
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Matt Neuburg

Boston

Programming iOS 10
SEVENTH EDITION

www.allitebooks.com

http://www.allitebooks.org

978-1-491-97009-6

[FILL IN]

Programming iOS 10
by Matt Neuburg

Copyright © 2017 Matt Neuburg. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc. , 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com .

Editor: Rachel Roumeliotis
Production Editor: FILL IN PRODUCTION EDI‐
TOR
Copyeditor: FILL IN COPYEDITOR
Proofreader: FILL IN PROOFREADER

Indexer: FILL IN INDEXER
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

January -4712: First Edition

Revision History for the First Edition
2016-09-09: First Early Release
2016-09-27: Second Early Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491970096 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Programming iOS 10, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author(s) have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author(s) disclaim all responsibil‐
ity for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.com

http://safaribooksonline.com/
http://oreilly.com/catalog/errata.csp?isbn=9781491970096
http://www.allitebooks.org

Table of Contents

Preface. xvii

Part I. Views

1. Views. 29
The Window 30
Experimenting With Views 32
Subview and Superview 33
Visibility and Opacity 36
Frame 37
Bounds and Center 38
Window Coordinates and Screen Coordinates 42
Transform 43
Trait Collections and Size Classes 48
Layout 50

Autoresizing 51
Autolayout 54
Constraints 54
Autoresizing Constraints 56
Creating Constraints in Code 58
Constraints as Objects 63
Guides and Margins 65
Intrinsic Content Size and Alignment Rects 70
Stack Views 72
Internationalization 75
Mistakes With Constraints 76

Configuring Layout in the Nib 80
Autoresizing in the Nib 80

iii

www.allitebooks.com

http://www.allitebooks.org

Creating a Constraint 81
Viewing and Editing Constraints 82
Problems With Constraints 84
Varying the Screen Size 86
Conditional Interface Design 87

Nib Editor View Features 89
View Debugger 89
Previewing Your Interface 90
Designable Views and Inspectable Properties 91

Layout Events 93

2. Drawing. 97
Images and Image Views 97

Image Files 98
Image Views 101
Resizable Images 103
Transparency Masks 106
Reversible Images 108

Graphics Contexts 108
UIImage Drawing 113
CGImage Drawing 115
Snapshots 117
CIFilter and CIImage 118
Blur and Vibrancy Views 123
Drawing a UIView 125
Graphics Context Commands 127

Graphics Context Settings 127
Paths and Shapes 129
Clipping 132
Gradients 133
Colors and Patterns 135
Graphics Context Transforms 137
Shadows 139
Erasing 140

Points and Pixels 141
Content Mode 142

3. Layers. 145
View and Layer 146
Layers and Sublayers 147

Manipulating the Layer Hierarchy 150
Positioning a Sublayer 151

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

CAScrollLayer 153
Layout of Sublayers 153

Drawing in a Layer 154
Content Resizing and Positioning 158
Layers that Draw Themselves 160

Transforms 161
Depth 164

Shadows, Borders, and Masks 168
Layer Efficiency 170
Layers and Key–Value Coding 171

4. Animation. 173
Drawing, Animation, and Threading 174
Image View and Image Animation 176
View Animation 178

A Brief History of View Animation 178
Property Animator Basics 179
View Animation Basics 181
View Animation Configuration 184
Timing Curves 188
Canceling a View Animation 191
Frozen View Animation 194
Custom Animatable View Properties 195
Keyframe View Animation 196
Transitions 198

Implicit Layer Animation 200
Animation Transactions 201
Media Timing Functions 203

Core Animation 204
CABasicAnimation and Its Inheritance 204
Using a CABasicAnimation 206
Springing Animation 209
Keyframe Animation 210
Making a Property Animatable 212
Grouped Animations 213
Freezing an Animation 216
Transitions 217
Animations List 219

Actions 221
What an Action Is 221
Action Search 221
Hooking Into the Action Search 223

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

Making a Custom Property Implicitly Animatable 227
Nonproperty Actions 227

Emitter Layers 229
CIFilter Transitions 234
UIKit Dynamics 236

The Dynamics Stack 237
Custom Behaviors 240
Animator and Behaviors 242

Motion Effects 250
Animation and Autolayout 250

5. Touches. 253
Touch Events and Views 254
Receiving Touches 256
Restricting Touches 258
Interpreting Touches 258
Gesture Recognizers 263

Gesture Recognizer Classes 263
Gesture Recognizer Conflicts 269
Subclassing Gesture Recognizers 271
Gesture Recognizer Delegate 273
Gesture Recognizers in the Nib 275

3D Touch Press Gesture 276
Touch Delivery 278
Hit-Testing 279

Hit-Testing For Layers 281
Hit-Testing For Drawings 282
Hit-Testing During Animation 283

Initial Touch Event Delivery 286
Gesture Recognizer and View 286
Touch Exclusion Logic 288
Gesture Recognition Logic 288
Touches and the Responder Chain 290

Part II. Interface

6. View Controllers. 295
View Controller Responsibilities 296
View Controller Hierarchy 297
View Controller Creation 304
How a View Controller Obtains Its View 306

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Manual View 307
Generic Automatic View 309
View in a Separate Nib 310
Summary 313

How Storyboards Work 313
How a View Controller Nib is Loaded 314
How a View Nib is Loaded 315

View Resizing 316
View Size in the Nib Editor 316
Bars and Underlapping 317
Resizing Events 320
Rotation 322

View Controller Manual Layout 327
Presented View Controller 332

Presentation and Dismissal 333
Configuring a Presentation 336
Communication With a Presented View Controller 341
Adaptive Presentation 344
Presentation and Rotation 346

Tab Bar Controller 347
Tab Bar Items 348
Configuring a Tab Bar Controller 349

Navigation Controller 351
Bar Button Items 353
Navigation Items and Toolbar Items 355
Configuring a Navigation Controller 358

Custom Transition 362
Noninteractive Custom Transition Animation 363
Interactive Custom Transition Animation 368
Interruptible Custom Transition Animation 372
Custom Presented View Controller Transition 374
Transition Coordinator 380

Page View Controller 382
Preparing a Page View Controller 382
Page View Controller Navigation 385
Other Page View Controller Configurations 387

Container View Controllers 388
Adding and Removing Children 389
Container View Controllers, Traits, and Resizing 394

Peek and Pop 396
Storyboards 400

Triggered Segues 402

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

Container Views and Embed Segues 406
Storyboard References 407
Unwind Segues 408

View Controller Lifetime Events 415
Incoherencies in View Controller Events 417
Appear and Disappear Events 418
Event Forwarding to a Child View Controller 419

View Controller Memory Management 420
State Restoration 424

How to Test State Restoration 426
Participating in State Restoration 426
Restoration ID, Identifier Path, and Restoration Class 429
Restoring View Controller State 434
Restoration Order of Operations 439
Restoration of Other Objects 441
Snapshot Suppression 443

7. Scroll Views. 445
Creating a Scroll View in Code 446

Manual Content Size 446
Automatic Content Size With Autolayout 447
Using a Content View 449

Scroll View in a Nib 452
Scrolling 454

Paging 458
Tiling 460

Zooming 462
Zooming Programmatically 464
Zooming with Detail 464

Scroll View Delegate 467
Scroll View Touches 470
Floating Scroll View Subviews 473
Scroll View Performance 474

8. Table Views and Collection Views. 477
Table View Cells 481

Built-In Cell Styles 482
Registering a Cell Class 488
Custom Cells 491

Table View Data 497
The Three Big Questions 499
Reusing Cells 500

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Table View Sections 502
Refreshing Table View Data 508
Variable Row Heights 512

Table View Cell Selection 517
Managing Cell Selection 518
Responding to Cell Selection 519
Navigation From a Table View 521
Cell Choice and Static Tables 522

Table View Scrolling and Layout 523
Table View State Restoration 524
Table View Searching 524

Configuring a Search Controller 525
Using a Search Controller 526

Table View Editing 531
Deleting Cells 534
Custom Action Buttons 536
Editable Content in Cells 537
Inserting Cells 539
Rearranging Cells 541
Dynamic Cells 542

Table View Menus 543
Collection Views 546

Collection View Classes 549
Using a Collection View 552
Custom Collection View Layouts 556
Switching Layouts 563
Collection Views and UIKit Dynamics 564

9. iPad Interface. 567
Popovers 567

Preparing a Popover 569
Popover Presentation, Dismissal, and Delegate 575
Adaptive Popovers 577
Popover Segues 579
Popover Presenting a View Controller 580

Split Views 581
Expanded Split View Controller (iPad) 583
Collapsed Split View Controller (iPhone) 586
Expanding Split View Controller (iPhone 6 Plus) 588
Customizing a Split View Controller 590
Split View Controller in a Storyboard 592
Setting the Collapsed State 594

Table of Contents | ix

View Controller Message Percolation 596
iPad Multitasking 599

10. Text. 603
Fonts and Font Descriptors 604

Fonts 604
Font Descriptors 609

Attributed Strings 611
Attributed String Attributes 612
Making an Attributed String 615
Modifying and Querying an Attributed String 620
Custom Attributes 621
Drawing and Measuring an Attributed String 622

Labels 623
Number of Lines 623
Wrapping and Truncation 624
Resizing a Label to Fit Its Text 625
Customized Label Drawing 626

Text Fields 627
Summoning and Dismissing the Keyboard 629
Keyboard Covers Text Field 631
Configuring the Keyboard 635
Text Field Delegate and Control Event Messages 638
Text Field Menu 640

Text Views 642
Text View as Scroll View 645
Text View and Keyboard 646

Text Kit 647
Text Container 648
Alternative Text Kit Stack Architectures 651
Layout Manager 653
Text Kit Without a Text View 656

11. Web Views. 661
WKWebView 663

WKWebView Content 664
Tracking Changes in a WKWebView 666
WKWebView Navigation 667
Communicating With a WKWebView Web Page 669
WKWebView Shortcomings 671

Safari View Controller 672
Developing Web View Content 673

x | Table of Contents

12. Controls and Other Views. 677
UIActivityIndicatorView 677
UIProgressView 679
UIPickerView 684
UISearchBar 686
UIControl 691

UISwitch 695
UIStepper 696
UIPageControl 697
UIDatePicker 698
UISlider 701
UISegmentedControl 704
UIButton 707
Custom Controls 711

Bars 714
Bar Position and Bar Metrics 715
Bar Appearance 716
UIBarButtonItem 718
UINavigationBar 720
UIToolbar 723
UITabBar 723

Tint Color 728
Appearance Proxy 730

13. Modal Dialogs. 733
Alerts and Action Sheets 734

Alerts 734
Action Sheets 737
Dialog Alternatives 739

Quick Actions 739
Local Notifications 743

Authorizing for Local Notifications 746
Notification Category 748
Scheduling a Local Notification 749
Hearing About a Local Notification 751
Managing Scheduled Notifications 753
Notification Content Extensions 754

Today Extensions 757
Activity Views 759

Presenting an Activity View 760
Custom Activities 763
Action Extensions 766

Table of Contents | xi

Share Extensions 771

Part III. Some Frameworks

14. Audio. 777
System Sounds 777
Audio Session 779

Activation 781
Ducking 782
Interruptions 783
Secondary Audio 784
Routing Changes 785

Audio Player 786
Remote Control of Your Sound 788
Playing Sound in the Background 791
AVAudioEngine 792
MIDI Playback 797
Text to Speech 798
Speech to Text 798
Further Topics in Sound 801

15. Video. 803
AVPlayerViewController 804

Other AVPlayerViewController Properties 806
Picture-in-Picture 807

Introducing AV Foundation 808
Some AV Foundation Classes 809
Things Take Time 810
Time is Measured Oddly 812
Constructing Media 813
Synchronizing Animation With Video 815
AVPlayerLayer 817
Further Exploration of AV Foundation 819

UIVideoEditorController 819

16. Music Library. 823
Exploring the Music Library 823

Querying the Music Library 824
Persistence and Change in the Music Library 828

Music Player 829
MPVolumeView 832

xii | Table of Contents

Playing Songs With AV Foundation 833
Media Picker 835

17. Photo Library and Image Capture. 839
Photo Library Authorization 839
Choosing From the Photo Library 841
Photos Framework 845

Querying the Photo Library 846
Modifying the Library 848
Being Notified of Changes 851
Displaying Images 852
Editing Images 855
Photo Editing Extension 860

Using the Camera 861
Camera Authorization 861
Using the Camera with UIImagePickerController 862
Customizing the Image Capture Interface 864
Image Capture With AV Foundation 866

18. Contacts. 869
Contacts Authorization 869
Fetching Contact Information 870
Saving Contact Information 874
Contact Sorting, Groups, and Containers 875
Contacts Interface 876

CNContactPickerViewController 877
CNContactViewController 879

19. Calendar. 885
Calendar Database 885

Calendar Database Authorization 885
Calendar Database Contents 886
Calendar Database Changes 888
Creating Calendars and Events 888
Recurrence 890
Fetching Events 892
Reminders 893
Proximity Alarms 894

Calendar Interface 895
EKEventViewController 895
EKEventEditViewController 896
EKCalendarChooser 897

Table of Contents | xiii

20. Mail and Messages. 899
Mail Message 900
Text Message 901
Twitter Post 902

21. Maps. 905
Displaying a Map 905
Annotations 908

Custom Annotation View 909
Custom Annotation Class 913
Other Annotation Features 913

Overlays 916
Custom Overlay Class 917
Custom Overlay Renderer 919
Other Overlay Features 921

Map Kit and Current Location 922
Communicating With the Maps App 924
Geocoding, Searching, and Directions 925

Geocoding 925
Searching 926
Directions 927

22. Sensors. 929
Core Location 930

Location Manager and Delegate 931
Core Location Authorization 931
Location Tracking 934
Where Am I? 935
Heading 938
Background Location 939

Acceleration, Attitude, and Activity 943
Shake Events 943
Raw Acceleration 945
Gyroscope 949
Motion Activity 954

Part IV. Final Topics

23. Persistent Storage. 961
The Sandbox 961

Standard Directories 961

xiv | Table of Contents

Visually Inspecting the Sandbox 963
Basic File Operations 964
Saving and Reading Files 964

User Defaults 966
Simple Sharing and Previewing of Files 969

File Sharing 969
Document Types and Receiving a Document 970
Handing Over a Document 973
Previewing a Document 973

Document Architecture 975
iCloud 981
XML 983
SQLite 988
Core Data 989
Image File Formats 995

24. Basic Networking. 999
HTTP Requests 1000

Simple HTTP Request 1002
Formal HTTP Request 1003
Encapsulating the Session, Task, and Delegate 1007
Downloading Table View Data 1012
Background Downloads 1015
Background App Refresh 1018

On-Demand Resources 1019
In-App Purchases 1020

25. Threads. 1025
Main Thread 1025
Why Threading Is Hard 1028
Blocking the Main Thread 1030
Manual Threading 1032
Operation 1034
Grand Central Dispatch 1038
Threads and App Backgrounding 1045

26. Undo. 1047
Undo Manager 1048

Target–Action Undo 1048
Undo Grouping 1050
Invocation Undo 1051
Functional Undo 1052

Table of Contents | xv

Undo Interface 1054
Shake-To-Edit 1054
Undo Menu 1055

A. Application Lifetime Events. 1059

B. Some Useful Utility Functions. 1067

Index. 1077

xvi | Table of Contents

Preface

Aut lego vel scribo; doceo scrutorve sophian.
—Sedulius Scottus

On June 2, 2014, Apple’s WWDC keynote address ended with a shocking announce‐
ment: “We have a new programming language.” This came as a huge surprise to the
developer community, which was accustomed to Objective-C, warts and all, and
doubted that Apple could ever possibly relieve them from the weight of its venerable
legacy. The developer community, it appeared, had been wrong.

Having picked themselves up off the floor, developers immediately began to examine
this new language — Swift — studying it, critiquing it, and deciding whether to use it.
My own first move was to translate all my existing iOS apps into Swift; this was
enough to convince me that, for all its faults, Swift deserved to be adopted by new
students of iOS programming, and that my books, therefore, should henceforth
assume that readers are using Swift.

Therefore, Swift is the programming language used throughout this book. Neverthe‐
less, the reader will also need some awareness of Objective-C (including C). The
Foundation and Cocoa APIs, the built-in commands with which your code must
interact in order to make anything happen on an iOS device, are still written in C and
Objective-C. In order to interact with them, you have to know what those languages
would expect. For example, in order to pass a Swift array where an Objective-C
NSArray is expected, you need to know what’s required of an object to be acceptable
as an element of an Objective-C NSArray.

If you don’t already know the Swift language and how it interacts with Objective-C,
you’ll want to start with my other book, iOS 10 Programming Fundamentals with
Swift. It is both an introduction and a companion to Programming iOS 10. Like Hom‐
er’s Iliad, Programming iOS 10 begins in the middle of the story, with the reader
jumping with all four feet into views and view controllers, and with a knowledge of
the language and the Xcode IDE already presupposed. Discussion of the program‐

xvii

http://shop.oreilly.com/product/0636920055211.do
http://shop.oreilly.com/product/0636920055211.do

ming language, as well as the Xcode IDE (including the nature of nibs, outlets, and
actions, and the mechanics of nib loading), plus the fundamental conventions,
classes, and architectures of the Cocoa Touch framework (including delegation, the
responder chain, key–value coding, memory management, and so on) — material
that constituted Chapters 1–13 in the early editions of this book, but whose presence
was eventually deemed to be making the book unwieldy in size and scope — has now
been relegated to iOS 10 Programming Fundamentals with Swift.

So if something appears to be missing from this book, that’s why! If you start reading
Programming iOS 10 and wonder about such unexplained matters as Swift language
basics, the UIApplicationMain function, the nib-loading mechanism, Cocoa patterns
of delegation and notification, and retain cycles, wonder no longer — I don’t explain
them here because I have already explained them in iOS 10 Programming Fundamen‐
tals with Swift. If you’re not sufficiently conversant with those topics, I’d suggest that
you might want to read that book first; you will then be completely ready for this one.

The Scope of This Book
Here’s a summary of this book’s major sections:

• Part I describes views, the fundamental units of an iOS app’s interface. Views are
what the user can see and touch in an iOS app. To make something appear before
the user’s eyes, you need a view. To let the user interact with your app, you need a
view. This part of the book explains how views are created, arranged, drawn, lay‐
ered, animated, and touched.

• Part II starts by discussing view controllers. Perhaps the most remarkable and
important feature of iOS programming, view controllers enable views to come
and go coherently within the interface, thus allowing a single-windowed app run‐
ning on what may be a tiny screen to contain multiple screens of material. This
part of the book talks about all the ways in which view controllers can be manip‐
ulated in order to make their views appear. It also describes every kind of view
provided by the Cocoa framework — the built-in building blocks with which
you’ll construct an app’s interface.

• Part III surveys the most important secondary frameworks provided by iOS.
These are clumps of code, sometimes with built-in interface, that are not part of
your app by default, but are there for the asking if you need them, allowing you
to work with such things as sound, video, user libraries, mail, maps, and the devi‐
ce’s sensors.

• Part IV wraps up the book with some miscellaneous but important topics: files,
networking, threading, and how to implement undo.

• Appendix A summarizes the most important lifetime event messages sent to your
app delegate.

xviii | Preface

• Appendix B catalogs some useful Swift utility functions. You should keep an eye
on this appendix, consulting it whenever a mysterious method name appears. For
instance, my example code frequently uses my delay function, which embraces
asyncAfter with a convenient shorthand; when I use delay and you don’t know
what it is, consult this appendix. Similarly, my initializers for CGRect and
CGPoint have no labels; that’s because I use Swift extensions that define those ini‐
tializers, and those extensions are given in this appendix.

Someone who has read this book (and who, it goes without saying, is conversant with
the material in iOS 10 Programming Fundamentals with Swift) will, I believe, be capa‐
ble of writing a real-life iOS app, with a clear understanding of what he or she is
doing and where the app is going as it grows and develops. The book itself doesn’t
show how to write any particularly interesting iOS apps; but it is backed by dozens of
example projects that you can download from my GitHub site, http://github.com/matt
neub/Programming-iOS-Book-Examples, and it constantly uses my own real apps and
real programming situations to illustrate and motivate its explanations.

Just as important, this book is intended to prepare you for your own further explora‐
tions. In the case of some topics, especially in Parts III and IV, I guide you past the
initial barrier of no knowledge to reach an understanding of the topic, its concepts,
its capabilities, and its documentation, along with some code examples; but the topic
itself may be so huge that there is room only to introduce it here. Your feet, neverthe‐
less, will now be set firmly on the path, and you will know enough that you can now
proceed further down that path on your own whenever the need or interest arises.

Indeed, there is always more to learn about iOS. iOS is vast! It is all too easy to find
areas of iOS that have had to be ruled outside the scope of this book. In Part IV, for
example, I peek at Core Data, and demonstrate its use in code, but a true study of
Core Data would require an entire book of its own (and such books exist); so, having
opened the door, I quickly close it again, lest this book suddenly double in size. By the
same token, many areas of iOS are not treated at all in this book:

OpenGL
An open source C library for drawing, including 3D drawing, that takes full
advantage of graphics hardware. This is often the most efficient way to draw,
especially when animation is involved. iOS incorporates a simplified version of
OpenGL called OpenGL ES. See Apple’s OpenGL Programming Guide for iOS.
Open GL interface configuration, texture loading, shading, and calculation are
simplified by the GLKit framework; see the GLKit Framework Reference. The
Metal and Metal Kit and Model I/O classes allow you to increase efficiency and
performance.

Sprite Kit
Sprite Kit provides a built-in framework for designing 2D animated games.

Preface | xix

http://github.com/mattneub/Programming-iOS-Book-Examples
http://github.com/mattneub/Programming-iOS-Book-Examples

Scene Kit
Ported from macOS, this framework makes it much easier to create 3D games
and interactive graphics.

Gameplay Kit
This framework provides architectural underpinnings for writing a game app.

Accelerate
Certain computation-intensive processes will benefit from the vector-based
Accelerate framework. See the vDSP Programming Guide.

Game Kit
The Game Kit framework covers three areas that can enhance your user’s game
experience: Wireless or Bluetooth communication directly between devices
(peer-to-peer); voice communication across an existing network connection; and
Game Center, which facilitates these and many other aspects of interplayer com‐
munication, such as posting and viewing high scores and setting up competi‐
tions. See the Game Kit Programming Guide. Users can even make screencasts of
their own game play for sharing with one another; see the ReplayKit Framework
Reference.

Advertising
The iAD framework lets your free app attempt to make money by displaying
advertisements provided by Apple. See the iAD Programming Guide.

Newsstand
Your app may represent a subscription to something like a newspaper or maga‐
zine. See the Newsstand Kit Framework Reference.

Printing
See the “Printing” chapter of the Drawing and Printing Guide for iOS.

Security
This book does not discuss security topics such as keychains, certificates, and
encryption. See the Security Overview and the Security framework.

Accessibility
VoiceOver assists visually impaired users by describing the interface aloud. To
participate, views must be configured to describe themselves usefully. Built-in
views already do this to a large extent, and you can extend this functionality. See
the Accessibility Programming Guide for iOS.

Telephone
The Core Telephony framework lets your app get information about a particular
cellular carrier and call.

xx | Preface

Pass Kit
The Pass Kit framework allows creation of downloadable passes to go into the
user’s Passbook app. See the Passbook Programming Guide.

Health Kit
The Health Kit framework lets your app obtain, store, share, and present data
and statistics related to body activity and exercise. See the HealthKit Framework
Reference.

External accessories
The user can attach an external accessory to the device, either directly via USB or
wirelessly via Bluetooth. Your app can communicate with such an accessory. See
External Accessory Programming Topics. The Home Kit framework lets the user
communicate with devices in the physical world, such as light switches and door
locks. See the HomeKit Framework Reference.

Handoff
Handoff permits your app to post to the user’s iCloud account a record of what
the user is doing, so that the user can switch to another copy of your app on
another device and resume doing the same thing. See the Handoff Programming
Guide.

Spotlight
The user’s Spotlight search results can include data supplied by your app. See the
Core Spotlight Framework Reference.

Siri Kit
New in iOS 10, the user can talk to the device to request performance of certain
kinds of task involving your app. See the SiriKit Programming Guide.

Versions
This book is geared to Swift 3, iOS 10, and Xcode 8. In general, only very minimal
attention is given to earlier versions of iOS and Xcode. It is not my intention to
embrace in this book any detailed knowledge about earlier versions of the software,
which is, after all, readily and compendiously available in my earlier books.

The Swift language included with Xcode 8, Swift 3, has changed very significantly
from its predecessor, Swift 2. A few important basic syntax changes were foreshad‐
owed in Swift 2.2 and Swift 2.3, but Swift 3 adds many more, plus “renamification”
has changed the names of many standard library and Cocoa methods, along with the
new Foundation “overlay” that removes the “NS” prefix from certain type names.
Fortunately, if you have existing Swift 2 code, Xcode 8 comes with a migrator that will
update your Swift 2 code to Swift 3 in a remarkably intelligent fashion. This book,
conversely, is totally incompatible with Swift 2 and doesn’t discuss it.

Preface | xxi

In this edition, I have dropped my earlier convention of referring to Cocoa methods
by their Objective-C name, because “renamification” has made it impossible to
deduce the Swift 3 name of an Objective-C method. Instead, I give the name in Swift,
as a function reference — that is, the name plus the parameter labels followed by
colon in parentheses. Now and then, if a method is already under discussion and
there is no ambiguity, I’ll use the bare name. (In a few places, where the Objective-C
language is explicitly under discussion, I naturally do still use Objective-C method
names.)

Please bear in mind that Apple continues to make adjustments to the Swift language
and to the way the Objective-C APIs are bridged to it. I have tried to keep my code
up-to-date right up to the moment when the manuscript left my hands; but if, at
some future time, a new version of Xcode is released along with a new version of
Swift, some of the code in this book might be slightly incorrect. Please make allowan‐
ces, and be prepared to compensate.

Screenshots of Xcode were taken using Xcode 8 under OS X 10.11 El Capitan. I have
not upgraded my machine to macOS 10.12 Sierra, because at the time of this writing
it was too new to be trusted with mission-critical work. If you are braver than I am
and are running Sierra, your interface may naturally look very slightly different from
the screenshots, but this difference will be minimal and shouldn’t cause any confu‐
sion.

Acknowledgments
My thanks go first and foremost to the people at O’Reilly Media who have made writ‐
ing a book so delightfully easy: Rachel Roumeliotis, Sarah Schneider, Kristen Brown,
Dan Fauxsmith, Adam Witwer, and Sanders Kleinfeld come particularly to mind.
And let’s not forget my first and long-standing editor, Brian Jepson, whose influence
is present throughout.

As in the past, I have been greatly aided by some fantastic software, whose excellences
I have appreciated at every moment of the process of writing this book. I should like
to mention, in particular:

• git (http://git-scm.com)
• SourceTree (http://www.sourcetreeapp.com)
• TextMate (http://macromates.com)
• AsciiDoc (http://www.methods.co.nz/asciidoc)
• Asciidoctor (http://asciidoctor.org)
• BBEdit (http://barebones.com/products/bbedit/)
• EasyFind (http://www.devontechnologies.com/products/freeware.html)

xxii | Preface

http://git-scm.com
http://www.sourcetreeapp.com
http://macromates.com
http://www.methods.co.nz/asciidoc
http://asciidoctor.org
http://barebones.com/products/bbedit/
http://www.devontechnologies.com/products/freeware.html

• Snapz Pro X (http://www.ambrosiasw.com)
• GraphicConverter (http://www.lemkesoft.com)
• OmniGraffle (http://www.omnigroup.com)

The book was typed and edited entirely on my faithful Unicomp Model M keyboard
(http://pckeyboard.com), without which I could never have done so much writing over
so long a period so painlessly. For more about my physical work environment, see
http://matt.neuburg.usesthis.com.

From the Programming iOS 4 Preface
A programming framework has a kind of personality, an overall flavor that provides
an insight into the goals and mindset of those who created it. When I first encoun‐
tered Cocoa Touch, my assessment of its personality was: “Wow, the people who
wrote this are really clever!” On the one hand, the number of built-in interface
objects was severely and deliberately limited; on the other hand, the power and flexi‐
bility of some of those objects, especially such things as UITableView, was greatly
enhanced over their OS X counterparts. Even more important, Apple created a partic‐
ularly brilliant way (UIViewController) to help the programmer make entire blocks
of interface come and go and supplant one another in a controlled, hierarchical man‐
ner, thus allowing that tiny iPhone display to unfold virtually into multiple interface
worlds within a single app without the user becoming lost or confused.

The popularity of the iPhone, with its largely free or very inexpensive apps, and the
subsequent popularity of the iPad, have brought and will continue to bring into the
fold many new programmers who see programming for these devices as worthwhile
and doable, even though they may not have felt the same way about OS X. Apple’s
own annual WWDC developer conventions have reflected this trend, with their
emphasis shifted from OS X to iOS instruction.

The widespread eagerness to program iOS, however, though delightful on the one
hand, has also fostered a certain tendency to try to run without first learning to walk.
iOS gives the programmer mighty powers that can seem as limitless as imagination
itself, but it also has fundamentals. I often see questions online from programmers
who are evidently deep into the creation of some interesting app, but who are stymied
in a way that reveals quite clearly that they are unfamiliar with the basics of the very
world in which they are so happily cavorting.

It is this state of affairs that has motivated me to write this book, which is intended to
ground the reader in the fundamentals of iOS. I love Cocoa and have long wished to
write about it, but it is iOS and its popularity that has given me a proximate excuse to
do so. Here I have attempted to marshal and expound, in what I hope is a pedagogi‐
cally helpful and instructive yet ruthlessly Euclidean and logical order, the principles

Preface | xxiii

http://www.ambrosiasw.com
http://www.lemkesoft.com
http://www.omnigroup.com
http://pckeyboard.com
http://matt.neuburg.usesthis.com

and elements on which sound iOS programming rests. My hope, as with my previous
books, is that you will both read this book cover to cover (learning something new
often enough to keep you turning the pages) and keep it by you as a handy reference.

This book is not intended to disparage Apple’s own documentation and example
projects. They are wonderful resources and have become more wonderful as time
goes on. I have depended heavily on them in the preparation of this book. But I also
find that they don’t fulfill the same function as a reasoned, ordered presentation of
the facts. The online documentation must make assumptions as to how much you
already know; it can’t guarantee that you’ll approach it in a given order. And online
documentation is more suitable to reference than to instruction. A fully written
example, no matter how well commented, is difficult to follow; it demonstrates, but it
does not teach.

A book, on the other hand, has numbered chapters and sequential pages; I can
assume you know views before you know view controllers for the simple reason that
Part I precedes Part II. And along with facts, I also bring to the table a degree of expe‐
rience, which I try to communicate to you. Throughout this book you’ll find me
referring to “common beginner mistakes”; in most cases, these are mistakes that I
have made myself, in addition to seeing others make them. I try to tell you what the
pitfalls are because I assume that, in the course of things, you will otherwise fall into
them just as naturally as I did as I was learning. You’ll also see me construct many
examples piece by piece or extract and explain just one tiny portion of a larger app. It
is not a massive finished program that teaches programming, but an exposition of the
thought process that developed that program. It is this thought process, more than
anything else, that I hope you will gain from reading this book.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

xxiv | Preface

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/mattneub/Programming-iOS-Book-Examples.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Programming iOS 10 by Matt Neu‐
burg (O’Reilly). Copyright 2016 Matt Neuburg, 978-1-491-97016-4.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Preface | xxv

https://github.com/mattneub/Programming-iOS-Book-Examples
mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/programming_iOS9.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xxvi | Preface

https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/
http://bit.ly/programming_iOS9
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

PART I

Views

The things that appear in your app’s interface are, ultimately, views. A view is a unit of
your app that knows how to draw itself. A view also knows how to sense that the user
has touched it. Views are what your user sees on the screen, and what your user inter‐
acts with by touching the screen. Thus, views are the primary constituent of an app’s
visible, touchable manifestation. They are your app’s interface. So it’s going to be cru‐
cial to know how views work.

• Chapter 1 discusses views in their most general aspect — their hierarchy, visibil‐
ity, and position, including an explanation of autolayout.

• Chapter 2 is about drawing. A view knows how to draw itself; this chapter
explains how to tell a view what you want it to draw, from displaying an existing
image to constructing a drawing in code.

• Chapter 3 explains about layers. The drawing power of a view comes ultimately
from its layer. To put it another way, a layer is effectively the aspect of a view that
knows how to draw — with even more power.

• Chapter 4 tells about animation. An iOS app’s interface isn’t generally static; it’s
lively. Much of that liveliness comes from animation. iOS gives you great power
to animate your interface with remarkable ease; that power, it turns out, resides
ultimately in layers.

• Chapter 5 is about touches. A view knows how to sense that the user is touching
it. This chapter explains the iOS view-based mechanisms for sensing and

responding to touches, with details on how touches are routed to the appropriate
view and how you can customize that routing.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1

Views

A view (an object whose class is UIView or a subclass of UIView) knows how to draw
itself into a rectangular area of the interface. Your app has a visible interface thanks to
views. Creating and configuring a view can be extremely simple: “Set it and forget it.”
For example, you can drag a UIButton into a view in the nib editor, and configure it
there; when the app runs, the button appears, and works properly. But you can also
manipulate views in powerful ways, in real time. Your code can do some or all of the
view’s drawing of itself (Chapter 2); it can make the view appear and disappear, move,
resize itself, and display many other physical changes, possibly with animation
(Chapter 4).

A view is also a responder (UIView is a subclass of UIResponder). This means that a
view is subject to user interactions, such as taps and swipes. Thus, views are the basis
not only of the interface that the user sees, but also of the interface that the user
touches (Chapter 5). Organizing your views so that the correct view reacts to a given
touch allows you to allocate your code neatly and efficiently.

The view hierarchy is the chief mode of view organization. A view can have subviews;
a subview has exactly one immediate superview. Thus there is a tree of views. This
hierarchy allows views to come and go together. If a view is removed from the inter‐
face, its subviews are removed; if a view is hidden (made invisible), its subviews are
hidden; if a view is moved, its subviews move with it; and other changes in a view are
likewise shared with its subviews. The view hierarchy is also the basis of, though it is
not identical to, the responder chain.

A view may come from a nib, or you can create it in code. On balance, neither
approach is to be preferred over the other; it depends on your needs and inclinations
and on the overall architecture of your app.

29

The Window
The top of the view hierarchy is the app’s window. It is an instance of UIWindow (or
your own subclass thereof), which is a UIView subclass. Your app should have exactly
one main window. It is created at launch time and is never destroyed or replaced. It
forms the background to, and is the ultimate superview of, all your other visible
views. Other views are visible by virtue of being subviews, at some depth, of your
app’s window.

If your app can display views on an external screen, you’ll create an additional
UIWindow to contain those views; but in this book I’ll assume there is just one
screen, the device’s own screen, and just one window.

How does your app, at launch time, come to have a main window, and how does that
window come to be populated and displayed? If your app uses a main storyboard, it
all happens automatically. Your app consists, ultimately, of a single call to the
UIApplicationMain function. Here are some of the first things this call does:

1. UIApplicationMain instantiates UIApplication and retains this instance, to serve
as the shared application instance, which your code can later refer to as
UIApplication.shared. It then instantiates the app delegate class. (In a typical
Swift app, it knows what class this is because it is marked @UIApplicationMain.)
It retains the app delegate instance and assigns it as the application instance’s
delegate.

