the value it receives. If bolEnabled is True ,
 IIf() will return xlCalculationAutomatic ; if it is False , it will return xlCalculationManual .

 Application .Calculation = IIf(bolEnable , xlCalculationAutomatic, xlCalculationManual)

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

88

 To use the Sub CalculationEventsScreenUpdating () procedure, you simply make a call for it at the
beginning and at the end of your code procedure, in this way:

 Sub Test()
 Call CalculationEventsScreenUptdating(False) 'Turn off Calculation, Events and Screen

updating
 ... 'Your code will run here
 Call CalculationEventsScreenUptdating(True) 'Turn on Calculation, Events and Screen

updating
 End Sub

 ■ Attention As you will see later, if you set the Application .EnableEvents property to False , Excel will not
fire any event while your code is running. If by any means your code breaks because of errors before you set the
 EnableEvents property to True , your Excel application will stop reacting to Excel events, as if it were frozen.

 Using Application Methods to Show Excel File Dialogs
 The Excel Application object also has useful methods to allow you to interact with the Windows and Office
dialog boxes used to load and save files, with the Windows timer, and with your keyboard.

 Three Excel Application object methods can be used to interact with folder and files. There is one low-
level method, FileDialog , and two high-level methods, GetOpenFileName and GetSaveAsFileName , which
are the simplest to use. They are a great way to introduce you to good VBA programming techniques.

 Using the FileDialog Method
 Among the three possible methods to show an Excel File Open or Save As dialog box, the Application .
FileDialog method is the most complex. But it allows you to take more control of the dialog box, with this
syntax:

 Application .FileDialog(FileDialogType)

 In this code:

 FileDialogType : This is an Excel VBA constant that can be set to any of the
following:

 msoFileDialogFilePicker : This allows the user to select a file.
 msoFileDialogFolderPicker : This allows the user to select a folder.
 msoFileDialogOpen : This creates an Open File dialog box.
 msoFileDialogSaveAs : This creates a Save As file dialog box.

 The Application .FileDialog method returns a FileDialog object, which has a defined interface of
properties and methods, as stated in Table 2-4 .

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

89

 ■ Attention There is no effective difference between the msoFileDialogFilePicker and
 msoFileDialogOpen constants. Both will show a dialog box to open one or more files, according to the value
defined for the AllowMultiSelect property. The first constant will by default show “Browse” in the dialog box
title bar, while the second will show “File Open ” (if you do not change the Title property).

 You can test the Application .FileDialog method by typing these commands in the VBA Immediate
window , passing one of the FileDialogType constants to the method.

 ? Application .FileDialog(msoFileDialogOpen).Show

 Figure 2-5 shows how the FileDialog object properties relate to interface items of the evoked dialog box.

 Table 2-4. FileDialog Object Properties and Method

 Property Type Description

 AllowMultiSelect Property Determines whether the user is allowed to select multiple files from
a file dialog box

 Application Property Returns an Application object that represents the container
application for the object

 ButtonName Property Returns or sets a String representing the text that is displayed on
the action button of a file dialog box, after you select a file

 Creator Property Returns a 32-bit integer that indicates the application in which the
specified object was created

 DialogType Property Returns an MsoFileDialogType constant representing the type of
file dialog box that the FileDialog object is set to display

 FilterIndex Property Returns or sets an Integer indicating the default file filter of a file
dialog box

 Filters Property Returns a FileDialogFilters collection

 InitialFileName Property Returns or sets a String representing the path and/or file name that
is initially displayed in a file dialog box

 InitialView Property Returns or sets a MsoFileDialogView constant representing the
initial presentation of files and folders in a file dialog box

 Item Property Returns the text associated with an object

 Parent Property Returns the Parent object for the specified object

 SelectedItems Property Returns a SelectedItems collection with all selected files

 Title Property Returns or sets the title of a file dialog box displayed using the
 FileDialog object

 Show Method Show the desired dialog box with all set properties; returns True if
any file/folder is selected and returns Cancel otherwise

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

90

 To use the FileDialog object, you must use a With... End With VBA construct to reference the
 FileDialog object just once, set any of it properties, and then evoke the Show method, as follows (note that
inside the With...End With statement, you just use the dot before the Show method):

 Public Sub ShowFileDialog()
 Dim fd as FileDialog
 Dim strFile as string

 Set fd = Application .FileDialog(msoFileDialogOpen)

 With fd
 '... Set the FileDialog properties here
 If .Show Then 'Evoke the dialog box Open file
 '.Show returns True
 'User selected a file.
 strFile = .Selecteditems(1)
 'Process the file here
 Else
 ' .Show returns False
 'User click Cancel or close the dialog box selecting anything
 End If
 End With
 End Sub

 Figure 2-5. Table 2-4 properties of the FileDialog method associated to interface components of the Open
dialog box

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

91

 Note in the previous code that if the user select one file or folder, its name will be returned to the
 strFile string variable by the first item (item 1) of its SelectedItems() collection.

 By setting the AllowMultiSelect property to True , the user can select multiple files in the Open dialog
box. You will process all selected files by looping through the SelectedItems() collection using a VBA For
Each statement (you must declare a Variant variable since the For Each loop just works with Variant and
 Object variables).

 Public Sub ShowFileDialog()
 Dim fd as FileDialog
 Dim varFile as Variant

 Set fd = Application .FileDialog(msoFileDialogOpen)

 With fd
 '... Set the FileDialog to allow the selection of multiple files
 . AllowMultiSelect = True
 If .Show Then '.Show evokes the dialog box Open file
 '.Show method returns True
 'User selected one or more files
 For Each varFile in .SelectedItems
 Debug.Print varFile 'Print in the Immediate window all selected files and its path
 'Process the selected file here
 Next
 Else
 ' .Show method returns False
 'User click Cancel or close the dialog box selecting anything
 End If
 End With
 End Sub

 To effectively use the Application object FileDialog method in Excel, your best bet is to implement
a Private function that takes care of all Application .FileDialog arguments and creates Public Sub
procedures that call these functions and can be easily associated to a ControlButton inserted in the Excel
worksheet application interface.

 The file Application FileDialog method.xslm that you can extract from the Chapter02.zip file uses
this strategy. It implements on its basFileDialog standard module the Private Function ShowDialogBox ()
procedure, which is accessed from different Public Sub procedures of this module associated to ControlButton
objects of the Sheet1 interface. Right -click any ControlButton and select the Assign Macro command in the
context menu to show the Assign Macro dialog box, which displays the procedures associated to the selected
button (if any) and all other Public Sub procedures available in your VBA project (Figure 2-6).

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

92

 Note that the Open One FileDialog ControlButton is associated with the Public Sub OpenOneDialog()
procedure, and if you click the Edit button in the Assign Macro dialog box, the VBA editor will promptly
show this procedure code:

 Public Sub OpenOneDialog()
 Dim strFile As String

 strFile = ShowDialogBox () & ""

 If Len(strFile) Then
 MsgBox "File selected: " & strFile, vbInformation, "1 File Selected!"
 End If
 End Sub

 Figure 2-6. The file Application FileDialog method.xlsm has Button controls associated with Public Sub
procedures from basFileDialog, which makes a call to its Private Function ShowDialogBox () that uses the
 Application .FileDialog method

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

93

 Open One Single File

 The Sub OpenOneDialog() procedure makes a single call to the ShowDialogBox () function without
passing it any argument and associates the selected file returned by the function (if any) to the strFile
string variable. The value returned by the ShowDialogBox () function is concatenated to an empty string
("") because it returns a Variant , which by default is set to Empty (the value returned if the user clicks the
Cancel or Close button of the dialog box):

 strFile = ShowDialogBox () & ""

 The Private Function ShowDialogBox () from basFileDialog of the Application FileDialog
method.xlsm Excel file executes this code:

 Private Function ShowDialogBox (Optional DialogType As DialogType = OpenFile, _
 Optional MultiSelect As Boolean, _
 Optional Title As String, _
 Optional ButtonName As String, _
 Optional FileFilters As String, _
 Optional FilterIndex As Integer = 2) As Variant

 'Purpose: Show a dialog box Open or Folder Picker
 'Optional arguments: DialogType = specify File or Folder selection
 ' MultiSelect = specify multi file selection
 ' Title = Title off the dialog box
 ' ButtonName = Title off the action button
 ' Filters = string with one filter or Array of filter strings
 ' Each file filter must contain filter

name, a colon, and filter extension
 ' Separate file filters with colon
 ' FilterIndex: file filter to be used
 'Returns: string with selected file/folder or array with selected files/folders

 Dim fd As FileDialog
 Dim varItem As Variant
 Dim varFiles() As Variant
 Dim strFllter As String
 Dim strExtension As String
 Dim intPos As Integer
 Dim intPos2 As Integer
 Dim intI As Integer

 'Define dialog type to Open dialog
 Set fd = Application .FileDialog(DialogType)

 With fd
 'Define some dialog properties
 .AllowMultiSelect = MultiSelect

 If Len(Title) Then
 .Title = Title
 End If

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

94

 If Len(ButtonName) Then
 .ButtonName = ButtonName
 End If

 If DialogType <> OpenFolder Then
 'Verifiy if FileFilters argument was passed to the procedure
 If Len(FileFilters) Then
 ' Clear default Excel filters
 .Filters. Clear

 'FileFilters must be a string with one or more file filter
 ' using Comma as separating character
 Do
 intPos2 = InStr (intPos + 1, FileFilters, ",")
 strFllter = Mid (FileFilters, intPos + 1, intPos2 - intPos - 1)
 intPos = InStr (intPos2 + 1, FileFilters, ",")
 If intPos > 0 Then
 strExtension = Mid (FileFilters, intPos2 + 1, intPos - intPos2 - 1)
 Else
 strExtension = Mid (FileFilters, intPos2 + 1)
 End If
 .Filters.Add strFllter, strExtension
 Loop Until intPos = 0
 End If

 If FilterIndex > .Filters.Count Then
 FilterIndex = 1
 End If
 .FilterIndex = FilterIndex
 End If

 If fd.Show Then
 If .SelectedItems.Count = 1 Then
 'Just one file was selected. Return it name!
 ShowDialogBox = .SelectedItems(1)
 Else
 'More than one file was selected
 'Fullfill an array of file names and return it!
 ReDim varFiles(.SelectedItems.Count - 1)
 For Each varItem In .SelectedItems
 varFiles(intI) = varItem
 intI = intI + 1
 Next
 ShowDialogBox = varFiles
 End If
 End If
 End With
 End Function

 Note that the Function ShowDialogBox () procedure may receive six optional arguments (DialogType ,
 MultiSelect , Title , ButtonName , FileFilters , and FilterIndex) on the declaration.

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

95

 Private Function ShowDialogBox (Optional DialogType As DialogType =
 OpenFile, _
 Optional MultiSelect As Boolean, _
 Optional Title As String, _
 Optional ButtonName As String, _
 Optional FileFilters As String, _
 Optional FilterIndex As Integer = 2) As Variant

 The DialogType optional argument is declared as DialogType , a Private Enum declaration that uses
the standard VBA constants associated with the FileDialogType values of the Application .FileDialog
method, receiving by default the OpenFile value (which is associated to the msoFileDialogOpen constant).

 Option Explicit

 Private Enum DialogType
 OpenFile = msoFileDialogOpen
 OpenFolder = msoFileDialogFolderPicker
 SaveAsFile = msoFileDialogSaveAs
 End Enum

 Since the DialogType argument is defined by default as msoFileDialogOpen , when the function is
called without any arguments, it shows an Open dialog box, associating it to the fd variable, declared as
 FileDialog type:

 Private Function ShowDialogBox (Optional DialogType As DialogType = OpenFile , _
 ...
 Dim fd As FileDialog
 ...
 Set fd = Application .FileDialog(DialogType)

 Once the desired FileDialog is associated to the fd variable, a With fd... End With structure is
created so the code can make easier use of the fd object variable properties, verifying whether any value
has passed to the MultiSelect , Title , and ButtonName procedure arguments and associating the value
to the appropriate FileDialog arguments (note that there is a dot at the left of each property to indicate
the association with the procedure argument, if received). The existence of the Title and ButtonName
arguments is tested by the VBA Len() function, which returns the length of the argument text if it has been
received. When the argument is omitted, Len() will return 0 , which means False .

 With fd
 'Define some dialog properties
 .AllowMultiSelect = MultiSelect

 If Len(Title) Then
 .Title = Title
 End If

 If Len(ButtonName) Then
 . ButtonName = ButtonName
 End If

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

96

 ■ Attention The ButtonName argument changes the OK button text when you select a file.

 The ShowDialogProcedure () function then tests whether the FileFilters argument has been
received, by verifying its length with the VBA Len() function. If it is true, it first clears the default Excel
filters used by the FileDialog method.

 'Verifiy if FileFilters argument was passed to the procedure
 If Len(FileFilters) Then
 ' Clear default Excel filters
 .Filters. Clear

 The ShowDialogBox () function expects to receive on its FileFilters argument a string of file filters,
where the filter names and filter extensions are separated by comma characters. Let’s say you are trying to
pass two file filters: one for .xlsx files and another to .xls files. In this case, you should create a string like
this:

 "Excel 2007-2010 files, *.xlsx, Excel 97-2003 files, *.xls"

 The procedure must search the FileFilters string argument by each comma character, selecting the
filter name (strFilter) and filter extension (strExtension) and adding them to the FileDialog.Filters
collection, which requires this syntax:

 fd.Filters.Add strFilter, strExtension

 It does this by executing a VBA Do...Loop structure that persistently uses the VBA InStr () function to
search for two successive commas inside the FileFilters string. The first comma defines the end of the file
filter name, and the second comma defines the end of the file filter extension. To extract the filter name and
filter extension from inside the FileFilters string, you must use the VBA Mid () function.

 The VBA InStr () function performs a string search inside any string variable from an initial set
position. It has this syntax:

 InStr ([Start], String, Substring, [Compare])

 In this code:

 Start : This is optional; this is a numeric expression, 1-based, that sets the
starting point for the search. If omitted, the search begins at the first character.

 String : This is required; it refers to the string variable or expression being
searched.

 Substring : This is required; it refers to the string expression sought.

 Compare : This is optional; it specifies the type of string comparison. If omitted,
the Option Compare setting of the code module determines the type of
comparison. You can use the following:

 Binary : This performs a binary comparison (taking into account capitalization).

 Text : This is the default type, which performs a text comparison (disregarding
capitalization).

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

97

 The InStr () function returns the position of the first character of the Substring argument if
 Substring is found inside the String searched. It returns zero otherwise.

 The VBA Mid () function extracts any substring from a string, starting at a defined position. It has this
syntax:

 Mid (String, Start, Length)

 In this code:

 String : This is required; it is the string variable or expression from which the
characters must be returned.

 Start : This is required; it is a 1-based integer expression defining the starting
position of the characters to return. If Start is greater than the number of
characters in String , Mid () will return a zero-length string ("").

 Length : This is optional; it is an integer expression that indicates the number of
characters to be returned. If omitted (or if there are fewer characters than Length
characters in the text), all characters from the start position to the end of the
string are returned.

 The strategy used to consistently extract the file filter name and file extension from the FileFilters
string argument is to use two integer variables (intPos and intPos2) that point to two successive commas
inside the argument. If the FileFilters string has just one pair of filter name and file extension, there will be
just one comma. If it has two pairs of filter names and file extensions, it will have three commas. The number
of commas will be equal to n-1 regarding the count of each pair of filter name and filter extension.

 As soon as the Do... Loop structure begins, the first comma is used to separate the first filter name, and
its filter extension is defined by intPos2 . Note that when the Do... Loop structure begins, intPos has the
default zero value attributed to any numeric variable, so the search begins on intPos+1 = 1 or on the first
character of the FileFilters variable.

 'FileFilters must be a string with one or more file filter
 ' using Comma as separating character
 Do
 intPos2 = InStr (intPos + 1, FileFilters, ",")

 Supposing that the FileFilters string has at least one comma, intPos2 will find its position, which
then will be used by the VBA Mid () function to extract the filter name from the FileFilters string and
attribute it to the strFilter string.

 strFllter = Mid (FileFilters, intPos + 1, intPos2 - intPos - 1)

 Note that Mid () begins its search on the position defined by the intPos+1 variable and extracts
 intPos2 - intPos1 - 1 characters from the FileFilters string. Figure 2-7 shows how the proposed
 FileFilters string will be operated on by these two last instructions.

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

98

 To extract the file extension for the proposed file filter, the Do…Loop structure performs another InStr ()
function to search for the next comma character, beginning at intPos2 +1 (the next character after the first
found comma).

 intPos = InStr (intPos2 + 1, FileFilters, ",")

 If it finds the position of another comma character, it means that the FileFilters string probably
has another pair of file filters and file extensions, and the strExtension variable receives the desired filter
extension by using the Mid () function again with the new intPos value (Figure 2-8).

 If intPos > 0 Then
 strExtension = Mid (FileFilters, intPos2 + 1, intPos - intPos2 - 1)

 Figure 2-7. When the Do…Loop structure begins, the first comma is found on character 22 and attributed
to the intPos2 variable. The VBA Mid () function then uses intPos+1 as the first extraction point and intPos2-
intPos-1 as the number of characters to be extracted from the FileFilters string variable

 Figure 2-8. By redefining the search starting point to intPos2 +1, the Do…Loop structure uses InStr () to search
for the next comma character. If it is found, the Mid () function is used to extract the filter extension that is
inside the two comma characters defined by the intPos2 and intPos variables

 Since both the strFilter and strExtension variables have now the filter name and filter extension,
they are used to compose the first filter using the Add method of the Filters collection.

 .Filters.Add strFllter, strExtension

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

99

 The Do...Loop structure then verifies whether intPos =0 will define the end of the loop.

 Loop Until intPos = 0

 With intPos = 30 , the loop begins again, now searching for the next comma beginning at intPos +1 = 31 .
This time intPos2 will receive character position 51, extracting the filter name from the next 19 characters
(in this case, “Excel 97-2003 files,” as shown in Figure 2-9).

 Do
 intPos2 = InStr (intPos + 1, FileFilters, ",")
 strFllter = Mid (FileFilters, intPos + 1, intPos2 - intPos - 1)

 Figure 2-9. When the Do…Loop structure begins again, the third comma is found on character 51 and attributed
again to the intPos2 variable. The VBA Mid () function then uses intPos + 1 = 31 as the first extraction point and
intPos2 - intPos - 1 = 19 as the number of characters to be extracted from the FileFilters string variable

 But now, there is no other comma to find, and the next InStr () instruction will return zero to intPos .
In this case, the If intPos>0 test will return False . The Then clause will be executed, using Mid () without
the third argument (Length), meaning that all the text beginning from Start (inPos2+1=52) to the end of the
 FileFilters string must be extracted (the last file extension). Both strFile and strExtension will be added
again to the Filters collection.

 intPos = InStr (intPos2 + 1, FileFilters, ",")
 If intPos > 0 Then
 strExtension = Mid (FileFilters, intPos2 + 1, intPos - intPos2 - 1)
 Else
 strExtension = Mid (FileFilters, intPos2 + 1)
 End If
 .Filters.Add strFllter, strExtension

 Since intPos = 0 , the Do...Loop test will return True, effectively ending the loop:

 Loop Until intPos = 0

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

100

 When the Do...Loop ends, the Filters collection Count property will have the number of file filters
added by the loop. Since the ShowDialogBox () function procedure can receive the default file filter on the
 FilterIndex argument, the procedure verifies that the FilterIndex is greater than Filter.Count . If it is, it
will be redefined to FilterIndex = 1 (the first filter added to the Filters collection).

 If FilterIndex > .Filters.Count Then
 FilterIndex = 1
 End If
 .FilterIndex = FilterIndex
 End If

 ■ Attention By default, the Application .FileDialog method will show a lot of filters in the Open or Save
dialog box, being that the first filter is All Files, with file extensions defined to *.* . The second default filter is
Excel .xlsx files, and as such, it is defined by default to the FilterIndex argument on the ShowDialogBox ()
declaration.

 The dialog box is then shown to the user using the Show method. Since the dialog box is modal, the
procedure code will stop, waiting the user response.

 If fd.Show Then

 When the dialog box is closed, the Show method will return True when a file is selected and will return
 False otherwise. If the user clicked Cancel or clicked the dialog box’s Close button (at the top-right corner),
the function ends, returning Empty (the default value for the Variant data type).

 Private Function ShowDialogBox (Optional DialogType As DialogType = OpenFile, …) as Variant
 ...
 If fd.Show Then
 ...
 End If
 End With
 End Function

 If the user selected one or more files, you must explore the SelectedItems.Count property to verify
how many files were selected. If the AllowMultiSelect property is defined to False or the user selected just
one file, SelectedFiles.Count = 1 , the ShowDialogBox () function must return the selected file name by
referencing the first item of the SelectedFiles() collection.

 If .SelectedItems.Count = 1 Then
 'Just one file was selected. Return it name!
 ShowDialogBox = .SelectedItems(1)
 Else
 ...
 End If
 End If
 End With
 End Function

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

101

 If more than one file was selected, the ShowDialogBox () function will dimension the one-dimensional
 varFiles() array to be capable of receiving all file names and will fulfill it with the selected files. Since VBA
arrays are zero-based (their first index is zero), it is dimensioned using the SelectedFiles.Count - 1 value.

 If .SelectedItems.Count = 1 Then
 ...
 Else
 'More than one file was selected
 'Fullfill an array of file names and return it!
 ReDim varFiles(.SelectedItems.Count - 1)

 The procedure makes a For Each... Next loop through all files on the SelectedItems collection ,
adding each selected file name to the varFiles() array and using the intI variable to indicate the array
index (note that intI has the default value of 0, being incremented on each loop passage).

 For Each varItem In .SelectedItems
 varFiles(intI) = varItem
 intI = intI + 1
 Next

 When the array is fulfilled with all the selected file names, it is returned by the ShowDialogBox ()
procedure.

 ShowDialogBox = varFiles

 Open Many Files

 You can now use VBA Break mode on the Public Sub OpenManyDialogWithFilter () procedure from
 basFileDialog of the Application FileDialog method.xlsm macro-enabled workbook file to go step-by-
step through the procedure code, verifying how the ShowDialogBox () function procedure deals with the
 FileFilters argument and selecting many files. It has this code:

 Public Sub OpenManyDialogWithFilter ()
 Dim varFiles As Variant
 Dim varItem As Variant
 Dim strFilters As String
 Dim strTitle As String
 Dim strMsg As String

 strFilters = " Microsoft Excel 2007-2010,*.XLS?"
 strFilters = strFilters & ", Microsoft Excel 97-2003,*.XL?"

 varFiles = ShowDialogBox (OpenFile, True, " Open My Excel Files", "Which File?", strFilters, 1)

 If Not IsEmpty(varFiles) Then
 If IsArray (varFiles) Then
 strTitle = UBound (varFiles, 1) + 1 & " Files selected"
 strMsg = strTitle & vbCrLf
 For Each varItem In varFiles
 strMsg = strMsg & varItem & vbCrLf

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

102

 Next
 Else
 strTitle = "File selected"
 strMsg = "1 File selected:" & vbCrLf & varFiles
 End If
 MsgBox strMsg, vbInformation, strTitle
 End If
 End Sub

 When you click the Open Many FileDialog with Filters ControlButton of the App lication FileDialog
method.xlsm macro-enabled workbook, the procedure declares the variables, defines the filters to be used
on the strFilters string variable, and returns the ShowDialogBox () function result to the varFiles
Variant variable. Note its arguments DialogType = OpenFile , AllowMultiSelect = True , Title = " Open
 My Excel Files" , ButtonTitle = "Which Files?" , FileFilters = strFilters , and FilterIndex = 1):

 Public Sub OpenManyDialogWithFilter ()
 Dim varFiles As Variant
 ...
 strFilters = " Microsoft Excel 2007-2010,*.XLS?"
 strFilters = strFilters & ", Microsoft Excel 97-2003,*.XL?"

 varFiles = ShowDialogBox (OpenFile, True, " Open My Excel Files", "Which File?",
strFilters, 1) & ""

 When the dialog box closes, the user (you!) did one of these two actions:

• Clicked Cancel or clicked the Close dialog box button. In this case, the varFiles
variable will continue with its default Empty value, IsEmpty(varFiles) = True and
 Not IsEmpty(varFiles) = False , and nothing happens:

 If Not IsEmpty(varFiles) Then
 ...
 End If
 End Sub

• Selected one or more files and clicked the Which File? button. In this case, Not
IsEmpty(varFiles) = True , and the procedure verifies how many files have been
selected:

• If two or more files have been selected, varFile has an array of file names,
 IsArray (varFiles) = True , and the procedure must process all files in the
array returned by the VBA Ubound() function, which has this syntax:

 UBound (Array, [Dimension])

 In this code:

 Array : This is required; it is the array variable in which you want to find the
highest possible subscript of a dimension.

 Dimension : This is optional; it is an Integer 1-based dimension for which
the highest possible subscript is to be returned (1 means the first dimension,
2 means the second, and so on). If omitted, 1 is assumed.

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

103

 The VBA UBound () function returns the item count for the desired array
dimension considering the array base count, which obeys the Option Base
statement that defines the lower bound for array subscripts. If Option Base
1 is not specified, arrays declared are 0-based, and the value returned by
 Ubound() must be added to 1 to produce the effective item count and
compose the message box title (for example, an array that Ubound()
returns as 5 has six items, with array indexes from zero to five). A For Each…
Next loop processes each array item (selected file).

 If IsArray (varFiles) Then
 strTitle = UBound (varFiles, 1) + 1 & " Files selected"
 strMsg = strTitle & vbCrLf
 For Each varItem In varFiles
 strMsg = strMsg & varItem & vbCrLf
 Next

• If just one file was selected, varFiles holds just the string regarding the selected
file. Note that the strMsg variable breaks the message into two lines using the
VBA vbCrLf constant (Cr means “carriage return,” and Lf means “line feed”):

 If IsArray (varFiles) Then
 ...
 Else
 strTitle = "File selected"
 strMsg = "1 File selected:" & vbCrLf & varFiles
 End If

 The MsgBox () function displays the file names selected ending with the Sub OpenManyDialogWithFilter ()
procedure (Figure 2-10):

 MsgBox strMsg, vbInformation, strTitle
 End If
 End Sub

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

104

 Figure 2-10. When you click the Open Many FileDialog with the Filters Button control , the Public Sub
 OpenManyDialogWithFilter () procedure is executed and calls the Private ShowDialogBox () function,
allowing the selection of one or more files, which are exhibited by a MsgBox () function

 You must study all other Public Sub procedures from basFileDialog of the Application FileDialog
method.xlsm macro-enabled workbook to understand how they interact with the ShowDialogBox ()
function to allow the selection of files and folders.

 ■ Attention By using the OpenFolder enumerator on the DialogType argument of the ShowDialogBox ()
method, Excel will show a dialog box where just folders are shown and can be selected (try the Folder Picker
control button and the associated Sub FolderDialog() procedure).

 Using the SaveAsFile enumerator, the ShowDialogBox () function will show the Save As dialog box, which is
essentially the same as the Open dialog box. The main difference between them is that if you select an existing
file name on the Save As dialog box, the system will automatically warn you that the file already exists, and you
will have an extra chance to cancel the operation.

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

105

 Using the GetOpenFileName and GetSaveAsFileName Methods
 The Application object’s GetOpenFileName and GetSaveAsFileName methods work just like the
 ShowDialogBox () procedure, both returning a Variant value with the selected file or array of files, using a
different order of optional arguments:

 Application .GetOpenFilenName(FileFilter, FilterIndex, Title, ButtonText, MultiSelect)
 Application . GetSaveAsFileName (InitialFileName, FileFilter, FilterIndex, Title, ButtonText)

 In this code:

 InitialFilename : This is optional. It is used just to the GetSaveAsFileName
method and is an optional Variant data type to the default name of the file that
will be saved.

 FileFilter : This is optional. It is a string that specifies the pair of filter name and
filter extension, separated by commas, to be used by the dialog box.

 FilterIndex : This is optional. It is the index number (1-based) of the filter name
to be used by default.

 Title : This is optional. It is a string that specifies the title of the dialog box.

 ButtonText : This is optional; it works just on the Mac operating system.

 MultiSelect : This is optional; it is used just by the GetOpenFileName method,
which when set to True allows the selection of multiple files.

 There are no essential differences using the Application object’s GetOpenFileName ,
 GetSaveAsFileName , or FileDialog method, besides the fact the latter method is the only one that allows
you to browse and return a folder’s name by using the msoFileDialogFolderPicker constant on the
 FileDialogType argument.

 Actually, these two methods are easier to use than the FileDialog method, requiring small pieces of
VBA code interaction, considering the following:

• Both GetOpenFileName and GetSaveAsFileName return False if the user cancels the
associated dialog box shown by each method.

• GetSaveFileName and GetOpenFileName always return the typed or selected file
name whenever the MultiSelect argument is defined as False (the default value).

• If the GetOpenFileName MultiSelect argument is defined as True , it returns a
1-based one-dimensional array of file names, even if just one file will be selected.

 To see how you can program both methods, open the file Application GetOpenFileName and
 GetSaveAsFileName methods.xlsm macro-enabled workbook (also available in the Chapter02.zip file).
 Right -click any ControlButton and then select the Assign Macro menu command to show the Assign Macros
dialog box to show all the Public Sub procedures available in this workbook (Figure 2-11).

 As Figure 2-11 implies, the Open One File ControlButton is associated with the Public Sub
OpenOneFile() procedure, which has this VBA code:

 Public Sub OpenOneFile()
 Dim varFile As Variant
 Dim strFile As String
 Dim strFolder As String
 Dim strMsg As String
 Dim intPos As Integer

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

106

 varFile = Application .GetOpenFilename
 If varFile <> False Then
 intPos = InStrRev (varFile, "\")
 strFolder = Left (varFile, intPos - 1)
 strFile = Mid (varFile, intPos + 1)
 strMsg = "Folder: " & strFolder & vbCrLf
 strMsg = strMsg & "File: " & strFile

 MsgBox strMsg, vbInformation, "1 file selected"
 End If
 End Sub

 Figure 2-11. This is the GetOpenFileName and GetSaveAsFileName methods.xlsm macro-enabled workbook,
with Button controls associated to Public Sub procedures that use Application . GetOpenFileName and
 GetSaveAsFileName to interact with files and folders

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

107

 Open One Single File

 When you click the Open One File Button control , it makes a simple call to the
 Application . GetOpenFileName method without passing it any argument and waits for the dialog box to be
closed to attribute a value to the varFile variable.

 varFile = Application . GetOpenFilename

 If the user clicks the Cancel or Close button, the varFile variable will receive False , and the procedure
will end. If a file is selected, the procedure will break the file path and file name into two different pieces and
show it using a MsgBox () function (a common issue regarding Excel programming on Internet sites).

 Note that to get the file name from the returned selected file path, the procedure makes use of the VBA
 InStrRev () function.

 varFile = Application .GetOpenFilename
 If varFile <> False Then
 intPos = InStrRev (varFile, "\")

 The InStrRev () VBA function searches any string backward for a given string match and has this syntax:

 InStrRev (String, StringMatch [, Start [, Compare]])

 In this code:

 String : This is required; it is the string expression being searched.

 StringMatch : This is required; it is the string expression being searched for.

 Start : This is optional; it is a numeric expression setting the 1-based starting
position for each search, starting from the left side of the string. If Start is
omitted, then –1 is used, meaning the search begins at the last character position.
Search then proceeds from right to left.

 Compare : This is optional; it is a numeric value indicating the kind of comparison
to use when evaluating substrings. If omitted, a binary comparison is performed
(meaning that upper/lowercase are different letters).

 Note that the InStrRev () function searches backward the varFile variable for the last backslash that
separates the folder name from the file name and stores it when found in the intPos variable.

 The folder path where the file is stored is then retrieved using the VBA Left () function, from the
beginning of the varFile variable to the character immediately before the last backslash:

 strFolder = Left (varFile, intPos - 1)

 The VBA Left () function has this syntax:

 Left (String, Length)

 In this code:

 String : This is required; it is the string expression from which the leftmost
characters are returned.

 Length : This is required; it is an Integer expression indicating how many
characters to return. If zero, a zero-length string ("") is returned. If greater than
or equal to the number of characters in String , the complete string is returned.

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

108

 To extract the file name from the varFile variable, the procedure uses the VBA Mid () function, from
the next character after the last backslash to the end of the varFile string:

 strFile = Mid (varFile, intPos + 1)

 Note that the Mid () function uses just the Start argument, meaning it must extract from varFile ,
beginning on intPos+1 position, all characters to the end of the string, literally extracting the file name
 varFile .

 ■ Attention VBA also has the Right () function, which extracts characters from right to left of any string
and has this syntax:

 Right (String, Length)

 In this code:

 String : This is the string that you want to extract from.

 Length : This indicates the number of characters that you want to extract starting from the
rightmost character.

 Using Right () : You can achieve the same Mid () result to extract the file name from varFile
using this syntax:

 strFile = Right (varFile, Len(varFile) - intPos)

 The folder name and file name are then presented to the user using a MsgBox () function, which breaks
the message in two lines by concatenating the vbCrLf constant after the folder name:

 strMsg = "Folder: " & strFolder & vbCrLf
 strMsg = strMsg & "File: " & strFile

 MsgBox strMsg, vbInformation, "1 file selected"

 Open Many Files

 The Open Many Files and Open Many Files with Filter buttons use the same programming technique to
extract the files from the array returned by the Application . GetOpenFileName method, when define the last
argument MultiSelect = True . This is the Sub OpenManyFilesWithFilter procedure code associated to the
 Open Many Files with Filter Button control :

 Public Sub OpenManyFilesWithFilter ()
 Dim varFiles As Variant
 Dim varItem As Variant
 Dim strFilters As String
 Dim strTitle As String
 Dim strMsg As String

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

109

 strFilters = " Microsoft Excel 2007-2010,*.XLS?"
 strFilters = strFilters & ", Microsoft Excel 97-2003,*.XL?"

 varFiles = Application .GetOpenFilename(strFilters, 1, " Open My Excel File!", , True)
 If IsArray (varFiles) Then
 strTitle = UBound (varFiles) & " File(s) was selected!"
 strMsg = "File(s) selected:" & vbCrLf
 For Each varItem In varFiles
 strMsg = strMsg & varItem & vbCrLf
 Next
 MsgBox strMsg, vbInformation, strTitle
 End If
 End Sub

 After all variable declarations (note that they are grouped by type), the procedure first mounts the
desired file filters on the strFilters string variable.

 strFilters = " Microsoft Excel 2007-2010,*.XLS?"
 strFilters = strFilters & ", Microsoft Excel 97-2003,*.XL?"

 It then makes a call to the Application . GetOpenFileName method, passing it the strFilter argument
(1 for the default FilterIndex), sets “ Open My Excel File!” as the dialog title, and defines the last argument
as MultiSelect = True .

 varFiles = Application .GetOpenFilename(strFilters, 1, " Open My Excel File!", , True)

 The procedure will stop at this point waiting the modal dialog box to be closed. Once again, if the user
clicks Cancel or clicks the dialog box’s Close button, varFiles will receive False , and the procedure will end.
But since the Multiselect argument is defined as True , if the user selects one or more files, varFiles will
receive an array with the complete path to each selected file. So, the next instruction verifies with the VBA
 IsArray () function if varFiles is an array structure:

 If IsArray (varFiles) Then

 To create the message box title, the procedure uses the VBA UBound () function to count how many file
names have been inserted on the varFiles array.

 strTitle = UBound (varFiles) & " File(s) was selected!"

 Note that the procedure does not use the UBound () Dimension argument, meaning that it must
retrieve the first (and only) dimension of the returned array of selected file names. And since the UBound ()
function is 1-based, the value returned means the total files selected.

 The strMsg variable is then initiated with the “File(s) selected:” string, using a vbCrLf constant to break
the string message.

 strMsg = "File(s) selected:" & vbCrLf

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

110

 Inside a For Each... Next loop, a file name on the varFiles array is added to the strMsg string, breaking
the string with a vbCrLf for each file, and at the end of the loop the MsgBox () function shows the selected files.

 For Each varItem In varFiles
 strMsg = strMsg & varItem & vbCrLf
 Next
 MsgBox strMsg, vbInformation, strTitle

 The Save as File ControlButton is associated to the Sub SaveFile() procedure, which uses the
 Application . GetSaveAsFileName method to allow the user to select or type the file name that will be used
to save a file.

 Public Sub SaveFile()
 Dim varFile As Variant

 varFile = Application . GetSaveAsFileName ("Default file name", , , "Save My Excel File!")
 If varFile <> False Then
 MsgBox "Selected File to save: " & varFile, vbInformation, "File will be saved"
 End If
 End Sub

 Using Application InputBox Method
 The Excel Application .InputBox method differs from the VBA InputBox () function because VBA raises
a modal dialog box and always returns a text value, while the Excel Application .Inputbox raises a semi-
modal dialog box that allows the user to select cells on the workbook; it also can validate the user input and
can capture Excel object errors and formula values. The Application .InputBox method has this syntax:

 Application .InputBox(Prompt, Title, Default, Left , Top, HelpFile, HelpContextID, Type)

 In this code:

 Prompt : This is required; it is a string representing the message displayed in the
dialog box.

 Title : This is optional; it is a string for the title of the dialog box.

 Default : This is optional; it specifies the value that will appear in the text box
when the dialog box is initially displayed. If omitted, the text box is left empty (it
can be defined to a Range object).

 Left : This is optional; it specifies an x position for the dialog box in relation to the
upper-left corner of the screen, in points.

 Top : This is optional; it specifies a y position for the dialog box in relation to the
upper-left corner of the screen, in points.

 HelpFile : This is optional; it is the name of the Help file associated to the input
box. If the HelpFile and HelpContextID arguments are present, a Help button
will appear in the dialog box.

 HelpContextID : This is optional; it is the context ID number of the Help topic in
 HelpFile .

 Type : This is optional; it specifies the return data type. If this argument is omitted,
the dialog box returns text.

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

111

 Table 2-5 specifies the values that can be passed to the Type argument of the Application .InputBox
method.

 Table 2-5. Values Allowed to the Application .Inputbox Type
Argument and the Value Expected or Returned by the InputBox

 Type Value Return

 0 Formula (string beginning with =)

 1 Number

 2 Text (default)

 4 Logical (True or False)

 8 Range object

 16 Error object

 64 Array of values

 In Table 2-5 , the Return column indicates that besides returning False whenever the user clicks the
Cancel button, the Application .InputBox method can also return different types of values, an array, or even
object pointers (Range or Error).

 You can try the Application .InputBox() method in the VBA Immediate window, typing a command
line that has at least the Prompt argument (which by default uses Type = Text).

 ? Application .InputBox("Select a cell")

 By clicking any cell value, the Application .InputBox method will return the value as text in the
Immediate window (Figure 2-12).

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

112

 Figure 2-12. Use the VBA Immediate window to test the Application .Inputbox method, passing it first the
required argument prompt. Excel will show a InputBox dialog over the current worksheet ready to grab any
text value from any worksheet. Click any cell to see its address in the InputBox dialog, and press Enter to return
the selected cell value (or top-left cell value of any selected range) to the VBA Immediate window

 If you define the Type argument to 1 (Number) and select a cell with a text value, the InputBox will
validate the selected data and show a dialog box warning indicating that a number is expected.

 To select both Number and Text values, you can pass 1 + 2 = 3 to Type (the sum of arguments Text +
Number). To allow the selection of Number , Text , and Logical values, pass 1 + 2 + 4 = 7 to Type .

 The Application .InputBox method does its best when you want to recover any range of addresses
selected by the user on the worksheet and pass the selected range address to some VBA procedure.
Whenever you need such user interaction, use Type = 0 (Formula).

 Let’s see some practical examples. The Application InputBox method.xlsm macro-enabled workbook
that you can extract from the Chapter02.zip file has command buttons associated to Public Sub
procedures of the basInputBox method to allow you to test each possible Application .Inputbox Type
argument value. It also has some number, text, and error values in the cell range D2:F4 .

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

113

 Figure 2-13 shows that the Application InputBox method.xlsm workbook has one Public Sub
procedure for each possible Type argument value (according to Table 2-5). To easily select the Type
argument, basInputBox also has the Public Enum InputBoxType .

 Public Enum InputBoxType
 Formula = 0
 Number = 1
 Text = 2
 Logical = 4
 Range = 8
 ExcelError = 16
 ArrayOfValues = 64
 End Enum

 Figure 2-13. This is the Application InputBox method.xlsm macro-enabled workbook, which has Button
controls associated to Public Sub procedures that make use of a centralized Private Function to make calls to
the Application .Inputbox method using different Type arguments

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

114

 All these Public Sub procedures make a call to the generic Private Function ShowInputBox ()
procedure from basInputBox , using different values for the SelectionType argument.

 Private Function ShowInputBox (Optional Prompt As String, _
 Optional Title As String, _
 Optional DefaultValue As Variant, _
 Optional SelectionType As InputBoxType = Formula) As Variant
 Dim varValue As Variant

 Select Case SelectionType
 Case Range
 On Error Resume Next
 Set varValue = Application .InputBox(Prompt, Title, DefaultValue, , , , ,

SelectionType)
 If IsObject(varValue) Then
 Set ShowInputBox = varValue
 End If
 Case Else
 varValue = Application .InputBox(Prompt, Title, DefaultValue, , , , ,

SelectionType)
 If SelectionType = Formula Then
 varValue = Application .ConvertFormula(varValue, xlR1C1, xlA1)
 End If
 ShowInputBox = varValue
 End Select
 End Function

 Note that the Function ShowInputBox () function has been declared with four optional arguments and
returns a Variant value, allowing it to return all possible Application .InputBox returned values: number,
text, array of values, or object reference. Also note that to take advantage of the InputBoxType enumerator,
the last optional argument, SelectionType , is declared as InputBoxType , receiving by default the Type =
Formula value.

 Private Function ShowInputBox (Optional Prompt As String, _
 Optional Title As String, _
 Optional DefaultValue As Variant, _
 Optional SelectionType As InputBoxType = Formula) As Variant

 Besides being capable of returning False whenever the user clicks the dialog box’s Cancel button,
according to Table 2-5 , when Type = 8 , Application .InputBox returns a Range object . Every other Type
argument returns a variant value, an array of variant values, or eventually a VBA Error object (Type = 16).
To take care of these different possible values, ShowInputBox () uses a Select Case instruction to first verify
which value has been attributed to the SelectionType argument.

 Dim varValue As Variant

 Select Case SelectionType

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

115

 If SelectionType = Range , the procedure uses a VBA Set instruction to associate the varValue
Variant variable to the Range object returned by the Application .InputBox method. It is necessary to
disable VBA errors using an On Error Resume Next instruction because if the user clicks Cancel or the Close
button of the InputBox , False will be returned, and the Set instruction will generate an undesirable runtime
error (Set works just to object references).

 Case Range
 On Error Resume Next
 Set varValue = Application .InputBox(Prompt, Title, DefaultValue, , , , , SelectionType)

 Since we actually don’t know whether there is or not a reference to a Range object on varValue , the
procedure uses the VBA IsObject(varValue) function to verify this possibility. If IsObject(varValue) =
False (the user clicked the Cancel button), the function runs until the end, and varValue returns Empty . If
 IsObject(varValue) = True , the selected Range object is then returned by the ShowInputBox () function,
using again the VBA Set statement.

 If IsObject(varValue) Then
 Set ShowInputBox = varValue
 End If

 Every other possible Type value fits on the varValue Variant variable without the need to use a VBA
 Set statement.

 Case Else
 varValue = Application .InputBox(Prompt, Title, DefaultValue, , , , , SelectionType)

 But if SelectionType = Formula , then varValue will receive the formula using the Excel R1C1 format.
To change the formula to Excel A1 format, the procedure uses the Excel Application .ConvertFormula
method to change the default R1C1 to the customary A1 format, and ShowInputBox () returns whatever the
user selected on the worksheet.

 If SelectionType = Formula Then
 varValue = Application .ConvertFormula(varValue, xlR1C1, xlA1)
 End If
 ShowInputBox = varValue

 Since every ControlButton of the worksheet uses a specific Type value when calling the ShowInputBox ()
function, let’s see how each one works, beginning with Sub InputBoxFormula() , which has this code:

 Public Sub InputBoxFormula()
 Dim varValue As Variant
 Dim strMsg As String

 varValue = ShowInputBox ("Select any cells range or type a formula:", " Application .
InputBox Type = Formula", , Formula)

 If varValue <> False Then
 strMsg = "Formula created by Application .InputBox:" & vbCrLf
 strMsg = strMsg & varValue
 MsgBox strMsg, vbInformation, "Formula created with Application .InputBox Type = Formula"
 End If
 End Sub

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

116

 When you click the InputBox Formula Button control , the dialog box will allow you to type or create a
formula with any cell references you select on the worksheet. As mentioned, these references are returned
using the R1C1 style, and the ShowInputBox () function uses the Application .ConvertFormula method to
change them to the A1 style. Figure 2-14 shows the formula returned after creating a formula with cells D2 ,
 E2 , and F2 .

 Figure 2-14. Using Type = Formula with the Application .Inputbox method, you can click any cells of the
worksheet, use any Excel mathematical operators, and return an Excel formula to your procedure

 ■ Attention You can see the R1C1 style returned by the Application .InputBox method setting a breakpoint
on the ShowInputBox () function row where the Application .ConvertFormula method is inserted and
inspecting the varValue variable (Figure 2-15).

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

117

 Figure 2-15. To see the R1C1 formula style returned by the Application .InputBox method when Type = 0
(Formula), place a breakpoint on the row of Application .ConvertFormula and inspect the varValue
variable content

 All other control buttons used to test Application .InputBox (the selection of Number , Text , Logical ,
and Error values) use a Sub procedure similar to that used to create a formula. The InputBox Range
 ControlButton uses the Address property of the Range object to return the selected range. The InputBox
Array ControlButton is the only one that needs to be mentioned because it must verify some array
properties, such as row and column counting, before showing with the MsgBox () function each selected
array item. Here is the code procedure:

 Public Sub InputBoxArray ()
 Dim varValue As Variant
 Dim varItem As Variant
 Dim strMsg As String
 Dim intRows As Integer
 Dim intCols As Integer
 Dim intI As Integer
 Dim intJ As Integer

 varValue = ShowInputBox ("Select any cell values:", " Application .InputBox Type =
ArrayOfValues", , ArrayOfValues)
 If IsArray (varValue) Then
 intRows = UBound (varValue, 1)

 On Error Resume Next
 intCols = UBound (varValue, 2)
 On Error GoTo 0

 If intCols = 0 Then
 strMsg = "Array has " & intRows & " column(s):" & vbCrLf
 For intI = 1 To intRows
 varItem = varValue(intI)
 If IsError(varItem) Then
 varItem = CStr(varItem)

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

118

 End If
 strMsg = strMsg & "A(" & intI & ")=" & varItem & " "
 Next
 Else
 strMsg = "Array has " & intRows & " row(s) and " & intCols & " column(s):" & vbCrLf
 For intI = 1 To intRows
 For intJ = 1 To intCols
 varItem = varValue(intI, intJ)
 If IsError(varItem) Then
 varItem = CStr(varItem)
 End If
 strMsg = strMsg & "A(" & intI & "," & intJ & ")=" & varItem & " "
 Next
 strMsg = strMsg & vbCrLf
 Next
 End If
 MsgBox strMsg, vbInformation, "Array returned by Application .InputBox Type = ArrayOfValues"
 End If
 End Sub

 Note that this time the procedure uses the VBA IsArray () function to verify whether varValue
contains an array of items.

 varValue = ShowInputBox ("Select any cell values:", " Application .InputBox Type =
ArrayOfValues", , ArrayOfValues)

 If IsArray (varValue) Then

 If this is true, the procedure tries to recover the array dimensions. There is no VBA function that you can
use to return how many dimensions an array has, but the Application .InputBox method can just return
one-dimensional arrays (when you select cells on the same row) or bidimensional arrays (when you select
cells in different rows, even if you use just one column). The procedure tries to recover how many rows the
array has using UBound (varValue, 1) to return it to the intRows variable.

 If IsArray (varValue) Then
 intRows = UBound (varValue, 1)

 It then tries to recover the second array dimension, if any. If there is no second dimension on the
 varValue array, VBA will raise an error, and to avoid this error, you must use On Error Resume Next . Since
this instruction disables error raising until the procedure ends, you must turn on again the error catch using
an On Error GoTo 0 statement.

 On Error Resume Next
 intCols = UBound (varValue, 2)
 On Error GoTo 0

 Now you have the array dimensions: intRows contains the rows count, and intCols contains the
column count. Both are 1-based for the varValue array returned by the Application .Inputbox method. If
 intCols = 0 , then varValue is a row array with just one row and many columns. The code will process just
the intRows items, and a string message will show how many columns have been selected.

 If intCols = 0 Then
 strMsg = "Array has " & intRows & " column(s):" & vbCrLf

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

119

 To process all array items, the procedure uses a For... Next loop to loop through all array items,
extracting each array item to the varItem Variant variable (note that it is 1-based):

 For intI = 1 To intRows
 varItem = varValue(intI)

 Since there is a possibility to select cell error values on the worksheet, the procedure uses the VBA
 IsError(varItem) function to verify whether the selected cell has any errors. If it does, the captured error is
changed to a string.

 If IsError(varItem) Then
 varItem = CStr(varItem)
 End If

 At this point, varItem has a value that can be added to the strMsg string text, indicating the array index
and the value.

 strMsg = strMsg & "A(" & intI & ")=" & varItem & " "
 Next

 The loop will continue to process all other array items, and when finished, a MsgBox () function shows
the items selected.

 MsgBox strMsg, vbInformation, "Array returned by Application .InputBox Type =
ArrayOfValues"

 End If
 End Sub

 Note that when there is a bidimensional array, you need to perform a double For...Next loop: an outer
loop for each array row (using the intI Integer variable) and an inner loop for every array column of each
row (using the intJ Integer variable). At each inner loop passage, the array item is returned to the varItem
variable and tested with the IsError() function as the strMsg string is created, item by item.

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

120

 Note that every time the inner loop (column items) ends, a line break is inserted on the strMsg variable
using the vbCrLf constant.

 Next
 strMsg = strMsg & vbCrLf
 Next

 You must click the InputBox Array ControlButton and try to select different array types: a single-row
array, a single-column array, and a multirow column array (the last two types lead to a bidimensional array).
Using cells in the range D2:F4 , which has number, text, and error values, you will receive the MsgBox ()
message shown in Figure 2-16 .

 Figure 2-16. When you use Type=64 (ArrayOfValues), the Application .InputBox method returns an array of
items. You must use a For… Next loop to extract, analyze, and use each returned array value. Note that there is
a special case when you select one or more cells with errors: InputBox will return an Error object that must be
converted to a string (or treated with Excel CvError() function) so you can verify the error returned

 ■ Attention Whenever you use a VBA CStr() function to convert cell error values to a string, you will
receive the associated error code. Figure 2-16 shows that Error 2007 is associated with a #DIV/0! error, Error
2029 with a #NAME! error, and Error 205 with #VALUE! error. To deal with cell formula errors in code, use an
Excel CvError() function, which is covered in Chapter 5 .

http://dx.doi.org/10.1007/978-1-4842-2205-8_5

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

121

 Using Application OnTime Method
 Microsoft Excel exposes the Application . OnTime method as a way to create a timer to execute any public
procedure of a standard code module at a specified moment (public procedures from ThisWorkbook , Sheet ,
or UserForm modules won’t work). It has the next syntax:

 Application . OnTime (EarliestTime, Procedure, LatestTime, Schedule)

 In this code:

 EarliestTime : This is the exact time the procedure must be executed (using
the format hh:mm:ss). Use the TimeValue() VBA function to convert any time
string to a VBA valid time.

 Procedure : This is a string with the procedure name (must be a public procedure
of a standard module).

 LatestTime : This is the maximum time to the procedure executing.

 Schedule : This is a Boolean (True/False) to set or cancel the OnTime method for
a given procedure. The default is True .

 The next example shows how to execute the Public Sub Procedure1 procedure exactly at 12:00:

 Application . OnTime TimeValue("12:00"), "Procedure1"

 It must be mentioned that once the Application . OnTime method is set for a given procedure, if you
want to cancel it, you need to call it again with the exact set time using Schedule = False . So, you need to
store the set time on a public variable to cancel the timer. The next example shows how you can cancel the
timer created to execute Procedure1 at 12:00 with the last code instruction before it fires:

 Application . OnTime TimeValue("12:00"), "Procedure1", , False

 To create a timer ahead of time, you must define it, adding to the current system time a specific time
value. The next examples execute the Procedure1 public procedure five seconds ahead, using VBA Now() or
 Time() functions to get the system time and adding five seconds using the VBA TimeValue() function that
converts any time string with the “hh:mm:ss” format to the associated time value:

 Application . OnTime Now +TimeValue("00:00:05"), "Procedure1"
 Application . OnTime Time +TimeValue("00:00:05"), "Procedure1"

 If Excel is in Edit mode or has any procedure running when the Application . OnTime time comes, the
defined procedure will not run. So, you can use the LatestTime argument to state the maximum time of day
that Application . OnTime should try to run the procedure again.

 But once the Application . OnTime is set for a given time, if you close the workbook and keep the Excel
window opened, it will open again the workbook and run the procedure when the time has come.

 Although a timer’s usefulness on a worksheet application may be very task specific, one of its
applications is to allow a UserForm to close after some exhibited time, like the common splash screen shown
when most professional applications are opened.

 The Application OnTime method.xlsm macro-enabled workbook that you can also find inside the
 Chapter02.zip file allows you to verify how the Application . OnTime method can be used to automatically
close a UserForm . It has two UserForm s (UserForm1 and UserForm2) and the basOnTime standard module,
where you can find the Public Sub procedures UnloadUserForm1() and UnloadUserForm2() that close
the associate UserForm using the Unload instruction.

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

122

 Option Explicit

 Public Sub UnloadUserForm1()
 Unload UserForm1
 Debug.Print "UnloadUserForm1 fired"
 End Sub

 Public Sub UnloadUserForm2()
 Unload UserForm2
 Debug.Print "UnloadUserForm2 fired"
 End Sub

 Note that both code procedures use the VBA Debug.Print instruction to print in the VBA Immediate
window a string expression identifying when each method is fired. Both UserForm1 and UserForm2 define
the Application . OnTime method on the UserForm_Initialize event, which fires every time a UserForm is
opened. This is the UserForm1_Initialize event procedure, which sets the UnloadUserForm1 procedure to
fire five seconds before the UserForm is opened:

 Private Sub UserForm_Initialize ()
 Application . OnTime Time + TimeValue("0:0:5") , "UnloadUserForm1"
 End Sub

 Note that UserForm1 has no other code to cancel the Application . OnTime method if you close the form
before it fires the UnloadUserForm1 procedure.

 UserForm2 sets the Application . OnTime method on the UserForm_Initialize event and unsets it on
the UserForm_Terminate event (using Schedule=False), to guarantee that when the UserForm is closed,
the Application . OnTime event is canceled. Note that UserForm2 uses the mvarTime module-level variable
to store the exact time the OnTime method fires, reusing this value on the UserForm_Terminate event. An On
Error Resume Next instruction is used on the UserForm_Terminate event to avoid any errors that may arise
if the Application . OnTime event had been fired before the form is closed.

 Dim mvarTime As Variant

 Private Sub UserForm_Initialize ()
 mvarTime = Time + TimeValue("0:0:5")
 Application . OnTime mvarTime , "UnloadUserForm2"
 End Sub

 Private Sub UserForm_Terminate ()
 On Error Resume Next
 Application . OnTime mvarTime , "UnloadUserForm2", , False
 End Sub

 Let’s see the action. The file Application OnTime method.xlsm has two Button controls associated to
 Public Sub procedures of the Sheet1 worksheet, used to open UserForm1 and UserForm2 (Figure 2-17).

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

123

 Figure 2-17. This is file Application OnTime method.xlsm, which has Button controls associated to Sheet1
Public Sub procedures that simply load UserForm1 and UserForm2. When each UserForm is loaded, they set
the Application . OnTime method to unload it five seconds ahead

 Try to click the Show UserForm1 ControlButton and see that the UserForm1 will be loaded. Wait five
seconds and it will close, leaving a message in the VBA Immediate window when the Application . OnTime
event fires (Figure 2-18).

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

124

 After the UserForm1 had been automatically unloaded by the Application . OnTime method, click the
Show UserForm1 ControlButton again, but this time do not wait five seconds: click the UserForm Close
button to close it and watch the VBA Immediate window. At each five seconds you will see that the VBA
window blinks and another “Unload UserForm1 fired” message appears in the Immediate window, meaning
that the Application . OnTime method continuously fires, again and again, trying to unload the not loaded
 UserForm .

 Try to close the workbook leaving Excel opened (use the File ➤ Close command), and when
 Application . OnTime runs again, Excel will reopen the workbook, firing the timer again and again. I don’t
have a decent explanation for this odd Excel behavior, but you should be aware of it (Figure 2-19)!

 Figure 2-18. Click Show UserForm1 ControlButton to load UserForm1 and wait five seconds for the
 Application . OnTime method to fire the Public Sub UnloadUserForm1() procedure and unload the UserForm

 Figure 2-19. If you click the Show UserForm1 ControlButton of the Application InputBox method.
xlsm workbook and close UserForm1 before the five-second timer runs out, Excel will keep firing the
UnloadUserForm1() public procedure again and again. And if you try to close the workbook leaving Excel
opened, it will reopen the workbook to keep firing the OnTime event. This is a clear Excel bug!

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

125

 The easiest way to cancel this odd Excel behavior is to close the Excel window, reopen it, and open
again the Application OnTime method.xlsm macro-enabled workbook.

 Do the same exercise by clicking Show UserForm2 and you will see that this time, you can wait five
seconds for UserForm2 to be automatically closed, or you can click the Close button, without needing to wait
until the timer runs to completion. The code inserted on the UserForm2_Terminate event kills the timer set,
and Excel behaves as expected (Figure 2-20).

 Figure 2-20. UserForm2 stores the Application . OnTime time on a module-level variable and uses the
 UserForm_Terminate event to unset the timer, by calling again Application . OnTime with at the same time but
using Schedule = False (last method argument). You will see just one “UnloadUserForm2 Fired” message in the
VBA Immediate window whenever UserForm2 is closed

 The lesson here is quite simple. You should always disable each Application . OnTime method before
the workbook is closed or when it is used to close any UserForm .

 ■ Attention If you do not use a On Error Resume Next instruction before you try to disable any
 Application . OnTime method, VBA will raise an expected error. Another Excel bug?

 Using Application Events to React to User Actions
 Looking to the Microsoft Excel object model depicted in Figure 2-1 , you must understand that there is
an object hierarchy where the higher-level object is the Application object (first level), followed by the
 Workbook object (second level) and the Worksheet object (third level).

 ■ Attention Although the Workbooks and Worksheets collections stay in between the Workbook and
 Worksheet objects, they do not represent an independent level in the Excel object hierarchy. They just indicate
where these object references are kept.

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

126

 Each of these objects has its own set of events , which are code procedures that fire according to user
action, and all three objects (Application , Workbook , and Worksheet) have a group of the similar event
procedures with cascading firing: from the top-level object (Application object) to the bottom (Worksheet
object) when the workbook is opened or from the bottom-level object (Worksheet object) to the higher one
(Application object) whenever the user acts on your worksheet application data.

 For example, the Worksheet object (represented by the Sheet1 object, for example) has a Change event
that will fire whenever any Sheet1 worksheet cell value changes. Both the Workbook object (represented by
the ThisWorkbook object in the VBA Project Explorer tree) and the Application object have a SheetChange
event that cascade-fires when any cell changes its values on the Sheet1 worksheet. The order of this event
firing is as follows:

 Worksheet_Change() → Workbook _SheetChange() → Application _SheetChange()

 It is up to you where you will place code to control the change of any cell in the Excel environment. If you
place the code in the Sheet1_Change event, you will just control any Sheet1 worksheet cell changes. If you place
code on the ThisWorkbook_SheetChange event, you may control the changes in any cell of every worksheet
of this workbook. And if you place code in the Application _SheetChange event, you can control changes in
any cell of every workbook opened in the Excel interface. If every one of these events has a code, they will be
cascading, from the bottom level (Worksheet_Change) to the higher level (Application _SheetChange).

 You need to study this event order with more attention to absolutely understand how to use them on
the behalf of your application usability.

 Creating an Excel. Application Object Reference
 You already know by now that your application code will run by programming the code module of the
 ThisWorkbook object, any Sheet object code module, Standard or Class modules, and UserForms code
modules of a given Excel workbook, and that all these code modules can be easily selected in the VBA
 Project Explorer tree .

 But when you search for the Application code module in the VBA Project Explorer tree , it is simply not
there. So, how you can catch and program the Application object events?

 The answer to this question is quite simple: you need to create an object variable that represents
the Excel. Application object and propagate its events. And you do this using the Dim WithEvents VBA
instruction, like so:

 Dim WithEvents app as Excel. Application

 Note that the expression Excel. Application is the one you must use when you want to have access
to the Microsoft Excel object model from any outside application, such as Microsoft Access code modules
(given that the VBA project of the Microsoft Access database has a reference to the correct Microsoft Office
x.x Object Library, where x.x is the version number; x.x = 14.0 refers to Microsoft Office 2010 version).

 When referencing the Excel. Application object from inside any Microsoft Excel code module, you can
simply use this short syntax declaration because of the Application object being the higher programming
object on the Excel object model:

 Dim WithEvents app as Application

 Whenever you do any of the last two object variable declarations, your code module will be ready to react
to any Excel. Application object event procedure. Figure 2-21 shows a Microsoft Excel VBA ThisWorkbook
code module where such an object reference is declared. After the declaration of the app object variable using
the WithEvents instruction, you can select it in the left Object combo box of the code module window and all
the Application events will be shown in the right Procedure combo box of the code module.

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

127

 The Dim WithEvents app as Excel. Application instruction defines the app object variable that is
capable of reacting to all Application object events. But it is still not pointing to any Microsoft Excel window
application. To do this, I need to put some code on any worksheet application to set the app object variable
to the current Excel application window, which is made using such simple code.

 Set app = Application

 This last instruction uses the Application object that, when used without any prefix, means a pointer to
the current Excel window and all its events.

 Table 2-6 shows some of the main Excel. Application events fired by such an app object variable, when
they trigger, and the event declaration code.

 ■ Attention Search the Internet with the keywords Excel Application Events to find a complete list of Excel
 Application object events. Table 2-6 shows some of the results returned by this Internet address:

 http://msdn.microsoft.com/en-us/library/microsoft.office.interop.excel.application_
events(v=office.15).aspx

 Figure 2-21. Whenever you declare a variable object using WithEvents and the object fires events, all the
events can be selected in the right Procedure combo box of the code module window

http://msdn.microsoft.com/en-us/library/microsoft.office.interop.excel.application_events(v=office.15).aspx
http://msdn.microsoft.com/en-us/library/microsoft.office.interop.excel.application_events(v=office.15).aspx

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

128

 Table 2-6. Application Object Events and Their Occurrence

 Event name Occurrence Event Declaration and Arguments

 AfterCalculate After all calculation activities
have been completed

 Private Sub app_NewWorkbook(ByVal Wb
As Workbook)

 NewWorkbook When a new workbook is
created

 Private Sub app_NewWorkbook(ByVal Wb
As Workbook)

 SheetActivate When any sheet is activated Private Sub app_SheetActivate(ByVal
Sh As Object)

 SheetBeforeDoubleClick When any worksheet is
double-clicked

 Private Sub app_
SheetBeforeDoubleClick(ByVal Sh As
Object, ByVal Target As Range, Cancel
As Boolean)

 SheetBeforeRightClick When any worksheet is
right-clicked

 Private Sub app_
SheetBeforeRightClick(ByVal Sh As
Object, ByVal Target As Range, Cancel
As Boolean)

 SheetCalculate After any worksheet is
recalculated

 Private Sub app_SheetCalculate(ByVal
Sh As Object)

 SheetChange When cells in any worksheet
changed

 Private Sub app_SheetChange(ByVal Sh
As Object, ByVal Target As Range)

 SheetDeactivate When any sheet is deactivated Private Sub app_SheetDeactivate(ByVal
Sh As Object)

 SheetSelectionChange When the selection changes
on any worksheet

 Private Sub app_
SheetSelectionChange(ByVal Sh As
Object, ByVal Target As Range)

 WindowActivate When any workbook window
is activated

 Private Sub app_WindowActivate(ByVal
Wb As Workbook , ByVal Wn As Window)

 WindowDeactivate When any workbook window
is deactivated

 Private Sub app_
WindowDeactivate(ByVal Wb As
 Workbook , ByVal Wn As Window)

 WindowResize When any workbook window
is resized

 Private Sub app_WindowResize(ByVal Wb
As Workbook , ByVal Wn As Window)

 WorkbookActivate When any workbook is
activated

 Private Sub app_
WorkbookActivate(ByVal Wb As Workbook)

 WorkbookAfterSave After the workbook is saved Private Sub app_
WorkbookAfterSave(ByVal Wb As
 Workbook , ByVal Success As Boolean)

 WorkbookBeforeClose Before any open workbook
closes

 Private Sub app_
WorkbookBeforeClose(ByVal Wb As
 Workbook , Cancel As Boolean)

 WorkbookBeforePrint Before any open workbook
is printed

 Private Sub app_
WorkbookBeforePrint(ByVal Wb As
 Workbook , Cancel As Boolean)

(continued)

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

129

 You can see when the Application events in Table 2-6 fire by placing some code on each event
procedure, using a VBA MsgBox () function to show a message that identifies it. This a good starting point to
see the Application event order and how your VBA code can react to them.

 Firing Application Events

 The Application SheetChange Event.xlsm macro-enabled workbook, which you can also extract from the
 Chapter2.zip file, shows how this is done: it declares the app variable on the ThisWorkbook code module
and uses the Workbook _ Open () event procedure (the event that runs only once when the workbook is
opened) to set the app object variable to reference the current Excel window.

 Option Explicit

 Dim WithEvents app As Application

 Private Sub Workbook _ Open ()
 Set app = Application
 End Sub

 And once this reference is set, it uses the app_SheetChange() event to catch any changes on any
opened workbook cell using this code procedure:

 Private Sub app_SheetChange(ByVal Sh As Object, ByVal Target As Range)
 Dim strMsg As String
 Dim strTitle As String

 strTitle = Sh.Parent.Name & " workbook changed!"
 strMsg = "File is " & Sh.Parent.Name & vbCrLf
 strMsg = strMsg & "Sheet name is: " & Sh.Name & vbCrLf
 strMsg = strMsg & "Cell affected: " & Target. Address & " = " & Target.Value
 MsgBox strMsg, vbInformation, strTitle
 End Sub

Table 2-6. (continued)

 Event name Occurrence Event Declaration and Arguments

 WorkbookBeforeSave Before any open workbook is
saved

 Private Sub app_
WorkbookBeforeSave(ByVal Wb As
 Workbook , ByVal SaveAsUI As Boolean,
Cancel As Boolean)

 WorkbookDeactivate When any open workbook
is deactivated

 Private Sub app_WorkbookDeactivate
(ByVal Wb As Workbook)

 WorkbookNewChart When a new chart is created
in any open workbook

 Private Sub app_
WorkbookNewChart(ByVal Wb As
 Workbook , ByVal Ch As Chart)

 WorkbookNewSheet When a new sheet is created
in any open workbook

 Private Sub app_
WorkbookNewSheet(ByVal Wb As
 Workbook , ByVal Sh As Object)

 WorkbookOpen When a workbook is opened Private Sub app_WorkbookOpen(ByVal Wb
As Workbook)

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

130

 Note that the Application _SheetChange() event passes the Sh as Object and Target as Range
arguments, which are used to grab the workbook name, sheet name, and cell address where the change
happened.

 The first two code rows use the Name property of the Parent property (which represent the workbook
where the sheet resides) of the Sh argument (which represents the worksheet where the change happened)
to grab the workbook name using the syntax Sh.Parent.Name .

 strTitle = Sh.Parent.Name & " workbook changed!"
 strMsg = "File is " & Sh.Parent.Name & vbCrLf

 ■ Attention On most object models, whenever a given object has dependent objects (like Workbook has
 Worksheets or Worksheets has Ranges), the dependent object frequently exposes a Parent property, which
returns an object reference to the object it belongs to, according to the object model hierarchy. Workbook .
Parent returns a reference to the Application object, and Worksheet.Parent returns a reference to the
 Workbook object .

 Since the Sh argument represents the worksheet where the change happened, Sh.Parent returns a pointer to
the Workbook object that it belongs to, and Sh.Parent.Name returns the workbook name represented by the
 Workbook .Name property!

 Next the code gets the worksheet name where the change happens, using the Name property of the Sh object.

 strMsg = strMsg & "Sheet name is: " & Sh.Name & vbCrLf

 And finally it gets the cell address and the new value, using the Address and Value properties of the
 Target object passed to the event procedure.

 strMsg = strMsg & "Cell affected: " & Target. Address & " = " & Target.Value

 The code then shows the changed cell using the VBA MsgBox () function.
 Try to change any cell value of the Application SheetChange Event.xlsm workbook and you will

receive a message as shown in Figure 2-22 , stating the workbook name, sheet name, cell address, and
value changed.

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

131

 Figure 2-22. The Application SheetChange Event.xlsm macro-enabled workbook declares Dim WithEvents
app as Excel. Application and uses the This Workbook Workbook _ Open () event to set a reference to the
current Excel application, allowing the app variable to react to any event raised by the Application object. By
programming the app_SheetChange() event, the code can catch any cell change on every workbook opened in
this Excel window

 And if you create a new blank workbook or open any existing workbook and change any cell value,
this Excel window will continue to fire app_SheetChange() events for every cell changed on any opened
workbook. Figure 2-23 shows what happened when a new workbook named Book3 was created and the
 Sheet1.A2 cell had changed.

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

132

 ■ Attention Any object variable reference you set to the Excel Application object is very sensible to
disturbances on the code module where it is declared. If the code module raises any unpredictable error,
you declare another module-level variable, insert another procedure on the code module, modify any code
procedure, or simply change the procedure presentation order, the reference to the Application object set to
the app object variable will be lost, and it will stop raising the events it should.

 Using Class Modules to Control Application Object Events
 You can control the Application object methods and properties from any code module, but if you want to
have a distinct code module to represent the Application object and its events, you will need to use a Class
module to program it because the Dim WithEvents instruction can be used only in object code modules (the
 Thisworkbook , Worksheet , and UserForm code modules).

 The Application Events.xlsm macro-enabled workbook, which you can extract from the Chapter02.
zip file, has such a Class module inside the VBA project, and when you open it, having no other Excel
workbook opened (neither the default Blank Workbook), Excel will fire four successive Application object
events: WorkbookOpen() , WorkbookActivate() , WindowActivate() , and Application _AfterCalculate()
(Figure 2-24).

 Figure 2-23. Since the Application object takes care of every workbook that is opened inside the Excel window,
when you open another workbook, those events are also captured by the app object variable, declared on
ThisWorkbook code module

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

133

 The Class module was named CApplicationEvents (as a good programming practice, every Class
module must begin with a C), and the ThisWorkbook code module has a module-level object variable
declared as CApplicationEvents .

 Option Explicit
 Dim app As New CApplicationEvents

 When the Application Events.xlsm macro-enabled workbook is opened, the WorkbookOpen() event
of ThisWorkbook object fires, creating a new instance of this class.

 Private Sub Workbook _ Open ()
 Set app = New CApplicationEvents
 End Sub

 This is the beauty of Class modules: they live by themselves once they are instantiated on any part of
your code. Whenever a new instance of CApplicationEvents is created, the Class_Initialize() event
fires, creating a reference to the current Excel window using the same technique described later for the
 Application SheetChange Event.xlsm macro-enabled workbook, as you can see in Figure 2-25 , which
shows the CApplicationEvent code module:

 Option Explicit

 Dim WithEvent. cel. Application

 Figure 2-24. The Application Events.xlsm macro-enabled workbook implements all Application object events
cited in Table 2-6 using a VBA Class module named CApplicationEvents

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

134

 Private Sub Class_Initialize()
 Set app = Application
 End Sub

 Figure 2-25. This is the CApplicationEvents Class module from the Application Events.xlsm macro-
enabled workbook. It declares a Dim WithEvents app as an Application variable object on the Class module
declaration section, uses the Class_Initialize event to set the reference of the current Excel window to the app
variable, and codes each Application object event cited in Table 2-6 indicating when they fire

 Now, all Application events are propagated to the new instance of the CApplicationEvents Class
module and are ready to be programmed whenever they fire.

 The CApplicationEvents Class module has a code procedure for each event cited in Table 2-6 , using
the VBA MsgBox () function to show the event name that was fired.

 Note that the WorkbookOpen() and WorkbookActivate() events have an Wb as Workbook argument,
which is used to extract the name of the workbook that was opened. This is the code used for the app_
WorkbookOpen() event on the CApplicationEvents Class module :

 Private Sub app_WorkbookOpen(ByVal Wb As Workbook)
 Dim strMsg As String
 Dim strTitle As String

 strTitle = " Application WorkbookOpen event fired "
 strMsg = " CApplicationEvents object" & vbCrLf & vbCrLf
 strMsg = strMsg & " Application _WorkbookOpen event fired " & vbCrLf
 strMsg = strMsg & " Workbook : " & Wb.Name & vbCrLf
 MsgBox strMsg, vbInformation, strTitle
 End Sub

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

135

 Note that the code identifies the event fired in the title bar of the MsgBox () function and then shows in
the message dialog the object from where it fired (CApplicationEvents), the event fired, and the workbook
name from where it fired. Similar code was used to program the app_WorkbookActivate() event.

 Private Sub app_WorkbookActivate(ByVal Wb As Workbook)
 Dim strMsg As String
 Dim strTitle As String

 strTitle = " Application WorkbookActivate event fired "
 strMsg = " CApplicationEvents object" & vbCrLf & vbCrLf
 strMsg = strMsg & " Application _WorkbookActivate event fired ." & vbCrLf
 strMsg = strMsg & " Workbook : " & Wb.Name & vbCrLf
 strMsg = strMsg & "(Excel has more than one workbook opened or the workbook is opening!)"
 MsgBox strMsg, vbInformation, strTitle
 End Sub

 The app_WindowActivate() event has two arguments: Wb as Workbook and Wn as Window . The first
represents the workbook and is used to identify it in the MsgBox () function, and the second represents the
current Excel window.

 Private Sub app_WindowActivate(ByVal Wb As Workbook , ByVal Wn As Window)
 Dim strMsg As String
 Dim strTitle As String

 strTitle = " Application WindowActivate event fired"
 strMsg = " CApplicationEvents object" & vbCrLf & vbCrLf
 strMsg = strMsg & " Application _WindowActivate event fired " & vbCrLf
 strMsg = strMsg & " Workbook : " & Wb.Name & vbCrLf
 strMsg = strMsg & "(Excel has more than one workbook opened or the workbook is opening)"
 MsgBox strMsg, vbInformation, strTitle
 End Sub

 Finally, the app_AfterCalculate() event fires, with no arguments.

 Private Sub app_AfterCalculate()
 Dim strMsg As String
 Dim strTitle As String

 strTitle = " Application AfterCalculate event fired "
 strMsg = " CApplicationEvents object" & vbCrLf & vbCrLf
 strMsg = strMsg & " Application _AfterCalculate event fired " & vbCrLf
 strMsg = strMsg & "One or more workbooks was calculated!"
 MsgBox strMsg, vbInformation, strTitle
 End Sub

 This is the Application object event’s sequence order when Excel is opened:

 WorkbookOpen → WorkbookActivate → WindowActivate → AfterCalculate

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

136

 ■ Attention If you are wondering why Excel fires both the WorkbookActivate and WindowActivate events,
here is the explanation: the WindowActivate event returns an object pointer to the Excel window on its Wn as
Window argument, which has specific Microsoft Office methods, properties, and events that you can use to
control the Microsoft Excel window. Since a single Excel window can open many workbooks at a time (where
each one will fire its own events), use the Workbook _WindowActivate event to control the Excel window
appearance for different workbook applications.

 If you try to open another workbook, there will be a change in the event order (considering that the
opened workbook will not fire its own events).

 WorkbookOpen → WindowDeActivate → WorkbookDeActivate → WorkbookActivate → WindowActivate →
 AfterCalculate

 This time, the workbook that was first opened (the one that has the CApplicationEvents Class) fires
the app_WindowDeactivate() and app_WorkbookDeactivate() events (the MsgBox () function will show
the name of the workbook that is firing the event). Try it for yourself!

 And when you try to close the last opened workbook, the app_WorkbookBeforeClose() event will fire,
asking you for a confirmation to close it (Figure 2-26).

 Figure 2-26. Whenever you try to close a opened workbook, the app_WorkbookBeforeClose() event from the
 CApplicationEvents Class will fire, asking for a confirmation with the MsgBox () function

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

137

 This is the code used on the app_WorkbookBeforeClose() event. Note that it receives two arguments:
 Wb as Workbook and Cancel as Boolean .

 Private Sub app_WorkbookBeforeClose(ByVal Wb As Workbook , Cancel As Boolean)
 Dim strMsg As String
 Dim strTitle As String

 strTitle = " Application WorkbookBeforeClose event fired"
 strMsg = " CApplicationEvents object" & vbCrLf & vbCrLf
 strMsg = strMsg & " Application _WorkbookBeforeClose event fired" & vbCrLf
 strMsg = strMsg & " Workbook : " & Wb.Name & vbCrLf
 strMsg = strMsg & "Do you want to close the workbook?"
 If MsgBox (strMsg, vbYesNo + vbQuestion, strTitle) = vbNo Then
 Cancel = True
 End If
 End Sub

 Every event procedure that has Before in its name has a Cancel argument. If you make Cancel=True
inside the event procedure, the event is canceled.

 Whenever the user clicks the MsgBox () No button on the app_WorkbookBeforeClose() event, the
procedure will make Cancel = True , and the WorkbookBeforeClose() event will not fire, meaning that the
workbook will be kept open by Excel (try it!).

 If MsgBox (strMsg, vbYesNo + vbQuestion, strTitle) = vbNo Then
 Cancel = True
 End If

 But if you click the MsgBox () Yes button, the event sequence will be fired by the CApplicationEvents
Class object to close a opened workbook.

 WorkbookBeforeClose → WindowDeActivate → WorkbookDeActivate → WorkbookActivate → WindowActivate

 There are other Application object events that have Before as part of their names, as cited in Table 2-
6 . This is the case for the SheetBeforeDoubleClick , SheetBeforeRightClick , WorkbookBeforeClose ,
 WorkbookBeforePrint , and WorkbookBeforeSave events, and the VBA code inserted on each event
procedure will always ask if you want to continue with the event processing. Try to double-click any
worksheet cell and you will fire the app_SheetBeforeDoubleClick event, receiving a MsgBox () that asks if
you want to double-click the cell and put it in Edit mode. By answering No, the event will be canceled, and
the double-click will not happen (Figure 2-27).

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

138

 This is the code inserted on the app_SheetBeforeDoubleClick() event procedure of the
 CApplicationEvents class. Note how the Cancel argument is turned True when the user clicks the No
button of the MsgBox () function box displayed by it.

 Private Sub app_SheetBeforeDoubleClick(ByVal Sh As Object, ByVal Target As Range, Cancel As
Boolean)
 Dim strMsg As String
 Dim strTitle As String

 strTitle = " Application SheetBeforeDoubleClick event fired"
 strMsg = " CApplicationEvents object" & vbCrLf & vbCrLf
 strMsg = strMsg & " Application _SheetBeforeDoubleClick event fired." & vbCrLf
 strMsg = strMsg & " Workbook : " & Sh.Parent.Name & vbCrLf
 strMsg = strMsg & "Sheet double clicked is: " & Sh.Name & vbCrLf
 strMsg = strMsg & "Do you want to double click cell " _
 & Target. Address & " from " & Sh.Name & " and put it on Edit mode?"
 If MsgBox (strMsg, vbYesNo + vbQuestion, strTitle) = vbNo Then
 Cancel = True
 End If
 End Sub

 Figure 2-27. Every event procedure that has Before in its name receives a Cancel argument that allows you to
cancel the event. This is the case with the app_SheetBeforeDoubleClick event, which receives three arguments:
Sh as Object (which represents the sheet tab), Target as Range (which represents the cell that was double-
clicked), and Cancel as Boolean (which can be used to cancel the event)

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

139

 Figure 2-28. If you select any cell range on any worksheet of the Application Events.xslm workbook, the app_
SheetSelectionChange() event of the CApplicationEvents Class will fire, and the MsgBox () function inserted
on it will show the address of the cell(s) selected

 You will see similar code when you try to right-click any cell or cell range, try to print, or save any
opened workbook using the Application Events.xlsm workbook.

 To finish the event procedure exercise, try to select any cell range on any worksheet and watch which cells’
address range were selected by reading the MsgBox () function inserted on the app_SheetSelectionChange()
event (Figure 2-28).

 Note in Table 2-6 that the app_SheetSelectionChange() event receives two arguments: ByVal Sh As
Object and ByVal Target As Range . The first argument, Sh as Object , is an acronym for “Sheet” and has
information about the worksheet tab where the cell selection change happened, while the second argument,
 Target as Range , represents the cell or cell range that was selected on the Sh object. The word ByVal used
on both argument declarations means that the objects received by the event have no link with the true object
they represent (the sheet tab and selected cells). If you make changes on these object variables inside the
event procedure, they will not be propagated to the true object they represent.

 Private Sub app_SheetSelectionChange(ByVal Sh As Object, ByVal Target As Range)
 Dim strMsg As String
 Dim strTitle As String

 strTitle = " Application SheetSelectionChange(event fired"
 strMsg = " CApplicationEvents object" & vbCrLf & vbCrLf
 strMsg = strMsg & " Application _SheetSelectionChange event fired" & vbCrLf
 strMsg = strMsg & " Workbook : " & Sh.Parent.Name & vbCrLf
 strMsg = strMsg & "Sheet where selection changed is " & Sh.Name & vbCrLf
 strMsg = strMsg & "Cell(s) selected is(are) " & Target. Address
 MsgBox strMsg, vbInformation, strTitle

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

140

 The app_SheetSelectionChange() event uses the Parent.Name property of the Sh object to identify the
workbook name (parent of the sheet) where the cells have been selected.

 strMsg = strMsg & " Workbook : " & Sh.Parent.Name & vbCrLf

 It then uses the Name property of the Sh object to identify the sheet tab name and the . Address property
of the Target object to identify the address of the selected cell(s).

 strMsg = strMsg & "Sheet where selection changed is " & Sh.Name & vbCrLf
 strMsg = strMsg & "Cell(s) selected is(are) " & Target. Address

 If you continue to use the Application Events.xlsm workbook and click the sheet tabs (the
 app_SheetActivate event fires), change cell values on any worksheet (the app_AfterCalculate ,
 app_SheetChange , and app_SheetSelectionChange events fire), insert a formula on any cell (the app_
SheetCalculate , app_AfterCalculate , app_SheetChange , and app_SheetSelectionChange events fire),
insert a new worksheet (app_WorkbookNewSheet , app_SheetDeactivate , and app_SheetActivate events
fire), delete an existing sheet tab (the app_SheetDeactivate , app_SheetActivate , and app_AfterCalculate
events fire), and so on, you will receive a MsgBox () function warning you of the event name that has been
fired by the user action.

 Trying it is the best way to learn the order that Microsoft Excel Application events fire.

 ■ Attention Whenever you close the Application Events.xlsm macro-enabled workbook, the Dim
 WithEvents app as CApplicationEvents variable will be destroyed, and the Class Terminate event will fire.
It is a good programming practice to release any object references used by a Class module on the Terminate
event so the CApplicationEvents Class module executes this code to release the object module-level variable
app from the association to the Application object (you can see this event procedure in Figure 2-24):

 Private Sub Class_Terminate()
 Set App = Nothing

 End Sub

 Inside the Chapter02.zip file you will also find the CApplicationEvents .cls file that has all the code used by
the CApplicationEvents Class module . You can use the VBA File ➤ Import menu command to add it to any
other Microsoft Excel workbook.

 Using a Class Module to Control Sheet Tab Name Changes
 Many people ask for an event that fires when the user changes any sheet tab name. Unhappily, Microsoft did
not code such an event on any Microsoft Excel object, so you must improvise, using the Application object
events in a Class module to control when any sheet tab name changes and let each workbook decide what
to do by itself.

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

141

 You must base this code on a mechanism that is based on Application object events that will work in
this way:

1. Declare two Class module variables: one object variable to store a pointer to the
current Worksheet object (called mWks) and another String variable to store the
current worksheet sheet tab name (called mstrWksName).

2. Whenever the Application Initialize() and WorkbookActivate() events fire,
you will use the Application .ActiveSheet property to set a pointer to the active
sheet to the mwks object variable and the Worksheet.Name property to store the active
sheet tab name on the mstrWksName string variable, like so:

 Set mWks = Application .ActiveSheet
 mstrWks = mWks.Name

3. If the user of your application changes the current sheet tab name, nothing will happen.
But if the user changes the selected cell (the Application _SheetChange() event fires),
tries to select another cell (the Application _SheetSelectionChange() event fires),
tries to select another sheet tab (the Application _SheetDeactivate() event
fires), or tries to save the workbook (the Application _WorkbookBeforeSave ()
event fires), you will use a Sub procedure to compare the current worksheet name
with the name stored on the string variable, like so:

 If mWks.Name <> mstrWksName then

4. If the module-level variable name (mWks.Name) has a different name than the
current sheet tab name, it indicates that the sheet tab name changed, and the Class
module will raise the SheetNameChange() event, passing it two arguments: the mWks
object variable pointer to the worksheet that suffers the name change and a Cancel
argument that allows the code to cancel the change.

 Let’s see this in action before analyzing the Class module code. Open the Application
 SheetNameChange Event.xlsm macro-enabled workbook, which you can extract from the Chapter02.zip
file and change any sheet tab name: double-click any sheet tab and type a new name (such as Sheet1 to
 Sheet10).

 If you try to change the current cell value, select another cell on the same worksheet, select another
sheet tab, or close the workbook, you will receive a MsgBox () warning indicating that the sheet tab name
can’t be changed, and it will be returned to its previous name (see Figure 2-29).

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

142

 It works this way: the Application SheetNameChange Event.xlsm macro-enabled workbook has
the CSheetNameChange Class module , which declares in the Declaration section the event procedure
 SheetNameChange() and three module-level variables: app , mwks , and mstrWksName .

 Option Explicit

 Event SheetNameChange(ByVal Sh As Object, ByRef Cancel As Boolean)

 Private WithEvents app As Excel. Application
 Private mWks As Worksheet
 Private mstrWksName As String

 Figure 2-29. The Application SheetNameChange Event.xlsm macro-enabled workbook has a Class module
that uses the Application object events to track when any sheet tab name changes. The change will be perceived
if you try to change the current cell value, select another cell, select another sheet tab, or close the workbook,
and the name change will be undone

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

143

 Note that the event Sheet NameChange() passes two arguments: ByVal Sh as Object and ByRef
Cancel as Boolean , meaning that whenever this event is raised, the code cannot make any change to the
 Sh object (which is passed by value to represent the worksheet) but will allow you to make changes to the
 Cancel argument. Also note that it uses the same object names employed by some Application object
events to keep tuned with the Microsoft events syntax.

 Whenever a new instance of the CSheetNameChange Class module is created, the Class_Initialize()
event fires, the app object variable is set to the current Excel window, and the mWks object variable is set to
the active worksheet.

 Private Sub Class_Initialize()
 Set app = Application
 Set mWks = ActiveSheet
 mstrWksName = mWks.Name
 End Sub

 And as a good programming practice, whenever the CSheetNameChange Class is destroyed (which will
happen when the Application SheetNameChange Event.xlsm workbook is closed), the Class_Terminate()
event fires, releasing the object variables.

 Private Sub Class_Terminate()
 Set mWks = Nothing
 Set app = Nothing
 End Sub

 Although the Class Initialize() event correctly sets the mWks object variable to the Application .
ActiveSheet property and the mstrWksName string variable to the active worksheet name, if you open another
workbook and then close it, the mWks reference will be lost. To avoid future VBA automation errors on the code,
you also need to code the Application object WorkbookActivate() event, resetting the mWks and mstrWksName
variables every time another workbook is activated to reflect the new active worksheet properties.

 Private Sub app_WorkbookActivate(ByVal Wb As Workbook)
 Set mWks = ActiveSheet
 mstrWksName = mWks.Name
 End Sub

 The CSheetNameChange Class uses the Private Sub NameChange () procedure to control what it should
do whenever any sheet tab name changes.

 Private Sub NameChange (Optional wks As Worksheet)
 Dim bolCancel As Boolean

 If wks Is Nothing Then
 Set wks = app.ActiveSheet
 End If

 If mstrWksName <> mWks.Name Then
 RaiseEvent SheetNameChange(mWks, bolCancel)
 If bolCancel Then
 mWks.Name = mstrWksName
 End If
 End If

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

144

 Set mWks = wks
 mstrWksName = mWks.Name
 End Sub

 Note that Sub NameChange () declares the Optional wks as Worksheet argument, and inside the
procedure it declares the bolCancel as Boolean variable.

 Private Sub NameChange (Optional wks As Worksheet)
 Dim bolCancel As Boolean

 The first procedure action verifies that the Optional wks as Worksheet argument was received. If it
was not received, it is defined to the current worksheet using the Application .ActiveSheet property. This is
necessary because when any different sheet tab is selected, you will need to grab the reference and name to
keep following sheet tab name changes, as you see here:

 If wks Is Nothing Then
 Set wks = app.ActiveSheet
 End If

 The Sub NameChange () procedure then verifies if the worksheet name stored on the mstrWksName string
module-level variable differs from the current worksheet name.

 If mstrWksName <> mWks.Name Then

 If this is true, it means that the worksheet sheet tab name changed, and the SheetNameChange() event
is raised, passing as arguments the mWks object variable (pointer to current worksheet) and the bolCancel
Boolean variable.

 RaiseEvent SheetNameChange(mWks, bolCancel)

 ■ Attention Compare this last row to the SheetNameChange() Event declaration and you will note that
 mWks is passed to the Sh argument and bolCancel is passed to the Cancel event argument.

 When an event is raised by an object, it doesn’t mean that it will be coded. But if it is coded by
the application that uses an instance of the CSheeNameChange class, the code can define the Cancel
SheetNameChange() event argument to True , as an indication that the event (sheet name change) must be
canceled . So, the next line of code will verify if bolCancel = True , meaning that the sheet name change must
be undone. If it is, it will change the mWks object variable Name property to its previous name, stored on the
 mstrWksName string variable.

 If bolCancel Then
 mWks.Name = mstrWksName
 End If

 And the last procedure code associates again the mWks object variable to the optional Wks argument
(which points to the active sheet) and the mstrWksName string variable to worksheet name.

 Set mWks = wks
 mstrWksName = mWks.Name

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

145

 The action happens on the CSheetNameChange Class when some Application event fires. These
are the codes for the App_SheetActivate() , app_SheetChange() , app_SheetDeactivate() , and app_
SheetSelectionChange() events. Note that all event procedures make a simple call to the Sub NameChange ()
procedure, passing it the Sh argument, which means the activated sheet that is passed by the Application object
event procedure.

 Private Sub app_SheetActivate(ByVal Sh As Object)
 Call NameChange (Sh)
 End Sub

 Private Sub app_SheetActivate(ByVal Sh As Object)
 Call NameChange (Sh)
 End Sub

 Private Sub app_SheetChange(ByVal Sh As Object, ByVal Target As Range)
 Call NameChange (Sh)
 End Sub
 Private Sub app_SheetDeactivate(ByVal Sh As Object)
 Call NameChange (Sh)
 End Sub

 Private Sub app_SheetSelectionChange(ByVal Sh As Object, ByVal Target As Range)
 Call NameChange (Sh)
 End Sub

 ■ Attention There is really no need to use the VBA Call keyword when you want to call a Sub procedure
from another procedure. But I recommend you do so as good programming practice to make your code clear.

 The only Application event that does not pass the Sh argument is the App_WorkbookBeforeSave
event. This event calls the Sub NameChange () procedure without passing it any argument (and that is why
 NameChange () declares the wks as Optional argument).

 Private Sub app_WorkbookBeforeSave(ByVal Wb As Workbook , ByVal SaveAsUI As Boolean, Cancel
As Boolean)
 Call NameChange
 End Sub

 And this is all the code that the CSheeNameChange Class module has. Now you must look at how Class is
used in the Application SheetNameChange Event.xlsm workbook. The ThisWorkbook code module begins
declaring an object variable of the CSheetNameChange Class using the VBA WithEvents keyword so their
events can be raised on this module.

 Option Explicit

 Dim WithEvents mSheetName As CSheetNameChange

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

146

 ■ Attention In the Chapter02.zip file you will also find the CSheetNameChange .cls file, which has all
 CSheetNameChange Class module code. Use the VBA File ➤ Import menu command to add this class module to
any Excel workbook VBA project and take control of the sheet name change.

 Now Class must be instantiated on the This Workbook Workbook _ Open () event, the one that fires
whenever the workbook is opened.

 Sub Workbook _ Open ()
 Set mSheetName = New CSheetNameChange
 End Sub

 And that is all! Now, whenever any sheet tab name changes in this workbook, this change will be perceived
if you try to change any cell, select another cell, select another sheet tab, or try to save the workbook. And
this perception is made by programming the msheetName object variable’s SheetNameChange() event, which
passes the Sh as Object (representing the active worksheet) and Cancel arguments.

 Private Sub mSheetName_SheetNameChange(ByVal Sh As Object, Cancel As Boolean)
 MsgBox "Can't change Sheet tab names!", vbInformation
 Cancel = True
 End Sub

 Figure 2-30 explains how this happens in the ThisWorkbook VBA code.

 Figure 2-30. This is a view of how the CSheetNameChange Class is used to control any sheet name changes in
the Application SheetNameChange Event.xlsm macro-enabled workbook

CHAPTER 2 ■ PROGRAMMING THE MICROSOFT EXCEL APPLICATION OBJECT

147

 Chapter Summary
 In this chapter, you learned the following:

• The hierarchy of the Microsoft Excel object model

• How to access some workbook objects using important Application object
properties

• Which are the main Application object methods, what they do, and how to use
them

• How to use the Application object FileDialog method

• How to use the Application object GetOpenFileName and GetSaveFileAs methods
to select the path and file name to load and save files

• How to use the Application object’s InputBox method to grab Microsoft Excel data
and formulas

• How to use the Application object’s OnTime method to create a timer on your
applications

• How to declare and instantiate an object variable to program Application events

• How to use a Class module to easily propagate Application object events

• How to create a CSheetNameChange Class to control any sheet tab name changes

 In the next chapter, you will learn about the next object on Microsoft Excel object model hierarchy: the
 Workbook object (and Workbooks collection).

149© Flavio Morgado 2016
F. Morgado, Programming Excel with VBA, DOI 10.1007/978-1-4842-2205-8_3

 CHAPTER 3

 Programming the Microsoft Excel
Workbook Object

 In this chapter you will learn about the second object in the Microsoft Excel object model hierarchy:
the Workbook object . Like its parent (the Application object), it has a rich interface with many
properties, methods, and events that you should be aware of to program your application with VBA.
You can obtain all the procedure code in this chapter by downloading the Chapter03.zip file from
the book’s Apress.com product page, located at www.apress.com/9781484222041 , or from http://
ProgrammingExcelWithVBA.4shared.com .

 The Workbook Object
 The Microsoft Excel Workbook object represents each individual Excel file and has a lot of properties,
methods, and events that you can interact with using VBA code to take control of your application. Table 3-1
lists some important Workbook object properties, their values, and what they mean.

 ■ Attention Search the Internet with the keywords workbook properties to find a complete list of Excel
 Workbook object properties. Table 3-1 ’s brief list comes from the following location on the Microsoft MSDN web site:

 http://msdn.microsoft.com/en-us/library/microsoft.office.tools.excel.workbook_properties.aspx

http://www.apress.com/9781484222041
http://programmingexcelwithvba.4shared.com/
http://programmingexcelwithvba.4shared.com/
http://msdn.microsoft.com/en-us/library/microsoft.office.tools.excel.workbook_properties.aspx

CHAPTER 3 ■ PROGRAMMING THE MICROSOFT EXCEL WORKBOOK OBJECT

150

 Table 3-2 lists some important Workbook object methods and the actions they perform when evoked by
your VBA code.

 ■ Attention Search the Internet with the keywords workbook methods to find a complete list of Excel Workbook
 object properties. Table 3-2 ’s brief list comes from the following location on the Microsoft MSDN web site:

 http://msdn.microsoft.com/en-us/library/microsoft.office.tools.excel.workbook_methods.aspx

 Table 3-1. Some Important Microsoft Excel Workbook Object Properties

 Workbook Object Property Value Returned Represents

 ActiveChart Chart The active Microsoft Excel Chart object. When no
chart is active, this property returns Nothing .

 ActiveSheet Worksheet A reference to the active Worksheet (the sheet
on top).

 Application Application A reference to the current Microsoft Excel
 Application (the one that opened this workbook).

 Parent Application A reference to the current Microsoft Excel
 Application (the one that opened this workbook).

 CodeName String Name of the workbook code module (usually
 ThisWorkbook).

 CommandBars Object Gets a CommandBars object that represents the
Microsoft Office Excel command bars.

 FullName String File name of the associated Workbook .

 HasPassword Boolean Indicates whether the workbook has a protection
password.

 Names Object Returns a Collection object with all range names in
the workbook (including worksheet-specific names).

 Password String Gets or sets the password that must be supplied to
open the workbook.

 Path String Gets the complete path to the associated Workbook .

 ProtectStructure Boolean Indicates whether the order of the sheets in the
workbook is protected.

 ProtectWindows Boolean Indicates whether the windows of the workbook are
protected.

 Saved Boolean Indicates whether any changes have been made to
the workbook since it was last saved.

 Sheets Object Returns a Collection that represents all the sheets
in the workbook.

 Worksheets Object Same as Sheets ; returns a Collection that
represents all the sheets in the workbook.

http://msdn.microsoft.com/en-us/library/microsoft.office.tools.excel.workbook_methods.aspx

CHAPTER 3 ■ PROGRAMMING THE MICROSOFT EXCEL WORKBOOK OBJECT

151

 Using Workbook Object Events
 The Workbook object has a subset of the Application object events that you can use to react to the actions
made by the user of your application. Since you now understand that the Microsoft Excel Application
object has a set of event procedures that will fire for every workbook and worksheet opened inside the same
Excel window, you must also understand that the Workbook object events must be used to control just one
single workbook and its worksheets—the ones associated with the ThisWorkbook code module of the VBA
project (if there is more than one workbook opened, each one will have its own ThisWorkbook object on the
VBA Explorer tree).

 Note, however, that the event order of all these events (Application object events and Workbook object
events) will first fire on the dependent object and then on the parent object, according to the Microsoft
Excel object model cited in Figure 2-1 . In other words, the Workbook _Activate event of the ThisWorkbook
object will fire before the Application _WorkbookActivate event of the Application object, if both are
programmed on the VBA project.

 Table 3-3 shows some of the main Workbook object events, when they trigger, and their event
declaration code. Note that they are quite similar in name to the related Application object events preceded
by the Workbook _ prefix, and since they refer to the ThisWorkbook object, they don’t need to pass the Wb as
 Workbook object as an argument for any of the event procedures.

 ■ Attention Search the Internet with the keywords workbook events to find a complete list of Excel Workbook
 object events. Table 3-3 ’s brief list comes from the following location on the Microsoft MSDN web site:

 http://msdn.microsoft.com/en-us/library/microsoft.office.tools.excel.workbook_events.aspx

 Table 3-2. Some Important Microsoft Excel Workbook Object Methods

 Workbook Object Method Action Performed

 Activate Activates the first window associated with the workbook

 Close Closes the workbook

 PrintOut Prints the workbook (all worksheets)

 Protect Protects a workbook so it cannot be modified, with or without a password

 ProtectSharing Saves the workbook and protects it for sharing, with or without a
password

 Save Saves the workbook

 SaveAs Saves the workbook in a different file or folder

 SaveCopyAs Saves a copy of the workbook to another file, keeping intact the open
workbook in memory

 Unprotect Removes workbook protection if it was set; may require a password

 UnprotectSharing Turns off protection for sharing and saves the workbook; may require a
password

http://dx.doi.org/10.1007/978-1-4842-2205-8_2#Fig1
http://msdn.microsoft.com/en-us/library/microsoft.office.tools.excel.workbook_events.aspx

CHAPTER 3 ■ PROGRAMMING THE MICROSOFT EXCEL WORKBOOK OBJECT

152

 Table 3-3. Workbook Object Events

 Event Name Occurrence Event Declaration and Arguments

 Activate When Excel has more than one
workbook opened and the workbook is
activated.

 Private Sub Workbook _Activate()

 AfterSave After the workbook is saved. Private Sub Workbook _
AfterSave(ByVal Success As
Boolean)

 BeforeClose Before the workbook closes. If the
workbook has been changed, this
event occurs before the user is asked to
save changes.

 Private Sub
 Workbook _ BeforeClose (Cancel As
Boolean)

 BeforePrint Before the workbook (or anything in it)
is printed.

 Private Sub Workbook _
BeforePrint(Cancel As Boolean)

 BeforeSave Before the workbook is saved. Private Sub Workbook _
BeforeSave(ByVal SaveAsUI As
Boolean, Cancel As Boolean)

 Deactivate When the workbook is deactivated. Private Sub Workbook _Deactivate()

 NewChart When a new chart is created in the
workbook.

 Private Sub Workbook _
NewChart(ByVal Ch As Chart)

 NewSheet When a new sheet is created in the
workbook.

 Private Sub Workbook _
NewSheet(ByVal Sh As Object)

 Open When the workbook is opened. Private Sub Workbook _ Open ()

 SheetActivate When any sheet is activated. Private Sub Workbook _
SheetActivate(ByVal Sh As
Object)

 SheetBeforeDoubleClick When any worksheet is double-
clicked, before the default double-click
action.

 Private Sub Workbook _
SheetBeforeDoubleClick(ByVal Sh
As Object, ByVal Target As

 SheetBeforeRightClick When any worksheet is right-clicked,
before the default right-click action.

 Private Sub Workbook _
SheetBeforeRightClick(ByVal Sh
As Object, ByVal Target As

 SheetCalculate After any worksheet is recalculated or
after any changed data is plotted on a
chart.

 Private Sub Workbook _
SheetCalculate(ByVal Sh As
Object)

 SheetChange When cells in any worksheet are
changed by the user or by an external
link.

 Private Sub Workbook _
SheetChange(ByVal Sh As Object,
ByVal Target As Range)

 SheetDeactivate When any sheet is deactivated. Private Sub Workbook _
SheetDeactivate(ByVal Sh As
Object)

 SheetSelectionChange When another cell (or cells) is selected
on any worksheet.

 Private Sub Workbook _
SheetSelectionChange(ByVal Sh As
Object, ByVal Target As Range)

(continued)

http://msdn.microsoft.com/en-us/library/microsoft.office.tools.excel.workbook.beforeclose.aspx

CHAPTER 3 ■ PROGRAMMING THE MICROSOFT EXCEL WORKBOOK OBJECT

153

 Once again, you can see when these workbook events fire by placing some code on each event
procedure that uses a VBA MsgBox () function to show a message that identifies the event. The Workbook
 Events.xlsm Excel macro-enabled workbook that you can extract from the Chapter03.zip file has such code
for all events cited in Table 3-3 . When you open the Workbook Events.xlsm Excel macro-enabled workbook,
you will receive three successive MsgBox () dialogs saying that Excel successively fired the Workbook _ Open ,
 Workbook _Activate , and Workbook _WindowActivate events (Figure 3-1).

Table 3-3. (continued)

 Event Name Occurrence Event Declaration and Arguments

 WindowActivate When any workbook window is
activated.

 Private Sub Workbook _
WindowActivate(ByVal Wn As
Window)

 WindowDeactivate When any workbook window is
deactivated.

 Private Sub Workbook _
WindowDeactivate(ByVal Wn As
Window)

 WindowResize When any workbook window is
resized.

 Private Sub Workbook _
WindowResize(ByVal Wn As Window)

 Figure 3-1. The Workbook Events.xlsm macro-enabled workbook has VBA MsgBox () functions inserted on all
event procedures cited in Table 3-1 , so you can watch when they fire. Whenever you open any workbook, you
will see that Excel successively fires the Workbook _ Open , Workbook _Activate, and Workbook _WindowActivate
events

CHAPTER 3 ■ PROGRAMMING THE MICROSOFT EXCEL WORKBOOK OBJECT

154

 The next lines of code show how each one of these event procedures was coded on the ThisWorkbook
code module of the Workbook Events.xlsm macro-enabled workbook .

 Private Sub Workbook _ Open ()
 Dim strMsg As String
 Dim strTitle As String

 strTitle = "This Workbook Workbook _ Open event fired"
 strMsg = "ThisWorkbook object" & vbCrLf & vbCrLf
 strMsg = strMsg & " Workbook Open event fired" & vbCrLf
 strMsg = strMsg & " Workbook : " & ThisWorkbook.Name & vbCrLf
 strMsg = strMsg & "APPLICATION Events will now fire"
 MsgBox strMsg, vbInformation, strTitle
 End Sub

 Private Sub Workbook _Activate()
 Dim strMsg As String
 Dim strTitle As String

 strTitle = "This Workbook Workbook _Activate event fired"
 strMsg = "ThisWorkbook object" & vbCrLf & vbCrLf
 strMsg = strMsg & " Workbook Activate event fired." & vbCrLf
 strMsg = strMsg & " Workbook : " & ThisWorkbook.Name & vbCrLf
 strMsg = strMsg & "(Excel has more than one workbook opened or the workbook is

opening!)"
 MsgBox strMsg, vbInformation, strTitle
 End Sub

 Private Sub Workbook _WindowActivate(ByVal Wn As Window)
 Dim strMsg As String
 Dim strTitle As String

 strTitle = "This Workbook Workbook _WindowActivate event fired"
 strMsg = "ThisWorkbook object" & vbCrLf & vbCrLf
 strMsg = strMsg & " Workbook WindowActivate event fired" & vbCrLf
 strMsg = strMsg & " Workbook : " & ThisWorkbook.Name & vbCrLf
 strMsg = strMsg & "(Excel has more than one workbook opened or the workbook is opening)"
 MsgBox strMsg, vbInformation, strTitle
 End Sub

 By coding the same event procedures using the Application object, as covered in Chapter, your code
will successively fire events for both objects (Workbook and Application , in this order), which can eventually
turn your application into a mess.

 It is easy to implement all Application object events on the Workbook Events.xlsm macro-enabled
workbook! Just follow these steps:

 1. Extract from the Chapter02.zip the CApplicationEvents .cls file (or open the
 Application Events.xlsm macro-enabled workbook, show the VBA project, click
the CApplicationEvents class module in the VBA Explorer tree, and export it
using the VBA File > Export menu command).

CHAPTER 3 ■ PROGRAMMING THE MICROSOFT EXCEL WORKBOOK OBJECT

155

 2. In the VBA Explorer tree, be sure to select the Workbook Events.xlsm project (in
case more than one workbook is opened inside Excel) and execute the VBA
File ➤ Import menu command.

 3. Select the CApplicationEvents .cls class module file and click OK to import it to
the Workbook Events.xlsm macro-enabled VBA project.

 4. Double-click the ThisWorkbook object in the VBA Explorer tree to show its
code module and declare an object variable to represent an instance of the
 CApplicationEvents class, in this way:

 Dim mapp as CApplicationEvents

 5. In the ThisWorkbook class module, select the Workbook _ Open event procedure
and add this line of code right below the Dim variable declaration instructions to
create the instance of the CApplicationEvents class:

 Set mapp = New CApplicationEvents

 6. Save the Workbook Events.xlsm file with a new name, close the workbook, and
open it again to see it successively fire both the Workbook and Application object
events (Figure 3-2).

 ■ Attention To make the file Workbook Events.xlsm fire the Application object events, you can call the
 This Workbook Workbook _ Open event procedure from the VBA Immediate window by typing the following code
instruction (without using the ? print character):

 This workbook.Workbook _ Open

 Since the workbook is already opened, you will not see that it fires the associated app_WorkbookOpen()
events.

 The Application and Workbook Events.xlsm macro-enabled workbook that you can extract from the
 Chapter02.zip file already has the CApplicationEvents Class module instantiated on its This Workbook
Workbook _ Open () event procedure.

CHAPTER 3 ■ PROGRAMMING THE MICROSOFT EXCEL WORKBOOK OBJECT

156

 Note in Figure 3-2 that Excel now fires this event order whenever the Application and Workbook
 Events.xlsm macro-enabled workbook is opened:

 This Workbook.Workbook _ Open → Application .WorkbookOpen → This Workbook.Workbook _Activate →
 → Applicaton.WorkbookActivate → This Workbook.Workbook _WindowActivate → Application .
WindowActivate → Application _AfterCalculate

 As you can see, both Workbook and Application object events fire in pairs. First This Workbook.
Workbook _ Open fires, followed by its parent event Application _WorkbookOpen , and so on.

 Workbook Open Event and the frmSplashScreen UserForm
 Let’s try some practical VBA code procedures using the Workbook _ Open event, which fires whenever a
workbook is opened.

 You must use the Workbook _ Open event to show the application splash screen to initialize Class
modules or values you must use on your application and/or to redirect the user to a specific workbook point
of your application (select a specific worksheet cell).

 The main use of the Workbook . Open event is to show your Excel application splash screen , a VBA
 UserForm that automatically appears and disappears after a few seconds to identify your application and
yourself as the creator or owner of the solution, similar to the way Excel does when you open it. Thus, this
simple example is a good one to improve your VBA knowledge regarding basic programming steps.

 Figure 3-2. If you add a copy of the CApplicationEvents Class module to the Workbook Events.xlsm macro-
enabled workbook, it will fire both the Workbook and Application object events (in this order), which
eventually may make a mess in your worksheet application code. The Application and Workbook Events.
xlsm macro-enabled workbook has a CApplicationEvents Class module and fires both the Workbook and
 Application events. Note the arrows indicating the event procedure order

CHAPTER 3 ■ PROGRAMMING THE MICROSOFT EXCEL WORKBOOK OBJECT

157

 Open the Workbook _ Open Event.xlsm Excel macro-enabled workbook that you can find inside the
 Chapter03.zip file and note that it shows a VBA UserForm over the Sheet1 interface to welcome the user to
the (supposed) application (Figure 3-3).

 Since any UserForm is opened as a modal window, you need to click the OK button of the UserForm to
close it and then get access to the workbook itself.

 If you activate the VBA interface by pressing Alt+F11 in Excel, you will see that the Project Explorer
tree has just one object inserted on its Forms branch, named frmSplashScreen , while the ThisWorkbook
code module is opened to show the next simple code that does this trick inside its Workbook _ Open event
procedure (Figure 3-4):

 Private Sub Workbook _ Open ()
 frmSplashScreen.Show
 End Sub

 Figure 3-3. This is the frmSplashScreen UserForm from the Workbook_ Open Event.xlsm Excel macro-enabled
workbook that is opened by the code inserted in the Workbook _ Open event of the ThisWorkbook object

CHAPTER 3 ■ PROGRAMMING THE MICROSOFT EXCEL WORKBOOK OBJECT

158

 When the VBA project is opened, double-click the frmSplashScreen object in the Forms tree and note
the next properties of frmSplashScreen by inspecting the VBA Properties window:

• Name = frmSplashScreen (to change the default UserForm1 name)

• Caption = "Welcome to My Application " , the text that appears in the title bar of
the frmSplashScreen window

 Figure 3-4. This is the Workbook _ Open event procedure from the Workbook _ Open Event.xlsm Excel macro-
enabled workbook that uses the frmSplashScreen.Show method to show it in the Excel interface every time the
workbook is opened

 Also note that the frmSplashScreen UserForm has two Label controls (one for the welcome message
and another for the copyright information) and one CommandButton with an “OK” caption. Click the
 CommandButton and inspect the VBA Properties window, namely, these properties:

• Name = cmdOK (to change the default CommandButton1 name)

• Caption = "OK" , the text that appears on the CommandButton caption

 Implementing a UserForm Timer
 To automatically close the frmSplashScreen UserForm object the way professional applications do (like
Excel), you need to implement a timer using the UserForm Activate event. This timer will fire every time the
 UserForm is opened and show its interface on the screen.

 The timer can be implemented with different programming techniques. The simplest technique is to use
the Application . OnTime method, but you can also use the VBA Timer () function or base it on Windows DLL
calls (covered in Chapter 10). Let’s see how this can be done using the first two programming techniques.

http://dx.doi.org/10.1007/978-1-4842-2205-8_10

CHAPTER 3 ■ PROGRAMMING THE MICROSOFT EXCEL WORKBOOK OBJECT

159

 Using the Application . OnTime Method

 The Workbook _ Open () event in the Application . OnTime method.xlsm Excel macro-enabled workbook, which
you can extract from the Chapter03.zip file, has a UserForm object implemented as the application splash
screen. It is automatically shown when the workbook is opened and is closed after five seconds (Figure 3-5).

 Figure 3-5. The Workbook _ Open () event in Application . OnTime method.xlsm uses the Application . OnTime
method to implement a timer on the frmSplashScreen UserForm and automatically closes it after five seconds

 After you open the workbook, press Alt+F11 to show the VBA IDE, and select the ThisWorkbook object,
note that the Workbook _ Open () event shows the frmSplashScreen UserForm using its Show method.

 Private Sub Workbook _ Open ()
 frmSplashScreen.Show
 End Sub

 Inspect the frmSplashScreen UserForm code module and note that the timer is implemented using a
technique described in Chapter 2 : the timer is set on the UserForm_Initialize () event and unset on the
 UserForm_Terminate () event, as follows:

 Private Sub UserForm_Initialize ()
 mvarTime = Now + TimeValue("00:00:05")

http://dx.doi.org/10.1007/978-1-4842-2205-8_2

CHAPTER 3 ■ PROGRAMMING THE MICROSOFT EXCEL WORKBOOK OBJECT

160

 Application . OnTime mvarTime, "ClosefrmSplashScreen"
 End Sub

 Private Sub UserForm_Terminate ()
 On Error Resume Next
 Application . OnTime mvarTime, "ClosefrmSplashScreen", , False
 End Sub

 The mvarTime module-level variable holds the exact time used to set the timer, and the same value
is used again to unset it. If the timer runs to the end, the Application . OnTime method will call the
 Public Sub ClosefrmSplashScreen() procedure of the basUserForm module, which simply closes the
 frmSplashScreen using the VBA Unload method.

 Public Sub ClosefrmSplashScreen()
 Unload frmSplashScreen
 End Sub

 If the frmSplashScreen UserForm is closed by the user action by clicking the OK CommandButton , the
 Click() event will fire, and the form will be unloaded.

 Private Sub cmdOK_Click()
 Unload Me
 End Sub

 ■ Attention The frmSplashScreen UserForm can be also closed by pressing the Esc key or clicking the
 UserForm Close button (the X in the top-right corner). The CommandButton control has two properties called
 Default and Cancel ; when they are set to True , they map the Click() event to the Enter and Esc keyboard
keys, respectively. This means that whenever one of these keys is pressed, the associated CommandButton
Click() event fires. The frmSplashScreen UserForm cmdOK CommandButton has both its Default and
 Cancel properties set to True , which is why the user can close it by pressing either the Esc or Enter key
(Figure 3-6).

 Only one UserForm CommandButton can have its Default and/or Cancel properties set to True .

CHAPTER 3 ■ PROGRAMMING THE MICROSOFT EXCEL WORKBOOK OBJECT

161

 Using the VBA Timer () Function

 You can also create a timer using a simple VBA programming technique. You will need to code the
 UserForm_Activate() event using the VBA Timer () function (which returns the number of seconds past
since midnight, or 0:00) and using a simple loop that will last for the desired amount of seconds. When the
loop finishes, the VBA Unload method will unload the UserForm by itself. Supposing that you want to create
a five-second timer, you just store the VBA Timer () returned value on the lngSeconds variable, and inside
a Do While... Loop you subtract this value from the value returned by successive Timer() function calls.
The loop must end when the subtraction is greater than five seconds, as follows:

 Private Sub UserForm_Activate()
 Dim lngSeconds As Long

 lngSeconds = Timer
 Do
 Loop Until (Timer - lngSeconds) > 5
 Unload Me
 End Sub

 Such code was inserted in the frmSplashScreen Activate() event of the Workbook _ Open event with
the Timer.xlsm Excel macro-enabled workbook that you will find in the Chapter 03.zip file.

 Figure 3-6. Use the Cancel and Default properties of the CommandButton control to associate the Click()
event to the Esc and Enter keyboard keys, respectively. Only one CommandButton on the UserForm can have
each property set to True

CHAPTER 3 ■ PROGRAMMING THE MICROSOFT EXCEL WORKBOOK OBJECT

162

 Since the Workbook _ Open event with the Timer.xlsm workbook also uses the ThisWorkbook. Open event
to show the frmSplashScreen UserForm , the form will be automatically opened when the workbook is
opened, and although it will be kept open in the Excel interface for five seconds, you will not be able to see
its interface; you will see just the UserForm title bar with a white form background (Figure 3-7).

 Figure 3-7. If you try to implement a timer using a Do...Loop statement of the UserForm Activate() event,
the code will not allow the form to repaint its interface onscreen, and you will see just its title bar and window
border

 This strange behavior happens because of the VBA code of the ThisWorkbook_ Open and UserForm_
Activate() events firing so fast that they do not give enough processor time to frmSplashScreen to repaint
its interface. So, you must force it to repaint itself using the UserForm Repaint method.

 Using the UserForm Repaint Method

 You can see this new version of the UserForm_Activate() event by opening the Workbook _ Open event with
the Timer Repaint.xlsm Excel macro-enabled workbook that uses this code on its UserForm_Activate()
event.

CHAPTER 3 ■ PROGRAMMING THE MICROSOFT EXCEL WORKBOOK OBJECT

163

 Now, before the five-second loop begins, the form is repainted on the screen, and you can see its
interface while the loop is running. But now you will have another problem. You can’t close the form
while the five-second loop is executing because the VBA running code does not allow you to click the OK
 CommandButton ! You need to add another VBA programming trick in the code to allow the cmdOK_Click event
to fire while the Do While... Loop code is executing inside the UserForm_Activate() event.

 Using the VBA DoEvents Instruction

 This is where the VBA DoEvents instruction enters into action: every time you have a loop in your code that
should be interrupted by any UserForm CommandButton (such as the common Cancel CommandButton used
to stop any longer process), you must put a DoEvents instruction inside the loop to tell VBA that it must
 watch if another interface event is fired while the loop is running.

 Open the Workbook _ Open event in the Timer Repaint DoEvents.xlsm Excel macro-enabled workbook
and you will see that this time the frmSplashScreen UserForm will remain in the Excel interface for five
seconds or will be closed and vanish from the screen whenever you click the OK or Close button. Now it
executes the next code to implement its programmable timer on its UserForm_Activate() event:

 Since the cmdOK_Click() event uses the VBA Unload method to unload the UserForm , the loop is
instantly stopped and the form is closed!

 ■ Attention To create a UserForm SplashScreen that is kept on the screen for a given amount of time
without user interference, don’t put the OK button on it. This will let the user appreciate the information you
want to give about your application.

CHAPTER 3 ■ PROGRAMMING THE MICROSOFT EXCEL WORKBOOK OBJECT

164

 Setting Workbook Object References
 Since each Microsoft Excel window can open an undefined number of workbooks, you must take care when
your application deals with more than one workbook opened at the same time and the way you reference
them.

 If you need to refer to your workbook application from any code module of your application, always use
the Application object’s ThisWorkbook property with one of these two syntaxes:

 Dim wkb as Workbook
 Set wkb = Application .ThisWorkbook
 Debug.Print wkb.Name

 or

 Set wkb = ThisWorkbook
 Debug.Print wkb.Name

 But if you need to reference your application from the ThisWorkbook object code module, you can
simply use the VBA keyword Me , without setting any variable to reference it. The next instruction will print
your application name in the VBA Immediate window if you put it in any procedure of the ThisWorkbook
object code module:

 Debug.Print Me .Name

 Looking again to the Microsoft object model in Figure 2-1 of Chapter 2 , you will note that the Workbooks
collection is the second main object behind the Application object.

 Every time you open a workbook inside the same Microsoft Excel window (represented by the
 Application object), Excel puts a reference to it in the Workbooks collection, which has two main properties
to identify its members: the Index property (an Integer value) and the Name property (a String value).

 For the Application .Workbooks collection, the Index property sets the unpredictable order of each
opened workbook inside Excel, which can be inadvertently changed as the user closes and opens another
workbook, while the Name property sets the stable workbook name, which can also be changed when you use
Excel’s Save As menu command or the Workbook object’s SaveAs method.

 Suppose you have a worksheet application named Book1 and it is the only workbook open inside a
single Microsoft Excel window. The next two instructions will set a reference to it on the wkb as Workbook
 object variable:

 Dim wkb as Workbook
 Set wkb = Workbooks(1) '< Reference by Index
 Set wkb = Workbooks("Book1") '< Reference by Name

 The first thing you should never forget is that you simply can’t consider that your application will ever
receive Index = 1 because this will just happen if your application is the first opened inside Excel; this is a
great cause of error flaws when programming Excel applications.

 Don’t ever use the Index property to refer to the workbooks opened by your application because
you can’t anticipate which value it will be. But you can trust in the Name property, because if any opened
workbook should be saved with another name, this will be reflected in the Application .Workbooks
collection.

http://dx.doi.org/10.1007/978-1-4842-2205-8_2#Fig1
http://dx.doi.org/10.1007/978-1-4842-2205-8_2

CHAPTER 3 ■ PROGRAMMING THE MICROSOFT EXCEL WORKBOOK OBJECT

165

 Let’s see some practical examples about workbook referencing while we also extend your VBA
knowledge to deal with the UserForm object and its ListBox control. Close all opened workbooks and open
the Workbook Referencing.xlsm macro-enabled workbook, which you can extract from the file Chapter03.
zip . You will receive the frmOpenWorkbooks UserForm from where you can open another Excel workbook and
look at the Index and Name properties (Figure 3-8).

 Figure 3-8. The Workbook Referencing.xlsm macro-enabled workbook shows the frmOpenWorkbooks , which
will show every other workbook opened in the same Microsoft Excel application window. This figure shows an
empty list of open workbooks, meaning that only this application is opened at this moment

 ■ Attention If you open Excel and leave the default empty workbook Book1 opened before opening
 Workbook Referencing.xlsm , you will see it in frmOpenWorkbooks UserForm ListBox as the first workbook
opened (having Index = 1).

 Click the Open one or more Workbooks button (cmdOpenWkbs), select one or more Excel files, and
click OK to see them be opened behind the UserForm while their Index and Name properties appear
inside the lstWorkbooks ListBox . Figure 3-9 shows what happened after I selected and opened four
workbooks already explored in this book: their Index and Name properties, as well as the information if the
workbook is referenced by any object variable, are shown on the lstWorkbooks ListBox . Also note that the
number of workbooks opened is displayed at the bottom of lstWorkbooks , while the Close All Workbooks
 CommandButton becomes enabled.

CHAPTER 3 ■ PROGRAMMING THE MICROSOFT EXCEL WORKBOOK OBJECT

166

 ■ Attention Note in Figure 3-9 that there is no Index = 1 on this list because this index belongs to the
application itself (Workbook Referencing.xlsm) since it was the only open application before I selected four
other workbooks to be opened. Note that above the lstWorkbooks ListBox a Label control states “Currently
opened Workbooks (but Me !).”

 Any workbook event will normally fire for the workbooks you select. For example, if you select the
 Workbook Events.xlsm workbook from the frmOpenedWorkbooks UserForm , all the initializing events (the
 Workbook_ Open , Workbook _Activate , and WindowActivate events) will fire, and the associated MsgBox ()
will pop up on the screen. Although all workbook projects run in the same VBA interface (under the same Excel
 Application object), each workbook runs on its own process, and you cannot share workbook code inside the
same Excel application window.

 This is the code that executes when you click the cmdOpenWkbs CommandButton and fire its Click()
event on the frmOpenWorkbooks UserForm code module:

 Private Sub cmdOpenWkbs_Click()
 Dim varFiles As Variant
 Dim varItem As Variant

 Figure 3-9. Use the Open one or more Workbooks CommandButton from the frmOpenWorkbooks UserForm
to select and open workbooks inside this Excel application window. The lstWorkbooks ListBox will show each
workbook index and whether they are referenced by any variable

CHAPTER 3 ■ PROGRAMMING THE MICROSOFT EXCEL WORKBOOK OBJECT

167

 varFiles = ShowDialogBox (OpenFile, True)
 If Not IsEmpty(varFiles) Then
 If IsArray (varFiles) Then
 For Each varItem In varFiles
 Application .Workbooks. Open (varItem)
 Next
 Else
 Application .Workbooks. Open (varFiles)
 End If
 Call FilllstWorkbooks
 Call DefineButtons (False)
 End If
 End Sub

 You can see that the cmdOpenWkbs_Click() event uses the ShowDialogBox () procedure from
 basFileDialog explored in Chapter 2 .

 After the Open dialog box appears, the user can select one or more files (because of the True value used
in the second procedure argument) or click Cancel, which will leave the varFiles Variant variable with the
default Empty value. That is why the procedure uses the VBA IsEmpty() function to test varFiles .

 varFiles = ShowDialogBox (OpenFile, True)
 If Not IsEmpty(varFiles) Then

 The procedure then uses the VBA IsArray () function to verify whether you select more than one
file, and if this is true, it uses a For Each ... Next loop to open all selected files using the Application .
Workbooks. Open method. Or it opens the only selected file.

 If IsArray (varFiles) Then
 For Each varItem In varFiles
 Application .Workbooks. Open (varItem)
 Next
 Else
 Application .Workbooks. Open (varFiles)
 End If

 After all files have been opened, the Sub FillsWorkbooks() procedure is called to fill the ListBox , the
 Sub DefineButtons () procedure is called to synchronize the enabled state of all CommandButton objects of
the UserForm (note in Figure 3-9 that the Close all Workbooks CommandButton becomes available), and the
procedure ends.

 Call FilllstWorkbooks
 Call DefineButtons (False)
 End If
 End Sub

http://dx.doi.org/10.1007/978-1-4842-2205-8_2

CHAPTER 3 ■ PROGRAMMING THE MICROSOFT EXCEL WORKBOOK OBJECT

168

 If you want to close all opened workbooks, just click the cmdCloseAll CommandButton to execute its
 Click() event. Since we are closing all opened workbooks except the Workbooks Events.xlsm workbook,
where the code is running, you just need to loop through the Workbooks collection and apply its Close
method, executing this code:

 Private Sub cmdCloseAll_Click()
 Dim varItem As Variant

 For Each varItem In Workbooks
 If Not varItem Is ThisWorkbook Then
 varItem. Close
 End If
 Next
 Set mWkb = Nothing
 Call FilllstWorkbooks
 Call DefineButtons (False)
 End Sub

 Note in the previous code that to avoid closing Me (Workbook Referencing.xlsm), the code verifies
inside the For Each... Next loop if the referenced workbook is equal to the object returned by the
 ThisWorkbook method of the Application object.

 If Not varItem Is ThisWorkbook Then

 If this is true, the workbook referenced by the varItem variable is closed, using the Workbook object
 Close method.

 varItem. Close

 After all workbooks have been closed, the mWbk module-level variable is set to Nothing , and the Sub
FillWorkbooks() and DefineButtons () procedures are called to synchronize the UserForm interface.

 ■ Attention The VBA For Each... Next loop needs to use a variable declared with the same type of the
collection it belongs to or a Variant variable because this is the only data type that can hold any kind of value
or object reference. Since we are looping through the Workbooks collection, the varItem variable holds a
reference to a Workbook object and can execute its Close method.

 Since varItem is declared as Variant , VBA can’t anticipate at compile time if the object it will receive has
a Close method. This will be verified when the code is running, using the object association known as late
binding .

 Now click Open Workbook and set a reference CommandButton (cmdOpenWkbReference) to select and
open another workbook inside Excel. The Index and Name properties will appear in the ListBox along with
“Yes” in the Referenced column (Figure 3-10). Note that now both Close Workbook with Reference and Close
all Workbooks CommandButton s become available and that the label displaying the number of workbooks
opened by the UserForm below the ListBox is updated.

CHAPTER 3 ■ PROGRAMMING THE MICROSOFT EXCEL WORKBOOK OBJECT

169

 Whenever you click the cmdOpenWkbReference CommandButton , VBA executes this code:

 Option Explicit
 Dim mWkb As Workbook

 Private Sub cmdOpenWkbReference_Click()
 Dim strFile As String

 strFile = ShowDialogBox () & ""
 If Len(strFile) Then
 ' Workbook was selected. Open it!
 Set mWkb = Application .Workbooks. Open (strFile)
 Call FilllstWorkbooks
 Call DefineButtons (False)
 End If
 End Sub

 Figure 3-10. When you click the “ Open Workbook and set a reference” button, the selected workbook will
be opened, and the referenced value will show “Yes” in the ListBox , as a confirmation that there is a module
variable referencing this workbook

CHAPTER 3 ■ PROGRAMMING THE MICROSOFT EXCEL WORKBOOK OBJECT

170

 Did you notice that this time the mWkb module-level variable holds a reference to the opened workbook?
This reference is important because you can close the referenced workbook without using the Workbooks
collection’s Index or Name property. In fact, if you click the Close Workbook with Reference button
(cmdCloseWkbByRef), you will execute this code:

 Private Sub cmdCloseWkbByRef_Click()
 mWkb. Close
 Set mWkb = Nothing
 Call FilllstWorkbooks
 Call DefineButtons (False)
 End Sub

 Once again, after the referenced workbook is closed, both the Sub FillsWorkbook() and
 DefineButtons () procedures are called to synchronize the UserForm interface.

 Using the ListBox Control
 Let’s take a look at how you can use the ListBox control to show information in the UserForm interface.
 Close the frmOpenedWorkbooks UserForm , select it in the VBA environment, and click the lstWorkbooks
 ListBox to show its properties in the VBA Properties window (Figure 3-11).

 Figure 3-11. This is the lstWorkbooks ListBox and its properties in the VBA environment. Note that the
 ListBox’s Name, BoundColumn, ColumnCount, ColumnHeads, and ColumnWidths have been set

CHAPTER 3 ■ PROGRAMMING THE MICROSOFT EXCEL WORKBOOK OBJECT

171

 The UserForm ListBox control has a lot of useful properties. Table 3-4 shows some of the most
important properties for thi s control.

 Table 3-4. Some Important ListBox Control Properties

 ListBox Control Property Value Returned Represents

 Name String The control name inside the UserForm

 BackColor Long integer Sets the back color of the ListBox control

 BoundColumn Integer Sets the column number (1-based) that returns the
 ListBox value

 Column Integer Sets the column number (0-based) for the ListBox
selected item information

 ColumnCount Integer Indicates the number of data columns (1-based) that the
 ListBox has

 ColumnHead Boolean Indicates whether the ListBox will show a heard with
the name of the column fields used to populate it; works
just with SQL data

 ColumnWidths String Sets the column width (in points) of each ListBox
column, separated by semicolons

 ControlTipText String Sets the text that will appears in a yellow window when
the mouse rests over the control

 Enabled Boolean Enables and disables the ListBox control

 Font String Sets the font name used to display text on the ListBox

 ForeColor Long Integer Sets the font color of the ListBox control

 ListCount Integer Returns the number of items (1-based) inserted on the
 ListBox

 Listindex Integer Returns the index (order, 0-based) of the selected item
on the ListBox

 MultiSelect Boolean Indicates whether the user can select more than one
item of the ListBox

 TabIndex Integer Sets the tab order of the ListBox on the UserForm

 TabStop Boolean Indicates whether the ListBox will receive the focus by
pressing the Tab key

 Text String Used to insert fixed values on the ListBox from the
Properties window

 TextAlign Integer Sets the text alignment used on all ListBox columns

 Value String Sets the value of the ListBox (selected item)

 Visible Boolean Indicates whether the ListBox is visible on the UserForm
interface

CHAPTER 3 ■ PROGRAMMING THE MICROSOFT EXCEL WORKBOOK OBJECT

172

 The ListBox control also has some important methods that you must be aware of to deal with the
 ListBox items. Table 3-5 shows the most important for you.

 Table 3-5. Some Important ListBox Control Methods

 ListBox Control Method Action Performed

 AddItem Adds a new item to the ListBox control

 Clear Removes all items inserted on the ListBox control

 RemoveItem Removes a given item from the ListBox control

 SetFocus Sets the focus to the ListBox control

 The lstWorkbooks ListBox has been defined to show three columns (ColumnCount = 3), where each
column has a different width, as defined on the ColumnWidths property. The first column (Index value) has
24,95 pt (we tried to insert 25 points, but VBA converted it), the second column (Name value) has 280 pt, and
the third column (Referenced value) has no specification, meaning that it goes from the second column to
the width of the ListBox control. To indicate which value will return the ListBox value whenever a list item
is selected, use the BoundColumn column to indicate the desired column number (1-based).

 BoundColumn =1
 ColumnCount = 3
 ColumnWidths = 24,95 pt;280 pt

 Adding Items to the ListBox

 To add items to any ListBox control, you must use the AddItem method, which has this syntax:

 expression. AddItem (Item, [Index])

 In this code:

 expression : This is required; it is the ListBox name property.

 Item: This is required; it is a String value with the display text for the new item.

 Index: This is optional; it is an Integer value indicating the position (0-based) of
the new item in the list. If omitted, the item is added to the end of the list.

 The ListBox AddItem method always inserts the information on the ListBox ’s first column. To add the
 Workbook .Index property as a new item to the bottom of the lstWorkbooks ListBox control, you can use
code like this (where wkb represents a variable declared as Workbook):

 lstWorkbooks. AddItem wkb.Name

 Using the ListBox Column Property

 Every ListBox control that uses more than one column has a Column property that you can use to set or get
any column value for a given ListBox item. It has this syntax:

 ListBox . Column (column, row) [= String]

 column : This is optional; it is a 0-based Integer from 0 to one less than the total
number of columns.

CHAPTER 3 ■ PROGRAMMING THE MICROSOFT EXCEL WORKBOOK OBJECT

173

 row : This is optional; it is a 0-based Integer from 0 to one less than the total
number of rows.

 Since both the column and row arguments of the ListBox . Column property are 0-based, the first ListBox
column receives the 0 index, while the last ListBox row receives the ListBox .ListCount - 1 value. At any
moment, the selected ListBox item receives the ListBox .ListIndex property (which is also 0-based).

 Supposing the ListBox has three columns, the first column is used to show the Workbook Index
property on the Workbooks collection, and the second column is used to show the Workbook .Name property.
Supposing that intI has the Workbook Index property inside the Workbooks collection, to add the workbook
 Index on the first lstWorkbooks column and the Workbook .Name property on the second lstWorkbooks
column, use syntax like this:

 lstWorkbooks. AddItem intI
 lstWorkbooks. Column (1, lstWorkbooks.ListCount - 1) = wkb.Name

 Note that lstWorkbooks.ListCount - 1 returns the last ListBox item—the one that had been inserted
by the last lstWorkbooks. AddItem method operation.

 This is all the information you need in order to understand what happens with the Sub
Filll stWorkbooks() procedure that is called from every CommandButton of the frmOpenedWorkbooks
UserForm . It has this code:

 Private Sub FilllstWorkbooks()
 Dim varItem As Variant
 Dim intI As Integer
 Dim intIndex As Integer

 Me .lstWorkbooks. Clear
 If Workbooks.Count > 1 Then
 For intI = 1 To Workbooks.Count
 If Not (Workbooks(intI) Is ThisWorkbook) Then
 With Me .lstWorkbooks
 . AddItem intI
 . Column (1, .ListCount - 1) = Workbooks(intI).Name
 If Workbooks(intI) Is mWkb Then
 . Column (2, .ListCount - 1) = "Yes"
 Else
 . Column (2, .ListCount - 1) = "No"
 End If
 End With
 End If
 Next
 End If
 Me .lblWorkbooksCount.Caption = Me .lstWorkbooks.ListCount & " Workbook (s) opened"
 End Sub

 Note that the first action performed by the Sub FilllstWorkbooks() procedure is to clean the
 lstWorkbooks ListBox , removing all its items.

 Me .lstWorkbooks. Clear

CHAPTER 3 ■ PROGRAMMING THE MICROSOFT EXCEL WORKBOOK OBJECT

174

 It then verifies whether the Workbooks collection has more than one workbook (because it must have at
least one for the Workbook Referencing.xlsm application, which is running the code).

 If Workbooks.Count > 1 Then

 If Excel has two or more workbooks open, the code performs a For...Next loop through the Workbooks
collection using the Index property to reference each opened workbook. Note that the intI variable is used
to set the desired index, which goes from 1 (the first opened workbook) to the Workbooks.Count property:

 For intI = 1 To Workbooks.Count

 The code now verifies whether the referenced workbook is not ThisWorkbook to add it to the list.

 If Not (Workbooks(intI) Is ThisWorkbook) Then

 If this is true (it is another opened workbook), the code uses a With...End With construction to
reference just once the lstWorkbooks ListBox and creates more concise code.

 With Me .lstWorkbooks
 ...
 End With

 The Index and Name properties of the referenced workbook are then added to the first and second
columns of the lstWorkbooks ListBox . Note that the intI variable holds the Index property and that
 .ListCount - 1 (note the dot before the property name) indicates the item where the second column
information will be changed.

 With Me .lstWorkbooks
 . AddItem intI
 . Column (1, .ListCount - 1) = Workbooks(intI).Name

 To confirm that the workbook has a variable reference set, the code verifies whether the referenced
workbook is the same one referenced by the mWkb module-level variable. If this is true, it adds “Yes” to the
third lstWorkbooks column. If not, it adds “No.”

 If Workbooks(intI) Is mWkb Then
 . Column (2, .ListCount - 1) = "Yes"
 Else
 . Column (2, .ListCount - 1) = "No"
 End If

 ■ Attention You can use the VBA IIF() function to do this last task using just one instruction, in this way:

 . Column (2, ListCount - 1) = Iif(Workbooks(intI) Is mWkb, "Yes", "No")

CHAPTER 3 ■ PROGRAMMING THE MICROSOFT EXCEL WORKBOOK OBJECT

175

 And when all opened workbook information has been added to the lstWorkbooks ListBox , the code
updates the lblWorkbooksCount label information, changing the Caption property to reflect how many
items the lstWorkbooks has and using the ListCount property.

 Me .lblWorkbooksCount.Caption = Me .lstWorkbooks.ListCount & " Workbook (s) opened"

 Note that the Me keyword used on the Me .lstWorkbooks.ListCount instruction refers to the UserForm —
the owner of the code module.

 I also want to call your attention to the programming technique used by the UserForm : whenever
another workbook is opened or closed, the lstWorkbooks ListBox is cleared and filled again. It does not use
the ListBox AddItem or RemoveItem to manage the list items. They are all removed and re-inserted.

 Referencing ListBox Items

 We are now able to talk about what happens when you click any lstWorkbooks item and the CommandButton s
named Save Workbook as..., Close Workbook by Index, and Close Workbook by Name. All these three
buttons get a reference from the selected workbook on the ListBox either by its Index on the Workbooks
collection or by its Name property. This is the code that runs when you click the Close Workbook by Index
button (cmdCloseWbkByIndex):

 Private Sub cmdCloseWkbIndex_Click()
 Dim intIndex As Integer

 intIndex = Me .lstWorkbooks.Value
 Workbooks(intIndex). Close
 Call FilllstWorkbooks
 Call DefineButtons (False)
 End Sub

 Since the workbook index was added by the lstWorkbooks. AddItem method and the lstWorkbooks
BoundColumn property is defined to 1 (default value), you can trust that the lstWorbooks value is the selected
workbook Index on the Workbooks collection and can be easily closed by calling the Workbooks collection’s
 Close method.

 intIndex = Me .lstWorkbooks.Value
 Workbooks(intIndex). Close

 The procedure calls the FilllstWorkbooks() procedure to clear the ListBox , fills it again with the new
 Workbooks collection indexes, and then calls the DefineButtons () procedure to synchronize the Enabled
property of the UserForm CommandButton s.

 Select the first opened workbook on the list and click the Close Workbook by Index button. Note that
when you do this, all other opened workbooks change their Index values inside the Workbooks collection
(Figure 3-12).

CHAPTER 3 ■ PROGRAMMING THE MICROSOFT EXCEL WORKBOOK OBJECT

176

 Figure 3-12. When you click any lstWorkbooks item and click the Close Workbook by Index or Close
 Workbook By Name button, the selected workbook is closed, and all remaining workbook Index values inside
the Workbooks collection change

 You can continue to select workbooks on lstWorkbooks and close them by its Index or by its Name ,
because the FilllstWorkbooks() procedure always cleans the ListBox and fills it again using its new
 Workbooks collection indexes. When you click the Close Workbook by Name button, the cmdCloseWkbName_
Click() event fires and executes this code:

 Private Sub cmdCloseWkbName_Click()
 Dim strName As String

 strName = Me .lstWorkbooks. Column (1)
 Workbooks(strName). Close
 Call FilllstWorkbooks
 Call DefineButtons (False)
 End Sub

 This time, the strName string variable receives the second ListBox column value, where the workbook
name is displayed, and executes the Workbook collection’s Close method, referencing it by its Name property:

 strName = Me .lstWorkbooks. Column (1)
 Workbooks(strName). Close

CHAPTER 3 ■ PROGRAMMING THE MICROSOFT EXCEL WORKBOOK OBJECT

177

 Now see what happens when you select any workbook, click the “Save workbook as” button, and give
it another name. Although the workbook name changes, the Index remains the same inside the Workbooks
collection (Figure 3-13).

 Figure 3-13. When you click the "Save Workbook as" button of frmOpenedWorkbooks, the workbook name
appears in the Inputbox() dialog with the 1 suffix added. Click OK to save the workbook with a new name and
watch that it doesn’t change its Index value inside the Workbooks collection

 ■ Attention If the workbook you are trying to change the name of is already saved on your disk drive, the
 Workbook .SaveAs method will show a warning dialog box asking your permission to overwrite the file. If you
click the No or Cancel button, the SaveAs method will raise a unexpected error on your code (Figure 3-14).

CHAPTER 3 ■ PROGRAMMING THE MICROSOFT EXCEL WORKBOOK OBJECT

178

 This is the code executed when you click the “Save Workbook as” (cmdSaveAs) Command button:

 Private Sub cmdSaveAs_Click()
 Dim varWkb As Variant
 Dim strName As String
 Dim intIndex As Integer
 Dim intPos As Integer
 Const conErrSaveAsFailed = 1004

 On Error GoTo cmdSaveAs_Err

 intIndex = Me .lstWorkbooks.Value
 strName = Me .lstWorkbooks. Column (1)
 intPos = InStrRev (1, strName, ".")
 strName = Left (strName, intPos - 1) & "1" & Mid (strName, intPos)

 strName = InputBox("Save '" & strName & "' with a new name?", "Save workbook with
another name?", strName)

 If Len(strName) Then
 Workbooks(intIndex).SaveAs strName
 Call FilllstWorkbooks
 Call DefineButtons (False)
 End If

 cmdSaveAs_End:
 Exit Sub
 cmdSaveAs_Err:
 Select Case Err
 Case conErrSaveAsFailed
 Case Else
 MsgBox "Error " & Err & ": " & Error(Err), vbCritical, "Error on Save As
workbook"
 End Select
 Resume cmdSaveAs_End
 End Sub

 Figure 3-14. The Workbook .SaveAs method will show a warning dialog before overwriting any existing
workbook. If you cancel the saving operations by clicking the No or Cancel button, the Workbook .SaveAs
method will raise an unexpected error on your code

CHAPTER 3 ■ PROGRAMMING THE MICROSOFT EXCEL WORKBOOK OBJECT

179

 Setting an Error Trap
 Besides the variables needed in the code, the cmdSaveAs_Click() event procedure also declares the
constant conErrSaveAsFailed = 1004 to represent the error code raised whenever the Workbooks
collection.SaveAs method is canceled and sets the error trapping to catch this on any other unexpected
errors to the cmdSaveAs_Err: label.

 Now, whenever any error is raised inside the event procedure, the code stream will be transferred
to the cmdSaveAs_Err: label and treated by a Selected Case statement. If the error code is equal to the
 conErrSaveAsFailed constant, it means that the user just canceled the Workbooks collection’s SaveAs
method, and nothing will happen. If a MsgBox () function will show the error, the procedure will continue
on the cmdSaveAs_End: label (its exit door) and end as usual.

 Saving the Workbook with a New Name
 The procedure begins storing the Index and Name values of the selected workbook in the Workbooks
collection in the intIndex and strName variables, while the intPos Integer variable receives the position
of the dot (.) that divides the workbook file name from its extension using the VBA InStrRev () function
(search string on reverse order), because the Workbook .Name property used to fill the second column of the
 lstWorkbooks ListBox always returns the workbook file extension:

 intIndex = Me .lstWorkbooks.Value
 strName = Me .lstWorkbooks. Column (1)
 intPos = InStrRev (1, strName, ".")

CHAPTER 3 ■ PROGRAMMING THE MICROSOFT EXCEL WORKBOOK OBJECT

180

 The next operation uses the intPos value to get the workbook file name (without the file extension)
using the VBA Left () function to extract it from the first character to the point immediately before intPos
(the dot position), concatenate it with the suffix 1 to create another file name, and then concatenate it again
the file extension, using the VBA Mid () function to extract everything from the dot position to end of the
 strName string so the file can be saved with another name but with the same type used to open it.

 strName = Left (strName, intPos - 1) & "1" & Mid (strName, intPos)

 The strName variable (which actually holds the proposed new workbook file name) will then receive the
value returned by the VBA InputBox () function.

 strName = InputBox("Save '" & strName & "' with a new name?", "Save workbook with another
name?", strName)

 If the user clicks the Cancel button of the InputBox() function shown in Figure 3-13 , strName will
receive an empty string. Otherwise, a file name was proposed by the user, and it is now stored in the strName
variable. The next two lines of code verify with the VBA Length() function whether the strName variable
has any characters inside it. If it does, it calls the Workbooks collection.SaveAs method to try to save the
workbook with the proposed name. Note that the code refers to the selected workbook on the Workbooks
collection using its Index , while the proposed name stored on the strName variable is used by the SaveAs
method.

 If Len(strName) Then
 Workbooks(intIndex).SaveAs strName

 If no error occurs, the Workbooks.SaveAs method saves the workbook with another name and updates
it into the Workbooks collection without changing its Index . Once more, the Sub FilllstWorkbooks() and
 DefineButtons () procedures are called to clear and fill the lstWorkbooks ListBox and synchronize the
 frmOpenedWorkbooks UserForm interface, and the procedure ends on its exit door, which is the Exit Sub
instruction inside the cmdSaveAs_End: label.

 Call FilllstWorkbooks
 Call DefineButtons (False)
 End If

 cmdSaveAs_End:
 Exit Sub
 ...
 End Sub

 Synchronizing the UserForm Interface
 All CommandButton procedures commented on in the previous sections have a call to the DefineButtons ()
procedure, which is used to synchronize the Enabled property of the CommandButton s. The lesson here is the
 synchronization of the interface elements with the user operations.

 Look again to Figures 3-11 , 3-12 , and 3-13 and note how the CommandButton availability changes
with the select state of the lstWorkbooks ListBox . If lstWorkbooks has no selected items with no other
workbook open in the interface, just the first two buttons used to open workbooks (with or without a variable
reference) are available. When any workbook is opened by the UserForm action, the Close All Workbooks or
 Close Workbook by Reference button (if there is any referenced workbook) becomes enabled, and if the user
clicks any ListBox item, both Close Workbook by Index and Close Workbook by Name become enabled.

CHAPTER 3 ■ PROGRAMMING THE MICROSOFT EXCEL WORKBOOK OBJECT

181

 Whenever you select any workbook, save it with another name, or close one or more workbooks, the
 Close ... CommandButton s become disabled. This is called interface synchronization , and you must be aware
of this simple, necessary technique to create great, solid, professional-looking interfaces to your application.
Let’s see what happens behind the curtains by looking at the DefineButtons () code procedure:

 Public Sub DefineButtons (bolEnabled As Boolean)
 Me .cmdCloseWkbIndex.Enabled = bolEnabled
 Me .cmdCloseWkbName.Enabled = bolEnabled
 Me .cmdSaveAs.Enabled = bolEnabled
 Me .cmdCloseAll.Enabled = bolEnabled Or (Workbooks.Count > 1)
 Me .cmdCloseWkbByRef.Enabled = (Not (mWkb Is Nothing))
 End Sub

 The procedure is quite simple: it receives the bolEnabled as Boolean argument, which must be True or
 False . The first action is to set the focus to the lstWorkbooks ListBox and then set the Enabled properties of
the Close Workbook by Index, Close Workbook by Name, and Save Workbook As CommandButton s, according
to the value received.