2. UIApplicationMain looks to see whether your app uses a main storyboard. It
knows whether you are using a main storyboard, and what its name is, by look‐
ing at the Info.plist key “Main storyboard file base name” (UIMainStoryboard-
File). (You can easily edit this key, if necessary, by editing the target and, in the
General pane, changing the Main Interface value in the Deployment Info section.
By default, a new iOS project has a main storyboard called Main.storyboard, and
the Main Interface value is Main. You will rarely have reason to change this.)

3. If your app uses a main storyboard, UIApplicationMain instantiates UIWindow
and assigns the window instance to the app delegate’s window property, which
retains it, thus ensuring that the window will persist for the lifetime of the app. It
also sizes the window so that it will initially fill the device’s screen. This is ensured
by setting the window’s frame to the screen’s bounds. (I’ll explain later in this
chapter what “frame” and “bounds” are.)

4. If your app uses a main storyboard, UIApplicationMain turns to the main story‐
board and instantiates its initial view controller. (I’ll talk more about this in
Chapter 6.) It then assigns this view controller instance to the window’s rootView-
Controller property, which retains it. When a view controller becomes the main
window’s rootViewController, its main view (its view) is made the one and only

30 | Chapter 1: Views

immediate subview of your main window — the main window’s root view. All
other views in your main window will be subviews of the root view.
Thus, the root view is the highest object in the view hierarchy that the user will
usually see. There might be just a chance, under certain circumstances, that the
user will catch a glimpse of the window, behind the root view; for this reason, you
may want to assign the main window a reasonable backgroundColor. In general
you’ll have no reason to change anything else about the window itself.

5. UIApplicationMain calls the app delegate’s application(_:didFinishLaunching-
WithOptions:).

6. Your app’s interface is not visible until the window, which contains it, is made the
app’s key window. Therefore, if your app uses a main storyboard, UIApplication-
Main calls the window’s instance method makeKeyAndVisible.

What about an app that lacks a main storyboard? Such an app is possible, though not
common nowadays. In such an app, you would need to do yourself, in code — typi‐
cally, in application(_:didFinishLaunchingWithOptions:) — everything that
UIApplicationMain does automatically if the app has a main storyboard: instantiate
UIWindow and assign it as the app delegate’s window property, instantiate a view con‐
troller and assign it as the window’s rootViewController property, and call makeKey-
AndVisible to show the window (see Appendix B).

It is improbable that you would ever need to subclass UIWindow. If, however, you
wanted to create a UIWindow subclass and make an instance of that subclass your
app’s main window, then, in an app with a main storyboard, you would need to pre‐
vent UIApplicationMain from assigning a UIWindow instance as your app delegate’s
window. The rule is that, after UIApplicationMain has instantiated the app delegate, it
asks the app delegate instance for the value of its window property. If that value is nil,
UIApplicationMain instantiates UIWindow and assigns that instance to the app dele‐
gate’s window property. If that value is not nil, UIApplicationMain leaves it alone.
Therefore, to make your app’s main window be an instance of your UIWindow sub‐
class, all you have to do is assign that instance as the default value for the app dele‐
gate’s window property:

@UIApplicationMain
class AppDelegate : UIResponder, UIApplicationDelegate {
 var window : UIWindow? = MyWindow()
 // ...
}

Once the app is running, there are various ways for your code to refer to the window:

• If a UIView is in the interface, it automatically has a reference to the window
through its own window property.

The Window | 31

You can also use a UIView’s window property as a way of asking whether it is ulti‐
mately embedded in the window; if it isn’t, its window property is nil. A UIView
whose window property is nil cannot be visible to the user.

• The app delegate instance maintains a reference to the window through its
window property. You can get a reference to the app delegate from elsewhere
through the shared application’s delegate property, and through it you can refer
to the window:

let w = UIApplication.shared.delegate!.window!!

If you prefer something less generic (and requiring less extreme unwrapping of
Optionals), cast the delegate explicitly to your app delegate class:

let w = (UIApplication.shared.delegate as! AppDelegate).window!

• The shared application maintains a reference to the window through its key-
Window property:

let w = UIApplication.shared.keyWindow!

That reference, however, is slightly volatile, because the system can create tempo‐
rary windows and interpose them as the application’s key window.

Experimenting With Views
In the course of this and subsequent chapters, you may want to experiment with
views in a project of your own. If you start your project with the Single View app
template, it gives you the simplest possible app — a main storyboard containing one
scene consisting of one view controller instance containing its own main view. As I
described in the preceding section, when the app runs, that view controller will
become the app’s main window’s rootViewController, and its main view will become
the window’s root view. Thus, if you can get your views to become subviews of that
view controller’s main view, they will be present in the app’s interface when it
launches.

View controllers aren’t formally explained until Chapter 6, so you’ll just have to
believe me when I tell you how to arrange that. In the nib editor, you could drag a
view from the Object library into the main view as a subview, and it will be instanti‐
ated in the interface when the app runs. However, my initial examples will all create
views and add them to the interface in code. So where should that code go? The sim‐
plest place is the view controller’s viewDidLoad method, which is provided as a stub
by the project template code.

The viewDidLoad method has a reference to the view controller’s main view as
self.view. In my code examples, I’ll refer to the main view as mainview. So all you

32 | Chapter 1: Views

Figure 1-1. A color literal

Fun With Colors
New in Xcode 8, you can define a UIColor through a color picker. If you type color
and ask for code completion, you’re offered a Swift color literal. Accept this, and a
color palette appears; click Other and a full-fledged color picker appears. The chosen
color appears in your code as a small rectangular swatch of that color (Figure 1-1).
Behind the scenes, this equates to calling #colorLiteral(red:green:blue:alpha).

have to do is declare mainview and assign self.view to it, and then paste in my code
after that. For example:

override func viewDidLoad() {
 super.viewDidLoad() // this is template code
 let mainview = self.view! // you add this
 // my code starts here:
 let v = UIView(frame:CGRect(100,100,50,50))
 v.backgroundColor = .red // small red square
 mainview.addSubview(v) // add it to main view
}

Try it! Make a new project from the Single View app template, and make the View‐
Controller class’s viewDidLoad look like that. Run the app. You will actually see the
small red square in the running app’s interface.

Subview and Superview
Once upon a time, and not so very long ago, a view owned precisely its own rectan‐
gular area. No part of any view that was not a subview of this view could appear
inside it, because when this view redrew its rectangle, it would erase the overlapping
portion of the other view. No part of any subview of this view could appear outside it,
because the view took responsibility for its own rectangle and no more.

Those rules, however, were gradually relaxed, and starting in OS X 10.5, Apple intro‐
duced an entirely new architecture for view drawing that lifted those restrictions
completely. iOS view drawing is based on this revised architecture. In iOS, some or all
of a subview can appear outside its superview, and a view can overlap another view
and can be drawn partially or totally in front of it without being its subview.

For example, Figure 1-2 shows three overlapping views. All three views have a back‐
ground color, so each is completely represented by a colored rectangle. You have no
way of knowing, from this visual representation, exactly how the views are related

Subview and Superview | 33

Figure 1-2. Overlapping views

Figure 1-3. A view hierarchy as displayed in the nib editor

within the view hierarchy. In actual fact, the view in the middle (horizontally) is a sib‐
ling view of the view on the left (they are both direct subviews of the root view), and
the view on the right is a subview of the middle view.

When views are created in the nib, you can examine the view hierarchy in the nib
editor’s document outline to learn their actual relationship (Figure 1-3). When views
are created in code, you know their hierarchical relationship because you created that
hierarchy. But the visible interface doesn’t tell you, because view overlapping is so
flexible.

Nevertheless, a view’s position within the view hierarchy is extremely significant. For
one thing, the view hierarchy dictates the order in which views are drawn. Sibling
subviews of the same superview have a definite order: one is drawn before the other,
so if they overlap, it will appear to be behind its sibling. Similarly, a superview is
drawn before its subviews, so if they overlap it, it will appear to be behind them.

You can see this illustrated in Figure 1-2. The view on the right is a subview of the
view in the middle and is drawn on top of it. The view on the left is a sibling of the
view in the middle, but it is a later sibling, so it is drawn on top of the view in the
middle and on top of the view on the right. The view on the left cannot appear behind
the view on the right but in front of the view in the middle, because those two views

34 | Chapter 1: Views

are subview and superview and are drawn together — both are drawn either before or
after the view on the left, depending on the ordering of the siblings.

This layering order can be governed in the nib editor by arranging the views in the
document outline. (If you click in the canvas, you may be able to use the menu items
of the Editor → Arrange menu instead — Send to Front, Send to Back, Send Forward,
Send Backward.) In code, there are methods for arranging the sibling order of views,
which we’ll come to in a moment.

Here are some other effects of the view hierarchy:

• If a view is removed from or moved within its superview, its subviews go with it.
• A view’s degree of transparency is inherited by its subviews.
• A view can optionally limit the drawing of its subviews so that any parts of them

outside the view are not shown. This is called clipping and is set with the view’s
clipsToBounds property.

• A superview owns its subviews, in the memory-management sense, much as an
array owns its elements; it retains them and is responsible for releasing a subview
when that subview ceases to be its subview (it is removed from the collection of
this view’s subviews) or when it itself goes out of existence.

• If a view’s size is changed, its subviews can be resized automatically (and I’ll have
much more to say about that later in this chapter).

A UIView has a superview property (a UIView) and a subviews property (an array of
UIView objects, in back-to-front order), allowing you to trace the view hierarchy in
code. There is also a method isDescendant(of:) letting you check whether one view
is a subview of another at any depth. If you need a reference to a particular view, you
will probably arrange this beforehand as a property, perhaps through an outlet. Alter‐
natively, a view can have a numeric tag (its tag property), and can then be referred to
by sending any view higher up the view hierarchy the viewWithTag(_:) message. See‐
ing that all tags of interest are unique within their region of the hierarchy is up to you.

Manipulating the view hierarchy in code is easy. This is part of what gives iOS apps
their dynamic quality, and it compensates for the fact that there is basically just a sin‐
gle window. It is perfectly reasonable for your code to rip an entire hierarchy of views
out of the superview and substitute another, right before the user’s very eyes! You can
do this directly; you can combine it with animation (Chapter 4); you can govern it
through view controllers (Chapter 6).

The method addSubview(_:) makes one view a subview of another; removeFrom-
Superview takes a subview out of its superview’s view hierarchy. In both cases, if the
superview is part of the visible interface, the subview will appear or disappear; and of
course this view may itself have subviews that accompany it. Just remember that

Subview and Superview | 35

removing a subview from its superview releases it; if you intend to reuse that subview
later on, you will wish to retain it first. This is often taken care of by assignment to a
property.

Events inform a view of these dynamic changes. To respond to these events requires
subclassing. Then you’ll be able to override any of these methods:

• willRemoveSubview(_:), didAddSubview(_:)
• willMove(toSuperview:), didMoveToSuperview
• willMove(toWindow:), didMoveToWindow

When addSubview(_:) is called, the view is placed last among its superview’s sub‐
views; thus it is drawn last, meaning that it appears frontmost. A view’s subviews are
indexed, starting at 0, which is rearmost. There are additional methods for inserting a
subview at a given index, or below (behind) or above (in front of) a specific view; for
swapping two sibling views by index; and for moving a subview all the way to the
front or back among its siblings:

• insertSubview(at:)

• insertSubview(belowSubview:), insertSubview(aboveSubview:)
• exchangeSubview(at:withSubviewAt:)

• bringSubview(toFront:), sendSubview(toBack:)

Oddly, there is no command for removing all of a view’s subviews at once. However, a
view’s subviews array is an immutable copy of the internal list of subviews, so it is
legal to cycle through it and remove each subview one at a time:

myView.subviews.forEach {$0.removeFromSuperview()}

Visibility and Opacity
A view can be made invisible by setting its isHidden property to true, and visible
again by setting it to false. Hiding a view takes it (and its subviews, of course) out of
the visible interface without the overhead of actually removing it from the view hier‐
archy. A hidden view does not (normally) receive touch events, so to the user it really
is as if the view weren’t there. But it is there, so it can still be manipulated in code.

A view can be assigned a background color through its backgroundColor property. A
color is a UIColor. A view whose background color is nil (the default) has a trans‐
parent background. It is perfectly reasonable for a view to have a transparent back‐
ground and to do no additional drawing of its own, just so that it can act as a
convenient superview to other views, making them behave together.

36 | Chapter 1: Views

A view can be made partially or completely transparent through its alpha property:
1.0 means opaque, 0.0 means transparent, and a value may be anywhere between
them, inclusive. A view that is completely transparent (or very close to it) is like a
view whose isHidden is true: it is invisible, along with its subviews, and cannot (nor‐
mally) be touched.

A view’s alpha property value affects both the apparent transparency of its back‐
ground color and the apparent transparency of its contents. For example, if a view
displays an image and has a background color and its alpha is less than 1, the back‐
ground color will seep through the image (and whatever is behind the view will seep
through both). Moreover, a view’s alpha property affects the apparent transparency
of its subviews! If a superview has an alpha of 0.5, none of its subviews can have an
apparent opacity of more than 0.5, because whatever alpha value they have will be
drawn relative to 0.5.

(Just to make matters more complicated, colors have an alpha value as well. So, for
example, a view can have an alpha of 1.0 but still have a transparent background
because its backgroundColor has an alpha less than 1.0.)

A view’s isOpaque property, on the other hand, is a horse of a different color; chang‐
ing it has no effect on the view’s appearance. Rather, this property is a hint to the
drawing system. If a view completely fills its bounds with ultimately opaque material
and its alpha is 1.0, so that the view has no effective transparency, then it can be
drawn more efficiently (with less drag on performance) if you inform the drawing
system of this fact by setting its isOpaque to true. Otherwise, you should set its
isOpaque to false. The isOpaque value is not changed for you when you set a view’s
backgroundColor or alpha! Setting it correctly is entirely up to you; the default, per‐
haps surprisingly, is true.

Frame
A view’s frame property, a CGRect, is the position of its rectangle within its super‐
view, in the superview’s coordinate system. By default, the superview’s coordinate sys‐
tem will have the origin at its top left, with the x-coordinate growing positively
rightward and the y-coordinate growing positively downward.

Setting a view’s frame to a different CGRect value repositions the view, or resizes it, or
both. If the view is visible, this change will be visibly reflected in the interface. On the
other hand, you can also set a view’s frame when the view is not visible — for exam‐
ple, when you create the view in code. In that case, the frame describes where the
view will be positioned within its superview when it is given a superview. UIView’s
designated initializer is init(frame:), and you’ll often assign a frame this way, espe‐

Frame | 37

cially because the default frame might otherwise be CGRect.zero, which is rarely
what you want.

Forgetting to assign a view a frame when creating it in code, and then wondering
why it isn’t appearing when added to a superview, is a common beginner mis‐
take. A view with a zero-size frame is effectively invisible. If a view has a standard
size that you want it to adopt, especially in relation to its contents (like a UIBut‐
ton in relation to its title), an alternative is to call its sizeToFit method.

We are now in a position to generate programmatically the interface displayed in
Figure 1-2 (for the CGRect initializer with no argument labels, see Appendix B):

let v1 = UIView(frame:CGRect(113, 111, 132, 194))
v1.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1)
let v2 = UIView(frame:CGRect(41, 56, 132, 194))
v2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1)
let v3 = UIView(frame:CGRect(43, 197, 160, 230))
v3.backgroundColor = UIColor(red: 1, green: 0, blue: 0, alpha: 1)
mainview.addSubview(v1)
v1.addSubview(v2)
mainview.addSubview(v3)

In that code, we determined the layering order of v1 and v3 (the middle and left
views, which are siblings) by the order in which we inserted them into the view hier‐
archy with addSubview(_:).

Bounds and Center
Suppose we have a superview and a subview, and the subview is to appear inset by 10
points, as in Figure 1-4. CGRect methods like insetBy(dx:dy:) make it easy to
derive one rectangle as an inset from another. But what rectangle should we inset
from? Not the superview’s frame; the frame represents a view’s position within its
superview, and in that superview’s coordinates. What we’re after is a CGRect describ‐
ing our superview’s rectangle in its own coordinates, because those are the coordi‐
nates in which the subview’s frame is to be expressed. The CGRect that describes a
view’s rectangle in its own coordinates is the view’s bounds property.

So, the code to generate Figure 1-4 looks like this:

let v1 = UIView(frame:CGRect(113, 111, 132, 194))
v1.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1)
let v2 = UIView(frame:v1.bounds.insetBy(dx: 10, dy: 10))
v2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1)
mainview.addSubview(v1)
v1.addSubview(v2)

38 | Chapter 1: Views

Figure 1-4. A subview inset from its superview

You’ll very often use a view’s bounds in this way. When you need coordinates for posi‐
tioning content inside a view, whether drawing manually or placing a subview, you’ll
refer to the view’s bounds.

If you change a view’s bounds size, you change its frame. The change in the view’s
frame takes place around its center, which remains unchanged. So, for example:

let v1 = UIView(frame:CGRect(113, 111, 132, 194))
v1.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1)
let v2 = UIView(frame:v1.bounds.insetBy(dx: 10, dy: 10))
v2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1)
mainview.addSubview(v1)
v1.addSubview(v2)
v2.bounds.size.height += 20
v2.bounds.size.width += 20

What appears is a single rectangle; the subview completely and exactly covers its
superview, its frame being the same as the superview’s bounds. The call to insetBy
started with the superview’s bounds and shaved 10 points off the left, right, top, and
bottom to set the subview’s frame (Figure 1-4). But then we added 20 points to the
subview’s bounds height and width, and thus added 20 points to the subview’s frame
height and width as well (Figure 1-5). The subview’s center didn’t move, so we effec‐
tively put the 10 points back onto the left, right, top, and bottom of the subview’s
frame.

If you change a view’s bounds origin, you move the origin of its internal coordinate
system. When you create a UIView, its bounds coordinate system’s zero point
(0.0,0.0) is at its top left. Because a subview is positioned in its superview with
respect to its superview’s coordinate system, a change in the bounds origin of the
superview will change the apparent position of a subview. To illustrate, we start once
again with our subview inset evenly within its superview, and then change the bounds
origin of the superview:

Bounds and Center | 39

Figure 1-5. A subview exactly covering its superview

Figure 1-6. The superview’s bounds origin has been shifted

let v1 = UIView(frame:CGRect(113, 111, 132, 194))
v1.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1)
let v2 = UIView(frame:v1.bounds.insetBy(dx: 10, dy: 10))
v2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1)
mainview.addSubview(v1)
v1.addSubview(v2)
v1.bounds.origin.x += 10
v1.bounds.origin.y += 10

Nothing happens to the superview’s size or position. But the subview has moved up
and to the left so that it is flush with its superview’s top-left corner (Figure 1-6). Basi‐
cally, what we’ve done is to say to the superview, “Instead of calling the point at your
upper left (0.0,0.0), call that point (10.0,10.0).” Because the subview’s frame ori‐
gin is itself at (10.0,10.0), the subview now touches the superview’s top-left corner.
The effect of changing a view’s bounds origin may seem directionally backward — we
increased the superview’s origin in the positive direction, but the subview moved in
the negative direction — but think of it this way: a view’s bounds origin point coin‐
cides with its frame’s top left.

We have seen that changing a view’s bounds size affects its frame size. The converse is
also true: changing a view’s frame size affects its bounds size. What is not affected by
changing a view’s bounds size is the view’s center. This property, like the frame prop‐

40 | Chapter 1: Views

erty, represents a subview’s position within its superview, in the superview’s coordi‐
nates; in particular, it is the position within the superview of the subview’s bounds
center, the point derived from the bounds like this (for the CGPoint initializer
without argument labels, see Appendix B):

let c = CGPoint(theView.bounds.midX, theView.bounds.midY)

A view’s center is thus a single point establishing the positional relationship between
the view’s bounds and its superview’s bounds.

Changing a view’s bounds does not change its center; changing a view’s center does
not change its bounds. Thus, a view’s bounds and center are orthogonal (independ‐
ent), and completely describe the view’s size and its position within its superview. The
view’s frame is therefore superfluous! In fact, the frame property is merely a conve‐
nient expression of the center and bounds values. In most cases, this won’t matter to
you; you’ll use the frame property anyway. When you first create a view from scratch,
the designated initializer is init(frame:). You can change the frame, and the bounds
size and center will change to match. You can change the bounds size or the center,
and the frame will change to match. Nevertheless, the proper and most reliable way to
position and size a view within its superview is to use its bounds and center, not its
frame; there are some situations in which the frame is meaningless (or will at least
behave very oddly), but the bounds and center will always work.

We have seen that every view has its own coordinate system, expressed by its bounds,
and that a view’s coordinate system has a clear relationship to its superview’s coordi‐
nate system, expressed by its center. This is true of every view in a window, so it is
possible to convert between the coordinates of any two views in the same window.
Convenience methods are supplied to perform this conversion both for a CGPoint
and for a CGRect:

• convert(_:from:)

• convert(_:to:)

The first parameter is either a CGPoint or a CGRect. The second parameter is a
UIView; if the second parameter is nil, it is taken to be the window.

For example, if v1 is the superview of v2, then to center v2 within v1 you could say:

v2.center = v1.convert(v1.center, from:v1.superview)

Bounds and Center | 41

When setting a view’s position by setting its center, if the height or width of the
view is not an integer (or, on a single-resolution screen, not an even integer), the
view can end up misaligned: its point values in one or both dimensions are loca‐
ted between the screen pixels. This can cause the view to be displayed incorrectly;
for example, if the view contains text, the text may be blurry. You can detect this
situation in the Simulator by checking Debug → Color Misaligned Images. A
simple solution is to set the view’s frame to its own integral.

Window Coordinates and Screen Coordinates
The device screen has no frame, but it has bounds. The main window has no super‐
view, but its frame is set with respect to the screen’s bounds:

let w = UIWindow(frame: UIScreen.main.bounds)

In iOS 9 and later, you can omit the frame parameter, as a shortcut; the effect is
exactly the same:

let w = UIWindow()

The window thus starts out life filling the screen, and generally continues to fill the
screen, and so, for the most part, window coordinates are screen coordinates. (I’ll dis‐
cuss a possible exception in Chapter 9.)

In iOS 7 and before, the screen’s coordinates were invariant. iOS 8 introduced a major
change: when the app rotates to compensate for the rotation of the device, the screen
(and with it, the window) is what rotates. Thus there is a transposition of the size
components of the screen’s bounds, and a corresponding transposition of the size
components of the window’s bounds: in portrait orientation, the size is taller than
wide, but in landscape orientation, the size is wider than tall.

The screen therefore reports its coordinates through two different properties; their
values are typed as UICoordinateSpace, a protocol (also adopted by UIView) that
provides a bounds property:

UIScreen’s coordinateSpace property
This coordinate space rotates. Its bounds height and width are transposed when
the app rotates to compensate for a change in the orientation of the device; its
origin is at the app’s top left.

UIScreen’s fixedCoordinateSpace property
This coordinate space is invariant. Its bounds origin is at the top left of the physi‐
cal device, regardless of how the device itself is held. (A good way to think of this
is with respect to the Home button, which is at the bottom of the physical
device.)

42 | Chapter 1: Views

To help you convert between coordinate spaces, UICoordinateSpace provides meth‐
ods parallel to the coordinate-conversion methods I listed in the previous section:

• convert(_:from:)

• convert(_:to:)

The first parameter is either a CGPoint or a CGRect. The second parameter is a
UICoordinateSpace, which might be a UIView or the UIScreen.

So, for example, suppose we have a UIView v in our interface, and we wish to learn its
position in fixed device coordinates. We could do it like this:

let screen = UIScreen.main.fixedCoordinateSpace
let r = v.superview!.convert(v.frame, to: screen)

Occasions where you need such information, however, will be rare. Indeed, my expe‐
rience is that it is rare even to worry about window coordinates. All of your app’s visi‐
ble action takes place within your root view controller’s main view, and the bounds of
that view, which are adjusted for you automatically when the app rotates to compen‐
sate for a change in device orientation, are probably the highest coordinate system
that will interest you.

Transform
A view’s transform property alters how the view is drawn — it may, for example,
change the view’s apparent size and orientation — without affecting its bounds and
center. A transformed view continues to behave correctly: a rotated button, for exam‐
ple, is still a button, and can be tapped in its apparent location and orientation.

A transform value is a CGAffineTransform, which is a struct representing six of the
nine values of a 3×3 transformation matrix (the other three values are constants, so
there’s no need to represent them in the struct). You may have forgotten your high-
school linear algebra, so you may not recall what a transformation matrix is. For the
details, which are quite simple really, see the “Transforms” chapter of Apple’s Quartz
2D Programming Guide, especially the section called “The Math Behind the Matrices.”
But you don’t really need to know those details, because initializers are provided for
creating three of the basic types of transform: rotation, scaling, and translation (i.e.,
changing the view’s apparent position). A fourth basic transform type, skewing or
shearing, has no initializer.

By default, a view’s transformation matrix is CGAffineTransform.identity, the iden‐
tity transform. It has no visible effect, so you’re unaware of it. Any transform that you
do apply takes place around the view’s center, which is held constant.

Here’s some code to illustrate use of a transform:

Transform | 43

Figure 1-7. A rotation transform

let v1 = UIView(frame:CGRect(113, 111, 132, 194))
v1.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1)
let v2 = UIView(frame:v1.bounds.insetBy(dx: 10, dy: 10))
v2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1)
mainview.addSubview(v1)
v1.addSubview(v2)
v1.transform = CGAffineTransform(rotationAngle:45 * .pi/180)
print(v1.frame)

The transform property of the view v1 is set to a rotation transform. The result
(Figure 1-7) is that the view appears to be rocked 45 degrees clockwise. (I think in
degrees, but Core Graphics thinks in radians, so my code has to convert.) Observe
that the view’s center property is unaffected, so that the rotation seems to have
occurred around the view’s center. Moreover, the view’s bounds property is unaffec‐
ted; the internal coordinate system is unchanged, so the subview is drawn in the same
place relative to its superview. The view’s frame, however, is now useless, as no mere
rectangle can describe the region of the superview apparently occupied by the view;
the frame’s actual value, roughly (63.7,92.7,230.5,230.5), describes the minimal
bounding rectangle surrounding the view’s apparent position. The rule is that if a
view’s transform is not the identity transform, you should not set its frame; also,
automatic resizing of a subview, discussed later in this chapter, requires that the
superview’s transform be the identity transform.

Suppose, instead of a rotation transform, we apply a scale transform, like this:

v1.transform = CGAffineTransform(scaleX:1.8, y:1)

The bounds property of the view v1 is still unaffected, so the subview is still drawn in
the same place relative to its superview; this means that the two views seem to have
stretched horizontally together (Figure 1-8). No bounds or centers were harmed by
the application of this transform!

Methods are provided for transforming an existing transform. This operation is not
commutative; that is, order matters. (That high school math is starting to come back

44 | Chapter 1: Views

Figure 1-8. A scale transform

to you now, isn’t it?) If you start with a transform that translates a view to the right
and then apply a rotation of 45 degrees, the rotated view appears to the right of its
original position; on the other hand, if you start with a transform that rotates a view
45 degrees and then apply a translation to the right, the meaning of “right” has
changed, so the rotated view appears 45 degrees down from its original position. To
demonstrate the difference, I’ll start with a subview that exactly overlaps its super‐
view:

let v1 = UIView(frame:CGRect(20, 111, 132, 194))
v1.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1)
let v2 = UIView(frame:v1.bounds)
v2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1)
mainview.addSubview(v1)
v1.addSubview(v2)

Then I’ll apply two successive transforms to the subview, leaving the superview to
show where the subview was originally. In this example, I translate and then rotate
(Figure 1-9):

v2.transform =
 CGAffineTransform(translationX:100, y:0).rotated(by:45 * .pi/180)

In this example, I rotate and then translate (Figure 1-10):

v2.transform =
 CGAffineTransform(rotationAngle:45 * .pi/180).translateBy(x: 100, y: 0)

The concatenating method concatenates two transform matrices using matrix mul‐
tiplication. Again, this operation is not commutative. The order is the opposite of the
order when chaining transforms. Thus, this gives the same result as the previous
example (Figure 1-10):

let r = CGAffineTransform(rotationAngle:45 * .pi/180)
let t = CGAffineTransform(translationX:100, y:0)
v2.transform = t.concatenating(r) // not r.concatenating(t)

Transform | 45

Figure 1-9. Translation, then rotation

Figure 1-10. Rotation, then translation

To remove a transform from a combination of transforms, apply its inverse. The
inverted method lets you obtain the inverse of a given affine transform. Again, order
matters. In this example, I rotate the subview and shift it to its “right,” and then
remove the rotation (Figure 1-11):

let r = CGAffineTransform(rotationAngle:45 * .pi/180)
let t = CGAffineTransform(translationX:100, y:0)
v2.transform = t.concatenating(r)
v2.transform = r.inverted().concatenating(v2.transform)

Finally, as there is no initializer for creating a skew (shear) transform, I’ll illustrate by
creating one manually, without further explanation (Figure 1-12):

v1.transform = CGAffineTransform(a:1, b:0, c:-0.2, d:1, tx:0, ty:0)

Transforms are useful particularly as temporary visual indicators. For example, you
might call attention to a view by applying a transform that scales it up slightly, and
then applying the identity transform to restore it to its original size, and animating
those changes (Chapter 4).

46 | Chapter 1: Views

Figure 1-11. Rotation, then translation, then inversion of the rotation

Figure 1-12. Skew (shear)

In iOS 7 and before, the transform property lay at the heart of an iOS app’s ability to
rotate its interface: the window’s frame and bounds were invariant, locked to the
screen, and an app’s interface rotated to compensate for a change in device orienta‐
tion by applying a rotation transform to the root view, so that its origin moved to
what the user now saw as the top left of the view.

In iOS 8 and later, as I’ve already mentioned, this is no longer the case. The screen’s
coordinate space is effectively rotated, but a coordinate space doesn’t have a
transform property, so the rotation transform applied to that coordinate space is fic‐
titious: you can work out what has happened, if you really want to, by comparing the
screen’s coordinateSpace with its fixedCoordinateSpace, but none of the views in
the story — neither the window, nor the root view, nor any of its subviews — receives
a rotation transform when the app’s interface rotates.

Instead, you are expected to concentrate on the dimensions of the window, the root
view, and so forth. This might mean their absolute dimensions, but it will often mean
their dimensions as embodied in a set of size classes which are vended by a view’s
traitCollection property as a UITraitCollection object. I’ll discuss trait collections
and size classes further in the next section.

Transform | 47

You can thus treat app rotation as effectively nothing more than a change in the inter‐
face’s proportions: when the app rotates, the long dimension (of the root view, the
window, and the screen’s coordinate space bounds) becomes its short dimension and
vice versa. This, after all, is what your interface needs to take into account in order to
keep working when the app rotates.

Consider, for example, a subview of the root view, located at the bottom right of the
screen when the device is in portrait orientation. If the root view’s bounds width and
bounds height are effectively transposed, then that poor old subview will now be out‐
side the bounds height, and therefore off the screen — unless your app responds in
some way to this change to reposition it. Such a response is called layout, a subject
that will occupy most of the rest of this chapter. The point, however, is that what
you’re responding to is just a change in the window’s proportions; the fact that this
change stems from rotation of the app’s interface is all but irrelevant.

Trait Collections and Size Classes
Every view in the interface, from the window on down, as well as any view controller
whose view is part of the interface, inherits from the environment the value of its
traitCollection property, which it has by virtue of implementing the UITraitEnvir‐
onment protocol. The traitCollection is a UITraitCollection, a value class. UITrait‐
Collection was introduced in iOS 8; it has grown since then, and in iOS 10 is
freighted with a considerable number of properties describing the environment. In
addition to its displayScale (the screen resolution) and userInterfaceIdiom (the
general device type, iPhone or iPad), a trait collection now also reports such things as
the device’s force touch capability and display gamut. But just two properties in par‐
ticular concern us with regard to views in general:

horizontalSizeClass

verticalSizeClass

A UIUserInterfaceSizeClass value, either .regular or .compact.

These are called size classes. The size classes, in combination, have the following
meanings when (as will usually be the case) your app occupies the entire screen:

Both the horizontal and vertical size classes are .regular
We’re running on an iPad.

The horizontal size class is .compact and the vertical size class is .regular
We’re running on an iPhone with the app in portrait orientation.

The horizontal size class is .regular and the vertical size class is .compact
We’re running on an iPhone 6 Plus with the app in landscape orientation.

48 | Chapter 1: Views

www.allitebooks.com

http://www.allitebooks.org

Both the horizontal and vertical size classes are .compact
We’re running on an iPhone (except an iPhone 6 Plus) with the app in landscape
orientation.

(What do I mean by “when your app occupies the entire screen”? Well, we might be
running on an iPad in a splitscreen iPad multitasking configuration; I’ll discuss that
in Chapter 9.)

The size class trait collection properties can change while the app is running. In par‐
ticular, the size classes on an iPhone reflect the orientation of the app — which can
change as the app rotates in response to a change in the orientation of the device.

Therefore, both at app launch time and, thereafter, if the trait collection changes
while the app is running, the traitCollectionDidChange(_:) message is propagated
down the hierarchy of UITraitEnvironments (meaning primarily, for our purposes,
view controllers and views); the old trait collection (if any) is provided as the parame‐
ter, and the new trait collection can be retrieved as self.traitCollection.

It is also possible to create a trait collection yourself. (It may not be immediately obvi‐
ous why this would be a useful thing to do; I’ll give an example in the next chapter.)
Oddly, however, you can’t set any trait collection properties directly; instead, you
form a trait collection through an initializer that determines just one property, and if
you want to add further property settings, you have to combine trait collections by
calling init(traitsFrom:) with an array of trait collections. For example:

let tcdisp = UITraitCollection(displayScale: UIScreen.main.scale)
let tcphone = UITraitCollection(userInterfaceIdiom: .phone)
let tcreg = UITraitCollection(verticalSizeClass: .regular)
let tc1 = UITraitCollection(traitsFrom: [tcdisp, tcphone, tcreg])

When combining trait collections with init(traitsFrom:), an ordered intersection is
performed. If two trait collections are combined, and one sets a property and the
other doesn’t (the property isn’t set or its value isn’t yet known), the one that sets the
property wins; if they both set the property, the winner is the trait collection that
appears later in the array.

Similarly, if you create a trait collection and you don’t specify a property, this means
that the value for that property is to be inherited if the trait collection finds itself in
the inheritance hierarchy.

To compare trait collections, call containsTraits(in:). This returns true if the
value of every specified property of the parameter trait collection matches that of this
trait collection.

Trait Collections and Size Classes | 49

You cannot insert a trait collection directly into the inheritance hierarchy simply
by setting a view’s trait collection; traitCollection isn’t a settable property.
Instead, you’ll use a special overrideTraitCollection property or method; I’ll
give an example in Chapter 6.

Layout
We have seen that a subview moves when its superview’s bounds origin is changed.
But what happens to a subview when its superview’s bounds (or frame) size is
changed?

Of its own accord, nothing happens. The subview’s bounds and center haven’t
changed, and the superview’s bounds origin hasn’t moved, so the subview stays in the
same position relative to the top left of its superview. In real life, however, that often
won’t be what you want. You’ll want subviews to be resized and repositioned when
their superview’s bounds size is changed. This is called layout.

Here are some ways in which a superview might be resized dynamically:

• Your app might compensate for the user rotating the device 90 degrees by rotat‐
ing itself so that its top moves to the new top of the screen, matching its new ori‐
entation — and, as a consequence, transposing its bounds width and height
values.

• An iPhone app might launch on screens with different aspect ratios: for example,
the screen of the iPhone 4s is relatively shorter than the screen of later iPhone
models, and the app’s interface may need to adapt to this difference.

• A universal app might launch on an iPad or on an iPhone. The app’s interface
may need to adapt to the size of the screen on which it finds itself running.

• A view instantiated from a nib, such as a view controller’s main view or a table
view cell, might be resized to fit the interface into which it is placed.

• A view might respond to a change in its surrounding views. For example, when a
navigation bar is shown or hidden dynamically, the remaining interface might
shrink or grow to compensate, filling the available space.

• The user might alter the width of your app’s window on an iPad, as part of the
iPad multitasking interface.

In any of those situations, and others, layout will probably be needed.

Layout is performed in three primary ways:

Manual layout
The superview is sent the layoutSubviews message whenever it is resized; so, to
lay out subviews manually, provide your own subclass and override layout-

50 | Chapter 1: Views

Subviews. Clearly this could turn out to be a lot of work, but it means you can do
anything you like.

Autoresizing
Autoresizing is the pre-iOS 6 way of performing layout automatically. When its
superview is resized, a subview will respond in accordance with the rules prescri‐
bed by its own autoresizingMask property value.

Autolayout
Autolayout, introduced in iOS 6, depends on the constraints of views. A con‐
straint (an instance of NSLayoutConstraint) is a full-fledged object with numeric
values describing some aspect of the size or position of a view, often in terms of
some other view; it is much more sophisticated, descriptive, and powerful than
the autoresizingMask. Multiple constraints can apply to an individual view, and
they can describe a relationship between any two views (not just a subview and
its superview). Autolayout is implemented behind the scenes in layoutSubviews;
in effect, constraints allow you to write sophisticated layoutSubviews functional‐
ity without code.

Your layout strategy can involve any combination of these. The need for manual lay‐
out is rare, but it’s there if you need it. Autoresizing is used automatically unless you
deliberately turn it off by setting a superview’s autoresizesSubviews property to
false, or unless a view uses autolayout instead. Autolayout is an opt-in technology,
and can be used for whatever areas of your interface you find appropriate; a view that
uses autolayout can live side by side with a view that uses autoresizing.

One of the chief places where you opt in to autolayout is the nib file. All new .story‐
board and .xib files do opt in — they have autolayout turned on, by default. To see
this, select the file in the Project navigator, show the File inspector, and examine the
“Use Auto Layout” checkbox. On the other hand, a view that your code creates and
adds to the interface, by default, uses autoresizing, not autolayout.

Autoresizing
Autoresizing is a matter of conceptually assigning a subview “springs and struts.” A
spring can stretch; a strut can’t. Springs and struts can be assigned internally or exter‐
nally, horizontally or vertically. Thus you can specify (using internal springs and
struts) whether and how the view can be resized, and (using external springs and
struts) whether and how the view can be repositioned. For example:

• Imagine a subview that is centered in its superview and is to stay centered, but is
to resize itself as the superview is resized. It would have struts externally and
springs internally.

Layout | 51

• Imagine a subview that is centered in its superview and is to stay centered, and is
not to resize itself as the superview is resized. It would have springs externally
and struts internally.

• Imagine an OK button that is to stay in the lower right of its superview. It would
have struts internally, struts externally to its right and bottom, and springs exter‐
nally to its top and left.

• Imagine a text field that is to stay at the top of its superview. It is to widen as the
superview widens. It would have struts externally, but a spring to its bottom;
internally it would have a vertical strut and a horizontal spring.

In code, a combination of springs and struts is set through a view’s autoresizing-
Mask property, which is a bitmask so that you can combine options. The options,
members of the UIViewAutoresizing option set, represent springs; whatever isn’t
specified is a strut. The default is the empty set, apparently meaning all struts — but
of course it can’t really be all struts, because if the superview is resized, something
needs to change; in reality, an empty autoresizingMask is the same as .flexible-
RightMargin together with .flexibleBottomMargin.

In debugging, when you log a UIView to the console, its autoresizingMask is
reported using the word “autoresize” and a list of the springs. The margins are
LM, RM, TM, and BM; the internal dimensions are W and H. For example, autoresize
= LM+TM means that what’s flexible is the left and top margins; autoresize = W
+BM means that what’s flexible is the width and the bottom margin.

To demonstrate autoresizing, I’ll start with a view and two subviews, one stretched
across the top, the other confined to the lower right (Figure 1-13):

let v1 = UIView(frame:CGRect(100, 111, 132, 194))
v1.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1)
let v2 = UIView(frame:CGRect(0, 0, 132, 10))
v2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1)
let v3 = UIView(frame:CGRect(
 v1.bounds.width-20, v1.bounds.height-20, 20, 20))
v3.backgroundColor = UIColor(red: 1, green: 0, blue: 0, alpha: 1)
mainview.addSubview(v1)
v1.addSubview(v2)
v1.addSubview(v3)

To that example, I’ll add code applying springs and struts to the two subviews to
make them behave like the text field and the OK button I was hypothesizing earlier:

v2.autoresizingMask = .flexibleWidth
v3.autoresizingMask = [.flexibleTopMargin, .flexibleLeftMargin]

Now I’ll resize the superview, thus bringing autoresizing into play; as you can see
(Figure 1-14), the subviews remain pinned in their correct relative positions:

52 | Chapter 1: Views

Figure 1-13. Before autoresizing

Figure 1-14. After autoresizing

v1.bounds.size.width += 40
v1.bounds.size.height -= 50

That example shows exactly what autoresizing is about, but it’s a little artificial; in real
life, the superview is more likely to be resized, not because you resize it in code, but
because of automatic behavior, such as compensatory resizing of the interface when
the device is rotated. To see this, you might initially configure v1 like this:

v1.frame = mainview.bounds
v1.autoresizingMask = [.flexibleHeight, .flexibleWidth]

Now run the app and rotate the device (in the Simulator, repeatedly choose Hardware
→ Rotate Left). The view v1 now fills the screen as the interface rotates, and its sub‐
views stay pinned in their correct relative positions.

If autoresizing isn’t sophisticated enough to achieve what you want, you have two
choices:

• Combine it with manual layout in layoutSubviews. Autoresizing happens before
layoutSubviews is called, so your layoutSubviews code is free to come march‐
ing in and tidy up whatever autoresizing didn’t get quite right.

• Use autolayout. This is actually the same solution, because autolayout is in fact a
way of injecting functionality into layoutSubviews. But using autolayout is a lot
easier than writing your own layoutSubviews code!

Layout | 53

Keep in mind that autoresizing and autolayout are not mutually exclusive. You can
use them in different areas of the same interface. New in Xcode 8, you can even con‐
figure them both in the nib editor for different subviews of the same view.

Autolayout
Autolayout is an opt-in technology, at the level of each individual view. One sibling
view can use autolayout while another sibling view does not, and a superview can use
autolayout while some or all of its subviews do not.

However, autolayout is implemented through the superview chain, so if a view uses
autolayout, then automatically so do all its superviews; and if (as will almost certainly
be the case) one of those views is the main view of a view controller, that view con‐
troller receives autolayout-related events.

But how does a view opt in to using autolayout? Simply put, it’s by becoming involved
with a constraint. Constraints are your way of telling the autolayout engine that you
want it to perform layout on this view and how you want the view laid out. So now
you need to know what a constraint is. That’s the subject of the next section.

Constraints
An autolayout constraint, or simply constraint, is an NSLayoutConstraint instance,
and describes either the absolute width or height of a view or a relationship between
an attribute of one view and an attribute of another view. In the latter case, the
attributes don’t have to be the same attribute, and the two views don’t have to be sib‐
lings (subviews of the same superview) or parent and child (superview and subview)
— the only requirement is that they share a common ancestor (a superview some‐
where up the view hierarchy).

Here are the chief properties of an NSLayoutConstraint:

firstItem, firstAttribute, secondItem, secondAttribute
The two views and their respective attributes (NSLayoutAttribute) involved in
this constraint. If the constraint is describing a view’s absolute height or width,
the second view will be nil and the second attribute will be .notAnAttribute.
Aside from that, the possible NSLayoutAttribute values are:

• .width, .height
• .top, .bottom
• .left, .right, .leading, .trailing
• .centerX, .centerY
• .firstBaseline, .lastBaseline

54 | Chapter 1: Views

.firstBaseline applies primarily to multiline labels, and is some distance down
from the top of the label (Chapter 10); .lastBaseline is some distance up from
the bottom of the label.

The meanings of the other attributes are intuitively obvious, except that you
might wonder what .leading and .trailing mean: they are the international
equivalent of .left and .right, automatically reversing their meaning on sys‐
tems for which your app is localized and whose language is written right-to-left.
Starting in iOS 9, the entire interface is automatically reversed on such systems —
but that will work properly only if you’ve used .leading and .trailing con‐
straints throughout.

multiplier, constant
These numbers will be applied to the second attribute’s value to determine the
first attribute’s value. The multiplier is multiplied by the second attribute’s
value; the constant is added to that product. The first attribute is set to the
result. (The name constant is a very poor choice, as this value isn’t constant; have
the Apple folks never heard the term addend?) Basically, you’re writing an equa‐
tion a1 = ma2 + c, where a1 and a2 are the two attributes, and m and c are the
multiplier and the constant. Thus, in the degenerate case where the first attrib‐
ute’s value is to equal the second attribute’s value, the multiplier will be 1 and the
constant will be 0. If you’re describing a view’s width or height absolutely, the
multiplier will be 1 and the constant will be the width or height value.

relation

An NSLayoutRelation stating how the two attribute values are to be related to
one another, as modified by the multiplier and the constant. This is the opera‐
tor that goes in the spot where I put the equal sign in the equation in the preced‐
ing paragraph. It might be an equal sign (.equal), but inequalities are also
permitted (.lessThanOrEqual, .greaterThanOrEqual).

priority

Priority values range from 1000 (required) down to 1, and certain standard
behaviors have standard priorities. Constraints can have different priorities,
determining the order in which they are applied.

A constraint belongs to a view. A view can have many constraints: a UIView has a
constraints property, along with these instance methods:

• addConstraint(_:), addConstraints(_:)
• removeConstraint(_:), removeConstraints(_:)

The question then is which view a given constraint will belong to. The answer is: the
view that is closest up the view hierarchy from both views involved in the constraint.

Layout | 55

If possible, it should be one of those views. Thus, for example, if the constraint dic‐
tates a view’s absolute width, it belongs to that view; if it sets the top of a view in rela‐
tion to the top of its superview, it belongs to that superview; if it aligns the tops of two
sibling views, it belongs to their common superview.

Starting in iOS 8, instead of adding a constraint to a particular view explicitly, you
can activate the constraint using the NSLayoutConstraint class method
activate(_:), which takes an array of constraints. The activated constraints are
added to the correct view automatically, relieving the programmer from having to
determine what view that would be. There is also a method deactivate(_:) which
removes constraints from their view. And a constraint has an isActive property; you
can set it to activate or deactivate a single constraint, plus it tells you whether a given
constraint is part of the interface at this moment.

NSLayoutConstraint properties are read-only, except for priority, constant, and
isActive. If you want to change anything else about an existing constraint, you must
remove the constraint and add a new one.

Once you are using explicit constraints to position and size a view, do not set its
frame (or bounds and center) subsequently; use constraints alone. Otherwise,
when layoutSubviews is called, the view will jump back to where its constraints
position it. (However, you may — in fact, you probably must — set a view’s frame
from within an implementation of layoutSubviews.)

Autoresizing Constraints
The mechanism whereby individual views can opt in to autolayout can suddenly
involve other views in autolayout, even though those other views were not using
autolayout previously. Therefore, there needs to be a way, when such a view becomes
involved in autolayout, to use constraints to determine that view’s position and size
identically to how its frame and its autoresizingMask were determining them. The
autolayout engine takes care of this for you: it reads the view’s frame and
autoresizingMask settings and translates them into implicit constraints (of class
NSAutoresizingMaskLayoutConstraint).

The autolayout engine treats a view in this special way only if it has its translates-
AutoresizingMaskIntoConstraints property set to true. That is, in fact, the default
if the view came into existence in code, or by instantiation from a nib where “Use
Auto Layout” is not checked. The assumption is that if a view came into existence in
either of those ways, you want its frame and autoresizingMask to dictate its layout;
thus, they need to act as its constraints if it becomes involved in autolayout.

I’ll construct an example in two stages. In the first stage, I add to my interface, in
code, a UILabel that doesn’t use autolayout. I’ll decide that this view’s position is to be
near the top right of the screen. Suppose the main view, which is the label’s superview,

56 | Chapter 1: Views

is 375 points wide. Then this label’s frame might be (313,20,42,22), and its
autoresizingMask needs to be [.flexibleLeftMargin, .flexibleBottomMargin]:

let lab1 = UILabel(frame:CGRect(313,20,42,22))
lab1.autoresizingMask = [.flexibleLeftMargin, .flexibleBottomMargin]
lab1.text = "Hello"
self.view.addSubview(lab1)

If we now rotate the device (or simulator), and the app rotates to compensate, the
label stays correctly positioned in the top right corner by autoresizing.

Now, however, I’ll add another label that does use autolayout — and in particular, I’ll
attach it by a constraint to the first label (the meaning of this code will be made clear
in subsequent sections; just accept it for now):

let lab2 = UILabel()
lab2.translatesAutoresizingMaskIntoConstraints = false
lab2.text = "Howdy"
self.view.addSubview(lab2)
NSLayoutConstraint.activate([
 lab2.topAnchor.constraint(equalTo: lab1.bottomAnchor, constant: 20),
 lab2.trailingAnchor.constraint(
 equalTo: self.view.trailingAnchor, constant: -20)
])

This causes the first label to be involved in autolayout. We created this label in code,
and a view created in code has its translatesAutoresizingMaskIntoConstraints
property set to true. Therefore, the first label’s autoresizingMask and frame are now
reflected in automatically generated implicit constraints of class NSAutoresizingMas‐
kLayoutConstraint:

• A width constraint of 42
• A height constraint of 22
• A horizontal center constraint placing the x-component of its center at the width

of its superview minus 41
• A vertical center constraint placing the y-component of its center at 31

If you create a view in code and forget to set its translatesAutoresizingMask-
IntoConstraints property to false, and if you then position or size that view
with constraints, it is very likely that you’ll end up with a conflict between con‐
straints, as I’ll explain a little later. (To be honest, what usually happens to me is
that I do forget, and am reminded only when I do get a conflict between con‐
straints.)

Layout | 57

Creating Constraints in Code
We are now ready to write some code involving constraints! I’ll start by using the
NSLayoutConstraint initializer:

• init(item:attribute:relatedBy:toItem:attribute:multiplier:constant:)

This initializer sets every property of the constraint, as I described them a moment
ago (except the priority, which defaults to 1000 and can be set later if necessary).

I’ll generate the same views and subviews and layout behavior as in Figures 1-13 and
1-14, but using constraints. First, I’ll create the views and add them to the interface.
Observe that I don’t bother to assign the subviews v2 and v3 explicit frames as I create
them, because constraints will take care of positioning them, and that I remember
(for once) to set their translatesAutoresizingMaskIntoConstraints properties to
false:

let v1 = UIView(frame:CGRect(100, 111, 132, 194))
v1.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1)
let v2 = UIView()
v2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1)
let v3 = UIView()
v3.backgroundColor = UIColor(red: 1, green: 0, blue: 0, alpha: 1)
mainview.addSubview(v1)
v1.addSubview(v2)
v1.addSubview(v3)
v2.translatesAutoresizingMaskIntoConstraints = false
v3.translatesAutoresizingMaskIntoConstraints = false

Now here come the constraints:

v1.addConstraint(
 NSLayoutConstraint(item: v2,
 attribute: .leading,
 relatedBy: .equal,
 toItem: v1,
 attribute: .leading,
 multiplier: 1, constant: 0)
)
v1.addConstraint(
 NSLayoutConstraint(item: v2,
 attribute: .trailing,
 relatedBy: .equal,
 toItem: v1,
 attribute: .trailing,
 multiplier: 1, constant: 0)
)
v1.addConstraint(
 NSLayoutConstraint(item: v2,
 attribute: .top,
 relatedBy: .equal,

58 | Chapter 1: Views

 toItem: v1,
 attribute: .top,
 multiplier: 1, constant: 0)
)
v2.addConstraint(
 NSLayoutConstraint(item: v2,
 attribute: .height,
 relatedBy: .equal,
 toItem: nil,
 attribute: .notAnAttribute,
 multiplier: 1, constant: 10)
)
v3.addConstraint(
 NSLayoutConstraint(item: v3,
 attribute: .width,
 relatedBy: .equal,
 toItem: nil,
 attribute: .notAnAttribute,
 multiplier: 1, constant: 20)
)
v3.addConstraint(
 NSLayoutConstraint(item: v3,
 attribute: .height,
 relatedBy: .equal,
 toItem: nil,
 attribute: .notAnAttribute,
 multiplier: 1, constant: 20)
)
v1.addConstraint(
 NSLayoutConstraint(item: v3,
 attribute: .trailing,
 relatedBy: .equal,
 toItem: v1,
 attribute: .trailing,
 multiplier: 1, constant: 0)
)
v1.addConstraint(
 NSLayoutConstraint(item: v3,
 attribute: .bottom,
 relatedBy: .equal,
 toItem: v1,
 attribute: .bottom,
 multiplier: 1, constant: 0)
)

Now, I know what you’re thinking. You’re thinking: “What are you, nuts? That is a
boatload of code!” (Except that you probably used another four-letter word instead of
“boat.”) But that’s something of an illusion. I’d argue that what we’re doing here is
actually simpler than the code with which we created Figure 1-13 using explicit
frames and autoresizing.

Layout | 59

After all, we merely create eight constraints in eight simple commands. (I’ve broken
each command into multiple lines, but that’s just a matter of formatting.) They’re
verbose, but they are the same command repeated with different parameters, so creat‐
ing them is just a matter of copy-and-paste. Moreover, our eight constraints deter‐
mine the position, size, and layout behavior of our two subviews, so we’re getting a lot
of bang for our buck.

Even more telling, these constraints are a far clearer expression of what’s supposed to
happen than setting a frame and autoresizingMask. The position of our subviews is
described once and for all, both as they will initially appear and as they will appear if
their superview is resized. And it is described meaningfully; we don’t have to use arbi‐
trary math. Recall what we had to say before:

let v3 = UIView(frame:CGRect(
 v1.bounds.width-20, v1.bounds.height-20, 20, 20))

That business of subtracting the view’s height and width from its superview’s bounds
height and width in order to position the view is confusing and error-prone. With
constraints, we can speak the truth directly; our constraints say, plainly and simply,
“v3 is 20 points wide and 20 points high and flush with the bottom-right corner of v1.”

In addition, of course, constraints can express things that autoresizing can’t. For
example, instead of applying an absolute height to v2, we could require that its height
be exactly one-tenth of v1’s height, regardless of how v1 is resized. To do that without
autolayout, you’d have to implement layoutSubviews and enforce it manually, in
code.

Anchor notation
You will be happy to hear, however, that this is the last time I’m going to use the
NSLayoutConstraint(item:...) initializer. Starting in iOS 9, there’s a way to do
everything I just did, making exactly the same eight constraints and adding them to
the same views, using a much more compact notation. The old notation has the virtue
of singularity: one NSLayoutConstraint initializer method can create any constraint.
The new notation takes the opposite approach: it concentrates on brevity but sacrifi‐
ces singularity. To do so, instead of focusing on the constraint, it focuses on the
attributes to which the constraint relates. These attributes are expressed as anchor
properties of a UIView:

• widthAnchor, heightAnchor
• topAnchor, bottomAnchor
• leftAnchor, rightAnchor, leadingAnchor, trailingAnchor
• centerXAnchor, centerYAnchor

60 | Chapter 1: Views

• firstBaselineAnchor, lastBaselineAnchor

The anchor values are all NSLayoutAnchor instances (some are instances of
NSLayoutAnchor subclasses). The constraint-forming methods are then NSLayou‐
tAnchor instance methods, and there are a lot of legal combinations, with your
choice depending on how much information you need to express. You can provide
another anchor, another anchor and a constant, another anchor and a multiplier,
another anchor and both a constant and a multiplier, or a constant alone (for an
absolute width or height constraint); if the constant is omitted, it is 0; if the multiplier
is omitted, it is 1. And in every case, there are three possible relations:

• constraint(equalTo:)

• constraint(greaterThanOrEqualTo:)

• constraint(lessThanOrEqualTo:)

• constraint(equalTo:constant:)

• constraint(greaterThanOrEqualTo:constant:)

• constraint(lessThanOrEqualTo:constant:)

• constraint(equalTo:multiplier:)

• constraint(greaterThanOrEqualTo:multiplier:)

• constraint(lessThanOrEqualTo:multiplier:)

• constraint(equalTo:multiplier:constant:)

• constraint(greaterThanOrEqualTo:multiplier:constant:)

• constraint(lessThanOrEqualTo:multiplier:constant:)

• constraint(equalToConstant:)

• constraint(greaterThanOrEqualToConstant:)

• constraint(lessThanOrEqualToConstant:)

All of that may sound very elaborate when I describe it, but when you see it in action,
you will appreciate immediately the benefit of this compact notation: it’s easy to write
(especially thanks to Xcode’s code completion), easy to read, and easy to maintain.
The anchor notation is particularly convenient in connection with activate(_:), as
we don’t have to worry about specifying what view each constraint should be added
to:

NSLayoutConstraint.activate([
 v2.leadingAnchor.constraint(equalTo:v1.leadingAnchor),
 v2.trailingAnchor.constraint(equalTo:v1.trailingAnchor),
 v2.topAnchor.constraint(equalTo:v1.topAnchor),
 v2.heightAnchor.constraint(equalToConstant:10),

Layout | 61

 v3.widthAnchor.constraint(equalToConstant:20),
 v3.heightAnchor.constraint(equalToConstant:20),
 v3.trailingAnchor.constraint(equalTo:v1.trailingAnchor),
 v3.bottomAnchor.constraint(equalTo:v1.bottomAnchor)
])

That’s eight constraints in eight lines of code — plus the surrounding activate call to
put those constraints into our interface. It isn’t strictly necessary to activate all one’s
constraints at once, but it’s best to try to do so.

Visual format notation
Another way to abbreviate your creation of constraints is to use a text-based short‐
hand called a visual format. This has the advantage of allowing you to describe multi‐
ple constraints simultaneously, and is appropriate particularly when you’re arranging
a series of views horizontally or vertically. I’ll start with a simple example:

"V:|[v2(10)]"

In that expression, V: means that the vertical dimension is under discussion; the
alternative is H:, which is also the default (so it is permitted to specify no dimension).
A view’s name appears in square brackets, and a pipe (|) signifies the superview, so
here we’re portraying v2’s top edge as butting up against its superview’s top edge.
Numeric dimensions appear in parentheses, and a numeric dimension accompanying
a view’s name sets that dimension of that view, so here we’re also setting v2’s height to
10.

To use a visual format, you have to provide a dictionary that maps the string name of
each view that the visual format string mentions to the actual view. For example, the
dictionary accompanying the preceding expression might be ["v2":v2]. So here’s
another way of expressing of the preceding code example, using the visual format
shorthand throughout:

let d = ["v2":v2,"v3":v3]
NSLayoutConstraint.activate([
 NSLayoutConstraint.constraints(withVisualFormat:
 "H:|[v2]|", metrics: nil, views: d),
 NSLayoutConstraint.constraints(withVisualFormat:
 "V:|[v2(10)]", metrics: nil, views: d),
 NSLayoutConstraint.constraints(withVisualFormat:
 "H:[v3(20)]|", metrics: nil, views: d),
 NSLayoutConstraint.constraints(withVisualFormat:
 "V:[v3(20)]|", metrics: nil, views: d)
].flatMap{$0})

That example creates the same constraints as the previous example, but in four com‐
mands instead of eight. (The constraints(withVisualFormat:...) class method
yields an array of constraints, so my literal array is an array of arrays of constraints.
But activate(:_) expects an array of constraints, so I flatten my literal array.)

62 | Chapter 1: Views

The visual format syntax shows itself to best advantage when multiple views are laid
out in relation to one another along the same dimension; in that situation, you get a
lot of bang for your buck (many constraints generated by one visual format string).
The syntax, however, is somewhat limited in what constraints it can readily express; it
conceals the number and exact nature of the constraints that it produces; and person‐
ally I find it easier to make a mistake with the visual format syntax than with the
explicit expression of each individual constraint. Still, you’ll want to become familiar
with the visual format syntax, not least because console messages describing a con‐
straint sometimes use it.

Here are some further things to know when generating constraints with the visual
format syntax:

• The metrics: parameter is a dictionary with numeric values. This lets you use a
name in the visual format string where a numeric value needs to go.

• The options: parameter (omitted in the preceding example) is a bitmask
(NSLayoutFormatOptions) chiefly letting you do things like add alignments. The
alignments you specify are applied to all the views mentioned in the visual format
string.

• To specify the distance between two successive views, use hyphens surrounding
the numeric value, like this: "[v1]-20-[v2]". The numeric value may optionally
be surrounded by parentheses.

• A numeric value in parentheses may be preceded by an equality or inequality
operator, and may be followed by an at sign with a priority. Multiple numeric val‐
ues, separated by comma, may appear in parentheses together. For example:
"[v1(>=20@400,<=30)]".

For formal details of the visual format syntax, see the “Visual Format Syntax” chapter
of Apple’s Auto Layout Guide.

In Objective-C, you can form a dictionary for mapping view names to view refer‐
ences more or less automatically, thanks to the NSDictionaryOfVariable-
Bindings macro; for example, NSDictionaryOfVariableBindings(v2,v3) yields
the Objective-C equivalent of the dictionary ["v2":v2,"v3":v3] that we formed
manually in the preceding code. But Swift lacks macros; there’s no preprocessor,
so the textual transformation needed to generate a literal dictionary from a literal
list of view variable names is impossible. For an alternative, see the dictionaryOf-
Names utility function in Appendix B.

Constraints as Objects
The examples so far have involved creating constraints and adding them directly to
the interface — and then forgetting about them. But it is frequently useful to form

Layout | 63

constraints and keep them on hand for future use, typically in a property. A common
use case is where you intend, at some future time, to change the interface in some
radical way, such as by inserting or removing a view; you’ll probably find it conve‐
nient to keep multiple sets of constraints on hand, each set being appropriate to a
particular configuration of the interface. It is then trivial to swap constraints out of
and into the interface along with views that they affect.

In this example, we create within our main view (mainview) three views, v1, v2, and
v3, which are red, yellow, and blue rectangles respectively. We keep strong references
(as properties) to all three views. For some reason, we will later want to remove the
yellow view (v2) dynamically as the app runs, moving the blue view to where the yel‐
low view was; and then, still later, we will want to insert the yellow view once again
(Figure 1-15). So we have two alternating view configurations. Therefore we create
two sets of constraints, one describing the positions of v1, v2, and v3 when all three
are present, the other describing the positions of v1 and v3 when v2 is absent. For
purposes of maintaining these sets of constraints, we have already prepared two
properties, constraintsWith and constraintsWithout, initialized as empty arrays of
NSLayoutConstraint:

var constraintsWith = [NSLayoutConstraint]()
var constraintsWithout = [NSLayoutConstraint]()

Here’s the code for creating the views:

let v1 = UIView()
v1.backgroundColor = .red
v1.translatesAutoresizingMaskIntoConstraints = false
let v2 = UIView()
v2.backgroundColor = .yellow
v2.translatesAutoresizingMaskIntoConstraints = false
let v3 = UIView()
v3.backgroundColor = .blue
v3.translatesAutoresizingMaskIntoConstraints = false
mainview.addSubview(v1)
mainview.addSubview(v2)
mainview.addSubview(v3)
self.v1 = v1
self.v2 = v2
self.v3 = v3

Now we create the constraints and form them into two groups:

// construct constraints
let c1 = NSLayoutConstraint.constraints(withVisualFormat:
 "H:|-(20)-[v(100)]", metrics: nil, views: ["v":v1])
let c2 = NSLayoutConstraint.constraints(withVisualFormat:
 "H:|-(20)-[v(100)]", metrics: nil, views: ["v":v2])
let c3 = NSLayoutConstraint.constraints(withVisualFormat:
 "H:|-(20)-[v(100)]", metrics: nil, views: ["v":v3])
let c4 = NSLayoutConstraint.constraints(withVisualFormat:

64 | Chapter 1: Views

Figure 1-15. Alternate sets of views and constraints

 "V:|-(100)-[v(20)]", metrics: nil, views: ["v":v1])
let c5with = NSLayoutConstraint.constraints(withVisualFormat:
 "V:[v1]-(20)-[v2(20)]-(20)-[v3(20)]", metrics: nil,
 views: ["v1":v1, "v2":v2, "v3":v3])
let c5without = NSLayoutConstraint.constraints(withVisualFormat:
 "V:[v1]-(20)-[v3(20)]", metrics: nil, views: ["v1":v1, "v3":v3])
// first set of constraints
self.constraintsWith.append(contentsOf:c1)
self.constraintsWith.append(contentsOf:c2)
self.constraintsWith.append(contentsOf:c3)
self.constraintsWith.append(contentsOf:c4)
self.constraintsWith.append(contentsOf:c5with)
// second set of constraints
self.constraintsWithout.append(contentsOf:c1)
self.constraintsWithout.append(contentsOf:c3)
self.constraintsWithout.append(contentsOf:c4)
self.constraintsWithout.append(contentsOf:c5without)

Finally, we apply our constraints. We start with v2 present, so it is the first set of con‐
straints that we initially make active:

// apply first set
NSLayoutConstraint.activate(self.constraintsWith)

All that preparation may seem extraordinarily elaborate, but the result is that when
the time comes to swap v2 out of or into the interface, swapping the appropriate con‐
straints is trivial:

if self.v2.superview != nil {
 self.v2.removeFromSuperview()
 NSLayoutConstraint.deactivate(self.constraintsWith)
 NSLayoutConstraint.activate(self.constraintsWithout)
} else {
 mainview.addSubview(v2)
 NSLayoutConstraint.deactivate(self.constraintsWithout)
 NSLayoutConstraint.activate(self.constraintsWith)
}

Guides and Margins
So far, I’ve been assuming that the attributes (anchors) between which you want to
create constraints are, for the most part, the exact edges and centers of views. But

Layout | 65

that’s not always the case. Sometimes, you want a view to vend some other anchor, a
kind of secondary anchor, to which another view can be constrained. This notion of a
secondary anchor has evolved by accretion over the past several iterations of iOS, so
that now it is expressed in several different ways.

Consider, to begin with, the business of pinning your subviews to the bottom and
(especially) the top of a view controller’s main view. The top and bottom of the inter‐
face are often occupied by a bar (status bar, navigation bar, toolbar, tab bar — see
Chapter 12). Your layout of subviews will typically occupy the region between these
bars. Since iOS 7, however, the main view can extend vertically to the edges of the
window behind those bars. Moreover, such bars can come and go dynamically, and
can change their heights; for example, since iOS 8 the default behavior has been for
the status bar to vanish when an iPhone app is in landscape orientation, and a naviga‐
tion bar is taller when an iPhone app is in portrait orientation than when the same
app is in landscape orientation.

Therefore, you need something else, other than the literal top and bottom of a view
controller’s main view, to which to anchor the vertical constraints that position its
subviews — something that will move vertically to reflect the current location of the
bars. Otherwise, an interface that looks right under some circumstances will look
wrong in others.

For example, consider a view whose top is literally constrained to the top of the view
controller’s main view, which is its superview:

let arr = NSLayoutConstraint.constraints(withVisualFormat:
 "V:|-0-[v]", metrics: nil, views: ["v":v])

When the app is in landscape orientation, with the status bar removed by default, this
view will be right up against the top of the screen, which is fine. But in portrait orien‐
tation, this view will still be right up against the top of the screen — which looks bad
because the status bar reappears and overlaps it.

To solve this problem, UIViewController supplies and maintains two invisible views,
the top layout guide and the bottom layout guide, which it injects as subviews into the
view hierarchy of its main view. Your topmost and bottommost vertical constraints
will usually not be between a subview and the top or bottom of the main view, but
between a subview and the bottom of the top layout guide, or a subview and the top
of the bottom layout guide. The bottom of the top layout guide matches the bottom
of the lowest top bar, or the top of the main view if there is no top bar; the top of the
bottom layout guide matches the top of the bottom bar, or the bottom of the main
view if there is no bottom bar. Most important, these layout guides change their size
as the situation changes — the top or bottom bar changes its height, or vanishes
entirely — and so your views constrained to them move to track the edges of the
main view’s visible area.

66 | Chapter 1: Views

You can access these layout guides programmatically through the UIViewController
properties topLayoutGuide and bottomLayoutGuide. For example (this code is in a
view controller, so the top layout guide is self.topLayoutGuide):

let arr = NSLayoutConstraint.constraints(withVisualFormat:
 "V:[tlg]-0-[v]", metrics: nil,
 views: ["tlg":self.topLayoutGuide, "v":v])

Starting in iOS 9, the topLayoutGuide has a bottomAnchor and the bottomLayout-
Guide has a topAnchor:

let tlg = self.topLayoutGuide
let c = v.topAnchor.constraint(equalTo:tlg.bottomAnchor)

In iOS 8, views acquired margins. These are things you can constrain to that are inset
from the edge of a UIView. The main idea, clearly, is that you might want subviews to
keep a minimum standard distance from the edge of the superview. Thus, a UIView
has a layoutMargins property which is a UIEdgeInsets, a struct consisting of four
floats representing inset values starting at the top and proceeding counterclockwise
— top, left, bottom, right. The default for a view controller’s main view is a top and
bottom margin of 0 and a right and left margin of 16 on a smaller device, 20 on a
larger device; for any other view, it’s 8 for all four margins.

You are allowed to change a view’s layoutMargins. If you do this when some other
view is already constrained to that margin, the other view will move. However, you
cannot change the layout margins of a view controller’s main view (there is no pen‐
alty for trying, but nothing happens).