 Me .cmdCloseWkbIndex.Enabled = bolEnabled
 Me .cmdCloseWkbName.Enabled = bolEnabled
 Me .cmdSaveAs.Enabled = bolEnabled

 Note that two buttons must not obey just the bolEnabled argument. cmdCloseAll CommandButton must
be active whenever bolEnabled = True or if there are two or more workbooks open, which can be verified
using the Workbooks collection Count property.

 Me .cmdCloseAll.Enabled = bolEnabled Or (Workbooks.Count > 1)

 The last case is the cmdCloseWbkByRef CommandButton (Close Workbook by Reference). This button
must be always enabled when there is a reference set on the mWkb object variable. And you can confirm that
verifying if mWkb is Nothing (it must be enabled whenever this is False):

 Me .cmdCloseWkbByRef.Enabled = (Not (mWkb Is Nothing))

 That is why when the Close All Workbooks (cmdCloseAll) and Close Workbook by Reference
(cmdCloseWkbByRef) Click events fire, their code sets the mWkb variable to nothing.

 The only place that calls the DefineButtons () procedure using a True argument is the lstWorkbooks_
Click() event, which has this code to enable all relevant CommandButton s:

 Private Sub lstWorkbooks_Click()
 Call DefineButtons (True)
 End Sub

 There is also a simple lesson here: synchronize your UserForm interface using a single Sub procedure
and call it after every user action (using Click or Change events) that is coded on your interface.

 Disabling Screen Updating
 The Application object has the ScreenUpdating method, which can be used by your applications to turn on
and off all screen-updating operations made by Excel. Chances are that you need to turn screen updating off
while you are opening another workbook inside your applications, making any necessary operations, and
closing it, before the user of your application even notices what is happening behind the scenes.

CHAPTER 3 ■ PROGRAMMING THE MICROSOFT EXCEL WORKBOOK OBJECT

182

 The Workbook Referencing ScreenUpdating.xlsm macro-enabled workbook that you can also extract
from the Chapter03.zip file has such a feature on its frmOpenedWorkbooks UserForm , implemented by a
simple CheckBox control below its lstWorkbooks ListBox (Figure 3-15).

 Figure 3-15. This is the Workbook Referencing ScreenUpdating.xlsm macro-enabled workbook, which has
the chkCheckBox below its lstWorkbooks ListBox that allows you to control the Application ScreenUpdating
method. When chkCheckBox is unchecked, you can open and close workbooks without notice of any operation
in the Excel interface

 This UserForm makes the same operations already commented on in the previous section but can open
and close workbooks without updating the Excel user interface while chkScreenUpdating Checkbox is
unchecked: you can open any number of workbooks without notice in their worksheet interfaces, while the
 lstWorkbooks ListBox shows what is opened.

 ■ Attention If you open some workbooks and check the chkScreenUpdating CheckBox , Excel will update
its interface and immediately show the active worksheet of the last-opened workbook.

 To turn on and off the Application .ScreenUpdating method, just one line of code is needed on both
 cmdOpenWkbs_Click() and cmdOpenWbkWithReference_Click() events.

CHAPTER 3 ■ PROGRAMMING THE MICROSOFT EXCEL WORKBOOK OBJECT

183

 Private Sub cmdOpenWkbs_Click()
 Dim varFiles As Variant
 Dim varItem As Variant

 varFiles = ShowDialogBox (OpenFile, True)

 If Not IsEmpty(varFiles) Then
 Application .ScreenUpdating = Me .chkScreenUpdating
 If IsArray (varFiles) Then
 For Each varItem In varFiles
 Application .Workbooks. Open (varItem)
 Next
 Else
 Application .Workbooks. Open (varFiles)
 End If
 Call FilllstWorkbooks
 Call DefineButtons (False)
 End If
 End Sub

 Private Sub cmdOpenWkbReference_Click()
 Dim strFile As String

 strFile = ShowDialogBox () & ""

 If Len(strFile) Then
 ' Workbook was selected. Open it!
 Application .ScreenUpdating = Me .chkScreenUpdating
 Set mWkb = Application .Workbooks. Open (strFile)
 Me .cmdCloseWkbByRef.Enabled = True
 Call FilllstWorkbooks
 End If
 End Sub

 Note that the Application .ScreenUpdating method is turned on/off by the state of the
 chkScreenUpdating CheckBox , which returns True when checked and False when unchecked.

 Application .ScreenUpdating = Me .chkScreenUpdating

 When you click the chkScreenUpdating CheckBox , the chkScreenUpdating_Click() event fires,
executing this code:

 Private Sub chkScreenUpdating_Click()
 Application .ScreenUpdating = Me .chkScreenUpdating
 End Sub

 And whenever you close frmOpenedWorkbooks , the UserForm_Terminate () event fires, turning on
again the Application .ScreenUpdating method.

 Private Sub UserForm_Terminate ()
 Application .ScreenUpdating = True
 End Sub

CHAPTER 3 ■ PROGRAMMING THE MICROSOFT EXCEL WORKBOOK OBJECT

184

 ■ Attention You should take care to always turn on again the Application .ScreenUpdating method or the
Excel screen will seem to be freeze. If this ever happens in your code, press Alt+F11 to show the VBA interface
and type Application .ScreenUpdating=True in the VBA Immediate window to turn the screen updating on
again.

 Through this entire book we will deal with the Workbook object and its interface, using some of its
events, properties, and methods to improve the application usability.

 Chapter Summary
 In this chapter, you learned about the following:

• The sequence of Excel Workbook object events

• How to pop up a splash screen to your application using a VBA UserForm and the
 Workbook . Open event

• How you can implement a Timer using the Application . OnTime method or VBA
 Timer () function

• How you can use the VBA DoEvents statement inside a Do...Loop structure

• How to set Workbook object references

• How you can create a UserForm interface to open, save, and close workbooks

• How to deal with the UserForm object and ListBox control properties and methods

 In the next chapter, you will learn about the next object in the Microsoft Excel object model where all
the action of your worksheet application really happens!

185© Flavio Morgado 2016
F. Morgado, Programming Excel with VBA, DOI 10.1007/978-1-4842-2205-8_4

 CHAPTER 4

 Programming the Microsoft Excel
Worksheet Object

 In this chapter you will learn about the third object in the Microsoft Excel object model hierarchy, which
is the Worksheet object . This is where the real action of most of your worksheet applications will happen.
Like its parent and grandparent objects (the Workbook and Application objects, respectively), it has a
rich interface with many properties, methods, and events that you should be aware of to program your
application with VBA. You can obtain all the procedure code in this chapter by downloading the Chapter04.
zip file from the book’s Apress.com product page, located at www.apress.com/9781484222041 , or from
 http://ProgrammingExcelWithVBA.4shared.com .

 The Worksheet Object
 The Microsoft Excel Worksheet object is the core of any worksheet application and as such is the focus of
many Excel VBA applications. Similar to its parent, the Workbook object , and grandparent, the Application
object, the Worksheet object is full of properties, methods, and events that you can interact with using VBA
code to take absolute control of your application.

 Table 4-1 shows some important Worksheet object properties.

 ■ Attention Search the Internet with the keywords worksheet properties , worksheet methods , or worksheet
events to find a complete list of Excel Worksheet object properties, methods, and events, respectively.
Tables 4-1 , 4-2 , and 4-3 come from the following location on the Microsoft MSDN web site:

 http://msdn.microsoft.com/en-us/library/microsoft.office.tools.excel.worksheet_properties.aspx

http://www.apress.com/9781484222041
http://programmingexcelwithvba.4shared.com/
http://msdn.microsoft.com/en-us/library/microsoft.office.tools.excel.worksheet_properties.aspx

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

186

 Table 4-1. Excel Worksheet Object Properties That Control the Way the Excel Window Behaves

 Worksheet Object Property Value Used To

 Application Object Gets a reference to the Application object.

 AutoFilter Object Gets an AutoFilter that provides information about
filtered lists on the worksheet if filtering is enabled.
Gets Nothing if filtering is off.

 AutoFilterMode Boolean Gets or sets a value that indicates whether filtering is
currently enabled on the worksheet (that is, whether
the filter drop-down arrows are currently displayed).

 Cells Range Gets a Range object that represents all the cells on the
worksheet (not just the cells that are currently in use).

 CircularReference Range Gets a Range object that represents the range
containing the first circular reference on the sheet.
Gets Nothing if there is no circular reference on the
sheet.

 CodeName String Sets the sheet tab code module name on the VBA
project.

 Columns Range Gets a Range object that represents one or more
columns on the worksheet.

 Comments Collection Gets a Comments collection that represents all the
comments.

 DisplayPageBreaks Boolean Gets or sets a value that indicates whether page breaks
(both automatic and manual) on the worksheet are
displayed.

 EnableAutoFilter Boolean Gets or sets a value that indicates whether AutoFilter
arrows are enabled when user-interface-only
protection is turned on.

 EnableCalculation Boolean Gets or set a value that indicates whether Microsoft
Office Excel automatically recalculates the worksheet
when necessary.

 EnableSelection Boolean Gets or sets a value indicating which cells can be
selected on the sheet.

 Name String Gets or sets the name of the worksheet.

 Names Collection Gets a Names collection that represents all the
worksheet-specific names (names defined with the
 WorksheetName! prefix).

 Next Worksheet Gets a Microsoft.Office.Interop.Excel.Worksheet
that represents the next sheet.

 Parent Workbook Gets the parent object for the worksheet.

 Previous Worksheet Gets a Microsoft.Office.Interop.Excel.Worksheet
that represents the previous sheet.

 ProtectContents Boolean Gets a value that indicates whether the contents of the
worksheet (the individual cells) are protected.

(continued)

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

187

 Table 4-2 shows some important Worksheet object methods and the actions they perform when evoked
by your VBA code.

Table 4-1. (continued)

 Worksheet Object Property Value Used To

 Protection Object Gets a Protection object that represents the
protection options of the worksheet.

 Range Range Gets a Range object that represents a cell or a range of
cells.

 Rows Range Gets a Range object that represents one or more rows
on the worksheet.

 ScrollArea Range Gets or sets the range where scrolling is allowed, as an
A1-style range reference.

 Sort Object Gets the sorted values in the current worksheet.

 Tab Object Gets a tab for the worksheet.

 Type Object Gets the worksheet type.

 UsedRange Range Gets a Range object that represents all the cells that
have contained a value at any time.

 Visible Integer Gets or sets a value that determines whether the object
is visible (xlSheetVisible), hidden (xlSheetHidden),
or very hidden (xlSheetVeryHidden).

 Table 4-2. Some Important Excel Worksheet Object Methods

 Worksheet Object Method Action Performed

 Activate Makes the underlying Worksheet object the active sheet

 Delete Deletes the underlying Worksheet object

 Move Moves the worksheet to another location in the workbook

 Paste Pastes the contents of the clipboard onto the worksheet

 PasteSpecial Pastes the contents of the clipboard onto the worksheet, using a specified
format

 PrintOut Prints the worksheet

 PrintPreview Shows a preview of the worksheet

 Protect Protects a worksheet

 SaveAs Saves changes to the worksheet in a different file

 Select Selects the worksheet

 Unprotect Removes protection if the worksheet is protected

 The Excel Worksheet object has a small set of events when compared to the Excel Application and
 Workbook objects. You use these events to control the user actions on each sheet tab.

 Table 4-3 shows the most important Worksheet object events, when they fire, and the event declarations
and arguments (if any).

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

188

 Note that all Worksheet object events are preceded by the word Worksheet_ in their procedure
declaration. Once again, for each associated event in the Workbook and Application objects, Excel will
first fire the Worksheet object event, followed by the associated Workbook object event and then by the
 Application object event (the event order always fires from the bottom to the higher object level).

 Using Worksheet Object Events
 By now you must already know when and why these events fire. The Worksheet Events.xlsm Excel macro-
enabled workbook that you can extract from the Chapter03.zip file has all these events coded on the Sheet1
object code module.

 It is important to note that the Worksheet object events do not fire when the workbook is opened.
For example, the Sheet1_Activate() event does not fired when the workbook is opened and Sheet1
is activated. To see the Worksheet Events.xlsm macro-enabled workbook Sheet1 object events fire,
you must select another sheet tab (the Worksheet_Deactivate event fires), select again the Sheet1 tab
(the Worksheet_ Activate event fires), select another cell on the Sheet1 worksheet (the Worksheet_
SelectionChange fires), change any cell value (the Worksheet_Change and Worksheet_SelectionChange
events fire), insert a formula on any cell (the Worksheet_Calculate , Worksheet_Change and Worksheet_
SelectionChange events fire), double-click any cell (the Worksheet_BeforeDoubleClick event fires), or
right-click any cell (the Worksheet_BeforeRightClick event fires).

 Figure 4-1 shows the event sequence that fires after typing the formula =1 on cell A1 of the Sheet1
worksheet of the Worksheet Events.xlsm file and pressing Enter.

 Worksheet_Calculate → Worksheet_Change → Worksheet_SelectionChange

 Table 4-3. Worksheet Object Events and Their Occurrence

 Event Name Occurrence Event Declaration and Arguments

 Activate When the worksheet is activated Private Sub Worksheet_ Activate ()

 BeforeDoubleClick When the worksheet is double-clicked,
before the default double-click action

 Private Sub Worksheet_
BeforeDoubleClick(ByVal Target
As Range, Cancel As Boolean)

 BeforeRightClick When the worksheet is right-clicked,
before the default right-click action

 Private Sub Worksheet_
BeforeRightClick(ByVal Target
As Range, Cancel As Boolean)

 Calculate After the worksheet is recalculated or
after any changed data is plotted on a
chart

 Private Sub Worksheet_Calculate()

 Change When cells in the worksheet are
changed by the user or by an external
link

 Private Sub Worksheet_Change(ByVal
Target As Range)

 Deactivate When the sheet is deactivated Private Sub Worksheet_Deactivate()

 SelectionChange When another cell (or cells) is selected
on the worksheet

 Private Sub Worksheet_
SelectionChange (ByVal Target
As Range)

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

189

 Please note that every Sheet1 object event has a slightly different code strategy to print the Sheet1 object
name and Sheet1 tab name, which are different names. This is the Sheet1 Worksheet_Change() event procedure:

 Private Sub Worksheet_Change(ByVal Target As Range)
 Dim strMsg As String
 Dim strTitle As String
 Dim strCodeName As String

 strCodeName = Application .ActiveSheet. CodeName
 strTitle = strCodeName & " Worksheet_Change event fired"
 strMsg = strCodeName & " object" & vbCrLf & vbCrLf
 strMsg = strMsg & "Worksheet_Change event fired." & vbCrLf
 strMsg = strMsg & "Sheet changed is " & Application .ActiveSheet.Name & vbCrLf
 strMsg = strMsg & "Cell(s) changed is(are) " & Target. Address
 MsgBox strMsg, vbInformation, strTitle
 End Sub

 To get the Worksheet object name, the code uses the Worksheet. CodeName property (returned by the
 Application .ActiveSheet property, which represents the active sheet) and stores it on the strCodeName
string variable.

 strCodeName = Application .ActiveSheet. CodeName

 And to get the worksheet sheet tab name, the code uses the Worksheet.Name property (returned by the
 Application .ActiveSheet property).

 strMsg = strMsg & "Sheet changed is " & Application .ActiveSheet.Name & vbCrLf

 Figure 4-1. The Worksheet Events.xlsm code shows all Worksheet object events in Table 4-3 . When you insert
a formula on any Sheet1 cell (cell A1 received formula =1) and press Enter, Excel will change cell A1’s value,
recalculate the worksheet, and select cell A2, firing three successive events: Worksheet_Calculate, Worksheet_
Change, and Worksheet_SelectionChange

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

190

 Now you know that every worksheet tab has two names: one that can be easily changed by the user of
your application (the Sheet1 tab name, returned by the Worksheet.Name property) and another that belongs
to the Worksheet object code module and represents it in the VBA Explorer tree (the Worksheet. CodeName
property).

 Although this is quite simple, it has a tremendous impact on your worksheet applications. In fact,
you should never code the Worksheet.Name property into your VBA procedures (like the Sheet1 tab
name). Always refer to the Worksheet. CodeName property in VBA, because it can be changed in the VBA
environment by first selecting the desired Worksheet object in the Project Explorer tree and then changing
its Name property in the VBA Properties window (Figure 4-2), even though you can trust the technique
described in Chapter 2 to avoid any sheet tab name changes.

 Figure 4-2. The VBA Project interface allows you to change any worksheet code name using the Properties
window. This figure changes the Sheet1 worksheet tab Name property from Sheet1 to MySheet, even though the
worksheet tab continues to show Sheet1 as the worksheet name. Note how the Name and CodeName properties
of the ActiveSheet object are printed in the VBA Immediate window

 ■ Attention The Name property of any selected worksheet object in the VBA Project Explorer tree is
associated to the CodeName property of the Worksheet object . Its name must obey the variable name
declaration. In other words, it must begin with a letter or underscore and cannot contain spaces. The VBA
 Project Explorer tree always shows the object Name property (Worksheet. CodeName), followed by the current
sheet tab name (the Worksheet.Name property, between parentheses).

 To avoid any Worksheet object’s Name property value from being changed in the VBA interface, protect the VBA
project of your application! See Chapter 1 for more information.

http://dx.doi.org/10.1007/978-1-4842-2205-8_2
http://dx.doi.org/10.1007/978-1-4842-2205-8_1

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

191

 After the VBA Name property for the Sheet1 worksheet was changed to MySheet , try to change any cell
value and note how the event code procedure will always use the worksheet object’s Name property (using
 Application .ActiveSheet. CodeName) to correctly identify the worksheet object name (Figure 4-3).

 Figure 4-3. After changing the VBA Name property of the Sheet1 object, try to change any cell value and note
how the event procedure’s code captures the current object name using the Application .ActiveSheet. CodeName
property

 The file Workbook and Worksheet Events.xlsm fires all Worksheet and Workbook object events (in this
order), and the files Application , Workbook , and Worksheet Events.xlsm fire all three object events. You
must extract them from the Chapter04.zip file to see how all object-associated events fire from the bottom-
level object (the Worksheet object) to the higher-level object (the Application object).

 Referring to Worksheets
 To refer to any worksheet that your application needs to access, you must set a reference to it. If the code
needs to refers to the worksheet that owns the code module (for example, you are coding the Sheet1 code
module and need to refer to Sheet1 itself), use the VBA keyword Me .

 Note, however, that Me can’t be used in the VBA Immediate window unless your code is running and
you place an interruption point to make the code break. So, this will not work in the Immediate window if no
code or event is running:

 ? Me .Name

 To refer to the active sheet (the one whose sheet tab is already selected in the Excel interface), you can
use the ActiveSheet property of the Application object, as follows:

 ? Application .ActiveSheet.Name

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

192

 But since the Application object is the top-level object on the Microsoft Excel object model hierarchy,
you don’t need to refer it when using the ActiveSheet property (or any other workbook object cited in
Table 2-1 in Chapter 2). This will also work:

 ?ActiveSheet.Name

 There will be times that you will need to set a reference to another worksheet of the same workbook
(or from another opened workbook in the Excel interface) from the current Worksheet object code module
(the one that is running your VBA code). For all these cases, the easiest way to get a reference to the desired
worksheet is to use the Worksheets or Sheets collection of the Workbook object , referencing the worksheet by
its Index (sheet order) or its Name .

 To refer to any worksheet from your workbook application, use the ThisWorkbook object’s Worksheets or
 Sheets collection. The next code fragment sets a reference to the first sheet tab of the application workbook
to a Worksheet object variable using either the sheet index number or the sheet tab name string.

 Dim ws as Worksheet
 Set ws = ThisWorkbook. Worksheets (1)

 Or use the following:

 Set ws = ThisWorkbook. Worksheets (“Sheet1”)

 ■ Attention As Table 3-1 implies, Microsoft Excel exposes two different collections for all worksheets of any
workbook: the Worksheets and Sheets collections. So, you can also use the Sheets collection, which is used in
a lot of Microsoft Excel VBA code you find on the Internet.

 Dim ws as Worksheet
 Set ws = ThisWorkbook. Sheets (1)

 Here’s another example:

 Set ws = ThisWorkbook. Sheets (“Sheet1”)

 To set a reference to any worksheet of any opened workbook inside the same Microsoft Excel interface,
you must first use the Application object’s Workbooks collection to set a reference to the desired Workbook
 object using an object variable declared as Workbook , using either the workbook Index or the Name
properties. Here’s an example:

 Dim wb as Workbook
 Set wb = Application .Workbooks(1) ‘Reference by Index

 Here’s another example:

 Set wb = Workbooks(“Book2”) ‘Reference by Name

 Once the reference to the desired Workbook object has been set, use its Worksheets or Sheets collection
to get a reference to the desired worksheet (either by Index or by Name), in this way:

 Dim wb as Workbook
 Dim ws as Worksheet

http://dx.doi.org/10.1007/978-1-4842-2205-8_2#Tab1
http://dx.doi.org/10.1007/978-1-4842-2205-8_2
http://dx.doi.org/10.1007/978-1-4842-2205-8_3#Tab1

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

193

 Set wb = Workbooks(“Book2”)
 Set ws = wb. Worksheets (“Shee1”)

 If you do not need to reference again the desired opened workbook in the Excel interface, you can set
a reference to any of its worksheets using a simplified syntax using the .Name property of both collections
(Workbooks and Worksheets), in this way:

 Dim ws as Worksheet
 Set ws = Workbooks(“Book2”). Worksheets (“Shee1”)

 Or you can use the Workbook .Index property of both collections (Workbooks and Worksheets):

 Dim ws as Worksheet
 Set ws = Workbooks(2). Worksheets (1)

 ■ Attention Do never forget that you can’t trust that Workbook .Index refers to any workbook opened by
your application using VBA. To guarantee that you are using the right workbook, get the Name property of the
supposed workbook inside the Workbooks collection and then test it to verify whether it is the right workbook.

 strName = Workbooks(2).Name
 If strName = <workbookname> then
 ...

 End If

 Setting the Worksheet Object Reference
 Let’s try a simple exercise. Open a new Excel workbook, press Alt+F11 to show the VBA IDE, and try this
simple experience using the VBA Immediate window to print the sheet name based on its index:

 ?Thisworkbook. Worksheets (1).Name

 If the first sheet tab is Sheet1 , the Immediate window must print Sheet1 for Thisworkbook. Workshee
ts (1).Name . Now, drag the Sheet1 sheet tab to the right, placing it between Sheet2 and Sheet3 . If Sheet2
becomes the first sheet tab, when you execute the Thisworkbook. Worksheets (1).Name command again in
the Immediate window, it will print Sheet2 (Figure 4-4).

 The lesson is quite simple: your application should never refer to the supposed Worksheets collection’s
 Index or Name properties in its VBA code because they are prone to changes. This is the main cause of so
many people asking for a way to avoid the sheet tab name change: they inadvertently coded these values
inside the VBA code modules.

 Use the VBA Me keyword when you want to set a self-reference to the current worksheet object (the
 Worksheet. CodeName property) to refer to any worksheet of your application or set one to the ActiveSheet
property to refer to the worksheet that has the focus in the Excel interface. Here’s an example:

 ? Me .Name
 ?Sheet1.Name ‘Sheet1 is the Worksheet. CodeName property
 ?ActiveSheet.Name

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

194

 ■ Attention To avoid that the Worksheet object’s Name property (associated to the Worksheet. CodeName
property) in the VBA Properties window can be changed, protect your VBA project. See Chapter 1 for more
information.

 Let’s see some practical examples of worksheet references and methods.

 Using the CSheetNameChange Class to Avoid a Single Sheet Change Name
 Let’s see a practical example of the Me keyword to avoid just a single sheet change name, using the beauty of
the Class module’s object programming.

 The Worksheet Events with CSheetNameChange Class.xlsm macro-enabled workbook has a copy
of the CSheetNameChange class (developed in section “Using a Class Module to Control Sheet Tab Name
Changes” in Chapter 2) that is used to watch for any sheet tab name changes. Figure 4-5 shows the VBA
environment window with the Sheet1 object code module and its coded events.

 Figure 4-4. Beware of referring to any worksheet using its Index on the Worksheets collection because if you
change the sheet order, the worksheet index also changes, and you may refer to the wrong sheet tab. Use the
 Worksheet object’s Codename property, the ActiveSheet property of the Application object, or the keyword Me
to reference it (Me means the worksheet where the code is running)

http://dx.doi.org/10.1007/978-1-4842-2205-8_1
http://dx.doi.org/10.1007/978-1-4842-2205-8_2

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

195

 You can’t change the Worksheet Events with CSheetNameChange Class.xlsm file’s Sheet1 tab name
because the Sheet1 object uses the CSheetNameChange class to watch and fire its SheetChangeName() event
whenever this happens. It works this way:

 1. The Sheet1 object uses WithEvents to declare the module-level
 mCSheetNameChange as CSheetNameChange object variable on its module
 Declaration section.

 Option Explicit
 Dim WithEvents mCSheetNameChange As CSheetNameChange

 2. When the worksheet is activated, the Worksheet_ Activate () event fires and
verifies whether the mCSheetNameChange variable has already been instantiated,
comparing it to the VBA Is Nothing value (object variables not instantiated have
the default Nothing value). If this is true, a new instance of the CSheetNameChange
class is set to the mCSheetNameChange variable.

 Private Sub Worksheet_ Activate ()
 If mCSheetNameChange Is Nothing Then
 Set mCSheetNameChange = New CSheetnameChange
 End If
 End Sub

 3. But since the Worksheet_ Activate does not fire when the workbook is opened,
we need to create a Public Sub procedure on the Sheet1 code module that
makes a call to the Sheet1.Worksheet_ Activate event, so this procedure can be
called from the Thisworkbook code module. The Sheet1 object has the Public
Sub Start() procedure, which has this code:

 Public Sub Start()
 Call Worksheet_ Activate
 End Sub

 Figure 4-5. This is the macro-enabled workbook in the VBA Project Explorer, showing its CSheetNameChange
 Class module and the Sheet1 object code module that do not allow the Sheet1 tab name to be changed

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

196

 4. And when the workbook is opened, you force the Sheet1 object Activate()
event to fire by making a call to the Sheet1.Start() public procedure from
the ThisWorkbook object’s Workbook _ Open event, which has this code (note
that Sheet1 object means the Worksheet. CodeName property for the Sheet1
worksheet tab):

 Private Sub Workbook _ Open ()
 Call Sheet1.Start
 End Sub

 5. Since Sheet1 set an instance of the CSheetNameChange class, whenever any
sheet tab name changes, the CSheetNameChange object’s SheetNameChange()
event will fire, passing the Sh argument to identify the Worksheet object whose
name has been changed. To verify whether the Sh argument refers to the
current worksheet, you must compare it to the Me keyword (this code module
object). If they are the same, this sheet tab name (Me) is changed, the event is
canceled, and a MsgBox () warns that the Sheet1 tab name can’t be changed to
the desired new name .

 Private Sub mCSheetNameChange_SheetNameChange(ByVal Sh As Object, Cancel As
Boolean)
 If Sh Is Me Then
 MsgBox "Can't change this sheet tab name to " & Me .Name & "!"
 Cancel = True
 End If
 End Sub

 ■ Attention Please note that Me .Name indicates the new name typed for this sheet tab because the event has
not finished yet and the previous worksheet name was not restored.

 Try to change the Sheet1 tab name to anything and see for yourself. After changing the Sheet1 tab
name, if you try to save the workbook, select another cell, change any selected cell value, double-click or
right-click any cell, or select another worksheet tab, the mCSheetNameChange_SheetNameChange() event
will fire, and the sheet tab name will be turned again to Sheet1 , although you can still change the Sheet2 or
 Sheet3 tab name (Figure 4-6)! Isn’t it beautiful?

 Exercise!

 How can you avoid that just two sheet tab names (like the Sheet1 and Sheet2 worksheets) from the current
workbook can’t be changed? Where must you declare and instantiate the object variable that represents the
 CSheetNameChange class?

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

197

 Using Worksheet Object Properties and Methods
 Most worksheet application actions will happen inside individual Worksheet object code modules, and you
must be aware of how to deal with the Worksheets or Sheets collection and some very popular Worksheet
object methods, like Move , Copy , Protect , and Delete , as well as the Worksheet object’s Visible property, to
really control the behavior of your VBA Excel applications.

 The Worksheet Referencing.xlsm macro-enabled workbook that you can extract from the Chapter04.
zip file has the frmWorksheets UserForm that is automatically opened by the This Workbook.Workbook _ Open
event and that allows you to deal with the Worksheet object (Figure 4-7).

 Figure 4-6. Using the CSheetNameChange class and its SheetChangeName() event procedure just on the
Sheet1 code module, you can avoid that just this worksheet changes its name

 ■ Attention The answer is in the file Workbook Events with CSheetNameChange Class.xlsm that you can
extract from the Chapter04.zip file.

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

198

 ■ Attention Before we begin to explore the frmOpenedWorkbooks interface and its code strategy, I would
like you to know that this UserForm code, interface, and controls synchronization were not made by chance.
This took a lot of work to get perfect, at least for me! If your UserForm s do not behave like this the first time, be
patient and try again and again until they work the way you expect.

 Using the same strategy employed by frmOpenedWorkbooks , discussed in the section “Setting Workbook
 Object References” earlier in this chapter, frmWorksheets also bases its interface synchronization on two
main Sub procedures: FilllstSheetTabs() to fill the lstSheetTabs ListBox with information about all
workbook worksheets and DefineButtons () to synchronize the Enabled property of the UserForm controls
according to the lstSheetTabs selection state.

 When the Worksheet Referencing.xlsm workbook is opened (or when the Open frmWorksheets
command button is clicked), the This Workbook.Workbook _ Open () event fires and executes this code to
open the frmWorksheets UserForm in a modeless state (passing False to its Modal argument):

 Private Sub Workbook _ Open ()
 frmWorksheets.Show False
 End Sub

 And when frmWorksheets loads, the Initialize() event fires, executing this code:

 Option Explicit

 Dim mbolCancelEvent As Boolean

 Figure 4-7. This is the frmWorksheets UserForm from Worksheet Referencing.xlms macro-enabled workbook
that allows you to learn how to do some simple operations with VBA using the Worksheets collection and the
 Worksheet object

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

199

 Dim mintHidden As Integer

 Private Sub UserForm_Initialize ()
 mbolCancelEvent = True

 'Fill ComboBox cboVisible
 Me .cboVisible. AddItem xlSheetVisible
 Me .cboVisible. Column (1, cboVisible.ListCount - 1) = "xlSheetVisible"
 Me .cboVisible. AddItem xlSheetHidden
 Me .cboVisible. Column (1, cboVisible.ListCount - 1) = "xlSheetHidden"
 Me .cboVisible. AddItem xlSheetVeryHidden
 Me .cboVisible. Column (1, cboVisible.ListCount - 1) = "xlSheetVeryHidden"

 'Update ListBox lstSheetTabs
 Call FilllstSheetTabs
 End Sub

 You may noticed that the UserForm declares two module-level variables in its Declaration section
(mbolCancelEvent and mintHidden), and the first action of the UserForm_Initialize () event is setting
 mbolCancelEvent = True .

 If you look at the VBA Properties window, you will see that the cboVisible ComboBox has two columns
(ColumnCount = 2), that the value returned by the control refers to its first column (BoundColumn=1), and
that its first column is invisible (ColumnWidths= 0 pt , as shown in Figure 4-8).

 So, the next action of the UserForm_Initialize () event is to use the AddItem method of the ComboBox
control to fill the two columns of the cboVisible ComboBox with the three possible worksheet visible states:
 xlSheetVisible , xlSheetHidden or xlSheetVeryHidden .

 Figure 4-8. To allow the cboVisible ComboBox to show text while returning a numeric value, it was defined
with two columns (ColumnCount=2), with the first column being the control value (BoundColumn=1) even
though it is invisible (ColumnWidth=0)

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

200

 The cboVisible. AddItem method sets the first column value, and the cboVisible. Column property sets
the second column value, as follows:

 Me .cboVisible. AddItem xlSheetVisible
 Me .cboVisible. Column (1, cboVisible.ListCount - 1) = "xlSheetVisible"

 And as soon as cboVisible is filled, the UserForm_Initialize () event calls Sub FilllstSheetTabs()
to fill the lstSheetTabs ListBox with information about all the workbook sheet tabs.

 Public Sub FilllstSheetTabs()
 Dim varItem As Variant
 Dim intI As Integer
 Dim intProtected As Integer
 Dim intVeryHidden As Integer

 mintHidden = 0
 With Me .lstSheetTabs
 . Clear
 For Each varItem In Worksheets
 intI = intI + 1
 . AddItem intI
 . Column (1, .ListCount - 1) = varItem.Name
 . Column (2, .ListCount - 1) = varItem. CodeName

 Select Case varItem.Visible
 Case xlSheetVisible
 . Column (3, .ListCount - 1) = "No"
 . Column (4, .ListCount - 1) = "No"
 Case xlSheetHidden
 . Column (3, .ListCount - 1) = "Yes"
 . Column (4, .ListCount - 1) = "No"
 mintHidden = mintHidden + 1
 Case xlSheetVeryHidden
 . Column (3, .ListCount - 1) = "Yes"
 . Column (4, .ListCount - 1) = "Yes"
 mintHidden = mintHidden + 1
 intVeryHidden = intVeryHidden + 1
 End Select

 If varItem.ProtectContents Then
 . Column (5, .ListCount - 1) = "Yes"
 intProtected = intProtected + 1
 Else
 . Column (5, .ListCount - 1) = "No"
 End If
 Next
 End With

 Me .lblSheetTabs.Caption = Sheets .Count & " Sheet tab(s)" & _
 IIf(intProtected > 0, ", " & intProtected & " protected", "") & _
 IIf(mintHidden > 0, " (" & mintHidden & " hidden", "") & _
 IIf(intVeryHidden > 0, ", " & intVeryHidden & " very hidden", "") & _
 IIf(mintHidden, ")", "")

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

201

 Call DefineButtons (False)
 End Sub

 The programming technique should now be familiar to you: after you declare all the variables it needs,
the FilllstSheetTabs() procedure begins by resetting the mintHidden form-level variable (you will see
later why), a With Me .lstSheetTabs... End With loop is initiated (so you can just press the dot character to
access all the lstSheetTabs ListBox control interfaces), and the lstSheetTabs ListBox is cleared using the
 Clear method to remove all the previous items (if any).

 mintHidden = 0
 With Me .lstSheetTabs
 . Clear

 A For Each...Next loop is then initiated to access all items of the Worksheets collection and fill the
 lstSheetTabs ComboBox with the information. The intI Integer variable is used to count the collection
items and generate the Index property of each Worksheet object inside the Worksheets collection, and this
value is used by the lstSheetTabs ListBox AddItem method to define the ListBox value.

 For Each varItem In Worksheets
 intI = intI + 1
 . AddItem intI

 The lstSheetTabs ListBox has six columns (defined on its ColumnCount property). The first column
(which is also the BoundColumn) holds the Worksheet object’s Index value inside the Worksheets collection,
the second column holds the Worksheet object’s Name property (tab name), the third column holds the
 Worksheet. CodeName , the fourth and fifth columns hold the Visible property, and the sixth column holds
the Protect property. All columns are visible and have specific widths (as you can see in their ColumnWidths
properties) determined by trial and error (Figure 4-9).

 Figure 4-9. This is the lstSheetTabs ListBox used to show some worksheet properties, like Index, Name,
 CodeName , Visible, and Protect. It uses six columns, with all visible and with different column widths
determined by trial and error

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

202

 After determining the lstSheetTabs value with the AddItem method, the current Worksheet object’s
 Name and CodeName are added to the second and third columns of the same item of the ListBox , using
 ListCount - 1 to determine the position.

 . Column (1, .ListCount - 1) = varItem.Name
 . Column (2, .ListCount - 1) = varItem. CodeName

 ■ Attention The position of any item inside a ListBox control is determined by the ListIndex property,
which is a 0-based value. The ListCount property, a 1-based value, indicates the number of items of any
 ListBox control. Since the AddItem method by default adds new items to the end of the list (unless you specify
the desired position), you must use ListCount-1 to reference the last added item.

 Any Excel sheet tab of every Excel workbook has three possible visible states: visible (associated
to the xlSheetVisible constant, the default value), hidden (associated to the xlSheetHidden constant,
which you can set by right-clicking the sheet tab and selecting Hidden), and very hidden (associated to the
 xlSheetVeryHidden constant). Very hidden is a state that you can set only by selecting the desired Worksheet
 object in the VBA Project Explorer tree and using the Visible property in the VBA Properties window
(Figure 4-10).

 Figure 4-10. All Worksheet objects of any Excel workbook file have three possible Visible properties
represented by the constants xlSheetVisible, xlSheetHidden, and xlSheetVeryHidden. The last one hides the
sheet tab so deep that it cannot be turned visible again by the user action right-clicking any sheet tab and
selecting Unhide. You must use the VBA Properties window to turn it visible again or VBA code

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

203

 So, the next instructions of the FilllstSheetTabs() procedure uses a Select Case instruction to verify
the Visible property of the current worksheet and determine the fourth and fifth ListBox column values. Note
that it compares the Visible property with the possible Excel constants. If the sheet tab is visible, both columns
receive the word “No” to the Hidden (fourth) and Very Hidden (fifth) ListBox columns.

 Select Case varItem.Visible
 Case xlSheetVisible
 . Column (3, .ListCount - 1) = "No"
 . Column (4, .ListCount - 1) = "No"

 If the sheet is just hidden, the fourth ListBox column receives the word “Yes,” and the form-level
 mintHidden Integer variable is incremented.

 Case xlSheetHidden
 . Column (3, .ListCount - 1) = "Yes"
 . Column (4, .ListCount - 1) = "No"
 mintHidden = mintHidden + 1

 Bu if the sheet is defined as very hidden, both the fourth and fifth columns receive the word “Yes” and
the mintHidden and intVeryHidden variables are incremented.

 Case xlSheetVeryHidden
 . Column (3, .ListCount - 1) = "Yes"
 . Column (4, .ListCount - 1) = "Yes"
 mintHidden = mintHidden + 1
 intVeryHidden = intVeryHidden + 1
 End Select

 ■ Attention mintHidden was declared as a module-level variable because you need its value to synchronize
the enabled state of the cmdUnHideAll CommandButton on the DefineButtons () procedure, as you will see.

 Next, the FilllstSheetTabs() procedure defines the value of the sixth ListBox column according to
the Protect property of the current sheet tab. If it is protected, the column receives the “Yes” value, and the
 intProtected variable is incremented.

 If varItem.ProtectContents Then
 . Column (5, .ListCount - 1) = "Yes"
 intProtected = intProtected + 1
 Else
 . Column (5, .ListCount - 1) = "No"
 End If
 Next
 End With

 When the With lstSheetTabs... End With structure ends, the procedure has all the information it
needs to define the Caption property of lblSheetTabs : the Label control at the bottom of the lstSheetTabs
 ListBox . It must resume how many sheet tabs the workbook has (how many are protected, hidden, and very
hidden using the intI , mintHidden , intVeryHidden , and intProtected variables), and the DefineButtons ()
procedure is called to synchronize the UserForm interface.

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

204

 Me .lblSheetTabs.Caption = Sheets .Count & " Sheet tab(s)" & _
 IIf(intProtected > 0, ", " & intProtected & " protected", "") & _
 IIf(mintHidden > 0, " (" & mintHidden & " hidden", "") & _
 IIf(intVeryHidden > 0, ", " & intVeryHidden &

" very hidden", "") & _
 IIf(mintHidden, ")", "")
 Call DefineButtons (False)
 End Sub

 Avoiding Cascading Events
 Before you read about how the DefineButtons () procedure of frmWorksheets works, we must talk
about an important programming issue regarding the unpredictable behavior of some object events that
unexpectedly fire from inside other events, creating a phenomenon called cascading events .

 This is the case of the ComboBox and ListBox controls’ Change() events that you expect to fire just when
the user changes the control value but can fire in surprisingly moments. For example, both controls fire the
 Change() event whenever the control value is changed from inside another code procedure or eventually
when the first AddItem method is used in another procedure to populate it. This last case is what happens
when the frmWorksheets UserForm_Initialize () event fires!

 The mechanism by which you can avoid any object Change() event from being inadvertently executed
when not fired by the user action is quite simple:

• Declare a Boolean module-level variable (like mbolCancelEvent).

• Make the variable True at the beginning of any procedure event that will cascade
another object event.

• On the first instruction of the cascading object event, verify whether the module-
level variable is True . If it is, turn it False again and exit the event procedure, doing
nothing! The next code procedure examples express how this can be done:

 Try this: close frmWorksheets if it is open, press Alt+F11 to open the VBA interface, select the
 frmWorksheets code module, and put an interruption point on the first instruction of the UserForm_
Initialize () event (the mbolCancelEvent=True instruction).

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

205

 ■ Attention You set an interruption point on any VBA code module by clicking the gray bar at the left of the
instruction where you want the code to stop, as shown in Figure 4-11 .

 Press the F5 function key to force frmWorksheets to open, and when the code stops at the interruption
point, press F8 to run the code in step-by-step mode (the Step Into command), executing one code line
at a time. Note that the first instruction of the UserForm_Initialize () event sets mbolCancelEvent =
True . Immediately after the second event instruction is executed to insert the first ComboBox list item (Me .
cboVisible.Additem 1), it will unexpectedly jump to the cboVisible_Change() event (Figure 4-11).

 Figure 4-11. If you put a code break on the first instruction of the frmWorksheets UserForm_Initialize () event
and run through the code step by step by pressing the F8 function key, you will see that when the first item is
added to the cboVisible ListBox using the AddItem method, the cboVisible_Change() event unexpectedly fires

 Private Sub UserForm_Initialize ()
 mbolCancelEvent = True

 Inside the cboVisible_Change() event, mbolCancelEvent is tested, and if it is True , it is set to False
and the event exits, doing nothing.

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

206

 Private Sub cboVisible_Change()
 ...
 If mbolCancelEvent Then
 mbolCancelEvent = False
 Else
 ...
 End Sub

 You should be aware that the frmWorksheets interface must synchronize the cboVisible ComboBox
value with the selected sheet tab item on the lstSheetTabs ListBox . When you click and select any item of
 lstSheetTabs , the cboVisible value must be changed to reflect the visible state of the selected sheet tab.

 In other words, the lstSheetTabs_Change() event must change the cboVisible Value
property, which will cascade the cboVisible_Change() event. And since the frmWorksheets interface
synchronization is made from the Sub DefineButtons () procedure, this procedure must also turn the
module-level variable mbolCancelEvent = True , virtually avoiding the cascading event phenomenon.

 Public Sub DefineButtons (bolEnabled As Boolean)
 ...
 mbolCancelEvent = True
 ...
 End Sub

 Synchronizing the frmWorksheets Control Interface
 Now that you understand how to avoid that cascading events execute when they unexpectedly fire, the last
instruction executed by the Sub FilllstSheetTabs() procedure is to call the Sub DefineButtons () procedure
to synchronize the frmWorksheets interface. Let’s see how this works by analyzing the code (bold instructions
define the cascading event technique, setting mbolCancelEvent=True and where the cascade event will fire):

 Public Sub DefineButtons (bolEnabled As Boolean)
 Dim ws As Worksheet
 Dim intIndex As Integer
 Dim bolVisible As Boolean
 Dim bolVeryHidden As Boolean
 Dim bolProtected As Boolean

 mbolCancelEvent = True
 Me .cmdCopyTo.Enabled = bolEnabled
 Me .cmdProtect.Enabled = bolEnabled
 Me .cmdUnhideAll.Enabled = (mintHidden > 0)
 Me .cboVisible.Enabled = bolEnabled

 If bolEnabled Then
 intIndex = Me .lstSheetTabs.ListIndex
 Set ws = Worksheets (Me .lstSheetTabs)

 bolVisible = (ws.Visible = xlSheetVisible)
 bolVeryHidden = (ws.Visible = xlSheetVeryHidden)
 If bolVisible Then
 Me .cboVisible = xlSheetVisible
 ElseIf bolVeryHidden Then

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

207

 Me .cboVisible = xlSheetVeryHidden
 Else
 Me .cboVisible = xlSheetHidden
 End If

 bolProtected = ws.ProtectContents
 Me .cmdProtect.Caption = IIf(bolProtected, "Unprotect Worksheet", "Protect
Worksheet")
 Else
 Me .cmdProtect.Caption = "Protect Worksheet"
 Me .cboVisible = Null
 End If

 Me .cmdMoveLeft.Enabled = bolEnabled And bolVisible And (intIndex > 0)
 Me .cmdMoveRight.Enabled = bolEnabled And bolVisible And (intIndex < Worksheets .Count - 1)
 Me .cmdMoveTo.Enabled = bolEnabled And bolVisible
 Me .cmdDelete.Enabled = bolEnabled And bolVisible
 Me .cmdSort.Enabled = (Sheets .Count > 1)
 End Sub

 Note that DefineButtons () receives the bolVisible Boolean argument and uses its value to set the
 Enabled property of some frmWorksheets interface controls. After the procedure declares the variables
it needs, it synchronizes the availability of the cmdCopyTo , cmdProtect , cmdUnhideAll , and cboVisible
controls.

 Public Sub DefineButtons (bolEnabled As Boolean)
 ...
 Me .cmdCopyTo.Enabled = bolEnabled
 Me .cmdProtect.Enabled = bolEnabled
 Me .cmdUnhideAll.Enabled = (mintHidden > 0)
 Me .cboVisible.Enabled = bolEnabled

 Also note that the cmdUnhideAll CommandButton Enabled property is not synchronized by the
 bolEnabled argument, using the mintHidden Integer variable value instead. If there is at least one hidden
sheet tab, it will be enabled, and that is why mintHidden was declared as a module-level variable. Its value is
cleared and set by the FilllstSheetTabs() procedure and used by the DefineButtons () procedure!

 The procedure then verifies whether the bolEnabled argument is True . If it is, it stores the selected item
position on the lstSheetTabs ListBox into the intIndex variable and initializes the ws as Worksheet object
variable using the selected lstSheetTabs item value, which returns the selected sheet Index inside the
 Worksheets collection.

 If bolEnabled Then
 intIndex = Me .lstSheetTabs.ListIndex
 Set ws = Worksheets (Me .lstSheetTabs)

 ■ Attention At first, the selected lstSheetTabs ListIndex (the position of the selected item on the
 ListBox) and the lstSheetTab value (which is the Index of the selected item inside the Worksheets collection)
seem to be the same, but this is not always true as you play with sheet tabs’ position and visibility.

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

208

 The procedure variables bolVisible , bolVeryHidden , and bolProtected are initialized according to the
 Visible property of the referenced sheet tab.

 bolVisible = (ws.Visible = xlSheetVisible)
 bolVeryHidden = (ws.Visible = xlSheetVeryHidden)

 Did you notice that the Boolean variables’ state was defined using a logical test, inside parentheses?
To verify whether the selected sheet tab is visible, the test compares the sheet tab’s Visible property with
the Excel xlSheetVisible constant (xlSheetVisible = -1). If they are the same, bolVisible = True . But if
the sheet isn’t visible, it must be hidden or very hidden. Since any very hidden sheet is also hidden, just the
 bolVeryHidden variable state is set.

 Once the bolVisible and bolVeryHidden variables’ values are defined, the code uses them to
set the value that cboVisible must show according to the Visible property of the selected sheet on
the lstSheetTabs ListBox .

 If bolVisible Then
 Me .cboVisible = xlSheetVisible
 ElseIf bolVeryHidden Then
 Me .cboVisible = xlSheetVeryHidden
 Else
 Me .cboVisible = xlSheetHidden
 End If

 ■ Attention This is the point where the cboVisible_Change() event will cascade, but since
 mbolCancelEvent = True , the code will immediately return to the next End If instruction of the
 DefineButtons () procedure.

 The code also verifies whether the selected sheet is protected, attributing the Worksheet object’s
 ProtectContents property to the bolProtected variable.

 bolProtected = ws.ProtectContents

 And bolProtected is used to set the cmdProtect.Caption property, changing what the command
button says to the user (the code uses the underscore continuation character to use more than one code line
for the same instruction).

 Me .cmdProtect.Caption = IIf(bolProtected, "Unprotect Worksheet", "Protect Worksheet")

 If bolEnabled = False (the condition used to disable most frmWorksheets controls), the Else clause of
the If bolEnabled Then instruction will be executed. This will happen whenever the lstSheetTabs is filled
and no list item is selected, and in this case, the cmdProtect.Caption property must be Protect Worksheet ,
and cboVisible must be set no Null (no visible value selected).

 Else
 Me .cmdProtect.Caption = "Protect Worksheet"
 Me .cboVisible = Null
 End If

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

209

 Some interface CommandButton s deserve special attention. The two buttons used to change the sheet tab
order in Excel sheet tabs, cmdMoveRight and cmdMoveLeft , must have their Enabled property set to True or
 False according to three different conditions: bolEnabled must be True , the sheet tab must be visible, and
the sheet tab must be capable of being moved to the left or right on the Excel sheet tabs bar.

 The DefineButtons () procedure stored earlier in the intIndex variable the selected lstSheetTabs.
ListIndex value(which is a 0-based value): intIndex must be greater than zero so the sheet tab can be left
moved and must be smaller than Worksheets .Count - 1 to be right moved.

 Me .cmdMoveLeft.Enabled = bolEnabled And bolVisible And (intIndex > 0)
 Me .cmdMoveRight.Enabled = bolEnabled And bolVisible And (intIndex < Worksheets .Count - 1)

 Two other CommandButton s, cmdProtect and cmdDelete , also need special attention. To be enabled, two
conditions must be met: bolEnabled = True and the sheet tab must be visible (Excel can’t move or delete
hidden sheet tabs).

 Me .cmdMoveTo.Enabled = bolEnabled And bolVisible
 Me .cmdDelete.Enabled = bolEnabled And bolVisible

 The cmdSort command button must be enabled whenever at least two sheet tabs are visible.

 Private Sub lstSheetTabs_Click()
 Sheets (CInt(Me .lstSheetTabs)).Activate
 Call DefineButtons (True)
 End Sub

 That is all frmWorksheets needs to keep its interface synchronized using a single procedure that must
be called every time anything changes from user action. Let’s see now how to use some Worksheet object
methods.

 Selecting an Item in the lstSheetTabs ListBox
 Whenever you select an item on the lstSheetTabs ListBox , its Change() event fires, executing this code:

 Private Sub lstSheetTabs_Click()
 Sheets (CInt(Me .lstSheetTabs)).Activate
 Call DefineButtons (True)
 End Sub

 The code is quite simple: once you select a sheet tab reference on the lstSheetTabs ListBox , it
uses the Sheets collection’s Activate method to select the sheet tab in the Excel interface and then calls
the DefineButtons (True) procedure (by making the procedure argument bolEnabled = True , some
 CommandButton s of the UserForm interface will be enabled).

 ■ Attention To help you see the sheet tab activation as you click lstSheetTabs ListBox items, Sheet2
and Sheet3 from the Worksheet Referencing.xlsm workbook have a different back color on their cells. This
makes it easy to see the selection in the Excel interface behind the UserForm .

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

210

 Adding Sheet Tabs
 To add a new sheet tab on any Excel workbook, use the Worksheets collection’s Add method, which has this
syntax:

 Worksheets .Add(Before, After, Count, Type) as Object

 In this code:

 Before : This is optional; it is an object that specifies the sheet before which the
new sheet is added.

 After : This is optional; it is an object that specifies the sheet after which the new
sheet is added.

 Count : This is optional; it is the number of sheets to be added (the default is
one).

 Type : This is optional; it specifies the sheet type and can be one of the following
constants: xlWorksheet (default value), xlChart , xlExcel4MacroSheet , or
 xlExcel4IntlMacroSheet . It can also insert a sheet based on an existing
template, specifying the path to the template.

 The Before and After arguments must be Worksheet object pointers. If you use the Before argument,
do not use the After argument, and vice versa. If you omit both Before and After , the new worksheet will
be inserted before the active sheet.

 When you click the Add Worksheet CommandButton (cmdAddNew) of frmWorksheets , the cmdAddNew_
Click() event fires and executes this code:

 Private Sub cmdAddNew_Click()
 Dim ws As Worksheet
 Dim strMsg As String
 Dim strTitle As String
 Dim intBeforeTab As Integer
 Const conNumbers = 1

 strMsg = "Add a new Sheet tab before sheet:"
 strTitle = "Add a new Sheet tab"
 intBeforeTab = Application .InputBox(strMsg, strTitle, 1, , , , , conNumbers)
 If intBeforeTab > 0 Then
 If intBeforeTab > Sheets .Count Then
 intBeforeTab = Sheets .Count
 End If
 Worksheets .Add Worksheets (intBeforeTab)
 Call FilllstSheetTabs
 End If
 End Sub

 The cmdAddNew_Click() event uses the Before argument of the Worksheets .Add method to insert
a new sheet tab on the current workbook. After cmdAddNew_Click declares the variables it needs, it uses
the Application .InputBox method to show a dialog asking to insert a new sheet tab as the first tab of the
 Worksheets collection, using 1 as the default value.

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

211

 strMsg = "Add a new Sheet tab before sheet:"
 strTitle = "Add a new Sheet tab"
 intBeforeTab = Application .InputBox(strMsg, strTitle, 1, , , , , conNumbers)

 Since the Application .Inputbox method allows the value to be restrained, the code uses Type = 1 on
its last argument to enforce numeric values, employing another valuable programming practice. Instead of
using a “magic number,” the code declares the constant conNumbers = 1 and uses it on the last argument of
the Application .InputBox method, making the code far more legible!

 The value returned by the Application .InputBox method will be stored into the intBeforeTab
Integer variable. If the user clicks the Cancel or Close button of the InputBox dialog, intBeforeTab will
receive zero (default value for numeric variables), so the code verifies whether intBeforeTab is greater than
zero, which will mean a valid position to insert the new sheet tab.

 If intBeforeTab > 0 Then

 Since you have no control of the number the user will type, the code also verifies whether it is greater
than the sheets count. If it is, the intBeforeTab receives the Sheets collection’s Count property value (note
that now it uses the Sheets collection instead the Worksheets collection, which are the same, with different
syntaxes).

 If intBeforeTab > Sheets .Count Then
 intBeforeTab = Sheets .Count
 End If

 At this point, the code has a valid position to insert the new sheet tab, and it evokes the Worksheets . Add
method, passing to its Before argument a worksheet pointer with an Index = intBeforeTabs variable.

 Worksheets .Add Worksheets (intBeforeTab)

 ■ Attention You can also use the Sheets collection’s Add method to add a new sheet tab, using this syntax:

 Sheets .Add Sheets (intBeforeTab)

 After the new sheet tab has been added, it calls the FilllstSheetTabs() procedure, which will update
the UserForm interface, showing on the lstSheetTabs ListBox the new inserted worksheet, which can also
be seen on the Excel sheet tabs bar (Figure 4-12).

 Call FilllstSheetTabs
 End If
 End Sub

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

212

 Figure 4-12. Use Add Worksheet CommandButton from frmWorksheets to add a new sheet tab using the
Before argument of the Worksheets .Add method. The code will use the Application .InputBox method to
validate the user input, forcing it to type a numeric value. The default position for the new sheet tab is 1, which
will insert it as the first sheet tab. If the user types a number greater than the sheet tabs count, the new sheet tab
will be inserted before the last sheet tab of this workbook

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

213

 ■ Attention The FilllstSheetTabs() procedure uses DefineButtons (False) as its last instruction,
which will disable most UserForm CommandButton s.

 Moving Sheet Tabs
 To move any visible sheet tab to a new position inside the Excel sheet tabs bar, use the Worksheet object’s
 Move method, which has this syntax:

 Worksheet .Move(Before, After) as Object

 In this code:

 Before : This is optional; it is an object that specifies the sheet before which the
move will be placed.

 After : This is optional; it is an object that specifies the sheet after which the
move will be placed.

 The Before and After arguments must be Worksheet object pointers. If you use the Before argument,
do not use the After argument, and vice versa. The Move method returns an object pointer to the moved
sheet tab.

 The frmWorksheets interface has three buttons that allow you to move the selected sheet tab on
 lstSheetTabs ListBox : < Move Left (cmdMoveLeft), Move Right > (cmdMoveRight), and Move Worksheet to...
(cmdMoveTo). The first two buttons will be enabled according to the selected sheet tab, while the third will be
always enabled to any sheet.

 Suppose that you click the first item of the lstSheetTabs ListBox . Just the Move Right > and Move
Worksheet to... buttons will be enabled. This is the code executed when you click the Move Right >
 CommandButton and the cmdMoveRight_Click() event fires:

 Private Sub cmdMoveRight_Click()
 Dim ws As Worksheet
 Dim intIndex As Integer

 intIndex = Me .lstSheetTabs.ListIndex
 Set ws = Worksheets (Me .lstSheetTabs)
 If Me .lstSheetTabs < Sheets .Count Then
 ws.Move , Worksheets (Me .lstSheetTabs + 1)
 Call FilllstSheetTabs
 Me .lstSheetTabs.Selected(intIndex + 1) = True
 End If
 End Sub

 That was easy, huh? But there is a trick: the first code instruction gets the selected item position on the
 lstSheetTabs ListBox and stores it on the intIndex variable so it can move it and select it again.

 intIndex = Me .lstSheetTabs.ListIndex

 Then it gets a reference to the selected sheet tab so it can use the Move method.

 Set ws = Worksheets (Me .lstSheetTabs)

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

214

 Now the code has what is called a good programming practice: although the interface disables the
 cmdMoveRight button when the last sheet tab is selected on the list box, it makes a double verification
if the sheet can be moved right, comparing its position (returned by its Index value, which is also the
 lstSheetTabs value) with the total number of sheets. If it is lower than Sheet.Counts , it can be moved,
turning it into “bulletproof” code.

 If Me .lstSheetTabs < Sheets .Count Then

 Since the sheet must be moved to the right, it uses the After argument of the Worksheet.Move method
to move it to the new position.

 ws.Move , Worksheets (Me .lstSheetTabs + 1)

 And once the sheet tab is moved, the code makes a call to the FilllstSheetTabs() procedure to
update the UserForm interface.

 Call FilllstSheetTabs

 And since FilllstSheetTabs() calls DefineButtons (False) , disabling most CommandButton s of the
 UserForm interface, the procedure selects the moved sheet tab on the list, using intIndex+1 to select the
right item.

 Me .lstSheetTabs.Selected(intIndex + 1) = True

 And when this happens, the cascading event phenomenon happens again, indirectly firing the
 lstSheetTabs_Click() event, which will call again DefineButtons (True) , perfectly synchronizing the
 UserForm interface according to the new position of the moved sheet tab (Figure 4-13).

 That is a lot of action! This is instant action; you need to add a VBA interruption point to see when the
cascade event fires.

 Now look at the code executed when you click the < Move left CommandButton and the cmdMoveLeft_
Click() event fires:

 Private Sub cmdMoveLeft_Click()
 Dim ws As Worksheet
 Dim intIndex As Integer

 intIndex = Me .lstSheetTabs.ListIndex
 Set ws = Worksheets (Me .lstSheetTabs)
 If Me .lstSheetTabs > 1 Then
 ws.Move Worksheets (Me .lstSheetTabs - 1)
 Call FilllstSheetTabs
 Me .lstSheetTabs.Selected(intIndex - 1) = True
 End If
 End Sub

 As you can see, the cmdMoveLeft_Click() event uses the same technique employed by cmdMoveRigh _
Click() . Although the interface disables the cmdMoveLeft CommandButton whenever the first lstSheetTabs
item is selected, the code is turned “bulletproof” by first testing whether the sheet tab can be moved to the
left by verifying whether Index > 1 (the lstSheetTabs value). If it is, the sheet can be moved left.

 If Me .lstSheetTabs > 1 Then
 ws.Move Worksheets (Me .lstSheetTabs - 1)

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

215

 The code also calls the FilllstSheetTabs() procedure and reselects the item on the lstSheetTabs
 ListBox , cascade-firing the lstSheetTabs_Click() event, which will again perfectly synchronize the
 UserForm interface).

 Figure 4-13. When you click the cmdMoveRight CommandButton, the selected sheet on the lstSheetTabs ListBox
is moved right on the Excel sheet tabs bar. The UserForm is updated to reflect the new order of the sheet tabs inside
the workbook. Note that all sheet tabs at the right of the moved sheet tab have their Index properties changed

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

216

 Now appreciate the code associated to the cmdMoveTo_Click() event, which will fire whenever you
click the Move Worksheet to... CommandButton of the UserForm interface.

 Private Sub cmdMoveTo_Click()
 Dim ws As Worksheet
 Dim strMsg As String
 Dim strTitle As String
 Dim intBeforeTab As Integer
 Const conNumbers = 1
 Set ws = ThisWorkbook. Worksheets (Me .lstSheetTabs)
 If ws.Visible Then
 strMsg = "Move " & ws.Name & " tab before sheet:"
 strTitle = "Move " & ws.Name & " tab"
 intBeforeTab = Application .InputBox(strMsg, strTitle, 1, , , , , conNumbers)
 If intBeforeTab > 0 Then
 If intBeforeTab > Sheets .Count Then
 intBeforeTab = Sheets .Count
 End If
 ws.Move Worksheets (intBeforeTab)
 Call FilllstSheetTabs
 End If
 End If
 End Sub

 There is nothing new here. After setting the selected worksheet reference to the ws object variable, the
codes uses a “bulletproof” technique to verify whether the sheet is visible because just visible sheets can be
moved (although the FilllstSheetTabs() procedure disables all move CommandButton s when the sheet
isn’t visible).

 Set ws = ThisWorkbook. Worksheets (Me .lstSheetTabs)
 If ws.Visible Then

 The code also uses the Application .InbutBox() method with the declared constant conNumbers =
1 to just allow the user to type a numeric value. By default the code offers to move the selected sheet to the
 Worksheets collection’s first position, but you can change it to any number.

 Const conNumbers = 1
 ...
 intBeforeTab = Application .InputBox(strMsg, strTitle, 1, , , , , conNumbers)

 If the number typed is greater than zero, it is a valid sheet position. If it is greater than Sheets .Count , it
will be set to Sheets .Count , and the Worksheet object’s Move method will be used with its Before argument,
always moving the selected worksheet to the left of the desired position.

 If intBeforeTab > 0 Then
 If intBeforeTab > Sheets .Count Then
 intBeforeTab = Sheets .Count
 End If
 ws.Move Worksheets (intBeforeTab)

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

217

 The FilllstSheetTabs() procedure will be called again to synchronize the UserForm interface. Since the
position of the move is unpredictable this time, the item will be not selected on the lstSheetTabs ListBox .

 ■ Attention Since the frmWorksheets was opened in a nonmodal state, you can click Excel sheet tabs and
drag sheet tabs to different positions. You can also right-click any sheet tab and add a new sheet or make a
copy. To update the frmWorksheets interface, click the Refresh button.

 Sorting Sheet Tabs

 The operation related to sort Excel sheet tabs is made by the Worksheets or Sheets collection’s Move method
using any sorting algorithm, like bubble sort , which is easy to understand, small, and efficient.

 To put any items sequence in ascending order, the bubble sort algorithm must take the first item of the
sequence and compare it to the next. If it is greater than the next item, they both change orders. The first
item continues to compare itself with the next item until it reaches the last item and puts itself on the right
position of the sequence. The process begins again with the new first item of the sequence until no change is
made on item orders and the sequence is sorted.

 This process is very efficient if there are not many items to be sorted. Although Excel 2007 or later
versions can have an unlimited number of worksheets, you will seldom find hundreds of them inside a
workbook, which makes the bubble sort method very applicable to sorting sheet tabs.

 When you click the Sort Sheet Tabs CommandButton of frmWorksheets , the cmdSort_Click() event fires
and executes the bubble sort method, comparing sheet tab names and using the Sheets collection’s Move
method to change sheet tabs order, never forgetting that it can’t be applied to hidden sheets. Both sheet tabs
must be visible before the move operation takes place. Here is the code:

 Private Sub cmdSort_Click()
 Dim ws As Worksheet
 Dim intI As Integer
 Dim intVisible1 As Integer
 Dim intVisible2 As Integer
 Dim bolChanged As Boolean

 Application .ScreenUpdating = Me .chkScreenUpdating
 Do
 bolChanged = False
 For intI = 1 To Sheets .Count - 1
 If Sheets (intI).Name > Sheets (intI + 1).Name Then
 intVisible1 = Sheets (intI).Visible
 intVisible2 = Sheets (intI + 1).Visible
 Sheets (intI).Visible = True
 Sheets (intI + 1).Visible = True
 Sheets (intI + 1).Move Sheets (intI)
 Sheets (intI).Visible = intVisible1
 Sheets (intI + 1).Visible = intVisible2
 bolChanged = True
 End If
 Next
 Loop Until Not bolChanged

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

218

 Sheets (1).Activate
 Call FilllstSheetTabs
 Application .ScreenUpdating = True
 End Sub

 When you move sheet tabs, the Excel screen can flicker; to avoid this behavior, the first procedure
instruction after its variable declaration is to set the Application .ScreenUpdating property according to
what is selected in the chkScreenUpdating CheckBox of the frmWorksheets UserForm .

 Application .ScreenUpdating = Me .chkScreenUpdating

 Note that by default Excel screen updating is active since chkScreenUpdating is checked by default, but
you can uncheck it to watch the fast sort process.

 The bubble sort algorithm is based on two concentric loops: an external Do...Loop instruction controls
the entire sorting process, and an internal For...Next loop takes the first sheet tab name and compares it to
all others.

 The sorting process begins by making the Boolean variable bolChange = False inside the Do...Loop
structure and will run another loop if bolChanged = True at the end of the loop using the Not VBA operator
to verify that bolChanged = False .

 Do
 bolChanged = False
 ...
 Loop Until Not bolChanged

 The internal For...Next loop runs across each sheet tab of this workbook using the intI Integer
variable to generate the Index used to reference sheet tabs on the Sheets collection.

 For intI = 1 To Sheets .Count - 1
 ...
 Next

 Inside the For...Next loop, the first sheet tab’s Name property is compared to the next. If it is greater,
they both must change order on the Excel sheet tabs bar. But since hidden sheet tabs can’t be moved, the
 Visible property of both sheet tabs is first saved in the intVisible1 and intVisible2 variables, so you can
put them on the default visible state after the sort.

 If Sheets (intI).Name > Sheets (intI + 1).Name Then
 intVisible1 = Sheets (intI).Visible
 intVisible2 = Sheets (intI + 1).Visible

 Both sheet tabs have Visible = True , and they change places using the Sheets collection’s Move
method with the Before argument to move Sheet(intI+1) before Sheet(intI) :

 Sheets (intI).Visible = True
 Sheets (intI + 1).Visible = True
 Sheets (intI + 1).Move Sheets (intI)

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

219

 Once both sheets have changed places, their previous Visible property value is restored, and the
 bolChanged variable is set to true, signaling to the external Do...Loop structure that it must perform another
 For...Next internal loop until the sequence is sorted.

 Sheets (intI).Visible = intVisible1
 Sheets (intI + 1).Visible = intVisible2
 bolChanged = True
 End If
 Next
 Loop Until Not bolChanged

 When the sort is done, the Do...Loop exits, and the first sorted sheet tab is selected.

 Sheets (1).Activate

 Since the sorting process can change sheet tabs orders, the procedure calls again FilllstSheetTabs()
to update the UserForm interface, and Excel screen updating is turned on again before the procedure ends.

 Call FilllstSheetTabs
 Application .ScreenUpdating = True
 End Sub

 ■ Attention You must always set Application .ScreenUpdating = True on the end of any procedure that
is set to false or the Excel interface will seem to be frozen. Don’t forget that if this ever happen to you (and it
will), you can press Alt+F11 to show the VBA interface and use the Immediate window to set Application .
ScreenUpdating = True again.

 Try to insert (adding or coping) new sheet tabs in the Worksheet Referencing.xlsm file and see
for yourself how the bubble sort algorithm performs. Since Sheet2 and Sheet3 have different back
colors, change sheet tab order more than once, and try again the sorting process by unchecking the
 chkScreenUpdating check box (Figure 4-14).

 Copying Sheet Tab s
 To set a copy of any sheet tab to a specified position of the Excel sheet tabs bar, use the Worksheet object’s
 Copy method, which has this syntax:

 Worksheet.Copy(Before, After) as Object

 In this code:

 Before : This is optional; it is an object that specifies the sheet before which the
copy will be placed.

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

220

 After : This is optional; it is an object that specifies the sheet after which the copy
will be placed.

 The Before and After arguments must be Worksheet object pointers. If you use the Before argument,
do not use the After argument, and vice versa.

 When you click the Copy Worksheet to... CommandButton of the UserForm interface, the cmdCopyTo_
Click() event will fire, executing this code:

 Private Sub cmdCopyTo_Click()
 Dim ws As Worksheet
 Dim strMsg As String
 Dim strTitle As String
 Dim intBeforeTab As Integer
 Const conNumbers = 1

 Set ws = ThisWorkbook. Worksheets (Me .lstSheetTabs)
 If ws.Visible Then
 strMsg = "Copy " & ws.Name & " tab before sheet:"
 strTitle = "Copy " & ws.Name & " Sheet tab"
 intBeforeTab = Application .InputBox(strMsg, strTitle, 1, , , , , conNumbers)
 If intBeforeTab > 0 Then
 If intBeforeTab > Sheets .Count Then
 intBeforeTab = Sheets .Count
 End If
 ws.Copy Worksheets (intBeforeTab)
 Call FilllstSheetTabs
 End If
 End If
 End Sub

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

221

 Figure 4-14. The Sort Sheet tabs command button uses the bubble sort algorithm to sort sheet tabs by name.
Use the UserForm Move buttons to change the sheet tab order (or click and drag sheet tabs to new positions
on the Excel sheet tabs bar), add or copy new sheet tabs, and then click the Sort Sheet tab button to sort them.
Repeat the procedure and uncheck the Application .ScreenUpdating check box (chkScreenUpdating control)

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

222

 This is almost identical to the code used by the cmdMoveTo_Click() event, except the text message is
different and you use the Worksheet object’s Copy method with its Before argument (in bold) to copy the
selected sheet to the left of the selected position.

 The name of the copied worksheet will be composed by the original name concatenated to the (2)
suffix (the Sheet1 tab name will copied to Sheet1(2)). Figure 4-14 also shows what happens after the added
 Sheet4 worksheet was copied to the first (default) position of the Excel sheet tabs bar.

 Deleting Sheet Tabs
 Use the Sheets collection or the Worksheet object’s Delete method to delete the desired sheet tabs. They
have these syntaxes:

 Sheets (Index).Delete
 Worksheet.Delete

 If Application .DisplayAlerts = True (default state), Excel will warn you that the deletion is
permanent and cannot be undone, before the deletion process is executed. So, be careful when you delete
sheet tabs with VBA code.

 When you select any sheet tab in the lstSheetTabs ListBox and click the Delete Worksheet command
button, the cmdDelete_Click() event will fire, executing this code:

 Private Sub cmdDelete_Click()
 Dim ws As Worksheet
 Dim strMsg As String
 Dim strTitle As String

 Set ws = Worksheets (Me .lstSheetTabs)
 If ws. CodeName = "Sheet1" Then
 strMsg = "Can’t delete Sheet1." & vbCrLf
 strMsg = strMsg & "It has the Command button to reopen frmWorksheets UserForm!"
 MsgBox strMsg, vbCritical, "Can’t delete Sheet1"
 Else
 strMsg = "Do you really want to delete " & ws.Name & "?" & vbCrLf
 strMsg = strMsg & "(This operation can be undone!)"
 strTitle = "Delete " & ws.Name & " worksheet?"
 If MsgBox (strMsg, vbCritical + vbYesNo + vbDefaultButton2, strTitle) = vbYes Then
 Application .DisplayAlerts = Me .chkExcelWarnings
 ws.Delete
 Application .DisplayAlerts = True
 End If
 Call FilllstSheetTabs
 End If
 End Sub

 Note that the code begins by setting a reference to the selected sheet tab in the frmWorksheets interface
to the ws object variable and then compares its CodeName property to Sheet1 to avoid Sheet1 deletion since it
contains the command button that runs the UserForm again.

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

223

 Set ws = Worksheets (Me .lstSheetTabs)
 If ws. CodeName = "Sheet1" Then
 strMsg = "Can’t delete Sheet1." & vbCrLf
 strMsg = strMsg & "It has the Command button to reopen frmWorksheets UserForm!"
 MsgBox strMsg, vbCritical, "Can’t delete Sheet1"

 ■ Attention There is no VBA protection to avoid you changing the Sheet1 object’s CodeName property in the
VBA Properties window and making this code fail, so be careful.

 If the selected sheet tab doesn’t have CodeName = "Sheet1" , the procedure makes a first check of your
delete intentions using MsgBox () with the “No” button selected by default.

 strMsg = "Do you really want to delete " & ws.Name & "?" & vbCrLf
 strMsg = strMsg & "(This operation can’t be undone!)"
 strTitle = "Delete " & ws.Name & " worksheet?"
 If MsgBox (strMsg, vbCritical + vbYesNo + vbDefaultButton2, strTitle) = vbYes Then

 And if you really want to delete the selected sheet tab, the code sets the Application .DisplayAlerts
property according to the state of the chkDisplayAlerts CheckBox and then executes the Worksheet object
 Delete method.

 Application . DisplayAlerts = Me . chkExcelWarnings
 ws.Delete

 At this moment, if Application .DisplayAlerts = True (chkDisplayAlerts is checked), Excel will
send its own delete confirmation dialog, warning you that the deletion can’t be undone (Figure 4-15).

 Application .DisplayAlerts is turned on again to guarantee that Excel will continue to show the
warning messages, and the code finishes updating the UserForm interface by calling the FilllstSheetTabs()
procedure to reflect the possible deletion of the worksheet.

 Application . DisplayAlerts = True
 End If
 Call FilllstSheetTabs
 End If
 End Sub

 ■ Attention As with the Application .ScreenUpdating property, don’t ever forget to turn on again the
 Application .DisplayAlerts property at the end of any procedure that needs to disable it or Excel will stop to
show alert messages to the user of your application.

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

224

 Protecting and Unprotecting Sheet Tabs
 When you use the Excel Review tab’s Protect command to protect any sheet tab, Excel answers with the
Protect Sheet dialog box, where you can set what kind of cells will be selected and which type of operations
can be performed on the protected worksheet (Figure 4-16).

 Figure 4-15. Use the Delete Worksheets CommandButton (cmdDelete) to execute the Worksheet object
Delete method. The code has a protection to not delete the Sheet1 object since it contains the button control
that reopens the UserForm, using the Sheet tab CodeName property to identify it. If you keep the Application .
DisplayAlerts CheckBox checked, Excel will fire a double-check before the sheet tab is permanently deleted from
the workbook

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

225

 To deal with Excel worksheet protection using VBA, including all options of the Protect Sheet dialog
box, you must use two Worksheet object properties (EnableSelection and ProtectContents) and two
methods (Protect and Unprotect).

 The first two options of Excel Protect Sheet dialog box, “Select locked cells” and “Select unlocked cells,”
relate to the Worksheet object’s EnableSelection property, which can be set using the Excel constants
 xlNoSelection (the default state when both options are unchecked), xlUnlockedCells (when just “Select
locked cells” is selected) and xlNoRestrition (when both options are selected).

 Every other option in the Protect Sheet dialog box maps to optional Boolean arguments of the
 Worksheet object’s Protect method, which has this (enormous) syntax:

 Worksheet.Protect (Password, DrawingObjects, Contents, Scenarios, UserInterfaceOnly,
AllowFormattingCells, AllowFormattingColumns, AllowFormattingRows, AllowInsertingColumns,
AllowInsertingRows, AllowInsertingHyperlinks, AllowDeletingColumns, AllowDeletingRows,
AllowSorting, AllowFiltering, AllowUsingPivotTables)

 In this code:

 Password : This is optional; it is the password used to unprotect the worksheet.

 DrawingObjects : This is optional; it is used to protect shapes inserted on the
worksheet (the default is True).

 Contents : This is optional; it protect the contents of all locked cells (the default is
 True).

 Scenarios : This is optional; it protects scenarios (the default is True).

 UserInterfaceOnly : This is optional; it protects the user interface but not
macros (the default is True).

 AllowFormattingCells : This is optional; it allows you to format any cell on a
protected worksheet (the default is False).

 AllowFormattingColumns : This is optional; it allows you to format any column
on a protected worksheet (the default is False).

 Figure 4-16. Whenever you execute Excel Protect Worksheet from the Review tab, you receive the Protect
Sheet dialog box, which is where you decide what will be selected and what kind of change is allowable on the
worksheet

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

226

 AllowFormattingRows : This is optional; it allows you to format any row on a
protected worksheet (the default is False).

 AllowInsertingColumns : This is optional; it allows you to insert columns on the
protected worksheet (the default is False).

 AllowInsertingRows : This is optional; it allows you to insert rows on the
protected worksheet (the default is False).

 AllowInsertingHyperlinks : This is optional; it allows you to insert hyperlinks
on the worksheet (the default is False).

 AllowDeletingColumn : This is optional; it allows you to delete columns on the
protected worksheet where every cell in the column to be deleted is unlocked
(the default is False).

 AllowDeletingRows : This is optional; it allows you to delete rows on the
protected worksheet, where every cell in the row to be deleted is unlocked (the
default is False).

 AllowSorting : This is optional; it allows you to sort on the protected worksheet.
Every cell in the sort range must be unlocked or unprotected (the default is False).

 AllowFiltering : This is optional; it allows you to set filters on the protected
worksheet. Users can change filter criteria but cannot enable or disable an auto
filter. Users can set filters on an existing auto filter (the default is False).

 AllowUsingPivotTables : This is optional; it allows you to use pivot table reports
on the protected worksheet (the default is False).

 ■ Attention Although the Worksheet.Protect method has a lot of arguments, they are all optional and have
a default value that protects the worksheet against changes, so you do not need to use them unless you want to
diminish the protection and allow specific changes.

 To verify whether any sheet tab is protected, use the Worksheet object’s ProtectContents property. To
unprotect a protected worksheet, use the Worksheet object’s Unprotect method, which has this syntax:

 Worksheet.Unprotect (Password)

 In this code:

 Password : This is optional; it is the password used when the worksheet
protection was set.

 If the worksheet was protected with a password, you must pass it to the Worksheet.Unprotect method
in your VBA code or Excel will raise a dialog box asking for it before unprotecting the worksheet.

 Let’s see these properties and methods in action! When you select any sheet tab in the lstSheetTabs
 ListBox of frmWorksheets UserForm , the lstSheetTabs_Click() event will fire and synchronize the
 cmdProtect CommandButton Caption property according to the ProtectContents property of the selected
sheet tab, alternating the text between Protect Worksheet and Unprotect Worksheet. And when you click the
 cmdProtect command button, the cmdProtect_Click() event fires, executing this code:

 Private Sub cmdProtect_Click()
 Dim ws As Worksheet
 Dim intIndex As Integer

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

227

 With Me .lstSheetTabs
 intIndex = .ListIndex
 Set ws = Worksheets (CInt(.Value))
 If ws.ProtectContents Then
 ws.Unprotect
 Else
 Load frmPassword
 frmPassword.Worksheet = (CInt(.Value))
 frmPassword.Show vbModal
 End If

 Call FilllstSheetTabs
 .Selected(intIndex) = True
 End With
 End Sub

 The cmdProtect_Click() event begins by setting a With lstSheetTabs... End With instruction so
 lstSheetTabs can be referenced only once in the code. It then stores the position of the selected item on
the intIndex Integer variable using the lstSheetTabs.ListIndex property (note that there is a dot before
 .ListIndex).

 With Me .lstSheetTabs
 intIndex = . ListIndex

 ■ Attention Whenever you use a With...End With instruction to reference an object in the VBA code, VBA
will show the object interface whenever you type the dot (.) inside this instruction so you can easily select the
property or method you need.

 The code then sets a reference to the desired Worksheet object that must be protected/unprotected to
the ws object variable, using the lstSheetTabs.Value property to return its Index inside the Worksheets
collection (note the dot before the word Value inside the parentheses).

 Set ws = Worksheets (CInt(.Value))

 ■ Attention Note that any ListBox Value property (default property) returns a String value. Since the
 Worksheets collection can receive both an Integer value (meaning the Index position of the item) or a String
value (meaning the item name) when it receives the lstSheetTabs.Value property, it is really receiving a
 String numeric value (like “1” instead of 1). Since there is no such sheet tab name, VBA will raise an error. That
is why you need to use the VBA CInt(.Value) function: to convert the String value to Integer !

 Once the desired Worksheet object is referenced, the code uses it to verify its ProtectContents
property. If it is True , the sheet tab is already protected, so the Worksheet object’s Unprotect method is
called to unprotect the sheet tab.

 If ws.ProtectContents Then
 ws.Unprotect

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

228

 If the sheet tab is unprotected, the Else clause is executed, and frmPassword is shown on a modal state
to allow you to set the Worksheet object protection. The code now stops at this point until frmPassword is
closed!

 Using the frmPassword UserForm

 To deal with Worksheet object protection, the Worksheet Referencing.xlsm workbook also has the
 frmProtection UserForm , which has the txtPassword and txtConfirmation TextBox controls, both with
the PasswordChar property defined to * , so the typed password and confirmation characters can be masked
(Figure 4-17).

 Figure 4-17. The Worksheet Referencing.xlsm workbook also has the frmPassword, which has the txtPassword
and txtConfirmation TextBox controls, both with the PasswordChar property defined to *, to mask the
password and confirmation typed characters

 The frmPassword UserForm code module implements the Worksheet property, which is used to set a
reference to the desired Worksheet object into the mWks module-level object variable, implemented with a
 Public property Let Worksheet() procedure.

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

229

 Option Explicit

 Dim mWks As Worksheet

 Public property Let Worksheet(ByVal Index As Integer)
 Set mWks = Worksheets (Index)
 End property

 Note that the frmPassword.Worksheet property receives the Index arguments and uses this Integer
value to set a reference to the desired Worksheet object inside the Worksheets collection.

 So, the technique to use frmPassword consists of loading it into memory, setting its Worksheet
property (which sets a reference to the desired sheet tab), and then showing it on a modal state. Returning
to the cmdProtect_Click() event procedure, when the selected sheet tab isn’t protected, the If
ws.ProtectContents instruction executes its Else clause, executing these steps:

 1. Load frmPassword with the UserForm Load method.

 Else
 Load frmPassword

 2. Set the frmPassword.Worksheet property using the Index of the selected sheet
tab, which is defined by the lstSheetTabs.Value property. Since this property
is a String value, you must first convert it to an Integer using the VBA CInt()
function.

 frmPassword.Worksheet = (CInt(.Value))

 3. Show frmPassword on a modal state, passing vbModal to the Modal argument of
the UserForm.Show method.

 frmPassword.Show vbModal

 This last operation will stop the cmdProtect_Click() event at this point while frmPassword is opened.
 Use the two CheckBox controls to select what kind of protection you want to disallow when you protect

a worksheet: chkSelectLockedCells and chkSelectUnlockedCells . Note that they can be both checked or
unchecked, but just chkSelectUnLockedCells can be checked while ckdSelecLockedCells is unchecked.
 chkSelectLockedCells can’t be checked alone!

 This interface control is made by programming both CheckBox Click() events, as follows:

 Private Sub chkLockedCells_Click()
 If Me .chkLockedCells Then
 Me .chkUnlockedCells = True
 End If
 End Sub

 Private Sub chkUnlockedCells_Click()
 If Not Me .chkUnlockedCells Then
 Me .chkLockedCells = False
 End If
 End Sub

 The frmPassword UserForm also has two command buttons: cmdCancel (whose Cancel property was set
to True) and cmdOK (whose Default property was set to True). When it is opened and you press the Esc key
on your keyboard or click the Cancel button, the cmdCancel_Click() event will fire, and the UserForm will
be closed without setting the worksheet protection.

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

230

 Private Sub cmdCancel_Click()
 Unload Me
 End Sub

 But if you press the Enter key on your keyboard or click the OK button, the cmdOK_Click() event will
fire, executing this code:

 Private Sub cmdOK_Click()
 If StrComp (Me .txtPasssword, Me .txtConfirmation, vbBinaryCompare) <> 0 Then
 MsgBox "Confirmation password is not identical!", _
 vbQuestion, _
 "Invalid Password Confirmation"
 Else

 If (Me .chkLockedCells = False And Me .chkUnlockedCells = False) Then
 mWks.EnableSelection = xlNoSelection
 ElseIf (Me .chkLockedCells = True And Me .chkUnlockedCells = True) Then
 mWks.EnableSelection = xlNoRestrictions
 ElseIf Me .chkUnlockedCells Then
 mWks.EnableSelection = xlUnlockedCells
 End If
 mWks.Protect Me .txtPasssword
 Unload Me
 End If
 End Sub

 When you click cmdOK to protect the selected worksheet (defined by the frmPassword.Worksheet
property), the code first compares the text typed on the txtPassword and txtConfirmation TextBox controls.

 If StrComp (Me .txtPasssword, Me .txtConfirmation, vbBinaryCompare) <> 0 Then

 You may note that it uses the StrComp () VBA function instead of the = operator. This is necessary
because the Worksheet object password is case sensitive and the = operator is not. The VBA StrComp ()
function has this syntax:

 StrComp (string1, string2[, compare])

 In this code:

 String1 : This is required; it is the first string to compare.

 String2 : This is required; it is the second string to compare.

 Compare : This is optional; it specifies the comparison type, using one of these
constants:

 vbUseCompareOption = -1 : This performs a comparison according to the
 Option Compare statement.

 vbBinaryCompare = 0 : This performs a binary comparison, which is case
sensitive.

 vbTextCompare = 1 : This performs a textual comparison.

 The StrComp () function returns False (0) whenever both strings are equal to the type of comparison
performed. It returns 1 when String1 > String2 and returns -1 when String1 < String2 .

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

231

 ■ Attention If you type the instruction Option Compare Binary at the beginning of any code module, all
comparisons inside the module become case sensitive.

 If the txtPassword and txtConfirmation values differ, the code raises a MsgBox () asking the user to
type them again.

 If StrComp (Me .txtPasssword, Me .txtConfirmation, vbBinaryCompare) <> 0 Then
 MsgBox "Confirmation password is not identical!", _
 vbQuestion, _
 "Invalid Password Confirmation"

 But if txtPassword and txtConfirmation match (which both include an empty string), the procedure
verifies the state of both CheckBox controls to define the Worksheet.Enabled Selection property. The first
possible state is when both CheckBox controls are unchecked, meaning restrained to any cell selection,
which is implied by setting the Worksheet.EnableSelection = xlNoSelection constant.

 If (Me .chkLockedCells = False And Me .chkUnlockedCells = False) Then
 mWks.EnableSelection = xlNoSelection

 The second possible case is when both CheckBox controls are checked, meaning no worksheet restrains
selection (every cell can be selected), which is implied by setting the Worksheet.EnableSelection =
xlNoRestrictions constant.

 ElseIf (Me .chkLockedCells = True And Me .chkUnlockedCells = True) Then
 mWks.EnableSelection = xlNoRestrictions

 The third and last possible case is when just chkSelectUnlockedCells is selected, which is implied by
the setting Worksheet.EnableSelection = xlUnlockedCells .

 mWks.EnableSelection = xlUnlockedCells
 End If

 And once you set the Worksheet.EnableSelection property, you can protect the worksheet using the
 Worksheet.Protection method and then type the password and unload the form, ending the procedure.

 mWks.Protect Me .txtPasssword
 Unload Me
 End If
 End Sub

 When the form is unloaded, the code returns to the point where it stops, with a great chance of the
selected worksheet being now protected (the user cancels frmPassword), so it must synchronize the
 frmWorksheets interface calling the FilllstSheetTabs() procedure and reselect the same sheet tab in
the lstSheetTabs ListBox . Once again, at this point the lstSheetTabs_Click() event will cascade-fire,
synchronizing the enabled state of the UserForm controls.

 Call FilllstSheetTabs
 .Selected(intIndex) = True
 End With
 End Sub

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

232

 Figure 4-18 shows how this process happens to protect the Sheet1 worksheet from the Worksheet
Referencing.xlsm macro-enabled workbook, implying just unlocked cells to be selected (just cell E2 of the
 Sheet1 worksheet is unlocked).

 Figure 4-18. Select Sheet1 in the lstSheetTabs ListBox , click the Protect Worksheet button, and check just the
“Select unlocked cells” check box, with or without a password. When you close frmPassword, Sheet1 will be
protected and the frmWorksheets interface will be updated to reflect the changes. Note that now just cell E2, the
only unlocked cell of Sheet1, can be selected

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

233

 Changing a Sheet Tab’s Visible Property
 To change the visible state of any sheet tab, use the Worksheet.Visible property, which can be set using
the Excel constants xlSheetVisible = -1 , xlSheetHidden = 0 , and xlSheetVeryHidden = 1 . These
constant values were used to populate the first (integer value) and second (constant name) columns of the
 cboVisible ComboBox control on the UserForm_Initialize () event, as shown earlier in this chapter.

 Whenever you select any item in lstSheetTabs ListBox , the cboVisible value is synchronized to the
sheet Visible property, and the cboVisible ComboBox will become enabled, meaning that you can change
the visible state of the selected sheet tab by choosing another option in the ComboBox control. Whenever you
do this action, the cboVisible_Change() events fire, executing this code:

 Private Sub cboVisible_Change()
 Dim intIndex As Integer
 Const conErrHidden = 1004

 On Error GoTo cboVisible_Error

 If mbolCancelEvent Then
 mbolCancelEvent = False
 Else
 With Me .lstSheetTabs
 intIndex = .ListIndex
 Worksheets (CInt(.Value)).Visible = CInt(Me .cboVisible)
 Call FilllstSheetTabs
 .Selected(intIndex) = True
 End With
 End If

 cboVisible_End:
 Exit Sub
 cboVisible_Error:
 Select Case Err
 Case conErrHidden
 MsgBox "At least one Sheet tab must be visible", vbCritical, "Can't hide " & Me .
lstSheetTabs. Column (1)
 Case Else
 MsgBox "Error " & Err & ": " & Error(Err), vbCritical, "cboVisible_Change event"
 End Select
 End Sub

 There is a catch when you deal with hidden sheet tabs: at least one sheet tab must be visible on
the workbook or VBA will raise error = 1004: “ Application -defined or object-defined error.” That is why
 cboVisible_Change() declares the constant conErrHidden = 1004 to avoid that this “magic number”
appears suddenly inside the code.

 Private Sub cboVisible_Change()
 Dim intIndex As Integer
 Const conErrHidden = 1004

 The code then sets the error trap to begin at the cboVisible_Error label, using the On Error GoTo
instruction.

 On Error GoTo cboVisible_Error

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

234

 Once this is made, whenever an error happens on the code, the execution flow will jump to this label so
the error can be treated or the procedure ends.

 cboVisible_Error:
 Select Case Err
 Case conErrHidden
 MsgBox "At least one Sheet tab must be visible", vbCritical, "Can't hide " & Me .
lstSheetTabs. Column (1)
 Case Else
 MsgBox "Error " & Err & ": " & Error(Err), vbCritical, "cboVisible_Change event
error"
 End Select
 End Sub

 Note that the cboVisible_Change() event does not treat any errors. It just uses a Select Case
statement to verify the error and gives a clear message to the user if it tries to hide the last visible worksheet
of the workbook.

 Select Case Err
 Case conErrHidden
 MsgBox "At least one Sheet tab must be visible", vbCritical, "Can't hide " & Me .
lstSheetTabs. Column (1)

 But if any other unpredictable error happens, a standard MsgBox () will show the error code and the
error message and will put “cboVisible_Change event error!” in the message box title.

 Case Else
 MsgBox "Error " & Err & ": " & Error(Err), vbCritical, "cboVisible_Change event
error"
 End Select
 End Sub

 After the error message, the code will not be redirected, ending normally.
 As commented before, the code first verifies that the cboVisible_Change() event was cascade-fired by

checking the state of the code module-level variable mbolCanceEvent . If it is False , the event is fired by the
user action selecting another value on the ComboBox control, and it uses a With lstSheetTabs... End With
instruction to reference the ListBox control just once, making the code more concise.

 If mbolCancelEvent Then
 mbolCancelEvent = False
 Else
 With Me .lstSheetTabs

 Since there is a selected item on the lstSheetTabs ListBox , the ListIndex property is stored into the
 intIndex Integer variable so you can select it again, and the Visible property of the selected sheet tab is
changed according to the value selected in the cboVisible ComboBox . Note once again that both the ListBox
and ComboBox values are numeric strings, meaning that both must be converted to an Integer value with the
VBA CInt() function, before being used to define the desired sheet inside the Worksheets collection (left
side) and to set the desired visible option to the Worksheet object’s Visible property (right side).

 intIndex = .ListIndex
 Worksheets (CInt(.Value)).Visible = CInt(Me .cboVisible)

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

235

 Since the visible property of the selected sheet had been changed, the frmWorksheets interface must
be synchronized by calling the FilllstSheetTabs() procedure, and the sheet is selected again on the
 lstSheetTabs ListBox , which will cascade-fire again the lstSheetTabs_Click() event, synchronizing all
 UserForm controls.

 Call FilllstSheetTabs
 .Selected(intIndex) = True
 End With
 End If

 Once this happen, the code needs an exit door, represented by the Exit Sub statement so that the code
inside the error trap will not be inadvertently executed.

 cboVisible_End:
 Exit Sub

 ■ Attention The cboVisible_End label was defined here as good programming practice. It is not used by the
procedure to treat the code by any means.

 Changing a Sheet Tab’s CodeName Property
 The lstSheetTabs of the frmWorksheets UserForm also has the CodeName column that shows each
 Worksheet. CodeName property, which is the value of the Name property defined in the VBA Properties
window to the selected Sheet object on VBA Project Explorer tree .

 Just the Sheet1 worksheet uses the CodeName property on the cmdDelete_Click() event to avoid it
being deleted since this sheet tab has the CommandButton open frmWorksheets again whenever you close it
(see the “Delete the Sheet Tab” section earlier in this chapter).

 But if you change any sheet tab’s CodeName in the VBA interface, you will need to refresh the
 frmWorksheets UserForm either by closing and opening it again or by clicking its Refresh CommandButton to
fire the cmdRefresh_Click() event, which executes this code:

 Private Sub cmdRefresh_Click()
 mbolCancelEvent = True
 Me .cboVisible = Null
 Call FilllstSheetTabs
 End Sub

 The code is now simple: it changes the module-level variable to mbolCancelEvent = True , changes
 cboVisible = Null to avoid a cascade cboVisible_Change() event, and then synchronizes the UserForm
interface by calling the FilllstSheetTabs() procedure.

 Figure 4-19 shows that the Sheet2 tab worksheet had its CodeName value changed to MySheet . Every
 UserForm operation continues to perform well because just the Index property of the sheet tab inside the
 Worksheets collection is used to reference it in the VBA code.

 ■ Attention Once more, you can avoid changes to the CodeName property of any sheet tab by protecting your VBA
code by executing the VBA Tools ➤ Project Properties menu command and setting a password on the Protection tab.

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

236

 Figure 4-19. You can change both the sheet tab Name and CodeName properties of any worksheet except
Sheet1 CodeName , because it is used to protect the sheet deletion from a frmWorksheets UserForm cmdDelete
action. Whenever you do it, click the Refresh button to update the interface

CHAPTER 4 ■ PROGRAMMING THE MICROSOFT EXCEL WORKSHEET OBJECT

237

 Chapter Summary
 In this chapter, you learned about the following:

• The sequence order of Worksheet object events

• The many ways you can make a VBA reference to a Worksheet object

• How to program Class modules

• How you can use a Class module to avoid any sheet tab name from being changed

• How to use the Worksheet.Name and Worksheet. CodeName properties

• How to create a VBA UserForm interface to deal with the Worksheet object

• How to add, move, copy, and protect worksheet tabs; change their visible states; and
sort and delete worksheet tabs from a workbook using VBA code

• How to synchronize a UserForm interface using centralized procedures

• How to deal with a multicolumn ListBox control

 In the next chapter, you will learn about the last object on the Microsoft Excel object model, the Range
object, which can represent one or more cells of any Excel worksheet.

239© Flavio Morgado 2016
F. Morgado, Programming Excel with VBA, DOI 10.1007/978-1-4842-2205-8_5

 CHAPTER 5

 Programming the Microsoft Excel
Range Object

 The Microsoft Excel Range object is where the real action of your worksheet applications takes place. It
can represent any number of cells, and in this chapter you will learn about the Range object and how to
programmatically interact with it using VBA and its many properties and methods (it has no events), using
some of the numerous Worksheet object methods to automate your worksheet and give it a professional
look and feel. You can obtain all the procedure code in this chapter by downloading the Chapter05.zip file
from the book’s Apress.com product page, located at www.apress.com/9781484222041 , or from http://
ProgrammingExcelWithVBA.4shared.com .

 The Range Object
 To the Microsoft Excel object model, a range is any number of worksheet cells, and since it is the basic
worksheet unit, it is referenced by different Collection objects, returned as an argument from many Excel
 Worksheet , Workbook , and Application object events, properties, and methods. Table 5-1 shows some Excel
 Application properties and Workbook collections that return a Range object.

 Table 5-1. Excel Collection and Object Properties and Methods That Return a Range Object

 Object Value Used to

 Application .ActiveCell Property Returns a Range object representing the active cell

 Application .Range Property Returns a Range object referenced by its address or name

 Application .Selection Property Returns the selected object in the active window, which
can be a Range object

 Application .ThisCell Property Returns a Range object representing the cell from which
the user-defined function is being called as a Range object

 Range. Offset Property Returns another Range object offset from the current
 Range object

 Workbook . Names Collection Stores workbook named ranges

 Worksheet. Names Collection Stores worksheet named ranges

 Worksheet.Cells Property Returns a Range object referenced by cell Row and Column
numbers

 Worksheet.Range Property Returns a Range object referenced by its address or name

http://www.apress.com/9781484222041
http://programmingexcelwithvba.4shared.com/
http://programmingexcelwithvba.4shared.com/

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

240

 To programmatically deal with the Range object using VBA, you must first declare a Range object
variable, initialize it with the Set keyword, and then use it to deal with the Range object properties and
methods, as follows:

 Dim rg as Range
 Set rg = Application .ActiveCell

 Table 5-2 shows some of the most important properties of the Range object.

 ■ Attention Search the Internet with the keywords Range properties or Range methods to find a complete
list of Excel Range object properties. Table 5-2 and 5-3 come from the following location on the Microsoft MSDN
web site:

 http://msdn.microsoft.com/en-us/library/microsoft.office.interop.excel.range_
properties(v=office.15).aspx

 Table 5-2. Some of the Most Important Microsoft Excel Range Object Properties

 Range Object Property Value Used to

 Address String Returns the range reference

 AllowEdit Boolean Determines whether the range can be edited on a
protected worksheet

 Application Application Returns an Application object representing the Microsoft
Excel windows

 Cells Range Returns a Range object representing the cells in the
specified range

 Column Long Integer Returns the number of the first column in the first area of
the range

 Columns Range Returns a Range object representing all columns in the
range

 Count Long Integer Returns the number of cells in the range

 CountLarge Decimal Returns the number of cells in the range for .xlsx
workbooks

 CurrentArray Range If the specified range is part of an array, returns a Range
object representing the entire array

 CurrentRegion Range Returns a Range object representing the current region

 End Range Returns a Range object representing the cell at the end of
the region that contains the source range

 EntireColumn Range Returns a Range object representing the entire column
(or columns) that contains the specified range

 EntireRow Range Returns a Range object representing the entire row
(or rows) that contains the specified range

(continued)

http://msdn.microsoft.com/en-us/library/microsoft.office.interop.excel.range_properties(v=office.15).aspx
http://msdn.microsoft.com/en-us/library/microsoft.office.interop.excel.range_properties(v=office.15).aspx

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

241

Table 5-2. (continued)

 Range Object Property Value Used to

 Formula String Returns or sets the cell’s formula in A1-style

 FormulaArray Boolean Returns or sets the array formula of a range

 FormulaHidden Boolean Determines whether the formula will be hidden when the
worksheet is protected

 HasArray Boolean Determines whether the specified cell is part of an array
formula

 HasFormula Boolean Determines whether all cells in the range contain formulas

 Hidden Boolean Determines whether the rows or columns are hidden

 Item Range Returns a Range object representing a range at an offset
from the specified range

 ListHeaderRows Long Integer Returns the number of header rows for the specified range

 Locked Boolean Determines whether the object is locked

 MergeArea Range Returns a Range object representing the merged range
containing the specified cell

 MergeCells Boolean Determines whether the range or style contains merged
cells

 Name String Returns or sets the name of the referenced range

 Offset Range Returns a Range object representing a range that’s offset
from the specified range

 Parent Worksheet Returns the Worksheet that is the parent of the specified
range

 Range Range Returns a Range object representing a range address

 Resize Range Resizes the specified range (does not resize a named
range)

 Row Long Integer Returns the number of the first row of the first area in the
range

 Rows Range Returns a Range object representing the rows in the
specified range

 Value Variant Default property; returns or sets the value of the specified
range

 Value2 Variant Returns or sets the cell value of the specified range;
discards Currency and Data formatting options, returning
the range pure value

 Worksheet Worksheet Returns a Worksheet object representing the worksheet
containing the specified range

 ■ Attention The Range object has a lot of other formatting properties relating to the appearance of the
worksheet cells and its contents. Use the MSDN web site to access all the Range object properties.

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

242

 The Range object has also a lot of methods that you will use to perform actions using VBA code.
Table 5-3 lists some of the most important Range object methods.

 Table 5-3. Some Important Microsoft Excel Range Object Methods

 Range Object Method Action Performed

 Activate Activates the upper-left cell of the range

 AdvancedFilter Filters or copies data from a list based on a criteria range

 ApplyNames Applies names to the cells in the specified range

 AutoFilter Filters a list using AutoFilter

 AutoFit Changes the width of the columns or the height of the rows in the range to
achieve the best fit

 AutoFormat Automatically formats the specified range, using a predefined format

 AutoOutline Automatically creates an outline for the specified range

 BorderAround Adds a border to a range and sets the Color , LineStyle , and Weight properties
for the new border

 Calculate Calculates a specified range of cells on a worksheet

 Clear Clears the entire range

 ClearComments Clears all cell comments from the specified range

 ClearContents Clears the formulas from the range

 ClearFormats Clears the formatting of the object

 ClearHyperlinks Removes all hyperlinks from the specified range

 ClearNotes Clears notes and sound notes from all the cells in the specified range

 ClearOutline Clears the outline for the specified range

 Consolidate Consolidates data from multiple ranges on multiple worksheets into a single
range on a single worksheet

 Copy Copies the range to the specified range or to the clipboard

 CreateNames Creates names in the specified range, based on text labels in the sheet

 Cut Cuts the range values to the clipboard

 Delete Deletes the range values

 Find Finds specific information in a range and returns a Range object representing
the first cell where that information is found

 FindNext Continues a search to the next cell that was begun with the Find method

 FindPrevious Continues a search to the previous cell that was begun with the Find method

 ListNames Pastes a list of all displayed names onto the worksheet, beginning with the first
cell in the range

 Merge Creates a merged cell from the specified Range object

 PasteSpecial Pastes a range that was copied or cut from the clipboard into the specified
range

(continued)

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

243

 Using the Application .Range Property
 The easiest way to access any cell value is using the Application object’s Range property. Since the
 Application object is the top-level object in the Microsoft Excel object hierarchy, you do not need to type it
when using the Range property, which has this syntax:

 Range (Cell1, Cell2)

 In this code:

 Cell1 : This is required; it is the range address or name between double quotes. It
can include the range operator (a colon), the intersection operator (a space), or
the union operator (a comma). If it includes dollar signs, they will be ignored.

 Cell2 : This is optional; use it when both Cell1 and Cell2 are valid Range objects
identifying the cell in the upper-left and lower-right corners of the desired range,
respectively. Both Cell1 and Cell2 Range objects can contain a single cell, an
entire column, or an entire row, or it can be a string that names a single cell.

 The default property of the Range object is the Value property, so when you use the Application .Range
property and pass it the address of the desired cell, you will receive the cell value. If you pass it a range of
cells, you will receive a variant with an array of values that cannot be printed in the VBA Immediate window
(which will return the code Error=13, “Type Mismatch”).

 ■ Attention When used without an object qualifier, the Application .Range property is a shortcut for
 ActiveSheet.Range , returning a range from the active sheet. If the active sheet isn’t a worksheet, the property fails.

 Also note that when applied to a Range object, the property is relative to the Range object. For example, if the
selection is cell C3 , then Selection.Range("B1") returns cell D3 because it’s relative to the Range object returned
by the Selection property. On the other hand, the code ActiveSheet.Range("B1") always returns cell B1 .

 Figure 5-1 shows what happens when you use the Application .Range property (with or without the
 Application qualifier) and the Application .Selection property to return cell A1 ’s value, which contains the
formula =Today() , returning the current system date. Also note that the Range property returns the Value
property of the range, and when you use the Value2 property, VBA does not return the expected formatted date
value but the real number stored into the cell. In this case, this is the integer value that represents the date (days
counting from 1-1-1900). You can also use other Range object properties, like HasFormula (which indicates
whether the range has a formula), and use the Formula property to return its formula (if any).

Table 5-3. (continued)

 Range Object Method Action Performed

 Replace Returns a Boolean indicating characters in cells within the specified range

 Select Selects the specified range

 Sort Sorts a range

 SpecialCells Returns a Range object that represents all the cells that match the specified
type and value

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

244

 ■ Attention Use the Application .Selection property when you do need to know what is currently selected
on the active sheet of Microsoft Excel . To know what is the cell address, use the Range. Address property (the
 ActiveSheet.Name property returns the worksheet name of the selected sheet).

 Use Application .Range whenever you want to know the contents of a specific cell. To know a specific
worksheet cell value, precede the cell address with the sheet name (tab name) between single quotes and an
exclamation character (with everything inside double quotes), as follows (Figure 5-2):

 ?Range("'Sheet1'!A1")

 Figure 5-1. Use the Application .Range property or the Application .Selection property (with or without the
 Application qualifier) to recover the current cell value. Note that the Application .Range property is a shortcut
to the ActiveSheet.Range property, meaning that if the selected sheet is a Chart sheet, the method will fail and
VBA will raise an error

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

245

 Let’s see how to program some Range object methods and properties.

 Using Range Object Properties and Methods
 You can get the information from the selected cell range with VBA using two different sources: from the
 Application .Selection property or from the Target argument returned by some events raised by the
 Worksheet , Workbook , or Application objects.

 They return the same information about what is selected inside Excel, differing only by the fact that the
first is based on some user action and the last is gathered from the permanent state of the active sheet.

 The Range Properties.xlsm macro-enabled workbook, which you can extract from Chapter05.zip , has the
 frmRange UserForm , which you can use to learn how to implement some Range object properties and methods
using both the Application .Selection event and the Target argument from some Application object events.

 When you open this workbook, the ThisWorkbook object’s Workbook _ Open () event fires and loads
 frmRange in a nonmodal state (meaning that you can interact with the sheet tabs while the UserForm is
opened, as shown in Figure 5-3).

 Private Sub Workbook _ Open ()
 frmRange .Show False
 End Sub

 Using the same programming technique described so far this book, the frmRange UserForm declares the
module-level variable WithEvents mApp as Application and initializes it on the UserForm_Initialize ()
event so it can catch cell range information whenever the user selects any cell range (using the Application .
SheetSelectionChange() event) or selects another sheet tab (using the Application .SheetActivate()
event) on any opened workbook.

 Figure 5-2. To verify a specific worksheet cell value, type a string that contains the sheet name inside single
quotes, followed by an exclamation character and the cell address

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

246

 Note that the frmRange UserForm interface has the range information updated with the aid of the Sub
UpdateInterface() procedure (called from these three events):

 Option Explicit

 Dim WithEvents mApp As Application

 Private Sub UserForm_Initialize ()
 Set mApp = Application
 Call UpdateInterface
 End Sub
 Private Sub mApp_SheetActivate (ByVal Sh As Object)
 Call UpdateInterface(Sh, Application .Selection)
 End Sub
 Private Sub mApp_SheetSelectionChange (ByVal Sh As Object, ByVal Target As Range)
 Call UpdateInterface(Sh, Target)
 End Sub

 ■ Attention Note that Sub UpdateInterface() receives two optional arguments used just by the mapp_
SheetActivate() and mApp_SheetSelectionChange() events.

 Figure 5-3. This is the frmRange UserForm from Range Properties.xlsm macro-enabled workbook, where you
can learn how to implement some Range object properties and methods

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

247

 Once frmRange is loaded, whenever you select another cell’s range on any workbook sheet tab, a lot
of range information is displayed on the frmRange UserForm , like the sheet tab name, range address, range
values, selected cells, rows and columns count, rows number, and column letters of the range areas selected.

 Figure 5-4 shows what happened to the frmRange UserForm interface when more than one
noncontiguous cells range was selected by keeping the Ctrl key pressed while the mouse was dragged over
the worksheet cells. Note that the Range Areas text box indicates the number of different ranges selected and
that the lstAreas ListBox at its right shows the Area Index and Address information.

 Figure 5-4. When you select any cell range, the frmRange UserForm catches information of the selected cells,
like the sheet tab name, the range address selected, how many range areas were selected, and describes each
area index and address; how many cells, rows, and columns were selected; and the rows number and columns
letters selected

 Updating the UserForm Interface
 The Private Sub UpdateInterface() procedure is responsible for synchronizing the information about
the cell range selected in the Excel active sheet in the frmRange UserForm . It does this by executing this code:

 Private Sub UpdateInterface(Optional Sh As Object, Optional Target As Range)
 Dim rg As Range
 Dim varItem As Variant
 Dim strRows As String

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

248

 Dim strColumns As String
 Dim strValues As String
 Dim intI As Integer
 Dim fComma As Boolean

 If Me .optEventTarget Then
 Set rg = Target
 Me .txtActiveSheet = Sh.Name
 Else
 Set rg = Application .Selection
 Me .txtActiveSheet = rg.Worksheet.Name
 End If

 Me .txtRowsSelected = ""
 Me .txtColumnsSelected = ""
 Me .txtValue = ""

 Me .txtAddress = rg. Address
 Me .txtCellsCount = rg.CountLarge
 Me .txtRowsCount = rg.Rows.CountLarge
 Me .txtColumnsCount = rg.Columns.CountLarge

 If rg.Cells.CountLarge > 1000 Then
 MsgBox "Too much cells selected!", vbCritical, "Select less cells"
 Else
 For Each varItem In rg.Rows
 If fComma Then
 strRows = strRows & ", "
 End If
 strRows = strRows & varItem.Row
 fComma = True
 Next

 fComma = False
 For Each varItem In rg.Columns
 If fComma Then
 strColumns = strColumns & ", "
 End If
 strColumns = strColumns & ColumnNumberToLetter(varItem. Column)
 fComma = True
 Next

 fComma = False
 For Each varItem In rg
 If fComma Then
 strValues = strValues & ", "
 End If
 strValues = strValues & varItem. Address (False, False) & "=" & varItem.Value
 fComma = True
 Next

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

249

 Me .txtRowsSelected = strRows
 Me .txtColumnsSelected = strColumns
 Me .txtValue = strValues
 End If

 Me .txtRangeAreas = rg. Areas .Count
 Me .cmdResize.Enabled = (rg. Areas .Count = 1)
 Me .lstAreas. Clear
 For intI = 1 To Selection. Areas .Count
 Me .lstAreas. AddItem intI
 Me .lstAreas. Column (1, lstAreas.ListCount - 1) = rg. Areas (intI). Address
 Next
 End Sub

 Note that the procedure may receive two optional arguments (Sh as Object and Target as Range)
so it can receive information about the worksheet and cell range affected by the user action whenever the
 mApp_SheetActivation() and mapp_SheetSelectionChange() events fire, or it can use the Application .
Selection property, which also returns a Range object that reflects the cells selected on the active sheet.

 To show that both objects represent the same thing, the procedure begins by declaring the rg as Range
variable to represent the selected range.

 Private Sub UpdateInterface(Optional Sh As Object, Optional Target As Range)
 Dim rg As Range

 If the “Event Target argument” option is selected on the UserForm bottom (optEventTarget
OptionButton), the procedure uses the Target argument and the source of the selected range and defines
the txtActiveSheet text box using the Name property of the Sh object.

 If Me .optEventTarget Then
 Set rg = Target
 Me .txtActiveSheet = Sh.Name

 But if the Application .Selection option is selected, the procedure uses the Application .Selection
property as the source to the selected range, and once the range is defined, it uses its Worksheet.Name
property to recover the sheet tab name.

 Else
 Set rg = Application .Selection
 Me .txtActiveSheet = rg.Worksheet.Name
 End If

 Once it has a reference to the selected range, it clears the txtRowsSelected , txtColumnsSelected , and
 txtValues text boxes.

 Me .txtRowsSelected = ""
 Me .txtColumnsSelected = ""
 Me .txtValue = ""

 And then it recovers the Range. Address property, which indicates the cells currently selected.

 Me .txtAddress = rg. Address

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

250

 The Range. Address property has this syntax:

 Range. Address ((RowAbsolute, ColumnAbsolute, ReferenceStyle, External, RelativeTo)

 In this code:

 RowAbsolute : This is optional; it is a Boolean value indicating whether the row
part of the reference must be an absolute reference. The default value is True .

 ColumnAbsolute : This is optional; it is a Boolean value indicating whether the
column part of the reference must be an absolute reference. The default value is
 True .

 ReferenceStyle : This is optional; it indicates the reference style to be used: xlA1
or xlR1C1 . The default value is xlA1 .

 External : This is optional; it indicates whether the reference must be local or
external. Use True to return an external reference or False to a local reference.
The default value is False .

 RelativeTo : This is optional; it must be a Range object that defines the starting
point to relative references when RowAbsolute and ColumnAbsolute are False
and when ReferenceStyle = xlR1C1 .

 So, whenever the procedure uses rg. Address , it returns the range address of the selected cells using
absolute references (look to the Range Address text box of Figures 5-3 and 5-4).

 To return how many cells are used by the selected range, you can use the Count or CountLarge property
of the Range object.

 Me .txtCellsCount = rg.CountLarge

 To return how many rows and columns are selected, use the Rows or Columns collection’s Count or
 CountLarge property of the Range object.

 Me .txtRowsCount = rg.Rows.CountLarge
 Me .txtColumnsCount = rg.Columns.CountLarge

 ■ Attention The CountLarge property was introduced in the Excel object model for the .xlsx file of Excel 2007
or newer versions, which has 1,048,576 rows x 1,024 columns = 1,073,741,824 possible cells (compared to the
65,536 rows x 256 columns = 16,777,216 possible cells of Excel 2003 or older versions). Excel 2003 and older
versions don’t recognize the CountLarge property, while Excel 2007 or newer versions will raise an error if you use
the Count property to select more rows, columns, and cells than available to Excel 2003.

 Since UpdateInterface() returns the selected range values, it has a provision to avoid selecting more
than 1,000 cells using the CountLarge property (since the user can select the gray square at the right of
column A header—above the row 1 header—to select all worksheet cells).

 If rg.Cells.CountLarge > 1000 Then
 MsgBox "Too much cells selected!", vbCritical, "Select less cells"
 Else

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

251

 Getting the Rows Used by the Selected Range
 If fewer than 1,000 cells are selected, every row number selected is retrieved using the Range.Row property
and stored in the strRows String variable. The procedure uses a For Each…Next loop to run through all
selected rows inside the Range.Rows property (which behaves like a collection).

 For Each varItem In rg.Rows

 Inside the For Each… Next loop, the fComma Boolean variable is used to verify the need to add a comma
to the strRows String variable, which is needed before the second row number is added. Note that fComma
becomes true after the first row is processed.

 If fComma Then
 strRows = strRows & ", "
 End If
 strRows = strRows & varItem.Row
 fComma = True
 Next

 Getting the Columns Used by the Selected Range
 When the first For Each…Next loop ends, the procedure turns fComma = False and begins a second For
Each… Next loop through the Range.Columns property (which also behaves like a collection) to retrieve all
the columns used by the selected range.

 fComma = False
 For Each varItem In rg.Columns
 If fComma Then
 strColumns = strColumns & ", "
 End If

 The Range. Column property returns the column number, and you need to turn this value into a column
letter, which is made by the Function ColumnNumberToLetter() procedure before storing it into the
 strColumns string variable:

 strColumns = strColumns & ColumnNumberToLetter(varItem. Column)
 fComma = True
 Next

 Changing a Column Number to a Letter

 There are a lot of algorithms on the Internet destined to transform the Range. Column Integer value to the
associated column letter, but you don’t need them. Use the Application .Cells() property instead, which
returns a Range object for a given row and column number and has this syntax:

 Application . Cells (RowIndex, ColumnIndex)

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

252

 In this code:

 RowIndex : This is required; it is a long integer positive value indicating the row
number of the reference.

 ColumnIndex : This is required; it is a long integer positive value indicating the
column number of the reference.

 Since the Cells() property returns a range object, use the Range object’s Address property to return
the cell address for row = 1 and the desired column number, using this syntax:

 strColumn = Cells(1, rg. Column). Address (False, False)

 Once the address is returned, just take off the 1 row number at the end of the address and you will get
the column letters. Note that the Address property is using False for its RowAbsolute and ColumnAbsolute
arguments, forcing the address to be returned as a relative reference.

 This is the code used by the Function ColumnNumberToLetter() of the basColumnNumberToLetter
module:

 Public Function ColumnNumberToLetter(Optional ColumnNumber As Variant) As String
 Dim strColumn As String

 If IsEmpty(ColumnNumber) Then
 ColumnNumber = Application .Selection. Column
 End If

 strColumn = Application .Cells(1, ColumnNumber). Address (False, False)
 ColumnNumberToLetter = Left (strColumn, Len(strColumn) - 1)
 End Function

 Did you get it? The ColumnNumberToLetter() Function declares the optional ColumnNumber as
Variant argument. If the argument is missing, it receives the Application .Selection. Column property,
which returns the column number of the selected cell in the Excel interface.

 If IsEmpty(ColumnNumber) Then
 ColumnNumber = Application .Selection. Column
 End If

 It then uses the Application .Cells() property for the first row and desired column, which returns a
 Range object, and then uses the Range . Address property to return the relative reference to the desired cell.

 The address returned will be relative to row 1, so the next instruction uses the VBA Left () and Len()
functions to get just the column letters, which are the value returned by the function.

 ColumnNumberToLetter = Left (strColumn, Len(strColumn) - 1)
 End Function

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

253

 Considerations About the Range Rows and Columns Properties
 Before we continue, you must be aware of some discrepancies about the Range Rows and Columns
properties, which behave like a collection.

• The Count property of both the Rows and Columns properties return the row/column
count for the first range, if more than one noncontiguous ranges are selected.

• Both Rows and Columns properties may return repeated values of row and column
numbers used by the selected ranges if you select more than one noncontiguous
range that uses the same rows and columns.

 Look again to Figures 5-3 and 5-4 and see for yourself. Figure 5-3 selects just the cells in the range A5:B6 , while
Figure 5-4 selects many other cell ranges. But the count value of both the Range.Rows and Columns properties
continue to refer to cells A5:B6 , while the selected row numbers and column letters have many duplicates.

 Getting a Cell’s Address and Values for the Selected Range
 Use the Range. Address (False, False) and Range.Value properties to get the relative cell addresses and
values of the selected range, performing a For Each…Next loop through all cells of the Range object (note
that the varItem Variant variable retrieves each cell in the range, which is also a Range object).

 fComma = False
 For Each varItem In rg
 If fComma Then
 strValues = strValues & ", "
 End If
 strValues = strValues & varItem. Address (False, False) & "=" & varItem.Value
 fComma = True
 Next

 And once all row numbers, column letters, and cell addresses and values have been retrieved, update
the UserForm interface.

 Me .txtRowsSelected = strRows
 Me .txtColumnsSelected = strColumns
 Me .txtValue = strValues
 End If

 Getting Selected Range Areas
 The UpdateInterFace() procedure ends by using the Range. Areas collection to know how many different
noncontiguous ranges have been selected and the addresses of each one.

 The Range. Areas .Count property is used to inform the Areas .Count property and to enable the
 cmdResize button (which can just be used when a single contiguous range is selected).

 Me .txtRangeAreas = rg. Areas .Count
 Me .cmdResize.Enabled = (rg. Areas .Count = 1)

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

254

 The lstAreas ListBox is used to show each Range. Area Index value and its associated Address
property. So, it first clears the lstAreas ListBox with its Clear method and then performs a For…Next loop
through all areas of the Range. Areas collection using intI as the Areas counting.

 Me .lstAreas. Clear
 For intI = 1 To Selection. Areas .Count

 The lstAreas value has two columns. The Area Index (represented by the intI variable) is added to
the lstAreas item value using its AddItem method.

 Me .lstAreas. AddItem intI

 The Areas . Address property is added to the second column of the same item of the lstAreas ListBox
using intI to reference the desired area and using the lstAreas.ListCount-1 property to correctly
reference the last added item.

 Me .lstAreas. Column (1, lstAreas.ListCount - 1) = rg. Areas (intI). Address
 Next
 End Sub

 Resizing the Selected Range
 Use the Range. Resize property to add or delete cells rows and/or columns selected by the range. It has this
syntax:

 Range. Resize (RowSize, ColumnSize)

 In this code:

 RowSize : This is optional; it is a long integer positive value indicating the number
of rows on the new range. If omitted, the number of rows remains the same.

 ColumnSize : This is optional; it is a long integer positive value indicating the
number of columns on the new range. If omitted, the number of rows remains
the same.

 When you select just one range and click the Resize CommandButton (cmdResize) of the frmRange
 UserForm , you will accept the values defined on the resized Rows and Columns text boxes (txtAddRows and
 txtAddColumns , usually = 1) to resize the selected range, executing this code:

 Private Sub cmdResize_Click()
 Dim intRows As Integer
 Dim intCols As Integer

 intRows = Selection.Rows.Count + CInt(Me .txtAddRows)

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

255

 intCols = Selection.Columns.Count + CInt(Me .txtAddColumns)
 If intCols <= 0 Then intCols = 1
 Selection. Resize (intRows, intCols).Select
 End Sub

 Note that the procedure declares the intRows and intColumns variables to hold the new range row and
column values. It uses the Application .Selection property (without the Application qualifier) to return
the selected range and uses the Range.Rows.Count property to return how many rows are selected. It then
adds the txtAddRows value to the row count selected, using the VBA CInt() function to convert the text
box String value to Integer :

 intRows = Selection.Rows.Count + CInt (Me .txtAddRows)

 Since the txtAddRows value can be negative, the procedure verifies whether the intRows value is equal
to or lower than zero. If it is, it is turned to 1 (meaning that the resized range will have at least one row).

 If intRows <= 0 Then intRows = 1

 The same steps are repeated to the intCols variable, and the resize method is executed. Note that
when this is done, the new Range object returned by the Selection. Resize property is resized, but it is not
selected on the worksheet. So, the Range.Selection property is also executed, so the new defined range is
selected.

 Selection. Resize (intRows, intCols).Select

 When this is done, the “cascading event” phenomenon happens again, firing the Application _
SheetSelectionChange() event, captured by the mApp module-level variable, which will call the
 UpdateInterface() procedure and update the UserForm interface (Figure 5-5).

 Private Sub mApp_SheetSelectionChange(ByVal Sh As Object, ByVal Target As Range)
 Call UpdateInterface(Sh, Target)
 End Sub

 ■ Attention If Worksheet_SelectionChange () or ThisWorkbook_SheetSelectionChange() are
programmed, they will also fire at this moment.

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

256

 Figure 5-5. Use the Range. Resize property to resize the selection (or any other Range variable). Remember
that after the resize operation, if you want to see the new range selected on the worksheet, you must use the
Range.Select property (you can use negative values on the Rows and Columns text boxes at the right of the
button)

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

257

 Changing the Range Reference
 By default the frmRange UserForm uses the Application .Selection property to return the selected range.
This is necessary because when frmRange is opened, it fires the UserForm_Initialize () event, which
doesn’t have any argument and needs to catch the Selection range to update its interface.

 Private Sub mApp_SheetSelectionChange(ByVal Sh As Object, ByVal Target As Range)
 Call UpdateInterface(Sh, Target)
 End Sub

 When you click the “Event Target argument” (optEventTarget) option, the optEventTarget_Click()
event fires, executing this code:

 Private Sub optEventTarget_Click()
 Dim rg As Range

 Set rg = Selection
 Application .EnableEvents = False
 Range("A1").Select
 Application .EnableEvents = True
 rg.Select
 End Sub

 Note that the code declares and uses the rg as Range variable to hold the current selection range,
returned by the Application .Selection property.

 Private Sub optEventTarget_Click()
 Dim rg As Range

 Set rg = Selection

 Now that the selected range is stored, to force the Application _SheetSelectionChange() event to
fire you must make a fake selection and then select again what is stored on the rg variable. To avoid that the
cascade event fires twice, the code uses the Application .Enabled Event property to disable Excel events,
selects cell A1 , enables the property again, and then reselects the current range, firing the cascading event.

 Application .EnableEvents = False
 Range("A1").Select
 Application .EnableEvents = True
 rg.Select

 When mApp_SheetSelectionChange() fires, it will pass the Sh and Target arguments to the
 UpdateInterface() procedure, which will use them to synchronize the UserForm interface.

 Private Sub mApp_SheetSelectionChange(ByVal Sh As Object, ByVal Target As Range)
 Call UpdateInterface(Sh, Target)
 End Sub

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

258

 Using the Names Collection
 Great worksheet applications need named ranges that you set using the Excel interface or VBA. All
named ranges are stored on the Names collection and exist as different entities for both the Workbook and
 Worksheet objects: application scope named ranges must be stored on the Workbooks. Names collection,
while worksheet scope named ranges must be stored on the Worksheets . Names collection. Each collection
must have unique named ranges, but a Workbook named range can exist with the same name on any
 Worksheet. Names collection, representing different cell ranges.

 Each named range must follow this syntax:

• The first character of a name must be a letter, an underscore character (_), or a
backslash (\). Remaining characters in the name can be letters, numbers, periods,
and underscore characters.

• You cannot use the uppercase and lowercase characters C , c , R , or r as a defined
name because they are all used as shorthand for selecting a row or column for the
currently selected cell when you enter them in the Excel Name or Go To text box.

• Names cannot be the same as a cell reference, such as A$1 or R1C1 .

• Spaces are not valid. Use the underscore character (_) or period (.) as word
separators instead.

• The name length can contain up to 255 characters.

 Using the Excel interface, you create a workbook scope named range by first selecting the cell range
and then entering the range name in the Excel Names ListBox . To create a worksheet scope named range,
precede the name with the sheet tab and an exclamation point (like Sheet1!Test , as shown in Figure 5-6).

 Figure 5-6. Use the Excel Names ListBox to create workbook or worksheet scope named ranges. To create a
worksheet named range, precede the name with the sheet tab and an exclamation point

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

259

 Note that Figure 5-6 shows you can create names with different scopes that point to the same cells (both
 WorkbookRange and SheetRange point to cells A1:B2). Whenever you do this and select these cells range on
the sheet tab, Excel will always refer to the worksheet name.

 To create a named range with VBA code, use the Workbook or Worksheet object’s Names .Add method,
which has this syntax:

 Object. Add (Name, RefersTo , Visible, MacroType, ShortcutKey, Category, NameLocal,
RefersToLocal, CategoryLocal, RefersToR1C1, RefersToR1C1Local)

 In this code:

 Name : This is required; it is the range name to be created.

 RefersTo : This is required; it is the range address that the name refers to, using
A1-style notation, if the RefersToLocal , RefersToR1C1 , and RefersToR1C1Local
parameters are not specified.

 Visible : This is optional; it is the Boolean value that specifies whether the name
is visible (hidden names do not appear in the Define Name, Paste Name, or Goto
dialog box). The default value is True .

 MacroType : This is optional ; it associates the name with a macro using the
following values:

 1: User-defined function (Function procedure).

 2: Macro (Sub procedure).

 3 or omitted: This is the default value; the name does not refer to a
user-defined function or macro.

 ShortcutKey : This is optional; it specifies the macro shortcut key. It must be a
single letter, such as z or Z . This applies only for command macros.

 Category : This is optional; it is the category of the macro or function if the
 MacroType argument is defined to 1 or 2. The category is used in the Function
Wizard.

 NameLocal : This is optional; it specifies the localized text to use as the name if the
 Name parameter is not specified.

 RefersToLocal : This is optional; it describes what the name refers to, in
localized text, using A1-style notation, if the RefersTo , RefersToR1C1 , and
 RefersToR1C1Local parameters are not specified.

 CategoryLocal : This is optional; it specifies the localized text that identifies the
category of a custom function if the Category parameter is not specified.

 RefersToR1C1 : This is optional; it describes what the name refers to, in
English using R1C1-style notation, if the RefersTo , RefersToLocal , and
 RefersToR1C1Local parameters are not specified.

 RefersToR1C1Local : This is optional; it describes what the name refers to, in
localized text using R1C1-style notation, if the RefersTo , RefersToLocal , and
 RefersToR1C1 parameters are not specified.

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

260

 The Names .Add method returns a Name object referencing the newly added named range. And although
it has a lot of arguments, you need to use just the Name and RefersTo arguments to create or edit an existing
name.

 You can use the Names collection’s Add method to add or modify an existing range name. If the name is
new, Excel will create it; if it already exists, Excel will change the RefersTo property to whatever you type in
the Names .Add RefersTo argument.

 To add (or modify) the WorkbookRange range name indicated in Figure 5-6 (a workbook scope range
name) associated to Sheet1 cells A1:B2 , use one of these syntaxes in the VBA Immediate window . Here’s an
example:

 ? ThisWorkbook . Names .Add(“WorkbookRange”, “=A1:B2”)

 Here’s the other example:

 ? Names .Add(“WorkbookRange”, “=A1:B2”)

 To add (or modify) the SheetRange range name indicated in Figure 5-6 (a worksheet scope range name)
associated to cells A1:B2 , use this syntax in the VBA Immediate window:

 ? Sheet1 . Names .Add(“SheetRange”, “=A1:B2”)

 Or use this syntax:

 ? Names .Add(“ Sheet1! SheetRange”, “=A1:B2”)

 Did you notice that you can use just the Names collection’s Add method to insert both workbook or
worksheet range names? To add or modify any worksheet scope name, just precede its name with the sheet
name followed by an exclamation point and Excel will add it to the desired sheet Names collection.

 ■ Attention Always precede the cell reference by the equal sign so Excel can interpret it as a cell range.

 If the worksheet name contains the space character, you must enclose it in single quotes before using the
 Names .Add method (like you must do using the Excel Name box). For example, to insert the SheetRange named
range into the My Sheet worksheet’s Names collection pointing to cells A1:B2 , use this syntax:

 ? Names .Add("'My Sheet'!SheetRange", "=A1:B2")

 Hiding Named Ranges
 The same way Excel does with the Worksheet object , the Name object has a Visible property, which is also an
argument of the Names .Add collection, that you can set to False to hide the named range from the user view.
There is no way to do this operation using the Excel interface.

 Once you have created a range name, you can change the Visible property using the VBA Immediate
window with this syntax (note that you should not use the ? character in the VBA Immediate window so the
 Name.Visible property can be changed).

 Names (“WorkbookRange”).Visible = False

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

261

 And once you do this, the name does not appear anymore in the VBA Name box or the Name Manager
dialog box (Figure 5-7).

 To hide or show all named ranges used by your Excel application from user eyes, create a single
procedure that receives two arguments: the sheet name and a Boolean argument that indicates what you
want to do, such as the Sub HideRangeNames () procedure from the basHideRangeNames.bas file that you
can also extract from the Chapter02.zip file.

 Figure 5-7. Use the Visible property of the Name object to hide/show any named range in the Excel interface,
either in its Name box or in the Name Manager dialog box

 Public Function HideRangeNames (strWorksheet As String, fShow As Boolean)
 Dim nm As Name

 For Each nm In Worksheets (strWorksheet). Names
 nm.Visible = fShow
 Next
 End Function

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

262

 To hide all Sheet1 worksheet names, use the VBA Immediate window this way (don’t use the ?
character):

 HideRangeNames (“Sheet1”, False)

 To show again all Sheet1 range names, call the procedure again using True for the second argument.

 HideRangeNames (“Sheet1”, True)

 Resizing Named Ranges
 Another operation that you will need to perform on your Excel applications is to resize an existing range name,
inserting or deleting rows and columns on its RefersTo property. And you can do this in two different ways.

• Using the Names .Add method to re-create the existing range name with a new cell
range reference

• Using the Range. Resize property to resize a given range and then using the Range
object Name property to attribute a name to the resized range

 The Range. Resize property has this syntax:

 Range. Resize (RowSize, ColumnSize)

 In this code:

 RowSize : This is optional; it is the number of rows in the resized range. If this
argument is omitted, the number of rows in the range remains the same.

 ColumnSize : This is optional; it is the number of columns in the new range. If this
argument is omitted, the number of columns in the range remains the same.

 Note that the Range. Resize property specifies the total number of rows and columns that the range
must have. It will resize the desired range regarding its top-left cell as the first range cell.

 The next operation resizes the range returned by the WorkbookRange named range created in Figure 5-6
that begins on cell A1 , so it now has five rows and ten columns. Since it returns a Range object, you cannot
perform this in the VBA Immediate window.

 Range(“WorkbookRange”). Resize (5,10)

 The last instruction does not change the WorkbookRange named range reference. Just the range returned
by this operation has changed, resizing it to five rows and ten columns. To see this resizing operation in
action, use the Range.Select method, typing this syntax in the VBA Immediate window (note again that it
does not use the ? print character, as shown in Figure 5-8):

 Range(“WorkbookRange”). Resize (5,10).Select

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

263

 Most operations you will do to change an existing named range size will be made by adding or deleting
one or more rows or columns in the current reference. To do this, you need to specify the Range. Resize
method’s RowSize and ColumnSize arguments using the range’s Rows.Count and Columns. Count properties
as default values that must be added by a positive or negative number of rows/columns.

 The next instruction will change the range returned by the WorkbookRange named range by adding just
one row to its current reference, keeping it with the same column count (note that it uses the Range. Resize
method’s RowSize argument, as shown in Figure 5-9):

 Range(“WorkbookRange”). Resize (Range(“WorkbookRange”). Rows.Count + 1).Select

 Figure 5-8. Use the Range. Resize property to resize the address returned by a given named range to an
absolute number of rows and columns (keeping the original top-left cell range). To select the resized range, use
the Range.Select method

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

264

 To change any named range address by adding to it any number of rows or columns, use the
 Range. Resize operation to resize it and then use the Range.Name property to name the new resized range to
the desired saved range.

 The next instruction resizes the WorkbookRange named range by adding to it two rows, keeping it as the
same column counting (use the Excel Name box to see the result, as shown in Figure 5-10):

 Range(“WorkbookRange”). Resize (Range(“WorkbookRange”).Rows.Count + 2). Name = “WorkbookRange”

 Figure 5-9. To resize the address returned by a given named range by adding to it a defined number of rows/
columns, use the Range.Rows.Count or Range.Columns.Count property to return the current number of rows/
columns, adding or subtracting an integer to resize them to the desired size. This figure shows how to add one
row to the range address returned by the WorkbookRange named range created in Figure 5-6

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

265

 Now that you already have a good understanding of how to do some specific Name object operations,
let’s see all these Name object properties and methods in action!

 Using Name Object Properties and Methods
 Microsoft Excel 2007 or newer versions use the Name Manager command of the “Define names” area of the
Formula tab of the ribbon to control the range names you create on any workbook. This command raises
the Name Manager dialog box (which is like a UserForm object), which is where you can add, edit, or delete
range names; filter range names by scope; or change the selected range name address (Figure 5-11).

 To add or edit range name details, the Name Manager counts, with the aid of the New/Edit Name dialog
box (another UserForm), and allows you to select the name scope and add a comment to any range name.

 Note the interface behavior. When you click the New/Edit CommandButton of the Name Manager
dialog box, it disappears from the screen and loads the New Name dialog box. And if you insert a new name
or edit an existing one, when you close the New Name dialog box, the inserted/edited name is selected in
the Name Manager dialog box, which shows most of its properties.

 Figure 5-10. To really resize a saved range, use the Range. Resize method to resize the address and then use
the Range.Name property to name the resized range. Once the operation is done, use the Excel Name box to
select the range and watch the result. This figure shows how to resize the WorkbookRange (A1.B2) created in
Figure 5-6 by adding two more rows (resulting in A1:B4)

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

266

 ■ Attention Both the Name Manager and New Name dialog box don’t offer any means by which you can
hide a range name. And once a range name is created, you also cannot change its scope from workbook to
worksheet, and vice versa. To do such operations, you must delete and re-create the range name.

 The aim of this section is to try to duplicate the Name Manager behavior with some improvements that
can help you to manage the range names of your workbook application, as follows:

• Hide/show one or more range names

• Change the range name scope

• Apply the same comment to one or more range names at once

 Figure 5-11. This is the Excel Name Manager dialog box that uses the New Name dialog box to insert/edit
range names of any opened workbook. It does not have the ability to hide range names

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

267

 ■ Attention Before you begin to read this section, I want reiterate that what you are about to study was
not result of chance. It took hard work, study, practice, and experimentation of Excel VBA programming, using
a trial-and-error approach that took me many days to finish. When you begin to create your own solutions,
remember that to build solid, good, and reliable software, you must access many different knowledge sources
and strive to perfection to achieve the desired results.

 To see the Excel Names collection and Name object in action, extract the Names Collection.xlsm macro-
enabled workbook from the Chapter05.zip file, which uses two UserForm s to improve the Excel Name
Manager dialog box: frmNames (to mimic the Excel Name Manager) and frmEditName (to mimic the New/
Edit Name dialog box), as shown in Figure 5-12 .

 Figure 5-12. The Names Collection.xlsm macro-enabled workbook has two UserForms: frmNames to mimic
the Name Manager dialog box and frmEditName to mimic the New Name dialog box

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

268

 Whenever you need to open two successive modal UserForm s, the first UserForm must hide itself using
the Userform.Hide method before showing the second modal UserForm , which will stop the code at this
point until the second modal UserForm can be unloaded, and when this happens, the first UserForm must
apply to itself to the UserForm.Show method to show again its interface.

 To keep the frmNames and frmEditName UserForm interfaces synchronized, you must use Public
Properties declared on both UserForm s so one can synchronize the other interface to mimic the way the
Excel Name Manager and New/Edit Name dialog boxes behave.

• The frmNames .NameSelected and frmEditName .NamesSelected properties set the
connection between the two UserForm s regarding the Name object that is being
created or edited.

• The frmEditName . NewName property is used to signal the insertion of a new name.

 Whenever you open the Names Collection.xlsm macro-enabled workbook, the frmNames UserForm
is shown to you, ready to deal with most Excel Name object properties and methods. It synchronizes its
interface using two main Sub procedures.

• Sub FilllstNames() : To fill the lstNames ListBox with current Name object
information

• Sub DefineControls() : To synchronize the Enabled property of most frmNames
controls regarding what is currently selected in the lstNames ListBox

 Figure 5-13 shows how frmNames should look when you open the Names Collection.xlsm workbook for
the first time and no name has been created.

 Figure 5-13. When you open the Names Collection.xlsm macro-enabled workbook, frmNames is shown by the
This Workbook.Workbook _ Open event

 Once more, frmNames is automatically opened by the This Workbook.Workbook _ Open () event, which
has this code:

 Private Sub Workbook _ Open ()
 frmNames .Show
 End Sub

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

269

 When the UserForm opens, its UserForm_Initialize () event fires, adding two main options to
the cboObjects ComboBox (“All objects” and “ Workbook ”) and the name of each sheet tab of the active
workbook using a For Each…Next loop to run through all objects of the Application . Worksheets collection.

 Private Sub UserForm_Initialize ()
 Dim varItem As Variant

 mintLastColumn = 1
 Me .cboObjects. AddItem "All objects"
 Me .cboObjects. AddItem " Workbook "
 For Each varItem In Worksheets
 Me .cboObjects. AddItem varItem.Name
 Next
 Me .Height = mconHeight1
 Me .cboObjects.ListIndex = 0
 End Sub

 You should note three important things that happen on the frmNames UserForm_Initialize () event.

• It Height property is changed to the mconHeight1 constant, making it become a
small vertical dimension and hiding its Details section (compared to frmNames in
Figures 5-12 and 5-13).

• The last instruction, which sets cboObject.ListIndex = 0 , will cascade-fire the
 cboObjects_Change() event, filling the lstNames ListBox with all range name
information by calling the Sub FilllstNames() procedure.

• After the cboObjects_Change() event is fired, the UserForm interface is
synchronized, and most controls become unavailable because of the action’s Sub
 EnableControls () procedure.

 The cboObjects ComboBox is responsible for defining the scope of the range names that the frmNames
must show: The “All objects” option will return all range names from the Application . Names collections
(meaning all Workbook and Worksheet scope range names); the “ Workbook ” option will return just Workbook
scope range names, and by selecting any sheet tab name in the list, only the selected Worksheet object range
names will be show.

 Whenever the user—or the code—changes the cboObjects ComboBox value, the cboObjects_Change()
event will fire, executing this code:

 Private Sub cboObjects_Change()
 Call FilllstNames
 Call lstNames_Change
 End Sub

 Recovering Name Object Properties
 Whenever another name scope is selected on the cboObjects ComboBox , a new Name object is inserted,
or any Name property is changed, the code needs to call Sub FilllstNames() to clear and fill lstNames
 ListBox with the current Name object information. To keep this procedure as short as possible, it uses
 Function GetNameValue () to return the ListBox ’s Value column using the Excel Name Manager style,
which also uses Function EvaluateRange () to eventually return a string with the associated error code
exhibited by any formula or cell (Figure 5-14).

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

270

 This is Public Sub FilllstNames() procedure code, executed to clear and fill the lstNames ListBox
with Name object properties (since it is a Public procedure, it is considered as a frmNames method):

 Public Sub FilllstNames()
 Dim nm As Name
 Dim intIndex As Integer
 Dim intPos As Integer
 Const conWorkbook = 1

 intIndex = Me .cboObjects.ListIndex
 With Me .lstNames
 . Clear
 For Each nm In Names
 intPos = InStr (1, nm.Name, "!")
 If (intIndex < conWorkbook) Or _
 ((intIndex = conWorkbook) And (intPos = 0)) Or _
 ((intIndex > conWorkbook) And (nm.Parent.Name = Me .cboObjects)) Then
 . AddItem nm.Name
 . Column (1, .ListCount - 1) = Mid (nm.Name, intPos + 1)
 . Column (2, .ListCount - 1) = GetNameValue (nm)
 . Column (3, .ListCount - 1) = nm. RefersTo
 . Column (4, .ListCount - 1) = IIf(nm.Parent.Name = ThisWorkbook.Name,
" Workbook ", nm.Parent.Name)
 . Column (5, .ListCount - 1) = nm.Comment
 . Column (6, .ListCount - 1) = IIf(nm.Visible, "Yes", "No")
 End If
 Next
 End With
 End Sub

 Sub FilllstNames() declares all the variables it needs plus the Const conWorkbook = 1 constant to
avoid the appearance of a “magic number” inside the code.

 Private Sub FilllstNames(Optional varListIndex As Variant)
 ...
 Const conWorkbook = 1

 It then uses the intIndex Integer variable to reference the cboObjects.ListIndex property just
once (the item selected on the cboObjects ComboBox), defines a With Me .lstName…End With loop to also
reference the lstName ListBox only once, and clears the ListBox by calling the Clear method.

 intIndex = Me .cboObjects.ListIndex
 With Me .lstNames
 . Clear

 Figure 5-14. To keep the Sub FilllstNames() as short as possible, it was divided by two other specialized
Function procedures. GetNameValue () must return the name value using the same style of Excel Name
Manager dialog box, while EvaluateRange () is used to return any formula or cell value as is, including a string
with an associated error code (if any)

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

271

 Once the lstNames ListBox is cleared, it begins a For Each nm in Names …Next loop to run through all
names stored in the Application . Names collection, using the nm as Name object variable to easily reference
each Name object.

 Dim nm as Name
 ...
 For Each nm In Names

 Since any worksheet name is preceded by the sheet name and an exclamation character, FilllstNames()
verifies the current Name object scope by searching for an exclamation character (!) on its Name property using
VBA InStr () function.

 intPos = InStr (1, nm.Name, "!")

 Once this is done, the intPos Integer variable will receive a 0 as an indication of the absence of the !
character (meaning the workbook name scope) or the position of the ! inside the Name property (worksheet
named scope).

 Then it must make the decision to insert the name in the lstNames ListBox according to three possible
scopes selected on the cboObjects ListBox : all objects, workbook names, or any sheet tab names. The name
must be inserted if:

 1. cboObjects = "All objects" , meaning that all names must be inserted.
Since this is the first option of the cboObjects ComboBox (ListIndex = 0) and
 conWorkbook = 1 , it makes this test:

 If (intIndex < conWorkbook) Or _

 2. cboObjects = " Workbook " option, meaning that just workbook scope Name
objects should be inserted. Since this is the second option of cboObjects
(ListIndex = 1 = conWorkbook), the Name object properties must be inserted if
it also does not contain a ! character on its name (intPos = 0):

 ((intIndex = conWorkbook) And (intPos = 0)) Or _

 3. cboObjects = <SheetTabName> option, meaning that just the selected sheet tab
names must be inserted (ListIndex > 1 > conWorkbook) and the selected sheet
tab name on cboObjects equals the Worksheet object that the name belongs to,
which is given by the Name.Parent.Name property.

 ((intIndex > conWorkbook) And (nm.Parent.Name = Me .
cboObjects)) Then

 Look at the VBA properties window and note that the lstNames ListBox was defined with seven columns
(ColumnCount = 7) and that its first column is hidden (ColumnWidths = 0 pt;85 pt;…). The first (hidden)
column must receive the Name object’s Name property as it is: with or without the preceding sheet name for
worksheet named scope. The next six columns must show six different Name object properties or information, as
their names imply: Name, Value, Refers To, Scope, Comment, and Visible (as indicated in Figure 5-12).

 So, the next procedure instruction uses the ListBox AddItem method to add the Name object’s Name
property to the first lstNames column (hidden):

 . AddItem nm.Name

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

272

 Using the ListBox Column property, the procedure begins to add another Name object property to the
last item inserted in the list. The second lstNames ListBox column (Column =1) receives the Name.Name
property without the sheet name that precedes it, if the name has a worksheet scope. It uses the VBA Mid ()
function to extract the name from the position after the ! character (intPos+1) to the end of the name.

 . Column (1, .ListCount - 1) = Mid (nm.Name, intPos + 1)

 ■ Attention If intPos = 0 , meaning that no ! character was found on the name, the Mid (nm.Name,
intPos+1) function will return all name characters beginning from the first one.

 The second lstNames column must receive the Name object value, or some of it first values if it
represents more than one cell, using the same style of the Name Manager dialog box (see Figure 5-11), which
lead us to two different situations:

• Name objects that represent a value, like a single cell range or a formula that must be
evaluated

• Name objects that represent a range of cells must show values inside braces ({}); each
value must be inside double quotes (“”) separated by semicolons; row breaks are
identified by a backslash (\); the values must reflect what is seen on the worksheet

 To keep the procedure smaller, it uses Function GetNameValue () to recover the current Name object
value.

 . Column (2, .ListCount - 1) = GetNameValue (nm)

 Recovering Name Values with GetNameValue ()
 The function GetNameValue () receives a Name object as an argument and executes this code:

 Private Function GetNameValue (nm As Name) As String
 Dim rg As Range
 Dim strItem As String
 Dim intI As Integer
 Dim intJ As Integer
 Dim intK As Integer
 Const conMaxItens = 6

 On Error Resume Next

 If Not IsArray (nm.RefersToRange) Then
 GetNameValue = EvaluateRange (nm. RefersTo)
 Else
 Set rg = nm.RefersToRange
 strItem = "{"
 For intI = 1 To rg.Rows.Count
 strItem = strItem & IIf(intI > 1, "\", "")
 For intJ = 1 To rg.Columns.Count
 strItem = strItem & IIf(intJ > 1, ";", "")
 strItem = strItem & Chr(34) & EvaluateRange (rg.Cells(intI, intJ)) & Chr(34)
 intK = intK + 1

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

273

 'Provision to not add more than conMaxItens itens
 If intK >= conMaxItens Then
 Exit For
 End If
 Next
 If intK >= conMaxItens Then
 Exit For
 End If
 Next
 If intK <= conMaxItens Then
 strItem = strItem & "}"
 Else
 strItem = strItem & "…"
 End If
 GetNameValue = strItem
 End If
 End Function

 After declaring its variables, the procedure disables any VBA raised error using an On Error Resume
Next instruction and then uses the VBA IsArray () function to verify whether the Name.RefersToRange
property (which returns a Range object) does not refers to multiple cells. If this is true, the returned range
refers to a single cell or to a Name constant formula (which does not return a Range object, raising a VBA
error), and Name.RefersToProperty (which returns a string) is passed to Function EvaluateRange () to
evaluate the reference and see whether it returns any Excel error.