A visual format string that pins a subview’s edge to its superview’s edge, expressed as
a pipe character (|), using a single hyphen with no explicit distance value, is inter‐
preted as a constraint to the superview’s margin. Thus, for example, here’s a view
that’s butting up against its superview’s left margin:

let arr = NSLayoutConstraint.constraints(withVisualFormat:
 "H:|-[v]", metrics: nil, views: ["v":v])

As an NSLayoutAttribute value, a view’s margin is expressed as one of the following:

• .topMargin, .bottomMargin
• .leftMargin, .rightMargin, .leadingMargin, .trailingMargin
• .centerXWithinMargins, .centerYWithinMargins

So here’s another way to form the same constraint, with a view placed against its
superview’s left margin:

Layout | 67

let c = NSLayoutConstraint(item: v,
 attribute: .leading,
 relatedBy: .equal,
 toItem: mainview,
 attribute: .leadingMargin,
 multiplier: 1, constant: 0)

In the compact anchor notation, use the view’s layoutMarginsGuide property (start‐
ing in iOS 9). It is a UILayoutGuide object (another iOS 9 innovation), which itself
has anchors just like a UIView. So here’s the same constraint once more:

let c = v.leadingAnchor.constraint(equalTo:
 mainview.layoutMarginsGuide.leadingAnchor)

An additional UIView property, preservesSuperviewLayoutMargins, if true, causes
a view to adopt as its layoutMargins the intersection of its own and its superview’s
layoutMargins. To put it another way, the superview’s layoutMargins are allowed to
supervene if the subview overlaps them. For example, suppose the view v has default
layout margins {8,8,8,8}. And suppose its superview, mainview, is the view control‐
ler’s main view, which has the default layout margins {0,16,0,16}. And suppose v is
constrained exactly to the literal edges of its superview mainview — it covers it com‐
pletely. Then if v’s preservesSuperviewLayoutMargins is true, its effective layout
margins are {8,16,8,16}.

iOS 9 introduced a second set of margins, a UIView’s readableContentGuide (a
UILayoutGuide), which you cannot change. The idea is that a subview consisting of
text should not be allowed to grow as wide as an iPad in landscape, because that’s too
wide to read easily. By constraining such a subview horizontally to its superview’s
readableContentGuide, you ensure that that won’t happen.

Finally, you can add your own custom UILayoutGuide objects to a view (starting in
iOS 9). They constitute a view’s layoutGuides array, and are managed by calling add-
LayoutGuide(_:) or removeLayoutGuide(_:). Such custom layout guide objects
must be configured entirely using constraints. A UILayoutGuide has anchors, but
that’s effectively all it has. Thus, it can participate in layout as if it were a subview, but
it is not a subview, and therefore it avoids all the overhead and complexity that a
UIView would have.

Why is that useful? Well, consider the question of how to distribute views equally
within their superview. This is easy to arrange initially, but it is not obvious how to
design evenly spaced views that will remain evenly spaced when their superview is
resized. The problem is that constraints describe relationships between views, not
between constraints; there is no way to constrain the spacing constraints between
views to remain equal to one another automatically as the superview is resized.

You can, on the other hand, constrain the heights or widths of views to remain equal
to one another. The traditional solution, therefore, has been to resort to spacer views

68 | Chapter 1: Views

Figure 1-16. Equal distribution

with their isHidden set to true. But spacer views are views; hidden or not, they add
overhead with respect to drawing, memory, touch detection, and more. Custom
UILayoutGuides solve the problem; they can serve the same purpose as spacer views,
but they are not views.

Suppose, for example, that I have four views that are to remain equally distributed
vertically. I constrain their left and right edges, their heights, and the top of the first
view and the bottom of the last view. This leaves open the question of how we will
determine the vertical position of the two middle views; they must move in such a
way that they are always equidistant from their vertical neighbors (Figure 1-16).

To solve the problem, I introduce three UILayoutGuide objects between my real
views. A custom UILayoutGuide object is added to a UIView, so I’ll add mine to the
superview of my four real views:

let guides = [UILayoutGuide(), UILayoutGuide(), UILayoutGuide()]
for guide in guides {
 mainview.addLayoutGuide(guide)
}

I then involve my three layout guides in the layout. Remember, they must be config‐
ured entirely using constraints (the three layout guides are referenced through my
guides array, and the four views are referenced through another array, views):

NSLayoutConstraint.activate([
 // guide left is arbitrary, let's say superview margin
 guides[0].leadingAnchor.constraint(equalTo:mainview.leadingAnchor),
 guides[1].leadingAnchor.constraint(equalTo:mainview.leadingAnchor),
 guides[2].leadingAnchor.constraint(equalTo:mainview.leadingAnchor),
 // guide widths are arbitrary, let's say 10
 guides[0].widthAnchor.constraint(equalToConstant:10),
 guides[1].widthAnchor.constraint(equalToConstant:10),

Layout | 69

 guides[2].widthAnchor.constraint(equalToConstant:10),
 // bottom of each view is top of following guide
 views[0].bottomAnchor.constraint(equalTo:guides[0].topAnchor),
 views[1].bottomAnchor.constraint(equalTo:guides[1].topAnchor),
 views[2].bottomAnchor.constraint(equalTo:guides[2].topAnchor),
 // top of each view is bottom of preceding guide
 views[1].topAnchor.constraint(equalTo:guides[0].bottomAnchor),
 views[2].topAnchor.constraint(equalTo:guides[1].bottomAnchor),
 views[3].topAnchor.constraint(equalTo:guides[2].bottomAnchor),
 // guide heights are equal!
 guides[1].heightAnchor.constraint(equalTo:guides[0].heightAnchor),
 guides[2].heightAnchor.constraint(equalTo:guides[0].heightAnchor),
])

I constrain the leading edges of the layout guides (arbitrarily, to the leading edge
of their superview) and their widths (arbitrarily).

I constrain each layout guide to the bottom of the view above it and the top of the
view below it.

Finally, our whole purpose is to distribute our views equally, so the heights of our
layout guides must be equal to one another.

In that code, I clearly could have (and should have) generated each group of con‐
straints as a loop, thus making this approach suitable for any number of distributed
views; I have deliberately unrolled those loops for the sake of the example.

In real life, you are unlikely to use this technique directly, because you will use a
UIStackView instead, and let the UIStackView generate all of that code — as I
will explain a little later.

Intrinsic Content Size and Alignment Rects
Some built-in interface objects, when using autolayout, have an inherent size in one
or both dimensions. For example:

• A UIButton, by default, has a standard height, and its width is determined by its
title.

• A UIImageView, by default, adopts the size of the image it is displaying.
• A UILabel, by default, if it consists of multiple lines and if its width is con‐

strained, adopts a height sufficient to display all of its text.

This inherent size is the object’s intrinsic content size. The intrinsic content size is used
to generate constraints implicitly (of class NSContentSizeLayoutConstraint).

A change in the characteristics or content of a built-in interface object — a button’s
title, an image view’s image, a label’s text or font, and so forth — may thus cause its

70 | Chapter 1: Views

intrinsic content size to change. This, in turn, may alter your layout. You will want to
configure your autolayout constraints so that your interface responds gracefully to
such changes.

You do not have to supply explicit constraints configuring a dimension of a view
whose intrinsic content size configures that dimension. But you might! And when
you do, the tendency of an interface object to size itself to its intrinsic content size
must not be allowed to conflict with its tendency to obey your explicit constraints.
Therefore the constraints generated from a view’s intrinsic content size have a low‐
ered priority, and come into force only if no constraint of a higher priority prevents
them. The following methods allow you to access these priorities (the parameter is a
UILayoutConstraintAxis, either .horizontal or .vertical):

contentHuggingPriority(for:)

A view’s resistance to growing larger than its intrinsic size in this dimension. In
effect, there is an inequality constraint saying that the view’s size in this dimen‐
sion should be less than or equal to its intrinsic size. The default prority is usually
250 (the same as UILayoutPriorityDefaultLow), though some interface classes
will default to 251 if initialized in a nib.

contentCompressionResistancePriority(for:)

A view’s resistance to shrinking smaller than its intrinsic size in this dimension.
In effect, there is an inequality constraint saying that the view’s size in this
dimension should be greater than or equal to its intrinsic size. The default prior‐
ity is usually 750 (the same as UILayoutPriorityDefaultHigh).

Those methods are getters; there are corresponding setters. Situations where you
would need to change the priorities of these tendencies are few, but they do exist. For
example, here are the visual formats configuring two horizontally adjacent labels
(lab1 and lab2) pinned to the superview and to one another:

"V:|-20-[lab1]"
"V:|-20-[lab2]"
"H:|-20-[lab1]"
"H:[lab2]-20-|"
"H:[lab1(>=100)]-(>=20)-[lab2(>=100)]"

The inequalities ensure that as the superview becomes narrower or the text of the
labels becomes longer, a reasonable amount of text will remain visible in both labels.
At the same time, one label will be squeezed down to 100 points width, while the
other label will be allowed to grow to fill the remaining horizontal space. The ques‐
tion is: which label is which? You need to answer that question. To do so, it suffices to
raise the compression resistance priority of one of the labels by a single point above
that of the other:

let p = lab2.contentCompressionResistancePriority(for:.horizontal)
lab1.setContentCompressionResistancePriority(p+1, for: .horizontal)

Layout | 71

You can supply an intrinsic size in your own custom UIView subclass by overriding
intrinsicContentSize. Obviously you should do this only if your view’s size
depends on its contents. If you need the runtime to ask for your intrinsicContent-
Size again, because that size has changed and the view needs to be laid out afresh, it’s
up to you to call your view’s invalidateIntrinsicContentSize method.

Another question with which your custom UIView subclass might be concerned is
what it should mean for another view to be aligned with it. It might mean aligned
with your view’s frame edges, but then again it might not. A possible example is a
view that draws, internally, a rectangle with a shadow; you probably want to align
things with that drawn rectangle, not with the outside of the shadow. To determine
this, you can override your view’s alignmentRectInsets property (or, more elabo‐
rately, its alignmentRect(forFrame:) and frame(forAlignmentRect:) methods).

Be careful with changing a view’s alignmentRectInsets, as you are effectively
changing where the view’s edges are for purposes of all constraints involving
those edges. For example, if a view’s alignment rect has a left inset of 30, then all
constraints involving that view’s .leading attribute or leadingAnchor are reck‐
oned from that inset.

By the same token, you may want to be able to align your custom UIView with
another view by their baselines. The assumption here is that your view has a subview
containing text and, therefore, possessing a baseline. Your custom view will return
that subview in its implementation of forFirstBaselineLayout or forLastBaseline-
Layout.

Stack Views
A stack view (UIStackView), introduced in iOS 9, is a view whose primary task is to
generate constraints for some or all of its subviews. These are its arranged subviews.
In particular, a stack view solves the problem of providing constraints when subviews
are to be configured linearly in a horizontal row or a vertical column. In practice, it
turns out that the vast majority of complex layouts can be expressed as an arrange‐
ment, possibly nested, of simple rows and columns of subviews. Thus, you are likely
to resort to stack views to make your layout easier to construct and maintain.

You can supply a stack view with arranged subviews by calling its initializer
init(arrangedSubviews:). The arranged subviews become the stack view’s
arrangedSubviews read-only property. You can also manage the arranged subviews
with these methods:

• addArrangedSubview(_:)

• insertArrangedSubview(_:at:)

72 | Chapter 1: Views

• removeArrangedSubview(_:)

The arrangedSubviews array is different from, but is a subset of, the stack view’s
subviews. It’s fine for the stack view to have subviews that are not arranged (and
which you’ll have to provide with constraints yourself), but if you set a view as an
arranged subview and it is not already a subview, the stack view will adopt it as a sub‐
view at that moment.

The order of the arrangedSubviews is independent of the order of the subviews; the
subviews order, you remember, determines the order in which the subviews are
drawn, but the arrangedSubviews order determines how the stack view will position
those subviews.

Do not manually add constraints to an arranged subview! Adding those con‐
straints is precisely the job of the stack view. Your constraints will conflict with
the constraints created by the stack view.

Using its properties, you configure the stack view to tell it how it should arrange its
arranged subviews:

axis

Which way should the arranged subviews be arranged? Your choices are:

• .horizontal

• .vertical

distribution

How should the arranged subviews be positioned along the axis? Your choices
are:

• .fill

• .fillEqually

• .fillProportionally

• .equalSpacing

• .equalCentering

Except for .fillEqually, the exact interpretation of your instructions may
depend upon the intrinsic content sizes of the views. For example, .fill-
Proportionally fills the full axis dimension, sizing the views in proportion to
their intrinsic content sizes in this dimension. The stack view’s spacing property
determines the spacing (or minimum spacing) between the views.

Layout | 73

alignment

This describes how the arranged subviews should be laid out with respect to the
other dimension. Your choices are:

• .fill

• .leading (or .top)
• .center

• .trailing (or .bottom)
• .firstBaseline or .lastBaseline (if the axis is .horizontal)

Again, except in the case of .fill, the interpretation here will depend upon the
views having intrinsic content size (or baselines). If the axis is .vertical, you
can still involve the subviews’ baselines in their spacing by setting the stack view’s
isBaselineRelativeArrangement to true.

isLayoutMarginsRelativeArrangement

If true, the stack view’s internal layoutMargins are involved in the constraints of
its arranged subviews. If false (the default), the stack view’s literal edges are
used.

Finally, although the stack view will constrain the arranged views, you must constrain
the stack view itself (unless the stack view is itself an arranged view of a containing
stack view).

To illustrate, I’ll rewrite the equal distribution code from earlier in this chapter
(Figure 1-16). I have four views, with height constraints. I want to distribute them
vertically in my main view. This time, I’ll have a stack view do all the work for me:

// give the stack view arranged subviews
let sv = UIStackView(arrangedSubviews: views)
// configure the stack view
sv.axis = .vertical
sv.alignment = .fill
sv.distribution = .equalSpacing
// constrain the stack view
sv.translatesAutoresizingMaskIntoConstraints = false
mainview.addSubview(sv)
let marg = mainview.layoutMarginsGuide
NSLayoutConstraint.activate([
 sv.topAnchor.constraint(equalTo:self.topLayoutGuide.bottomAnchor),
 sv.leadingAnchor.constraint(equalTo:marg.leadingAnchor),
 sv.trailingAnchor.constraint(equalTo:marg.trailingAnchor),
 sv.bottomAnchor.constraint(equalTo:mainview.bottomAnchor),
])

74 | Chapter 1: Views

Inspecting the resulting constraints, you can see that the stack view is doing for us
effectively just what we did earlier (generating UILayoutGuide objects and using
them as spacers). But letting the stack view do it is a lot easier!

Another nice feature of UIStackView is that it responds intelligently to changes. For
example, if we were to make one of our arranged subviews invisible (set its isHidden
to true), the stack view would respond by distributing the remaining subviews
evenly, as if the hidden subview didn’t exist. Similarly, we can change properties of the
stack view itself in real time.

Internationalization
Starting in iOS 9, the entire interface and its behavior are reversed when the app runs
on a system for which the app is localized and whose language is right-to-left. Wher‐
ever you use leading and trailing constraints instead of left and right constraints, or if
your constraints are generated by stack views or are constructed using the visual for‐
mat language, your app’s layout will participate in this reversal more or less automati‐
cally.

There may, however, be exceptions. Apple gives the example of a horizontal row of
transport controls that mimic the buttons on a CD player: you wouldn’t want the
Rewind button and the Fast Forward button to be reversed just because the user’s lan‐
guage reads right-to-left. Therefore, a UIView is endowed with a semanticContent-
Attribute property stating whether it should be flipped; the default is .unspecified,
but a value of .playback or .spatial will prevent flipping, and you can also force an
absolute direction with .forceLeftToRight or .forceRightToLeft. This property
can also be set in the nib editor (Semantic pop-up menu in the Attributes inspector).

New in iOS 10, interface directionality is a trait, a trait collection’s .layoutDirection;
and a UIView has an effectiveUserInterfaceLayoutDirection property that
reports the direction that it will use to lay out its contents, and which you can consult
if you are constructing a view’s subviews in code.

(There is also a UIView class method userInterfaceLayout-

Direction(for:relativeTo:), which takes a semantic content attribute and a layout
direction; the runtime calls this repeatedly as it performs layout, but I suspect that
you are unlikely to need it.)

You can test your app’s right-to-left behavior easily by changing the scheme’s Run
option Application Language to Right to Left Pseudolanguage.

Layout | 75

Mistakes With Constraints
Creating constraints manually, as I’ve been doing so far in this chapter, is an invita‐
tion to make a mistake. Your totality of constraints constitute instructions for view
layout, and it is all too easy, as soon as more than one or two views are involved, to
generate faulty instructions. You can (and will) make two major kinds of mistake with
constraints:

Conflict
You have applied constraints that can’t be satisfied simultaneously. This will be
reported in the console (at great length).

Underdetermination (ambiguity)
A view uses autolayout, but you haven’t supplied sufficient information to deter‐
mine its size and position. This is a far more insidious problem, because nothing
bad may seem to happen. If you’re lucky, the view will at least fail to appear, or
will appear in an undesirable place, alerting you to the problem.

Only required constraints (priority 1000) can contribute to a conflict, as the runtime
is free to ignore lower-priority constraints that it can’t satisfy. Constraints with differ‐
ent priorities do not conflict with one another. Nonrequired constraints with the
same priority can contribute to ambiguity.

Unless you explicitly demand immediate layout, layout isn’t performed until your
code finishes running — and even then only if needed. Ambiguous layout isn’t
ambiguous until layout actually takes place; it is perfectly reasonable to cause an
ambiguous layout temporarily, provided you resolve the ambiguity before layout-
Subviews is called. On the other hand, a conflicting constraint conflicts the instant it
is added.

Let’s start by generating a conflict. In this example, we return to our small red square
in the lower right corner of a big purple square (Figure 1-13) and append a contradic‐
tory constraint:

NSLayoutConstraint.activate([
 // ...
 NSLayoutConstraint.constraints(withVisualFormat:
 "H:[v3(20)]|", metrics: nil, views: d),
 NSLayoutConstraint.constraints(withVisualFormat:
 "V:[v3(20)]|", metrics: nil, views: d),
 NSLayoutConstraint.constraints(withVisualFormat:
 "V:[v3(10)]|", metrics: nil, views: d) // *
].flatMap{$0})

The height of v3 can’t be both 10 and 20. The runtime reports the conflict, and tells
you which constraints are causing it:

76 | Chapter 1: Views

Unable to simultaneously satisfy constraints. Probably at least one of the
constraints in the following list is one you don't want...

"<NSLayoutConstraint:0x60000008b6d0 UIView:0x7ff45e803b80.height == + 20 (active)>",
"<NSLayoutConstraint:0x60000008bae0 UIView:0x7ff45e803b80.height == + 10 (active)>"

You can assign a constraint (or a UILayoutGuide) an identifier string; this can
make it easier to determine which constraint in a conflict report is which.

Now we’ll generate an ambiguity. Here, we neglect to give our small red square a
height:

NSLayoutConstraint.activate([
 // ...
 NSLayoutConstraint.constraints(withVisualFormat:
 "H:[v3(20)]|", metrics: nil, views: d),
 // NSLayoutConstraint.constraints(withVisualFormat:
 // "V:[v3(20)]|", metrics: nil, views: d),
].flatMap{$0})

No console message alerts us to our mistake. Fortunately, however, v3 fails to appear
in the interface, so we know something’s wrong. If your views fail to appear, suspect
ambiguity. In a less fortunate case, the view might appear, but (if we’re lucky) in the
wrong place. In a truly unfortunate case, the view might appear in the right place, but
not consistently.

Suspecting ambiguity is one thing; tracking it down and proving it is another. New in
Xcode 8, view debugging will report ambiguity instantly (Figure 1-17). With the app
running, choose Debug → View Debugging → Capture View Hierarchy, or click the
Debug View Hierarchy button in the debug toolbar. The exclamation mark in the
Debug navigator, at the left, is telling us that this view (which does not appear in the
canvas) has ambiguous layout; moreover, the Issue navigator, in the Runtime pane,
tells us more explicitly, in words: “Height and vertical position are ambiguous for
UIView.”

Another useful trick is to pause in the debugger and give the following mystical com‐
mand in the console:

(lldb) expr -l objc++ -O -- [[UIWindow keyWindow] _autolayoutTrace]

The result is a graphical tree describing the view hierarchy and marking any ambigu‐
ously laid out views:

UIWindow:0x7fe8d0d9dbd0
| •UIView:0x7fe8d0c2bf00
| | +UIView:0x7fe8d0c2c290
| | | *UIView:0x7fe8d0c2c7e0
| | | *UIView:0x7fe8d0c2c9e0- AMBIGUOUS LAYOUT

Layout | 77

Figure 1-17. View debugging

UIView also has a hasAmbiguousLayout property; I find it useful to set up a utility
method that lets me check a view and all its subviews at any depth for ambiguity:

extension NSLayoutConstraint {
 class func reportAmbiguity (_ v:UIView?) {
 var v = v
 if v == nil {
 v = UIApplication.shared.keyWindow
 }
 for vv in v!.subviews {
 print("\(vv) \(vv.hasAmbiguousLayout)")
 if vv.subviews.count > 0 {
 self.reportAmbiguity(vv)
 }
 }
 }
}

You can call that method in your code, or while paused in the debugger:

(lldb) expr NSLayoutConstraint.reportAmbiguity(nil)

To get a full list of the constraints responsible for positioning a particular view within
its superview, log the results of calling the UIView instance method constraints-
AffectingLayout(for:). The parameter is an axis (UILayoutConstraintAxis),
either .horizontal or .vertical. These constraints do not necessarily belong to this
view (and the output doesn’t tell you what view they do belong to). If a view doesn’t
participate in autolayout, the result will be an empty array. Again, a utility method
can come in handy:

78 | Chapter 1: Views

extension NSLayoutConstraint {
 class func listConstraints (_ v:UIView?) {
 var v = v
 if v == nil {
 v = UIApplication.shared.keyWindow
 }
 for vv in v!.subviews {
 let arr1 = vv.constraintsAffectingLayout(for:.horizontal)
 let arr2 = vv.constraintsAffectingLayout(for:.vertical)
 NSLog("\n\n%@\nH: %@\nV:%@", vv, arr1, arr2);
 if vv.subviews.count > 0 {
 self.listConstraints(vv)
 }
 }
 }
}

And here’s how to call it from the debugger:

(lldb) expr NSLayoutConstraint.listConstraints(nil)

(New in iOS 10, UILayoutGuide has hasAmbiguousLayout and constraints-

AffectingLayout(for:) as well.)

Instruments includes the Cocoa Layout template, which tracks changes to your
constraints over time and can help you work out how and when things went
awry.

Given the notions of conflict and ambiguity, we can understand what priorities are
for. Imagine that all constraints have been placed in boxes, where each box is a prior‐
ity value, in descending order. The first box (1000) contains all the required con‐
straints, so all required constraints are obeyed first. (If they conflict, that’s bad, and a
report appears in the log; meanwhile, the system implicitly lowers the priority of one
of the conflicting constraints, so that it doesn’t have to obey it and can continue with
layout by satisfying the remaining required constraints.) If there still isn’t enough
information to perform unambiguous layout given the required priorities alone, we
pull the constraints out of the next box and try to obey them. If we can, consistently
with what we’ve already done, fine; if we can’t, or if ambiguity remains, we look in the
next box — and so on. For a box after the first, we don’t care about obeying exactly
the constraints it contains; if an ambiguity remains, we can use a lower-priority con‐
straint value to give us something to aim at, resolving the ambiguity, without fully
obeying the lower-priority constraint’s desires. For example, an inequality is an ambi‐
guity, because an infinite number of values will satisfy it; a lower-priority equality can
tell us what value to prefer, resolving the ambiguity, but there’s no conflict even if we
can’t fully achieve that preferred value.

Layout | 79

Configuring Layout in the Nib
The focus of the discussion so far has been on configuring layout in code. This, how‐
ever, will often be unnecessary; instead, you’ll set up your layout in the nib, using the
nib editor (Interface Builder). It would not be strictly true to say that you can do
absolutely anything in the nib that you could do in code, but the nib editor is cer‐
tainly a remarkably powerful way of configuring layout (and where it falls short, you
can always supplement it with some code in addition).

In the File inspector when a .storyboard or .xib file is selected, you can make two
major choices related to layout, by way of checkboxes. The default is that both these
checkboxes are checked, and I recommend that you leave them that way:

Use Auto Layout
If “Use Auto Layout” is unchecked, no constraints can be created in the nib edi‐
tor: layout for your views must be configured entirely using autoresizing. In
Xcode 8, there is very little reason to uncheck “Use Auto Layout.” Unlike Xcode 7
and before, Xcode 8 lets you configure a view’s layout with autoresizing even if
“Use Auto Layout” is checked. Unless you need to edit this project in Xcode 7,
you should probably leave “Use Auto Layout” checked (the default).

Use Trait Variations
If “Use Trait Variations” is checked, various settings in the nib editor, such as the
value of a constraint’s constant, can be made to depend upon the environment’s
size classes at runtime (“Trait Collections and Size Classes” on page 48); more‐
over, the modern repertoire of segues, such as popover and detail segues, springs
to life. Unless you need to edit this project in Xcode 6, you should probably leave
“Use Trait Variations” checked (the default).

Autoresizing in the Nib
When you drag a view from the Object library into the canvas, it uses autoresizing by
default, and will continue to do so unless you involve it in autolayout by adding a
constraint that affects it.

This is new in Xcode 8. Previously, it was the “Use Auto Layout” checkbox that
determined whether views used autoresizing or autolayout.

When editing a view that uses autoresizing, you can assign it springs and struts in the
Size inspector. A solid line externally represents a strut; a solid line internally repre‐
sents a spring. A helpful animation shows you the effect on your view’s position and
size as its superview is resized.

80 | Chapter 1: Views

Figure 1-18. Creating a constraint by control-dragging

Creating a Constraint
The nib editor provides two primary ways to create a constraint:

Control-drag
Control-drag from one view to another. A HUD (heads-up display) appears, list‐
ing constraints that you can create (Figure 1-18). Either view can be in the canvas
or in the document outline. To create an internal width or height constraint,
control-drag from a view to itself!

When you control-drag within the canvas, the direction of the drag is used to
winnow the options presented in the HUD; for example, if you control-drag hor‐
izontally within a view in the canvas, the HUD lists Width but not Height.

You might want to toggle the Option key to see some alternatives; for example,
this might make the difference between an edge-based constraint and a margin-
based constraint. Holding the Shift key lets you create multiple constraints simul‐
taneously.

Accidentally creating a margin-based constraint when you wanted an edge-based
constraint is a common beginner mistake, and an easy trap to fall into.

Layout bar buttons
Click the Align or Pin button at the right end of the layout bar below the canvas.

These buttons in the layout bar are very powerful! They present little popover
dialogs where you can choose multiple constraints to create (possibly for multiple
views, if that’s what you’ve selected beforehand) and provide them with numeric
values (Figure 1-19). The popover dialog from the Pin button in the layout bar
has a “Constrain to margins” checkbox, so you can choose between margin-based
and edge-based constraints.

Constraints are not actually added until you click Add Constraints at the bottom.
Before clicking Add Constraints, think about the Update Frames pop-up menu; if

Configuring Layout in the Nib | 81

Figure 1-19. Creating constraints from the layout bar

you don’t update frames, the views may end up being drawn in the canvas differ‐
ently from how the constraints describe them (a Misplaced Views issue).

To set a view’s layout margins explicitly, switch to the Size inspector and change the
Layout Margins pop-up menu to Explicit. To make a view’s layout margins behave as
readableContentGuide margins, check Follow Readable Width.

If you create constraints and then move or resize a view affected by those constraints,
the constraints are not automatically changed. This means that the constraints no
longer match the way the view is portrayed; if the constraints were to position the
view, they wouldn’t put it where you’ve put it. The nib editor will alert you to this sit‐
uation (a Misplaced Views issue), and can readily resolve it for you, but it won’t do so
unless you explicitly ask it to.

Viewing and Editing Constraints
Constraints in the nib are full-fledged objects. They can be selected, edited, and
deleted. Moreover, you can create an outlet to a constraint (and there are reasons why
you might want to do so).

Constraints in the nib are visible in three places (Figure 1-20):

In the document outline
Constraints are listed in a special category, “Constraints,” under the view to
which they belong. (You’ll have a much easier time distinguishing these con‐
straints if you give your views meaningful labels!)

82 | Chapter 1: Views

Figure 1-20. A view’s constraints displayed in the nib

In the canvas
Constraints appear graphically as dimension lines when you select a view that
they affect.

In the Size inspector
When a view affected by constraints is selected, the Size inspector lists those con‐
straints, and a Constraints grid displays the view’s constraints graphically.

When you select a constraint in the document outline or the canvas, you can view
and edit its values in the Attributes or Size inspector. The inspector gives you access
to almost all of a constraint’s features: both anchors involved in the constraint, the
relation, the constant and multiplier, and the priority. You can also set the identifier
here (useful when debugging, as I mentioned earlier).

When editing a constraint in the Attributes or Size inspector, the First Item and Sec‐
ond Item pop-up menus have a “Relative to margin” option. Check or uncheck this to
toggle between an edge-based and a margin-based constraint. (Thus, even if you acci‐
dentally chose the wrong option when creating the constraint, you can fix it here.)

It is possible to create a constraint in the nib editor between a subview and the
literal top or bottom of a view controller’s main view — but it’s a little tricky.
When Control-dragging from a subview to the main view, the default is a con‐
straint to the top layout guide or the bottom layout guide, but holding Option
lets you make a constraint to the margin. You can then edit the resulting con‐
straint to switch off “Relative to margin.”

For simple editing of a constraint’s constant, relation, and priority, double-click the
constraint in the canvas to summon a little popover dialog. When a constraint is lis‐
ted in a view’s Size inspector, double-click it to edit it in its own inspector, or click its
Edit button to summon the little popover dialog.

Configuring Layout in the Nib | 83

A view’s Size inspector also provides access to its content hugging and content com‐
pression resistance priority settings. Beneath these, there’s an Intrinsic Size pop-up
menu. The idea here is that your custom view might have an intrinsic size, but the nib
editor doesn’t know this, so it will report an ambiguity when you fail to provide (say)
a width constraint that you know isn’t actually needed; choose Placeholder to supply
an intrinsic size and relieve the nib editor’s worries.

In a constraint’s Attributes or Size inspector, there is a Placeholder checkbox
(“Remove at build time”). If you check this checkbox, the constraint you’re editing
won’t be instantiated when the nib is loaded: in effect, you are deliberately generating
ambiguous layout when the views and constraints are instantiated from the nib. You
might do this because you want to simulate your layout in the nib editor, but you
intend to provide a different constraint in code. This might be because you weren’t
quite able to describe this constraint in the nib, or because it depends upon circum‐
stances that won’t be known until runtime.

Problems With Constraints
I’ve already said that generating constraints manually, in code, is error-prone. But it
isn’t error-prone in the nib editor! The nib editor knows whether it contains problem‐
atic constraints. If a view is affected by any constraints, the Xcode nib editor will per‐
mit them to be ambiguous or conflicting, but it will also complain helpfully. You
should pay attention to such complaints! The nib editor will bring the situation to
your attention in various places:

Canvas
Constraints drawn in the canvas when you select a view that they affect use color
coding to express their status:

Satisfactory constraints
Drawn in blue.

Problematic constraints
Drawn in red.

Misplacement constraints
Drawn in orange; these constraints are valid, but they are inconsistent with
the frame you have imposed upon the view. I’ll discuss misplaced views in
the next paragraph.

Document outline
If there are layout issues, the document outline displays a right arrow in a red or
orange circle. Click it to see a detailed list of the issues (Figure 1-21). Hover the
mouse over a title to see an Info button which you can click to learn more about

84 | Chapter 1: Views

Figure 1-21. Layout issues in the document outline

the nature of this issue. The icons at the right are buttons: click one for a list of
things the nib editor is offering to do to fix the issue for you. The chief issues are:

Conflicting Constraints
A conflict between constraints.

Missing Constraints
Ambiguous layout.

Misplaced Views
If you manually change the frame of a view that is affected by constraints
(including its intrinsic size), then the canvas may be displaying that view dif‐
ferently from how it would really appear if the current constraints were
obeyed. A Misplaced Views situation is also described in the canvas:

• The constraints in the canvas, drawn in orange, display the numeric dif‐
ference between their values and the view’s frame.

• A dotted outline in the canvas may show where the view would be drawn
if the existing constraints were obeyed.

The Resolve Auto Layout Issues button in the layout bar (or the Editor → Resolve
Auto Layout Issues hierarchical menu) proposes five large-scale moves involving all
the constraints affecting either selected views or all views:

Update Frames
Changes the way the view is drawn in the canvas, to show how it would really
appear in the running app under the constraints as they stand. Be careful: if con‐
straints are ambiguous, this can cause a view to disappear.

Configuring Layout in the Nib | 85

Alternatively, if you have resized a view with intrinsic size constraints, such as a
button or a label, and you want it to resume the size it would have according to
those intrinsic size constraints, select the view and choose Editor → Size to Fit
Content.

Update Constraints
Choose this menu item to change numerically all the existing constraints affect‐
ing a view to match the way the canvas is currently drawing the view’s frame.

Add Missing Constraints
Create new constraints so that the view has sufficient constraints to describe its
frame unambiguously. The added constraints correspond to the way the canvas is
currently drawing the view’s frame.

Not everything that this command does may be what you ultimately want; you
should regard it as a starting point. After all, the nib editor can’t read your mind!
For example, it doesn’t know whether you think a certain view’s width should be
determined by an internal width constraint or by pinning it to the left and right
of its superview; and it may generate alignment constraints with other views that
you never intended.

Reset to Suggested Constraints
This is as if you chose Clear Constraints followed by Add Missing Constraints: it
removes all constraints affecting the view, and replaces them with a complete set
of automatically generated constraints describing the way the canvas is currently
drawing the view’s frame.

Clear Constraints
Removes all constraints affecting the view.

New in Xcode 8, you can turn off ambiguity checking for a particular view; use
the Ambiguity pop-up menu in the view’s Size inspector. This means you can
omit a needed constraint and not be notified by the nib editor that there’s a prob‐
lem. You will need to generate the missing constraint in code, obviously, or you’ll
have ambiguous layout.

Varying the Screen Size
The purpose of constraints will usually be to design a layout that responds to the pos‐
sibility of the app launching on devices of different sizes, and perhaps subsequently
being rotated. Imagining how this is going to work in real life is not always easy, and
you may doubt that you are getting the constraints right as you configure them in the
nib editor. Have no fear: Xcode 8 is here to help.

86 | Chapter 1: Views

New in Xcode 8, there’s a View As button at the lower left of the canvas. Click it to
reveal (if they are not already showing) buttons representing a variety of device types
and orientations. Click a button, and the canvas’s main views are resized accordingly.

When that happens, the layout dictated by your constraints is obeyed immediately.
Thus, you can try out the effect of your constraints under different screen sizes right
there in the canvas.

Conditional Interface Design
The View As button at the lower left of the canvas states the size classes for the cur‐
rently chosen device and orientation, using a notation like this: wR hC. That means:
“width: .regular; height: .compact.” The “width” setting corresponds to the trait col‐
lection’s .horizontalSizeClass; the “height” corresponds to the .verticalSize-
Class.

The reason you’re being given this information is that you might want the configura‐
tion of your constraints and views in the nib editor to be conditional upon the size
classes that are in effect at runtime. You can arrange in the nib for your app’s interface
to detect the traitCollectionDidChange notification and respond to it. Thus, for
example:

• You can design directly into your interface a complex rearrangement of that
interface when an iPhone app rotates to compensate for a change in device orien‐
tation.

• A single .storyboard or .xib file can be used to design the interface of a universal
app, even though the iPad interface and the iPhone interface may be quite differ‐
ent from one another.

The idea when constructing a conditional interface is that you design first for the
most general case. When you’ve done that, and when you want to do something dif‐
ferent for a particular size class situation, you’ll describe that difference in the
Attributes or Size inspector, or design that difference in the canvas:

In the Attributes or Size inspector
Look for a Plus symbol to the left of a value in the Attributes or Size inspector.
This is a value that you can vary conditionally, depending on the environment’s
size class at runtime. The Plus symbol is button! Click it to see a pop-up hier‐
archical menu, from which you can choose a specialized size class combination.
When you do, that value now appears twice: once for the general case, and once
for the specialized case which is marked using wR hC notation. You can now pro‐
vide different values for those two cases.

Configuring Layout in the Nib | 87

In the canvas
Click the Vary for Traits button, to the right of the device types buttons. Two
checkboxes appear, allowing you to specify that you want to match the width or
height size class (or both) of the current size class. Any designing you now do in
the canvas will be applied only to that width or height size class (or both), modi‐
fying the Attributes or Size inspector accordingly.

For example, suppose your interface has a button pinned by its top and left to the top
left of its superview. And suppose that, on iPad devices only, you want this button to
be pinned to the top right of its superview. (That’s improbable in real life, but it will
make for a dramatic example!) That means the leading constraint will exist only on
iPhone devices, to be replaced by a trailing constraint on iPad devices. The simplest
way to configure this is to use the Vary for Traits button, as follows:

1. Among the device type buttons, click one of the iPad buttons (furthest to the
left). The size classes are now listed as wR hR.

2. Click Vary for Traits. In the little popover that appears, check both boxes: we
want the change we are about to make to apply only when both the width size
class and the height size class match our current size class (they should both
be .regular). The layout bar becomes blue, to signify that we are operating in a
special conditional design mode.

3. Make the desired change: Select the button in the interface; select the left con‐
straint; delete the left (leading) constraint; slide the button to the right of the
interface; Control-drag from the button to the right and create a new trailing
constraint. (Also, we don’t want the top constraint to be different, so move the
button up or down until the orange Misplaced Views warning symbol goes away.)

4. Click Done Varying. The layout bar ceases to be blue.

We’ve created a conditional constraint. To see that this is so:

• Click an iPhone device button and then click an iPad device button. As you do,
the button in the interface jumps between the left and right sides of the interface.
Its position depends upon the device type!

• With an iPad device button selected, select the trailing constraint and look in the
Attributes or Size inspector. It has two Installed checkboxes! It is not installed in
the general case (with no size class marking): it is installed for wR hR. That is
exactly what we want. If you click an iPhone device button and select the leading
constraint and look in the Attributes or Size inspector, you’ll see that it is pre‐
cisely the reverse: it is installed in the general case but not for wR hR. (It is also
installed for wC hC; this extra Installed checkbox is probably unnecessary, and

88 | Chapter 1: Views

you could delete it by clicking the X button at its left, but it does no harm to leave
it there.)

In the document outline, a constraint or view that is not installed for the current
set of size classes has a faded icon.

Now let’s talk about a case where you would work entirely in the Attributes inspector.
Let’s suppose we want our button to have a yellow background on iPad only. (Again,
this is improbable but dramatic.) You would configure this directly in the Attributes
inspector, as follows:

1. Among the device type buttons, click one of the iPad buttons (furthest to the
left). The size classes are now listed as wR hR.

2. Select the button in the interface. Switch to the Attributes inspector, and find the
Background pop-up menu.

3. Click the Plus button to bring up its pop-up menu. The first menu item is Regu‐
lar Width Regular Height — matching the current device type. That is exactly
what we want, so click it.

4. A second Background pop-up menu has appeared, marked wR hR. Change it to
yellow (or any desired color). The button now has a colored background on iPad
but not on iPhone.

Now that you know what the Plus button means, look over the Attributes and Size
inspectors. Anything with a Plus button can be varied in accordance with the size
class environment. For example, a button’s text can be a different font and size; this
makes sense because you might want the text to be larger on an iPad.

Nib Editor View Features
This section summarizes some miscellaneous view-related features of the Xcode nib
editor that are worth knowing about.

View Debugger
To enter the view debugger, choose Debug → View Debugging → Capture View Hier‐
archy, or click the Debug View Hierarchy button in the debug bar. The result is that
your app’s current view hierarchy is analyzed and displayed (Figure 1-17):

• On the left, in the Debug navigator, the views and their constraints are listed
hierarchically.

Nib Editor View Features | 89

• At the top, the jump bar shows the same hierarchy in a different way, and helps
you navigate it.

• In the center, in the canvas, the views and their constraints are displayed graphi‐
cally. The window starts out facing front, much as if you were looking at the
screen with the app running; but if you swipe sideways a little in the canvas, the
window rotates and its subviews are displayed in front of it, in layers. You can
adjust your perspective in various ways; for example:

■ The slider at the lower left changes the distance between the layers.
■ The double-slider at the lower right lets you eliminate the display of views

from the front or back of the layering order (or both).
■ You can double-click a view to focus on it, eliminating its superviews from the

display. Double-click outside the view to exit focus mode.
■ You can switch to wireframe mode.
■ You can display constraints for the currently selected view.

• On the right, the Object inspector and the Size inspector tell you details about the
currently selected object (view or constraint).

When a view is selected in the Debug navigator or in the canvas, the Size inspector
lists its bounds and all the constraints that determine those bounds. This, along with
the layered graphical display of your views and constraints in the canvas, is very likely
to help you penetrate to the cause of any constraint-related difficulties.

Previewing Your Interface
When you’re displaying the nib editor in Xcode, show the assistant pane. Its Tracking
menu (the first component in its jump bar, Control-4) includes the Preview option.
Choose it to see a preview of the currently selected view controller’s view (or, in a .xib
file, the top-level view). The Plus button at the lower left lets you add previews for
different devices and device sizes; you can thus compare your interface on different
devices simultaneously. At the bottom of each preview, a Rotate button lets you toggle
its orientation.

The previews take account of constraints and conditional interface.

At the lower right, a language pop-up menu lets you switch your app’s text (buttons
and labels) to another language for which you have localized your app, or to an artifi‐
cial “double-length” language.

90 | Chapter 1: Views

Designable Views and Inspectable Properties
Your view can be drawn correctly in the nib editor canvas and preview even if it is
configured in code. To take advantage of this feature, you need a UIView subclass
declared @IBDesignable:

@IBDesignable class MyView: UIView {
 // ... your code goes here ...
}

If an instance of this UIView subclass appears in the nib editor, then its self-
configuration methods, such as init(frame:) and willMove(toSuperview:), will be
compiled and run as the nib editor prepares to portray your view. For example, if
your view’s init(frame:) method adds a subview to this view, then the nib editor
will show that subview, even though the subview is instantiated and configured in
code, not in the nib editor.

In addition, your view can implement prepareForInterfaceBuilder to perform vis‐
ual configurations aimed specifically at how it will be portrayed in the nib editor. The
idea is that you can portray in the nib editor a feature that your view will adopt later
in the life of the app. For example, if your view contains a UILabel that is created and
configured empty but will eventually contain text, you could implement prepareFor-
InterfaceBuilder to give the label some sample text to be displayed in the nib edi‐
tor.

In Figure 1-22, the nib editor displays a view controller’s main view containing a
MyView instance; the green and red subviews come from MyView’s initializer, and
the purple background is added in prepareForInterfaceBuilder:

@IBDesignable class MyView: UIView {
 override func willMove(toSuperview newSuperview: UIView!) {
 self.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1)
 let v2 = UIView()
 self.addSubview(v2)
 // ... and so on ...
 }
 override func prepareForInterfaceBuilder() {
 self.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1)
 }
}

In addition, you can configure custom view properties directly in the nib editor. If
your UIView subclass has a property whose value type is understood by the nib edi‐
tor, and if this property is declared @IBInspectable, then if an instance of this
UIView subclass appears in the nib, that property will get a field of its own at the top
of the view’s Attributes inspector. Thus, when a custom UIView subclass is to be
instantiated from the nib, its custom properties can be set in the nib editor rather

Nib Editor View Features | 91

Figure 1-22. A designable view

than having to be set in code. (This feature is actually a convenient equivalent of set‐
ting a nib object’s User Defined Runtime Attributes in the Identity inspector.)

Inspectable property types are: Bool, number, String, CGRect, CGPoint, CGSize,
UIColor, or UIImage — or an Optional wrapping any of these. You can assign a
default value in code; Interface Builder won’t portray this value as the default, but you
can tell Interface Builder to use the default by leaving the field empty (or, if you’ve
entered a value, by deleting that value).

@IBDesignable and @IBInspectable are unrelated, but the former is aware of the lat‐
ter. Thus, you can use an inspectable property to change the nib editor’s display of
your interface.

In this example, we use @IBDesignable and @IBInspectable to work around an
annoying limitation of the nib editor. A UIView can draw its own border automati‐
cally, by setting its layer’s borderWidth (Chapter 3). But this can be configured only in
code. There’s nothing in a view’s Attributes inspector that lets you set a layer’s border-
Width, and special layer configurations are not normally portrayed in the canvas.
@IBDesignable and @IBInspectable to the rescue:

92 | Chapter 1: Views

Figure 1-23. A designable view with an inspectable property

@IBDesignable class MyButton : UIButton {
 @IBInspectable var borderWidth : Int {
 set {
 self.layer.borderWidth = CGFloat(newValue)
 }
 get {
 return Int(self.layer.borderWidth)
 }
 }
}

The result is that, in nib editor, our button’s Attributes inspector has a Border Width
custom property, and when we change the Border Width property setting, the button
is redrawn with that border width (Figure 1-23). Moreover, we are setting this prop‐
erty in the nib, so when the app runs and the nib loads, the button really does have
that border width in the running app.

Layout Events
This section summarizes the chief UIView events related to layout. These are events
that you can receive and respond to by overriding them in your UIView subclass. You
might want to do this in situations where layout is complex — for example, when you
need to supplement autoresizing or autolayout with manual layout in code, or when
your layout configuration needs to change in response to changing conditions.

These UIView events are not the same as the layout-related events you can
receive and respond to in a UIViewController. I’ll discuss those in Chapter 6.

updateConstraints

If your interface involves autolayout and constraints, then updateConstraints is
propagated up the hierarchy, starting at the deepest subview, when the runtime
thinks your code might need an opportunity to configure your constraints. For
example, this happens at launch time. It also happens the first time the app
rotates, but only for the view at the top of the hierarchy (if the constraints of
other views have not changed).

You might override updateConstraints in a UIView subclass if your subclass is
capable of altering its own constraints and you need a signal that now is the time
to do so. You must finish up by calling super or the app will crash (with a helpful
error message).

Layout Events | 93

You should never call updateConstraints directly. To trigger an immediate call
to updateConstraints, send a view the updateConstraintsIfNeeded message.
To force updateConstraints to be sent to a particular view, send it the setNeeds-
UpdateConstraints message.

If a view isn’t involved with constraints, updateConstraints may not be called
for it. Thus, if you wanted to add constraints to this view in its update-
Constraints at launch time, you are thwarted. To get updateConstraints to be
called for this view at launch time, override the class method requires-
ConstraintBasedLayout to return true.

traitCollectionDidChange(_:)

At launch time, and if the environment’s trait collection changes thereafter, the
traitCollectionDidChange(_:) message is propagated down the hierarchy of
UITraitEnvironments.

Thus, if your interface needs to respond to a change in the trait collection — by
changing constraints, adding or removing subviews, or what have you — an
override of traitCollectionDidChange is the place to do it. For example, earlier
in this chapter I showed some code for swapping a view into or out of the inter‐
face together with the entire set of constraints laying out that interface. But I left
open the matter of the conditions under which we wanted such swapping to
occur; traitCollectionDidChange might be an appropriate moment. A typical
implementation would examine the new trait collection and respond depending
on its horizontal or vertical size class.

The incoming parameter in traitCollectionDidChange(_:) is the old trait col‐
lection. To get the new trait collection, ask for self.traitCollection.

layoutSubviews

The layoutSubviews message is the moment when layout itself takes place. It is
propagated down the hierarchy, starting at the top (typically the root view) and
working down to the deepest subview. Layout can be triggered even if the trait
collection didn’t change; for example, perhaps a constraint was changed, or the
text of a label was changed, or a superview’s size changed.

You can override layoutSubviews in a UIView subclass in order to take a hand
in the layout process. If you’re not using autolayout, layoutSubviews does noth‐
ing by default; layoutSubviews is your opportunity to perform manual layout
after autoresizing has taken place. If you are using autolayout, you must call
super or the app will crash (with a helpful error message).

You should never call layoutSubviews directly; to trigger an immediate call to
layoutSubviews, send a view the layoutIfNeeded message (which may cause

94 | Chapter 1: Views

layout of the entire view tree, not only below but also above this view), or send
setNeedsLayout to trigger a call to layoutSubviews later on, after your code fin‐
ishes running, when layout would normally take place.

When you’re using autolayout, what happens in layoutSubviews? The runtime
examines all the constraints affecting this view’s subviews, works out values for their
center and bounds, and assigns those views those center and bounds values. In other
words, layoutSubviews performs manual layout! The constraints are merely instruc‐
tions attached to the views; layoutSubviews reads them and responds accordingly,
sizing and positioning views in the good old-fashioned way, by setting their frames,
bounds, and centers.

Knowing this, you might override layoutSubviews when you’re using autolayout, in
order to tweak the outcome. A typical structure is: first you call super, causing all the
subviews to adopt their new frames; then you examine those frames; if you don’t like
the outcome, you can change things; and finally you call super again, to get a new
layout outcome. As I mentioned earlier, setting a view’s frame (or bounds or center)
explicitly in layoutSubviews is perfectly fine, even if this view uses autolayout; that,
after all, is what the autolayout engine itself is doing. Keep in mind, however, that you
must cooperate with the autolayout engine. Do not call setNeedsUpdateConstraints
— that moment has passed — and do not stray beyond the subviews of this view.
(Disobeying those rules can cause your app to hang.)

It is also possible to simulate layout of a view in accordance with its constraints and
those of its subviews. This is useful for discovering ahead of time what a view’s size
would be if layout were performed at this moment. Send the view the systemLayout-
SizeFitting(_:) message. The system will attempt to reach or at least approach the
size you specify, at a very low priority; mostly likely you’ll specify either UILayout-
FittingCompressedSize or UILayoutFittingExpandedSize, depending on whether
what you’re after is the smallest or largest size the view can legally attain. You can dic‐
tate the individual axis priorities explicitly with systemLayoutSizeFitting(_:with-
HorizontalFittingPriority:verticalFittingPriority:). I’ll show an example in
Chapter 7.

Layout Events | 95

CHAPTER 2

Drawing

The views illustrated in Chapter 1 were mostly colored rectangles; they had a
backgroundColor and no more. But that, of course, is not what a real iOS program
looks like. Everything the user sees is a UIView, and what the user sees is a lot more
than a bunch of colored rectangles. That’s because the views that the user sees have
content. They contain drawing.

Many UIView subclasses, such as a UIButton or a UILabel, know how to draw them‐
selves. Sooner or later, you’re also going to want to do some drawing of your own.
You can prepare your drawing as an image file beforehand. You can draw an image as
your app runs, in code. You can display an image in a UIView subclass that knows
how to show an image, such as a UIImageView or a UIButton. A pure UIView is all
about drawing, and it leaves that drawing largely up to you; your code determines
what the view draws, and hence what it looks like in your interface.

This chapter discusses the mechanics of drawing. Don’t be afraid to write drawing
code of your own! It isn’t difficult, and it’s often the best way to make your app look
the way you want it to. (For how to draw text, see Chapter 10.)

Images and Image Views
The basic general UIKit image class is UIImage. UIImage can read a file from disk, so
if an image does not need to be created dynamically, but has already been created
before your app runs, then drawing may be as simple as providing an image file as a
resource in your app’s bundle. The system knows how to work with many standard
image file types, such as TIFF, JPEG, GIF, and PNG; when an image file is to be
included in your app bundle, iOS has a special affinity for PNG files, and you should
prefer them whenever possible. You can also obtain image data in some other way,
such as by downloading it, and transform this into a UIImage.

97

(The converse operation, saving image data to disk as an image file, is discussed in
Chapter 23.)

Image Files
A pre-existing image file in your app’s bundle can be obtained through the UIImage
initializer init(named:). This method looks in two places for the image:

Asset catalog
We look in the asset catalog for an image set with the supplied name. The name is
case-sensitive.

Top level of app bundle
We look at the top level of the app’s bundle for an image file with the supplied
name. The name is case-sensitive and should include the file extension; if it
doesn’t include a file extension, .png is assumed.

When calling init(named:), an asset catalog is searched before the top level of the
app’s bundle. If there are multiple asset catalogs, they are all searched, but the search
order is indeterminate and cannot be specified, so avoid image sets with the same
name.

A nice thing about init(named:) is that the image data may be cached in memory,
and if you ask for the same image by calling init(named:) again later, the cached
data may be supplied immediately. Alternatively, you can read an image file from any‐
where in your app’s bundle directly and without caching, using init(contentsOf-
File:), which expects a pathname string; you can get a reference to your app’s bundle
with Bundle.main, and Bundle then provides instance methods for getting the path‐
name of a file within the bundle, such as path(forResource:ofType:).

Methods that specify a resource in the app bundle, such as init(named:) and
path(forResource:ofType:), respond to suffixes in the name of an actual resource
file. On a device with a double-resolution screen, when an image is obtained by name
from the app bundle, a file with the same name extended by @2x, if there is one, will
be used automatically, with the resulting UIImage marked as double-resolution by
assigning it a scale property value of 2.0. Similarly, if there is a file with the same
name extended by @3x, it will be used on the triple-resolution screen of the iPhone 6
Plus, with a scale property value of 3.0.

In this way, your app can contain multiple versions of an image file at different reso‐
lutions. Thanks to the scale property, a high-resolution version of an image is drawn
at the same size as the single-resolution image. Thus, on a high-resolution screen,
your code continues to work without change, but your images look sharper.

98 | Chapter 2: Drawing

www.allitebooks.com

http://www.allitebooks.org

Similarly, a file with the same name extended by ~ipad will automatically be used if
the app is running natively on an iPad. You can use this in a universal app to supply
different images automatically depending on whether the app runs on an iPhone or
iPod touch, on the one hand, or on an iPad, on the other. (This is true not just for
images but for any resource obtained by name from the bundle. See Apple’s Resource
Programming Guide.)

One of the great benefits of an asset catalog, though, is that you can forget all about
those name suffix conventions. An asset catalog knows when to use an alternate
image within an image set, not from its name, but from its place in the catalog. Put
the single-, double-, and triple-resolution alternatives into the slots marked “1x,” “2x,”
and “3x” respectively. For a distinct iPad version of an image, check iPhone and iPad
in the Attributes inspector for the image set; separate slots for those device types will
appear in the asset catalog.

An asset catalog can also distinguish between versions of an image intended for dif‐
ferent size class situations. (See the discussion of size classes and trait collections in
Chapter 1.) In the Attributes inspector for your image set, use the Width Class and
Height Class pop-up menus to specify which size class possibilities you want to dis‐
tinguish. Thus, for example, if we’re on an iPhone with the app rotated to landscape
orientation, and if there’s both an Any Height and a Compact Height alternative in
the image set, the Compact Height version is used. These features are live as the app
runs; if the app rotates from landscape to portrait, and there’s both an Any height and
a Compact height alternative in the image set, the Compact Height version is replaced
with the Any Height version in your interface, there and then, automatically.

How does an asset catalog perform this magic? When an image is obtained from an
asset catalog through init(named:), its imageAsset property is a UIImageAsset that
effectively points back into the asset catalog at the image set that it came from. Each
image in the image set has a trait collection associated with it (its traitCollection).
By calling image(with:) and supplying a trait collection, you can ask an image’s
imageAsset for the image from the same image set appropriate to that trait collection.
A built-in interface object that displays an image is automatically trait collection–
aware; it receives the traitCollectionDidChange(_:) message and responds accord‐
ingly.

To demonstrate how this works under the hood, we can build a custom UIView with
an image property that behaves the same way:

class MyView: UIView {
 var image : UIImage!
 override func traitCollectionDidChange(_: UITraitCollection?) {
 self.setNeedsDisplay() // causes drawRect to be called
 }
 override func draw(_ rect: CGRect) {
 if var im = self.image {

Images and Image Views | 99

 if let asset = self.image.imageAsset {
 im = asset.image(with:self.traitCollection)
 }
 im.draw(at:.zero)
 }
 }
}

It is also possible to associate images as trait-based alternatives for one another
without using an asset catalog. You might do this, for example, because you have con‐
structed the images themselves in code, or obtained them over the network while the
app is running. The technique is to instantiate a UIImageAsset and then associate
each image with a different trait collection by registering it with this same UIIma‐
geAsset. For example:

let tcreg = UITraitCollection(verticalSizeClass: .regular)
let tccom = UITraitCollection(verticalSizeClass: .compact)
let moods = UIImageAsset()
let frowney = UIImage(named:"frowney")!
let smiley = UIImage(named:"smiley")!
moods.register(frowney, with: tcreg)
moods.register(smiley, with: tccom)

The amazing thing is that if we now display either frowney or smiley in a UIImage‐
View, we automatically see the image associated with the environment’s current verti‐
cal size class, and it automatically switches to the other image when the app changes
orientation. Moreover, this works even though I didn’t keep any persistent reference
to frowney, smiley, or the UIImageAsset! (The reason is that the images are cached
by the system and they maintain a strong reference to the UIImageAsset with which
they are registered.)

In Xcode 8, an image set in an asset catalog can make numerous further distinc‐
tions based on a device’s processor type, wide color capabilities, and more. More‐
over, these distinctions are used not only by the runtime when the app runs, but
also by the App Store when thinning your app for a specific target device. Asset
catalogs should thus be regarded as preferable rather than keeping your images at
the top level of the app bundle.

100 | Chapter 2: Drawing

Fun With Images
New in Xcode 8, you can define a UIImage through its name alone. In a context
where a UIImage is expected, start typing the name of the image as a literal (without
quotation marks) and ask for code completion. You’ll be offered your image’s name as
a completion, along with an actual thumbnail of the image. The code completion
engine is looking for your image just as init(named:) would look for it, so you are
guaranteed that the image is being correctly referred to. Accept this, and the thumb‐
nail appears in your code (Figure 2-1). Behind the scenes, this equates to calling
#imageLiteral(resourceName:), which itself calls init(named:).

Figure 2-1. An image literal

Image Views
Many built-in Cocoa interface objects will accept a UIImage as part of how they draw
themselves; for example, a UIButton can display an image, and a UINavigationBar or
a UITabBar can have a background image. I’ll discuss those in Chapter 12. But when
you simply want an image to appear in your interface, you’ll probably hand it to an
image view — a UIImageView — which has the most knowledge and flexibility with
regard to displaying images and is intended for this purpose.

The nib editor supplies some shortcuts in this regard: the Attributes inspector of an
interface object that can have an image will have a pop-up menu listing known
images in your project, and such images are also listed in the Media library
(Command-Option-Control-4). Media library images can often be dragged onto an
interface object in the canvas to assign them, and if you drag a Media library image
into a plain view, the image is transformed into a UIImageView displaying that
image.

A UIImageView can actually have two images, one assigned to its image property and
the other assigned to its highlightedImage property; the value of the UIImageView’s
isHighlighted property dictates which of the two is displayed at any given moment.
A UIImageView does not automatically highlight itself merely because the user taps
it, the way a button does. However, there are certain situations where a UIImageView
will respond to the highlighting of its surroundings; for example, within a table view
cell, a UIImageView will show its highlighted image when the cell is highlighted
(Chapter 8).

Images and Image Views | 101

A UIImageView is a UIView, so it can have a background color in addition to its
image, it can have an alpha (transparency) value, and so forth (see Chapter 1). An
image may have areas that are transparent, and a UIImageView will respect this; thus
an image of any shape can appear. A UIImageView without a background color is
invisible except for its image, so the image simply appears in the interface, without
the user being aware that it resides in a rectangular host. A UIImageView without an
image and without a background color is invisible, so you could start with an empty
UIImageView in the place where you will later need an image and subsequently
assign the image in code. You can assign a new image to substitute one image for
another, or set the image view’s image property to nil to remove it.

How a UIImageView draws its image depends upon the setting of its contentMode
property (UIViewContentMode). (The contentMode property is inherited from
UIView; I’ll discuss its more general purpose later in this chapter.) For
example, .scaleToFill means the image’s width and height are set to the width and
height of the view, thus filling the view completely even if this alters the image’s aspect
ratio; .center means the image is drawn centered in the view without altering its size.
The best way to get a feel for the meanings of the various contentMode settings is to
assign a UIImageView a small image in the nib editor and then, in the Attributes
inspector, change the Mode pop-up menu, and see where and how the image draws
itself.

You should also pay attention to a UIImageView’s clipsToBounds property; if it is
false, its image, even if it is larger than the image view and even if it is not scaled
down by the contentMode, may be displayed in its entirety, extending beyond the
image view itself.

When creating a UIImageView in code, you can take advantage of a convenience ini‐
tializer, init(image:) (or init(image:highlightedImage:)). The default content-
Mode is .scaleToFill, but the image is not initially scaled; rather, the view itself is
sized to match the image. You will still probably need to position the UIImageView
correctly in its superview. In this example, I’ll put a picture of the planet Mars in the
center of the app’s interface (Figure 2-2; for the CGRect center property, see Appen‐
dix B):

let iv = UIImageView(image:UIImage(named:"Mars"))
mainview.addSubview(iv)
iv.center = iv.superview!.bounds.center
iv.frame = iv.frame.integral

What happens to the size of an existing UIImageView when you assign an image to it
depends on whether the image view is using autolayout. If it isn’t, the image view’s
size doesn’t change. But under autolayout, the size of the new image becomes the
image view’s new intrinsicContentSize, so the image view will adopt the image’s
size unless other constraints prevent.

102 | Chapter 2: Drawing

Figure 2-2. Mars appears in my interface

An image view automatically acquires its alignmentRectInsets from its image’s
alignmentRectInsets. Thus, if you’re going to be aligning the image view to some
other object using autolayout, you can attach appropriate alignmentRectInsets to
the image that the image view will display, and the image view will do the right thing.
To do so, derive a new image by calling the original image’s withAlignmentRect-
Insets(_:) method.

In theory, you should be able to set an image’s alignmentRectInsets in an asset
catalog (using the image’s Alignment fields). As of this writing, however, this fea‐
ture is not working correctly.

Resizable Images
Certain places in the interface require a resizable image; for example, a custom image
that serves as the track of a slider or progress view (Chapter 12) must be resizable, so
that it can fill a space of any length. And there can frequently be other situations
where you want to fill a background by tiling or stretching an existing image.

To make a resizable image, start with a normal image and call its resizable-
Image(withCapInsets:resizingMode:) method. The capInsets: argument is a
UIEdgeInsets, whose components represent distances inward from the edges of the
image. In a context larger than the image, a resizable image can behave in one of two
ways, depending on the resizingMode: value (UIImageResizingMode):

.tile

The interior rectangle of the inset area is tiled (repeated) in the interior; each
edge is formed by tiling the corresponding edge rectangle outside the inset area.
The four corner rectangles outside the inset area are drawn unchanged.

.stretch

The interior rectangle of the inset area is stretched once to fill the interior; each
edge is formed by stretching the corresponding edge rectangle outside the inset
area once. The four corner rectangles outside the inset area are drawn
unchanged.

Images and Image Views | 103

Figure 2-3. Tiling the entire image of Mars

Figure 2-4. Tiling the interior of Mars

In these examples, assume that self.iv is a UIImageView with absolute height and
width (so that it won’t adopt the size of its image) and with a contentMode of .scale-
ToFill (so that the image will exhibit resizing behavior). First, I’ll illustrate tiling an
entire image (Figure 2-3); note that the capInsets: is UIEdgeInsets.zero:

let mars = UIImage(named:"Mars")!
let marsTiled = mars.resizableImage(withCapInsets:.zero, resizingMode: .tile)
self.iv.image = marsTiled

Now we’ll tile the interior of the image, changing the capInsets: argument from the
previous code (Figure 2-4):

let marsTiled = mars.resizableImage(withCapInsets:
 UIEdgeInsetsMake(
 mars.size.height / 4.0,
 mars.size.width / 4.0,
 mars.size.height / 4.0,
 mars.size.width / 4.0
), resizingMode: .tile)

Next, I’ll illustrate stretching. We’ll start by changing just the resizingMode: from
the previous code (Figure 2-5):

let marsTiled = mars.resizableImage(withCapInsets:
 UIEdgeInsetsMake(
 mars.size.height / 4.0,
 mars.size.width / 4.0,
 mars.size.height / 4.0,
 mars.size.width / 4.0
), resizingMode: .stretch)

A common stretching strategy is to make almost half the original image serve as a cap
inset, leaving just a pixel or two in the center to fill the entire interior of the resulting
image (Figure 2-6):

104 | Chapter 2: Drawing

Figure 2-5. Stretching the interior of Mars

Figure 2-6. Stretching a few pixels at the interior of Mars

Figure 2-7. Mars, stretched and clipped

let marsTiled = mars.resizableImage(withCapInsets:
 UIEdgeInsetsMake(
 mars.size.height / 2.0 - 1,
 mars.size.width / 2.0 - 1,
 mars.size.height / 2.0 - 1,
 mars.size.width / 2.0 - 1
), resizingMode: .stretch)

You should also experiment with different scaling contentMode settings. In the pre‐
ceding example, if the image view’s contentMode is .scaleAspectFill, and if the
image view’s clipsToBounds is true, we get a sort of gradient effect, because the top
and bottom of the stretched image are outside the image view and aren’t drawn
(Figure 2-7).

Alternatively, you can configure a resizable image without code, in the project’s asset
catalog. It is often the case that a particular image will be used in your app chiefly as a
resizable image, and always with the same capInsets: and resizingMode:, so it
makes sense to configure this image once rather than having to repeat the same code.
And even if an image is configured in the asset catalog to be resizable, it can appear in
your interface as a normal image as well — for example, if you assign it to an image
view that resizes itself to fit its image, or that doesn’t scale its image.

Images and Image Views | 105

Figure 2-8. Mars, sliced in the asset catalog

Figure 2-9. Mars, sliced and stretched

To configure an image in an asset catalog as a resizable image, select the image and, in
the Slicing section of the Attributes inspector, change the Slices pop-up menu to Hor‐
izontal, Vertical, or Horizontal and Vertical. When you do this, additional interface
appears. You can specify the resizingMode with the Center pop-up menu. You can
work numerically, or click Show Slicing at the lower right of the canvas and work
graphically. The graphical editor is zoomable, so zoom in to work comfortably.

This feature is actually even more powerful than resizableImage(withCap-

Insets:resizingMode:). It lets you specify the end caps separately from the tiled or
stretched region, with the rest of the image being sliced out. In Figure 2-8, for exam‐
ple, the dark areas at the top left, top right, bottom left, and bottom right will be
drawn as is. The narrow bands will be stretched, and the small rectangle at the top
center will be stretched to fill most of the interior. But the rest of the image, the large
central area covered by a sort of gauze curtain, will be omitted entirely. The result is
shown in Figure 2-9.

Transparency Masks
Several places in an iOS app’s interface want to treat an image as a transparency mask,
also known as a template. This means that the image color values are ignored, and
only the transparency (alpha) values of each pixel matter. The image shown on the
screen is formed by combining the image’s transparency values with a single tint
color. Such, for example, is the behavior of a tab bar item’s image.

106 | Chapter 2: Drawing

Figure 2-10. One image in two rendering modes

The way an image will be treated is a property of the image, its renderingMode. This
property is read-only; to change it, start with an image and generate a new image
with a different rendering mode, by calling its withRenderingMode(_:) method. The
rendering mode values (UIImageRenderingMode) are:

• .automatic

• .alwaysOriginal

• .alwaysTemplate

The default is .automatic, which means that the image is drawn normally every‐
where except in certain limited contexts, where it is used as a transparency mask.
With the other two rendering mode values, you can force an image to be drawn nor‐
mally, even in a context that would usually treat it as a transparency mask, or you can
force an image to be treated as a transparency mask, even in a context that would
otherwise treat it normally.

To accompany this feature, iOS gives every UIView a tintColor, which will be used
to tint any template images it contains. Moreover, this tintColor by default is inher‐
ited down the view hierarchy, and indeed throughout the entire app, starting with the
window (Chapter 1). Thus, assigning your app’s main window a tint color is probably
one of the few changes you’ll make to the window; otherwise, your app adopts the
system’s blue tint color. (Alternatively, if you’re using a main storyboard, set the
Global Tint color in its File inspector.) Individual views can be assigned their own tint
color, which is inherited by their subviews. Figure 2-10 shows two buttons displaying
the same background image, one in normal rendering mode, the other in template
rendering mode, in an app whose window tint color is red. (I’ll say more about tem‐
plate images and tintColor in Chapter 12.)

An asset catalog can assign an image a rendering mode. Select the image set in the
asset catalog, and use the Render As pop-up menu in the Attributes inspector to set
the rendering mode to Default (.automatic), Original Image (.alwaysOriginal), or
Template Image (.alwaysTemplate). This is an excellent approach whenever you
have an image that you will use primarily in a specific rendering mode, because it
saves you from having to remember to set that rendering mode in code every time
you fetch the image. Instead, any time you call init(named:), this image arrives with
the rendering mode already set.

Images and Image Views | 107

Reversible Images
Starting in iOS 9, the entire interface is automatically reversed when your app runs on
a system for which your app is localized if the system language is right-to-left. In gen‐
eral, this probably won’t affect your images. The runtime assumes that you don’t want
images to be reversed when the interface is reversed, so its default behavior is to leave
them alone.

Nevertheless, you might want an image reversed when the interface is reversed. For
example, suppose you’ve drawn an arrow pointing in the direction from which new
interface will arrive when the user taps a button. If the button pushes a view control‐
ler onto a navigation interface, that direction is from the right on a left-to-right sys‐
tem, but from the left on a right-to-left system. This image has directional meaning
within the app’s own interface; it needs to flip horizontally when the interface is
reversed.

To make this possible, call the image’s imageFlippedForRightToLeftLayout-

Direction method and use the resulting image in your interface. On a left-to-right
system, the normal image will be used; on a right-to-left system, a reversed version of
the image will be created and used automatically. You can override this behavior, even
if the image is reversible, for a particular UIView displaying the image, such as a
UIImageView, by setting that view’s semanticContentAttribute to prevent mirror‐
ing.

New in Xcode 8, you can make the same determination for an image in the asset cata‐
log using the Direction pop-up menu (choose one of the Mirrors options). Moreover,
new in iOS 10, the layout direction (as I mentioned in Chapter 1) is a trait. This
means that, just as you can have pairs of images to be used on iPhone or iPad, or tri‐
ples of images to be used on single-, double-, or triple-resolution screens, you can
have pairs of images to be used under left-to-right or right-to-left layout. The easy
way to configure such pairs is to choose Both in the asset catalog’s Direction pop-up
menu; now there are left-to-right and right-to-left image slots where you can place
your images. Alternatively, you can register the paired images with a UIImageAsset in
code, as I demonstrated earlier in this chapter.

New in iOS 10, you can also force an image to be flipped horizontally without regard
to layout direction or semantic content attribute by calling its withHorizontally-
FlippedOrientation method.

Graphics Contexts
Instead of plopping an existing image file directly into your interface, you may want
to create some drawing yourself, in code. To do so, you will need a graphics context.