 On Error Resume Next

 If Not IsArray (nm.RefersToRange) Then
 GetNameValue = EvaluateRange (nm. RefersTo)

 Evaluating Excel Values with the Function EvaluateRange ()

 Excel cells can represent a wide range of values, including text, numbers, dates, hours, formulas that return
any of these values, and…errors!

 So, to correctly use the Application .Evaluate() method to evaluate any cell value and show it on the
 lstNames ListBox , you must evaluate the formula or range the name represents and verify whether it returns
any Excel error. If this is true, the error must be displayed in the lstNames Value column as is .

 Table 5-4 shows all possible Excel errors, the error code, its VBA constants, and its meaning.

 Table 5-4. Excel Error Constants , Error Types, and Values

 Excel Error Error Code Error Constant Error Type

 #DIV/0! 2007 xlErrDiv0 Division by zero

 #N/A 2042 xlErrNA Not available

 #NAME? 2029 xlErrName Name does not exist

 #NULL! 2000 xlErrNull A NULL value

 #NUM! 2036 xlErrNum Number is expected

 #REF! 2023 xlErrRef Range or reference is wrong

 #VALUE 2015 xlErrValue Value is missing

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

274

 To verify whether a cell address or formula evaluation returns an error, you must compare its value with
the Excel CVErr () function, which has this syntax:

 CVErr (Expression)

 In this code:

 Expression : This is an error code or application constant associated with the
error you want to generate.

 As Table 5-4 specifies, CVErr () receives any Excel error code or error constant as an argument and
returns the associated Excel error. For example, to generate the famous #DIV/0! Excel error as a returned
value in any VBA procedure, use CVErr () this way:

 CVErr (xlErrDiv0)

 If you want to know whether cell A1 is returning a #DIV/0! error, use this syntax:

 If Range(“A1”) = CVErr (xErrDiv0) then

 This is the Function EvaluateRange () code, which expects to receive a formula or single cell reference
and returns its expected value, including error codes as a string:

 Private Function EvaluateRange (varValue As Variant) As String
 If VarType(varValue) = vbString Then
 varValue = (Evaluate(varValue))
 End If

 If IsError(varValue) Then
 Select Case varValue
 Case CVErr (xlErrDiv0)
 varValue = "#DIV/0!"
 Case CVErr (xlErrNA)
 varValue = "#N/A"
 Case CVErr (xlErrName)
 varValue = "#NAME?"
 Case CVErr (xlErrNull)
 varValue = "#NULL!"
 Case CVErr (xlErrNum)
 varValue = "#NUM!"
 Case CVErr (xlErrRef)
 varValue = "#REF!"
 Case xlErrValue
 varValue = "#VALUE!"
 Case Else
 varValue = "#VALUE!"
 End Select
 End If
 EvaluateRange = varValue
 End Function

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

275

 Since EvaluateRange () receives the varValue as Variant argument, you can pass it the
 Name. RefersTo string (which is always a formula that must be evaluated) or the Name.RefersToRange
property, which returns the associated Range object (which is a value already evaluated).

 Once varValue is received, EvaluateRange () uses the VBA VarType() function to verify whether the
 varValue is a text string. If it is true, the Name. RefersTo property string was passed and must be evaluated
using the Excel Application .Evaluation method.

 If VarType(varValue) = vbString Then
 varValue = Evaluate(varValue)
 End If

 At this point, varValue was evaluated to a value or any Excel error, which is tested by the VBA IsError()
function. If IsError(varValue)=True , a Select Case statement comparing the varValue error with the value
returned by the Excel CVErr () function for each possible constant error using a Select Case statement.

 The first comparison uses the xlErrDiv0 constant, and if the comparison is true, the formula or cell has
or returns a #DIV/0! error, and the "#DIV/0!" string is stored into varValue and returned as the function
result.

 If IsError(varValue) Then
 Select Case varValue
 Case CVErr (xlErrDiv0)
 varValue = "#DIV/0!"
 ...
 End Select
 End If
 EvaluateRange = varValue
 End Function

 Getting Back to GetNewName ()…

 You must return to the GetNameValue () procedure and continue with the Else clause of the If Not
 IsArray (nm.RefersToRange) Then... instruction to see how a Name object that returns multiple cell values
is processed.

Else

 The Excel Name Manager uses a particular way to show a multiple-cell range name in its interface: its
values are shown inside braces ({}), with each value inside double quotes ("") and separated by semicolons.
Row breaks are identified by a backslash (\), and the values must reflect what is seen on the worksheet
(including Excel errors).

 This time you will need to run across all rows and columns of the range name, evaluating each cell
value and returning them with the expected format. To select each cell used by the cell range, you must use
the Range.Cells property inside two nested For…Next loops: an outer loop to process each range row and an
inner loop to process each range column.

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

276

 But before we dive into the code technique, you must be aware that a range can have an excessive
number of cells, so the procedure must put a limit on what can be seen in the lstNames Value column. That
is why GetNameValue () declares so many Integer variables and the Const conMaxItens = 6 constant: to
execute the two For…Next loops and limit the list to no more than six individual cell values.

 Private Function GetNameValue (nm As Name) As String
 Dim rg As Range
 Dim strItem As String
 Dim intI As Integer
 Dim intJ As Integer
 Dim intK As Integer
 Const conMaxItens = 6

 The GetNameValue () procedure will use the strItem string variable to compound the list of the first
range values. Since the list be enclosed by brace characters, an open brace ({) is added to strItem before
starting to loop through all rows of the range name using the intI Integer variable as the row counting. To
visually separate each row from the next, strItem will receive a backslash (\) character after the first row is
entirely processed (which happens when intI>1).

 Else
 Set rg = nm.RefersToRange
 strItem = "{"
 For intI = 1 To rg.Rows.Count
 strItem = strItem & IIf(intI > 1, "\", "")

 Another For…Next loop is initiated to run through all columns of each range row and return its cells
values, using the intJ Integer variable as the column counting. Note that after the first item is added to
 strItem (inJ>1), the procedure adds a colon to separate each item from the next.

 For intJ = 1 To rg.Columns.Count
 strItem = strItem & IIf(intJ > 1, ";", "")

 At this point, the procedure is positioned on the cell range represented by (intI, intJ) coordinates,
which is perfect for being used by the Range.Cells property to return the cell value, which also must be
sent to the EvaluateRange () procedure to verify whether it returns any Excel error. Since the Excel Name
Manager encloses each cell value in double quotes, the procedure adds a Chr(34) (") character before and
after the cell value.

 strItem = strItem & Chr(34) & EvaluateRange (rg.Cells(intI, intJ)) & Chr(34)

 ■ Attention Whenever you need to add a single or a double quote as part of a String value, use the VBA
function Chr(34) = " (double quote) or CHR(39) = ' (single quote) to concatenate it into the string without
generating an Excel error, regarding the string close character.

 The next steps use the intK counter to count how many values have been inserted on the strItem
variable. When intK >= conMaxItens , the procedure uses an Exit For instruction to interrupt the inner loop.

 intK = intK + 1
 'Provision to not add more than conMaxItens itens

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

277

 If intK >= conMaxItens Then
 Exit For
 End If
 Next

 This will force the code to exit to the outer loop, which verifies again whether intK >= conMaxItens .
If it is, all items have already been inserted on the strItem variable, and the outer loop must also end with
another Exit For instruction.

 Next
 If intK >= conMaxItens Then
 Exit For
 End If
 Next

 All desired items have been inserted. If they count equal to or less than conMaxItens , strItem receives a
closing brace character (}). If the strItem variable does not hold all range values, it receives a reticence.

 If intK <= conMaxItens Then
 strItem = strItem & "}"
 Else
 strItem = strItem & "…"
 End If
 GetNameValue = strItem
 End If
 End Function

 Getting Back Again to FilllstNames()…
 We now need to get back again to the FilllstNames() procedure, which at this time has already defined
its third Value column. The next operations to add Name object properties to lstName columns for its last-
inserted item are easy to understand. Take a look at the next instructions:

 . Column (3, .ListCount - 1) = nm. RefersTo
 . Column (4, .ListCount - 1) = IIf(nm.Parent.Name = ThisWorkbook.Name,
" Workbook ", nm.Parent.Name)
 . Column (5, .ListCount - 1) = nm.Comment
 . Column (6, .ListCount - 1) = IIf(nm.Visible, "Yes", "No")
 End If
 Next
 End With
 End Sub

 Note that the fifth lstNames column’s Scope value is added using a IIF() instruction to verify whether
the Name object’s Parent.Name property equals the ThisWorkbook.Name property, meaning a workbook scope
range name. If it isn’t, it adds the Parent.Name property to this column.

 And once all desired Name object properties have been recovered by the For Each nm in Names loop,
the procedure ends and returns to the cboObject_Change() event, which will call the lstNames_Change()
event to synchronize the UserForm interface.

 Private Sub cboObjects_Change()

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

278

 Call FilllstNames
 Call lstNames_Change
 End Sub

 ■ Attention The lstNames_Change() event will be analyzed in the section “Selecting a Name on lstNames
 ListBox ” later in this chapter.

 Adding a New Name Object
 Now that you have a good understanding about how the FilllstNames() procedure works (calling
 GetNameValue () to evaluate each Name object’s RefersTo property, which calls EvaluateRange () to
evaluate each cell value), to see frmNames in action you need to add some range names by clicking the New
 ControlButton , which will fire the cmdNew_Click() event and execute this code:

 Note the technique: VBA errors are disabled using an On Error Resume Next instruction and then
use the UserForm.Hide method to hide frmNames from the Excel interface and allow frmEditName to be
loaded. Then it uses the With frmEditName …End With loop to reference frmEditName just once and sets three
properties: NewName , NameSelected , and NameFilter .

 When the code uses the With frmEditName instruction to reference the UserForm , VBA will immediately
load it into memory, firing the UserForm_Initialize () event and executing this code:

 Private Sub UserForm_Initialize ()
 Dim varITem As Variant

 Me .cboObjects. AddItem " Workbook "
 For Each varITem In ThisWorkbook. Worksheets
 Me .cboObjects. AddItem varITem.Name
 Next
 Me .cboObjects.ListIndex = 0
 Me .txtRefersTo = "='" & ActiveSheet.Name & "'!" & Selection. Address
 End Sub

 As you can see, frmEditName fills the cboObjects ComboBox with the word Workbook and the name of
each workbook sheet tab and defines Workbook as the default selection and the txtReferTo text box to the
address of what is currently selected on the active worksheet. Note that to deal with sheet names that have

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

279

spaces, it uses a single quote after the = sign, concatenates the ActiveSheet.Name property, concatenates
another single quote and an exclamation point, and finally concatenates the Selection. Address
property.

 Me .txtRefersTo = "='" & ActiveSheet.Name & "'!" & Selection. Address

 When the frmEditName Initialize() event finishes executing, the code returns to the first instruction
of the With frmEditName instruction on the frmNames code module, setting the frmEditName .NewName
property to True to indicate to the UserForm that it must create a new name.

 This will fire the frmEditName Public Property Let NewName() procedure to execute, storing the
 True value into the mbolNewName module-level variable and setting the UserForm Caption property to New
Name.

 When the Property Let NewName() procedure ends, the code returns to the next With frmEditName
instruction, this time trying to set the frmEditName .NameSelected property to the name selected on the
 frmNames lstNames ListBox .

 Since no name has been inserted on the Names Collection.xlsm workbook and the lstNames
 ListBox has no name selected, the mcolItemsSelected(1) instruction on the right will raise an error
(Error = 5, “Invalid procedure call or argument”), which will be ignored because of the On Error Resume
Next instruction executed on the procedure beginning, and the frmEditName Public Property Let
NameSelected() procedure will not be executed!

 ■ Attention The mcolItemsSelected(1) instruction will be explained in the section “Using Collection
Variables” later in this chapter.

 When the frmEditName .Show method is executed, the frmEditName UserForm has its property
 ShowModal = True , the window is showed modally, and the cmdNew_Click() code stops on this instruction
until frmEditName is closed by the user action (Figure 5-15).

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

280

 Let’s try to insert a new name that returns a constant with a #DIV/0! error so you can try the frmNames
 FilllstNames() procedure. In the Range Name text box (txtName) of frmEditName , type Div0Constant , and
in the “Refers to” text box (txtRefersTo), type this formula (Figure 5-16):

 =2/0

 Figure 5-15. When you click the New CommandButton to create a new name, frmEditName is loaded while
 frmNames is unloaded from memory

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

281

 Validating Names
 After you type the desired name in the txtName text box and press Enter, the txtName_BeforeUpdate()
event fires, executing this code:

 Private Sub txtName_BeforeUpdate(ByVal Cancel As MSForms.ReturnBoolean)
 If Len(Me .txtName) Then
 Me .txtName = FixName(Me .txtName)
 End If
 End Sub

 Note that like any other Before event, it passes a Cancel argument, meaning that it can be canceled by
the VBA code. The event uses the VBA Len() function to verify whether anything was typed in the txtName
text box, and if this is true, it passes the name typed to the Function FixName() procedure of basFixName
code module, which takes out any invalid characters from the name before executing.

 The function FixName() procedure executes this code:

 Public Function FixName(ByVal strName As String)
 'Invalid characters inside range names: @#$%&()+~`"':;,.|!?_-/*[]{}
 Dim strInvalidChars As String
 Dim strChar As String
 Dim intI As Integer

 'Search for invalid characters
 strInvalidChars = "@#$%&()+~`´':;,.|!?-/*[]{}" & """"
 For intI = 1 To Len(strInvalidChars)
 'Get each invalid character and take it out
 strChar = Mid (strInvalidChars, intI, 1)
 strName = Replace (strName, strChar, "")
 Next

 'Now change spaces to underscores
 strName = Replace (strName, " ", "_")
 FixName = strName
 End Function

 Figure 5-16. Insert a Name constant that raises an Excel #DIV/0! error to see how the frmNames Sub
FilllstNames() procedure performs when such a range name is created

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

282

 The search technique is quite simple; it stores all invalid characters on a string variable and uses the
VBA Replace () function to substitute them, which has this syntax:

 Replace (Expression, Find, Replacement, [Start], [Count], [Compare]) As String

 In this code:

 Expression : This is required; it is the string expression containing the substring
to replace.

 Find : This is required; it is the substring being searched for.

 Replacement : This is required; it is the replacement substring.

 Start : This is optional; it is the position within the expression where the
substring search is to begin. If omitted, 1 is assumed.

 Count : This is optional; it is the number of substring substitutions to perform. If
omitted, the default value is –1, which means “make all possible substitutions.”

 Compare : This is optional; it is the numeric value indicating the kind of
comparison to use.

 Binary : This performs a binary comparison (case sensitive).

 Text : This performs a textual comparison.

 The FixName() procedure works this way: it stores all invalid characters to be extracted from the
 strName argument on the strInvalidChars String variable.

 'Search for invalid characters
 strInvalidChars = "@#$%&()+~`´':;,.|!?-/*[]{}" & """"

 A For…Next loop runs through all invalid characters extracting them one by one to the strChar variable
and using the VBA Mid () function, and it uses the VBA Replace () function to search and replace it with an
empty string ("").

 For intI = 1 To Len(strInvalidChars)
 'Get each invalid character and take it out
 strChar = Mid (strInvalidChars, intI, 1)
 strName = Replace (strName, strChar, "")
 Next

 The VBA Replace () function is used again to change any space to an underscore character (_) and
returns the fixed name.

 'Now change spaces to underscores
 strName = Replace (strName, " ", "_")
 FixName = strName

 Using Names Collection Add Method
 Since you are now inserting a new constant name that returns a #DIV/0! Excel error, when you click the OK
 ControlButton , the cmdOk_Click() event fires, executing this code:

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

283

 Private Sub cmdOK_Click()
 Dim nm As Name
 Dim strName As String

 On Error Resume Next

 If Len(Me .txtName) = 0 Then
 MsgBox "Type the range name", vbCritical, "Range name?"
 Exit Sub
 End If

 If Len(Me .txtRefersTo) = 0 Then
 MsgBox "Define range address", vbCritical, "Range address?"
 Exit Sub
 End If

 strName = Me .txtName
 If Me .cboObjects <> " Workbook " Then
 strName = "'" & Me .cboObjects & "'!" & strName
 End If

 If Not Me .NewName Then
 Call FixNameChange
 Me .NameSelected.Delete
 End If

 Set nm = Names .Add(strName, Me .txtRefersTo, Me .chkVisible)
 nm.Comment = Me .txtComment & ""
 Set mName = nm
 Unload Me
 End Sub

 As you can see, the cmdOK_Click() event procedure begins using an On Error Resume Next to disable
any VBA raised errors and then verifies with the VBA Len() function if any text was typed in the txtName or
 txtRefersTo text box (note that it doesn’t care if you type an invalid reference on txtRefersTo).

 Once you have typed the name and it references the formula, the procedure stores the desired name
into the strName String variable and verifies the name scope. If cboObject = " Workbook " , the name is
inserted as is, but if you select a sheet name, the sheet name is enclosed by single quotes, suffixed by a !
character and used as a prefix to the name.

 On Error Resume Next

 strName = Me .txtName
 If Me .cboObjects <> " Workbook " Then
 strName = "'" & Me .cboObjects & "'!" & strName
 End If

 Next the code uses frmEditName .NewName property to verify whether it is inserting a new Name by
verifying it. If this is true, the Name object stored on the frmEditName .NameSelected property will be deleted.

 If Not Me .NewName Then
 Me .NameSelected.Delete
 End If

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

284

 And the name is added to the Application . Names collection using the Names .Add method with strName
for the Name.Name property, txtRefersTo to the Name. RefersTo property, and chkVisible refers to the Name.
Visible property, storing a reference to it into the nm as Name object procedure variable.

 Set nm = Names .Add(strName, Me .txtRefersTo, Me .chkVisible)

 Since the Name.Comment property can’t be set by the Names .Add method, it is defined on the nm variable
that represents the new added name.

 nm.Comment = Me .txtComment & ""

 The local nm object variable is then associated to the mName object variable, and the frmEditName
 UserForm is unloaded from memory using the VBA Unload method.

 Set mName = nm

 Unload Me
 End Sub

 When frmEditName is unloaded, the UserForm_Terminate () event fires, executing this code:

 Before frmEditName unloads from memory, it uses a With frmNames …End With instruction to reference
 frmNames only once and updates the lstNames ListBox to reflect any Name object changes, calling the
 frmNames .FilllstNames method.

 With frmNames
 .FilllstNames

 Remember that the frmEditName cmdOK_Click() event stored the nm object variable reference to the
new name on its mName module-level variable? This reference is now used when the procedure calls the
 Property Get NameSelected() procedure and compares it to Nothing .

 Since a new name has been added, (Not (Me .NameSelected) is Nothing) = True , this new name
is used to define the frmNames .NameSelected property, which will execute the frmEdifName Property Get
NameSelected() on the right side of the equation, while executing frmNames Property Let NameSelected()
on the left side.

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

285

.NameSelected

 The code for frmNames Property Let NameSelected() is quite simple: it first verifies whether the
 nm as Name argument has some Name object reference. If it does, it uses a For…Next loop to run through all
 lstNames items, using the Names collection to compare each Name object’s Name property with the recently
added nm object Name property (note that it uses lstNames. Column (0), intI) to return each Name.Name
property).

 For intI = 0 To Me .lstNames.ListCount - 1
 If Names (Me .lstNames. Column (0, intI)).Name = nm.Name Then

 When it finds a match, it selects the item using the lstNames L istBox .Selected property and makes the
list scroll to the selected item by setting the ListIndex property before exiting the For…Next loop and uses
the frmNames .Show method to show the interface on the screen.

 And, when this happens, the lstNames.Change() event cascade-fires because another item was
selected in the lstNames ListBox , synchronizing the frmNames interface to the selected item.

 ■ Attention You will learn about the lstNames_Change() event in the next section.

 When the frmEditName UserForm_Terminate () event ends, it returns code control to the cmdOK_
Click() event, which also returns code control to the frmNames cmdNew_Click() event that executes the
 frmNames .Show method, showing frmNames with a synchronized interface.

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

286

 Figure 5-17 shows how frmNames appears in Excel after the Div0Constant Name object was added
using frmEditName . Note that the frmNames CommandButton s are now enabled, since the new added name is
selected in the lstNames ListBox

 Figure 5-17. This is frmNames after the Div0Constant Name object was added. Since it produces a division by
zero, the lstNames Value column shows a #DIV/0! Excel error

 Inserting a New Name by Selecting a Range Address
 To see how frmNames performs, you need to add a few more names to the Names Collection.xlsm workbook.
Since the first Name object (Div0Constant) was associated to a constant value (the #DIV/0! Excel error), let’s
insert one name that has just a range of valid numbers. Click again the frmNames New ControlButton , type
 MyData in the txtName text box, keep the Workbook scope, and click cmdRefersTo (the small ControlButton
at the right of the txtRefersTo text box). frmEditNames will hide itself and show Application .Inputbox ,
which is where you can click and drag the desired cell addresses to associate the range name. Select cells
 A7:B9 from Sheet1 (Figure 5-18).

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

287

 This is the code behind the frmEditName cmdRefersTo_Click() event, which allows the selection of
the cell’s range that will be associated to the range name:

 Private Sub cmdRefersTo_Click()
 Dim varRange As Variant
 Dim intPos As Integer
 Const conFormula = 0

 Me .Hide
 varRange = Application .InputBox("Cells selected:", "Select range cells",

 Me .txtRefersTo, , , , , conFormula)
 If varRange <> False Then
 varRange = Application .ConvertFormula(varRange, xlR1C1, xlA1)
 'Search for Workbook reference
 intPos = InStr (1, varRange, "]")
 If intPos > 0 Then
 varRange = "'" & Mid (varRange, intPos + 1)
 End If

 'Search for Sheet name
 intPos = InStr (1, varRange, "!")
 If intPos = 0 Then
 varRange = "'" & ActiveSheet.Name & "'!" & Mid (varRange, 2)
 End If

 'Search for "='
 If Left (varRange, 1) <> "=" Then
 varRange = "=" & varRange
 End If

 Figure 5-18. Use frmNames to create a new name associated with just valid numbers (with no error cells), like
MyData, with workbook scope, associated to cells A7.B9

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

288

 Me .txtRefersTo = varRange
 End If
 Me .Show
 End Sub

 When you click the cmdRefersTo ControlButton , the first instruction executed by its Click() event is
to hide itself by calling the UserForm.Hide method. It then calls the Application .Inputbox method using the
 txtRefersTo value for the InputBox Default argument (what is currently selected on the active sheet; see the
 frmEditName UserForm_Initialize () event code in section “Adding a New Name” earlier in this chapter). For
its last Type argument, the constant conFormula = 0 to avoid the appearance of any magic number on the code.

 Private Sub cmdRefersTo_Click()
 Dim varRange As Variant
 Dim intPos As Integer
 Const conFormula = 0

 Me .Hide
 varRange = Application .InputBox("Cells selected:", "Select range cells",

 Me .txtRefersTo , , , , , conFormula)

 If the user clicks the InputBox Cancel button, varRange will receive False , and the procedure will call the
 UserForm.Show method and end normally. But if the InputBox OK button is selected, the next code instruction
uses the Application .ConvertFormula method to change the range selected from R1C1 to A1 style.

 If varRange <> False Then
 varRange = Application .ConvertFormula(varRange, xlR1C1, xlA1)

 ■ Attention There is no indication in the Application .InputBox method that whenever it uses Type=0 to
get a range address by dragging the mouse over any sheet cells, the formula returned will use the R1C1 style.
But Excel does this, and you must convert it to A1 style so it appears like most users expect to see it.

 If the range you are trying to select belongs to a sheet tab that is different from the active sheet, the
 Application .InputBox method will also return on the formula the workbook name inside double braces, like this:

 ='[Names Collection.xlsm]Sheet1'!A7:B9

 So, you need to search the varRange variable for a closing brace (]) using the VBA InStr () function,
and if it’s found, you take it out from the selected range using the VBA Mid () function.

 'Search for Workbook reference
 intPos = InStr (1, varRange, "]")
 If intPos > 0 Then
 varRange = "'" & Mid (varRange, intPos + 1)
 End If

 The next instruction will verify whether the returned address is already prefixed by the sheet tab name
using again the VBA InStr () function to search for a ! character. If it does not exist (which happens when
you select any range on the active sheet), it must be inserted in the formula. The new formula is composed
by the active sheet name enclosed by single quotes, an exclamation character (!), and the current address
without its first = character, which is extracted by the VBA Mid () function.

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

289

 'Search for Sheet name
 intPos = InStr (1, varRange, "!")
 If intPos = 0 Then
 varRange = "'" & ActiveSheet.Name & "'!" & Mid (varRange, 2)
 End If

 The code then searches for the = character that must be at the very first position of the returned address,
and if it is not there, it is added again, and frmEditName txtRefersTo receives the selected range with the
appropriate format.

 'Search for "='
 If Left (varRange, 1) <> "=" Then
 varRange = "=" & varRange
 End If

 Me .txtRefersTo = varRange

 The Sub cmdRefersTo_Click() event finishes by using the UserForm.Show method to show the
 frmEditName Userform interface again.

 End If
 Me .Show
 End Sub

 When you click the frmEditName cmdOK ControlButton , the MyData range name will be added to the
workbook Names collection, and frmNames will rebuild its lstNames ListBox with the newly added name
selected in its interface (Figure 5-19).

 Figure 5-19. This is frmNames after you have inserted the MyData range name, with workbook scope,
associated to cells A7.B9 to return just valid numbers

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

290

 To continue with the next sections of this book, please insert some more range names with different
scopes. Table 5-5 shows the range names that will be used in the next figures of this chapter.

 Table 5-5. Using frmNames and frmEditName , Insert These Range Names

 Range Name Scope Refers To

 SumMyDataq Sheet1 =Sum(MyData)

 DataWithError Sheet1 =Sheet1!A6:B9

 RangeSheet2 Sheet2 =Sheet2!A1

 Figure 5-20 shows frmNames with all five range names created so far in this book section.

 Figure 5-20. This is the frmNames interface after all the proposed range names of Table 5-5 are inserted in the
 Names Collection.xslm macro-enabled workbook

 ■ Attention Note that the SumMyData range name correctly sums all MyData range name values.

 Selecting Items in the lstNames ListBox
 The lstNames ListBox of the frmNames UserForm was set to allow multiple selections in the lstNames
 ListBox by setting the MultiSelect property to 2 - frmMultiSelectExtend , meaning that you can click and
drag the mouse over the list or use the Ctrl or Shift key to select any combination of items.

 Whenever a VBA UserForm ListBox is defined to allow multiselection, it does not return a Value
property anymore; the lstNames.Value will now return Null .

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

291

 Since the VBA UserForm ListBox does not have an ItemsSelected property to indicate which items
are selected (like Microsoft Access ListBox does), you need to use a loop to run through all ListBox items
verifying whether the Selected property is True , and then take the desired action, as follows:

 For intI = 0 to Me .lstNames.ListCount - 1
 If Me .lstNames(intI).Selected = True Then
 ‘ Do something here!
 End If
 Next

 Now you need a way to store all ListBox -selected items in a variable so you can easily process multiple
names at once (changing the Visible property, for example), call the FilllstNames() procedure to fill
 lstNames with the new Name object properties, and reselect them after the process is completed. This time
you will use the VBA Collection object to hold the items selected.

 Using Collection Variables
 VBA offers the Collection object as a way to group and manage related objects. It has been widely used to
collect object references created with Class modules, and you see it in action every time you use the Excel
 Workbooks , Worksheets , or Names collections that hold references to different types of Excel objects.

 The Collection object offers the Add and Remove methods to manage items, a Count property to
indicate how many items it currently holds, and an Item property as an easy way to instantly recover any
collected data inside the Collection object.

 To be useful, a Collection variable must be declared as a Public or Private variable in the
 Declaration section of a code module so it can be accessed by all its procedures. To test how a Collection
object variable works, you can declare it as a Public variable of the ThisWorkbook code module on any
Excel workbook, using the VBA New keyword, by typing the next instruction in its Declaration section (note
that the variable name was prefixed with mcol , which is a common way to identify code module collection
variables).

 Option Explicit
 Public mcolMyCollection as New Collection

 ■ Attention If you did not use the VBA New keyword to declare an object variable (like mcolMyCollection
as New Collection), you need to use the VBA Set instruction to instantiate it or add some item with the Add
method before trying the Count property.

 From this point on, the ThisWorkbook.mcolMyCollection Collection variable can be easily accessed
from any part of your code or from the VBA Immediate window, and the mcolMyCollection.Count property
will return zero items since no one has already been inserted on it (Figure 5-21)!

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

292

 Adding Collection Items

 To add a new item to a Collection object variable, use the Add method, which has this syntax:

 Object.Add Item, Key, Before, After

 In this code:

 Object : This is the name of the object variable declared as Collection .

 Item : This is required; it is an expression that specifies an object reference or any
type of value that represents the member to add to the collection.

 Key : This is optional; it is a string expression that specifies an identification
key that can be used, instead of a positional index, to access a member of the
collection and return its Item property.

 Before, After : This is optional; it is an expression that specifies an existing
member position in the collection where the new member should be placed
before or after (you can specify a before position or an after position, but not
both). If a numeric expression, Before must be a number from 1 to the value
of the collection’s Count property. If a string expression, Before or After must
correspond to the Key specified for the desired existing member.

 Supposing you want to add the A Item to the mcolMyCollection variable identified by the ItemA Key ,
type this instruction in the VBA Immediate window:

 ThisWorkbook.mcolMyCollection.Add “A”, “ItemA”

 Figure 5-21. Once a code module has a Public Collection variable declared with the New keyword, you can
test it using the VBA Immediate window. Note that when you evoke the mcolMyCollection.Count property, the
object variable is automatically instantiated by VBA

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

293

 Note that A is used as the Item argument of the Collection.Add method (meaning Item value) while
 ItemA is used as Key argument. Figure 5-22 shows what happened after the mcolMyCollection object
variable received item values A, B, and C, identified by the ItemA , ItemB , and ItemC keys, respectively, using
the VBA Immediate window. Note that the mcolMyCollection.Count property returns three items.

 Figure 5-22. Using the VBA Immediate window, you can add, remove, and count items inserted on
any Public Collection variable. This figure shows that three items have been added to the ThisWorkbook
mcolMyCollection variable, using the Key argument to identify each item

 Recovering Collection Items

 To recover any collection Item , you can use its 1-based Index position or its Key (if any). That is why you may
use for the Key argument of the Collection.Add method unique identifiers: to easily recover any desired
item.

 To recover the first mcolMyCollection Item using the numerical Index position, type this instruction in
the VBA Immediate window:

 ?ThisWorkbook.mcolMyCollection(1)
 A

 To recover the first mcolMyCollection Item using it Key , type this instruction in the VBA Immediate
window:

 ?ThisWorkbook.mcolMyCollection(“ItemA”)
 A

 In both cases, VBA will print in the Immediate window the desired Item value.

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

294

 Removing Collection Items

 To remove any collection, use the Remove method, which has this syntax:

 object.Remove({Index | Key})

 In this code:

 Object : This is the name of the object variable declared as Collection .

 Index, Key : This is the index position (1-based) or the key string associated to
the item to delete.

 So, to delete the first item of the mcolMyCollection variable, use one of the next two syntaxes with the Index
or Key string associated to the item you want to remove in the VBA Immediate window. Here’s an example:

 ?ThisWorkbook.mcolMyCollection.Remove(1)
 Here’s another example:?ThisWorkbook.mcolMyCollection.Remove(“ItemA”)

 When you do this, every item remaining in the Collection variable will be re-indexed, but the Key value
will remain the same, and that is the best reason to associate a unique Key to each Collection item.

 Clearing a Collection

 The VBA Collection object does not have a Clear method. In fact, you don’t need it! To clear any
 Collection variable of all its items, use the VBA Set and New keywords to instantiate it again. The next
instruction will automatically release all items of the mcolMyCollection variable when you type it in the VBA
Immediate window (or execute it on any code procedure):

 Set mcolMyCollection = New Collection

 It can’t be easier than that!

 ■ Attention Some web sites advise you to associate Nothing to the Collection variable as a way to clear
its items, as follows:

 Set mcolMyCollection = Nothing

 Although this works well to remove all items from the Collection variable, it also destroys the association of
the object variable with the Collection object. If the variable was not declared with the New keyword, if you try
to use its Count property immediately before this operation, instead of returning zero items, VBA will return an
error since the mcolMyCollection variable is still not instantiated.

 Using a Collection Variable to Store ListBox Selected Items
 The frmNames UserForm has the ability to process multiple Name objects selected in the lstNames ListBox at
once to delete them or change the Visible and Comment properties. Since the FilllstNames() procedure
always shows the current properties of each Name object, you need to hold the selected lstNames items using
a Collection object variable, process them, call FilllstNames() again to update its new properties, and
reselect them again in the ListBox .

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

295

 That is why frmNames has the Private mcolItemsSelected as Collection object variable declared in
its Declaration section.

 Option Explicit

 Dim mcolItemsSelected As Collection

 Note that the Collection variable was not declared with the New VBA keyword, meaning that it must be
instantiated to associate it to a VBA Collection object.

 Whenever you select one or more items on the lstNames multiselect ListBox , its Change() event fires,
executing this code:

 Private Sub lstNames_Change()
 Dim strNames As String
 Dim intI As Integer
 Dim bolVisible As Boolean
 Dim bolHidden As Boolean

 If mbolCancelEvent Then
 mbolCancelEvent = False
 Exit Sub
 End If

 Set mcolItemsSelected = New Collection
 With Me .lstNames
 For intI = 0 To .ListCount - 1
 If .Selected(intI) Then
 mcolItemsSelected.Add intI
 If . Column (6, intI) = "Yes" Then
 bolVisible = True
 Else
 bolHidden = True
 End If
 End If
 Next
 End With

 strNames = intI & " range names"
 strNames = strNames & IIf(mcolItemsSelected.Count > 0, " (" & mcolItemsSelected.Count &
" selected)", "")
 Me .lblNamesCount.Caption = strNames

 If mcolItemsSelected.Count = 1 Then
 Call ShowNameProperties (mcolItemsSelected(1))
 Else
 Call ClearNameProperties
 Me .chkVisible = IIf(bolVisible And bolHidden, Null, bolVisible = True)
 End If

 Call EnableControls ((mcolItemsSelected.Count = 1))
 End Sub

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

296

 After declaring the variables it needs, the code performs the now famous trick to avoid a cascading
event. It verifies whether the module-level variable mbolCancelEvent = True , and if it does it turns it false
and exits the event code.

 If mbolCancelEvent Then
 mbolCancelEvent = False
 Exit Sub
 End If

 The mcolItemsSelected Collection variable is then instantiated or cleared from all its items.

 Set mcolItemsSelected = New Collection

 ■ Attention Every time another item is selected in the lstNames ListBox , the Change() event fires,
destroying and re-creating the mcolItemsSelected Collection variable.

 The procedure begins a With lstNames…End With instruction to reference the lstNames ListBox only
once and then begins a For…Next loop through all the items.

 With Me .lstNames
 For intI = 0 To .ListCount - 1

 If any lstNames item’s Selected property is True , the item is selected and added to the
 mcolItemsSelected Collection variable using the ListIndex value (represented by the intI Integer
variable) as the Item value.

 If .Selected(intI) Then
 mcolItemsSelected.Add intI

 Since the user can select an undefined number of Name objects on the lstNames ListBox , they can have
different Visible properties. The code then tries to recover each Name.Visible property analyzing lstNames
seventh column value (Column =6, Visible). If it has a Yes , Name.Visible = True and the bolVisible
variable also becomes True . If Name.Visibe = "No" , the bolHidden variable becomes True :

 If . Column (6, intI) = "Yes" Then
 bolVisible = True
 Else
 bolHidden = True
 End If

 When all lstNames items have been processed, strNames receives how many Name objects are listed in
the ListBox (using intI as the Name counting) and how many are selected (using the mcolItemsSelected.
Count property), and the value is associated to the lblNamesCount.Caption property.

 strNames = intI & " range names"
 strNames = strNames & IIf(mcolItemsSelected.Count > 0, " (" & mcolItemsSelected.Count &

" selected)", "")
 Me .lblNamesCount.Caption = strNames

 There are now two different possibilities: just one item was selected on lstNames or more than one was
selected.

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

297

 If just one item is selected, the selected Name object properties must be shown in the frmNames Detail
section. This is made by calling the ShowNameProperties () procedure, which receives as an argument the
selected Name ListIndex (represented by mcolItemsSelected(1) , the first and only Collection variable Item):

 If mcolItemsSelected.Count = 1 Then
 Call ShowNameProperties (mcolItemsSelected(1))

 ■ Attention The ShowNameProperties () procedure will be analyzed in the “Showing Name Properties”
section later in this chapter.

 If more than one item is selected, the frmNames Detail section must have its controls cleared because of
the impossibility of showing ambiguous values, by calling the ClearNameProperties() procedure.

 Else
 Call ClearNameProperties

 ■ Attention The ClearNameProperties() procedure will be analyzed in the “Clearing Name Properties”
section later in this chapter.

 The frmNames Detail section has the chkVisible check box (see Figure 5-12), which now must reflect
the Visible property of all selected Name objects on the lstNames ListBox .

 For your information, any check box can have three different states: Checked (=True), Unchecked (=
False), and Undetermined (= Null , becoming gray). If both bolVisible and bolHidden variables are True ,
it means that both visible and hidden names have been selected in the lstNames ListBox . Otherwise, they
are all visible or all hidden, and the chkVisible value must be set accordingly, by verifying just whether
 bolVisible=True .

 Me .chkVisible = IIf(bolVisible And bolHidden, Null, bolVisible = True)
 End If

 The lstNames_Change() event ends up making a call to the EnableControls () procedure, which
receives a Boolean argument (True/False) to enable/disable UserForm controls. Note that it receives a
 Boolean comparison against the mcolItemsSelected.Count property; the frmNames controls will be available
if just one item is selected on lstNames ListBox .

 Call EnableControls ((mcolItemsSelected.Count = 1))
 End Sub

 Now that you already know that lstNames ListBox items selected are held by the mcolSelectedItems
Collection variable, let’s play for a while with the lstNames selection and its interface.

 ■ Attention Now that you know that lstNames ListBox selected items are held by the mcolItemsSelected
Collection variable, return to the section “Adding a New Name Object” and take a look at the cmdNew_Click()
event procedure and the way it uses mcolItemsSelected(1) to retrieve the selected item and return the Name
object that must be set on the frmEditName .NameSelected property.

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

298

 Showing Name Properties
 Most times we use the frmNames UserForm to select and edit one Name object on its lstNames ListBox .
Figure 5-23 shows what happens when the first lstNames item in Figure 5-20 is selected and you click the
Show Details ControlButton (cmdDetails) to show the frmNames Detail section.

 Figure 5-23. Whenever you select just one item in the lstNames ListBox , the lstNames_Change()
event fires, calling the ShowNameProperties () procedure to show the selected Name properties and the
 EnableControls (True) procedure to enable all the controls

 Showing and Hiding the UserForm Detail Section

 When you click, the cmdDetails _ Click() event fires, executing this code:

 Const mconHeight1 = 268
 Const mconHeight2 = 338

 Private Sub cmdDetails_Click()
 Static sbolExended As Boolean

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

299

 Me .Height = IIf(sbolExended, mconHeight1, mconHeight2)
 Me .cmdDetails.Caption = IIf(sbolExended, "Show Details", "Hide Details")
 sbolExended = Not sbolExended
 End Sub

 The cmdDetails_Click() event uses the sbolExtended Static Boolean variable to hold the last state
of the UserForm Height property (a Static variable does not lose its value between procedure calls).

 If sbolExtended = True , the frmNames Detail section is shown and must be hidden, and vice versa.
So, the UserForm Height property is changed according to the module-level constants mconHeigh1 and
 mconHeight2 , defined by trial and error by dragging the frmNames bottom margin down and up in the VBA
interface and noting the Height property.

 Me .Height = IIf(sbolExended, mconHeight1, mconHeight2)

 The same is made to the cmdDetails.Caption property: the sbolExtended value is used to determine
whether the frmNames Details section is visible or hidden, alternating its caption from “Show Details” to
“Hide Details”:

 Me .cmdDetails.Caption = IIf(sbolExended, "Show Details", "Hide Details")

 And the sbolExtended variable value alternates its value between True and False each time
 cmdDetails_Click() fires.

 sbolExended = Not sbolExended
 End Sub

 Quite simple, huh?

 Showing Selected Name Properties

 To show the selected Name object properties, the lstNames_Change() event calls the ShowNameProperties ()
procedure, which executes this code:

 Private Sub ShowNameProperties (intIndex)
 Dim rg As Range
 Dim strRefersTo As String
 Dim intPos As Integer

 With Me .lstNames
 Me .txtName = . Column (0, intIndex)
 Me .txtRefersTo = . Column (3, intIndex)
 Me .txtComment = . Column (5, intIndex)
 Me .chkVisible = (. Column (6, intIndex) = "Yes")
 End With

 If Me .chkSelectRangeName Then
 strRefersTo = Mid (txtRefersTo, 2)
 On Error Resume Next
 Set rg = Range(strRefersTo)
 If Err = 0 Then
 intPos = InStr (1, strRefersTo, "!")

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

300

 Worksheets (Left (strRefersTo, intPos - 1)).Activate
 Range(strRefersTo).Select
 Else
 Worksheets (1).Activate
 Range("A1").Select
 End If
 End If
 End Sub

 After declaring its variables, a With lstNames…End With loop is used to reference lstNames only once,
and the txtName , txtRefersTo , txtComment , and chkVisible controls of the frmNames Detail section receive
the associated Name object properties, using the appropriate lstNames ListBox column.

 With Me .lstNames
 Me .txtName = . Column (0, intIndex)
 Me .txtRefersTo = . Column (3, intIndex)
 Me .txtComment = . Column (5, intIndex)
 Me .chkVisible = (. Column (6, intIndex) = "Yes")
 End With

 Did you note that frmNames has a “Select range name on workbook” check box at the bottom of the
 lstNames ListBox (chkSelectRangeName)? If chkSelectRangeName is checked, it means that whenever
you select any Name object on lstNames , its cell range must be selected on the worksheet it belongs to. So
if chkSelectRangeName=True , the procedure uses the VBA Mid () function to remove the = character that
precedes the Name. RefersTo property and stores the result in the strRefersTo variable.

 If Me .chkSelectRangeName Then
 strRefersTo = Mid (txtRefersTo, 2)

 An On Error Resume Next statement is executed before the code tries to set a reference to the cells
range it represents.

 On Error Resume Next
 Set rg = Range(strRefersTo)

 If the Name object is associated to any cell range, no error will be raised, and the sheet name must be
extracted from strRefersTo so the desired worksheet can be activated before the range is selected. The code
stores the position of the ! character that suffixes the sheet name on the intPos Integer variable, uses the
VBA Left () function to extract the sheet name, and uses it to reference it on the Worksheets collection
before calling the Activate method.

 If Err = 0 Then
 intPos = InStr (1, strRefersTo, "!")
 Worksheets (Left (strRefersTo, intPos - 1)).Activate

 And once the worksheet is activated, the cell range is selected.

 Range(strRefersTo).Select

 But if the Name object is associated to a constant formula, VBA will raise an error (Error: 1004: “method
‘Range’ of object ‘_Global’ failed”), and you make the decision to select cell A1 of the first sheet tab whenever
this happens. Note that this time I use Worksheets (1) to reference the first sheet tab:

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

301

 Else
 Worksheets (1).Activate
 Range("A1").Select
 End If
 End If
 End Sub

 Figure 5-24 shows the selection of the DataWithError Name object range address (Sheet1!A6:B9) when
 chkSelectRangeName is checked.

 ■ Attention Whenever you click the chkSelectRangeName check box, the Click () event fires, executing
this simple code:

 Private Sub chkSelectRangeName_Click()

 Call ShowNameProperties (mcolItemsSelected(1))

 End Sub

 Figure 5-24. Whenever you check chkSelectRangeName, the Click() event will fire, and the cell range
associated to the Name object will be selected on the sheet it belongs to. If the Name is associated to a constant
formula, cell A1 of the first sheet tab will be selected instead

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

302

 Enable/Disable UserForm Controls
 The last procedure called by the lstNames_Change() event, whenever one or more names are selected on
the lstNames ListBox , is the EnableControls () procedure.

 The EnableControls () procedure uses a quite useful, popular, and interesting technique to enable/
disable controls on the frmNames UserForm interface. Every VBA control (and I believe that almost any
possible control and object) has a Tag property, which is a read/write text string value that you can use to
store anything you want, using up to 2,048 characters.

 So, each frmNames control that I want to synchronize receives a special value on its Tag property (1 or 2)
according to the type of synchronization it is performing.

• Tag = 1 is used for every control that must be enabled when only one item is selected
on the lstNames ListBox (or disabled when no item is selected).

• Tag = 2 is used on every control that can be used when more than one item is
selected on the lstNames ListBox (or disabled when any item is selected), as you can
see in Figure 5-25 .

 The EnableControls () procedure executes this code:

 Private Sub EnableControls (bolEnabled As Boolean)
 Dim intI As Integer

 For intI = 0 To Me .Controls.Count - 1
 Select Case Me .Controls(intI).Tag
 Case "1"
 Me .Controls(intI).Enabled = bolEnabled
 Case "2"
 Me .Controls(intI).Enabled = (bolEnabled Or mcolItemsSelected.Count > 0)
 End Select
 Next
 End Sub

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

303

 Figure 5-25. The frmNames UserForm uses the Tag property of all controls it wants to enable/disable to
synchronize its interface. Whenever any control Tag = 1, this means that the control can be enabled/disabled by
the UserForm EnableControls () procedure

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

304

 The EnableControls () procedure uses the frmNames Controls collection to run through all its controls
using a For int=0 to Controls.Count-1…Next loop. At each loop passage, it takes the current control Tag
property and verifies its value using a Select Case statement.

 For intI = 0 To Me .Controls.Count - 1
 Select Case Me .Controls(intI).Tag

 If the control Tag = "1" (the Tag property is a String value), just one item was selected on the lstNames
 ListBox , and the control Enabled property receives the bolEnabled argument, enabling or disabling the
control.

 Case "1"
 Me .Controls(intI).Enabled = bolEnabled

 But if the control Tag = "2" , you have more than one item selected in the lstNames ListBox , so the
control must be enabled if bolEnabled = True or mcolItemsSelected.Count > 1 (to disable all controls
that must be available for just a single selected item).

 Case "2"
 Me .Controls(intI).Enabled = (bolEnabled Or mcolItemsSelected.Count > 0)
 End Select
 Next
 End Sub

 ■ Attention Note that whenever bolEnabled = False and mcolItemsSelected.Count = 0 , all tagged
controls will be disabled in the UserForm interface, which will happen whenever you open frmNames or delete a
 Name object and no item is selected in the lstNames ListBox .

 Figure 5-26 shows EnableControls () in action selecting just controls with Tag = "2" whenever more
than one item is selected in the lstNames ListBox .

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

305

 Clearing frmNames Detail Section
 To clear all the frmNames Detail controls whenever more than one item is selected in the lstNames ListBox ,
the frmNames _Change() event calls the ClearNameProperties() procedure, which executes this code:

 Private Sub ClearNameProperties()
 Me .txtName = ""
 Me .txtRefersTo = ""
 Me .txtComment = ""
 Me .chkVisible = False
 End Sub

 Figure 5-26. Whenever the lstNames ListBox has more than one item selected, just the controls that can be
used to operate on one or more Name objects becomes enabled (the ones with property Tag= "2")

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

306

 ■ Attention Whenever you have cleaned up an undefined number of controls, consider using the same
technique described in the previous section: use the controls’ Tag property to specifically tag them and clear
all controls at once using a For…Next loop that runs through the UserForm Controls collection. Since text box
and check box controls are cleared using different values ("" for text boxes and 0 for check boxes), you can add
different Tag property values to each control type or use the VBA TypeOf(Controls(intI)) function to verify
the control type and act accordingly.

 Now that you know how many different procedures and VBA instructions run whenever you select one
or more lstNames ListBox items, you must think about this unquestioning truth: computers are really fast!

 Editing an Existing Name Object
 Try to select any lstName ListBox item alone (like the last one) and click the Edit (cmdEdit) ControlButton
to edit it in the frmEditName UserForm (Figure 5-27).

 This happens because the cmdEdit_Click() event fires, executing this code:

 Private Sub cmdEdit_Click()
 Me .Hide
 If mcolItemsSelected.Count > 0 Then
 With frmEditName
 .NameSelected = Names (Me .lstNames. Column (0, mcolItemsSelected(1)))
 .Show
 End With
 End If
 Me .Show
 End Sub

 The bold instruction indicates that cmdEdit_Click() gets the Index of the selected lstNames item from
the mcolItemsSelected(1) item collection and uses this item to get the Name.Name property (stored on the
hidden lstNames. Column (0) column), uses the Application . Names collection to return the selected Name
object reference, and stores it in the frmEditName .NameSelected property.

 With frmEditName
 .NameFilter = Me .cboObjects
 .NameSelected = Names (Me .lstNames. Column (0, mcolItemsSelected(1)))

 One single code line for so much activity!

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

307

 Figure 5-27. Whenever you click any lstNames item and click the frmNames Edit ControlButton, the
cmdEdit_Click() event fires and passes the selected Name object reference to the frmEditName .NameSelected
property, which gets all it basic properties (Parent, RefersTo , Comment and Visible) and shows it in the
 frmEditName interface

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

308

 When this happens, the frmEditName .NameSelected property’s Let() event fires and executes this code:

 Public Property Let NameSelected(ByVal nm As Name)
 Dim intPos As Integer

 Set mName = nm

 If Not Me .NewName Then
 intPos = InStr (1, nm.Name, "!")
 If intPos = 0 Then
 Me .txtName = nm.Name
 Me .cboObjects = " Workbook "
 Else
 Me .txtName = Mid (nm.Name, intPos + 1)
 Me .cboObjects = nm.Parent.Name
 End If

 Me .txtComment = nm.Comment
 Me .txtRefersTo = nm. RefersTo
 Me .chkVisible = nm.Visible
 End If
 End Property

 Note that frmEditName Property Let NameSelected() receives the Name object reference on its nm As
Name argument and passes this object reference to the frmEditName module-level object variable mName , so it
can be used by the cmdOK and cmdCancel Click events.

 Public Property Let NameSelected(ByVal nm As Name)
 Dim intPos As Integer

 Set mName = nm

 The code verifies the frmEditName .NewName property, testing Not Me .NewName , which will run the
 frmEditName .NewName property’s Get() procedure. Since Not Me .NewName = True , the Name object
properties must be retrieved and exhibited on the UserForm interface.

 To know the Name object scope, the code searches the Name.Name property for the ! character used to
separate the sheet tab name from the Name.Name property using the VBA InStr () function and stores the
result into the intPos Integer variable.

 If there is no such character on the Name.Name property, the Name object has workbook scope, and the
 cboObject ComboBox is set accordingly.

 intPos = InStr (1, nm.Name, "!")
 If intPos = 0 Then
 Me .txtName = nm.Name
 Me .cboObjects = " Workbook "

 If the Name object has a worksheet scope and txtName receives just the Name.Name property (without the
preceding sheet name), using the VBA Mid () function to extract it, and cboObject ComboBox has its value
set by the Name.Parent.Name property, which returns the worksheet object sheet tab name.

 Else
 Me .txtName = Mid (nm.Name, intPos + 1)

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

309

 Me .cboObjects = nm.Parent.Name
 End If

 The procedure finishes defining other Name object properties to the appropriate frmEditName controls.

 Me .txtComment = nm.Comment
 Me .txtRefersTo = nm. RefersTo
 Me .chkVisible = nm.Visible
 End If
 End Property

 Editing the Name Object
 Since the desired Name object reference is set to the frmEditName module-level mName variable, you can
change any of its properties, including its scope, which the Excel Edit Name dialog box doesn’t allow.

 The Microsoft Excel New/Edit Name dialog box does not allow you to change any Name object scope
but allows you to change the Name object’s Name property if the selected name is not used by any other Name
object’s RefersTo property.

 Let’s see a special case. The MyData range name is used by the SumMyData range name on its RefersTo
property constant formula. You want to use Excel Edit Name dialog box to change the MyData name to anything
else, like the MyNewData name, but Excel will not allow you to do that because this name is used by other
 Name. RefersTo property. Neither allows you to change the MyData scope, from Workbook to Sheet1 (Figure 5-28).

 Figure 5-28. The Excel Name Manager and Edit Name dialog box don’t allow you to change any Name
object’s Name property when it is used by any other Name object (which happens on the MyData range name
used by the SumMyData range name constant formula). In addition, they don’t allow you to change the name
scope (Edit Name dialog box’s Scope ComboBox is disabled)

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

310

 My vision of frmNames and frmEditName is to allow such interesting and desirable changes both on any
 Name object’s Name property and on its scope, fixing any possible formula conflict that may arise.

 Supposing that you want to change the MyData Name object to MyNewData and its scope from Workbook
to Sheet1 using frmNames , double-click the name to show it on frmEditName , type the new name in the
 txtName text box, select Sheet1 in the cboObjects ComboBox , and press the frmEditName OK button,
which will run the cmdOK_Click() event (already explored in “Adding a New Name Object” earlier on this
chapter), executing this partial code (where the first validating instructions were removed):

 Private Sub cmdOK_Click()
 Dim nm As Name
 Dim strName As String
 ...
 If Not Me .NewName Then
 Call FixNameChange
 Me .NameSelected.Delete
 End If

 Set nm = Names .Add(strName, Me .txtRefersTo, Me .chkVisible)
 nm.Comment = Me .txtComment & ""
 Set mName = nm

 Unload Me
 End Sub

 You now have opened another great “parenthesis” on the frmEditName cmdOK_Click() event to explain
how Sub FixNameChange () works to change the proposed name change on any Excel formula of the entire
workbook.

 Searching and Replacing Formula Content

 Since you are editing an existing Name object, frmEditName .NewName = False . The code first calls the Sub
 FixNameChange () procedure to replace the old name with the new name inside any formula used on the
workbook.

 If Not Me .NewName Then
 Call FixNameChange

 The Sub FixNameChange () procedure executes this code:

 Private Sub FixNameChange ()
 Dim nm As Name
 Dim ws As Worksheet
 Dim rg As Range
 Dim rgInitial As Range
 Dim strName As String
 Dim strRefersTo As String

 strName = mName.Name
 strName = Mid (strName, InStr (1, strName, "!") + 1)
 If strName <> Me .txtName Then
 'Change Name references

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

311

 For Each nm In Names
 strRefersTo = nm. RefersTo
 If InStr (1, strRefersTo, strName) Then
 strRefersTo = Replace (strRefersTo, strName, Me .txtName)
 nm. RefersTo = strRefersTo
 End If
 Next

 'Change cells formulas references
 For Each ws In ActiveWorkbook. Worksheets
 Set rg = ws.Cells.Find(strName, , xlFormulas, xlPart)
 If Not rg Is Nothing Then
 Set rgInitial = rg
 Do
 rg.Formula = Replace (rg.Formula, strName, Me .txtName)
 Set rg = ws.Cells. FindNext (rg)
 If rg Is Nothing Then Exit Do
 Loop While (rg. Address <> rgInitial. Address)
 Set rgInitial = Nothing
 End If
 Next
 End If
 End Sub

 Whenever you change the Name.Name property, you must make this change in two different places in
any Excel workbook: inside any Name. RefersTo property and inside any worksheet cell formula.

 Since any worksheet scope Name object has its Name property prefixed with the sheet name, the
procedure first searches for the sheet name existence and removes it, storing just the name on the strName
variable.

 strName = mName.Name
 strName = Mid (strName, InStr (1, strName, "!") + 1)

 Then FixNameChange () must first verify whether the Name object you want to save suffers any change
on its Name property, comparing the module-level object variable mName.Name property to frmEditName
 txtName text box value.

 If strName <> Me .txtName Then

 If both name strings don’t match, you are proposing a Name property change, and the procedure will first
use a For Each….Next loop to run through the Names collection searching for the current Name property in any
 Name. RefersTo property. Note that strRefersTo holds the Name. RefersTo property, and the VBA InStr ()
function is used to find the current Name property stored in the strName variable.

 For Each nm In Names
 strRefersTo = nm. RefersTo
 If InStr (1, strRefersTo, strName) Then

 Since InStr () returns the initial position of strRefersTo inside strName , whenever InStr () > 0
(strRefersTo found inside strName), the code uses the VBA Replace () function to make the desired
change and stores the replaced property again in the Name. RefersTo property.

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

312

 strRefersTo = Replace (strRefersTo, strName, Me .txtName)
 nm. RefersTo = strRefersTo

 The VBA Replace () function is quite useful because it can quickly search and replace any substring
inside a desired string, returning another string with the desired replacement. It has this syntax:

 Replace (Expression, Substring, Replacement, [Start, [Count, [Compare]]])

 In this code:

 Expression : This is required; it is the string expression containing the substring
to replace.

 Substring : This is required; it is the substring being searched for.

 Replacement : This is required; it is the replacement string.

 Start : This is optional; it is the position in Expression where the substring
search is to begin. If omitted, 1 is assumed.

 Count : This is optional; it is the number of substring substitutions to perform. If
omitted, the default value is –1, meaning “all possible substitutions.”

 Compare : This is optional; it is the type of comparison to use when evaluating
substrings.

 Vbbinarycompare : This makes a binary comparison (case sensitive).

 Vbtextcompare : This makes a textual comparison (case insensitive).

 And once the For...Next loop ends, all possible formulas inside any workbook Name object will be
correctly replaced by the new proposed Name property.

 And once this is made, it is time to search all workbook cells formulas and make the same substitution,
and this process is made by the Range. Find method.

 Using the Range. Find Method

 Microsoft Excel has the Find and Replace dialog box, which is used to search and replace items inside a
single worksheet or on the entire workbook. This dialog box uses the Excel Range object’s Find method,
which has this syntax:

 Expression.Find(What, After, LookIn, LookAt, SearchOrder, SearchDirection, MatchCase,
MatchByte, SearchFormat)

 In this code:

 Expression : This is an object variable that represents a Range object.

 What : This is required; it is the data to search for.

 After : This is optional; it is a single cell after which you want the search to begin.
It corresponds to the position of the active cell when a search is done from the
user interface. The search will begin after this cell, which will not be searched
until the method wraps back around to it. If you don’t specify this argument, the
search starts after the cell in the upper-left corner of the range (the default is the
current selection).

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

313

 LookIn : This is optional; it is where the information will be searched (values,
formulas, or comments) and can be set to xlValue (default), xlFormula , or
 xlComments .

 LookAt : This is optional; it is the scope to be searched in LookIn , all or part, and
can be set to the following XlLookAt constants: xlWhole (default) or xlPart .

 SearchOrder : This is optional; it is the search order, by row or column. It can
be set to one of the following XlSearchOrder constants: xlByRows (default) or
 xlByColumns .

 SearchDirection : This is optional; it is the search direction to be made and
can be set to the following XlSearchDirection constants: xlNext (default) or
 xlPrevious .

 MatchCase : This is optional; it allows the search to be case sensitive. The default
value is False .

 MatchByte : This is optional; it is used only if you’ve selected or installed double-
byte language support. Set it to True to have double-byte characters match only
double-byte characters. Set it to False (default) to have double-byte characters
match their single-byte equivalents.

 SearchFormat : This is optional; it is for making search use specific character
formatting options.

 ■ Attention All Range. Find arguments are used by the Excel Find and Replace dialog box, and every change
you make to one of them will be shown in the Excel Find and Replace interface.

 The Range. Find method returns Nothing if any cell is found or if a Range object representing a single
cell was found. You can continue to search more cells with the same settings using the Range. FindNext or
 Range.FindPrevious method.

 Note that when the search reaches the end of the specified search range, it wraps around again to the
beginning of the range. So, to stop a search when this wraparound occurs, save the address of the first found
cell and then test each successive found-cell address against this saved address.

 The Range. Find is method is quite interesting because it searches any range size. Since any Worksheet
object has a Cells property, which returns a Range object with all worksheet cells, any time you use Cells.
Find you are in fact searching all active sheet cells!

 So, the procedure needs to search every Worksheet object inside the workbook using a For…Each loop to
run through the Worksheets collection and then use the Worksheet object’s Cells property to return a range
object and apply its the Range. Find method, as follows:

 'Change cells formulas references
 For Each ws In ActiveWorkbook. Worksheets
 Set rg = ws.Cells. Find (strName, , xlFormulas, xlPart)

 This last instruction will search all cells of a single Worksheet object (represented by the ws variable),
 looking in the cell formula (xlFormulas) for any part (xlPart) that has what is stored in the strName variable
(which holds the current Name.Name property).

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

314

 If no cell is found having strName inside any part of its formula, the rg as Range variable will hold
 Nothing , and the procedure will end the If…End If instruction, selecting another Worksheet object in the
 Worksheets collection.

 For Each ws In ActiveWorkbook. Worksheets
 Set rg = ws.Cells. Find (strName, , xlFormulas, xlPart)
 If Not rg Is Nothing Then
 ...
 End If
 Next

 But if any cell is found having strName inside any formula part, the rg variable will have a reference to it,
and in this case, you must store the reference of this first cell found in the rgInitial variable.

 If Not rg Is Nothing Then
 Set rgInitial = rg

 And a Do...Loop is initiated to change this first cell formula using the VBA Replace () function to
change any current Name.Name property (strName) by the new proposed name (Me .txtName).

 Do
 rg.Formula = Replace (rg.Formula, strName, Me .txtName)

 Now is the interesting part. You must continue the search through all other worksheet cells using the
 Range. FindNext method, which has this syntax:

 Expression . FindNext (After)

 In this code:

 Expression : This is an object variable that represents a Range object.

 After : This is optional; it is a single cell after which you want to search (the
position of the active cell when a search is done from the user interface). The
search will begin after this cell, meaning that it will not be searched until the
method wraps back around to it. If this argument is not specified, the search
starts after the cell in the upper-left corner of the range.

 ■ Attention The Range.FindPrevious method obeys the same rules of Range. FindNext when searching
backward.

 So, you must continue to search the current worksheet after the last cell found using the
 Range. FindNext method, passing to its After argument a reference to the last found cell.

 Set rg = ws.Cells. FindNext (rg)

 And when the Range. FindNext must be executed, one of these conditions may occur: no other cell is
found (rg = Nothing) or the first found cell searches again. And you need to make a double comparison.

 Whenever you need to verify whether an object variable is Nothing (doesn’t point to any object), you
must make this test alone. Let me put this in other words: you cannot test on a single instruction if
 (rg = Nothing) or (rg. Address = rgInitial. Address) because if rg = Nothing , rg. Address returns

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

315

a VBA error. rg points to no Range object, so it cannot have an Address property! So, the next row verifies
whether the Range. FindNext method finds another cell. If it is equal to Nothing , you can stop searching on
this Worksheet object and the Exit Do instruction will be executed.

 Set rg = ws.Cells. FindNext (rg)
 If rg Is Nothing Then Exit Do

 Otherwise, another cell is found, and the Do…Loop must continue changing its Formula property. Note
that this time the Address property is used to compare the initial range object with the new found one as a
condition to end the Do...Loop .

 Do
 rg.Formula = Replace (rg.Formula, strName, Me .txtName)
 Set rg = ws.Cells. FindNext (rg)
 If rg Is Nothing Then Exit Do
 Loop While (rg. Address <> rgInitial. Address)

 ■ Attention The Range.Value property (the default property) returns the range value, which can be either a
single value or an array of values, so you cannot compare range values directly. The same applies to the Range.
Name property, which just exists for any individual named cell. So, since Range. Find and Range. FindNext
return a single cell reference, you can surely use the Range. Address property to compare the initial and found
ranges.

 If the last found cell is the same cell processed (rg. Address = rgInitial.Adress), it can’t be
processed again, because if you are changing a name just by adding a suffix (like changing the MyData
name to MyData2), when the search returns to the first cell, it will find again the MyData prefix inside the
now changed MyData2 formula and will substitute it again and again, until you end up with a range name of
 MyData222222… (with 2 repetitions enough to fill up the maximum 256 characters formula limit), and Excel
will raise an error.

 So, when the code returns to the first changed cell, the Do…Loop ends, the rgInitial variable is set to
 Nothing , and another worksheet object is processed again, until all worksheet cell formulas are correctly
processed for the proposed name change.

 Loop While (rg. Address <> rgInitial. Address)
 Set rgInitial = Nothing
 End If
 Next

 ■ Attention Go back to Sub FixNameChange () and note how easy it is to use the Range. Find method to
search and replace any workbook cell value using VBA, the same way the Excel Find and Replace dialog box
does!

 Now that you know how FixNameChange () works, so let’s return to the frmEditName cmdOK_Click()
event and continue the VBA process of editing an existing Name object.

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

316

 Getting Back to the frmEditName cmdOK_Click Event

 After all the workbook formulas have been adequate processed, the cmdOK_Click() event must delete the
currently edited Name object, because if you change the Name.Name property or the Name. RefersTo property
by changing just its scope (from Workbook to any sheet name, and vice versa), you end up with two names
(two different Name objects, having different Name properties with the same Name property but different
scopes).

 Private Sub cmdOK_Click()
 Dim nm As Name
 Dim strName As String
 ...
 If Not Me .NewName Then
 Call FixNameChange
 Me .NameSelected.Delete
 End If

 And once the Name object is deleted, it is re-created with the new desired Name properties, the same way
you created a new Name .

 Set nm = Names .Add(strName, Me .txtRefersTo, Me .chkVisible)
 nm.Comment = Me .txtComment & ""

 After the Name object is re-created, the frmEditName mn object module-level variable (which returns
the frmEditName .NameSelected property value) is associated to the new added name, and the UserForm is
unloaded from memory.

 Set mName = nm

 Unload Me
 End Sub

 ■ Attention According to the Microsoft Excel documentation, you do not need to delete a name to change its
properties. Just use again the Names collection’s Add method to re-create it. But you must delete it before using
the Add method whenever you want to change its Name property or its scope.

 Canceling Name Editing

 If you decide not to make changes to the edited Name object, you can press the keyboard Esc key or click the
 frmEditName Cancel ControlButton (cmdCancel , which has its Cancel property set to True), and this code
will be executed:

 Private Sub cmdCancel_Click()
 Unload Me
 End Sub

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

317

 Synchronizing the frmEditName and frmNames Interfaces

 Whenever you click the frmEditName cmdOK of cmdCancel control buttons, the UserForm is unloaded from
memory and its UserForm_Terminate () event fires, executing this code:

 Private Sub UserForm_Terminate ()
 With frmNames
 .cboObjects = Me .NameFilter
 If Not (Me .NameSelected Is Nothing) Then
 .NameSelected = Me .NameSelected
 End If
 .Show
 End With
 End Sub

 Note that frmEditName .NameFilter (what was selected on the frmNames cboObjects ComboBox) is used
to define again the frmNames .cboObjects value (which will cascade-fire the cboObjects_Change() event).

 With frmNames
 .cboObjects = Me .NameFilter

 Next, the code verifies frmEditName .NameSelected has any name associated with it (which will not
happen whenever frmNames has no item selected). If this is true, the frmNames .NameSelected Property
Let() procedure receives the frmEditName .NameSelected Property Get() procedure, selecting the
appropriate item on in frmNames lstNames ListBox , which is shown by frmNames whenever the Show method
finally executes.

 If Not (Me .NameSelected Is Nothing) Then
 .NameSelected = Me .NameSelected
 End If
 .Show
 End With
 End Sub

 ■ Attention To see a Name.Name property change in action, you must create one cell formula that references
the name (like = Sum(MyData)) and then copy and paste this cell to other multiple cells of any sheet tab and
then perform the name change. You will see that VBA will change all Name objects and cell formula references to
the new desired name, keeping everything working as it should on the workbook. Try it!

 Resizing an Existing Name Object
 One common operation on most Excel applications is to resize a given Name object whose RefersTo property
is associated with a contiguous worksheet cell addresses by adding or deleting one or more rows or columns
to/from it. This operation is performed by the Range. Resize property, which has this syntax:

 Expression . Resize (RowSize, ColumnSize)

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

318

 In this code:

 Expression : This is required; it is an expression that returns a Range object to be
resized.

 RowSize : This is optional; it is the total number of rows in the new range. If
omitted, the number of rows in the range remains the same.

 ColumnSize : This is optional; it is the number of columns in the new range. If
omitted, the number of columns in the range remains the same.

 So, whenever you want to resize a given range name, you must use the Range Rows and/or Columns
collection’s Count property to retrieve the current number of rows/columns and then add/subtract to these
values to/from the desired final range dimensions.

 The next syntax resizes a hypothetical Name object Range1 address, by adding to it one more row:

 Dim rg as Range
 Set rg = Range(“Range1”). Resize (Range(“Range1”).Rows.Count + 1)

 Note that since the second resize argument is missing, the Range1 Name object will keep its current
column number. This operation can be shortened by first setting the desired Name object to a Range object
variable, as follows:

 Dim rg as Range
 Set rg = Range(“Range1”) ‘ Range1 is the Name.Name property
 Set rg = rg. Resize (rg.Rows.Count +1)

 As you can see, the final operation ends with an rg object variable with the desired dimensions, but no
change had been made to the Name object’s RefersTo property: it remains the same!

 To really resize a Name object by adding/subtracting it to/from one or more rows/columns, you must use
the Range.Name property to name the new range with the Name.Name property. The next instructions really
change the Range1 Name object, adding one more row to its RefersTo property:

 Dim rg as Range
 Set rg = Range(“Range1”) ‘ Range1 is the Name.Name property
 rg. Resize (rg.Rows.Count +1).Name = “Range1”

 You saw that? You must perform a double operation: rg. Resize returns a new Range object with the
desired dimensions, which has a Name property, which is set to the desired Name object, effectively resizing it!

 Now let’s return to frmNames . Whenever you select a valid Name object in the lstNames ListBox (one that
is associated to any cell address, not a constant formula) and click the Resize ControlButton (cmdResize),
the cmdResize_Click() event fires, executing this code:

 Private Sub cmdResize_Click()
 Dim nm As Name
 Dim rg As Range
 Dim intIndex As Integer

 On Error Resume Next

 intIndex = mcolItemsSelected(1)
 Set nm = Names (Me .lstNames. Column (0, intIndex))
 Set rg = Range(nm. RefersTo)

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

319

 If Err = 0 Then
 rg. Resize (rg.Rows.Count + Me .txtAddRows, rg.Columns.Count + Me .txtAddColumns).Name =

nm.Name
 Call FilllstNames
 Call SelectItems
 Call chkSelectRangeName_Click
 End If
 End Sub

 Since cmdResize will be enabled only when just one item is selected in the lstNames ListBox , after
declaring the variable it needs, the code begins by disabling VBA errors, stores the selected lstName.Index
value from the mcolItemsSelected(1) collection on the intIndex variable, and uses this value to set a
reference to the selected Name object:

 On Error Resume Next

 intIndex = mcolItemsSelected(1)
 Set nm = Names (Me .lstNames. Column (0, intIndex))

 Once the selected Name object is retrieved, the code tries to set a Range object reference to it, using the
 Name.Name property.

 Set rg = Range(nm. RefersTo)

 Since the selected Name object can be associated to a constant formula, if you select such types of Name ,
VBA will raise an error (Error = 1004, “method ‘Range’ of object ‘_Global’ failed”). So, the next instruction
verifies whether there is any error setting the Range object reference, and if it is true, the procedure ends
doing nothing.

 If Err = 0 Then
 ...
 End If
 End Sub

 But if the Range object reference is adequately set, the Name is associated to a valid range address:
the Range. Resize property is evoked, adding to the Range. Address property the default values of the
 txtAddRows (1) and txtAddcolumns (0) text boxes (the ones below cmdResize in the frmNames interface).

 This will resize the Range object, which is then named using the Name.Name property, effectively resizing
the Name object address.

 rg. Resize (rg.Rows.Count + Me .txtAddRows, rg.Columns.Count + Me .txtAddColumns).Name = nm.Name

 And once this operation is done, the frmNames interface must be synchronized by calling
 FilllstNames() (to update lstNames ListBox), SelectedItems() (to reselect the resized name on
 lstNames), and chkSelectRangeName_Click() events (to select the new dimensions of the Name object on
the worksheet it belongs to if chkSelectRangeName is checked).

 Call FilllstNames
 Call SelectItems
 Call chkSelectRangeName_Click

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

320

 This is simple code used by the Sub SelectItems() procedure to reselect the same lstNames items
after any change is made to one or more Name object properties.

 Private Sub SelectItems()
 Dim varItem As Variant

 'Reselect names on ListBox
 Me .lstNames.ListIndex = mcolItemsSelected(1)
 For Each varItem In mcolItemsSelected
 mbolCancelEvent = True
 Me .lstNames.Selected(varItem) = True
 Next
 End Sub

 As you can see, the code begins by selecting the first Collection item in the ListBox , changes the
 ListIndex property, and then performs a For Each…Next loop through all the mcolItemsSelected collection
items, setting mbolCancelEvent = True to avoid cascading the lstNames_Change() event and then
reselecting the desired items on the lstNames ListBox .

 ■ Attention If the chkSelectRangeName check box is checked before you click the frmNames
 Resize ControlButton , you will see the new name cells selected on the worksheet it belongs to. The
 chkSelectRangeName_Click() event calls the Sub ShowNameProperties () procedure, analyzed in the
section “Show Selected Name Properties” earlier in this chapter.

 Note that you can use negative values on the txtAddRows and txtAddColumns text boxes to shrink any range
name.

 Figure 5-29 shows how the MyData Name object has the RefersTo property resized by clicking the
 cmdResize button, accepting the frmNames default resizing values (adding to it one row).

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

321

 Figure 5-29. When you select a valid Name object (one associated to any range address) and click the
 frmNames Resize ControlButton, the cmdResize_Click() event fires and adds the specified number of rows and
columns to the Name. RefersTo property. This time the MyData Name was added by one row, which can be
seen on the worksheet since the “Select range name on workbook” option is checked

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

322

 Performing Multiple Name Properties Changes
 The frmNames UserForm allows you to delete one or more range names or change the Visible and Comment
properties at once: a desired Name object operation not performed by the Excel Name Manager dialog box
(which allows multiple deletions).

 Since all selected Name objects are stored in the mcolItemsSelected collection, whenever desired you
can run through all collection items and perform the same operations on all of them. Let’s see this in action!

 Changing the Name .Visible Property
 Although every Name object has a Visible property, Excel doesn’t allow the user to change it, unless you use
VBA code to do it. When any name has Visible = False , it doesn’t appears anymore in the Excel Name box
or Excel Name Manager, which is quite desirable for most Excel applications to hide development details
from users’ eyes.

 To change any Name object’s Visible property using the frmNames interface, follow these steps:

 1. Select the desired Name objects on the lstNames ListBox .

 2. Click the frmNames Show Details ControlButton .

 3. Click the Visible check box.

 Whenever you click the chkVisible check box, the chkVisible_AfterUpdate() event fires, executing
this simple code:

 Private Sub chkVisible_AfterUpdate()
 Dim varItem As Variant

 For Each varItem In mcolItemsSelected
 Names (CStr(Me .lstNames. Column (0, varItem))).Visible = Me .chkVisible
 Next
 Call FilllstNames
 Call SelectItems
 End Sub

 Quite simple, huh? A For Each…Next loop is performed through the mcolItemsSelected collection, and
each selected Name object has the Visible property changed to the chkVisible state, effectively making it
hidden/visible each time the chkVisible check box has its value changed.

 Note that Sub FilllstNames() is called to update the frmNames interface with the new Name object
properties, and Sub SelectItems() is called to select again the same lstNames items.

 ■ Attention The chkVisible_AfterUpdate() event does not cascade-fire whenever the chkVisible value
is changed, which happens whenever one or more items is selected in the lstName ListBox .

 Changing the Name.Comment Property
 This is also quite simple. Whenever you want to add the same Comment property to more than one
 Name object, just select the desired items in the lstNames ListBox , click the frmNames Show Details
 ControlButton , type the desired comment in txtComment , and press Enter.

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

323

 The txtComment_ AfterUpdate () event will fire, executing this code:

 Private Sub txtComment_AfterUpdate()
 Dim varItem As Variant
 Dim strMsg As String
 Dim strTitle As String

 If mcolItemsSelected.Count > 1 Then
 strMsg = "Apply the same comment to all " & mcolItemsSelected.Count & " selected

names?"
 strTitle = "Comment all selected names?"
 If MsgBox (strMsg, vbYesNo + vbDefaultButton2 + vbCritical, strTitle) = vbNo Then
 Exit Sub
 End If
 End If

 Call FilllstNames
 Call SelectItems
 End Sub

 Note that this time a warning is raised every time there is more than one item selected on the lstName
 ListBox .

 If mcolItemsSelected.Count > 1 Then
 strMsg = "Apply the same comment to all " & mcolItemsSelected.Count & " selected
names?"
 strTitle = "Comment all selected names?"
 If MsgBox (strMsg, vbYesNo + vbDefaultButton2 + vbCritical, strTitle) = vbNo Then
 Exit Sub
 End If
 End If

 If the MsgBox () Yes button is selected, all selected Name objects will receive the same comment,
executing a For Each…Next loop through all the mcolItemsSelected collection items and changing the
 Comment property—the same way you changed one or more Name.Visible properties.

 For Each varItem In mcolItemsSelected
 Names (CStr(Me .lstNames. Column (0, varItem))).Comment = Me .txtComment & ""
 Next

 Figure 5-30 shows how easy it is to change one or more Name objects’ Visible property, hiding it from
being seen in the Excel Name box or Name Manager dialog box, as well as associating the same comment to
all of them.

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

324

 Figure 5-30. If you select one or more Name objects in the lstNames ListBox, you can change its Visible and
Comment properties at once. A hidden range name can’t be seen in the Excel Name box or Name Manager
dialog box

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

325

 Deleting Name Objects
 To delete one or more name objects, select the desired names and click the frmNames Delete button, which
will fire the cmdDelete_Click() event, executing this simple code:

 Private Sub cmdDelete_Click()
 Dim varItem As Variant
 Dim strMsg As String
 Dim strTitle As String

 If mcolItemsSelected.Count = 1 Then
 strMsg = "Confirm deletion of selected name?"
 strTitle = "Delete Name?"
 Else
 strMsg = "Confirm deletion of all " & mcolItemsSelected.Count & " names selected?"
 strTitle = "Delete selected names?"
 End If

 If MsgBox (strMsg, vbYesNo + vbDefaultButton2 + vbCritical, strTitle) = vbYes Then
 For Each varItem In mcolItemsSelected
 Names (CStr(Me .lstNames. Column (0, varItem))).Delete
 Next

 Set mcolItemsSelected = New Collection
 Call FilllstNames
 Call ClearNameProperties
 Call EnableControls (False)
 End If
 End Sub

 Since one or more Name object is about to be deleted—and this operation can be undone, unless
you close the workbook without saving it and reopen it again—the code asks for a confirmation before
proceeding.

 If mcolItemsSelected.Count = 1 Then
 strMsg = "Confirm deletion of selected name?"
 strTitle = "Delete Name?"
 Else
 strMsg = "Confirm deletion of all " & mcolItemsSelected.Count & " names selected?"
 strTitle = "Delete selected names?"
 End If

 If MsgBox (strMsg, vbYesNo + vbDefaultButton2 + vbCritical, strTitle) = vbYes Then

 If the MsgBox () Yes button is selected, a For Each…Next loop runs through all the mcolItemsSeleted
collection items and performs the Names collection’s Delete method, removing all selected Name objects
from the workbook.

 For Each varItem In mcolItemsSelected
 Names (CStr(Me .lstNames. Column (0, varItem))).Delete
 Next

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

326

 And then it clears the mcolItemsSelected collection by attributing to it a New Collection (with zero
items selected).

 Set mcolItemsSelected = New Collection

 Changing the Name. RefersTo Property
 The last VBA technique you will see performed by the frmNames UserForm mimics the way the Excel Name
Manager dialog box allows the addition of the Name. RefersTo property using a text box control and some
command buttons.

 Whenever you select any Name object on frmNames and click the Details ControlButton , you will see its
properties in the UserForm Details section. Note that the txtRefersTo text box is enabled, and on the right
side you can see three CommandButtons mimicking how the Excel Name Manager does it (Figure 5-31).

 Note in Figure 5-31 that cmdRefersTo is the only enabled CommandButton . If you click it, the
 cmdRefersTo_Click() event will fire and execute this code:

 Private Sub cmdRefersTo_Click()
 Dim varRange As Variant
 Dim intPos As Integer
 Const conFormula = 0

 varRange = Application .InputBox("Cells selected:", "Select range cells",
 Me .txtRefersTo, , , , , conFormula)

 If varRange <> False Then
 varRange = Application .ConvertFormula(varRange, xlR1C1, xlA1)
 'Search for Workbook reference
 intPos = InStr (1, varRange, "]")
 If intPos > 0 Then
 varRange = "'" & Mid (varRange, intPos + 1)
 End If

 'Search for Sheet name
 intPos = InStr (1, varRange, "!")
 If intPos = 0 Then
 varRange = "'" & ActiveSheet.Name & "'!" & Mid (varRange, 2)
 End If

 'Search for "='
 If Left (varRange, 1) <> "=" Then
 varRange = "=" & varRange
 End If

 Me .txtRefersTo = varRange
 Call EnableEditing(True)
 End If
 End Sub

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

327

 Figure 5-31. The frmNames UserForm mimics the way the Excel Name Manager dialog box allows changes to
the Name. RefersTo property, using a TextBox control (txtRefersTo) along with three CommandButtons (from
left to right, cmdDiscard, cmdAccept, and cmdRefersTo)

 If you look at the section “Inserting a New Name by Selecting a Range Address” earlier in this chapter,
you will see that this code is quite similar to that used on the frmEditName cmdRefersTo CommandButton
(it uses the Application .Inputbox method to allow the selection of worksheet cells), except with its
last instruction (bold in the last listing), which is used to enable/disable the frmName UserForm controls
whenever you try to change any Name. RefersTo property.

 The Sub EnableEditing() procedure executes this code:

 Private Sub EnableEditing(bolEnabled As Boolean)
 Dim intI As Integer

 For intI = 0 To Me .Controls.Count - 1
 If Me .Controls(intI).Name <> "txtRefersTo" Then
 If Len(Me .Controls(intI).Tag) > 0 Then
 Me .Controls(intI).Enabled = Not bolEnabled
 End If
 End If
 Next

 Me .cmdAccept.Enabled = bolEnabled
 Me .cmdDiscard.Enabled = bolEnabled
 End Sub

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

328

 Note that it uses a For…Next loop to run through the frmNames .Controls collection testing if the control
 Name property is different from txtRefersTo :

 For intI = 0 To Me .Controls.Count - 1
 If Me .Controls(intI).Name <> "txtRefersTo" Then

 It verifies whether the control Tag property has something inside using the VBA Len() function. If this
is true, the control is enabled/disabled, according to the procedure bolEnabled argument value.

 If Len(Me .Controls(intI).Tag) > 0 Then
 Me .Controls(intI).Enabled = Not bolEnabled
 End If

 And when the loop finishes, it changes the Enabled property of both cmdAccept and cmdDiscard
ControlButton s.

 Me .cmdAccept.Enabled = bolEnabled
 Me .cmdDiscard.Enabled = bolEnabled
 End Sub

 This operation has the effect of disabling all controls except txtRefersTo and lstNames , whenever
 bolEnabled = True , and enabling them otherwise.

 But the frmNames cmdRefersTo ControlButton is not the only way to change the Name. RefersTo
property. You can also type any value to the txtRefersTo property to change the value. And whenever
anything is typed in the txtRefersTo property, three different key events fire:

• KeyDown() , which fires when any printable key is pressed

• KeyUp() , which fires when any printable key is released

• KeyPress() , which fires when any keyboard key is pressed, including Control,
Alt, and Tab, and distinguishes the keys from the numeric keypad on the left of any
keyboard

 In other words, the KeyDown and KeyUp events report the exact physical state of the keyboard: pressed or
released, respectively. The KeyPress event does not report if the keyboard state for the key is up or down; it
simply supplies the character that any key represents.

 ■ Attention Although the txtRefersTo_KeyPress() event will fire whenever you press the Shift, Ctrl, or Alt
keys, the text box content will not be changed, so you don’t use this event to catch text box changes.

 Both the KeyDown() and KeyUp() events receive two “by value” arguments: KeyCode and Shift .

 1. KeyCode means the printable ASCII code key, which can be verified in the VBA
Immediate window using the VBA Chr() function when the code is in Break
mode , this way:

 ?Chr(KeyCode)

 2. Shift means the pressing state of Shift, Ctrl, and Alt keys, where Shift = 1, Ctrl =
2, and Alt = 4, and by combining the values, you know which keys were pressed
along with any other keyboard key. (For example, if the KeyDown() event
argument Shift=3 , it means that the Shift+Ctrl keys were pressed.)

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

329

 ■ Attention Yes, there is a VBA Asc() function that does the opposite. Given a key string like A, it returns
the associated ASCII code.

 The Backspace key is part of the ANSI character set, but the Delete key isn’t. If you delete a character in a
control by using the Backspace key, you cause a KeyPress event; if you use the Delete key, you don’t.

 The KeyPress() event receives just one argument, KeyAscii , which returns the associated ASCII code
of any keyboard pressed (including keys Esc, Tab, Shift, Ctrl, Alt, Enter, and so on).

 Whenever you type anything in the frmNames txtRefersTo text box, the KeyDown() event fires,
executing this code:

 Private Sub txtRefersTo_KeyDown(ByVal KeyCode As MSForms.ReturnInteger, ByVal Shift As
Integer)
 If Not mbolEditRefersTo Then
 mbolEditRefersTo = True
 Call EnableEditing(True)
 End If
 End Sub

 As you can see, the code uses the mbolEditRefersTo module-level variable to verify whether txtRefers
to is in editing mode. If mbolReferTo = False , then Not mbolRefersTo = True , meaning that it was the first
key pressed to change the txtRefersTo value. So, mbolReferTo becomes True , and the procedure makes a
call to Sub EnableEditing() just for the first key pressed.

 Figure 5-32 shows what happens to the DataWithError Name object when the RefersTo property is
changed from Sheet1!B6:B9 (see Figure 5-31) to Sheet1!B6:B91 (n ote that all UserForm controls
were disabled except the txtRefersTo and lstNames ListBox es)!

 Whenever you make any change to the txtRefersTo text box, you have three possibilities:

• Discard the change by clicking cmdDiscard CommandButton

• Accept the change by clicking cmdAccept CommandButton

• Click the New command button or in the lstNames ListBox

 When you click cmdDiscard , the Click() event fires, executing this code:

 Private Sub cmdDiscard_Click()
 mbolEditRefersTo = False
 Me .txtRefersTo = Me .lstNames. Column (3, Me .lstNames.ListIndex)
 Call EnableEditing(False)
 End Sub

 Quite simple, huh? It sets mbolEditRefersTo = False , as a clear indication that txtRefersTo is not in
edit mode anymore, updates the txtRefersTo value to the current Name. RefersTo property (which is stored in
 lstNames. Column (3)), and calls Sub EnableEditing(False) , which will revert the frmNames control’s state.

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

330

 When you click cmdAccept , you want to make changes to the Name.txtRefersTo property, so the
 cmdAccept_Click() event must execute this code:

 Private Sub cmdAccept_Click()
 Dim nm As Name

 mbolEditRefersTo = False
 Set nm = Names (Me .lstNames. Column (0, mcolItemsSelected(1)))
 nm. RefersTo = Me .txtRefersTo
 Call EnableEditing(False)
 Call FilllstNames
 Call SelectItems
 End Sub

 This time, the Name. RefersTo property is updated according to the new value typed in the txtRefersTo
text box, Sub EnableEditing(False) is called to return frmNames controls to their default state, Sub
FilllstNames() is called to update the lstNames ListBox , and Sub SelectItems() is called to reselect
the edited Name object on lstNames . Easy, huh?

 The last special case happens when the user tries to abandon the txtRefers to change by clicking the
 frmNames Edit CommandButton or lstNames ListBox . If the user clicks the Edit button, you must do nothing,
because frmNames will be unloaded, while frmEditName is opened.

 Figure 5-32. Whenever you click cmdRefersTo and select another cell range or type anything inside txtRefersTo
to change the selected Name. RefersTo property, Sub Enabled Editing() is executed, disabling most UserForm
controls, except the txtRefersTo and lstNames ListBoxes , while the cmdDiscard and cmdAccept command
buttons become enabled !

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

331

 But if the user clicks the lstNames ListBox , it is trying to abandon the txtRefersTo new value, so the
code uses the lstNames_Enter() event to raise a MsgBox () with the same message used by the Excel
Name Manager, executing this code:

 Private Sub lstNames_Enter()
 Dim strMsg As String
 Dim strTitle As String

 If mbolEditRefersTo Then
 strMsg = "Do you want to save the changes you made to the name reference?"
 strTitle = "Change name reference?"
 Select Case MsgBox (strMsg, vbYesNo + vbDefaultButton2 + vbCritical, strTitle)
 Case vbYes
 Call cmdAccept_Click
 Case Else
 Call cmdDiscard_Click
 End Select
 End If
 End Sub

 This time, the MsgBox () offers two options: accept or discard the change (discard is the default option,
by clicking No). Whichever decision the user makes, cmdAccept or cmdDiscard Click() events are called to
accept or discard the Name. RefersTo editing! Figure 5-33 shows the message received whenever an attempt
is made to abandon the txtRefersTo editing.

 Figure 5-33. This message is issued by the lstNames_Enter() event procedure that warns the user that it is
about to abandon the changes made to the selected Name. RefersTo property

CHAPTER 5 ■ PROGRAMMING THE MICROSOFT EXCEL RANGE OBJECT

332

 ■ Attention If you are wondering why I used the lstNames_Enter() event procedure instead of any
 txtRefersTo event to detect any txtRefersTo change, it is because if I used any txtRefersTo event, the user
could not click cmdDiscard or cmdAccept without firing the event. By transferring the event to the only control
it can click (ListNames), I use exactly the same programming technique employed by the Excel Name Manager.
The user can change the txtRefersTo content, click cmdAccept or cmdDiscard , or be warned that Excel
doesn’t make such decisions after attempt to change the Name. RefersTo property.

 Chapter Summary
 In this chapter, you learned about the following:

• How to use two VBA UserForm objects (frmNames and frmEdit) to mimic the way
Excel Name Manager behaves

• How to use Excel Name object properties and methods to create and edit any Name
object

• How to use an Excel Names collection to select a given Name object

• That Excel Names collection allows the insertion of different scope Name objects
(workbook or sheet scope)

• That you can use the Application .InputBox method to select a valid range address
to any Name object

• That to change a Name address by adding or removing rows/columns, you must
successively use the Range. Resize and Range.Name properties

• That when Name.Visible property is set to False , you can hide the Name object on
Excel Name box or Excel Name Manager dialog box

• That to change the Name.Visible property you must use VBA code

• How to use VBA Collection object variable to hold programming data

• How to use the Range. Find method to search for worksheet information

• How to use the Excel Replace () function to easily find and replace data on any
string variable

• Many different VBA programming techniques to master VBA programming and
worksheet applications development

 In the next chapter, you will learn about special Range object methods and properties that can be used
to enhance the data management of your worksheet applications.

333© Flavio Morgado 2016
F. Morgado, Programming Excel with VBA, DOI 10.1007/978-1-4842-2205-8_6

 CHAPTER 6

 Special Range Object Properties
and Methods

 Although the Range object is the last item in the Microsoft Excel object model hierarchy (shown earlier in
Figure 2-1 in Chapter 2), it is the most important one because it represents the source of all information
stored in any Excel file, including each cell value and any group of cell values.

 The Range object fires no event but holds the most useful properties and methods to deal with the
workbook data set, and its programmable interface is implemented by many different commands on the
 Microsoft Excel ribbon.

 In this chapter, you will learn how to program some of the Range object properties and methods
using VBA, so you can implement certain Excel tasks into your solutions, creating really great worksheet
applications. Among the tasks you’ll learn are range selection; cut, copy, and paste operations; sort and filter
operations; and cell selection operations. With this information, you will be able to navigate (walk) your
worksheet data and manipulate it in any way you need.

 I could use many different types of worksheet data, such as business sales data, human resources data,
scholar grade data, quality control data, scientific research data, and any other type of data that a worksheet
application is based on to allow the user make data selections and perform useful calculations, eventually
generating the associated chart analysis.

 To accomplish this task, this chapter will use as an example a very large worksheet data set: the United
States Department of Agriculture (USDA) Agriculture Research Service (ARS) food table using Standard
Reference (SR) file’s 27 th version (SR27). This offers about 8,800 food items (rows) using about 180 nutrient
(columns) to describe their nutritional value. This is a data set large enough to mimic most real situations
that worksheet applications must face. You can find all the files in this chapter in the Chapter06.zip file that
you can download from the book’s Apress.com product page, located at www.apress.com/9781484222041 , or
from http://ProgrammingExcelWithVBA.4shared.com .

 Defining a Range with VBA
 To master Microsoft Excel VBA programming, you must know how to easily determine the size and address
of any contiguous cell range inside an Excel workbook. Figure 6-1 shows the sr27_NutrientsPer100g.
xls Excel 2003 workbook file, containing the 27 th version of the ARS-USDA food tables with all the nutrient
information available for a 100g portion of food.

http://dx.doi.org/10.1007/978-1-4842-2205-8_2
http://www.apress.com/9781484222041
http://programmingexcelwithvba.4shared.com/

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

334

 ■ Attention The sr27_NutrientsPer100g.xls Excel 2003 workbook that you can extract from Chapter06.
zip was generated using the Microsoft Access USDA Food List Creator.mdb application, which is capable of
opening and exploring any SRxx.mdb (Access 2003) or SRxx.accdb (Access 2007 or later) file and generating a
complete USDA-ARS food table using all nutrient values available, offering a complete set of range names to allow
exploration by an Excel application. This workbook file was manipulated by removing all its range names and had
its default food item order changed so you can practice this chapter’s exercises. Chapter 9 shows how to use this
Microsoft Access application to generate other workbook files for newer versions of the SR nutrient database.

 Figure 6-1. This is sr27_NutrientsPer100g.xls, containing the ARS-USDA food table, that you can extract from
the file Chapter06.zip. It has an enormous nutritional food table comprising 8,842 food items and up to 185
columns of nutrient information

http://dx.doi.org/10.1007/978-1-4842-2205-8_9

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

335

 When you open the sr27_NutrientsPer100g.xls file for the first time, you will notice that it has a large
food table on a single USDA worksheet tab, ordered by the Long_Desc column (food name Long Description).
It has cell A7 selected by default, and to know the size of the food table, you can use Excel’s End key
capabilities.

 1. From cell A7 , press the End key followed by the Down Arrow key (or press
Ctrl+Down Arrow) to reach cell A8849 (the last filled cell in column A , meaning
that the worksheet has 8,849 - 7 = 8,842 food items).

 2. From cell A8849 , press the End key followed by the Up Arrow key (or press
Ctrl+Up Arrow) to reach cell A6 (the first food table row, which counts columns
beginning on column B – the lng_Desc column, which has each food item name).

 3. From cell A6 , press End followed by the Right Arrow key (or press Ctrl+ Right
Arrow) to reach cell GC6 (the last filled cell in row 6 , meaning that the worksheet
has 184 columns).

 ■ Attention When you reach cell GC6 , you can use the VBA Immediate window to find which column number
you are on by typing in this instruction:

 ?Range(ActiveCell. Address). Column 184

 The Excel End capabilities work like this:

• If the selected cell is empty, when you press the End key followed by any arrow
key (or press Ctrl+Arrow key), Excel will move to the next nonempty cell using the
keyboard arrow direction. If a nonempty cell can’t be found, Excel will select the cell
next to the boundary of the worksheet.

• If the selected cell is filled, when you press the End key followed by any arrow key (or
press Ctrl+any arrow key), Excel will move to the last filled cell using the keyboard
arrow direction. If there is no filled cell in that direction, Excel will select the next
empty cell.

 Using the Range.End Property
 You can mimic this previous navigation exercise using the VBA Immediate window and the Range object End
property to move through any worksheet cell range. The Range.End property has this syntax:

 Expression.End(Direction)

 In this code:

 Expression : This is required; it is a variable that represents a Range object.

 Direction : This is required; it is a Microsoft Excel constant that can be set to one
of the following:

 xlDown = -4121 , move down
 xlToLeft = -4159 , move to left
 xlToRight = -4161 , move to right
 xlUp = -4162 , move up

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

336

 To practice with the Range.End property, select again cell A7 of the USDA worksheet from the sr27_
NutrientsPer100g.xls Excel 2003 workbook and type this instruction in the VBA Immediate window:

 ?Range(Selection. Address).End(xlDown)
 03217

 The cell that will receive the End property (A7) was returned by Selection. Address , which is an
 Application property that returns the selected cell. Also note that the Range.End property returns the value
of the cell selected by the End property (03217 is the NDB_No value—Nutrient Database Number—of the cell
on the last range row), keeping the selected cell on the active sheet. If you want to select the last cell row
beginning from cell A7 , use the Range.Select method, as follows:

 ?Range(Selection. Address).End(xlDown) .Select
 True

 This time, the last cell in the down arrow direction (A8849) will be correctly selected.
 You do not need to first select cell A6 to reach the last column used by the USDA worksheet food table.

Using VBA, you can begin straight from it using the following syntax in the VBA Immediate window (note
that this time I did not use VBA ? print character):

 Range("A6").End(xlToRight).Select

 Using the Range. CurrentRegion Property
 To get the entire range address used by any contiguous cells (up to the point that Excel finds a blank row or
column), use the Range. CurrentRegion property. Using the USDA worksheet, if you select any filled column A
cell beginning on cell A6 and use it to identify the range, you can select the entire range by using the Range.
Select property, typing this instruction in the VBA Immediate window:

 Range("A6").CurrentRegion.Select

 All the cells that the USDA worksheet associated to the entire food table will be automatically selected.
To find out the address returned by the Range. CurrentRegion property without selecting it, use the
 Range. Address property in this way in the VBA Immediate window:

 ?Range("A6").CurrentRegion. Address
 A5:GC8849

 ■ Attention Note that Excel selected from cell A5 to cell GC8849 , including row 5 , which counts the columns
of the nutritional food table beginning on column B , the food item Long_Desc column. This column count is
important to search the USDA food table using the Excel VLOOKUP() function.

 Moving Through a Range with VBA
 One of the most important operations you need to make when you create a worksheet application solution
is to walk along the worksheet data to make some operation. There are two different properties that you can
use to run through any worksheet data set: Range.Cells and Range. Offset .

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

337

 Using the Cells Property
 The Cells property is a collection of cells and returns a Range object representing a single cell using a
convenient bidimensional matrix. To reference a specific cell by its relative row and column, use this syntax:

 Object.Cells(RowNumber, ColumnNumber)

 In this code:

 Object : This is optional; it is an object variable representing a Worksheet or
 Range object.

 RowNumber : This is required; it is the cell row number;

 ColumnNumber : This is required; it is the cell column number.

 When you use the Cells property alone, it returns a collection of all cells from the ActiveSheet object
(the sheet that has the focus). If you prefix it with any Worksheet object variable, it will return all cells of the
referenced sheet tab; and if you prefix it with any Range object, it will represent all cells associated to that
range.

 As you can see, the Cells property is for relative navigation to all cells of any Worksheet or Range object.
Supposing that you want to set a reference to all cells of the USDA worksheet nutrient table (disregarding rows
 1:4 cells), you can use the next instruction, which will return it to the rg object variable:

 Set rg = Range(“A6”).CurrentRegion.Cells

 And you can confirm that by using the Range. Address property, applied to the Cells collection of the
last instruction, using the VBA Immediate window in this way:

 ?Range(“A6”).CurrentRegion.Cells. Address
 A5:GC8849

 Note that when you use a given Range.Cells property (like Range(“A6”).Cells), the first row and
column of the Cells collection relates to the left cell of the range. To realize this, use the next syntax in the
VBA Immediate window to print the first cell address returned by the CurrentRegion property:

 ?Range(“A6”).CurrentRegion.Cells(1,1). Address
 A5

 ■ Attention Note that the Range object was set to cell A6 , while the CurrentRegion property returned cell A5
as it top-left cell. In fact, if you use any column A cell inside the nutritional table, the CurrentRegion property
will always return the same address: A5:GC8849 .

 As you saw in the previous chapter, you can reference all individual cells of any range using two nested
 For...Next instructions: the outer loop runs through all range rows, while the inner loop runs through all
range columns (vice versa). To limit the loops, you use the Range.Rows.Count and Range.Columns.Count
properties (Count is a property of the Range.Rows and Range.Columns collections).

 The next code fragment can perform a loop through all cells of the USDA worksheet nutrient table,
returned by the Range. CurrentRegion property:

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

338

 Dim rg as Range
 Dim rgCell as Range
 Dim intI as Integer
 Dim intJ as integer

 Set rg = Range(" A20 ").CurrentRegion '<--This will return address A5:GC8849
 For intI = 1 to rg.Rows.Count
 For intJ = 1 to rg.Columns.Count
 Set rgCell = rg.Cells(intI, inJ)
 ‘Do something here...
 Next J
 Next I

 This time I used cell A20 inside the USDA worksheet column A nutrient table to get the
 Range. CurrentRegion collection reference and used the rg.Cells(intI, inJ) collection inside the inner
 For…Next loop to return a reference for each cell to the rgCell variable.

 Using the Range. Offset Property
 Another way to navigate through worksheet cells is use the Range. Offset property, which can jump to any
point of the worksheet relative to any desired cell. It has this syntax:

 Expression.Offset(RowOffset, ColumnOffset)

 In this code:

 Expression : This is required; it is an expression that returns a Range object.

 RowOffset : This is optional; it is the number of rows (positive, negative, zero) by
which the range is to be offset. Positive values are offset downward, and negative
values are offset upward. The default value is 0.

 ColumnOffset : This is optional; it is the number of columns (positive, negative, or
zero) by which the range is to be offset. Positive values are offset to the right, and
negative values are offset to the left. The default value is 0.

 As with the Cells property, the Range. Offset property doesn’t change the ActiveCell address relative
to the cell you want to offset. To select the offset cell, you will need to use the Range.Select property.

 The next instructions use Range. Offset to run through all cells of the USDA worksheet nutrient table,
relative to the top-left cell returned by the Range. CurrentRegion property:

 Dim rg as Range
 Dim rgInitial as Range
 Dim rgCell as Range
 Dim intI as Integer
 Dim intJ as integer

 Set rg = Range("A100").CurrentRegion '<--This will return address A5:GC8849
 Set rgInitial = rg.Cells(1,1)
 For intI = 0 to rg.Rows.Count -1
 For intJ = 0 to rg.Columns.Count -1
 Set rgCell = rgInitial.Offset(intI, intJ)
 'Do something here...
 Next J
 Next I

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

339

 Did you note the differences? After you get all desired cells using the Range. CurrentRegion property,
the top-left range cell was set to the rgInitial variable. You must also use an intI loop from 0 to rg.Rows.
Count - 1 (and an intJ loop from 0 to rg.Columns.Count-1) to run through all Range. CurrentRegion cells,
since rgInitial.Offset(0,0) returns the top-left range cell address (cell A5). The inner loop will select each
cell of the first range row, while the outer loop will change the range row, virtually selecting every range cell.

 Creating the USDA Range Name
 Any worksheet application created to explore the sr27_NutrientsPer100g.xls file (or any other
version) must base the search for any food item—and its nutrient values—on the Excel VLOOKUP()
function to search the USDA worksheet using a defined USDA range name. This name comprises all USDA
sheet tab nutrient cells from range B7:GC8849 (all nutrient cell values beginning with the nutrient
column name, Long_Desc , and discarding the Ndb_No first column, which is column A , and the nutrient
row names, which is row 6).

 For example, to get the water amount of the food item in cell B13 of Figure 2-1, which is “Acerola, (west
indian cherry), raw,” you can use the next VLOOKUP() formula:

 =VLOOKUP(B13; B7:GC8849; 7, FALSE)

 B13 (1 st argument) is the item you are vertically searching on in the first column of the B7:GC8849 range
(2 nd argument), returning its 7 th column (3 rd argument) for an exact match (4 th argument = False). The water
amount will be returned if the B13 value can be found on the searched range.

 ■ Attention Search Excel Help for more information about the VLOOKUP() function.

 Considering the sr27_NutrientsPer100g.xls USDA sheet tab and using the knowledge you have
gathered so far, you already know that you can get all USDA worksheet cells beginning on cell A6 (or any other
filled cell beginning on cell A5) using the Range.CurrentRegion.Address property.

 ?Range(“A6”).CurrentRegion. Address
 A5:GC8849

 Since this last instruction gets column A and rows 5 and 6 (which you don’t want on the final range), you
can easily offset this range by one column to the right and two rows below using the Range. Offset property,
as follows:

 ?Range(“A6”).CurrentRegion.Offset(2,1). Address
 B7:GD8851

 Note that this offset operation now returns one extra empty column and two extra empty rows
(column GD and rows 8850 and 8851), which can be easily removed using another Range. Resize operation
(Figure 6-2).

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

340

 So, you can easily create the USDA range address and resize it to the desired row number using a two-
step approach: first create the range name and then resize it to the correct row number.

 1. The first instruction can create a USDA range name using the VBA Immediate
window.

 Range(“A6”).CurrentRegion.Offset(2,1).Name=”USDA”

 2. The second instruction removes the two extra rows created by the Range. Offset
property, using the Range. Resize property, and re-creates the range. It uses
 Range("USDA").Rows.Count -2 and Range("USDA").Columns.Count-1 for the
 Resize property’s Row and Column arguments.

 Range(“USDA”). Resize (Range(“USDA”).Rows.Count-2, Range(“USDA”).
Columns.Count-1).Name = “USDA”

 You can easily create the USDA range name to represent the entire SR27 food table, associating
it to cell address B7:GC8849 using a VBA procedure code, as you can see in the next Function
CreateUSDARangeName() procedure code:

 Public Function CreateUSDARangeName()
 Dim rg As Range

 Figure 6-2. This figure shows what happens when you use the Range. CurrentRegion property to select all
USDA worksheet nutrient data and then use the Range. Offset property to displace it by two rows and one
column

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

341

 Set rg = Sheets ("USDA").Range("A6").CurrentRegion
 Set rg = rg.Offset(2, 1)
 Set rg = rg. Resize (rg.Rows.Count - 2, rg.Columns.Count - 1)
 rg.Name = "USDA"
 End Function

 Sorting Range Names
 Any range can be easily sorted using the Excel Sort command found in the Edit area of the Home tab of
the ribbon. First select the range to be sorted and then apply one of the Sort & Filter options: Sort A to Z,
Sort Z to A, or Custom Sort. All these operations can be done by the Range. Sort method, which has this
(enormous) syntax:

 Expression .Sort(Key1, Order1, Key2, Type, Order2, Key3, Order3, Header, OrderCustom,
MatchCase, Orientation, SortMethod, DataOption1,DataOption2, DataOption3)

 In this code:

 Expression : This is required; it is a variable that represents a Range object.

 Key1 : This is optional; it is the first sort field, either as a range name (String) or a
 Range object, which determines the values to be sorted.

 Order1 : This is optional; it is an Excel XlSortOrder constant that determines the
sort order for the values specified in Key1 .

 Key2 : This is optional; it specifies the second sort field. It cannot be used when
sorting a pivot table.

 Type : This is optional; it specifies which elements are to be sorted when sorting a
pivot table.

 Order2 : This is optional; it is an Excel XlSortOrder constant that determines the
sort order for the values specified in Key2 .

 Key3 : This is optional; it specifies the third sort field. It cannot be used when
sorting a pivot table.

 Order3 : This is optional; it is an Excel XlSortOrder constant that determines the
sort order for the values specified in Key3 .

 Header : This is optional; it is an Excel XlYesNoGuess constant, which specifies
whether the first row contains header information. xlNo is the default value;
specify xlGuess if you want Excel to attempt to determine the header presence.

 OrderCustom : This is optional; it determines specific sort orders for known values
(like “Sunday, Monday Tuesday…” to sort weekdays).

 MatchCase : This is optional; it is set to True to perform a case-sensitive sort, and
it is set to False to perform a non-case-sensitive sort. It cannot be used with
pivot tables.

 Orientation : This is optional; it is an Excel XlSortOrientation constant that
specifies whether the sort should be in ascending or descending order.

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

342

 SortMethod : This is optional; it is an Excel XlSortMethod that specifies the sort
method.

 DataOption1 : This is optional; it is an Excel XlSortDataOption constant that
specifies how to sort text in the range specified in Key1 ; it does not apply to pivot
table sorting.

 DataOption2 : This is optional; it is an Excel XlSortDataOption constant that
specifies how to sort text in the range specified in Key2 ; it does not apply to pivot
table sorting.

 DataOption3 : This is optional; it is an Excel XlSortDataOption constant that
specifies how to sort text in the range specified in Key3 ; it does not apply to pivot
table sorting.

 Although the Range. Sort method seems to be quite complex, it is not! You just need to specify the range
address to be sorted and use the Key , Key2 , and Key3 arguments to identify the columns used in the sort
process (supposing that all three key columns must be sorted ascending).

 No matter the range you select to be sorted, to specify any sort key column, you must use a range object
variable that returns any cell of the desired column or a range that specifies the entire column—as long as
the column belongs to the sort key. To indicate that you want to sort the range by column C value, you can
use either Range("C1") or Range("C:C") in the Range. Sort Key1 argument.

 The next instruction allows you to sort the USDA range name (or the range represented by cells
 B7:GB8693) by its FdGrp_Desc column value—column C , the food group description—using the VBA
Immediate window. (Note that although the C1 cell does not belong to the USDA range name, it can be used
to indicate the desired sort column.)

 Range(“USDA”).Sort Range(”C1”)

 To sort the USDA range name first by its FdGrp_Desc column (column C) and then by its Long_desc
column (food name or column B), both in ascending order, use both the Key1 and Key2 arguments, as
follows:

 Range(“USDA”).Sort Range(”C1”), , Range(”B1”)

 Figure 6-3 shows the state of the USDA sheet tab after the last sort command, becoming sorted first by
the FdGrp_Desc column (column C) and then by the Long_Desc column (column B)—each food group has its
food items sorted alphabetically in ascending order!

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

343

 Using Cascading Data Validation List Cells
 You can create great worksheet applications to deal with large data sets by using the Excel cascading data
validation list strategy, which allows the user to select the desired data category in the first data validation
list cell (the master list) and the associated data on another data validation list cell (the dependent list).
Consider the Figure 6-4 example, which shows a list of food categories and range names that identify food
items associated to each food category.

 Figure 6-3. You can test the Range. Sort method using the VBA Immediate window to apply any sorting to a
specified range. After you have created the USDA range name (B7:GB8693), you can easily sort it by its Fd_Grp
column first and then by its Lng_Desc column using this instruction: Range. Sort Range("C1"), Range("B1")

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

344

 By using the Excel data validation list option, you can create two cascading data validation list cells on
cells B12 and D12 , using the Allow = List option.

• The master list (cell B12) has it Source option set to the formula
 =FoodCategoriesList , which points to the FoodCategoriesList range name
(a range name that has a list of valid range names).

• The dependent list (cell D12) has its Source option set to the formula
 =Indirec(B12) .

 This way, whenever you select an item (valid range name) on the master list cell, the dependent list cell
is automatically filled with all cells of the range name selected in the master list (Figure 6-5).

 Figure 6-4. The food category names pertain to a FoodCategoriesList range name, and each food category is
associated with its own set of cells

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

345

 The USDA Food Composer.xlsm Worksheet Application
 Figure 6-6 shows a worksheet application that uses such approach. This is the USDA Food Composer .xlsm
macro-enabled workbook, which allows you to compose any recipe using up to 18 different food items.

 Figure 6-5. Using cascading data validation list cells, you can fill the master list with a range name that
points to a list of valid range names and use the Excel Indirect() function to fill the dependent data validation
list. Whenever a range name is selected on the master list, the dependent list is automatically filled with the cell
values associated to the selected range name

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

346

 Figure 6-6. This is the USDA Food Composer.xlsm macro-enabled workbook, which allows you to compose
any recipe using up to 18 different food items, determining some recipe data, like the portion number and
type, and reducing it to a single portion. The application creates the Nutrition Facts food label for any recipe
amount, along with a detailed nutrient analysis using all possible nutrients granted by the ARS-USDA SRxx
version used by the associated USDA worksheet

 There are places to define the recipe name, specify the common measure, specify the servings per
recipe, and reduce it to a single portion using the one-serving factor (a fraction value that reduces the
servings per recipe to a single recipe). The application composes the recipe’s Nutrition Facts food label and
gives the best nutrient analysis available for a single recipe portion recovering nutrient data from the USDA
worksheet (found in the Chapter06.zip file).

 Note in Figure 6-6 that you first select the food category (Dairy_and_Egg_Products) and then select the
food item (yogurt, Greek, plain, nonfat) and then the worksheet application does the job.

 This is possible because the USDA worksheet used by this application has these range names:

• One range name to represent all food items of each food category (like Dairy_and_
Egg_Products).

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

347

• One range name that contains all food category range names; it is the
 FoodCategoriesList range name, which is used to populate the data validation
 ListBox of each food category row on the worksheet.

• A USDA range name to represent the entire ARS-USDA food table, beginning on
column B (Long_Desc , or food item description), using all its nutrient columns and
discarding it headers—the way you did in the previous section. This USDA range
name is where VLOOKUP() will search for each food item’s nutritional information.

 ■ Attention A big set of Excel VLOOKUP() functions was inserted on hidden columns V9:XFD26 for each
food item nutrient value amount per 100g. Each formula uses a direct rule to recalculate the value based on
the food item weight used by the recipe. A Sum() formula sums all food items’ nutrient columns, returning
values to the Nutrition Facts food label and the Nutrient Composition area below the application input cells.
The worksheet application hides these calculated cells, all unused columns and rows, and worksheet gridlines
and headers to give it a more professional touch. It also protects the worksheet (no password) allowing just
unprotected, input cells to be selected. You are invited to explore how the application was created and works.

 After the recipe is composed, you can click the Save button to run standard macro-recording VBA code
and store it inside the My_Recipes food category—which does not belong to the original ARS-USDA food
table but is part of the USDA range name, added as the last food category range name on the table bottom.

 Once a recipe is saved, you can select the My_Recipes food category and use it as any other food item—
along with all its nutrient information—to compose another recipe or meal.

 By keeping the New Composition sheet tab empty and making copies of it (right-click it, select Move
or Copy, check Create a Copy, and press Enter), the user can reuse the worksheet using multiple sheet
tabs to store independent recipes in a single Excel file. Such an approach was used to create the USDA Food
Composer (with Recipes).xlsm worksheet application (which you can also extract from the Chapter06.zip
file to see how it composes recipes and uses those recipes to compose meals).

 Creating USDA Worksheet Range Names
 If you are wondering whether all these USDA worksheet range names were created by the USDA Food List
creator.accbd Microsoft Access application, you are absolutely right. This Microsoft Access application first
created the food table, and then it exported the table to Excel and used the techniques described in this book
to create all these range names. So, anyone can create such smart nutritional applications.

 This is what you need to do with sr27_NutrientsPer100g.xls to leave it ready to be used on such
nutritional applications:

 1. Delete all range names already defined in the sr27_NutrientsPer100g.xls USDA
worksheet (if any).

 2. Sort the USDA worksheet with the Range. Sort method to show the food items
sorted first by FdGrp_Desc and then by Long_Desc (the way you did in Figure 6-3).

 3. Create all food category range names using the Range. Offset property to run
through the FdGrp_Desc column, identifying each range boundary.

 4. Create the My_Recipes food category at the bottom of the USDA food table.

 5. Create the FoodCategoriesList range name, which contains an alphabetical list
of all food category range names.

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

348

 6. Create the USDA range name.

 7. Save the worksheet, ready to be used by other worksheet applications.

 You can see how to apply all these actions using VBA procedure code by extracting the sr27_Nutrients
Per100g.xlsm macro-enabled workbook from the Chapter06.zip file and selecting the basCreateRange
Names code module, where you will find Function CreateRangeNames () , which has this code:

 Public Function CreateRangeNames ()
 Dim ws As Worksheet
 Dim nm As Name
 Dim rg As Range
 Dim strCategory As String
 Dim rgFirstCell As Range
 Dim rgLastCell As Range
 Dim rgFoodCategoriesList As Range

 'Delete all range names
 For Each nm In Names
 nm.Delete
 Next

 'Create USDA range name
 Set ws = Sheets ("USDA")
 Set rg = ws.Range("A6").CurrentRegion
 Set rg = rg.Offset(2, 1)
 Set rg = rg. Resize (rg.Rows.Count - 1, rg.Columns.Count - 1)
 rg.Name = "USDA"

 'Set initial cell of rgFoodCategoriesList
 Set rgFoodCategoriesList = ws.Cells(7, Range("USDA").Columns.Count + 3)

 'Sort USDA
 Range("USDA").Sort ws.Range("C1"), , ws.Range("B1")

 'Create food categories range names
 Set rg = ws.Range("C7")
 Do
 'Define the food category name
 strCategory = FixName(rg)
 Set rgFirstCell = rg
 Do
 Set rg = rg.Offset(1, 0)
 Loop While rg = rgFirstCell

 'Get the last item of the food category
 Set rgLastCell = ws.Cells(rg.Row - 1, rg. Column)
 Range(ws.Cells(rgFirstCell.Row, "B"), ws.Cells(rgLastCell.Row, "B")).Name = strCategory

 'Save new food category on rgFoodCategoriesList
 rgFoodCategoriesList = strCategory
 Set rgFoodCategoriesList = rgFoodCategoriesList.Offset(1, 0)
 Loop Until rg = ""

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

349

 'Create My_Recipes range name
 rg.Offset(0, -1).Name = "My_Recipes"
 rgFoodCategoriesList = "My_Recipes"

 'Define, sort and create range FoodCategoriesList
 Set rgFoodCategoriesList = ws.Range(ws.Cells(7, rgFoodCategoriesList. Column),

rgFoodCategoriesList. Address)
 rgFoodCategoriesList.Sort rgFoodCategoriesList
 rgFoodCategoriesList.Name = "FoodCategoriesList"

 'Save the workbook
 ThisWorkbook.Save
 End Function

 The code begins by deleting all names already created in the workbook (if any), using a For Each...Next
loop through the Application . Names collection.

 'Delete all range names
 For Each nm In Names
 nm.Delete
 Next

 It then sets a reference to the USDA worksheet so all cells can be referenced to this sheet tab without
needing to activate it, and the USDA range name is created using the same techniques described earlier in
this chapter.

 'Create USDA range name
 Set ws = Sheets ("USDA")
 Set rg = ws.Range("A6").CurrentRegion
 Set rg = rg.Offset(2, 1)
 Set rg = rg. Resize (rg.Rows.Count - 1, rg.Columns.Count - 1)
 rg.Name = "USDA"

 ■ Attention The USDA range name created will keep a blank row at the bottom as a provision to insert the
 My_Recipes range name.

 Once the USDA range name is created, it sets the position where the FoodCategoriesList range name
(which will keep a list of all individual food category range names) will be placed: at row 7 and two columns
to the right of the last USDA range name column.

 'Set initial cell of rgFoodCategoriesList
 Set rgFoodCategoriesList = ws.Cells(7, Range("USDA").Columns.Count + 3)

 ■ Attention The expression Range("USDA").Columns.Count will return how many columns the USDA range
name has. Since it starts at column B , you must add it 3 to set the position two columns to the right of the last
USDA range name column.

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

350

 The USDA range name is then sorted to put it in the desired sort order: first by FdGrp_desc (column C)
and then by Long_Desc (column B).

 'Sort USDA
 Range("USDA").Sort ws.Range("C1"), , ws.Range("B1")

 Once the USDA range name is sorted, you are ready to begin creating all food category range names. To
do this, you must begin on cell C7 (first food category), store the food category range name, and loop down
through column C until the food category name changes. When this happens, you will have the first and last
rows of the food category, and you will set the food category range name on these rows of column B , where
the food item names reside.

 The food category range name will be added to the current position of the FoodCategoriesList range
name, and the next food category will then be equally processed, until the food category name becomes an
empty string ("" , two successive double quotes), as an indication that the code reached the last USDA food
table row on column C , indicating that the job was done.

 This entire process is made using two nested Do...Loop instructions. The outer loop controls the
entire process and finishes when the food category becomes an empty string. The inner loop uses the
 Range. Offset method to run down through column C .

 The entire process begins by setting the initial position on cell C7 , attributed to the rg object variable.

 'Create food categories range names
 Set rg = ws.Range("C7")

 The outer Do...Loop begins getting the current food category name to be created. Note that it uses
the FixName() procedure to remove invalid characters from the range name (spaces are changed to
underscores) and to store it into the strCategory string variable.

 Do
 'Define the food category name
 strCategory = FixName(rg)

 ■ Attention The FixName() Function procedure resides in the basFixName code module (available in the
 CHAPTER05.zip file) and was commented on in Chapter 5 .

 The search for the food category boundaries begins by storing the rg object variable into the
 rgFirstCell object variable, and an inner Do…Loop instruction runs down through column C using
 rg,Offset(1,0) until a different food category name is found. Note that it does this by comparing two range
object variables, rg and rgFirstCell .

 Set rgFirstCell = rg
 Do
 Set rg = rg.Offset(1, 0)
 Loop While rg = rgFirstCell

 ■ Attention Don’t forget that when the Range object points to a single cell, it returns the cell value, and when
it points to more than one cell, it returns an array of values.

http://dx.doi.org/10.1007/978-1-4842-2205-8_5

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

351

 When a different food category is found, the inner loop ends, and you have the boundaries of the last
processed food category, which is stored in the rgLastCell object variable. Note that it uses the Cells
property along with the rg.Row-1 property to correctly reference the last food category row.

 'Get the last item of the food category
 Set rgLastCell = ws.Cells(rg.Row - 1, rg. Column)

 The entire range is then created using the Range(cell1, cell2) arguments. To define the first range
cell (cell1), it uses the Cells property with rgFirstCell.Row and column B . To define the last range cell, it
uses the Cells property with rgLastCell.Row and column B , which will return all food item names of this
food category. The defined range is then named using the Range.Name property.

 Range(ws.Cells(rgFirstCell.Row, "B"), ws.Cells(rgLastCell.Row, "B")).Name = strCategory

 And once the new food category range name is created, its name is stored in the cell value associated to
the rgFoodCategoriesList object variable.

 'Save new food category on rgFoodCategoriesList
 rgFoodCategoriesList = strCategory

 The rgFoodCategoriesList is offset one row down, and the outer loop verifies whether the new food
category selected that is responsible for ending the inner Do…Loop instruction is equal to an empty string
(""). If it is not , another food category is found, and the loop runs again to create it. If it is, the entire USDA
food table has been processed, and all food category range names have been created.

 Set rgFoodCategoriesList = rgFoodCategoriesList.Offset(1, 0)
 Loop Until rg = ""
 t

 When this happens, the code is on the last USDA range row. This is an empty row, reserved with the My_
Recipes range name, which is then created and added to the cell pointed at by the rgFoodCategoriesList
object variable.

 'Create My_Recipes range name
 rg.Offset(0, -1).Name = "My_Recipes"
 rgFoodCategoriesList = "My_Recipes"

 After the last food category has been created and added to the rgFoodCategoriesList cell, the
 rgFoodCategoriesList is redefined to include all food category range names, beginning on row 7 and ending
in the row associated to the My_Recipes range name. Note that it uses Range(cell1, cell2) arguments to
define the entire range. The cell1 address is defined by the Cells() property, using row 7 and rgFoodCategor
iesList. Column to define the first cell address, while cell2 is defined by rgFoodCategoriesList. Address .

 'Define, sort and create range FoodCategoriesList
 Set rgFoodCategoriesList = ws.Range(ws.Cells(7, rgFoodCategoriesList. Column),
rgFoodCategoriesList. Address)

 Once the rgFoodCategoriesList range is defined, it is sorted to put the My_Recipes food category in
the appropriate order. Note that the Range. Sort Key1 argument is defined to the rgFoodCategoriesList
range itself, because it has just one column.

 rgFoodCategoriesList.Sort rgFoodCategoriesList

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

352

 The FoodCategoriesList range name is created using the Range.Name property, and the workbook is
saved, ending the CreateRangeNames () procedure.

 rgFoodCategoriesList.Name = "FoodCategoriesList"

 'Save the workbook
 ThisWorkbook.Save
 End Function

 To see the CreateRangeNames () procedure in action, type this command in the VBA Immediate window:

 ? CreateRangeNames ()

 In a blink of an eye, the USDA food table will be sorted, and all desired range names will be created! Your
computer is quite fast, huh?

 To confirm that the range names was created correctly, use the Excel Name box to select any range name,
or use the Excel Name Manager dialog box, which can be found on the Excel Formulas tab (Figure 6-7).

 Figure 6-7. Use the VBA Immediate window to run the CreateRangeNames () Function procedure and then
use the Excel Name box or the Name Manager dialog box to see all food categories names it created

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

353

 ■ Attention The USDA worksheet range names associated to each food category will remain the same as
long as the USDA range name remains sorted by the food category column (FdGrp_Desc).

 Finding the Last Worksheet Used Cell
 When you use large tables like the USDA-ARS food table using an Excel worksheet, there are times when
you will need to programmatically find the last-used worksheet cell, which will always be relative to the user
point of view. It can be the last-used cell on a specific row or column or the last-used cell on the last-used
row or last-used column of the worksheet. Figure 6-8 details these points of view on the Find Last Cell.
xlsm Excel macro-enabled workbook that you can find inside the Chapter06.zip file.

 Figure 6-8. The last-used cell relates to a specific point of view. It can be the last cell on a specific row or
column or the last cell on the last-used row or last-used column

 Finding the Last Worksheet Row/ Column with Range.End
 To find the last-used cell on a specific row or column on any worksheet, many Excel programming books and
Internet sites recommend this strategy:

 1. Select the last cell on the last worksheet row or column.

 2. Once the last possible cell is selected on the desired row (or column), use the
 Range.End (xlUp) method (or Range.End (xlToLeft)) to select the last-used cell
on a specific column (or row).

 The Find Last Cell.xlsm Excel macro-enabled workbook uses this strategy on functions LastRow()
and LastColumn() from the basLastCell code module.

 Public Function LastRow(rg As Range) As Long
 Dim lngRowsCount As Long

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

354

 lngRowsCount = ActiveSheet.Rows.Count
 LastRow = ActiveSheet.Cells(lngRowsCount, rg. Column).End(xlUp).Row
 End Function

 Public Function LastColumn(rg As Range) As Long
 Dim lngColumnsCount As Long

 lngColumnsCount = ActiveSheet.Columns.Count
 LastColumn = ActiveSheet.Cells(rg.Row, lngColumnsCount).End(xlToLeft). Column
 End Function

 Note that both LastRow() and LastColumn() expect to receive a Range object indicating the column
(or row) you want to inspect. You can use both functions to inspect the last-used row or column of the Find
Last Cell.xlsm workbook using the VBA Immediate window, with instructions like these (Figure 6-9):

 ?LastRow(Range("B1"))
 20
 ?LastColumn(Range("A5"))

 ■ Attention Function LastColumn() of basLastCell uses similar code to return the number of the
last-used column on an specific row.

 Figure 6-9. Using the VBA Immediate window, you can find the last-used cell of any row or column, using a
Range object as an argument to the functions

 Finding the Last Worksheet Row/Column with Worksheet.UsedRange
 If you want to find the last-used cell on the last-used row or column of any worksheet, use Worksheet.
UsedRange . This property returns a Range object according to the following:

• If the worksheet is empty, UsedRange returns A1 as its default address.

• If the worksheet has just one used cell, UsedRange returns the absolute reference to
the cell address.

• Otherwise, UsedRange returns the biggest rectangle necessary to encompass all used
cells on the worksheet, where the bottom-right cell represents the last-used column
and row addresses.

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

355

 You can verify the range address returned by the Worksheet.UsedRange property for Sheet1 of the
 Find Last Cell.xlsm workbook using the VBA Immediate window, using the ActiveSheet object and the
 Range. Address property, as follows:

 ?Activesheet.UsedRange. Address
 B2:L21

 The Worksheet.UsedRange property will return the last row and column with data, indicating on the
bottom-right range corner the last-used cell and last-used column (Figure 6-10).

 ■ Attention Note that UsedRange also returns the address of the first-used row and column.

 Figure 6-10. This is the rectangular range returned by the Worksheet.UsedRange cells. The bottom-right
corner coordinates (cell L21) indicate the last-used cell on the last-used column and last-used row

 Functions LastUsedRow() and LastUsedColumn() from the basLastCell code module of the Find
Last Cell.xlsm workbook use this property to return the number of the last-used worksheet row or column,
respectively:

 Public Function LastUsedRow() As Long
 LastUsedRow = ActiveSheet.UsedRange.Rows.Count
 End Function

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

356

 Public Function LastUsedColumn() As Long
 LastUsedColumn = ActiveSheet.UsedRange.Columns.Count
 End Function

 Note that both functions use the Count property of the Rows or Columns collection to return the desired
last row or column addresses. And with the knowledge you gathered so far in this chapter, you may note that
you can use the UsedRange property with the Cells() and End() properties to find the last-used cell on the
last-used row by typing in the VBA Immediate window an instruction like this:

 ?Activesheet.UsedRange.Cells(Activesheet.UsedRange.Rows.Count, Activesheet. UsedRange.
Columns.Count).End(xlToLeft). Address
 H21

 Did you note that? The UsedRange.Cells() property received as arguments UsedRange.Rows.Count and
 UsedRange.Columns.Count to select the last cell returned by the UsedRange property, which is located on the
last-used worksheet row. The End(xlToLeft) property applies to the UsedRange.Cells() property and selects
the last-used cell on the last-used worksheet row. The Address property returns the address of this specific cell.

 ■ Attention Using the End(xlUp) property, you easily select the last-used cell on the last-used worksheet
column.

 The functions LastUsedRowCell() and LastUsedColumnCell() from the basLastCell code module
of the Find Last Cell.xlsm workbook use this strategy to return the address of the last-used cell on the last-
used worksheet row or column, respectively.

 Public Function LastUsedRowCell() As String
 Dim lngRow As Long
 Dim lngColumn As Long

 lngRow = ActiveSheet.UsedRange.Rows.Count
 lngColumn = ActiveSheet.UsedRange.Columns.Count
 LastUsedRowCell = ActiveSheet.UsedRange.Cells(lngRow, lngColumn).End(xlToLeft). Address
 End Function

 Public Function LastUsedColumnCell() As String
 Dim lngRow As Long
 Dim lngColumn As Long

 lngRow = ActiveSheet.UsedRange.Rows.Count
 lngColumn = ActiveSheet.UsedRange.Columns.Count
 LastUsedColumnCell = ActiveSheet.UsedRange.Cells(lngRow, lngColumn).End(xlUp). Address
 End Function

 Warning: Range.End Method and Hidden Rows
 These strategies work well on most worksheets, but they seem to misbehave when you hide worksheet rows or
columns that have used cells. When this happens, the Range.End method fails and the functions LastRow() ,
 LastColumn() , LastUsedRow() , LastUsedColumn , LastUsedRowCell() , and LastUserColumnCell() will begin
to systematically fail to return the desired information. Instead, they will return the last used and visible cell.

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

357

 Try this experiment:

 1. On Sheet1 of the Find Last Cell.xlsm workbook, hide rows 10:21 and columns
 H:L . (Click the row 10 header and drag the mouse to row 21; right-click click any
selected row header and choose Hide on the context menu to hide the selected
rows. Do the same to hide columns H:L .)

 2. In the VBA Immediate window, type again ?LastRow(Range("B1")) and
 ?LastColumn (Range("A5")) .

 Now the VBA Immediate window must print row 9 and column 7 as the last-used cells (Figure 6-11),
which is not correct, since you are not asking for the last-used and visible cell! Interesting, huh?

 Figure 6-11. When you hide worksheet rows or columns that contain used cells, the code used by functions
LastRow() and LastColumn() fails to return the last-used row (or column) on the worksheet. They both return
the last-used and visible cell

 The only way you can resolve this Excel conflict in your VBA code is to first turn visible all hidden rows/
columns, then execute the desired function, and hide again all rows/columns that must be hidden.

 The functions LastUsedRowCellHidden() and ast UsedColumnCellHidden() from basLastCell do
this job, expecting to receive as an argument the address of the first row/column that must be hidden on the
worksheet.

 Public Function LastUsedRowCellHidden(FirstHiddenRow As Long) As String
 Dim lngRow As Long
 Dim lngColumn As Long

 Application .ScreenUpdating = False
 Range(Cells(FirstHiddenRow, 1), Cells(ActiveSheet.Rows.Count, 1)).EntireRow.Hidden =
False

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

358

 lngRow = ActiveSheet.UsedRange.Rows.Count
 lngColumn = ActiveSheet.UsedRange.Columns.Count
 LastUsedRowCellHidden = ActiveSheet.UsedRange.Cells(lngRow, lngColumn).
End(xlToLeft). Address
 Range(Cells(FirstHiddenRow, 1), Cells(ActiveSheet.Rows.Count, 1)).EntireRow.Hidden =
True
 Application .ScreenUpdating = True
 End Function

 Public Function LastUsedColumnCellHidden(FirstHiddenColumn As Long) As String
 Dim lngRow As Long
 Dim lngColumn As Long

 Application .ScreenUpdating = False
 Range(Cells(1,FirstHiddenColumn), Cells(ActiveSheet.Rows.Count, 1)).EntireColumn.

Hidden = False
 lngRow = ActiveSheet.UsedRange.Rows.Count
 lngColumn = ActiveSheet.UsedRange.Columns.Count
 LastUsedColumnCellHidden = ActiveSheet.UsedRange.Cells(lngRow, lngColumn).

End(xlUp). Address
 Range(Cells(1, FirstHiddenColumn), Cells(ActiveSheet.Rows.Count, 1)).EntireColumn.

Hidden = True
 Application .ScreenUpdating = True
 End Function

 Note that both functions use the Range object to select the entire rows/columns that must become
visible before applying the End() property to the UsedRange property. They will also hide all worksheet
rows/columns beginning with the row/column that they receive as an argument. Since the entire process
happens with ScreenUpdating = False , this will work as if nothing happens to the worksheet, and the last-
used cell will always be returned.

 Finding Range Information
 Once you have created on the USDA sheet tab the individual food category range names, the USDA range
name, and the FoodCategoriesList range names, you can use two cascading Excel data validation lists to
easily select the food category on the first data validation list (the list is filled using the FoodCategoriesList
range name), then choose any food item of the selected food category on the second, or cascade , data
validation list (which is filled with the appropriate food items using the Excel INDIRECT() function), and
finally return any nutritional food item information you want, as long as it can exist inside the USDA range
name.

 You can see such a food selection system by opening the sr27_NutrientsPer100g_RangeFind.xlsm
macro-enabled workbook (which can be extracted from the Chapter06.zip file) and using the Select Food
Item sheet tab input cells (the ones formatted with a light yellow background and a blue border). Select any
food category on the first available column and any food item of this food category on the second available
column. As you select food items, the worksheet recovers four nutrient values for each one: Energy (kcal),
Protein (g), Total Lipid (g), and Carbohydrate by difference (g) (Figure 6-12).

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

359

 Cool, isn’t it? But if you try to find specific food items or you need to compose specific recipes or
whatever, you will realize that it is not too easy to find them inside the USDA food table. Which food category
does a food belong to? How it is named inside the table?

 Here is the perfect moment to use VBA power associated to Excel range find methods to produce a
 UserForm and give you such answers.

 The Range. Find Method
 You already used the Range. Find method in Chapter 5 ; it has this syntax:

 Expression.Find(What, After, LookIn, LookAt, SearchOrder, SearchDirection, MatchCase,
MatchByte, SearchFormat)

 In this code:

 Expression : This is the range to be searched.

 What : This is the search string.

 Figure 6-12. This is the Select Food Item sheet tab from the sr27_NutrientsPer100g_RangeFind.xlsm macro-
enabled workbook, where you can use the power of Excel range names and data validation lists to easily
search and select individual food items stored in the USDA worksheet and return all available nutrient
information

http://dx.doi.org/10.1007/978-1-4842-2205-8_5

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

360

 LookIn : This is where the information will be searched (xlValue , which is the
default; xlFormula ; or xlComments).

 LookAt : This is the scope to be searched in LookIn , all or part of each cell value
(xlPart , which is the default, or xlWhole).

 By keeping all other arguments on their default values, the Range. Find method will make a substring
search inside all range cell values. If any cell value matches the search string, Range. Find will return a Range
object that represents the first found cell. Otherwise, it returns Nothing .

 ■ Attention All values used by the last Range. Find method executed by VBA will be reflected in the Excel
Find dialog box options.

 To keep searching the range by the same search string, use Range. FindNext , which has this syntax:

 Expression . FindNext (After)

 In this code:

 Expression : This is a variable that represents a Range object.

 After : This is a Range object that represents a single cell after which you want to
search. This corresponds to the position of the active cell when a search is done
from the user interface. The specified cell is not searched until the method wraps
back around to it again. If this argument is not specified, the search starts after
the cell in the upper-left corner of the range.

 The Range. FindNext method expects to receive a range object on the After argument to keep searching
the range using the same initial arguments. When the search reaches the end of the specified search range, it
wraps around again to the beginning of the range and will find the first occurrence.

 Let’s try a simple search on the USDA range name to find the first occurrence of the word apple in all its
cells. Since the Range. Find method returns a Range object and that word exists inside the USDA range name,
you can type this command in the VBA Immediate window to find the address of the first found cell:

 ?Range("USDA").Find("apple", , ,xlPart). Address
 B173

 Cell B173 is the first food item with apple in its name. So, to keep searching the USDA range name for cells
that have the word apple , use the Range. FindNext method with the B173 address on its After argument, as
follows:

 ?Range("USDA"). FindNext (Range("B173")). Address
 B174

 Now the next cell is B174 . Using the Immediate window, you need to manually keep changing the cell
address of the Range, FindNext After argument until all matches are found and the search returns to cell
 B173 , which will be quite a tedious task.

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

361

 Using a VBA code procedure, you can search any range with the Range. Find and Range. FindNext
methods using three Range object variables.

• One Range object variable (rg) to represent the searched range.

• A second Range object variable (rgFound) to represent the range found by
the Range. Find and Range. FindNext methods. It will also be used by the
 Range. FindNext After argument.

• A third Range object variable (rgInitial) to keep a reference of the first found range,
so you can stop the search when it is find again.

 The code will look like this:

 Set rg = Range("USDA")
 Set rgFound = rg.Find("apple",,,xlPart)
 If Not rgFound Is Nothing Then
 Set rgInitial = rgFound
 Do
 '... Do something here with the found cell!
 Set rgFound = rg. FindNext (rgFound)
 Loop Until rgFound. Address = rgInitial. Address
 End If

 Did you see that? After executing the Range. Find method to search for the desired string (apple) inside
the USDA range name, if the code found it (Not rgFound Is Nothing), a reference to the first found cell is
stored in the rgInitial variable (Set rgInitial = rgFound), and a Do…Loop will keep searching the range
with the Range. FindNext method, using rgFound on the After argument, until it goes back to the first found
cell (Loop Until rgFound. Address = rgInitial. Address).

 Note that you must compare both ranges using the Range. Address property because the default Range
property returns the range value. If the searched range eventually has duplicated values, it may falsely stop
the loop on a wrong cell (a common VBA bug you may insert in your code).

 Let’s see this in action! The Find Food Item sheet tab of the sr27_NutrientsPer100g_RangeFind.xlsm
macro-enabled workbook has the Find Food Item command button to assist you in selecting the food item
you want using the Range. Find method. The worksheet is protected, meaning that just its input cells (Food
Category or Food Item) can be selected, and any food item in the data validation list must be selected before
clicking the Button control—or you will receive a warning message (Figure 6-13).

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

362

 This is not really needed but is an excellent moment to show how you can impose to the user of your
application the selection of a given cell before they click a Button control to execute an action. When you
click the Find Food Item Button control , Excel runs the Function SelectFoodItem() procedure of the
 Sheet3 worksheet (Find Food Item tab), and this code is executed:

 Public Sub SelectFoodItem()
 Const conC = 3

 If Selection. Column = conC Then
 frmRangeFind .Show vbModal
 Else
 MsgBox "Click on any cell of Food Item column and try again!", vbInformation,

"Select a Food Item"
 End If
 End Sub

 As you can see, it declares the conC =3 constant and uses the Application .Selection. Column property
(which returns a column number) to guarantee that the user is in the right column before it loads the
 frmRangeFind UserForm (see Figure 6-14).

 Figure 6-13. This is the Find Food Item sheet tab of the sr27_NutrientsPer100g_RangeFind.xlsm macro-
enabled workbook. It has the Find Food Item Button control that raises a warning message if you do not select
any food item input cell

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

363

 Figure 6-14. This is frmRangeFind UserForm interface. It allows you to search food items with the Range. Find
method using the entire USDA food table or just one of its food categories

 Preparing frmRangeFind
 When frmRangeFind is loaded, it fires the UserForm_Initialize () event, which has this code:

 Private Sub UserForm_Initialize ()
 Dim rg As Range
 Const conNameDoesntExist = 1004

 On Error GoTo Initialize_Error

 mintLastColumn = 1
 Me .cboCategory. AddItem "All Food Categories"
 Me .cboCategory = "All Food Categories"

 'Verify if range names already exist
 For Each rg In Range("FoodCategoriesList")
 Me .cboCategory. AddItem rg
 Next

 Initialize_End:
 Exit Sub
 Initialize_Error:
 Select Case Err
 Case conNameDoesntExist
 Call CreateRangeNames
 Resume
 Case Else
 MsgBox "Error " & Err & " in UserForm_Initialize "
 End Select
 Resume Initialize_End
 End Sub

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

364

 It sets an error trap, initializes the mintLastColumn module-level variable (you will see it later in the
section “Sorting ListBox Items”), adds All Categories as the first item of the cboCategories ListBox using the
 AddItem method, and defines it as it default value.

 msngLastX = Me .lblAZ. Left
 mintLastColumn = 1
 Me .cboCategory. AddItem "All Food Categories"
 Me .cboCategory = "All Food Categories"

 Next it tries to initiate a For Each…Next loop through all cells of the FoodCategoriesList range name.
If this range name does not exist, VBA will raise error 1004 (“ Application -defined or object-defined error”),
which will be caught by the error trap.

 Inside the error trap, a Select Case instruction verifies the error code. If it is equal to
 conNameDoesntExist = 1004 , it will call the CreateRangeNames () procedure to create it and use a Resume
statement to try to execute the loop again.

 ■ Attention By default, the sr27_NutrientsPer100g_RangeFind.xlsm macro-enabled workbook has no
range names. They are created the first time you open the frmRangeFind UserForm , and I bet that you didn’t
notice it (unless by the worksheet saving process).

 Searching with frmRangeFind
 Let’s try a simple search. Type apple in the Find text box and press Enter to find every food item (exactly 173)
on the USDA worksheet that has this word on the Long_Dsc column, as well as the food category each belongs
to. Since the USDA worksheet is sorted by food category first and then by the food item, the results will appear
using this sort order (Figure 6-15).

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

365

 As you may be wondering, this search happens because the cmdSearch CommandButton has the Default
property set to True , and when you press Enter, the cmdSearch_Click() event fires, executing this code:

 Private Sub cmdSearch_Click()
 Dim rg As Range
 Dim rgInitial As Range
 Dim rgFound As Range

 Me .lstFoodItems. Clear

 If Me .cboCategory.ListIndex = 0 Then
 Set rg = Range("USDA")
 Else
 Set rg = Range(Me .cboCategory)
 End If

 Set rgFound = rg.Find(Me .txtFind, , , xlPart)
 If rgFound Is Nothing Then
 MsgBox "Can't find " & Me .txtFind
 Else
 Set rgInitial = rgFound
 Do

 Figure 6-15. Using frmRangeFind UserForm, you can make a substring search on the USDA range name, or
any of its food categories, for every food item that has a given word on it food name

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

366

 Me .lstFoodItems. AddItem rgFound
 Me .lstFoodItems. Column (1, lstFoodItems.ListCount - 1) = rgFound.Offset(0, 1)
 Set rgFound = rg. FindNext (rgFound)
 Loop Until rgFound. Address = rgInitial. Address
 End If
 Me .lblFoodItems.Caption = Me .lstFoodItems.ListCount & " food items"
 Me .lblFoodItems.Visible = True
 End Sub

 Quite simple, huh? The code declares the three Range object variables it will need to perform the search,
clears the lstFoodItems ListBox , and uses the rg object variable to set the search scope, which is the USDA
range name or selected food category on the cboCategory ComboBox .

 Me .lstFoodItems. Clear

 If Me .cboCategory.ListIndex = 0 Then
 Set rg = Range("USDA")
 Else
 Set rg = Range(Me .cboCategory)
 End If

 The search begins by attributing to the rgFound variable the rg.Find result, using what you type in the
 txtFind text box as the search string. Note that it uses the LookAt = xlPart argument to make a substring
search.

 Set rgFound = rg.Find(Me .txtFind, , , xlPart)

 If rgFound has a valid range (a range name representing a single cell address), this range is set to the
 rgInitial object variable. A Do…Loop begins and adds the first cell food item name using the ListBox
 AddItem method and adds the food item category using the ListBox Column property to fill the first and
second columns of the lstFoodItems ListBox . Note that it uses rgFound.Offset(0,1) to displace the food
item name by one column to the right and returns its associated food category.

 If rgFound Is Nothing Then
 MsgBox "Can't find " & Me .txtFind
 Else
 Set rgInitial = rgFound
 Do
 Me .lstFoodItems. AddItem rgFound
 Me .lstFoodItems. Column (1, lstFoodItems.ListCount - 1) = rgFound.Offset(0, 1)

 ■ Attention When you use the Range. Offset method on a Range object variable, the original range address
stays the same. Offset displaces the range to the desired row/column and returns another range address.

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

367

 The search for another food item continues inside the Do…Loop structure using the Range. FindNext
method, passing to it the After argument of the last found cell represented by the rgFound object variable.
The loop will end when it reaches again the first found cell, represented by the rgInitial object variable.
Once more, to guarantee that the first range found was found again, the code must compare both
 Range. Address properties.

 Set rgFound = rg. FindNext (rgFound)
 Loop Until rgFound. Address = rgInitial. Address
 End If

 This is all you need to fill the lstFoodItems list box with all food item names and categories that have
the searched string inside the food name identification. When the loop ends, the lblFoodItems label below
the ListBox has its Caption property updated to reflect how many food items have been found, using the
 ListBox ListCount property, and the label becomes visible.

 Me .lblFoodItems.Caption = Me .lstFoodItems.ListCount & " food items"
 Me .lblFoodItems.Visible = True
 End Sub

 Returning the Selected Food Item in frmRangeFind
 The reason you limit the use of frmRangeFind to any food item input cell of the Find Food Item sheet tab is
to allow frmRangeFind to automatically fill both the food category and the food item on the worksheet after
you select the desired food in the lstFoodItem ListBox .

 Note that the Select CommandButton (cmdSelect) is disabled by default, becoming enabled after you
select any food item in the lstFoodItems ListBox . To return the desired item to the Food Item cell currently
selected on the Find Food Item sheet tab, you must first select it in the list box and click the cmdSelect
CommandButton , or just double-click it, firing the lstFoodItems_DblClick() event, which will make a call to
the cmdSelect_Click() procedure.

 Private Sub lstFoodItems_DblClick(ByVal Cancel As MSForms.ReturnBoolean)
 Call cmdSelect_Click
 End Sub

 Private Sub cmdSelect_Click()
 Application .Selection = Me .lstFoodItems
 Application .Selection.Offset(0, -1) = Me .lstFoodItems. Column (1, Me .lstFoodItems.

ListIndex)
 Unload Me
 End Sub

 To return the selected food item to the current selected worksheet cell, use the Application .Select
property, which has the address of the selected cell(s). Note again that this time the code uses Application .
Selection.Offset(0, -1) to displace the cell currently selected by one column to the last and returns the
food category (Figure 6-16).

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

368

 Sorting ListBox Items
 When you make a search with the Range. Find method and use the results to fill a ListBox , they will be
presented using the originally searched range order, which may not be the most convenient way to exhibit
the results.

 It will be nice if the ListBox control could offer a kind of sort method so you could easily change the
presentation order. Instead, you must count with VBA and some program skills to surpass this challenge.
Let’s face it!

 No matter how the data to be sorted is presented, you must always take into account that you first need
to put it inside a VBA array variable, structured in rows and columns, because this is the most effective
way to manipulate it using code. Besides that, you need to implement an efficient sort method so the sort
operation can run as fast as possible.

 Figure 6-16. After you find the desired food item using the frmRangeFind UserForm , double-click the item
to return the food category and food name to the appropriate cells of the Find Food Item worksheet. The
worksheet formulas will do its job and return the food item nutritional information from the USDA worksheet

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

369

 Among the many sorting algorithms available, one of the most efficient in large data sets is the bubble
sort method (already covered in Chapter 4), which works by taking the first array item, comparing it with
every other array item, and swapping each pair found in the wrong order. Once this item is correctly
positioned on the array order, it takes the second array item and repeats the same process, until all array
items are correctly positioned, as an indication that the array is sorted. This algorithm has this name because
of the way the smaller elements move to the top of the array like a bubble floating through the air.

 To implement the bubble sort algorithm, you need two For...Next loops. The outer loop is responsible
for putting the item in it correct position, while the inner loop takes care of comparing it with every other
array item. Supposing that you have a one-dimensional array variable of n items represented by the
 varArray variable, this simple code mimics the bubble sort algorithm (note that it uses UBound (varArray) -
1 to limit each loop because it uses intI+1 and intJ+1 to compare each item with the next):

 For intJ = LBound(varArray) To UBound (varArray) - 1
 For intI = LBound(varArray) To UBound (varArray) - 1
 If varArray(intI) > varArray(intI + 1) Then
 strTemp = varArray(intI)
 varArray(intI) = varArray(intI + 1)
 varArray(intI + 1) = strTemp
 End If
 Next intI
 Next intJ

 Now that you have the basic idea, let’s see how it was implemented in the user interface of
 frmRangeFind UserForm . Make a search to any food item that contains a desired word (like peas) and try
to click the label headers at the top of the lstFoodItems ListBox . If you click the “Food item” header, the
 ListBox will become ascending sorted by this column. Click it again, and it will become descending sorted.
A small triangle at the right side of the header indicates the sort order. Repeat the process by clicking the
Food Category header to sort the list by its second column, in ascending or descending order. All these
operations use the bubble sort algorithm to sort the ListBox .

 Note that when you click the sorted column, it alternates the sort in ascending/descending order, and
whenever you change the sorted column, the new column is always sorted ascending first. Fast and cool,
isn’t it (Figure 6-17)?

http://dx.doi.org/10.1007/978-1-4842-2205-8_4

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

370

 Let’s first understand this interface mechanism. Everything begins with the use of different Label
controls positioned on the right place and a specific Z-order in the UserForm interface (the Z-order is the
stacking order that controls overlap each other by in the UserForm).

 If you look to the frmRangeFind UserForm in design mode, you will realize that the ListBox header is
composed of five different Label controls, stacked in this Z-order (from back to top, as shown in Figure 6-18).

• lbl0 and lbl1 : These Label controls name the Food Item and Food Category
columns.

• lblAZ : This label control stacks over lblFoodCategory . It was formatted using
Webdings, 11pt font, and is responsible for showing the small black triangle that
points up (Caption=5) or down (Caption=6).

• lbllstFoodItems : This Label control must be over every column label name and
 lblAZ . Since its width extends through all lstFoodItems ListBox widths, you don’t
have to click all the controls behind it.

• lblCol1 : This Label control is responsible for showing the vertical bar character
(|) that is used to indicate the division between the first and second columns of the
 lstFoodItems ListBox and is on top of lbllstFoodItems .

 Figure 6-17. The frmRangeFind UserForm allows you to change its items’ sort order by clicking the label
headers right above it. As you click any column header, the selected column becomes sorted ascending or
descending, while a small triangle positioned at the right of the header indicates the sort order

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

371

 Since lbllstFoodItems is on top of all other column label identifiers, you can just click it or in any other
control that is right above it in the UserForm Z-order. Whenever you click any Label control, three successive
mouse events fire, in this order: MouseDown() , MouseUp() , and Click() .

 Among this three events, just MouseDown() and MouseUp() pass arguments to indicate the X
and Y coordinates where the click occurred, relative to the top-left corner of the control, which has
 (X,Y) coordinates equal to (0,0) . So, to know which column must be sorted, you must choose the
 lbllstFoodItems_MouseUp() event, which is the one that fires immediately before the lbllstFoodItems_
Click() event, and execute this code:

 Private Sub lbllstFoodItems_MouseUp(ByVal Button As Integer, ByVal Shift As Integer, ByVal X
As Single, _
 ByVal Y As Single)
 Dim intLeft As Integer
 Dim intColumn As Integer
 Static sbolDesc As Boolean
 Const conTriangleUp = 5
 Const conTriangleDown = 6

 If Me .lstFoodItems.ListCount > 1 Then
 Application .Cursor = xlWait
 Select Case X + Me .lbllstFoodItems. Left
 Case Is < Me .lbl1. Left
 intColumn = 0
 Case Else
 intColumn = 1
 End Select
 intLeft = Me ("lbl" & intColumn). Left + Me ("lbl" & intColumn).Width

 If mintLastColumn = intColumn Then
 sbolDesc = Not sbolDesc
 Call SortListBox(Me .lstFoodItems, intColumn, IIf(sbolDesc, Desc, Asc))
 Me .lblAZ.Caption = IIf(sbolDesc, conTriangleUp, conTriangleDown)
 Else
 mintLastColumn = intColumn

 Figure 6-18. To implement the lstfFoodItems sorting, the header is composed of five different Label controls,
stacked in this order: lbl0, lbl1, lblAZ, lbllstFoodItems, and lblCol1

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

372

 sbolDesc = False
 Call SortListBox(Me .lstFoodItems, intColumn, Asc)
 Me .lblAZ.Caption = conTriangleDown
 End If
 Me .lblAZ. Left = intLeft
 Application .Cursor = xlDefault
 End If
 End Sub

 This code works based on some assumptions:

• The module-level variable mintLastColumn holds the last ListBox -sorted column.
Since by default the ListBox appears sorted by its second column (column 1), this
variable is defined to 1 on the UserForm_Initialize event.

• If you click a column that is currently sorted ascending, it must be sorted
descending, and vice versa.

• If you change the ListBox -sorted column, the new selected column must be sorted
ascending.

 This procedure declares three variables.

• intLeft is used to position lblAZ horizontally over the ListBox column, graphically
showing the small black triangle that indicates the sorted column and sort direction.

• intColumn indicates what column must be sorted, according to the point the user
clicked on the lbllstFoodItems Label control.

• sbolDesc is a static Boolean variable that holds the last sorting order (False =
ascending).

 The ListBox will be sorted if it has at least two items, which is controlled using the ListCount property.
If the list must be sorted, the procedure uses the Application .Cursor property to change the mouse pointer
to the traditional hourglass cursor before sorting it and turns it again to the default mouse pointer when the
process finishes.

 If Me .lstFoodItems.ListCount > 0 Then
 Application .Cursor = xlWait
 ...
 Application .Cursor = xlDefault
 End If
 End Sub

 To know where the user clicked lbllstFoodIterms , relative to the left border of the UserForm , the
procedure takes into account the X argument (horizontal position inside the Label control) plus the
 lbllstFoodItem. Left property.

 Select Case X + Me .lbllstFoodItems. Left

 Now it is a matter of comparing the point where the user clicked the UserForm with the lbl1. Left
property. If the user clicks left of lbl1 (the Food Category label), the ListBox must be sorted by its
first column (Food Item name, intColumn=0); otherwise, it must be sorted by its Food Category name
(intColumn=1).

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

373

 Case Is < Me .lbl1. Left
 intColumn = 0
 Case Else
 intColumn = 1
 End Select

 Knowing the column to be sorted, the code uses the intLeft variable to define the new horizontal
position of lblAZ (the small black triangle). Note that it uses the indirect syntax to compose this position
adding the Label control (lbl0 or lbl1) Left and Width properties, which will put the triangle character
right next the appropriate column label.

 intLeft = Me ("lbl" & intColumn). Left + Me ("lbl" & intColumn).Width

 The procedure then verifies if the new clicked column is the same sorted column, comparing the
module-level variable mintLastColumn with intColumn . If they are the same, it means that the column sort
order must be changed, which is made by alternating the sbolDesc static Boolean variable value.

 If mintLastColumn = intColumn Then
 sbolDesc = Not sbolDesc

 The ListBox is then sorted using the SortListBox() procedure of the basSortListBox code module,
which receives three arguments: a reference to the ListBox control to be sorted, the column to be sorted,
and the sorting order. Note that it uses a VBA IIF() function to verify the sbolDesc value and pass the
correct sort procedure argument.

 Call SortListBox(Me .lstFoodItems, intColumn, IIf(sbolDesc, Desc, Asc))

 Once the list is sorted, the character used by the small black triangle of lblAZ alternates between
pointing down or up as a visual clue to the column sorting order and is correctly positioned to the right of
the appropriate column name by changing the Left property.

 Me .lblAZ.Caption = IIf(sbolDesc, conTriangleUp, conTriangleDown)
 Else
 ...
 End If
 Me .lblAZ. Left = intLeft

 Note that if the user clicks another column, the mintLastColumn module-level variable will be updated
to reflect the new sorted column, and the new column will always be sorted ascending.

 Else
 mintLastColumn = intColumn
 sbolDesc = False
 Call SortListBox(Me .lstFoodItems, intColumn, Asc)
 Me .lblAZ.Caption = conTriangleDown

 Using the Bubble Sort Algorithm

 The basSortListBcx code module (which is also available in the Chaper06.zip file) implements the bubble
sort algorithm to any ListBox column, with this syntax:

 SortListBox(lst As MSForms. ListBox , Optional intColumn As Integer, Optional intOrder As
Order = Asc)

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

374

 In this code:

 lst : This is required; it is a reference to the ListBox control to be sorted.

 intColumn : This is optional; it is the ListBox column number (0-based) to be
sorted.

 intOrder : This is optional; it is the sort order. Use Asc for ascending (default) and
 Desc for descending order.

 The code module declares the Order enumerator to adequately define the sorting order.

 Public Enum Order
 Asc = 1
 Desc = 2
 End Enum

 The SortListBox() procedure is quite simple and fast, executing this code:

 Public Sub SortListBox(lst As MSForms. ListBox , _
 Optional intColumn As Integer, _
 Optional intOrder As Order = Asc)
 Dim varArray() As Variant
 Dim intI As Integer
 Dim intJ As Integer
 Dim intX As Integer
 Dim strTemp As String
 Dim fSort As Boolean

 With lst
 varArray = .List
 For intJ = LBound(varArray) To UBound (varArray) - 1
 For intI = LBound(varArray) To UBound (varArray) - 1
 If intOrder = Asc Then
 If IsNumeric(varArray(intI, intColumn)) And IsNumeric(varArray(intI + 1,

intColumn)) Then
 fSort = Val(varArray(intI, intColumn)) > Val(varArray(intI + 1,

intColumn))
 Else
 fSort = varArray(intI, intColumn) > varArray(intI + 1, intColumn)
 End If
 Else
 If IsNumeric(varArray(intI, intColumn)) And IsNumeric(varArray(intI + 1,

intColumn)) Then
 fSort = Val(varArray(intI, intColumn)) < Val(varArray(intI + 1,

intColumn))
 Else
 fSort = varArray(intI, intColumn) < varArray(intI + 1, intColumn)
 End If
 End If

 If fSort Then
 For intX = 0 To (.ColumnCount - 1)

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

375

 strTemp = varArray(intI, intX)
 varArray(intI, intX) = varArray(intI + 1, intX)
 varArray(intI + 1, intX) = strTemp
 Next intX
 End If
 Next intI
 Next intJ
 .List = varArray
 End With
 End Sub

 The procedure speed is fundamentally based on attributing the entire ListBox content to the varArray
variable, declared as a Variant array, using the ListBox List property, which will allow the code to run
faster.

 Dim varArray() As Variant
 ...
 varArray = .List

 ■ Attention Although the lstFoodItems ListBox is defined to use the two columns, the List property
returned a ten-column array. You can see this by defining a VBA breakpoint immediately before the varArray
variable is initialized and using this instruction in the VBA Immediate window (remember that arrays are
0-based):

 ? UBound (varArray,2)

 9

 Now that all ListBox content is inside varArray , you must use the VBA LBound() and UBound ()
functions to create two successive For…Next loops. The outer loop takes each ListBox item and compares
it to the next; the inner loop compares the item with every other list item to put it in the desired sort order
(ascending or descending).

 For intJ = LBound(varArray) To UBound (varArray) - 1
 For intI = LBound(varArray) To UBound (varArray) - 1
 ...
 Next intI
 Next intJ

 Inside the inner loop, the comparison is made according to the procedure’s intOrder argument, using
 intI and intI+1 values to reference two successive array items and the intColumn argument to make the
comparison using the desired ListBox column. The procedure uses the VBA IsNumeric() function to
verify whether both values are text or numbers. If they are numbers, the code uses the VBA Val() function
to compare the numeric values instead of the numeric text strings. The fSort variable will become true
whenever two successive values must change its position.

 If intOrder = Asc Then
 If IsNumeric(varArray(intI, intColumn)) And IsNumeric(varArray(intI + 1, intColumn)) Then

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

376

 fSort = Val(varArray(intI, intColumn)) > Val (varArray(intI + 1, intColumn))
 Else
 fSort = varArray(intI, intColumn) > varArray(intI + 1, intColumn)
 End If
 Else
 If IsNumeric(varArray(intI, intColumn)) And IsNumeric(varArray(intI + 1, intColumn)) Then
 fSort = Val(varArray(intI, intColumn)) < Val(varArray(intI + 1, intColumn))
 Else
 fSort = varArray(intI, intColumn) < varArray(intI + 1, intColumn)
 End If
 End If

 Whenever any item must change its position in the list (fSort=True), the code must execute another
 For...Next loop to run through all item columns, changing the position of the entire array row, no matter
how many columns it has (note that it uses the ListBox ColumnCount property to limit the loop).

 If fSort Then
 For intX = 0 To (.ColumnCount - 1)
 strTemp = varArray(intI, intX)
 varArray(intI, intX) = varArray(intI + 1, intX)
 varArray(intI + 1, intX) = strTemp
 Next intX
 End If

 And once this is made, the code is ready for the next comparison, until all items are in the right position.
When this happens, the procedure takes the now-sorted varArray variable and attributes it to the ListBox
 List property. VBA and Windows will instantly update the ListBox interface to the desired sort order!

 Next intX
 End If
 Next intI
 Next intJ
 .List = varArray
 End With
 End Sub

 Quite fast, huh?

 Changing ListBox Column Widths
 There is one more technique that deserves to be mentioned on frmRangeFind : it allows you to change the
 ListBox column widths by dragging the | character used to indicate where one column ends and another
column begins (Figure 6-19).

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

377

 Did you notice that the mouse icon changes to an east-west arrow when you point it over the | character
and that the code limits how long you can drag the column separator to the left or right position?

 This happens because the lblCol1 Label control has the MousePointer property defined to
 9 fmMousePointerSizeWE , while the code implements three lblCol1 mouse events: MouseDown() ,
 MouseMove() , and MouseUp() .

 The code uses the mbolPressed Boolean module-level variable to signal whether the mouse is pressed,
setting it to True on the lblCol1_MouseDown() event (which fires when a mouse button is pressed) and
setting it to False on the lblCol1_MoudeUp() event (which fires when the mouse button pressed is
released).

 Private Sub lblCol1_MouseDown(ByVal Button As Integer, ByVal Shift As Integer, ByVal X As
Single, ByVal Y As Single)
 mbolPressed = True
 End Sub

 Private Sub lblCol1_MouseUp(ByVal Button As Integer, ByVal Shift As Integer, ByVal X As
Single, ByVal Y As Single)
 mbolPressed = False
 End Sub

 Now look at the lblCol1_MouseMove() event procedure, which fires when the mouse is pressed and
dragged over the lblCol1 Label control.

 Private Sub lblCol1_MouseMove(ByVal Button As Integer, ByVal Shift As Integer, ByVal X As
Single, ByVal Y As Single)
 Dim intLeft As Integer
 Const conMinLeft = 100
 Const conMaxLeft = 400

 Figure 6-19. Drag the pipe character of the lstFoodItems ListBox to any side to change the column widths

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

378

 If mbolPressed Then
 intLeft = Me .lblCol1. Left + X
 If intLeft < conMinLeft Then
 intLeft = conMinLeft
 End If
 If intLeft > conMaxLeft Then
 intLeft = conMaxLeft
 End If
 Me .lblCol1. Left = intLeft
 Me .lbl1. Left = intLeft + Me .lblCol1.Width
 If mintLastColumn = 1 Then
 Me .lblAZ. Left = Me .lbl1. Left + Me .lbl1.Width
 End If
 Me .lstFoodItems.ColumnWidths = intLeft - Me .lbllstFoodItems. Left
 End If
 End Sub

 The mouse move event passes the X and Y arguments that indicate the (X,Y) coordinates of the mouse
pointer regarding the size of Label control, where the point (0,0) means the control’s top-left corner. Note,
however, that when the mouse is down and you drag it farther than the control left border, the X argument
will become negative. Conversely, when you drag it farther than the right border, the X argument will
become greater than the control’s Width property.

 So if the mbolPressed module-level variable is True , the X argument that indicates the horizontal mouse
position regarding the Label control is added to the control Left property and stored into the intLeft
variable. Note that intLeft will hold a value that relates to the horizontal position of the UserForm .

 If mbolPressed Then
 intLeft = Me .lblCol1. Left + X

 The procedure then tests whether the intLeft position is smaller than the conMinLeft constant or
greater than the conMaxLeft constant. If it is, intLeft is redefined to the minimum or maximum constant,
literally restricting the horizontal drag movement of the pipe (|) character:

 If intLeft < conMinLeft Then
 intLeft = conMinLeft
 End If
 If intLeft > conMaxLeft Then
 intLeft = conMaxLeft
 End If

 And once you have the new int Left position, two or three controls of the ListBox header must be
repositioned: lblCol1 (the | character), lbl1 (the Food Category label), and eventually lblAZ , if the last
column sorted was column 1, Food Category:

 Me .lblCol1. Left = intLeft
 Me .lbl1. Left = intLeft + Me .lblCol1.Width
 If mintLastColumn = 1 Then
 Me .lblAZ. Left = Me .lbl1. Left + Me .lbl1.Width
 End If

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

379

 And once the header is repositioned, the ListBox control will have its ColumnWidths property redefined
for the first column to the intLeft value minus the ListBox Left property, putting its second column
beginning exactly below lblAZ (the | character).

 Me .lstFoodItems.ColumnWidths = intLeft - Me .lbllstFoodItems. Left
 End If
 End Sub

 The Range. AutoFilter Method
 The Range. Find method is quite fast to make simple substring searches using just one search criteria. But
in such large and complex data tables such as the ARS-USDA, there are moments where it can fail to help
you find some specific food items because you simply don’t know where (Food Category) and/or how (Food
Item name) the desired information is written in the food table.

 When this moment comes, you will need to make more complex searches using two criteria strings
and Boolean operators (AND/OR) to compare and try to find what you want. And here is where the
 Range. AutoFilter method comes in!

 The Range. AutoFilter method is how VBA implements the Excel Sort & Filter ➤ Filter command,
which you can find in the Editing area of the Home tab. But before you dive in to how to programmatically
interact with this method, let’s look at how it works in the Excel interface so you can correctly implement it
using the USDA worksheet data as an example.

 Supposing that you have any USDA worksheet nutrient data cell selected (any cell below row 5) and
apply the Excel Sort & Filter ➤ Filter command, you will notice that Excel will use its Range. CurrentRegion
property to set the data table to be filtered and will put drop-down ListBox filters where it considers the first
data table row to be (Figure 6-20).

 Figure 6-20. When you apply the Sort & Filer ➤ Filter command, Excel uses the Range. CurrentRegion property
to set the data table to be filtered and uses what it considers as the first table row to add drop-down ListBox filters

 Although Excel can be considered very smart, it does not always make the perfect choice: since the USDA
worksheet is produced by the USDA Food List Creator.mdb application, which reserves row 5 to count the
nutrient columns (to help create the VLOOKUP() formulas to return the desired nutrient value of any food
item), Excel considers this row as the first table row and puts the drop-down ListBox filters on it, including
the nutrient name row (row 6) as part of the table to be filtered.

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

380

 To guarantee that Excel will filter the USDA worksheet correctly, you must execute the Excel Sort
& Filter command again to remove the ListBox filters, select the correct data table (click cell B6 , press
Ctrl+Shift+Down arrow followed by Ctrl+Shift+ Right arrow), and reapply the Excel Sort & Filter ➤ Filter
command (Figure 6-21).

 Figure 6-21. To guarantee that Excel puts its filter drop-down ListBoxes on the correct row of the USDA data
table, you first need to select cell B6, press Ctrl+Shift+Down arrow followed by Ctrl+Shift+ Right arrow, and
apply the Excel Sort & Filter ➤ Filter command

 Therefore, before you use the Range. AutoFilter method, you need to correctly select the USDA range
name, including row 6 , which is its row headers and not part of this range name. And as you might know by
now, you will need to use the Range Offset and Resize methods.

 Let’s use the VBA Immediate window to see how to do this selection using VBA code. Begin by typing
this instruction to print the current USDA range name address:

 ?Range("USDA"). Address
 B7:GC8850

 Now displace the USDA range name one row up using the Range. Offset method and print the new
range address (note that since the new range address was offset by one row up, it also has one less row at the
bottom).

 ?Range("USDA").Offset(-1). Address
 B6:GC8849

 Finally, use the Range. Resize method to resize the range, using the Rows.Count property to add an
extra row at the bottom of the displaced range.

 ?Range("USDA").Offset(-1). Resize (Range("USDA").Rows.Count+1). Address
 B6:GC8850

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

381

 ■ Attention If you want to select the range on the USDA worksheet instead to print it in the VBA Immediate
window, use the Range.Select method instead of the Range. Address property.

 That’s it! Using Range. Offset and Range. Resize in sequence, you can use VBA code to reference the
desired cells on the USDA worksheet before applying the Excel Sort & Filter ➤ Filter command to put its
 ListBox filters on row 6 . You are now ready to filter the USDA nutrient data table for specific food items.

 Suppose that you need to find a food item called black beans . You want to filter the USDA worksheet
showing all food items whose name contains both black and bean , appearing in any sequence inside the
food item name. To do this, you must click the Long_Desc column drop-down ListBox filter to expand it,
point the mouse pointer to the Text Filter option, and click the Contains option.

 Excel will show the Custom AutoFilter dialog box where you can select two different criteria, using
AND/OR to combine them (black AND bean), and will perform the desired search and filter over the
selected cell range (Figure 6-22).

 Figure 6-22. Once you have selected the desired cells and applied them with the Sort & Filter ➤ Filter
command, use the Long_Desc drop down ListBox filter, select the Text Filters ➤ Contains option to expose the
Custom AutoFilter dialog box, and select each food item whose name has both black and bean, in any order
inside the food name

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

382

 After defining what you want to search, click OK in the Custom AutoFilter dialog box so Excel can
perform the search and hide all table rows that do not match the filter criteria. Note that the Long_Desc
column now spots a small filter icon, as a visual clue that this column has a criteria filter, while the worksheet
row headers for the rows that match the desired criteria are now blue (Figure 6-23).

 Figure 6-23. This is the USDA worksheet after you have applied the Excel Filter command to show just rows
that have both words black and bean in any order inside the Long_Desc column (food item name)

 If you want to use another filter criteria for the rows already selected, to show food items of just one food
category, apply another filter to the already filtered list using the FdGrp_Desc column drop-down ListBox
filter to select the desired category (like Legumes and Legume Products). It works like filtering a filtered list!

 ■ Attention To remove the current filter, just apply the Excel Sort & Filter ➤ Filter command again. Go ahead
and do this right now.

 The VBA implementation for the Excel Custom AutoFilter dialog box shown in Figure 6-22 is the
 Range. AutoFilter method, which has this syntax:

 Expression.AutoFilter(Field, Criteria1, Operator, Criteria2, VisibleDropDown)

 In this code:

 Expression : This is required; it is an expression that returns a Range object.

 Field : This is optional; it is the integer offset of the field on which you want to
base the filter (from the left of the list; the leftmost field is field 1).

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

383

 Criteria1 : This is optional; it is the string criteria to be filtered. Use = to find
blank fields; use <> to find nonblank fields. If omitted, the criteria means All.
If Operator is xlTop10Items , Criteria1 specifies the number of items (for
example, 10). Use an asterisk (*) as a wildcard to perform a substring search.

 Operator : This is optional: it is an XlAutoFilterOperator specifying the type of filter:

 xlAnd = 1 : Logical AND of Criteria1 and Criteria2

 xlBottom10Items = 4 : n lowest-valued items displayed (number of items
specified in Criteria1)

 xlBottom10Percent = 6 : % Lowest-valued items displayed (percentage
specified in Criteria1)

 xlFilterCellColor = 8 : Color of the cell

 xlFilterDynamic = 11 : Dynamic filter

 xlFilterFontColor = 9 : Color of the font

 xlFilterIcon = 10 : Filter icon

 xlFilterValues = 7 : Filter values

 xlOr = 2 : Logical OR of Criteria1 or Criteria2

 xlTop10Items = 3 : Highest-valued items displayed (number of items
specified in Criteria1)

 xlTop10Percent = 5 : Highest-valued items displayed (percentage specified
in Criteria1)

 Criteria2 : This is optional; it is the second criteria (a string) and must be used
with Criteria1 and Operator to construct compound criteria.

 VisibleDropDown : This is optional; it uses True (default) to display the
 AutoFilter drop-down arrow for the filtered field and it uses False to hide the
 AutoFilter drop-down arrow for the filtered field.

 To verify whether any sheet tab is currently filtered by the Excel AutoFilter command and eventually
remove the Excel AutoFilter drop-down ListBox arrows, use the Worksheet object AutoFilterMode property,
which has this syntax:

 expression. AutoFilterMode [= False]

 In this code:

 expression : This is required; it refers to any object variable that represents a
 Worksheet object.

 The Worksheet. AutoFilterMode property returns True if the drop-down arrows are currently displayed.
You can set this property to False to remove the arrows but cannot set it to True to apply the AutoFilter .

 Having removed the Excel Filter option from the USDA worksheet and supposing that the rg object
variable refers to the desired cell range of the USDA worksheet, to perform the same search using the
 Range. AutoFilter method, you can use an instruction like this, where 1 refers to the first range column
(long_Desc , or food item name), *black* and *bean* are Criteria1 and Criteria2 , and xlAnd is the
operator that joins both criteria:

 rg.AutoFilter 1, “*black*”, xlAnd, “*bean*”

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

384

 ■ Attention Note that to perform a substring search inside the Long_Desc column, you must use the * as the
substring operator. An * before and another after any the search string means that the Find method must search
and return all cells that have this word.

 Knowing that you must first define the desired range name to be filtered and then apply the desired
 Range. AutoFilter criteria, you can type the next instruction in the VBA Immediate window to define and
filter the USDA worksheet the same way you did in Figure 6-22 :

 ?Range("USDA").Offset(-1). Resize (Range("USDA").Rows.Count+1).AutoFilter(1, “*black*”, xlAnd,
“*bean*”)

 ■ Attention To use the interrogation character to print the Range. AutoFilter returned result in the VBA
Immediate window, you must enclose all its arguments in parentheses. To discard the result and just apply the
 Range. AutoFilter criteria, don’t use the interrogation character or put the Range. Find method arguments
inside parentheses.

 Selecting Filtered Cells with the Range. SpecialCells Property
 When you press the F5 function key on an unprotect sheet tab and Excel shows the Go To dialog box, you
can click the Special button to display the Excel Go To Special dialog box and select many different types of
cell contents, such as cells with comments, constants, formulas, blanks, and so on (Figure 6-24).

 Figure 6-24. If you click the Special button of the Excel Go To dialog box, Excel will show the Go To Special
dialog box, where you can select all worksheet cells that have a special type of content, like cells with
comments, with constant values, and with formulas

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

385

 When you click OK, Excel offers the Go To Special operation to select the cells with the desired content
using the Range. SpecialCells method, which has this syntax:

 Expression. SpecialCells (Type, Value)

 In this code:

 Expression : This is required; it is a variable that represents a Range object.

 Type : This is required; it is an XlCellType constant indicating the cells to include.

 xlCellTypeAllFormatConditions = 4172 , cells of any format

 xlCellTypeAllValidation = -4174 , cells having validation criteria

 xlCellTypeBlanks = 4 , empty cells

 xlCellTypeComments = -4144 , cells containing notes

 xlCellTypeConstants = 2 , cells containing constants

 xlCellTypeFormulas = -4123 , cells containing formulas

 xlCellTypeLastCell = 11 , the last cell in the used range

 xlCellTypeSameFormatConditions = -4173 , cells having the same format

 xlCellTypeSameValidation = -4175 , cells having the same validation criteria

 xlCellTypeVisible = 12 , all visible cells

 Value : This is optional; if Type is either xlCellTypeConstants or
 xlCellTypeFormulas , this argument is used to determine which types of cells
to include in the result using the XlSpecialCellsValue constants, which can be
added together to return more than one type. The default is to select all constants
or formulas, no matter what the type.

 xlErrors = 16
 xlLogical= 4
 xlNumbers = 1
 xlTextValues =

 Note that most Go To Special options can be set by selecting one of the Range. SpecialCells
 Type arguments (which are mutually exclusive), while the Value argument can be used when Type =
xlCellTypeFormulas and is not mutually exclusive. This is exactly how the Go To Special dialog box
implements them.

 So, to select all cells with formulas on the active sheet using the VBA Immediate window, you must type
this instruction:

 Cells. SpecialCells (xlCellTypeFormulas).Select

 Note in the previous instruction that it uses the Cells collection (when not used, it refers to a given Range
object, meaning the ActiveSheet object, or all active sheet cells) and its SpecialCells property to produce a
range object that has all the desired cells and then uses the Range.Select method to select all the cells on the
active sheet that have formulas. Figure 6-25 shows what happens when you unprotect the Find Food Item
sheet tab of the sr27_NutrientsPer100g_Range. Find .xlsm macro-enabled workbook and use this instruction.

 Now that you know that Range. SpecialCells exists and that the Range. AutoFilter method hides all
sheet rows that don’t match the desired criteria and shows the desired ones, to programmatically get the
range addresses returned by the Range. AutoFilter method, you must use Range. SpecialCells to set the
 Type argument to the xlCellTypeVisible constant value.

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

386

 The next two instructions will use the VBA Immediate window to first filter the USDA range name
showing all food items that have both the words black and bean (in any order) and then use the same filtered
range to show all range addresses returned by the Range. SpecialCells (xlCellTypeVisible) property:

 Range("USDA").Offset(-1). Resize (Range("USDA").Rows.Count+1). AutoFilter (1, "*black*", xlAnd,
"*bean*")
 ? Range("USDA").Offset(-1). Resize (Range("USDA").Rows.Count+1). Specialcells (xlCellTypeVisible
). Address
 B6:GC6,B3721:GC3721,B5183:GC5190,B5280:GC5280,B5365:GC5365,B5584:GC5
584,B5588:GC5588,B6626:GC6626,B6630:GC6630,B7361:GC7362,B8851:GC8851

 To know how many different range addresses have been returned, use the Range. Areas .Count property
applied to the Range. SpecialCells method, as follows:

 ? Range("USDA").Offset(-1). Resize (Range("USDA").Rows.Count+1). Specialcells (xlCellTypeVisible).
Areas .Count
 11

 As you can see, Figure 6-22 is composed of 11 different, noncontiguous range addresses, where the first
range address (Range. Area (1)) will always be the row with the drop-down ListBox headers (B6:GC6)
and will contain more than one row when the first row below it (the first table data row) matches the
 Range. AutoFilter criteria.

 Figure 6-25. You can use the Cells collection and the Range. SpecialCells property to define a range that
contains all cells in the active sheet that have specific content. By using the Range.Select method, you can select
them in the worksheet, exactly the same way the Excel Go To Special dialog box does

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

387

 So, to run through all the cells returned by the Range. AutoFilter method applied to the USDA sheet tab
using VBA code, you need to use the Range.Speciallcells property and use four range object variables.

• rgUSDA , to represent the entire USDA food table (including its row headers) where
the Range. AutoFilter will be applied

• rgFilter , to represent all rgUSDA.SpeciallCells (xlCellTypeVisible) cells,
meaning the ones that match the desired filter criteria and are visible on the sheet tab

• rgArea , to represent each range address returned by the rgFilter. Areas collection

• rg , to represent any cell of the rgArea object variable

 Let’s see this in action!

 Using the frmRangeFilter
 Open the sr27_NutrientsPer100g_Range. AutoFilter .xlsm macro-enabled workbook (which you can
extract from the Chapter06.zip file) and click the Find Food Item button on the Find Food Item with
AutoFilter sheet tab to show the frmRangeFilter UserForm , which uses the Range. AutoFilter method to
search the entire USDA sheet tab for any food item name using two different words joined by the AND/OR
operator (Figure 6-26).

 Figure 6-26. This is frmRangeFilter from the sr27_NutrientsPer100g_Range. AutoFilter .xlsm macro-enabled
workbook. Note that it has two text boxes (txtFind and txtFind2) to allow you to search for any food item using
two different words joined by the AND/OR operator

 Note in Figure 6-26 that the food category names were not inserted in cboCategory using their
respective range names (where invalid characters, like spaces, were changed by underscores) but as they
appear in the USDA worksheet FdGrp_Desc column.

 This is necessary because if you need to use Range. AutoFilter to search inside a given food category,
you must use it exactly as it appears in the FdGrp_Desc column, which is quite different from the food
category range name. Also note that by default txtFind2 is disabled and that the cboAndOr ComboBox has
just two options: AND and OR.

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

388

 Look at how the frmRangeFilter UserForm_Initialize () event was programmed to correctly insert
these values in both the cboAndOr and cboCategory ComboBox es:

 Private Sub UserForm_Initialize ()
 Dim ws As Worksheet
 Dim rg As Range
 Dim rgUSDA As Range
 Dim rgFound As Range
 Dim strFind As String
 Const conNameDoesntExist = 1004

 On Error GoTo Initialize_Error

 mintLastColumn = 1
 Me .cboAndOr. AddItem "AND"
 Me .cboAndOr. AddItem "OR"
 Me .cboAndOr = "AND"

 Me .cboCategory. AddItem "All Food Categories"
 Me .cboCategory = "All Food Categories"

 'Verify if range names already exist
 Set rgUSDA = Range("USDA")
 Set rgUSDA = Range(rgUSDA.Cells(1, 2), rgUSDA.Cells(rgUSDA.Rows.Count, 2))
 For Each rg In Range("FoodCategoriesList")
 If InStr (1, rg, "_") Then
 strFind = Mid (rg, 1, InStr (1, rg, "_") - 1) & "*"
 Set rgFound = rgUSDA.Find(strFind, , , xlWhole)
 If Not rgFound Is Nothing Then
 Me .cboCategory. AddItem rgFound
 End If
 Else
 Me .cboCategory. AddItem rg
 End If
 Next

 Initialize_End:
 Exit Sub
 Initialize_Error:
 Select Case Err
 Case conNameDoesntExist
 Call CreateRangeNames
 Resume
 Case Else
 MsgBox "Error " & Err & " in UserForm_Initialize "
 End Select
 Resume Initialize_End
 End Sub

 After setting the error trap, the procedure uses the ListBox AddItem method to add the AND and OR
options to the cboAndOr ComboBox and to add All Categories as the first option of cboCategories .

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

389

 But since there is no range name in the sr27_NutrientsPer100g_Range. AutoFilter .xlsm macro-
enabled workbook, the first time it tries to set a reference to the USDA range name, which does not exist, VBA
will raise error = 1004, and the code will be directed to the error trap, running the CreateRangeNames ()
procedure to create them.

 Having created all the necessary range names, a reference is set to the USDA range name, and the
 Range(Cell1, Cell2) property is used to create a single range that takes all FdGrp_ Column (column C) of the
 USDA range name. Note that for the Cell1 argument it uses rgUSDA.Cells(1,2) , which returns cell C7 , while
for the Cell2 property it uses rgUSDA.Cells(rgUSDA.Rows.Count,2) , which will return cell C8850 .

 Set rgUSDA = Range("USDA")
 Set rgUSDA = Range(rgUSDA.Cells(1, 2), rgUSDA.Cells(rgUSDA.Rows.Count, 2))

 To fill the cboCategory ComboBox with the appropriate food categories names, a For Each…Next loop
begins to run through all FoodCategoriesList range names.

 For Each rg In Range("FoodCategoriesList")

 Not all food category names needs to be corrected to be transformed on a range name, so the code tries
to find an underscore inside the food category range name using the VBA InStr () function. If it does, the
first word of the range name before its first underscore is extracted to the strFind variable. Note that the
code concatenates a * wildcard after the search word to search for any cell that begins with that word.

 If InStr (1, rg, "_") Then

 strFind = Mid (rg, 1, InStr (1, rg, "_") - 1) & "*"

 ■ Attention This works because there are no two food categories beginning with the same name prefix.

 The Range. Find method is then used to find the first reference to the food category that has this word
using the LookAt = xlWhole argument, to guarantee that only items that begin with that word will be found.

 Set rgFound = rgUSDA.Find(strFind, , , xlWhole)

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

390

 If Range. Find succeeds on the search (and it will), rgFound will have the desired food category, which
will be added to the cboCategory ComboBox .

 If Not rgFound Is Nothing Then
 Me .cboCategory. AddItem rgFound
 End If

 For the cases that the food category is composed of just one word (like Beverages or Sweets), its range
name is directly inserted on the list.

 For Each rg In Range("FoodCategoriesList")
 If InStr (1, rg, "_") Then
 ...
 Else
 Me .cboCategory. AddItem rg
 End If
 Next

 Once frmRangeFilter is loaded, try to find all food items that have black and bean using the two Find
text boxes and click the Search (cmdSearch) CommandButton . All 17 food items that match the desired criteria
will be instantly recovered and shown in the lstFoodItems ListBox (Figure 6-27).

 Figure 6-27. frmRangeFind allows you to use two different criteria to find food items inside the USDA range
name, like the 17 that have both black and bean (note that you use the AND operator to include the food item
names on the ListBox)

 Use a cboCategory ComboBox to try to select any of the food categories on the list, like Legumes and
Legume Products. Just food items of the selected food category will be shown (Figure 6-28).

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

391

 When you type something in txtFind (the left text box) and press Enter, the txtFind_AfterUpdate()
event fires, executing this code:

 Private Sub txtFind_AfterUpdate()
 Dim bolEnabled As Boolean

 If Me .txtFind = "" Then
 Me .txtFind2 = ""
 End If

 bolEnabled = (Me .txtFind <> "")
 Me .txtFind2.Enabled = bolEnabled
 Me .cmdSearch.Enabled = bolEnabled
 Me .cmdClear.Enabled = (bolEnabled Or Me .lstFoodItems.ListCount > 0)
 mbolFiltered = False
 End Sub

 If txtFind becomes cleared (""), txtFind2 must also be cleared. And txtFind2 (the right TextBox),
 cmdSearch , and cmdClear will become enabled when txtFind has something typed in it. Note that cmdClear
will become enabled if lstFoodItems shows any food item in its list and that the module-level variable
 mbolFiltered changes to False .

 The Clear (cmdClear) CommandButton allows you to clear the interface and begin another search,
executing this code:

 Private Sub cmdClear_Click()
 mbolFiltered = False

 Figure 6-28. If you select any of the listed food categories in the cboCategory ComboBox, just food items of this
category will be shown in the ListBox

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

392

 Me .lstFoodItems. Clear
 Sheets ("USDA"). AutoFilterMode = False
 Me .txtFind.SetFocus
 Me .txtFind = ""
 Me .txtFind2 = ""
 Me .cboAndOr = "AND"
 Me .cboCategory.ListIndex = 0
 Me .cmdSearch.Enabled = False
 Me .cmdSelect.Enabled = False
 Me .cmdClear.Enabled = False
 End Sub

 Note that it turns the module-level variable mbolFiltered to False , clears the lstFoodItems ListBox ,
and removes any AutoFilter imposed on the USDA worksheet; it clears and disables all controls of the
 UserForm interface. Try it!

 Now while you keep txtFind and txtFind2 empty, try to select any food category and click the Search
(cmdSearch) CommandButton . You will notice that all food items of the selected food category will be instantly
returned in the lstFoodItems ListBox . Select another category, and the ListBox will be automatically
updated (Figure 6-29).

 ■ Attention Note that if you select again All Food Categories, the UserForm interface is cleared, and no food
item is returned.

 Figure 6-29. You can also use the frmRangeFilter UserForm to select all food items of a given food category.
Click the Clear (cmdClear) CommandButton to clear the interface, select any food category on the cboCategory
ComboBox, and the click Search (cmdSearch) CommandButton. All food items of the selected food category
will be returned. Keep selecting food in other food categories to update the list. The All Food Categories option
clears the UserForm interface

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

393

 When you select any food category in the cboCategory ComboBox , the cboCategory_Change() event
fires, executing this code:

 Private Sub cboCategory_Change()
 Dim bolEnabled As Boolean

 If mbolFiltered Then
 If Me .cboCategory.ListIndex > 0 Then
 Call cmdSearch_Click
 Else
 Call cmdClear_Click
 End If
 Else
 bolEnabled = (Me .cboCategory.ListIndex > 0)
 Me .cmdSearch.Enabled = bolEnabled
 Me .cmdClear.Enabled = bolEnabled
 End If
 End Sub

 Perhaps you now understand why you need the mbolFiltered module variable. If it is True and
 cboCategory has a specific food category selected, it calls cmdSearch_Click , automatically filtering again the
 USDA worksheet for all food items that belong to the selected food category.

 If mbolFiltered Then
 If Me .cboCategory.ListIndex > 0 Then
 Call cmdSearch_Click

 But if mbolFiltered = False , frmRangeFilter is still not filtered in the USDA worksheet, and its
interface must be synchronized, enabling the cmdSearch and cmdClear CommandButton s.

 Else
 bolEnabled = (Me .cboCategory.ListIndex > 0)
 Me .cmdSearch.Enabled = bolEnabled
 Me .cmdClear.Enabled = bolEnabled

 Now that you know that you can show food items either by part of a name and/or by food category, you
know the search and filter process happens when the cmdSearch_Click() event fires, executing this code:

 Private Sub cmdSearch_Click()
 Dim rgUSDA As Range
 Dim rgFilter As Range
 Dim rgArea As Range
 Dim rg As Range
 Dim intI As Integer
 Const conFoodName = 1
 Const conFoodCategory = 2

 Sheets ("USDA"). AutoFilterMode = False
 Me .lstFoodItems. Clear

 Set rgUSDA = Range("USDA").Offset(-1). Resize (Range("USDA").Rows.Count + 1)
 If Me .txtFind2 = "" Then
 rgUSDA.AutoFilter conFoodName, "*" & Me .txtFind & "*"

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

394

 ElseIf Me .txtFind <> "" Then
 rgUSDA.AutoFilter conFoodName, "*" & Me .txtFind & "*", IIf(Me .cboAndOr = "AND",

xlAnd, xlOr), "*" & Me .txtFind2 & "*"
 End If

 If Me .cboCategory.ListIndex > 0 Then
 rgUSDA. SpecialCells (xlCellTypeVisible).AutoFilter conFoodCategory, Me .cboCategory
 End If

 Set rgFilter = rgUSDA. SpecialCells (xlCellTypeVisible)

 For Each rgArea In rgFilter. Areas
 For intI = 1 To rgArea.Rows.Count
 Set rg = rgArea.Cells(intI, 1)
 If rg <> "" And rg.Row > rgFilter.Row Then
 Me .lstFoodItems. AddItem rg
 Me .lstFoodItems. Column (1, Me .lstFoodItems.ListCount - 1) = rg.Offset(0, 1)
 End If
 Next
 Next

 Me .lblFoodItems.Caption = Me .lstFoodItems.ListCount & " food items"
 Me .lblFoodItems.Visible = True
 If Me .lstFoodItems.ListCount = 0 Then
 MsgBox "Food item not found"
 End If

 mbolFiltered = True
 End Sub

 After declaring all variable and constants needed, the first instructions prepare the stage. If there is any
filter applied to the USDA worksheet, it is removed, and the lstFoodItems ListBox is cleared.

 Sheets ("USDA"). AutoFilterMode = False
 Me .lstFoodItems. Clear

 The rgUSDA object variable is then defined to contain the nutrient headers and all nutritional
information of the entire USDA range name, as you did before using the VBA Immediate window.

 Set rgUSDA = Range("USDA").Offset(-1). Resize (Range("USDA").Rows.Count + 1)

 And once the rgUSDA variable is defined, it is time to impose the Range.AutoFillter method, according
to what was typed in the txtFind and txtFind2 text boxes. If just txtFind was filled, txtFind2 is empty, and the
 AutoFilter method must use just the txtFind TextBox on the Criteria1 argument. Note that what you type in
the txtFind TextBox is enclosed between asterisks (*). This is the wildcard character that will allow a substring
search (like the Text ➤ Contains option offered by the drop-down ListBox filter in the Excel interface).

 If Me .txtFind2 = "" Then
 rgUSDA.AutoFilter conFoodName, "*" & Me .txtFind & "*"

 But if both txtFind and txtFind2 TextBox es have been filled, the Criteria1 , Operator , and Criteria2
arguments of the Range. AutoFilter method must be used to compose the desired filter criteria. Once again,

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

395

note that both criteria are enclosed in asterisks and that it uses the VBA IIF() function to test the cboAndOr
ComboBox value and to decide whether the Operator argument must be defined to xlAnd or xlOr .

 ElseIf Me .txtFind <> "" Then
 rgUSDA.AutoFilter conFoodName , "*" & Me .txtFind & "*", IIf(Me .cboAndOr = "AND",

xlAnd, xlOr) , "*" & Me .txtFind2 & "*"
 End If

 At this moment, if anything has been typed in the txtFind and txtFind2 text boxes, the rgUSDA range can be
filtered to show all food items that match the desired search criteria, and the code verifies whether cboCategory
has a specific food category selected (its first list option is All Categories, which received ListIndex = 0).

 If this is true, if rgUSDA is already filtered, it will be filtered again to show among the selected food items
just the ones that belong to the selected food category. If it has not been filtered yet, it will be filtered to show
all food items of the selected food category. In both cases, all rgUSDA visible cells must be submitted to the
 Range. AutoFilter method, using the SpecialCells (xlCellTypeVisible) property to select all visible cells
of the range and using the selected food category on the Criteria1 argument.

 If Me .cboCategory.ListIndex > 0 Then
 rgUSDA. SpecialCells (xlCellTypeVisible) .AutoFilter conFoodCategory, Me .cboCategory
 End If

 ■ Attention As a good programming practice, the code declares and uses the conFoodName = 1
and conFoodCategory = 2 constants to indicate the first or second rgUSDA range column as the
 Range. AutoFilter Field argument, avoiding the appearance of “magic numbers” in the code.

 This is enough to filter the USDA worksheet using all possibilities allowed by the frmRangeFilter
interface, and the code needs to set a reference to the rows filtered by the Range. AutoFilter methods. They
belong to all visible rows of the filtered rgUSDA object variable and can be defined using the Range. SpecialC
ells (xlCellTypeVisible) property.

 Set rgFilter = rgUSDA. SpecialCells (xlCellTypeVisible)

 At this point, rgFilter has all visible cells of the filtered rgUSDA object variable, and the code needs
to run through all visible and independent range addresses, getting the food item name to insert on the
 lstFoodItems ListBox . It does this using two successive For…Next loops. An outer For Each…Next loop
gets each independent range address using the rgFilter. Areas collection and sets it to the rgArea object
variable, while the inner loop uses a For intI = 1 To rgArea.Rows.Count…Next loop to run through all
rows of each independent address returned.

 For Each rgArea In rgFilter. Areas
 For intI = 1 To rgArea.Rows.Count
 ..
 Next
 Next

 To fill the lstFoodItems ListBox with the food item names and its food category, each cell on the first
column of the current rgArea address is set to the rg object variable using the rgArea.Cells(intI, 1)
property. The rg value is then tested. If it is not empty and if its row number is greater than the first rgFilter
row (the drop-down ListBox es row), the food item is added to the first column in the lstFoodIT em ListBox ,
and its food category is added to the second ListBox column using rg.Offset(0,1) .

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

396

 Set rg = rgArea.Cells(intI, 1)
 If rg <> "" And rg.Row > rgFilter.Row Then
 Me .lstFoodItems. AddItem rg
 Me .lstFoodItems. Column (1, Me .lstFoodItems.ListCount - 1) = rg.Offset(0, 1)
 End If

 ■ Attention This last test to see whether the rg is not empty (rg <> "") is necessary because when the
 USDA range name was created, it received a blank row on the bottom as a provision to the My_Recipes food
category, which was not used yet. This blank row confuses the Range. AutoFilter method and is always
returned as the last rgFilter.Area address.

 To know how many food items have been returned, you just use lstFoodItems.ListCount . If it is first
used to change the lblFoodITems Label control’s Caption property and if lstFoodItems.ListCount = 0 ,
no food item matches the desired criteria, and a MsgBox () function will warn the user. To signal to other
events that the USDA worksheet is now filtered, the mbolFiltered module-level variable is set to True .

 Me .lblFoodItems.Caption = Me .lstFoodItems.ListCount & " food items"
 Me .lblFoodItems.Visible = True
 If Me .lstFoodItems.ListCount = 0 Then
 MsgBox "Food item not found"
 End If

 mbolFiltered = True
 End Sub

 And this is all you have to know about frmRangeFilter UserForm VBA code.
 Did you notice that with the frmRangeFilter UserForm , using the Range. AutoFilter method is faster

than frmRangeFind using the Range. Find method? Oh, it is! And it is more powerful too because it allows a
two-word substring search and the possibility of filtering the food items again by a single food category.

 Cool, huh?

 Finding Food Items with the Range. Sort Method
 Sometimes when you have a large data table, you need to find the n greatest (or lowest) values of a given data
column. Speaking in terms of the USDA-ARS food table, say you need to find the first n food item that has the
greatest (or lowest) values of a given nutrient, such as protein, Vitamin E, a given amino acid, and so on.

 In such moments, you need to first sort the USDA food table by the desired column using the
appropriate sort method (ascending for lowest values or descending for greatest values) and then look for
the first n food items that appear on the table.

 To perform such a search on a given food category, you must first filter the USDA food table to show just
the desired food category food items and then apply the appropriate sort method on the filtered items to find
the ones with the greatest or lowest amount of a given nutrient.

 Let’s do these operations using Excel’s Sort & Filter commands on the sr27_NutrientsPer100g.xlsm
workbook.

 Suppose that you want to find the first n food items on the USDA food table stored inside the USDA sheet
tab that have the greatest amount of protein (column K). You can easily do this by following these steps:

 1. Select the USDA range name in the Excel Name box.

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

397

 ■ Attention You may need to execute Function CreateRangeName() in the VBA Immediate window to
create the USDA and food category range names on the sr27_NutirentsPer100g.xlsm workbook.

 2. Apply the Excel Sort & Filter ➤ Custom Sort command to show the Excel Sort
dialog box.

 3. In the Excel Sort dialog box, delete all the existing sorting levels (if any), click the
Add Level button, select Protein in the Sort by ListBox , select Largest to Smallest
in the Order column, and press Enter to sort the USDA range name.

 After you have sorted the USDA range name by the Protein column using descending order (from largest
to smallest) and scroll it to the right to show the Protein column. You will see that the food item that has the
greatest amount of protein is “Soy protein isolate, potassium type, crude protein basis” (88.3g of protein for
each 100g), followed by “Gelatins, dry powder, unsweetened” and some “Egg dried” products (Figure 6-30).

 ■ Attention Use the Smallest to Largest option of the Excel Sort dialog box so you can find the first n food
items with the least amount of any desired nutrient.

 Figure 6-30. In the sr27_NutrientsPer100g.xlsm macro-enabled workbook, select the USDA range name in the
Excel Name box, apply the Sort & Filter ➤ Custom Sort command, and use the Excel Sort dialog box to sort the
USDA range name by its Protein column (column K), using Order = Largest to Smallest, to find the first food
items with the greatest amount of protein

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

398

 ■ Attention When you sorted the USDA range name by its Protein column, the NDB_No column (column A) of
the USDA worksheet will be desynchronized from the rest of the food table. Don’t bother with this! You can easily
resynchronize it by sorting again the USDA range name by Food Category and Food Item.

 Now suppose you want to find, in the Fruit and Fruit Juices food category, the food items that have
the greatest amount of protein per 100g of food. This time you first need to filter the USDA worksheet by the
desired food category and then apply the Excel Custom Sort command to sort the filtered food items by the
desired nutrient column. Follow these steps:

 1. On the USDA sheet tab, click cell B6 and press Ctrl+Shift+ Right Arrow and
Ctrl+Shift+Page Down to select the entire USDA food table, including its nutrient
identification row (row 6).

 2. Click the Excel Sort & Filter ➤ Filter command to put Excel ListBox arrows on
each nutrient name of row 5 of the USDA sheet tab.

 3. Click the FdGrp_Desc column filter arrow, uncheck the Select All option, and
check the desired food item category: Fruit_and_Fruit_Juices. Click OK to have
Excel apply the filter and show just these food category food items (the Excel
status bar must show 446 of 8,843 records found).

 4. Click Excel’s Sort & Filter ➤ Custom Sort command to show the Excel Sort dialog
box, select the Protein column, set Order = Greatest to Smallest, and click OK to
sort the filtered items.

 When you have finished these operations, you must see just the Fruit and Fruit Juices food category’s
food items sorted by the USDA sheet tab’s Protein column in descending order. The fruit that has the greatest
amount of protein is “Apricots, dehydrated (low-moisture), sulfured, uncooked” (4.9g of Protein per 100g),
followed by other dried fruits. The first raw fruit with the greatest amount of protein is “Guavas, common,
raw” (1,989g of protein per 100g) (Figure 6-31).

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

399

 Now suppose that you want to find the food items that have the greatest amount of two different
nutrients, like sucrose and glucose, in this order: the ones that have the greatest amount of sucrose and, then
within those items, the ones that also have the greatest amount of glucose.

 You cannot always sort the USDA food table by two different nutrient columns using just Excel Sort
dialog box because Excel will use its own criteria of double sorting. It sorts the table by the first nutrient
column and then for each amount of this first nutrient sorts by the second nutrient column.

 To find the first n food items in the USDA range name that have the greatest amount of sucrose and
glucose, you will need to use the Excel Sort dialog box to sort the entire USDA range name by columns R and S in
descending order. Figure 6-32 shows that the first two food items with the greatest amount of sucrose have no
glucose at all! The food items you are interested are the ones that have the greatest amount of both nutrients—
 those with both nutrients greater than zero. These do not appear on the top of the list sorted by Excel.

 Figure 6-31. Select the entire USDA range name (including row 5, the nutrient headers row), use the Excel
Filter command to show just the food items from the food category Fruit and Fruit Juices, and then apply the
Excel Sort command to show the filtered food items with the greatest amount of protein

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

400

 There is no such simple method to find food items that have the greatest (or lowest) amount of two
different columns using this kind of double sorting in a table like the USDA worksheet. After thinking about
this problem for a while, it comes to me that to find the desired food items you can base the sort process on
many different strategies, like the next four methods (there are probably many others…):

• Sort the USDA range name by the Nutrient 1 and Nutrient 2 columns and use the first
 n food items (a standard double sorting method).

• Create a new nutrient column that sums the Nutrient 1 + Nutrient 2 amounts at
the right of the last USDA range column, sort the USDA range name by this calculated
column, and use just the first n food items that have both Nutrient 1 and Nutrient 2
amounts greater than zero.

• Sort the USDA range name by Nutrient 1 and Nutrient 2 in ascending order, but use
just the first n food items that have Nutrient 2 amounts greater than zero.

• Invert the sorting process: sort the USDA range name by Nutrient 2 and Nutrient 1
(inverse sort order), and use just the first n food items that have Nutrient 1 amounts
greater than zero.

 Figure 6-32. Sometimes the Excel Sort dialog box does not return the desired results. If you try to sort the
USDA range name by columns R and S in descending order to find food items with the greatest amount of
sucrose and glucose, you realize that the first two food items have no amount of glucose, although they appear
on the top of the sorted table

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

401

 Sorting a Range by a Calculated Column
 Let’s suppose you want to insert a calculated column with a formula that sums the calcium (column Y) and
iron (column Z) amounts of the first food item and then copy this formula to all other food items of the USDA
worksheet. You will need to follow these steps:

 1. Find the first empty cell to the right of the first USDA range row (row 7): the one
that must receive this formula (cell GD7).

 2. Create on this cell the formula that adds the cell address of both nutrient
amounts (=Y7+Z7).

 3. Copy and paste the cell GD7 formula to all other food item rows in the same
column of the USDA range (cells GD8:GD8949).

 4. Expand the USDA range address to include this new column (GD) and sort the
entire range by this calculated column, using descending or ascending order for
maximum or minimum amounts of both nutrients, respectively.

 This can be easily hand-made, but what about with VBA code? You will need to use the knowledge you
received so far about the Excel Range.Cells and Range. Resize properties and the Range. Copy method.

 The Range. Copy and Range. PasteSpecial Methods

 The Excel object model exposes the Range. Copy and Range. PasteSpecial methods to easily allow you to
execute copy and paste operations on any worksheet. They have the next syntax:

 Expression.Copy(Destination)

 In this code:

 Expression : This is a variable that represents a Range object.

 Destination : This is optional; it defines the new range to which the range
defined by Expression will be copied. If omitted, Excel will copy the range to the
clipboard.

 Expression.PasteSpecial(Paste, Operation, SkipBlanks, Transpose)

 In this code:

 Expression : This is required; it is a variable that represents a Range object.

 Paste : This is optional; it is a constant of XlPasteType type that specifies the part
of the range to be pasted and can be one of these constants:

 xlPasteAll , to paste everything

 xlPasteAllUsingSourceTheme , to paste everything using the source theme

 xlPasteAllMergingConditionalFormats , to paste just conditional formats

 xlPasteAllExceptBorders , to paste everything except border styles

 xlPasteFormats , to paste just number formats

 xlPasteFormulas , to paste just formulas

 xlPasteComments , to paste just comments

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

402

 xlPasteValues , to paste just values

 xlPasteColumnWidths , to paste just the column width of the source cell to
the destination cells

 xlPasteValidation , to paste just the data validation option of the source
cell on the destination cells

 xlPasteFormulasAndNumberFormats , to paste formulas and number formats

 xlPasteValuesAndNumberFormats , to paste values and number formats

 Operation : This is optional; it is a constant of XlPasteSpecialOperation that
indicates the kind of paste operation to be performed.

 SkipBlanks : This is optional; use True to tell Excel to not paste blank cells into
the destination range. The default value is False (blank cells will be pasted).

 Transpose : This is optional; use True to indicate that Excel must transpose rows
and columns when the range is pasted. The default value is False .

 As you can see, you can use just the Range. Copy method to copy and paste the desired information with
a single line of code. Use the Range. PasteSpecial method when you want to choose what to paste on the
destination range, like just the values of the copied cells.

 Using the VBA Immediate Window to Sort by a Calculated Column

 Let’s try to do each of the last four steps using the VBA Immediate window.

 1. To find the first empty column to the right of the last USDA range column, use the
 Worksheet object’s Cells property this way (note that it uses the Range.Columns.
Count +1 property to find the right column and the Range. Address property to
print the cell address in the VBA Immediate window).

 ?range("USDA").Cells(1, range("USDA").Columns.Count+1). Address
 GD7

 2. Use the Range.Formula property to insert the desired formula in the right cell; to
do this, do not use the VBA print character (?) in the Immediate window.

 range("USDA").Cells(1, range("USDA").Columns.Count+1).Formula = “=Y7+Z7”

 3. Use the VBA Range. Copy method to copy the cell GD7 formula and paste the
formula into all the other desired cells (note that the destination range was
resized using the Range. Resize property).

 range("GD7").Copy Range("GD7"). Resize (Range("USDA").Rows.Count)

 4. Once all cells have received the appropriate formula, it is time to sort the USDA
range by the new calculated column. So, you need to resize it to include this
column and sort it descending, as follows:

 Range("USDA"). Resize (, Range("USDA").Columns.Count + 1).Sort
Range("GD7"), xlDescending

 Figure 6-33 shows how the USDA worksheet should look after you make these three operations using the
VBA Immediate window.

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

403

 Sorting by a Calculated Column with VBA

 But there is a catch on this programmable operation because of another Excel bug! If you try to follow
this exact operation sequence using VBA code, Excel will copy all the formulas but will not update their
references when you use the Range. Sort method.

 The file sr27_NutrientsPer100g_Sort Sum of Nutrients.xlsm macro-enabled workbook that you
can extract from the Chapter06.zip file has the frmSortBySum UserForm , which allows you to select two
different nutrients, create a sum of nutrient formulas, and sort the entire USDA food table by this new
column (Figure 6-34).

 Figure 6-33. Using the VBA Immediate window, the Excel Range.Cells, Range.Formula, and Range. Resize
properties, as well as the Range. Copy method, you can create a new calculated column and sort the entire
USDA range name using just three lines of code

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

404

 The frmSortBySum uses the UserForm_Initialize() event to run through all USDA worksheet row 7
columns (nutrient column names) and fill both the cboNutrient1 and cboNutrient2 ComboBox es with all
available nutrient names, executing this code:

 Private Sub UserForm_Initialize ()
 Dim rg As Range
 Dim rgUSDA As Range
 Dim intI As Integer
 Const conFirstNutrient = 7

 Set rgUSDA = Range("USDA"). Resize (1, Range("USDA").Columns.Count).Offset(-1)
 For intI = conFirstNutrient To rgUSDA.Columns.Count
 Set rg = rgUSDA.Cells(1, intI)
 Me .cboNutrient1. AddItem rgUSDA.Parent.Name & "!" & rg.Offset(1). Address (False,

False)
 Me .cboNutrient1. Column (1, Me .cboNutrient1.ListCount - 1) = rg
 Me .cboNutrient2. AddItem rgUSDA.Parent.Name & "!" & rg.Offset(1). Address (False,

False)
 Me .cboNutrient2. Column (1, Me .cboNutrient2.ListCount - 1) = rg
 Next
 End Sub

 This code begins by resizing the entire USDA range name for just one row and all its columns using the
 Range. Resize method and then sets a reference to the USDA table headers (nutrient names) using the
 Range. Offset (-1) property.

 Set rgUSDA = Range("USDA"). Resize (1, Range("USDA").Columns.Count).Offset(-1)

 And once the range reference was correctly set to the rgUSDA object variable, it performs a For intI...
Next loop to run through all nutrient column names, beginning on column 7 , which is associated to the
 conFirstNutrient constant (the 8 th worksheet column: column H ; nutrient = “Water (g)”), to avoid a magic
number inside the code. The selected nutrient column is attributed to the rg object variable using the
 rgUSDA.Cells() property.

 Figure 6-34. This is the frmSortBySum UserForm from the sr27_NutrientsPer100g_Sort Sum of Nutrients.xlsm
macro-enabled workbook that allows you to select two different nutrients with its cboNutrient1 and cboNutrient2
ComboBoxes to create a new sum of nutrients formula column and sort the USDA food table by it

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

405

 For intI = conFirstNutrient To rgUSDA.Columns.Count
 Set rg = rgUSDA.Cells(1, intI)

 Both the cboNutrient1 and cboNutrient2 ComboBox es have two columns: the first column (hidden)
must contain a reference formula to the first nutrient value, which is stored in the USDA range name row 7 ;
the second column (visible) must receive the nutrient name.

 To add the first column formula with the address of the first nutrient value (row 7 ; the first USDA range
row), the procedure uses the ComboBox. AddItem method, employing the rgUSDA.Parent.Name property to
identify the worksheet name, followed by an exclamation mark and the range address—which is returned as
a relative reference using the rg.Offset method with both Address arguments (row and column reference
type) set to False .

 Me .cboNutrient1. AddItem rgUSDA.Parent.Name & "!" & rg.Offset(1). Address (False, False)

 Each nutrient name is associated to the first USDA range name row, using the ComboBox. Column property
and the rg object variable value, which contain the nutrient column name.

 Me .cboNutrient1 . Column (1, Me .cboNutrient1.ListCount - 1) = rg

 This process is repeated to fill the cboNutrient2 ComboBox with the same information, until all nutrient
column names are processed inside the For…Next loop.

 Me . cboNutrient2 . AddItem rgUSDA.Parent.Name & "!" & rg.Offset(1). Address (False,
False)

 Me . cboNutrient2 . Column (1, Me .cboNutrient2.ListCount - 1) = rg
 Next
 End Sub

 The cmdSort CommandButton executes the code needed to create the sum of nutrient formula on the
new calculated column, creating it on the first nutrient row and then copying it to all other nutrients. It then
sorts the USDA range name by this new calculated column, running this code:

 Private Sub cmdSort_Click()
 Dim rg As Range
 Dim rgPaste As Range
 Dim rgUSDA As Range

 If IsNull(Me .cboNutrient1) Or IsNull(Me .cboNutrient2) Then
 MsgBox "Please, select Nutrient 1 and Nutrient 2 columns!", vbInformation, "Select

both nutrients!"
 Exit Sub
 End If

 'Create formula to sum both nutrients
 Set rgUSDA = Range("USDA")
 Set rg = rgUSDA.Cells(1, rgUSDA.Columns.Count + 1)
 Set rgPaste = rg. Resize (rgUSDA.Rows.Count)
 rg.Formula = "=" & Me .cboNutrient1 & "+" & Me .cboNutrient2
 rg.Copy rgPaste

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

406

 'Expand rgUSDA columns to contain the new column formula and sort it by the formula
results

 Set rgUSDA = rgUSDA. Resize (, rgUSDA.Columns.Count + 1)
 rgUSDA.Sort rg, xlDescending
 End Sub

 Note that it first looks if both cboNutrient1 and cboNutrient2 have some nutrient selected.

 If IsNull(Me . cboNutrient1) Or IsNull(Me . cboNutrient2) Then
 MsgBox "Please, select Nutrient 1 and Nutrient 2 columns!", vbInformation, "Select both

nutrients!"
 Exit Sub
 End If

 It then sets a reference to the calculated column using the rg object variable. It uses the Range.
Columns.Count + 1 property to refer to the right column and sets another reference to all USDA range rows
using the Range.Rows.Count property.

 Set rgUSDA = Range("USDA")
 Set rg = rgUSDA.Cells(1, rgUSDA.Columns.Count + 1)
 Set rgPaste = rg. Resize (rgUSDA.Rows.Count)

 The formula that adds the selected nutrient is then created on the first nutrient row using the rg.
Formula property and then copied to all other nutrient rows using the Range. Copy method with the rgPaste
object variable as the destination.

 rg.Formula = "=" & Me .cboNutrient1 & "+" & Me .cboNutrient2
 rg.Copy rgPaste

 To finish the process, the rgUSDA object variable has its column count increased by 1 using the
 Range. Resize method, and then it is sorted by this new column value (a formula with the sum of selected
nutrients) in descending order.

 'Expand rgUSDA columns to contain the new column formula and sort it by the formula
results

 Set rgUSDA = rgUSDA. Resize (, rgUSDA. Columns.Count + 1)
 rgUSDA. Sort rg , xlDescending
 End Sub

 There is nothing wrong with that code strategy, but when you use the frmSortBySum UserForm from the
 sr27_NutrientsPer100g_Sort Sum of Nutrients.xlsm macro-enabled workbook to execute this process,
it seems to work right—but it doesn’t! Figure 6-35 shows what happens to the calculated column formulas
after you select two nutrients (protein and fiber) and try to sort the USDA food table. The sort happens, but
the formula references were not updated like they should be.

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

407

 ■ Attention Note that frmSortBySum UserForm is a no-modal window, allowing you to click any worksheet
cell while it is opened (the ShowModal property was set to False). Also note that when you close it, it fires the
 Terminate() event, re-sorting the USDA worksheet by its default order.

 Also note that if you click the cmdSort command button again, the values will be changed.

 To fix this bad Excel VBA behavior, you must do an extra process before applying the Range. Sort
method to the sum of the nutrient formula column: you must copy all the sum of nutrient formulas and use
the Range. PasteSpecial method to paste its values before sorting the range !

 The file sr27_NutrientsPer100g_Sort Sum of Nutrients_PasteSpecial.xlsm Excel macro-enabled
workbook has this fix on its cmdSort_Click() event. Observe the bold rows:

 Private Sub cmdSort_Click()
 Dim rg As Range
 Dim rgPaste As Range
 Dim rgUSDA As Range

 If IsNull(Me .cboNutrient1) Or IsNull(Me .cboNutrient2) Then

 Figure 6-35. When you use the frmSortBySum UserForm from the sr27_NutrientsPer100g_Sort Sum of
Nutrients.xlsm macro-enabled workbook to sort the entire USDA range name, the sort process is done, but all the
calculated column formula references are not updated to reflect the sum of nutrients for each food item row

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

408

 MsgBox "Please, select Nutrient 1 and Nutrient 2 columns!", vbInformation, "Select
both nutrients!"

 Exit Sub
 End If

 'Create formula to sum both nutrients
 Set rgUSDA = Range("USDA")
 Set rg = rgUSDA.Cells(1, rgUSDA.Columns.Count + 1)
 Set rgPaste = rg. Resize (rgUSDA.Rows.Count)
 rg.Formula = "=" & Me .cboNutrient1 & "+" & Me .cboNutrient2
 rg.Copy rgPaste
 rgPaste.Copy
 rgPaste.PasteSpecial xlPasteValues

 'Expand rgUSDA columns to contain the new column formula
 Set rgUSDA = Range("USDA"). Resize (, rgUSDA.Columns.Count + 1)
 rgUSDA.Sort rg, xlDescending
 'rgPaste. Clear
 End Sub

 This time, before implementing the search process, all calculated sums of nutrient formulas are copied
and pasted using the Range. PasteSpecial method and the xlPasteValues constant, changing all calculated
formulas by their real values. The result can be seen in Figure 6-36 , which shows a very different sorting result.

 Figure 6-36. To correctly sort any range by a calculated formula, you must first use the Range. PasteSpecial
method with the xlPasteValues constant to change the formula references by its returned results and then
sort the range. You can try this new approach using the sr27_NutrientsPer100g_Sort Sum of Nutrients_
PasteSpecial.xlsm Excel macro-enabled workbook

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

409

 Using frmRangeSort

 Now that you know you can sort the USDA food table by one or two different nutrient values, you are
ready to understand how to implement a good all-in-one UserForm solution to sort food items by different
methods using VBA code.

 The file sr27_NutrientsPer100g_Range. Sort .xlsm Excel macro-enabled workbook offers the
 frmRangeSort UserForm , which allows you to sort food items using two different nutrient values via four
different sorting methods: Sort by Nutrient1 and Nutrient2 columns, sum of both nutrient column amounts,
sort by Nutrient1 and find top n items of Nutrient2, or sort by Nutrient2 and find top n items of Nutrient1
(Figure 6-37).

 Figure 6-37. This is frmRangeSort UserForm from the sr27_NutrientsPer100g_Range. Sort .xlsm Excel macro-
enabled workbook, which allows you to select two different nutrients, choose among four different sorting
methods, and recover the first n food items using a ListBox control

 The frmRangeSort offers all the tricks already covered in this chapter with the frmRangeFind and
 frmRangeFilter UserForm s, so I will just comment on how it sorts and fills the lstFoodItems ListBox with
the food items it finds with one of its four different sort processes

 The frmRangeSort UserForm requires that you select just one or two different nutrients to sort the USDA
range name. If you select just one nutrient, you can just use its first sorting method: sort by Nutrient 1 and
then by Nutrient 2 columns. If you select two different nutrients, you can sort by any method.

 After you have selected the desired nutrients and sort method, click the Search button (cmdSearch) to
sort the USDA range name and fill the ListBox with the first n food items found (100 is the default value).
Change the sort method, and the list will be filled again (Figure 6-38).

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

410

 Figure 6-38. When you select two different nutrients, choose the sort method and click Search to fill the
UserForm ListBox with the first n food items found. Select another sort method and look at how the list is
changed, regarding the selected method

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

411

 This happens because the first time you select a nutrient and click the cmdSearch CommandButton ,
it defines the module-level variable mbolSorted = True , and when you select another sort method, the
 cboSortMethod_Change() event fires, running this code:

 Private Sub cboSortMethod_Change()
 If mbolSortedThen
 Call cmdSearch_Click
 End If
 End Sub

 And this technique is reused whenever you select another food category, firing the cboCategory_
Change() event.

 Private Sub cboCategory_Change()
 If mbolSorted Then
 Call cmdSearch_Click
 End If
 End Sub

 Note in Figure 6-38 how the food item list changes as you select another sort method. The sort
process is made by the cmdSearch_Click() event, which has a long list that employs many programming
techniques described so far in this book. It has four main parts: declare the variable and clean up the
interface, define the range to be sorted, sort the range, and fill the lstFoodItems ListBox . Let’s look at each
one of them, beginning with the first part.

 Private Sub cmdSearch_Click()
 Dim rgUSDA As Range
 Dim rg As Range
 Dim rgPaste As Range
 Dim intArea As Integer
 Dim intSortOrder As Integer
 Dim intI As Integer
 Dim intItems As Integer
 Dim intMaxItems As Integer
 Dim bolInsert As Boolean
 Const conTriangleDown = 6
 Const conFoodCategory = 2
 Const conSortNutrients = 0
 Const conNutrientSum = 1
 Const conSortByNutrient1 = 2
 Const conSortByNutrient2 = 3

 If Me .cboNutrient1 = Me .cboNutrient2 Then
 MsgBox "Select two different nutrients!", vbInformation, "Nutrients are equal"
 Exit Sub
 End If

 Me .lstFoodItems. Clear
 Me .lblAZ.Caption = conTriangleDown
 Me .lblAZ. Left = Me .lbl2. Left + Me .lbl2.Width
 Sheets ("USDA"). AutoFilterMode = False

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

412

 'Define the range to be searched
 Set rgUSDA = Range("USDA")

 Note that this first part requires that the user select two different nutrients and that the rgUSDA object
variable be defined to the entire USDA range name.

 The second code part disables screen updating and defines the range to be sorted. It first verifies
whether the first sort method was selected and requires that a sum of nutrient formula must be created. If
this is true, the rgUSDA object variable is increased by one column.

 Application .ScreenUpdating = False
 'Verify it rgUSDA must be sorted by nutrients sum!
 If Not IsNull(Me .cboNutrient2) And _
 Me .cboSortMethod.ListIndex = conNutrientSum Then
 'Create formula to sum both nutrients
 Set rg = rgUSDA.Cells(1, rgUSDA.Columns.Count + 1)
 Set rgPaste = rg. Resize (rgUSDA.Rows.Count)
 rg.Formula = "=" & Me .cboNutrient1 & "+" & Me .cboNutrient2
 rg.Copy rgPaste
 rgPaste.Copy
 rgPaste.PasteSpecial xlPasteValues
 'Expand rgUSDA columns to contain the new column formula
 Set rgUSDA = Range("USDA"). Resize (, rgUSDA.Columns.Count + 1)
 End If

 Still in this second code part, the procedure verifies whether the user selected a specific food category.
If this is true, the rgUSDA object variable must be filtered to show just food items of the selected food
category. It is now time to use the Range. AutoFilter method, filtering the rgUSDA object variable by its
second column (represented by the conFoodCategory constant) and by the food category selected in the
 cboCategory ComboBox .

 'Verify if user selected a single category
 If Me .cboCategory.ListIndex > 0 Then
 'Filter rgUSDA by selected category and redefine it
 Set rgUSDA = rgUSDA.Offset(-1). Resize (rgUSDA.Rows.Count + 1)
 rgUSDA.AutoFilter conFoodCategory, Me .cboCategory

 ' SpecialCells .Area(1) has the nutrient names, with just one row, unless the user selected
 'the first food category.
 If rgUSDA. SpecialCells (xlCellTypeVisible). Areas (1).Rows.Count > 1 Then
 Set rgUSDA = rgUSDA. SpecialCells (xlCellTypeVisible). Areas (1)
 Set rgUSDA = rgUSDA.Offset(1). Resize (rgUSDA.Rows.Count - 1)
 Else
 'User did not select first food category!
 Set rgUSDA = rgUSDA. SpecialCells (xlCellTypeVisible). Areas (2)
 End If
 End If

 Note in the previous code how the rgUSDA object variable is resized to show just the food items
returned by the Range. AutoFilter method, using the SpecialCells (xlCellTypeVisible) property and
the Range. Areas collection, as stated in the section “Selecting Filtered Cells with the Range. SpecialCells
Property” earlier in this chapter.

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

413

 And once the rgUSDA object variable points to all desired cells, the procedure is ready to execute its third
code part: sorting the rgUSDA object variable. Note that the code first defines the sort order and then verifies
whether just one nutrient was selected, redefining the lstFoodItems.ColumnCount property to just three
columns and sorting the rgUSDA accordingly.

 'rgUSDA now contains all desired food items and columns
 'Define sort order
 intSortOrder = IIf(Me .cboSortOrder = "Greatest", xlDescending, xlAscending)
 'Verify if just one nutrient was selected and sort rgUSDA accordingly
 If IsNull(Me .cboNutrient2) Then
 Me .lstFoodItems .ColumnCount = 3
 rgUSDA.Sort Range(Me .cboNutrient1) , intSortOrder

 If two different nutrients were selected, the code needs to redefine the lstFoodItems.ColumnCount
property to four columns and use one of the four available sort methods. It first verifies whether the second
sort method, “Sum of both nutrient column amount,” was selected. If it is, rgUSDA is sorted by the calculated
column, represented by the rg object variable, as you did earlier in the section “Sorting by a Calculated
Column with VBA.” Note that once the sort is made, the rgPaste object variable that represents all calculated
cells is cleared.

 Else
 'Two nutrients was selected
 Me .lstFoodItems .ColumnCount = 4
 If Me .cboSortMethod.ListIndex = conNutrientSum Then
 'Sort by sum of both nutrients
 rgUSDA.Sort rg , intSortOrder
 rgPaste. Clear

 If the user selected the first or second sort method, rgUSDA must be sorted first by Nutrient 1 and
then by Nutrient 2 (both methods differ in the way they choose the food items that will be inserted in the
 lstFoodItems ListBox).

 Else
 If (Me .cboSortMethod.ListIndex = conSortNutrients) Or _
 (Me .cboSortMethod.ListIndex = conSortByNutrient1) Then
 rgUSDA.Sort Range(Me .cboNutrient1), intSortOrder, _
 Range(Me .cboNutrient2), , intSortOrder

 The fourth sort method is when the food items must be sorted first by Nutrient 2 and then by Nutrient 1.

 Else
 rgUSDA.Sort Range(Me .cboNutrient2), intSortOrder, _
 Range(Me .cboNutrient1), , intSortOrder
 Me .lblAZ. Left = Me .lbl3. Left + Me .lbl3.Width
 End If
 End If
 End If

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

414

 And once the rgUSDA object variable is sorted by the selected method, it is time to fill the lstFoodItems
 ListBox . To do this, the procedure first verifies whether rgUSDA (that may be filtered) has at least the number
of items defined by the txtFoodItemsNumber text box and uses the smaller value:

 intI = 1
 intMaxItems = IIf(rgUSDA.Rows.Count > Me .txtFoodItemsNumber , Me .txtFoodItemsNumber, rgUSDA.
Rows.Count)

 The first food item available in rgUSDA is attributed to the rg object variable using the rgUSDA.Cells
collection and the intI Integer variable, and a Do…Loop structure is executed to insert all possible food
items, until the maximum number of items is recovered or a blank item is achieved (rg = "").

 Set rg = rgUSDA.Cells(intI , 1)
 Do While intItems < intMaxItems And rg <> ""

 Each food item must be verified against the selected sort method before being inserted in the ListBox . To
help with this selection process, the code uses the bolInsert Boolean variable. The item must be inserted if:

 1. The first sort method was selected (cboSortMethod = conSorNutrients) or
the fourth method was selected (cboSortMethod = conSortByNutrient2) and
Nutrient 1 value is greater than zero.

 'Verify if food item must be inserted on the list
 bolInsert = (Me .cboSortMethod.ListIndex = conSortNutrients) Or _
 (Me .cboSortMethod.ListIndex = conSortByNutrient2 And _
 rg.Offset(, Range(Me . cboNutrient1). Column - 2) > 0)

 2. The first condition was met (bolInsert = True) or

 a. The second sort method was selected (cboSortMethod = conNutrientSum)
 and both Nutrient 1 and Nutrient 2 values are greater than 0; or

 b. The third sort method was selected (cboSortMethod =
conSortByNutrient1), and Nutrient 2 value is greater than 0.

 If Not IsNull(Me .cboNutrient2) Then
 bolInsert = bolInsert Or _
 (Me .cboSortMethod.ListIndex = conNutrientSum And _
 rg.Offset(, Range(Me . cboNutrient1). Column - 2) > 0

And _
 rg.Offset(, Range(Me . cboNutrient2). Column - 2) > 0)

 Or _
 (Me .cboSortMethod.ListIndex = conSortByNutrient1

And _
 rg.Offset(, Range(Me . cboNutrient2). Column - 2) > 0)
 End If

 3. A food category was selected in the cboFoodCategory ComboBox and the item
pertain to it:

 If Me .cboCategory.ListIndex > 0 Then
 bolInsert = bolInsert And rg.Offset(, 1) = Me .cboCategory
 End If

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

415

 The bolInsert variable will be true if the item must be inserted. So, do it when bolInsert = True :

 If bolInsert Then
 With Me .lstFoodItems
 . AddItem rg
 . Column (1, .ListCount - 1) = rg.Offset(, 1)
 . Column (2, .ListCount - 1) = rg.Offset(, Range(Me .cboNutrient1). Column - 2)
 If Not IsNull(Me .cboNutrient2) Then
 . Column (3, .ListCount - 1) = rg.Offset(, Range(Me .cboNutrient2). Column - 2)
 End If
 End With
 intItems = intItems + 1
 End If

 And once the item was inserted, increment the intI counter and get the next food item using the
 rgUSDA.Cells collection before trying the next loop passage.

 intI = intI + 1
 Set rg = rgUSDA.Cells(intI, 1)
 Loop

 The procedure finishes indicating how many items were found, enabling interface command buttons,
returning the USDA range name to its original sort order, and reactivating the screen updating.

 Me .lblFoodItems.Caption = Me .lstFoodItems.ListCount & " food items"
 Me .lblFoodItems.Visible = True
 Me .cmdSelect.Enabled = False
 Range("USDA").Sort Range("USDA!C1"), , Range("USDA!B1")
 mbolSorted = True
 Application .ScreenUpdating = True

 Go ahead and play for a while with the frmRangeSort UserForm interface. Note how it works smoothly
and how to do its job quickly. Oh, sure: don’t forget to try to change the ListBox column widths and sort
order by clicking and dragging the column names! Also try to double-click any food item or select it and
click the Select ControlButton to see how it is promptly stored in the selected cell of the Find Food Item by
Nutrient sheet tab.

 Using frmSearchFoodItems .xlsm
 Throughout this chapter you have used the sr27_NutrientsPer100g.xls Excel workbook inserted as
the USDA sheet tab to search for food items and their nutrient content per 100g of food. But on most
nutritional applications you will seldom use nutrients per 100g of food. Instead, you need to select
them by one of their possible common measures , available from two different USDA worksheets: sr27_
NutrientsPerFirstCommonMeasure.xls (which lists food items by most popular common measure and
amount) and sr27_FoodItemsCommonMeasures.xls (which lists all possible common measures for many,
but not all, USDA food items). Both are produced by the Microsoft Access USDA Food List Creator.mdb
application.

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

416

 ■ Attention The NutrientsPerFirstCommonMeasure.xls and sr27_FoodItemsCommonMeasures Excel 2003
workbooks were generated using the Microsoft Access USDA Food List Creator.mdb application.

 The frmSearchFoodItems .xlsm Excel macro-enabled workbook, which you can extract from the Chapter06.
zip file, encompasses both methods studied in this chapter to search for a specific nutrient: by its name or
nutrient content using food item amounts regarding its available common measures . Figure 6-39 shows that it
has three sheet tabs: Find Food Item , USDA , and USDACommonMeasures . It also has a new frmSearchFoodItems
 UserForm , where you can note these changes:

• It has a Frame control with two Option buttons (opptFindContain and optFindAmount)
that allow the selection of the search method: by name or nutrient content.

• It has a “Qty g” column in the lstFoodItems ListBox , indicating the amount of the
most popular food item common measure.

• It has the lstCommonMeasures ListBox on its bottom, showing all possible
 common measures for the selected food item.

 Figure 6-39. This is the fmrSearchFoodItems.xlsm Excel macro-enabled workbook with its three sheet tabs,
used to find food items by name or nutrient content, allowing the user to select a food item amount by all its
available common measures

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

417

 ■ Attention The USDACommonMeasure sheet tab uses about 15,200 rows to store all USDA available food item
 common measures , ordered by the food item name.

 After you select the desired Option button search method (optFindContain or optFindAmount), type
the food item name (or select the desired nutrient names), and click the UserForm Search button, the
 cmdSearch_Click() event will fire, executing this code:

 Private Sub cmdSearch_Click()
 Application .Calculation = xlCalculationManual
 If Me .optFindContain = True Then
 Call FindByAutoFilter
 Else
 Call FindBySorting
 End If
 Me .lstCommonMeasures. Clear
 Application .Calculation = xlCalculationAutomatic
 End Sub

 ■ Attention Since the Excel AutoFilter method forces a full workbook recalculation, you must always set
 Application .Calculation = xlCalculationManual before using this method. This will avoid the cascade
execution of any Function procedure set to Volatile in your VBA project.

 Showing Selected Food Item Common Measures
 Both the FindByAutoFilter() and FindBySorting() procedures execute the same code described earlier
in this chapter in the sections “Using frmRangeFilter ” and “Using frmRangeSort ” to find the desired food
item.

 Having a list of possible food items to choose from, whenever you select the desired food item on the
 lstFoodItems ListBox , the lstFooditems_Click() event will fire, calling the ShowCommonMeasures()
procedure, which will search inside the USDACommonMeasures worksheet for all possible food item common
measures , exhibiting them (if any) in the lstCommonMeasures ListBox using this code:

 Private Sub lstFoodItems_Click()
 If Not IsNull(Me .lstFoodItems) Then
 Call ShowCommonMeasures(Me .lstFoodItems)
 End If
 Me .cmdSelect.Enabled = Not IsNull(Me .lstFoodItems)
 End Sub
 Public Sub ShowCommonMeasures(strItem as String)
 Dim ws As Worksheet
 Dim rg As Range
 Dim rgFilter As Range
 Dim lngRows As Long
 Dim intI As Integer

 ' Clear ListBox
 Me .lstCommonMeasures. Clear

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

418

 'clean any auto filter in action
 Set ws = Sheets ("USDACommonMeasures")
 ws. AutoFilterMode = False

 'Find last used row of USDACommonMeasures sheet tab
 lngRows = ws.UsedRange.Rows.Count

 'Filter common measures for selected food item (including headers)
 Set rg = ws.Range("A5:E" & lngRows)
 rg.AutoFilter 1, strItem

 'Loop through all filtered range names
 For Each rgFilter In rg. SpecialCells (xlCellTypeVisible). Areas
 'Discard row 5 (column names)
 If rgFilter.Row > 5 Then
 For intI = 0 To rgFilter.Rows.Count - 1
 With Me .lstCommonMeasures
 . AddItem rgFilter.Cells(intI + 1, 2)
 . Column (1, intI) = rgFilter.Cells(intI + 1, 3)
 . Column (2, intI) = rgFilter.Cells(intI + 1, 4)
 End With
 Next
 End If
 Next

 If Me .lstCommonMeasures.ListCount > 0 Then
 Me .lstCommonMeasures.ListIndex = 0
 End If
 Me .lblCommomMeasures.Caption = Me .lstCommonMeasures.ListCount & " available Common

Measures (please select)"
 'Remove USDACommonMeasures autofilter
 ws. AutoFilterMode = False
 End Sub

 As you can see, ShowCommonMeasures() uses the Range. AutoFilter method to select all possible food
item common measures . To do this, it first clears the lstCommonMeasures ListBox , sets an object variable
reference to the USDACommonMeasure worksheet, and removes any AutoFilter that may have been applied.

 ' Clear ListBox
 Me .lstCommonMeasures. Clear

 'clean any auto filter in action
 Set ws = Sheets ("USDACommonMeasures")
 ws. AutoFilterMode = False

 It then finds the last USDACommonMeasure worksheet used row using the UsedRange.Rows.Count
property, sets the range address to be filtered, and uses the selected food item lstFoodItems ListBox as the
 Range.Autofilter Criteria1 argument to filter the entire worksheet data to just the selected food item
 common measures (if any).

 'Find last used row of USDACommonMeasures sheet tab
 lngRows = ws. UsedRange.Rows.Count

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

419

 'Filter common measures for selected food item (including headers)
 Set rg = ws.Range("A5:E" & lngRows)
 rg.AutoFilter 1, Me .lstFoodItems

 To fill the lstCommonMeasures ListBox with all possible food item common measures , the procedure
executes a For Each…Next loop to select each range address returned by the Areas collection of
 Range. AutoFilter . SpecialCells . Note that it discards the first area (row 5) and uses an internal For…Next
loop to run through all rows of each returned Area range. The rgFilter object variable captured on each
passage through the For Each… Next outer loop has a Cells() collection of all filtered worksheet cells,
which is used to fill the lstCommonMeasures ListBox using the AddItem method and Column property.

 'Loop through all filtered range names
 For Each rgFilter In rg. SpecialCells (xlCellTypeVisible). Areas
 'Discard row 5 (column names)
 If rgFilter. Row > 5 Then
 For intI = 0 To rgFilter.Rows.Coun t - 1
 With Me . lstCommonMeasures
 . AddItem rgFilter.Cells(intI + 1, 2)
 . Column (1, intI) = rgFilter. Cells (intI + 1, 3)
 . Column (2, intI) = rgFilter.Cells(intI + 1, 4)
 End With
 Next

 When all food item common measures have been recovered, the procedure verifies whether there is at
least one common measure inserted in the lstCommonMeasures ListBox , selects the first item in the list, and
fills the lblCommonMeasures.Caption property with the number of possible food item common measures.

 If Me .lstCommonMeasures.ListCount > 0 Then
 Me .lstCommonMeasures. ListIndex = 0
 End If
 Me .lblCommomMeasures. Caption = Me .lstCommonMeasures.ListCount & " available Common Measures
(please select)"

 'Remove USDACommonMeasures autofilter
 ws. AutoFilterMode = False

 Returning the Selected Food Item
 The frmSearchFoodItems UserForm uses a simple strategy to return the selected food item on its
 lstFoodItems ListBox to the calling worksheet.

• It has a Public Property CallingSheet that stores a reference to the calling
worksheet as an Object variable, declared this way on frmSelectFoodItem
UserForm .

 Option Explicit
 ...
 Dim mWks As Object

 Public Property Let CallingSheet (ByVal wks As Worksheet)
 Set mWks = wks
 End Property

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

420

• If the mwks as Object variable has a calling Worksheet object reference, it fills
an array variable with the selected food item name, food category, selected
common measure quantity, and name, and it returns this array to a supposed
 SelectedFoodItem public property on the calling worksheet, which is bound to a
 Variant module-level variable, declared on the worksheet code module. The Find
Food Item sheet tab has such a variable procedure declaration.

 Option Explicit
 Dim SelectedFoodITem As Variant

 It works this way: when you click the Find Food Item button of the Find Food Item sheet tab, the Sub
SelectFoodItem() procedure is called, executing this code:

 Public Sub SelectFoodItem()
 Dim frm As New frmSearchFoodItems
 Const conC = 3

 If Selection. Column = conC Then
 With frm
 .CallingSheet = Me
 .Show vbModal
 End With
 If IsArray (mavarFoodItem) Then
 With Application .Selection
 .Value = mavarFoodItem(0)
 .Offset(0, -1) = mavarFoodItem(1)
 .Offset(0, 1) = mavarFoodItem(2)
 .Offset(0, 2) = mavarFoodItem(3)
 End With
 End If

 Else
 MsgBox "Click on any cell of Food Item column and try again!", _
 vbInformation, _
 "Select a Food Item"
 End If
 End Sub

 The SelectedFoodItem() procedure declares the frm as New frmSearchFoodItem object variable,
passes to it the CallingSheet() property a self-reference (using the VBA keyword Me), and then shows the
 frmSearchFoodItems UserForm modally.

 Public Sub SelectFoodItem()
 Dim frm As New frmSearchFoodItems
 ...
 With frm
 .CallingSheet = Me
 .Show vbModal

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

421

 Selecting a Food Item on the UserForm
 This last instruction (.Show vbModal) will stop the code execution until the frmSearchFoodItems UserForm
instance is closed. If you select a food item on the lstFoodItems ListBox and click the Select command
button, the cmdSelect_Click() event of the UserForm will fire, executing this code:

 Private Sub cmdSelect_Click()
 Dim avarFoodItem(3) As Variant
 Const conErrObjectDoesntSupportMethod = 438

 On Error GoTo cmdSelect_Error

 If Not mWks Is Nothing Then
 'Selected food item name
 avarFoodItem(0) = Me .lstFoodItems
 'Selected Food category
 avarFoodItem(1) = Me .lstFoodItems. Column (1, Me .lstFoodItems.ListIndex)
 If Not IsNull(Me .lstCommonMeasures) Then
 'Qty and Common measure
 avarFoodItem(2) = Me .lstCommonMeasures. Column (2, Me .lstCommonMeasures.ListIndex)
 avarFoodItem(3) = Me .lstCommonMeasures. Column (1, Me .lstCommonMeasures.ListIndex)
 Else
 avarFoodItem(2) = Me .lstFoodItems. Column (2, Me .lstFoodItems.ListIndex)
 avarFoodItem(0) = "g"
 End If
 mWks.SelectedFoodITem = avarFoodItem
 End If

 cmdSelect_End:
 Unload Me
 Exit Sub
 cmdSelect_Error:
 Select Case Err
 Case conErrObjectDoesntSupportMethod
 MsgBox "The calling worksheet '" & mWks.Name & "' must have a Public Property

SelectedFoodItem() procedure!", _
 vbCritical, _
 "SelectedFoodItem property not found on active sheet"
 Case Else
 MsgBox "Error " & Err & ":" & Error(Err), vbCritical, "Error on Select Food
Item"
 End Select
 Resume cmdSelect_End
 End Sub

 Note that the code declares the avarFoodItems(3) as Variant array variable and the
 conErrObjectDoesntSupportMethod = 438 constant error (to avoid the appearance of a magic number in
the code), activates the error trap, and then verifies whether the mWks module-level object variable has some
object reference on it, comparing it to the keyword Nothing .

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

422

 Private Sub cmdSelect_Click()
 Dim avarFoodItem(3) As Variant
 Const conErrObjectDoesntSupportMethod = 438

 On Error GoTo cmdSelect_Error

 If Not mWks Is Nothing Then

 If there is such an object reference on the mWks object variable, the mavarFoodItems array is filled with
the selected food item data, containing the food item name, food category, common measure quantity,
and name, in this index order. Note that since some food items don’t have any common measures stored in
the USDACommonMeasures sheet tab, when this happens, nothing will be selected in the lstCommonMeasure
 ListBox , and it must get this information from the lstFoodItems ListBox .

 If Not mWks Is Nothing Then
 'Selected food item name
 avarFoodItem(0) = Me .lstFoodItems
 'Selected Food category
 avarFoodItem(1) = Me .lstFoodItems. Column (1, Me .lstFoodItems.ListIndex)
 If Not IsNull(Me .lstCommonMeasures) Then
 'Qty and Common measure
 avarFoodItem(2) = Me .lstCommonMeasures. Column (2, Me .lstCommonMeasures.ListIndex)
 avarFoodItem(3) = Me .lstCommonMeasures. Column (1, Me .lstCommonMeasures.ListIndex)
 Else
 avarFoodItem(2) = Me .lstFoodItems. Column (2, Me .lstFoodItems.ListIndex)
 avarFoodItem(0) = "g"
 End If

 Then it tries to return this array to the supposed worksheet’s SelectedFoodItem property.

 mWks.SelectedFoodITem = avarFoodItem

 This is the critical moment where the code may fail, if the calling worksheet doesn’t have the supposed
property. If this happens, VBA error = 438 ("Object doesn't support this property or method") will be raised,
and the code will jump to the error trap and will issue a warning message to the user:

 cmdSelect_Error:
 Select Case Err
 Case conErrObjectDoesntSupportMethod
 MsgBox "The calling worksheet '" & mWks.Name & "' must have a Public Property

SelectedFoodItem() procedure!", _
 vbCritical, _
 "SelectedFoodItem property not found on active sheet"
 Case Else
 MsgBox "Error " & Err & ":" & Error(Err), vbCritical, "Error on Select Food Item"
 End Select
 Resume cmdSelect_End
 End Sub

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

423

 If the calling worksheet’s SelectedFoodItem property will receive the avarFoodItem array variable, the
 UserForm Terminate() event will fire, and the code will return to the calling procedure.

 Processing the Selected Food Item on the Worksheet
 Now the code returns to the Find Food Item sheet tab’s calling procedure, which will verify whether the
 mavarFoodItem variable has an array reference. If this is true, the array content is processed, associating
its expected content to the appropriate worksheet cells. Note that this is done using the Application .
Selection property to set a reference to the worksheet cell selected before calling the UserForm , using the
 Range. Offset method to return the appropriate results to the desired worksheet cells.

 With frm
 .CallingSheet = Me
 .Show vbModal
 End With
 If IsArray (mavarFoodItem) Then
 With Application .Selection
 .Value = SelectedFoodITem (0)
 . Offset(0, -1) = SelectedFoodITem (1)
 . Offset(0, 1) = SelectedFoodITem (2)
 . Offset(0, 2) = SelectedFoodITem (3)
 End With
 End If

 Researching for a Selected Food Item
 Once a food item is selected and returned to the desired cell of the Find Food Item worksheet sheet tab,
chances are that you need to change its default common measure. You can force the automatic research for
the selected food item using the Application .Selection property to get its name and automatically search
for it on the frmSearchFoodItems _Initialize() event.

 Figure 6-40 shows that there is a food item selected on cell C6 of the Find Food Item worksheet
("Babyfood, dessert, blueberry yogurt, strained"), and if you click the Find Food Item button,
 frmSearchFoodItems will automatically search for it, showing all its available common measures (if any).

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

424

 Figure 6-40. If there is any food item selected on the calling worksheet, the frmSearchFoodItems UserForm
will automatically research it and show all its available common measures

 This is done on the frmSearchFoodItems _Initialize() event that has these last lines of code:

 Private Sub UserForm_Initialize ()
 ...
 'Look if any food item had been selected on Dietary Planner or New Recipe interface
 strFoodITem = Application . Selection.Cells(1, 1)
 If Len(strFoodITem) > 0 Then
 Me .txtFind = strFoodITem
 Call cmdSearch_Click
 Me .lstFoodItems.ListIndex = 0
 ShowCommonMeasures (strFoodITem)
 End If

 Initialize_End:
 Exit Sub

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

425

 As you can see, it uses Application .Selection.Cells(1,1) to return the first selected cell of any
merged range to the strFoodItem String variable (this is necessary because if the selected input cell
is merged, VBA can return an empty string). If there is anything stored in the selected cell, this value
is set to the txtFind TextBox (which will cascade-fire the txtFind_Change() event), and a call to
 cmdSearch_Click() is made. Since this is a precise food item name, just one food item will be returned to
 lstFoodItems , which will be selected (lstFoodItems.ListIndex = 0) and passed as an argument to the
 ShowCommonMeasures() procedure, where all its possible common measures will be recovered (if any).

 ■ Attention All Application object properties and methods don’t need to be prefixed by the Application
object. Instead of using Application .Selection , you can use just Selection on the code, and it will work as
expected.

 When the lstFoodItems.ListIndex = 0 property is changed to select the desired food item, this will
cascade-fire the lstFoodItems_Click() event. For an unknown reason, when this is done on the UserForm_
Initialize () event, the lstFoodItems value will return an empty string (""), although it has the food item
name as the default control value. That is why the code made a second call to the ShowCommonMeasures()
procedure, passing as an argument the Selection value: to guarantee that all selected food item common
measures will be returned.

 And that is all you need to know about the frmSearchFoodItem interface!

 Chapter Summary
 In this chapter, you learned about the following:

• How you can execute most Excel Range properties and methods from the VBA
Immediate window

• How to define a range object variable with VBA to refer to a large table, such as the
USDA food table of nutrients

• How to use the Range.End property to navigate through a range of cells

• How to automatically select a range address using the Range. CurrentRegion
property

• How to programmatically move through a range of cells using the Range.Cells
collection or the Range. Offset property

• How to programmatically create the USDA range name to encompass all USDA food
items and their nutrients

• How to sort a range name with the Range. Sort method

• How to create all food category range names on the USDA sheet tab using VBA code

• How you can use the Range. Find and Range. FindNext methods to find information
on any range name or range address

• How to implement a UserForm interface to search information inside a big worksheet

CHAPTER 6 ■ SPECIAL RANGE OBJECT PROPERTIES AND METHODS

426

• How to use the bubble sort algorithm to sort data inside a ListBox control

• How to implement with VBA a ListBox control with variable column widths
using VBA

• How you can find items on a worksheet using the Range. AutoFilter method and the
 Worksheet. AutoFilterMode property

• How to use the Range.SpeciallCells property

• How to use the Range. Areas collection

• How to find food items using two different nutrient values and four different sort
methods

• How to create a unified food item search UserForm that can search food items by
their name or nutrient content

• How to pass a worksheet reference to a UserForm property and use it to return
 UserForm information that will be used by the worksheet application

• And a lot of other programming techniques that will turn you into an Excel expert
programmer

 In the next chapter, you will learn how to apply the VBA knowledge gained so far to create a database
management system to store worksheet data inside unused worksheet cells, enhancing the usefulness of
your worksheet applications.

427© Flavio Morgado 2016
F. Morgado, Programming Excel with VBA, DOI 10.1007/978-1-4842-2205-8_7

 CHAPTER 7

 Using Excel as a Database
Repository

 Microsoft Excel was conceived to produce tables of calculated data, and because of its ability to easily
produce calculated worksheets to manage business information, many people also use it as a way to store
precious business data.

 This data storage happens by either making a workbook file copy, managing the data using some file
name strategy, making copies of a predefined sheet tab inside the workbook, or creating sets of similar data
inside the same Excel workbook file.

 Using all the VBA knowledge you’ve built up so far and a good code strategy, you can implement a
data-saving/retrieving system to manage many thousands of sheets of data inside each sheet tab.

 This chapter is intended to teach you how to implement such a worksheet database storage system
inside any Excel sheet tab; it covers the strategy, the technique, and the action. You can obtain all files and
procedure code in this chapter by downloading the Chapter07.zip file from the book’s Apress.com product
page, located at www.apress.com/9781484222041 , or from http://ProgrammingExcelWithVBA.4shared.com .

 The Worksheet Database Storage System
 Most worksheet applications have a kind of one-to-many data record relationship in their implementation.
The one-side record identifies the aim of the worksheet data, while the many-side records store associated
data used by the one-side worksheet record.

 As an example, we can cite the many “invoice” worksheet templates available on Office.com, which
can be easily download by selecting File ➤ New ➤ Invoices in the Microsoft Excel menu. All these invoice
templates have in common the fact that they represent a one-to-many record relationship (each one invoice
record has many record-related invoice items), needing two different worksheet places to store the data.

• A main place used to store invoice identification data (the one side of the one -to-
many data record relationship), such as invoice number, date, customer ID, due
date, and billing data information, that represents the purpose of the sheet tab

• A secondary place, used to store the invoice item data using as many rows and
columns as needed to store item details (the many side of the one-to-many data
record relationship) such as item ID, item description, quantity, unit price, and so on

http://www.apress.com/9781484222041
http://programmingexcelwithvba.4shared.com/

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

428

 To create invoices whose data is stored inside Excel worksheet solutions, you must do one of the following:

• Use an Excel workbook as a template to create multiple Excel invoice files : Using this
strategy, you will need to create a new workbook based on the invoice template for
every new invoice needed, and you will end up with a lot of different Excel files to
store each invoice’s data.

• Use an Excel sheet tab as a template to create multiple invoice sheet tabs : By following
this strategy, you will need to keep a clean invoice sheet tab as a template inside the
workbook and copy it to another sheet tab for every new invoice needed. This way,
you end up with just one Excel workbook file storing as many sheets as can fit into
the available memory of your computer.

 Think about it: instead of creating multiple Excel files or sheet tabs to store the same kind of data, can
you create VBA code to copy all invoice data to unused sheet tab rows/columns and save, load, or delete
them whenever you need, turning each sheet tab into a data repository system?

 Sure you can!
 Using this approach and knowing that any Excel .xls* file created with version 2007 or newer has up to

1,048,576 available rows and 1,024 columns, you can probably store tens of thousands of worksheet invoice
data records on a single sheet tab!

 ■ Attention This is an Excel programming book, and as such] it will show you how to use Excel as a simulated
database repository. Although you can use it this way, an Excel worksheet is not the recommended way to do
such things. It will work but will always be a fragile and incorrect data storage system. You should use a more
robust storage system that uses a database file structure, such as Microsoft Access, to do such tasks.

 The BMI Companion Chart
 To implement the worksheet database storage system, this chapter will use as its first example BMI Companion
Chart.xlsx and BMI Companion Chart with Data.xlsx (which can be extracted from Chapter07.zip).
These are worksheet applications that have a single sheet tab (BMI Chart) created to allow any adult person
(whose height does not change with time) to control their weight for up to 20 successive weeks. It offers input
cells to insert the person’s name and height (the one-side record) and another input cell sequence that allows
type pairs of dates/measured weights to control the person’s weight tendency by calculating the body mass
index (BMI) through consecutive weeks or months with the aid of a beautiful Excel chart (Figure 7-1).

 The BMI Companion Chart.xlsx worksheet application formats its input cells with a light yellow
background and a blue border. Cells that have a white background and a blue border return calculated data.
Grid lines and headers are hidden, and the worksheet is protected (with no password) allowing just unlocked
cells (the input cells with a yellow background) to be selected. All unused rows and columns are also hidden,
leaving a big gray area surrounding its interface if the user tries to navigate the worksheet using Excel scroll bars.

 Note how the one-to-many record relationship principles apply to relate the worksheet data (one
person record has many dates/weights measures).

• The one-side record is used to store just three input cells: the person name and
height (in feet and inches; it is assumed that adults do not change height in a
reasonable amount of time).

• The many-side records are the ones used to store the pairs of date/weight
(in pounds) data associated to each person.

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

429

 ■ Attention The main difference between a one-to-many record relationship implemented in a database and
one implemented in a worksheet is that the first can have an undefined number or records in its many-side
records, while the second—Excel applications— must limit the many-side record count.

 If you fill it with some personal data (name, height, dates, and weights), the person’s BMI will be
calculated for each date and plotted on the chart to the right. The worksheet will also calculate the person’s
weight slack in the Slack column (which means how many pounds one must lose/gain to enter/exit the safe,
green BMI chart area to achieve a normal weight), and percentage of weight change in the %CH column
(which is the percentage of weight loss/gain over two consecutive weight measures). A color scheme using
green to indicate safe, blue to indicate loss, and red to indicate gain/danger is used to conditionally format
the Slack, %CH, and BMI calculated data (Figure 7-2).

 ■ Attention The BMI Companion Chart.xlsx Excel application also uses data validation to give warning
messages and avoid the insertion of consecutive dates that are less than seven days apart.

 Figure 7-1. This is the BMI Companion Chart.xlsx Excel application. It allows anyone to type some personal
data and then control their weight using some simple calculations and an Excel chart

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

430

 To produce another BMI chart for the same or another person, you must do the following:

 1. Right-click the BMI Chart tab, select Move or Copy, and create a new copy of the
sheet tab.

 2. Use another workbook file.

 You can take a better approach to this dilemma by storing just the input cell data in the worksheet
unused cells and use VBA to load and save it on the worksheet.

 Supposing that you want to store Figure 7-2 data on the BMI Chart sheet tab, you can devise a single
strategy to do it using all the hidden rows below the visible worksheet area. Figure 7-3 shows a diagram that
explains how this can be done on the BMI Chart sheet tab to store the worksheet data.

 Figure 7-2. The file BMI Companion Chart with data.xlsx uses a traditional one-to-many database
relationship to store the data. The one-side record uses three cells to store the person’s name and height (in foot
and inches), while the many-side records store pairs of the date and weight measured. An Excel chart plots the
weight gain/loss using the BMI calculated for each date

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

431

 This strategy is based on the following:

 1. Reserve a single place to identify the name associated to each worksheet data
record. This place will be represented by a range name (mconSavedRecords),
and this range name will be used to fill a data validation list, which can indicate/
select each worksheet record saved.

 2. Reserve another place to store the one side of the one -to-many data relationship.
This place will use just one row and as many columns as needed to store data in
the one-side record cells. Regarding the BMI Chart sheet tab, this place will use
just three cells, spread by three different worksheet columns, to store the person’s
name and height in feet and inches.

 3. Reserve one more place to store the many side of the one-to-many data
relationship. This place will use as many rows and columns as needed to store
the worksheet detail records. Regarding the BMI Chart worksheet data structure,
this place will use 2 columns and 20 rows for each worksheet details record (one
column for the dates and other for the weights).

 Looking at Figure 7-3 , you can note that it takes at least 21 worksheet rows to store each BMI Chart
worksheet data (20 rows for each pair of date-weight data and 1 extra row to separate two successive charts’
data). Considering that each Excel 2007 or later version .xlsx workbook presents worksheets that have up to
1,048,576 rows, a single BMI Chart worksheet tab can store about 1,048.576/21 = 49,932 BMI chart application
records using just two of its columns! That is a lot of records to be stored on a single sheet tab, huh?

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

432

 Figure 7-3. This is how the BMI Chart sheet tab must save the data. The vertical area to the left will store the
file record names and the one-side record data, using one row for each saved record. The vertical area to the
right will store the many-side worksheet records using 2 columns and 20 rows

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

433

 The BMI Companion Chart_Database.xlsm Excel Application
 Since an image is worth a thousand words, I want to introduce you to the BMI Companion Chart_Database.
xlsm Excel macro-enabled workbook. This is an Excel application that you can extract from the Chapter07.
zip file that uses the strategy briefly discussed in the previous section to store BMI Chart worksheet data in
its hidden rows. Figure 7-4 shows how it looks when you open it for the first time and click its CurrentRecord
range name data validation list to show the saved data.

 If you select any item in the CurrentRecord data validation list , the data will be loaded into the
worksheet, which will calculate and plot the person’s BMI evolution (Figure 7-5).

 Figure 7-4. This is the BMI Companion Chart_Database.xlsm Excel macro-enabled workbook, with its
 CurrentRecord range name data validation list showing all chart data already saved in the worksheet’s hidden
rows

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

434

 You may continually select another chart data in the CurrentRecord data validation list and watch how
fast the data is loaded and the chart is changed. To clean up and begin another BMI Chart worksheet, select
New Chart in the data validation list . And if you want, you can also change any chart data and click Save to
save the chart with the same or another name. Or you can select Delete and delete all the selected chart data
from the workbook file.

 Let’s see how this works by first understanding the worksheet mechanism; follow the next steps:

 1. Unprotect the BMI Chart sheet tab (Review tab ➤ Unprotect).

 2. Show the row/column headers (View tab ➤ check Headings).

 3. Unhide all BMI Chart hidden rows by doing the following:

• Click row 27 header and drag it down until you see the row 1048576 indicator.

• Right -click row 27 header and choose Unhide in the context menu.

 Figure 7-5. By selecting any item in the CurrentRecord data validation list , the data will be loaded in the
appropriate worksheet cells. The worksheet will calculate and plot the person’s BMI evolution

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

435

 Figure 7-6 shows the mconSavedRecords range name, beginning on cell D30 , where all chart data record
names are stored, the associated one-side record area (containing the person’s name and height in feet and
inches), and the first block of the many-side records that store date/weight pairs of data. It also shows how the
 CurrentRecord range name data validation list is filled with data from the mconSavedRecords range name.

 Figure 7-6. When all BMI Chart worksheets are shown, you will see where the BMI Chart data is stored. Note
that the CurrentRecord range name data validation list uses the mconSavedRecords range name to fill its list of
saved chart data

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

436

 The saving process of any BMI Chart worksheet data works this way every time you click the worksheet
Save button:

 1. The user is asked to give a name to the chart data. If this is a new BMI chart, it
will offer the default name New Chart mm/dd/yyyy , where mm/dd/yyyy is the
system date. Otherwise, it will offer the current record name (chart selected in
the CurrentRecord data validation list).

 2. The accepted name will be searched inside the mconSavedRecords range name. If
it already exists, its row will be selected. Otherwise, the new name will be added
to the mconSavedRecords range name (so it appears in the CurrentRecord range
name data validation list).

 3. The person name and height in feet and inches are then stored to the right and
on the same row of the saved name (columns E:G), creating the one-side record
of the one-to-many record relationship .

 4. A new range name will be created to represent the first entry of all 20 possible
pairs of date/weight data (the many side of the one-to-many record relationship)
on the next available row of column M . This range name will be named as rec_
followed by the chosen chart name stored inside the mconSavedRecords range
name. (For example, a chart accepted to be saved as New Chart 5/5/2015 will
have an associated range named rec_New_Chart_5_5_2015).

 5. All 20 pairs of date/weight data are then retrieved for the associated range name
on column M .

 It worth noting that all BMI Chart range names have their Visible property set to False , so they do not
appear in the Excel Name box or Name Manager dialog box. To help you see what cell each range name is
associated to, I also imported a copy of the frmNames and frmEditNames UserForm s, created in Chapter 5 .

 To use frmNames and change any range name’s Visible property, follow these steps:

 1. Press Alt+F11 to open the Visual Basic environment.

 2. Double-click the Forms option in the VBA Project Explorer tree to expand it.

 3. Double-click the frmNames entry to show the frmNames UserForm of the VBA
editor.

 4. Press F5 to run frmNames and see all the available range names inside the BMI
Chart worksheet (Figure 7-7).

http://dx.doi.org/10.1007/978-1-4842-2205-8_5

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

437

 5. Double-click any range name (or select it in the list and click the Show Details
button) and check the Visible check box to make it visible in the Excel interface
(Figure 7-8).

 Figure 7-7. Press F11 to open the VBA environment, and double-click the frmNames in the Forms option of
the Project Explorer tree to show the UserForm in design mode

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

438

 Figure 7-8 shows that the chart data saved as New Chart 01_05_2015 in cell D34 for the SavedRecords
range name stores its one-side record to its right and uses the range name rec_New_rec_01_05_2015 to
indicate where in the worksheet its many-side records begin.

 Every other worksheet data saved on the BMI Chart sheet tab obeys this principle.

 1. Store a name entry inside the SavedRecords range name to represent the BMI
Chart data.

 2. Store the one-side record to its right, using as many columns as needed to do it.

 3. Store the may-side records on another worksheet place associated to a range
name that is unequivocally derived from the name cited in step 1.

 Now is where the fun begins; let’s understand how this works using VBA code!

 Parameterization of BMI Chart Data
 The BMI Chart worksheet has its CodeName property set to BMIChart in the VBA Properties window, so it can
be easily accessed in VBA code. It declares four module variables (mwb , mws , and mstrLastRecord) and one
private enumerator (Operation) to help control worksheet data changes and avoid the appearance of magic
numbers on the code.

 Option Explicit
 t
 Private WithEvents mwb As Workbook

 Figure 7-8. Select the desired range name in the frmNames list box and change its Visible property so you can
see it in the Excel Name box

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

439

 Private mws As Worksheet
 Public Dirty As Boolean 'Indicate if record dat had been changed
 Private mstrLastRecord As String 'Retain the name of current record
 Private Enum Operation
 LoadRecord = 1
 SaveRecord = 2
 End Enum

 The Private WithEvents mwb as Workbook object variable is used to capture the Workbook object events,
while Private mws as Worksheet is used to set a reference to the ActiveSheet object. The mwb object
variable is used to allow you to save a changed record before the workbook is closed. They are instantiated
on the BMIChart Worksheet object’s SelectionChange() or Change() event.

 Private Sub Worksheet_SelectionChange (ByVal Target As Range)
 Set mwb = ThisWorkbook
 Set mws = ActiveSheet
 ...
 End Sub
 Private Sub Worksheet_Change(ByVal Target As Range)
 Set mwb = ThisWorkbook
 Set mws = ActiveSheet
 ...
 End Sub

 The Public Dirty as Boolean variable acts as a worksheet property to signal whenever the record data
is changed. As a public variable, it can be accessed using the Me . Dirty syntax inside the BMIChart code
module and must be accessed using the BMIChart. Dirty syntax on every other VBA code module.

 ■ Attention Any Worksheet object’s Public variables appear in a VBA code object list as a property, while
any Worksheet object Public procedures appear as a method.

 The Private mstrLastRecord as String variable is used to retain the name of the last loaded record,
and since it is declared as Private , it can just be accessed inside the BMIChart code module.

 It also declares 15 code module constants in its worksheet module’s Declaration section to define special
database engine values (parameters) needed to operate the save, load, and delete worksheet records operations
(note that they all have the mcondb prefix: m = module scope; con = constant prefix; db = database engine value).

 'This constants refers to local range names
 Const mcondbDataValidationList = " CurrentRecord " ' Data Validation list range
 Const mcondbSavedRecords = "SavedRecords" 'Saved records range name
 Const mcondbRecordName = "Chart" 'Record name
 Const mcondbOneSide = "OneSideRecord" 'One-side record range
 Const mcondbOneSideColumsCount = 3 'One-side record columns needed
 Const mcondbManySide1 = "ManySideRecords" 'Many-side1 records range
 Const mcondbManySide2 = "" 'Many-side2 records range
 Const mcondbManySide3 = "" 'Many-side3 records range
 Const mcondbManySide4 = "" 'Many-side4 records range
 Const mcondbManySidePrefix = "rec_" 'Many-side range name prefix
 Const mcondbManySideColumnsCount = 2 'Many-side record columns needed
 Const mcondbManySideRowsCount = 21 'Many-side record rows needed (+ 1 blank row)

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

440

 Const mcondbRecordsFirstRow = 30 'Row where database begins
 Const mcondbManySideFirstColumn = "M" 'Many-side record first column
 Const mcondbRangeOffset = 3 'One-side record column offset to
 mconSavedRecords

 ■ Attention Note that the BMIChart code module declares the constants mcondbManySide1 ,
 mcondbManySide2 , mcondbManySide3 , and mcondbManySide4 to allow you to define up to four different one-to-
many record relationships in the worksheet application.

 These code module constants are associated to special values used by the database code engine,
allowing them to be easily adapted by any other Excel worksheet application that needs to implement the
same database storage system. All range names pointed to by these constants must be created as local
worksheet range names. Table 7-1 describes each one of these module constants.

 Table 7-1. Constants Declared in the BMIChart Code Module Needed to Parameterize the Database Code Engine

 Constant Name Purpose

 mcondbDataValidationList Range name where the record’s data validation list resides

 mcondbSavedRecords Range name where the record’s name is stored

 mcondbRecordName Name associated to each worksheet record (for user interaction)

 mcondbOneSide Range name for the worksheet one-side record cells

 mcondbOneSideColumnsCount Number of columns needed to save the one-side record data

 mcondbManySide1 to mcondbManySide4 Range names for up to four different worksheet many-side
records relantionhips ranges

 mcondbManySidePrefix String prefix used to identify the range name associated to many-
side record data

 mcondbManySideColumnsCount Indicates how many worksheet columns are needed to store the
many-side records

 mcondbManySideRowsCount Indicates how many worksheet rows are needed to store the
many-side records

 mcondbRecordsFirstRow Sets the worksheet first row where the database records start

 mcondbManySideFirstColumn Sets the worksheet column where the many-side records’ storage
starts

 mcondbRangeOffset Set how many columns must be offset between range
 mcondbSavedRecords and the first many-side record column

 ■ Attention This chapter will treat the CurrentRecord range name associated to the data validation list cell
as the mcondbDataValidationList constant, in an attempt to acquaint you with the database constant that
represents this record selection cell.

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

441

 Changing BMI Chart Data
 The Public Dirty as Boolean module variable works as a BMI Chart worksheet public property
(BMIChart. Dirty) and is used to track any changes made by the user in the worksheet record data using the
 BMIChart object’s Worksheet_Change() event, which has this code:

 Private Sub Worksheet_Change(ByVal Target As Range)
 Set mwb = ThisWorkbook
 Select Case Target. Address
 Case Is = mws.Range(mcondbDataValidationList). Address
 'User is trying to load a new Record
 TryToLoadSelectedRecord
 Case Else
 'Sheet data has changed
 Me . Dirty = True
 If mws.Range(mcondbDataValidationList) = "New " & mcondbRecordName Then
 Application .EnableEvents = False
 mws.Range(mcondbDataValidationList) = ""
 Application .EnableEvents = True
 End If
 End Select
 End Sub

 The Worksheet_Change() event receives the Target as Range argument indicating which cell has
been changed by the user action, sets a reference to the ThisWorkbook object, and uses a Select Case
statement to verify where the change happened. If the Target argument points to the data validation list
cell address associated to the mcondbDataValidationList constant range name, it means that a record was
selected to be loaded, and the code will call the TryToLoadSelectedRecord() procedure.

 Select Case Target. Address
 Case Is = mws. Range(mcondbDataValidationList). Address
 'User is trying to load a new Record
 TryToLoadSelectedRecord

 ■ Attention The TryToLoadSelectedRecord() procedure will be analyzed in the section “Discarding
Changes by Selecting Another mcondbDataValidationList Item” later in this chapter.

 Otherwise, the change happens on any other possible worksheet input cell, leaving the current record
in a dirty state, meaning that the BMIChart . Dirty property becomes True :

 Case Else
 'Sheet data has changed
 Me . Dirty = True

 The code verifies whether the current mcondbDataValidationList value was set to a "New " &
mcondbRecordName value (which will be updated to “New Chart”), indicating that a new record has been
selected by the user action. If this is true, Application .EnableEvents is set to False (to avoid cascade-firing
the Worksheet_Change() event again), and the mcondbDataValidationList cell receives an empty space ("").

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

442

 If mws. Range(mcondbDataValidationList) = "New " & mcondbRecordName Then
 Application .EnableEvents = False
 mws.Range(mcondbDataValidationList) = ""
 Application .EnableEvents = True
 End If

 That is why every time you select New Chart in the mcondbDataValidationList data validation list cell
to receive a new record and change any input cell value, the data validation list cell value is cleared, giving a
visual clue that the worksheet data is new, has been changed, or has not been saved yet (Figure 7-9).

 ■ Attention The code sets BMIChart. Dirty = True whenever the worksheet record data is changed. And on
a new, unsaved record, the mcondbDataValidationList cell will become empty.

 This is important because now the workbook record is in a dirty state, meaning that any possible sheet
tab data has been changed. From the Excel application’s perspective, the workbook file data has also been
changed and not saved yet. If you try to close the workbook at this moment, the Workbook _ BeforeClose ()
event will fire, and the Private WithEvents mwb as Workbook object module-level variable will capture this
event, executing this code on the BMIChart code module:

 Private Sub mwb_BeforeClose(Cancel As Boolean)
 Dim strMsg As String
 Dim strTitle As String
 Dim strRecord As String
 Dim bolSaved As Boolean

 If Me . Dirty Then
 strRecord = mws.Range(mcondbDataValidationList)
 If strRecord = "" Then strRecord = "New " & mcondbRecordName
 strTitle = "Save " & strRecord & " data?"
 strMsg = strRecord & " data had been changed." & vbCrLf

 Figure 7-9. Whenever you select the New Chart option to clear the BMI Chart worksheet and change any of
its input cells (like the person’s Name), the Worksheet_Change() event fires, set the Dirty module-level variable
to True, and clears the data validation list value, as a visual indication that a new worksheet data has been
inserted by the user

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

443

 strMsg = strMsg & "Save " & strRecord & " data before close the workbook?"
 Select Case MsgBox (strMsg, vbYesNoCancel + vbQuestion, strTitle)
 Case vbYes
 bolSaved = Save(strRecord)
 Cancel = Not bolSaved
 Case vbCancel
 Cancel = True
 End Select
 End If
 End Sub

 As you can see, whenever you try to close the workbook, the mwb_BeforeClose() event will check whether
the BMIChart. Dirty property is True , meaning that the current record has been changed. If it has, the code will
issue a VBA MsgBox () function asking you to save the record. By clicking Yes to the MsgBox () function, the
event will call the Function Save (strRecord) procedure before closing the workbook (Figure 7-10).

 Select Case MsgBox (strMsg, vbYesNoCancel + vbQuestion, strTitle)
 Case vbYes
 bolSaved = Save(strRecord)
 Cancel = Not bolSaved

 ■ Attention As you will see later, Function Save () returns True if the record is saved and False if the
saving process is aborted, which in this case means that the workbook close operation must also be aborted.
That is why the code sets Cancel = not boSaved .

 By clicking No, the workbook will be closed without changing the BMI Chart state. By clicking Cancel,
the Cancel argument of the Workbook _ BeforeClose () event will be set to True , canceling the event and
keeping the workbook open.

 Figure 7-10. If you try to close the BMI Companion Chart.xlsm Excel macro-enabled workbook, the
 Workbook _ BeforeClose () event will fire. If the BMIChart. Dirty variable is True, you will receive a MsgBox ()
function asking to save the chart data before the workbook is closed

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

444

 Saving the Last Selected Record
 Every time an item is selected in the mcondbDataValidationList cell, a new record is about to be loaded
by the worksheet. Since the current worksheet data can be changed, you need to keep the last record name
loaded so the code can give appropriate warnings to the application user.

 The mstrLastRecord as String module-level variable is one that retains the name of the last-selected
record. Its value changes when any worksheet input cell is selected (or when a record is saved, loaded, or
deleted), by programming the BMIChart object’s Worksheet_SelectionChange () event.

 Private Sub Worksheet_SelectionChange (ByVal Target As Range)
 Set mwb = ThisWorkbook
 If mws.Range(mcondbDataValidationList) = "" Then
 mstrLastRecord = "New " & mcondbRecordName
 Else
 mstrLastRecord = mws.Range(mcondbDataValidationList)
 End If
 End Sub

 Saving BMI Chart Data
 Suppose you are in an empty BMI Chart worksheet record, with the mcondbDataValidationList cell
showing New Chart. Go ahead and type some data in it: type your name, type your weight in feet and inches,
and then type some hypothetic pairs of date/weight values (without forget that successive dates must be at
least seven days apart because of the validation rule used on date cells). Note that after you change any input
data cell in the BMI Chart worksheet, the mcondbDataValidationList cell becomes empty, meaning to the
database engine this new worksheet record has been changed and not saved yet.

 When you are ready, click the Save control button to save the worksheet data, and the VBA code will
answer with an InputBox() message, asking you to confirm the record name to be saved (every new record
will be saved by default as New Chart mm_dd_yyyy n , where mm/dd/yyyy is the system date and n is a default
file name counter). Figure 7-11 shows that the proposed default name was changed to “Saving test data.”

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

445

 By clicking the InputBox() OK button, the worksheet data will be saved as a new database
record and the VBA code will show a saving confirmation message while the record name appears in
 mcondbDataValidationList cell (Figure 7-12).

 Figure 7-11. Type your name, weight in feet and inches, and some pairs of date/weight values and then click
the Save button to save the worksheet data

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

446

 The database engine “save record” process is divided into three main procedures.

• Public Function Save () : This is responsible for asking for the record name, and
if it is granted, it calls SaveData() to begin the saving record process and gives the
saving warning message.

• Private Function SaveData() : This verifies whether the record is new, and if
it is, it verifies whether there is still room to save a new worksheet record; if it has
enough room, it stores the record name in the mcondbSavedRange range and calls the
 LoadSaveData () procedure to effectively save the record data in the worksheet.

• Private Sub LoadSaveData () : This receives the record name and the operation
to perform (load or save), using a generic algorithm to load/save all cell values
contained in the mcondbOneSide and/or mcondbManySide range names.

 The BMI Chart worksheet’s Save control button is associated to the BMIChart.Save() procedure,
which executes the saving process using the next detailed steps:

 1. Do nothing on a new empty record.

 2. Get the record name to be saved on any dirty record by calling Function
 GetRecordName () .

 3. Call the Function SaveData() procedure to effectively save the worksheet data.

 ■ Attention The BMIChart.Save method was not named as the BMIChart.SaveAs() procedure because
the Worksheet object already exposes a default SaveAs method that allows any worksheet to be saved in
another workbook.

 Figure 7-12. After the BMI Chart worksheet data has been saved, you will receive a MsgBox () confirmation
message, and the saved name will automatically appear in the CurrentRecord range name

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

447

 Public Function Save (Optional strLastRecord As String) As Boolean
 Dim rg As Range
 Dim strRecord As String
 Dim bolNewRecord As Boolean
 Dim bolRecordSaved As Boolean

 'Verify if Record data is still empty
 strRecord = mws.Range(mcondbDataValidationList)
 If strRecord = "New " & mcondbRecordName Then
 Exit Function
 End If

 If strLastRecord = "" Then
 strLastRecord = strRecord
 End If
 strRecord = GetRecordName (strLastRecord, bolNewRecord)

 If Len(strRecord) Then
 'Disable application events to allow cell change by macro code
 SetScreenEventsRecalc (False)
 mws.Unprotect
 bolRecordSaved = SaveData(strRecord, bolNewRecord)
 mws.Protect
 If bolRecordSaved Then
 'Define current Record as saved Record
 mws.Range(mcondbDataValidationList) = strRecord
 mws.Range(mcondbDataValidationList).Select

 'Save the worbook
 ThisWorkbook.Save
 mstrLastRecord = strRecord
 Me . Dirty = False
 Save = True
 MsgBox mcondbRecordName & " data had been saved as '" & strRecord & "'!", ,

"BMI Companion Chart"
 Else
 MsgBox "There is no more room to save data on this worksheet!", vbCritical,

"Can't save data"
 End If
 SetScreenEventsRecalc (True)
 End If
 End Function

 The Public Save() procedure begins checking whether the worksheet is on a new empty record and
whether the new record data has not been changed. If this is true, nothing must be saved, and the procedure
exits graciously using the Exit Function instruction.

 Public Function Save (Optional strLastRecord As String) As Boolean
 ...
 'Verify if Record data is still empty
 strRecord = mws.Range(mcondbDataValidationList)

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

448

 If strRecord = "New " & mcondbRecordName Then
 Exit Function
 End If

 But if the record is not new or any change has been made to a new record, it first verifies whether
 strLastRecord is empty. If it is, it stores the current record name in the strLastRecord string variable and calls
 GetRecordName () , passing as arguments strLastRecord and bolNewRecord (which are False at this moment).

 If strLastRecord = "" Then
 strLastRecord = strRecord
 End If
 strRecord = GetRecordName (strLastRecord, bolNewRecord)

 The strRecord variable now has the record name to be saved or an empty string, indicating that the
save process was aborted, and it uses the VBA function Len(strRecord) to verify the length of the strRecord
variable. If GetRecordName () returns an empty string, Len(strRecord) = 0 , and the code ends doing nothing.

 Public Function Save (Optional strLastRecord As String) As Boolean
 ...
 strRecord = GetRecordName (strLastRecord, bolNewRecord)
 If Len(strRecord) Then
 ...
 End If
 End Function

 Let’s see how GetRecordName () asks for the record name to be saved!

 Getting the Record Name
 The function GetRecordName () receives two arguments passed by reference: strRecord (with current
record name, if any), and bolNewRecord , a Boolean argument that must signal to the Save() procedure if
this is a new record. This procedure must do the following:

 1. Propose a default record name if strRecord is an empty string (a new record).

 2. Verify whether the current record name or the new proposed name already exists
in the mcondbSavedRecords range name.

 3. If the name already exists, ask to update it, allowing another name change.

 4. Return the desired name or an empty string—as an indication that no name was
selected and the record was not saved.

 Private Function GetRecordName (strRecord As String, bolNewRecord As Boolean) As String
 Dim rg As Range
 Dim strNewRecord As String
 Static sintDefaultName As Integer

 If strRecord = "" Then
 sintDefaultName = sintDefaultName + 1
 strRecord = "New " & mcondbRecordName & " " & Replace (Date, "/", "_")
 If sintDefaultName > 1 Then

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

449

 strRecord = strRecord & " " & sintDefaultName
 End If
 strRecord = InputBox("Data will be saved as:", "Confirm data name", strRecord)
 End If

 If Len(strRecord) Then
 'Verify if strRecord already exist on mcondbSavedRecords
 Set rg = mws.Range(mcondbSavedRecords).Find(strRecord)

 If rg Is Nothing Then
 bolNewRecord = True
 Else
 'Confirm proposed record name
 strNewRecord = InputBox(mcondbRecordName & " '" & strRecord & "' already exist.

Do you want to overwrite it?", _
 "Overwrite " & strRecord & " data?", strRecord)
 If strRecord <> strNewRecord Then
 'Proposed record name changed. Verify if new name alteady exist
 Set rg = mws.Range(mcondbSavedRecords).Find(strNewRecord)
 If rg Is Nothing Then
 bolNewRecord = True
 Else
 'New name already exist. Confirm overwrite
 If MsgBox ("The name you typed, '" & strNewRecord & "', already exist.

Overwrite it?", _
 vbYesNo + vbDefaultButton2 + vbQuestion, _
 "Overwrite '" & strNewRecord & "'?") = vbNo Then
 strNewRecord = ""
 End If
 End If
 strRecord = strNewRecord
 End If
 End If
 End If

 GetRecordName = strRecord
 End Function

 The procedure declares three variables: the rg as Range object variable, the strNewRecord string, and
the Static sintDefaultName as Integer variable that is responsible for adding a counter to the default
proposed name (like New Record 1, New Record 2, ..., for example).

 If the worksheet data comes from a new record, strRecord will be an empty string, and the code must
create a default record name and offer it to the user using an InputBox() VBA function. The name proposed
will use this format: New <mcondbRecordName> mm_dd_yyyy n , where mcondbRecordName is the record name
(Chart), mm_dd_yyyy is the system date, and n is the application section counter for the default name. Note
that the slashes returned by the system date are changed to underscores using the VBA Replace () function,
and if sintDefaultName > 1 , it will be concatenated to the end of the proposed default name (the first default
name on 1/5/2015 will be New Chart 1_5_2015 , the second default name on the same date will be New Chart
1_5_2015 2 , and so on).

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

450

 If strRecord = "" Then
 sintDefaultName = sintDefaultName + 1
 strRecord = "New " & mcondbRecordName & " " & Replace (Date , "/", "_")
 If sintDefaultName > 1 Then
 strRecord = strRecord & " " & sintDefaultName
 End If
 strRecord = InputBox ("Data will be saved as:", "Confirm data name", strRecord)
 End If

 When the user receives the InputBox() message with the proposed record name for a new record
(or the name has been saved before) and cancels the operation, strRecord will hold an empty string, and
 GetRecordName () will end and return this empty string value to the Save() procedure, which will also end
doing nothing.

 By accepting the proposed name, the code will search inside the range name associated with the
 mcondbSaveRecords constant (the default is the mcondbSavedRecords range name) using the Range. Find
method. If the name is not found, bolNewRecord receives True to indicate to Save() that a new record must
be inserted on the database, while strRecord is associated to the Function GetRecordName () return value.

 If Len(strRecord) Then
 'Verify if strRecordName name already exist
 Set rg = ws.Range(mcondbSavedRecords). Find(strRecord)

 If rg Is Nothing Then
 bolNewRecord = True
 Else
 ...
 End If
 End If

 GetRecordName = strRecord
 End Function

 But when the proposed name already exists on the database (it was found in the mcondbSavedRecords
range name), the user will receive a warning message in another InputBox() function, while asking to
overwrite the record also gives a second chance to change it. This final proposed record name will be saved
in the strNewRecord string variable.

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

451

 Else
 'Confirm proposed record name
 strNewRecord = InputBox (mcondbRecordName & " '" & strRecord & "' already exist.
Do you want to overwrite it?", _
 "Overwrite " & strRecord & "
data?", strRecord)

 If the user changes the name proposed by this second InputBox() , strRecord and strNewRecord will
diverge, and the new name must be searched again inside the mcondbSavedRecords range name.

 If strRecord <> strNewRecord Then
 'Proposed record name changed. Verify if new name already exist
 Set rg = ws.Range(mcondbSavedRecords).Find(strNewRecord)

 If the Range. Find method does not find the proposed name inside the mcondbSavedRecords range, the
 bolNewRecod argument will receive True , signaling that this is a new record.

 If rg Is Nothing Then
 bolNewRecord = True

 But if the name is found, a MsgBox () function will give a final warning that the selected record name
will be overwritten.

 Else
 'New name already exist. Confirm overwrite
 If MsgBox ("The name you typed, '" & strNewRecord & "', already exist.
Overwrite it?", _
 vbYesNo + vbDefaultButton2 + vbQuestion, _
 "Overwrite '" & strNewRecord & "'?") = vbNo Then

 Note that this Msgbox() function offers Yes and No buttons, using No as default button. If the user
decides to not overwrite the existing name (MsgBox () = vbNo), strNewRecord will receive an empty string.

 If MsgBox ("The name you typed, ...) = vbNo Then
 strNewRecord = ""
 End If

 No matter if the user accepts or rejects overwriting the name, the strNewRecord value will be associated
to strRecord , which now contains either a valid record name or an empty string that is used as the Function
 GetRecordName () return value.

 strRecord = strNewRecord
 End If
 End If
 End If

 GetRecordName = strRecord
 End Sub

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

452

 ■ Attention If the user cancels the InputBox() overwrite warning, strNewRecord ="" and will diverge
from strRecord . The Range. Find method will not find this empty name on mcondbSavedRecords , strRecord =
strNewRecord = "" , and the Save() procedure will end returning False .

 Disabling/Enabling Screen Updates, Events Firing, and Worksheet
Recalculation
 Let’s suppose that a name has been typed or accepted to save the current record in the worksheet database.
When Function GetRecordName () returns the name that must be used to save the BMI Chart worksheet
data, the saving process begins by calling the SetScreenEventsRecalc(False) procedure to disable screen
updating, events firing, and worksheet recalculation.

 To allow the VBA code to make changes on the worksheet data without cascade-firing worksheet
events (like Worksheet_Change() and Worksheet_SelectionChange ()), avoid screen flickering, and
worksheet recalculation, you must always disable the Application object’s ScreenUpdating , EnableEvents ,
and Calculation properties. Since you must do these operations from different procedures, these tasks
are delegated to a single, centralized procedure stored in the basScreenEventRecalc module called Sub
SetScreenEventsRecalc() , which receives the bolEnabled argument to turn on/off these properties.

 Public Function Save (Optional strLastRecord As String) As Boolean
 ...
 If Len(strRecord) Then
 'Disable application events to allow cell change by macro code
 SetScreenEventsRecalc (False)
 ...
 End If
 End Function

 Public Sub SetScreenEventsRecalc(bolEnabled As Boolean)
 With Application
 .ScreenUpdating = bolEnable
 .EnableEvents = bolEnable
 .Calculation = IIf(bolEnable, xlCalculationAutomatic, xlManual)
 End With
 End Sub

 Saving the Record Name with SaveData() Procedure

 Since the BMI Chart worksheet is protected (without a password), the Save() code needs to unprotect
it before saving the worksheet data, delegating the first part of the saving process to the SaveData()
procedure, which receives the record name and an indication of whether this is a new worksheet record.

 Public Function Save (Optional strLastRecord As String) As Boolean
 ...
 mws.Unprotect
 bolRecordSaved = SaveData(strRecord, bolNewRecord)

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

453

 The SaveData() procedure is fully commented to allow you to follow its code easily, executing this
code to save the BMI Chart worksheet data:

 Private Function SaveData(strRecord As String, bolNewRecord As Boolean) As Boolean
 Dim rg As Range
 Dim strRangeName As String
 Dim strAddress As String
 Dim lngRow As Long
 Dim bolWorksheetIsFull As Boolean

 Set rg = mws.Range(mcondbSavedRecords)
 If bolNewRecord Then
 'Define sheet row where next Record data will be stored
 lngRow = NextEntryRow(bolWorksheetIsFull)

 'Verify if sheet can receive more records
 If bolWorksheetIsFull Then
 'No more room to save data
 Exit Function
 End If
 'Insert a new row at bottom of mcondbSavedRecords range name and update rg object
 rg. Resize (rg.Rows.Count + 1).Name = "'" & mws.Name & "'!" & mcondbSavedRecords
 Set rg = mws.Range(mcondbSavedRecords)

 'Position on new cell of mcondbSavedRecords range and save new Record name
 rg.Cells(rg.Rows.Count, 1) = strRecord

 If Len(mcondbManySide) Then
 'Define many-side Record name as 'mcondbManySidePrefix<strRecord>' and create

tbe range name
 strRangeName = mcondbManySidePrefix & FixName(strRecord)
 strAddress = "='" & mws.Name & "'!" & mcondbManySideFirstColumn & lngRow
 mws. Names .Add strRangeName, strAddress, False
 End If
 End If

 Call LoadSaveData (strRecord, SaveRecord)

 'Sort mcondbSavedRecords range keeping "New <mcondbRecordName>" on the top of the list
 Set rg = mws.Range(Cells(rg.Row + 1, rg. Column), _
 Cells(rg.Row + rg.Rows.Count, rg. Column + mcondbRangeOffset +

mcondbOneSideColumsCount))
 rg.EntireRow.Hidden = False
 rg.Sort rg.Cells(, 1)
 rg.EntireRow.Hidden = True

 mws.Range("A1").Select
 SaveData = True
 End Function

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

454

 Verify Whether the Worksheet Is Full with NewEntryRow ()
 After declaring its variables, SaveData() sets a reference to the mcondbSavedRecords range name and
verifies whether this is a new record. If it is, you must verify whether the worksheet still has room to store
another database record, calling the NextEntryRow() procedure.

 Set rg = mws.Range(mcondbSavedRecords)
 If bolNewRecord Then
 'Define sheet row where next Record data will be stored
 lngRow = NextEntryRow (bolWorksheetIsFull)

 The NextEntryRow() procedures does two different things.

• Sets the next row where the new record must be inserted on the worksheet database

• Verifies whether there is still room to save the record data

 Private Function NextEntryRow(bolWorksheetIsFull As Boolean) As Long
 Dim lngRow As Long

 If Len(mcondbManySide) Then
 'Use many-side records to find next entry row
 lngRow = mcondbRecordsFirstRow + (mws.Range(mcondbSavedRecords).Rows.Count - 1) *

mcondbManySideRowsCount
 If lngRow < mws.UsedRange.Rows.Count Then
 lngRow = mcondbRecordsFirstRow + (mws.Range(mcondbSavedRecords).Rows.Count *

mcondbManySideRowsCount)
 End If
 bolWorksheetIsFull = (lngRow > (mws.Rows.Count - mcondbManySideRowsCount))
 Else
 'Just one-side record to find next entry row
 lngRow = mcondbRecordsFirstRow + mws.Range(mcondbSavedRecords).Rows.Count
 bolWorksheetIsFull = (lngRow > (mws.Rows.Count - mws.Range(mcondbSavedRecords).Rows.

Count))
 End If

 NextEntryRow = lngRow
 End Function

 Note that NextEntryRow() first verifies the worksheet record has a many side of record data, and
if it does, it adds to mcondbRecordsFirstRow (row 30 , where the database storage begins) the number of
worksheet records already saved on the database, using the ws.Range(" mcondbSavedRecords ").Rows.Count
-1 property (since mcondbSavedRecords ’ first entry will always be New Chart). It then multiplies this value by
 mcondbManySideRowsCount (21 rows, meaning 20 rows for all date/weight pairs of data and one extra row to
separate two successive worksheet records):

 If Len(mcondbManySide) Then
 'Use many-side records to find next entry row
 lngRow = mcondbRecordsFirstRow + (mws.Range (mcondbSavedRecords).Rows.Count-1) * _
 mcondbManySideRowsCount

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

455

 There is a critical situation here that happens when BMI Chart has just two sets of saved data and the
first possible many-side record data set (the data saved in rows 30:49 ; see Figure 7-8) is deleted. When this
happens, lngRow will wrongly point to the next saved set of data points. That is why the procedure compares
 lngRow (the next possible saving row) with the last-used worksheet row (UsedRange.Rows.Count) and then
recalculates the next row to be saved.

 If lngRow < mws.UsedRange.Rows.Count Then
 lngRow = mcondbRecordsFirstRow + (mws.Range(mcondbSavedRecords).Rows.Count * _
 mcondbManySideRowsCount)
 End If

 Once it determines the row where the next record must be saved, it uses it to verify whether the
worksheet has still enough empty rows to store the worksheet data. This is made by comparing whether
 lngRow is smaller than the total worksheet row count (ws.Rows.Count) minus the size of the many-side
records (mcondbManySideRowsCount).

 bolWorksheetIsFull = (lngRow > (mws.Rows.Count - mcondbManySideRowsCount))

 ■ Attention Since bolWorksheetIsFull was passed by reference, it may now contain True as an indication
that the worksheet has no more room to store the new record.

 But if the worksheet has no many-side records, mcondbManySide will be an empty string, and it must use
just the total number of one-side records already stored to determine the next record row and whether the
worksheet can store it.

 If Len(mcondbManySide) Then
 ...
 Else
 'Just one-side record to find next entry row
 lngRow = mcondbRecordsFirstRow + mws.Range(mcondbSavedRecords).Rows.Count
 bolWorksheetIsFull = (lngRow > (mws.Rows.Count – mws.Range(mcondbSavedRecords).Rows.

Count))
 End If

 Aborting the SaveData() Procedure
 When NextEntreyRow() ends, the code control returns to the SaveData() procedure, with lngRow
receiving the row where the record must be saved and bolWorksheetIsFull indicating whether there is
still room to store it. If bolWorksheetIsFull = True , the worksheet is full, and the Function SaveData()
procedure ends, returning False .

 Private Function SaveData(strRecord As String, bolNewRecord As Boolean) As Boolean
 ...
 lngRow = NextEntryRow(bolWorksheetIsFull)

 'Verify if sheet can receive more records
 If bolWorksheetIsFull Then
 'No more room to save data
 Exit Function
 End If

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

456

 Code control will return to the Save() procedure with bolRecordSaved = False . The worksheet will
be protected (with no password), warning the user by a VBA MsgBox () function that there is no more room
on the worksheet to save application data. The procedure ends calling SetScreenEventsRecalc(True) to
restore screen updating, events firing, and automatic recalculation.

 Public Function Save (Optional strLastRecord As String) As Boolean
 ...
 If Len(strRecord) Then
 ...
 SetScreenEventsRecalc (False)
 ws.Unprotect
 bolRecordSaved = SaveData (strRecord, bolNewRecord)
 ws.Protect
 If bolRecordSaved Then
 ,,,
 Else
 MsgBox "There is no more room to save data on this worksheet!", vbCritical,

"Can't save data"
 End If
 SetScreenEventsRecalc (True)
 End If
 End Function

 Inserting a New Record on the mcondbSavedRecords Range Name
 Having detected enough space to save the record, bolWorksheetFull = False , and SaveData() will add a
new row at the bottom of the mcondbSavedRecords range name, using the Range. Resize property. Note that
the range is resized and renamed to a local worksheet name and that the rg object variable that represents it
needs to be updated to reflect its new size.

 Private Function SaveData(strRecord As String, bolNewRecord As Boolean) As Boolean
 ...
 Set rg = Range(mcondbSavedRecords)
 ...
 If bolWorksheetIsFull Then
 ...
 End If

 'Insert a new row at bottom of mcondbSavedRecords range name and update rg object
 rg. Resize (rg.Rows.Count + 1).Name = "'" & ws.Name & "'!" & mcondbSavedRecords
 Set rg = ws.Range(mcondbSavedRecords)

 This new row added at the bottom of the mcondbSavedRecords range name receives the new record name.

 'Position on new cell of mcondbSavedRecords range and save new Record name
 rg.Cells(rg.Rows.Count, 1) = strRecord

 To complete the operation of a new record insertion, the SaveData() procedure verifies whether there
is a many-side record, and if there is, it passes the record name to Function FixName() to derive a unique
range name for the range where the many-side records must be saved on the worksheet.

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

457

 If Len(mcondbManySide) Then
 'Define Record name as ' mcondbManySidePrefix<strRecord>' and create it range name
 strRangeName = mcondbManySidePrefix & FixName(strRecord)

 Then it sets the address for the new record as a worksheet scope range name—considering the
worksheet name, first many-side records column (mcondbManySideFirstColumn), and next available row
(lngRow)—and passes this address to the ws. Names .Add method. (Note that the third argument of the Names .
Add method—the Visible property of the Name object—is defined as False to avoid that this range name
appears in the Excel Name box or Name Manager dialog box.)

 strAddress = "='" & ws.Name & "'!" & mcondbManySideFirstColumn & lngRow
 ws. Names .Add strRangeName, strAddress, False
 End If
 End If

 Once the record name is inserted in the mcondbSavedRecords range name, SaveData() calls the
 LoadSaveData () procedure, passing the record name (strRecord) and the operation to be performed
(SaveRecord), to effectively save the worksheet record data.