108 | Chapter 2: Drawing

A graphics context is basically a place you can draw. Conversely, you can’t draw in
code unless you’ve got a graphics context. There are several ways in which you might
obtain a graphics context; these are the most common:

You create an image context
In iOS 9 and before, this was done by calling UIGraphicsBeginImageContext-
WithOptions. New in iOS 10, you use a UIGraphicsImageRenderer. I’ll go into
detail later.

Cocoa creates the graphics context
You subclass UIView and implement draw(_:). At the time your draw(_:)
implementation is called, Cocoa has already created a graphics context and is
asking you to draw into it, right now; whatever you draw is what the UIView will
display.

Cocoa passes you a graphics context
You subclass CALayer and implement draw(in:), or else you give a CALayer a
delegate and implement the delegate’s draw(_:in:). The in: parameter is a
graphics context. (Layers are discussed in Chapter 3.)

Moreover, at any given moment there either is or is not a current graphics context:

• When you call UIGraphicsBeginImageContextWithOptions or use a UIGraphic‐
sImageRenderer to create an image context, that image context automatically
becomes the current graphics context.

• When UIView’s draw(_:) is called, the UIView’s drawing context is already the
current graphics context.

• When CALayer’s draw(in:) or draw(_:in:) is called, the in: parameter is a
graphics context, but it is not the current context. It’s up to you to make it current
if you need to.

What beginners find most confusing about drawing is that there are two sets of tools
for drawing, which take different attitudes toward the context in which they will
draw. One set needs a current context; the other just needs a context:

UIKit
Various Cocoa classes know how to draw themselves; these include UIImage,
NSString (for drawing text), UIBezierPath (for drawing shapes), and UIColor.
Some of these classes provide convenience methods with limited abilities; others
are extremely powerful. In many cases, UIKit will be all you’ll need.

With UIKit, you can draw only into the current context. If there’s already a current
context, you just draw. But with CALayer, where you are handed a context as a
parameter, if you want to use the UIKit convenience methods, you’ll have to

Graphics Contexts | 109

make that context the current context; you do this by calling UIGraphicsPush-
Context (and be sure to restore things with UIGraphicsPopContext later).

Core Graphics
This is the full drawing API. Core Graphics, often referred to as Quartz, or
Quartz 2D, is the drawing system that underlies all iOS drawing; UIKit drawing is
built on top of it. It is low-level and consists of C functions (though in Swift 3
these are mostly “renamified” to look like method calls). There are a lot of them!
This chapter will familiarize you with the fundamentals; for complete informa‐
tion, you’ll want to study Apple’s Quartz 2D Programming Guide.

With Core Graphics, you must specify a graphics context (a CGContext) to draw
into, explicitly, for each bit of your drawing. With CALayer, you are handed the
context as a parameter, and that’s the graphics context you want to draw into. But
if there is already a current context, you have no reference to a context; to use
Core Graphics, you need to get such a reference. You call UIGraphicsGetCurrent-
Context to obtain it.

You don’t have to use UIKit or Core Graphics exclusively. On the contrary, you
can intermingle UIKit calls and Core Graphics calls in the same chunk of code to
operate on the same graphics context. They merely represent two different ways
of telling a graphics context what to do.

So we have two sets of tools and three ways in which a context might be supplied; that
makes six ways of drawing. I’ll now demonstrate all six of them! Without worrying
just yet about the actual drawing commands, focus your attention on how the context
is specified and on whether we’re using UIKit or Core Graphics. First, I’ll draw a blue
circle by implementing a UIView subclass’s draw(_:), using UIKit to draw into the
current context, which Cocoa has already prepared for me:

override func draw(_ rect: CGRect) {
 let p = UIBezierPath(ovalIn: CGRect(0,0,100,100))
 UIColor.blue.setFill()
 p.fill()
}

Now I’ll do the same thing with Core Graphics; this will require that I first get a refer‐
ence to the current context:

override func draw(_ rect: CGRect) {
 let con = UIGraphicsGetCurrentContext()!
 con.addEllipse(in:CGRect(0,0,100,100))
 con.setFillColor(UIColor.blue.cgColor)
 con.fillPath()
}

Next, I’ll implement a CALayer delegate’s draw(_:in:). In this case, we’re handed a
reference to a context, but it isn’t the current context. So I have to make it the current

110 | Chapter 2: Drawing

context in order to use UIKit (and I must remember to stop making it the current
context when I’m done drawing):

override func draw(_ layer: CALayer, in con: CGContext) {
 UIGraphicsPushContext(con)
 let p = UIBezierPath(ovalIn: CGRect(0,0,100,100))
 UIColor.blue.setFill()
 p.fill()
 UIGraphicsPopContext()
}

To use Core Graphics in a CALayer delegate’s draw(_:in:), I simply keep referring to
the context I was handed:

override func draw(_ layer: CALayer, in con: CGContext) {
 con.addEllipse(in:CGRect(0,0,100,100))
 con.setFillColor(UIColor.blue.cgColor)
 con.fillPath()
}

Finally, I’ll make a UIImage of a blue circle. We can do this at any time (we don’t need
to wait for some particular method to be called) and in any class (we don’t need to be
in a UIView subclass). The old way of doing this, in iOS 9 and before, was as follows:

1. You call UIGraphicsBeginImageContextWithOptions. It creates an image context
and makes it the current context.

2. You draw, thus generating the image.
3. You call UIGraphicsGetImageFromCurrentImageContext to extract an actual

UIImage from the image context.
4. You call UIGraphicsEndImageContext to dismiss the context.

The desired image is the result of step 3, and now you can display it in your interface,
draw it into some other graphics context, save it as a file, or whatever you like.

New in iOS 10, UIGraphicsBeginImageContextWithOptions is superseded by UIGra‐
phicsImageRenderer (though you can still use the old way if you want to). The reason
for this change is that the old way assumed you wanted an sRGB image with 8-bit
color pixels, whereas the introduction of the iPad Pro 9.7-inch makes that assump‐
tion wrong: it can display “wide color,” meaning that you probably want a P3 image
with 16-bit color pixels. UIGraphicsImageRenderer knows how to make such an
image, and will do so by default if we’re running on a “wide color” device.

Another nice thing about UIGraphicsImageRenderer is that its image method takes a
function containing your drawing commands and returns the image. Thus there is no
need for the step-by-step imperative style of programming required by UIGraphics-
BeginImageContextWithOptions, where after drawing you had to remember to fetch
the image and dismiss the context yourself.

Graphics Contexts | 111

In this edition of the book, therefore, I will adopt UIGraphicsImageRenderer
throughout. If you need to know the details of UIGraphicsBeginImageContextWith-
Options, consult an earlier edition. If you need a backwards-compatible way to draw
an image — you want to use UIGraphicsBeginImageContextWithOptions on iOS 9
and before, but UIGraphicsImageRenderer on iOS 10 and later — see Appendix B,
which provides a utility function for that very purpose.

So now, I’ll draw my image using UIKit (for the CGSize initializer with no argument
labels, see Appendix B):

let r = UIGraphicsImageRenderer(size:CGSize(100,100))
let im = r.image { _ in
 let p = UIBezierPath(ovalIn: CGRect(0,0,100,100))
 UIColor.blue.setFill()
 p.fill()
}
// im is the blue circle image, do something with it here ...

And here’s the same thing using Core Graphics:

let r = UIGraphicsImageRenderer(size:CGSize(100,100))
let im = r.image { _ in
 let con = UIGraphicsGetCurrentContext()!
 con.addEllipse(in:CGRect(0,0,100,100))
 con.setFillColor(UIColor.blue.cgColor)
 con.fillPath()
}
// im is the blue circle image, do something with it here ...

Instead of calling image, you can call UIGraphicsImageRenderer methods that
generate JPEG or PNG image data, suitable for saving to disk.

In those examples, we’re calling UIGraphicsImageRenderer’s init(size:) and
accepting its default configuration, which is usually what’s wanted. To configure its
image context further, call the UIGraphicsImageRendererFormat class method
default(), configure the format through its properties, and pass it to UIGraphicsI‐
mageRenderer’s init(size:format:). Those properties are:

opaque

By default, false; the image context is transparent. If true, the image context is
opaque and has a black background, and the resulting image has no transpar‐
ency.

scale

By default, the same as the scale of the main screen, UIScreen.main.scale. This
means that the resolution of the resulting image will be correct for the device
we’re running on.

112 | Chapter 2: Drawing

Figure 2-11. Two images of Mars combined side by side

prefersExtendedRange

By default, true only if we’re running on a device that supports “wide color.”

You may also be wondering about the parameter that arrives into the UIGraphicsI‐
mageRenderer’s image function (which is ignored in the preceding examples). It’s a
UIGraphicsImageRendererContext. This provides access to the configuring UIGra‐
phicsImageRendererFormat (its format). It also lets you obtain the graphics context
(its cgContext); you can alternatively get this by calling UIGraphicsGetCurrent-
Context, and the preceding code does so, for consistency with the other ways of
drawing. In addition, the UIGraphicsImageRendererContext can hand you a copy of
the image as drawn up to this point (its currentImage); also, it implements a few
basic drawing commands of its own.

A nice thing about UIGraphicsImageRenderer is that it doesn’t have to be torn
down after use. If you know that you’re going to be drawing multiple images with
the same size and format, you can keep a reference to the renderer and call its
image method again.

UIImage Drawing
A UIImage provides methods for drawing itself into the current context. We know
how to obtain a UIImage, and we know how to obtain a graphics context and make it
the current context, so we can experiment with these methods.

Here, I’ll make a UIImage consisting of two pictures of Mars side by side
(Figure 2-11):

let mars = UIImage(named:"Mars")!
let sz = mars.size
let r = UIGraphicsImageRenderer(size:CGSize(sz.width*2, sz.height))
let im = r.image { _ in
 mars.draw(at:CGPoint(0,0))
 mars.draw(at:CGPoint(sz.width,0))
}

Observe that image scaling works perfectly in that example. If we have multiple reso‐
lution versions of our original Mars image, the correct one for the current device is
used, and is assigned the correct scale value. The image context that we are drawing

UIImage Drawing | 113

Figure 2-12. Two images of Mars in different sizes, composited

into also has the correct scale by default. And the resulting image has the correct
scale as well. Thus, this same code produces an image that looks correct on the cur‐
rent device, whatever its screen resolution may be.

Additional UIImage methods let you scale an image into a desired rectangle as you
draw, and specify the compositing (blend) mode whereby the image should combine
with whatever is already present. To illustrate, I’ll create an image showing Mars cen‐
tered in another image of Mars that’s twice as large, using the .multiply blend mode
(Figure 2-12):

let mars = UIImage(named:"Mars")!
let sz = mars.size
let r = UIGraphicsImageRenderer(size:CGSize(sz.width*2, sz.height*2))
let im = r.image { _ in
 mars.draw(in:CGRect(0,0,sz.width*2,sz.height*2))
 mars.draw(in:CGRect(sz.width/2.0, sz.height/2.0, sz.width, sz.height),
 blendMode: .multiply, alpha: 1.0)
}

There is no UIImage drawing method for specifying the source rectangle — that is,
for times when you want to extract a smaller region of the original image. You can
work around this by creating a smaller graphics context and positioning the image
drawing so that the desired region falls into it. For example, to obtain an image of the
right half of Mars, you’d make a graphics context half the width of the mars image,
and then draw mars shifted left, so that only its right half intersects the graphics con‐
text. There is no harm in doing this, and it’s a perfectly standard strategy; the left half
of mars simply isn’t drawn (Figure 2-13):

let mars = UIImage(named:"Mars")!
let sz = mars.size
let r = UIGraphicsImageRenderer(size:CGSize(sz.width/2.0, sz.height))
let im = r.image { _ in
 mars.draw(at:CGPoint(-sz.width/2.0,0))
}

114 | Chapter 2: Drawing

Figure 2-13. Half the original image of Mars

CGImage Drawing
The Core Graphics version of UIImage is CGImage. In essence, a UIImage is (usu‐
ally) a wrapper for a CGImage: the UIImage is bitmap image data plus scale, orienta‐
tion, and other information, whereas the CGImage is the bare bitmap image data
alone. The two are easily converted to one another: a UIImage has a cgImage prop‐
erty that accesses its Quartz image data, and you can make a UIImage from a
CGImage using init(cgImage:) or its more configurable sibling, init(cg-

Image:scale:orientation:).

A CGImage lets you create a new image cropped from a rectangular region of the
original image, which you can’t do with UIImage. (A CGImage has other powers a
UIImage doesn’t have; for example, you can apply an image mask to a CGImage.) I’ll
demonstrate by splitting the image of Mars in half and drawing the two halves sepa‐
rately (Figure 2-14):

let mars = UIImage(named:"Mars")!
// extract each half as CGImage
let marsCG = mars.cgImage!
let sz = mars.size
let marsLeft = marsCG.cropping(to:
 CGRect(0,0,sz.width/2.0,sz.height))!
let marsRight = marsCG.cropping(to:
 CGRect(sz.width/2.0,0,sz.width/2.0,sz.height))!
let r = UIGraphicsImageRenderer(size: CGSize(sz.width*1.5, sz.height))
let im = r.image { ctx in
 let con = ctx.cgContext
 con.draw(marsLeft, in:
 CGRect(0,0,sz.width/2.0,sz.height))
 con.draw(marsRight, in:
 CGRect(sz.width,0,sz.width/2.0,sz.height))
}

But there’s a problem with that example: the drawing is upside-down! It isn’t rotated;
it’s mirrored top to bottom, or, to use the technical term, flipped. This phenomenon
can arise when you create a CGImage and then draw it, and is due to a mismatch in
the native coordinate systems of the source and target contexts.

CGImage Drawing | 115

Figure 2-14. Image of Mars split in half (and flipped)

There are various ways of compensating for this mismatch between the coordinate
systems. One is to draw the CGImage into an intermediate UIImage and extract
another CGImage from that. Example 2-1 presents a utility function for doing this.

Example 2-1. Utility for flipping an image drawing

func flip (_ im: CGImage) -> CGImage {
 let sz = CGSize(CGFloat(im.width), CGFloat(im.height))
 let r = UIGraphicsImageRenderer(size:sz)
 return r.image { ctx in
 ctx.cgContext.draw(im, in: CGRect(0, 0, sz.width, sz.height))
 }.cgImage!
}

Armed with the utility function from Example 2-1, we can fix our CGImage drawing
calls in the previous example so that they draw the halves of Mars the right way up:

con.draw(flip(marsLeft!), in:
 CGRect(0,0,sz.width/2.0,sz.height))
con.draw(flip(marsRight!), in:
 CGRect(sz.width,0,sz.width/2.0,sz.height))

However, we’ve still got a problem: on a high-resolution device, if there is a high-
resolution variant of our image file, the drawing comes out all wrong. The reason is
that we are obtaining our initial Mars image using UIImage’s init(named:), which
returns a UIImage that compensates for the increased size of a high-resolution image
by setting its own scale property to match. But a CGImage doesn’t have a scale
property, and knows nothing of the fact that the image dimensions are increased!
Therefore, on a high-resolution device, the CGImage that we extract from our Mars
UIImage as mars.cgImage is larger (in each dimension) than mars.size, and all our
calculations after that are wrong.

It would be best, therefore, is to wrap each CGImage in a UIImage and draw the
UIImage instead of the CGImage. The UIImage can be formed in such a way as to
compensate for scale: call init(cgImage:scale:orientation:) as you form the
UIImage from the CGImage. Moreover, by drawing a UIImage instead of a CGImage,
we avoid the flipping problem! So here’s an approach that deals with both flipping
and scale, with no need for the flip utility:

116 | Chapter 2: Drawing

Why Flipping Happens
The ultimate source of accidental flipping is that Core Graphics comes from the
macOS world, where the coordinate system’s origin is located by default at the bottom
left and the positive y-direction is upward, whereas on iOS the origin is located by
default at the top left and the positive y-direction is downward. In most drawing sit‐
uations, no problem arises, because the coordinate system of the graphics context is
adjusted to compensate. Thus, the default coordinate system for drawing in a Core
Graphics context on iOS has the origin at the top left, just as you expect. But creating
and drawing a CGImage exposes the “impedance mismatch” between the two worlds.

let mars = UIImage(named:"Mars")!
let sz = mars.size
let marsCG = mars.cgImage!
let szCG = CGSize(CGFloat(marsCG.width), CGFloat(marsCG.height))
let marsLeft =
 marsCG.cropping(to:
 CGRect(0,0,szCG.width/2.0,szCG.height))
let marsRight =
 marsCG.cropping(to:
 CGRect(szCG.width/2.0,0,szCG.width/2.0,szCG.height))
let r = UIGraphicsImageRenderer(size:CGSize(sz.width*1.5, sz.height))
let im = r.image { _ in
 UIImage(cgImage: marsLeft!,
 scale: mars.scale,
 orientation: mars.imageOrientation).draw(at:CGPoint(0,0))
 UIImage(cgImage: marsRight!,
 scale: mars.scale,
 orientation: mars.imageOrientation).draw(at:CGPoint(sz.width,0))
}

Yet another solution to flipping is to apply a transform to the graphics context
before drawing the CGImage, effectively flipping the context’s internal coordi‐
nate system. This is elegant, but can be confusing if there are other transforms in
play. I’ll talk more about graphics context transforms later in this chapter.

Snapshots
An entire view — anything from a single button to your whole interface, complete
with its contained hierarchy of views — can be drawn into the current graphics con‐
text by calling the UIView instance method drawHierarchy(in:afterScreen-

Updates:). (This method is much faster than the CALayer method render(in:);
nevertheless, the latter does still come in handy, as I’ll show in Chapter 5.) The result
is a snapshot of the original view: it looks like the original view, but it’s basically just a
bitmap image of it, a lightweight visual duplicate.

Snapshots | 117

An even faster way to obtain a snapshot of a view is to use the UIView (or UIScreen)
instance method snapshotView(afterScreenUpdates:). The result is a UIView, not
a UIImage; it’s rather like a UIImageView that knows how to draw only one image,
namely the snapshot. Such a snapshot view will typically be used as is, but you can
enlarge its bounds and the snapshot image will stretch. If you want the stretched
snapshot to behave like a resizable image, call resizableSnapshotView(from:after-
ScreenUpdates:withCapInsets:) instead. It is perfectly reasonable to make a snap‐
shot view from a snapshot view.

Snapshots are useful because of the dynamic nature of the iOS interface. For example,
you might place a snapshot of a view in your interface in front of the real view to hide
what’s happening, or use it during an animation to present the illusion of a view mov‐
ing when in fact it’s just a snapshot.

Here’s an example from one of my apps. It’s a card game, and its views portray cards.
I want to animate the removal of all those cards from the board, flying away to an
offscreen point. But I don’t want to animate the views themselves! They need to stay
put, to portray future cards. So I make a snapshot view of each of the card views; I
then make the card views invisible, put the snapshot views in their place, and animate
the snapshot views. This code will mean more to you after you’ve read Chapter 4, but
the strategy is evident:

for v in views {
 let snapshot = v.snapshotView(afterScreenUpdates: false)!
 let snap = MySnapBehavior(item:snapshot, snapto:CGPoint(
 x: self.anim.referenceView!.bounds.midX,
 y: -self.anim.referenceView!.bounds.height)
)
 self.snaps.append(snapshot) // keep a list so we can remove them later
 snapshot.frame = v.frame
 v.isHidden = true
 self.anim.referenceView!.addSubview(snapshot)
 self.anim.addBehavior(snap)
}

CIFilter and CIImage
The “CI” in CIFilter and CIImage stands for Core Image, a technology for transform‐
ing images through mathematical filters. Core Image started life on the desktop
(macOS), and when it was originally migrated into iOS 5, some of the filters available
on the desktop were not available in iOS (presumably because they were too intensive
mathematically for a mobile device). Over the years, however, more and more macOS
filters were added to the iOS repertoire, and now the two have complete parity: all
macOS filters are available in iOS, and the two platforms have nearly identical APIs.

118 | Chapter 2: Drawing

A filter is a CIFilter. The 180 available filters fall naturally into several broad cate‐
gories:

Patterns and gradients
These filters create CIImages that can then be combined with other CIImages,
such as a single color, a checkerboard, stripes, or a gradient.

Compositing
These filters combine one image with another, using compositing blend modes
familiar from image processing programs.

Color
These filters adjust or otherwise modify the colors of an image. Thus you can
alter an image’s saturation, hue, brightness, contrast, gamma and white point,
exposure, shadows and highlights, and so on.

Geometric
These filters perform basic geometric transformations on an image, such as scal‐
ing, rotation, and cropping.

Transformation
These filters distort, blur, or stylize an image.

Transition
These filters provide a frame of a transition between one image and another; by
asking for frames in sequence, you can animate the transition (I’ll demonstrate in
Chapter 4).

Special purpose
These filters perform highly specialized operations such as face detection and
generation of QR codes.

The basic use of a CIFilter is quite simple:

• You specify what filter you want by supplying its string name; to learn what these
names are, consult Apple’s Core Image Filter Reference, or call the CIFilter class
method filterNames(inCategories:) with a nil argument.

• Each filter has a small number of keys and values that determine its behavior (as
if a filter were a kind of dictionary). You can learn about these keys entirely in
code, but typically you’ll consult the documentation. For each key that you’re
interested in, you supply a key–value pair. In supplying values, a number must be
wrapped up as an NSNumber (Swift will take care of this for you), and there are a
few supporting classes such as CIVector (like CGPoint and CGRect combined)
and CIColor, whose use is easy to grasp.

CIFilter and CIImage | 119

Among a CIFilter’s keys may be the input image or images on which the filter is to
operate; such an image must be a CIImage. You can obtain this CIImage from a
CGImage with init(cgImage:) or from a UIImage with init(image:).

Do not attempt, as a shortcut, to obtain a CIImage directly from a UIImage
through the UIImage’s ciImage property. This property does not transform a
UIImage into a CIImage! It merely points to the CIImage that already backs the
UIImage, if the UIImage is backed by a CIImage; but your images are not backed
by a CIImage, but rather by a CGImage. I’ll explain where a CIImage-backed
UIImage comes from in just a moment.

Alternatively, you can obtain a CIImage as the output of a filter — which means that
filters can be chained together.

There are three ways to describe and use a filter:

• Create the filter with CIFilter’s init(name:). Now append the keys and values by
calling setValue(_:forKey:) repeatedly, or by calling setValuesForKeys(_:)
with a dictionary. Obtain the output CIImage as the filter’s outputImage.

• Create the filter and supply the keys and values in a single move, by calling CIFil‐
ter’s init(name:withInputParameters:). Obtain the output CIImage as the fil‐
ter’s outputImage.

• If a CIFilter requires an input image and you already have a CIImage to fulfill
this role, specify the filter and supply the keys and values, and receive the output
CIImage as a result, all in a single move, by calling the CIImage instance method
applyingFilter(_:withInputParameters:).

As you build a chain of filters, nothing actually happens. The only calculation-
intensive move comes at the very end, when you transform the final CIImage in the
chain into a bitmap drawing. This is called rendering the image. There are two main
ways to do this:

With a CIContext
Create a CIContext by calling init() or init(options:), and then call its
createCGImage(_:from:), handing it the final CIImage as the first argument.
This renders the image. The only mildly tricky thing here is that a CIImage
doesn’t have a frame or bounds; it has an extent. You will often use this as the
second argument to createCGImage(_:from:). The final output CGImage is
ready for any purpose, such as for display in your app, for transformation into a
UIImage, or for use in further drawing.

With a UIImage
Create a UIImage directly from the final CIImage by calling init(ciImage:) or
init(ciImage:scale:orientation:). You then draw the UIImage into some

120 | Chapter 2: Drawing

graphics context. At the moment of drawing, the image is rendered. (Apple
claims that you can simply hand a UIImage created by calling init(ciImage:) to
a UIImageView, as its image, and that the UIImageView will render the image. In
my experience, this is not true. You must draw the image explicitly in order to
render it.)

Rendering a CIImage in either of these ways is slow and expensive. With the first
approach, the expense comes at the moment when you create the CIContext;
wherever possible, you should create your CIContext once, beforehand — pref‐
erably, once per app — and reuse it each time you render. With the second
approach, the expense comes at the moment of drawing the UIImage. Other
ways of rendering a CIImage, involving things like GLKView or CAEAGLLayer,
which are not discussed in this book, have the advantage of being very fast and
suitable for animated or rapid rendering.

To illustrate, I’ll start with an ordinary photo of myself (it’s true I’m wearing a motor‐
cycle helmet, but it’s still ordinary) and create a circular vignette effect (Figure 2-15).
We derive from the image of me (moi) a CIImage (moici). We use a CIFilter (grad) to
form a radial gradient between the default colors of white and black. Then we use a
second CIFilter that treats the radial gradient as a mask for blending between the
photo of me and a default clear background: where the radial gradient is white
(everything inside the gradient’s inner radius) we see just me, and where the radial
gradient is black (everything outside the gradient’s outer radius) we see just the clear
color, with a gradation in between, so that the image fades away in the circular band
between the gradient’s radii. The code illustrates two different ways of configuring a
CIFilter:

let moi = UIImage(named:"Moi")!
let moici = CIImage(image:moi)!
let moiextent = moici.extent
let center = CIVector(x: moiextent.width/2.0, y: moiextent.height/2.0)
let smallerDimension = min(moiextent.width, moiextent.height)
let largerDimension = max(moiextent.width, moiextent.height)
// first filter
let grad = CIFilter(name: "CIRadialGradient")!
grad.setValue(center, forKey:"inputCenter")
grad.setValue(smallerDimension/2.0 * 0.85, forKey:"inputRadius0")
grad.setValue(largerDimension/2.0, forKey:"inputRadius1")
let gradimage = grad.outputImage!
// second filter
let blendimage = moici.applyingFilter("CIBlendWithMask",
 withInputParameters: [
 "inputMaskImage":gradimage
])

We now have the final CIImage in the chain (blendimage); remember, the processor
has not yet performed any rendering. Now, however, we want to generate the final
bitmap and display it. Let’s say we’re going to display it as the image of a UIImage‐

CIFilter and CIImage | 121

Figure 2-15. A photo of me, vignetted

View self.iv. We can do it in two different ways. We can create a CGImage by pass‐
ing the CIImage through a CIContext; in this code, I have prepared this CIContext
beforehand as a property, self.context, by calling CIContext():

let moicg = self.context.createCGImage(blendimage, from: moiextent)!
self.iv.image = UIImage(cgImage: moicg)

Alternatively, we can capture our final CIImage as a UIImage and then draw with it
in order to generate the bitmap output of the filter chain:

let r = UIGraphicsImageRenderer(size:moiextent.size)
self.iv.image = r.image { _ in
 UIImage(ciImage: blendimage).draw(in:moiextent)
}

A filter chain can be encapsulated into a single custom filter by subclassing CIFilter.
Your subclass just needs to override the outputImage property (and possibly other
methods such as setDefaults), with additional properties to make it key–value cod‐
ing compliant for any input keys. Here’s our vignette filter as a simple CIFilter sub‐
class, where the input keys are the input image and a percentage that adjusts the
gradient’s smaller radius:

class MyVignetteFilter : CIFilter {
 var inputImage : CIImage?
 var inputPercentage : NSNumber? = 1.0
 override var outputImage : CIImage? {
 return self.makeOutputImage()
 }
 private func makeOutputImage () -> CIImage? {
 guard let inputImage = self.inputImage else {return nil}
 guard let inputPercentage = self.inputPercentage else {return nil}
 let extent = inputImage.extent
 let grad = CIFilter(name: "CIRadialGradient")!
 let center = CIVector(x: extent.width/2.0, y: extent.height/2.0)
 let smallerDimension = min(extent.width, extent.height)
 let largerDimension = max(extent.width, extent.height)
 grad.setValue(center, forKey:"inputCenter")
 grad.setValue(smallerDimension/2.0 * CGFloat(inputPercentage),

122 | Chapter 2: Drawing

 forKey:"inputRadius0")
 grad.setValue(largerDimension/2.0, forKey:"inputRadius1")
 let blend = CIFilter(name: "CIBlendWithMask")!
 blend.setValue(inputImage, forKey: "inputImage")
 blend.setValue(grad.outputImage, forKey: "inputMaskImage")
 return blend.outputImage
 }
}

And here’s how to use our CIFilter subclass and display its output in a UIImageView:

let vig = MyVignetteFilter()
let moici = CIImage(image: UIImage(named:"Moi")!)!
vig.setValuesForKeys([
 "inputImage":moici,
 "inputPercentage":0.7
])
let outim = vig.outputImage!
let outimcg = self.context.createCGImage(outim, from: outim.extent)!
self.iv.image = UIImage(cgImage: outimcg)

You can also create your own CIFilter from scratch — not by combining existing
filters, but by coding the actual mathematics of the filter. The details are outside
the scope of this book; you’ll want to look at the CIKernel class.

Blur and Vibrancy Views
Certain views on iOS, such as navigation bars and the control center, are translucent
and display a blurred rendition of what’s behind them. To help you imitate this effect,
iOS provides the UIVisualEffectView class. You can place other views in front of a
UIVisualEffectView, but any subviews should be placed inside its contentView. To
tint what’s seen through a UIVisualEffectView, set the backgroundColor of its
contentView.

To use a UIVisualEffectView, create it with init(effect:); the effect: argument
will be an instance of a UIVisualEffect subclass:

UIBlurEffect
To initialize a UIBlurEffect, call init(style:); the styles (UIBlurEffectStyle)
are .dark, .light, and .extraLight. (.extraLight is suitable particularly for
pieces of interface that function like a navigation bar or toolbar.) For example:

let fuzzy = UIVisualEffectView(effect:(UIBlurEffect(style:.light)))

UIVibrancyEffect
To initialize a UIVibrancyEffect, call init(blurEffect:). Vibrancy tints a view
so as to make it harmonize with the blurred colors underneath it. The intention
here is that the vibrancy effect view should sit in front of a blur effect view, typi‐
cally in its contentView, adding vibrancy to a single UIView that’s inside its own

Blur and Vibrancy Views | 123

Figure 2-16. A blurred background and a vibrant label

contentView; you tell the vibrancy effect what the underlying blur effect is, so
that they harmonize. You can fetch a visual effect view’s blur effect as its effect
property, but that’s a UIVisualEffect — the superclass — so you’ll have to cast
down to a UIBlurEffect in order to hand it to init(blurEffect:).

Here’s an example of a blur effect view covering and blurring the interface
(mainview), and containing a UILabel wrapped in a vibrancy effect view
(Figure 2-16):

let blur = UIVisualEffectView(effect: UIBlurEffect(style: .extraLight))
blur.frame = mainview.bounds
blur.autoresizingMask = [.flexibleWidth, .flexibleHeight]
let vib = UIVisualEffectView(effect: UIVibrancyEffect(
 blurEffect: blur.effect as! UIBlurEffect))
let lab = UILabel()
lab.text = "Hello, world!"
lab.sizeToFit()
vib.frame = lab.frame
vib.contentView.addSubview(lab)
vib.center = CGPoint(blur.bounds.midX, blur.bounds.midY)
vib.autoresizingMask = [.flexibleTopMargin, .flexibleBottomMargin,
 .flexibleLeftMargin, .flexibleRightMargin]
blur.contentView.addSubview(vib)
mainview.addSubview(blur)

Apple seems to think that vibrancy makes a view more legible in conjunction with the
underlying blur, but I’m not persuaded. The vibrant view’s color is made to harmo‐
nize with the blurred color behind it, but harmony implies similarity, which can make
the vibrant view less legible. You’ll have to experiment. With the particular interface
I’m blurring, the vibrant label in Figure 2-16 looks okay with a .dark or .extraLight
blur effect view, but is hard to see with a .light blur effect view.

There are a lot of useful additional notes, well worth consulting, in the UIVisualEf‐
fectView.h header. For example, the header points out that an image displayed in an
image view needs to be a template image in order to receive the benefit of a vibrancy
effect view.

Observe that both a blur effect view and a blur effect view with an embedded
vibrancy effect view are available as built-in objects in the nib editor.

124 | Chapter 2: Drawing

Drawing a UIView
The examples of drawing so far in this chapter have mostly produced UIImage
objects, suitable for display by a UIImageView or any other interface object that
knows how to display an image. But, as I’ve already explained, a UIView itself pro‐
vides a graphics context; whatever you draw into that graphics context will appear
directly in that view. The technique here is to subclass UIView and implement the
subclass’s draw(_:) method.

So, for example, let’s say we have a UIView subclass called MyView. You would then
instantiate this class and get the instance into the view hierarchy. One way to do this
would be to drag a UIView into a view in the nib editor and set its class to MyView in
the Identity inspector; another would be to run code that creates the MyView
instance and puts it into the interface.

The result is that, from time to time, or whenever you send it the setNeedsDisplay
message, MyView’s draw(_:) will be called. This is your subclass, so you get to write
the code that runs at that moment. Whatever you draw will appear inside the MyView
instance. There will usually be no need to call super, since UIView’s own implemen‐
tation of draw(_:) does nothing. At the time that draw(_:) is called, the current
graphics context has already been set to the view’s own graphics context. You can use
Core Graphics functions or UIKit convenience methods to draw into that context. I
gave some basic examples earlier in this chapter (“Graphics Contexts” on page 108).

The need to draw in real time, on demand, surprises some beginners, who worry that
drawing may be a time-consuming operation. This can indeed be a reasonable con‐
sideration, and where the same drawing will be used in many places in your interface,
it may well make sense to construct a UIImage instead, once, and then reuse that
UIImage by drawing it in a view’s draw(_:). In general, however, you should not
optimize prematurely. The code for a drawing operation may appear verbose and yet
be extremely fast. Moreover, the iOS drawing system is efficient; it doesn’t call
draw(_:) unless it has to (or is told to, through a call to setNeedsDisplay), and once
a view has drawn itself, the result is cached so that the cached drawing can be reused
instead of repeating the drawing operation from scratch. (Apple refers to this cached
drawing as the view’s bitmap backing store.) You can readily satisfy yourself of this fact
with some caveman debugging, logging in your draw(_:) implementation; you may
be amazed to discover that your custom UIView’s draw(_:) code is called only once
in the entire lifetime of the app! In fact, moving code to draw(_:) is commonly a way
to increase efficiency. This is because it is more efficient for the drawing engine to
render directly onto the screen than for it to render offscreen and then copy those
pixels onto the screen.

Where drawing is extensive and can be compartmentalized into sections, you may be
able to gain some additional efficiency by paying attention to the parameter passed

Drawing a UIView | 125

into draw(_:). This parameter is a CGRect designating the region of the view’s
bounds that needs refreshing. Normally, this is the view’s entire bounds; but if you
call setNeedsDisplay(_:), which takes a CGRect parameter, it will be the CGRect
that you passed in as argument. You could respond by drawing only what goes into
those bounds; but even if you don’t, your drawing will be clipped to those bounds, so,
while you may not spend less time drawing, the system will draw more efficiently.

When a custom UIView subclass has a draw(_:) implementation and you create an
instance of this subclass in code, you may be surprised (and annoyed) to find that the
view has a black background! This can be frustrating if what you expected and
wanted was a transparent background, and it’s a source of considerable confusion
among beginners. The black background arises when two things are true:

• The view’s backgroundColor is nil.
• The view’s isOpaque is true.