 Call LoadSaveData (strRecord, SaveRecord)

 ■ Attention Note that LoadSaveData () declares its second argument as the Perform as Operation
enumerator, which can be set to LoadRecord =1 or SaveRecord=2 . When the SaveData() procedure calls
 LoadSaveData () , it passes SaveRecord to the Perform argument, indicating that the record must be saved.

 Saving Record Data with LoadSaveData ()
 Since load and save records are mirrored operations executed on the same worksheet cells (changing
source and destination places according to the operation being performed), LoadSaveData () uses a
generic algorithm that takes the range name (or names) stored on mcondbOneSide and/or mcondbManySide1
to mcondbManySide4 constants and walks through its cells, saving all application input cell values in the
worksheet database or loading database data into these same input cells.

 Private Sub LoadSaveData (strRecord As String, Perform As Operation)
 Dim rg As Range
 Dim rgCells As Range
 Dim rgArea As Range
 Dim rgAreaColumn As Range
 Dim strRangeName As String
 Dim strRelation As String
 Dim intOffSet As Integer
 Dim intRelation As Integer
 Dim intRow As Integer
 Dim intCol As Integer
 Dim intAreaCol As Integer
 Dim intMaxRows As Integer

 Set rg = mws.Range(mcondbSavedRecords).Find(strRecord, , , xlWhole)

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

458

 ' Load /Save one side worksheet records (one cell at a time)
 If Len(mcondbOneSide) Then
 Set rgCells = mws.Range(mcondbOneSide)
 For Each rgArea In rgCells. Areas
 For intRow = 1 To rgArea.Rows.Count
 For intCol = 1 To rgArea.Columns.Count
 If Perform = SaveRecord Then
 rg.Offset(0, mcondbRangeOffset + intOffSet) = rgArea.Cells(intRow,

intCol)
 Else
 rgArea.Cells(intRow, intCol) = rg.Offset(0, mcondbRangeOffset +

intOffSet)
 End If
 intOffSet = intOffSet + 1
 If rgArea.Cells(intRow, intCol).MergeCells Then
 intRow = intRow + rgArea.Cells(intRow, intCol).MergeArea.Rows.Count - 1
 intCol = intCol + rgArea.Cells(intRow, intCol).MergeArea.Columns.

Count - 1
 End If
 Next
 Next
 Next
 End If

 ' Load /Save many side worksheet records
 strRangeName = mcondbManySidePrefix & FixName(strRecord)
 intRow = 0
 'Process each many-side records range Relation
 For intRelation = 1 To 4
 strRelation = Choose(intRelation, mcondbManySide1, mcondbManySide2, mcondbManySide3,

mcondbManySide4)
 If Len(strRelation) Then
 intCol = 0
 intMaxRows = 0
 Set rgCells = mws.Range(strRelation)
 For Each rgArea In rgCells. Areas
 For intAreaCol = 0 To rgArea.Columns.Count - 1
 Set rg = mws.Range(strRangeName).Offset(intRow, intCol)
 Set rg = rg. Resize (rgArea.Rows.Count, 1)
 Set rgAreaColumn = mws.Range(mws.Cells(rgArea.Row, rgArea. Column +

intAreaCol), _
 mws.Cells(rgArea.Row + rgArea.Rows.Count - 1, rgArea. Column +

intAreaCol))
 If Perform = SaveRecord Then
 rg.Value = rgAreaColumn.Value
 Else
 rgAreaColumn.Value = rg.Value
 End If

 If rgArea.Cells(1, intAreaCol + 1).MergeCells Then
 intAreaCol = intAreaCol + rgArea.Cells(1, intAreaCol + 1).MergeArea.

Columns.Count - 1

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

459

 End If
 intCol = intCol + 1
 Next

 If intMaxRows < rgArea.Rows.Count Then
 intMaxRows = rgArea.Rows.Count
 End If
 Next
 intRow = intRow + intMaxRows + 1
 End If
 Next
 End Sub

 Processing the One-Side Record
 The strRecord argument with the name of the desired database record is searched inside the
 mcondbSavedRecords range name using the Range. Find method being associated to the rg object variable. It
then verifies whether there is a one-side record range name to operate on.

 Private Sub LoadSaveData (strRecord As String, Perform As Operation)
 ...
 Set rg = ws.Range(mcondbSavedRecords). Find (strRecord , , , xlWhole)

 ' Load /Save one-side worksheet records (one cell at a time)
 If Len(mcondbOneSide) Then

 The one-side record can be distributed on the worksheet with different layouts, using independent or
merged cells to store each one-side record data. In the BMI Chart worksheet, the mcondbOneSide constant
points to the OneSideRecord range name, which contains the person’s name (using merged cells) and
person’s height in feet and inches, while the ManySideRecords range name points to all pairs of dates/
weights that produce the BMI chart (Figure 7-13).

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

460

 That is why the code sets a reference to the mcondbOneSide range in the rgCells object variable and
then uses an outer For Each... Next loop to run through the rgCells. Areas collection, operating on one
area at a time.

 Set rgCells = ws.Range(mcondbOneSide)
 For Each rgArea In rgCells. Areas

 Since each one-side record Range . Area can have multiple independent or merged cells, the code uses
two For...Next nested loops to run through these cells. The outer loop runs through each Range. Area row,
while the inner loop runs through each Range. Area column.

 For intRow = 1 To rgArea.Rows.Count
 For intCol = 1 To rgArea.Columns.Count

 At each loop passage, the code verifies the operation to perform. If it’s a SaveRecord operation, the
application input cell (represented by rgArea.Cells(intRow, intCol)) must be stored in the database. Since
the one-side record is saved on the right of the mcondbSavedRecords range name record entry (represented by
 rg object variable), the record saving is done by using the Range. Offset property to displace rg to the right by
the mcondbRangeOffset + intOffSet Integer variable (intOffSet is incremented at each loop passage).

 Figure 7-13. These are the OneSideRecord and ManySideRecords range names of the BMI Chart worksheet, used
to represent all one-side and many-side record cells saved by the database engine. Note that the OneSideRecord
range name does not appear in the Excel Name box because it points to no contiguous worksheet cells

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

461

 If Perform = SaveRecord Then
 rg.Offset (0, mcondbRangeOffset + intOffSet) = rgArea.Cells(intRow, intCol)
 Else
 rgArea.Cells(intRow, intCol) = rg.Offset(0, mcondbRangeOffset + intOffSet)
 End If
 intOffSet = intOffSet + 1

 ■ Attention Note in the previous code of case Perform = LoadRecord , the invert operation is done: the
application input cell (represented by rgArea.Cells(intRow, intCol)) receives the database stored value
(represented by the displaced rg.Offset(0, mcondbRangeOffset + intOffSet) cell).

 Since rgArea.Rows.Count takes into account all individual merged columns cells (as rgArea.Columns.
Count does with merged rows cells), the code needs to verify whether the last operated on cell is merged
using the Range.MergeCells property. If it is, intRow and intCol must be incremented by the number or
rows/columns merged using MergeArea.Rows.Count –1 (or MergeArea.Columns.Count – 1).

 If rgArea.Cells(intRow, intCol). MergeCells Then
 intRow = intRow + rgArea.Cells(intRow, intCol). MergeArea.Rows.Count - 1
 intCol = intCol + rgArea.Cells(intRow, intCol). MergeArea.Columns.Count

- 1
 End If
 Next
 Next
 Next
 End If

 Processing the Many-Side Records
 Once the one-side record is saved (or loaded), it is time to operate all possible four many-side records
ranges, treated as “relations” using this very principle. Cells in the same many-side record range will be
saved side by side; cells of different many-side ranges will be saved at the bottom of the previous relation
ranges , with a blank row between them.

 This is done by first storing in strRangeName the worksheet scope range name associated to all many-
side record cells and resetting the intRow counter.

 ' Load /Save many side worksheet records
 strRangeName = mcondbManySidePrefix & FixName(strRecord)
 intRow = 0

 A For...Next loop using the intRelation variable as a counter is then used to process each of the
four possible many-side relationship range names. At each loop passage, one of the four possible many-
side constants is selected using the VBA Choose() function, and its content is verified by the VBA Len()
function, being processed if it is not an empty string.

 For intRelation = 1 To 4
 strRelation = Choose(intRelation , mcondbManySide1, mcondbManySide2, mcondbManySide3,

mcondbManySide4)

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

462

 If Len(strRelation) Then
 ...
 End If
 Next
 End Sub

 When the selected many-side constant has a range name inside it, it must be processed. Note that at
the first loop passage, intRow = 0 , while intCol and intMaxRows are reset for each many-side constant
processed. Since strRelation now holds the range name associated to the selected many-side constant, it
uses the rgCells variable to set a reference to its cells.

 If Len(strRelation) Then
 intCol = 0
 intMaxRows = 0
 Set rgCells = mws.Range(strRelation)

 As with the one-side record , each many-side records constant is processed by an outer For Each...
Next loop that runs through its Range. Areas collection, one Range. Area at a time (using the rgArea as
Range variable), and an inner For...Next loop to process each selected Range. Area column, one column at
a time (referenced by the intAreaCol as Integer variable).

 For Each rgArea In rgCells. Areas
 For intAreaCol = 0 To rgArea.Columns.Count – 1

 The generic code created to manipulate each possible many-side record cell takes into account that
each independent Range. Area must have an identical row count and multiple contiguous columns that may
be eventually composed by column merged cells but ever has row merged cells .

 ■ Attention When producing worksheet applications, avoid merge cells rows on the many-side record cells.
Change row heights instead when this effect is necessary. The reader is invited to change this generic code to
deal with such complex many-side record cells. Designs.

 On the first inner loop passage, intRows = 0 and intCols = 0 , so the code takes the worksheet place
where the many-side records (the strRangeName) are (or must be) stored as database records and uses
 Range. Offset (0,0) to select the top-left cell, attributing it to the rg object variable.

 Set rg = mws.Range(strRangeName).Offset(intRow, intCol)

 The first Range. Area column has all its cell rows selected using Range. Resize and rgArea.Rows.Count .

 Set rg = rg. Resize (rgArea.Rows.Count , 1)

 The same worksheet application input cells are selected, attributing them to the rgAreaColumn object
variable (note that this is made using Range(Cell1, Cell2) arguments, with intAreaCol = 0 for the first
 Range. Area column).

 Set rgAreaColumn = mws. Range (mws.Cells(rgArea.Row, rgArea. Column + intAreaCol), _
 mws.Cells(rgArea.Row + rgArea.Rows.Count - 1, rgArea. Column + intAreaCol))

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

463

 The Perform as Operation argument contains the operation to be performed: the Load or Save
record. Since the code is now saving a record, the rg object variable must receive the rgAreaColumn value
to effectively transfer worksheet application input cell values to the database storage system (an inverse
operation is performed to load a saved record).

 If Perform = SaveRecord Then
 rg.Value = rgAreaColumn.Value
 Else
 rgAreaColumn.Value = rg.Value
 End If

 ■ Attention This is the only way you can place merged cells values inside independent cells. If
 rgAreaColumn is composed of merged column cells, rg.Value will receive just the merged cell value, which is
associated to the top-left merged cell. You cannot use the Range. Copy and Range. PasteSpecial methods to
perform such operations when the source range is merged.

 Once the first Range. Area column is processed, the code checks whether its top-left cell is merged
(considering that all other cells of the same column must be equal) using the rgArea.Cells(1,1).
MergeCells property. If they are, the intAreaCol counter used as a counter for the inner For..Next loop is
incremented by the number of merged cells used in this column, and the intCol counter is incremented,
ready to process the next Range. Area column.

 If rgArea.Cells (1, intAreaCol + 1). MergeCells Then
 intAreaCol = intAreaCol + rgArea.Cells (1, intAreaCol + 1). MergeArea.Columns.Count - 1
 End If
 intCol = intCol + 1
 Next

 When all Range. Area columns are processed, the code checks whether the intMaxRows variable is lower
than the last Range. Area rows count. If it is, its value intMaxRow is updated to reflect the greatest row count for
the many-side records constant being processed, and intRows is updated accordingly to reflect the greatest
number of rows processed so far, to correctly displace the database cells on the next inner loop passage (if any).

 If intMaxRows < rgArea.Rows.Count Then
 intMaxRows = rgArea.Rows.Count
 End If
 Next
 intRow = intRow + intMaxRows + 1
 End If
 Next
 End Sub

 Sorting mcondbSavedRecords After a New Record Insertion
 When LoadSaveData () ends, program control returns to the SaveData() procedure, and the
 mcondbSavedRecords needs to be sorted, keeping the New <mcondbRecordName> option on top of the record
list (New Chart for the BMI Chart worksheet).

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

464

 Private Function SaveData(strRecord As String, bolNewRecord As Boolean) As Boolean
 ...
 Set rg = ws.Range(mcondbSavedRecords)
 ...
 Call LoadSaveData (strRecord, SaveRecord)

 If bolNewRecord Then

 Since the rg object variable holds a reference to the entire mcondbSavedRecords range name, including
the first New Record item, it must be rebuilt. The new range must begin on the second range row (Cells (rg.
Row + 1, rgColumn)) and finish on the last range row (Cells(rg.Row + rg.Rows.Count, ...)), selecting
all one-side records data columns (Cells(..., rg. Column to rg.Colum + mcondbRangeOffset +
mcondbOneSideColumnsCount)).

 'Sort mcondbSavedRecords range keeping "New <mcondbRecordName>" on the top of the list
 Set rg = ws.Range(Cells(rg.Row + 1 , rg. Column), _
 Cells(rg.Row + rg .Rows.Count , rg. Column + mcondbRangeOffset + _
 mcondbOneSideColumsCount))

 And once the range is correctly set, its rows are unhidden because Excel may fail to sort ranges on hidden
rows. The Range. Sort method is executed, using the first range column (returned by rg.Cells(, 1)) for the
 Key1 sort argument, and all range rows are hidden again.

 rg.EntireRow.Hidden = False
 rg. Sort rg.Cells(, 1)
 rg.EntireRow.Hidden = True

 Since the code made a lot of selections on hidden worksheet rows, Excel loses its screen reference, so
it must be taken again to cell A1 to guarantee that it will not displace the worksheet vertically when the save
process ends with SaveData() returning True .

 Range("A1").Select
 SaveData = True
 End Function

 When SaveData() successfully ends, the program control returns to the Save() procedure,
where now bolRecordSaved = True . The database engine must select the saved record name on the
 mcondbDataValidationList data validation list cell while also selecting this cell in the user interface.

 Public Function Save (Optional strLastRecord As String) As Boolean
 ...
 bolRecordSaved = SaveData (strRecord, bolNewRecord)
 mws.Protect
 If bolRecordSaved Then
 'Define current Record as saved Record
 mws.Range(mcondbDataValidationList) = strRecord
 mws.Range(mcondbDataValidationList) .Select

 And since a record has been saved on the database, it calls the ThisWorkbook.Save method to also save
the workbook file.

 'Save the workbook
 ThisWorkbook.Save

 And once the workbook has been saved, the mstrLastRecord must point to the saved record, the
 BMIChart. Dirty property must be set to False, Save() must return True , and a VBA MsgBox () function
must warn the user that the record was successfully saved in the database.

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

465

 mstrLastRecord = strRecord
 Me . Dirty = False
 Save = True
 MsgBox mcondbRecordName & " data had been saved as '" & strRecord & "'!", ,

"BMI Companion Chart"
 ...
 End If
 SetScreenEventsRecalc (True)
 End If
 End Function

 The saving process operation has finally ended!

 Discarding BMI Chart Changes
 Let’s now suppose you have changed some chart data on a new worksheet record and want to discard it
without saving. You can do this by following these steps:

 1. Selecting another saved record on the data validation list (including the
New Chart option)

 2. Clicking the Delete button in the BMI Chart worksheet

 Discarding Record Changes and Loading a Saved Record

 Whenever you select any saved record in the mcondbDataValidationList cell, the BMIChart object
 Worksheet_Change() event will fire, receiving on its Target argument the new data validation list cell value
and asking the user to save the current record before loading a new one (Figure 7-14).

 Figure 7-14. Whenever you change any BMI Chart data and select to load any other record on
mcondbDataValidationList before saving it, the Worksheet_Change() event will fire, asking you to save the
data before loading the selected item

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

466

 The Worksheet_Change() event calls Sub TryToLoadSelectedRecord() , executing this code:

 Note that the item selected in mcondbDataValidationList is stored in the strNewRecord variable and checks
whether the BMIChart. Dirty property is true (as an indication that the current worksheet data was changed) and
sends a VBA MsgBox () function to asking the user to save the current record before loading a new one.

 Private Sub TryToLoadSelectedRecord()
 ...
 strNewRecord = ws.ge(mcondbDataValidationList)

 'Verify if current Record had been changed
 If Me . Dirty Then
 'Save current Record before change it?
 strMsg = mstrLastRecord & " data had been changed." & vbCrLf & vbCrLf
 strMsg = strMsg & "Save " & mstrLastRecord & " before load '" & strNewRecord & "'?"
 If MsgBox (strMsg, vbQuestion + vbYesNo, "Save current data?") = vbYes Then

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

467

 By clicking No, the code will just set BMIChart. Dirty = False , and the TryToLoadSelectedRecord()
record will discard the changes by calling Load (strNewRecord) to load the desired record. By clicking Yes to
save the record, it will pass the current record name (mstrLastRecord) as an argument to Function Save () .
If the current record was correctly saved, Save() = True , and the selected record will be loaded, following
the same code flux. 429123_1_En

 ■ Attention The Load () procedure is detailed in the section “Loading BMI Chart Data” later in this chapter.

 Note that if Save() is canceled and the current record is not saved, TryToLoadSelectedRecord() will
disable events firing, and the mcondbDataValidationList cell will receive the mstrLastRecord name and will
use an Exit Sub instruction to exit without loading the record selected in the data validation list cell.

 If Not Save(mstrLastRecord) Then
 'Record data not saved!
 Application.EnableEvents = False
 ws.Range(mconDataValidationList) = mstrLastRecord
 Application.EnableEvents = True
 Exit Sub
 End If

 Discarding Record Changes with the Delete Control Button

 The second way you can discard any BMIChart worksheet change made to its data is by clicking the Delete
 Button control , which calls the Function DeleteRecord () procedure and executes this code:

 Public Function DeleteRecord () As Boolean
 Dim strRecord As String
 Dim strMsg As String
 Dim strTitle As String
 Dim intCancelDelete As Integer
 Dim intCancelSave As Integer
 Dim bolNewRecord As Boolean

 strRecord = mws.Range(mcondbDataValidationList)
 If strRecord = "" Or strRecord = "New " & mcondbRecordName Then
 If Me . Dirty Then
 bolNewRecord = True
 strMsg = "New " & mcondbRecordName & " data has not been saved yet." & vbCrLf
 strMsg = strMsg & "Do you want to delete it?"
 strTitle = "Delete unsaved record?"
 Else
 Exit Function
 End If
 Else

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

468

 strMsg = "Do you want to delete " & strRecord & " record?"
 strTitle = "Delete record?"
 End If

 If MsgBox (strMsg, vbYesNo + vbDefaultButton2 + vbQuestion, strTitle) = vbYes Then
 'Disable screen updating, events and recalc
 SetScreenEventsRecalc (False)
 Call Clear
 If Not bolNewRecord Then
 Call DeleteRecordData(strRecord)
 End If
 DeleteRecord = True
 Me . Dirty = False
 mstrLastRecord = "New " & mcondbRecordName
 'Enabled screen updating, events and recalc
 SetScreenEventsRecalc (True)

 mws.Range(mcondbDataValidationList) = mstrLastRecord

 'Save workbook after deletion
 ThisWorkbook.Save
 End If
 End Function

 This time, the procedure verifies whether the BMIChart worksheet is at a new record by comparing
 mcondbDataValidationList with an empty string or New Chart value. If it is showing a new unchanged
record, Dirty = False , and the code exits graciously. If Dirty = True is set to bolNewRecord = True and
define the warning messages to be shown by the MsgBox () function (Figure 7-15).

 Figure 7-15. If you click the Delete button on a new unchanged record, nothing will happen. But if the new
record has been changed, you will receive a warning message asking you to save before deleting it

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

469

 Public Function DeleteRecord () As Boolean
 ...
 strRecord = mws.Range(mcondbDataValidationList)
 If strRecord = "" Or strRecord = "New " & mcondbRecordName Then
 If Me . Dirty Then
 bolNewRecord = True
 strMsg = "New " & mcondbRecordName & " data has not been saved yet." & vbCrLf
 strMsg = strMsg & "Do you want to delete it?"
 strTitle = "Delete unsaved record?"
 Else
 Exit Sub
 End If
 Else
 ...
 End If

 If MsgBox (strMsg, vbYesNo + vbDefaultButton2 + vbQuestion, strTitle) = vbYes Then

 When choosing No, nothing will happen to the worksheet record, but when choosing Yes, the procedure
will first call the Sub SetScreenEventsRecalc(False) procedure to disable screen updates, events firing, and
worksheet recalculation, and then it will call the Sub Clear () procedure to clear all worksheet input cells.

 If MsgBox (strMsg, vbYesNo + vbDefaultButton2 + vbQuestion, strTitle) = vbYes Then
 'Disable screenupdating, events and recalc
 SetScreenEventsRecalc (False)
 Call Clear
 ...
 End If
 End Function

 Since you are considering that this is a new unsaved BMI Chart record, bolNewRecord = True , and there is
no need to call the Sub DeleteData() procedure. After clearing the worksheet data, Function DeleteRecord ()
must return True. Dirty and mstrLastRecord are updated, Sub SetScreenEventsRecalc(True) is called again
(to enabled screen updates, events firing, and worksheet recalculation), the data validation list cell is updated
(cascade-firing Sub Load ()), and the workbook file is saved.

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

470

 Clearing Chart Data
 The Clear () procedure uses a simple strategy to clear all worksheet cell input data: it first verifies whether
there is a one-side record range, uses the rgCells object variable to set a reference to these cells, and
attributes to rgCells an empty string to clear all its cells at once. This process is repeated using a For...Next
loop to run through all possible four many-side records constants, clearing the many-side record cells.

 Private Sub Clear ()
 Dim rgCells As Range
 Dim strRange As String
 Dim intI As Integer

 ' Clear one side worksheet records
 If Len(mcondbOneSide) Then
 Set rgCells = mws.Range(mcondbOneSide)
 rgCells = ""
 End If

 ' Clear many side worksheet records
 For intI = 1 To 4
 strRange = Choose(intI, mcondbManySide1, mcondbManySide2, mcondbManySide3,

mcondbManySide4)
 If Len(strRange) Then
 Set rgCells = mws.Range(strRange)
 rgCells = ""
 End If
 Next
 End Sub

 ■ Attention Since Sub Clear () makes a lot of cell changes, you must first disable events firing to avoid
cascading the Worksheet_Change() event.

 Loading BMI Chart Data
 To load any saved BMI Chart worksheet data, you need to select the name in the mcondbDataValidationList
 data validation list . As explained in section “Discarding Record Changes and Loading a Saved Record”
earlier in this chapter, this selection will fire the Worksheet_Change() event, which will make a call to the
 TryToLoadSelectedRecord() procedure, which will end up calling the Load () procedure to effectively
load the desired record. The Load () procedure executes this code:

 Private Sub Load (strRecord As String)
 'Disable screen updating, events and recalc
 SetScreenEventsRecalc (False)
 Select Case strRecord
 Case "", "New " & mcondbRecordName
 'User selected a "New Record"
 Call Clear
 mws.Range(mcondbDataValidationList) = "New " & mcondbRecordName
 Case Else

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

471

 Call LoadSaveData (strRecord, LoadRecord)
 mws.Range(mcondbDataValidationList).Select
 mstrLastRecord = strRecord
 End Select
 Me . Dirty = False
 'Enable screen updating, events and recalc
 SetScreenEventsRecalc (True)
 End Sub

 Note that the entire loading process happens between two calls to the SetScreenEventsRecalc()
procedure. The first call is to disable screen updating, events firing, and worksheet recalculation,
and the second is to enable screen updating, events firing, and worksheet recalculation. After calling
 SetScreenEventsRecalc(False) , it verifies whether the current record is a new one, and if it is, the
worksheet is cleared, making a call to the Clear () procedure.

 SetScreenEventsRecalc (False)
 Select Case strRecord
 Case "", "New " & mcondbRecordName
 'User selected a "New Record"
 Call Clear
 mws.Range(mcondbDataValidationList) = "New " & mcondbRecordName

 By selecting any other item, a call is made to the LoadSaveData () procedure, passing the record name
to its strRecord argument and the LoadRecord enumerator to its Perform argument, effectively loading the
desired worksheet record.

 Case Else
 Call LoadSaveData (strRecord, LoadRecord)

 ■ Attention The LoadSaveData () procedure was analyzed in the section “Saving Record Data with
 LoadSaveData ()” earlier on this chapter.

 Once all chart data is recovered, it sets the worksheet focus to the mcondbDataValidationList cell, sets
 mstrLastRecord to the loaded record name, sets Dirty = False , and reenables screen updates, events firing,
and worksheet recalculation.

 mws.Range(" mcondbDataValidationList ").Select
 mstrLastRecord = strRecord
 End Select
 Me . Dirty = False
 'Enabled screen updating, events and recalc
 SetScreenEventsRecalc (True)
 End Sub

 Deleting BMI Chart Data
 The last operation made in the BMI Chart worksheet is the deletion of a saved record, which requires that
the record is selected in the mcondbDataValidationList cell to be loaded into the worksheet data input cells
before clicking the Delete Button control to run Function DeleteRecord () .

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

472

 Public Function DeleteRecord () As Boolean
 ,,,
 If MsgBox (strMsg, vbYesNo + vbDefaultButton2 + vbQuestion, strTitle) = vbYes Then
 'Disable screen updating, events and recalc
 SetScreenEventsRecalc (False)
 Call Clear
 If Not bolNewRecord Then
 Call DeleteRecordData(strRecord)
 End If
 ...
 End Function

 ■ Attention The function DeleteRecord () was analyzed in the section “Discarding Record Changes with
the Delete Control Button” earlier in this chapter.

 To effectively remove all worksheet record data from the database, Sub DeleteRecordData() needs to
follow these steps:

 1. Unprotect the worksheet.

 2. Find the record name inside the mcondbSavedRecords range name.

 3. Delete the record name and all the one-side record columns.

 4. Rebuild and resize the mcondbSavedRecords range name.

 5. Delete the many-side records stored in the worksheet.

 6. Remove the many-side record range name used to point to where these records
are stored.

 Private Sub DeleteRecordData(strRecord As String)
 Dim rg As Range
 Dim rgRecord As Range
 Dim strRecordRange As String
 Dim lngLastRow As Long
 Dim lngSafeRow As Long
 Dim intColumns As Integer

 mws.Unprotect
 Set rg = mws.Range(mcondbSavedRecords)
 'Get the last row used by Database parameters
 lngSafeRow = mcondbRecordsFirstRow
 lngLastRow = rg.Row + rg.Rows.Count - 1
 'Set the last safe sheet row to delete entire row
 If lngSafeRow < lngLastRow Then
 lngSafeRow = lngLastRow
 End If

 'Delete the One-side record from mcondbSavedRecords range
 Set rgRecord = rg.Find(strRecord)
 intColumns = mcondbRangeOffset + mcondbOneSideColumsCount
 rgRecord. Resize (1, intColumns).ClearContents

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

473

 If rgRecord.Row <> lngLastRow Then
 'Reposition other record entries by copy and paste
 mws.Range(Cells(rgRecord.Row + 1, rgRecord. Column), Cells(lngLastRow,

rgRecord. Column + intColumns - 1)).Copy
 rgRecord.PasteSpecial xlPasteValues
 End If

 ' Clear last mcondbSavedRecords record row
 Range(Cells(lngLastRow, rgRecord. Column), Cells(lngLastRow, rgRecord. Column +

intColumns - 1)).ClearContents
 ' Resize mcondbSavedRecords range name without deleted Record
 rg. Resize (rg.Rows.Count - 1).Name = "'" & mws.Name & "'!" & mcondbSavedRecords

 'Delete the Many-side records and it range name
 strRecordRange = mcondbManySidePrefix & FixName(strRecord)
 Set rg = mws.Range(strRecordRange)
 'Verify if record data amd mcondbSavedRecords range use the same rows
 If rg.Row <= lngSafeRow Then
 'This saved records data rows must just be cleaned
 rg. Resize (mcondbManySideRowsCount, mcondbManySideColumnsCount).ClearContents
 Else
 'It is safe to delete entire saved records data rows
 rg. Resize (mcondbManySideRowsCount).EntireRow.Delete
 'Provision to keep rows hidden
 mws.Range(Cells(mcondbRecordsFirstRow, 1), Cells(mws.Rows.Count, 1)).EntireRow.

Hidden = True
 End If
 'Delete the many-records Range name
 mws. Names (strRecordRange).Delete
 'Scroll to row 1
 ActiveWindow.ScrollRow = 1
 mws.Protect
 End Sub

 After unprotecting the worksheet, the procedure sets an object variable reference (rg) to the
 mcondbSavedRecords range name and does the following:

 mws.Unprotect
 Set rg = ws.Range(mcondbSavedRecords)

 Now it must determine the safe row: the greatest row number that allows an entire row deletion without
causing collateral effects on the database. This is made by getting the first database row (mcondbRecordsFirstRow)
and the last row used by the mcondbSavedRecords range name (rg.Row _ rg.Rows.Count – 1), using the greater
of these two values as the safe row number (they will be the same when the database is empty).

 'Get the last row used by Database parameters
 lngSafeRow = mcondbRecordsFirstRow
 lngLastRow = rg.Row + rg.Rows.Count - 1
 'Set the last safe sheet row to delete entire row
 If lngSafeRow < lngLastRow Then
 lngSafeRow = lngLastRow
 End If

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

474

 The record is then searched in mcondbSavedRecords using the Range. Find method, storing its cell
reference on the rgRecord object variable.

 'Delete the One-side record from mcondbSavedRecords range
 Set rgRecord = rg.Find(strRecord)

 The total number of columns used by the one-side record is stored in the intColumns Integer variable,
and this value is used to resize the rgRecord variable so it can encompass both the record name and all its
 one-side record cells in the database before using Range.ClearContents to remove the data.

 intColumns = mcondbRangeOffset + mcondbOneSideColumnsCount
 rgRecord. Resize (1, intColumns). ClearContents

 Once the one-side record is deleted from the mcondbSavedRecords range, it is time to resize this range
using two different possibilities regarding the deleted record position.

 1. If it was at the last mcondbSavedRecords row, the range will be resized by
removing the last row.

 2. If it was in the middle of the mcondbSavedRecords range, the range must be first
rebuilt and then resized.

 Since the rgRecord object variable has a reference to the deleted record cell and lngLastRow has the last
 mcondbSavedRecords used row, the procedure compares these row numbers. If they are different, it means
that the record deletion happened in the middle of the mcondbSavedRecords range, which now has a blank
row in between, which must be removed before it can be resized (Figure 7-16).

 The code needs to select all records below the deleted one, using the Range. Copy and
 Range. PasteSpecial methods to reposition them one row above.

 If rgRecord.Row <> lngLastRow Then
 'Reposition other record entries by copy and paste
 mws.Range(Cells(rgRecord.Row + 1, rgRecord. Column), Cells(lngLastRow, rgRecord. Column +

intColumns - 1)). Copy
 rgRecord. PasteSpecial xlPasteValues
 End If

 Note the previous code uses the Range() method with the Worksheet.Cells collection to
determine the top-left and bottom-right cells that define the range to be copied. The top-left cell is the
next record (Cells(rgRecord.Row + 1, rgRecord. Column)), while the bottom-right cell is at the last
 mcondbSavedRecords row, using all one-side column cells (Cells(lngLastRow, rgRecord. Column +
intColumns - 1)).

 And once all records are repositioned, the last mcondbSavedRecords row is now duplicated and must be
removed.

 ' Clear last mcondbSavedRecords record row
 Range(Cells(lngLastRow, rgRecord. Column), Cells(lngLastRow, rgRecord. Column +
intColumns - 1)). ClearContents

 The mcondbSavedRecords range must now be resized to update the record deletion, which is made by
first using the Range. Resize method followed by the Name property to rename it.

 ' Resize mcondbSavedRecords range name without deleted Record
 rg. Resize (rg.Rows.Count - 1). Name = "'" & mws.Name & "'!" & mcondbSavedRecords

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

475

 Once the mcondbSavedRecords range has been processed, it is time to delete the many-side worksheet
records using two different deletion processes (see Figures 7-6 and 7-8).

• One process happens when the many-side records are saved side by side with the
 mcondbSavedRecords rows (a condition that will always happen to the first database
saved record). In this case, these many-side records rows can’t be deleted; they must
be just cleaned.

• Another process happens otherwise, when the may-side records are saved on
independent worksheet rows. In this case, these rows can be entirely deleted from
the worksheet without any collateral damage.

 To take care of these two possibilities, the procedure sets an object variable reference (rg) to
the associated many-side record range name and then compares the row number with the last
 mcondbSavedRecords row (lngLastRow).

 'Delete the Many-side records and it range name
 strRecordRange = mcondbManySidePrefix & FixName(strRecord)
 Set rg = ws.Range(strRecordRange)
 'Verify if record data amd mcondbSavedRecords range use the same rows
 If rg.Row <= lngSafeRow Then

 Figure 7-16. When the deleted record is on the middle of the mcondbSavedRecords range, it will leave a hole
inside the range after the data is cleaned. The code needs to copy/paste all other records below to its position
and then delete the last remaining chart name

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

476

 Whenever rg.Row <= lngLastRow , the first many-side records row uses the same mcondbSavedRecords
range rows, indicating that these records rows can’t be deleted; their content must be cleaned. This is done
by first resizing the rg object variable to encompass all many-side records columns and rows and then using
the Range.ClearContents method.

 'This saved records data rows must just be cleaned
 rg. Resize (mcondbManySideRowsCount , mcondbManySideColumnsCount). ClearContents

 Otherwise, the many-side records are on a safe worksheet area, and its rows can be entirely deleted
from the worksheet, using the Range.EntireRow property to select them all before applying the Range.
Delete method to exclude them from the worksheet.

 Else
 'It is safe to delete entire saved records data rows
 rg. Resize (mcondbManySideRowsCount).EntireRow.Delete

 A strange situation now arises because of another Excel bug: whenever you try to delete entire hidden
rows, Excel will unhide some of them, and I can explain why. So, the code needs to hide them all again,
beginning on the first hidden row (mcondbRecordsFirstRow) to the end of the worksheet.

 'Provision to keep rows hidden
 mws.Range (Cells(mcondbRecordsFirstRow , 1), Cells(mws.Rows.Count, 1)). EntireRow.Hidden = True

 ■ Attention Try for yourself! Put a comment in the last instruction and try to delete any saved record. You will
realize that many hidden rows will become inadvertently visible after the database record deletion.

 The deletion process ends by deleting the local range name used to indicate where the many-side
records were stored.

 'Delete the many-records Range name
 ws. Names (strRecordRange).Delete

 And since this deletion process may select entire hidden rows, the code must scroll the worksheet to
row 1 using the ActiveWindow.ScrowRow method and reactivate the worksheet protection, ending the Sub
DeleteRecordData() code procedure.

 'Scroll to row 1
 ActiveWindow.ScrollRow = 1
 mws.Protect
 End Sub

 Once the DeleteRecordData() procedure ends, it returns the code to the DeleteRecord () procedure,
which must return True as an indication that the record was removed from the database worksheet.

 Public Function DeleteRecord () As Boolean
 ...
 If Not bolNewRecord Then
 Call DeleteRecordData(strRecord)
 End If

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

477

 DeleteRecord = True
 ...
 End Function

 Associating Database Procedures to Worksheet Button Controls
 Any Button control inserted on a worksheet must be associated to a given Public Sub procedure inserted on
the worksheet code module. This works fine for a single worksheet, but if you make a sheet copy, all existing
 Button controls will not update their code. They will continue to point to the original worksheet code
module. When you click the Button control expecting that it executes the code inside the active sheet, it will
continue to execute procedures of the original sheet, probably referring to wrong cell ranges.

 The Save and Delete Button controls located on the BMI Chart worksheet at the right of the record data
validation list use a simple approach to guarantee that if you make copies of this sheet tab, they will always
execute the code contained on the active sheet code module. Basically, they are associated to the generic
procedures Sub SaveRecord() and Sub DeleteRecord () stored in the basButtonControls code module,
which has this code:

 Public Sub SaveRecord()
 Dim obj As Object

 Set obj = ActiveSheet
 obj.Save
 End Sub

 Public Sub DeleteRecord ()
 Dim obj As Object

 Set obj = ActiveSheet
 obj. DeleteRecord
 End Sub

 Note that they have been created as Public Sub procedures to appear in the Excel Assign Macro dialog
box, and they use a quite simple object declaration technique called late bound . This means the procedure
declares a Dim obj As Object variable that has no type, initializes it to the ActiveSheet object (meaning a
 Worksheet object), and then calls an object method (Save or DeleteRecord) that must exist inside the object
that the variable represents.

 Since the variable represents a generic object, when you compile it, Excel will not generate an error. Any
possible error will be raised just when the procedure tries to late-bound execute the desired variable object
method.

 ■ Attention Right -click any Button control and choose Assign Macro in the context menu to show the Excel
Assign Macro dialog box and verify (or associate) the procedure attached to it. Just Public Sub procedures
declared in independent code modules will appear on the list (Figure 7-17).

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

478

 Making Copies of the BMI Chart Worksheet
 Knowing that all the BMI Chart worksheet code module procedures point to local worksheet range names and
that the Button controls points to generic procedures that execute code on the ActiveSheet object, you can
make copies of the BMI Chart worksheet, producing another sheet tab with its own database storage system.

 1. Right -click the BMI Chart sheet tab and choose the Move or Copy menu
command.

 2. In the Excel Move or Copy dialog box, select the “(Move to the end)” list option,
select the Create a Copy check box, and click OK.

 Excel will create the BMI Chart (2) sheet tab, with all procedure code (and records) of the original
copy, but it is now capable of managing its own set of worksheet records (Figure 7-18).

 Figure 7-17. The Assign Macro Excel command (located in the Control section of the Developers tab) is used
to set or verify the procedure associated to each worksheet’s Button controls. By using generic procedures that
call active sheet codes, you can make copies of the sheet tab that always execute the active sheet code module
procedures

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

479

 The USDA Food Composer _Database.xlsm Excel Application
 In the file Chapter07.zip you will find the USDA Food Composer _Database.xlsm Excel macro-enabled
workbook, another worksheet application produced to store any recipe information (food category, food
item, amount by common measure or selected unit) and calculate its nutritional content for a single-serving
portion. The USDA Food Composer has this name because it uses the USDA Agricultural Research Services
(USDA-ARS) nutrient composition table to retrieve each food item’s nutrient profile, using up to 184 different
nutrients (Chapter 9 explains how to create updated versions of the hidden USDA worksheet used by this
worksheet application).

 This USDA Food Composer uses each food item amount to count the total recipe amount (in grams) for
the number of servings that the recipe provides, calculate its calories, and offer the one-serving factor cell to
reduce the recipe servings to a single serving (for example, a six-serving recipe can use the formula =1/6 on
its one-serving factor cell to recalculate the nutritional value of a single recipe serving).

 Figure 7-18. Since the BMI Chart worksheet code module uses generic procedures that point to local
worksheet range names and its Button controls use a generic code, you can make copies of this sheet tab to
create another worksheet with its own, independent database storage system

http://dx.doi.org/10.1007/978-1-4842-2205-8_9

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

480

 This worksheet application employs the same interface formatting techniques used by the BMI
Companion Chart worksheet application.

• Its input cells are formatted with a light yellow background and a blue border.

• Cells with calculated data have a white background and a blue border.

• Grid lines and headers are hidden.

• The worksheet is protected (with no password), allowing just its input cells (cells
with a yellow background) to be selected.

• All unused rows and columns are also hidden, leaving a big gray area surrounding its
interface if you try to navigate the worksheet using Excel scroll bars.

• It has three hidden worksheets: USDA (with nutritional data), CommonMeasures
(with food item common measure information), and Conversion (to make unit
conversions to grams).

 It also uses the same database code engine employed by the BMI Companion Chart_Database.xlsm
application to save each recipe data record.

• It has a My Recipes sheet tab, whose CodeName property was changed to MyRecipes
to easily access its properties and methods in VBA.

• The My Recipes sheet tab code module has the same set of constants used by the BMI
Chart worksheet, whose values were updated to reflect its one-side and many-side
records.

• It uses the same database strategy: a data validation list cell to allow the selection of
previously saved records.

• It has the New, Save, and Delete Button controls to easily manage worksheet records.

 The USDA Food Composer _Database.xlsm workbook philosophy uses the hidden USDA worksheet tab
(which has the latest USDA-ARS standard reference file for nutrient information) to build and nutritionally
analyze any recipe composed by up to 18 different ingredients. Among those, any previously saved recipe
record can be selected as a regular food item of the My Recipes food category. It produces the recipe
Nutrition Facts food label for one single serving, offering the best-detailed nutrient information available in
its Nutrient Composition area.

 It was used to compose and save every recipe proposed by two of the most prominent NHLBI diet plans
(National Health, Lung and Blood Institute, available at https://www.nhlbi.nih.gov/health/health-
topics/topics/dash):

• Dietary Approach to Stop Hypertension (DASH)

• Therapeutic Life Changes (TLC)

 Many other vegetarian recipes are offered on the EatingWell web site (www.eatingwell.com) for the
first seven days of its 1,800-calorie EatingWell 28-day vegetarian meal plan. At the right of the USDA Food
Composer worksheet title you can note that this application file indicates that it has 123 recipe records saved
in its database (Figure 7-19).

https://www.nhlbi.nih.gov/health/health-topics/topics/dash
https://www.nhlbi.nih.gov/health/health-topics/topics/dash
http://www.eatingwell.com/

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

481

 To create any recipe, click the New Button control or select New Recipe in its data validation list , type
the recipe name, common measure, servings per recipe, and 1-serving factor. (This factor is a decimal
number; it’s a fraction used to reduce the number of servings to a single serving. It is usually typed as =1/
Servings.) To compose the recipe ingredients, select the food category, choose the desired food item inside
the food category (or click the Find Food Item button), type the amount (for its first common measure), or
select a unit (gram, oz, cup, and so on). The amount selected will be always converted to grams (in the Qty
column), and the application will search the USDA database to return all food item nutritional information
proportional to the amount in grams selected in the recipe.

 If you select any saved recipes, they will be automatically loaded from the worksheet database using
the same technique and code explained in the section “The BMI Companion Chart.xlsm Excel Application”
earlier in this chapter.

 When any recipe record is selected in the data validation list cell pointed to by the
 mcondbDataValidationList constant, the one-side record is retrieved to show the recipe name, common
measure, servings per recipe, and one-serving factor (a value used to reduce the recipe nutritional
information to a single serving), while the many-side records are retrieved to show all food categories, food
items, amount, and select unit used by each food item to compose the selected recipe.

 Figure 7-19. This is the My Recipes sheet tab of the USDA Food Composer _Database.xlsm Excel application.
It was used to compose and store all recipes from DASH , TLC, and part of the 1,800-calorie EatingWell 28-day
vegetarian meal plan

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

482

 Recipe nutritional information is recalculated by Excel, which will show its Nutrition Facts food label
and the best nutrient composition available on the bottom of the worksheet, using the latest USDA Standard
Reference (SR) file available at the time it was conceived. Figure 7-20 shows the “Banana Cake with Coconut-
Cream Frosting” recipe, from the EatingWell web site, with all its food items and Nutrition Facts food label
for a single serving (of about 144g = 144/28 = 5,1 oz).

 And if you show all the My Recipes sheet tab hidden rows, you will see that they use the same technique
to store recipe records. The SaveRecords range name holds each recipe name, while other sheet columns
hold the one-side and many-side record data (Figure 7-21).

 Figure 7-20. This is the USDA Food Composer _Database.xlsm application showing the “Banana Cake with
Coconut-Cream Frosting” recipe, along with its Nutrition Facts food label for a single serving of 144g (@ 5 oz)

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

483

 Changing Database Constant Values
 To effectively use the same code employed by the BMI Chart worksheet to manipulate recipe records stored
on unused rows of the My Recipes worksheet, you just need to change the MyRecipes module constant
values to fit them to the My recipes database needs. This is the Declaration section of the MyRecipes code
module after such changes have been made:

 Option Explicit

 Private WithEvents mwb As Workbook
 Public Dirty As Boolean 'Indicate if record dat had been changed
 Private mstrLastRecord As String 'Retain the name of current record
 Private Enum Operation

 Figure 7-21. By showing My Recipes hidden rows, you can reveal how and where each worksheet record is
saved on the sheet rows. The mcondbSavedRecords range holds the recipe name. Contiguous columns on the
same row of each recipe name hold the one-side record , identifying the recipe common measure, serving per
recipe, and one-serving factor data. Other sheet columns holds the food category, food item, amount, and
select unit used to compose each recipe

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

484

 LoadRecord = 1
 SaveRecord = 2
 End Enum

 'This variable receive frmSearchFoodItems selected item
 Public SelectedFoodITem As Variant

 'This constants refers to local range names
 mcondbDataValidationList = " CurrentRecord " ' Data Validation list range
 Const mcondbSavedRecords = "SavedRecords 'Saved records range name
 Const mcondbRecordName = "Recipe 'Record name
 Const mcondbOneSide = "OneSideRecord 'One-side record range
 Const mcondbOneSideColumnsCount = 4 'One-side record columns needed
 Const mcondbManySide = "ManySideRecords 'Many-side record range
 Const mcondbManySidePrefix = "rec_" 'Many-side range name prefix
 Const mcondbManySideColumnsCount = 4 'Many-side record columns needed
 Const mcondbManySideRowsCount = 19 'Many-side record rows needed (+ 1 blank row)
 Const mcondbRecordsFirstRow = 98 'Row where database begins
 Const mcondbManySideFirstColumn = "H 'Many-side record first column
 Const mcondbRangeOffset = 1 'One-side record column offset to
 mcondbSavedRecords

 The constant values in bold mean that the MyRecipes worksheet database records begin on
row 98 (mcondbRecordsFirstRow=98), use four columns to save the one-side worksheet record
(mcondbOneSideColumnsCount=4), save the many-side worksheet records beginning on column H (mcondbM
anySideFirstColumn="H"), and use up to four worksheet columns (mcondbManySideColumnsCount=4) and
19 worksheet rows (mcondbManySideRowsCount=19) to save each recipe’s many-side records.

 Saving Recipe Data
 Every time a recipe record is saved in the worksheet database, its nutritional value (associated to the My
Recipes OneSideRecord range name) must also be saved in the hidden USDA worksheet My_Recipes food
category so it can be reused as an independent food item in other recipes.

 To avoid disturbing the database engine code, the My Recipes worksheet code module has two new
distinct procedures: SaveRecipe() and SaveInMyRecipes () .

• Privave Sub SaveRecipe() : This is responsible for calling Function Save () to
effectively save the recipe record on the worksheet database, and if Save() returns
true, it calls SaveInMyRecipes () .

• Private Sub SaveInMyRecipes () : This is responsible for saving the recipe
nutritional information in the USDA My_Recipes food category.

 This is the SaveRecipe() code:

 Private Sub SaveRecipe()
 Dim strRecord As String

 strRecord = Range(mcondbDataValidationList)
 If Save() Then
 'Update USDA My_Recipes range name with recipe nutritional data

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

485

 Call SaveInMyRecipes (strRecord)
 End If
 End Sub

 ■ Attention The My Recipes worksheet Save button is associated to the MyRecipes!SaveRecipe() procedure.

 The SaveInMyRecipes () procedure is also called from the mwb_BeforeClose() event and from
 Sub TryToLoadSelectedRecord() whenever Save() returns True .

 To keep things simple, the My Recipes worksheet uses the same range names to associate its one-side
record cells (which contain recipe information) and many-side records cells (which contain recipe food item
details, as shown in Figure 7-22).

 Figure 7-22. These are the OneSideRecord and ManySideRecord range names of the My Recipes worksheet,
used by the database engine to save each recipe record. Since both range names select no contiguous cells, they
do not appear in the Excel Name box

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

486

 ■ Attention Use frmNames to inspect the OneSideRecord and ManySideRecords hidden range names.

 Saving Recipe Nutritional Information in My_Recipes Range Name
 Every time a recipe record is saved, it must also save its nutritional information in the USDA worksheet My_
Recipes range name so it can also be used as any other food item to compose new recipes (by first selecting
the My_Recipes food category).This is done by calling the Sub SaveOnMyRecipes() procedure every time a
recipe is successfully saved, executing this code:

 Public Sub SaveInMyRecipes (strRecord As String)
 Dim ws As Worksheet
 Dim rg As Range
 Dim rgRecipe As Range
 Dim rgUSDA As Range
 Dim strAddress As String
 Dim bolNewRecord As Boolean

 'Update recipe information on USDA worksheet
 'Find recipe name on USDA worksheet
 Set ws = Worksheets ("USDA")
 Set rg = ws.Range("My_Recipes")
 Set rgRecipe = rg.Find(strRecord)

 If rgRecipe Is Nothing Then
 rg. Resize (rg.Rows.Count + 1).Name = "My_Recipes"
 'update rg object variable to contain My_Recipes new row
 Set rg = ws.Range("My_Recipes")
 'Position on new cell of My_Recipes range
 Set rgRecipe = rg.Cells(rg.Rows.Count, 1)

 ' Resize USDA range name to encompass this new recipe
 Set rgUSDA = ws.Range("USDA")
 rgUSDA. Resize (rgUSDA.Rows.Count + 1, rgUSDA.Columns.Count).Name = "USDA"
 bolNewRecord = True
 End If

 'Copy current recipe nutritional data to Clipboard
 ActiveSheet.Range("NewRecipe").Copy
 'Paste nutritional data for current recipe
 rgRecipe.PasteSpecial xlPasteValues

 If bolNewRecord Then
 'A New Recipe was inserted on USDA My_Recipes range name. Sort it!
 rg.Sort rg
 End If
 End Sub

 After variable declarations, object range variables are initiated to represent the USDA worksheet and
its My_Recipes range name, and a search is made on My_Recipes by the Range. Find method for the recipe
represented by the strRecord argument.

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

487

 Set ws = Worksheets ("USDA")
 Set rg = ws.Range("My_Recipes")
 Set rgRecipe = rg. Find (strRecord)

 If the recipe is not found inside the My_Recipes range name, rgRecipe = Nothing , and the recipe must
be inserted. To do it, first add the new row to the bottom of the My_Recipes range name (represented by the
 rg object variable) using the Range. Resize method.

 If rgRecipe Is Nothing Then
 rg. Resize (rg.Rows.Count + 1).Name = "My_Recipes "
 'update rg object variable to contain My_Recipes new row
 Set rg = ws.Range(" My_Recipes ")

 Now attribute to rgRecipe this newly added blank row.

 'Position on new cell of My_Recipes range
 Set rgRecipe = rg.Cells(rg.Rows.Count , 1)

 Since the USDA range name also contains the My_Recipes range name, increment its size by adding to it
one row, and use bolNewRecord to signalize that this is a new recipe entry.

 ' Resize USDA range name to encompass this new recipe
 Set rgUSDA = ws.Range("USDA")
 rgUSDA . Resize (rgUSDA.Rows.Count + 1 , rgUSDA.Columns.Count). Name = "USDA "
 bolNewRecord = True
 End If

 Now rgRecipe has either a new empty row or the desired recipe found by the by Range. Find method.
Use the Range. Copy and Range. PasteSpecial methods to copy/paste the recipe nutritional information
between the My Recipes and USDA worksheets.

 'Copy current recipe nutritional data to Clipboard
 ActiveSheet. Range("NewRecipe").Copy
 'Paste nutritional data for current recipe
 rgRecipe.PasteSpecial xlPasteValues

 If the recipe is new, sort the My_Recipe range name with the Range. Sort method, using the rg column
as the sort column, to place the new recipe in ascending order.

 If bolNewRecord Then
 'A New Recipe was inserted on USDA My_Recipes range name. Sort it!
 rg.Sort rg
 End If
 End Sub

 This is everything you need to know about how a recipe is saved!

 Deleting a Recipe Data
 The same way SaveRecipe() needs to call SaveInMyRecipes () to save the recipe nutritional information
in the USDA My_Recipes food category, to delete a recipe record, this information must be also deleted from
 USDA My_Recipes .

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

488

 To not disturb the database engine code, the My Recipes code module offers Sub DeleteRecipe () ,
which calls Function DeleteRecord () to effective delete the recipe record and, if it returns True , takes care
of also deleting the recipe entry in the USDA worksheet’s My Recipes range name.

 Private Sub DeleteRecipe ()
 Dim rg As Range
 Dim rgRecipe As Range
 Dim strRecord As String

 strRecord = Range(mcondbDataValidationList)

 If DeleteRecord () Then
 'Delete recipe from USDA My_Recipes range name
 Set rg = Worksheets ("USDA").Range("My_Recipes")
 Set rgRecipe = rg.Find(strRecord, , , xlWhole)
 If Not rgRecipe Is Nothing Then
 rgRecipe.EntireRow.Delete
 End If
 End If
 End Sub

 I think that this code deserves further explanation.

 Things That Are Worth Being Mentioned
 The My Recipes sheet tab of the USDA Food Composer _Database.xlsm Excel application makes use of two
other UserForm s and one Excel function that are worth mentioning. Let’s see them in more detail.

 Finding Food Items to Compose Recipes
 The first one is frmSearchFooditems , developed in Chapter 6 . You can use it to search for food items while
composing any new recipe or to change/verify other common measures of any selected food item. Just select
the desired Food Item input cell and click the Find Food Item control button to show the UserForm interface
(Figure 7-23).

http://dx.doi.org/10.1007/978-1-4842-2205-8_6

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

489

 Figure 7-23. Select any Food Item input cell and click the Find Food Item control button to show the
frmSearchFoodItem interface. If the selected cell has any food item selected, this item will be searched and
shown in the UserForm, like the oats used in the selected recipe

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

490

 If you have not selected any Food Item input cell, a warning message will appear indicating that you
should do so. This is made by Sub FindFoodItem() , which works together with the SelectedFoodItem As
Variant module-level variable.

 Option Explicit
 ...
 'This variable receive frmSearchFoodItems selected item
 Public SelectedFoodITem As Variant
 ...
 Private Sub FindFoodItem()
 Dim frm As New frmSearchFoodItems
 Dim rg As Range

 Set rg = Application . Intersect (Selection, Range("RecipeFoodItems"))
 If rg Is Nothing Then
 MsgBox "Click on any cell of Food Item column and try again!", _
 vbInformation, _
 "Select a Food Item"
 Else
 With frm
 .CallingSheet = Me
 .Show vbModal
 End With
 If IsArray (mws.SelectedFoodITem) Then
 With Application .Selection
 .Value = mws.SelectedFoodITem(0)
 .Offset(0, -1) = mws.SelectedFoodITem(1)
 .Offset(0, 1) = mws.SelectedFoodITem(2)
 .Offset(0, 3) = "g"
 End With
 mws.SelectedFoodITem = Empty
 End If
 End If
 End Sub

 To verify whether the selected cell (represented by the Application .Selection property) is inside the
range RecipeFoodItems , the procedure uses the Application . Intersect method, which has this syntax:

 Expression. Intersect (Arg1, Arg2, Arg3, ..., Arg30)

 In this code:

 Expression : This is required; it is a variable that represents an Application
object.

 Arg1 : This is required; it is a Microsoft Excel range object.

 Arg2 : This is required; it is a Microsoft Excel range object.

 Arg3...Arg30 : These are optional; they are Microsoft Excel range objects.

 The Application . Intersect method requires that at least two ranges (Arg1 and Arg2) be specified and
returns a range object that represents the rectangular intersection of two or more of the specified ranges.

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

491

 So, Sub FindFoodItem() uses Intersect (Selection, Range(“RecipeFoodItems) to initialize the
 rg object variable. If Selection is not a cell inside RecipeFoodItems , rg = nothing , and the MsgBox () is
displayed to the user, asking the user to select any food item cell.

 Set rg = Application . Intersect (Selection, Range("RecipeFoodItems"))
 If rg Is Nothing Then
 MsgBox "Click on any cell of Food Item column and try again!", _
 vbInformation, _
 "Select a Food Item"

 But if any food item cell is selected, a new instance of frmSearchFoodItems is instantiated, passing to
the frmSearchFoodItems . CallingSheet property a reference to the current worksheet (represented by the Me
keyword), and the UserForm is shown in modal mode, stopping the code execution until it is closed.

 Private Sub FindFoodItem()
 Dim frm As New frmSearchFoodItems
 ...
 Else
 With frm
 .CallingSheet = Me
 .Show vbModal
 End With

 As explained in Chapter 6 , if the user tries to search a given food item and clicks the UserForm Select
 CommandButton , the frmSearchFoodItems cmdSelect Click() event will fire and try to fill a worksheet
property called SelectedFoodItem with a one-dimensional array containing just four rows to indicate the
selected food item name, food category, amount in grams, and common measure (if any).

 So, immediately after the UserForm is closed, the procedure will verify whether the SelectedFoodItem
property is an array using the VBA IsArray () function. If it is, it will use the Application .Selection
property with the Range. Offset method to correctly return the desired food item values.

 If IsArray (mws.SelectedFoodITem) Then
 With Application . Selection
 .Value = mws. SelectedFoodITem(0)
 . Offset(0, -1) = mws. SelectedFoodITem(1)
 .Offset(0, 1) = mws. SelectedFoodITem(2)
 .Offset(0, 3) = "g"
 End With

 And once this operation is done, the MyRecipes.SelectedFoodItem property is set to Empty , which is
the default state of any variant variable, destroying its array of food item characteristics.

 mws.SelectedFoodITem = Empty
 End If

 Finding Recipes Already Composed
 The second thing that is worth mentioning is frmSearchRecipes , which can be shown by clicking
the small control button with reticence, right next to the “Select recipe” data validation list
(mcondbDataValidationList range name). When you click it, the UserForm is loaded, showing all 123 stored
recipe names. To select any recipe, scroll the list box or type any text to filter the list and double-click the
recipe name to load it in the My Recipes sheet tab (Figure 7-24).

http://dx.doi.org/10.1007/978-1-4842-2205-8_6

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

492

 By selecting a recipe in the lstRecipes ListBox or double-clicking a recipe name in the
 frmSearchRecipes UserForm , the recipe name is attributed to the My Recipes mcondbDataValidationList
range name, which will fire the MyRecipes Worksheet_Change() event and load the recipe, executing what
can be considered a kind of automation on the worksheet application. It is the same thinking when you click
the New Button control to begin a new recipe.

 This time I will leave it to you, as an exercise, to study and understand how frmSearchRecipes works.

 Counting Saved Recipes
 Although it can be done many different ways, to count how many recipes are currently stored in the
worksheet database and show the number in the merged cells J1:L1 of the My Recipes worksheet, the My
Recipes worksheet uses the simplest approach: a formula with the Excel function =CountA(My_Recipes)
that counts how many nonempty cells exist inside the My_Recipes range name (Figure 7-25).

 Figure 7-24. Click the small control button next to the “Select recipe” data validation list to open the
UserForm frmSearchRecipes , where you can easily find any recipe by typing part of it name

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

493

 Chapter Summary
 In this chapter, you learned about the following:

• That almost any worksheet solution uses a default one-to-many record relationship
so commonly used on database design tables

• That using the correct strategy, with a data validation list
(mcondbDataValidationList) and a unique range name (mcondbSavedRecords), you
can use unused worksheet rows and columns to store the worksheet data, making it
more productive

• How to use the Worksheet object’s Change and SelectionChange events to take care
of a database application system

• How to use the Application .EnabledEvents property to avoid that the worksheet
code cascade-fires events

• How to avoid screen flickering using the Application .ScreenUpdates property

• How to save records using a one-side and many-side record relationship using
different places of the worksheet

• How to create a set of procedure codes, based on the declared module Constant
values, to indicate where the database record is stored

• How to save, load, and delete records stored in a worksheet database system

• How to determine which is the last-used worksheet row, where a new record must be
saved

• How to rebuild a range name (mcondbSavedRecords) after inserting or removing any
of its items

 Figure 7-25. To count and show how many recipes are stored inside the database, the formula =CountA("My_
Recipes") counts how many nonempty cells exist in the My_Recipes range name

CHAPTER 7 ■ USING EXCEL AS A DATABASE REPOSITORY

494

• How to paste values inside a merged range (like RecipeFoodItems), attributing a
range value to another (see the LoadSaveData () procedure for details)

• How to use the Excel Application . Intersect method to verify whether a cell is
inside a range name

• How to use a single centralized procedure (LoadSaveData () to load and save
worksheet records to/from the worksheet

• That you can use the Excel CountA() function to count the number of nonempty
cells inside any range name

 In the next chapter, you will learn how to transform the worksheet database code into a worksheet
database engine Class module , including the creation of a wizard to help users implement it in any
worksheet application.

495© Flavio Morgado 2016
F. Morgado, Programming Excel with VBA, DOI 10.1007/978-1-4842-2205-8_8

 CHAPTER 8

 Creating and Setting a Worksheet
Database Class

 In the previous chapter you studied how to use Excel as a database repository, using a programmable
approach based on a data validation list filled with a New Record item followed by all saved records and
a simple strategy to save any one-to-many record database relationship on unused worksheet rows. The
database engine was based on some Excel object events (Worksheet.Change , Worksheet.SelectionChange ,
and Workbook .BeforeClose) and a punch of generic procedures that use module-level constant values to
load, save, and delete worksheet application records.

 The proposed code can be easily copy and adapted from one worksheet layout to another by changing
some constant values, letting the database engine deal with different one-to-many worksheet database
record relationships .

 The drawback of this approach is code duplication: any improvement made on any worksheet
application database engine code must be made on every other worksheet application to propagate it.

 In this chapter, you will learn how to create and use a Class module to produce a robust, generic
database engine to easily implement the database storage system in any Excel worksheet. You can obtain
all files and procedure code in this chapter by downloading the Chapter 07.zip and Chapter08.zip files
from the book’s Apress.com product page, located at www.apress.com/9781484222041 , or from http://
ProgrammingExcelWithVBA.4shared.com .

 Creating a Database Class
 The power of Class modules comes from the fact that they work like any other object. You just need to
declare a variable of the module’s type and use its programmable interface (properties, methods, and
events) to make it do something useful, keeping all the code complexity encapsulated inside the Class
module.

 Using the BMI Companion Chart_Database.xlsm macro-enabled worksheet that you can find inside
 Chapter07.zip as an example, you can duplicate all the code procedures used to save, load, and delete the
 BMI Chart worksheet records inside a Class module . The code will expose Class.Save , Class. Load , and
 Class.Delete methods to do the same jobs without knowing how they’re done.

 To convert all BMIChart code module procedures to a database engine’s Class module , you must do the
following:

 1. Create a new Class module and change its Name property to give it a precise
identity.

 2. Cut all BMIChart code module procedures and paste them inside the Class
module .

http://www.apress.com/9781484222041
http://programmingexcelwithvba.4shared.com/
http://programmingexcelwithvba.4shared.com/

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

496

 3. Change the Worksheet_Change() and Worksheet_SelectionChange event
declarations to mws_Change() and mws_SelectionCange () .

 4. Change each constant associated to the database engine to a local class module
variable that has the same name (but a different prefix).

 5. Make a search-and-replace operation on the code to change each constant name
to the associated variable name.

 These are the basic steps necessary to implement the database Class code, but to make it work on any
kind of one-to-many worksheet record relationship, you must also do the following:

 1. Store the database class variable values on unused worksheet rows, using range
names to identify each database property.

 2. Use the Class_Initialize() event to set a reference between the mws object
variable and the ActiveSheet object, and load each database property range
name value to the associated class module variable created in step 6.

 Let’s do all these steps so you can understand the database Class creation process.

 Steps 1 and 2: Create the Database Class Module
 To change all BMIChart worksheet code procedure to a Class module , follow these steps:

 1. Press Alt+F11 to show the Visual Basic IDE.

 2. Double-click the BMIChart object in the Project Explorer tree to show the code
module.

 3. Place the text cursor behind the Option Explicit statement and press
Ctrl+Shift+End to select all code module declarations and procedures.

 4. Press Ctrl+X to cut the code from the BMIChart code module.

 5. Create a new Class module using the Visual Basic Insert ➤ Class module menu
command and press Ctrl+V to paste it.

 6. Change the Class1 Name property to clsDatabase to name it.

 All declarations and procedures used by the BMIChart code module will be transferred to the
 clsDatabase Class module (Figure 8-1).

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

497

 Step 3: Create an Object Variable to Capture Worksheet Events
 Once all the BMIChart object declarations and procedures are transferred to the clsDatabase class module,
it is time to create the module-level object variable that can capture the active sheet events.

 While the clsDatabase class module is selected, locate the Worksheet_
SelectionChange () and Worksheet_Change() procedures and change their
names to the mws_SelectionChange() and mws_Change() events (Figure 8-2).

 ■ Attention You just need to select the Worksheet name part of each event procedure and change it to mws .
After you make that change, the top-left code module ComboBox must show the mws name selected, while the
top-right ComboBox must show the SelectionChange() event name.

 Figure 8-1. Cut all code below the Option Explicit statement from the BMIChart object code module, create a
new Class module , paste the code inside it, and change the Class Name property to clsDatabase

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

498

 Steps 4 and 5: Change Constant Names to Variable Declarations
 To parameterize the clsDatabase database properties, you now need to declare one module-level variable
to represent each database Constant declaration, changing the con prefix part of its name to the appropriate
prefix for the variable data type.

 Constants associated to a string value must be declared As String ; the ones associated to numeric
values must be declared As Integer . For example, if the Constant value stores a string, the mcondb prefix
of the declared variable must be changed to mstrdb . If it stores an integer value, the mcondb prefix must be
changed to mintdb . Table 8-1 states how each variable name must be declared.

 Table 8-1. Constant Names That Must Be Declared as Variable Names

 Constant Name Variable Name Must Be Declared As Variable Type

 Const mcondbDataValidationList Dim mstrdbDataValidationList String

 Const mcondbSavedRecords Dim mstrdbSavedRecords String

 Const mcondbRecordName Dim mstrdbRecordName String

 Const mcondbOneSide Dim mstrdbOneSide String

 Const mcondbOneSideColumsCount Dim mintOneSideColumsCount Integer

 Const mcondbManySide1 Dim mstrdbManySide1 String

 Const mcondbManySide2 Dim mstrdbManySide2 String

 Figure 8-2. Select the Worksheet_SelectionChange () and Worksheet_Change() event procedures and change
their names to mws_SelectionChange and mws_Change()

(continued)

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

499

 After all variables have been declared, execute a search-and-replace operation to change all Constant
occurrences inside the clsDatabase code module to the respective variable names.

 1. Since mcondbDataValidationList stores a string that represents a range name or
cell address, declare the mstrdbDataValidationList as String variable above
its constant declaration.

 Dim mstrdbDataValidationList as String

 2. Double-click the mcondbDataValidationList constant name to select it and
press Ctrl+H to show the Visual Basic Replace dialog box with the selection
stored in the Find What option.

 3. In the “ Replace with” option, type mstrdbDataValidationList .

 4. Use Search = Current Module, Direction = Down and check Find Whole
Word Only.

 5. Click the Replace All button to change all occurrences of this Constant name
inside the code. Visual Basic will make 15 substitutions (Figure 8-3).

 Repeat the last four operations to all other Constant declarations noting that mcondbOneSideColumnsCount ,
 mcondbManySideColumnsCount , mcondbManySideRowsCount , mcondbRecordsFirstRow , and mcondbRangeOffset
must be associated with a variable of the same name, prefixed by mintdb and declared As Integer .

 Constant Name Variable Name Must Be Declared As Variable Type

 Const mcondbManySide3 Dim mstrdbManySide3 String

 Const mcondbManySide4 Dim mstrdbManySide4 String

 Const mcondbManySidePrefix Dim mstrdbManySidePrefix String

 Const mcondbManySideColumnsCount Dim mintdbManySideColumnsCount Integer

 Const mcondbManySideRowsCount Dim mintdbManySideRowsCount Integer

 Const mcondbRecordsFirstRow Dim mintdbRecordsFirstRow Integer

 Const mcondbManySideFirstColum Dim mstrdbManySideFirstColum String

 Const mcondbRangeOffset Dim mintdbRangeOffset Integer

Table 8-1. (continued)

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

500

 ■ Attention Although this is a simple operation, you must be careful to avoid making inappropriate
 Constant names changes.

 After all search-and-replace operations have been performed to replace constant names with class
module variable names, you must comment each Constant declaration by prefixing each line with a
single quote. Then use the Visual Basic Debug ➤ Compile VBAProject command to check whether all
constants have been correctly replaced. The clsDatabase code module declaration section will look
like Figure 8-4 .

 Figure 8-3. For each constant name associated to a database engine property, declare a module-level variable
with the same name and different prefix and use Visual Basic’s Replace form (Ctrl+H) to change all constant
name occurrences by the associated variable name

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

501

 ■ Attention It is good programming practice to group variables declared with the same type: String s first,
then Integer s.

 Step 6: Save Database Properties as Range Names
 Since the clsDatabase class does not have any database property value (it now has just variable
declarations), it must read those values from the worksheet where the records reside. You need to save each
variable name (removing the four-letter prefix) and value on worksheet cells and associate worksheet scope
range names to these values.

 These range names must be placed in safe, unused cells that will be not disturbed by any database
operation. A good place are the first BMI Chart worksheet columns (A and B) beginning at the first record
row (row 30 , pointed at by the old mcondbRecordsFirstRow = 30 constant). All range names must be created
as local worksheet names, allowing other sheet tabs of the same workbook to have their own database
storage system. You need to follow these steps:

 1. Unprotect the BMI Chart worksheet and show its hidden rows.

 Figure 8-4. After all variable names have been declared and a search-and-replace operation has been
performed to change all constant names to the associated variable names, the clsDatabase declaration section
will look like this

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

502

 2. Use cell A30:B44 to create the database property range names.

• Column A receives the database property name (type each variable name
without its first four-letter prefix. For example, mstrdbDataValidationList
must be typed as dbDataValidationList).

• Column B receives the database property value (same constant value).

 3. Select cells A30:B44 (where the range names have been inserted) and execute
the command Create from Selection, located in the Defined Names area in the
Formula tab of the Excel ribbon to show the Create Range Names from Selection
dialog box,

 4. Keep just the “ Left column” option selected and click OK (Figure 8-5).

 Figure 8-5. Select a two-column range (where the first column contains the desired range names, and the
second column contains the range name values) and use the Create from Selection command in the Defined
Names area in the Formula tab of the ribbon to automatically create workbook range names. You will need to
use frmNames to change the name scope to the BMI Chart worksheet

 ■ Attention The Create Range names from Selection dialog box can create just workbook scope range
names. All database property range names must be created as local worksheet names to allow other sheet tabs
to implement their own database storage system. Since Excel doesn’t allow local range name creation with this
method or allow changing the name scope using the Names Manager dialog box, use the frmNames , located in
the VBA project tree, to change each name scope from the Workbook worksheet to the BMI Chart worksheet.

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

503

 Figure 8-6 shows how the BMI Chart worksheet should look after you have created all range names.
Note that cell B29 is associated to the dbDataValidationList cell range name (which is a local name whose
scope was changed using the frmNames interface.

 ■ Attention Note in Figure 8-6 that the dbManySideFirstColumn range name value was defined as O , as
an indication that the many-side record storage for the BMI Chart worksheet begins on column O.

 Figure 8-6. This is how the BMI Chart worksheet should look after you have created the database property
range name using cell range A30:B44. Note that each cell on column A is used just to indicate the database
property name located at its right, on column B

 Step 7: Use the Class_Initialize () Event to Read Database Properties
 The last step needed to implement the clsDatabase class is to make it associate the active sheet database
property range name values to each of its module-level variables, which is a simple approach.

 1. In the clsDatabase Sub Class_Initialize() event, initialize the mws as
Worksheet module-level variable to the ActiveSheet .

 2. Define each module-level variable to the appropriate local range name, using the
 mws.Range property.

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

504

 This is how the Class_Initialize() e vent should look to load all database property values:

 Private Sub Class_Initialize()
 Set mws = ActiveSheet
 mstrdbDataValidationList = mws.Range("dbDataValidationList")
 mstrdbSavedRecords = mws.Range("dbSavedRecords")
 mstrdbRecordName = mws.Range("dbRecordName")
 mstrdbOneSide = mws.Range("dbOneSide")
 mintdbOneSideColumsCount = mws.Range("dbOneSideColumsCount")
 mstrdbManySide1 = mws.Range("dbManySide1")
 mstrdbManySide2 = mws.Range("dbManySide2")
 mstrdbManySide3 = mws.Range("dbManySide3")
 mstrdbManySide4 = mws.Range("dbManySide4")
 mstrdbManySidePrefix = mws.Range("dbManySidePrefix")
 mintdbManySideColumnsCount = mws.Range("dbManySideColumnsCount")
 mintdbManySideRowsCount = mws.Range("dbManySideRowsCount ")
 mintdbRecordsFirstRow = mws.Range("dbRecordsFirstRow")
 mstrdbManySideFirstColumn = mws.Range("dbManySideFirstColumn")
 mintdbRangeOffset = mws.Range("dbRangeOffset")
 End Sub

 Referencing the clsDatabase Class
 Now that the clsDatabase class is capable of reading all worksheet database properties, you need to
initialize it on the BMI Chart worksheet by following these steps:

 1. Declare a Private mdb as clsDatabase object variable in the BMI Chart code
module declaration section.

 Option Explicit

 Dim mdb as clsDatabase

 2. Initialize the mdb object variable using the Worksheet_ Activate () event and
make it a Public procedure so you can call it in the Workbook . Open () event,
initializing the class every time the workbook is opened.

 Public Sub Worksheet_ Activate ()
 If mdb Is Nothing Then
 Set mdb = New clsDatabase
 End If
 End Sub

 3. In the ThisWorkbook code module, create the Workbook _ Open () event that calls
the Public BMIChart.Worksheet_ Activate event (note that the code uses the
worksheet’s CodeName property and that the BMI Chart worksheet is activated).

 Private Sub Workbook _ Open ()
 Call BMIChart.Worksheet_ Activate
 Sheets ("BMI Chart").Select
 End Sub

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

505

 ■ Attention The active sheet Worksheet_ Activate () event does not fire when the workbook opens. That
is why you must explicitly call it from the Workbook _ Open () event.

 4. Create Public Sub Save() and DeleteRecords() procedures on the BMI
Chart worksheet code module (needed by the worksheet’s Button controls),
making them call the clsDatabase.Save and clsDatabase.DeleterRecord
methods.

 Public Function Save ()
 mdb.Save
 End Function

 Public Function DeleteRecord ()
 mdb. DeleteRecord
 End Function

 To initialize mdb as the clsDatabase object variable and initiate the database system services, you must
do any of these:

• Close and reopen the workbook to force the This Workbook Workbook _ Open () event
to fire.

• Use the VBA Immediate window to call the This Workbook.Workbook _ Open or
 BMIChart.Worksheet_ Activate event.

• Insert another sheet tab, select the new sheet tab, and select again the BMI Chart
sheet tab to fire the Worksheet_ Activate event.

 ■ Attention Although it is not necessary, you can also initialize the clsDatabase class using the Worksheet_
SelectionChange () and Worksheet_Change() events. This will guarantee that any time the user selects
another input cell or changes any cell value, the database engine will begin to work.

 Figure 8-7 shows a view of the BMI Chart code module implementing the clsdatabase code to
manage its records. It uses just small code snippets to implement the complex task of managing its database
records. All the code complexity is now encapsulated inside the clsDatabase class. Oh, of course, you can
make as many copies as you like of the BMI Chart worksheet. Each copy will use its own instance of the
 clsDattabase class module. No duplication code is necessary.

 Welcome to the beauty of VBA object class module programming!

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

506

 ■ Attention The BMI Companion Chart_DatabaseClass.xlsm and USDA Food Composer _DatabaseClass.
xlsm macro-enabled workbooks that you can extract from the Chapter08.zip file implement the clsDatabase
class created in this section.

 Improving the clsDatabase Class Interface
 Although the clsDatabase class produced in the previous section is quite interesting in terms of encapsulation
and one-to-many record relationship capacity, it lacks a lot in customization and functionality:

• It exposes just two methods: Save and DeleteRecord .

• It doesn’t expose any database properties.

• It doesn’t fire events.

• It is quite confusing to set up; you need to understand how to create and define its
database property range names.

 This is comprehensible because it was not planned to be a database object. You just take a bunch of
worksheet code and encapsulate it inside a class module with no planning in advance. The workforce—the
database engine code—is already there, but it needs to be improved by defining an object interface that
exposes a useful set of properties, methods, and events.

 Figure 8-7. This is the BMI Chart worksheet code module, showing all the code it needs to implement a
database storage system using the clsDatabase class module

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

507

 Improving the Object Model
 To succeed in producing a robust, reusable worksheet database object, it is necessary to first define the
following:

• The object purpose—what the object does

• The object name—how to call the object by name on any code module

• The object programmable interface—the properties, methods, and events that allow
anyone to manipulate the object code using VBA

• A simplified interface to define the database properties

 After thinking for a while, I decided to build a database object that must do (object purpose) worksheet
database record manipulation (save, load, delete, and move to records) and call SheetDBEngine (object
name), which exposes a set of properties, methods, and events (object interface) and resembles another
popular database engine, the Microsoft Access Forms object.

 Figure 8-8 shows the SheetDBEngine interface, while Table 8-2 gives a detailed explanation of each
object member (in alphabetical order), including its purpose (properties), what it does (methods), and when
it occur (events).

 ■ Attention If you are wondering if I am a genius to anticipate such an object structure, I can surely tell you
that I am not. In fact, the SheetDBEngine interface exposed in Figure 8-8 and commented on in Table 8-2 was
created using a step-by-step approach based on trial and error that lasted for weeks until the code stabilized to
a point that could be considered sufficiently trusted to write about it.

 Figure 8-8. This is the SheetDBEngine programmable interface, showing its properties, methods, and events

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

508

 Table 8-2. SheetDBEngine Interface Members and Utility

 Type Name Utility

 Property AbsolutePosition Long integer, read-only. Indicates the record order in the database.

 Property AutoSaveWorkbook Boolean . If True , saves the workbook at every save or delete
operation. The default is False .

 Property BOF Boolean , read-only. True at the first record or at a new record.

 Property Calculation Integer . Sets the Application .Calculation method
to xlCalculationManual , xlCalculationAutomatic ,
 lCalculationSemiAutomatic .

 Property Dirty Boolean , read-only. True when the current record is changed and
not saved yet.

 Property EOF Boolean , read-only. True when at the last record or at a new
record.

 Property NewRecord Boolean , read-only. True at a new record (BOF and EOF
properties are True).

 Property RecordCount Long integer, read-only. Returns how many records the database
has.

 Property ScreenUpdate Boolean . Enables/disables Excel screen updates.

 Method CopyRecord Copies existing record data to range object variables.

 Method CreateDatabase Defines the database structure in the worksheet.

 Method Delete Deletes the current record. Ask for confirmation before deletion.

 Method DeleteRecord Deletes one record without asking for confirmation.

 Method Load Loads a desired record. If a record is not specified, shows a new
record.

 Method PasteRecord Pastes record data from range object variables into the database
structure.

 Method Save Saves the current record without asking for confirmation.

 Method SaveAs Saves the current record. Ask for confirmation before save.

 Method ShowRecord Moves to first, next, previous, last, or new record.

 Method Sort Sorts database record names.

 Events AfterDelete Occurs before a record has been deleted from the database.

 Events AfterInsert Occurs before a record has been inserted in the database.

 Events AfterUpdate Occurs after a record has been saved.

 Events BeforeDelete Occurs before a record can be deleted. Can be canceled.

 Events BeforeInsert Occurs before a record can be inserted. Can be canceled.

 Events BeforeSaveWorkbook Occurs before the workbook is saved or after a save or delete
operation.

 Events BeforeUpdate Occurs before a record can be updated.

 Events Current Occurs after a new or existing record is shown.

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

509

 ■ Attention The SheetDBEngine.xlsm macro-enabled workbook that you can extract from Chapter08.zip
contains the SheetDBEngine class module, an object covered in this chapter.

 Implementing SheetDBEngine Properties
 There are Application properties, database properties, and record properties. The Application properties
relate to Excel behavior and the Application object: screen updating and calculation. Database properties
relate to the records as a whole: how many there are and which is the first and last records regarding the
 SavedRecords range name. Record properties relate to each individual record, indicating the record position
inside the SavedRecords range name and whether the record data has been changed. Figure 8-9 depicts
these record position properties.

 Figure 8-9. This image describes the Database and Record properties, indicating how they are set regarding
the record position inside the SavedRecords range name

 As you can see from Figure 8-9 , the BOF property (Begin Of File) is positioned on the first record,
and the EOF property (End Of File) is positioned on the last record. The SavedRecords range name is
sorted ascending, so both properties may point to different records as they are added to the database.
 AbsolutePosition relates to the record order inside the database, while RecordCount relates to the total
number of records. Using both properties, you can create an expression such as “Record 3 of 15.”

 The current record is the one currently exhibited by the worksheet application. Whenever the current
record data is changed, its Dirty property becomes True (Dirty = True).

 The new record has no defined position. It can be at the beginning or the end of the records. When the
current record points to a new record, NewRecord = True , and both BOF = EOF = True (by default).

 The SheetDBEngine.xlsm macro-enabled workbook has the SheetDBEngine class module, a modified
version of the clsDatabase class, that implements the database properties in Table 8-2 . The next code is
part of the SheetDBEngine class module declaration section, which uses Public and Private variables to
implement these properties (note that they are organized by data type):

 'SheetDBEngine Public Properties
 '===
 Dim mlngCalculation As Long
 Dim mlngAbsolutePosition As Long

 Public AutoSaveWorkbook As Boolean

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

510

 Dim mbolScreenUpdating As Boolean
 Dim mbolNewRecord As Boolean
 Dim mbolDirty As Boolean
 Dim mbolBOF As Boolean
 Dim mbolEOF As Boolean

 ■ Attention Some people argue about when to use Dim or Private to declare a private module variable. The
answer is that it doesn’t matter! When Visual Basic evolved from version 3 to version 4, the Private keyword
appeared as an alternative to indicate a module-level variable scope. You can use both declaration instructions
in module-level variables but can’t use Private inside a procedure code. Any declaration that does not have an
explicit Public declaration is considered Private by default.

 Read/Write Properties

 A read/write property must either be a variable name declared with the Public keyword or be associated to
a pair of Public Property Let and Public Property Get procedures.

 Use a Public variable declaration when the property value can be changed by the user without
consequences to the object code or the application environment, like the AutoSaveWorkbook property.

 Public AutoSaveWorkbook As Boolean

 Use a pair of Property Let() and Property Get() procedures when the property value can impact
the object code or the application environment, such as Calculation (which changes the way Excel
calculates by changing the Application .Calculation property) and ScreenUpdating (which enables or
disables the Application .ScreenUpdating property). The Property Let() procedure is responsible for
making the property value change.

 Public Property Let Calculation(CalculateMethod As XlCalculation)
 mlngCalculation = CalculateMethod
 Application .Calculation = CalculateMethod
 End Property

 Public Property Get Calculation() As XlCalculation
 Calculation = mlngCalculation
 End Property

 Public Property Let ScreenUpdating(Enabled As Boolean)
 mbolScreenUpdating = Enabled
 Application .ScreenUpdating = Enabled
 End Property

 Public Property Get ScreenUpdating() As Boolean
 ScreenUpdating = mbolScreenUpdating
 End Property

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

511

 Read-Only Properties

 A read-only property is the one whose value can be read but cannot be changed. It is generally used to
indicate object states that change according to the object code and are always implemented by declaring
a module-level variable and just a Public Property Get() procedure. The property value is changed
by private code that directly interacts with the module-level variable or uses an associated Private Let
property or Function / Sub procedure to do it.

 The AbsolutePosition property uses the Private SetAbsolutePosition() procedure to change the
 mlngAbsolutePostion Long variable. It receives as an argument a Range object related to the record cell.

 Private Sub SetAbsolutePosition(rg As Range)
 mlngAbsolutePosition = (rg.Row - mintdbRecordsFirstRow)
 End Sub

 Public Property Get AbsolutePosition () As Long
 AbsolutePosition = mlngAbsolutePosition
 End Property

 ■ Attention VBA generates an error if the pair of Property Let() and Property Get() procedures
receive and return different data types, respectively. The AbsolutePosition property uses different procedure
types to allow different data types to be used. To set the property value, a rg as Range argument is used, and
to get the property value, it uses a Long integer.

 Other properties change the private variable value that holds the property value inside the object code,
whenever necessary. This is the case of BOF , Dirty , EOF , NewRecord , and RecordCount (which manipulates
the mbolBOF , mbolDirty , m bolEOF , and mbolNewRecord Boolean private variables).

 Public Property Get BOF () As Boolean
 BOF = mbolBOF
 End Property

 Public Property Get Dirty () As Boolean
 Dirty = mbolDirty
 End Property

 Public Property Get EOF () As Boolean
 EOF = mbolEOF
 End Property

 Public Property Get NewRecord() As Boolean
 NewRecord = mbolNewRecord
 End Property

 Public Property Get RecordCount () As Long
 RecordCount = Range(mstrdbSavedRecords).Rows.Count - 1
 End Property

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

512

 The AbsolutePosition Property
 This property value reflects the record order inside the SavedRecords range name (sorted ascending), used
to fill the data validation list . For new records, AbsolutePostion = 0 by default. The property value must be
changed by the SheetDBEngine when

• The class is initialized to reflect the record currently exhibited by the worksheet
application, by the Class_Initialize() event

• A new record is exhibited, by Sub Load ()

• A record is loaded or saved, by Private Sub SaveData() or Private Sub
 LoadSaveData ()

 In the Class_Initialize() event, it is necessary to verify what is currently selected in the data
validation list and then use the Range. Find method to search it inside the SavedRecords range name. The
entire operation is conducted using local variable values.

 Private Sub Class_Initialize()
 Dim rg As Range
 ...
 Set rg = mws. Range (mstrdbSavedRecords). Find (mws.Range(mstrdbDataValidationList))
 If Not rg Is Nothing Then
 Call SetAbsolutePosition (rg)
 End If
 End If
 End Sub

 Inside Sub Load () , the NewRecord , AbsolutePosition , BOF , EOF , and Dirty properties have their
values updated for a new record (Dirty is the only property always updated to false). Note that this time the
procedure interacts directly with the module-level variable that represents the property.

 Public Sub Load (Optional strRecord As String)
 'Disable screen updating, events and recalc
 Call Echo (False)
 Select Case strRecord
 Case "", "New " & mstrdbRecordName
 ...
 mbolNewRecord = True
 'Set record position
 mbolBOF = True
 mbolEOF = True
 mlngAbsolutePosition = 0
 ...
 End Select
 mbolDirty = False
 ...
 End Sub

 In the Sub LoadSaveData () procedure, after the record had been inserted in the SaveRecords
range name and the database engine is about to save the one-side and/or many-side record cells,
 AbsolutePosition , BOF , and EOF are also updated as the first procedure steps. Note that BOF and EOF have
their associated variables directly manipulated by the code, which verifies whether the record is at the first
or last database position.

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

513

 Private Sub LoadSaveData (strRecord As String, Perform As Operation)
 ...
 Set rg = mws.Range(mstrdbSavedRecords). Find (strRecord , , , xlWhole)
 'Set record position
 Call SetAbsolutePosition (rg)
 mbolBOF = (rg.Row = mws.Range(mstrdbSavedRecords).Row + 1)
 mbolEOF = (rg.Row = mws.Range(mstrdbSavedRecords).Row + mws.Range(mstrdbSavedRecords).

Rows.Count - 1)

 In the Sub SaveData() procedure, the AbsolutePosition property is updated as soon as the
 SavedRecords range name is sorted, repositioning the saved record.

 Private Function SaveData(strRecord As String, Optional bolNewRecord As Boolean) As Boolean
 ...
 rgData.Sort rg.Cells(, 1)
 Set rg = Range(mstrdbSavedRecords). Find (strRecord , , , xlWhole)
 Call SetAbsolutePosition(rg)

 The BOF and EOF Properties
 Both BOF and EOF properties are commonly used by the database engine as pointers to set records
boundaries. Their use is most preeminent to determine the beginning or end of file after a search is made or
when a step-by-step forward walk is done through the records to the last record (EOF = True) or a backward
walk is done to the first record (BOF = True). As the NewRecord property does, when both BOF and EOF are
 True or AbsolutePosition = 0 , a new record is shown by the database.

 As shown before, it value is changed when

• A new record is shown by Sub Load ()

• An existing record data is loaded or saved by Sub LoadSaveData ()

 The Dirty Property
 This property indicates whether the current record has been changed. It is used to issue a warning message
asking to save the record before loading a new one. Its value must be changed whenever any worksheet
record input cell is changed, which is controlled by the Worksheet_Change() event with the aid of the Dim
 WithEvents mws as Worksheet object variable.

 Private Sub mWs_Change(ByVal Target As Range)
 Select Case Target. Address
 ...
 Case Else
 'Sheet data has changed
 mbolDirty = True
 ...
 End Select
 End Sub

 As shown before, the mbolDirty variable is set to False in the Sub Load () procedure, after the desired
record is shown.

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

514

 The RecordCount Property
 This property just does a record count inside the SaveRecords range name. Since the first range cell is always
reserved for the new record, it subtracts one from the Range.Rows.Count property. It is always recalculated
on the Property Get() event.

 Public Property Get RecordCount () As Long
 RecordCount = Range(mstrdbSavedRecords).Rows.Count - 1
 End Property

 Implementing SheetDBEngine Events
 The events proposed by Table 8-2 were not defined randomly. They reflect the same events fired by
Microsoft Access Forms when a record is inserted, selected, saved, or deleted in a user interface. They had a
defined occurrence moment and order to fire, as explained by Figure 8-10 .

 Figure 8-10. This is the Microsoft Access Forms event order when a record is inserted, selected, saved, or
deleted

 ■ Attention Note that every Before... event must have a Cancel argument to allow the user to cancel it.

 To those of you who are wondering what to do with so many events, here are some ideas:

• Use the Before ... events to ask for a user confirmation before the record is inserted,
saved, or deleted. If necessary, use the event procedure to execute all necessary
operations before the event happens.

• Use the Current event to update the user interface according to the type of record
that is presented to the user: a new or an existing record.

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

515

• Use the After ... events to give a MsgBox () confirmation that the operation succeeds
or to make another operation on your application, after a record is inserted,
changed, or deleted.

 ■ Attention When a new record is about to be inserted, both the AfterInsert() and AfterUpdate()
event will fire in sequence. To avoid boring the user with two successive confirmations, use the NewRecord
property to avoid the BeforeUpdate() event confirmation.

 To implement the SheetDBEngine events in Table 8-1 , each event name was declared using a VBA Event
instruction on the class declaration section. Note that some events also declare an argument that is passed
by the SheetDBEngine object to the calling procedure (like the Cancel as Integer argument declared on all
 Before ... events or the Record as String argument declared on all After ... events).

 'SheetDBEngine Events
 '===
 Event Current()
 Event BeforeInsert(Cancel As Integer)
 Event AfterInsert(Record As String)
 Event BeforeUpdate(Cancel As Integer)
 Event AfterUpdate(Record As String)
 Event BeforeDelete(Cancel As Integer)
 Event AfterDelete(Record As String)
 Event BeforeSaveWorkbook(Cancel As Integer)

 Raising Events When a Record Is Saved

 Now let’s see what happens in terms of the SheetDBEngine class module. Let’s begin with a new record that
is about to be saved (properties NewRecord = Dirty = True) by the Function Save () procedure, which
executes this code:

 Public Function Save (strRecord As String, Optional bolNewRecord As Boolean) As Boolean
 Dim intCancelInsert As Integer
 Dim intCancelUpdate As Integer
 Dim intCancelSave As Integer
 Dim intCancelSaveWorkbook As Integer
 Dim bolRecordSaved As Boolean

 'Raise events BeforeInsert and BeforeUpdate (allow cancel operation)
 If bolNewRecord Then
 RaiseEvent BeforeInsert (intCancelInsert)
 If intCancelInsert Then
 Exit Function
 End If
 End If

 RaiseEvent BeforeUpdate (intCancelUpdate)
 If intCancelUpdate Then
 Exit Function
 End If

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

516

 'Disable application events to allow cell change by macro code
 Call Echo (False)
 mws.Unprotect
 bolRecordSaved = SaveData(strRecord, bolNewRecord)
 If mbolSheetProtected Then
 mws.Protect
 End If

 If bolRecordSaved Then
 'Update record properties
 mbolNewRecord = False
 mbolDirty = False

 'Define current Record as saved Record
 mws.Range(mstrdbDataValidationList) = strRecord
 mws.Range(mstrdbDataValidationList).Select

 'Raise events AfterUpdate . AfterInsert, Current and BeforeSaveWorkbook
 RaiseEvent AfterUpdate (strRecord)
 If bolNewRecord Then
 RaiseEvent AfterInsert(strRecord)
 End If
 RaiseEvent Current
 'Save the worbook after save the record?
 If Me .AutoSaveWorkbook Then
 RaiseEvent BeforeSaveWorkbook (intCancelSaveWorkbook)
 If Not intCancelSaveWorkbook Then
 ThisWorkbook.Save
 End If
 End If

 Save = True
 Else
 MsgBox "There is no more room to save data on this worksheet!", vbCritical,

"Can't save data"
 End If
 Call Echo (True)
 End Function

 You may note that the procedure declares independent variables to hold the Cancel argument of each
event cited in Figure 8-9 , following best programming practices, which say to not reuse variables inside
procedure code.

 Public Function Save (strRecord As String, Optional bolNewRecord As Boolean)
 Dim intCancelInsert As Integer
 Dim intCancelUpdate As Integer
 Dim intCancelSave As Integer
 Dim intCancelSaveWorkbook As Integer
 Dim bolRecordSaved As Boolean

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

517

 The proposed After... events fire successively using the VBA RaiseEvent statement, passing to the
 Cancel argument the appropriate variable, which is immediately tested to see whether it was canceled by
the user action. This is what is happens to a new record that is about to be inserted on the database.

 Public Function Save (strRecord As String, Optional bolNewRecord As Boolean)
 Dim intCancelInsert As Integer
 ...
 'Raise events BeforeInsert and BeforeUpdate (allow cancel operation)
 If bolNewRecord Then
 RaiseEvent BeforeInsert (intCancelInsert)
 If intCancelInsert Then
 Exit Function
 End If
 End If

 This is quite simple, isn’t it? The procedure abruptly ends whenever the event is canceled, and the new,
changed record is not saved, remaining in its current state. But if the event was ignored or not canceled, the
 BeforeUpdate() event is raised, and the same principle is followed: test the intCancelUpdate variable to
see whether the event was canceled by the user action.

 RaiseEvent BeforeUpdate (intCancelUpdate)
 If intCancelUpdate Then
 Exit Function
 End If

 If both events were ignored or not canceled, the record will be saved by the SaveData() procedure.
To allow it to quietly save in the worksheet database, the code needs to disable Excel events firing, which
is made by the Sub Echo () procedure (which replaced Sub SetScreenEventsRecalc () used by the
 clsDatabase class).

 Call Echo (False)
 mws.Unprotect
 bolRecordSaved = SaveData (strRecord, bolNewRecord)
 If mbolSheetProtected Then
 mws.Protect
 End If

 Immediately after a trial was made to save the record, it checks the bolRecordSaved variable value if
the saving operation succeeded. If this is true, the current record is not anymore a new record or is dirty, so
both properties NewRecord and Dirty are updated, interacting with the module-level variables that represent
them.

 If bolRecordSaved Then
 'Update record properties
 mbolNewRecord = False
 mbolDirty = False

 The data validation list cell value is updated to the saved record and selected, and the AfterUpdate() ,
 AfterInsert() (for a new record) and Current() events are raised in succession.

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

518

 'Raise events AfterUpdate . AfterInsert, Current and BeforeSaveWorkbook
 RaiseEvent AfterUpdate (strRecord)
 If bolNewRecord Then
 RaiseEvent AfterInsert(strRecord)
 End If
 RaiseEvent Current

 ■ Attention It is important to take care of the order in which database properties are changed and events
are raised, because when these events are programmed by the user, it may base its decisions on the record
property values.

 When all events have been raised, it is time to verify the property’s AutoSaveWorkbook value, which
has as a default value False . If it is True , it signals that the user wants the workbook to be automatically
saved after every record operation. So, it is time to raise the BeforeSaveWorkbook() event, which
can be canceled by the user. If the event is ignored or when intCancelSaveWorkbook = False , the
workbook will be saved.

 If Me .AutoSaveWorkbook Then
 RaiseEvent BeforeSaveWorkbook (intCancelSaveWorkbook)
 If Not intCancelSaveWorkbook Then
 ThisWorkbook. Save
 End If
 End If

 The Sub Echo () Procedure
 The Sub Echo () procedure used by the SheetDBEngine class module substituted the
 SetScreenEventsRecalc() procedure because both the Calculation and ScreenUpdating properties may
be set by the user to a desired state.

 Private Sub Echo (fEnable As Boolean)
 With Application
 .ScreenUpdating = (fEnable And Me .ScreenUpdating)
 .EnableEvents = fEnable
 .Calculation = IIf(fEnable, Me .Calculation, xlManual)
 End With
 End Sub

 Now, any call to Echo (False) will always disable the Application object’s ScreenUpdating and
 EnableEvents properties and change Calculation to xlManual . But if SheetDBEngine.ScreenUpdating =
False , any call to Echo (True) will not activate the Application .ScreenUpdating .

 .ScreenUpdating = (fEnable And Me .ScreenUpdating)

 This strategy allows the user to keep ScreenUpdating disabled in some desired circumstances. The
same is true for the Calculation property, which will alternate between xlManual when the database engine
is working and the user setting for Excel calculations when a call to Echo (False) is made.

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

519

 ■ Attention Did you notice that Function Save () doesn’t use the VBA MsgBox () function to ask for the
record name like it did in the clsDatabase class? This change was made to produce a Save() method that
silently saved a record by receiving up to two arguments: the required record name to be saved and an optional
indication if it is a new record. The Public Function Sub SaveAs() continue to asks for the record name, as
it should, and after a name is granted, it calls Save() to do the task. Take a look at it:

 Public Function SaveAs(Optional strLastRecord As String) As Boolean
 Dim strRecord As String
 Dim bolNewRecord As Boolean

 'Verify if Record data is still empty
 strRecord = mws.Range(mstrdbDataValidationList)
 If strRecord = "New " & mstrdbRecordName Then
 Exit Function
 End If

 If strLastRecord = "" Then
 strLastRecord = strRecord
 End If
 strRecord = GetRecordName (strLastRecord, bolNewRecord)

 If Len(strRecord) Then
 SaveAs = Save(strRecord, bolNewRecord)
 End If
 End Function

 Raising Events When a Record Is Deleted

 Now you’ll see what happens to a record that is about to be deleted from the database by Function
 DeleteRecord () , which executes this code:

 Public Function DeleteRecord (strRecord As String, Optional NewRecord As Boolean) As Boolean
 Dim intCancelDelete As Integer
 Dim intCancelSaveWorkbook As Integer

 'Raise event BeforeDelete
 RaiseEvent BeforeDelete (intCancelDelete)
 If intCancelDelete Then
 Exit Function
 End If

 'Disable screen updating, events and recalc
 Call Echo (False)
 Call Clear
 If Not NewRecord Then
 Call DeleteRecordData(strRecord)
 End If

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

520

 'Update record properties
 mbolNewRecord = True
 mbolDirty = False

 'Define current Record as New Record
 mstrLastRecord = "New " & mstrdbRecordName
 mws.Range(mstrdbDataValidationList) = mstrLastRecord

 'Raise events AfterDelete, Current and BeforeSaveWorkbook
 RaiseEvent AfterDelete (strRecord)
 RaiseEvent Current
 'Save workbook after deletion?
 If Me .AutoSaveWorkbook Then
 RaiseEvent BeforeSaveWorkbook (intCancelSaveWorkbook)
 If Not intCancelSaveWorkbook Then
 ThisWorkbook.Save
 End If
 End If
 'Enabled screen updating, events and recalc1
 Call Echo (True)
 End Function

 It uses the same technique explained before to allow the user to cancel the record deletion: declaring
the intCancelDeletion variable and raising the BeforeDelete() event, passing it by reference. If the
variable becomes True , the user has canceled the event, and the procedure ends abruptly.

 Dim intCancelDelete As Integer
 Dim intCancelSaveWorkbook As Integer

 'Raise event BeforeDelete
 RaiseEvent BeforeDelete (intCancelDelete)
 If intCancelDelete Then
 Exit Function
 End If

 If the event was ignored or not canceled, the code disables Excel reactions with Echo (False) , clears
all input cells, and if it is not a new record, calls Sub DeleteRecordData() to remove the record from the
database.

 'Disable screen updating, events and recalc
 Call Echo (False)
 Call Clear
 If Not NewRecord Then
 Call DeleteRecordData(strRecord)

 And immediately after the record deletion, when the user already has a cleared, new record interface,
the NewRecord and Dirty properties are updated, using direct manipulation of the variables.

 'Update record properties
 mbolNewRecord = True
 mbolDirty = False

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

521

 To update the worksheet application interface, the data validation list cell receives “New Record.”

 'Define current Record as New Record
 mstrLastRecord = "New " & mstrdbRecordName
 mws.Range(mstrdbDataValidationList) = mstrLastRecord

 The AfterDelete() and Current() events are raised.

 'Raise events AfterDelete, Current and BeforeSaveWorkbook
 RaiseEvent AfterDelete (strRecord)
 RaiseEvent Current

 And once again, it verifies the AutoSaveWorkbook property value. If it is true, it raises the
 BeforeSaveWorkbook() event. If the event is ignored or not canceled, the workbook is saved after the record
deletion.

 'Save workbook after deletion?
 If Me .AutoSaveWorkbook Then
 RaiseEvent BeforeSaveWorkbook (intCancelSaveWorkbook)
 If Not intCancelSaveWorkbook Then
 ThisWorkbook. Save
 End If
 End If

 ■ Attention Did you notice again that Function DeleteRecord () doesn’t issue a warning message
before the record is deleted, as it did on the clsDatabase class? This change was made to produce the
 DeleteRecord () method that needs to receive a record name that must be silently deleted. The Public
Function Delete() continues to give such warning, and if the user confirms the deletion, it will call
 DeleteRecord () to do the task. This is the function’s Delete() code:

 Public Sub Delete()
 Dim strRecord As String
 Dim strMsg As String
 Dim strTitle As String
 Dim bolNewRecord As Boolean

 strRecord = mws.Range(mstrdbDataValidationList)
 If strRecord = "" Or strRecord = "New " & mstrdbRecordName Then
 If Dirty Then
 bolNewRecord = True
 strMsg = "New " & mstrdbRecordName & " data has not been saved yet." & vbCrLf
 strMsg = strMsg & "Do you want to delete it?"
 strTitle = "Delete unsaved record?"
 Else
 Exit Sub
 End If
 Else

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

522

 strMsg = "Do you want to delete " & strRecord & " record?"
 strTitle = "Delete record?"
 End If

 If MsgBox (strMsg, vbYesNo + vbDefaultButton2 + vbQuestion, strTitle) = vbYes Then
 Call DeleteRecord (strRecord, bolNewRecord)
 End If
 End Sub

 Raising an Event When a Record Is Loaded

 Whenever a record is selected in the data validation list cell, it becomes the current record, so the Current()
event must be fired. This is done on Sub Load () .

 Public Sub Load (Optional strRecord As String)
 ...
 'Raise Current event
 RaiseEvent Current
 End Sub

 Implementing SheetDBEngine Methods
 Methods are Public Sub or Function procedures implemented on the SheetDBEngine class module. They
constitute the database engine core procedures used to load (Public Sub Load ()), save (Public Function
SaveAs() and Save()), delete (Public Function Delete() and DeleteRecord ()), and show records
(Public Sub ShowRecord ()), as well as copy and paste record data (CopyRecord () and PasteRecord ()).
All these procedures were described in Figure 8-8 and Table 8-2 , and most of them (except ShowRecord () ,
 CopyRecord () , PasteRecord () , and Sort()) were commented on in the previous sections, while the code
was carefully analyzed in Chapter 7 .

 The ShowRecord Method

 The Public Sub ShowRecord () procedure allows you to move to the first, last, previous, next, or new
record in the database storage system, according to the argument it receives. It does this by declaring as an
argument the Record as RecordPosition variable, which represents the Public Enum Record Position
enumerator declared at the beginning of the SheetDBEngine class.

 Public Enum RecordPosition
 FirstRec = 1
 PreviousRec = -1
 NextRec = 2
 LastRec = 3
 NewRec = 0
 End Enum
 ...
 Public Sub ShowRecord (Record As RecordPosition)
 Dim rg As Range
 Dim strRecord As String
 Dim lngFirstRec As Long

http://dx.doi.org/10.1007/978-1-4842-2205-8_7

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

523

 Dim lngLastRec As Long
 Dim bolMoveRecord As Boolean

 lngFirstRec = mws.Range(mstrdbSavedRecords).Row + 1
 lngLastRec = mws.Range(mstrdbSavedRecords).Row + mws.Range(mstrdbSavedRecords).Rows.

Count - 1

 Select Case Record
 Case FirstRec, LastRec, NewRec
 Set rg = mws.Range(mstrdbSavedRecords)
 Select Case Record
 Case FirstRec
 Set rg = rg.Cells(2)
 Case LastRec
 Set rg = rg.Cells(rg.Rows.Count)
 Case NewRec
 Set rg = rg.Cells(1)
 End Select
 bolMoveRecord = True
 Case PreviousRec, NextRec
 strRecord = mws.Range(mstrdbDataValidationList)
 Set rg = mws.Range(mstrdbSavedRecords).Find(strRecord, , , xlWhole)
 If Record = NextRec And rg.Row < lngLastRec Then
 Set rg = rg.Offset(1)
 bolMoveRecord = True
 ElseIf Record = PreviousRec And rg.Row > lngFirstRec Then
 Set rg = rg.Offset(-1)
 bolMoveRecord = True
 End If
 End Select

 If bolMoveRecord Then
 'Move to selected record!
 mws.Range(mstrdbDataValidationList) = rg.Value
 End If
 End Sub

 Three of the possible types of records have a fixed position on the database: first record, last record,
and new record. The other two, the previous and next records, have a relative position regarding the current
record, with two restrictions:

• If CurrentRecord is the first record, ShowRecord () cannot move backward.

• If CurrentRecord is the last record, ShowRecord () cannot move forward.

 The procedure begins by defining the mstrdbSavedRercord range row boundaries: the first and last
range rows.

 lngFirstRec = mws.Range(mstrdbSavedRecords).Row + 1
 lngLastRec = mws.Range(mstrdbSavedRecords).Row + mws.Range(mstrdbSavedRecords).Rows.Count – 1

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

524

 An outer Select Case statement verifies whether the Record argument received a reference to move to
the first, last, or new record, according to the RecordPosition enumerator values.

 Select Case Record
 Case FirstRec, LastRec, NewRec

 If the move is to be made to the first, last, or new record, it is quite simple to do: it uses the rg object
variable to set a reference to the mstrdbSavedRecords range and uses an inner Select Case statement to
set the record position, using the Range.Cells() property. The first record is at the second range row (rg.
Cells(2)), the last record is at the last range row (rg.Cells(Rows.Count)), and a new record is the first
range row (rg.Cells(1)). The bolMoveRecord variable indicates an allowable move.

 Set rg = mws.Range(mstrdbSavedRecords)
 Select Case Record
 Case FirstRec
 Set rg = rg.Cells(2)
 Case LastRec
 Set rg = rg.Cells(rg.Rows.Count)
 Case NewRec
 Set rg = rg.Cells(1)
 End Select
 bolMoveRecord = True

 Otherwise, it must make a relative move regarding the current record to the previous or next record.
This time it uses Range.Find to first select the cell where the record resides.

 Case PreviousRec, NextRec
 strRecord = mws.Range(mstrdbDataValidationList)
 Set rg = mws. Range (mstrdbSavedRecords). Find (strRecord, , , xlWhole)

 Once the record is located, it first makes a double test to verify whether the move is to the next record
 and the current record is not the last record. If these two conditions are met, it sets a reference to the next
record using the Range. Offset (1) method and uses bolMoveRecord to indicate an allowable move.

 If Record = NextRec And rg.Row < lngLastRec Then
 Set rg = rg.Offset(1)
 bolMoveRecord = True

 Otherwise, the move must be to the previous record, so it does a double-check if the current record is
not the first record before moving to the previous record using Range. Offset (-1) .

 ElseIf Record = PreviousRec And rg.Row > lngFirstRec Then
 Set rg = rg.Offset(-1)
 bolMoveRecord = True
 End If
 End Select

 When the outer Select Case statement ends, it verifies if bolMoveRecord = True , and if it is, it uses the
 rg object variable to change the data validation list record, which will cascade-fire Sub Load () , exhibiting
the desired record.

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

525

 If bolMoveRecord Then
 'Move to selected record!
 mws.Range(mstrdbDataValidationList) = rg.Value
 End If

 The CopyRecord and PasteRecord Methods

 To allow copying record data between worksheet databases, the SheetDBEngine interface also offers the
 CopyRecord and PasteRecord methods that must be used in sequence (CopyRecord must be used before
 PasteRecord).

 Both methods are implemented as Public Function procedures that return a Boolean value
(True / False) indicating the operation success. The CopyRecord method implements this code:

 Public Function CopyRecord (strRecord As String, rgOneSide As Range, rgManySide As Range) As
Boolean
 Dim rg As Range

 Set rg = mws.Range(mstrdbSavedRecords).Find(strRecord, , , xlWhole)
 If Not rg Is Nothing Then
 If Len(mstrdbOneSide) Then
 Set rgOneSide = Range(rg.Offset(0, mintdbRangeOffset), rg.Offset(0,

mintdbRangeOffset + _
 mintdbOneSideColumnsCount - 1))
 End If

 If Len(mstrdbManySide1) Then
 Set rg = mws.Range(mstrdbManySidePrefix & FixName(strRecord))
 Set rgManySide = Range(rg.Offset(0, 0), rg.Offset

(mintdbManySideRowsCount - 2, _
 mintdbManySideColumnsCount - 1))
 End If
 CopyRecord = True
 End If
 End Function

 Note that the CopyRecord () method expects to receive three arguments passed by reference. They are
the record name whose data it must copy (strRecord) and two Range object variables—one to represent the
 one-side record data (if any) and another to represent the many-side record data (if any).

 It begins searching the mstrSavedRecords range name for the desired record to be copied.

 Set rg = mws.Range(mstrdbSavedRecords). Find (strRecord , , , xlWhole)

 If the record is found, it verifies whether the database has the one-side record range name.
If it does, it uses the Range property to attribute to the rgOneSide object variable the entire
 one-side record cells. It does this using the Range. Offset method and the database properties
 mintdbRangeOffset and mintdbOneSideColumnsCount to define the one-row rectangle that contains
all the one-side record cells.

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

526

 If Not rg Is Nothing Then
 If Len(mstrdbOneSide) Then
 Set rgOneSide = Range (rg.Offset(0, mintdbRangeOffset), rg.Offset(0,

 mintdbRangeOffset + _
 mintdbOneSideColumnsCount - 1))

 Once the one-side record was processed, it is time to verify whether the database also has a many-side
record range name. If it does, it first finds the place where the many-side records are stored on the database
worksheet.

 If Len(mstrdbManySide1) Then
 Set rg = mws.Range(mstrdbManySidePrefix & FixName(strRecord))

 Using again the Range property and the Range. Offset method with database properties
 mintdbManySideRowsCount and mintdbManySideColumnsCount , it defines a continuous range that
encompasses all many-side worksheet cells, setting it to the rgManySide argument.

 Set rgManySide = Range(rg.Offset(0, 0), rg.Offset(mintdbManySideRowsCount - 2, _
 mintdbManySideColumnsCount - 1))

 And when all record cells have been set to the appropriate Range object variable arguments, the
 CopyRecord method returns True to indicate that it succeeds.

 CopyRecord = True
 End If
 End Function

 Once a record had been copied with the CopyRecord method, you can use the PasteRecord method to
paste the record into the database, which follow these rules:

 1. The record must be first copied with the CopyRecord method.

 2. It supposes that the source and destination databases have the same record
structure; it will not verify if there are record structure differences between the
source and destination databases.

 3. The PasteRecord method will search the database for the record being pasted. If
it finds it, this data will be overwritten.

 4. If PasteAsNewRecord=True , the record will be pasted as a new record, adding a
counter suffix to its name.

 5. Since PasteRecord directly manipulates the database structure, no database
event will be triggered by the paste operation.

 6. The PasteRecord method pastes new records at the bottom of the database,
without sorting it. Use the SheetDBEngine.Sort method to sort the database
records after one or more successive PasteRecord operations.

 Now that you have an idea of the rules that the PasteRecord method follows, take a look at the code:

 Public Function PasteRecord (strRecord As String, _
 rgOneSide As Range, _
 rgManySide As Range, _
 Optional PasteAsNewRecord As Boolean) As Boolean

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

527

 Dim rg As Range
 Dim strRangeName As String
 Dim lngRow As Long
 Dim intI As Integer
 Dim bolProtect As Boolean
 Dim bolWorksheetIsFull As Boolean
 Dim bolRecordPaste As Boolean

 Set rg = mws.Range(mstrdbSavedRecords).Find(strRecord, , , xlWhole)
 If Not rg Is Nothing And PasteAsNewRecord Then
 'Add a name count suffix to paste existing record as new one
 Do Until rg Is Nothing
 'Find a new record name
 intI = intI + 1
 Set rg = mws.Range(mstrdbSavedRecords).Find(strRecord & intI, , , xlWhole)
 Loop
 strRecord = strRecord & intI
 End If

 Call Echo (False)
 bolProtect = mws.ProtectContents
 mws.Unprotect
 strRangeName = mstrdbManySidePrefix & FixName(strRecord)

 If rg Is Nothing Then
 'strRecord does not exist. Createt it!
 'Define sheet row where next Record data will be stored
 lngRow = NextEntryRow(bolWorksheetIsFull)

 'Verify if sheet is full
 If bolWorksheetIsFull Then
 'No more room to save data
 MsgBox "There is no more room to paste records", vbCritical, "Workdhseet

database is full"
 Exit Function
 End If

 'Verify if mstrSavedRecords last rows is a empty cell
 Set rg = mws.Range(mstrdbSavedRecords)
 If Not rg.Cells(rg.Rows.Count, 1) = "" Then
 'Insert a new row at bottom of SavedRecords range name and update rg object
 rg. Resize (rg.Rows.Count + 1).Name = "'" & mws.Name & "'!" & mstrdbSavedRecords
 Set rg = mws.Range(mstrdbSavedRecords)
 End If

 'Position on new cell of SavedRecords range and save New Record name
 Set rg = rg.Cells(rg.Rows.Count, 1)
 rg = strRecord

 If Len(mstrdbManySide1) Then
 'Define Record name as 'rec_<strRecord>' and create it range name

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

528

 mws. Names .Add strRangeName, "='" & mws.Name & "'!" & mstrdbManySideFirstColumn &
lngRow

 mws. Names (strRangeName).Visible = False
 End If
 End If

 If Len(mstrdbOneSide) Then
 'Paste the one side record
 Set rg = rg.Offset(0, mintdbRangeOffset)
 rgOneSide.Copy
 rg.PasteSpecial xlPasteValues
 bolRecordPaste = True
 End If

 If Len(mstrdbManySide1) Then
 'Paste the Many side records
 Set rg = mws.Range(strRangeName)
 rgManySide.Copy
 rg.PasteSpecial xlPasteValues
 bolRecordPaste = True
 End If

 If bolProtect Then mws.Protect
 Call Echo (True)
 PasteRecord = bolRecordPaste
 End Function

 Since the worksheet database structure does not allow record name duplication, the PasteRecord
begins using the Range. Find method on the mstrdbSavedRecords range name to search the database for the
record being pasted (strRecord argument), returning a reference to the cell to the rg object variable. If the
record already exists on the database (Not rg Is Nothing) and PasteAsNewRecord = True , a new record
name must be created.

 Set rg = mws.Range(mstrdbSavedRecords). Find (strRecord , , , xlWhole)
 If Not rg Is Nothing And PasteAsNewRecord Then

 To create a new record name, a Do...Loop operation is conducted to add a counter suffix to the record
name, using a Range. Find method until a new name is found.

 'Add a name count suffix to paste existing record as new one
 Do
 'Find a new record name
 intI = intI + 1
 Set rg = mws.Range(mstrdbSavedRecords). Find (strRecord & intI , , , xlWhole)
 Loop Until rg Is Nothing
 strRecord = strRecord & intI
 End If

 Once the record name is correctly set, it is time to set the stage: disable screen updates, recalculation,
and events firing calling the Echo (False) procedure; store the worksheet protection state on the bolProtect
variable; unprotect the worksheet (if protected, so the code can paste data in the worksheet); and define the
many-side records range name (if any).

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

529

 Call Echo (False)
 bolProtect = mws.ProtectContents
 mws.Unprotect
 strRangeName = mstrdbManySidePrefix & FixName(strRecord)

 Now verify again if the record already exists (rg Is Nothing). If it is a new record, use the
 NextEntryRow() procedure to define whether there is still room in the worksheet to paste it. If the
worksheet is full, issue a warning message and exit the PasteRecord method, returning False .

 If rg Is Nothing Then
 'strRecord does not exist. Createt it!
 'Define sheet row where next Record data will be stored
 lngRow = NextEntryRow (bolWorksheetIsFull)

 'Verify if sheet is full
 If bolWorksheetIsFull Then
 'No more room to save data
 MsgBox "There is no more room to paste records", vbCritical, "Workdhseet database is

full"
 Exit Function
 End If

 If there is still room to paste the new record into the worksheet rows, the lngRow Long variable will
hold a reference to the worksheet row where the many-side records must be saved. It is time to verify if the
 mstrSavedRecords range name last row, where the new record will be added, is empty.

 'Verify if mstrSavedRecords last rows is a empty cell
 Set rg = mws.Range(mstrdbSavedRecords)
 If Not rg.Cells(rg.Rows.Count, 1) = "" Then

 If the last mstrdbSavedRecords range is not empty, you need to add a new, empty row at the bottom
of the range. You do this the traditional way: using the Range. Resize method along with the Range.Name
property to resize it.

 'Insert a new row at bottom of SavedRecords range name and update rg object
 rg. Resize (rg.Rows.Count + 1) .Name = "'" & mws.Name & "'!" & mstrdbSavedRecords

 Since the range was resized, you need to update the rg object variable to reflect this row insertion.

 Set rg = mws.Range(mstrdbSavedRecords)

 And the new record is added on the last mstrdbSavedRecords range name row.

 'Position on new cell of SavedRecords range and save New Record name
 Set rg = rg. Cells (rg. Rows.Count , 1)
 rg = strRecord

 And since the record was added, the code checks whether there is a many-side record cells to
save testing the length of the mstrdbManySide1 database property. If it exists, the many-side record
range name is created in the worksheet using the Names collection’s Add method in the lngRow position
determined earlier.

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

530

 If Len(mstrdbManySide1) Then
 'Define Record name as 'rec_<strRecord>' and create it range name
 mws. Names .Add strRangeName , "='" & mws.Name & "'!" & mstrdbManySideFirstColumn &

 lngRow
 mws. Names (strRangeName). Visible = False
 End If
 End If

 The code is now in the position to save the record data, either because the record already exists or
because it has been created. So, it verifies whether the database record has its mstrdbOneSide property set. If
it does, the entire range is pasted to the right of the mstrdbSavedRecords record position, using Range. Copy
to copy the rgOneSide argument value on the clipboard and using Range. PasteSpecial xlPasteValue to
paste it on the worksheet. To signal that this operation was performed, bolRecordPaste becomes True .

 If Len(mstrdbOneSide) Then
 'Paste the one side record
 Set rg = rg.Offset (0, mintdbRangeOffset)
 rgOneSide.Copy
 rg.PasteSpecial xlPasteValues
 bolRecordPaste = True
 End If

 The same operations are repeated for the mstrdbManySide1 database property to copy the rgManySide
argument value to the clipboard and paste it in the worksheet on the range name represented by the
 strRangeName variable (and bolRecordPaste = True to signal the paste operation).

 If Len(mstrdbManySide1) Then
 'Paste the Many side records
 Set rg = mws.Range(strRangeName)
 rgManySide.Copy
 rg. PasteSpecial xlPasteValues
 bolRecordPaste = True
 End If

 To end the operation, the worksheet protection is returned to its default mode; the screen updating,
calculation, and events firing are turned on again; and PasteRecord returns the bolRecordPaste variable value,
indicating if either the one-side record , the many-side records, or both have been pasted on the worksheet.

 If bolProtect Then mws.Protect
 Call Echo (True)
 PasteRecord = bolRecordPaste
 End Function

 Using CopyRecord / PasteRecord
 To use the CopyRecord and PasteRecord methods, you must declare two Range object variables to hold
references to the one-side and many-side record range and pass them first to the CopyRecord method (by
reference) and then to the PasteRecord method on the VBA code, using a procedure like this:

 Public Function CopyTest(strRecord as string)
 Dim rgOne As Range

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

531

 Dim rgMany As Range
 Dim intI As Integer

 If mdb Is Nothing then
 Set mdb = New SheetDBEngine
 End If

 For intI = 1 To 10
 If mdb. CopyRecord (strRecord, rgOne, rgMany) Then
 mdb. PasteRecord strRecord, rgOne, rgMany, True
 End If
 Next
 mdb.Sort
 End Function

 The procedure shown here receives an strRecord variable with the desired record name, creates
an instance of the database engine class (if needed), and uses the CopyRecord method to try to copy the
 strRecord record. If the CopyRecord operation succeeds (CopyRecord = True), it uses a For...Next loop to
paste ten new copies of the same record into the database.

 ■ Attention See Chapter 9 for a good example of how you can use the CopyRecord and PasteRecord
methods to copy records from one worksheet database to another.

 The Sort Method

 The Sort method sorts the mstrdbSavedRecords range name in ascending order. It must be used after
executing the PasteRecord method one or more times because there is a bug in Microsoft Excel VBA that
does not sort hidden cells. The Range. Sort method fails to operate on range names located in hidden rows.
To make the PasteRecord method execute faster, not unhide the mstrSavedRecords row, sort its cells, and
hide its rows again, you must manually call the SheetDBEngine.Sort method after it calls the SheetDBEngine
. PasteRecord one or more times.

 This is the code executed by the SheetDBEngine.Sort method:

 Public Sub Sort()
 Dim rg As Range
 Dim bolProtect As Boolean

 Call Echo (False)
 bolProtect = mws.ProtectContents
 mws.Unprotect
 Set rg = mws.Range(mstrdbSavedRecords)
 'Sort SavedRecords and find strRecord position
 Set rg = mws.Range(mws.Cells(rg.Row + 1, rg. Column), _
 mws.Cells(rg.Row + rg.Rows.Count - 1, rg. Column + mintdbRangeOffset +

mintdbOneSideColumnsCount - 1))
 'Unhide range rows because Sort does not works well on hidden rows
 rg.EntireRow.Hidden = False
 rg.Sort rg.Cells(, 1)
 rg.EntireRow.Hidden = True

http://dx.doi.org/10.1007/978-1-4842-2205-8_9

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

532

 If bolProtect Then mws.Protect
 Call Echo (True)
 End Sub

 To sort mstrdbSavedRecords , the code first makes a call to Echo (False) to disable screen updating,
events firing, and calculation; the active sheet protect state is saved, and it is unprotected to allow sorting.
The mstrSavedRecords is then attributed to the rg object variable and resized to not include the first entry
(“New record”) using the Cells property to define a range that encompasses all the mstrdbSavedRecords
and one-side record cell columns.

 Call Echo (False)
 bolProtect = mws.ProtectContents
 mws. Unprotect
 Set rg = mws.Range(mstrdbSavedRecords)
 'Sort SavedRecords and find strRecord position
 Set rg = mws.Range(mws. Cells(rg.Row + 1, rg. Column), _
 mws. Cells (rg.Row + rg.Rows.Count - 1 , rg. Column + mintdbRangeOffset +
mintdbOneSideColumnsCount - 1))

 The code uses the Range.EntireRows.Hidden property to show all hidden worksheet rows, sort the
 mstrdbSaveRecords range, and hide its rows again.

 rg.EntireRow.Hidden = False
 rg.Sort rg.Cells(, 1)
 rg.EntireRow.Hidden = True

 The operation is finished and restores the worksheet protect state, screen updating, enable events, and
calculation to their default states (Echo (True)).

 If bolProtect Then mws.Protect
 Call Echo (True)
 End Sub

 ■ Attention All other code procedures you may find inside the SheetDBEngine class were already
commented on in Chapter 7 .

 Using the SheetDBEngine Class
 You can see two good examples of the SheetDBEngine class in action by extracting the BMI Companion
Chart_SheetDBEngine.xlsm (Figure 8-11) and USDA Food Composer _SheetDBEngine.xlsm (Figure 8-12)
macro-enabled workbooks from Chapter08.zip .

http://dx.doi.org/10.1007/978-1-4842-2205-8_7

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

533

 Figure 8-11. This is the BMI Companion Chart_SheetDBEngine.xlsm macro-enabled workbook, which uses
the SheetDBEngine class to implement the database storage system. Using the class ShowRecord , it can expose
data navigation controls like Microsoft Access Forms do

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

534

 Thanks to the SheetDBEngine. ShowRecord method, both workbooks present a kind of “navigation button,”
like Microsoft Access forms do, to allow you to do step-by-step navigation through all database records.

 Try to use the USDA Food Composer _SheetDBEngine.xslm macro-enabled workbook to go to the first,
next, previous, last, or new record. Click the “Search recipe” Button control , scroll the ListBox , select a
recipe in the middle of the list, and double-click it. Notice how the data navigation indicator updates to
indicate the record position. Add and delete a recipe and observe it again.

 Cool, isn’t it?
 The code behind both worksheet applications is similar. Let’s explore the USDA Food Composer _

SheetDBEngine.xlsm My Recipes worksheet code. Since the SheetDBEngine class has events, you
must use the VBA WithEvents statement to declare it and use the Worksheet object’s Activate() and
 SelectionChange() events to create a new instance of the database class.

 Option Explicit

 'This variable receive frmSearchFoodItems selected item
 Public SelectedFoodITem As Variant

 Figure 8-12. This is USDA Food Composer _SheetDBEngine.xlsm macro-enabled workbook, which also uses
the SheetDBEngine class to implement its database storage system and its ShowRecord method to expose data
navigation controls

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

535

 Dim WithEvents mdb As SheetDBEngine

 Public Sub Worksheet_ Activate ()
 If mdb Is Nothing Then
 Set mdb = New SheetDBEngine
 End If
 End Sub

 Private Sub Worksheet_SelectionChange (ByVal Target As Range)
 If mdb Is Nothing Then
 Set mdb = New SheetDBEngine
 End If
 End Sub

 As explained in Chapter 7 , every time a recipe is saved (or deleted), the recipe information must be also
saved (or deleted) from the My_Recipes range name located in the hidden USDA worksheet. Now that the
 SheetDBEngine class exposes the AfterUpdate() and AfterDelete() records, you can use them to execute
such tasks, whenever one of those operations happens. Note how this is done when a record is saved.

 Public Sub Save()
 mdb.SaveAs
 End Sub

 Private Sub mdb_AfterUpdate(Record As String)
 Dim strRecord As String
 'Update USDA My_Recipes range name with recipe nutritional data
 strRecord = Range(" CurrentRecord ")
 Call SaveInMyRecipes (strRecord)
 End Sub

 Know that whenever a record is saved by Public Sub Save() and associated to the Save Button
control , the SheetDBEngine.SaveAs method is called to save the record, and when it is done, the class raises
the AfterUpdate() event, which is then used to call the Sub SaveInMyRecipes () procedure to also save the
recipe information inside the USDA worksheet.

 Now look at what happens when a record is deleted. Public Sub DeleteRecord () calls the
i SheetDBEngine.Delete method, and when it is done, the class raises the AfterDelete() event, which is
used to effectively delete the recipe entry from the USDA worksheet’s My_Recipes range name.

 Public Sub DeleteRecord ()
 mdb.Delete
 End Sub

 Private Sub mdb_AfterDelete(Record As String)
 Dim rg As Range
 Dim rgRecipe As Range
 Dim strRecord As String

 'Delete recipe from USDA My_Recipes range name
 strRecord = Range(" CurrentRecord ")
 Set rg = Worksheets ("USDA").Range("My_Recipes")
 Set rgRecipe = rg.Find(strRecord, , , xlWhole)

http://dx.doi.org/10.1007/978-1-4842-2205-8_7

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

536

 If Not rgRecipe Is Nothing Then
 rgRecipe.EntireRow.Delete
 End If
 End Sub

 Producing Data Navigation Controls
 Figures 8-10 and 8-11 show two worksheet applications that use data navigation Button controls to browse
the database record set, moving to the first, previous, next, last, or new record with a button click. Every
time a move is made, the database record position is automatically updated on the worksheet, the same way
Microsoft Access tables, queries, and forms do.

 Each Button control used to “data navigate” to the desired record is associated to a standard Public
Sub procedure stored in the basButton control’s standard module (to make them appear in the Excel Assign
Macro dialog box). These are the move record procedures stored in the basButton controls module:

 Public Sub MoveFirst()
 Dim obj As Object

 Set obj = ActiveSheet
 obj.MoveFirst
 End Sub

 Public Sub MoveLast()
 Dim obj As Object

 Set obj = ActiveSheet
 obj.MoveLast
 End Sub

 Public Sub MovePrevious()
 Dim obj As Object

 Set obj = ActiveSheet
 obj.MovePrevious
 End Sub

 Public Sub MoveNext()
 Dim obj As Object

 Set obj = ActiveSheet
 obj.MoveNext
 End Sub

 Public Sub MoveNew()
 Dim obj As Object

 Set obj = ActiveSheet
 obj.MoveNew
 End Sub

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

537

 All Move... procedures use the same technique described in Chapter 7 . They declare a standard obj As
Object variable to set a reference to the ActiveSheet object and then use late binding to compile correctly.
The VBA code expects that the object exposes the desired method; if the method doesn’t exist in the active
sheet, VBA will raise a runtime error when the procedure is executed.

 Inside the MyRecipes code module, you will find the expected Public Function procedures. Note that
all of them use the SheetDBEngine. ShowRecord method, with the appropriate record constant.

 Public Function MoveFirst ()
 mdb. ShowRecord (FirstRec)
 End Function

 Public Function MoveLast ()
 mdb. ShowRecord (LastRec)
 End Function

 Public Function MovePrevious ()
 mdb. ShowRecord (PreviousRec)
 End Function

 Public Function MoveNext ()
 mdb. ShowRecord (NextRec)
 End Function

 Public Function MoveNew ()
 mdb. ShowRecord (NewRec)
 End Function

 Right -click each navigation Button control and select the Assign Macro context menu command to
verify that all the basButton controls Public Sub procedures appear in the dialog box list and that the
procedure associated to the control is not prefixed by any object or module name, which is a clear indication
that they come from a standard module (Figure 8-13).

http://dx.doi.org/10.1007/978-1-4842-2205-8_7

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

538

 To return the total recipe number or the record position on the navigation buttons, the My Recipes
worksheet code module has two other procedures: Public Function RecordCount () and Public Function
Record Position() .

 Public Function RecordCount () As Long
 RecordCount = mdb. RecordCount
 End Function

 Public Function RecordPosition() As String
 Dim strPosition As String

 If mdb. AbsolutePosition = 0 Then
 strPosition = "New record"
 Else
 strPosition = mdb. AbsolutePosition & " of " & mdb. RecordCount
 End If
 RecordPosition = strPosition
 End Function

 Public Function RecordCount () just returns the SheetDBEngine. RecordCount property, while
 Public Function RecordPosition() uses SheetDBEngine. AbsolutePosition to return “New
Record” (when AbsolutePosition = 0) or the record absolute position regarding the total record count
(mdb. AbsolutePosition & " of " & mdb. RecordCount).

 Figure 8-13. Right -click any navigation Button control to verify that it is associated to a Public Sub procedure
from a standard module. Each procedure must have its counterpart on the active sheet code module

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

539

 To make these two functions work in a cell formula, like any other Excel function, you must do the following:

• Create a Standard Module Function procedure that calls the worksheet procedure

• Use the Application .Volatile property to force these Standard Module procedures
to automatically recalculate

• Use these Standard module procedures from any cell formula

 The USDA Food Composer _SheetDBEngine.xlsm workbook has the basButton control’s Standard
module, which is used to define the default Button control’s procedures. All are declared as Public Sub
procedures, so they can appear in the Excel Assign Macro dialog box. This is the code used by the basButton
control’s RecordCount () and RecordPosition() procedures:

 Public Function RecordCount () As Long
 Dim obj As Object

 Set obj = ActiveSheet
 On Error Resume Next
 Application .Volatile
 RecordCount = obj. RecordCount
 End Function

 Public Function RecordPosition() As String
 Dim obj As Object

 Set obj = ActiveSheet
 On Error Resume Next
 Application .Volatile
 RecordPosition = obj.RecordPosition
 End Function

 After declaring the obj As Object object variable to set a reference to the ActiveSheet object, the
 Application .Volatile property is used to force the function to calculate whenever Excel calculates and
then call the obj. RecordCount or obj.RecordPosition method using late binding , which means the code
compiles normally, expecting that the obj variable has these methods. Figure 8-14 shows the formula used
by the My Recipes worksheet cells G2 and J1 .

 Figure 8-14. The USDA Food Composer _SheetDBEngine.xlsm My Recipes worksheet uses the basButton control’s
Public Function RecordPosition() to return the current record position inside the database record set. This Standard
Module procedure uses the Application .Volatile property to be updated whenever Excel recalculates

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

540

 ■ Attention Be careful when you use the Application .Volatile property inside any Public procedure.
When you do it, every time Excel calculates, the procedure also calculates, which may fire the code
successively. That is why the SheetDBEngine class module defines Application .Calculation = xlManual
on the Sub Echo () procedure. When Application .Calculation is changed to xlAutomatic , every procedure
that has the Volatile property is calculated.

 Since the My Recipes worksheet of the USDA Food Composes_SheetDBEngine.xlsm macro-enabled
workbook’s Button controls are associated to standard module procedures that call worksheet module
procedures, you can make as many copies as you want from My Recipes . Each copy will manage its own
database record set. To guarantee that each worksheet’s navigation buttons show the appropriate worksheet
record count, the Worksheet_ Activate () event now calls the Application .Calculate method, forcing all
volatile functions to calculate whenever the sheet tab is selected.

 Public Sub Worksheet_ Activate ()
 If mdb Is Nothing Then
 Set mdb = New SheetDBEngine
 End If
 Application .Calculate
 End Sub

 Setting the Worksheet Database Class
 The SheetDBEngine class examples cited in the previous section work quite well to manage different
types of worksheet records that have a one-to-many database relationship, but it is still very difficult to
set up. The user must find a safe worksheet area to store the database parameters, create the associated
worksheet scope range names, appropriately define the values, and set up the worksheet code necessary
to run the database class.

 You need a simple way to do all these tasks. You need to build a “worksheet database wizard” that
automates all the steps needed to implement the SheetDBEngine database class so it can be easily used to
produce the desired results, which is to manage worksheet database records.

 To create the worksheet database wizard, you will use a VBA UserForm to calculate and collect all the
necessary information, create the worksheet range names, produce the worksheet code, and create all
necessary controls needed to maintain the worksheet database. The data validation list cell fills with the
database records and all the necessary Button controls to manage them.

 Implementing the Worksheet Database Wizard
 To implement a UserForm wizard for the database class module, you must use a UserForm with a Multipage
control, where each control page is associated to a wizard step. To see a simple example about how you
can implement such a wizard interface, open the MultiPage.xlsm macro-enabled workbook (that you
can extract from the Chapter08.zip file), press Alt+F11 to show the Visual Basic IDE, and double-click the
 frmMultiPage UserForm in the Project Explorer tree (Figure 8-15).

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

541

 Note that frmMultiPage has one Multipage control named tabControl (the tab prefix is commonly
used to name the Multipage control according to the Reddick naming conventions, covered in Chapter 10).
To select the Multipage control instead of one of its pages, click the control border.

 Each control Page can be selected by clicking its associated tab, which is an independent control
container where you can lay down other VBA controls to compose the UserForm wizard: one Page to each
wizard step. Whenever a Page is selected, its controls are shown to the user.

 To manage the Multipage control pages, right-click any Page tab caption and use the context menu to
add, delete, rename, or move pages. To rename the Tab caption, use the Page control’s Caption property.

 Note that each frmMultiPage Page tab has its own Label control (using a different caption, background,
and foreground color to call your attention as each tab is selected). The Multipage control is 0-based,
meaning that the first Page (or tab) has Index = 0 and the last Page has Index = n-1 . To programmatically
select the desired page, attribute to the Multipage control’s Value property the desired Page index. The next
instruction will always select the first tabControl Multipage control’s Page :

 tabControl.Value = 0 ‘This command will select the first tabControl page

 The Multipage control can change the appearance and position of its Page tabs using two different
properties: Style and TabOrientation (click the Multipage control border to set its properties).

• Style : Use this property to change the Page tab’s appearance to

• 0 - frmStyleTabs : The default appearance

 Figure 8-15. This is the frmMultiPage UserForm from the MultiPage.xlsm workbook. It has a Multipage
control with five tabs (Page1 to Page5). Use each page (tab) of the Multipage control to represent the steps that
the wizard must follow, and use a pair of CommandButtons (cmdPrevious and cmdNext) to navigate through
its pages

http://dx.doi.org/10.1007/978-1-4842-2205-8_10

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

542

• 1 - fmStyeButtons : To change the tab appearance to button controls

• 1 - fmStyleNone : To remove the tab captions and control border

• TabOrientation : Use to change the position of the tabs. The default is 0 -
fmTabOrientationTop , but you can show the tabs at the left, right, or bottom of the
 Multipage control.

 To make the Multipage control work as a Microsoft Office wizard, use the UserForm_Initialize event
to set MultiPage.Style = fmStyleNone and MultiPage.Value = 0 to show the first Page by default. The
 frmMultiPage UserForm has this code on its Initialize() event:

 Private Sub UserForm_Initialize ()
 Me .tabControl.Style = fmTabStyleNone
 Me .tabControl.Value = 0
 End Sub

 Navigating Through the UserForm Wizard
 To see the frmMultiPage in action, double-click it in the VBA Explorer tree to show the UserForm design
mode and press F5 to load it. Note that now it is showing its Page1 Page , and it has no tabs to select another
 Page control; it has just the cmdPrevious and cmdNext CommandButton s (Figure 8-16).

 Figure 8-16. When you press F5 in the Visual Basic IDE to load frmMultiPage UserForm, its Initialize() event
fires, changing tabControl.Stye to fmStyleNone, removing the Multipage control tabs

 When you click cmdNext , the next tabControl Multipage Page is shown to the user. Note that now
both cmdPrevious and cmdNext become enabled, so it can go back to the previous step. And if you keep
click cmdNext until you reach the last Multipage Page , cmdNext will be disabled, like any wizard would do
(Figure 8-17)!

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

543

 Both the cmdNext and cmdPrevious command buttons use a single procedure called ShowPage() to
show the next/previous page of the Multipage control. To manage the Multipage control tab navigation, the
 UserForm declares the ShowTab enumerator, which is then called by each CommandButton Click() event.

 Private Enum ShowTab
 PreviousTab = -1
 NextTab = 1
 End Enum

 Private Sub cmdNext _Click()
 Call ShowPage (NextTab)
 End Sub

 Figure 8-17. When you click cmdNext, the next tabControl Multipage page is shown to the user, until you
reach the last Multipage control page, where cmdNext will be disabled

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

544

 Private Sub cmdPrevious _Click()
 Call ShowPage (PreviousTab)
 End Sub

 The ShowPage() code navigates through the Multipage control pages, setting the enabled property of
the cmdNext and cmdPrevious CommandButton s:

 Private Sub ShowPage(Action As ShowTab)
 Static sintPage As Integer
 Dim intMaxPages As Integer

 sintPage = sintPage + Action
 intMaxPages = Me .tabControl.Pages.Count - 1

 If sintPage < 0 Then sintPage = 0
 If sintPage > intMaxPages Then sintPage = intMaxPages
 Me .tabControl.Value = sintPage
 End Sub

 Note that the Static sintPage variable holds the position of the last-selected Page of the tabControl
Multipage control, while intMaxPages holds the total page number.

 sintPage = sintPage + Action
 intMaxPages = Me .tabControl.Pages.Count – 1

 The sintPage variable is always added by the Action argument value (which can be 1 or –1, according to
the ShowTab enumerator received), and its value is used to verify which tab must be selected. If sintPage = 0 ,
the first tab must be selected. If sintPage becomes negative (<0), it is set to the first Page index again.

 If sintPage < 0 Then sintPage = 0

 If sintPage > intMaxPages , it must be set to the last Page tab.

 If sintPage > intMaxPages Then sintPage = intMaxPages

 The tabControl is then moved to the desired tab.

 Me .tabControl.Value = sintPage
 End Sub

 ■ Attention If you want to validate each wizard Page control value before moving to the next tab, use a
centralized procedure, like Function ValidatePage () , which receives the current Page index and validates all
its controls returning True , before moving to the next tab, as follows:

 If Action = NextTab Then

 If Not ValidatePage (Me .tabControl) then

 Exit Sub

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

545

 End If

 End If

 ...

 Me .tabControl.Value = sintPage

 When the tabControl.Value property changes, VBA cascade-fires the tabControl_Change() event,
which executes this simple code to enable/disable the cmdPrevious and cmdNext CommandButton s according
to the tab selected. Note that cmdPrevious is disabled on tabControl to show the first page, while cmdNext is
disabled on tabControl to show the last page.

 Private Sub tabControl_Change()
 Me .cmdPrevious.Enabled = (Me .tabControl.Value > 0)
 Me .cmdNext.Enabled = (Me .tabControl.Value < Me .tabControl.Pages.Count - 1)
 End Sub

 ■ Attention It is important to note that by using the tabControl_Change() event to control the enabled
state of cmdPrevious and cmdNext , they will be always correctly synchronized when the tabControl.Value
property changes, which can be made by user action or by the VBA code.

 This is all you need to know about how to implement a wizard-like UserForm interface using a
 Multipage control that has one Page tab to each wizard step.

 Required Database Properties
 Among the 15 proposed database properties cited in section “Improving the Database Class Capacity” for
the SheetDBEngine database engine class, just two of them are required to be defined so the database class
can work properly.

• dbDataValitionList : The cell or range name where the data validation list will be
created

• Either dbOneSide or dbManySide1 addresses or range names that indicate which
worksheet cells have values that need to be saved by the database

 All other properties will be either automatically defined by default values or derived from the one-
side and/or many-side range addresses. And since not all worksheet database designs use the one-to-
many record relationship (it can use just the one-side, many-side, or both), there is no need to define both
 dbOneSide and dbManySide1 properties; one of them is enough.

 Using frmDBProperties UserForm
 To help the user implement the database storage system, the database wizard must be capable of the following:

• Defining the first worksheet unused row where the database properties and the first
database record will begin to be stored

• Showing all defined worksheet range names using ComboBox controls, so the user can
select them to define the data validation list cell, the one-side record, and the many-
side record values

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

546

• Creating the data validation list to select records saved in the database

• Allowing the user to change some database default values, like the record name (the
default is Record) and the prefix used to identify the many-side record range names
created by the database system (default is rec_)

• Creating the New, Save, and Delete control buttons in the worksheet, associated to
default sheet code module procedures and its associated code

 The frmDBProperties _SheetDBEngine.xlsm Excel macro-enabled workbook, which you can extract
from the Chapter08.zip file, offers on its Sheet1 , Sheet2 , and Sheet3 worksheets some simple worksheet
input cell layouts that depict a generic one-to-many record relationship . Each sheet tab has a merged cell to
place the data validation list from where the database saved records can be selected, a one-side record area,
and a many-side records area (Figure 8-18).

 Figure 8-18. This is the Sheet1 worksheet interface from the frmDBProperties _SheetDBEngine.xlsm Excel
macro-enabled worksheet, which offers a default one-to-many database record relationship to save its data

 Press Alt+F11 to show the VBA interface and note that this workbook has the frmDBProperties
 UserForm , which uses a Multipage control (tabControl) and four CommandButton s: two in the top-left corner
(cmdDefine and cmdCancel) to allow control the UserForm and two at the bottom-right corner (cmdPrevious
and cmdNext) to navigate between the tabControl Pages . The tabControl Multipage control has six Pages
that can be selected using the same programming technique described earlier in the section “Navigating
Through the UserForm Wizard” (Figure 8-19).

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

547

 Each Multipage Page tab has a defined usefulness.

• The first tabControl Page (record name) asks for a “record identification”: a single
substantive to be used to treat the record by the database system. The default value is
 Record .

• The second tabControl Page (data validation list cell) defines the data validation
list cell.

• The third and fourth tabControl Page s define the cells that receives either the one-
side or the many-side records cells that may have values to be saved by the database.

• The fifth tabControl Page defines the worksheet Button controls.

• The sixth tabControl Page shows a resumed view of all defined database properties.

 For every database property defined in “Step 6: Save Database Properties as Range Names,” there is at
least one control to represent it inserted in one of the tabControl Multipage Page s (for some properties,
a second control with the same name suffixed by 1 is offered on the sixth tabControl Page that resumes
the database properties). So, to represent the dbRecordName property, the first tabControl Page (record
name) has the txtdbRecordName text box, whose value is propagated in the txtdbRecordName1 text box on

 Figure 8-19. This is frmDBProperties UserForm, with a Multipage control that uses five different pages and
two CommandButtons at the bottom (cmdPrevious and cmdNext) to navigate through its pages

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

548

the sixth tabControl Page (database properties). To represent the dbDataValidationList property, the
second tabControl Page (data validation list cell) has the txtdbDataValidationList text box and also the
 txtdbDataValidationList1 text box on the sixth tabControl Page , and so on.

 Loading frmDBProperties

 The wizard was built to verify on its Initialize() event if the database system was already created on the
active sheet. If it is, just the sixth tabControl Page (Database Properties) is shown in read-only mode. If not,
the database must be set, and the wizard will show its first tabControl Page , like Figure 8-20 does.

 Figure 8-20. When frmDBProperties is loaded, the tabControl Multipage control has its Page tabs hidden
(property Style=frmTabStyleNone), showing a “wizard-like” interface to the user

 Since the aim of the frmDBProperties wizard is to walk the user through the process creation of
the database property structure, its code must define a place in the worksheet where these database
properties will be stored, using appropriate range names to identify each property name. So, the UserForm_
Initialize () event verifies whether one of these properties (dbDataValidationList range name) already
exists to define what interface must be shown to the user. Take a look at the code:

 Private Sub UserForm_Initialize ()
 Dim ws As Worksheet
 Dim rg As Range
 Dim strName As String
 Dim strNameScope As String
 Dim intI As Integer
 Const conNormalWidth = 473
 Const conWhite = &HFFFFFF

 On Error Resume Next

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

549

 Me .Width = conNormalWidth
 Application .EnableEvents = False
 Set ws = Application .ActiveSheet
 strNameScope = "'" & ws.Name & "'!"
 Me .tabControl.Style = fmTabStyleNone

 Set rg = Range(strNameScope & "dbDataValidationList")
 If rg Is Nothing Then
 Me .tabControl.Value = 0
 Me .cmdPrevious.Visible = True
 Me .cmdNext.Visible = True
 Me .txtdbRecordsFirstRow = ActiveSheet.UsedRange.Row + ActiveSheet.UsedRange.Rows.

Count + 3
 Me .txtRecordPosition = SetRecordPosition()
 Call LoadNames
 Else
 Me .cmdDefine.Caption = " Close "
 Me .cmdDefine.Accelerator = "C"
 Me .cmdDefine.Enabled = True
 Me .cmdCancel.Caption = "Remove"
 Me .cmdCancel.Accelerator = "R"
 Me .cmdPrevious.Visible = False
 Me .cmdNext.Visible = False
 Me .txtdbRecordName1.Locked = True
 Me .txtdbRecordName1.BackColor = conWhite
 Me .txtdbManySidePrefix.Locked = True
 Me .txtdbManySidePrefix.BackColor = conWhite

 'Update UserForm TextBoxes
 For intI = 1 To 15
 strName = Choose(intI, "dbRecordName", _
 "dbDataValidationList", _
 "dbSavedRecords", _
 "dbRecordsFirstRow", _
 "dbOneSide", _
 "dbOneSideColumnsCount", _
 "dbManySide1", _
 "dbManySide2", _
 "dbManySide3", _
 "dbManySide4", _
 "dbManySideFirstColumn", _
 "dbManySideColumnsCount", _
 "dbManySideRowsCount", _
 "dbManySidePrefix", _
 "dbRangeOffset")
 Me ("txt" & strName) = ws.Range(strNameScope & strName)
 Next

 Call CalculateManySideRecords
 Me .tabControl.Value = Me .tabControl.Pages.Count - 1
 End If
 End Sub

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

550

 When the UserForm_Intialize() event fires, all necessary variables are declared, VBA unexpected
errors are suppressed by an On Error Resume Next instruction, the UserForm Width property is set, Excel
events firing is disabled, a reference to the current worksheet is set, and the tabControl Page s are hidden.

 Private Sub UserForm_Initialize ()
 ...
 On Error Resume Next

 Me .Width = conNormalWidth
 Application .EnableEvents = False
 Set ws = Application .ActiveSheet
 strNameScope = "'" & ws.Name & "'!"
 Me .tabControl.Style = fmTabStyleNone

 These instructions prepare the stage. The code then tries to recover the dbDataValidationList
database property, reading the dbDataValidationList range name value, as an indication that the active
worksheet already has a database system implemented.

 Set rg = Range("'" & ws.Name & "'! dbDataValidationList ")

 Defining the Database

 If the dbDataValidationList range name doesn’t exist as a local sheet name, VBA will raise an error that will
be ignored by the On Error Resume Next instruction, and the rg object variable will remain with its default
value (Nothing), meaning that the frmDBProperties UserForm must walk the user step-by-step through
implementing the database system beginning on the first tabControl Page .

 If rg Is Nothing Then
 Me .tabControl.Value = 0

 The cmdPrevious and cmdNext CommandButton s become visible, and txtdbSaveRow (a TextBox
positioned at the fifth tabControl Page) receives the row number where the database can be safely stored:
three rows below the last used sheet row.

 Me .cmdPrevious.Visible = True
 Me .cmdNext.Visible = True
 Me . txtdbRecordsFirstRow = ActiveSheet. UsedRange.Row + ActiveSheet. UsedRange.Rows.
Count + 3
 Me .txtRecordPosition = SetRecordPosition()

 ■ Attention The Worksheet.UsedRange property returns a range address with the first and last used cell.
That is why the code adds to the first used row (UsedRange,Row) the total number of rows used three extra
rows (UsedRange.Rows.Count + 3).

 To allow the user select any worksheet range name to define the cells associated to the one-side or the
many-side worksheet records, it calls the LoadNames () procedure, which will produce a list of local (or
workbook) range names that will be used to fill all on-side and many-side UserForm ComboBox es.

 Call LoadNames

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

551

 Loading Worksheet Names

 The Sub LoadNames () procedure simply loops through the Names collection of the active worksheet or the
entire workbook according to the value of the bolAllRangeNames optional argument (which is False by
default), fills the varNames() array variable with the desired range names, and uses this array to define
every desired ComboBox List property.

 Private Sub LoadNames (Optional bolAllRangeNames As Boolean)
 Dim obj As Object
 Dim nm As Name
 Dim varNames() As Variant
 Dim intI As Integer

 On Error Resume Next

 ' Load desired names on varNames() array
 If bolAllRangeNames Then
 Set obj = ThisWorkbook
 Else
 Set obj = ActiveSheet
 End If

 ReDim var Names(obj.Names .Count - 1)

 For Each nm In obj. Names
 varNames(intI) = nm.Name
 intI = intI + 1
 Next

 'Populate ComboBoxes
 Me .cbodbOneSide.List = varNames()
 Me .cbodbManySide1.List = varNames()
 Me .cbodbManySide2.List = varNames()
 Me .cbodbManySide3.List = varNames()
 Me .cbodbManySide4.List = varNames()
 End Sub

 Note the trick to select which range name scope must be used: the obj as Object variable is set to
either the ActiveSheet or the ThisWorkbook (two different object types) according to the bolAllRangeNames
as Boolean argument.

 If bolAllRangeNames Then
 Set obj = ThisWorkbook
 Else
 Set obj = ActiveSheet
 End If

 The varNames() array is then dimensioned according to the number of range names contained in the
 Names collection of the object represented by the obj variable (remember that array variables are 0-based, so
you must use Names .Count - 1).

 ReDim var Names(obj.Names .Count - 1)

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

552

 And a For Each...Next loop is used to loop through all names of the object represented by the obj
variable, filling the varNames() array with every nm.Name property associated to the scope of the active
worksheet or the entire workbook (the intI variable is used to point to the desired array index).

 For Each nm In obj. Names
 varNames (intI) = nm.Name
 intI = intI + 1
 Next

 Once the varNames() array is filled with the desired names , it is used to fulfill each wizard ComboBox
List property.

 'Populate ComboBoxes
 Me .cbodbOneSide. List = varNames()
 Me .cbodbManySide1. List = varNames ()
 ...
 End Sub

 And once LoadNames () is finished, the frmDBProperties UserForm is shown to the user, positioned
at the first tabControl Page , and ready to walk through all the steps needed to implement the database
properties (Figure 8-19).

 Stepping Through frmDBProperties Wizard Pages
 The frmDBProperties wizard needs to conduct the user using just five pages: one page to define an
appropriate substantive to “treat” the worksheet records, a second page to define the cells for the record data
validation list , a third page to define the address or range name that indicates the one-side record cells (if
any), a fourth page to define the address or range name that indicats the many-side records cells (if any), and
a fifth page to create the Button controls to manage the worksheet database system.

 Step 1: Defining the Expression Used to Identify Worksheet Records

 The first frmDBProperties wizard page is used to define how each database record will be treated, offering
“Record” as the default substantive. Step 1 must do the following:

 1. Allow the user to type a record name

 2. Use the ValidatePage () procedure to check whether a name has been typed
(this procedure is called from ShowPage() when the Next -> CommandButton is
clicked).

 The user is asked to type a single substantive to identify each worksheet one-side record , and the value
typed is validated when it tries to go to the next wizard step, clicking the cmdNext CommandButton . You
cannot leave the first page if the record name is empty (Figure 8-21).

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

553

 This happens because each time the cmdNext_Click() event fires, it calls the Sub ShowPage()
procedure passing to the Action argument the NextTab enumerator. The ShowPage() procedure then calls
the ValidatePage () procedure, passing to the intPage argument the sintPage Static variable, which holds
the last tabControl.Value property.

 Private Sub cmdNext_Click()
 Call ShowPage(NextTab)
 End Sub

 Private Sub ShowPage(Action As ShowTab)
 Static sintPage As Integer
 Dim intMaxPages As Integer

 If Action = NextTab Then
 If Not ValidatePage (sintPage) Then Exit Sub
 End If

 sintPage = sintPage + Action
 intMaxPages = Me .tabControl.Pages.Count - 1

 If sintPage < 0 Then sintPage = 0
 If sintPage > intMaxPages Then sintPage = intMaxPages
 Me .tabControl.Value = sintPage
 Me .cmdDefine.Enabled = (sintPage = Me .tabControl.Pages.Count - 1)
 Me .chkWorkbookNames.Visible = (sintPage = 2 Or sintPage = 3)
 End Sub

 Figure 8-21. frmDBProperties validates each wizard page as the user tries to advance to the next page. The
first wizard page requires that a record name be typed

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

554

 Note that this code is similar to the code in “Navigating Through the UserForm Wizard” earlier in this
chapter, except for the validation code and its last two instructions, which change the cmdDefine.Enabled
and chkWorkbookNames.Visible properties, according to the tabControl page selected.

 When the ValidatePage () procedure receives the intPage argument, it uses a Select Case statement
to validate the current tabControl page.

 Function ValidatePage (intPage As Integer) As Boolean
 Dim strMsg As String
 Dim strTitle As String
 Dim bolValidateFail As Boolean

 Select Case intPage
 Case 0
 'Validata record name
 If Len(Me .txtdbRecordName) = 0 Then
 strMsg = "Define the default name for the worksheet record."
 strTitle = "Record name?"
 bolValidateFail = True
 End If
 Case 1
 'Validata Data Validation list
 If Len(Me .txtdbDataValidationList) = 0 Then
 strMsg = "Select a cell for the Records Data Validation list and try again."
 strTitle = " Data Validation list cell?"
 bolValidateFail = True
 End If
 Case 3
 'Validata OneSide and ManySide records
 If Me .txtdbOneSideColumnsCount = 0 And Me .txtdbManySideRowsCount = 0 Then
 strMsg = "Select the One-Side and/or the Many-Side cells that define the

worksheet records ranges!"
 strTitle = "Select cells to be saved as worksheet records"
 bolValidateFail = True
 End If
 End Select

 If bolValidateFail Then
 MsgBox strMsg, vbQuestion, strTitle
 Else
 ValidatePage = True
 End If
 End Function

 Note that when intPage = 0 (meaning the first wizard page), ValidatePage () will verify whether
anything has been typed inside the txtdbName TextBox . If it is empty, bolValidateFail = True , a MsgBox (
) function warns the user, and ValidatePage () returns False to the ShowPage() procedure.

 Function ValidatePage (intPage As Integer) As Boolean
 ...
 Select Case intPage
 Case 0

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

555

 'Validata record name
 If Len(Me . txtdbRecordName) = 0 Then
 strMsg = "Define the default name for the worksheet record."
 strTitle = "Record name?"
 bolValidateFail = True
 End If
 ...
 End Select

 If bolValidateFail Then
 MsgBox strMsg, vbQuestion, strTitle
 Else
 ValidatePage = True
 End If
 End Function

 Step 2: Defining the Record’s Data Validation List Cell

 After defining how each database record must be treated on the first wizard page and clicking the cmdNext
command button, the second tabControl Page will be shown. It asks you to define the record’s data
validation list cell. Note that the txtdbDataValidationList text box is locked and you must click the “Select
cell” command button (cmdDataValidationList) to define it. Step 2 must do the following:

 1. Allow the selection of a worksheet cell where the data validation list must be
created by calling the GetRange() procedure

 2. Create a data validation list on the selected cell, pointing to the SavedRecords
range name

 3. Use the ValidatePage () procedure to check whether a cell was selected for the
record data validation list when the Next ➤ CommandButton is pressed.

 ■ Attention The ValidatePage () procedure will not allow you to advance to the next page while
 txtdbDataValidationList is empty.

 When you click the cmdDataValidationList CommandButton , the frmDBProperties will be hidden and
the Application .Inputbox will be shown over the Sheet1 worksheet to allow select the cell where the data
validation list will be created (Figure 8-22).

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

556

 Figure 8-22. The second tabControl Page asks the user to define the record data validation list cell. It has
a “Select cell...” CommandButton that uses the Application .InputBox method to allow you to select the cell
address

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

557

 This is the cmdDataValidationList_Click() event code:

 Private Sub cmdDataValidationList_Click()
 Dim varFormula As Variant
 Dim varName As Variant
 Dim strListRange As String
 Dim strRange As String

 On Error Resume Next

 Me .Hide
 strRange = GetRange("Select cell for the Data Validation list :", "Data Validation

List?", Me .txtdbDataValidationList)
 If Len(strRange) Then
 varName = Range(strRange).Name.Name
 If Len(varName) Then
 strRange = varName
 End If
 Me .txtdbDataValidationList = strRange
 Range(strRange).Merge

 'Verify if selected range has a data validation list
 strListRange = Range(strRange).Validation.Formula1
 If Len(strListRange) Then
 Me .txtdbSavedRecords = Mid (strListRange, 2)
 Else
 Me .txtdbSavedRecords = "SavedRecords"
 End If
 End If
 Me .Show
 End Sub

 Allowing the User to Select a Cell Range
 The cmdDataValidationList_Click() event begins by hiding the frmDBProperties window by calling the
 UserForm.Hide method and then calls the Function GetRange() procedure, passing as an argument the
message, title, and default value that must be displayed by the Application .InptuBox method.

 Me . Hide
 strRange = GetRange("Select cell for the Data Validation list :", "Data Validation

List?", Me .txtdbDataValidationList)

 The Function GetRange() procedure is responsible for allowing you to select any worksheet cells and
returning the selection as a string of cell addresses. It has this code:

 Private Function GetRange(strMsg As String, strTitle As String, Optional Default As Variant)
As String
 Dim varRg As Variant
 Dim rgArea As Range
 Dim strAddress As String
 Dim bolInvalidSelection As Boolean

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

558

 Const conRange = 8

 On Error Resume Next

 Set varRg = Application .InputBox(strMsg, strTitle, Default, , , , , conRange)
 If IsObject(varRg) Then
 For Each rgArea In varRg. Areas
 If Len(strAddress) Then
 strAddress = strAddress & ","
 End If
 strAddress = strAddress & rgArea. Address
 Next
 GetRange = strAddress
 End If
 End Function

 It calls the Application .InputBox method and sets the argument Type=conRange (conRange=8),
meaning that it must return a Range object representing the cell(s) selected.

 Set varRg = Application .InputBox(strMsg, strTitle, Default, , , , , conRange)

 ■ Attention This is necessary because the InputBox string returns just the first 256 characters of the
selected cell’s address. By using Type=conRange to return a Range object, this limitation will no longer
happen.

 If the user selects the Application .InputBox Cancel button, nothing will be returned to the varRg
variable, which will remain with its default Empty value. But if any cell has been selected, varRg will contain
a Range object. The code will then step through the Range. Areas collection, using each selected Area to
compose the selected cell’s addresses string, which will be returned by the GetRange() procedure (note
that the code adds a comma between each selected range).

 If IsObject(varRg) Then
 For Each rgArea In varRg. Areas
 If Len(strAddress) Then
 strAddress = strAddress & ","
 End If
 strAddress = strAddress & rgArea. Address
 Next
 GetRange = strAddress
 End If
 End Function

 ■ Attention The Range. Address property returns just the first 256 characters of what is currently selected
by it. It is necessary to run through the Range. Areas collection to return all selected cells when their textual
length surpasses 256 characters.

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

559

 Creating the Record’s Data Validation List
 When the GetRange() procedure ends, it will return either an empty string or a string containing the
selected cell address where the record’s data validation list must be created to the cmdDataValidationList_
Click() event.

 strRange = GetRange("Select cell for the Data Validation list :", "Data Validation List?",
 Me .txtdbDataValidationList)
 If Len(strRange) Then

 If a cell address was selected, the procedure verifies whether the address is associated to a range name
by checking whether the Range.Name property returns a valid Name object. If it does, use the Name object’s
 .Name property to return the range name using the odd syntax Range(strRange).Name.Name . That is why the
code begins disabling VBA errors with an On Error Resume Next instruction. If the range was not named, it
has no Name object, and Range.Name will return an error.

 On Error Resume Next
 ...
 varName = Range(strRange). Name.Name

 ■ Attention The Range.Name property returns by default the name address.

 Now the varName variable holds the range name or its default Empty value. So, the code verifies whether
 varName has any name inside it and attributes it to the strRange variable, strRange (that contains either
the selected cell address or its range name) is stored in the txtdbDataValidationList TextBox , and the
returned range is merged using the Range.Merge method.

 If Len(varName) Then
 strRange = varName
 End If
 Me .txtdbDataValidationList = strRange
 Range(strRange). Merge

 Once the desired cell had been selected, it is time to create the record’s data validation list on it. Since
 Validation is an object of the Microsoft Excel interface, the code verifies whether the selected cell has a data
validation list by inspecting the Validation object’s Formula1 property, storing it in the strListRange string
variable.

 'Verify if selected range has a data validation list
 strListRange = Range(strRange) .Validation.Formula1

 If the selected range already has a data validation list , the strListRange variable now contains
the formula used to fill the list. Since a formula always begin with a = character, it uses the VBA Mid ()
function to remove it from strListRange and store just the list address in the txtdbSavedRecords TextBox
(positioned at the fifth tabControl Page).

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

560

 If Len(strListRange) Then
 Me .txtdbSavedRecords = Mid (strListRange, 2)

 If the selected range does not have a data validation list, the default SavedRecords name will be stored
in the txtdbSavedRecords TextBox . Note that before the cmdDataValidationList_Click() event ends, it
makes the frmDBProperties visible again by calling the UserForm.Show method.

 Else
 Me . txtdbSavedRecords = "SavedRecords"
 End If
 End If
 Me .Show
 End Sub

 Now the txtdbDataValidationList TextBox contains the cell address where the data validation list
must be created, and the user can advance to the third wizard step.

 Step 3: Defining the One-Side Record Cells

 Having selected the record’s data validation list cell, it is time to define which are the one-side record cells
(if any). Step 3 must do the following:

 1. Allow the selection of a valid range name or cell address (or cell addresses), by
either selecting it in the cbodbOneSide ComboBox list or using the cmddbOneSide
CommandButton

 2. Select in cbodbOneSide either just worksheet names or all workbook names

 ■ Attention Since not all worksheets need to implement a one-side record , this page is not validated, and
you can advance to the next page without any selection.

 This is the first tabControl Page with a ComboBox (cbodbOneSide) that has been filled with all worksheet
scope range names by the LoadNames () procedure (called in the UserForm_Initialize () event). It offers
the chkWorkbookNames check box right above the tabControl Multipage control, allowing you to change the
name scope used to fill this ComboBox list (Figure 8-23).

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

561

 You cannot type a value in the cbodbOneSide ComboBox . You can just select a valid range name from its
list or click the “Select cells” CommandButton to select the desired one-record worksheet cells.

 If you click the “Select cells” CommandButton , the cmddbOneSide_Click() event will fire, executing this
code (note that it does not change the cbodbOneSide ComboBox value if the user clicks the Application .
Inputbox Cancel button):

 Private Sub cmddbOneSide_Click()
 Dim strRange As String
 Dim strMsg As String

 On Error Resume Next

 Me .Hide
 strMsg = "Select all cells that belongs to the 'one side' of the worksheet record." &
vbCrLf
 strRange = GetRange (strMsg, "One-side record sheet cells", Me .cbodbOneSide)
 If Len(strRange) Then
 Me .cbodbOneSide = strRange
 End If
 Me .Show
 End Sub

 Figure 8-23. This is the third wizard page, which asks the user to select the cells that must be used to compose
the one-side worksheet record

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

562

 The cmddbOneSide_Click() event calls GetRange() to allow the user to select all one-side record
worksheet cells and attribute the selection (if any) to the cbodbOneSide ComboBox . But since by default
the cbodbOneSide list is filled with all worksheet scope range names, you can both expand its list and
select the appropriate range name that represents the one-side record cells. In both cases, this will fire the
 cbodbOneSide_Change() event, executing this code:

 Private Sub cbodbOneSide_Change()
 Dim intCells As Integer
 Dim strAddress As String
 Const conColsDatabase = 6

 If IsRange(Me .cbodbOneSide) Then
 'Count cells selected
 intCells = CalculateOneSideColumns()
 Me .txtdbOneSideColumnsCount = intCells
 'Define save column for many-side records
 strAddress = Cells(1, intCells + conColsDatabase). Address
 strAddress = Left (strAddress, InStrRev (strAddress, "$"))
 Me .txtdbManySideFirstColumn = strAddress
 Else
 Me .cbodbOneSide = ""
 Me .txtdbOneSideColumnsCount = 0
 Me .txtdbManySideFirstColumn = ""
 End If

 If Left (Me .cbodbOneSide, 1) = "'" Then
 Me .txtdbOneSide = "'" & Me .cbodbOneSide
 Else
 Me .txtdbOneSide = Me .cbodbOneSide
 End If
 Me .cmdClearcbodbOneSide.Enabled = (Len(Me .cbodbOneSide) > 0)
 End Sub

 Whenever the cbodbOneSide ComboBox receives a value, either by the VBA code or by user typing, the
code use the IsRange() procedure to verify whether the ComboBox value is a valid range name.

 Private Function IsRange(strRange As String) As Boolean
 Dim rg As Range

 On Error Resume Next
 Set rg = Range(strRange)
 IsRange = (Err = 0)
 End Function

 ■ Attention The IsRange() procedure tries to recover a Range object reference associated to text received
by its strRange String argument. It will not raise errors when strRange strings refer to a valid Range
reference.

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

563

 If cbodbOneSide has a valid range name, it will call the CalculateOneSideColumns() procedure to
count how many cells have the selected range and determine the worksheet column number needed to save
the one-side record cells side by side right next to the record name.

 'Count cells selected
 intCells = CalculateOneSideColumns()

 Calculating the Column Number Needed to Save the One-Side Record Cells
 The function CalculateOneSideColumns() uses the cell’s addresses or range name defined by the
 cbodbOneSide ComboBox to count how many cells exist on the selected one-side record cells and executes
this code:

 Private Function CalculateOneSideColumns() As Integer
 Dim rg As Range
 Dim rgArea As Range
 Dim strAddress As String
 Dim intNumCols As Integer
 Dim intI As Integer
 Dim intJ As Integer

 Set rg = Range(Me .cbodbOneSide)
 For Each rgArea In rg. Areas
 For intI = 1 To rgArea.Rows.Count
 For intJ = 1 To rgArea.Columns.Count
 If rgArea.Cells(intI, intJ).MergeCells Then
 intI = intI + rgArea.Cells(intI, intJ).MergeArea.Rows.Count - 1
 intJ = intJ + rgArea.Cells(intI, intJ).MergeArea.Columns.Count - 1
 End If
 intNumCols = intNumCols + 1
 Next
 Next
 Next
 CalculateOneSideColumns = intNumCols
 End Function

 The cells selected for the one-side record can be composed of unique or merged cells representing a
single cell address (designated by the top-left corner cell of the merged range). All cells that comprise the
 one-side record can be isolated or grouped in individual ranges, so the code uses the Range. Areas collection
to loop through all selected ranges.

 Set rg = Range(Me .cbodbOneSide)
 For Each rgArea In rg. Areas

 Since an individual Range. Area can have just one single cell (or merged cell) or be comprised of many
independent contiguous cells, the code needs to loop through the rows and columns using two nested
 For...Next loops. The outer loop will use the intI Integer variable to run through all Range. Area rows,
while the inner loop will use the intJ Integer variable to run through all Range. Area columns.

 For intI = 1 To rgArea.Rows.Count
 For intJ = 1 To rgArea.Columns.Count

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

564

 To select each individual cell, the code uses the Range.Cells collection, using intI and intJ for each
 Cells(row, column) coordinate. Since any cell can be merged, it uses the Range.MergeCells property to
verify whether the selected cell is merged. If it is, it will increment the intI and intJ counters by the number
of rows or columns merged to count these merged cells as one unique cell. Note that it uses MergeArea.
Rows.Count –1 and MergeArea.Columns.Count – 1 to sum the correct value for each counter.

 If rgArea. Cells(intI, intJ).MergeCells Then
 intI = intI + rgArea. Cells(intI, intJ).MergeArea.Rows.Count - 1
 intJ = intJ + rgArea. Cells(intI, intJ).MergeArea.Columns.Count - 1
 End If

 If the cell is not merged, MergeCells = False , counting just one cell without incrementing the intI
and intJ counters. The intNumCols Integer variable will hold the cell counting at the end of the For
Each...Next loop, when all Range.Area s have been processed.

 intNumCols = intNumCols + 1
 Next intJ
 Next intI
 Next
 CalculateOneSideColumns = intNumCols
 End Function

 When the CalculateOneSideColumns() procedure ends, code control returns to the cmddbOneSide_
Click() event procedure, and the value returned by the CalculatedOneSideColumns() procedure is
stored in the intCells Integer variable, which is used to define the txtdbOneSideColumnsCount TextBox
on the third wizard page.

 intCells = CalculateOneSideColumns()
 Me . txtdbOneSideColumnsCount = intCells

 ■ Attention Whenever a UserForm TextBox value has a duplicate control on the last wizard
page, its TextBox.Change() event is used to update its value on the last wizard page. This is
the code for the txtdbOneSideColumnsCount_Change() event (which duplicates its value using
 txtdbOneSideColumnsCount1).

 Private Sub txtdbOneSideColumnsCount_Change()

 Me .txtdbOneSideColumnsCount1 = Me .txtdbOneSideColumnsCount

 End Sub

 Determining the Column to Save the Many-Side Records
 To define the column letter where the many-side records will be saved, the Sub cbodbOneSide_Change()
event procedure uses the constant conColsDatabase = 6 to define the first possible worksheet column
where the database many-side record can be created. The database structure begins on column A (Figure 8-5)
using two columns for the database properties (property name and value, one blank column, at least one
column for the SavedRecords range name, and one extra blank column to separate the one-side record from

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

565

the many-side records storage area). This constant value is added to the intCell Integer variable, which
now holds how many columns will be needed to save the one-side record cells to generate the cell address
for the first many-side record column.

 Private Sub cbodbOneSide_Change()
 Const conColsDatabase = 6
 ...
 'Define save column for many-side records
 strAddress = Cells(1, intCells + conColsDatabase). Address

 Since the Range. Address property returns an absolute address, by default the code uses the
VBA InStrRev () function to search in reverse order the last $ character inside the strAddress
String variable and extract the column letter using the VBA Left () function, which is saved in the
 txtdbManySideFirstColumn TextBox on the fifth wizard page.

 strAddress = Left (strAddress, InStrRev (strAddress, "$"))
 Me .txtdbManySideFirstColumn = strAddress

 If IsRange() returns False , cbodbOneSide has no valid range name (the user tried to type a character),
so cbodbOneSide and txtSaveCol must be cleaned, and txtdbOneSideColumnsCount must be set to zero.

 If IsRange(Me .cbodbOneSide) Then
 ...
 Else
 Me .cbodbOneSide = ""
 Me .txtdbOneSideColumnsCount = 0
 Me .txtdbManySideFirstColumn = ""
 End If

 The cbodbOneSide_Change() event then synchronizes txtdbOneSide (located on the fifth wizard page)
with the cbodbOneSide value. Here is another trick to perform: if the current sheet tab name has a space (like
“BMI Chart” or “Sheet 1”), the selected address will begin with a single quotation mark. But since Excel uses
single quotation marks to insert cell text values, when this address is saved on the appropriate cell, it will
lose the quote. The code must check for this character’s existence and add an extra one before the proposed
range name.

 If Left (Me .cbodbOneSide, 1) = "'" Then
 Me .txtdbOneSide = "'" & Me .cbodbOneSide
 Else
 Me .txtdbOneSide = Me .cbodbOneSide
 End If

 The code finishes by changing the cmdClearcbodbOneSide CommandButton ’s Enabled property (the
small button at the right of the cbodbOneSide ComboBox) according to the existence of any content in the
 cbodbOneSide ComboBox .

 Me .cmdClearcbodbOneSide. Enabled = (Len(Me .cbodbOneSide) > 0)
 End Sub

 Figure 8-24 shows the third wizard page after the frmDBProperties .xlsm workbook’s
 Sheet1 OneSideRecord range was selected using the cbodbOneSide ComboBox list. Note how
 txtdbOneSideColumnsCount correctly shows the number of cells selected (three cells).

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

566

 Changing the Range Name Scope
 At the top of the UserForm you find the chkWorkbookNames CheckBox that when checked shows every
workbook name in the cbodbOneSide ComboBox . Whenever you click it, the chkWorkbookNames_Change()
event fires, executing this simple code:

 Private Sub chkWorkbookNames_Click()
 Call LoadNames (Me .chkWorkbookNames)
 End Sub

 As you can see, it just calls the LoadNames () procedure, passing as an argument the selection state of
the chkWorkbookNames CheckBox to refill all UserForm ComboBox es with the desired range names.

 ■ Attention The LoadNames () procedure was analyzed in the section “Loading Worksheet Names” earlier
in this chapter.

 Figure 8-24. This is the third wizard Page counting the number of cells inside the OneSideRecord range
name. After the range is selected in the ComboBox list, the button at the right becomes enabled to clear the user
selection

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

567

 Clearing the One-Side Record Cell Selection
 To clear the cbodbOneSide ComboBox , you can either select the control and press the Delete key or click the
 cmdClearcbodbOneSide CommandButton (the one with a red X character, right next the ComboBox). Note that
this button becomes enabled whenever something has been selected for the one-side record cells, executing
some simple code to clean it up.

 Private Sub cmdClearcbodbOneSide_Click()
 Me .cbodbOneSide = ""
 End Sub

 ■ Attention No matter the method you use, the cbodbOneSide_Change() event will cascade-fire to
synchronize the UserForm interface.

 Step 4: Defining the Many-Side Record Cells

 On the fourth wizard page, you must define the many-side record worksheet cells to be saved by the
database engine (Figure 8-25).

 Figure 8-25. This is the fourth wizard page that asks for database information from the user. It allows the
selection of four different one-to-many records relations for the worksheet database. As explained by the page’s
“Tip,” cells in the same relation will be saved side by side, using the same worksheet rows; cells in different
relations will be saved behind the precedent relation using other worksheet rows

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

568

 There are no secrets here. Step 4 must do the following:

• Allow the user to define up to four different one-to-many record relationships on the
worksheet

• Count the total number of rows and columns used by the many-side worksheet
records

• Call ValidatePage () when the Next -> CommandButton is clicked to verify if either
the one-side or the many-side record range name was defined

 There are four different ComboBox es, one for each many-side record range relation, named as
 cbodbManySide1 to cbodbManySide4 . Each ComboBox has two CommandButton s: one on the left to allow the
selection of worksheet cells (named as cmddbManySide1 to cmddbManySide4) and another on the right to
clean up the ComboBox value (cmdClear1 to cmdClear4). Their values are defined either by selecting a cell
range on the worksheet using the left CommandButton or by selecting a desired worksheet range name on the
associated ComboBox list. This is the code executed by the cmddbManySide1_Click() event (the “Relation 1
cells” button at the right of cbodbManySide1):

 Private Sub cmddbManySide1_Click()
 Call GetdbManySide (1)
 End Sub

 The GetdbManySide(1) procedure, which centralizes the code for the selection of each many-side
records cell, executes this code:

 Private Function GetdbManySide(intRelation As Integer) As String
 Dim strMsg As String
 Dim strRange As String

 Me .Hide
 strMsg = "Select all column cells that belongs to the " & intRelation & " of the 'many

side' worksheet record." & vbCrLf
 strRange = GetRange (strMsg, "Many-side record cells: " & intRelation,

 Me ("cbodbManySide" & intRelation))
 If Len(strRange) Then
 Me ("cbodbManySide" & intRelation) = strRange
 End If
 Me .Show
 End Function

 As noted, it calls the GetRange() procedure, analyzed in the section “Allowing the User to Select a Cell
Range” earlier in this chapter, to allow the user to select cells in the worksheet. Whichever the method is
used to change the ComboBox value, it will cascade-fire the associated Change() event. The cbodbManySide_
Change() event executes this code:

 Private Sub cbodbManySide1_Change()
 If IsRange (Me .cbodbManySide1) Then
 If Left (Me .cbodbManySide1, 1) = "'" Then
 Me .txtdbManySide1 = "'" & Me .cbodbManySide1
 Else
 Me .txtdbManySide1 = Me .cbodbManySide1
 End If

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

569

 Else
 Me .cbodbManySide1 = ""
 Me .txtdbManySide1 = ""
 End If

 Me . cmdClear1 .Enabled = (Len(Me .cbodbManySide1) > 0)
 Me . cbodbManySide2 .Enabled = (Len(Me .cbodbManySide1) > 0)
 Me . cmddbManySide2 .Enabled = (Len(Me .cbodbManySide1) > 0)
 Call CalculateManySideRecords
 End Sub

 You may note that it calls the IsRange() procedure, analyzed in section “Defining the One-Side
Record Cells” earlier in this chapter, to validate what is selected in the cbodbManySide1 ComboBox , ensuring
that just valid range names can be selected. And when it happens, it will set the value of txtdbManySide1
(located on the last wizard page); otherwise, it will clear the cbodbManySide1 ComboBox and the associated
 txtdbManySide1 text box.

 The code then synchronizes the enabled state of three other controls, according to the contents of
 cbodbManySide1 : cmdClear1 CommandButton (which is responsible for clearing the Relation 1 selection);
 cbodbManySide2 ComboBox ; and cmddbManySide2 (which allows the selection of Relation 2’s one-to-many
record cells).

 Counting Many-Side Record Rows and Columns
 The Sub cbodbManySide1_Change() event procedure finishes by calling the CalculateManySideRecords ()
procedure to calculate how many worksheet columns and rows are needed to save all four possible relations
of many-side record cells selected.

 Before you analyze the code, I need to call your attention to the “Tip” exposed by the fourth wizard
page, which states “Ranges on the same relation will be saved side by side. Ranges on different relations will
be saved at the bottom of the previous relation ranges, separated by a blank row.”

 This statement means that whenever more than one many-side record cell relation is selected, more
worksheet rows will be needed to store these cells. The database storage system was defined this way to
save the one-to-many record cells using the same worksheet presentation cell order, allowing you to easily
recover records in case of a database storage failure.

 The CalculateManySideRecords () procedure works this way: it uses the Range. Areas collection to
run through each selected cells relation, finding the maximum number of rows and columns each relation
has, including a blank row to separate different relations rows (using the same technique described in
Chapter 7).

 At the end of the procedure, a rectangle with a given row and column count will define the total number
of rows and columns needed to save the desired values.

 Private Function CalculateManySideRecords () As Integer
 Dim rg As Range
 Dim rgArea As Range
 Dim strCtl As String
 Dim strRange As String
 Dim intI As Integer
 Dim intJ As Integer
 Dim intMaxRows As Integer
 Dim intNumRows As Integer
 Dim intMaxCols As Integer
 Dim intNumCols As Integer

http://dx.doi.org/10.1007/978-1-4842-2205-8_7

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

570

 Dim intPos As Integer
 Dim intPos2 As Integer
 Dim nm As Name

 'Count how many rows are needed to save all range relations
 For intI = 1 To 4
 strCtl = Choose(intI, "cbodbManySide1", _
 "cbodbManySide2", _
 "cbodbManySide3", _
 "cbodbManySide4")

 strRange = Me (strCtl)
 If Len(strRange) Then
 Set rg = Range(Me (strCtl))
 For Each rgArea In rg. Areas
 If rgArea.Rows.Count > intMaxRows Then
 intMaxRows = rgArea.Rows.Count
 End If
 For intJ = 1 To rgArea.Columns.Count
 If rgArea.Cells(1, intJ).MergeCells Then
 intJ = intJ + rgArea.Cells(1, intJ).MergeArea.Columns.Count - 1
 End If
 intMaxCols = intMaxCols + 1
 Next intJ
 Next
 'Add an extra row to separate each "many-side" relation
 intNumRows = intNumRows + intMaxRows + 1
 'Update columns count
 If intMaxCols > intNumCols Then
 intNumCols = intMaxCols
 End If
 intMaxRows = 0
 intMaxCols = 0
 End If
 Next intI
 Me .txtdbManySideRowsCount = intNumRows
 Me .txtdbManySideColumnsCount = intNumCols
 End Function

 After declaring the variables, the procedure uses an outer For...Next loop to operate on each of the
four possible one-to-many cell range relations. It uses the VBA Choose() function to recover each relation
contents and analyze if it was selected in the UserForm wizard interface.

 'Count how many rows are needed to save all range relations
 For intI = 1 To 4
 strCtl = Choose(intI, "cbodbManySide1", _
 "cbodbManySide2", _
 "cbodbManySide3", _
 "cbodbManySide4")

 strRange = Me (strCtl)

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

571

 If Len(strRange) Then
 ...
 End If
 Next intI

 For each relation selected, the code uses an outer For Each...Next loop to run through all ranges of
the Range. Areas collection.

 Set rg = Range(Me (strCtl))
 For Each rgArea In rg. Areas
 ...
 Next

 The intMaxRows Integer variable will hold the maximum number of rows each relation has, which is
determined by comparing the current value with the processed rgArea.Rows.Count property.

 For Each rgArea In rg. Areas
 If rgArea.Rows.Count > intMaxRows Then
 intMaxRows = rgArea.Rows.Count
 End If
 Next intJ
 Next

 ■ Attention Note that this code has no provision to worksheet designs where the many-side record cells
use merged cells composed of more than one row. It is supposed that the many-side records cells never use a
row’s merged cells (you are invited to change the code to approach such complex designs).

 To get the selected relation column count, the procedure will take into account that each Range. Area
has the same formatting option for all cells on each of its columns. If the first range cell merges three column
cells, it implies that all other rows of the same column are comprised by identical merged cells.

 So, it runs a For intJ...Next loop through all range columns, using the Cells collection to get the first
cell row of each Area column, verifying if it is merged. If it is, the intJ counter is increased by the MergeArea.
Columns.Count –1 , counting the merged cell only once. The intMaxCols Integer variable will hold the total
number of columns needed for the selected relation.

 For intJ = 1 To rgArea.Columns.Count
 If rgArea. Cells(1, intJ).MergeCells Then
 intJ = intJ + rgArea.Cells(1, intJ). MergeArea.Columns.Count - 1
 End If
 intMaxCols = intMaxCols + 1
 Next intJ

 The For intJ...Next loop ends when the Range. Areas collection is analyzed, adding to intMaxRows
and an extra blank row to the intNumRows Integer variable, which will hold the total number of rows for
every relation selected (on the first loop passage, intMaxRows = 0).

 'Add an extra row to separate each "many-side" relation
 intNumRows = intNumRows + intMaxRows + 1

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

572

 The code verifies whether intMaxCols >= intNumCols , since intNumCols holds the maximum number
of columns needed to save every relation selected and then clears intMaxRows and intMaxCols to process
another cell’s relation (it any).

 'Update columns count
 If intMaxCols > intNumCols Then
 intNumCols = intMaxCols
 End If
 intMaxRows = 0
 intMaxCols = 0
 End If
 Next intI

 When the outer For intI...Next relation loop ends, all relations have been processed, and
the two text boxes located at the bottom of the fourth wizard page (txtdbManySideRowsCount and
 txtdbManySideColumnsCount) will receive the row and column counting, contained in the intNumRows and
 intNumCols Integer variables.

 Next intI
 Me . txtdbManySideRowsCount = intNumRows
 Me . txtdbManySideColumnsCount = intNumCols
 End Function

 The same code used by the Sub cbodbManySide1_Change() event is repeated for every other ComboBox
associated to relations 2, 3, and 4’s many-side record cells (if any).

 Clearing Any Selected Relation
 The last code that deserves to be mentioned is the one used by the cmdClear1_Click() event, used to
clear the first many-side record cells relation. The fourth wizard page interface was built in such a way
that the user must select each relation in sequence. If Relation 1, Relation 2, Relation 3, and Relation 4
ranges are selected and then Relation 1 (the first many-side relation) is cleared, the Relation 2 range must
be transferred to Relation 1, Relation 3 must be transferred to Relation 2, Relation 4 must be transferred to
Relation 3, and Relation 4 must be cleared (Figure 8-26).

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

573

 Whenever you click the cmdClear1 CommandButton , the cmdClear1_Click() event fires, executing this
code (which is quite similar to every other clear relation button):

 Private Sub cmdClear1_Click()
 If Len(Me .cbodbManySide2) Then
 Me .cbodbManySide1 = Me .cbodbManySide2
 Call cmdClear2_Click
 Else
 Me .cbodbManySide1 = ""
 End If
 End Sub

 You may note that before Relation 1 is cleared, it checks whether the cbodbManySide2 ComboBox has any
range selected. If it does, it attributes its selection to cbodbManySide1 , cascade-firing the cbodbManySide1_
Change() event.

 Figure 8-26. Try to select any range name for all four one-to-many relations; then click cmdClear1 to clear the
Relation 1 contents. This will cascade-fire events that will gracefully change relation values upward

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

574

 Then it calls the cmdClear2_Click() event, cascade-firing the cbodbManySide2_Change() event.
And since the cmdClear2_Click event has similar code (just changing control references), it will check the
 cbodbManySide3 contents and eventually call cmdClear3 , which will cascade-fire the cbodbManySide3_
Change() event and synchronize the interface:

 If Len(Me .cbodbManySide2) Then
 Me .cbodbManySide1 = Me .cbodbManySide2
 Call cmdClear2_Click

 If cbodbManySide2 ComboBox is empty, it just clears the associated ComboBox , cascading-fire the
 cbodbManySide1_Change() event, which will synchronize the interface.

 Else
 Me .cbodbManySide1 = ""
 End If
 End Sub

 ■ Attention The ValidatePage () procedure validates if either the one-side record or the many-side record
was selected by inspecting the txtdbOneSideColumnsCount And txtdbManySideRowsCount TextBox values.
If both have a zero value, the user cannot advance to the next wizard page.

 Step 5: Asking to Create Worksheet Database Button Controls

 If either the one-side record or the many-side records have been selected, the wizard will allow the user
to reach the next wizard page to confirm the creation of database Button controls (to go to a new record
and save and delete records) and the creation of database “navigation buttons” (to easily move to the first,
previous, next, last, and new records), and to hide the database rows and activate worksheet protection
(Figure 8-27).

 The fifth wizard page indicates that the database Button controls (New, Save, and Delete) will be
created on the right of the data validation list cell, while the navigation buttons will be created on a specific
cell (cell C21), which is defined by Function SetRecordPosition() .

 Public Function SetRecordPosition() As String
 Dim rg As Range
 Dim sngWidth As Single
 Const conNavigationButtonWidth = 17.3
 Const conRecordPosiciontCellWidth = 50.3

 Set rg = Range("B" & Me .txtdbRecordsFirstRow - 2)
 sngWidth = rg.Offset(0, -1).Width
 Do While (sngWidth < conNavigationButtonWidth * 2) And _
 (rg.Width < conRecordPosiciontCellWidth)
 sngWidth = sngWidth + rg.Width
 Set rg = rg.Offset(, 1)
 Loop
 SetRecordPosition = rg. Address (True, True)
 End Function

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

575

 Each data navigation button has a specific Width property (conNavigationButtonWidh = 17.3 points),
while the record position cell needs a minimum Width property value (conRecordPosicion tCellWidth =
50.3 points). The code tries to create the record position cell on column B , two rows above the first database
row (determined by txtRecordsFirstRow value).

 Set rg = Range("B" & Me .txtdbRecordsFirstRow - 2)

 To verify whether this cell is appropriate for the data navigation buttons, it must have the following:

• The cell at the left is wide enough to contain two Button controls, each one 17.3
points wide (a 34.6-points width).

• The current cell (associated to the rg object variable) must be wide enough to exhibit
the =RecordPosition() function value: a minimum of 50.3 points.

 This is done by first getting the width of the cell located on the left of the rg cell (sngWidth) and a Do
While...Loop instruction to verify whether these two conditions are met.

 sngWidth = rg.Offset(0, -1).Width
 Do While (sngWidth < conNavigationButtonWidth * 2) And _
 (rg.Width < conRecordPosiciontCellWidth)

 If the cell on the left of the rg cell is not wide enough to contain two navigation button widths (rg.
Offset(0,-1).Width < conNavigationButtonWidth * 2) or the rg cell can’t exhibit a record position
expression (rg.Width < conRecordPosiciontCellWidth) , the code adds the current cell width to the left
cell width and uses rg.OffSet(0,1) to displace the proposed range one cell to the right and loop again, until
an adequate cell is found.

 Figure 8-27. The fifth wizard page asks for user confirmation to create database Button controls for record
management and navigation and to hide the worksheet database rows and activate worksheet protection

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

576

 sngWidth = sngWidth + rg.Width
 Set rg = rg.Offset(, 1)
 Loop

 When the loop ends, the cell selected to receive the record position information is returned as an
absolute reference value.

 SetRecordPosition = rg. Address (True, True)
 End Function

 The user can change the proposed cell by clicking the cmdRecordPosition CommandButton , which
executes this code:

 Private Sub cmdRecordPosition_Click()
 Dim strRange As String
 Dim strMsg As String
 Dim strRecordPosition As String

 On Error Resume Next

 strRecordPosition = SetRecordPosition()
 strMsg = "Select cell to receive Record Position indicator:"
 strRange = GetRange(strMsg, "Record Position cell?", Me .txtRecordPosition)
 If Len(strRange) Then
 If Range(strRange). Column < Range(strRecordPosition). Column Then
 MsgBox "There is no room to create data navigation controls on selected cell.",

vbCritical, "Invalid selection!"
 Else
 Me .txtRecordPosition = strRange
 End If
 End If
 End Sub

 It stores on the strRecordPosition variable the cell proposed by the SetRecordPosition() function
and then uses the GetRange() procedure to allow the user to select another worksheet cell where the data
navigation buttons must be set.

 strRecordPosition = SetRecordPosition()
 strMsg = "Select cell to receive Record Position indicator:"
 strRange = GetRange (strMsg, "Record Position cell?", Me .txtRecordPosition)

 If the selected cell is on the left of the proposed range, it will be refused by the code, and the
user will receive a MsgBox () warning. Otherwise, the selected cell is accepted and stored inside the
 txtRecordPosition text box.

 If Range(strRange). Column < Range(strRecordPosition). Column Then
 MsgBox "There is no room to create data navigation controls on selected cell.",

vbCritical, "Invalid selection!"
 Else
 Me .txtRecordPosition = strRange

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

577

 ■ Attention The fifth wizard page doesn’t need to be validated.

 Step 6: Showing the Database Properties Page

 If either the one-side record or the many-side records have been selected, the wizard will allow the user
to reach the last page where a database property resumes showing what has been selected and how many
records can be saved on the unused worksheet rows.

 Figure 8-28 shows a resumed view for the Sheet1 tab of the fmDBProperties_SheetDBEngine.
xlsm workbook, after selecting the OneSideRecord range name to represent the one-side record and the
 ManySideRecords range name to represent the Relation 1 many-side records. Using such a one-to-many cell
record structure, the Sheet1 tab can save up to 95.323 records on its unused rows.

 Figure 8-28. The last wizard page shows a resumed view of the database properties, including how many
records can be saved in the worksheet

 The total records allowed are calculated in the tabControl_Change() event, which fires every time a
different wizard page is selected, executing this code:

 Private Sub tabControl_Change()
 Dim lngRec As Long

 On Error Resume Next

 If Me .txtdbManySideRowsCount = 0 Then
 lngRec = (ActiveSheet.Rows.Count - Me .txtdbRecordsFirstRow)
 Else
 lngRec = (ActiveSheet.Rows.Count - Me .txtdbRecordsFirstRow) / Me .txtdbManySideRowsCount
 End If

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

578

 Me .lblNumRecords.Caption = lngRec & " records allowed"
 Me .cmdPrevious.Enabled = (Me .tabControl.Value > 0)
 Me .cmdNext.Enabled = (Me .tabControl.Value < Me .tabControl.Pages.Count - 1)
 End Sub

 Note that it is quite similar to the code in section “Navigating Through the UserForm Wizard” earlier in
this chapter. It calculates how many records are allowed by first verifying whether txtdbManySideRowsCount
= 0 . If it is, no selection is made to represent the many-side records; just the one-side record range was
selected, and each worksheet record will use just one worksheet row. The number of records allowed must
be calculated by the difference between all possible worksheet rows and the first used database row.

 If Me . txtdbManySideRowsCount = 0 Then
 lngRec = (ActiveSheet.Rows.Count - Me . txtdbRecordsFirstRow)

 But if any selection was made to represent the many-side worksheet records, the number of records
allowed is calculated by dividing the difference between all possible worksheet rows and the first used
database row by txtdbManySideRowsCount (which contains the row count needed to save each record).

 Else
 lngRec = (ActiveSheet.Rows.Count - Me .txtdbRecordsFirstRow) / Me .

txtdbManySideRowsCount
 End If

 The number of records allowed is shown by changing the lblNumRecords Label control’s Caption
property, located at the bottom of the last wizard page.

 Me . lblNumRecords.Caption = lngRec & " records allowed"

 ■ Attention When frmDBProperties is about to create the database structure on the worksheet, the
database properties will allow the user to change the record name and the many-side record prefix. That is why
these controls are formatted using a light yellow background.

 Creating the Database Structure
 When all database information has been collected and the last wizard page is reached, the cmdDefine
CommandButton becomes enabled, ready to create the database, executing this code:

 Private Sub cmdDefine_Click()
 Dim rg As Range
 Dim strRange As String
 Dim intI As Integer
 Dim intRow As Integer
 Dim intCol As Integer

 ActiveSheet.Unprotect
 If Me .cmdDefine.Caption = "Define" Then
 'Define database structure
 Call SetDataBase(CreateDatabase)
 End If

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

579

 'Hide or show database rows
 ActiveSheet.Range(Cells(Me .txtdbRecordsFirstRow, 1), _
 Cells(ActiveSheet.Rows.Count, 1)).EntireRow.Hidden = Me .

chkHideDatabaseRows
 If Me .chkHideDatabaseRows Then
 'Unlock worksheet record cells
 Range(Me .txtdbDataValidationList).MergeArea.Locked = False
 For intI = 1 To 5
 strRange = Choose(intI, "cbodbOneSide", _
 "cbodbManySide1", _
 "cbodbManySide2", _
 "cbodbManySide3", _
 "cbodbManySide4")
 If Len(Me (strRange)) Then
 For Each rg In Range(Me (strRange)). Areas
 For intRow = 1 To rg.Rows.Count
 For intCol = 1 To rg.Columns.Count
 rg.Cells(intRow, intCol).MergeArea.Locked = False
 Next
 Next
 Next
 End If
 Next
 'Active worksheet protection, selecting just unlocked cells
 ActiveSheet.Protect
 ActiveSheet.EnableSelection = xlUnlockedCells
 End If

 Unload Me
 End Sub

 The code first checks the cmdDefine.Caption property. If it is set to Define , it means that the database
structure must be created, calling the SetDatabase(CreateDatabase) procedure.

 ActiveSheet.Unprotect
 If Me .cmdDefine.Caption = "Define" Then
 'Define database structure
 Call SetDataBase(CreateDatabase)

 ■ Attention As you will see later, when the database is already set on the active worksheet, cmdDefine will
show “ Close, ” while cmdCancel will show “Remove” in its Caption properties.

 Using SetDatabase (CreateDatabase) to Define the Database Structure

 The SetDatabase() procedure can be used to either create or remove the database properties from the
active worksheet. When it receives the CreateDatabase argument, it will save all properties described on the
Database Properties wizard page, beginning on the row defined by txtdbRecordsFirstRow , using column A
to save the property name and column B to save the property value (similar to what is shown in Figure 8-5 ,
which uses range A30:B44). It executes this code:

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

580

 Private Sub SetDataBase(Operation As DataBaseOperation)
 Dim nm As Name
 Dim strNameScope As String
 Dim strName As String
 Dim intRow As Integer
 Dim intI As Integer
 Const conCol = "=B"
 Const conColD = 4

 Application .ScreenUpdating = False
 intRow = Me .txtdbRecordsFirstRow
 strNameScope = "'" & ActiveSheet.Name & "'!"
 'Create database range names on columns A:B
 For intI = 0 To 14
 strName = Choose(intI + 1, "dbRecordName", _
 "dbDataValidationList", _
 "dbSavedRecords", _
 "dbRecordsFirstRow", _
 "dbOneSide", _
 "dbOneSideColumnsCount", _
 "dbManySide1", _
 "dbManySide2", _
 "dbManySide3", _
 "dbManySide4", _
 "dbManySideFirstColumn", _
 "dbManySideColumnsCount", _
 "dbManySideRowsCount", _
 "dbManySidePrefix", _
 "dbRangeOffset")
 If Operation = CreateDatabase Then
 Set nm = Names .Add(strNameScope & strName, conCol & intRow + intI, False)
 Cells(intRow + intI, 1) = strName
 Cells(intRow + intI, 2) = Me ("txt" & strName)
 Else
 Set nm = Names (strNameScope & strName)
 nm.Delete
 Cells(intRow + intI, 1).ClearContents
 Cells(intRow + intI, 2).ClearContents
 End If
 Next

 If Operation = CreateDatabase Then
 'Define SavedRecords range name on column D
 Set nm = Names .Add(strNameScope & Me .txtdbSavedRecords, "=" & Cells(intRow,

conColD). Address , False)
 'Define SavedRecords data validation list
 Range(strNameScope & Me .txtdbSavedRecords) = "New " & Me .txtdbRecordName
 Range(Me .txtdbDataValidationList).Validation.Delete
 Range(Me .txtdbDataValidationList). Validation.Add xlValidateList, , , "=" & Me .

txtdbSavedRecords
 Range(Me .txtdbDataValidationList).HorizontalAlignment = xlLeft

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

581

 Range(Me .txtdbDataValidationList) = "New " & Me .txtdbRecordName
 Call CreateDatabaseButtons
 Else
 Set nm = Names (strNameScope & Me .txtdbSavedRecords)
 nm.Delete
 Range(Me .txtdbDataValidationList).Validation.Delete
 Call DeleteDatabaseButtons
 End If
 Application .ScreenUpdating = True
 End Sub

 To define the database properties as worksheet scope range names, SetDatabase() begins by defining
the row where the first property must be saved and the scope of the range names.

 intRow = Me . txtdbRecordsFirstRow
 strNameScope = "'" & ActiveSheet.Name & "'!"

 To create the range names, SetDataBase() uses a For...Next loop to increment the intI integer
variable and uses the VBA Choose() Function first argument, storing in the strName String variable a
different range name at each loop passage.

 For i ntI = 0 To 13
 strName = Choose (intI + 1 , "dbRecordName", _
 ...
 "dbRangeOffset")
 ...
 Next

 Once strName has a property name, it verifies whether the Operation argument is defined to
 CreateDabase . If it is, the associated range name is created using the Names .Add method. Note that it uses
 strNameScope & strName to define a worksheet scope range name, and it uses the constant conCol="B"
concatenated to intRow + intI to define an address in column B where the next range name must be
created. Each name is created with the property Visible = False (the second argument of the Names .Add
method).

 If Operation = CreateDatabase Then
 Set nm = Names . Add (strNameScope & strName , conCol & intRow + intI , False)

 ■ Attention All database properties are saved in TextBox es whose name has a txt prefix in one of the
 tabControl pages.

 Since all database property range names are hidden, you will not see them using the Excel Name Manager. To
do so, use the frmNames UserForm .

 Once the range name is created, it uses the Cells(row, column) property to save the database
property name in column A (column argument = 1) and the database property value in column B (column
argument = 2).

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

582

 Cells (intRow + intI, 1) = strName
 Cells (intRow + intI, 2) = Me ("txt" & strName)

 If Operation = RemoveDatabase , the Else clause will be executed to remove the range name and clear
these worksheet cells.

 Else
 Set nm = Names (strNameScope & strName)
 nm.Delete
 Cells(intRow + intI, 1). ClearContents
 Cells(intRow + intI, 2). ClearContents
 End If
 Next

 When the For...Next loop ends, all database property range names have been created (or deleted) on
the active worksheet. Now it is time to create the range name defined by the txtSavedRecords TextBox in
column D to store database record names, adding as the first item “New Record” (or whatever is the record
name typed in txtdbRecordName at the first wizard page).

 If Operation = CreateDatabase Then
 'Define SavedRecords range name on column D
 Set nm = Names . Add (strNameScope & Me . txtdbSavedRecords , "=" & Cells(intRow ,
 conColD). Address , False)
 Range(strNameScope & Me .txtdbSavedRecords) = "New " & Me .txtdbRecordName

 To end the database creation process, it sets the data validation list in the txtdbDataValidationList
cell (defined on the second wizard page), using the txtSavedRecords range name to define the list range,
with the aid of Validation object’s Delete and Add methods.

 The first operation deletes any existing data validation lists that should exist in the
 txtdbDataValidationList cell using the Validation.Delete method.

 'Define SavedRecords data validation list
 Range(Me . txtdbDataValidationList). Validation.Delete

 To create any data validation using VBA, you must use the Validation.Add method, which has this
syntax:

 Expression.Add(Type, AlertStyle, Operator, Formula1, Formula2

 In this code:

 Expression : This is required; it is an object variable that represents a Validation
object.

 Type : This is required; it a constant of xlDVType that can be set to
 xlValidateCustom , xlInputOnly , xlValidateList , lValidateWholeNumber ,
 xlValidateDate , xlValidateDecimal , xlValidateTextLength , or
 xlValidateTime .

 AlertStyle : This is optional; it is a constant of XlDVAlertStyle that can be set to
 xlValidAlertInformation , xlValidAlertStop , or xlValidAlertWarning .

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

583

 Operator : This is optional; it a constant of the XlFormatConditionOperator
type that can be set to xlBetween , xlEqual , xlGreater , xlGreaterEqual , xlLess ,
 xlLessEqual , xlNotBetween , or xlNotEqual .

 Formula1 : This is optional; it the first part of the data validation equation.

 Formula2 : This is optional; it is the second part of the data validation when
 Operator is xlBetween or xlNotBetween (otherwise, this argument is ignored).

 So, to create a data validation list , the code uses the Validation.Add method with the xlValidateList
constant for its first argument, specifying for the Formula1 argument a formula that points to the range name
specified by txtdbSavedRecords .

 Range(Me .txtdbDataValidationList). Validation.Add xlValidateList , , , "=" & Me .
txtdbSavedRecords

 The data validation list cell is left aligned using the Range.HorizontalAlignment method with the
 xlLeft constant, and its value is defined to New <txtdbRecordName> .

 Range(Me . txtdbDataValidationList). HorizontalAlignment = xlLeft
 Range(Me . txtdbDataValidationList) = "New " & Me .txtdbRecordName
 Call CreateDatabaseButtons
 Else
 ...
 End If
 End Sub

 ■ Attention Note that when SetDatabase() receives RemoveDatabase on its Operation argument, the
 Else clause is executed, and both the range name used to save the worksheet records and the data validation
list are removed, using the Delete method of the Name and Validate objects.

 Else
 Set nm = Names (strNameScope & Me .txtdbSavedRecords)

 nm.Delete

 Range(Me .txtdbDataValidationList). Validation.Delete

 Call DeleteDatabaseButtons

 End If

 End Sub

 Creating Sheet Tab Button Controls

 The last frmDBProperties action is the creation of worksheet Button controls to perform three basic
database operations (show a new record and save or delete an existing record) and the data navigation
buttons, if both options have been selected on the fifth wizard page. This operation is made by the
 CreateDatabaseButtons() procedure, which executes this code:

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

584

 Private Sub CreateDatabaseButtons()
 Dim ws As Worksheet
 Dim shp As Shape
 Dim rg As Range
 Dim dobjClipboard As New DataObject
 Dim strMsg As String
 Dim lngLeft As Long
 Const conColorLighBlue = 12419407

 Set ws = Application .ActiveSheet

 If Me .chkCreateButton controls Then
 'Create Database Button controls at right of Data Validation list
 '---
 Set rg = Range(Me .txtdbDataValidationList)
 If rg.MergeCells Then
 'Range has merged cells. Position on last right cell
 Set rg = Cells(rg.Row, rg. Column + rg.MergeArea.Columns.Count - 1)
 End If

 'Create New button
 lng Left = rg.Left + rg.Width + 16
 Set shp = ws.Shapes. AddFormControl (xlButtonControl, lngLeft, rg.Top, 30, rg.Height)
 shp.OnAction = "MoveNew"
 shp.OLEFormat.Object.Text = "New"

 'Create Save button
 lngLeft = shp. Left + shp.Width + 5
 Set shp = ws.Shapes. AddFormControl (xlButtonControl, lngLeft, rg.Top, 30, rg.Height)
 shp.OnAction = "Save"
 shp.OLEFormat.Object.Text = "Save"

 'Create Delete button
 lngLeft = shp. Left + shp.Width + 5
 Set shp = ws.Shapes. AddFormControl (xlButtonControl, lngLeft, rg.Top, 35, rg.Height)
 shp.OnAction = "Delete"
 shp.OLEFormat.Object.Text = "Delete"
 End If

 If Me .chkCreateNavigationButtons Then
 'Create Data Navigation buttons
 '--
 Set rg = Range(Me .txtRecordPosition)
 rg.Formula = "=RecordPosition()"
 rg.HorizontalAlignment = xlCenter
 rg.Font.Size = 9
 rg.Borders.LineStyle = xlContinuous
 rg.Borders.Color = conColorLighBlue

 'Create MoveFirst button
 lng Left = rg.Left - 2 * conMoveButtonWidth

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

585

 Set shp = ws.Shapes. AddFormControl (xlButtonControl, lngLeft, rg.Top,
conMoveButtonWidth, rg.Height)

 shp.OnAction = "MoveFirst"
 'shp.OnAction = ws. CodeName & ".MoveFirst"
 shp.OLEFormat.Object.Text = "|<"

 'Create MovePreviousFirst button
 lng Left = rg.Left - conMoveButtonWidth
 Set shp = ws.Shapes. AddFormControl (xlButtonControl, lngLeft, rg.Top,

conMoveButtonWidth, rg.Height)
 shp.OnAction = "MovePrevious"
 shp.OLEFormat.Object.Text = "<"

 'Create MoveNext button
 lng Left = rg.Left + rg.Width
 Set shp = ws.Shapes. AddFormControl (xlButtonControl, lngLeft, rg.Top,

conMoveButtonWidth, rg.Height)
 shp.OnAction = "MoveNext"
 shp.OLEFormat.Object.Text = ">"

 'Create MoveLast button
 lng Left = rg.Left + rg.Width + conMoveButtonWidth
 Set shp = ws.Shapes. AddFormControl (xlButtonControl, lngLeft, rg.Top,

conMoveButtonWidth, rg.Height)
 shp.OnAction = "MoveLast"
 shp.OLEFormat.Object.Text = ">|"

 'Create MoveNew button
 lng Left = rg.Left + rg.Width + 2 * conMoveButtonWidth
 Set shp = ws.Shapes. AddFormControl (xlButtonControl, lngLeft, rg.Top,

conMoveButtonWidth, rg.Height)
 shp.OnAction = "MoveNew"
 shp.OLEFormat.Object.Text = "*"
 End If

 If Me .chkCreateButton controls Or Me .chkCreateNavigationButtons Then
 'Copy sheet modulce code and basButton controls code
 With dobjClipboard
 .SetText Me .txtButtonsCode.Text
 .PutInClipboard
 'Warn the user how to paste button codes on sheet module
 strMsg = "To create the database buttons code, select the worksheet code module"
 strMsg = strMsg & "place the text cursor behind the 'Option Explicit'

instruction"
 strMsg = strMsg & "and press Ctrl+V to paste!"
 MsgBox strMsg, vbInformation, "WARNING: How to create buttons code!"
 End With
 End If
 End Sub

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

586

 Creating Database Button Controls
 If chkCreateButton controls were kept selected on the fifth wizard page, the CreateDatabaseButtons(
) procedure will create three CommandButton s right next to the data validation list cell (pointed at by
 txtdbDataValidationList TextBox). To define the position of the first Button control , it first sets a Range
object variable (rg) to the data validation list cell and then verifies if it is a merged cell using the Range.
MergeCells property. If it is, it uses the Cells() property to set the rg object variable to its farthest-right
merged cell. It does this by adding to the first data validation list column the total number of merged
columns.

 Private Sub CreateDatabaseButtons()
 ...
 If Me .chkCreateButton controls Then
 'Create Database Button controls at right of Data Validation list
 '---
 Set rg = Range(Me . txtdbDataValidationList)
 If rg.MergeCells Then
 'Range has merged cells. Position on last right cell
 Set rg = Cells(rg.Row, rg. Column + rg.MergeArea.Columns.Count - 1)
 End If Set ws = Application .ActiveSheet

 Now that the desired cell is selected, it determines the position regarding worksheet cell A1 by adding
the Range. Left property with the Range.Width property (both in points) plus 16 points (determined by trial-
and-error experimentation), so it sits at the right of the data validation list control arrow.

 'Create New button
 lng Left = rg.Left + rg.Width + 16

 ■ Attention The Range. Left property returns the screen position (in points) of the upper-left range cell
corner relative to worksheet cell A1 ’s upper-left corner.

 To create each Button control , the code uses the Shapes Collection AddFormControl method, which
has this syntax:

 Expression. AddFormControl (Type, Left , Top, Width, Height)

 In this code:

 Expression : This is required; it is object variable that represents a Shapes object.

 Type : This is required; it is a constant of XlFormControl type that can be set to the
following:

 xlButtonControl=0 , for a Button

 xlCheckBox=1 , for a CheckBox

 XlDropDown=2 , for a ComboBox

 XlEditBox=3 , for a TextBox

 XlGroupBox=4 , for a GroupBox

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

587

 XlLabel=5 , for a Label

 XlListBox=6 , for a ListBox

 XlOptionButton=7 , for an OptionButton

 XlScrollBar=8 , for a Scrollbar

 XlSpinner=9 , for a Spinner

 Left : This is required; it a Long value that sets the initial coordinates of the new
object (in points) relative to the upper-left corner of cell A1 on a worksheet or to
the upper-left corner of a chart.

 Top : This is required; it is a Long value that sets the initial coordinates of the new
object (in points) relative to the upper-left corner of cell A1 on a worksheet or to
the upper-left corner of a chart.

 Width : This is required; it is a Long value that sets the initial size of the new
object, in points.

 Height : This is required; it a Long value that sets the initial size of the new object,
in points.

 The Shapes. AddFormControl method returns a Shape object, which is an independent beast with a rich
object model (everything you put in worksheet cells belongs to the Shapes collection, including a chart).
Among them you use the following:

• The Shape.OnAction property to set the procedure name that is executed if Shape.
Type is set to xlButton control and the Button control is clicked by the user action

• The Shape.OLEFormat property, which is another wild beast with its own object
interface, from which you use derived OLEFormat.Object.Text to define the Button
control caption

 That is why CreateDatabaseButtons() declares the shp as Shape object variable: to set a reference of
each created Button control . The first created button is New, which is associated to the MoveNew procedure.
It is positioned 16 points to the right border of the data validation list cell, with its top-left corner touching
the cell’s top border (rg.Top), with a 30-point width (determined by trial and error) and the same row height
(rg.Height):

 Dim shp As Shape
 ...
 'Create New button
 lng Left = rg.Left + rg.Width + 16
 Set shp = ws.Shapes. AddFormControl (xlButtonControl, lngLeft, rg.Top, 30, rg.Height)
 shp. OnAction = "MoveNew"
 shp. OLEFormat.Object.Text = "New"

 ■ Attention Since the MoveNew origin is not specified, it is supposed that it is stored on a Standard module
as a Public Sub or Function procedure, available through all VBA project code.

 The Save button is positioned 5 points to the right of the New button (note that the lngLeft variable
now receives the shp. Left + shp.Width + 5 value to set the next button position), being associated to the
Save procedure.

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

588

 'Create Save button
 lngLeft = shp. Left + shp.Width + 5
 Set shp = ws.Shapes. AddFormControl (xlButtonControl, lngLeft, rg.Top, 30, rg.Height)
 shp. OnAction = "Save"
 shp. OLEFormat.Object.Text = "Save"

 ■ Attention The Delete button is then positioned 5 points to the right of the Save button using this same
programming technique, being associated to the Public Sub Delete() procedure.

 Creating Database Navigation Buttons
 If chkCreateNavigationButtons was kept selected on the fifth wizard page, the CreateDatabaseButtons()
procedure will now create the record position formula in the cell defined by the txtRecordPosition TextBox .
It sets a reference to the desired cell and defines these Range object properties: Formula , HorizontalAlignment ,
 FontSize , Borders.LineStyle , and Borders.Color . The result will be a cell with the text centered, a white
background, and a blue border.

 If Me .chkCreateNavigationButtons Then
 'Create Data Navigation buttons
 '--
 Set rg = Range(Me .txtRecordPosition)
 rg.Formula = "=RecordPosition()"
 rg.HorizontalAlignment = xlCenter
 rg.Font.Size = 9
 rg.Borders.LineStyle = xlContinuous
 rg.Borders.Color = conColorLighBlue

 Each navigation button is created, beginning with the first MoveFirst button, and located by subtracting
the 2 * conMoveButtonWidth constant, on the left of the record position cell having the same cell height,
being associated to MoveFirst procedure.

 'Create MoveFirst button
 lng Left = rg.Left - 2 * conMoveButtonWidth
 Set shp = ws.Shapes. AddFormControl (xlButtonControl, lngLeft , rg.Top,

 conMoveButtonWidth , rg.Height)
 shp.OnAction = "MoveFirst"
 'shp.OnAction = ws. CodeName & ".MoveFirst"
 shp.OLEFormat.Object.Text = "|<"

 All other buttons are created with the same technique, at the desired position at each cell side. When
the navigation buttons have been created, the CreateDatabaseButtons() procedure does the last trick: it
uses the dobjClipboard as DataObject variable to copy the txtButtonsCode TextBox Text property to the
clipboard, using the DataObject SetText and PutInClipboard methods and warning the user with the VBA
 MsgBox () Function to paste the desired code on the active sheet code module.

 With dobjClipboard
 .SetText Me .txtButtonsCode.Text
 .PutInClipboard

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

589

 'Warn the user how to paste button codes on sheet module
 strMsg = "To create the database buttons code, select the worksheet code module "
 strMsg = strMsg & "place the text cursor behind the 'Option Explicit' instruction "
 strMsg = strMsg & "and press Ctrl+V to paste!"
 MsgBox strMsg, vbInformation, "WARNING: How to create buttons code!"
 End With
 End Sub

 To understand this trick, you must know the following:

• The DataObject object has a rich object model, offering different methods to deal
with different clipboard data (such as text, images, sound, and so on). Google it on
the MSDN site to inspect its object interface.

• The frmDBProperties UserForm has the (not so) hidden txtButtonsCode TextBox
on the right of its Multipage control. While the UserForm is in design mode, drag
its right border to the right to show it (Figure 8-29). The txtButtonsCode TextBox
has its Multiline property set to True , and its Value property contains all the code
needed to create a new instance of the SheetDBEngine class module and execute all
the code needed by the worksheet-created Button controls.

 Figure 8-29. Drag the frmDBProperties right border to the right to reveal the txtButtonsCode TextBox, which
has its Multiline property set to True and its Value property defined to the code needed to implement the
SheetDBEngine class and execute basic database procedures: save, delete, and show records

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

590

 ■ Attention VBA calls extensibility the ability to modify its projects by writing code inside its IDE. This is done
by setting a reference to the Microsoft Visual Basic for Applications Extensibility 5.3 (or higher) library (using
the VBA Tools ➤ Reference menu option). Since many VBA-based viruses propagate and execute themselves
by creating or modifying VBA code, most virus scanners may automatically and without confirmation delete
 Microsoft Excel .xlsm macro-enabled workbooks, which reference the VBAProject object. The method
described here (storing the code inside a text box, copying it to the clipboard, and informing the user to paste it
inside the code module) is secure, does not need to use extensibility, and will not be caught by virus scanner.

 That is why frmDBPRoperties changes its Width property on the Initialize() event (to hide
 txtButtonsCode) and asks the user to click the worksheet code module and press Ctr+V to create the code
that will set the database engine and make the three control buttons work, when the wizard finishes its
activities (Figure 8-30).

 Figure 8-30. This is the warning message sent by the frmDBProperties UserForm when it finishes
implementing the database storage system inside the active sheet. It asks the user to select the active sheet code
module and press Ctrl+V to create the code that will start and implement the worksheet record control

 Supposing that you have used the Sheet1 worksheet from the frmDBProperties _SheetDBEngine.xlsm
macro-enabled workbook and defined the frmDBProperties UserForm using the same values exhibited in
Figure 8-28 , the database will be created at row 23 and will look like Figure 8-31 .

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

591

 Pasting the Database Code

 To finish the worksheet database implementation, press Alt+F11 to show the Visual Basic IDE, select the
 Sheet1 code module in the Project Explorer tree , position the cursor below the Option Explicit statement,
and press Ctrl+V. The code needed to run the SheetDBEngine class will be pasted in the worksheet module
(Figure 8-32).

 Figure 8-31. This is the data validation list created at cell D2 with the “New Record” inserted as the first item
and the database properties stored in cells A23:B36. Note that the “New Record” name is stored in cell D23,
where the SavedRecords range name begins

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

592

 Understanding the Worksheet Database Code
 The database code proposed by frmDBProperties has two parts.

• Normal code that belongs to the sheet code module

• Commented code that must be selected, cut, and pasted into a standard module

 The worksheet normal code is the first code module part (press Ctrl+Home in the code module to go to
its beginning, as shown in Figure 8-33).

 Figure 8-32. Select the Sheet1 code module and press Ctrl+V to paste all the code needed to start and run the
SheetDBEngine class module

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

593

 It declares a WithEvents mdb as SheetDBEngine object variable, allowing you to capture all
database class events fired. To instantiate the class on any worksheet procedure, the code uses Function
SetDatabase() , which is called from two worksheet events: Worksheet_ Activate () and Worksheet_
SelectionChange () .

 As explained in Chapter 4 , the Worksheet_ Activate () event fires whenever the sheet tab is selected. It
does not fire when the workbook opens and the sheet tab has the focus. The Worksheet_SelectionChange ()
event fires whenever another worksheet cell is selected.

 Dim WithEvents mdb As SheetDBEngine

 Public Function SetDatabase()
 If mdb Is Nothing Then
 Set mdb = New SheetDBEngine
 End If
 End Function

 Public Sub Worksheet_ Activate ()
 Call SetDatabase
 Application .Calculate
 End Sub

 Figure 8-33. This is part of the worksheet code that frmDBProperties copied to the clipboard. It has all the
code needed to start the database engine and execute its basic procedures: show a new record, save and
delete records, show the record count, record the position, and copy and paste record data between worksheet
databases

http://dx.doi.org/10.1007/978-1-4842-2205-8_4

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

594

 Private Sub Worksheet_SelectionChange (ByVal Target As Range)
 Call SetDatabase
 End Sub

 These instructions will guarantee that a new SheetDBEngine instance will be set to the mdb object
variable whenever the sheet tab is selected or when any of its input cells receive the focus. Since the
 Worksheet_ Activate () event does not fire when the workbook is opened for the worksheet that has the
focus, there is a chance that the user will click any worksheet control button (like New, Save and so on). So,
every other procedure calls SetDatabase() to instantiate the database class.

 ■ Attention Note that the SetDatabase() code first verifies whether the object variable mdb is Nothing to
not destroy it and instantiate it again. This will guarantee that it will be set only once.

 The other three procedures that show a new record or save or delete the current record call
 SheetDBEngine class methods that allow these operations. For example, Sub Save() calls the
 SheetDBEngine.SaveAs() method, and Sub DeleteRecord () calls the SheetDBEngine.Delete method.

 Public Function Save (Optional strRecord As String, Optional bolNewRecord As Boolean) As
Boolean
 Call SetDatabase
 If Len(strRecord) Then
 'Silently save the record
 Save = mdb.Save(strRecord, bolNewRecord)
 Else
 Save = mdb.SaveAs
 End If
 End Function

 Public Function DeleteRecord (Optional strRecord As String, Optional bolKeepInMyRecipes As
Boolean)
 Call SetDatabase
 If Len(strRecord) Then
 'Silently delete the record
 mdb. DeleteRecord (strRecord)
 Else
 mdb.Delete
 End If
 End Function

 There are also five other “Move” procedures to show a desired record, using the New Button control or
the data navigation Button controls. To show the first record, Sub MoveFirst() calls SheetDBEngine. ShowR
ecord (FirstRec) , while Sub MoveNext() calls SheetDBEngine. ShowRecord (NewRec) to show a new record.

 Public Function MoveFirst()
 Call SetDatabase
 mdb. ShowRecord (FirstRec)
 End Function
 ...
 Sub MoveNew()

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

595

 Call SetDatabase
 mdb. ShowRecord (NewRec)
 End Sub

 Below the last “Move” method you will find the RecordCount () and RecordPosition() procedures,
which use the SheetDBEngine AbsolutePosition and RecordCount properties.

 Public Function RecordCount () As Long
 RecordCount = mdb. RecordCount
 End Function

 Public Function RecordPosition() As String
 Dim strPosition As String
 Dim lngPosition As Long

 lngPosition = mdb. AbsolutePosition

 If lngPosition = 0 Then
 strPosition = "New record"
 Else
 strPosition = lngPosition & " of " & mdb. RecordCount
 End If
 RecordPosition = strPosition
 End Function

 Then you find the CopyRecord () , PasteRecord () , and SortDatabase() procedures that implement
the associated SheetDBEngine methods.

 Public Function CopyRecord (strRecord As String, rgOneSide As Range, rgManySide As Range) As
Boolean
 Call SetDatabase
 CopyRecord = mdb. CopyRecord (strRecord, rgOneSide, rgManySide)
 End Function

 Public Function PasteRecord (strRecord As String, rgOneSide As Range, rgManySide As Range, _
 Optional PasteAsNewRecord As Boolean) As Boolean
 Call SetDatabase
 PasteRecord = mdb. PasteRecord (strRecord, rgOneSide, rgManySide, PasteAsNewRecord)
 End Function

 Public Function SortDatabase()
 Call SetDatabase
 mdb.Sort
 End Function

 Creating the Standard Module

 The commented code part begins after the RecordPosition() procedure, with commented directions
explaining that you must create a standard module and cut, paste, and uncomment the code.

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

596

 ''---
 *** W A R N I N G ***
 ' Create a Standard Module (Insert, Module), copy all commented code bellow,
 ' paste inside the new module and uncomment the code
 ' Tip: To uncomment, use VBA Edit Toots (right click VBA Toolbar and choose Edit)
 '---

 'Public Sub Save()
 ' Dim obj As Object
 '
 ' Set obj = ActiveSheet
 ' obj.Save
 'End Sub
 ...
 'Public Function RecordPosition() As String
 ' Dim obj As Object
 '
 ' Set obj = ActiveSheet
 ' On Error Resume Next
 ' Application .Volatile
 ' RecordPosition = obj.RecordPosition
 'End Function

 Follow these instructions:

 1. Put the mouse cursor to the left of the 'Public Sub Save() instruction
(including the comment quote) and press Ctrl+Shift+End to select all
commented code.

 2. Press Ctrl+X to cut it from the sheet code module.

 3. Use the VBA Insert ➤ Module menu command to insert a new standard module
(Module 1).

 4. Press Ctrl+V to paste the commented code.

 To easily uncomment the code inside the new standard module, use the VBA Edit tools:

 1. Right -click the VBA toolbar and choose Edit. The Edit toolbar will appear.

 2. Select all commented code and click the Uncomment Block tool.

 3. Use VBA Compile VBAProject menu command to compile the code.

 4. Rename Module 1 to basButton controls.

 Now select the Sheet1 worksheet and force the SheetDBEngine to start using one of these two methods:

• Change the input cell focus (this will fire the Worksheet_SelectionChange () event)

• Select the Sheet2 tab and reselect the Sheet1 tab (this will fire Worksheet_ Activate ()
event)

 The Sheet1 database engine is already working. Try inserting, selecting, and deleting records!

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

597

 Exhibiting Database Properties
 Once you have defined the worksheet database properties, the next time you load the frmDBProperties
 UserForm , it will show its sixth tabControl Page with the Database Properties wizard resumed, offering just
two CommandButton s: one to close the UserForm and another to remove the database structure (Figure 8-34).

 ■ Attention To reopen the frmDBProperties interface, click its code or the UserForm design and press the
F5 function key.

 Figure 8-34. This is how frmDBProperties UserForm is presented to the user after the active worksheet has
implemented the database properties system

 All database properties are locked and cannot be edited. This happens on the frmDBProperties _
Initialize() event, which verifies the active sheet has a local scope dbDataValidationList range name
and, if it does, loads each range name property into the appropriate UserForm controls.

 Private Sub UserForm_Initialize ()
 Const conWhite = &HFFFFFF
 ...
 Set rg = Range(strNameScope & "dbDataValidationList")
 If rg Is Nothing Then
 ...
 Me .cmdDefine.Caption = " Close "
 Me .cmdDefine.Accelerator = "C"
 Me .cmdDefine.Enabled = True
 Me .cmdCancel.Caption = "Remove"
 Me .cmdCancel.Accelerator = "R"
 Me .cmdPrevious.Visible = False

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

598

 Me .cmdNext.Visible = False
 Me .txtdbRecordName1.Locked = True
 Me .txtdbRecordName1.BackColor = conWhite
 Me .txtdbManySidePrefix.Locked = True
 Me .txtdbManySidePrefix.BackColor = conWhite

 'Update UserForm TextBoxes
 For intI = 1 To 15
 strName = Choose(intI, "dbRecordName", _
 "dbDataValidationList", _
 "dbSavedRecords", _
 "dbRecordsFirstRow", _
 "dbOneSide", _
 "dbOneSideColumnsCount", _
 "dbManySide1", _
 "dbManySide2", _
 "dbManySide3", _
 "dbManySide4", _
 "dbManySideFirstColumn", _
 "dbManySideColumnsCount", _
 "dbManySideRowsCount", _
 "dbManySidePrefix", _
 "dbRangeOffset")
 Me ("txt" & strName) = ws.Range(strNameScope & strName)
 Next

 Call CalculateManySideRecords
 Me .tabControl.Value = Me .tabControl.Pages.Count - 1
 End If
 End Sub

 The first instructions just change cmdDefine and cmdCancel Caption and Accelerator properties (the
 Accelerator property defines the Alt+Character key that fires each CommandButton Click() event; VBA
automatically underlines it in the control’s Caption property) and set cmdPrevious and cmdNext Visible =
False , so the tabControl Page cannot be changed.

 Me .cmdDefine.Caption = " Close "
 Me .cmdDefine. Accelerator = "C"
 Me .cmdDefine.Enabled = True
 Me .cmdCancel.Caption = "Remove"
 Me .cmdCancel. Accelerator = "R"
 Me .cmdPrevious. Visible = False
 Me .cmdNext. Visible = False

 The next instructions change the txtdbRecordName1 and txtdbManySidePrefix TextBox ’s Locked
and BackColor properties, so the user cannot change its contents (Figure 8-27 shows both controls with a
light yellow background to call attention to the fact that they can change their contents before creating the
database system). Note that the code declares Constant conWhite = &HFFFFFF (which is the hexadecimal
representation for white) to avoid magic numbers appearing in the code.

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

599

 Me .txtdbRecordName1.Locked = True
 Me .txtdbRecordName1.BackColor = conWhite
 Me .txtdbManySidePrefix.Locked = True
 Me .txtdbManySidePrefix.BackColor = conWhite

 A For...Next loop is then used to generate the VBA Choose() Function argument, storing in the
 strName String variable a different range name at each loop passage, which is used to update the TextBox
that has the same range name prefixed by txt .

 'Update UserForm TextBoxes
 For intI = 1 To 15
 strName = Choose(intI, "dbRecordName", _
 ...
 "dbRangeOffset")
 Me ("txt" & strName) = ws.Range(strNameScope & strName)
 Next

 Once all range names have been updated, it calls the CalculateManySideRecords () procedure to
show how many records can be saved in worksheet rows and finally selects the last tabControl Page ,
changing the Value property to Pages.Count – 1 (since the Page value is 0-based).

 Call CalculateManySideRecords
 Me .tabControl. Value = Me .tabControl.Pages.Count – 1

 Removing Database Properties
 Note in Figure 8-33 that once a database system has been defined on the active worksheet, whenever you
open frmDBProperties , it will change the cmdCancel.Caption property to Remove to allow the user to
remove the database storage system from the active sheet. This is the cmdCancel_Click() event:

 Private Sub cmdCancel_Click()
 Dim strMsg As String
 Dim strTitle As String

 If Me .cmdCancel.Caption = "Remove" Then
 strMsg = "Do you really want to remove this Database structure?" & vbCrLf & vbCrLf
 strMsg = strMsg & " Just database properties will be removed. " & vbCrLf
 strMsg = strMsg & " Existing records will remain on the worksheet." & vbCrLf &
vbCrLf
 strMsg = strMsg & "(This operation can be undone if close the workbook without

saving it!)"
 strTitle = "Delete Database Properties?"
 If MsgBox (strMsg, vbYesNo + vbDefaultButton2 + vbCritical, strTitle) = vbYes Then
 'Remove Database properties
 Call SetDataBase(RemoveDatabase)
 End If
 End If
 Unload Me
 End Sub

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

600

 Note that if cmdCancel.Caption = "Remove" , it will warn the user that all database properties will be
removed, and the only way to undo this operation is by closing the workbook without saving it (Figure 8-35).
And once the user clicks Yes to confirm the database properties’ deletion, it will call the SetDataBase()
procedure, passing as an argument the RemoveDatabase DataOperation enumerator.

 Figure 8-35. Before all database properties are removed from the active worksheet, frmDBProperties will
issue a MsgBox () warning to the user. As the message explains, once it is removed, the only way to undo the
operation is to close the workbook without saving it

 ■ Attention When frmDBProperties deletes the database structure, as explained by the MsgBox ()
function, all database properties and associated range names will be removed from the worksheet, but the
 SavedRecords range name containing all records names, including the one-side and the many-side records,
will be preserved, allowing the user to recover its records in case of database failure.

 Note that although the database engine structure has been removed, the sheet code still operates. You must
remove it manually to unload the SheetDBEngine class from memory.

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

601

 Using the SheetDBEngine Class and frmDBProperties
 The frmDBProperties _SheetDBEngine.xlsm Excel macro-enabled workbook offers on its Sheet1 ,
 Sheet2 , and Sheet3 sheet tabs different one-to-many database relationships so you can practice how
to use the frmDBProperties UserForm . Each sheet tab has its own set of range names to allow an easier
selection of what cells must be defined as the one-side and many-side records. Remember that you can
use many-side records’ Relation 1, Relation 2, Relation 3, to Relation 4 to save data in the same way it is
presented to the user.

 To use the SheetDBEngine class along with the frmDBProperties in other worksheet applications
that need to define a database storage system, you will need to copy insert both files into the worksheet
application VBA project, using one of these two methods:

• Extract from the Chapter08.zip files the SheetDBEngine.cls , frmDBProperties .frm ,
and frmDBProperties.frx files, and use the VBA File ➤ Import menu command.

• Open the frmDBProperties _SheetDBEngine.xlsm macro-enabled workbook,
open the desired worksheet application, and using the VBA Explorer tree, drag the
 frmDBProperties UserForm and SheetDBEngine classes from one VBA project to
another.

 Once the worksheet application has both objects (the SheetDBEngine class and the frmDBProperties
 UserForm), double-click the frmDBProperties in the VBA Project Explorer and press the F5 function key to
start it in the desired worksheet application where the database system must be implemented.

 Conclusion
 In this chapter, you learned how to use a VBA class module to encapsulate complex code that can be
easily reused by other VBA projects. Such worksheet applications can be compared to an n -tiers database
application, where each tier does a specific task.

• The first tier is the Excel worksheet that is responsible for doing the interface
calculations (producing the Nutrition Facts label and nutrient analysis of any recipe).

• The second tier is the worksheet code module, which interacts with the class module
to produce the desired functionality to deal with recipe records.

• The third tier is the class database code, which is responsible for managing the
record set.

 You can improve the class object interface using a set of properties, methods, and events carefully
planned to make it resemble other popular database systems, hence improving its usability regarding
its VBA implementation. You can also learn how to use a UserForm with a Multipage control to create a
worksheet database wizard to set up the database class properties so it can be easily implemented in any
worksheet application that need to store records on its unused rows.

 Chapter Summary
 In this chapter, you learned about the following:

• That using a class module you can easily encapsulate complex, lengthy code into a
single, reusable object

• How to instantiate the class module so it can be reused by many worksheet tabs on
the same workbook

CHAPTER 8 ■ CREATING AND SETTING A WORKSHEET DATABASE CLASS

602

• How to improve the database class using a set of Public variables and procedures
to create its properties and methods and how to expose events that make the class
more useful to the user needs

• How to use a set of Button controls to interact with the database class, using
a Standard module with Public Sub procedures that call generic worksheet
procedures to execute database saves, deletions, and move record operations

• How to create a database wizard to set up the database class interface, using a
 Multipage control

 The next chapter will show how you can create a UserForm interface to manage your worksheet
database records such as how to delete, save, export, and import them between different worksheet
applications that share the same database engine structure.

603© Flavio Morgado 2016
F. Morgado, Programming Excel with VBA, DOI 10.1007/978-1-4842-2205-8_9

 CHAPTER 9

 Exchanging Data Between Excel
Applications

 Many worksheet applications base your analysis on external data. This is the case with USDA Food
Composer .xlsm and any other nutritional worksheet application solution that uses the ARS-USDA nutrient
tables as primary data source. They all used some version of the Standard Reference (SR) file at the time they
were built, which must be updated when another SR version becomes available.

 On the other hand, as you begin to use the SheetDBEngine worksheet database class to store worksheet
data as records, improving the use of your solution, chances are that you will need to create a way to
exchange worksheet database records between different worksheet applications that reside in the same or
different workbook file.

 In this chapter, you will learn how to use VBA to exchange worksheet data between different
applications, using code to update worksheet data sources, and how to exchange worksheet database
records managed by the SheetDBEngine class between different sheet tabs. You can obtain all files and
procedure code in this chapter by downloading the Chapter 09.zip and Chapter09-1.zip files from
the book’s Apress.com product page, located at www.apress.com/9781484222041 , or from http://
ProgrammingExcelWithVBA.4shared.com .

 Updating the USDA Worksheet
 Every year the United States Department of Agriculture (USDA) Agricultural Research Services (ARS)
releases a new version of the USDA National Nutrient Database for Standard Reference file, with full versions
using ASCII files or a single Microsoft Access database and abbreviated versions using either an ASCII file or
a Microsoft Excel worksheet.

 Besides this information, the ARS home page publishes the USDA Database for the Flavonoid
Content of Selected Foods, which in November 2015 was on Release 3.2, also available as a Microsoft
Access database file.

http://www.apress.com/9781484222041
http://programmingexcelwithvba.4shared.com/
http://programmingexcelwithvba.4shared.com/

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

604

 Using the USDA Food List Creator Application
 To deal with these two different sources of nutrient data, I developed a Microsoft Access application called
 USDA Food List Creator.accdb , which joins both databases to produce a complete USDA-ARS worksheet
food table. It presents items by 100g of each food item, by the weight of its first available common measure,
or by all available food item common measures , also producing an independent worksheet with all food
item common measures available in each USDA-ARS SRxx.accdb and Flav_Rxx-x.accbd file release (where
 xx indicates the release version).

 ■ Attention You can download a copy of the USDA Food List Creator.accdb file by extracting it from
 Chapter09-1.zip , along with a copy of SR28.accbd (the latest SR file for nutrient content published in 2015)
and FLAV_R03-2.ACCDB (the latest Flavonoid content for selected food items, also published in 2015). The
application expects to find the nutrient files in folder C\Dietary Guide to Excel Applications\SR28 , which
is the default extraction folder.

 To open the USDA Food Item Creator.accdb file, you will need Microsoft Access 2007 or newer.
The application will show a splash screen and the Create USDA Food Tables – All Nutrients
(Figure 9-1) form.

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

605

 Figure 9-1. This is the USDA Food Item Creator accdb Microsoft Access application screen. Use it to create
new Microsoft Excel worksheet files for every new SRxx.accdb and Flav_Rxx-x.accbd file release

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

606

 The USDA Food List Creator.accdb Microsoft Access application allows you to do the following:

• Click the “Select databases” button to select the SRxx.accdb and Flav_Rxx-x.accdb
files that must be used to generate the desired USDA worksheet.

• Select the USDA worksheet nutrient table that must be created as an Excel 2003 .xls
file based on three different food item weights for the nutrient content.

• By 100g of each food item

• By the weight of the first food item common measure (default)

• By the weight of all food item common measures

• Create the USDACommonMeasures worksheet that offers all food item common
measures and their weights, without any nutrient information

• Use its three CheckBox controls to allow the following:

• Include the Flavonoids nutrients information in the target USDA worksheet

• Show the created Microsoft Access table with all food items and nutrient
information available, used to export the results to Microsoft Excel format

• Open Microsoft Excel to show the USDA food table (or USDACommonMeasures
table) created by the application

 The USDA worksheet generation uses a complex Microsoft Access query that is manipulated by a VBA
code procedure that may take some minutes to complete. Please relax and wait for the application to finish.
The workbook created by the application will be stored in the same folder where the selected SRxx.accdb file
resides.

 ■ Attention You can use the USDA Food List Creator.accdb application to create USDA food tables based
on earlier SRxx.mdb files that use the Microsoft Access 2003 database file format.

 Inside the Chapter09-1.zip file you will also find copies of the sr28_NutrientsPerFirstCommonMeasure.xls
and sr28_FoodItemsCommonMeasures.xls files, if you do not have Microsoft Access 2007 or newer versions
installed on your computer.

 The USDA Worksheet Updating Method
 The USDA worksheet generated by the USDA Food List Creator.accdb Microsoft Access application creates
a food table with an identical nutrient column sequence between SRxx releases; new nutrients that may
appear in new SR versions (if any) will be added as new USDA worksheet table columns.

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

607

 To manually change the current USDA worksheet version of any worksheet application to another USDA
version, you must follow these steps:

 1. Open the Excel workbook that has the USDA worksheet with the SR version you
want to update (the current SR version workbook).

 2. Open the Excel workbook that has the new USDA worksheet associated to the
desired SR release (the new SR version workbook).

 3. Copy all food items from the current SR version workbook My_Recipes range
name to the empty My_Recipes range name of the new SR version workbook.

 4. In the new SR version workbook USDA worksheet, resize both the My_Recipes and
 USDA range names to reflect the new My_Recipes food category items.

 5. Delete in the current SR version workbook the USDA worksheet with the old SR
version.

 6. Delete in the current SR version workbook all Name objects that now show a
 #REF! error on the Name. RefersTo property (since the USDA worksheet was
deleted).

 7. Move from the new SR version workbook to current the SR version workbook the
new, updated USDA worksheet, containing all My_Recipes range name food items.

 8. If necessary, delete from the current SR version workbook the
 USDACommonMeasure worksheet and update it for a new SR version.

 9. Save the application with the USDA worksheet associated to the new SR release.

 All these steps must be executed in this order to produce the desired USDA SR updating. The good news
is that you can surely implement them using VBA code.

 Using the USDA Food Composer _SheetDBEnginebasUSDA.xlsm
Application
 The USDA Food Composer _SheetDBEnginebasUSDA.xlsm macro-enabled workbook is associated to USDA
version SR27 released in August 2014 and shows the current USDA SR version in the bottom-left corner
(Figure 9-2).

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

608

 ■ Attention Right -click the My Recipes sheet tab, select Unhide to unhide the USDA and/or
 USDACommonMeasures worksheets, and see that both have an SR27 version.

 To show the current USDA SR version in the user interface, you use Public Function USDAVersion ()
from the basUSDA standard module, which executes this simple code:

 Public Function USDAVersion () As String
 Application . Volatile
 USDAVersion = Left (Thisworkbook. Worksheets ("USDA").Range("A1"), 4)
 End Function

 Note that function USDAVersion () was tagged as Application .Volatile , meaning that it will be
evaluated whenever the workbook calculates and that it just concatenates the words USDA version with the
first four characters from the ThisWorkbook USDA worksheet’s cell A1 .

 Figure 9-2. This is the USDA Food Composer _SheetDBEnginebasUSDA.xlsm workbook, which shows the
current USDA SR version in cell B28, using Function USDAVersion () from the basUSDA standard module

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

609

 Assuming that you are extracting files sr28_NutrientsPerFirstCommonMeasure.xls and sr28_
FoodItemsCommonMeasures.xls to the same folder, to update the USDA worksheet to the SR28 nutrients
version, click the UpdateUSDA ControlButton , which will do the following:

 1. Show an Open File dialog to select the folder workbook that has the USDA worksheet
nutrient table with the desired SRxx update source (only .xls Excel 2003 files that
begin with SR will be shown, in other words, the ones created with the USDA Food
List Creator.accbd Microsoft Access application, as shown in Figure 9-3).

 ■ Attention You must use an srxx_NutrientsPerFirstCommonMeasure.xls workbook, which shows
nutrient data based on the weight of the first food item common measure.

 Figure 9-3. When you click the My Recipes Update USDA control button, the code asks you to select an .xls
Excel 2003 file that begins with SR

 Figure 9-4. After selecting the desired srXX_NutrientsPerFirstCommonMeasure.xls workbook, confirm that
you want to update the current USDA worksheet to the desired SR version

 2. A MsgBox () warning will ask you to confirm that you want to update the current
 USDA worksheet to the selected SRxx version (Figure 9-4).

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

610

 3. If the SRxx_FoodItemsCommonMeasures.xls file was not found in the selected
folder, the procedure will show again the Open File dialog so you can try to select it.

 4. If the operation succeeds, a MsgBox () message will confirm whether USDA and/
or the USDACommonMeasures worksheets were updated to the desired SR version
(and cell B28 will display the current SRxx version used by the application
(Figure 9-5). After you dismiss it, the workbook is automatically saved.

 Figure 9-6. While the USDA worksheet is updated, the Excel status bar shows the “Updating USDA
worksheet” text, followed by the percent completed and a progress bar

 Figure 9-5. When the updating process ends, a MsgBox () will confirm what has been updated (USDA
worksheet, USDACommonMeasures worksheet, or both)

 Figure 9-6 shows this process in action. Note that while the operation is conducted, the Excel status bar
shows the updating USDA worksheet along with the percentage accomplished and a progress bar.

 The My Recipes worksheet Update USDA control button is associated to Public Function UpdateUSDA ()
from the basUSDA standard module, which executes this fully commented code:

 Public Function UpdateUSDA ()
 Dim wb As Workbook
 Dim wbUSDA As Workbook

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

611

 Dim ws As Worksheet
 Dim wsUSDA As Worksheet
 Dim rgMyRecipes As Range
 Dim rgUSDA As Range
 Dim nm As Name
 Dim strNewSRVersion As String
 Dim strFileUSDA As String
 Dim strFileCommonMsrs As String
 Dim strMsg As String
 Dim lngRows As Long

 strFileUSDA = SelectUSDAFile (strNewSRVersion)
 If Len(strFileUSDA) Then
 SetScreenEventsRecalc (False)
 Call UpdateStatusBar (0.33, , "Updating USDA worksheet")
 Set wb = ThisWorkbook
 Set ws = Worksheets ("USDA")
 Set wbUSDA = Application .Workbooks. Open (strFileUSDA, False)
 Set wsUSDA = wbUSDA. Worksheets ("USDA")

 'Copy and paste current My_recipes to new USDA worksheet
 ws.Range("My_Recipes").CurrentRegion.Copy
 wsUSDA.Range("My_Recipes").PasteSpecial xlPasteValues

 'Rebuild "My_Recipes" and "USDA" range names on new USDA Worksheet
 Set rgMyRecipes = wsUSDA.Range("My_Recipes")
 wsUSDA.Range("My_Recipes"). Resize (rgMyRecipes.Rows.Count + 1, 1).Name = "My_

Recipes"

 Set rgUSDA = wsUSDA.Range("USDA")
 lngRows = rgUSDA.Rows.Count + rgMyRecipes.Rows.Count - 1
 rgUSDA. Resize (lngRows, rgUSDA.Columns.Count).Name = "USDA"

 'Silently delete worksheets from this workbook
 Application .DisplayAlerts = False
 'Make worksheet visible before delete it to avoid Excel bug when save

workbook
 ws.Visible = True
 wb. Worksheets ("USDA").Delete
 'Search and delete invalid range names from this workbook
 For Each nm In wb. Names
 If InStr (nm. RefersTo , "#REF!") > 0 Then
 nm.Delete
 End If
 Next

 'Move new USDA SR worksheet before USDACommonMeasures and hide it
 wbUSDA. Worksheets ("USDA").Move wb. Worksheets ("USDACommonMeasures")
 wb. Worksheets ("USDA").Visible = False

 strMsg = "USDA worksheet updated to Version " & strNewSRVersion & vbCrLf

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

612

 strMsg = strMsg & "from file '" & Mid (strFileUSDA, InStrRev (strFileUSDA,
"\") + 1) & "';"

 strMsg = strMsg & vbCrLf & vbCrLf
 Call UpdateStatusBar (0.66, , "Updating USDA worksheet")

 'Now try to update USDACommonMeasures worksheet: search it on same path
 strFileCommonMsrs = Dir (Left (strFileUSDA, InStrRev (strFileUSDA, "\")) &

"SR??_FoodItemsCommonMeasures.xls")
 If Len(strFileCommonMsrs) = 0 Then
 'SR??_FoodItemCommonMeasures not found. Ask to select it!
 strFileCommonMsrs = Application .GetOpenFilename("USDA workbooks (*.xls),

SR*.xls", ,
 "Select USDACommonMeasures SR worksheet", , False)
 End If

 If InStr (1, strFileCommonMsrs, "FoodItemsCommonMeasures") Then
 'SRxx_USDACommonMeasures.xls found or selected. Update

USDACommonMeasures!
 wb. Worksheets ("USDACommonMeasures").Visible = True
 wb. Worksheets ("USDACommonMeasures").Delete
 Set wbUSDA = Application .Workbooks. Open (strFileCommonMsrs, False)
 wbUSDA. Worksheets ("USDACommonMeasures").Move , wb. Worksheets (“USDA”)
 wb. Worksheets ("USDACommonMeasures").Visible = False

 strFileCommonMsrs = Mid (strFileCommonMsrs, InStrRev (strFileCommonMsrs,
"\") + 1)

 strMsg = strMsg & "USDACommonMeasures worksheet updated to Version " &
 Left (strFileCommonMsrs, 4) & vbCrLf

 strMsg = strMsg & "from file '" & strFileCommonMsrs & "'."
 End If
 Call UpdateStatusBar (1, , "Updating USDA worksheet")
 Application .DisplayAlerts = True
 SetScreenEventsRecalc (True)

 MsgBox strMsg, vbInformation, "Update successfully to Version " & strNewSRVersion
 Call UpdateStatusBar (0)
 ThisWorkbook.Save
 End If
 End Function

 Getting the SR Workbook File Name and Validating the SR Update
 After declaring the variables, Function UpdateUSDA () calls SelectUSDAFile () to allow the selection of
the new USDA SR version workbook. Note that it passes the strNewVersion String variable as a function
argument.

 Public Function UpdateUSDA ()
 ...
 strFile = SelectUSDAFile (strNewSRVersion)

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

613

 The Private Function SelectUSDAFile () procedure from basUSDA executes this code:

 Private Function SelectUSDAFile (strNewSRVersion As String) As String
 Dim strFile As String
 Dim strSRVersion As String
 Dim strMsg As String

 'Get current USDA SR version on USDA A1 cell
 strSRVersion = Left (Worksheets ("USDA").Range("A1").Value, 4)

 'Select USDA workbook
 strFile = Application .GetOpenFilename("USDA workbooks (*.xls), SR*.xls", , "Select USDA

SR worksheet", , False)
 If strFile <> "False" Then
 'Get USDA version of selected file from file name
 strNewSRVersion = Mid (strFile, InStr (1, strFile, "SR"), 4)

 If strNewSRVersion = strSRVersion Then
 'Same USDA version
 strMsg = "The SR version you are trying to update (" & strNewSRVersion & _
 ") is the same version already in use." & vbCrLf
 strMsg = strMsg & "Update anyway?"
 ElseIf Mid (strNewSRVersion, 3, 2) < Mid (strSRVersion, 3, 2) Then
 'Old SR version
 strMsg = "The SR version you are trying to update (" & strNewSRVersion & _
 ") is older than current version (" & strSRVersion & ")."
 strMsg = strMsg & "Update anyway?"
 Else
 'New SR version
 strMsg = "Update current " & strSRVersion & " food table to USDA " &

strNewSRVersion & " food table?"
 End If

 If MsgBox (strMsg, vbYesNo + vbDefaultButton2 + vbQuestion, "Update USDA worksheet?")
= vbYes Then

 SelectUSDAFile = strFile
 End If
 End If
 End Function

 After getting the current USDA worksheet version from the USDA worksheet’s cell A1 , it uses the
 Application . GetOpenFileName method to show an Open File dialog and allow the selection of any Excel
 .xls workbook that begins with SR (note the filter SR*.xls used on the fourth method argument).

 Private Function SelectUSDAFile (strFileSRVersion As String) As String
 ...
 'Get current USDA SR version on USDA A1 cell
 strSRVersion = Left (Worksheets (" USDA ").Range(" A1 "), 4)

 'Select USDA workbook
 strFile = Application . GetOpenFilename ("USDA workbooks (*.xls), SR*.xls ", , "Select USDA
SR worksheet", , False)

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

614

 If the Open File dialog is closed without any file selected, strFile = False , and the procedure ends,
returning an empty string to Function UpdateUSDA () , which also ends doing nothing.

...

...

...

 But if any .xls file beginning with the SR characters was selected (the ones created by the USDA Food
List Creator.accbd Microsoft Access application), chances are that a new USDA worksheet of the desired SR
version was selected. So, process it, getting the file SR version to verify whether the selected file has the same
application SR current version, and produce a string message.

 'Get USDA version of selected file from file name
 strNewSRVersion = Mid (strFile, InStr (1, strFile, "SR"), 4)

 If strNewSRVersion = strSRVersion Then
 'Same USDA version
 strMsg = "The SR version you are trying to update (" & strNewSRVersion & _")
 is the same version already in use." & vbCrLf
 strMsg = strMsg & "Update anyway?"

 Verify with the VBA Mid () function if the new SR version number is smaller than the current one,
configuring a downgrade update.

 ElseIf Mid (strNewSRVersion, 3, 2) < Mid (strSRVersion, 3, 2) Then
 'Old SR version
 strMsg = "The SR version you are trying to update (" & strNewSRVersion & _")
 is older than current version (" & strSRVersion & ")."
 strMsg = strMsg & "Update anyway?"

 If not, the update is an upgrade. Issue a MsgBox () to the user and exit Function SelectUSDAFile () ,
which must return the path to the selected file (if any).

 Else
 'New SR version
 strMsg = "Update current " & strSRVersion & " food table to USDA " & strNewSRVersion & "

food table?"
 End If

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

615

 If MsgBox (strMsg, vbYesNo + vbDefaultButton2 + vbQuestion, "Update USDA worksheet?")
= vbYes Then

 SelectUSDAFile = strFile
 End If
 End If
 End Function

 Processing the Selected USDA SR Version
 Once the desired file has been selected, it is time to set the stage to process it. This is made by first calling
 SetScreenEventsRecalc(False) to disable screen updates, events firing, and worksheet recalculations.
The Excel status bar is then updated by calling the Private Sub UpdateStatusBar () procedure, from the
 basStatusBar module.

 Public Function UpdateUSDA ()

 strFile = SelectUSDAFile (strNewSRVersion)
 If Len(strFile) Then
 SetScreenEventsRecalc (False)
 Call UpdateStatusBar (0.33, , "Updating USDA worksheet")

 ■ Attention Note that the UpdateStatusBar () procedure receives 0.33 on its first argument (33%) and
“Updating USDA worksheet” on its third argument, producing the results you see in Figure 9-6 .

 Updating the Excel Status Bar
 To show a message and a progress bar in the Excel status bar and Sub UpdateStatusBar () from the
 basStatusbar module, execute this code:

 Public Sub UpdateStatusBar (sngValue As Single, Optional sngTotal As Single = 1, Optional
strText As String)
 Dim strStatusBar As String
 Dim sngPercent As Single
 Const conNumChars = 50
 Const conFillChar = 9608 'try 9609 for spaced char
 Const conEmptyChar = 9620

 If Abs(sngValue) > Abs(sngTotal) Then sngTotal = Abs(sngValue)
 If sngValue > 0 Then
 sngPercent = Abs(sngValue / sngTotal)
 strStatusBar = IIf(Len(strText), strText & " ", "Processing ")& Format(sngPercent,

"0.0%") & " "
 strStatusBar = strStatusBar & String(Int(conNumChars * sngPercent),

ChrW(conFillChar))
 strStatusBar = strStatusBar & String(conNumChars - Int(conNumChars * sngPercent),

ChrW(conEmptyChar))

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

616

 End If
 Application .StatusBar = strStatusBar
 End Sub

 The procedure receives three arguments:

• sngValue : The current progress bar value

• sngTotal = 1: The default maximum value for sngTotal

• strText : The text string that must be shown on the Excel status bar

 It declares three constants: conNumChars = 50 to determine the progress bar length, and conFillChar
= 9608 and conEmptyChars = 9620 , which are Unicode code characters used to fill the progress bar with a
black or empty block character of same width.

 After avoiding that sngValue is greater than sngTotal , the procedure verifies whether sngValue = 0 . If
it is, the Excel status bar is cleaned up with an empty string (use UpdateStatusBar (0) to clean up the Excel
 status bar).

 Public Sub UpdateStatusBar (sngValue As Single, Optional sngTotal As Single = 1, Optional
strText As String)
 ...
 If Abs(sngValue) > Abs(sngTotal) Then sngTotal = Abs(sngValue)
 If sngValue > 0 Then
 ...
 End If
 Application .StatusBar = strStatusBar
 End Sub

 Whenever sngValue > 0 , it calculates the percentage to be shown by the status bar and uses it to define
the status bar text. Note that if the strText optional argument is not used, the default text will be processing
#.0% (the percentage amount is shown with one decimal).

 sngPercent = Abs(sngValue / sngTotal)
 strStatusBar = IIf(Len(strText), strText & " ", " Processing ")& Format(sngPercent,
"0.0%") & " "

 After the text is produced, it is concatenated with the number of conFillChars black block characters
that must be used to produce a progress bar of fixed length. To produce such a number of characters, it uses
the VBA String() function, which receives on its first argument the total number of characters (based on
the Int(conNumChars * sngPercent) value) and the character to be used to indicate the percentage amount
already processed (using the VBA ChrW() function).

 strStatusBar = strStatusBar & String (Int(conNumChars * sngPercent) ,
 ChrW(conFillChar))

 Since part of the conNumChars = 50 characters has been already filled with black blocks, fill the
remaining characters (conNumChars - Int(conNumChars * sngPercent)) with conSpaceChars characters
to produce the progress bar and update the Application .StatusBar property.

 strStatusBar = strStatusBar & String(conNumChars - Int(conNumChars * sngPercent) ,
 ChrW(conEmptyChar))
 End If
 Application .StatusBar = strStatusBar

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

617

 ■ Attention Use Function TestStatusBar() from basStatusBar in the VBA Immediate window to test
 Sub UpdateStatusBar () .

 Note that the procedure comment gives a tip for using conFillChar = 9609 , which produces a black block
that has a width smaller than conEmptyChar = 9620 . Try it with TestStatusBar() and note that the continue
status bar growth shown in Figure 9-6 will be changed by a black block sequence status bar.

 Updating the USDA Worksheet
 After the Excel status bar is defined, four object variables are instantiated to reference the Thisworkbook and
current USDA worksheet (wb and ws object variables) and the selected external workbook and USDA worksheet
(wbUSDA and wsUSDA object variables) that has the desired updated data.

 Set wb = ThisWorkbook
 Set ws = Worksheets ("USDA")
 Set wbUSDA = Application .Workbooks. Open (strFile, False)
 Set wsUSDA = wbUSDA. Worksheets ("USDA")

 Now it is time to copy all current My_Recipes range names between the current and the new USDA
worksheets. This is done by selecting all the My_Recipes data using the Range. CurrentRegion property,
followed by the Range. Copy method to copy the original data, and the Range. PasteSpecial xlPasteValues
method to paste it in the new USDA worksheet.

 'Copy and paste current My_recipes to new USDA worksheet
 ws.Range("My_Recipes").CurrentRegion.Copy
 wsUSDA.Range("My_Recipes").PasteSpecial xlPasteValues

 Once the new USDA worksheet receives all current My_Recipes data, you need to update its My_Recipes
and USDA range names to include all these newly inserted rows. This is done using Range. CurrentRegion to
define the new range dimensions based on all pasted rows and then applying Range. Resize method. The
 My_Recipes range name has just one column, so just its row number is resized.

 'Rebuild "My_Recipes" and "USDA" range names on new USDA Worksheet
 Set rgMyRecipes = wsUSDA.Range("My_Recipes"). CurrentRegion
 wsUSDA.Range("My_Recipes"). Resize (rgMyRecipes.Rows.Count + 1 , 1).Name = "My_Recipes"

 Now update the new USDA worksheet USDA range name to include all My_Recipes range name rows.

 Set rgUSDA = wsUSDA.Range("USDA")
 lngRows = rgUSDA.Rows.Count + rgMyRecipes.Rows.Count - 1
 rgUSDA. Resize (lngRows , rgUSDA.Columns.Count).Name = "USDA"

 With the new USDA worksheet correctly updated, delete the current USDA worksheet and move the new
 USDA worksheet to the workbook application. To avoid receiving Excel warning messages, the code sets
 Application .DisplayAlerts = False and then turns the current USDA worksheet visible before deleting it
from the Worksheet.Delete method.

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

618

 'Silently delete worksheets from this workbook
 Application .DisplayAlerts = False
 'Make worksheet visible before delete it to avoid Excel bug when save workbook
 ws.Visible = True
 wb. Worksheets ("USDA").Delete

 ■ Attention There is a bug on Microsoft Excel that will fire whenever you delete a hidden sheet tab and
try to save the workbook. To avoid such a bug, always show a hidden worksheet before deleting it from the
workbook.

 At this code point, the current workbook has lost its USDA worksheet, so all the range names that have
the Name. RefersTo property pointing to the USDA worksheet will show the Name. RefersTo = #REF! constant
error. So, the code removes them all by looping through the Workbook . Names collection. Note that the code
uses the VBA InStr () function to verify whether the Name. RefersTo property contains the #REF! constant
error.

 'Search and delete invalid range names from this workbook
 For Each nm In wb. Names
 If InStr (nm. RefersTo , "#REF!") > 0 Then
 nm.Delete
 End If
 Next

 The new, updated USDA worksheet is then moved from the external workbook to the current
workbook with the Worksheet.Move method, using the Before argument to insert it before the hidden
 USDACommonMeasures worksheet, and the moved USDA worksheet is hidden.

 'Move new USDA SR worksheet before USDACommonMeasures and hide it
 wbUSDA. Worksheets ("USDA"). Move wb. Worksheets (" USDACommonMeasures ")
 wb. Worksheets ("USDA"). Visible = False

 ■ Attention Since all SR*.xls files created by the USDA Food List Creator.accdb Microsoft Access
application have just one USDA worksheet inside them, when you move the USDA worksheet from the external
workbook to the current workbook application, the external workbook is automatically closed because it can’t
exist without at least one worksheet!

 Since the USDA worksheet has been correctly updated, the procedure creates a text string on the
 strMsg string variable to indicate the updating made and then updates the Excel status bar using the
 UpdateStatusBar () procedure.

 strMsg = "USDA worksheet updated to Version " & strNewSRVersion & vbCrLf
 strMsg = strMsg & "from file '" & Mid (strFileUSDA, InStrRev (strFileUSDA, "\") + 1) & "';"
 strMsg = strMsg & vbCrLf & vbCrLf
 Call UpdateStatusBar (0.66 , , "Updating USDA worksheet")

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

619

 Update the USDACommonMeasures Worksheet
 With the USDA worksheet already updated to the desired SRxx version, it is time to also update the
 USDACommonMeasures worksheet to the same version. The code tries to find it on the same path of the
selected file using the VBA Dir () function.

 'Now try to update USDACommonMeasures worksheet: search it on same path
 strFileCommonMsrs = Dir (Left (strFileUSDA, InStrRev (strFileUSDA, "\")) &
"SR??_FoodItemsCommonMeasures.xls")

 The VBA Dir () function has this syntax:

 Dir [(Pathname[, Attributes])]

 In this code:

 Pathname : This is optional; it is a string expression that specifies a file name, which
may include its folder and drive. A zero-length string ("") is returned if the path name
is not found.

 Attributes : This is optional; it is a constant or numeric expression whose sum
specifies the desired file attributes. If omitted, it returns files that match the path
name but have no attributes. The values allowed are as follows:

 VbNormal = 0 : Files with no attributes (the default)

 VbReadOnly = 1 : Read-only files in addition to files with no attributes

 VbHidden = 2 : Hidden files in addition to files with no attributes

 VbSystem = 4 : System files or files with no attributes

 VbVolume = 8 : Volume label; ignored if any other attribute is specified

 VbDirectory = 16 : Folders and files with no attributes

 VbAlias = 64 : File name is an alias; available only on the Macintosh

 Note that to use Dir () to find another file on the same file path, it extracts the strFileUSDA path using
the VBA Left () and InsStrRev() functions to extract the path from strFileUSDA and then concatenates
the SR??_FoodItemsCommonMeasures.xls string, which uses the ? local wildcard character to find any SR??_
FoodItemCommonMeasures.xls file on the same path.

 If the file was not found , the code uses the Application .GetOpenFilenName method to show an Open
Dialog asking the user to select the USDACommonMeasures workbook.

 If Len(strFileCommonMsrs) = 0 Then
 'SR??_FoodItemCommonMeasures not found. Ask to select it!
 strFileCommonMsrs = Application .GetOpenFilename("USDA workbooks (*.xls), SR*.xls", ,
 "Select USDACommonMeasures SR workbook", , False)
 End If

 The code uses InStr () to check whether strFileCommonMsrs has the FoodItemsCommonMeasures text
on the file name, as an indication that the desired file was selected. If it is true, it follows the same process
used to update the USDA worksheet: it turns the worksheet visible, deletes it, opens the new workbook, moves
the new USDACommonMeasures worksheet to the application workbook, and hides it.

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

620

 If InStr (1, strFileCommonMsrs, " FoodItemsCommonMeasures ") Then
 'SRxx_USDACommonMeasures.xls found or selected. Update USDACommonMeasures!
 wb. Worksheets ("USDACommonMeasures"). Visible = True
 wb. Worksheets ("USDACommonMeasures"). Delete
 Set wbUSDA = Application .Workbooks. Open (strFileCommonMsrs , False)
 wbUSDA. Worksheets ("USDACommonMeasures"). Move , wb. Worksheets (“USDA”)
 wb. Worksheets ("USDACommonMeasures"). Visible = False

 Once the USDACommonMeasures worksheet is updated, the workbook file name is extracted from inside
the strFileCommonMsrs String variable using the VBA Mid () and InStrRev () functions and is used to
update the strMsg String variable indicating the worksheet update.

 strFileCommonMsrs = Mid (strFileCommonMsrs, InStrRev (strFileCommonMsrs, "\") + 1)
 strMsg = strMsg & "USDACommonMeasures worksheet updated to Version " &
 Left (strFileCommonMsrs, 4) & vbCrLf
 strMsg = strMsg & "from file '" & strFileCommonMsrs & "'."
 End If

 The procedure ends by updating the Excel status bar to 100 percent; enabling Application .
DisplayAlerts , screen updating, events firing, and calculation; and issuing a MsgBox () message
indicating the update performed. When the MsgBox () is closed, it clears the Excel status bar using
 UpdateStatusBar (0) and saves the workbook.

 Call UpdateStatusBar (1 , , "Updating USDA worksheet")
 Application .DisplayAlerts = True
 SetScreenEventsRecalc (True)

 MsgBox strMsg , vbInformation, "Update successfuly to Version " & strNewSRVersion
 Call UpdateStatusBar (0)
 ThisWorkbook.Save
 End If
 End Function

 Warning About USDA Worksheet Updates
 Every time the USDA-ARS releases a new SRxx version, besides the possibility of the appearance of one
or more new nutrient data columns, some food items are removed from the new version, and others are
inserted into the new database. But for specific reasons that I can’t anticipate, some food item names will
suffer subtle changes.

 If the Excel data validation lists used to select food items have multiple columns (like the VBA ComboBox
control), you could fill the list with two USDA worksheet columns: the food item NDB_No (food item primary
key) and the food item name. By hiding the first column (NDB_No) and setting it as the default value, you can
select food items by name while the data validation list cell stores the NDB_No on the associated cell.

 But Excel doesn’t work this way. You must select food items by name and store the name value on the
 data validation list cell. The corollary to this behavior is if just one character is changed on any food item
name, the worksheet application will not find it anymore in the USDA worksheet using the Excel VlookUp()
function.

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

621

 So, be aware of this problem when you update the USDA food tables: some of your worksheet
calculations may fail.

 This is the case with the USDA Food Composer _SheetDBEnginebasUSDA.xlsm application. After you
update the USDA worksheet from version SR27 to SR28, some food items will change the name, and others
will just disappear from the new nutrient data table, making some recipes stop calculating correctly because
of the #N/A! constant error propagation.

 Figure 9-7 shows what happened to Record 1 of the My Recipes worksheet (“Apple Custard Tart
recipe”): the Calories, Calories %Daily Values, the Nutrition Facts food label values and all the Nutrient
Composition areas stop calculating because one food item (“Water, tap, drinking,” formatted in red) does not
belong anymore to SR28 food table.

 ■ Attention All food items that cannot be found in the USDA worksheet by the Excel VLOOKUP() function will
be formatted in red in the food item data validation lists column (column C), because of a conditional formatting
rule applied to these cells that changes the text color to red whenever this formula is True (returning the #N/A!
constant error):

 = ISNA (VLOOKUP(C10;USDA;1;FALSE))

 Another conditional formatting rule hides all #N/A! (Not Available) constant errors in the My Recipes worksheet,
changing the text color to white using this formula:

 =ISNA(K2)

 Unprotect the My Recipes sheet tab and select the worksheet cells where the calculation fails to see the #N/A!
constant errors hidden by this conditional formatting rule.

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

622

 ■ Attention Earlier versions of Excel show the #N/A! and other Excel constant errors hidden with conditional
formatting whenever you select cells. Figure 5-7 shows that this behavior does not happen in Excel 2016.

 And if you walk along the My Recipes worksheet recipe records using the application’s data navigation
buttons, you will note that many other food items have not been found in the USDA SR28 food table,
leading its recipes to fail to update its nutrient composition. To resolve this kind of problem during the USDA
worksheet updating process, you need to use a VBA UserForm .

 Using the USDA Food Composer _SheetDBEnginefrmUSDA.xlsm
Application
 The USDA Food Composer _SheetDBEnginefrmUSDA.xlsm macro-enabled workbook that you can extract from
the Chapter09.zip file has the frmUSDA UserForm , which does the same updating operations made by Sub
 UpdateUSDA () from basUSDA (which is also present in the workbook’s VBA code), allowing you to resolve food
item name conflicts between the current USDA worksheet and the new SRxx version selected for the update.

 Figure 9-7. When the USDA worksheet is updated, some food items may change name or be removed from
the database, which will impact the worksheet application calculation. The recipe “Apple Custard Tart” stops
to calculate because “Water, tap, drinking” could not be found in the USDA worksheet SR28 version

http://dx.doi.org/10.1007/978-1-4842-2205-8_5#Fig7

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

623

 Press Alt+F11 to show the Visual Basic IDE and double-click frmUSDA in the Project Explorer tree to
show its interface in design mode (Figure 9-8). Note that it has a progress bar in its top-right corner and a
 ListBox control at the bottom.

 Figure 9-8. This is the frmUSDA interface in design mode in the Visual Basic IDE

 Figure 9-9 shows how frmUSDA appears when you click the Update USDA ControlButton of the My
Recipes worksheet from the USDA Food Composer _SheetDBEnginefrmUSDA.xlsm macro-enabled workbook.
The frmUSDA UserForm offers a quite simple interface, with two CommandButton s (to close it or select the new
 SRxx file), two check boxes (to auto-resolve food item name conflicts and auto-save the workbook), and
some details of the current USDA worksheet (SR version, total food items, and nutrient count).

 Figure 9-9. This is frmUSDA from the USDA Food Composer _SheetDBEnginefrmUSDA.xlsm macro-enabled
workbook. When you click the Update USDA ControlButton, frmUSDA is loaded and shows the current USDA
version with some details of its nutrient database (total food items and nutrient count)

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

624

 The frmUSDA interface decreases its height to offer a simple interface when the UserForm_Initialize ()
event fires, executing this code:

 Option Explicit
 ...
 Dim mintNewVersion As Integer
 ...
 Const mconSizeSmall = 131
 Const mconSizeLarge = 393
 ...
 Private Sub UserForm_Initialize ()
 Me .Height = mconSizeSmall
 Me . Left = Application . Left + Application .Width / 2 - (Me .Width / 2)
 Me .Top = Application .Top + Application .Height / 2 - (mconSizeLarge) / 2
 Me .lblCurrentVersion.Caption = USDAVersion (Sheets ("USDA"), mintCurrentVersion)
 Call UpdateProgressBar
 End Sub

 Note that frmUSDA appears centered inside the Microsoft Excel interface because its StartUpPosition
property was set to 0 – Manual (other options are 1 – Center Owner ; 2 – Center Screen ; 3 – Windows
Default), having its Left property being set by subtracting the Excel horizontal center (Application . Left
 + Application .Width / 2) from half of its width (-(Me .Width / 2)).

 Me . Left = Application . Left + Application .Width / 2 - (Me .Width / 2)

 Its Top property is set by subtracting the Excel vertical center (Application .Top + Application .Height
/ 2) from half of its expanded height (- (mconSizeLarge) / 2).

 Me . Top =(Application .Top + Application .Height / 2 - (mconSizeLarge) / 2

 ■ Attention The mconSizeSmall = 132 points were determined by dragging up the UserForm bottom
border in design mode to the desired size and inspecting the UserForm Height property in the VBA Properties
window.

 Showing USDA Worksheet Version Information
 After the frmUserForm is correctly sized and positioned on the screen, decreasing the height of the
 lblCurrentVersion Label control receives the Function USDAVersion () return value.

 Me .lblCurrentVersion.Caption = USDAVersion (Sheets ("USDA"), mintCurrentVersion)

 This is the code executed by the Function USDAVersion () procedure code:

 Private Function USDAVersion (ws As Worksheet, Optional intVersion As Integer) As String
 Dim wb As Workbook
 Dim rgUSDA As Range
 Dim rgMyRecipes As Range
 Dim strVersion As String

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

625

 Set wb = ws.Parent
 Set rgUSDA = wb. Worksheets ("USDA").Range("USDA")
 Set rgMyRecipes = wb. Worksheets ("USDA").Range("My_Recipes")
 strVersion = Left (ws.Range("A1"), 4)
 intVersion = Right (strVersion, 2)
 strVersion = strVersion & " - " & rgUSDA.Rows.Count - rgMyRecipes.Rows.Count & " food

items, "
 strVersion = strVersion & rgUSDA.Columns.Count & " nutrients"
 USDAVersion = strVersion
 End Function

 The Private Function USDAVersion () receives two arguments: ws as Worksheet (to represent the
desired USDA worksheet) and intVersion (an integer variable received by reference that is used to return the
numerical SRxx version value).

 It declares the wb as Workbook object variable and uses the ws.Parent property to set a reference to the
workbook object where the ws worksheet resides.

 Set wb = ws.Parent

 Now that a reference to the workbook was set, it uses the rgUSDA and rgMyRecieps object variables to set
references to the USDA and My_Recipes range names of the ws worksheet.

 Set rgUSDA = wb. Worksheets ("USDA").Range("USDA")
 Set rgMyRecipes = wb. Worksheets ("USDA").Range("My_Recipes")

 Then it uses those object references with the VBA Left () function to extract the first four characters
(the SRxx value) from the USDA worksheet cell A1 .

 strVersion = Left (ws .Range(" A1 "), 4)

 The VBA Right () function is then used to extract the last two characters from the strVersion value
(the integer part of the SRxx value, which has the numerical SR version) and attribute it to the intVersion
argument.

 intVersion = Right (strVersion, 2)

 To return how many food items the USDA worksheet associated to the ws object variable has, it subtracts
the My_Recipes range rows from the USDA range rows, using the Range.Rows.Count property of each range
name, which is concatenated to strVersion .

 strVersion = strVersion & " - " & rgUSDA.Rows.Count - rgMyRecipes.Rows.Count & " food
items, "

 And using the Range.Columns.Count , it returns how many nutrient columns the USDA range name has,
using the strVersion String variable as the procedure return value.

 strVersion = strVersion & rgUSDA.Columns.Count & " nutrients"
 USDAVersion = strVersion
 End Function

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

626

 ■ Attention For the current USDA worksheet, the result is shown in Figure 9-9 (“SR27 – 8841 food items,
184 nutrients”).

 Managing the UserForm Progress Bar
 The progress bar you see in frmUSDA design mode in Figure 9-8 becomes invisible by calling Private Sub
UpdateProgressBar() , without passing any arguments to this procedure as the last UserrForm_Initialize
event instruction.

 Call UpdateProgressBar
 End Sub

 The frmUSDA progress bar is composed of three Label controls: lblTotal , lblPercent , and lblValue
(Figure 9-10).

 Figure 9-10. These are the three Label controls used to compose the frmUSDA progress bar

 It works quite the same way as Sub UpdateStatusBar () from basUSDA . It calculates a percentage
accomplished from any process and sets the lblPercent.Width property (with a light green background) as
a percentage of the lblTotal.Width property, giving the illusion that the bar grows as the process progress.
The Private Sub UpdateProgressBar() that manages it may receive up to three optional arguments
(bolShow as Boolean , intValue as Integer , and intTotal as Integer = 1) and executes this code:

 Private Sub UpdateProgressBar(Optional bolShow As Boolean,
 Optional sngValue As Integer, _
 Optional sngTotal As Integer = 1)
 Dim sngPercent As Single

 Me .lblTotal.Visible = bolShow
 Me .lblPercent.Visible = bolShow
 Me .lblValue.Visible = bolShow
 Me .lblProcessing.Visible = bolShow
 sngPercent = sngValue / sngTotal
 Me . lblPercent.Width = (Me . lblTotal.Width - 2) * sngPercent
 Me .lblValue.Caption = Format(sngPercent, "0.0%")
 End Sub

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

627

 Note that when Sub UpdateProgressBar() is called with no arguments, bolShow = False (default
 Boolean value), and all three Label controls become invisible, hiding the progress bar. Also note that both
 sngValue and sngTotal are single arguments, meaning that they can receive any real number.

 Since lblPercent (light green background) must grow inside lblTotal (white background), to
guarantee that lblPercent will not surpass the lblTotal right border, the code subtracts two points from
 lblTotal.Width to correctly set lblPercent.Width .

 To make the control appear and draw correctly, its first argument must be True , as follows (supposing
you need to reflect the percent accomplished on the 20 th step of a total 1,250 steps):

 Call UpdateProgressBar(True, 20, 1250)

 Selecting the External SRxx Update Version
 After frmUSDA has been loaded showing the current USDA SR version details (Figure 9-9), click
the Select CommandButton to fire the cmdSelect_Click() event and select the desired SRxx_
FoodItemsPerFirstCommonMeasure.xls file (Figure 9-11).

 Figure 9-11. Click the frmUSDA Select CommandButton to select the desired SRxx_
FoodItemsPerFirstCommonMeasure.xls file. In this figure, the current SR27 version will be updated to SR28

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

628

 And once the SRxx...xls update file is selected, supposing that the “Resolve name conflicts on new
USDA version” check box is selected, the code immediately begins to process it, showing the selected USDA
version and its details in blue (food items and nutrient count) as an indication that a upgrade is in process,
while the progress bar indicates how many food items have already been checked for name inconsistencies
(food item name changes between versions). Note that the cmdSelect CommandButton control changes its
 Caption property to Cancel, allowing you to cancel the operation in progress (Figure 9-12).

 Figure 9-12. After selecting the desired SRVersion, if chkResolveNames is selected (“Resolve name conflicts on
new USDA version” check box), frmUSDA will immediately begin to process the new file, searching for food
item name changes between SR versions. The progress bar indicates the process state

 When the name inconsistencies process ends, the frmUSDA interface expands to show the lstFoodITems
 ListBox control with all food items—and its food categories—whose names have changed between the two
SR versions, and cmdUpdate CommandButton will become enabled, allowing you to update the current USDA
worksheet to the desired SR version (Figure 9-13).

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

629

 ■ Attention Note in Figure 9-13 that after an SRxx...xls file is selected, cmdSelect is still activated,
allowing you to select another file.

 To allow select the external USDA workbook with the SRxx version that must be used on the updated
 cmdSelect_Click() event, execute this code:

 Private Sub cmdSelect_Click()
 If Me .cmdSelect.Caption = "Cancel" Then
 mbolCancel = True
 Else
 Me .cmdUpdate.Enabled = False
 Call CloseUSDAWorkbook
 Call ShowCtls(False)
 If OpenUSDAWorkbook(mstrFile) Then
 Me .lblNewVersion.Caption = USDAVersion (mwsUSDA, mintNewVersion)
 Me .lblNew.ForeColor = IIf(mintNewVersion < mintCurrentVersion, mconRed,

mconBlue)
 Me .lblNewVersion.ForeColor = IIf(mintNewVersion < mintCurrentVersion, mconRed,

mconBlue)

 Figure 9-13. When frmUSDA ends the food item name checking, it expands the interface to show the
lstFoodItems ListBox control with all food item names, food categories, and which names changed between the
two SR versions (1,064 food items found)

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

630

 Me .lblNew.Visible = True
 Me .lblNewVersion.Visible = True
 If Me .chkResolveNames Then
 If ResolveNames () Then
 Call ShowCtls(True)
 End If
 End If
 Me .cmdUpdate.Enabled = True
 End If
 End If
 End Sub

 The cmdSelects_Click() event code begins checking the cmdSelect.Caption property value. If it is
Cancel, the mbolCancel module-level variable will be set to true—allowing the cancellation of the Private
Sub ResolveNames () procedure that checks name inconsistencies between the two SR versions, as you
will see later in this chapter. Otherwise, it first calls Private Sub CloseUSDAWorkbook() to close any open
 SRxx...xls workbook before opening a new one.

 If Me .cmdSelect.Caption = "Cancel" Then
 mbolCancel = True
 Else
 Me .cmdUpdate.Enabled = False
 Call CloseUSDAWorkbook

 Private Sub CloseUSDAWorkbook ()
 Dim strName As String

 On Error Resume Next
 strName = mwbUSDA.Name
 If Err = 0 Then
 mwbUSDA. Close False
 Set mwbUSDA = Nothing
 End If
 Call UpdateProgressBar
 End Sub

 Sub CloseUSDAWorkbook() disables VBA errors with an On Error Resume Next statement and
tries to get the current SR external Workbook .Name property associated to the mwbUSDA module-level
variable. If no error is generated (Err=0), this is an indication that the workbook is open, so it calls the
 Workbook . Close False method to close it without saving and hides the progress bar controls calling Sub
UpdateProgressBar() with no arguments.

 And once it is guaranteed that mwbUSDA points to nothing (no external workbook opened), the procedure
calls Sub ShowCtls(False) to shrink frmUSDA and hide all controls that have their Tag property set to -1 ,
executing a For...Next loop through the UserForm.Controls collection.

 Private Sub ShowCtls(bolShow As Boolean)
 Dim intI As Integer

 Me .Height = IIf(bolShow , mconSizeLarge, mconSizeSmall)
 For intI = 0 To Me .Controls.Count - 1
 If Me .Controls(intI).Tag = "-1" Then

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

631

 Me .Controls(intI). Visible = bolShow
 End If
 Next
 End Sub

 When SubShowCtls() and code control and cmdSelect_Click calls the Private Sub
OpenUSDAWorkbook(strFile) procedure to allow the selection of the desired SRxx...xls version’s external
workbook.

 If OpenUSDAWorkbook(mstrFile) Then

 Opening the Desired SRxx...xls Version

 The Private Sub OpenUSDAWorkbook() procedure, called from the cmdSelect_Click() event, is
responsible for initializing the module-level variables mwbUSDA and mwsUSDA , which will point to the external
SR version workbook and external USDA worksheet, respectively, executing this code:

 Private Function OpenUSDAWorkbook(Optional USDAFile As String) As Boolean
 Dim ws As Worksheet
 Dim strFile As String
 Dim strFilter As String
 Dim strTitle As String
 Dim strMsg As String
 Dim bolFound As Boolean

 strFilter = "Excel files, *.xls*, All Files, *.*"
 strTitle = "Select desired USDA workbook (it must have a 'USDA' worksheet)"
 'Get workbook file name
 strFile = ShowDialogBox (OpenFile, , strTitle, , strFilter, 1)

 If Len(strFile) Then
 If strFile = ThisWorkbook.FullName Then
 MsgBox "Can´t use current workbook as source for itself", _
 vbCritical, _
 "You've selected the current Workbook !"
 Exit Function
 ElseIf IsWorkbookOpen (strFile) Then
 strMsg = "The selected file is already opened:" & vbCrLf
 strMsg = strMsg & strFile & vbCrLf
 strMsg = strMsg & " Close it and try again!"
 MsgBox strMsg, vbCritical, "Invalid Workbook !"
 Exit Function
 End If

 ' Open USDA workbook
 Set mwbUSDA = Application .Workbooks. Open (strFile)

 'Verify if opened workbook has a "USDA" sheet tab
 For Each ws In mwbUSDA. Worksheets
 If (ws.Name = "USDA") And (Left (ws.Range("A1"), 2) = "SR") Then
 Set mwsUSDA = ws

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

632

 bolFound = True
 Exit For
 End If
 Next

 If bolFound Then
 USDAFile = strFile
 OpenUSDAWorkbook = True
 'Return the focus to current workbook
 ThisWorkbook.Activate
 Else
 MsgBox "The selected workbook doesn't has a 'USDA' worksheet to update food

items information", _
 vbInformation, _
 "'USDA' sheet tab not found!"
 mwbUSDA. Close
 Set mwbUSDA = Nothing
 End If
 End If
 End Function

 Sub OpenUSDAWorkboook() begins by calling our old friend the ShowDialogBox () procedure
(presented in Chapter 3). If the Open Dialog is canceled, the strFile variable will be an empty string,
ending the procedure, which will also end the cmdSelect_Click() event and do nothing.

 Private Function OpenUSDAWorkbook(Optional USDAFile As String) As Boolean
 ...
 strFilter = "Excel files, *.xls*, All Files, *.*"
 strTitle = "Select desired USDA workbook (it must have a 'USDA' worksheet)"
 'Get workbook file name
 strFile = ShowDialogBox (OpenFile, , strTitle, , strFilter, 1)

 If Len(strFile) Then
 ...
 End If
 End Function

 But if a file is selected, you must first validate it to verify whether it has the correct SR update. The first
check verifies whether the selected file is the same application that you are trying to update, comparing
 strFile with the ThisWorkbook.FullName property.

 If strFile = ThisWorkbook.FullName Then
 MsgBox "Can´t use current workbook as source for itself", _
 vbCritical, _
 "You've selected the current Workbook !"
 Exit Function

 Being another workbook, the second check verifies whether the selected file is already opened, by
calling the Private Function IsWorkbookOpen () procedure. If it returns True (meaning the workbook is
opened), a MsgBox () will warn the user, and the procedure will end doing nothing.

http://dx.doi.org/10.1007/978-1-4842-2205-8_3

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

633

 ElseIf IsWorkbookOpen (strFile) Then
 strMsg = "The selected file is already opened:" & vbCrLf
 strMsg = strMsg & strFile & vbCrLf
 strMsg = strMsg & " Close it and try again!"
 MsgBox strMsg, vbCritical, "Invalid Workbook !"
 Exit Function
 End If

 Verify Whether a Workbook Is Open

 The simplest way to verify whether a file is opened is to try opening it with exclusive file access, which can be
made using the VBA file access Open statement, which has this syntax:

 Open pathname For mode [Access] [lock] As [#]filenumber [Len=reclength]

 In this code:

 pathname : This is required; it is a string expression that specifies a file name,
which may include its folder and drive.

 mode : This is required; it is a keyword specifying the file mode: Append , Binary ,
 Input , Output , or Random . If unspecified, the file is opened for Random access.

 access :: This is optional; it is a keyword specifying the operations permitted on
the open file: Read , Write , or Read Write .

 lock : This is optional; it is a keyword specifying the operations restricted on the
open file by other processes: Shared , Lock Read , Lock Write , and Lock Read
Write .

 filenumber : This is required; it is a valid file number in the range 1 to 511,
inclusive. Use the VBA FreeFile function to obtain the next available file
number.

 reclength : This is optional; it is a number less than or equal to 32,767 (bytes).
For files opened for random access, this value is the record length. For sequential
files, this value is the number of characters buffered.

 To close a file opened with the VBA Open statement, you must use the VBA Close statement, which has
this syntax:

 Close [filenumberlist]

 In this code:

 [[#]filenumber] [, [#]filenumber]... : This is optional; it can be one or
more file numbers opened by the Open statement. If it’s omitted, all active files
are closed, and the association of a file with its file number ends.

 To open a file with the VBA integer function, you reference the file with a number between 1 and 511
(that can be returned with VBA FreeFile() function), and to close it, you use the VBA Close statement,
optionally referencing the desired file number, as follows:

 intFile = FreFile
 Open strFile For Bynare Access Write Lock Read As #intFile
 Close #intFile

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

634

 The Private Function IsWorkbookOpen () verifies whether a workbook is opened in this way.

 Private Function IsWorkbookOpen (strFile As String) As Boolean
 Dim intFreeFile As Long

 On Error Resume Next

 'Try to open the workbook with exclusive access
 intFreeFile = FreeFile
 Open strFile For Input Lock Read As # lintFreeFile
 Close # lintFreeFile
 IsWorkbookOpen = (Err > 0)
 End Function

 The procedure begins using On Error Resume Next to disable VBA errors and uses the VBA FreeFile()
function to get the next available file number to open the file (yes, you can open up to 511 files using the VBA
 Open statement), attributing it to the intFreeFile Integer variable, which returns the next integer available
(between 1 and 511) to represent the file. It then tries to open strFile using Input Lock Read access mode.
If the file is already opened, VBA will not be able to lock the file generating an error (otherwise the file will
be opened, so the next statement tries to close the file with the VBA Close statement). IsWorkbookOpen ()
returns the logical test Err>0 , which will be true if an error is generated to try to lock an already open file.

 Verify Whether the Workbook has an USDA Worksheet

 If the selected strFile is still not opened, it will be opened by using the Application .Workbooks. Open
method, which will set a reference to the mwbUSDA module-level variable.

 ' Open USDA workbook
 Set mwbUSDA = Application .Workbooks. Open (strFile)

 To verify whether the opened workbook has a valid USDA worksheet, it executes a For Each...Next loop
through all workbook worksheets searching for the one whose Name property is USDA and whose cell A1 value
begins with the SR characters. If such a worksheet is found, it sets bolFound = True and exits the loop.

 For Each ws In mwbUSDA. Worksheets
 If (ws.Name = "USDA") And (Left (ws.Range("A1"), 2) = "SR") Then
 Set mwsUSDA = ws
 bolFound = True
 Exit For
 End If
 Next

 Having found a valid USDA worksheet, it sets strFile to the USDAFile procedure argument, and
 Function OpenUSDAWorkbook() ends returning True while returning the focus to the Thisworkbook .

 If bolFound Then
 USDAFile = strFile
 OpenUSDAWorkbook = True
 'Return the focus to current workbook
 ThisWorkbook.Activate

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

635

 Otherwise, the workbook is invalid, and it sends a VBA MsgBox () warning indicating that the file
doesn’t have a USDA worksheet to operate.

 Else
 MsgBox "The selected workbook doesn't has a 'USDA' worksheet to update food

items information", _
 vbInformation, _
 "'USDA' sheet tab not found!"
 mwbUSDA.. Close
 Set mwbUSDA = Nothing
 End If
 End If
 End Function

 Returning New USDA SR Version Details
 Let’s get back to the cmdSelect_Click() event after the desired SRxx...xls file was opened with
 OpenUSDAWorkbook() . The opened file was stored in the mstrFile String module-level variable
(passed by reference as a procedure argument), and the frmUSDA interface is updated again, using the
 USDAVersion (mintVersion) procedure to return information about the external, opened USDA worksheet
(SR version, food items, and nutrient count), which are used to define lblNew and lblNewVersion.Caption
properties. Note that both lblNew and lblNewVersion.ForeColor properties (text color) will be set to
 mconRed or mconBlue according to the new SRxx version being downgraded or upgraded, respectively (which
is determined using the mintNewVersion < mintCurrentVersion expression).

 Private Sub cmdSelect_Click()
 ...
 If OpenUSDAWorkbook(mstrFile) Then
 Me .lblNewVersion.Caption = USDAVersion (mwsUSDA, mintNewVersion)
 Me . lblNew.ForeColor = IIf(mintNewVersion < mintCurrentVersion , mconRed ,

 mconBlue)
 Me .lblNewVersion.ForeColor = IIf(mintNewVersion < mintCurrentVersion , mconRed ,

mconBlue)
 Me .lblNew.Visible = True
 Me .lblNewVersion.Visible = True

 Once information about the new selected SR version is displayed, if the chkResolveNames check box is
selected (resolving name conflicts in the new USDA version), it calls the Private Function ResolveNames ()
procedure to check for food item name changes between the two SR versions. If ResolveNames () returns
 True , as an indication that name changes were found, it will call ShowCtls(True) to show the lstFoodItems
 ListBox with the food item whose names need to be updated. To allow updating of the current USDA worksheet,
 cmdUpdate becomes enabled.

 If Me .chkResolveNames Then
 If ResolveNames () Then
 Call ShowCtls(True)
 End If
 End If
 Me . cmdUpdate.Enabled = True
 End If
 End If
 End Sub

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

636

 Finding Food Item Name Inconsistencies Between USDA Versions
 To search and solve any food item name inconsistencies between the SR files, it is necessary to get each
current USDA worksheet’s food item, search it with NDB_No (the food item primary key) on the new USDA
worksheet, and compare both food item names. If they differ, the food item name on the new USDA
worksheet must be updated to the current USDA food item, which will avoid the calculation problem shown
in Figure 9-7 , earlier in this chapter, after the updated process is completed.

 This operation is made by Private Function ResolveNames () , called from cmdSelect_Click , which
executes this code:

 Private Function ResolveNames () As Boolean
 Dim wsUSDA As Worksheet
 Dim rgUSDA As Range
 Dim rgUSDANew As Range
 Dim rgItem As Range
 Dim rgNew As Range
 Dim intTotal As Integer
 Dim intI As Integer

 Set wsUSDA = Worksheets ("USDA")
 Set rgUSDA = Range("USDA")
 'Exclude My_Recipes range from rgUSDA
 intTotal = rgUSDA.Rows.Count - Range("My_Recipes").Rows.Count
 Set rgUSDA = Range(wsUSDA.Cells(rgUSDA.Row, 1), wsUSDA.Cells(rgUSDA.Row + intTotal

- 1, 1))
 Set rgUSDANew = mwsUSDA.Range("USDA")
 Set rgUSDANew = mwsUSDA.Range(mwsUSDA.Cells(rgUSDANew.Row, 1), mwsUSDA.Cells(rgUSDANew.

Row + _
 rgUSDANew.Rows.Count - 1, 1))
 Me .lblProcessing.Visible = True
 Me .cmdSelect.Caption = "Cancel"
 Application .ScreenUpdating = False
 For Each rgItem In rgUSDA
 ‘Allow loop cancellation
 DoEvents
 If mbolCancel Then
 mbolCancel = False
 If MsgBox ("Do you want to cancel USDA Food items names update process?", _
 vbQuestion + vbYesNo + vbDefaultButton2, _
 "Cancel USDA update?") = vbYes Then
 Me .cmdSelect.Caption = "Select"
 Call UpdateProgressBar(False)
 Me .lstFoodItems. Clear
 Exit Function
 End If
 End If

 intI = intI + 1
 Me .lblProcessing.Caption = "Processing food item " & intI
 Set rgNew = rgUSDANew.Find(rgItem, , , xlWhole)
 If Not rgNew Is Nothing Then

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

637

 If rgNew.Offset(0, 1) <> rgItem.Offset(0, 1) Then
 Me .lstFoodItems. AddItem rgNew
 Me .lstFoodItems. Column (1, Me .lstFoodItems.ListCount - 1) = rgNew.

Offset(0, 2)
 Me .lstFoodItems. Column (2, Me .lstFoodItems.ListCount - 1) = rgNew.

Offset(0, 1)
 Me .lblFoodItems.Caption = Me .lstFoodItems.ListCount & " food items

found"
 rgNew.Offset(0, 1) = rgItem.Offset(0, 1)
 End If
 End If
 Call UpdateProgressBar(True, intI, intTotal)
 Next
 Application .ScreenUpdating = True
 Me .cmdSelect.Caption = "Select"
 ResolveNames = True
 End Function

 Any USDA worksheet SR version produced with the USDA Food List Creator.accbd Microsoft Access
application has in column A the food item NDB_No identification—an integer value that is the USDA food item
primary key—and on column B , the food item name, which is used to select food items on all data validation
lists of the USDA Food Composer ...xlsm worksheet applications presented in this book. To allow such food
item selection and calculate its nutrient data (using Excel Vlookup() functions), the USDA range name from
the USDA worksheet begins in Column B , going through all other 184 nutrient columns of the SR27 and SR28
USDA versions.

 So, the first ResolveNames () operation is to build two range names (rgUSDA and rgUSDANew , for current
and new USDA worksheets) using just the first worksheet column and all its food items, excluding all My_
Recipes range name food items from both worksheets (if any), using the worksheet Cells() collection to
point to the desired range in column A .

 Private Function ResolveNames () As Boolean
 ...
 Set wsUSDA = Worksheets ("USDA")
 Set rgUSDA = Range("USDA")
 'Exclude My_Recipes range from rgUSDA
 intTotal = rgUSDA.Rows.Count - Range("My_Recipes").Rows.Count
 Set rgUSDA = Range(wsUSDA. Cells(rgUSDA.Row, 1) , wsUSDA. Cells(rgUSDA.Row + intTotal

- 1, 1))
 Set rgUSDANew = mwsUSDA.Range("USDA")
 Set rgUSDANew = mwsUSDA.Range(mwsUSDA. Cells(rgUSDANew.Row, 1) , mwsUSDA. Cells(rgUSDANew.