Unfortunately, when creating a UIView in code, both those things are true by default!
So if you don’t want the black background, you must do something about one or the
other of them (or both). If this view isn’t going to be opaque, then, this being your
own UIView subclass, you could implement its init(frame:) (the designated initial‐
izer) to have the view set its own isOpaque to false:

class MyView : UIView {
 override init(frame: CGRect) {
 super.init(frame:frame)
 self.isOpaque = false
 }
 // ...
}

With a UIView created in the nib, on the other hand, the black background problem
doesn’t arise. This is because such a UIView’s backgroundColor is not nil. The nib
assigns it some actual background color, even if that color is UIColor.clear().

On the other other hand, if a view fills its rectangle with opaque drawing or has an
opaque background color, you can leave isOpaque set to true and gain some drawing
efficiency (see Chapter 1).

You should never call draw(_:) yourself! If a view needs updating and you want
its draw(_:) called, send the view the setNeedsDisplay message. This will cause
draw(_:) to be called at the next proper moment. Also, don’t override draw(_:)
unless you are assured that this is legal. For example, it is not legal to override
draw(_:) in a subclass of UIImageView; you cannot combine your drawing with
that of the UIImageView. Finally, do not do anything in draw(_:) except draw!
Other configuration, such as setting the view’s background color, should be per‐
formed elsewhere, such as its initializer override.

126 | Chapter 2: Drawing

Graphics Context Commands
Whenever you draw, you are giving commands to the graphics context into which
you are drawing. This is true regardless of whether you use UIKit methods or Core
Graphics functions. Thus, learning to draw is really a matter of understanding how a
graphics context works. That’s what this section is about.

Under the hood, Core Graphics commands to a graphics context are global C func‐
tions with names like CGContextSetFillColor; but in Swift 3, “renamification”
recasts them as if a CGContext were a genuine object representing the graphics con‐
text, and the commands were methods sent to it. Moreover, thanks to Swift overload‐
ing, multiple functions are collapsed into a single command; thus, for example,
CGContextSetFillColor and CGContextSetFillColorWithColor and CGContextSet-
RGBFillColor and CGContextSetGrayFillColor all become setFillColor.

Graphics Context Settings
As you draw in a graphics context, the drawing obeys the context’s current settings.
Thus, the procedure is always to configure the context’s settings first, and then draw.
For example, to draw a red line followed by a blue line, you would first set the con‐
text’s line color to red, and then draw the first line; then you’d set the context’s line
color to blue, and then draw the second line. To the eye, it appears that the redness
and blueness are properties of the individual lines, but in fact, at the time you draw
each line, line color is a feature of the entire graphics context.

A graphics context thus has, at every moment, a state, which is the sum total of all its
settings; the way a piece of drawing looks is the result of what the graphics context’s
state was at the moment that piece of drawing was performed. To help you manipu‐
late entire states, the graphics context provides a stack for holding states. Every time
you call saveGState, the context pushes the entire current state onto the stack; every
time you call restoreGState, the context retrieves the state from the top of the stack
(the state that was most recently pushed) and sets itself to that state.

Thus, a common pattern is:

1. Call saveGState.
2. Manipulate the context’s settings, thus changing its state.
3. Draw.
4. Call restoreGState to restore the state and the settings to what they were before

you manipulated them.

You do not have to do this before every manipulation of a context’s settings, however,
because settings don’t necessarily conflict with one another or with past settings. You

Graphics Context Commands | 127

can set the context’s line color to red and then later to blue without any difficulty. But
in certain situations you do want your manipulation of settings to be undoable, and
I’ll point out several such situations later in this chapter.

Many of the settings that constitute a graphics context’s state, and that determine the
behavior and appearance of drawing performed at that moment, are similar to those
of any drawing application. Here are some of them, along with some of the com‐
mands that determine them (and some UIKit properties and methods that call them):

Line thickness and dash style
setLineWidth(_:), setLineDash(phase:lengths:) (and UIBezierPath line-
Width, setLineDash(_:count:phase:))

Line end-cap style and join style
setLineCap(_:), setLineJoin(_:), setMiterLimit(_:) (and UIBezierPath
lineCapStyle, lineJoinStyle, miterLimit)

Line color or pattern
setStrokeColor(_:), setStrokePattern(_:colorComponents:) (and UIColor
setStroke)

Fill color or pattern
setFillColor(_:), setFillPattern(_:colorComponents:) (and UIColor set-
Fill)

Shadow
setShadow(offset:blur:color:)

Overall transparency and compositing
setAlpha(_:), setBlendMode(_:)

Anti-aliasing
setShouldAntialias(_:)

Additional settings include:

Clipping area
Drawing outside the clipping area is not physically drawn.

Transform (or “CTM,” for “current transform matrix”)
Changes how points that you specify in subsequent drawing commands are map‐
ped onto the physical space of the canvas.

Many of these settings will be illustrated by examples later in this chapter.

128 | Chapter 2: Drawing

Paths and Shapes
By issuing a series of instructions for moving an imaginary pen, you construct a path,
tracing it out from point to point. You must first tell the pen where to position itself,
setting the current point; after that, you issue a series of commands telling it how to
trace out each subsequent piece of the path. Each additional piece of the path starts at
the current point; its end becomes the new current point.

Note that a path, in and of itself, does not constitute drawing! First you provide a
path; then you draw. Drawing can mean stroking the path or filling the path, or both.
Again, this should be a familiar notion from certain drawing applications.

Here are some path-drawing commands you’re likely to give:

Position the current point
move(to:)

Trace a line
addLine(to:), addLines(between:)

Trace a rectangle
addRect(_:), addRects(_:)

Trace an ellipse or circle
addEllipse(in:)

Trace an arc
addArc(tangent1End:tangent2End:radius:)

Trace a Bezier curve with one or two control points
addQuadCurve(to:control:), addCurveTo(to:control1:control2:)

Close the current path
closePath. This appends a line from the last point of the path to the first point.
There’s no need to do this if you’re about to fill the path, since it’s done for you.

Stroke or fill the current path
strokePath, fillPath(using:), drawPath. Stroking or filling the current path
clears the path. Use drawPath if you want both to fill and to stroke the path in a
single command, because if you merely stroke it first with strokePath, the path
is cleared and you can no longer fill it.

There are also some convenience functions that create a path from a CGRect or
similar and stroke or fill it all in a single move:

• stroke(_:), strokeLineSegments(between:)
• fill(_:)

Graphics Context Commands | 129

• strokeEllipse(in:)

• fillEllipse(in:)

A path can be compound, meaning that it consists of multiple independent pieces.
For example, a single path might consist of two separate closed shapes: a rectangle
and a circle. When you call move(to:) in the middle of constructing a path (that is,
after tracing out a path and without clearing it by filling or stroking it), you pick up
the imaginary pen and move it to a new location without tracing a segment, thus pre‐
paring to start an independent piece of the same path. If you’re worried, as you begin
to trace out a path, that there might be an existing path and that your new path might
be seen as a compound part of that existing path, you can call beginPath to specify
that this is a different path; many of Apple’s examples do this, but in practice I usually
do not find it necessary.

To illustrate the typical use of path-drawing commands, I’ll generate the up-pointing
arrow shown in Figure 2-17. This might not be the best way to create the arrow, and
I’m deliberately avoiding use of the convenience functions, but it’s clear and shows a
nice basic variety of typical commands:

// obtain the current graphics context
let con = UIGraphicsGetCurrentContext()!
// draw a black (by default) vertical line, the shaft of the arrow
con.move(to:CGPoint(100, 100))
con.addLine(to:CGPoint(100, 19))
con.setLineWidth(20)
con.strokePath()
// draw a red triangle, the point of the arrow
con.setFillColor(UIColor.red.cgColor)
con.move(to:CGPoint(80, 25))
con.addLine(to:CGPoint(100, 0))
con.addLine(to:CGPoint(120, 25))
con.fillPath()
// snip a triangle out of the shaft by drawing in Clear blend mode
con.move(to:CGPoint(90, 101))
con.addLine(to:CGPoint(100, 90))
con.addLine(to:CGPoint(110, 101))
con.setBlendMode(.clear)
con.fillPath()

If a path needs to be reused or shared, you can encapsulate it as a CGPath. In Swift 3,
CGPath and its mutable partner CGMutablePath are treated as class types, and the
global C functions that manipulate them are treated as methods. You can copy the
graphics context’s current path using the CGContext path method, or you can create
a new CGMutablePath and construct the path using various functions, such as
move(to:transform:) and addLine(to:transform:), that parallel the CGContext
path-construction functions. Also, there are ways to create a path based on simple
geometry or on an existing path:

130 | Chapter 2: Drawing

Figure 2-17. A simple path drawing

• init(rect:transform:)

• init(ellipseIn:transform:)

• init(roundedRect:cornerWidth:cornerHeight:transform:)

• init(strokingWithWidth:lineCap:lineJoin:miterLimit:transform:)

• copy(dashingWithPhase:lengths:transform:)

• copy(using:) (takes a pointer to a CGAffineTransform)

The UIKit class UIBezierPath is actually a wrapper for CGPath; the wrapped path is
its cgPath property. It provides methods parallel to the CGContext and CGPath func‐
tions for constructing a path, such as:

• init(rect:)

• init(ovalIn:)

• init(roundedRect:cornerRadius:)

• move(to:)

• addLine(to:)

• addArc(withCenter:radius:startAngle:endAngle:clockwise:)

• addQuadCurve(to:controlPoint:)

• addCurve(to:controlPoint1:controlPoint2:)

• close

When you call the UIBezierPath instance methods fill or stroke or
fill(with:alpha:) or stroke(with:alpha:), the current graphics context settings
are saved, the wrapped CGPath is made the current graphics context’s path and
stroked or filled, and the current graphics context settings are restored.

Thus, using UIBezierPath together with UIColor, we could rewrite our arrow-
drawing routine entirely with UIKit methods:

Graphics Context Commands | 131

let p = UIBezierPath()
// shaft
p.move(to:CGPoint(100,100))
p.addLine(to:CGPoint(100, 19))
p.lineWidth = 20
p.stroke()
// point
UIColor.red.set()
p.removeAllPoints()
p.move(to:CGPoint(80,25))
p.addLine(to:CGPoint(100, 0))
p.addLine(to:CGPoint(120, 25))
p.fill()
// snip
p.removeAllPoints()
p.move(to:CGPoint(90,101))
p.addLine(to:CGPoint(100, 90))
p.addLine(to:CGPoint(110, 101))
p.fill(with:.clear, alpha:1.0)

There’s no savings of code here over calling Core Graphics functions, so your choice
of Core Graphics or UIKit is a matter of taste. UIBezierPath is also useful when you
want to capture a CGPath and pass it around as an object; an example appears in
Chapter 21. See also the discussion in Chapter 3 of CAShapeLayer, which takes a
CGPath that you’ve constructed and draws it for you within its own bounds.

Clipping
A path can be used to mask out areas, protecting them from future drawing. This is
called clipping. By default, a graphics context’s clipping region is the entire graphics
context: you can draw anywhere within the context.

The clipping area is a feature of the context as a whole, and any new clipping area is
applied by intersecting it with the existing clipping area; so if you apply your own
clipping region, the way to remove it from the graphics context later is to plan ahead
and wrap things with calls to saveGState and restoreGState.

To illustrate, I’ll rewrite the code that generated our original arrow (Figure 2-17) to
use clipping instead of a blend mode to “punch out” the triangular notch in the tail of
the arrow. This is a little tricky, because what we want to clip to is not the region
inside the triangle but the region outside it. To express this, we’ll use a compound
path consisting of more than one closed area — the triangle, and the drawing area as
a whole (which we can obtain as the context’s boundingBoxOfClipPath).

Both when filling a compound path and when using it to express a clipping region,
the system follows one of two rules:

132 | Chapter 2: Drawing

How Big Is My Context?
At first blush, it appears that there’s no way to learn a graphics context’s size. Typically,
this doesn’t matter, because either you created the graphics context or it’s the graphics
context of some object whose size you know, such as a UIView. But in fact, because
the default clipping region of a graphics context is the entire context, you can use
boundingBoxOfClipPath to learn the context’s “bounds” (before changing the clip‐
ping region, of course).

Winding rule
The fill or clipping area is denoted by an alternation in the direction (clockwise
or counterclockwise) of the path demarcating each region.

Even-odd rule (EO)
The fill or clipping area is denoted by a simple count of the paths demarcating
each region.

Our situation is extremely simple, so it’s easier to use the even-odd rule:

// obtain the current graphics context
let con = UIGraphicsGetCurrentContext()!
// punch triangular hole in context clipping region
con.move(to:CGPoint(90, 100))
con.addLine(to:CGPoint(100, 90))
con.addLine(to:CGPoint(110, 100))
con.closePath()
con.addRect(con.boundingBoxOfClipPath)
con.clip(using:.evenOdd)
// draw the vertical line
con.move(to:CGPoint(100, 100))
con.addLine(to:CGPoint(100, 19))
con.setLineWidth(20)
con.strokePath()
// draw the red triangle, the point of the arrow
con.setFillColor(UIColor.red.cgColor)
con.move(to:CGPoint(80, 25))
con.addLine(to:CGPoint(100, 0))
con.addLine(to:CGPoint(120, 25))
con.fillPath()

The UIBezierPath clipping commands are usesEvenOddFillRule and addClip.

Gradients
Gradients can range from the simple to the complex. A simple gradient (which is all
I’ll describe here) is determined by a color at one endpoint along with a color at the

Graphics Context Commands | 133

Figure 2-18. Drawing with a gradient

other endpoint, plus (optionally) colors at intermediate points; the gradient is then
painted either linearly between two points or radially between two circles.

You can’t use a gradient as a path’s fill color, but you can restrict a gradient to a path’s
shape by clipping, which amounts to the same thing.

To illustrate, I’ll redraw our arrow, using a linear gradient as the “shaft” of the arrow
(Figure 2-18):

// obtain the current graphics context
let con = UIGraphicsGetCurrentContext()!
con.saveGState()
// punch triangular hole in context clipping region
con.move(to:CGPoint(10, 100))
con.addLine(to:CGPoint(20, 90))
con.addLine(to:CGPoint(30, 100))
con.closePath()
con.addRect(con.boundingBoxOfClipPath)
con.clip(using: .evenOdd)
// draw the vertical line, add its shape to the clipping region
con.move(to:CGPoint(20, 100))
con.addLine(to:CGPoint(20, 19))
con.setLineWidth(20)
con.replacePathWithStrokedPath()
con.clip()
// draw the gradient
let locs : [CGFloat] = [0.0, 0.5, 1.0]
let colors : [CGFloat] = [
 0.8, 0.4, // starting color, transparent light gray
 0.1, 0.5, // intermediate color, darker less transparent gray
 0.8, 0.4, // ending color, transparent light gray
]
let sp = CGColorSpaceCreateDeviceGray()
let grad = CGGradient(
 colorSpace:sp, colorComponents: colors, locations: locs, count: 3)!
con.drawLinearGradient(grad,
 start: CGPoint(89,0), end: CGPoint(111,0), options:[])
con.restoreGState() // done clipping
// draw the red triangle, the point of the arrow
con.setFillColor(UIColor.red.cgColor)

134 | Chapter 2: Drawing

con.move(to:CGPoint(80, 25))
con.addLine(to:CGPoint(100, 0))
con.addLine(to:CGPoint(120, 25))
con.fillPath()

The call to replacePathWithStrokedPath pretends to stroke the current path, using
the current line width and other line-related context state settings, but then creates a
new path representing the outside of that stroked path. Thus, instead of a thick line
we have a rectangular region that we can use as the clip region.

We then create the gradient and paint it. The procedure is verbose but simple; every‐
thing is boilerplate. We describe the gradient as an array of locations on the contin‐
uum between one endpoint (0.0) and the other endpoint (1.0), along with the color
components of the colors corresponding to each location; in this case, I want the gra‐
dient to be lighter at the edges and darker in the middle, so I use three locations, with
the dark one at 0.5. We must also supply a color space; this will tell the gradient how
to interpret our color components. Finally, we create the gradient and paint it into
place.

(There are also gradient CIFilters, as I demonstrated earlier in this chapter; for yet
another way to create a simple gradient, see the discussion of CAGradientLayer in the
next chapter.)

Colors and Patterns
A color is a CGColor. CGColor is not difficult to work with, and can be converted to
and from a UIColor through UIColor’s init(cgColor:) and its cgColor property.

A pattern is also a kind of color. You can create a pattern color and stroke or fill with
it. The simplest way is to draw a minimal tile of the pattern into a UIImage and create
the color by calling UIColor’s init(patternImage:). To illustrate, I’ll create a pattern
of horizontal stripes and use it to paint the point of the arrow instead of a solid red
color (Figure 2-19):

// create the pattern image tile
let r = UIGraphicsImageRenderer(size:CGSize(4,4))
let stripes = r.image {
 ctx in
 let imcon = ctx.cgContext
 imcon.setFillColor(UIColor.red.cgColor)
 imcon.fill(CGRect(0,0,4,4))
 imcon.setFillColor(UIColor.blue.cgColor)
 imcon.fill(CGRect(0,0,4,2))
}
// paint the point of the arrow with it
let stripesPattern = UIColor(patternImage:stripes)
stripesPattern.setFill()
let p = UIBezierPath()

Graphics Context Commands | 135

Figure 2-19. A patterned fill

p.move(to:CGPoint(80,25))
p.addLine(to:CGPoint(100,0))
p.addLine(to:CGPoint(120,25))
p.fill()

The Core Graphics equivalent, CGPattern, is considerably more powerful, but also
much more elaborate:

let sp2 = CGColorSpace(patternBaseSpace:nil)!
con.setFillColorSpace(sp2)
let drawStripes : CGPatternDrawPatternCallback = { _, con in
 con.setFillColor(UIColor.red.cgColor)
 con.fill(CGRect(0,0,4,4))
 con.setFillColor(UIColor.blue.cgColor)
 con.fill(CGRect(0,0,4,2))
}
var callbacks = CGPatternCallbacks(
 version: 0, drawPattern: drawStripes, releaseInfo: nil)
let patt = CGPattern(info:nil, bounds: CGRect(0,0,4,4),
 matrix: .identity,
 xStep: 4, yStep: 4,
 tiling: .constantSpacingMinimalDistortion,
 isColored: true, callbacks: &callbacks)!
var alph : CGFloat = 1.0
con.setFillPattern(patt, colorComponents: &alph)
con.move(to:CGPoint(80, 25))
con.addLine(to:CGPoint(100, 0))
con.addLine(to:CGPoint(120, 25))
con.fillPath()

To understand that code, it helps to read it backwards. Everything revolves around
the creation of patt using the CGPattern initializer. A pattern is a drawing in a rec‐
tangular “cell”; we have to state both the size of the cell (bounds:) and the spacing
between origin points of cells (xStep:, yStep:). In this case, the cell is 4×4, and every
cell exactly touches its neighbors both horizontally and vertically. We have to supply a
transform to be applied to the cell (matrix:); in this case, we’re not doing anything
with this transform, so we supply the identity transform. We supply a tiling rule
(tiling:). We have to state whether this is a color pattern or a stencil pattern; it’s a
color pattern, so isColored: is true. And we have to supply a pointer to a callback
function that actually draws the pattern into its cell (callbacks:).

136 | Chapter 2: Drawing

Except that that’s not what we have to supply as the callbacks: argument. What we
actually have to supply here is a pointer to a CGPatternCallbacks struct. This struct
consists of a version: whose value is fixed at 0, along with pointers to two functions,
the drawPattern: to draw the pattern into its cell, and the releaseInfo: called when
the pattern is released. We’re not specifying the second function, however; it is for
memory management, and we don’t need it in this simple example.

As you can see, the actual pattern-drawing function (drawStripes) is very simple.
The only tricky issue is that it must agree with the CGPattern as to the size of a cell, or
the pattern won’t come out the way you expect. We know in this case that the cell is
4×4. So we fill it with red, and then fill its lower half with blue. When these cells are
tiled touching each other horizontally and vertically, we get the stripes that you see in
Figure 2-19.

Having generated the CGPattern, we call the context’s setFillPattern; instead of
setting a fill color, we’re setting a fill pattern, to be used the next time we fill a path (in
this case, the triangular arrowhead). The colorComponents: parameter is a pointer to
a CGFloat, so we have to set up the CGFloat itself beforehand.

The only thing left to explain is the first two lines of that code. It turns out that before
you can call setFillPattern with a colored pattern, you have to set the context’s fill
color space to a pattern color space. If you neglect to do this, you’ll get an error when
you call setFillPattern. This means that the code as presented has left the graphics
context in an undesirable state, with its fill color space set to a pattern color space.
This would cause trouble if we were later to try to set the fill color to a normal color.
The solution, as usual, is to wrap the code in calls to saveGState and restoreGState.

You may have observed in Figure 2-19 that the stripes do not fit neatly inside the tri‐
angle of the arrowhead: the bottommost stripe is something like half a blue stripe.
This is because a pattern is positioned not with respect to the shape you are filling (or
stroking), but with respect to the graphics context as a whole. We could shift the pat‐
tern position by calling setPatternPhase before drawing.

Graphics Context Transforms
Just as a UIView can have a transform, so can a graphics context. However, applying a
transform to a graphics context has no effect on the drawing that’s already in it; like
other graphics context settings, it affects only the drawing that takes place after it is
applied, altering the way the coordinates you provide are mapped onto the graphics
context’s area. A graphics context’s transform is called its CTM, for “current trans‐
form matrix.”

It is quite usual to take full advantage of a graphics context’s CTM to save yourself
from performing even simple calculations. You can multiply the current transform by

Graphics Context Commands | 137

any CGAffineTransform using concatCTM; there are also convenience functions for
applying a translate, scale, or rotate transform to the current transform.

The base transform for a graphics context is already set for you when you obtain the
context; this is how the system is able to map context drawing coordinates onto
screen coordinates. Whatever transforms you apply are applied to the current trans‐
form, so the base transform remains in effect and drawing continues to work. You can
return to the base transform after applying your own transforms by wrapping your
code in calls to saveGState and restoreGState.

For example, we have hitherto been drawing our upward-pointing arrow with code
that knows how to place that arrow at only one location: the top left of its rectangle is
hard-coded at (80,0). This is silly. It makes the code hard to understand, as well as
inflexible and difficult to reuse. Surely the sensible thing would be to draw the arrow
at (0,0), by subtracting 80 from all the x-values in our existing code. Now it is easy to
draw the arrow at any position, simply by applying a translate transform beforehand,
mapping (0,0) to the desired top-left corner of the arrow. So, to draw it at (80,0), we
would say:

con.translateBy(x:80, y:0)
// now draw the arrow at (0,0)

A rotate transform is particularly useful, allowing you to draw in a rotated orientation
without any nasty trigonometry. However, it’s a bit tricky because the point around
which the rotation takes place is the origin. This is rarely what you want, so you have
to apply a translate transform first, to map the origin to the point around which you
really want to rotate. But then, after rotating, in order to figure out where to draw you
will probably have to reverse your translate transform.

To illustrate, here’s code to draw our arrow repeatedly at several angles, pivoting
around the end of its tail (Figure 2-20). Since the arrow will be drawn multiple times,
I’ll start by encapsulating the drawing of the arrow as a UIImage. This is not merely
to reduce repetition and make drawing more efficient; it’s also because we want the
entire arrow to pivot, including the pattern stripes, and this is the simplest way to
achieve that:

lazy var arrow : UIImage = {
 let r = UIGraphicsImageRenderer(size:CGSize(40,100))
 return r.image { _ in
 self.arrowImage()
 }
}()
func arrowImage () {
 // obtain the current graphics context
 let con = UIGraphicsGetCurrentContext()!

138 | Chapter 2: Drawing

Figure 2-20. Drawing rotated

 // draw the arrow into the graphics context
 // draw it at (0,0)! adjust all x-values by subtracting 80
 // ... actual code omitted ...
}

In our draw(_:) implementation, we draw the arrow image multiple times:

override func draw(_ rect: CGRect) {
 let con = UIGraphicsGetCurrentContext()!
 self.arrow.draw(at:CGPoint(0,0))
 for _ in 0..<3 {
 con.translateBy(x: 20, y: 100)
 con.rotate(by: 30 * .pi/180.0)
 con.translateBy(x: -20, y: -100)
 self.arrow.draw(at:CGPoint(0,0))
 }
}

Shadows
To add a shadow to a drawing, give the context a shadow value before drawing. The
shadow position is expressed as a CGSize, where the positive direction for both values
indicates down and to the right. The blur value is an open-ended positive number;
Apple doesn’t explain how the scale works, but experimentation shows that 12 is nice
and blurry, 99 is so blurry as to be shapeless, and higher values become problematic.

Figure 2-21 shows the result of the same code that generated Figure 2-20, except that
before we start drawing the arrow repeatedly, we give the context a shadow:

let con = UIGraphicsGetCurrentContext()!
con.setShadow(offset: CGSize(7, 7), blur: 12)
self.arrow.draw(at:CGPoint(0,0))
// ... and so on

It may not be evident from Figure 2-21, but we are adding a shadow each time we
draw. Thus the arrows are able to cast shadows on one another. Suppose, however,
that we want all the arrows to cast a single shadow collectively. The way to achieve
this is with a transparency layer; this is basically a subcontext that accumulates all
drawing and then adds the shadow. Our code for drawing the shadowed arrows now
looks like this:

Graphics Context Commands | 139

Figure 2-21. Drawing with a shadow

let con = UIGraphicsGetCurrentContext()!
con.setShadow(offset: CGSize(7, 7), blur: 12)
con.beginTransparencyLayer(auxiliaryInfo: nil)
self.arrow.draw(at:CGPoint(0,0))
for _ in 0..<3 {
 con.translateBy(x: 20, y: 100)
 con.rotate(by: 30 * .pi/180.0)
 con.translateBy(x: -20, y: -100)
 self.arrow.draw(at:CGPoint(0,0))
}
con.endTransparencyLayer()

Erasing
The CGContext clear(_:) function erases all existing drawing in a CGRect; com‐
bined with clipping, it can erase an area of any shape. The result can “punch a hole”
through all existing drawing.

The behavior of clear(_:) depends on whether the context is transparent or opaque.
This is particularly obvious and intuitive when drawing into an image context. If the
image context is transparent, clear(_:) erases to transparent; otherwise it erases to
black.

When drawing directly into a view, if the view’s background color is nil or a color
with even a tiny bit of transparency, the result of clear(_:) will appear to be trans‐
parent, punching a hole right through the view including its background color; if the
background color is completely opaque, the result of clear(_:) will be black. This is
because the view’s background color determines whether the view’s graphics context
is transparent or opaque; thus, this is essentially the same behavior that I described in
the preceding paragraph.

Figure 2-22 illustrates; the blue square on the left has been partly cut away to black,
while the blue square on the right has been partly cut away to transparency. Yet these
are instances of the same UIView subclass, drawn with exactly the same code! The
UIView subclass’s draw(_:) looks like this:

140 | Chapter 2: Drawing

Figure 2-22. The very strange behavior of the clear function

let con = UIGraphicsGetCurrentContext()!
con.setFillColor(UIColor.blue.cgColor)
con.fill(rect)
con.clear(CGRect(0,0,30,30))

The difference between the views in Figure 2-22 is that the backgroundColor of the
first view is solid red with an alpha of 1, while the backgroundColor of the second
view is solid red with an alpha of 0.99. This difference is utterly imperceptible to the
eye (not to mention that the red color never appears, as it is covered with a blue fill),
but it completely changes the effect of clear(_:).

Points and Pixels
A point is a dimensionless location described by an x-coordinate and a y-coordinate.
When you draw in a graphics context, you specify the points at which to draw, and
this works regardless of the device’s resolution, because Core Graphics maps your
drawing nicely onto the physical output using the base CTM and anti-aliasing. There‐
fore, throughout this chapter I’ve concerned myself with graphics context points, dis‐
regarding their relationship to screen pixels.

However, pixels do exist. A pixel is a physical, integral, dimensioned unit of display in
the real world. Whole-numbered points effectively lie between pixels, and this can
matter if you’re fussy, especially on a single-resolution device. For example, if a verti‐
cal path with whole-number coordinates is stroked with a line width of 1, half the line
falls on each side of the path, and the drawn line on the screen of a single-resolution
device will seem to be 2 pixels wide (because the device can’t illuminate half a pixel).

You will sometimes encounter advice suggesting that if this effect is objectionable,
you should try shifting the line’s position by 0.5, to center it in its pixels. This advice
may appear to work, but it makes some simpleminded assumptions. A more sophisti‐
cated approach is to obtain the UIView’s contentScaleFactor property. You can
divide by this value to convert from pixels to points. Consider also that the most
accurate way to draw a vertical or horizontal line is not to stroke a path but to fill a
rectangle. So this UIView subclass code will draw a perfect 1-pixel-wide vertical line
on any device (con is the current graphics context):

con.fill(CGRect(100,0,1.0/self.contentScaleFactor,100))

Points and Pixels | 141

Figure 2-23. Automatic stretching of content

Content Mode
A view that draws something within itself, as opposed to merely having a background
color and subviews (as in the previous chapter), has content. This means that its
contentMode property becomes important whenever the view is resized. As I men‐
tioned earlier, the drawing system will avoid asking a view to redraw itself from
scratch if possible; instead, it will use the cached result of the previous drawing opera‐
tion (the bitmap backing store). So, if the view is resized, the system may simply
stretch or shrink or reposition the cached drawing, if your contentMode setting
instructs it to do so.

It’s a little tricky to illustrate this point when the view’s content is coming from
draw(_:), because I have to arrange for the view to obtain its content (from
draw(_:)) and then cause it to be resized without also causing it to be redrawn (that
is, without draw(_:) being called again). Here’s how I’ll do that. As the app starts up,
I’ll create an instance of a UIView subclass, MyView, that knows how to draw our
arrow. Then I’ll use delayed performance to resize the instance after the window has
shown and the interface has been initially displayed (for the delay utility function,
see Appendix B):

delay(0.1) {
 mv.bounds.size.height *= 2 // mv is the MyView instance
}

We double the height of the view without causing draw(_:) to be called. The result is
that the view’s drawing appears at double its correct height. For example, if our view’s
draw(_:) code is the same as the code that generated Figure 2-18, we get Figure 2-23.

Sooner or later, however, draw(_:) will be called, and the drawing will be refreshed in
accordance with our code. Our code doesn’t say to draw the arrow at a height that is
relative to the height of the view’s bounds; it draws the arrow at a fixed height. Thus,
the arrow will snap back to its original size.

142 | Chapter 2: Drawing

A view’s contentMode property should therefore usually be in agreement with how
the view draws itself. Our draw(_:) code dictates the size and position of the arrow
relative to the view’s bounds origin, its top left; so we could set its contentMode
to .topLeft. Alternatively, we could set it to .redraw; this will cause automatic scal‐
ing of the cached content to be turned off — instead, when the view is resized, its set-
NeedsDisplay method will be called, ultimately triggering draw(_:) to redraw the
content.

Content Mode | 143

CHAPTER 3

Layers

The tale told in Chapters 1 and 2 of how a UIView works and how it draws itself is
only half the story. A UIView has a partner called its layer, a CALayer. A UIView does
not actually draw itself onto the screen; it draws itself into its layer, and it is the layer
that is portrayed on the screen. As I’ve already mentioned, a view is not redrawn fre‐
quently; instead, its drawing is cached, and the cached version of the drawing (the
bitmap backing store) is used where possible. The cached version is, in fact, the layer.
What I spoke of in Chapter 2 as the view’s graphics context is actually the layer’s
graphics context.

This might seem to be a mere implementation detail, but layers are important and
interesting. To understand layers is to understand views more deeply; layers extend
the power of views. In particular:

Layers have properties that affect drawing.
Layers have drawing-related properties beyond those of a UIView. Because a
layer is the recipient and presenter of a view’s drawing, you can modify how a
view is drawn on the screen by accessing the layer’s properties. In other words, by
reaching down to the level of its layer, you can make a view do things you can’t
do through UIView methods alone.

Layers can be combined within a single view.
A UIView’s partner layer can contain additional layers. Since the purpose of lay‐
ers is to draw, portraying visible material on the screen, this allows a UIView’s
drawing to be composited of multiple distinct pieces. This can make drawing eas‐
ier, with the constituents of a drawing being treated as objects.

145

Figure 3-1. A compass, composed of layers

Layers are the basis of animation.
Animation allows you to add clarity, emphasis, and just plain coolness to your
interface. Layers are made to be animated; the “CA” in “CALayer” stands for
“Core Animation.” Animation is the subject of Chapter 4.

For example, suppose we want to add a compass indicator to our app’s interface.
Figure 3-1 portrays a simple version of such a compass. It takes advantage of the
arrow that we figured out how to draw in Chapter 2; the arrow is drawn into a layer
of its own. The other parts of the compass are layers too: the circle is a layer, and each
of the cardinal point letters is a layer. The drawing is thus easy to composite in code
(and later in this chapter, that’s exactly what we’ll do); even more intriguing, the
pieces can be repositioned and animated separately, so it’s easy to rotate the arrow
without moving the circle (and in Chapter 4, that’s exactly what we’ll do).

The documentation discusses layers chiefly in connection with animation (in particu‐
lar, in the Core Animation Programming Guide). This categorization gives the impres‐
sion that layers are of interest only if you intend to animate. That’s misleading. Layers
are the basis of animation, but they are also the basis of view drawing, and are useful
and important even if you don’t use them for animation.

View and Layer
A UIView instance has an accompanying CALayer instance, accessible as the view’s
layer property. This layer has a special status: it is partnered with this view to
embody all of the view’s drawing. The layer has no corresponding view property, but
the view is the layer’s delegate. The documentation sometimes speaks of this layer as
the view’s underlying layer.

By default, when a UIView is instantiated, its layer is an instance of CALayer. If you
subclass UIView and you want your subclass’s underlying layer to be an instance of a

146 | Chapter 3: Layers

CALayer subclass (built-in or your own), implement the UIView subclass’s layer-
Class class property to return that CALayer subclass.

That, for example, is how the compass in Figure 3-1 is created. We have a UIView
subclass, CompassView, and a CALayer subclass, CompassLayer. Here is Compass‐
View’s implementation:

class CompassView : UIView {
 override class var layerClass : AnyClass {
 return CompassLayer.self
 }
}

Thus, when CompassView is instantiated, its underlying layer is a CompassLayer. In
this example, there is no drawing in CompassView; its job — in this case, its only job
— is to give CompassLayer a place in the visible interface, because a layer cannot
appear without a view.

Because every view has an underlying layer, there is a tight integration between the
two. The layer portrays all the view’s drawing; if the view draws, it does so by contri‐
buting to the layer’s drawing. The view is the layer’s delegate. And the view’s proper‐
ties are often merely a convenience for accessing the layer’s properties. For example,
when you set the view’s backgroundColor, you are really setting the layer’s
backgroundColor, and if you set the layer’s backgroundColor directly, the view’s
backgroundColor is set to match. Similarly, the view’s frame is really the layer’s frame
and vice versa.

A CALayer’s delegate property is settable (to an instance of any class adopting
CALayerDelegate), but a UIView and its underlying layer have a special relation‐
ship. A UIView must be the delegate of its underlying layer; moreover, it must
not be the delegate of any other layer. Don’t do anything to mess this up. If you do,
drawing will stop working correctly.