Row + _
 rgUSDANew.Rows.Count - 1, 1))

 Now that both rgUSDA and rgUSDANew point to all NDB_No column data in both USDA worksheets, the
stage is set: lblProcessing (the small Label control under the progress bar) is turned visible, cmdSelect.
Caption exhibits Cancel to allow the loop cancelation, screen updates are disabled, and a For Each...Next
loop begins on all rgUSDA column A cells.

 Me .lblProcessing.Visible = True
 Me .cmdSelect.Caption = "Cancel"
 Application .ScreenUpdating = False
 For Each rgItem In rgUSDA

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

638

 The first loop operation uses a DoEvents statement to allow clicking cmdSelect (that now show Cancel)
to cancel the loop. If this is made, the mbolCancel module-level variable will be set to true on the cmdSelect_
Click() event, and a MsgBox () warning will ask the user to confirm the cancellation. By canceling
the process, cmdSelect.Caption is updated, the progress bar is hidden (UpdateProgressBar(False)),
 lstFoodItems is cleared, and the procedure ends, allowing you to update the USDA worksheet partially
according to food item name changes (all food items already processed will be updated).

 ‘Allow loop cancellation
 DoEvents
 If mbolCancel Then
 mbolCancel = False
 If MsgBox ("Do you want to cancel USDA Food items names update process?" , _
 vbQuestion + vbYesNo + vbDefaultButton2, _
 "Cancel USDA update?") = vbYes Then
 Me . cmdSelect.Caption = "Select"
 Call UpdateProgressBar(False)
 Me . lstFoodItems. Clear
 Exit Function
 End If
 End If

 ■ Attention Every VBA loop that has a DoEvents function takes longer to complete because VBA needs to
look to see whether there are any events to process in the events queue before executing the next instruction.

 As the loop continues to execute, the intI Integer variable and lblProcessing Label control are
updated, and the current rgItem cell value, which points to an NDB_No cell on the current USDA worksheet, is
searched on the new USDA worksheet using the Range. Find method.

 For Each rgItem In rgUSDA
 ...
 intI = intI + 1
 Me .lblProcessing.Caption = "Processing food item " & intI
 Set rgNew = rgUSDANew.Find (rgItem , , , xlWhole)
 If Not rgNew Is Nothing Then

 If the rgItem value is found in the new USDA worksheet (Not rgItem is Nothing), both worksheets
have the same NDB_No food item and the procedure checks whether their names differ. If this is also true, the
food item name and category are added to the lstFoodItems ListBox , and the food item name in the new
 USDA worksheet is updated to the food item name of the current USDA worksheet, using the Range. Offset ()
method. A call is made to UpdateProgressBar(True, intI, intTotal) to update the UserForm progress
bar.

 If Not rgNew Is Nothing Then
 If rgNew.Offset(0, 1) <> rgItem.Offset(0, 1) Then
 Me .lstFoodItems. AddItem rgNew
 Me .lstFoodItems. Column (1, Me .lstFoodItems.ListCount - 1) = rgNew.Offset(0, 2)
 Me .lstFoodItems. Column (2, Me .lstFoodItems.ListCount - 1) = rgNew.Offset(0, 1)

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

639

 Me .lblFoodItems.Caption = Me .lstFoodItems.ListCount & " food items found"
 rgNew.Offset(0, 1) = rgItem.Offset(0, 1)
 End If
 End If
 Call UpdateProgressBar(True, intI, intTotal)
 Next

 When the For Each... Loop ends, the code returns to the cmdSelect_Click() event, which will call
 ShowCtls(True) to expand the frmUSDA interface and show all food item names changed, allowing you to
update the current USDA worksheet to the selected SR version, as shown in Figure 9-13 .

 Updating the USDA Worksheet
 Once all food items have been processed, the cmdUpdate becomes enabled, ready to process the cmdUSDA_
Click() event to perform the USDA worksheet updating, which executes almost the same code made by the
 UpdateUSDA () procedure from the basUSDA standard module and deserves no more consideration (except
that it uses object module-level variables to reference the external USDA worksheet and verify the chkSave
CheckBox control state before saving the workbook).

 Private Sub cmdUpdate_Click()
 Dim wb As Workbook
 Dim wbUSDA As Workbook
 Dim ws As Worksheet
 Dim wsUSDA As Worksheet
 Dim rgMyRecipes As Range
 Dim rgUSDA As Range
 Dim nm As Name
 Dim strNewSRVersion As String
 Dim strFileUSDA As String
 Dim strFileCommonMsrs As String
 Dim strMsg As String
 Dim lngRows As Long

 Call SetScreenEventsRecalc(False)
 Call UpdateProgressBar(True, 1, 3)
 Set wb = ThisWorkbook
 Set ws = Worksheets ("USDA")

 'Copy and paste current My_recipes to new USDA worksheet
 ws.Range("My_Recipes").CurrentRegion.Copy
 mwsUSDA.Range("My_Recipes").PasteSpecial xlPasteValues

 'Rebuild "My_Recipes" and "USDA" range names on new USDA Worksheet
 Set rgMyRecipes = mwsUSDA.Range("My_Recipes").CurrentRegion
 mwsUSDA.Range("My_Recipes"). Resize (rgMyRecipes.Rows.Count + 1, 1).Name = "My_

Recipes"

 Set rgUSDA = mwsUSDA.Range("USDA")
 lngRows = rgUSDA.Rows.Count + rgMyRecipes.Rows.Count - 1
 rgUSDA. Resize (lngRows, rgUSDA.Columns.Count).Name = "USDA"

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

640

 'Silently delete worksheets from this workbook
 Application .DisplayAlerts = False
 'Make worksheet visible before delete it to avoid Excel bug when save workbook
 mwsUSDA.Visible = True
 wb. Worksheets ("USDA").Delete
 'Search and delete invalid range names from this workbook
 For Each nm In wb. Names
 If InStr (nm. RefersTo , "#REF!") > 0 Then
 nm.Delete
 End If
 Next

 'Move new USDA SR worksheet before USDACommonMeasures and hide it
 mwbUSDA. Worksheets ("USDA").Move wb. Worksheets ("USDACommonMeasures")
 wb. Worksheets ("USDA").Visible = False

 strMsg = "USDA worksheet updated to Version SR" & mintNewVersion & vbCrLf
 s trMsg = strMsg & "from file '" & Mid (mstrFile, InStrRev (mstrFile, "\") + 1) &

"';"
 strMsg = strMsg & vbCrLf & vbCrLf
 Call UpdateProgressBar(True, 2, 3)

 'Now try to update USDACommonMeasures worksheet: search it on same path
 strFileCommonMsrs = Dir (Left (mstrFile, InStrRev (mstrFile, "\")) & "SR??_

FoodItemsCommonMeasures.xls")
 If Len(strFileCommonMsrs) = 0 Then
 'SR??_FoodItemCommonMeasures not found. Ask to select it!
 strFileCommonMsrs = Application .GetOpenFilename("USDA workbooks (*.xls),

SR*.xls", , _
 "Select USDACommonMeasures SR workbook", , False)
 End If

 If InStr (1, strFileCommonMsrs, "FoodItemsCommonMeasures") Then
 'SRxx_USDACommonMeasures.xls found or selected. Update USDACommonMeasures!
 wb. Worksheets ("USDACommonMeasures").Visible = True
 wb. Worksheets ("USDACommonMeasures").Delete
 Set mwbUSDA = Application .Workbooks. Open (strFileCommonMsrs, False)
 mwbUSDA. Worksheets ("USDACommonMeasures").Move , wb. Worksheets ("USDA")
 wb. Worksheets ("USDACommonMeasures").Visible = False

 strFileCommonMsrs = Mid (strFileCommonMsrs, InStrRev (strFileCommonMsrs, "\")
+ 1)

 strMsg = strMsg & "USDACommonMeasures worksheet updated to Version " & _
 Left (strFileCommonMsrs, 4) & vbCrLf
 strMsg = strMsg & "from file '" & strFileCommonMsrs & "'."
 End If
 Call UpdateProgressBar(True, 3, 3)
 Application .DisplayAlerts = True
 SetScreenEventsRecalc (True)

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

641

 MsgBox strMsg, vbInformation, "Update successfuly to Version " & strNewSRVersion
 If Me .chkSave Then
 ThisWorkbook.Save
 End If
 Unload Me
 End Sub

 ■ Attention Try to run frmUSDA to update the USDA Food Composer _SheetDBEnginefrmUSDA.xlsm macro-
enabled workbook from SR27 to SR28 and note that now the food item name change problem pointed at by
Figure 9-7 doesn’t happen anymore. Anyway, all recipes whose food item names selected to compose recipes
changed between USDA table SR27 and SR28 versions must be manually changed.

 Managing Worksheet Application Data
 Let’s suppose for a moment that the USDA Food Composer _SheetDBEnginefrmUSDA.xslm worksheet
application becomes a huge success among users who need to generate Nutrition Facts food labels and
nutrient profiles for the many recipes and food products. Chances are that they will try to do the following:

• Create copies of the My Recipes worksheet inside the workbook to better manage its
recipes

• Update each recipe nutrient data saved in the My_Recipes range using the new USDA
worksheet

• Copy recipes between two My Recipes worksheets on the same or different
workbooks

• Delete some or all recipes from any My Recipes sheet tab

 The USDA Food Composer _SheetDBEngineManageAutomation.xlsm macro-enabled workbook has the
 frmManageRecipes UserForm that allows selection of the operation to be performed, the workbook and
worksheet target, and the recipes that will be affected by the selected operation (Figure 9-14).

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

642

 ■ Attention The frmManageRecipes UserForm interface was built while keeping in mind that the
 fraSetDestination Frame control will be displaced, hiding cboMyRecipes , cboWorkbook , and lstMyRecipes
whenever necessary to select the destination worksheet while importing or exporting recipes.

 When you click the Manage ControlButton of the My Recipes worksheet to show frmManageRecipes in
a reduced view, allowing you to select any of all recipes stored on the active sheet (Figure 9-15).

 Figure 9-14. This is frmManageRecipes from USDA Food Composer _SheetDBEngineManageAutomation.
xlsm that allows you to perform multiple operations on the My_Recipes worksheet using VBA automation

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

643

 The frmManageRecipes _Initialize() Event
 When you click the Manage ControlButton , Public Function Manage() from the MyRecipes worksheet
module is executed, calling SetDatabase() to guarantee that the SheetDBEngine class is running and
allowing you to automate its database services before frmManageRecipes is loaded into memory.

 Public Function Manage()
 Call SetDatabase
 frmManageRecipes .Show
 End Function

 This will fire the frmManageRecipes UserForm_Initialize () event, which will execute this code:

 Private Sub UserForm_Initialize ()
 Dim rg As Range
 Const conInitialHeight = 329

 Figure 9-15. This is how the frmManageRecipes UserForm appears to the application user, allowing you to
perform different operations on any number of selected recipes

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

644

 Me .Height = conInitialHeight
 mintWorkbookHasMyRecipes = MyRecipesCount ()
 Call LoadcboMyRecipes
 Me .cboWorkbook. AddItem "This Workbook "
 Me .cboWorkbook. AddItem "External Workbook "
 Me .cboWorkbook.ListIndex = 0
 End Sub

 Although the UserForm_Initialize () event has just a few lines of code, it generates an intense
code activity to set the initial appearance of the frmManageRecipes UserForm . It declares constant
 conInitialHeight = 329 to shrink the user form to the desired height and then calls Private Function
 MyRecipesCount () to count how many copies of the My Recipes sheet tab exist on ThisWorkbook .

 Me . Height = conInitialHeight
 mintWorkbookHasMyRecipes = MyRecipesCount ()

 Counting My Recipes Copies
 The Private Function MyRecipesCount () executes this code:

 Private Function MyRecipesCount () As Integer
 Dim ws As Worksheet
 Dim intI As Integer

 For Each ws In Worksheets
 If Left (ws. CodeName , 9) = "MyRecipes" Then
 intI = intI + 1
 End If
 Next
 MyRecipesCount = intI
 End Function

 It uses a For Each...Next loop to run through the Worksheets collection using the VBA Left ()
function to select worksheets whose first nine characters of the CodeName property begin with MyRecipes ,
updating the intI Integer variable, which is used to return the function value.

 Filling ComboBox Lists with the LoadcboMyRecipes () Procedure
 When Function MyRecipesCount () ends with returning the code control to the UserForm_Initialize ()
event, it calls Private Sub LoadcboMyRecipes () to either fill the cboMyRecipes ComboBox (the “Select
recipes to save from” control) or cboMyRecipesDestination with all the My Recipes copies that may exist on
this or an external workbook.

 Private Sub LoadcboMyRecipes (Optional wb As Workbook , Optional bolSetDestination As Boolean)
 Dim ws As Worksheet
 Dim cbo As ComboBox
 Dim intI As Integer
 Const conBlack = 0
 Const conRed = 255

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

645

 If wb Is Nothing Then
 Set wb = ThisWorkbook
 End If
 Set cbo = IIf(bolSetDestination, Me .cboMyRecipesDestination, Me .cboMyRecipes)

 cbo. Clear
 For Each ws In wb. Worksheets
 If (Left (ws. CodeName , 9) = "MyRecipes") And (ws.Visible = xlSheetVisible) _
 And (Me .optImport Or ws.Name <> Me .cboMyRecipes) Then
 cbo. AddItem ws.Name
 If ws.Name = ActiveSheet.Name Then
 intI = Me .cboMyRecipes.ListCount - 1
 End If
 End If
 Next
 cbo.ListIndex = intI
 If Not bolSetDestination Then
 Me .lblRecipesFrom.Caption = "Recipes from " & IIf(wb.Name = ThisWorkbook.Name, "This

 Workbook ", wb.Name)
 Me .lblRecipesFrom.ForeColor = IIf(wb.Name = ThisWorkbook.Name, conBlack, conRed)
 End If
 End Sub

 This procedure receives two optional arguments: the wb as Workbook argument and
 bolSetDestination (used to indicate which ComboBox control must be filled). When the wb argument points
to Nothing (a condition that will always happen when the argument is missing), it receives a reference to the
 ThisWorkbook object.

 If wb Is Nothing Then
 Set wb = ThisWorkbook
 End If

 And the VBA IIF() function is used to verify the bolSetDestination Boolean variable and set a
pointer to the desired ComboBox control, using the cbo as ComboBox object variable to reference it.

 Set cbo = IIf (bolSetDestination , Me . cboMyRecipesDestination , Me . cboMyRecipes)

 The desired ComboBox is cleared, and a For Each...Next loop is performed through the Worksheets
collection, verifying which ones must be used to fill the ComboBox list. They must have the first nine
characters equal to MyRecipes and must be visible to an “Import recipes” operation but must also be
different from the one chosen on cboMyRecipes for an Export operation to this workbook.

 cbo. Clear
 For Each ws In wb. Worksheets
 If Left (ws. CodeName = "MyRecipes", 9) Then And (ws.Visible = xlSheetVisible) _
 And (Me .optImport Or ws.Name <> Me .cboMyRecipes) Then

 When this is true, the worksheet name is added to desired ComboBox list, while the intI integer
variable takes care to select the list position of the active sheet (if the workbook has more than one My
Recipes copy).

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

646

 Selecting Worksheets with the cboMyRecipes_Click() Event

 When the loop ends, the active sheet is selected in cboMyRecipes by setting the ListIndex property to the
 intI Integer variable, which will cascade-fire the cboMyRecipes_Click() or cboMyRecipesDestination_
Click event, according to the bolSetDestination argument. The cboMyRecipes_Click() event executes
this code:

 Private Sub cboMyRecipes_Click()
 Dim rg As Range
 Dim wb As Workbook

 If mwb Is Nothing Then
 Worksheets ((cboMyRecipes)).Activate
 Set mobjMyRecipes = ActiveSheet
 Set rg = mobjMyRecipes.Range("SavedRecords")
 Else
 mwb. Worksheets ((cboMyRecipes)).Activate
 Set rg = mwb. Worksheets ((cboMyRecipes)).Range("SavedRecords")
 End If
 Call LoadCurrentRecipes (rg)
 Call UpdateProgressBar(False)
 End Sub

 The Sub cboMyRecipes_Click() event first checks that the mwb as Workbook module-level variable
is set to Nothing (which always happens on the UserForm_Initialize () event), and if it is, it activates the
worksheet, selects cboMyRecipes , sets the mobjMyRecipes as Object module-level variable to the active
sheet, and sets the rg as Range object variable to point to the active sheet SavedRecords range name (the
one that has all recipes stored on current worksheet database).

 If mwb Is Nothing Then
 Worksheets ((cboMyRecipes)). Activate
 Set mobjMyRecipes = ActiveSheet
 Set rg = mobjMyRecipes .Range(" SavedRecords ")

 Loading lstRecipes with LoadCurrentRecipes ()

 Since the rg object variable now points to the active sheet recipes, the procedure calls
 LoadCurrentRecipes (rg) to fill the frmManageRecipes lstRecipes ListBox .

 Private Sub LoadCurrentRecipes (rg As Range)
 Dim intFirstRecipe As Integer
 Dim intI As Integer

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

647

 Me .lstRecipes. Clear
 intFirstRecipe = IIf(mintWorkbookHasMyRecipes > 0, 2, 1)
 For intI = intFirstRecipe To rg.Rows.Count
 If Len(rg.Cells(intI)) > 0 Then
 Me .lstRecipes. AddItem rg.Cells(intI)
 End If
 Next

 Me .lblSelected.Caption = Me .lstRecipes.ListCount & " recipes"
 Me .cmdExecute.Enabled = False
 End Sub

 The frmManageRecipes UserForm can exchange recipe information between any USDA Food Composer ...
xlsm application or recipe nutrient data with any Excel workbook that has a USDA worksheet with a My_
Recipes range name, so the code clears the lstRecipes ListBox and uses a VBA IIF() instruction to set
the intFirstRecipe Integer variable according to the mintWorkbookHasMyRecipes module-level variable.
If mintWorkbookHasMyRecipes >0 , it is an indication that it has at least one My_Recipes worksheet, making
 intFirstRecipe = 2 to exclude the first SavedRecords range name item (usually New Recipe).

 Me .lstRecipes. Clear
 intFirstRecipe = IIf(mintWorkbookHasMyRecipes > 0 , 2 , 1)

 Then it uses a For...Next loop to rung from intFirstRecipe to rg.Rows.Count , using the Range.Cells
property to add all cells with some value to the lstRecipes ListBox list.

 For intI = intFirstRecipe To rg.Rows.Count
 If Len(rg.Cells(intI)) > 0 Then
 Me . lstRecipes. AddItem rg.Cells(intI)
 End If
 Next

 When the For...Next loops ends, the lblSelected.Caption property is updated to indicate how many
recipes were found, and cmdExecute is disabled, because no recipe is still selected.

 Me . lblSelected.Caption = Me .lstRecipes.ListCount & " recipes"
 Me . cmdExecute.Enabled = False
 End Sub

 Finishing LoadcboMyRecipes ()

 When LoadCurrentRecipes () ends, it returns the code control to cboMyRecipes_Click() , which will hide
the UserForm progress bar (call UpdateProgressBar(False)) and also end, returning the code control
to the LoadcboMyRecipes () procedure, which updates the frmManageRecipes lblRecipesFrom.Caption
Label control (the label that sits right above the lstRecipes ListBox), indicating from where the recipes
comes.

 Me .lblRecipesFrom.Caption = "Recipes from " & IIf(wb.Name = ThisWorkbook.Name, "This
 Workbook ", wb.Name)
 Me . lblRecipesFrom.ForeColor = IIf(wb.Name = ThisWorkbook.Name , conBlack, conRed)
 End Sub

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

648

 ■ Attention Note that when the recipes come from an external workbook, the wb workbook variable Name
property is not the ThisWorkbook.Name property, its text color (Foreground property) will be red.

 Finishing the frmManageRecipes _Initialize() Event
 When the LoadcboMyRecipes () procedure ends, it returns the code control to the UserForm_Initialize ()
event, which finishes by adding two items to the cboWorkbooks ComboBox (ThisWorkbook and External Workbook)
and setting the default value to This Workbook .

 Me .cboWorkbook. AddItem "This Workbook "
 Me .cboWorkbook. AddItem "External Workbook "
 Me .cboWorkbook.ListIndex = 0
 End Sub

 Inserting Copies of the My Recipes Sheet Tab
 It is more than probable that as the users become acquainted with your worksheet database application,
they will need to create copies of the sheet tab application inside the workbook to better manage its records.
Thinking about the My Recipes worksheet of the USDA Food Composer .xlsm application, wouldn’t be nice
if the user could use a sheet tab to store dessert recipes, another tab to store vegetarian recipes, another one
for pasta recipes, and so on?

 Although it is quite straightforward to create such worksheet copies using the Excel interface (right-click
the desired sheet tab and choose the Move or Copy menu command), when you do this in a sheet tab that
already has some records inside it, the new copy will receive all the existing records, and you will also need
to delete the copied records before beginning to store the records you want.

 The frmManageRecipes UserForm does this for you. Whenever you click its New My Recipes
 CommandButton (cmdNewMyRecipes), a new, empty copy of the My Recipes worksheet is created and begins to
appear in the UserForm cboMyRecipes ComboBox (Figure 9-16).

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

649

 There is a simple trick here:

• The USDA Food Composer _SheetDBEngineManageAutomation has a very
hidden copy of the My Recipes sheet tab with no records and three changed
properties: Name = NewMyRecipes , CodeName = MyRecipes0 , and Visible = 2 –
SheetVeryHidden (which hides the sheet tab from the Move or Copy dialog box, as
shown in Figure 9-17).

 Figure 9-16. Click the New My Recipes CommandButton of the frmManageRecipes UserForm to insert new,
empty copies of the My Recipes sheet tab. Each copy will be named with a counter suffix

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

650

• The cmdNewMyRecipes_Click() event makes a new copy of the NewMyRecipes
worksheet, changes its name to My Recipes # (where # is the suffix counter), and sets
its Visible property to 1 – xlSheetVisible .

 The new My Recipes # copy will be placed on the right of the last visible copy. Take a look at the
 cmdNewMyRecipes_Click() event code in the next listing.

 Private Sub cmdNewMyRecipes_Click()
 Dim wsCurrent As Worksheet
 Dim ws As Worksheet
 Dim wsNew As Worksheet
 Dim lngErr as Long
 Dim intI As Integer
 Dim intAfter As Integer

 Call SetScreenEventsRecalc(False)
 'Save the active sheet
 Set wsCurrent = ActiveSheet
 'Find last visible MyRecipes
 For Each ws In Worksheets

 Figure 9-17. The MyRecipes0 (NewMyRecipes) sheet tab is hidden in the Excel interface from user eyes
because the Visible property was changed to 2 – xlSheetVeryHidden in the VBA Properties window

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

651

 'Set ws = Worksheets (intI)
 If ws.Visible = xlSheetVisible And Left (ws. CodeName , 9) = "MyRecipes" Then
 intAfter = ws.Index
 intI = intI + 1
 End If
 Next
 intI = intI + 1

 'Make a copy of NewMyRecipes sheet very hidden
 Set ws = Worksheets ("NewMyRecipes")
 ws.Visible = xlSheetHidden
 ws.Copy , Worksheets (intAfter)
 ws.Visible = xlSheetVeryHidden

 'Get new NewMyRecipes and change it name
 Set wsNew = Worksheets (intAfter + 1)
 Do
 On Error Resume Next
 'Try to change new MyRecipes name
 wsNew.Name = "My Recipes " & intI
 lngErr = Err
 intI = intI + 1
 On Error GoTo 0
 Loop While lngErr <> 0

 'Make sheet visible
 wsNew.Visible = xlSheetVisible
 'Activate the new sheet to start it database services
 wsNew.Activate
 'Restore the activesheet
 wsCurrent.Activate
 'Update cboMyRecipes
 Call LoadcboMyRecipes
 Call SetScreenEventsRecalc(True)
 End Sub

 To allow the cmdNewMyRecipes_Click() event code to run smoother in the user interface, it begins by
disabling screen updates, events firing, and calculation while setting a reference to the ActiveSheet object.

 Call SetScreenEventsRecalc (False)
 'Save the active sheet
 Set wsCurrent = ActiveSheet

 Now it is time to determine the last visible My Recipes sheet tab position (Index property) to insert
the new worksheet on the right. This is made using a For Each...Next loop through all visible My Recipes
copies (which is determined by checking its first nine CodeName property characters).

 'Find last visible MyRecipes
 For Each ws In Worksheets
 'Set ws = Worksheets (intI)
 If ws.Visible = xlSheetVisible And Left (ws. CodeName , 9) = "MyRecipes" Then

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

652

 intAfter = ws.Index
 intI = intI + 1
 End If
 Next
 intI = intI + 1

 Note that the intAfter Integer variable is updated to the Worksheet.Index property every time a visible
copy of My Recipes is found. The intI Integer variable is used as a counter to indicate how many copies
were found. When the loop ends, intI is incremented again to generate the most probable counter to the
new sheet tab name.

 The code sets a reference to the very hidden NewMyRecipes worksheet and changes its Visible property
to xlSheetHidden because the Worksheet.Copy method fails to work on very hidden worksheets.

 'Make a copy of NewMyRecipes sheet very hidden
 Set ws = Worksheets (" NewMyRecipes ")
 ws. Visible = xlSheetHidden

 Now the Worksheet.Copy method is applied using its After argument’s Worksheets (intAfter) to set
a reference to the worksheet that must be on the left of this new worksheet copy (which will be named as
 NewMyRecipes (2)). And once the copy is made, the NewMyRecipes worksheet is turned very hidden again.

 ws. Copy , Worksheets (intAfter)
 ws. Visible = xlSheetVeryHidden

 After the copy is made, it is time to change the name to My Recipes # , where # means a counter that
is still not in use. Since the worksheet application user can change sheet names wherever, you must try to
change the worksheet name inside a Do ... Loop instruction until a valid name is found.

 To do this, the code first sets a reference to the new worksheet (Index = intAfter+1), initiates the
loop, and disables VBA error handling with an On Error Resume Next statement. It then tries to change
the worksheet name. If the name already exists, an error will be raised, and the error number is stored on
the lngErr Long variable. The intI Integer variable is incremented, and the error handler is reset with an
 On Error GoTo 0 statement. The Do...Loop will continue until lngErr = 0 (no error found after trying to
change the sheet name).

 'Get new NewMyRecipes and change it name
 Set wsNew = Worksheets (intAfter + 1)
 Do
 On Error Resume Next
 'Try to change new MyRecipes name
 wsNew.Name = "My Recipes " & intI
 lngErr = Err
 intI = intI + 1
 On Error GoTo 0
 Loop While lngErr <> 0

 When the loop ends, the new My Recipes # sheet tab needs to be turned visible (because its Visible
property is xlSheetVeryVisible), and the new sheet is activated to start the SheetDBEngine class with the
database services (the wsNew.Activate command will fire the Worksheet_ Activate () event).

 'Make sheet visible
 wsNew.Visible = xlSheetVisible

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

653

 'Activate the new sheet to start it database services
 wsNew.Activate

 The code finishes restoring the active sheet, updating the cboMyRecipes list with a call to
 LoadcboMyRecipes () , and restoring screen updating, events firing, and calculation to its default values.

 'Restore the activesheet
 wsCurrent.Activate
 'Update cboMyRecipes
 Call LoadcboMyRecipes
 Call SetScreenEventsRecalc(True)

 ■ Attention You may want to create an undefined number of the My Recipes copy. If you have trouble
removing them (by right-clicking the sheet tab and choosing Delete), press Alt+F11 to open the Visual Basic
IDE, double-click the worksheet copy you want to delete in the VBA Explorer tree to show its code module, press
Ctrl+A to select all its code, and delete it before deleting the worksheet.

 After creating the My Recipes 2 sheet tab, I suggest saving this workbook with a new name, to use it on other
examples of this chapter (save it as USDA Food Composer _SheetDBEngineManageAutomation1).

 You can extract a copy of the USDA Food Composer _SheetDBEngineManageAutomation1.xlsm macro-enabled
workbook from the Chapter09.zip file.

 Selecting Desired Recipes
 You may note in Figures 9-15 and 9-16 that whenever frmManageRecipes has recipes to select on its
 lstRecipes ListBox , it offers a check box to the right of each recipe name, which is possible because the
 lstRecipes.ListStyle property was set to 1 – fmListStyleOption . It also has the MultiSelect property
set to 2 - fmMultiSelectExtended , which allows you to select as many list items as you want: dragging the
mouse to select successive list items and pressing Ctrl+click to select by random.

 Whenever one or more recipes are selected, the lstRecipes_Change() event fires, executing this code:

 Private Sub lstRecipes_Change()
 Dim intI As Integer

 If Not mbolCancelEvent Then
 Call UpdateProgressBar(False)
 Set mcolSelected = New Collection
 For intI = 0 To Me .lstRecipes.ListCount - 1
 If Me .lstRecipes.Selected(intI) Then
 mcolSelected.Add intI, Me .lstRecipes. Column (0, intI)
 End If
 Next

 Me .cmdExecute.Enabled = (mcolSelected.Count > 0)
 Me .lblSelected.Caption = mcolSelected.Count & " recipe(s) selected"
 End If
 End Sub

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

654

 The lstRecipes_Change() event does the trick already mentioned in this book: it uses the
 mbolCancelEvent module-level variable to verify whether the event code must be executed (the event code
will not be executed when mbolCancelEvent = True).

 mbolCancelEvent = False whenever the UserForm is interacting with the user, allowing the user to
select the ListBox items. It hides the progress bar case it is exhibiting (UpdateProgressBar(False)) using
the same technique described in the section “Managing the UserForm Progress Bar ” earlier in this chapter.
To hold a reference of every item selected in the ListBox control, it uses the mcolSelected as Collection
module-level variable, which is cleared by setting it to a New Collection whenever a ListBox item is
selected.

 If Not mbolCancelEvent Then
 Call UpdateProgressBar(False)
 Set mcolSelected = New Collection

 The mcolSelected collection is then filled by a For...Next loop through all lstRecipes list items,
adding each selected item (lstRecipes.Selected) using the Collection.Add method and using the item list
position (intI) as the Collection.Item value and the recipe name as the Collection.Key value.

 For intI = 0 To Me .lstRecipes.ListCount - 1
 If Me .lstRecipes.Selected(intI) Then
 mcolSelected.Add intI , Me . lstRecipes . Column (0, intI)
 End If
 Next

 When the loop ends, the cmdExecute.Enabled property enables/disables the CommandButton if the
 mcolSelected Collection variable has at least one item, and the lblSelected.Caption Label control is
updated to reflect how many recipes are selected in the list (Figure 9-18).

 Figure 9-18. Whenever one or more items are selected in the lstRecipes ListBox , the lstRecipes_Change()
event fires, fulfilling the mcolSelected Collection variable with all selected items, and the UserForm interface is
updated to reflect the selection, enabling the cmdExecute CommandButton and the number of selected recipes

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

655

 Me . cmdExecute.Enabled = (mcolSelected.Count > 0)
 Me . lblSelected.Caption = mcolSelected.Count & " recipe(s) selected"
 End If
 End Sub

 Selecting All Recipes at Once
 To select all recipes at once, double-click the lstRecipes ListBox , which will fire the lstRecipes_DblClick()
event, executing this code:

 Private Sub lstRecipes_DblClick(ByVal Cancel As MSForms.ReturnBoolean)
 Dim intI As Integer

 For intI = 0 To Me .lstRecipes.ListCount - 1
 Me .lstRecipes.Selected(intI) = True
 Next
 End Sub

 This procedure uses a For...Next loop to run through all lstRecipes items, selecting one recipe at a
time. And if you are wondering if the Me .lstRecipes.Selected(intI) = True instruction cascade-fires the
 lstRecipes_Change() event at each selection, you are absolutely right.

 ■ Attention You could set the module-level variable mbolCancelEvent = True before executing the loop
and set it to False again after the loop ends, avoiding the cascade event, but the code runs so fast that I felt it
unnecessary to do so. Feel free to try for yourself.

 And once the desired recipes have been selected, it is time to select the desired operation to be
performed (Save in My Recipes, Delete recipes, Export recipes, or Import recipes) before click the
 cmdExecute CommandButton .

 Saving Recipe Nutritional Information in the My_Recipes Range
Name
 The Save in My Recipes option allows you to select the desired recipes (double-click to select them all) and
save an updated version of the nutritional information in the My_Recipes range name of the USDA worksheet.
You may want to conduct such an operation after a new USDA SR version is used to update the USDA Food
Composer ...xlsm application.

 It is important to note that any worksheet application that implements database services using the
 SheetDBEngine class knows nothing about the database itself, while the database engine knows nothing
about what the worksheet application does with the records. For example, the My Recipes worksheet of
the USDA Food Composer _SheetDBEngine.xlsm macro-enabled workbook knows nothing about if, how, or
where its data is saved, while the SheetDBEngine class knows nothing about the meaning of its records data
or if and how they are used to calculate the nutritional value of each recipe.

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

656

 Here is where VBA automation enters into action. To save an updated version of the nutritional
information of any recipe in the My_Recipes range name, you need to do the following:

 1. Load the recipe.

 2. Wait for the worksheet application to calculate its nutritional value (which is
immediate).

 3. Copy its nutritional data from the My Recipes worksheet to the clipboard.

 4. Paste it in the appropriate My_Recipes range name food item of the USDA
worksheet.

 To do such operations, you may first check that the Save in My Recipes option is selected
(optSaveInMyRecipes OptionButton), select the desired recipes to be processed (Figure 9-18), and click the
Execute CommandButton (cmdExecute) to perform the operation. The frmManageRecipes UserForm will show
its progress bar running and a visual indication of which recipe is being processed, unselecting the recipe
name in the lstRecipes ListBox as its nutritional data has been already copied between the My Recipes
and USDA worksheets (Figure 9-19).

 Figure 9-19. When you click cmdExecute, frmManageRecipes begins to process each selected recipe, showing
its progress bar and unchecking the last processed recipe

 ■ Attention Note that the My Recipes worksheet loads each recipe as it is processed by the
 frmManageRecipes UserForm .

 You can cancel the operation while it is running by clicking the Cancel (cmdClose) CommandButton and clicking
the Execute CommandButton to start it again with the remaining selected recipes, until all recipes are processed
(and unselected) in the lstRecipes ListBox .

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

657

 When all recipes have been processed, the frmManageRecipes ListBox will have no item selected,
the progress bar will indicate 100%, cmdClose.Caption = Close , cmdExecute will be disabled, and the My
Recipes worksheet will show the last processed recipe automatically (Beef (20z) Enchilada), as shown in
Figure 9-20).

 Figure 9-20. When the selected process finishes, the progress bar reaches 100%, all lstRecipes ListBox items are
unselected, and the My Recipes worksheet shows the last processed recipe automatically

 Note that whenever the Save in My Recipes tionButton is selected (optSaveInMyRecipes), the
 frmManageRecipes UserForm updates the UserForm interface by locking the cboWorkbook value to the This
 Workbook option by executing the Sub optSaveInMyRecipes_Click() event.

 Private Sub optSaveInMyRecipes_Click()
 Call CloseExternalWorkbook

 If mbolUpdateInterface Then
 Call LoadcboMyRecipes
 mbolUpdateInterface = False
 End If

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

658

 Call UpdateProgressBar(False)
 Me .lblRecipes.Caption = "Select recipes to Save from:"
 Me .lblWorkbook.Caption = "Save in:"
 Me .cboWorkbook.ListIndex = 0
 Me .cboWorkbook.Locked = True
 Me .chkOption.Visible = False
 End Sub

 This code calls CloseExternalWorkbook() to close any workbook already opened by the UserForm
code (we will see more about this procedure later in this chapter), and if the module-level variable
 mbolUpdateInterface = True , it calls LoadcboMyRecipes () to update the cboMyRecipes list. It also hides
the UserForm progress bar with a call to UpdateProgressBar(False) and sets the default interface options:
 lblRecipes.Caption = Selec recipes to Save from , lblWorkbook.Caption = Save in , cboWorkbook
is set to its first list item (This Workbook) and locked, and the chkOption check box is hidden (chkOption.
Visible = False).

 Supposing that the Save in My Recipes option (optSaveInMyRecipes) is selected and all desired recipes
have been selected, when you click the Execute CommandButton , it will run the next code fragment of the
 cmdExecute_Click() event.

 ■ Attention Since cmdExecute_Click() is quite extensive, we will analyze just its relevant code parts for
each OptionButton operation performed by frmManageRecipes UserForm .

 Private Sub cmdExecute_Click()
 Dim wb As Workbook
 Dim ws As Object
 ...
 If Me .cmdExecute.Caption = "Continue" Then
 ...
 Else
 Set wb = ThisWorkbook
 Set ws = ActiveSheet
 Call EnableControls (False)

 If Me .optDelete Then ...
 ...
 End If

 Call ProcessRecipes (wb , ws)
 End If
 End Sub

 As you can see in the cmdExecute_Click() event code fragment, it just sets the wb = ThisWorkbook
and ws = Activesheet object variables and calls EnableControls (False) to disable the frmManageRecipes
controls.

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

659

 Updating the frmManateRecipes Interface with EnableControls ()
 The Private Sub EnableControls () receives the bolEnable as Boolean argument, executing this code:

 Private Sub EnableControls (bolEnabled As Boolean)
 Me .cmdExecute.Enabled = bolEnabled And (mcolSelected.Count > 0)
 Me .cmdClose.Caption = IIf(bolEnabled, " Close ", "Cancel")
 Me .cmdNewMyRecipes.Enabled = bolEnabled
 Me .fraOperation.Enabled = bolEnabled
 Me .cboMyRecipes.Enabled = bolEnabled
 Me .cboWorkbook.Enabled = bolEnabled
 Me .chkOption.Enabled = (bolEnabled Or optExport Or optImport)
 End Sub

 As you can see, Sub EnableControls () is responsible for enabling/disabling controls on the UserForm
according to the bolEnabled argument. Note that cmdExecute will be enabled just when bolEnabled =
True and there is at least one recipe selected in the lstRecipes ListBox (mcolSelected.Count > 0). The
 cmdClose.Caption text alternates between Close and Cancel according to the bolEnabled value, and
 chkOption will always be enabled for import/export operations.

 Processing Selected Recipes with ProcessRecipes ()
 After synchronizing the frmManageInterface controls, cmdExecute_Click() calls Sub ProcessRecipes (wb,
ws) to effectively process the selected recipes, which is the heart of the frmManageRecipes UserForm , being
responsible for the following:

• Performing a loop through all selected recipes

• Updating the UserForm progress bar

• Executing the desired operation in each recipe (save in the My_Recipes range name,
delete, export, or import recipes)

• Unchecking the already processed recipes in lstRecipes and removing them from
the mcolSelected Collection module-level variable

 It receives two arguments (the workbook and worksheet where it needs to act), executing this code:

 Private Sub ProcessRecipes (wb As Workbook , ws As Worksheet)
 Dim varItem As Variant
 Dim strRecipe As String
 Dim intTotal As Integer
 Dim intI As Integer
 Dim intJ As Integer

 mbolCancel = False
 mbolCancelEvent = True

 'Freeze MyRecipes updating
 mobjMyRecipes.ScreenUpdating (False)
 Application .Cursor = xlWait
 ' Clear and show the Progress Bar
 Call UpdateProgressBar(True)

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

660

 intTotal = mcolSelected.Count
 For Each varItem In mcolSelected
 If mbolCancel Then
 If Me .optDelete Then
 Call RebuildCollection
 End If
 Exit For
 End If

 'Updade Progress Bar (intI = recipe count, intJ = lstRecipes.Index)
 intI = intI + 1
 intJ = varItem + IIf(optDelete, 1 - intI, 0)
 strRecipe = Me .lstRecipes. Column (0, intJ)
 Me .lblProcessing.Caption = "Processing " & strRecipe
 Call UpdateProgressBar(True, intI, intTotal)
 DoEvents

 If Me .optDelete Then
 mobjMyRecipes. DeleteRecord strRecipe, Me .chkOption
 Me .lstRecipes.RemoveItem (intJ)
 Else
 If (Me .optExport Or Me .optImport) And mintWorkbookHasMyRecipes Then
 Call TransferRecipe(strRecipe)
 Else
 'Save just recipe nutritional information on 'USDA'!My_Recipes
 Call SaveInMyRecipes (strRecipe)
 End If
 Me .lstRecipes.Selected(varItem) = False
 End If
 mcolSelected.Remove (1)
 Me .lblSelected.Caption = mcolSelected.Count & " recipes selected"
 Next
 mbolCancelEvent = False
 Me .lblProcessing.Visible = False

 If Me .optExport Or Me .optSaveInMyRecipes Then
 wb.Save
 If Me .optExport Then
 If (mxl. Hwnd <> Application . Hwnd) Then
 wb. Close True
 mxl.Quit
 End If
 Set mxl = Nothing
 Set mwb = Nothing
 Set mws = Nothing
 End If
 End If

 Me .cmdExecute.Enabled = (mcolSelected.Count > 0)
 Me .cmdClose.Caption = " Close "
 Application .Cursor = xlDefault
 mobjMyRecipes.ScreenUpdating (True)
 End Sub

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

661

 Before beginning to process the selected recipes, Sub ProcessRecipes () sets the stage for operating
in the frmManageRecipes interface: mbolCancel = False to allow canceling the operation when it becomes
 True , and mbolCancelEvent = True to avoid fire-cascading events when the lstRecipes ListBox is
manipulated by the code.

 Private Sub ProcessRecipes (wb As Workbook , ws As Worksheet)
 ...
 mbolCancel = False
 mbolCancelEvent = True

 ■ Attention The mobjMyRecipes as Object module-level variable, which has a reference to the source
 My Recipes worksheet, has its ScreenUpdating property set to False . That is why it is declared as Object .
If it was declared as Worksheet , VBA would raise an error here since the Worksheet object does not have a
 ScreenUpdating method (just the My Recipes worksheet has it!).

 The UserForm progress bar is turned visible with 0%, and intTotal receives the total number of selected
recipes in the lstRecipes ListBox (mcolSelected.Count property).

 'Freeze MyRecipes updating
 mobjMyRecipes.ScreenUpdating (False)
 Application .Cursor = xlWait
 ' Clear and show the Progress Bar
 Call UpdateProgressBar (True)
 intTotal = mcolSelected.Count

 Looping Through All Selected Recipes
 Since ProcessRecipes () is used for all four operations (saved in my recipes, delete, export, or import
recipes), let’s see how the For Each...Next loop is used to update the frmManageRecipes UserForm interface
as recipes are processed.

 The loop uses the varItem as Variant variable to get each mcolSelected collection’s Item value:
the lstRecipes.Index value of each selected recipe. It then verifies the mbolCancel module-level variable
value. If mbolCancel = True (the user clicks Cancel), it checks whether the operation in progress is deleting
recipes, and if it is, it calls the Sub RebuildCollection() procedure (which will be analyzed later in this
chapter) and exits the loop.

 For Each varItem In mcolSelected
 If mbolCancel Then
 If Me .optDelete Then
 Call RebuildCollection
 End If
 Exit For
 End If
 ...
 Next

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

662

 If the For Each...Next loop is not canceled, the intI Integer variable is incremented to reflect the
number of recipes already processed, and the intJ Integer variable receives the varItem value, which is
the lstRecipes.Index value of the recipe being processed (note that if a “Delete recipes” operation is in
progress, varItem is added to 1 – intI).

 For Each varItem In mcolSelected
 ...
 'Updade Progress Bar (intI = recipe count, intJ = lstRecipes.Index)
 intI = intI + 1
 intJ = varItem + IIf(optDelete, 1 - intI, 0)

 The recipe name in process is selected with the ListBox Column property, using the intJ value for
its Row argument (recipe position on the list). lblProcessing.Caption receives the name of the recipe
being processed, and the UserForm progress bar is updated to show the percentage already accomplished,
using intI (current recipe processed) and intTotal (total recipes to be processed) as references to the
 UpdateProgressBar() procedure. The DoEvents function allows other events to be processed (like
canceling the operation).

 strRecipe = Me . lstRecipes. Column (0, intJ)
 Me . lblProcessing.Caption = "Processing " & strRecipe
 Call UpdateProgressBar (True, intI , intTotal)
 DoEvents

 The desired operation is then processed. If it is not a “Delete recipes” operation, the recipe is processed,
and the varItem value (recipe position on the list) is used to indicate which recipe must be unselected in the
 lstRecipes ListBox . Since the loop is running through all mcolSelected as Collection items, the item
processed is always the first item, so it is removed from the collection using the mcolSelected.Remove(1)
method (the next item to be processed will become the first item inside the collection) and the lblSelected .
The Label control (at the bottom of the lstRecipes ListBox) has its Caption property updated with an
 mcolSelected.Count value to indicate how many recipes are still selected for processing.

 If Me .optDelete Then
 ...
 Else
 ...
 Me . lstRecipes.Selected (varItem) = False
 End If
 mcolSelected.Remove (1)
 Me . lblSelected.Caption = mcolSelected.Count & " recipes selected"
 Next

 If the operation in progress is an export or import of a recipe record to a worksheet that has at least one
 My Recipes worksheet (mintWorkbookHasMyRecipes > 0), the loop calls TransferRecipe(strRecipe) .
Otherwise, the operation in progress is to save just the recipe nutritional information in the My_Recipes
range name of the USDA worksheet, which can be on this or an external workbook, calling the Sub
 SaveInMyRecipes () procedure.

 'Give a time to load recipe information
 DoEvents
 If (Me .optExport Or Me .optImport) And mintWorkbookHasMyRecipes Then
 ...Call TransferRecipe (strRecipe)

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

663

 Else
 'Save just recipe nutritional information on 'USDA'!My_Recipes
 Call SaveInMyRecipes (strRecipe)
 End If

 Saving Recipe Nutritional Information with SaveInMyRecipes ()
 The frmManageRecipes UserForm allows you to get recipe nutritional information from two different sources.

• By selecting the desired recipe as a food item in the My_Recipes range name of some
 USDA worksheet, from this or another workbook

• By loading the desired recipe record on the My Recipes worksheet and getting its
nutritional information by selecting the NewRecipe range name

 If you do not have the curiosity to inspect how the My Recipes worksheet or any of its copies produce
the recipe nutritional information, you must be aware that in its hidden columns it uses the cell range
 Y10:GW27 to calculate each food item nutrient value based on the food item weight used by the recipe with
the aid of Excel VlookUp() functions. The cell V28:GW28 range (the NewRecipe range name) is used to sum
each nutrient values for all possible recipe food items (Figure 9-21).

 Figure 9-21. The My Recipes worksheet has the NewRecipe range name that returns the sum of each
calculated nutrient for the selected recipe from range V28:GW28

 To save any recipe amount, you just need to load the recipe and copy the NewRecipe range name to
the correct row of the My_Recipes range name. Or just exchange food items of the My_Recipes range names
between two different USDA worksheets.

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

664

 One of these two operations is conducted by the Private Sub SaveInMyRecipes () procedure, which
receives the recipe name on its strRecipe as String argument and executes this code:

 Private Sub SaveInMyRecipes (strRecipe As String)
 Dim rgSource As Range
 Dim rgDestination As Range
 Dim rgSourceRecipe As Range
 Dim rgDestinationRecipe As Range
 Dim rgUSDA As Range
 Dim bolNewRecipe As Boolean

 Set rgUSDA = Range("USDA")
 Set rgDestination = Range("My_Recipes")
 Range(" CurrentRecord ") = strRecipe

 If Me .optSaveInMyRecipes Or Me .optExport Then
 Set rgSourceRecipe = Range("NewRecipe")
 If Me .optExport Then
 Set rgDestination = mws.Range("My_Recipes")
 Set rgUSDA = mws.Range("USDA")
 End If
 Else
 'Import operation
 Set rgSource = mws.Range("My_Recipes")
 'Find recipe on Source range
 Set rgSourceRecipe = rgSource.Find(strRecipe, , , xlWhole)
 ' Resize rgSourceRecipe
 Set rgSourceRecipe = rgSourceRecipe. Resize (1, Range("NewRecipe").Columns.Count)
 End If

 'Find rgRecipe on Desination range
 Set rgDestinationRecipe = rgDestination.Find(strRecipe, , , xlWhole)
 If rgDestinationRecipe Is Nothing Then
 'Insert new recipe on destination range
 rgDestination. Resize (rgDestination.Rows.Count + 1).Name = "My_Recipes"
 'Update rgDestination object variable to contain My_Recipes new row
 If Me .optExport Then
 Set rgDestination = mws.Range("My_Recipes")
 Else
 Set rgDestination = Range("My_Recipes")
 End If
 'Position on new cell of My_Recipes range
 Set rgDestinationRecipe = rgDestination.Cells(rgDestination.Rows.Count, 1)
 bolNewRecipe = True
 End If

 'Copy rgSourceRecipe content
 rgSourceRecipe.Copy
 rgDestinationRecipe.PasteSpecial xlPasteValues

 If bolNewRecipe Then

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

665

 'A New Recipe was inserted on USDA My_Recipes. Resize and sort it!
 rgDestination. Resize (, rgUSDA.Columns.Count).Sort rgDestination.Cells(1, 1)
 rgUSDA. Resize (rgUSDA.Rows.Count + 1).Name = "USDA"
 End If
 End Sub

 Sub SaveInMyRecipes () declares object variables to reference the source and destination workbooks
and worksheets and initialize them according to the operation to perform: save in My_Recipes , export, or
import. By default, rgUSDA , rgDestination , and rgSourceRecipe (for an export operation) are set to these
 ThisWorkbook range names:

 Set rgUSDA = Range (" USDA ")
 Set rgDestination = Range (" My_Recipes ")
 If Me .optSaveInMyRecipes Or Me .optExport Then
 Set rgSourceRecipe = Range (" NewRecipe ")

 It then loads the recipe being processed on the active sheet by changing the Range(CurrentRecord)
value, effectively automating the process (the Worksheet_Change() event will fire).

 Range(" CurrentRecord ") = strRecipe

 If the selected operation is to export data, both rgUSDA and rgDestination are redefined to the external
 USDA range name (associated to the mws as Worksheet module-level variable).

 If Me .optExport Then
 Set rgUSDA = mws.Range (" USDA ")
 Set rgDestination = mws.Range (" My_Recipes ")
 End If

 But if the operation is to import data, the rgSource object variable is set to the external My_Recipes
range name (associated to the mws as Worksheet module-level variable), while rgSourceRecipe is defined
by searching the selected recipe inside rgSource , using the Range. Find method.

 Else
 'Import operation
 Set rgSource = mws.Range (" My_Recipes ")
 'Find recipe on Source range
 Set rgSourceRecipe = rgSource.Find (strRecipe , , , xlWhole)

 Once the recipe was found in the My_Recipes range name, the rgSourceRange object variable is resized
to encompass all NewRecipes range name nutrient columns, using the Range. Resize method.

 ' Resize rgSourceRecipe
 Set rgSourceRecipe = rgSourceRecipe. Resize (1, Range(" NewRecipe "). Columns.Count)
 End If

 After rgUSDA , rgDestination , and rgSourceRecipe have been correctly defined, the code uses the
 Range. Find method to verify whether the selected recipe already has a record in the destination My_Recipes
range.

 'Find rgRecipe on Desination range
 Set rgDestinationRecipe = rgDestination.Find (strRecipe , , , xlWhole)

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

666

 If the record is not found, it must insert it at the bottom of the My_Recipes range, so rgDestination is
increased by one row using the Range. Resize method and updated with the Range.Name property.

 'Insert new recipe on destination range
 rgDestination . Resize (rgDestination. Rows.Count + 1).Name = "My_Recipes"

 And once rgDestination is resized, its references are updated to reflect the new inserted row.

 If Me .optExport Then
 Set rgDestination = mws.Range("My_Recipes")
 Else
 Set rgDestination = Range("My_Recipes")
 End If

 Now that rgDestination already has a pointer to the resized range, it is used to set
 rgDestinationRecipe to point to the new inserted row, using the rgDestination.Cells() property and
 bolNewRecipe = True to signal a new record.

 Set rgDestinationRecipe = rgDestination.Cells (rgDestination. Rows.Count , 1)
 bolNewRecipe = Tr ue
 End If

 Now the recipe nutritional information is transferred between worksheets using the rgSource.Copy and
 rgDestinationRecipe.PasteSpecial methods.

 'Copy rgSourceRecipe content
 rgSourceRecipe.Copy
 rgDestinationRecipe.PasteSpecial xlPasteValues

 If a new recipe is inserted on the My_Recipes range name, it needs to be sorted to put the new food
item in its correct order. This is made by first applying the Range. Resize method to include all USDA range
nutrient columns (note that it uses just the Range. Resize Columns argument) and then uses Range. Sort to
sort it, using the first rgDestination column (rgDestination.Cells(1,1)) for its Key1 argument.

 If bolNewRecipe Then
 'A New Recipe was inserted on USDA My_Recipes. Resize and sort it!
 rgDestination. Resize (, rgUSDA.Columns.Count). Sort rgDestination.Cells(1, 1)

 Since a new record was inserted, to finish the operation, the code also needs to resize the USDA range
name to include this new My_Recipes row (note that it uses just the Range. Resize Rows argument), using the
 Range.Name property to update the range name.

 rgUSDA. Resize (rgUSDA.Rows.Count + 1).Name = "USDA"
 End If
 End Sub

 The strRecipe nutritional information was saved on the destination My_Recipes range name, and the
code control returns to Sub ProcessRecipes () , which deselects the item on lstRecipes and removes it
from the mcolSelected variable using the Collection.Remove method, updating the lblSelected.Caption
property to indicate how many recipes are still selected to process using the Collection.Count property.

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

667

 Call SaveInMyRecipes (strRecipe)
 End If
 Me . lstRecipes.Selected (varItem) = False
 End If
 mcolSelected.Remove (1)
 Me . lblSelected.Caption = mcolSelected.Count & " recipes selected"
 Next

 Finishing the Save in My Recipes Operation
 When all selected recipes have been processed, Sub ProcessRecipes () verifies the operation in progress
is “Export recipes” or “Save in My Recipes,” and if this is true, it calls the Workbook .Save method to save
the workbook. To finish the operation, it synchronizes the frmManageRecipes interface by changing the
 cmdExecute.Enable property, returns the mouse cursor to its default state, and uses automation to execute
the active sheet to redefine the database’s mobjMyRecipes.ScreenUpdating property to True , forcing
database controls to update on the worksheet application interface.

 If Me .optExport Or Me .optSaveInMyRecipes Then
 wb.Save
 ...
 End If

 Me .cmdExecute.Enabled = (mcolSelected.Count > 0)
 Me .cmdClose.Caption = " Close "
 Application .Cursor = xlDefault
 mobjMyRecipes.ScreenUpdating (True)
 End Sub

 Exporting and Importing Recipe Data

 ■ Attention To understand this section, I hope you have created at least one copy of the My Recipes
worksheet using the New My Recipes CommandButton of the frmManageRecipes UserForm , as indicated in
section “Inserting Copies of My Recipes Sheet Tab” earlier in this chapter.

 The frmManageRecipes UserForm allows you to export recipe nutritional data to any USDA worksheet as a
new food item to the My_Recipes range name or as recipe records to any other USDA Food Composer ...xlsm
macro-enabled worksheet that has a My Recipes worksheet database application.

 Whenever you click the “Export recipes” OptonButton , three small changes take place in the
 frmManageRecipes interface: the chkOption CheckBox is shown, and the two Label controls on the left of
 cboMyRecipes and cboWorkbook ComboBox es update their Caption property to indicate the appropriate
operation (Figure 9-22).

 ■ Attention If the current workbook has just one My Recipes worksheet, the cboWorkbook ComboBox will
be changed to “External Workbook ” and locked.

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

668

 These small interface changes are made by the Sub optExport_Click() event, which executes this
code:

 Private Sub optExport_Click()
 Call CloseExternalWorkbook

 If mbolUpdateInterface Then
 Call LoadcboMyRecipes
 mbolUpdateInterface = False
 End If
 Call UpdateProgressBar(False)
 Me .lblRecipes.Caption = "Select recipes to Export from:"
 Me .chkOption.Caption = "Export Recipe as new record"
 Me .chkOption.Visible = True
 Me .cboWorkbook.Locked = (MyRecipesCount () = 1)
 Me .cboWorkbook.ListIndex = IIf(Me .cboWorkbook.Locked, 1, 0)
 Me .lblWorkbook.Caption = "Export to:"
 End Sub

 This code is similar to the code used by optSaveInMyRecipes : it calls CloseExternalWorkbook()
to close any possible external workbook, checks whether mbolUpdateInterface = True , and if it is, calls
 LoadcboMyRecipes () , hides the UserForm progress bar with UpdateProgressBar(False) , and updates
interface controls to better reflect the nature of the export operation.

 Note, however, that cboWorkbook will have its property Locked = True only if this workbook has just
one My Recipes worksheet. If this is true, it will also set cboWorkbook = Export Recipes (ListIndex = 1),
which is the unique export operation allowed. Otherwise, cboWorkbook will be unlocked and set to “Import
recipes.”

 Figure 9-22. Whenever you select “Export recipes,” the frmManageRecipes interface shows some cosmetic
changes on its interface

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

669

 Me .cboWorkbook. Locked = (MyRecipesCount () = 1)
 Me .cboWorkbook. ListIndex = IIf (Me . cboWorkbook.Locked , 1 , 0)

 Exporting Recipes to This Workbook
 Let’s suppose you want to export the first five recipes from My Recipes to another worksheet of this
workbook like Figure 9-22 suggests. After clicking the Execute CommandButton , the frmManageRecipes will
change its interface to allow the selection of the destination worksheet inside this workbook (Figure 9-23).

 Figure 9-23. Whenever you need to export recipes to another worksheet of this workbook (or to an external
workbook that has more than one My Recipes worksheet), frmManageRecipes will change its interface,
repositioning the fraSetDestination Frame control, to allow the selection of the destination worksheet

 All copies of My Recipes made with the New My Recipes CommandButton (but the selected cboMyRecipes
source worksheet) will appear in cboMyRecipesDestination (the “Export recipes to” ComboBox). Note that
My Recipes 2 is selected by default, showing no recipes at all in the lstExternalRecipes ListBox and that
just the Cancel (cmdClose) and Continue (cmdExecute) CommandButton s are enabled, allowing you to cancel
or continue the operation after selecting the desired destination worksheet.

 ■ Attention At this point, you can click Cancel to return to the previous UserForm interface (Figure 9-22),
where you can select again the desired recipes or just click Execute to return to this interface to select the
destination worksheet.

 This interface change is made by the cmdExecute_Click() event, which executes the next code
fragment of the cmdExecute_Click() event.

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

670

 Option Explicit

 Dim mxl As Excel. Application
 Dim mwb As Workbook
 Dim mws As Worksheet
 ...
 Private Sub cmdExecute_Click()
 ...
 ElseIf Not Me .optSaveInMyRecipes Then
 If Me .optExport And Me .cboWorkbook = "External Workbook " Then
 'Export operation to external workbook
 If GetExternalWorkbook() Then
 ' Load recipes of first external MyRecipes
 Me .cboMyRecipesDestination.ListIndex = 0
 bolSetDestination = True '(mintWorkbookHasMyRecipes > 1)
 Else
 Call EnableControls (True)
 Exit Sub
 End If
 Else
 'Operation is Import or Export to ThisWokbook
 'Select destination My Recipes?
 bolSetDestination = (MyRecipesCount () > 1)
 If Me .optExport Then
 'Export to other sheet tab of ThisWorkbook
 Set mxl = Application
 Set mwb = ThisWorkbook
 End If
 End If
 If bolSetDestination Then
 If optImport Or Me .cboWorkbook = "This Workbook " Then
 'ThisWorkbook has more than one possible destination
 Call LoadcboMyRecipes (wb, True)
 End If
 Call SelectMyRecipesDestination(True)
 If Me .optExport Then
 Set mws = mwb. Worksheets ((cboMyRecipesDestination))
 End If
 Exit Sub
 End If
 End If

 To export recipes to another worksheet of the same workbook, cmdExecute_Click() first checks if this
is an “Export recipes” or “Import recipes” operation (Not optSaveInMyRecipes), and if this is true, it checks
whether this is not an “Export recipes” operation to an external workbook .

 ElseIf Not Me .optSaveInMyRecipes Then
 If Me .optExport And Me .cboWorkbook = "External Workbook " Then
 ...
 Else

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

671

 The procedure executes the Else clause when this is an “Import recipes” or “Export recipes”
 to this workbook , so verify whether there is more than one possible destination worksheet using the
 MyRecipesCount () procedure.

 Else
 'Operation is Import or Export to ThisWokbook
 'Select destination My Recipes?
 bolSetDestination = (MyRecipesCount () > 1)

 If this is an “Export recipes” operation to this workbook, it sets the module-level variables mxl as
 Application and mwb as Workbook to point to the current Excel application and the ThisWorkbook object.

 If Me .optExport Then
 'Export to other sheet tab of ThisWorkbook
 Set mxl = Application
 Set mwb = ThisWorkbook
 End If
 End If

 For any kind of export or import operation, it verifies whether bolSetDestination = True as an
indication that the UserForm interface must be changed to allow you to select the destination worksheet.
If this is an import or export operation to ThisWorkbook , it calls LoadcboMyRecipes (wb, True) to load all
possible destination worksheets in the cboMyRecipesDestination ComboBox .

 If bolSetDestination Then
 If optImport Or Me .cboWorkbook = "This Workbook " Then
 'ThisWorkbook has more than one possible destination
 Call LoadcboMyRecipes (wb, True)
 End If

 ■ Attention For a description about how LoadcboMyRecipes () uses its arguments to load the
 cboMyRecipesDestination ComboBox list, see the section “Filling ComboBox Lists with LoadcboMyRecipes ()”
earlier in this chapter.

 When the second argument (bolSetDestination) of the LoadcboMyRecipes () procedure is True , it
will load the cboMyRecipesDestination list and set its value to the first list item, which will cascade-fire the
 cboMyRecipesDestination_Click() event (the same event fired when another destination worksheet is
selected in this ComboBox).

 Showing Destination Worksheet Recipes on lstRecipesDestination

 Whenever a destination worksheet is selected in the cboMyRecipesDestination ComboBox , the Click()
event fires, showing all recipes stored in the selected worksheet database and executing this code:

 Private Sub cboMyRecipesDestination_Click()
 Dim wb As Workbook
 Dim ws As Worksheet
 Dim rg As Range
 Dim intI As Integer

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

672

 If Me .cboMyRecipesDestination.ListCount > 0 Then
 Set wb = IIf(Me .optExport, mwb, ThisWorkbook)
 Set ws = wb. Worksheets ((cboMyRecipesDestination))
 Set mws = ws
 'Provision to start Database services on destination sheet
 ws.Activate
 Me .lstRecipesDestination. Clear
 Set rg = ws.Range("SavedRecords")
 For intI = 2 To rg.Rows.Count
 If Len(rg.Cells(intI)) > 0 Then
 Me .lstRecipesDestination. AddItem rg.Cells(intI)
 End If
 Next
 Me .lblRecipesDestination.Caption = "Selected sheet has " & Me .lstRecipesDestination.
ListCount & " recipes"

 If mwb.Name = ThisWorkbook.Name Then
 'Keep focus on activesheet if operation will be performed on ThisWorkbook
 Worksheets ((Me .cboMyRecipes)).Activate
 End If
 End If

 The frmManageRecipes UserForm can export recipes to this or another external workbook, so the
 cmdExecute_Click() event calls the cboMyRecipesDestionation. Clear method before loading it with all
the possible worksheet export targets. This action fires the cboMyRecipesDestination_Change() event with
no list items, so it first checks whether the ListCount property is > 0 to execute the operation. If it is empty
(ListCount = 0), the event code ends, doing nothing.

 Private Sub cboMyRecipesDestination_Change()
 ...
 If Me .cboMyRecipesDestination. ListCount > 0 Then
 ...
 End If
 End Sub

 If cboMyRecipesDestination.ListCount > 0 , it checks whether the action in progress is an “Export
recipes” operation. If it is, the wb as Workbook object variable is set to the wmb as Workbook module-level
variable already set (which will point to the desirable workbook target). Otherwise, it is an “Import recipes”
operation, which will always be made to the ThisWorkbook .

 Set wb = IIf (Me . optExport , mwb , ThisWorkbook)

 Having selected the desired destination workbook, the code sets a reference to the destination
worksheet using a double pair of parentheses to automatically convert the cboMyRecipesDestination
value to the string argument of the Worksheets collection, attributing the destination worksheet to the
 mws module-level variable. The destination worksheet’s Activate method is executed to guarantee that its
database services have been started allowing you to automate the export/import operation between the two
worksheet applications.

 Set ws = wb. Worksheets ((cboMyRecipesDestination))
 Set mws = ws

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

673

 'Provision to start Database services on destination sheet
 ws. Activate

 ■ Attention Always use double parentheses to surround a procedure argument whenever you want VBA to
make an automatic conversion from number to string, and vice versa.

 The lstRecipesDestination ListBox is cleared, and a range object reference is set to the destination
worksheet’s SavedRecords range name (the database records list). A For int=2 to...Next loop is then used
to fill its list with all recipes on its SavedRecords range name, discarding the first recipe (“New recipe”).

 Me .lstRecipesDestination. Clear
 Set rg = ws.Range(" SavedRecords ")
 For intI = 2 To rg.Rows.Count
 If Len(rg.Cells(intI)) > 0 Then
 Me .lstRecipesDestination. AddItem rg.Cells(intI)
 End If
 Next

 When the loop ends, the lblExternalRecipes.Caption property is updated with the recipe count, and
it checks whether the mwb as Workbook module-level variable points to ThisWorkbook (the workbook that
executes the code). If it does, the source worksheet, selected on cboMyRecipes , is activated again.

 Me .lblRecipesDestination. Caption = "Selected sheet has " & Me .
lstRecipesDestination. ListCount & " recipes"

 If mwb.Name = ThisWorkbook .Name Then
 'Keep focus on activesheet if operation will be performed on ThisWorkbook
 Worksheets ((Me . cboMyRecipes)). Activate
 End If
 End If
 End Sub

 Changing the frmManageRecipes Interface with
SelectMyRecipesDestination()

 When the cboMyRecipesDestination_Change() event finishes, the code control returns to the cmdExecute_
Click() event, which calls SelectMyRecipesDestination(True) to change the frmManageRecipes
interface to allow the user to select the destination worksheet.

 Call SelectMyRecipesDestination (True)

 The Private Sub SelectMyRecipesDestination() procedure executes this code:

 Private Sub SelectMyRecipesDestination(bolSelect As Boolean)
 Dim strCaption As String
 Dim bolExternalWorkbook As Boolean
 Const conBlack = 0
 Const conRed = 255

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

674

 If (Me .cboWorkbook = "External Workbook ") And (Not mwb Is Nothing) Then
 bolExternalWorkbook = True
 strCaption = "Select destination on " & IIf(optImport, "This Workbook ", mwb.Name)
 Else
 strCaption = "Select destination on This Workbook "
 End If
 Me .fraSetDestination.Caption = strCaption
 Me .fraSetDestination.ForeColor = IIf(bolExternalWorkbook And optExport, conRed,

conBlack)
 Me .fraSetDestination.Top = Me .cboMyRecipes.Top
 Me .fraSetDestination. Left = Me .fraOperation. Left
 Me .fraSetDestination.Visible = bolSelect
 Me .lblMyRecipesDestination.Caption = IIf(Me .optImport, "Import recipes from:", "Export

recipes to:")
 Me .cboMyRecipes.Visible = Not bolSelect
 Me .lstRecipes.Visible = Not bolSelect
 Me .cmdExecute.Enabled = bolSelect
 Me .cmdExecute.Caption = IIf(bolSelect, "Continue", "Execute")
 End Sub

 The procedure verifies whether an operation with an external workbook is in progress to set
the bolExternalWorkook and strCaption variables and uses the bolSelect argument to change
the frmManageRecipes interface, manipulating some controls’ Visible properties (also changing
 fraSetDestination Frame control’s Top and Left properties to put them right over cboMyRecipes ,
 cboWorkbook , and lstRecipes). To finish the operation, it changes the cmdExecute Enabled and Caption
properties and updates the UserForm interface.

 When bolSelect =False , the destination recipe controls are hidden (Figure 9-22); otherwise, they
become visible (Figure 9-23), also changing the cmdExecute Caption property from Execute to Continue.

 And once again, when the SelectMyRecipesDestination() procedure ends, the code control returns
to the cmdExecute_Click() event, which verifies whether this is an “Export recipes” operation and finishes
the code by setting the mws as Worksheet module-level variable to reference the worksheet selected in the
 cboMyRecipesDestination ComboBox (note the double parentheses used to make an automatic variable-
type conversion to String).

 If Me .optExport Then
 Set mws = mwb. Worksheets ((cboMyRecipesDestination))
 End If
 Exit Sub
 End If
 End If

 Executing the Export Recipes Operation

 At this point, frmManageRecipes must be like Figure 9-23 , ready to cancel or continue the “Export recipes”
operation. If you click the cmdExecute CommandButton that now shows “Continue” on its Caption property,
the cmdExecute_Click() event will fire again, executing this code:

 Private Sub cmdExecute_Click()
 ...
 If Me . cmdExecute.Caption = " Continue " Then

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

675

 Call SelectMyRecipesDestination(False)
 Call ProcessRecipes (mwb, mws)
 Else
 ...
 End If
 End Sub

 As you can see, it calls again SelectMyRecipesDestination(False) to return frmManageRecipes to its
default interface and then calls ProcessRecipes (mwb, mws) to export the selected recipes to the destination
worksheet. Figure 9-24 shows the UserForm progress bar indicating that this operation is in progress. Each
recipe is loaded in the My Recipes worksheet interface automatically and saved in the My Recipes 2
worksheet interface (which is not shown). When the operation finishes, select My Recipes 2 in cboMyRecipes
and note that it now shows that it has received all the selected recipes (Figure 9-25).

 ■ Attention When the export recipes process ends, the My Recipes source worksheet must be showing the
last exported recipe record because of the automation process.

 Figure 9-24. This figure shows frmManageRecipes exporting the first five recipes of the My Recipes worksheet
to the My Recipes 2 worksheet

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

676

 Looping Through All Selected Recipes to Import/Export Records

 The next code fragment points to what happens inside ProcessRecipes () to export/import the
selected record. It calls Sub TransferRecipe(strRecipe) to import/export the selected records if
 mintWorkbookHasMyRecipes > 0 (an indication that the destination workbook has a My Recipes worksheet
to be automated).

 Private Sub ProcessRecipes (wb As Workbook , ws As Worksheet)
 ...
 For Each varItem In mcolSelected
 ...
 If (Me . optExport Or Me .optImport) And mintWorkbookHasMyRecipes Then
 Call TransferRecipe(strRecipe)
 ...
 End If
 ...
 Next

 Figure 9-25. When the “Export recipes” operation ends, select the My Recipes 2 worksheet in cboMyRecipes
and note that it now has the five exported recipes!

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

677

 Exchanging Recipe Records Automatically with TransferRecipe()

 Private Sub TransferRecipe() is responsible for effectively exchanging recipe records between two
selected worksheets. One worksheet is the record source, while other is the record destination. They just
change places regarding the operation in progress (either export or import), following a single rule: it can
just import records from an external workbook that has another My Recipes worksheet and execute this
code:

 Private Sub TransferRecipe(strRecipe As String)
 Dim xl As Application
 Dim wsSource As Worksheet
 Dim wsDestination As Object
 Dim rgSource As Range
 Dim rgDestination As Range
 Dim rgMyRecipes As Range
 Dim rgArea As Range
 Dim strNewRecipe As String
 Dim strMsg As String
 Dim strTitle As String
 Dim intI As Integer
 Dim bolNewRecipe As Boolean

 If Me .optExport Then
 Set xl = mxl
 Set wsSource = ActiveSheet
 Set wsDestination = mws
 Else
 Set xl = Application
 Set wsSource = mws
 Set wsDestination = ActiveSheet
 End If
 Set rgSource = wsSource.Range("RecipeData")
 Set rgDestination = wsDestination.Range("RecipeData")

 'Verify if recipe already exist on wsDestination
 strNewRecipe = strRecipe
 Set rgMyRecipes = wsDestination.Range("SavedRecords").Find(strNewRecipe, , , xlWhole)
 If rgMyRecipes Is Nothing Then
 'strRecipe das not exist on destination
 bolNewRecipe = True
 wsDestination.Range(" CurrentRecord ") = "New Recipe"
 Else
 'Recipe already exist on desination. Transfer recipe as new recipe?
 If Me .chkOption Then
 'Add a name count suffix to paste existing record as new one
 Do
 'Find a new record name
 intI = intI + 1
 strNewRecipe = strRecipe & intI
 Set rgMyRecipes = mws.Range("SavedRecords").Find(strNewRecipe, , , xlWhole)
 Loop Until rgMyRecipes Is Nothing

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

678

 bolNewRecipe = True
 Else
 'strRecipe exist! Ask to overwrite it.
 strMsg = "Recipe '" & strNewRecipe & "' already existe on '" & wsDestination.

Parent.Name & "." & vbCrLf
 strMsg = strMsg & "Overwrite it?"
 strTitle = "Overwrite recipe '" & strNewRecipe & "'?"
 If MsgBox (strMsg, vbYesNoCancel + vbDefaultButton2 + vbQuestion, strTitle) =

vbYes Then
 wsDestination.Range(" CurrentRecord ") = strNewRecipe
 Else
 Exit Sub
 End If
 End If
 End If

 wsSource.Range(" CurrentRecord ") = strRecipe
 DoEvents
 xl.Calculation = xlCalculationManual
 For Each rgArea In rgSource. Areas
 wsDestination.Range(rgArea. Address).Value = rgArea.Value
 Next
 xl.Calculation = xlCalculationAutomatic
 Application .DisplayAlerts = False
 wsDestination.Save strNewRecipe, bolNewRecipe
 DoEvents
 End Sub

 After declaring all the variables it needs, Sub TransferRecipes() determines what the source and
destination workbook and worksheets are according to the operation being processed using the mxl ,
 wsSource , and wsDestination object variables. For an “Export recipes” operation, wsSource is set to the
active sheet (the one that is automated with the recipe being processed), while wsDestination is set to the
 mws module-level object variable (if it is an import operation, they simply exchange places).

 If Me .optExport Then
 Set xl = mxl
 Set wsSource = ActiveSheet
 Set wsDestination = mws
 Else
 Set xl = Application
 Set wsSource = mws
 Set wsDestination = ActiveSheet
 End If

 And once the source and destination workbook and worksheets are set, it is time to set the rgSource
and rgDestination as Range variables to point to the desired RecipeData range.

 Set rgSource = wsSource .Range(" RecipeData ")
 Set rgDestination = wsDestination .Range(" RecipeData ")

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

679

 ■ Attention The RecipeData range name includes all input cells of the My Recipes worksheet: the one-side
and the many-side record cells. You can select it in the Excel Name box and see what cells it selects. Since it
selects noncontiguous cells, its name does not appear in the Excel Name box after being selected in the range
name list (Figure 9-26).

 Before exporting/importing the selected recipes, TransferRecipe() uses the Range. Find method to
verify whether the recipe being processed already exists on the destination worksheet.

 'Verify if recipe already exist on wsDestination
 strNewRecipe = strRecipe
 Set rgMyRecipes = wsDestination .Range(" SavedRecords "). Find (strNewRecipe, , , xlWhole)

 If the recipe record being processed does not exist in the destination worksheet, it is automated
by defining the CurrentRecord range name (the database data validation list) as New Recipe, and
 bolNewRecipe receives a True indication that this is a new recipe record.

 If rgMyRecipes Is Nothing Then
 'strRecipe das not exist on destination
 wsDestination .Range(" CurrentRecord ") = " New Recipe "
 bolNewRecipe = True

 Figure 9-26. This is the RecipeData range name, selected in the Excel Name box. It contains all My Recipes
input cells, including both the one-side and many-side record cells

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

680

 If the recipe already exists on the destination worksheet, a decision must be made according to the
 chkOption CheckBox value (“Export Recipe as new record” option) that you can see in Figures 9-22 to 9-25 . If
the option is checked, the recipe must be saved as a new record, changing the recipe name to one that does
not exist in the destination database. This is done using a Do...Loop instruction that uses the strNewRecipe
String variable to successively concatenate a counter suffix (intI) to the original recipe name (strRecipe),
using Range(SaveRecords).Find to search the new name in the destination database. The loop ends when
the new strNewRecipe name does not exist in the destination worksheet.

 'Recipe already exist on desination. Transfer recipe as new recipe?
 If Me .chkOption Then
 'Add a name count suffix to paste existing record as new one
 Do
 'Find a new record name
 intI = intI + 1
 strNewRecipe = strRecipe & intI
 Set rgMyRecipes = mws .Range(" SavedRecords "). Find (strNewRecipe , , , xlWhole)
 Loop Until rgMyRecipes Is Nothing
 bolNewRecipe = True

 But if the user unchecks the “Export Recipe as new record” option and the record already exists in the
destination database, a VBA MsgBox () function will warn the user before overwriting the recipe. If the user
decides to overwrite the existing recipe, the code will automate the destination worksheet by loading the
recipe being processed so its recipe data can be changed.

 Else
 'strRecipe exist! Ask to overwrite it.
 strMsg = "Recipe '" & strNewRecipe & "' already existe on '" & wsDestination.

Parent.Name & "." & vbCrLf
 strMsg = strMsg & "Overwrite it?"
 strTitle = "Overwrite recipe '" & strNewRecipe & "'?"
 If MsgBox (strMsg, vbYesNoCancel + vbDefaultButton2 + vbQuestion, strTitle) = vbYes Then
 wsDestination.Range(" CurrentRecord ") = strNewRecipe

 If it decides to not overwrite the existing recipe, an Exit Sub instruction will exit Sub TransferRecipe() ,
returning the code control to Sub ProcessRecipes () to process the next selected recipe (if any).

 Else
 Exit Sub
 End If
 End If
 End If

 When the Sub TransferRecipe() procedure reaches this code point, it is ready to exchange the
records between the two selected worksheets, so it is time to automate the source worksheet by loading the
recipe being processed. A DoEvents instruction is used here to allow any further database events to execute
before the recipe is loaded.

 wsSource .Range(" CurrentRecord ") = strRecipe
 DoEvents

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

681

 Now it is time to really exchange recipe data between the two worksheet application interfaces, which
is done using a For Each...Next loop through the Range. Areas collection of the rgSource range. Note
that before the loop is executed, the destination workbook (represented by the xl as Application object
variable) is put in manual calculation mode to avoid any Volatile procedure from running as each cell
value is changed by the loop.

 xl.Calculation = xlCalculationManual
 For Each rgArea In rgSource. Areas
 wsDestination .Range(rgArea. Address).Value = rgArea.Value
 Next

 When the loop ends, all values from the source worksheet record have been transferred to the
equivalent cells of the destination worksheet record, and the destination workbook is returned to automatic
calculation. The code then uses Application .DisplayAlerts = False to disable any OLE messages issued
by the destination application, which may fire when exporting records to an external workbook.

 xl.Calculation = xlCalculationAutomatic
 Application . DisplayAlerts = False

 To effectively save the record on the destination workbook, the code calls the wsDestination.Save
procedure on the destination worksheet, using the destination database engine to automate the task to save
the strNewRecipe recipe record on its record structure. After the record is saved, another DoEvents function
is issued to allow time for any database events to be processed, and the code control returns to the Sub
 ProcessRecipes () procedure.

 wsDestination.Save strNewRecipe , bolNewRecipe
 DoEvents
 End Sub

 ■ Attention This is why wsDestination is declared as Object instead of as Worksheet . Since the Excel
 Worksheet object does not have a Save method, it avoids that wsDestination.Save instruction code generates
a VBA compile error.

 Finishing the Export Recipes Operation

 When the code control returns to Sub ProcessRecipes () and all selected recipes have been processed, the
code verifies whether the operation processed was an “Export recipes” or “Save in My Recipes” operation. If
this is true, it first saves the database, which is especially important when recipes have been exported to an
external workbook.

 If Me . optExport Or Me .optSaveInMyRecipes Then
 wb.Save

 If the selected recipes have been exported to an external workbook (represented by the mxl as
 Application module-level variable), this workbook must be saved and closed. The easy way to determine
with VBA code if two different opened workbooks are the same is to compare the Hwnd properties (read as
 H andle to a w i nd ow).

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

682

 If Me . optExport Then
 If (mxl. Hwnd <> Application . Hwnd) Then

 If mxl. Hwnd and Application . Hwnd differ, it means that they are different applications, and the external
workbook must be closed, silently saving itself using the Workbook . Close method and passing True to its
save argument, and the external Excel application must be finished, using its Application .Quit method.

 wb. Close True
 mxl.Quit
 End If

 As good programming practice, all object variables used to represent the external Application ,
 Workbook , and Worksheet objects are set to nothing, finishing the Sub ProcessRecipes () procedure.

 Set mxl = Nothing
 Set mwb = Nothing
 Set mws = Nothing
 End If
 End If
 ...
 End Sub

 When Sub ProcessRecipes () ends, it returns the code control to the cmdExecute_Click() event,
which will update the frmManageRecipes interface by calling EnableControls (True) and executing the next
code fragment:

 Call ProcessRecipes (mwb, mws)
 Call EnableControls (True)
 End Sub

 Exporting/Importing Recipe Records to/from an External Workbook
 Let’s see how frmManageRecipes implements an “Export recipes” operation when cboWorkbook is defined to
“External workbook.” After selecting the desired recipes to export, when the user clicks Execute, they will be
asked to select the external worksheet where the recipes must be exported (Figure 9-27).

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

683

 Note how the cmdExecute_Click() event code deals with this situation:

 Private Sub cmdExecute_Click()

 If Me .optExport And Me . cboWorkbook = "External Workbook " Then
 'Export operation to external workbook
 If GetExternalWorkbook() Then
 ' Load recipes of first external MyRecipes
 Me .cboMyRecipesDestination.ListIndex = 0
 bolSetDestination = True
 Else
 Call EnableControls (True)
 Exit Sub
 End If
 Else

 Figure 9-27. When the “Export recipes” operation is made to an external workbook, the frmManageRecipes
UserForm will show the Open dialog box to select the desired workbook to where the selected recipes must be
exported

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

684

 As you can see, the code calls GetExternalWorkbook() to allow the selection of the destination
workbook to where the recipes must be exported.

 Selecting the Destination Workbook with GetExternalWorkbook ()

 The Private Function GetExternalWorkbook() must do the following:

 1. Allow the selection of an Excel workbook to be used as destination

 2. Return True if the selected workbook has either a My Recipes or a USDA
worksheet, using the mintWorkbookHasMyRecipes module-level variable to
indicate how many copies of the My Recipes worksheet it has

 3. Use mxl as Application and mwb as Workbook to set a reference to the
 Excel. Application and Workbook objects selected

 4. Use the mws as Worksheet module-level variable to set a reference to either the
 My_Recipes or USDA worksheet found in the destination workbook

 ■ Attention By default, GetExternalWorkbook() will give precedence to a My Recipes worksheet over
 USDA worksheet whenever the destination workbook has both of them.

 Private Function GetExternalWorkbook() As Boolean
 Dim wb As Workbook
 Dim ws As Worksheet
 Dim wsMyRecipes As Worksheet
 Dim wsUSDA As Worksheet
 Dim rg As Range
 Dim strFile As String
 Dim strFilter As String
 Dim strTitle As String
 Dim strMsg As String
 Dim bolWorkbookOpen As Boolean
 Dim bolWorkbookOpenInThisApp As Boolean
 Dim bolFound As Boolean

 strFilter = "Excel files, *.xls*, All Files, *.*"
 strTitle = "Select desired workbook (it must have a 'My Recipes' or a 'USDA' worksheet)"
 'Get workbook file name
 strFile = ShowDialogBox (OpenFile, , strTitle, , strFilter, 1)

 If Len(strFile) Then
 bolWorkbookOpen = IsWorkbookOpen (strFile)
 If bolWorkbookOpen Then
 'Verify if workbook is already open on THIS Excel. Application
 For Each wb In Application .Workbooks
 If wb.FullName = strFile Then
 bolWorkbookOpenInThisApp = True
 Set mxl = Application
 Set mwb = wb
 Exit For

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

685

 End If
 Next
 End If

 If (Not bolWorkbookOpen) Or bolWorkbookOpenInThisApp Then
 Application .Cursor = xlWait
 If Not bolWorkbookOpenInThisApp Then
 ' Open workbook
 Set mxl = New Excel. Application
 mxl.DisplayAlerts = False
 Set mwb = mxl.Workbooks. Open (strFile)
 End If

 'Verify if the opened workbook has a "My Recipes" or "USDA" sheet tab
 mintWorkbookHasMyRecipes = 0
 mbolCancelEvent = True
 Me .cboMyRecipesDestination. Clear
 For Each ws In mwb. Worksheets
 'Confirm by it CodeName if it is the desired sheet tab
 If Left (ws. CodeName , 9) = "MyRecipes" And ws.Visible = xlSheetVisible

Then
 If wsMyRecipes Is Nothing Then
 Set wsMyRecipes = ws
 End If
 mintWorkbookHasMyRecipes = mintWorkbookHasMyRecipes + 1
 Me .cboMyRecipesDestination. AddItem ws.Name
 bolFound = True
 ElseIf (ws.Name = "USDA") And (Left (ws.Range("A1"), 2) = "SR") Then
 'Verify if "USDA" sheet tab has as My_Recipes range name
 On Error Resume Next
 Set rg = ws.Range("My_Recipes")
 If Not rg Is Nothing Then
 'wsUSDA has a pointer to "USDA"
 Set wsUSDA = ws
 bolFound = True
 End If
 End If
 Next
 mbolCancelEvent = False
 Application .Cursor = xlDefault

 If bolFound Then
 Set mws = IIf(mintWorkbookHasMyRecipes > 0, wsMyRecipes, wsUSDA)
 Else
 Call CloseExternalWorkbook
 MsgBox "The selected workbook doesn't has a 'My Recipe' or 'USDA' worksheet

to manage recipes data", _
 vbInformation, _
 "'My Recipes' or 'USDA' sheet tab not found!"
 End If
 End If

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

686

 End If
 GetExternalWorkbook = bolFound
 End Function

 After declaring all its variables, GetExternalWorkbook() uses the ShowDialogBox () procedure to
issue the Windows Open dialog box and allows the destination workbook to be selected.

 strFilter = "Excel files, *.xls*, All Files, *.*"
 strTitle = "Select desired workbook (it must have a 'My Recipes' or a 'USDA' worksheet)"
 'Get workbook file name
 strFile = ShowDialogBox (OpenFile, , strTitle, , strFilter, 1)

 If a workbook has been selected, it uses Function IsWorkbookOpen () (analyzed in section “Verify
Whether a Workbook Is Open” earlier in this chapter) to verify whether the selected workbook is already
opened by the user.

 If Len(strFile) Then
 bolWorkbookOpen = IsWorkbookOpen (strFile)

 If the selected file is already opened, it first checks whether it is a member of this Application .
Workbooks Collection object, executing a For Each...Next loop that compares each opened Workbook .
FullName property with the strFile argument. If it finds a match, it defines bolWorkbookOpenInThisApp =
True , sets the module-level variables mxl and mwb to point to the appropriate objects, and exits the loop.

 If bolWorkbookOpen Then
 'Verify if workbook is already open on THIS Excel. Application
 For Each wb In Application .Workbooks
 If wb.FullName = strFile Then
 bolWorkbookOpenInThisApp = True
 Set mxl = Application
 Set mwb = wb
 Exit For
 End If
 Next
 End If

 The next text verifies whether the selected workbook file is not open in another Excel windows or if it is
already opened in this Application object.

 If (Not bolWorkbookOpen) Or bolWorkbookOpenInThisApp Then

 If one of these two conditions is met, the code changes the Application .Cursor property and tests
whether the selected file is not opened in this Application interface. If the selected file is not open, it sets
the mxl module-level variable to a new, hidden Microsoft Excel Application object, sets DisplayAlerts
= False to avoid OLE messages when it is automated, and uses the Workbooks. Open method to load the
desired workbook file, using the mwb module-level variable to reference it.

 Application . Cursor = xlWait
 If Not bolWorkbookOpenInThisApp Then

 ' Open workbook

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

687

 Set mxl = New Excel. Application
 mxl.DisplayAlerts = False
 Set mwb = mxl.Workbooks. Open (strFile)
 End If

 Now that it already has the mwb module-level variable pointing to the external workbook file, it is time
to set the stage to verify that the external workbook object has a My Recipes or USDA worksheet to use as a
destination. It sets mintWorkbookHasMyRecipes = 0 and mbolCancelEvent = True to avoid cascade events
inside the loop, while also clearing the cboMyRecipesDestination ComboBox .

 'Verify if the opened workbook has a "My Recipes" or "USDA" sheet tab
 mintWorkbookHasMyRecipes = 0
 mbolCancelEvent = True
 Me . cboMyRecipesDestination. Clear

 A For Each... Next loop is made through the mwb. Worksheets collection to search for the desired
worksheet references. The first test searches for any My Recipes worksheet (one that has its CodeName
property’s first nine characters = MyRecipes and not hidden inside the destination workbook).

 For Each ws In mwb. Worksheets
 'Confirm by it CodeName if it is the desired sheet tab
 If Left (ws. CodeName , 9) = "MyRecipes " And ws.Visible = xlSheetVisible Then

 The first worksheet match is set to the wsMyRecipes object variable, while mintWorkbookHasMyRecipes
is incremented, and the cboMyRecipesDestination list is filled with the worksheet name. The bolFound
Boolean variable signals the finding.

 If wsMyRecipes Is Nothing Then
 Set wsMyRecipes = ws
 End If
 mintWorkbookHasMyRecipes = mintWorkbookHasMyRecipes + 1
 Me . cboMyRecipesDestination. AddItem ws.Name
 bolFound = True

 The second test verifies whether each workbook name is USDA and the first two characters of its A1 cell
are SR, as a clear indication that it is a USDA worksheet produced by the USDA Food List Creator.accdb
Microsoft Access application.

 ElseIf (ws.Name = "USDA ") And (Left (ws.Range("A1"), 2) = "SR") Then

 If such a worksheet is found, the code disables VBA error messages with an On Error Resume Next
instruction and tries to set a reference to the My_Recipes range name.

 'Verify if "USDA" sheet tab has as My_Recipes range name
 On Error Resume Next
 Set rg = ws.Range(" My_Recipes ")

 If the range is found, it uses the wsUSDA object variable to set a reference to this worksheet, and once
more bolFound =True to confirm the finding.

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

688

 If Not rg Is Nothing Then
 'wsUSDA has a pointer to "USDA"
 Set wsUSDA = ws
 bolFound = True
 End If
 End If
 Next

 When this second loop ends, the code sets mbolCancelEvent = False and resets the Application .
Cursor to it default mouse pointer.

 mbolCancelEvent = False
 Application . Cursor = xlDefault

 If bolFound = True , a destination worksheet was found inside the selected workbook file, and a VBA
 IIF() function is used to test the mintWorkbookHasMyRecipes variable and set the mws module-level
variable with a reference to either wsMyRecipes or wsUSDA (note that there is a precedence to the My Recipes
worksheet over the USDA worksheet):

 If bolFound Then
 Set mws = IIf (mintWorkbookHasMyRecipes > 0 , wsMyRecipes , wsUSDA)

 Otherwise, no destination worksheet is found on a selected file, and a call is made to the
 CloseExternalWorkbook() procedure.

 Else
 Call CloseExternalWorkbook

 Closing Any Opened Workbook with CloseExternalWorkbook ()
 The Private Sub CloseExternalWorkbook() procedure is called by many events of frmManageRecipes ,
which is responsible for closing any references to an external workbook and avoiding keeping a hidden Excel
 Application object open when it is no longer necessary. The procedure executes this code:

 Private Sub CloseExternalWorkbook()
 If Not mxl Is Nothing Then
 If mxl. Hwnd <> Application . Hwnd Then
 mxl.DisplayAlerts = False
 mwb. Close
 mxl.Quit
 Set mws = Nothing
 Set mwb = Nothing
 Set mxl = Nothing
 End If
 End If
 End Sub

 There is a trick already mentioned here: if the mxl module-level variable is pointing to an
 Excel. Application object, the code compares both mxl. Hwnd and Application . Hwnd properties: the
application handles that indicate its mxl and the current Application object that points to the same object.

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

689

 Private Sub CloseExternalWorkbook()
 If Not mxl Is Nothing Then
 If mxl. Hwnd <> Application . Hwnd Then

 If they are not the same, the code sets again the external mxl.DisplayAlerts = False properties to
avoid the external application displaying OLE messages and then closes the external workbook without
saving it. As good programming practice, all three object variables used to point to the destination
application, workbook, and worksheet (mxl , mwb , and mws) are set to Nothing .

 Finishing GetExternalWorkbook()
 After CloseExternalWorkbook() ends and there is no external workbook opened by the UserForm , the code
control returns to the GetExternalWorkbook() procedure, which uses a VBA MsgBox () function to warn
the user that the selected workbook file does not fit to export or import recipe operations, and the procedure
ends indicating if it has opened an external workbook file.

 MsgBox "The selected workbook doesn't has a 'My Recipe' or 'USDA' worksheet
to manage recipes data", _

 vbInformation, _
 "'My Recipes' or 'USDA' sheet tab not found!"
 End If
 End If
 End If
 GetExternalWorkbook = bolFound
 End Function

 Finishing the cmdExecute_Click() Event

 When Private Function GetExternalWorkbook() finishes, the code control returns to the cmdExecute_
Click() event, which will text the function result, and if it is True (an external workbook was opened
to export the selected recipes), it will set cboMyRecipesDestination to the first list item and define
 bolSetDestination = True . Otherwise, no external workbook was opened, and the code will just call
 EnableControls (True) and exit the event code with an Exit Sub instruction.

 If GetExternalWorkbook() Then
 ' Load recipes of first external MyRecipes
 Me .cboMyRecipesDestination.ListIndex = 0
 bolSetDestination = True
 Else
 Call EnableControls (True)
 Exit Sub
 End If

 Supposing that an external workbook was opened, cmdExecute_Click() verifies whether
 bolSetDestination = True , and if it is, it calls SelectMyRecipesDestination(True) to change the
 UserForm interface to allow select/inspect all possible destination worksheet recipes. If this is an export
operation, it uses the cboMyRecipesDestionation value to set a reference to the mws as Worksheet module-
level variable, exiting the code with an Exit Sub instruction.

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

690

 If bolSetDestination Then
 ...
 Call SelectMyRecipesDestination(True)
 If Me .optExport Then
 Set mws = mwb. Worksheets ((cboMyRecipesDestination))
 End If
 Exit Sub
 End if

 Supposing that you had selected as the destination workbook USDA Food Composer _
SheetDBEngineManageAutomation1.xlsm , as suggested by Figure 9-27 , when the cmdExecute_Click()
event finishes, the frmManageRecipes UserForm must be similar to Figure 9-28 , (showing all recipes from its
 My Recipes worksheet, while also exposing its My Recipes 2 worksheet, with no recipes at all).

 Figure 9-28. The frmManageRecipes UserForm changes its interface, showing the fraSetDestination Frame
control over cboMyRecipes, cboWorkbook, and lstRecipes, to allow you to select/inspect the destination
worksheet that will receive the selected recipes

 Once again, there are just two possibilities: cancel the operation or continue with the exporting process.
By clicking the Cancel CommandButton (cmdClose), the external workbook is closed, and the UserForm
interface is updated, allowing you to select another workbook to export to.

 Private Sub cmdClose_Click()
 Select Case Me .cmdClose.Caption
 ...
 Case "Cancel"
 If Me .fraSetDestination.Visible = True Then
 mintWorkbookHasMyRecipes = MyRecipesCount ()
 Call CloseExternalWorkbook
 Call SelectMyRecipesDestination(False)
 Else

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

691

 mbolCancel = True
 End If
 Call EnableControls (True)
 End Select

 By clicking the Continue CommandButton (cmdExecute), the process continues by first updating the
 UserForm interface and then calling ProcessRecipes (mwb, mws) .

 Private Sub cmdExecute_Click()
 ...
 If Me . cmdExecute.Caption = "Continue" Then
 Call SelectMyRecipesDestination(False)
 Call ProcessRecipes (mwb, mws)
 Else
 ...
 End If
 End Sub

 Supposing that you click Continue, the selected recipes can be exported in two different ways, according
to the chkOption CheckBox value (“Export Recipe as new record” option) and whether the destination
worksheet already has any of the selected recipes:

• If chkOption is checked, each existing recipe will be renamed with a suffix counter
and added to the destination database.

• If chkOption is unchecked, a VBA MsgBox () warning will be sent to the application
user so it can make a decision: cancel the recipe transfer (No or Cancel option) or
overwrite the destination recipe (Yes option) (Figure 9-29).

 Figure 9-29. If chkOption is checked, any recipe already existing in the destination worksheet will be saved as
a new recipe record, with a suffix counter added to its name. Otherwise, the interface will ask the user to make
a decision: cancel the operation (for this recipe) or overwrite the destination recipe

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

692

 The next code fragment of Sub TransferRecipes() shows how the VBA MsgBox () function deals with
such situations. Note that it offers two options to cancel the overwriting (No and Cancel), keeping No as the
default option. The procedure will end whenever No or Cancel is selected, returning the code control to Sub
 ProcessRecipes () , as explained earlier in this chapter.

 Private Sub TransferRecipe(strRecipe As String)
 ...
 If Me .chkOption Then
 ...
 Else
 'strRecipe exist! Ask to overwrite it.
 strMsg = "Recipe '" & strNewRecipe & "' already existe on '" & wsDestination.

Parent.Name & "." & vbCrLf
 strMsg = strMsg & "Overwrite it?"
 strTitle = "Overwrite recipe '" & strNewRecipe & "'?"
 If MsgBox (strMsg, vbYesNoCancel + vbDefaultButton2 + vbQuestion, strTitle) =

vbYes Then
 wsDestination .Range(" CurrentRecord ") = strNewRecipe
 Else
 Exit Sub
 End If
 End If
 ...
 End Sub

 When Sub ProcessRecipes () ends to process all recipes on an export operation, it calls the Workbook
 object’s Save and Close methods to close the external workbook after saving it.

 Importing Recipes from an External Workbook
 Whenever you click the “Import recipes” OptonButton , a Windows Open dialog box is immediately shown to
allow select the source workbook from where the recipes must be imported (Figure 9-30).

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

693

 Such unpredictable behavior is because of the original frmManageRecipes interface project, which
reserved cboRecipes and lstRecipes to always be the recipe’s source: the primary local where recipes must
be selected to conduct an operation. Note in Figure 9-30 that lblRecipes shows “Import recipes from,”
 lblWorkbook shows “Import from,” cboWorbook shows “External workbook,” chkOption shows “Import
recipes as new recipe,” and cboRecipes and lstRecipes have their lists cleared. These changes happened on
the optImport_Click() event, which executes this code:

 Private Sub optImport_Click()
 Dim rg As Range

 Call CloseExternalWorkbook
 Call UpdateProgressBar(False)
 mbolUpdateInterface = True
 Me .lblRecipes.Caption = "Select recipes to Import from:"
 Me .lblRecipesFrom.Caption = "Recipes from "
 Me .chkOption.Caption = "Import Recipe as new record"
 Me .chkOption.Visible = True
 Me .cboWorkbook.Locked = True

 Figure 9-30. The “Import recipes” option also makes small updates in frmManageRecipes interface labels and
controls, which immediately shows the Windows Open dialog box to allow you to select the source workbook
from where the recipes must be imported

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

694

 Me .lblWorkbook.Caption = "Import from:"
 mbolCancelEvent = True
 Me .cboMyRecipes. Clear
 Me .lstRecipes. Clear
 Me .cboWorkbook.ListIndex = 1
 mbolCancelEvent = False
 If GetExternalWorkbook() Then
 Call LoadcboMyRecipes (mwb)
 End If
 End Sub

 There is no surprise here. Any open workbook is closed with a call to Sub CloseExternalWorkbook() ,
and the progress bar is hidden with a call to Sub UpdateProgressBar(False). Next, the lblRecipes ,
 lblRecipesFrom , chkOption , and lblWorkbook Caption properties are updated, while cboWorkbook is
locked to reflect the import operation, and, after setting mboCancelEvent = True , both cboMyRecipes and
 lstRecipes are cleared, avoiding firing cascade events. The Windows Open dialog box is shown by making a
call to Function GetExternalWorkbook() , which leaves the interface in the state depicted by Figure 9-30 .

 If the user closes the Open dialog box by clicking its Close or Cancel button, no file will be selected,
 GetExternalWorkbook() = False , and the optImport_Click() event ends doing nothing. The
 frmManageRecipes interface will look like Figure 9-31 .

 Figure 9-31. This is the frmManageRecipes interface after selecting the optImport (“Import recipes”) option
and canceling the Open dialog box without selecting any destination workbook

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

695

 To show again the Windows Open dialog box needed to select the source workbook for an “Import
recipes” operation, the user must either select any other option button and reselect optImport to fire
again the optImport_Click() event or just double-click the optImport Option button, which will fire the
 optImport_DblClick() event, executing this code:

 Private Sub optImport_DblClick(ByVal Cancel As MSForms.ReturnBoolean)
 Call optImport_Click
 End Sub

 Easy, huh?
 But supposing that you had selected optImport and chose as the source workbook for the import

operation USDA Food Composer _SheetDBEngineManageAutomation1.xlsm (as suggested by Figure 9-30),
when you close the Windows Open dialog and return the code control to the optImport_Click() event, it
calls Sub LoadcboMyRecipes (mwb) to load all recipes of the first My Recipes worksheet found in the selected,
source workbook, changing the frmManageRecipes interface to something like Figure 9-32 .

 Figure 9-32. This is the frmManageRecipes interface after selecting USDA Food Composer _
SheetDBEngineManageAuto-mation1.xlsm as the workbook source for an “Import recipes” operation. Note
that the lblRecipesFrom Label control shows the source workbook name in red to call attention to the fact that
those recipes belong to an external source

 frmManageRecipes is waiting for the user to select the recipes to be imported by enabling the
 cmdExecute CommandButton to allow execution of this operation. Supposing that you had selected the first
five recipes and clicked cmdExecute , if the current application has just one My Recipes worksheet, the
import operation will begin immediately. Otherwise, the frmManageRecipes interface will be changed to
allow selection of the destination worksheet to where the recipes must be imported (Figure 9-33).

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

696

 The next code fragment shows what happens in cmdExecute_Click when an “Import recipes” operation
is in progress:

 Private Sub cmdExecute_Click()
 ...

 Figure 9-33. When an “Import recipes” operation is in progress, the user selects recipes from a source My
Recipes worksheet on an external workbook and eventually selects the destination worksheet in the current
application

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

697

 Else
 'Operation is Import or Export to ThisWokbook
 'Select destination My Recipes?
 bolSetDestination = (MyRecipesCount () > 1)
 ...
 End If

 If bolSetDestination Then
 If optImport Or Me .cboWorkbook = "This Workbook " Then
 'ThisWorkbook has more than one possible destination
 Call LoadcboMyRecipes (wb, True)
 End If
 Call SelectMyRecipesDestination(True)
 ...
 Exit Sub

 As you can see, it uses Function MyRecipesCount () to indicate whether the current application
has more than one My Recipes to choose as a destination worksheet, and if this is True , it calls Sub
 LoadcboMyRecipes (wb, True) and Sub SelectMyRecipesDestination(True) to allow you to select the
destination worksheet inside ThisWorkbook .

 This will change cmdContinue Caption to Continue, which will execute this code to begin importing the
selected recipes:

 Private Sub cmdExecute_Click()
 ...
 If Me .cmdExecute.Caption = "Continue" Then
 Call SelectMyRecipesDestination(False)
 Call ProcessRecipes (mwb, mws)

 Once again, a call to Sub SelectMyRecipesDestination(False) restores the frmManageRecipes to the
default interface, and the selected recipes are processed by calling Sub ProcessRecipes (mwb, mws) —the
external object variables that now point to the external workbook and selected worksheet (Figure 9-34)!

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

698

 Note, however, that Sub ProcessRecipes () does not close the external workbook after processing
all the selected recipes. It will remain open, allowing you to select other worksheets and recipes to be
imported, until another operation option is selected or the cmdClose Command button is selected to close
the UserForm .

 Supposing that you chose to import the first five recipes, keeping chkOption checked (“Import recipes
as new record”), as suggested by Figures 9-33 and 9-34 , since these recipes already exist in the destination
worksheet, they will be saved with the same name concatenated by a suffix counter (Figure 9-35).

 Figure 9-34. When an “Import recipes” operation is in progress, the frmManageRecipes UserForm processes
recipes on an external workbook, with the interface indicating how many recipes still remain unprocessed

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

699

 Deleting Recipes from This Workbook
 Using Figure 9-35 as metaphor, when you have a situation where recipes have been duplicated by an “Import
recipes” operation, let’s suppose that the user wants to delete all duplicated recipes. Just select them in the
 frmManageRecipes interface and choose the “Delete recipes” option, firing the optDelete_Click() event.

 Private Sub optDelete_Click()
 Call CloseExternalWorkbook

 If mbolUpdateInterface Then
 Call LoadcboMyRecipes
 mbolUpdateInterface = True
 End If
 Call UpdateProgressBar(False)
 Me .lblRecipes.Caption = "Select recipes to Delete from:"
 Me .chkOption.Caption = "Keep Recipe nutritional information on My_Recipes"
 Me .chkOption.Visible = True
 Me .cboWorkbook.ListIndex = 0
 Me .cboWorkbook.Locked = True
 Me .lblWorkbook.Caption = "Delete from:"
 End Sub

 As you can see, when another operation is selected, it first calls Sub CloseExternalWorkbook() to
close any workbook opened by the UserForm . If mbolUpdateInterface = True (which is always true after
an “Import recipes” operation), it calls Sub LoadcboMyRecipes () with no argument to update the UserForm

 Figure 9-35. If you import recipes that already exist in the destination worksheet, keeping the “Import recipes
as new record” option checked, the imported recipes will be saved with the same name concatenated by a suffix
counter

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

700

interface to ThisWorkbook . The progress bar is hidden and the label controls of the user form are updated
to reflect the “Delete recipes” operation (note that chkOption now indicates “Keep recipe nutritional
information” on My_Recipes).

 After selecting the recipes to be deleted, cmdExecute will be enabled, and if the user clicks it, it will
receive a warning message before beginning the deletion process (Figure 9-36).

 Figure 9-36. The frmManageRecipes uses a VBA MsgBox () to warn the user before beginning a “Delete
recipes” operation. Note that the code does not save the workbook, allowing you to undo the delete operation
by closing it without saving

 The next code fragment shows how this happens inside the cmdExecute_Click() event:

 Private Sub cmdExecute_Click()
 ...
 Else
 Set wb = ThisWorkbook
 Set ws = ActiveSheet
 Call EnableControls (False)
 If Me .optDelete Then
 strMsg = "ATTENTION: All selected recipes will be deleted" & vbCrLf
 strMsg = strMsg & " Workbook will not be saved." & vbCrLf
 strMsg = strMsg & "To UNDO the operation, exit the workbook without saving it!"

& vbCrLf & vbCrLf
 strMsg = strMsg & "Do you really want to delete all selected recipes?"
 strTitle = "Delete all selected recipes?"

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

701

 If MsgBox (strMsg, vbYesNo + vbCritical + vbDefaultButton2, strTitle) = vbNo Then
 EnableControls (True)
 Exit Sub
 End If
 ...
 End If
 Call ProcessRecipes (wb, ws)
 End If
 End Sub

 Note that if the No option of the MsgBox () warning is selected, the procedure calls
 EnableControls (True) to update the UserForm interface and exit doing nothing; otherwise, it just calls Sub
 ProcessRecipes (wb, ws) to delete the selected recipes, which now will execute the next code fragment:

 Private Sub ProcessRecipes (wb As Workbook , ws As Worksheet)
 ...
 For Each varItem In mcolSelected
 ...
 'Updade Progress Bar (intI = recipe count, intJ = lstRecipes.Index)
 intI = intI + 1
 intJ = varItem + IIf(optDelete, 1 - intI, 0)
 ...
 If Me .optDelete Then
 mobjMyRecipes. DeleteRecord strRecipe, Me .chkOption
 Me .lstRecipes.RemoveItem (intJ)
 ...
 End If
 mcolSelected.Remove (1)
 Me .lblSelected.Caption = mcolSelected.Count & " recipes selected"
 Next
 ...
 End Sub

 It is quite interesting that to delete the selected recipes, the code uses pure database automation, calling
the mbojMyRecipes. DeleteRecord () method and passing the recipe name and chkOption state to indicate
whether the recipe nutritional information must be kept in the USDA worksheet’s My_Recipes range name.
This operation deserves these considerations:

• An object reference to the worksheet used as the recipe source to be deleted is stored
inside the mobjMyRecipes as Object variable. It can’t be declared as Worksheet
because the Worksheet object does not have a Delete method, which will raise a
VBA compile error.

• Whenever the current application has more than one My Recipes worksheet,
chances are that the user may duplicate recipes on different sheet tabs. So, when
the user decides to delete any duplicated copy, the recipe nutritional information
will also be deleted from the My_Recipes range name, and if the deleted recipe
is used as a food item of any other recipe, the recipe nutritional value will fail
to calculate. That is why the option “Keep recipe nutritional information on
My_Recipes” is shown.

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

702

 ■ Attention The user can always rebuild the My_Recipes range name using the frmManageRecipes “Saving
in My Recipes” option.

 Also note something quite interesting: Sub ProcessRecipes () deletes recipes from the top to the
bottom, removing them from both the lstRecipes ListBox and the mcolSelected Collection variable.

 Since the mcolSelected Collection.Index value is associated to the recipe position in lstRecipes , as
each recipe is deleted, all other recipes have their new ListIndex property decreased by 1. That is why the
 varItem value (mcolSelected.Index value) used by the For Each...Next loop is decreased by 1 minus the
number of items already deleted from the list (intI counter), which produces the desired visual effect (keep
items selected as they are deleted, from the top down (Figure 9-37).

 intI = intI + 1
 intJ = varItem + IIf(optDelete, 1 - intI , 0)
 ...
 Me .lstRecipes.RemoveItem (intJ)

 Figure 9-37. When recipes are deleted from the selected My Recipes worksheet, the frmManageRecipes
removes them from the lstRecipes ListBox as they are deleted in a top-down operation

 ■ Attention At any moment the user can cancel and restart the “Delete recipes” operation again from the
remaining recipes.

 The “Delete recipes” operation is faster because it just automates the database, having no need to load each
recipe before deleting it.

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

703

 Exporting/Importing Recipes with Database Copy/Paste Methods
 You may notice that both export and import recipe operations are quite slow, because of the double-sided
automation that takes place in these processes. The code needs to load the recipe in the source worksheet
and save it in the destination worksheet using the SheetDBEngine class to automate the database engine of
each worksheet application.

 You can speed up this process by using the SheetDBEngine CopyRecord and PasteRecord
methods, implemented as the My Recipe worksheet methods with the same name, and a good
example of how much it can improve the process speed can be appreciated in the USDA Food Compose_
SheetDBEngineManageCopyPasteRecords.xlsm macro-enabled workbook that you can also extract from the
 Chapter09.zip file, which has a My Recipes 2 worksheet copy, with no recipe records.

 Figure 9-38 shows the process running to copy the first 11 recipes from the My Recipes worksheet
to the My Recipes 2 worksheet. Note that the figure shows a “New recipe” record behind the
 frmManageRecipesCopyPaste UserForm , which is evidence that no automation is required from the
worksheet side (the code doesn’t need to load each recipe to save it on the destination worksheet). Also
note that the UserForm progress bar now shows the time elapsed before the process begins, and if you try the
example, you will notice a considerable speed increase during the export process to another worksheet of
the same workbook. (To export the first 11 recipes to the empty My Recipes 2 worksheet, the entire process
takes 3.8 seconds on my computer. To copy all 123 recipes, it takes about 61 seconds—you may experience a
different time on your PC.)

 Figure 9-38. This is the frmManageRecipesCopyPaste UserForm, from the USDA Food Compose_
SheetDBEngineManageCopyPasteRecords.xlsm macro-enabled workbook, that uses the SheetDBEngine
 CopyRecord and PasteRecord methods to speed up the export and import recipe operations between worksheets

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

704

 ■ Attention I will leave it as exercise for you to verify how Sub UpdateProgressBar() implements the
time elapse control, which may also be implemented on frmManageRecipes to compare both export/import
recipe methods.

 ■ Tip The code uses the VBA Timer () function, which returns the number of seconds past since midnight.

 To understand what happens in this code, you must remember the following:

• The CopyRecord and PasteRecord methods don’t fire SheetDBEngine class events.

• The SheetDBEngine class knows nothing about its records. It doesn’t know that each
recipe recalculates its nutritional information using the NewRecipe range name
and that this information is needed to save each recipe’s nutrient values in USDA
worksheet’s My_Recipes range name.

 Since the SheetDBEngine class’s CopyRecord and PasteRecord methods work by exchanging the one-
side and many-side record range values, you must change both methods in the My Recipes worksheet (and
also in the very hidden NewMyRecipes worksheet) to allow them to also exchange the nutrient profile of each
copy/paste recipe.

 Enhancing the MyRecipes. CopyRecord Method
 If you look in the USDA Food Compose_SheetDBEngineManageCopyPasteRecords.xlsm My Recipes
worksheet’s CopyRecord method, you will realize that it executes this code to copy the desired recipe record
data from the source worksheet:

 Public Function CopyRecord (strRecord As String, rgOneSide As Range, rgManySide As Range, _
 Optional rgNutrients As Range) As Boolean Dim ws As Worksheet

 CopyRecord = mdb. CopyRecord (strRecord, rgOneSide, rgManySide)
 'Copy nutrient information from USDA

 Set ws = Worksheets ("USDA")
 Set rgNutrients = ws.Range("My_Recipes").Find(strRecord, , , xlWhole)
 If Not rgNutrients Is Nothing Then
 'Recipe found. Extend it to all it nutrients
 Set rgNutrients = rgNutrients. Resize (, ws.Range("USDA").Columns.Count)
 End If
 End Function

 The MyRecipes. CopyRecord method now has an extra argument: Optional rgNutrients as Range .
Note that the code receives the strRecord argument to indicate which recipe record data must be copied
and calls the SheetDBEngine. CopyRecord method to recover it, passing by reference its rgOneSide and
 rgManySide object variables.

 CopyRecord = mdb. CopyRecord (strRecord , rgOneSide, rgManySide)

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

705

 The CopyRecord () operation returns true when the record is found, and since the record is not loaded
in the worksheet application, to recover its nutrient data information, it searches inside the My_Recipes
range name using the Range. Find method.

 Set rgNutrients = ws.Range(" My_Recipes "). Find (strRecord, , , xlWhole)

 If the recipe record was found, rgNutrients is not nothing, so the code resizes the range to get all USDA
range columns, effectively returning on the rgNutrient argument all recipe nutrient data information.

 If Not rgNutrients Is Nothing Then
 'Recipe found. Extend it to all it nutrients
 Set rgNutrients = rgNutrients. Resize (, ws.Range(" USDA "). Columns.Count)

 Enhancing the MyRecipes. PasteRecord Method
 Now look at how the My Recipes worksheet’s PasteRecord method was implemented to allow you to
save each recipe’s nutrient data in the destination worksheet and in the My_Recipes range name of the
destination workbook.

 Public Function PasteRecord (strRecord As String, _
 rgOneSide As Range, _
 rgManySide As Range, _
 Optional PasteAsNewRecord As Boolean, _
 Optional rgNutrients As Range) As Boolean
 Dim ws As Worksheet
 Dim rgMyRecipes As Range
 Dim rgRecipe As Range
 Dim rgUSDA As Range
 Dim bolRecordPaste As Boolean

 bolRecordPaste = mdb. PasteRecord (strRecord, rgOneSide, rgManySide, True)
 If bolRecordPaste Then
 'Paste rgNutrients on USDA
 Set ws = Worksheets ("USDA")
 Set rgUSDA = ws.Range("USDA")
 Set rgMyRecipes = ws.Range("My_Recipes")
 rgMyRecipes. Resize (rgMyRecipes.Rows.Count + 1).Name = "My_Recipes"
 'update rg object variable to contain My_Recipes new row
 Set rgMyRecipes = ws.Range("My_Recipes")
 'Position on new cell of My_Recipes range
 Set rgRecipe = rgMyRecipes.Cells(rgMyRecipes.Rows.Count, 1)
 'Copy and paste nutrient information
 rgNutrients.Copy
 rgRecipe. Resize (1, rgNutrients.Columns.Count).PasteSpecial xlPasteValues
 rgRecipe = strRecord
 'Sort My_Recipes to include the new pasted recipe
 rgMyRecipes. Resize (, rgUSDA.Columns.Count).Sort rgMyRecipes.Cells(1, 1)

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

706

 ' Resize USDA range name to encompass this new recipe
 rgUSDA. Resize (rgUSDA.Rows.Count + 1).Name = "USDA"
 End If
 PasteRecord = bolRecordPaste
 End Function

 Note that the MyRecipes. PasteRecord method also declares the Optional rgNutrient as Range
argument to exchange the recipe nutrient data profile. It delegates to the SheetDBEngine. PasteRecord
method of the destination worksheet the task of pasting the record in the worksheet database (the fifth
method argument was set to True to paste the record as a new record).

 bolRecordPaste = mdb. PasteRecord (strRecord , rgOneSide, rgManySide, True)

 PasteRecord = True when the record is correctly pasted on the destination worksheet by the
 SheetDBEngine class, and now it needs to paste the record nutrient data inside the USDA worksheet My_
Recipes range name of the destination workbook, so it sets object variables to the appropriate range names.

 If bolRecordPaste Then
 'Paste rgNutrients on USDA
 Set ws = Worksheets (" USDA ")
 Set rgUSDA = ws.Range(" USDA ")
 Set rgMyRecipes = ws.Range(" My_Recipes ")

 Then it resizes the My_Recipes destination range to allow it to receive an extra recipe row (note that it
uses the Range. Resize method to resize it and uses Range.Name to rebuild the range and updates the object
variable to reflect this size change).

 rgMyRecipes. Resize (rgMyRecipes.Rows.Count + 1).Name = "My_Recipes"
 'update rg object variable to contain My_Recipes new row
 Set rgMyRecipes = ws.Range("My_Recipes")

 To copy the recipe nutrient data, the code sets rgRecipe to the first column of the new range row using
the Range.Cells collection.

 'Position on new cell of My_Recipes range
 Set rgRecipe = rgMyRecipes.Cells (rgMyRecipes. Rows.Count , 1)

 It then copies the rgNutrients argument to the clipboard, using the Range. Copy method, resizes
 rgRecipe to have the same column count of rgNutrients , and uses the Range. PasteSpecial xlPasteValues
to paste the recipe nutrient data, using just one procedure row.

 'Copy and paste nutrient information
 rgNutrients.Copy
 rgRecipe. Resize (1, rgNutrients.Columns.Count). PasteSpecial xlPasteValues

 To keep the recipe data with its original name (which may differ from the record name that may be
changed by a suffix counter), the code updates the recipe name in the My_Recipes first column, and the
entire My_Recipes range name is sorted to correctly position the new recipe in ascending order (note that
the rgMyRecipes is first resized to include all recipe nutrient columns, before applying the Range. Sort
method).

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

707

 rgRecipe = strRecord
 'Sort My_Recipes to include the new pasted recipe
 rgMyRecipes. Resize (, rgUSDA. Columns.Count). Sort rgMyRecipes.Cells(1, 1)

 And the PasteRecord () operation ends by resizing the USDA range name to encompass the new recipe
inserted on its My_Recipes food category.

 ' Resize USDA range name to encompass this new recipe
 rgUSDA. Resize (rgUSDA. Rows.Count + 1).Name = "USDA"
 End If
 PasteRecord = bolRecordPaste
 End Function

 Updating the frmManageRecipesCopyPaste Code
 The frmManageRecipeCopyPaste suffers just two updates from its older brother frmManageRecipes studied
in the previous sections.

 The first change is in Sub TransferRecipes() , which now doesn’t need to deal with any operation
regarding saving the recipe nutrient data on the My_Recipes range name, which considerably simplifies the
procedure code, both in terms of variable declaration and in instruction number.

 Private Sub TransferRecipe(strRecipe As String)
 Dim xl As Application
 Dim wsSource As Object
 Dim wsDestination As Object
 Dim rgOneSide As Range
 Dim rgManySide As Range
 Dim rgNutrients As Range

 If Me .optExport Then
 Set xl = mxl
 Set wsSource = ActiveSheet
 Set wsDestination = mws
 Else
 Set xl = Application
 Set wsSource = mws
 Set wsDestination = ActiveSheet
 End If

 xl.Calculation = xlCalculationManual
 Application .DisplayAlerts = False
 If wsSource. CopyRecord (strRecipe, rgOneSide, rgManySide, rgNutrients) Then
 Call wsDestination. PasteRecord (strRecipe, rgOneSide, rgManySide, True,
rgNutrients)
 End If
 xl.Calculation = xlCalculationAutomatic
 Application .DisplayAlerts = False
 End Sub

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

708

 As you can see, after setting the appropriate references to the source and destination worksheets
according to an export or import recipe operation, the code just disables automatic calculation on the
destination worksheet (represented by the xl As Application object variable), turns off Application .
DisplayAlerts (to disable any OLE messages between applications), and calls the source worksheet
 CopyRecord method for the selected recipe. Note that it passes the recipe name and the rgNutrients as
Range object variable to receive the recipe nutrient data (if any).

 xl.Calculation = xlCalculationManual
 Application .DisplayAlerts = False
 If wsSource. CopyRecord (strRecipe , rgOneSide, rgManySide, rgNutrients) Then

 ■ Attention The source worksheet calls the SheetDBEngine. CopyRecord method to automate the copy
record data task.

 If the ws.Source. CopyRecord method succeeds (returns True), it calls the destination worksheet’s
 PasteRecord method, passing by reference all object variables it needs to paste the record as a new record
inside its database structure.

 Call wsDestination. PasteRecord (strRecipe , rgOneSide, rgManySide, True , rgNutrients)
 End If

 ■ Attention The destination worksheet will also call the SheetDBEngine. PasteRecord method to automate
the paste record data task.

 The Sub TransferRecipe() procedure ends by reactivating the destination workbook calculation and
the Excel DisplayAlerts property.

 xl.Calculation = xlCalculationAutomatic
 Application .DisplayAlerts = False
 End Sub

 The second change suffered by frmManageRecipesCopyPaste UserForm comes from the fact that the
 SheetDBEngine. PasteRecord method always pastes records on the bottom of the database SavedRecords
range name, meaning that after all records are exported/imported to the destination worksheet, the
database needs to be sorted.

 That is why Sub ProcessRecipes now has a call to the destination worksheet’s SortDatabase method
after its For Each...Next loop ends.

 Private Sub ProcessRecipes (wb As Workbook , ws As Object)
 ...
 For Each varItem In mcolSelected
 ...
 Next
 ...
 If Me .optExport Or Me .optImport Then
 'Sort the database

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

709

 ws.SortDatabase
 End If
 ...
 End Sub

 And this is all you need to know about the frmManageRecipesCopyPaste UserForm !

 ■ Attention The workbooks that use the frmManageRecipes and frmManageRecipesCopyPaste
methods studied in this chapter are incompatible because the first one (USDA Food Composer _
SheetDBEngineManageAutomation.xlsm) doesn’t implement in the My Recipes worksheet (and all its copies)
the rgNutrients as Range argument on its CopyRecord and PasteRecord methods. To make them talk with
their new brother, these methods must be updated to execute the same code used by USDA Food Composer_
SheetDBEngineManageCopyPasteRecords .

 Conclusion
 This chapter showed how to exchange data between two different Excel workbooks or applications. The first
case studied how to update a source database worksheet (such as the USDA worksheet, with thousands of
food items and 184 nutrient columns) to a new version inside a dietary application using both pure code and
a UserForm .

 You also learned how two well-built worksheet applications can exchange database records using
automation either on the source and destination worksheets.

 All these operations were conducted using simple VBA UserForm interfaces that implement different
private procedures to execute their tasks. You had the opportunity to verify how a well-built class
module, such as SheetDBEngine , can be useful to automate the worksheet records database, by either
automatically loading, saving, copying, or pasting records between different worksheets that can be on the
same or different workbooks, as well as how to synchronize a UserForm interface regarding the operation
it is executing, using a simple set of controls, like a ListBox associated to a progress bar (that can also
implemented using the Excel status bar) to allow follow any task progress until it is finished.

 Chapter Summary
 In this chapter, you learned about the following:

• How to use the USDA Food List Creator.accb Microsoft Access application to
open and process any SRxx.mdb or SRxx.accdb Microsoft Access nutrient database
to generate a USDA or USDACommonMeasures worksheet to use as a database nutrient
search for dietary worksheet applications

• How to update the USDA worksheet used on a worksheet application using VBA
code

• How to use the Excel status bar to produce a progress bar that indicates progress

• How the USDA Food Composer ...xlsm worksheet application may fail when a food
item changes it name between different SRxx updates

• How to use a VBA UserForm to produce a better user interface to update the USDA
worksheet, searching for food items whose Ndb_No code is the same but food item
name changed between two or more SRxx versions

CHAPTER 9 ■ EXCHANGING DATA BETWEEN EXCEL APPLICATIONS

710

• How to produce a UserForm progress bar using three Label controls and a
centralized procedure code

• How to exchange data between two different worksheets using VBA code

• How to copy or move worksheets between two different workbooks using VBA code

• How to verify if a workbook is already opened to use it in VBA code

• How to manage worksheet application data, exchanging it between two different
worksheet applications using VBA automation

• How to use the SheetDBEngine class’s CopyRecord and PasteRecord to exchange
worksheet records between two different worksheets databases

 In the next chapter, you will learn how to take VBA to the next programmable level by using the
Windows API to enhance some aspects of the presentation of your worksheet applications.

711© Flavio Morgado 2016
F. Morgado, Programming Excel with VBA, DOI 10.1007/978-1-4842-2205-8_10

 CHAPTER 10

 Using the Windows API

 Now that you have a good understanding of VBA and how to use it to produce good interfaces to your
worksheet applications, it is time to expand this knowledge to the unknown, incomprehensible world of the
Windows application programming interface (API) that makes Microsoft Windows work.

 Why should you care about it? For one simple reason: by using the Windows API, you can extend VBA
capabilities to the next level, doing programming tricks that you see in other software interfaces and that you
can’t do using just the regular VBA language.

 In this chapter, I will give you some guidance about the Windows API: what it is, how to declare them,
how to call DLL API procedures, and how you can use the enormous amount of VBA/DLL code available on
the Internet.

 You can obtain all the files and procedure code in this chapter by downloading the Chapter10.zip
file from the book’s Apress.com product page, located at www.apress.com/9781484222041 , or from
 http://ProgrammingExcelWithVBA.4shared.com .

 The Microsoft Windows API
 In the old DOS days, every time an executable program was created, all the code it needed to perform
its many functions was statically linked into the executable code. So, if 100 programs were doing string
operations (like using the Left () and Mid () functions), all of them needed to compile these string
functions inside the executable file, reproducing the same static code in every executable file that needed it.

 Microsoft Windows changed this by exposing an operating system based on an API uses dynamic link
libraries (DLLs) to offer all the code a program needs to exist on the Windows operating system. Instead of
storing the code functionally inside each executable file, programmers have the ability to use small code
 declares that call the functionality they need from the desired DLLs, leaving to the operating system the task
of keeping the code available. These commonly used DLLs are system files with the .dll extension normally
stored in the \Windows\System folder, unless they were specifically created for the program that needs them,
in which case they probably reside in the program folder.

 Besides many other things, these DLLs functions are responsible for creating a window, changing
the window properties, interacting with the many protocols available (like TCP/IP, HTTP, MailTo, and so
on), playing multimedia files, printing, and saving files—all the operations you graciously perform on the
Microsoft Windows system using the same dialog box in every program.

 There is an important detail to know about DLLs: they are all written in the C or C++ language, which is quite
different from VBA, from the number of variable types it can receive to the way they work. To use a DLL library of
functions, you need to know which function you need to call and the DLL file where it resides, the arguments it
needs, its presentation order, how they are manipulated by the DLL function, and what value it returns.

 As you can see, when it comes to Windows API programming, there is a steep learning curve for VBA
programmers.

http://www.apress.com/9781484222041
http://programmingexcelwithvba.4shared.com/

CHAPTER 10 ■ USING THE WINDOWS API

712

 In the next sections, I will give you some information about DLLs and the code you can grab from the
Internet to create some special effects. This is just a primer of the possibilities to teach you simple tricks that
may enhance your worksheet applications with a professional touch.

 Using Declare Statements
 By definition, a Declare statement is a way to grant access to a DLL function inside a VBA module. It must be
made in the declaration section of the module as a private or public procedure, using one of these syntaxes,
if it is a Function or Sub procedure:

 Declare [Function][Sub] PublicName Lib "LibName" [Alias "alias"] [([[ByVal] variable [As
type] ...])] [As Type]

 In this code:

 Function, Sub : This indicates whether it is a call for a Function or Sub
procedure.

 PublicName : This is the procedure name in your VBA project.

 LibName : This is the DDL file where the procedure resides.

 Alias "alias" : This is the original procedure name inside the DLL file.

 Variable [As type] : These are the procedure arguments and expected type
values.

 The declare statement for each DLL function is well-documented on the Internet, and most of the time
you just have to copy/paste it into your code, paying attention to the following:

• DLLs declared on standard modules are always public by default.

• DLLs declared on UserForm or Class modules are private by default and must be
preceded by the Private keyword.

• To avoid name conflicts on your code modules, you must use the optional Alias
clause to give an alias name to each DLL function declared in your code.

 These are the basics about DLLs declares. The next code instructions show how the SetTimer ()
function of the User32.dll library can be declared as a public procedure on any standard module:

 Declare Function SetTimer Lib " user32 " (ByVal hwnd As Long, ByVal nIDEvent As Long, ByVal
uElapse As Long, ByVal lpTimerFunc As Long) As Long

 To avoid conflict with other possible declarations in other modules, it is usual to give the function call
an alias by adding a personal prefix to the procedure name, as it must be used by the VBA project
(I personally use the FM_ prefix, from Flavio Morgado , when necessary).

 Declare Function FM_ SetTimer Lib " user32 " Alias SetTimer (ByVal hwnd As Long, ByVal nIDEvent
As Long, ByVal uElapse As Long, ByVal lpTimerFunc As Long) As Long

 If you declare it inside a UserForm or a Class module , it will be private to the module, with no need to
alias the procedure name, but it is imperative that you prefix it with the VBA Private keyword.

CHAPTER 10 ■ USING THE WINDOWS API

713

 ‘DLL declaration inside a UserForm or Class module
 Private Declare Function SetTimer Lib " user32 " (ByVal hwnd As Long, ByVal nIDEvent As Long,
 ByVal uElapse As Long, ByVal lpTimerFunc As Long) As Long

 Besides those basic instructions, you do not need to know how a DLL procedure must be declared. Just
copy and paste the declaration code from the Internet to the desired code module, turn it private or alias it,
and it is ready to be used by your VBA code.

 Constants Declaration
 Many API procedures are based on predefined values that you must pass to their arguments so they work
properly. These values are always documented along the API declaration and must be declared in the
module declaration section where the procedure is declared.

 These constant values are mainly bit flags, commonly declared as decimal or hexadecimal values
(a value that begins with &H characters that define the constant using another number scale). The next
instruction declares the GWL_STYLE constant using a decimal value:

 Private Const GWL_STYLE = -16

 The next instruction declares the WS_CAPTION constant using a hexadecimal value:

 Private Const WS_CAPTION = &HC00000

 Since a single API procedure can use many different flags, alone or combined, to give the desired effect,
any code module that uses API declarations ends up with a lot of constant declarations, and many of them
are not always used in the code (as you will see in the next sections).

 Window Handles
 Have you ever wondered how the mechanism behind Microsoft Windows allows its window programs to
react to mouse clicks? If you have multiple windows opened, one in front of the other, as soon as you click
any part of a window that is underneath the window pile, that window immediately comes to the front,
receiving the system focus and activating the selected window and its command.

 This is possible because every window has a unique identifier called a window handle. You can think of
this like a suitcase handle—it allows you to grab and take the suitcase anywhere you want.

 The window handle is a long integer that uniquely identifies each window and allows the Microsoft
Windows operating system to control it. In fact, in Microsoft Windows, not just an application window has
a handle; everything that can react to mouse events has its own window handle. So, besides the application
handle, every other window control has a handle. The borders and the close, minimize, restore, and
maximize buttons have their own handles. And every other application part like menus, toolbar controls,
and so on, has its own window handle.

 To control such an immense number of window handles, Microsoft Windows has what is called a
Windows handle tree , where each main application handle behaves like a basic folder, and all handles
inside the application behave like subfolders. When you close an application handle, all the handles are also
closed, releasing system resources.

 This concept is important, because in Chapter 9 , you used the Excel. Application . Hwnd property
(which returns any Excel window application handle value) as a way to differentiate the Application object
(the one where the code is running) from other possible open Excel. Application objects opened by the
code by just comparing their Hwnd property values.

http://dx.doi.org/10.1007/978-1-4842-2205-8_9

CHAPTER 10 ■ USING THE WINDOWS API

714

 Be aware that not all window structures are equal! In fact, they belong to different window classes,
according to the type of data they can contain. For example, applications that can open multiple documents—
called multiple document interfaces —and use an MDIForm to be built (such as Excel, Word, Access, and so on)
are associated with the Omain window classes, while the document opened within them comes from a different
window class called MDIClient (like each workbook window inside Excel or document window inside Word),
which comes from the Form class. The UserForm window you use from Visual Basic is still another different
beast, coming from the ThunderFrame class. Each one has its own handle.

 This is a pure concept, because when you come to use Windows DLLs, it is often necessary to grab the
window handle of the object you want to manipulate in code so you can obtain the desired result.

 Class Instance Handle
 All objects you create as instances of a Class module (like the SheetDBEngine class) have their own
handle, so they can react to system messages. To recover any class object instance handle, you must use
the undocumented VBA ObjPtr () function (read as “object pointer”), which returns the pointer to the
interface referenced by an object variable, with this syntax:

 ObjPtr (<ObjectVariableName>)

 In this code:

 ObjectVariableName : This is the class object variable instance whose pointer
(handle) you want to recover.

 The next example shows how you can recover a class object instance variable handle in your code:

 Dim cClass1 as New Class1
 Dim hWnd as long

 HWnd = ObjPtr (cClass1)

 ■ Attention Note in the previous example that the cClass1 object variable was declared As New Class1 ,
meaning that it is created the first time it is referenced by the code.

 Creating a Timer Class
 The first project using VBA and the Windows API is one that creates a timer class, where the user can set the
timer interval, enable or disable the Timer, and fire a Timer() event whenever the timer interval expires.
This is made using the SetTimer () and KillTimer () functions of User32.dll :

• SetTimer () starts the timer and defines a VBA function to be called when the timer
expires, beginning another timer. It returns a Long integer indicating the timer ID.

• KillTimer () kills a timer already set using the long integer that represents it.

 Investigating the SetTimer () function on MSDN web site, you will notice that its syntax is quite
complex to understand from a novice VBA programmer’s perspective. It can be translated to the following:

 Declare Function SetTimer Lib "user32" (ByVal hwnd As Long, ByVal nIDEvent As Long, ByVal
uElapse As Long, ByVal lpTimerFunc As Long) As Long

CHAPTER 10 ■ USING THE WINDOWS API

715

 In this code:

 hWnd : This is the window handle to be associated with the timer. Use the
 Application . Hwnd property to define it.

 nIDEvent : This is a handle to an object that will receive the timer event (UserForm
or Class handle).

 uElapse : This is a long integer for the timer interval in milliseconds (maximum
interval is 2 31 = 2.147.483.648 ms ≅ 596 hours, or 24.8 days).

 lpTimerFunc : This is the address of the callback procedure to be called when
the timer expires. This procedure must exist on the object represented by the
 nIDEvent .

 The SetTimer () function return value is explained this way:

• If the function succeeds and the hWnd parameter is NULL , the return value is an
integer identifying the new timer. An application can pass this value to the KillTimer
function to destroy the timer.

• If the function succeeds and the hWnd parameter is not NULL , then the return value is
a nonzero integer. An application can pass the value of the nIDEvent parameter to
the KillTimer function to destroy the timer.

• If the function fails to create a timer, the return value is zero. To get extended error
information, call the GetLastError API.

 Although the documentation does not clearly explain it, most DLLs that need a callback Sub procedure
to call require that it be declared this way (where publicname can be any name you want):

 Sub PublicName(ByVal hwnd As Long, ByVal uMsg As Long, ByVal idEvent As Long, ByVal dwTime
As Long)
 ...
 End Sub

 The arguments can be translated as follows:

 PublicName : This is the procedure name as declared in the VBA code module.

 hWnd : This is the window handle associated with the timer.

 uMsg : This is the timer message sent.

 idEvent : This is a long integer that identifies the object handle that will receive
the timer message when it fires (specified by the nIDEvent of the SetTimer ()
API function).

 dwTime : This is the number of milliseconds that have elapsed since the system
was started. This is the value returned by the GetTickCount API function.

 ■ Attention GetTickCount() is a DLL function from Kernel32.dll that retrieves the number of
milliseconds that have elapsed since the system was started, up to 49.7 days using a 10 to 16 milisecond
precision. It is a high-performance timer counter that can be used instead of the VBA Time() and Timer()
functions.

CHAPTER 10 ■ USING THE WINDOWS API

716

 Once a timer is set, you can reset it by calling again SetTimer () with another timer interval or you can
stop it by calling the KillTimer () API function, which has this syntax:

 Declare Function KillTimer Lib "user32" (ByVal hwnd As Long, ByVal nIDEvent As Long) As Long

 In this code:

 hWnd : This is the window handle associated with the timer.

 nIDEvent : This is a handle to the object that received the timer event.

 To create a useful VBA timer code using the SetTimer () and KillTimer () Windows APIs, you must
use a class module so you can create as many timer instances as needed using a single, centralized code.

 Extract the Timer Class.xlsm macro-enabled workbook from the Chapter10.zip file, press Alt+F11 to
show the VBA IDE, and double-click the Timer Class module to show its code. You will see that it declares
three module-level variables (one to hold the timer ID and two others to hold the class Interval and
 Enabled property values), both SetTimer () and KillTimer () DLL procedures, and the Timer() event in
the class module declaration section.

 Option Explicit

 Dim mlngTimer As Long
 Dim mlngInterval As Long
 Dim mbolEnabled As Boolean

 Private Declare Function SetTimer Lib "user32" (ByVal hwnd As Long, ByVal nIDEvent As Long,
ByVal uElapse As Long, ByVal lpTimerFunc As Long) As Long
 Private Declare Function KillTimer Lib "user32" (ByVal hwnd As Long, ByVal nIDEvent As Long)
As Long

 Event Timer()

 To set the timer interval, the Timer Class uses a pair of Property Let/Get procedures to implement
the Interval property. Note that it just accepts values greater than zero, using the mlngInterval module-
level variable to store it.

 Public Property Get Interval() As Long
 Interval = mlngInterval
 End Property

 Public Property Let Interval(ByVal lngInterval As Long)
 If lngInterval > 0 Then
 mlngInterval = lngInterval
 End If
 End Property

 The timer is enabled/disabled using another pair of Property Let/Get procedures to implement its
 Enabled property.

 Public Property Get Enabled() As Boolean
 Enabled = mbolEnabled
 End Property

CHAPTER 10 ■ USING THE WINDOWS API

717

 Public Property Let Enabled(ByVal bolEnabled As Boolean)
 If bolEnabled And mlngInterval > 0 Then
 ' ObjPtr (Me) returns the class object handle
 mlngTimer = SetTimer (Application .hwnd, ObjPtr (Me), mlngInterval, AddressOf
 TimerProc)
 Else
 'mlngTimer is the timer id for this class
 Call KillTimer (Application .hwnd, mlngTimer)
 mlngTimer = 0
 End If
 mbolEnabled = bolEnabled
 End Property

 As you can see, the Property Let Enabled() procedure is used to set the timer. It begins verifying
whether the argument bolEnabled = True and whether the class module-level variable mlngInterval > 0 ,
indicating that the Timer.Interval property has been set. If this is true, it calls the SetTimer () API to set
the timer; otherwise, it calls KillTimer () and resets the mlngTimer pointer.

 If bolEnabled And mlngInterval > 0 Then
 ' ObjPtr (Me) returns the class object handle
 mlngTimer = SetTimer (Application .hwnd, ObjPtr (Me), mlngInterval, AddressOf TimerProc)
 Else
 'mlngTimer is the timer id for this class
 Call KillTimer (Application .hwnd, mlngTimer)
 mlngTimer = 0
 End If

 Note how it uses the SetTimer () function arguments:

• The mWnd argument is set to the Application .hWnd property (the handle of the Excel
application window).

• The nIDEvent argument uses the VBA ObjPr(Me) function to return the class
instance handle, as explained in the section “Class Handle” earlier in this chapter.

• The uElapse argument is set to the mlngInterval module-level variable.

• The lpTimerFunc argument uses the VBA AddressOf statement to return the address
of the TimerProc () procedure, from the basTimer standard module.

 mlngTimer = SetTimer (Application . hwnd , ObjPtr (Me) , mlngInterval , AddressOf TimerProc)

 The SetTimer () API will return a long integer to the mlngTimer module-level variable, indicating the
ID of the timer associated to this instance of the Timer class.

 To raise the Timer() event, the Timer class also declares the RaiseTimer() method (as a Public Sub
procedure of the class module).

 Public Sub RaiseTimer()
 RaiseEvent Timer
 End Sub

CHAPTER 10 ■ USING THE WINDOWS API

718

 And whenever the class is destroyed, its Class_Terminate() event fires, calling the KillTimer () API to
stop the timer associated to this instance of the class module (if any). Note that it uses the Application . Hwnd
property and the mlngTimer ID to stop the timer.

 Private Sub Class_Terminate()
 Call KillTimer (Application .hwnd , mlngTimer)
 End Sub

 The TimerProc () Procedure
 Since a call to the Timer class’s Let Enable(True) property procedure sets a new timer, passing to the
 SetTimer () API the memory address pointer of the TimerProc () procedure, if you inspect it in the
 basTimer module, you will note that it executes this code:

 Sub TimerProc (ByVal hwnd As Long, ByVal uMsg As Long, ByVal clsTimer As Timer , ByVal dwTime
As Long)
 clsTimer.RaiseTimer
 End Sub

 Note that it changes the original IDEvent as Long argument to the ByVal clsTimer as Timer object,
which is evidence that object interfaces are in fact long integers. Since SetTimer () uses the ObjPtr (Me)
value (the handle to the Timer class instance) to the nIDEvent argument, this value is internally passed by
 SetTimer () to the clsTimer argument, effectively identifying the class module. The code just calls the
 clsTimer.RaiseTimer event to raise the timer event.

 Using the Timer Class
 To use the Timer class, you just need to declare an object variable as Private WithEvents ... as Timer on
the declaration section of the UserForm module.

 Private WithEvents mTimer1 as Timer

 You then use the Timer.Interval (in milliseconds) and Timer.Enabled properties to activate the timer.

 mTimer1.Interval = 1000
 mTimer1.Enabled = True

 You use the m Timer1_Timer() event to do whatever you want in the code.

 Sub mTimer1_Timer()
 ‘Code goes here!
 End Sub

 The frmTimer UserForm from the Timer Class.xlsm macro-enabled workbook uses this technique to
implement four different timers, which are set to 1000 ms (1 second), 500 ms (0.5s), 250 ms (0.25s), and 125
ms (0.125s). Just click the Enabled check box of each timer, and it will begin to fire using the defined time.
Change the timer interval to any value to see whether it runs faster or slower (Figure 10-1).

CHAPTER 10 ■ USING THE WINDOWS API

719

 The frmTimer UserForm declares four Timer module-level variables: mTimer1 to mTimer4 .

 Option Explicit

 Dim WithEvents mTimer1 As Timer
 Dim WithEvents mTimer2 As Timer
 Dim WithEvents mTimer3 As Timer
 Dim WithEvents mTimer4 As Timer

 When you click each timer’s Enable CheckBox , it instantiates the associated module-level variable, sets
the timer interval, and enables/disables the timer. This is the chkInterval1_Click() event.

 Private Sub chkInterval1_Click()
 Set mTimer1 = New Timer
 mTimer1. Interval = Me . txtInterval1
 mTimer1. Enabled = Me . chkInterval1
 End Sub

 To see the mTimer1 object variable work, the UserForm code uses the mTimer1_Timer() event to set the
 txtTimer1 TextBox value.

 Private Sub mTimer1_Timer()
 Me .txtTimer1 = Me .txtTimer1 + 1
 End Sub

 To change the mTimer1.Interval while the timer is running, the code uses the txtInterval1 TextBox ’s
 Change() event.

 Private Sub txtInterval1_Change()
 If Not IsNumeric(Me .txtInterval1) Then
 Me .txtInterval1 = 0
 ElseIf Me .txtInterval1 < 0 Then
 Me .txtInterval1 = 0
 End If
 mTimer1.Interval = Me .txtInterval1
 Call chkInterval1_Click
 End Sub

 Figure 10-1. The frmTimer implements four timers (mTimer1 to mTimer4) with default Interval values
of 1000, 500, 250, and 125 milliseconds. Click the Enabled CheckBox to begin each timer. Change the timer
interval to see it run at another speed

CHAPTER 10 ■ USING THE WINDOWS API

720

 Quite simple code, uh? It just accepts numeric, greater-than-zero Timer.Interval properties and calls
again the chkInterval1_Click() event to reset the timer. (Figure 10-2 shows a diagram view of the entire
process.)

 Figure 10-2. This diagram explains what happens with the Timer class that uses the SetTimer () API to create
a timer object

 ■ Attention You can make a more robust Timer class by validating the Interval value in the Property Let
Interval() procedure.

 UserForm Handle
 It is surprising that the VBA UserForm object doesn’t expose a Hwnd property, like the Application object
does. Although the UserForm object doesn’t have a handle in design mode, it must have a handle as soon
as it is loaded so it can react to system and mouse events. This is a runtime where only the Hwnd property is
available.

 The only way you can get any UserForm handle is to use the FindWindowA () API function from User32.
dll , which can be declared in this way:

 Private Declare Function fm_FindWindow Lib "user32" Alias " FindWindowA " (ByVal lpClassName
As String, ByVal lpWindowName As String) As Long

 In this code:

 lpClassName : This is the class name of the object whose handle you want
to find. If lpClassName is NULL , it finds any window whose title matches the
 lpWindowName parameter.

 lpWindowName : This is the window name (window caption text).

 The FindWindow() API function returns a Long Integer indicating the window handle. Note that this
API procedure declaration gives the fm_FindWindow alias to the FindWindowA () function, which expects
to receive two arguments: the VBA UserForm class name (ThunderFrame) or NULL and the UserForm caption
property. This procedure returns to the UserForm handle if it finds the window by its caption property. It
returns NULL if it fails to find any window match.

CHAPTER 10 ■ USING THE WINDOWS API

721

 ■ Attention Many UserForm handle procedures you find on Internet will temporarily store the current
 UserForm caption in a local variable, change the UserForm.Caption property to an improbable value (such
as Me .Caption and Timer , where Timer returns the number of seconds past since midnight), and call the
 FindWindow() API to get the UserForm handle, restoring the UserForm caption to its original value before the
procedure finishes.

 Public Function Hwnd (frm As Object) As Long
 Dim varHwnd As Variant
 varHwnd = fm_FindWindow ("ThunderDFrame", frm.Caption)
 If Not IsNull(varHwnd) Then
 Hwnd = CLng(varHwnd)
 End If
 End Function

 The technique is quite simple. It declares the varHwnd as Variant variable (since Variant is the only
variable type that can receive a null value) to receive the fm_FindWindow() return value, and if this value is
not null , it uses the VBA CLng(varHwnd) function to convert it to a Long Integer that is used as the Hwnd ()
procedure returned value.

 Setting Bit Values
 The Windows system stores object values using a Long integer, because a Long integer has up to 32 bits that
can be associated to 32 different Boolean options, which can be turned on/off by just changing any bit value
from 0 (to disable) to 1 (to enable) and vice versa, using the OR , AND , and NOT VBA operators.

 Let’s suppose that a given set of properties is stored using an 8-byte value (a value that has just 8 bits).
All these properties are represented by the integer number 231 (using a decimal representation). By using
the Windows Calculator applet with the Programming option set (Show ➤ Programming menu), you can
easily see that the 231 decimal values is represented as the binary value 11100111.

 Counting from right to left, the 1, 2, 3, 6, 7, and 8 bits are set (value = 1), while the 4 and 5 bits are not set
(value = 0).

 If the property you want to set is on the 4 th bit, you can turn it on by using the OR operator to combine
the 11100111 binary representations (231 in decimal) with 00001000 (8 in decimal), as follows:

 The OR operator combined all 8 bits from both binary numbers, setting just the fourth bit to 1 (or True ,
in programming language) and keeping all other bits on their default states. It OR ed two 8-byte numbers,
meaning that each bit from these two numbers must be set if either one or the other is set!

 Mathematically speaking, the OR operator is equal to the + operator, giving the same result as 231 + 8 = 239.

CHAPTER 10 ■ USING THE WINDOWS API

722

 To unset the fourth bit again and disable the property associated with it, you use the AND NOT operator,
meaning that it will negate the second bit entirely (all the 0s will become 1s, and all the 1s will become 0s)
before applying the AND operator to set just bits that are set in both numbers, as follows:

 To verify whether a given bit is set, just use the AND operator to combine the desired number with the
bit to test. If the tested bit is set, the result will be the number with the bit to set or, in logical terms, will be
considered True (anything different than zero).

 ■ Attention Although any number can be represented using a different number scale (like octal, decimal,
or hexadecimal formats), it is important to note that the leftmost bit (the 8 th bit for an 8-bit byte, or the 32 nd bit
for a 32-byte number), also known as the most significant bit , is reserved to the number sign on the decimal
scale. So, it is not uncommon to face constant flags using decimal negative numbers, meaning that the most
significant bit was set (like GWL_STYLE = -16).

 Animating the UserForm Window
 You can change the way a UserForm loads and unloads by using the Function AnimateWindow () API from
 User32.dll , which has this syntax:

 Declare Function AnimateWindow Lib "user32" (ByVal Hwnd As Long, ByVal dwTime As Long,
ByVal dwFlags As Long) As Boolean

 In this code:

 Hwnd : This is the handle of the UserForm .

 dwTime : This is the time in milliseconds the animation takes to play.

 dwFlags : This is the type of animation associated to these constants.

 AW_ACTIVATE = &H20000 : This activates the window (do not use it with
 AW_HIDE) .

 AW_BLEND = &H80000 : This uses a fade effect to show the window (or hides
it if used with AW_HIDE).

 AW_CENTER = &H10 : This expands the window outward.

CHAPTER 10 ■ USING THE WINDOWS API

723

 AW_HIDE = &H10000 : This hides the window if used with AW_BLEND (the
windows is shown).

 AW_HOR_POSITIVE = &H1 : This animates the window from left to right.

 AW_HOR_NEGATIVE = &H2 : This animates the window from right to left.

 AW_SLIDE = &H40000 : This uses slide animation.

 AW_VER_POSITIVE = &H4 : This animates the window from top to bottom.

 AW_VER_NEGATIVE = &H8 : This animates the window from bottom to top.

 Except when using animation to hide a window (using dwFlags = AW_BLEND or AW_HIDE), you can
use the OR operator to combine AW_HOR_POSITIVE or AW_HOR_NEGATIVE with AW_VER_POSITIVE or AW_VER_
NEGATIVE alone or with the AW_SLIDE flag to produce a diagonal animation. The AW_ACTIVATE flag must
always be used to show the animation.

 The UserForm_APIs.xlsm macro-enabled workbook (that you can extract from the Chapter10.zip file)
has the basUserFormAPIs standard module, which declares in its Declaration section the fm_FindWindow()
(to find the UserForm handle) and fm_ AnimateWindow () (to animate a UserForm window) aliased API
procedures, along with all animation constants needed.

 Option Explicit

 'DLL declarations to change UserForm animation or appearance
 Private Declare Function fm_FindWindow Lib "user32" _
 Alias " FindWindowA " (ByVal lpClassName As String, ByVal lpWindowName As String) As Long
 Private Declare Function fm_ AnimateWindow Lib "user32" _
 Alias " AnimateWindow " (ByVal Hwnd As Long, ByVal dwTime As Long, ByVal dwFlags As Long)
As Boolean
 ...
 'Window animation constants
 Const AW_ACTIVATE = &H20000 'Activates the window.
 Const AW_BLEND = &H80000 'Window has a fade in of fade out effect (if used with

AW_HIDE)
 Const AW_CENTER = &H10 'Window expand from center
 Const AW_HIDE = &H10000 'Hide the window when used with AW_BLEND
 Const AW_HOR_POSITIVE = &H1 'Window animates from left to right
 Const AW_HOR_NEGATIVE = &H2 'Window animates from right to left
 Const AW_SLIDE = &H40000 'Windows use slide animation (specify direction horizontal

or vertical)
 Const AW_VER_POSITIVE = &H4 'Window animates from top to bottom
 Const AW_VER_NEGATIVE = &H8 'Window animates from bottom to top

 To deal with the AnimateWindow () API animation constants, basUserFormAPIs also declares the
 Animation enumerator to combine these animation flags using more significant names.

 Public Enum Animation
 Appear = AW_BLEND Or AW_ACTIVATE
 DiagonalToBottomLeft = AW_HOR_NEGATIVE Or AW_VER_POSITIVE Or AW_ACTIVATE
 DiagonalToBottomRight = AW_HOR_POSITIVE Or AW_VER_POSITIVE Or AW_ACTIVATE
 DiagonalToTopLeft = AW_HOR_NEGATIVE Or AW_VER_NEGATIVE Or AW_ACTIVATE
 DiagonalToTopRight = AW_HOR_POSITIVE Or AW_VER_NEGATIVE Or AW_ACTIVATE
 Disappear = AW_BLEND Or AW_HIDE
 Expand = AW_CENTER Or AW_ACTIVATE

CHAPTER 10 ■ USING THE WINDOWS API

724

 SlideToBotton = AW_SLIDE Or AW_VER_POSITIVE Or AW_ACTIVATE
 SlideToLeft = AW_SLIDE Or AW_HOR_NEGATIVE Or AW_ACTIVATE
 SlideToRight = AW_SLIDE Or AW_HOR_POSITIVE Or AW_ACTIVATE
 SlideToTop = AW_SLIDE Or AW_VER_POSITIVE Or AW_ACTIVATE
 SlideDiagonalToBottomLeft = AW_SLIDE Or AW_HOR_NEGATIVE Or AW_VER_POSITIVE Or AW_ACTIVATE
 SlideDiagonalToBottomRight = AW_SLIDE Or AW_HOR_POSITIVE Or AW_VER_POSITIVE Or AW_ACTIVATE
 SlideDiagonalToTopLeft = AW_SLIDE Or AW_HOR_NEGATIVE Or AW_VER_NEGATIVE Or AW_ACTIVATE
 SlideDiagonalToTopRight = AW_SLIDE Or AW_HOR_POSITIVE Or AW_VER_NEGATIVE Or AW_ACTIVATE
 ToBotton = AW_VER_POSITIVE Or AW_ACTIVATE
 ToLeft = AW_HOR_NEGATIVE Or AW_ACTIVATE
 ToRight = AW_HOR_POSITIVE Or AW_ACTIVATE
 ToTop = AW_VER_NEGATIVE Or AW_ACTIVATE
 End Enum

 Note that most Enum Animation declarations use the desired animation OR ed with the AW_ACTIVATE
flag (except the Disappear enumerator), and to produce a diagonal animation effect, the code uses more
than one constant flag (like DiagonalToBottomLeft = AW_HOR_NEGATIVE Or AW_VER_POSITIVE Or AW_
ACTIVATE).

 ■ Attention Although Microsoft MSDN documentation for the WindowAnimate() function states that you
can combine different flags with AW_HIDE to produce different closing effects, just the AW_BLEND constant works
with AW_HIDE to produce a fade-out effect.

 The Animate () Procedure
 To produce the UserForm animation, use the basUserFormAPIs Public Sub Animate () procedure, which
executes this code:

 Public Sub Animate (frm As Object, Animation As Animation, Optional Duration As Long = 1500)
 Dim lngHwnd As Long

 'Get frm UserForm Handle
 lngHwnd = Hwnd (frm)

 'Center UserForm on Application window
 With frm
 .Top = (Application .Top + Application .Height / 2) - .Height / 2
 . Left = (Application . Left + Application .Width / 2) - .Width / 2
 End With

 ' Animate the UserForm
 fm_ AnimateWindow lngHwnd, Duration, Animation
 End Sub

 The function Animate () receives three arguments: frm as Object (a reference to a loaded UserForm),
 Animation as Animation (the desired animation enumerator), and the Optional Duration as Long =
1500 argument (animation duration, with 1,500 milliseconds—1.5 s—as default value).

CHAPTER 10 ■ USING THE WINDOWS API

725

 It then uses the Hwnd (frm) function (as cited in the section “UserForm Handle”) to attribute the frm as
Object UserForm handle to the lngHwnd variable.

 'Get frm UserForm Handle
 lngHwnd = Hwnd (frm)

 The frm UserForm is then centralized inside the Excel window. (Note that it uses Application .Top +
 Application .Height / 2 to find the Excel window’s vertical center point and subtracts .Height / 2 = half
the UserForm height; the same is done to find the horizontal center point.)

 With frm
 .Top = (Application .Top + Application .Height / 2) - .Height / 2
 . Left = (Application . Left + Application .Width / 2) - .Width / 2
 End With

 The UserForm associated to the lngHwnd Long Integer is animated as desired by calling the
 fm_ AnimateWindow () aliased API.

 fm_ AnimateWindow lngHwnd, Duration, Animation

 To animate any UserForm when it is loaded, verify whether property ShowModal = False and make a
call to Function Animate () on the UserForm_Initialize () event, as follows (note that the code uses the
 Appear enumerator in the Animation argument, accepting the default duration of 1500 ms):

 Private Sub UserForm_Initialize ()
 Animate Me , Appear
 End Sub

 Since Function Animate () declares the Animation as Animation enumerator argument, you can
easily select the desired effect from the VBA constant list (Figure 10-3).

 Figure 10-3. The Animation as Animation enumerator argument of Function Animate () allows the user to
easily select the desired animation to be applied when loading a UserForm

 ■ Attention If you do not set the UserForm property’s ShowModal = False , Visual Basic will raise error 400,
“Form already displayed; can’t show modally,” when the loading animation finishes.

CHAPTER 10 ■ USING THE WINDOWS API

726

 To animate any UserForm by an external procedure, you must first load the desired UserForm using the
 Load method and then call Function Animate () to animate it, as follows:

 Public Function AnimateUserForm()
 Load UserForm1
 Animate UserForm1, Appear
 End Function

 To animate any UserForm when it is unloaded, make a call to Function Animate () on the UserForm
_QueryClose() event (the last event fired before the UserForm is terminated), using the Disappear
enumerator on the Animation argument, like this (this code also uses a default duration of 1500 ms):

 Private Sub UserForm_QueryClose(Cancel As Integer, CloseMode As Integer)
 Animate Me , Disappear
 End Sub

 The Sheet1 worksheet from the UserForm _ APIs.xlsm macro-enabled workbook defines in the Animation
range (merged cells B3:D3) a data validation list filled with all possible Animation enumerators (defined in the
range M2:M20) to easily test each possible animation applied to the frmAnimate UserForm (which has no code).
Click the list and select the desired animation to see it running, and once frmAnimation is shown, select the
Disappear list option to see it fade at the desired duration time (change the Duration range name, cell F3 , to
apply the selected animation effect at a different speed, as shown in Figure 10-4).

 Figure 10-4. Select the desired animation on cell B3’s data validation list (the Animation range name) to
apply it to frmAnimate. Change the Duration range name to reapply the effect

CHAPTER 10 ■ USING THE WINDOWS API

727

 To apply successive animations to the frmAnimate UserForm , for every animation effect but Discard,
the code needs to unload the UserForm , update the Excel interface, and load it again. This is made in the
 Sheet1_Change() event, which fires every time any Sheet1 cell value changes, executing this code:

 Private Sub Worksheet_Change(ByVal Target As Range)
 Dim Animation As Animation
 Dim bolDisappear As Boolean

 If Target. Address = Range("Animation"). Address Or Target. Address =
Range("Duration"). Address Then
 Select Case Trim(Range("Animation"))
 Case "Appear"
 Animation = Appear
 Case "DiagonalToBottomLeft"
 Animation = DiagonalToBottomLeft
 Case "DiagonalToBottomRight"
 Animation = DiagonalToBottomRight
 Case "DiagonalToTopLeft"
 Animation = DiagonalToTopLeft
 Case "DiagonalToTopRight"
 Animation = DiagonalToTopRight
 Case "Disappear"
 Animation = Disappear
 bolDisappear = True
 Case "Expand"
 Animation = Expand
 Case "SlideDiagonalToBottomLeft"
 Animation = SlideDiagonalToBottomLeft
 Case "SlideDiagonalToBottomRight"
 Animation = SlideDiagonalToBottomRight
 Case "SlideDiagonalToTopLeft"
 Animation = SlideDiagonalToTopLeft
 Case "SlideDiagonalToTopRight"
 Animation = SlideDiagonalToTopRight
 Case "SlideToBotton"
 Animation = SlideToBotton
 Case "SlideToLeft"
 Animation = SlideToLeft
 Case "SlideToRight"
 Animation = SlideToRight
 Case "SlideToTop"
 Animation = SlideToTop
 Case "ToBotton"
 Animation = ToBotton
 Case "ToLeft"
 Animation = ToLeft
 Case "ToRight"
 Animation = ToRight
 Case "ToTop"
 Animation = ToTop
 End Select

CHAPTER 10 ■ USING THE WINDOWS API

728

 If Not bolDisappear Then
 Unload frmAnimate
 Application .ScreenUpdating = True
 Load frmAnimate
 End If

 Animate frmAnimate, Animation, Range("Duration")

 If bolDisappear Then Unload frmAnimate
 End If
 End Sub

 The code declares the Animation as Animation enumerator value and verifies whether the change
happens in the Animation or Duration range name.

 Private Sub Worksheet_Change(ByVal Target As Range)
 Dim Animation As Animation
 Dim bolDisappear As Boolean

 If Target. Address = Range("Animation"). Address Or Target. Address =
Range("Duration"). Address Then

 If this is true, it uses a Select Case statement to set the desired animation enumerator constant
according to the value selected in the Animation range name (note that it uses the VBA Trim() function to
remove undesired spaces in the Animation range value, and if Disappear is selected, bolDisappear = True).

 Select Case Trim(Range("Animation"))
 Case "Appear"
 Animation = Appear
 ,,,
 Case "Disappear"
 Animation = Disappear
 bolDisappear = True
 ...
 End Select

 ■ Attention There is no way to programmatically iterate through VBA Enumerator items. The Selected
Case statement is an alternative way to do this.

 Then the code verifies whether Disappear was not selected by testing not bolDisappear . If this is true,
it unloads frmAnimate , updates the Excel interface, and loads it again before applying the selected effect.

 If Not bolDisappear Then
 Unload frmAnimate
 Application . ScreenUpdating = True
 Load frmAnimate
 End If

CHAPTER 10 ■ USING THE WINDOWS API

729

 The animation effect (even Disappear) is then applied by calling Function Animate () to frmAnimate ,
using the Animation variable value and the duration defined by the Duration range name.

 Animate frmAnimate , Animation , Range(" Duration ")

 If Disappear was selected, the UserForm is now hidden and must be unloaded.

 If bolDisappear Then Unload frmAnimate
 End If
 End Sub

 Manipulating the UserForm Window
 Suffice it to say by now that the VBA UserForm window belongs to the ThunderFrame class and that every
time a UserForm is loaded into your PC memory, the UserForm_Initialize () event fires and loads all its
properties, which are used to draw the UserForm window when the form is shown, immediately after the
 UserForm_Activate() event fires (Figure 10-5).

 Figure 10-5. When a UserForm is loaded into memory, its visual properties are defined in the UserForm.
Initialize() event, but its window is created immediately before the UserForm_Activate() event fires

 Thinking in API terms, when a UserForm.Show method is called, the Windows operating system gets
from the UserForm the ThunderFrame class definition a Long integer that identifies many window properties
and sets them accordingly.

 In most form classes, these basic properties are stored in address –16 (FFFFFFFFFFFFFFF0 in
hexadecimal) inside the form structure definition. If you check on the Internet for API code to manipulate
the UserForm window, you will immediately note that this address is normally attributed to a constant:
 GWL_STYLE = -16 .

 This means that if you want to manipulate the UserForm window to change some of its properties, you
must put code in the UserForm_Initialize () event or call the UserForm.Hide method to hide it, change its
properties, and call the UserForm.Show method to draw it again.

 The API procedure that grabs these UserForm property values as a Long Integer number is called
 GetWindowLong() and has this syntax:

 Declare Function GetWindowLongA Lib "user32" (ByVal Hwnd As Long, ByVal nIndex As Long)
As Long

 In this code:

 Hwnd : This is the handle of the UserForm .

 Nindex : This is the position inside the UserForm class from where it must extract
the Long integer.

CHAPTER 10 ■ USING THE WINDOWS API

730

 The GetWindowLong() API function returns a long integer with all desired UserForm properties from
the Nindex address position inside the class structure. Once you get it, you just need to know the bit position
that you want to manipulate, change its value, and set it again to the UserForm structure, using the API
procedure SetWindowLong() , which has this syntax:

 Declare Function SetWindowLongA Lib "user32" (ByVal hwnd As Long, ByVal nIndex As Long, _
 ByVal dwNewLong As Long) As Long

 In this code:

 Hwnd : This is the UserForm handle.

 NIndex : This is the position inside the UserForm class to where the Long integer
must be set.

 DwNewLong : This is the Long value that must be set.

 Most Internet API code uses dedicated procedures to set a given UserForm property (read as “set the bit
inside the ThunderClass frame”) and another procedure to verify whether the bit is set.

 The UserForm Title Bar
 The bit associated with the presence of the UserForm title bar inside the Long integer that represents the
window properties is normally attributed to constant WS_CAPTION = &HC00000 (12582912 in decimal, 23 rd
and 24 th bits set), although it can also be removed by setting the constant WS_DLGFRAME = &H400000
(4194304 in decimal, 23 rd bit set).

 ■ Attention It seems like it is the 23 rd bit that sets/removes the UserForm title bar. You can achieve the same
result using both the WS_CAPTION and WS_DLGFRAME constants.

 To add/remove a UserForm title bar, you need to set/unset this bit on the Long integer property byte and
call the DrawMenuBar () API to change the UserForm appearance, which is declared in this way:

 Declare Function DrawMenuBar Lib "user32" (ByVal Hwnd As Long) As Long

 In this code:

 Hwnd : This is the UserForm handle.

 So, to remove the UserForm caption, you can use code like the following (supposing that the fm_
FindWindow() , fm_GetWindowLong() , fm_SetWindowLong() , and fm_ DrawMenuBar () aliased APIs were
declared):

 Const GWL_STYLE = (-16)
 Const WS_CAPTION = &HC00000

 Sub RemoveTitleBar (frm as Object)
 Dim lngHwnd as Long
 Dim lngWinInfo as Long

 lngHwnd = Hwnd (frm)

CHAPTER 10 ■ USING THE WINDOWS API

731

 If lngHwnd > 0 then
 lngWinInfo = fm_GetWindowLong(lngHwnd, GWL_STYLE)
 ‘clear frmUserForm SysMenu bit
 lngWinInfo = lngWinInfo And (Not WS_CAPTION)
 fm_SetWindowLong lngHwnd, GWL_STYLE, lngWinInfo
 fm_ DrawMenuBar lngHwnd
 End If
 End Function

 Do you get it? After using the Hwnd () function to get the UserForm handle (associated with the frm
as Object argument), you use the fm_GetWindowLong() aliased API to get the UserForm Long integer
properties (using the GWL_STYLE constant to indicate from where this value must be retrieved), attributing it
to the lngWinInfo variable.

 lngHwnd = Hwnd (frm)
 If lngHwnd > 0 then
 lngWinInfo = fm_GetWindowLong (lngHwnd , GWL_STYLE)

 To unset the WS_CAPTION bit from the lngWinInfo value, you use the And (Not WS CAPTION) operators,
as explained in section “Setting Bit Values” earlier in this chapter.

 lngWinInfo = lngWinInfo And (Not WS_CAPTION)

 Once the desired bit is unset, you call fm_SetWindowLong to update the UserForm Long Integer ,
effectively disabling the title bar bit, and call the fm_ DrawMenuBar lngHwnd API to set/remove the UserForm
title bar.

 fm_SetWindowLong lngHwnd , GWL_STYLE , lngWinInfo
 fm_ DrawMenuBar lngHwnd

 ■ Attention This code will remove the UserForm title bar if called from the UserForm_Initialize ()
event, because at this point the UserForm window is not still drawn by the Windows system. To call it from
a Command button, you must call the UserForm Hide and Show methods to update the window, adding/
removing the title bar.

 By making a small code change, you can declare a bolEnabled as a Boolean argument and allow the
procedure to either set or remove the UserForm title bar, as follows:

 Sub RemoveTitleBar (frm as Object, bolEnabled as Boolean)
 Dim lngHwnd as Long
 Dim lngWinInfo as Long

 lngHwnd = Hwnd (frm)
 If lngHwnd > 0 then
 lngWinInfo = fm_GetWindowLong(lngHwnd, GWL_STYLE)
 ‘clear frmUserForm SysMenu bit
 If bolEnabled then

CHAPTER 10 ■ USING THE WINDOWS API

732

 lngWinInfo = lngWinInfo Or WS_CAPTION
 Else
 lngWinInfo = lngWinInfo And (Not WS_CAPTION)
 End If
 fm_SetWindowLong lngHwnd, GWL_STYLE, lngWinInfo
 fm_ DrawMenuBar lngHwnd
 End If
 frm.Hide
 frm.Show
 End Function

 Note in the previous code that now you use the OR operator to set the desired bit (bolEnabled=True ;
 UserForm has a title bar) or the AND NOT operators to remove the bit (bolEnabled = False). Also note that
now the procedure calls the frm.Hide and frm.Show methods to allow the UserForm window to redraw, with
or without a title bar.

 To add/remove the UserForm Close button (the “X” button in the top-right corner), add/remove the
maximize or minimize buttons, or add/remove a resizable border, you use the same code, changing the
constant used to set/unset the lngWinInfo bit associated with these properties, as declared here:

 Private Const GWL_STYLE = (-16)
 Private Const WS_CAPTION = &HC00000
 Private Const WS_MAXIMIZEBOX = &H10000
 Private Const WS_MINIMIZEBOX = &H20000
 Private Const WS_SYSMENU = &H80000
 Private Const WS_THICKFRAME = &H40000

 The Appearance () Procedure
 Instead of making one procedure to manipulate each property, you can write a single, centralized procedure
that manipulates any one of them, according to the argument it receives.

 This is exactly what the frmAppearance UserForm , from the UserForm_APIs.xlsm macro-enabled
workbook (that can be extracted from the Chapter10.zip file) does: it uses a single centralized procedure to
change the UserForm appearance regarding the presence of a title bar; close, maximize, minimize buttons;
resizable border; and transparency (Figure 10-6).

CHAPTER 10 ■ USING THE WINDOWS API

733

 By inspecting the basUserFormAPI standard module, you will notice that it declares all API functions
and constants needed to manipulate the UserForm properties in the Declaration section. Note that it also
declares Public Enum FormStyle to give more significant names to the property that must be set.

 Option Explicit
 ...
 Private Declare Function fm_GetWindowLong Lib "user32" _
 Alias " GetWindowLongA " (ByVal Hwnd As Long, ByVal nIndex As Long) As Long
 Private Declare Function fm_SetWindowLong Lib "user32" _
 Alias " SetWindowLongA " (ByVal Hwnd As Long, ByVal nIndex As Long, _
 ByVal dwNewLong As Long) As Long
 Private Declare Function fm_ DrawMenuBar Lib "user32" Alias " DrawMenuBar " (ByVal Hwnd As
Long) As Long
 Private Declare Function fm_ SetLayeredWindowAttributes Lib "user32" _
 Alias " SetLayeredWindowAttributes " (ByVal Hwnd As Long, ByVal crKey As Byte, _
 ByVal bAlpha As Byte, ByVal dwFlags As Long) As Long

 Public Enum FormStyle
 TitleBar = WS_CAPTION
 ResizableBorder = WS_THICKFRAME
 MaximizeButton = WS_MAXIMIZEBOX
 MinimizeButton = WS_MINIMIZEBOX
 CloseButton = WS_SYSMENU
 End Enum

 Figure 10-6. The frmAppearance UserForm from the UserForm_APIs.xlsm macro-enabled workbook uses the
Windows APIs to manipulate the UserForm title bar; close, maximize and minimize buttons; resizable border;
and transparency

CHAPTER 10 ■ USING THE WINDOWS API

734

 To manipulate the UserForm properties, it uses the Public Sub Appearance () procedure, which
executes this code:

 Public Sub Appearance (frm As Object, Style As FormStyle, bolEnabled As Boolean, Optional
bolRepaint As Boolean = True)
 Dim lngHwnd As Long
 Dim lngWinInfo As Long
 Dim lngHeight As Long

 'Get frm UserForm Handle
 lngHwnd = Hwnd (frm)
 'Get frm USerForm window style
 lngWinInfo = fm_GetWindowLong(lngHwnd, GWL_STYLE)

 If bolEnabled Then
 'Set frm UserForm bits
 lngWinInfo = lngWinInfo Or Style
 Else
 ' Clear frm UserForm bits
 lngWinInfo = lngWinInfo And (Not Style)
 End If
 fm_SetWindowLong lngHwnd, GWL_STYLE, lngWinInfo

 If ((Style And TitleBar) = TitleBar) Then
 fm_ DrawMenuBar (lngHwnd)
 End If

 If bolRepaint Then
 frm.Hide
 frm.Show
 End If
 End Sub

 As you can see, Sub Appearance () receives four arguments: frm as Object (the UserForm to
manipulate), Style as FormStyle (the attribute or attributes to be set), bolEnabled (to turn on/off
the desired attribute or attributes), and the optional bolRepaint (to automatically repaint the frm
UserForm).

 ■ Attention As you will see later, sometimes it is not desirable that the UserForm automatically repaints as
its properties are changed by the Sub Appearance () procedure.

 The code uses Public Function Hwnd () to retrieve the frm UserForm handle and uses the
 fm_GetWindowLong() aliased API to retrieve the frm UserForm Long integer properties. According to
the bolEnabled argument, it sets/unsets the desired bits represented by the Style argument and uses the
 fm_SetWindowLong() aliased API to set again the UserForm Long integer properties and eventually calls
 frm_DrawMenyBar , if the Style argument has the WSCAPTION flag set.

 To effectively change the UserForm appearance regarding what it receives on the Style argument,
the Hide and Show methods are called to force the UserForm to redraw, showing the appropriate
properties.

CHAPTER 10 ■ USING THE WINDOWS API

735

 ■ Attention The last paragraph uses “desired bits,” allowing more than one bit at a time, because you can
call Appearance () with some of the Style constants to set more than one property at once, if possible.

 In the frmAppearance UserForm module you can see how some operations are easily made to change
the UserForm window appearance, sometimes needing a small adjustment. This is the case with the
 chkTitleBar_Click() event, which fires whenever frmAppearance chkTitleBar changes its value.

 Option Explicit

 Dim mlngHeight As Long

 Private Sub UserForm_Initialize ()
 mlngHeight = Me .InsideHeight
 End Sub
 ...
 Private Sub chkTitleBar_Click()
 Appearance Me , TitleBar, Me .chkTitleBar
 Me .Height = mlngHeight
 End Sub

 When frmAppearance loads, the Initialize() event stores the UserForm.Height property on the
 mlngHeight module-level variable and uses this value to return it to the default size after a call is made to
the Sub Appearance Me , TitleBar, Me .chkTitleBar procedure, adding/removing the UserForm title bar as
the chkTitleBar CheckBox control changes its value. This is necessary because after the UserForm title bar
is removed and set again, the form grows by the size of the title bar (comment the Me .Height = mlngHeight
instruction to see this happen).

 The UserForm Close , Maximize, and Minimize Buttons, and Resizable Border
 To set the UserForm Close , Maximize, and Minimize buttons or a resizable border, you just need to
make a call to the Sub Appearance () procedure, passing it the appropriate Style constant. The next
procedure code shows what happens when you click the chkCloseButton , chkMaximize , chkMinimize , and
 chkResizable check boxes to add/remove the UserForm properties:

 Private Sub cmdClose_Click()
 Unload Me
 End Sub

 Private Sub chkTitleBar_Click()
 Appearance Me , TitleBar, Me .chkTitleBar
 Me .Height = mlngHeight
 End Sub

 Private Sub chkCloseButton_Click()
 Appearance Me , CloseButton, Me .chkCloseButton
 End Sub

 Private Sub chkMaximize_Click()
 Appearance Me , MaximizeButton, Me .chkMaximize
 End Sub

CHAPTER 10 ■ USING THE WINDOWS API

736

 Private Sub chkMinimize_Click()
 Appearance Me , MinimizeButton, Me .chkMinimize
 End Sub

 Private Sub chkResizable_Click()
 Appearance Me , ResizableBorder, Me .chkResizable
 End Sub

 Changing More Than One UserForm Property at Once
 As explained, you can set the UserForm properties on the UserForm_Initialize () event or change more
than one property at any time by making a single call to the Appearance () procedure.

 The frmNoTitleBar UserForm from the UserForm_APIs.xlsm macro-enabled workbook does this! It
removes the title bar using the UserForm_Initialize () event and adds/removes the Close and Maximize
buttons on the UserForm_Click() event (which fires when you click inside it), running this simple code:

 Option Explicit

 Private Sub UserForm_Initialize ()
 Appearance Me , TitleBar + , False
 End Sub

 Private Sub UserForm_Click()
 Static sbolEnabled As Boolean

 sbolEnabled = Not sbolEnabled
 Appearance Me , TitleBar + ResizableBorder + MaximizeButton + CloseButton, sbolEnabled
 End Sub

 Note that the UserForm_Click() event passes TitleBar + + ResizableBorder + MaximizeButton
+ CloseButton to the Sub Appearance () Style argument, which allows you to make the UserForm border
resizable while also enabling its Maximize and Close buttons. It uses the Static sbolEnabled as Boolean
variable to alternate the on/off state of these properties.

 To see them in action, double-click the frmNoTitleBar object in the VBA Object Explorer tree and
press F5 to load it. You will notice that it appears without a title bar, but whenever you click inside it, the title
bar automatically appears, showing the Minimize, Restore, Maximize, and Close buttons, with a resizable
border.

 ■ Attention When you set the bit that shows the Maximize and Minimize buttons, both buttons will become
visible, but just the bit set will work. By showing just the Maximize button, the Minimize button will appear, but
disabled, and vice versa.

 Any UserForm that calls the Sub Appearance () procedure from the Initialize() event must set the
 ShowModal property to False . Otherwise, the code will stop on the last procedure instruction (frm.Show) until
the UserForm is closed, and a VBA runtime error 91 (“Object variable or With block not set”) could appear
when the UserForm is closed, after setting its properties using the Windows APIs (change the frmNoTitleBar
ShowModal property to True , open it, click inside it, and close it to see for yourself).

CHAPTER 10 ■ USING THE WINDOWS API

737

 The UserForm Transparency
 At the UserForm ThunderFrame class structure’s –20 position (FFFFFFFFFFFFFFEC in hexadecimal, normally
associated with constant GWL_EXSTYLE = -20), you can recover extended window properties associated, for
example, to the UserForm transparency: the value of the alpha channel or opacity value.

 To create a transparent effect, you need to use the GetWindowLong() API to get this Long integer value,
manipulate its 20 th bit using constant WS_EX_LAYERED = &H80000 (10000000000000000000 in binary, 20 th
bit), and use the SetLayredWindowAttributes() API function to change the window alpha channel opacity
from 0 (totally transparent) to 255 (totally opaque), which is declared in this way:

 Declare Function SetLayeredWindowAttributes Lib "user32" (ByVal Hwnd As Long, ByVal crKey As
Byte, ByVal bAlpha As Byte, ByVal dwFlags As Long) As Long

 In this code:

 Hwnd : This is the UserForm handle.

 crKey : This is the chroma key, which is a color reference that will be used as the
transparent color. Use 0 to specify every color.

 bAlpha : This is the alpha value used to describe the window opacity (must be
between 0 = totally transparent and 255 = totally opaque).

 dwFlags : This is an action to be taken.

 LWA_ALPHA = &H2 : This determines the opacity of the layered window, if
 crKey = 0 .

 LWA_COLORKEY = &H1 : This uses the crKey color value as the transparency
color.

 The Transparency () Procedure
 To change the UserForm transparency, basUSerFormAPIs implements Public Function Transparency () ,
which executes this code:

 Public Sub Transparency (frm As Object, sngTransparency As Single) 'As Boolean
 Dim lngHwnd As Long
 Dim lngWinInfo As Long
 Dim intOpacity As Integer

 'Get frm UserForm Handle
 lngHwnd = Hwnd (frm)
 'Get frm USerForm window style
 lngWinInfo = fm_GetWindowLong(lngHwnd, GWL_EXSTYLE)
 'Set extended form bit
 fm_SetWindowLong lngHwnd, GWL_EXSTYLE, lngWinInfo Or WS_EX_LAYERED
 intOpacity = 255 - (255 * sngTransparency)
 fm_ SetLayeredWindowAttributes lngHwnd, 0, intOpacity, LWA_ALPHA
 End Sub

CHAPTER 10 ■ USING THE WINDOWS API

738

 The code calls function Hwnd (frm) to retrieve the UserForm handle, uses fm_GetWindowLong() with
constant GWL_EXSTYLE to retrieve the Long integer associated with the extended form properties, and sets the
 WS_EX_LAYERED bit value to indicate that the transparency effect will be changed.

 lngWinInfo = fm_ GetWindowLong (lngHwnd, GWL_ EXSTYLE)
 'Set extended form bit
 fm_ SetWindowLong lngHwnd, GWL_EXSTYLE, lngWinInfo Or WS_EX_LAYERED

 Since it receives the sngTransparency argument as a percent value (from 0 to 1) to the desired
transparency effect, it must change it into an opacity value that goes from 0 to 255 (opacity is the reciprocal
of transparency; 100 percent transparent means 0 percent opaque).

 intOpacity = 255 - (255 * sngTransparency)

 Once the opacity is calculated, it calls the fm_ SetLayeredWindowAttributes () aliased API to change
the UserForm opacity, using the crKey = 0 argument, to manipulate all colors opacity at once and passes
 LWA_ALPHA = &H26 (100110 in binary) to the dwFlags argument.

 fm_ SetLayeredWindowAttributes lngHwnd, 0 , intOpacity , LWA_ALPHA

 On the UserForm side, the frmAppearance uses the fraTransparency Frame control to contain the
 scrTransparency ScrollBar control and change its own transparency. The scrTransparency control
has set its properties Mini = 0 , Max = 100 , SmallChange = 5 , and LargeChange = 10 , to allow changing
the transparency value from 0 to 100 (by 5 transparency points when click the scroll bar arrows and by
20 transparency points inside the scroll bar at the left or right of the scroll bar button). Whenever the
 scrTransparency ScrollBar control value changes, it fires the scrTransparency_Change() event,
executing this code:

 Private Sub scrTransparency_Change()
 Dim sngValue As Single

 sngValue = Me .scrTransparency / 100
 Me .fraTransparency.Caption = " Transparency " & Format(sngValue, "0%")
 Transparency Me , sngValue
 End Sub

 As you can see, whenever you drag the scrTransparency ScrollBar control to a new value, it calculates
the percent transparency on the sngValue variable and sets the fraTransparency Frame control caption
accordingly. Then it calls Function Transparency () from basUserFormAPIs , passing as an argument a
reference to itself (Me) and the desired transparency percent value (Figure 10-7).

CHAPTER 10 ■ USING THE WINDOWS API

739

 ■ Attention In basUserFormAPIs , change the Function Transparency () instruction lngHwnd =
 Hwnd (frm) to lngHwnd = Application . Hwnd and then drag the scrTransparency ScrollBar control on
 frmAppearance to change the Excel window’s transparency.

 Note that if you drag the scrTransparency ScrollBar control to 100 percent transparency, the frmAppearance
 UserForm disappears from the Excel interface and cannot be selected anymore. It is still loaded but unreachable.

 The Fade () Procedure
 You can use Sub Transparency () to create a “fade-in” or “fade-out” effect to animate any UserForm like the
 AnimateWindow () API does using the AW_Blend constant.

 You just need to use a For...Next loop to loop 100 times, changing the UserForm transparency from
100 percent to 0 percent to fade in and from 0 percent to 100 percent to fade out, taking care to use a specific
delay in milliseconds at each loop step.

 This was implemented in the basUserFormAPI standard module using two different procedures: Public
Sub Fade () is used to interact with the user regarding the fade effect, and Private Sub FadeEffect() is
used to apply the UserForm transparency in the desired direction (fade-in or fade-out).

 To allow an easy selection of the fade effect and speed, two enumerators were declared in
 basUserFormAPI : FadeMethod and FadeSpeed .

 Public Enum FadeMethod
 FadeIn = 1
 FadeOut = 2
 FadeInFadeOut = 3
 End Enum

 Public Enum FadeSpeed

 Figure 10-7. Drag the scrTransparency ScrollBar control to the left or right to change the UserForm
transparency. It calls Function Transparency () from basUserFormAPIs to change the UserForm opacity value
(the reciprocal of transparency)

CHAPTER 10 ■ USING THE WINDOWS API

740

 Slow = 1
 Fast = 2
 End Enum

 To apply the fade effect, use the Public Sub Fade () procedure, which executes this code:

 Public Sub Fade (frm As Object, Fading As FadeMethod, Optional Speed As FadeSpeed = Slow, _
 Optional WaitSeconds As Integer)
 Dim sngTime As Single

 Call FadeEffect(frm, Fading, Speed)
 frm.Repaint
 If Fading = FadeInFadeOut Then
 If WaitSeconds > 0 Then
 sngTime = Time
 Do
 Loop While DateDiff("s", sngTime, Time) < WaitSeconds
 End If
 Call FadeEffect(frm, FadeOut, Speed)
 End If

 If Fading = FadeInFadeOut Or Fading = FadeOut Then
 Unload frm
 End If
 End Sub

 Note that it receives three arguments: frm as Object (the UserForm), Fading as FadeMethod (the fade
direction), and the Optional Speed as FadeSpeed = Slow argument (the fade speed).

 Independent of the fade method selected, it first calls FadeEffect(frm, Fadding , Speed) to apply the
desired fade method at the desired speed, which executes this code:

 Private Sub FadeEffect(frm As Object, Fading As FadeMethod, Optional Speed As
FadeSpeed = Slow)
 Dim sngTimer As Single
 Dim sngTransparency As Single
 Dim sngMaxTime As Single
 Dim intI As Integer
 Const conSlow = 0.04
 Const conFast = 0.01

 sngMaxTime = IIf(Speed = Fast, conFast, conSlow)
 For intI = 0 To 100
 sngTransparency = intI / 100
 If Fading = FadeIn Or Fading = FadeInFadeOut Then sngTransparency = 1 -
sngTransparency
 Transparency frm, sngTransparency
 sngTimer = Timer
 Do
 Loop While (Timer - sngTimer) < sngMaxTime
 Next
 End Sub

CHAPTER 10 ■ USING THE WINDOWS API

741

 Note that the Sub FadeEffect() declares the constants conSlow = 0;04 and conFast = 0.01 , which
relate to tenths of milliseconds, and attributes to sngMaxTime the desired constant value according to the
 Speed argument.

 sngMaxTime = IIf(Speed = Fast , conFast , conSlow)

 It then begins a For...Next loop that will execute 100 times, attributing to sngTransparency the desired
transparency percentage.

 For intI = 0 To 100
 sngTransparency = intI / 100

 If Fading = FadeIn or Fading = FadeInFadeOut , sngTransparency must go from 100 percent to 05
transparency, so it changes sngTransparency accordingly.

 If Fading = FadeIn Or Fading = FadeInFadeOut Then sngTransparency = 1 – sngTransparency

 Apply the desired transparency effect to the UserForm associated to the frm as Object argument.

 Transparency frm, sngTransparency

 Now it is time to give a delay between each loop step. This is done by attributing the VBA function
 Timer() value (the number of seconds since midnight) to the sngTimer variable and executing a Do...Loop
while the difference between sngTimer and Timer() is smaller than the sngMaxTime milliseconds value.

 sngTimer = Timer
 Do
 Loop While (Timer - sngTimer) < sngMaxTime

 When the loop ends, the UserForm changes the transparency from 0 to 100 (or vice versa), during from
100 * 0.01 ms ≅ 1 second (if sngMaxTime = conFast = 0.01) to 100 * 0.04 ≅ 4 seconds (if sngMaxTime =
conSlow = 0.04).

 The code returns the control to the Sub Fade () effect, which now verifies whether the argument
 Fading = Fad InFadeOut , and if this is true, it verifies whether the WaitSeconds argument is greater than zero
(indicating that the fade must do a stop before fading out).

 If Fading = FadeInFadeOut Then
 If WaitSeconds > 0 Then

 If WaitSeconds > 0, the desired delay is applied, using again a Do...Loop that uses the VBA
 DateDiff("s", sngTime, Time) function to define the difference between sngTime and another call to the
VBA Time() function in seconds. The loop will last while this difference is smaller than WaitSeconds .

 sngTime = Time
 Do
 Loop While DateDiff("s", sngTime, Time) < WaitSeconds
 End If

 Having or not executing a delay, since argument Fading = FadeInFadeOut , it must now execute a
fade-out effect at the same fade-in speed.

CHAPTER 10 ■ USING THE WINDOWS API

742

 Call FadeEffect (frm, FadeOut , Speed)
 End If

 And if the Fading argument is either FadeOut or FadeInFadeOut , the frm UserForm must be unloaded,
ending the fade effect.

 If Fading = FadeInFadeOut Or Fading = FadeOut Then
 Unload frm
 End If
 End Sub

 Using frmFadeIn UserForm

 You can use the frmFadeIn Slow ControlButton to open the frmFadeIn UserForm and watch it fade in using
the default slow speed, because it executes this code on the UserForm_Initialize () and Activate()
events.

 Private Sub UserForm_Initialize ()
 Transparency Me , 1
 End Sub

 Private Sub UserForm_Activate()
 Me .Repaint
 Fade Me , FadeIn
 End Sub

 Note that it first applies a 100 percent transparency to itself using Transparency Me , 1 on the UserForm_
Initialize () event, and when the Activate() event fires, it uses the Repaint method to appear 100
percent transparent before calling Fade Me , FadeIn to slowly fade in to the user environment!

 Using frmFadeOut UserForm

 The frmFadeOut UserForm can be tested by clicking the frmFadeOut Fast ControlButton , which is waiting to
be clicked to fade out, executing this code:

 Private Sub UserForm_Activate()
 Transparency Me , 0
 End Sub

 Private Sub UserForm_Click()
 Unload Me
 End Sub

 Private Sub UserForm_QueryClose(Cancel As Integer, CloseMode As Integer)
 Fade Me , FadeOut, Fast
 End Sub

 Note that now it needs to add a 0 percent transparency using Transparency Me , 0 on the UserForm_
Activate() event before fading out itself using a call to Fade Me , FadeOut, Fast on the UserForm_
QueryClose() event (the last event fired before the UserForm_Terminate () event), when the UserForm is
unloaded by any means.

CHAPTER 10 ■ USING THE WINDOWS API

743

 Using frmFadeInFadeOut UserForm

 To apply an automated fade-in/fade-out slow effect with a three-second wait between them, use the
 frmFadeInFadeOut ControlButton , which loads frmFadeInFadeOut that executes this codes:

 Private Sub UserForm_Initialize ()
 Transparency Me , 1
 End Sub

 Private Sub UserForm_Activate()
 Me .Repaint
 Fade Me , FadeInFadeOut, Slow, 3
 End Sub

 This time, the UserForm is first made 100 percent transparent by calling Transparency Me , 1 on the
 UserForm_Initialize () event, and when the Activate() event fires, it uses the Repaint method to
repaint itself totally transparent and calls Fade Me , FadeInFadeOut, Slow, 3 to create a fade-in/fade-out
effect with a three-second wait in between. This is the same thing most programs do to show the splash
screen at startup (like Excel does).

 ■ Attention You must make the UserForm 100 percent transparent or 100 percent opaque before applying a
 FadeIn or FadeOut effect, respectively.

 Applying a Skin to a UserForm
 Since the advent of Windows XP, a new class of window appeared in some popular applications, such as
Windows Media Player, Nero Burning Room, and so on. Instead of using a rectangular window, they all use a
specially designed version with different shapes, colors, and positions of the menu bar and window controls
(such as minimize, restore, maximize, and close buttons, if any).

 This type of form shape is usually associated with the word skin , and you can use a bunch of API
procedures to apply a skin to any UserForm .

 These are the steps to apply a UserForm skin:

 1. Produce a bitmap image that will shape the UserForm (reserve space to put
controls, if necessary).

 2. Surround the image with a chroma key background color that must be changed
to transparent (usually white or black).

 3. Use the same chroma key color in the UserForm Background property.

 4. Attribute the bitmap image to the UserForm Picture property, setting
 PictureSizeMode to 3 – fmPictureSizeModeZoom .

 5. Use a code procedure to remove the UserForm title bar and change every pixel
associated with the chroma key color to transparent.

 The first four steps are design specific and do not require much knowledge, except that the bitmap
image produced must be a BMP file (avoid using JPEG files because they add no white pixel artifacts that
can surround the image), be surrounded by the chroma key color as best as possible, and have the smallest
possible size in terms of pixel count so that the process of changing the chroma key pixels to transparent run
as fast as your computer can. To apply the fifth step, you need to use the Windows API functions.

CHAPTER 10 ■ USING THE WINDOWS API

744

 Device Contexts
 Although a VBA UserForm does not offer a line or shape control, Microsoft Access forms offer both of them,
and Visual Basic, since its first version, also offers a circle control. So, it is possible to draw on the UserForm
surface.

 This is possible because Windows offers what is called a device context , which is a programmable
structure that can receive directly drawn color manipulation, like Paint does. The most famous device
contexts are the display screen and the printer, although Windows supports many other devices, such as
plotters, image acquisition devices, and so on.

 Regarding the UserForm , the device context in design mode corresponds to the background area, which
is the rectangular place where the layout controls produce the desired results. But when a UserForm is in
running mode, the device context may be considered as the UserForm image, with everything you put on it.

 To get the device context (DC) of any UserForm and manipulate the pixels, Windows offers the API
 Function GetDC () from User32.dll , which has this syntax:

 Declare Function GetDC Lib "user32" (ByVal Hwnd As Long) As Long

 In this code:

 Hwnd : This is the window handle.

 The GedDC() API function returns a Long Integer , representing the handle for the device context to
the specified window.

 And since the device context uses about 800 bytes of memory, once you finish manipulating it, you must
release it from memory using the API’s Function ReleaseDC () , which has this syntax:

 Declare Function ReleaseDC Lib "user32" (ByVal Hwnd As Long, ByVal hdc As Long) As Long

 In this code:

 Hwnd : This is the window handle.

 hdc : This is the handle to the device context to be released.

 Once a UserForm device context handle had been obtained, you can loop through the pixels using the
Windows API’s Function GetPixel () , which retrieves the RGB Long Integer color value of any pixel, given
its x, y coordinates. It has this syntax:

 Declare Function GetPixel Lib "gdi32" (ByVal hdc As Long, ByVal X As Long, ByVal Y As Long)
As Long

 In this code:

 hdc : This is the device context handle.

 X, Y : This is a zero-based point to check in the logical coordinates of the bitmap
image.

 The GetPixel () API returns a Long Integer indicating the pixel color value. If the pixel is outside the
clipping region of the UserForm , it will return the CLR_INVALID = &HFFFFFFFF constant.

 There is one warning regarding coordinate transformations between the UserForm device context
pixel count: you need to multiply the UserForm internal dimensions by 4/3 (the basic image aspect ratio) to
convert the UserForm InternalWidth and InternalHeight properties to the X, Y pixels count, respectively.

 The next code fragment illustrates how you can iterate through all the pixels of a UserForm device
context, getting one at a time:

CHAPTER 10 ■ USING THE WINDOWS API

745

 Dim lngPixelsX As Long
 Dim lngPixelsY As Long
 Dim lngHwnd As Long
 Dim lngHwndDC As Long
 Dim lngPixelColor As Long
 Const AspectRatio = 4 / 3

 'Get UserForm and it DeviceContext handles
 lngHwnd = Hwnd (UserForm1)
 lngHwndDC = GetDC (lngHwnd)

 lngPixelsX = UserForm1. InsideWidth * AspectRatio
 lngPixelsY = UserForm1. InsideHeight * AspectRatio

 For lngY = 0 To lngPixelsY - 1
 For lngX = 0 To lngPixelsX - 1
 lngPixelColor = GetPixel (lngHwndDC , lngX , lngY)
 ...
 Next
 Next

 That was easy, huh? There is no such complexity to step through each UserForm pixel and get its color.

 Changing the UserForm Shape Using Windows Regions
 Now that you can access the UserForm image and iterate through each of its pixels, you need to know that
you will not change its colors to change the UserForm shape. Instead, you will analyze the UserForm picture,
row by row, finding regions composed of continuous pixels where the colors are different than the one used
as the chroma key (usually the white color).

 These colored regions are then used to compose a new shape (representing the skin image), row by row,
until all UserForm pixels are processed. When this new shape is created, it is applied as the new UserForm
shape, effectively creating the “skin” effect.

 These regions are graphic device interface (GDI) objects that describe an area in a device context
object, having its own handle be manipulated by other Windows API functions. To create these pixel colored
regions, you need to use the Windows API’s Function CreateRectRgn () from gdi32.dll , which has this
syntax:

 Declare Function CreateRectRgn Lib "gdi32" (ByVal Left As Long, ByVal Top As Long, _
 ByVal Right As Long, Bottom As Long) As Long

 In this code:

 Left , Top : These are coordinates that describe the upper-left corner.

 Right , Bottom : These are coordinates that describe the lower-right corner.
The Right and Bottom coordinates must be at least 1 pixel greater than the Left
and Top coordinates, respectively, to create a rectangular region. They are not
considered part of the region.

CHAPTER 10 ■ USING THE WINDOWS API

746

 The CreateRectRgn () API returns a long integer associated to the graphic device interface’s object
handle. The next call to CreateRectRgn () creates an empty region, with no pixel count, and stores its
handle on lngHwndRgn .

 lngHwndRgn = CreateRectRgn (0, 0, 0, 0)

 Since the Right and Bottom coordinates do not belong to the region, the next call creates a 1-pixel
region associated to the pixel position (0,0).

 lngHwndRgn = CreateRectRgn (0, 0, 1, 1)

 Whenever you create a device context region with the GetDC () API, you must be sure to delete it to free
the memory used by using Function DeleteObject () from gdi32.dll , which has this syntax:

 Declare Function DeleteObject Lib "gdi32" (ByVal hObject As Long) As Long

 In this code:

 hObject : This is the handle to the graphic device interface object to be deleted.

 To create a complex region, composed of different colored rectangular regions, you must use the
Windows API’s Function CombinRgn() from gdi32.dll , which has this syntax:

 Declare Function CombineRgn Lib "gdi32" (ByVal hDestRgn As Long, ByVal hSrcRgn1 As Long, _
 ByVal hSrcRgn2 As Long, ByVal nCombineMode As Long) As Long

 In this code:

 hDestRgn : This is the handle to the new combined region with dimensions
defined by combining two other regions (this new region must exist before
 CombineRgn () is called).

 hSrcRgn1 : This is the handle to the first of two regions to be combined.

 hSrcRgn2 : This is the handle to the second of two regions to be combined.

 nCombineMode : This is the mode indicating how the two regions will be
combined.

 RGN_AND : This creates the intersection of the two combined regions.

 RGN_COPY : This creates a copy of the region identified by hSrcRgn1 .

 RGN_DIFF : This combines the parts of hSrcRgn1 that are not part of
 hSrcRgn2 .

 RGN_OR : This creates the union of two combined regions.

 RGN_XOR : This creates the union of two combined regions except for any
overlapping areas.

 The CombineRgn () API function returns one of these constant values:

 NULLREGION : This region is empty.

 SIMPLEREGION : This region is a single rectangle.

 COMPLEXREGION : This region is more than a single rectangle.

 ERROR : No region is created.

CHAPTER 10 ■ USING THE WINDOWS API

747

 The CombineRgn () API can be used to successively combine an empty region with different regions
of a device context, using the RGN_XOR constant on the nCmbineMode argument and producing a complex,
nonrectangular region (an irregular bitmap). Once you have such an irregular region, you can use the
 Function SetWindowRgn () API from user32.dll to apply it as the new UserForm appearance, which has this
syntax:

 Declare Function SetWindowRgn Lib "user32.dll" (ByVal Hwnd As Long, ByVal hRgn As Long,
ByVal bRedraw As Long) _As Long/

 In this code:

 Hwnd : This is the window handle.

 hRgn : This is the region handle. It sets the window region of the window to this
region. If hRgn is NULL , the function sets the window region to NULL .

 bRedraw : This uses True to specify that the system must redraw the window after
setting the window region.

 The SetWindowRgn () API returns a nonzero value if it succeeds; it otherwise returns zero.
 Let’s see a practical example. Figure 10-8 shows a small bitmap composed of 10x10 pixels, representing

a diamond shape composed of a black border and yellow background, entirely surrounded by white color
pixels (the chroma key).

 Figure 10-8. A bitmap of 10x10 pixels, surrounding by white color pixels (chroma key). The pixels count and
grid were used to indicate the pixel position

 Supposing that you want to use the Figure 10-8 bitmap as a UserForm skin using the white color as the
chroma key (the transparent color), you must apply it to the UserForm.Picture property, get the UserForm
device context, and use two nested loops to run through each image row, pixel-by-pixel, until a nonwhite
pixel is found, creating successive one-row rectangular regions of every other nonwhite colored pixel on the
same row.

CHAPTER 10 ■ USING THE WINDOWS API

748

 Since the bitmap row 0 is entirely white, you can create a one-row bitmap region from row 1, pixels 4
and 5, using CreateRectRgn () in this way:

 lngTempRegn = CreateRectRgn (4, 1, 2, 6)

 (left = 4, top = 1) indicates the rectangle’s (left, top) initial pixel coordinates, and Right = 6,
Bottom = 2 indicates the (right, bottom) rectangle coordinates that do not belong to the first rectangular
region.

 You can create another one-row bitmap from row 2, pixels 3 to 6, using CreateRectRgn () in this way:

 lngTempRegn = CreateRectRgn (3, 2, 3, 7)

 (Left = 3, Top = 2) indicates the rectangle’s (left, top) initial pixel, and Right = 7, Bottom = 3
indicates the (right, bottom) rectangle coordinates that do not belong to this second rectangular region.

 You can use the CombineRgn () API to combine these two different one-row rectangular regions in this
way:

 Dim lngSkinRgn as Long
 Dim lngTempRgn as Long

 lngSkinRgn = CreateRectRgn (0, 0, 0, 0) 'Empty rectangular region
 lngTempRgn = CreateRectRgn (4, 1, 2, 6) 'First one-row rectangular region
 lngSkinRgn = CombineRgn (lngSkinRgn, lngSkingRgn, lngTempRgn, RGN_OR)
 DeleteObject (lngTempRgn)

 lngTempRgn = CreateRectRgn (3, 2, 3, 7) "Second one-row rectangular region
 lngSkinRgn = CombineRgn (lngSkinRgn, lngSkingRgn, lngTempRgn, RGN_OR)
 DeleteObject (lngTempRgn)

 This last code fragment begins defining lngSkinRgn as an empty rectangle and then uses the
 CombineRgn () API to combine it with the first rectangular region comprising all of row 1’s colored pixels.
After deleting the lngTempRgn region, it combines lngSkinRgn again with the second rectangular region
comprising all of row 2’s colored pixels.

 By continue to combine all rectangular regions of rows 3 to 8, lngSkinRgn will end up with a handle to
the diamond shape bitmap that has an irregular border, using just its nonwhite pixels, which can be applied
as the new UserForm window shape using the SetWindowRgn () API.

 The Skin () Procedure
 The basUserFormAPI module declares the GetDC () , ReleaseDC () , GetPixel () , CreateRectRgn () ,
 CombineRgn () , SetWindowRgn () , and DeleteObject () aliased APIs.

 Option Explicit

 ...
 'DLL declaration to change UserForm skin
 Private Declare Function fm_ GetDC Lib "user32" Alias " GetDC " (ByVal Hwnd As Long) As Long
 Private Declare Function fm_ ReleaseDC Lib "user32" Alias " ReleaseDC " (ByVal Hwnd As Long,
ByVal hdc As Long) _As Long
 Private Declare Function fm_ GetPixel Lib "gdi32" Alias " GetPixel " (ByVal hdc As Long, ByVal
X As Long, ByVal Y As Long) As Long

CHAPTER 10 ■ USING THE WINDOWS API

749

 Private Declare Function fm_ CreateRectRgn Lib "gdi32" Alias " CreateRectRgn " (ByVal Left As
Long, ByVal Top As Long, ByVal Right As Long, ByVal Bottom As Long) As Long
 Private Declare Function fm_ CombineRgn Lib "gdi32" Alias " CombineRgn " (ByVal hDestRgn As
Long, ByVal hSrcRgn1 _
 As Long, ByVal hSrcRgn2 As Long, ByVal nCombineMode As Long) As Long
 Private Declare Function fm_ SetWindowRgn Lib "user32" Alias " SetWindowRgn " (ByVal Hwnd As
Long, ByVal hRgn As Long, ByVal bRedraw As Long) As Long
 Private Declare Function fm_ DeleteObject Lib "gdi32" Alias " DeleteObject " (ByVal hObject As
Long) As Long

 The code also has the TransparentColor enumerator and the fully commented Public Sub Skin () ,
which uses these APIs to apply a UserForm skin :

 Public Enum TransparentColor
 White = 16777215
 Black = 0
 End Enum
 ...
 Public Sub Skin (frm As Object, Optional TransparentColor As TransparentColor = White)
 'Apply a UserForm Skin using the UserForm Picture image
 'TransparentColor argument indicates the chroma-key color (White or Black)
 'Use this procedure on a UserForm 100% transparent with no Title bar
 Dim lngHwnd As Long
 Dim lngHwndDC As Long
 Dim lngPixelsX As Long
 Dim lngPixelsY As Long
 Dim lngSkinRgn As Long
 Dim lngX As Long
 Dim lngY As Long
 Dim lngPixel As Long
 Dim lngLeft As Long
 Dim lngNewRgn As Long
 Dim bolNewRgn As Boolean
 Const Color_Invalid As Long = &HFFFFFFFF
 Const RGN_OR As Long = 2
 Const AspectRatio = 4 / 3

 'Get UserForm and it DeviceContext handles
 lngHwnd = hwnd(frm)
 lngHwndDC = fm_ GetDC (lngHwnd)

 'Set UserForm BackColor and border
 frm.BackColor = TransparentColor
 frm.BorderStyle = fmBorderStyleNone

 'Get UserForm dimensions in pixels
 lngPixelsY = frm.InsideHeight * AspectRatio
 lngPixelsX = frm.InsideWidth * AspectRatio

CHAPTER 10 ■ USING THE WINDOWS API

750

 'Create a new, empty rectangular gdi region
 lngSkinRgn = fm_ CreateRectRgn (0, 0, 0, 0)

 'Loop through all USerForm pixels rows
 For lngY = 0 To lngPixelsY - 1
 'Loop through all UserForm pixels columns on each row
 For lngX = 0 To lngPixelsX - 1
 lngPixel = fm_ GetPixel (lngHwndDC, lngX, lngY)
 If bolNewRgn Then
 If lngPixel = TransparentColor Then
 'Define the new region
 lngNewRgn = fm_ CreateRectRgn (lngLeft, lngY, lngX + 1, lngY + 1)
 'Add the new region to existing regions
 Call fm_ CombineRgn (lngSkinRgn, lngSkinRgn, lngNewRgn, RGN_OR)
 'Delete the new region
 Call fm_ DeleteObject (lngNewRgn)
 bolNewRgn = False
 End If
 Else
 If lngPixel <> TransparentColor And lngPixel <> Color_Invalid Then
 'Begin to define a new region
 bolNewRgn = True
 lngLeft = lngX
 End If
 End If
 Next lngX
 'Restart a new region for every pixel row
 lngLeft = 0
 bolNewRgn = False
 Next lngY

 'lngSkinRgn has now all no transparent regions. Apply the skin!
 fm_ SetWindowRgn lngHwnd, lngSkinRgn, True
 'Release the new UserForm device context
 fm_ DeleteObject lngSkinRgn
 End Sub

 The Skin () procedure is in fact quite small, but it’s inflated a bit because of its long section
declaration and its many comments. It receives two arguments: frm as Object (the UserForm reference)
and TransparentColor as TransparentColor = White (the chroma key that will be discarded from the
 UserForm picture; the default is white).

 As the first comment states, the code expects to receive a UserForm reference that has no title bar and is
100 percent transparent, so you need to call Sub Appearance () and Sub Transparency () before calling Sub
 Skin () to apply a skin effect to the UserForm .

 After declaring the many variables, it gets a handle to the UserForm and its device context, using
the Function Hwnd () and the fm_ GetDC () aliased API, and effectively takes a picture of the UserForm
appearance (the UserForm device context is independent of its alpha channel; in other words, it doesn’t care
about the UserForm transparency).

 'Get UserForm and it DeviceContext handles
 lngHwnd = hwnd(frm)
 lngHwndDC = fm_ GetDC (lngHwnd)

CHAPTER 10 ■ USING THE WINDOWS API

751

 It then sets the UserForm BackColor = TransparentColor argument to guarantee that it has the same
chroma key color and sets UserForm BorderStyle = fmBorderStyleNone to remove the border.

 'Set UserForm BackColor and border
 frm. BackColor = TransparentColor
 frm. BorderStyle = fmBorderStyleNone

 To determine how many pixel columns and rows the UserForm has, it uses the UserForm InternalWidth
and InternalHeight properties multiplied by the AspectRatio = 4/3 constant (which gives a pretty good
pixel count approximation to most screen resolutions).

 'Get UserForm dimensions in pixels
 lngPixelsX = frm. InsideWidth * AspectRatio
 lngP i xelsY = frm. InsideHeight * AspectRatio

 And before looping through the UserForm device context pixels, it declares an empty rectangular region
using the fm_ CreateRectRgn () aliased API, attributing the region handle to the lngSkinRgn variable.

 'Create a new, empty rectangular gdi region
 lngSkinRgn = fm_ CreateRectRgn (0, 0, 0, 0)

 It then sets two nested For...Next loops. The outer loop runs lngY through all the device context pixels
rows, while the inner one runs lngX through all its pixels columns.

 'Loop through all USerForm pixels rows
 For lngY = 0 To lngPixelsY - 1
 'Loop through all UserForm pixels columns on each row
 For lngX = 0 To lngPixelsX – 1

 For each device context row, it takes each pixel column using the fm_ GetPixel () aliased API and
stores its color value on the lngPixel variable.

 lngPixel = fm_ GetPixel (lngHwndDC, lngX , lngY)

 Then the code verifies whether the code has already begun to define a nonchroma key region (a bitmap
region that has no transparent color), testing the bolNewRgn Boolean variable value. While bolNewRgn
= False , the codes steps to the Else clause and verifies whether the lngPixel color is different from the
selected TransparentColor argument (the chroma key). Note that the code tests it against the Color_
Invalid constant, which may appear if the selected pixel is outside the device context dimensions because
of the approximate pixel count provided by the AspectRatio approximation.

 Whenever lngPixel <> TransparentColor And lngPixel <> Color_Invalid is true, it means that
a colored bitmap pixel was found, such the diamond-shaped first black pixel color at point (4, 1) shown in
Figure 10-9 , and a new region must begin. So, the code sets bolNewRegion = True and stores the X (column)
position of this first pixel.

CHAPTER 10 ■ USING THE WINDOWS API

752

 If bolNewRgn Then
 ...
 Else
 If lngPixel <> TransparentColor And lngPixel <> Color_Invalid Then
 bolNewRgn = True
 lngLeft = lngX
 End If
 End If

 Now bolNewRgn = True , and the loop will find the next pixel of the chroma color on the same row (for
the diamond shape of Figure 10-8 , row 1, this pixel will be at column 6).

 If bolNewRgn Then
 If lngPixel = TransparentColor Then

 That is why it is so important that the bitmap be surrounded by the transparent color. When such a
pixel is found, it is time to use the aliased API’s frm_CreateRctRgn() to create a new region that goes from
 (lngLeft, lngY) to (lngX+1, lngY+1) , apply fm_ CombineRgn () to combine it with the empty lngSkinRgn
region, and use fm_ DeleteObject () delete the new region. This will free its memory resources.

 Figure 10-9. This is the frmSkin UserForm, which uses the Caju.bmp image as the Picture property and sets
BackColor = &H00FFFFFF&, which is the same bitmap background as the chroma key

CHAPTER 10 ■ USING THE WINDOWS API

753

 'Define the new region
 lngNewRgn = fm_ CreateRectRgn (lngLeft , lngY , lngX + 1 , lngY + 1)
 'Add the new region to existing regions
 Call fm_ CombineRgn (lngSkinRgn , lngSkinRgn , lngNewRgn , RGN_OR)
 'Delete the new region
 Call fm_ DeleteObject (lngNewRgn)
 bolNewRgn = False
 End If
 End If

 After the new region was combined with lngSkinRgn , it makes bolNewRgn = False so the code can
chase another colored region on the same or next bitmap rows. Note that whenever the loop reaches the
end of a row (by processing all its lngX pixels columns), it makes lngLeft = 0 and bolNewRgn = False to
guarantee that just one-row rectangular pixel regions will be combined.

 When all row pixels are processed, lngSkinRgn will have an irregular region associated to the picture
whose skin you want to apply to the UserForm , so it calls the fm_ SetWindowRgn () aliased API to apply it as
the new UserForm window and uses the fm_ DeleteObject () aliased API to delete this device context and
free the memory it uses.

 'lngSkinRgn has now all no transparent regions. Apply the skin!
 fm_ SetWindowRgn lngHwnd, lngSkinRgn, True
 'Release the new UserForm device context
 fm_ DeleteObject lngSkinRgn
 End Sub

 The frmSkin UserForm
 The UserForm _ APIs.xlsm macro-enabled workbook has the frmSkin ControlButton , which loads the
 frmSkin UserForm and applies its Picture property bitmap as a skin . If you inspect the UserForm in design
mode, you will note that it uses the Caju.bmp bitmap (also found in the Chapter10.zip file) on the Picture
property and has BackColor = &H00FFFFFF& (the hexadecimal value of the white background) to guarantee
that the bitmap be totally surrounded by white, which is the chroma key (Figure 10-9).

 ■ Attention Caju is a northeast Brazilian exquisite fruit, also famous for its external nut, which is appreciated
worldwide. The Caju.bmp file is 172 KB using 200x293 24-bit color pixels.

 The VBA Properties window returns color values in the hexadecimal color string because this color mode allows
you to define by intuition the RGB red, green, and blue color components of the selected color. From right to left
of the &H00FFFFFF& color associated to the white color, the first two FF characters are associated to the Blue
component (255 in decimal), the most intense blue; the next two FF characters are associated to the Green
component, or the most intense green; and the leftmost two FF characters are associated to the Red component,
or the most intense red. The VBA Function RGB(255, 255, 255) produces white, the most intense visual color. The
leftmost 00 characters are the alpha channel value—the color transparency, where 00 means totally opaque.

 Note that frmSkin also has the small cmdExit CommandButton with property Caption = X to allow it to
be easily closed.

CHAPTER 10 ■ USING THE WINDOWS API

754

 Before applying the frmSkin background image as a skin, it first needs to become 100 percent
transparent and with no title bar, which is done in the UserForm_Initialize () event, calling Sub
 Appearance () and Transparency () , which were already analyzed in this chapter.

 Private Sub UserForm_Initialize ()
 Appearance Me , TitleBar, False, False
 Transparency Me , 1
 End Sub

 Once the UserForm appearance is totally rendered with 100 percent transparency, the skin is applied on
the UserForm_Activate() event.

 Private Sub UserForm_Activate()
 Me . Repaint
 Skin Me
 Transparency Me , 0
 End Sub

 Note that the code first calls the UserForm.Repaint method to force it to repaint and then calls the Skin
 Me procedure, accepting the default TransparentColor = White = 16777215 (the white color in decimal).
To force the UserForm to appear, it calls again Transparency Me , 0 , making it 100 percent opaque.

 The effect is applied quite fast because the Caju.bmp bitmap is a small .bmp file. It could even be smaller
as a JPG file, but if you use this resource, it is probably to show some strange artifacts surrounding the
 UserForm , such as almost white pixels, that are really not 100 percent white.

 Figure 10-10 shows frmSkin floating over Sheet1 of the frmUserForm_APIs.xlsm macro-enabled
workbook. Note that you can drag it to anywhere inside the Excel window using the left mouse button.

 Figure 10-10. This is the frmSkin UserForm after loading the Caju.bmp image as the skin. Click and drag the
UserForm to anywhere in the Excel window to appreciate its selective transparency

CHAPTER 10 ■ USING THE WINDOWS API

755

 You can drag the frmSkin over the Sheet1 worksheet because it stores the UserForm position on the
 msngX and msngY module-level variables in the UserForm_MouseDown() event (which fires when you click
any mouse button), just for the left mouse button (Button = 1).

 Private Sub UserForm_MouseDown(ByVal Button As Integer, ByVal Shift As Integer, ByVal X As
Single, ByVal Y As Single)
 If Button = 1 Then
 msngX = X
 msngY = Y
 End If
 End Sub

 The code repositions frmSkin when you drag the mouse by adding (X–msngX) to the current Letf
property and (Y-sngY) to the current Top property, where X , Y are the new move coordinates.

 Private Sub UserForm_MouseMove(ByVal Button As Integer, ByVal Shift As Integer, ByVal X As
Single, ByVal Y As Single)
 If Button = 1 Then
 Me . Left = Me . Left + (X - msngX)
 Me . Top = Me . Top + (Y - msngY)
 End If
 End Sub

 When you close the frmSkin UserForm by either clicking cmdExit or double-clicking it, it disappears
smoothly from the Sheet1 interface because of a call to Fade Me , FadeOut, Fast on the QueryClose ()
event.

 Private Sub UserForm_QueryClose(Cancel As Integer, CloseMode As Integer)
 Fade Me , FadeOut, Fast
 End Sub

 ■ Attention You can change the frmSkin Picture property to any other bitmap to verify how it behaves as
a skin. Inside the Chapter10.zip file you will also find the Apple.bmp and Donut.bmp bitmaps that can be used
as good skin examples.

 The USDA Food Composer _ frmAbout .xlsm Application
 A good first impression is achieved by using all these UserForm effects on the popular splash screen
that appears when a professional application is started. Such an example can be obtained by opening
the USDA Food Composer _ frmAbout .xlsm macro-enabled workbook (that you can extract from the
 Chapter10.zip file), which shows frmAbout as the splash screen welcome window (note that it
smoothly fades in, remains for three seconds on the screen, and then fades out until it completely
disappears, as shown in Figure 10-11).

CHAPTER 10 ■ USING THE WINDOWS API

756

 Note that even the donut hole is transparent!
 To make it appear, it uses the same technique employed by frmSkin , but to disappear after a

three-second wait, it sets the mTimer object variable on the UserForm_Initialize () event with Interval =
3000 (3000 ms = 3 seconds).

 Dim WithEvents mTimer As Timer
 Dim msngX As Single
 Dim msngY As Single
 Dim mbolCancelUnload As Boolean

 Private Sub UserForm_Initialize ()
 Set mTimer = New Timer
 mTimer.Interval = 3000
 Appearance Me , TitleBar, False, False
 Transparency Me , 1
 End Sub

 On the UserForm_ActivateEvent() , immediately after calling Skin Me , the code verifies whether
 mbolCancelUnload = False (default value) to activate the timer, setting mTimer.Enabled = True . When the
 mTimer_Timer() event fires after a three-second delay, it unloads the UserForm , which will cascade-fire the
 UserForm_QueryClose() event, where a call to Fade Me , FadeOut, Fast makes it smoothly disappear!

 Figure 10-11. When the USDA Food Composer _ frmAbout .xlsm macro-enabled workbook is opened, it shows
 frmAbout , which smoothly fades in and remains for about three seconds on the screen before fading out

CHAPTER 10 ■ USING THE WINDOWS API

757

 The frmAbout UserForm uses the Donut.bmp bitmap file, which has a green round rectangle at its
bottom, where you can lay out some Label controls to give application information. It also has a hidden
 cmdExit Command Button control . Figure 10-12 shows frmAbout in design mode inside VBA IDE.

 Figure 10-12. This is the frmAbout UserForm from the USDA Food Composer _ frmAbout .xlsm macro-enabled
workbook, which uses the Donut.bmp bitmap image in the Picture property. It has some Label controls over
the image’s green round rectangle to give application information to the user when the UserForm appears on
the screen

 After frmAbout is dismissed, you can click the About ControlButton on the My Recipes worksheet to
force it to appear again over the application interface, but this time it does not automatically disappear.
It shows the imgCloseButton Image control to be unloaded and can also be dragged onto the worksheet
screen.

CHAPTER 10 ■ USING THE WINDOWS API

758

 This is done with Sub ShowfrmAbout() , from basControlButtons , which uses this code:

 Public Sub ShowfrmAbout()
 With frmAbout
 .CancelUnload
 .Show
 End With
 End Sub

 This code loads frmAbout by referencing it on a With frmAbout ...End With structure (cascade-firing
the UserForm_Initialize () event) and calling the CancelUnload() method. Then the code shows
 frmAbout with the UserForm.Show method (cascade-firing the UserForm_Activate() event). This is the
code executed by the frmAbout .CancelUnload() method:

 Public Sub CancelUnload()
 Me .imgCloseButton.Visible = True
 mbolCancelUnload = True
 End Sub

 Quite simple, huh? It turns imgCloseButton visible and avoids the mTimer object to be activated by
setting mboCancelUnload = True (the imgCloseButton_Click() event unloads the UserForm).

 Conclusion
 This chapter gave you some guidance about how to use the Windows API’s procedures inside VBA code to
produce effects that are not allowed from the standard Visual Basic language.

 It briefly discussed how to declare a DLL procedure, how and why you should care about aliasing
procedures, why they use so many constant declarations, and how you set bits using the OR , AND , and NOT
operators to produce the desired bit effect.

 You were also introduced to the window Handle concept and how to obtain the UserForm handle to use
the Windows APIs.

 All the code inside this chapter was inspired from many Internet web sites that currently offer code
without explaining what really happens when the code is executed. I hope that after reading the chapter
you feel more comfortable searching for and copying and pasting other VBA DLLs procedures to use in your
applications.

 For a better understanding of Windows DLLs, I frequently base my research on these references:

• Daniel Appleman books such as Visual Basic Programmer’s Guide to the Win32 API ,
 Win32 API Puzzle Book and Tutorial for Visual Basic Programmers , and Developing
ActiveX Components With Visual Basic: A Guide to the Perplexed

• Ken Gets books such as VBA Developer’s Handbook and Microsoft Access 2000
Developer’s Handbook

CHAPTER 10 ■ USING THE WINDOWS API

759

 Chapter Summary
 In this chapter, you learned about the following:

• That Microsoft Windows bases its inner workings on a set of DLL files, each one with
its own set of procedures, comprising what is called the API

• How to declare a DLL procedure and its constant values

• That you can avoid code conflict by giving an alias to your DLL procedure
declarations

• That most DLL procedures have a set of constant values that must also be declared

• That these constant values can appear either in decimal or hexadecimal notation

• The meaning of handle on the Microsoft Windows operating system

• How to get the handle for the Application , UserForm , and Class module instance
objects

• That some API procedures need the address of a callback procedure, which is a VBA
procedure that must be declared with specific arguments that will be called back by
the API

• How to create a Timer object using some Windows APIs and a Class module

• How to change the UserForm window appearance using Windows APIs

• How to create transparency and fade effects on a UserForm

• How to implement a skin effect based on a bitmap image

• How to produce a splash screen to be presented to the user when your Excel
application starts

 In the next chapter, you will learn how to create a personalized Microsoft Excel ribbon using third-party
applications developed using VBA to enhance the professional appeal of your worksheet applications.

761© Flavio Morgado 2016
F. Morgado, Programming Excel with VBA, DOI 10.1007/978-1-4842-2205-8_11

 CHAPTER 11

 Producing a Personal Ribbon
Using RibbonEditor.xlam

 The VBA environment became part of Microsoft Office when version 4 was released in 1993, exposing the
 CommandBar object that offered the traditional VBA object model to manipulate Office’s toolbars (allowing
users to create, delete, edit, and personalize them). This programmable approach remained for 14 years,
until the release of Microsoft Office 2007.

 When Microsoft 2007 appeared, offering the new ribbon concept, at first glance I was uncomfortable,
partly because my 15-inch monitor used a maximum 1024x768 resolution and obscured a significant part
of the screen. It also repositioned the controls, giving me the same frustrating sensation that happens
when I enter my favorite store and realize that everything has changed places. Both experiences cost me an
enormous amount of time to do something that was so fast and easy to accomplish before.

 The ribbon approach allows personalization in any Microsoft Office application, via the creation of new
tabs, groups, and controls. Such changes become permanent in the application interface (like Excel), not
just for your application.

 That is not all: both the CommandBar object and the VBA object model used to interact with the Microsoft
Office toolbars completely disappeared from the scene! The enlightened Microsoft programmers chose to
offer XML programming as the only way to interact with the Ribbon object, renouncing the VBA language,
which developers had used in the past to program in any Microsoft application. This was a clear indication
that Microsoft had a big conflict inside its organization. It now had new Internet programmers that despised
the VBA history and the entire VBA programmer community!

 But Microsoft would be in permanent debt to the entire VBA programmer community if it had not
offered a new Ribbon object model with properties, methods, and events to program Microsoft Office
applications, like it always had before.

 To interact with the Ribbon object to personalize your applications in Microsoft Office 2007 or newer, you
must learn XML, use a set of different technologies (including the Visual Studio interface, which I personally
refuse to do), or base your programming style on external solutions produced by brave people who felt
uncomfortable like myself and envisioned a simpler way to allow a programmable ribbon interaction, like
Ron de Bruin (with his CustomUIEditor solution, which is an XML editor that interacts more easily with
ribbon XML programming) and Andy Pope (who produced the RibbonEditor .xlam solution, which is a VBA
add-in that offers a high-level design interface to the awkward Office ribbon). Both authors have Internet
presences to manage their solutions, and I recommend you to do a Google search to find them.

 This last chapter is a small one, intended to give you some guidance about how you can create a
personal ribbon for your application instead of using the default Excel tools. Since the ribbon cannot
be easily programmed using just VBA objects, I will base the chapter on the RibbonEditor .xlam
VBA application produced by Andy Pope, which you can download from www.andypope.info/vba/
ribboneditor.htm .

http://www.andypope.info/vba/ribboneditor.htm
http://www.andypope.info/vba/ribboneditor.htm

CHAPTER 11 ■ PRODUCING A PERSONAL RIBBON USING RIBBONEDITOR.XLAM

762

 How Personal Ribbon Information Is Stored
 Microsoft Excel uses a folder storage system for its .xls* file formats (.xlsx , .xlsm , and so on), which
you can see by renaming the file extension to .zip and opening the file in any ZIP application like IZarc
(freeware), WinZip, WinRar, and many others.

 To produce a personal ribbon for your application, the XML code to this new Ribbon object must be
stored inside the Microsoft Excel XLSM file using a file named CustomUI.xml for Microsoft Office 2007
or CustomUI14.xml for Microsoft Office 2010–2016 files that use new options like Backstage View. The
Backstage View feature, offered by Microsoft 2010 or later, is the way Office manages its File tab options
instead of the circular Office 2007 button.

 ■ Attention The Microsoft Office application will use the CustomUI.xml file in any Office version since
version 2007if its personal ribbon XML file does not use any Backstage View option. But if your personal ribbon
uses any Backstage View command and you open the application in Excel 2010 or later versions, it will use only
the CustomUI14.xml file stored inside it.

 Both Ron de Bruin’s CustomUIEditor and Andy Pope’s RibbonEditor .xlam add-in allow the creation of the
 CustomUI.xml and CustomUI14.xml files inside your XLSM macro-enabled workbook. To make your Excel
application backward compatible with any Microsoft Excel version since 2007, you must always code the
 CustomUI.xml or CustomUI14.xml file inside your worksheet applications.

 Using RibbonEditor .xlam
 To produce and save the CustomUI.xml or CustomUI14.xml file responsible for showing a new Ribbon object
in your Excel application, I recommend you download the RibbonEditor .xlam application from Andy Pope’s
AJT web site. It’s a simple Microsoft Excel workbook that uses the .xlam extension to define it as an Excel add-
in (the add-in will be downloaded as a .zip file; then you must extract the Excel add-in workbook).

 ■ Attention Since this add-in has VBA code that needs to access the VBA structure, it might be considered as
a virus by your antivirus solution; you may need to disable your antivirus solution to allow the add-in to download.

 Once you have downloaded the add-in to your hard drive, use these steps to allow the RibbonEditor .
xlam add-in to access the VBA environment of your Excel applications:

 1. Select Excel File ➤ Options to show the Excel Options dialog box, and select the
 Trust Center option in the right panel.

 2. Click the Trust Center button to open the Excel Trust Center dialog box.

 3. In the Trust Center dialog box, select Macro Settings in the vertical right panel to
show the Trust Center dialog and select “Trust access to the VBA project object
model” (Figure 11-1).

CHAPTER 11 ■ PRODUCING A PERSONAL RIBBON USING RIBBONEDITOR.XLAM

763

 ■ Attention: Note in Figure 11-1 that since I am an experienced Excel user who is aware of the damage
that any Excel .xlsm or .xlam macro-enabled workbook files can produce, my Excel environment also has the
“Enable all macros (not recommended, potential dangerous code can run)” option selected.

 To install the RibbonEditor .xlam add-in in Excel 2016, you also need to add it to the available
Excel add-ins of your Excel environment, following these steps:

 4. In the Excel Options dialog box, select the Add- ins option in the vertical right
panel.

 5. In the Manage combo box at the bottom of the Excel Options dialog box, select
the Excel Add-ins option and click the Go button.

 6. In the Excel Add-ins dialog box, click the Browse button and select the folder
where you extracted the RibbonEditor .xlam add-in after downloading it.

 7. Select the RibbonX Visual Designer option to install the RibbonEditor .xlam add-
in in your Excel environment (Figure 11-2).

 Figure 11-1. To install the RibbonEditor .xlam add-in that you can download from Andy Pope’s web site, first
check the “Trust access to the VBA project object model” option in the Macro Setting option in the Excel Trust
Center dialog

CHAPTER 11 ■ PRODUCING A PERSONAL RIBBON USING RIBBONEDITOR.XLAM

764

 These steps will install the RibbonX Visual Designer Excel add-in that can open the .xlsm Excel macro-
enabled workbook and store inside its file storage system the CustomUI.xlm or CustomUI14.xml file (used
just by Office 2010 and all previous versions), which provides a graphic interface to manipulate the ribbon.
Figure 11-3 shows how to open the RibbonX Visual Designer add-in application after installing it from Andy
Pope’s web site.

 Figure 11-2. Use the Excel Options dialog box’s Add-ins option to show the Excel Add-ins dialog box. Use
the Browse button to navigate to the folder where you extracted the RibbonEditor .xlam add-in and select the
RibbonX Visual Designer add-in to install it in your Excel environment

CHAPTER 11 ■ PRODUCING A PERSONAL RIBBON USING RIBBONEDITOR.XLAM

765

 ■ Attention Since the CustomUI.xlm file will work in any Microsoft Excel 2007 or later environment, this
chapter will use this option to produce the personalized ribbon described in the next sections.

 Once the RibbonEditor .xlam add-in CustomUI option is selected, it will ask you to select the desired
Excel .xls* file where the CustomUI14.xml file will be created (Figure 11-4 shows the selection of the USDA
Food Composer _ frmAbout .xlsm file).

 Figure 11-3. After installing the RibbonEditor .xlam application, load it using the File ➤ Add-In ➤ Ribbon
Designer ➤ Load RibbonX menu command to manipulate CustomUI.xlm or CustonUI14.xlm (for Excel 2010
or later versions). The RibbonEditor .xlam Designer uses the BackStage view of Microsoft Excel 2016

CHAPTER 11 ■ PRODUCING A PERSONAL RIBBON USING RIBBONEDITOR.XLAM

766

 After the desired Excel file is opened, the RibbonEditor .xlam designer will show the current CustomUI.
xml file with all its options (if any), showing all default ribbon commands (with blue text and light green
icons for its tabs) and the personalized ones (if any, using black text and white tabs). Figure 11-5 shows the
 USDA Food Composer _ frmAbout .xlsm file, which still has no ribbon customization.

 Figure 11-4. Select the desired Excel .xlsm macro-enabled workbook where the personalized ribbon must be
created. This figure selects the USDA Food Composer _ frmAbout .xlsm file

CHAPTER 11 ■ PRODUCING A PERSONAL RIBBON USING RIBBONEDITOR.XLAM

767

 ■ Attention The file where the CustomUI14.xml file will be created must be closed before being opened by
the RibbonEditor .xlam add-in.

 Adding Tabs, Groups, and Buttons Using the RibbonX Add-In
 I will not take too long to explain how to use the RibbonEditor .xlam add-in since the AJP web site is full
of examples. The add-in interface has three different areas: the Toolbox on the left, the ribbon tree in the
center, and the Properties area on the right.

 To add a new ribbon to your application, select the Tab option in the Toolbox, click the Ribbon entry
and then the Tabs entry in the Ribbon tree, and press the right arrow button. A new tab option will be
inserted below the Print Preview default tab (Figures 11-6 and 11-7).

 Figure 11-5. After the RibbonEditor .xlam add-in opens the file, it will show a VBA UserForm with all the
default ribbon commands and the current personal ribbon, if any

CHAPTER 11 ■ PRODUCING A PERSONAL RIBBON USING RIBBONEDITOR.XLAM

768

 Figure 11-7. After changing any item’s Label property, click the item in the RibbonEditor .xlam Ribbon tree to
update its Label property value

 Figure 11-6. Click the Ribbon ➤Tabs option in the Ribbon tree area of the RibbonEditor .xlam interface to
insert a new personalized tab in your worksheet application

CHAPTER 11 ■ PRODUCING A PERSONAL RIBBON USING RIBBONEDITOR.XLAM

769

 To personalize the tab, change its Label property on the Properties area on the right side of
 RibbonEditor .xlam interface. After changing the tab’s Label property, click the new Tab option again in the
 RibbonEditor .xlam Ribbon tree to update its value (Figure 11-8).

 To create a new group, select Tab in the RibbonEditor .xlam add-ins Ribbon tree, double-click the Group
item of the toolbar, and change its Label property accordingly. To add a button to any tab group, select the
desired group on the Ribbon tree and double-click the Button option on the toolbar.

 Figure 11-8 shows the USDA Food Composer tab, with the My Recipes group that has the Close
 Application button.

 To personalize any button , click the desired button in the Ribbon tree and change these properties to
indicate what the button does:

• Label : This is the Button name.

• ShowLabel : Set this to True to make the label appear below the button.

• ShowImage : Set this to True to make the image selected on the ImageMso option be
associated to the button.

• Size : Select Large or Small to set the button image size.

• ImageMso : Click the … button to the right of the property to show the Icon Gallery
dialog, where you can select the desired image. To see large icons, set Size = Large .

• OnAction : This is the VBA Sub procedure name that will be executed (must be on a
standard module).

 Figure 11-8. This is the USDA Food Composer tab, which has a My Recipes group and a Close Application
button

CHAPTER 11 ■ PRODUCING A PERSONAL RIBBON USING RIBBONEDITOR.XLAM

770

 Figure 11-9 shows how the Close Application button was personalized (Label = Close Application ;
 ShowLabel = True ; ShowImage = True ; Size = Large ; Visible = True ; ImageMso = CancelRequest).

 ■ Attention Set Size = True before clicking the ellipses button of the ImageMso property to select the
desired images using large icons. The CancelRequest icon used by the Close Application button can be found
on pages 865–918 of the Icon Gallery dialog.

 The Public Sub CloseApplication() procedure defined in the OnAction property of the Close
 Application button must be declared as stated by the CallBack VBA Subs tab (all procedure declarations
for every Button control inserted on the USDA Food Composer tab will appear on this tab page, as shown in
Figure 11-10).

 Figure 11-9. Use the Property tab to define the Button control properties. Use the ImageMso property ellipses
to show the Icon Gallery dialog to select the desired images. Use the OnAction property to define the VBA
Public Sub procedure name that will be executed when the button is clicked

CHAPTER 11 ■ PRODUCING A PERSONAL RIBBON USING RIBBONEDITOR.XLAM

771

 To associate the USDA Ribbon Control tab to the .xlsm Excel macro-enabled workbook opened by
 RibbonEditor .xlam , click its Save button. This will add a new ribbon tab as the last item of the default Excel
ribbon. Minimize the add-in window, and open the workbook in Excel to see that it now has a USDA Food
Composer tab, with a My Recipes group and the Close Application button (this tab will appear just for this
document, as shown in Figure 11-11).

 Figure 11-10. Once all buttons are created on the desired USDA Food Composer tab, click the Callback VBA
Subs page to verify how the procedure name associated to the Button OnAction property should be declared

CHAPTER 11 ■ PRODUCING A PERSONAL RIBBON USING RIBBONEDITOR.XLAM

772

 Supposing that you had selected and copied the proposed code on the Callback VBA Subs tab, press
Alt+F11 to show the VBA environment, insert a new module in the VBA project, and paste the code. Then
insert the code instruction to make it execute the desired command.

 Figure 11-12 shows the basRibbonEditor.xlam module inserted in the USDA Food Composer _ frmAbout .
xlsm macro-enabled workbook, which now has the Public Sub CloseApplication() procedure (note that
 RibbonEditor .xlam specifies that the procedure declare the control as iRibbonControl object).

 Figure 11-11. To see how USDA Food Composer Tab behaves in the .xslm macro-enabled application, open it
in Excel and click the new tab (that will appear just for this workbook)

CHAPTER 11 ■ PRODUCING A PERSONAL RIBBON USING RIBBONEDITOR.XLAM

773

 Once you have defined the code for the Close Application button, save the workbook and try the button.
The workbook must be closed for this to work!

 To hide the default Excel ribbon using just the USDA Food Composer tab and its groups (or any other
tabs) created by RibbonEditor .xlam , whenever the USDA Food Composer_ frmAbout .xlsm application
is loaded, restore the add-in window, click the Ribbon option of the Ribbon tree, and set its property as
 StartFromScratch = True (Figure 11-13).

 Figure 11-12. To make the Close Application button work, paste the proposed RibbonEditor .xlam code in a
standard VBA module and insert the desired instructions. The Sub CloseApplication() procedure just calls the
ThisWorkbook. Close method to close the Excel application window

CHAPTER 11 ■ PRODUCING A PERSONAL RIBBON USING RIBBONEDITOR.XLAM

774

 Click the RibbonEditor .xlam Save button to update the CustomUI.xml file inside the workbook VBA
project and reopen the application in Excel. Now it will show just the USDA Food Composer ribbon, created
by this add-in (Figure 11-14).

 Figure 11-13. Select the Ribbon object in the RibbonEditor .xlam Ribbon tree, and change the property
StartFromScratch = True to totally hide the Microsoft Excel default ribbon. Now just the USDA Food Composer
tab will appear for the selected workbook application

CHAPTER 11 ■ PRODUCING A PERSONAL RIBBON USING RIBBONEDITOR.XLAM

775

 Removing the CustomUI.xml File from a Workbook Application
 You can easily remove the CustomUI.xml file from a workbook application in two ways:

• In the RibbonEditor .xlam interface, select all the created tabs, click their “X” delete
item button (below the right arrow button), and click Save to update the workbook.

• Rename the .xlsm extension to .zip ; open the project in WinZip, WinRar, Izarc,
or any other .zip file; and manually delete the CustomUI folder from the project.
Remember to rename the file to .xlsm .

 Figure 11-14. This is the USDA Food Composer _ frmAbout .xlsm macro-enabled workbook without the
Excel ribbon, using just the USDA Food Composer tab created by RibbonEditor .xlam. This was possible after
selecting the Ribbon object in the RibbonEditor .xlam Ribbon tree, setting the property StarFromScratch = True,
and saving the CustomUI.xml project inside the workbook application

CHAPTER 11 ■ PRODUCING A PERSONAL RIBBON USING RIBBONEDITOR.XLAM

776

 Producing a Nice Ribbon with RibbonEditor .xlam
 To produce a nice ribbon with RibbonEditor .xlam , you must use different groups, the Separator item to
divide the groups, and different Button control sizes (set the property Size = Small before selecting the
desired icon using the ImageMso property).

 ■ Attention It is easy to insert new ribbon controls by using the RibbonEditor .xlam Clone button. The new
button will be inserted with most properties already set.

 You can see a good example by extracting the USDA Food Composer _RibbonX.xlsm application from
the Chapter11.zip file. It has all the My Recipes worksheet ControlButton s duplicated on the USDA Food
Composer tab produced with RibbonEditor .xlam (Figure 11-15). To show how each of its buttons work,
inspect the basRibbonEditor.xlam module in its VBA project. To see how the USDA Food Composer tab was
produced, open the project inside the RibbonEditor .xlam add-in using the CustomUI editor.

 ■ Attention I think that the duplication of all My Recipes worksheet ControlButton s on the USDA Food
Composer ribbon deserves a better discussion about the interface produced.

 Figure 11-15. This is the USDA Food Composer _RibbonX.xlsm macro-enabled workbook that you can extract
from the Chapter11.zip file. It hides Excel’s default ribbon and duplicates all the My Recipes buttons on the
USDA Food Composer ribbon, produced with the RibbonEditor .xlam add-in

CHAPTER 11 ■ PRODUCING A PERSONAL RIBBON USING RIBBONEDITOR.XLAM

777

 Conclusion
 In this chapter, you learned that despite Microsoft offering a simple object interface to the ribbon, you
can use free, third-party add-ins available on the Internet to produce a personalized ribbon for your Excel
applications.

 The entire chapter used the RibbonX add-in available from Andy Pope’s AJP web site to produce a nice
personalized ribbon for the USDA Food Composer _RibbonX.xlsm macro-enabled workbook, which you can
extract from the Chapter11.zip file.

 Chapter Summary
 In this chapter, you learned about the following:

• That to create personalized ribbon tabs for your Excel application, you must create a
 CustomUI.xml folder inside the Microsoft Excel file, using XML code to produce it

• That the RibbonEditor .xlam application from Andy Pope’s web site is a nice
alternative for producing a personalized ribbon

• That you must select the ribbon’s Tabs option in the RibbonEditor .xlam Ribbon tree
to insert a new personalized tab

• That you can double-click the RibbonEditor .xlam Toolbox to insert new items
inside a personalized tab or group

• How to use the Button control properties to make a button work

• That you must set the control OnAction property to the desired Public Sub
procedure name of the application VBA project

• How to use the CallBack VBA Subs tab to copy the base code needed to run each
 Ribbon control

• How to remove a personalized ribbon from a workbook application by deleting all
the personalized tabs using RibbonEditor .xlam ’sDelete item button

• How to hide the Excel default ribbon by setting the RibbonEditor .xlam Ribbon
object property as StartFromScratch = True

779© Flavio Morgado 2016
F. Morgado, Programming Excel with VBA, DOI 10.1007/978-1-4842-2205-8

Afterword

Writing this book was a great challenge for me: I had to learn Excel VBA programming as I wrote it because
my first intention was to try every Excel feature using the VBA Immediate window. If it works in the VBA
Immediate window, it surely works inside any VBA code procedure.

I had a slight notion about how each book chapter should proceed. Chapter 1 should make a brief
introduction to the VBA integrated development environment (IDE) and the VBA language, with some
simple examples about variable declarations, loop structures, and so on. The next three chapters should
touch on the Excel object model from the top down: first the Application object, then the Workbook object,
then the Worksheet object, and finally the Range object.

But how to make the book new and interesting with an original approach was still a mystery for me.
I’ve always heard people talk about the old adage, “The path is made walking,” and since I had made

“the way” (to Santiago de Compostela, Spain), this truth began to become incomparably clear in my mind.
Using these basic principles, Chapter 2 was approached by covering some important Application

object methods that allow Excel programmers to manipulate computer folders and files (the FileDialog,
GetOpenFileName, and GetSaveAsFileName methods), how to interact with the user and the worksheet (the
InputBox method), and how to create a timer (the OnTime method). I also used a Class module with the
Application object events to create the example that can control when a sheet tab name changes while I
wrote the chapter. And I liked it!

At that time, I still had no idea about how to approach the next chapters. To produce Chapter 3, the
UserForm appeared suddenly by trial-and-error programming as a good approach to learn VBA, because it
offered an excellent way to explore some important Workbook object events (like the Splash Screen dialog
that implements a timer to unload itself). The frmOpenWorkbooks UserForm, which deals with different
Workbook objects using pure VBA code, was especially important because it offered a solid approach to
the ListBox control and many of its properties and methods, as well as allowed me to study interface
synchronization techniques.

When I finished Chapter 3, I was so impressed with the results that I thought I would repeat the same
approach with sheet tabs in Chapter 4 using the frmWorksheets UserForm. Once again, when I finished the
chapter, I concluded, “This is astounding! I did it again!”

I am not bragging, OK? I was so surprised by what I had accomplished in Chapters 2, 3, and 4 that I
decided to repeat the same UserForm approach to provide consistent VBA knowledge to the so-important
Range object in Chapter 5.

This time I had to make a great effort to study and learn the Range object and its many properties
and methods, like the Address and Cells properties; the Areas collection; and the Resize, Protect, and
Unprotect methods. The final result, materialized in the frmRange UserForm, also quite impressed me.

Have you ever felt yourself touched by an improbable inspiration coming from nowhere? At the time I
wrote these words, I was remembering how much I appreciated the work done so far. I sat and prayed for the
undeserved heavenly inspiration that was pushing me forward, and immediately I felt my eyes shallows of
water. Thank you again and forever, my Guardian Angel, for your permanent companion.

http://dx.doi.org/10.1007/978-1-4842-2205-8_1
http://dx.doi.org/10.1007/978-1-4842-2205-8_2
http://dx.doi.org/10.1007/978-1-4842-2205-8_3
http://dx.doi.org/10.1007/978-1-4842-2205-8_3
http://dx.doi.org/10.1007/978-1-4842-2205-8_4
http://dx.doi.org/10.1007/978-1-4842-2205-8_2
http://dx.doi.org/10.1007/978-1-4842-2205-8_3
http://dx.doi.org/10.1007/978-1-4842-2205-8_4
http://dx.doi.org/10.1007/978-1-4842-2205-8_5

 ■ Afterword

780

Although the Range object programming had been touched on a convenient and practical way, it
still had many other methods to be explained, so I dove into Chapter 6 to teach how you can deal with
large worksheet data sets using a VBA code. This chapter’s intention was to teach how to search and
filter large data sets such as the USDA nutrition table worksheet using VBA, and once again I used the
UserForm approach. I used frmRangeFind and frmRangeFilter to teach how to use the Range.Find and
Range.AutoFilter methods. This chapter did not surprise me because I knew in advance what message it
had to convey; I just didn’t know how to approach it.

Then came Chapter 7. This chapter needed to be written because I wanted to teach how to use a
programmable approach to store worksheet application data as database records in a worksheet’s unused
cells. The entire process should be based on a data validation list and range names stored inside constant
values (at this time, the code had only four constants: the record name, the data validation list cell, and
the one-side and many-side record range names). In my mind this was the perfect way to practice the
knowledge built so far in all previous book chapters. The worksheet applications used (the BMI Companion
Chart.xlsm and USDA Food Composer_Database.xlsm macro-enabled workbooks) successfully explained
that the proposed database structure could work to save worksheet data as records.

After the success in implementing a worksheet database record structure based on a set of VBA
procedures, I began to dream about a database class module. The production of Chapter 8 consumed me for
an appreciable amount of time. Would I be able to encapsulate on a single Class module all the code needed
to implement a generic worksheet database system? Would it work as expected?

I started in on the code. Trial and error for weeks…. When the SheetDBEngine class code stabilized, I
realized that it was too complex to be implemented without the aid of a wizard. The original four constants
were now fifteen, and I had to go back and rewrite Chapter 7 using these fifteen database constants so
they could be explained in a single chapter. So, I decided to produce a UserForm wizard as a way to help
implement this generic worksheet database system on any worksheet, and this was the moment when
frmDatabaseProperties was born.

While I wrote about the SheetDBEngine class code, I found many, many bugs in the original database
code provided in Chapter 7. So I went back and fixed them. I did it again and again, until Chapter 8 was
concluded. During this process, I had to manually clean up the worksheet database records, one by one, and
this tedious work showed me that I needed to offer an easy way to delete unwanted database records. This
was the second reason I wrote Chapter 9. The first reason was because a new SRxx.mdb ARS nutritional table
version had been launched, and when I manually updated the hidden USDA worksheet to this new version,
some recipes failed to calculate because some of the food item names had been changed.

There was an urgent need to write about how to use VBA code to silently update a worksheet
application data set, and that is why Chapter 9 begins by working with two different methods to update the
hidden USDA worksheet: using simple VBA code and using a UserForm to verify data discrepancies that may
appear in any new USDA food table version.

Chapter 9 also presented the frmManage UserForm to allow, delete, and save recipes’ nutritional data
and export and import recipe records between two different worksheet applications using automation.
While I wrote it, I found again many other bugs that were still not seen in the SheetDBEngine class module
code. And while I corrected them, I had also to correct the standard database code used in Chapter 7 and
the SheetDBEngine code in Chapter 8, rewriting again both chapters while Chapter 9 was written. And once
again, I did it again and again, as an extreme test of my patience and effort.

The frmManage UserForm was first written to delete records, using a simple interface with a single
ListBox control that worked well for the job. This first interface was quite easily adapted to save recipe
nutritional data in the USDA food table—an operation that I had to manually make for many recipes when
the SRxx.accdb Access file changed from SR27 to SR28.

When it came time to make Export operations between different worksheets or workbooks, it also fit the
job well, but when I tried to make an import operation, the interface failed. That is why frmManage suddenly
shows the Open dialog box when the user selects the “Import recipes” option.

http://dx.doi.org/10.1007/978-1-4842-2205-8_6
http://dx.doi.org/10.1007/978-1-4842-2205-8_7
http://dx.doi.org/10.1007/978-1-4842-2205-8_8
http://dx.doi.org/10.1007/978-1-4842-2205-8_7
http://dx.doi.org/10.1007/978-1-4842-2205-8_7
http://dx.doi.org/10.1007/978-1-4842-2205-8_8
http://dx.doi.org/10.1007/978-1-4842-2205-8_9
http://dx.doi.org/10.1007/978-1-4842-2205-8_9
http://dx.doi.org/10.1007/978-1-4842-2205-8_9
http://dx.doi.org/10.1007/978-1-4842-2205-8_7
http://dx.doi.org/10.1007/978-1-4842-2205-8_8
http://dx.doi.org/10.1007/978-1-4842-2205-8_9

 ■ Afterword

781

Since the interface worked well for three basic operations (delete, save nutritional data, and export)
and I had gone too far to rewrite the entire chapter, I needed to make some adaptations. Looking now for
frmManage, I think that it must be completely rewritten using a different approach. But the code example is
solid and good for a code book.

I also felt that the automation code used to export and import records between workbooks or
worksheets was quite slow, so it was up to me to create the SheetDBEngine class’s CopyRecord and
PasteRecord methods, which led me to rewrite again Chapters 7 and 8 (text and code), as if I was stuck in an
endless loop….

When Chapter 9 was finished, I felt that the book could be considered done. But in my original plans,
I always envisioned writing about Windows API programming with VBA and the indomitable ribbon. So, I
needed to write two other new chapters.

Chapter 10 was challenging to write because of it being an extensive issue that should be written in a
way to give some guidance, using simple and useful programming examples that would make sense to the
Excel programmer. After searching the Internet for the most prevalent API issues, I decided to write about
how to easily change the UserForm appearance.

The chapter begins by teaching you how to declare Windows APIs and call them from VBA code. The
first API code teaches you how to create a Timer object using Class modules and API calls so it can be
reused as many times as needed. The second issue was to define the Microsoft Windows handle concept and
show how to obtain the UserForm handle. It then teaches you how to change some UserForm properties that
cannot be done with just VBA: removing the title bar, making it resizable, and so on. This basic issue touches
on the first principle of combining bits using OR and AND NOT VBA operators to produce the desired final
product.

This leads me to the UserForm Skin code, found on a German web site, that needs to be explained
since a lot of API code just exists to be copied/pasted without ever explaining why it works. Looking now to
Chapter 10, I think that it works very well for my basic proposal.

Chapter 11 was written to show how you can produce a personalized ribbon interface to give the best
appearance to your worksheet applications. Since it is hard to use VBA alone to produce such simple results,
I base the chapter on Andy Pope’s RibbonX VBA add-in, which I think is a good start while Microsoft refuses
to offer a better programmable approach to such tasks.

All this “code talk” has a reason: it is to call your attention to the fact that it is hard to produce good,
solid, concise, and bulletproof code. You need to begin, write, and rewrite it as many times as needed so
it becomes trustable. To produce a simple, useful UserForm, you must spend a good amount of time just
to define the interface, anticipating the user needs and making it intuitive and useful to the task it must
accomplish. Then you code it!

After all the work I have done on this book, the code may still be full of bugs that you, the reader, will
find. Please forgive me when you find them. I have made my best efforts to remove them one by one, but this
is almost impossible.

I also want to testify that the best code quality control ever produced is to write about the code. As I
wrote about the code I produced, I removed many, many errors and unnecessary instructions. The lesson is:
if you want to produce better code, write about it.

I hope you like the book and that it is useful to you as a good first step into the world of VBA worksheet
application programming.

Sincerely yours,
Flavio Morgado
March 28, 2016

http://dx.doi.org/10.1007/978-1-4842-2205-8_7
http://dx.doi.org/10.1007/978-1-4842-2205-8_8
http://dx.doi.org/10.1007/978-1-4842-2205-8_9
http://dx.doi.org/10.1007/978-1-4842-2205-8_10
http://dx.doi.org/10.1007/978-1-4842-2205-8_10
http://dx.doi.org/10.1007/978-1-4842-2205-8_11

783

 A
 Application

 cells , 252
 control Excel interface , 87
 events , 125, 128
 events sequence , 135
 FileDialog method , 88
 GetOpenFileName , 85, 88, 105–109,

147, 613, 779
 GetSaveAsFileName , 85, 88, 105–106, 110, 779
 methods , 85
 objects , 84
 OnTime , 85, 121–125, 147, 158–160, 779
 properties , 84
 syntax to , 86

 B
 basUSDA , 608, 610, 613, 624, 627, 639
 Body Mass Index (BMI) , 433
 BMI chart , 49

 clear data , 470
 creating copies , 478
 discard changes , 465
 parameterization , 438
 record delete , 467

 BMI Companion Chart , 428
 Bubble Sort algorithm , 371, 374

 C
 Class

 Handle , 714
 Timer , 714

 clsDatabase interface , 504, 506
 Collections

 add items , 294

 Application , 82, 86, 125, 130, 150, 191–194,
197–198, 200–201, 206–207, 209–214, 216,
217, 220, 222–224, 227, 229, 233, 235, 237,
259, 262, 269, 279, 294, 302, 304–306, 313,
315–316, 486–488, 535, 608, 611–613,
617–618, 620, 625, 632, 635, 637–638,
640–641, 645–647, 652–653, 671, 673–674,
677, 686, 688, 692, 706–708

 clear , 296
 get items , 295
 Names , 150, 186, 239, 258–263, 267–271, 278,

281–282, 284–285, 287–288, 290–292, 294,
310, 312–313, 318, 322, 325, 327–328,
348–349, 453, 457, 473, 476, 502, 528–530,
551–552, 580–583, 611, 618, 640

 referencing , 296
 removing items , 295
 sheets , 82, 150, 192, 197, 200, 204, 207, 209–211,

213–214, 216–220, 222, 341, 348–349, 393,
395–396, 413, 420, 504, 624–625

 variables , 294
 Workbooks , 82

 Common measures , 416, 418–421, 424, 490, 604, 606
 Controls

 ListBox , 44, 165–166, 168–177, 180–183,
198–209, 211, 213, 215, 217, 222, 226, 227,
232, 233, 235, 237, 247, 254, 258, 259,
269–272, 274, 279, 281, 285, 288, 292–294,
296, 298–300, 305, 306, 308–310, 319,
322–326, 330, 347, 364, 367, 369–383, 385,
388, 390, 391, 393, 394, 396–398, 401, 409,
410, 412, 413, 415, 416, 418–421, 423, 425,
492, 534, 587, 624, 629, 630, 636, 639, 647,
648, 650, 654–658, 660, 662, 664, 671, 674,
702, 704, 779, 780

 CurrentRecord , 433–436, 439–440, 446, 484, 523,
535, 665–666, 679–682, 697

 CustomUI14.xml , 762, 764–765, 767

 Index

© Flavio Morgado 2016
F. Morgado, Programming Excel with VBA, DOI 10.1007/978-1-4842-2205-8

■ INDEX

784

 D
 Database

 changing constant values , 483
 class creation , 495
 Class_Initialize , 503
 constants , 439, 440
 data validation list , 359–360, 363, 433–436,

439–442, 464–465, 467, 469–470, 477,
480–481, 484, 492–493, 512, 517,
521–522, 524, 540, 545–548, 552,
554–557, 559–560, 574, 582–584,
586–587, 591, 621, 726–727, 780

 DeleteRecord , 467–469, 471–472, 476–477,
488, 505–506, 508, 519, 521–522, 535,
594, 661, 704

 Function Save , 443, 446–448, 452, 456, 464,
467, 484, 505, 515–517, 519, 594

 Function SaveData() , 446, 455
 GetRecordName , 446–452, 519
 Load , 227, 229, 458–459, 461, 463, 467, 469–470,

495, 508, 512–513, 522, 524, 551, 658, 671,
685, 692, 726, 728–729, 765

 LoadSaveData , 446, 453, 457, 459,
463–464, 471, 494, 512–513

 many side records , 428, 430, 461
 mcondbSavedRecords , 439–440, 448–457,

459–460, 463–464, 472–476, 483–484,
493–494, 498

 mstrLastRecord , 438–439, 444, 447, 464–469,
471, 483, 520–521

 NewEntryRow , 454
 one-side record , 427–428, 430–432,

435–436, 438, 440, 454–455, 459–462,
470, 472, 474, 481, 483, 485, 525–526,
530, 532, 545–546, 552, 560, 562–565,
567, 569, 574, 577–578

 process many-side records , 461
 process one-side record , 459
 range name properties , 501
 record insertion , 456
 record saving , 444
 records relationship , 427–429, 436, 493,

495–496, 506, 545–546
 variables declaration , 498
 worksheet Button controls , 477
 Worksheet_SelectionChange , 444

 Database properties , 577
 Database structure, creating , 578
 Database wizard

 bagigating through , 542
 implementing , 540

 E
 Error trap, setting , 179
 Events

 avoid cascade , 204
 declaring , 58
 raising , 58
 Timer , 716
 UserForm_Initialize , 61, 122, 159, 199–200,

204–205, 233, 245–246, 257, 269–270, 279,
285, 290, 364, 373, 389–390, 406, 542, 548,
550, 560, 598, 624, 644–645, 647, 651, 725,
729, 731, 735–736, 742–743, 755, 757–759

 Workbook_BeforeClose , 54–56, 152, 188,
195, 442–443, 504–505, 535, 540,
593–594, 597, 653

 Workbook_Open , 54, 73, 129, 131, 146, 155, 159,
198, 245, 269, 504–505

 Worksheet_SelectionChange , 54, 57, 188–189,
257, 439, 444, 452, 496–498, 505, 535,
593–594, 597

 Excel
 AddFormControl , 584–588
 Add-ins instalation , 763
 Button control , 64–66, 79, 104, 107–108, 116,

362–363, 467, 471, 477, 481, 492, 534–538,
586–587, 595, 758, 770, 776–777

 CVErr , 274–276
 data analysis ToolPak , 59
 error constants , 273
 fi le dialogs , 88
 Intersect , 85, 490–491, 494
 ISNA() , 622
 last row/column , 354
 last used cell , 354
 object model , 81
 screen updating , 183
 search in formulas , 312
 status bar , 610, 615–617, 619–620
 trust center , 762–763
 Validation.Add , 580, 582–583

 F, G, H, I, J, K
 frmDBProperties , 545–548, 550, 552–553, 555, 557,

560, 565, 578, 583, 589–590, 593, 597–601
 creating database button controls , 586
 database navigation buttons , 588
 exhibiting database properties , 597
 pasting the database , 592
 removing database properties , 599
 steppint through , 552

■ INDEX

785

 Function
 animate , 724–726, 728–729
 appearance , 733–737, 751, 755, 758
 CalculateManySideRecords ,

549, 569, 598–599
 CalculationEventsScreenUpdating , 87–88
 CloseExternalWorkbook , 690
 CreateRangeNames , 348, 352–353,

364–365, 390
 Defi neButtons , 167–170, 175–178, 181–183,

198, 201, 203–204, 206–209, 213–214
 DeleteRecipe , 488
 EnableControls , 270, 297–298, 300, 303, 306,

308, 328, 659–660, 671, 684–685, 692,
694, 703–704

 EvaluateRange , 270, 273–277, 279
 FixNameChange , 284, 312–313, 318
 GetExternalWorkbook , 685
 GetNameValue , 270–271, 273–274, 276–279
 GetNewName , 276
 HideRangeNames , 262
 InputBoxArray , 117
 IsWorkbookOpen , 632–634, 686–687
 LoadcboMyRecipes , 644–645, 649, 651–652,

654, 659, 670–672, 699–702
 LoadCurrentRecipes , 647, 649
 LoadNames , 549–552, 560, 566
 MyRecipesCount , 644–645,

670–672, 693, 701
 NameChange , 143–145
 OpenManyDialogWithFilter , 101–104
 OpenManyFilesWithFilter , 108
 ProcessRecipes , 659–660, 662, 668,

677–678, 682–685, 694–695, 697,
701, 703–704, 710

 ResolveNames , 630, 636–638
 SaveInMyRecipes , 484–486, 488, 535, 661,

664–666, 668
 SelectUSDAFile , 611–615
 SetDatabase , 579
 ShowDialogBox , 91–96, 100–102, 104–105,

167, 169, 183–184, 632–633, 686–687
 ShowDialogProcedure , 96
 ShowInputBox , 114–118
 ShowNameProperties ,

297–299, 302, 306, 325
 skin , 749–751, 755, 758, 781
 transparency , 737
 UpdateStatusBar , 611–612, 615–617,

619–620, 627
 UpdateUSDA , 609–610, 612,

614–615, 624, 639
 USDAVersion , 608, 624–626, 630, 635–636
 ValidatePage , 544, 552–555, 568, 574

 L
 ListBox

 AddItem , 172–175, 199–202, 204–205, 249, 254,
269, 271–272, 279, 364–365, 367, 389–390,
393, 395, 398, 406–407, 417, 420–421, 637,
639, 644–645, 647–648, 651, 673–674, 687,
689

 change column width , 378
 clear , 15, 94, 96, 172–174, 200–201, 242, 249, 254,

271, 296, 366–367, 392–393, 395–396,
412–413, 415, 419–420, 468–474, 519–520,
637–638, 645–648, 661–662, 673–674, 686,
688, 698–699, 734

 column , 171, 173–176, 178, 180, 199–200,
202–203, 234, 239, 240, 248–249, 251–252,
254, 271–273, 278, 287–288, 297, 299, 302,
304, 310, 322, 325, 327–328, 335, 340, 349,
351–352, 354, 363–364, 367, 369, 391, 395,
398, 406–407, 417, 420–423, 425, 453, 458,
462, 464, 473–474, 502, 531–532, 576, 584,
586, 637–639, 655, 661, 664

 methods , 172
 properties , 172
 sorting , 370

 M
 Macro code , 1
 mconSavedRecords , 431, 435–436, 440
 Microsoft Excel

 developers tab , 1–2, 4, 28, 45, 78, 81–82, 84–85,
101–102, 109, 121, 125–127, 136, 140, 147,
149–151, 164–165, 185, 192, 239–240,
242–244, 268, 311, 314, 318, 333, 335, 427,
490–491, 531, 559, 590, 603, 605–606, 618,
624, 688, 762, 765, 774, 777

 My_Recipes
 inserting copies , 651
 range name , 658

 N
 Name

 add a new , 259, 279
 comment property , 326
 delete , 327
 editing , 310
 RefersTo , 259–260, 262, 271, 273–276, 278–279,

285, 304, 307, 310–314, 318, 320–323, 325,
327, 329–332, 607, 611, 618, 640

 resizing , 320
 validating , 282
 Visible property , 262, 325

■ INDEX

786

 O
 Objects

 Application , 7, 28, 39, 57, 69, 82–93, 95, 100–102,
104–135, 137–147, 149–151, 154–156,
158–160, 164, 167–169, 182–189, 191, 192,
194, 210–212, 216–224, 234, 239, 240,
243–246, 248, 249, 252, 253, 255, 257, 258,
269–271, 274, 276, 285, 288–291, 310, 329,
336, 349, 358, 359, 364, 365, 369, 372, 373,
414, 418, 419, 422, 426, 441, 442, 452, 479,
490, 491, 493, 494, 508–510, 518, 539, 540,
549, 550, 555–558, 561, 580, 581, 584, 586,
594, 596, 608, 611–614, 616–618, 620, 624,
632, 635, 637, 638, 640–642, 661, 662, 669,
671, 672, 678, 680, 682–691, 709–711, 713,
715, 717–718, 720, 724, 725, 728, 729, 739,
769–771, 773, 779

 CApplicationEvents , 133–140, 154–156
 Class modules , 57
 CSheetNameChange , 142–143, 145–147,

194–197
 Range , 239
 Th isWorbook , 55
 UserForms , 59
 Workbook , 55–56, 82, 84, 125–126, 130, 149–152,

164, 168, 185, 188, 192, 198, 439, 442, 625,
673, 697, 779

 Worksheet , 57, 125, 126, 141, 185–194, 196–198,
201, 202, 207–210, 213, 216, 219, 220,
222–230, 235, 237, 241, 259, 262, 270, 272,
315–317, 337, 385, 405, 422, 439, 446, 477,
493, 513, 534, 662, 684, 704, 779

 P, Q
 Procedures

 age in years , 9
 use on Excel , 14

 R
 Range

 Address , 86, 117, 129–130, 138–140, 189, 240,
244, 247–250, 252–254, 279–280, 313, 317,
323, 335–337, 339, 349, 352, 356–359,
361–363, 367–368, 382–383, 388, 405–407,
441, 513, 558, 562, 565, 574, 576, 580, 582,
680, 682, 727–728, 779

 Areas, 247, 249, 254, 388, 395, 397, 414, 420–421,
458, 460, 462–463 558 , 563–564, 569–571,
579, 680, 682, 779

 AutoFilter , 381–383, 385, 387–390, 396–398, 399,
414, 420–421, 780

 AutoFilterMode , 186, 385, 393,
395–396, 413, 420–421

 cells , 337
 columns used , 251
 Copy , 403, 405, 411, 463, 474, 487, 530, 617, 708
 CurrentRegion , 336–340, 379, 382, 617
 defi ne with VBA , 333
 End property , 335–336, 354, 358
 Find , 314–315, 317–318, 360–363, 370, 381, 385,

388, 392, 399, 450–452, 459, 474, 486–487,
512, 528, 639, 666–667, 681, 706, 780

 fi nd information , 360
 FindNext , 242, 313, 315–317, 361–363, 367–368
 methods , 242
 moving through , 336
 Off set , 239, 336, 338–340, 348, 350, 367, 383,

406, 426, 460, 462, 491, 524–526, 639
 PasteSpecial , 403, 405, 408, 411–412, 463, 474,

487, 530, 617, 708
 properties , 240, 243
 properties and methods , 239
 referencing , 257
 Resize , 241, 254–257, 263, 265–267, 320–323,

325, 340–341, 348–349, 382–383, 385, 388,
395–396, 403, 405–406, 408–409, 411–412,
414, 453, 456, 458, 462, 472–474, 476,
486–487, 527, 529, 611, 617–618, 640,
665–668, 706–709, 779

 rows used , 251
 sort , 341–343, 348, 352, 400, 405, 409, 411–412,

464, 487, 531, 667, 708
 sort by calculated column , 402
 SpecialCells , 243, 386–388, 395–397, 414,

420–421
 Area , 462
 USDA, creating , 339

 Recipe
 deleting , 701
 exporting , 670
 fi nding food items , 490
 importing and exporting , 697, 669
 nutritional information , 486
 record counting , 493
 record delete , 488
 record save , 484
 records search , 492
 selecting , 655

 Reddick
 name convention , 42

 Ribbon
 button icon , 769
 CustomUI.xml , 762, 766, 774–775, 777
 RibbonEditor , 761–769, 771–777
 Tabs, Groups and Buttons , 767

■ INDEX

787

 S, T
 SheetDBEngine

 AbsolutePosition , 508–509, 511–513, 538, 595
 BOF property , 508–509, 511–513
 using the class , 532, 601
 CopyRecord , 508, 522, 525–526, 530–531, 595,

703, 705–706, 709–710, 781
 creating database button controls , 586
 database navigation buttons , 588
 data navigation controls , 536
 dirty property , 439, 441–443, 447, 464–469, 471,

483, 508–509, 511–513, 515, 517, 520–521
 Echo , 512, 516–520, 527–532, 540
 EOF property , 508–509, 511–513
 events implementation , 514
 interface members , 507, 508
 manage data , 643
 methods , 522
 PasteRecord , 508, 522, 525–526,

528–531, 595, 703, 705–710, 781
 properties , 509
 RaiseEvent AfterDelete , 520–521
 RaiseEvent AfterUpdate , 516, 518
 RaiseEvent BeforeDelete , 519–520
 RaiseEvent BeforeInsert , 515, 517
 RaiseEvent BeforeSaveWorkbook ,

516, 518, 520–521
 RaiseEvent BeforeUpdate , 515, 517
 RaiseEvent Current , 516, 518, 520–522
 raise events , 515
 Read only properties , 511
 Read/Write properties , 510
 RecordCount property , 508–509, 511, 514,

538–539, 595
 RecordPosition enumerator , 522
 ShowRecord , 508, 522–523, 533–534, 537, 595
 sort , 531

 srxx_NutrientsPerFirstCommonMeasure.xls , 609

 U
 USDACommonMeasures worksheet

 updating , 619
 USDA Food Composer , 346, 479–482, 488, 506, 532,

534, 539, 603, 607–608, 621, 623–624, 638,
642–644, 648, 651, 654, 658, 670, 693, 695,
700, 756–757, 765–766, 769–777, 780

 USDA Food Item Creator.accdb , 604
 USDA Food List Creator , 604
 USDA worksheet , 603

 updating , 606, 617
 UserForm

 enable/disable controls , 306
 frmAbout , 756–759, 765–766, 772–773, 775

 frmAppearance , 733, 735, 739
 frmEditName , 267, 269, 279–282, 285, 288, 290,

292, 300, 307, 310–313, 318–319, 329
 frmFadeIn , 742
 frmFadeInFadeOut , 743
 frmManageRecipes , 642–644, 647–649, 651,

655–656, 658–660, 662, 664, 668–670, 673,
675, 677, 683–685, 690, 693–695, 697–702,
704–705, 709

 frmManageRecipesCopyPaste , 709
 frmMultiPage , 540–542
 frmNames , 267–270, 279–282, 285–290,

292–293, 296, 299–301, 303–304, 306–309,
312, 319, 321–323, 325–327, 329, 331–332,
436–438, 486, 502, 503, 581

 frmOpenWorkbooks , 165–166, 779
 frmPassword , 229
 frmRange , 245–248, 255, 257, 779
 frmRangeFilter , 387–389, 392–394, 397,

399, 412, 419, 780
 frmRangeFind , 363–366, 368–371, 378,

390, 399, 412, 780
 frmRangeSort , 409, 412, 418–419
 frmSearchFoodItems , 418, 421–424, 484,

490–491, 534
 frmSearchRecipes , 492
 frmSkin , 752, 754–757
 frmSortBySum , 404, 406–407, 411
 frmUSDA , 623–624, 626–631, 635, 639, 643
 Progress Bar , 626, 655, 661–663, 704
 Repaint , 162
 returning selected item , 369
 show/hide section , 300
 Skin , 744
 splashscreen , 157
 synchronize interface , 181
 timer , 158
 UserForm_Terminate , 122, 125,

159–160, 184, 285, 288, 319, 743

 V
 VBA

 algorithm , 32
 array declares , 26
 break mode , 16–18, 53, 332
 breakpoint , 15–16
 button control , 64
 by Reference or by Value , 42
 Class module , 6–7, 43, 57–59, 64, 132–134,

140–143, 145–147, 155–156, 194–195,
237, 495–497, 712–714, 716, 780

 code module variables , 29
 code procedure , 7
 code protection , 78

■ INDEX

788

 comments , 36
 debug, compile VBA project , 21, 500
 DoEvents , 163
 Do…Loop , 53
 enumerators , 40
 errors , 75
 error trap , 76
 event procedures , 54
 execute step by step , 15
 For Each…Next , 52
 For…Next , 52
 FreeFile , 634
 If.. End If , 49
 Immediate window , 12, 40, 70, 89, 260
 implicit vs. explicit declaration , 19
 InputBox , 67, 72, 75, 79, 110, 180
 instructions , 49
 logical decision instructions , 49
 Me keyword , 62, 64, 160, 161, 164, 166, 168,

173–176, 178, 180–184, 191, 193, 194, 196,
199–201, 204–209, 213, 214, 216–218, 220,
222, 223, 227, 230–231, 233–235, 237,
248–250, 254, 255, 269–272, 279, 280, 282,
284–289, 291–293, 297–302, 304, 308–314,
316–319, 322, 323, 325, 327–331, 364–367,
369, 372–374, 379, 380, 389, 393–396, 398,
406–409, 411–425, 439, 441, 442, 447,
465–469, 471, 490, 491, 516, 518, 520–521,
542, 544, 545, 549–555, 557, 559–586, 588,
598–601, 624, 625, 627, 628, 630, 631,
636–639, 642–648, 650, 651, 655–657,
659–674, 676–681, 684–689, 692–695,
697–699, 701–705, 709, 710, 717–719, 721,
725, 726, 735, 736, 739, 742, 743, 755, 756,
758, 759

 module interface , 40
 modules , 3
 module types , 6
 MsgBox , 67–77, 79, 92, 102–104, 106–110, 115,

117–120, 129, 130, 134–141, 146, 153, 154,
166, 179, 189, 196, 222, 223, 230–231, 234,
248, 251, 284, 326–328, 363, 364, 366, 367,
390, 395, 398, 408, 409, 412, 413, 422,
424–426, 443, 446, 447, 449, 451, 456,
464–466, 468, 469, 472, 490, 491, 515, 516,
519, 522, 527, 529, 554, 555, 576, 585, 588,
589, 600, 601, 609, 610, 612–615, 620, 632,
633, 635, 637, 638, 642, 680–682, 687, 691,
695, 697, 700, 703, 704

 naming convention , 42

 On Error Resume Next , 75–76, 114–115,
117–118, 122, 125, 160, 273–274, 279, 281,
284, 302, 304, 322, 539, 548, 550–551,
557–559, 561–562, 576–577, 596, 631, 634,
652–653, 687, 689

 Option Base , 103
 option explicit , 20
 Private variables , 30
 Procedure declaration , 8
 Procedures type , 7
 Project Explorer tree , 4–7, 54, 57, 126, 157, 190,

202, 237, 437, 540, 592, 624
 Properties windows , 6, 199, 202
 Property Get , 46
 Property Procedures , 7, 46, 48
 Property Let , 46
 Public declaration , 38
 require variable declaration , 20
 Select case , 50
 Statements , 48
 Static declare , 8, 9, 27–30, 44, 79, 300–301,

372–374, 448–449, 544, 553, 736
 UserForms , 59
 variable declaration , 18
 variable scope and life time , 27
 variable types , 22
 While…End , 53
 WithEvents , 58, 126–127, 129, 131–132, 134, 140,

142, 145, 195, 245–246, 438–439, 442, 483,
513, 534–535, 593, 718–719, 758

 VBA Environment , 2
 VBA Function

 close , 93, 100, 102, 107, 109, 115, 124–125, 151,
160, 163, 165, 167–168, 170, 172, 175–178,
181–182, 211, 505, 549, 579, 598–599,
631–635, 658, 660–662, 669, 684, 690, 697,
699, 732, 735–737, 769–771, 773

 Dir , 612, 619, 641
 InStr , 94, 96–99, 271–272, 289, 291, 302, 305,

310–314, 329, 389, 392–393, 611–614, 618,
620, 640–641

 InStrRev , 106–107, 178, 180, 562, 565, 612,
619–620, 641

 IsArray , 101–103, 109, 117–118, 167, 183,
273–274, 276, 422, 490–491

 Left , 106–107, 110, 178, 180, 213, 252–253, 289,
292, 302, 305, 329, 364, 372–374, 379–380,
413, 415, 502, 562, 565, 568, 584–588, 608,
612–613, 619–620, 624–625, 632, 635, 641,
645–646, 652–653, 676–677, 686–689, 711,
724–725, 746, 748–749, 756

VBA (cont.)

■ INDEX

789

 Mid , 94, 96–99, 106, 108, 178, 180, 271–272,
282–283, 289, 291, 302, 304, 310–313,
329, 389, 392, 557, 559–560, 612–614,
619–620, 641, 711

 ObjPtr , 714, 717–718
 Open , 54, 55, 71–74, 85, 88–93, 95, 100–102, 104,

105, 107–109, 129, 131, 133, 141, 146,
152–159, 161–163, 165–169, 183, 184, 193,
196–198, 245, 268, 269, 388, 504, 505, 601,
606, 607, 609–614, 617, 620, 632–635, 641,
683, 686–688, 693, 694, 697, 699, 700, 781

 Replace , 243, 283, 313–318, 448–450, 499–500
 Right , 91, 105, 108, 213, 335, 380, 382, 401, 434,

477–478, 537–538, 596, 608, 625–626, 746,
748–749

 StrComp , 230–231
 Timer , 158, 161, 706
 UBound , 101–103, 109, 117–118, 371, 375–376

 VBA IDE , 2
 VBA Instruction

 DoEvents , 163

 W, X, Y, Z
 Windows API

 animate function , 724
 AnimateWindow , 722–725, 740
 Animation enumerator , 723
 Class Handle , 714
 CombineRgn , 747–750, 753
 constants , 713
 CreateRectRgn , 746, 748–750, 752–753
 Declare , 141, 504, 712–714, 716, 720, 722–723,

730, 733–734, 737, 744–749
 DeleteObject , 746, 749–751, 753–754
 device contexts , 744
 DrawMenuBar , 730–732, 734
 fade , 740, 742–743, 756, 758
 FindWindowA , 720, 723
 FormStyle enumerator , 734
 GetDC , 744–746, 749–751
 GetPixel , 745, 749–750, 753
 GetWindowLongA , 730, 733
 Hwnd , 721
 Hwnd() function , 661, 684, 690–691,

713, 715, 718, 720–725, 730–735,
737–739, 744–745, 748–749, 751

 KillTimer , 714–718
 ReleaseDC , 745, 749
 RemoveTitleBar , 731–732
 SetLayeredWindowAttributes , 734, 737–738

 SetTimer , 712–718, 720
 SetWindowLongA , 730, 733
 SetWindowRgn , 748–749, 751, 754
 Timer class , 714
 TimerProc , 717–718
 transparency , 738–743, 751, 755, 758
 UserForm handle , 720
 UserForm title bar , 730
 Userform transparency , 737
 UserForm window , 729
 Windows handles , 713
 Windows regions , 746

 Workbook
 events , 43, 54–57, 71–74, 82, 84, 125, 126,

128–140, 143, 145, 146, 149–159, 161–166,
168–170, 172–178, 180–188, 191–193,
196–198, 239, 245, 259, 268–272, 278, 279,
284, 285, 288, 289, 291, 310–312, 318, 329,
438, 439, 442, 443, 483, 495, 502, 504, 505,
607, 610, 618, 625, 631–633, 640, 644–647,
650, 651, 659, 660, 662, 668, 670–674, 676,
678, 684, 685, 687, 697, 701, 703, 704, 710,
779

 events sequence , 154
 Index , 164
 methods , 151
 Open event , 156
 set reference , 164

 Worksheet
 adding with VBA , 210
 change visible property , 233
 CodeName , 150, 186, 189–191, 193, 194, 196,

200–202, 222–224, 236–237, 438, 480, 504,
585, 588, 645–646, 651–653, 686, 688

 copy sheet tab , 219
 database storage system , 427
 Delete method , 222
 delete sheet tab , 222
 events , 188
 event sequence , 188
 methods , 187
 move method , 213
 move sheet tab , 213
 properties , 186
 protect method , 225
 protect, unprotect , 225
 referencing , 191
 sort sheet tabs , 217
 unprotect method , 226
 very Hidden , 203
 visible state , 202

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Understanding Visual Basic for Applications (VBA)
	What Is Macro Code?
	The VBA Environment
	Modules: The VBA Documents
	Standard and Class Modules
	Class Modules

	The VBA Language
	Procedures: The VBA Code
	Using Function and Sub Procedures
	Calculating Age in Years
	Test Procedure Codes Using VBA Immediate Window
	Using Your Function Procedure Inside Excel
	Executing Code Procedures Step-by-Step

	Variable Declaration
	Implicit vs. Explicit Variable Declaration
	Using Option Explicit
	Variable Types
	Array Declares

	Variable Scope and Lifetime
	Using the Static Statement to Hold Any Variable Value
	Using Code Module Variables
	Using Private Code Module Variables

	Create a Flow Chart for the Algorithm of Complex Procedures
	Comment Your Code!
	Using Public Code Module Variables
	Public Procedures and Variables Constitute the Module Interface
	Using Enumerators
	Passing Arguments by Reference or by Value

	Using a Naming Convention
	Using Property Procedures
	Property Procedures Allow Greater Control of Private Variables

	VBA Statements, Functions, and Instructions
	Using VBA Instructions
	VBA Logical Decision Instructions
	Making Decisions with If…End If Instructions
	Making Decisions with the Select Case…End Select Instruction

	VBA Looping Statements
	The For…Next Statement
	The For Each…Next Statement
	The While…End and Do…Loop Statements

	Using Event Procedures
	Using Class Modules
	Declaring and Raising Events on Object Code Modules

	Using VBA UserForms
	The VBA Me Keyword

	Evoking a VBA Procedure from an Excel Worksheet
	Two Special VBA Functions: MsgBox and InputBox
	Using MsgBox()
	Using InputBox

	Dealing with VBA Errors
	The On Error Resume Next Instruction
	Setting an Error Trap

	Protecting Your VBA Code
	Conclusion
	Summary

	Chapter 2: Programming the Microsoft Excel Application Object
	The Microsoft Excel Object Model
	The Application Object
	Using Application Properties to Control the Way the Excel Interface Behaves
	Using Application Methods to Show Excel File Dialogs
	Using the FileDialog Method
	Open One Single File
	Open Many Files

	Using the GetOpenFileName and GetSaveAsFileName Methods
	Open One Single File
	Open Many Files

	Using Application InputBox Method
	Using Application OnTime Method

	Using Application Events to React to User Actions
	Creating an Excel.Application Object Reference
	Firing Application Events

	Using Class Modules to Control Application Object Events
	Using a Class Module to Control Sheet Tab Name Changes

	Chapter Summary

	Chapter 3: Programming the Microsoft Excel Workbook Object
	The Workbook Object
	Using Workbook Object Events
	Workbook Open Event and the frmSplashScreen UserForm
	Implementing a UserForm Timer
	Using the Application.OnTime Method
	Using the VBA Timer() Function
	Using the UserForm Repaint Method
	Using the VBA DoEvents Instruction

	Setting Workbook Object References
	Using the ListBox Control
	Adding Items to the ListBox
	Using the ListBox Column Property
	Referencing ListBox Items
	Setting an Error Trap
	Saving the Workbook with a New Name

	Synchronizing the UserForm Interface
	Disabling Screen Updating

	Chapter Summary

	Chapter 4: Programming the Microsoft Excel Worksheet Object
	The Worksheet Object
	Using Worksheet Object Events
	Referring to Worksheets
	Setting the Worksheet Object Reference
	Using the CSheetNameChange Class to Avoid a Single Sheet Change Name
	Exercise!

	Using Worksheet Object Properties and Methods
	Avoiding Cascading Events
	Synchronizing the frmWorksheets Control Interface
	Selecting an Item in the lstSheetTabs ListBox
	Adding Sheet Tabs
	Moving Sheet Tabs
	Sorting Sheet Tabs

	Copying Sheet Tabs
	Deleting Sheet Tabs
	Protecting and Unprotecting Sheet Tabs
	Using the frmPassword UserForm

	Changing a Sheet Tab’s Visible Property
	Changing a Sheet Tab’s CodeName Property

	Chapter Summary

	Chapter 5: Programming the Microsoft Excel Range Object
	The Range Object
	Using the Application.Range Property
	Using Range Object Properties and Methods
	Updating the UserForm Interface
	Getting the Rows Used by the Selected Range
	Getting the Columns Used by the Selected Range
	Changing a Column Number to a Letter

	Considerations About the Range Rows and Columns Properties
	Getting a Cell’s Address and Values for the Selected Range
	Getting Selected Range Areas

	Resizing the Selected Range
	Changing the Range Reference

	Using the Names Collection
	Hiding Named Ranges
	Resizing Named Ranges

	Using Name Object Properties and Methods
	Recovering Name Object Properties
	Recovering Name Values with GetNameValue()
	Evaluating Excel Values with the Function EvaluateRange()
	Getting Back to GetNewName()…

	Getting Back Again to FilllstNames()…

	Adding a New Name Object
	Validating Names
	Using Names Collection Add Method
	Inserting a New Name by Selecting a Range Address

	Selecting Items in the lstNames ListBox
	Using Collection Variables
	Adding Collection Items
	Recovering Collection Items
	Removing Collection Items
	Clearing a Collection

	Using a Collection Variable to Store ListBox Selected Items
	Showing Name Properties
	Showing and Hiding the UserForm Detail Section
	Showing Selected Name Properties

	Enable/Disable UserForm Controls
	Clearing frmNames Detail Section

	Editing an Existing Name Object
	Editing the Name Object
	Searching and Replacing Formula Content
	Using the Range.Find Method
	Getting Back to the frmEditName cmdOK_Click Event
	Canceling Name Editing
	Synchronizing the frmEditName and frmNames Interfaces

	Resizing an Existing Name Object
	Performing Multiple Name Properties Changes
	Changing the Name.Visible Property
	Changing the Name.Comment Property
	Deleting Name Objects

	Changing the Name.RefersTo Property

	Chapter Summary

	Chapter 6: Special Range Object Properties and Methods
	Defining a Range with VBA
	Using the Range.End Property
	Using the Range.CurrentRegion Property
	Moving Through a Range with VBA
	Using the Cells Property
	Using the Range.Offset Property

	Creating the USDA Range Name

	Sorting Range Names
	Using Cascading Data Validation List Cells
	The USDA Food Composer.xlsm Worksheet Application

	Creating USDA Worksheet Range Names
	Finding the Last Worksheet Used Cell
	Finding the Last Worksheet Row/Column with Range.End
	Finding the Last Worksheet Row/Column with Worksheet.UsedRange
	Warning: Range.End Method and Hidden Rows

	Finding Range Information
	The Range.Find Method
	Preparing frmRangeFind
	Searching with frmRangeFind
	Returning the Selected Food Item in frmRangeFind
	Sorting ListBox Items
	Using the Bubble Sort Algorithm

	Changing ListBox Column Widths

	The Range.AutoFilter Method
	Selecting Filtered Cells with the Range.SpecialCells Property
	Using the frmRangeFilter

	Finding Food Items with the Range.Sort Method
	Sorting a Range by a Calculated Column
	The Range.Copy and Range.PasteSpecial Methods
	Using the VBA Immediate Window to Sort by a Calculated Column
	Sorting by a Calculated Column with VBA
	Using frmRangeSort

	Using frmSearchFoodItems.xlsm
	Showing Selected Food Item Common Measures
	Returning the Selected Food Item
	Selecting a Food Item on the UserForm
	Processing the Selected Food Item on the Worksheet

	Researching for a Selected Food Item

	Chapter Summary

	Chapter 7: Using Excel as a Database Repository
	The Worksheet Database Storage System
	The BMI Companion Chart
	The BMI Companion Chart_Database.xlsm Excel Application
	Parameterization of BMI Chart Data
	Changing BMI Chart Data
	Saving the Last Selected Record
	Saving BMI Chart Data
	Getting the Record Name
	Disabling/Enabling Screen Updates, Events Firing, and Worksheet Recalculation
	Saving the Record Name with SaveData() Procedure
	Verify Whether the Worksheet Is Full with NewEntryRow()
	Aborting the SaveData() Procedure
	Inserting a New Record on the mcondbSavedRecords Range Name
	Saving Record Data with LoadSaveData()
	Processing the One-Side Record
	Processing the Many-Side Records
	Sorting mcondbSavedRecords After a New Record Insertion

	Discarding BMI Chart Changes
	Discarding Record Changes and Loading a Saved Record
	Discarding Record Changes with the Delete Control Button
	Clearing Chart Data

	Loading BMI Chart Data
	Deleting BMI Chart Data
	Associating Database Procedures to Worksheet Button Controls
	Making Copies of the BMI Chart Worksheet

	The USDA Food Composer_Database.xlsm Excel Application
	Changing Database Constant Values
	Saving Recipe Data
	Saving Recipe Nutritional Information in My_Recipes Range Name
	Deleting a Recipe Data
	Things That Are Worth Being Mentioned
	Finding Food Items to Compose Recipes
	Finding Recipes Already Composed
	Counting Saved Recipes

	Chapter Summary

	Chapter 8: Creating and Setting a Worksheet Database Class
	Creating a Database Class
	Steps 1 and 2: Create the Database Class Module
	Step 3: Create an Object Variable to Capture Worksheet Events
	Steps 4 and 5: Change Constant Names to Variable Declarations
	Step 6: Save Database Properties as Range Names
	Step 7: Use the Class_Initialize() Event to Read Database Properties
	Referencing the clsDatabase Class

	Improving the clsDatabase Class Interface
	Improving the Object Model
	Implementing SheetDBEngine Properties
	Read/Write Properties
	Read-Only Properties
	The AbsolutePosition Property
	The BOF and EOF Properties
	The Dirty Property
	The RecordCount Property

	Implementing SheetDBEngine Events
	Raising Events When a Record Is Saved
	The Sub Echo() Procedure

	Raising Events When a Record Is Deleted
	Raising an Event When a Record Is Loaded

	Implementing SheetDBEngine Methods
	The ShowRecord Method
	The CopyRecord and PasteRecord Methods
	Using CopyRecord/PasteRecord

	The Sort Method

	Using the SheetDBEngine Class
	Producing Data Navigation Controls

	Setting the Worksheet Database Class
	Implementing the Worksheet Database Wizard
	Navigating Through the UserForm Wizard
	Required Database Properties
	Using frmDBProperties UserForm
	Loading frmDBProperties
	Defining the Database
	Loading Worksheet Names

	Stepping Through frmDBProperties Wizard Pages
	Step 1: Defining the Expression Used to Identify Worksheet Records
	Step 2: Defining the Record’s Data Validation List Cell
	Allowing the User to Select a Cell Range
	Creating the Record’s Data Validation List

	Step 3: Defining the One-Side Record Cells
	Calculating the Column Number Needed to Save the One-Side Record Cells
	Determining the Column to Save the Many-Side Records
	Changing the Range Name Scope
	Clearing the One-Side Record Cell Selection

	Step 4: Defining the Many-Side Record Cells
	Counting Many-Side Record Rows and Columns
	Clearing Any Selected Relation

	Step 5: Asking to Create Worksheet Database Button Controls
	Step 6: Showing the Database Properties Page

	Creating the Database Structure
	Using SetDatabase(CreateDatabase) to Define the Database Structure
	Creating Sheet Tab Button Controls
	Creating Database Button Controls
	Creating Database Navigation Buttons

	Pasting the Database Code

	Understanding the Worksheet Database Code
	Creating the Standard Module

	Exhibiting Database Properties
	Removing Database Properties

	Using the SheetDBEngine Class and frmDBProperties

	Conclusion
	Chapter Summary

	Chapter 9: Exchanging Data Between Excel Applications
	Updating the USDA Worksheet
	Using the USDA Food List Creator Application
	The USDA Worksheet Updating Method
	Using the USDA Food Composer_SheetDBEnginebasUSDA.xlsm Application
	Getting the SR Workbook File Name and Validating the SR Update
	Processing the Selected USDA SR Version
	Updating the Excel Status Bar
	Updating the USDA Worksheet
	Update the USDACommonMeasures Worksheet

	Warning About USDA Worksheet Updates
	Using the USDA Food Composer_SheetDBEnginefrmUSDA.xlsm Application
	Showing USDA Worksheet Version Information
	Managing the UserForm Progress Bar
	Selecting the External SRxx Update Version
	Opening the Desired SRxx...xls Version
	Verify Whether a Workbook Is Open
	Verify Whether the Workbook has an USDA Worksheet

	Returning New USDA SR Version Details
	Finding Food Item Name Inconsistencies Between USDA Versions
	Updating the USDA Worksheet

	Managing Worksheet Application Data
	The frmManageRecipes_Initialize() Event
	Counting My Recipes Copies
	Filling ComboBox Lists with the LoadcboMyRecipes() Procedure
	Selecting Worksheets with the cboMyRecipes_Click() Event
	Loading lstRecipes with LoadCurrentRecipes()
	Finishing LoadcboMyRecipes()

	Finishing the frmManageRecipes_Initialize() Event

	Inserting Copies of the My Recipes Sheet Tab
	Selecting Desired Recipes
	Selecting All Recipes at Once

	Saving Recipe Nutritional Information in the My_Recipes Range Name
	Updating the frmManateRecipes Interface with EnableControls()
	Processing Selected Recipes with ProcessRecipes()
	Looping Through All Selected Recipes
	Saving Recipe Nutritional Information with SaveInMyRecipes()
	Finishing the Save in My Recipes Operation

	Exporting and Importing Recipe Data
	Exporting Recipes to This Workbook
	Showing Destination Worksheet Recipes on lstRecipesDestination
	Changing the frmManageRecipes Interface with SelectMyRecipesDestination()
	Executing the Export Recipes Operation
	Looping Through All Selected Recipes to Import/Export Records
	Exchanging Recipe Records Automatically with TransferRecipe()
	Finishing the Export Recipes Operation

	Exporting/Importing Recipe Records to/from an External Workbook
	Selecting the Destination Workbook with GetExternalWorkbook()
	Closing Any Opened Workbook with CloseExternalWorkbook()
	Finishing GetExternalWorkbook()

	Finishing the cmdExecute_Click() Event

	Importing Recipes from an External Workbook

	Deleting Recipes from This Workbook
	Exporting/Importing Recipes with Database Copy/Paste Methods
	Enhancing the MyRecipes.CopyRecord Method
	Enhancing the MyRecipes.PasteRecord Method
	Updating the frmManageRecipesCopyPaste Code

	Conclusion
	Chapter Summary

	Chapter 10: Using the Windows API
	The Microsoft Windows API
	Using Declare Statements
	Constants Declaration

	Window Handles
	Class Instance Handle
	Creating a Timer Class
	The TimerProc() Procedure
	Using the Timer Class

	UserForm Handle
	Setting Bit Values
	Animating the UserForm Window
	The Animate() Procedure

	Manipulating the UserForm Window
	The UserForm Title Bar
	The Appearance() Procedure
	The UserForm Close, Maximize, and Minimize Buttons, and Resizable Border
	Changing More Than One UserForm Property at Once

	The UserForm Transparency
	The Transparency() Procedure
	The Fade() Procedure
	Using frmFadeIn UserForm
	Using frmFadeOut UserForm
	Using frmFadeInFadeOut UserForm

	Applying a Skin to a UserForm
	Device Contexts
	Changing the UserForm Shape Using Windows Regions
	The Skin() Procedure
	The frmSkin UserForm
	The USDA Food Composer_frmAbout.xlsm Application

	Conclusion
	Chapter Summary

	Chapter 11: Producing a Personal Ribbon Using RibbonEditor.xlam
	How Personal Ribbon Information Is Stored
	Using RibbonEditor.xlam
	Adding Tabs, Groups, and Buttons Using the RibbonX Add-In
	Removing the CustomUI.xml File from a Workbook Application
	Producing a Nice Ribbon with RibbonEditor.xlam

	Conclusion
	Chapter Summary

	Afterword
	Index