The view draws into its layer, and the layer caches that drawing; the layer can then be
manipulated, changing the view’s appearance, without necessarily asking the view to
redraw itself. This is a source of great efficiency in the drawing system. It also explains
such phenomena as the content stretching that we encountered in the last section of
Chapter 2: when the view’s bounds size changes, the drawing system, by default, sim‐
ply stretches or repositions the cached layer image, until such time as the view is told
to draw freshly (draw(_:)), replacing the layer’s content.

Layers and Sublayers
A layer can have sublayers, and a layer has at most one superlayer. Thus there is a tree
of layers. This is similar and parallel to the tree of views (Chapter 1). In fact, so tight
is the integration between a view and its underlying layer that these hierarchies are

Layers and Sublayers | 147

Figure 3-2. A hierarchy of views and the hierarchy of layers underlying it

Figure 3-3. Layers that have sublayers of their own

effectively the same hierarchy. Given a view and its underlying layer, that layer’s
superlayer is the view’s superview’s underlying layer, and that layer has as sublayers all
the underlying layers of all the view’s subviews. Indeed, because the layers are how the
views actually get drawn, one might say that the view hierarchy really is a layer hierar‐
chy (Figure 3-2).

At the same time, the layer hierarchy can go beyond the view hierarchy. A view has
exactly one underlying layer, but a layer can have sublayers that are not the underly‐
ing layers of any view. So the hierarchy of layers that underlie views exactly matches
the hierarchy of views, but the total layer tree may be a superset of that hierarchy. In
Figure 3-3, we see the same view-and-layer hierarchy as in Figure 3-2, but two of the
layers have additional sublayers that are theirs alone (that is, sublayers that are not
any view’s underlying layers).

From a visual standpoint, there may be nothing to distinguish a hierarchy of views
from a hierarchy of layers. For example, in Chapter 1 we drew three overlapping rec‐

148 | Chapter 3: Layers

Figure 3-4. Overlapping layers

tangles using a hierarchy of views (Figure 1-2). This code gives exactly the same visi‐
ble display by manipulating layers (Figure 3-4):

let lay1 = CALayer()
lay1.backgroundColor = UIColor(red: 1, green: 0.4, blue: 1, alpha: 1).cgColor
lay1.frame = CGRect(113, 111, 132, 194)
mainview.layer.addSublayer(lay1)
let lay2 = CALayer()
lay2.backgroundColor = UIColor(red: 0.5, green: 1, blue: 0, alpha: 1).cgColor
lay2.frame = CGRect(41, 56, 132, 194)
lay1.addSublayer(lay2)
let lay3 = CALayer()
lay3.backgroundColor = UIColor(red: 1, green: 0, blue: 0, alpha: 1).cgColor
lay3.frame = CGRect(43, 197, 160, 230)
mainview.layer.addSublayer(lay3)

A view’s subview’s underlying layer is a sublayer of that view’s underlaying layer, just
like any other sublayers of that view’s underlying layer. Therefore, it can be positioned
anywhere among them in the drawing order. The fact that a view can be interspersed
among the sublayers of its superview’s underlying layer is surprising to beginners. For
example, let’s construct Figure 3-4 again, but between adding lay2 and lay3 to the
interface, we’ll add a subview:

// ...
lay1.addSublayer(lay2)
let iv = UIImageView(image:UIImage(named:"smiley"))
mainview.addSubview(iv)
iv.frame.origin = CGPoint(180,180)
let lay3 = CALayer() // the red rectangle
// ...

Layers and Sublayers | 149

Figure 3-5. Overlapping layers and a view

The result is Figure 3-5. The smiley face was added to the interface before the red
(left) rectangle, so it appears behind that rectangle. By reversing the order in which
the red rectangle (lay3) and the smiley face (iv) are added to the interface, the smiley
face can be made to appear in front of that rectangle. The smiley face is a view,
whereas the rectangle is just a layer; so they are not siblings as views, since the rectan‐
gle is not a view. But the smiley face is both a view and its layer; as layers, the smiley
face and the rectangle are siblings, since they have the same superlayer, so either one
can be made to appear in front of the other.

Whether a layer displays regions of its sublayers that lie outside that layer’s own
bounds depends upon the value of its masksToBounds property. This is parallel to a
view’s clipsToBounds property, and indeed, for a layer that is its view’s underlying
layer, they are the same thing. In Figures 3-4 and 3-5, the layers all have clipsTo-
Bounds set to false (the default); that’s why the right layer is visible beyond the
bounds of the middle layer, which is its superlayer.

Like a UIView, a CALayer has an isHidden property that can be set to take it and its
sublayers out of the visible interface without actually removing it from its superlayer.

Manipulating the Layer Hierarchy
Layers come with a full set of methods for reading and manipulating the layer hierar‐
chy, parallel to the methods for reading and manipulating the view hierarchy. A layer
has a superlayer property and a sublayers property, along with these methods:

• addSublayer(_:)

• insertSublayer(_:at:)

150 | Chapter 3: Layers

• insertSublayer(_:below:), insertSublayer(_:above:)
• replaceSublayer(_:with:)

• removeFromSuperlayer

Unlike a view’s subviews property, a layer’s sublayers property is writable; thus, you
can give a layer multiple sublayers in a single move, by assigning to its sublayers
property. To remove all of a layer’s sublayers, set its sublayers property to nil.

Although a layer’s sublayers have an order, reflected in the sublayers order and regu‐
lated with the methods I’ve just mentioned, this is not necessarily the same as their
back-to-front drawing order. By default, it is, but a layer also has a zPosition prop‐
erty, a CGFloat, and this also determines drawing order. The rule is that all sublayers
with the same zPosition are drawn in the order they are listed among their
sublayers siblings, but lower zPosition siblings are drawn before higher zPosition
siblings. (The default zPosition is 0.0.)

Sometimes, the zPosition property is a more convenient way of dictating drawing
order than sibling order is. For example, if layers represent playing cards laid out in a
solitaire game, it will likely be a lot easier and more flexible to determine how the
cards overlap by setting their zPosition than by rearranging their sibling order.
Moreover, a subview’s layer is itself just a layer, so you can rearrange the drawing
order of subviews by setting the zPosition of their underlying layers. In our code
constructing Figure 3-5, if we assign the image view’s underlying layer a zPosition of
1, it is drawn in front of the red (left) rectangle:

mainview.addSubview(iv)
iv.layer.zPosition = 1

Methods are also provided for converting between the coordinate systems of layers
within the same layer hierarchy; the first parameter can be a CGPoint or a CGRect:

• convert(_:from:)

• convert(_:to:)

Positioning a Sublayer
Layer coordinate systems and positioning are similar to those of views. A layer’s own
internal coordinate system is expressed by its bounds, just like a view; its size is its
bounds size, and its bounds origin is the internal coordinate at its top left.

However, a sublayer’s position within its superlayer is not described by its center, like
a view; a layer does not have a center. Instead, a sublayer’s position within its super‐
layer is defined by a combination of two properties:

Layers and Sublayers | 151

position

A point expressed in the superlayer’s coordinate system.

anchorPoint

Where the position point is located, with respect to the layer’s own bounds. It is
a CGPoint describing a fraction (or multiple) of the layer’s own bounds width
and bounds height. Thus, for example, (0.0,0.0) is the top left of the layer’s
bounds, and (1.0,1.0) is the bottom right of the layer’s bounds.

Here’s an analogy; I didn’t make it up, but it’s pretty apt. Think of the sublayer as pin‐
ned to its superlayer; then you have to say both where the pin passes through the sub‐
layer (the anchorPoint) and where it passes through the superlayer (the position).

If the anchorPoint is (0.5,0.5) (the default), the position property works like a
view’s center property. A view’s center is thus a special case of a layer’s position.
This is quite typical of the relationship between view properties and layer properties;
the view properties are often a simpler — but less powerful — version of the layer
properties.

A layer’s position and anchorPoint are orthogonal (independent); changing one
does not change the other. Therefore, changing either of them without changing the
other changes where the layer is drawn within its superlayer.

For example, in Figure 3-1, the most important point in the circle is its center; all the
other objects need to be positioned with respect to it. Therefore they all have the
same position: the center of the circle. But they differ in their anchorPoint. For
example, the arrow’s anchorPoint is (0.5,0.8), the middle of the shaft, near the tail.
On the other hand, the anchorPoint of a cardinal point letter is (0.5,3.0), well out‐
side the letter’s bounds, so as to place the letter near the edge of the circle.

A layer’s frame is a purely derived property. When you get the frame, it is calculated
from the bounds size along with the position and anchorPoint. When you set the
frame, you set the bounds size and position. In general, you should regard the frame
as a convenient façade and no more. Nevertheless, it is convenient! For example, to
position a sublayer so that it exactly overlaps its superlayer, you can just set the sub‐
layer’s frame to the superlayer’s bounds.

A layer created in code (as opposed to a view’s underlying layer) has a frame and
bounds of CGRect.zero and will not be visible on the screen even when you add
it to a superlayer that is on the screen. Be sure to give your layer a nonzero width
and height if you want to be able to see it. Creating a layer and adding it to a
superlayer and then wondering why it isn’t appearing in the interface is a com‐
mon beginner error.

152 | Chapter 3: Layers

CAScrollLayer
If you’re going to be moving a layer’s bounds origin as a way of repositioning its sub‐
layers en masse, you might like to make the layer a CAScrollLayer, a CALayer subclass
that provides convenience methods for this sort of thing. (Despite the name, a
CAScrollLayer provides no scrolling interface; the user can’t scroll it by dragging, for
example.) By default, a CAScrollLayer’s masksToBounds property is true; thus, the
CAScrollLayer acts like a window through which you see can only what is within its
bounds. (You can set its masksToBounds to false, but this would be an odd thing to
do, as it somewhat defeats the purpose.)

To move the CAScrollLayer’s bounds, you can talk either to it or to a sublayer (at any
depth):

Talking to the CAScrollLayer

scroll(to:)

Takes a CGPoint or a CGRect. If a CGPoint, changes the CAScrollLayer’s
bounds origin to that point. If a CGRect, changes the CAScrollLayer’s
bounds origin minimally so that the given portion of the bounds rect is visi‐
ble.

Talking to a sublayer

scroll(_:)

Changes the CAScrollLayer’s bounds origin so that the given point of the sub‐
layer is at the top left of the CAScrollLayer.

scrollRectToVisible(_:)

Changes the CAScrollLayer’s bounds origin so that the given rect of the sub‐
layer’s bounds is within the CAScrollLayer’s bounds area. You can also ask the
sublayer for its visibleRect, the part of this sublayer now within the CAS‐
crollLayer’s bounds.

Layout of Sublayers
The view hierarchy is actually a layer hierarchy (Figure 3-2). The positioning of a
view within its superview is actually the positioning of its layer within its superlayer
(the superview’s layer). A view can be repositioned and resized automatically in
accordance with its autoresizingMask or through autolayout based on its con‐
straints. Thus, there is automatic layout for layers if they are the underlying layers of
views. Otherwise, there is no automatic layout for layers in iOS. The only option for
layout of layers that are not the underlying layers of views is manual layout that you
perform in code.

Layers and Sublayers | 153

When a layer needs layout, either because its bounds have changed or because you
called setNeedsLayout, you can respond in either of two ways:

• The layer’s layoutSublayers method is called; to respond, override layout-
Sublayers in your CALayer subclass.

• Alternatively, implement layoutSublayers(of:) in the layer’s delegate. (Remem‐
ber, if the layer is a view’s underlying layer, the view is its delegate.)

For your layer to do effective manual layout of its sublayers, you’ll probably need a
way to identify or refer to the sublayers. There is no layer equivalent of viewWith-
Tag(_:), so such identification and reference is entirely up to you. A CALayer does
have a name property that you might misuse for your own purposes. Key–value cod‐
ing can also be helpful here; layers implement key–value coding in a special way, dis‐
cussed at the end of this chapter.

For a view’s underlying layer, layoutSublayers or layoutSublayers(of:) is called
after the view’s layoutSubviews. Under autolayout, you must call super or else auto‐
layout will break. Moreover, these methods may be called more than once during the
course of autolayout; if you’re looking for an automatically generated signal that it’s
time to do manual layout of sublayers, a view layout event might be a better choice
(see “Layout Events” on page 93).

Drawing in a Layer
The simplest way to make something appear in a layer is through its contents prop‐
erty. This is parallel to the image in a UIImageView (Chapter 2). It is expected to be a
CGImage (or nil, signifying no image). So, for example, here’s how we might modify
the code that generated Figure 3-5 in such a way as to generate the smiley face as a
layer rather than a view:

let lay4 = CALayer()
let im = UIImage(named:"smiley")!
lay4.frame = CGRect(origin:CGPoint(180,180), size:im.size)
lay4.contents = im.cgImage
mainview.layer.addSublayer(lay4)

Setting a layer’s contents to a UIImage, rather than a CGImage, will fail silently
— the image doesn’t appear, but there is no error either. This is absolutely mad‐
dening, and I wish I had a nickel for every time I’ve done it and then wasted
hours figuring out why my layer isn’t appearing.

There are also four methods that can be implemented to provide or draw a layer’s
content on demand, similar to a UIView’s draw(_:). A layer is very conservative
about calling these methods (and you must not call any of them directly). When a

154 | Chapter 3: Layers

layer does call these methods, I will say that the layer redisplays itself. Here is how a
layer can be caused to redisplay itself:

• If the layer’s needsDisplayOnBoundsChange property is false (the default), then
the only way to cause the layer to redisplay itself is by calling setNeedsDisplay
(or setNeedsDisplayIn(_:)). Even this might not cause the layer to redisplay
itself right away; if that’s crucial, then you will also call displayIfNeeded.

• If the layer’s needsDisplayOnBoundsChange property is true, then the layer will
also redisplay itself when the layer’s bounds change (rather like a view’s .redraw
content mode).

Here are the four methods that can be called when a layer redisplays itself; pick one to
implement (don’t try to combine them, you’ll just confuse things):

display in a subclass
Your CALayer subclass can override display. There’s no graphics context at this
point, so display is pretty much limited to setting the contents image.

display(_:) in the delegate
You can set the CALayer’s delegate property and implement display(_:) in the
delegate. As with CALayer’s display, there’s no graphics context, so you’ll just be
setting the contents image.

draw(in:) in a subclass
Your CALayer subclass can override draw(in:). The parameter is a graphics con‐
text into which you can draw directly; it is not automatically made the current
context.

draw(_:in:) in the delegate
You can set the CALayer’s delegate property and implement draw(_:in:). The
second parameter is a graphics context into which you can draw directly; it is not
automatically made the current context.

Assigning a layer a contents image and drawing directly into the layer are, in effect,
mutually exclusive. So:

• If a layer’s contents is assigned an image, this image is shown immediately and
replaces whatever drawing may have been displayed in the layer.

• If a layer redisplays itself and draw(in:) or draw(_:in:) draws into the layer, the
drawing replaces whatever image may have been displayed in the layer.

• If a layer redisplays itself and none of the four methods provides any content, the
layer will be empty.

Drawing in a Layer | 155

Figure 3-6. A view and a layer delegate that draws into it

If a layer is a view’s underlying layer, you usually won’t use any of the four methods to
draw into the layer: you’ll use the view’s draw(_:). However, you can use these meth‐
ods if you really want to. In that case, you will probably want to implement draw(_:)
anyway, leaving that implementation empty. The reason is that this causes the layer to
redisplay itself at appropriate moments. When a view is sent setNeedsDisplay —
including when the view first appears — the view’s underlying layer is also sent set-
NeedsDisplay, unless the view has no draw(_:) implementation (because in that case,
it is assumed that the view never needs redrawing). So, if you’re drawing a view
entirely by drawing to its underlying layer directly, and if you want the underlying
layer to be redisplayed automatically when the view is told to redraw itself, you
should implement draw(_:) to do nothing. (This technique has no effect on sublayers
of the underlying layer.)

Thus, these are legitimate (but unusual) techniques for drawing into a view:

• The view subclass implements an empty draw(_:), along with either display-
Layer: or draw(_:in:).

• The view subclass implements an empty draw(_:) plus layerClass, to give the
view a custom layer subclass — and the custom layer subclass implements either
display or draw(in:).

Remember, you must not set the delegate property of a view’s underlying layer! The
view is its delegate and must remain its delegate. A useful architecture for drawing
into a layer through a delegate of your choosing is to treat a view as a layer-hosting
view: the view and its underlying layer do nothing except to serve as a host to a sub‐
layer of the view’s underlying layer, which is where the drawing occurs (Figure 3-6).

A layer has a scale, its contentsScale, which maps point distances in the layer’s
graphics context to pixel distances on the device. A layer that’s managed by Cocoa, if
it has contents, will adjust its contentsScale automatically as needed; for example, if
a view implements draw(_:), then on a device with a double-resolution screen its

156 | Chapter 3: Layers

underlying layer is assigned a contentsScale of 2. A layer that you are creating and
managing yourself, however, has no such automatic behavior; it’s up to you, if you
plan to draw into the layer, to set its contentsScale appropriately. Content drawn
into a layer with a contentsScale of 1 may appear pixellated or fuzzy on a high-
resolution screen. And when you’re starting with a UIImage and assigning its
CGImage as a layer’s contents, if there’s a mismatch between the UIImage’s scale
and the layer’s contentsScale, then the image may be displayed at the wrong size.

Three layer properties strongly affect what the layer displays, in ways that can be baf‐
fling to beginners:

backgroundColor

Equivalent to a view’s backgroundColor (and if this layer is a view’s underlying
layer, it is the view’s backgroundColor). Changing the backgroundColor takes
effect immediately. Think of the backgroundColor as separate from the layer’s
own drawing, and as painted behind the layer’s own drawing.

opacity

Affects the overall apparent transparency of the layer. It is equivalent to a view’s
alpha (and if this layer is a view’s underlying layer, it is the view’s alpha). It
affects the apparent transparency of the layer’s sublayers as well. It affects the
apparent transparency of the background color and the apparent transparency of
the layer’s content separately (just as with a view’s alpha). Changing the opacity
property takes effect immediately.

isOpaque

Determines whether the layer’s graphics context is opaque. An opaque graphics
context is black; you can draw on top of that blackness, but the blackness is still
there. A nonopaque graphics context is clear; where no drawing is, it is com‐
pletely transparent. Changing the isOpaque property has no effect until the layer
redisplays itself. A view’s underlying layer’s isOpaque property is independent of
the view’s isOpaque property; they are unrelated and do entirely different things.

If a layer is the underlying layer of a view that implements draw(_:), then setting
the view’s backgroundColor changes the layer’s isOpaque: the latter becomes
true if the new background color is opaque (alpha component of 1), and false
otherwise. This is the reason behind the strange behavior of CGContext’s
clear(_:) method, described in Chapter 2.
Also, when drawing directly into a layer, the behavior of clear(_:) differs from
what was described in Chapter 2 for drawing into a view: instead of punching a
hole through the background color, it effectively paints with the layer’s back‐
ground color. (This can have curious side effects.)
I regard all this as deeply weird.

Drawing in a Layer | 157

Content Resizing and Positioning
A layer’s content is stored (cached) as a bitmap which is then treated like an image:

• If the content came from setting the layer’s contents property to an image, the
cached content is that image; its size is the point size of the CGImage we started
with.

• If the content came from drawing directly into the layer’s graphics context
(draw(in:), draw(_:in:)), the cached content is the layer’s entire graphics con‐
text; its size is the point size of the layer itself at the time the drawing was
performed.

The layer’s content is then drawn in relation to the layer’s bounds in accordance with
various layer properties, which cause the cached content to be resized, repositioned,
cropped, and so on, as it is displayed. The properties are:

contentsGravity

This property, a string, is parallel to a UIView’s contentMode property, and
describes how the content should be positioned or stretched in relation to the
bounds. For example, kCAGravityCenter means the content is centered in the
bounds without resizing; kCAGravityResize (the default) means the content is
sized to fit the bounds, even if this means distorting its aspect; and so forth.

For historical reasons, the terms bottom and top in the names of the contents-
Gravity settings have the opposite of their expected meanings.

contentsRect

A CGRect expressing the proportion of the content that is to be displayed. The
default is (0.0,0.0,1.0,1.0), meaning the entire content is displayed. The
specified part of the content is sized and positioned in relation to the bounds in
accordance with the contentsGravity. Thus, for example, by setting the
contentsRect, you can scale up part of the content to fill the bounds, or slide
part of a larger image into view without redrawing or changing the contents
image.

You can also use the contentsRect to scale down the content, by specifying a
larger contentsRect such as (-0.5,-0.5,1.5,1.5); but any content pixels that
touch the edge of the contentsRect will then be extended outward to the edge of
the layer (to prevent this, make sure that the outermost pixels of the content are
all empty).

158 | Chapter 3: Layers

contentsCenter

A CGRect, structured like contentsRect, expressing the central region of nine
rectangular regions of the contentsRect that are variously allowed to stretch if
the contentsGravity calls for stretching. The central region (the actual value of
the contentsCenter) stretches in both directions. Of the other eight regions
(inferred from the value you provide), the four corner regions don’t stretch, and
the four side regions stretch in one direction. (This should remind you of how a
resizable image stretches! See Chapter 2.)

If a layer’s content comes from drawing directly into its graphics context, then the lay‐
er’s contentsGravity, of itself, has no effect, because the size of the graphics context,
by definition, fits the size of the layer exactly; there is nothing to stretch or reposition.
But the contentsGravity will have an effect on such a layer if its contentsRect is not
(0.0,0.0,1.0,1.0), because now we’re specifying a rectangle of some other size; the
contentsGravity describes how to fit that rectangle into the layer.

Again, if a layer’s content comes from drawing directly into its graphics context, then
when the layer is resized, if the layer is asked to display itself again, the drawing is
performed again, and once more the layer’s content fits the size of the layer exactly.
But if the layer’s bounds are resized when needsDisplayOnBoundsChange is false,
then the layer does not redisplay itself, so its cached content no longer fits the layer,
and the contentsGravity matters.

By a judicious combination of settings, you can get the layer to perform some clever
drawing for you that might be difficult to perform directly. For example, Figure 3-7
shows the result of the following settings:

arrow.needsDisplayOnBoundsChange = false
arrow.contentsCenter = CGRect(0.0, 0.4, 1.0, 0.6)
arrow.contentsGravity = kCAGravityResizeAspect
arrow.bounds = arrow.bounds.insetBy(dx: -20, dy: -20)

Because needsDisplayOnBoundsChange is false, the content is not redisplayed when
the arrow’s bounds are increased; instead, the cached content is used. The contents-
Gravity setting tells us to resize proportionally; therefore, the arrow is both longer
and wider than in Figure 3-1, but not in such a way as to distort its proportions.
However, notice that although the triangular arrowhead is wider, it is not longer; the
increase in length is due entirely to the stretching of the arrow’s shaft. That’s because
the contentsCenter region is within the shaft.

A layer’s masksToBounds property has the same effect on its content that it has on its
sublayers. If it is false, the whole content is displayed, even if that content (after tak‐
ing account of the contentsGravity and contentsRect) is larger then the layer. If it
is true, only the part of the content within the layer’s bounds will be displayed.

Drawing in a Layer | 159

Figure 3-7. One way of resizing the compass arrow

The value of a layer’s bounds origin does not affect where its content is drawn. It
affects only where its sublayers are drawn.

Layers that Draw Themselves
A few built-in CALayer subclasses provide some basic but helpful self-drawing abil‐
ity:

CATextLayer
A CATextLayer has a string property, which can be an NSString or
NSAttributedString, along with other text formatting properties, somewhat like a
simplified UILabel; it draws its string. The default text color, the foreground-
Color property, is white, which is unlikely to be what you want. The text is differ‐
ent from the contents and is mutually exclusive with it: either the contents
image or the text will be drawn, but not both, so in general you should not give a
CATextLayer any contents image. In Figures 3-1 and 3-7, the cardinal point let‐
ters are CATextLayer instances.

CAShapeLayer
A CAShapeLayer has a path property, which is a CGPath. It fills or strokes this
path, or both, depending on its fillColor and strokeColor values, and displays
the result; the default is a fillColor of black and no strokeColor. It has proper‐
ties for line thickness, dash style, end-cap style, and join style, similar to a graph‐
ics context; it also has the remarkable ability to draw only part of its path
(strokeStart and strokeEnd), making it very easy, for example, to draw an arc
of an ellipse. A CAShapeLayer may also have contents; the shape is displayed on
top of the contents image, but there is no property permitting you to specify a
compositing mode. In Figures 3-1 and 3-7, the background circle is a CAShape‐
Layer instance, stroked with gray and filled with a lighter, slightly transparent
gray.

160 | Chapter 3: Layers

Figure 3-8. A gradient drawn behind the compass

CAGradientLayer
A CAGradientLayer covers its background with a simple linear gradient; thus, it’s
an easy way to draw a gradient in your interface (and if you need something
more elaborate you can always draw with Core Graphics instead). The gradient is
defined much as in the Core Graphics gradient example in Chapter 2, an array of
locations and an array of corresponding colors, along with a start and end point.
To clip the gradient’s shape, you can add a mask to the CAGradientLayer (masks
are discussed later in this chapter). A CAGradientLayer’s contents are not dis‐
played.

Figure 3-8 shows our compass drawn with an extra CAGradientLayer behind it.

Transforms
The way a layer is drawn on the screen can be modified though a transform. This is
not surprising, because a view can have a transform (see Chapter 1), and a view is
drawn on the screen by its layer. But a layer’s transform is more powerful than a
view’s transform; you can use it to accomplish things that you can’t accomplish with a
view’s transform alone.

In the simplest case, when a transform is two-dimensional, you can access a layer’s
transform through the affineTransform method (and the corresponding setter, set-
AffineTransform(_:)). The value is a CGAffineTransform, familiar from Chapters 1
and 2. The transform is applied around the anchorPoint. (Thus, the anchorPoint has
a second purpose that I didn’t tell you about when discussing it earlier.)

You now know everything needed to understand the code that generated Figure 3-8,
so here it is. In this code, self is the CompassLayer; it does no drawing of its own,
but merely assembles and configures its sublayers. The four cardinal point letters are
each drawn by a CATextLayer; they are drawn at the same coordinates, but they have
different rotation transforms, and are anchored so that their rotation is centered at

Transforms | 161

the center of the circle. To generate the arrow, CompassLayer adopts CALayerDele‐
gate, makes itself the arrow layer’s delegate, and calls setNeedsDisplay on the arrow
layer; this causes draw(_:in:) to be called in CompassLayer (that code is just the
same code we developed for drawing the arrow in Chapter 2, and is not repeated
here). The arrow layer is positioned by an anchorPoint pinning its tail to the center
of the circle, and rotated around that pin by a transform:

// the gradient
let g = CAGradientLayer()
g.contentsScale = UIScreen.main.scale
g.frame = self.bounds
g.colors = [
 UIColor.black.cgColor,
 UIColor.red.cgColor
]
g.locations = [0.0,1.0]
self.addSublayer(g)
// the circle
let circle = CAShapeLayer()
circle.contentsScale = UIScreen.main.scale
circle.lineWidth = 2.0
circle.fillColor = UIColor(red:0.9, green:0.95, blue:0.93, alpha:0.9).cgColor
circle.strokeColor = UIColor.gray.cgColor
let p = CGMutablePath()
p.addEllipse(in: self.bounds.insetBy(dx: 3, dy: 3))
circle.path = p
self.addSublayer(circle)
circle.bounds = self.bounds
circle.position = self.bounds.center
// the four cardinal points
let pts = "NESW"
for (ix,c) in pts.characters.enumerated() {
 let t = CATextLayer()
 t.contentsScale = UIScreen.main.scale
 t.string = String(c)
 t.bounds = CGRect(0,0,40,40)
 t.position = circle.bounds.center
 let vert = circle.bounds.midY / t.bounds.height
 t.anchorPoint = CGPoint(0.5, vert)
 t.alignmentMode = kCAAlignmentCenter
 t.foregroundColor = UIColor.black.cgColor
 t.setAffineTransform(
 CGAffineTransform(rotationAngle:CGFloat(ix) * .pi/2.0))
 circle.addSublayer(t)
}
// the arrow
let arrow = CALayer()
arrow.contentsScale = UIScreen.main.scale
arrow.bounds = CGRect(0, 0, 40, 100)
arrow.position = self.bounds.center
arrow.anchorPoint = CGPoint(0.5, 0.8)

162 | Chapter 3: Layers

arrow.delegate = self // we will draw the arrow in the delegate method
arrow.setAffineTransform(CGAffineTransform(rotationAngle:.pi/5.0))
self.addSublayer(arrow)
arrow.setNeedsDisplay() // draw, please

A full-fledged layer transform, the value of the transform property, takes place in
three-dimensional space; its description includes a z-axis, perpendicular to both the
x-axis and y-axis. (By default, the positive z-axis points out of the screen, toward the
viewer’s face.) Layers do not magically give you realistic three-dimensional rendering
— for that you would use OpenGL, which is beyond the scope of this discussion. Lay‐
ers are two-dimensional objects, and they are designed for speed and simplicity. Nev‐
ertheless, they do operate in three dimensions, quite sufficiently to give a cartoonish
but effective sense of reality, especially when performing an animation. We’ve all seen
the screen image flip like turning over a piece of paper to reveal what’s on the back;
that’s a rotation in three dimensions.

A three-dimensional transform takes place around a three-dimensional extension of
the anchorPoint, whose z-component is supplied by the anchorPointZ property.
Thus, in the reduced default case where anchorPointZ is 0.0, the anchorPoint is suf‐
ficient, as we’ve already seen in using CGAffineTransform.

The transform itself is described mathematically by a struct called a CATransform3D.
The Core Animation Function Reference lists the functions for working with these
transforms. They are a lot like the CGAffineTransform functions, except they’ve got a
third dimension. Also, in Swift 3, the CATransform3D functions are global C func‐
tions; they have not been “renamified” to look like CATransform3D methods.

For example, the C function for making a 2D scale transform, CGAffineTransform-
MakeScale, takes two parameters, and is renamified into Swift init(scaleX:y:); the
function for making a 3D scale transform, CATransform3DMakeScale, takes three
parameters and is not renamified.

The rotation 3D transform is a little more complicated. In addition to the angle, you
also have to supply three coordinates describing the vector around which the rotation
is to take place. Perhaps you’ve forgotten from your high-school math what a vector
is, or perhaps trying to visualize three dimensions boggles your mind, so think of it
this way.

Pretend for purposes of discussion that the anchor point is the origin,
(0.0,0.0,0.0). Now imagine an arrow emanating from the anchor point; its other
end, the pointy end, is described by the three coordinates you provide. Now imagine
a plane that intersects the anchor point, perpendicular to the arrow. That is the plane
in which the rotation will take place; a positive angle is a clockwise rotation, as seen
from the side of the plane with the arrow (Figure 3-9). In effect, the three coordinates
you supply describe (relative to the anchor point) where your eye would have to be to
see this rotation as an old-fashioned two-dimensional rotation.

Transforms | 163

Figure 3-9. An anchor point plus a vector defines a rotation plane

A vector specifies a direction, not a point. Thus it makes no difference on what scale
you give the coordinates: (1.0,1.0,1.0) means the same thing as
(10.0,10.0,10.0). If the three values are (0.0,0.0,1.0), with all other things being
equal, the case is collapsed to a simple CGAffineTransform, because the rotational
plane is the screen. If the three values are (0.0,0.0,-1.0), it’s a backward CGAffine‐
Transform, so that a positive angle looks counterclockwise (because we are looking at
the “back side” of the rotational plane).

A layer can itself be rotated in such a way that its “back” is showing. For example, the
following rotation flips a layer around its y-axis:

someLayer.transform = CATransform3DMakeRotation(.pi, 0, 1, 0)

By default, the layer is considered double-sided, so when it is flipped to show its
“back,” what’s drawn is an appropriately reversed version of the content of the layer
(along with its sublayers, which by default are still drawn in front of the layer, but
reversed and positioned in accordance with the layer’s transformed coordinate sys‐
tem). But if the layer’s isDoubleSided property is false, then when it is flipped to
show its “back,” the layer disappears (along with its sublayers); its “back” is transpar‐
ent and empty.

Depth
There are two ways to place layers at different nominal depths with respect to their
siblings. One is through the z-component of their position, which is the zPosition
property. (Thus the zPosition, too, has a second purpose that I didn’t tell you about
earlier.) The other is to apply a transform that translates the layer’s position in the
z-direction. These two values, the z-component of a layer’s position and the
z-component of its translation transform, are related; in some sense, the zPosition is

164 | Chapter 3: Layers

Figure 3-10. A disappointing page-turn rotation

a shorthand for a translation transform in the z-direction. (If you provide both a
zPosition and a z-direction translation, you can rapidly confuse yourself.)

In the real world, changing an object’s zPosition would make it appear larger or
smaller, as it is positioned closer or further away; but this, by default, is not the case in
the world of layer drawing. There is no attempt to portray perspective; the layer
planes are drawn at their actual size and flattened onto one another, with no illusion
of distance. (This is called orthographic projection, and is the way blueprints are often
drawn to display an object from one side.)

However, there’s a widely used trick for introducing a quality of perspective into the
way layers are drawn: make them sublayers of a layer whose sublayerTransform
property maps all points onto a “distant” plane. (This is probably just about the only
thing the sublayerTransform property is ever used for.) Combined with ortho‐
graphic projection, the effect is to apply one-point perspective to the drawing, so that
things do get perceptibly smaller in the negative z-direction.

For example, let’s try applying a sort of “page-turn” rotation to our compass: we’ll
anchor it at its right side and then rotate it around the y-axis. Here, the sublayer we’re
rotating (accessed through a property, rotationLayer) is the gradient layer, and the
circle and arrow are its sublayers so that they rotate with it:

self.rotationLayer.anchorPoint = CGPoint(1,0.5)
self.rotationLayer.position = CGPoint(self.bounds.maxX, self.bounds.midY)
self.rotationLayer.transform = CATransform3DMakeRotation(.pi/4.0, 0, 1, 0)

The results are disappointing (Figure 3-10); the compass looks more squashed than
rotated. Now, however, we’ll also apply the distance-mapping transform. The super‐
layer here is self:

var transform = CATransform3DIdentity
transform.m34 = -1.0/1000.0
self.sublayerTransform = transform

Transforms | 165

Figure 3-11. A dramatic page-turn rotation

The results (shown in Figure 3-11) are better, and you can experiment with values to
replace 1000.0; for example, 500.0 gives an even more exaggerated effect. Also, the
zPosition of the rotationLayer will now affect how large it is.

Another way to draw layers with depth is to use CATransformLayer. This CALayer
subclass doesn’t do any drawing of its own; it is intended solely as a host for other
layers. It has the remarkable feature that you can apply a transform to it and it will
maintain the depth relationships among its own sublayers. For example:

// lay1 is a layer, f is a CGRect
let lay2 = CALayer()
lay2.frame = f
lay2.backgroundColor = UIColor.blue.cgColor
lay1.addSublayer(lay2)
let lay3 = CALayer()
lay3.frame = f.offsetBy(dx: 20, dy: 30)
lay3.backgroundColor = UIColor.green.cgColor
lay3.zPosition = 10
lay1.addSublayer(lay3)
lay1.transform = CATransform3DMakeRotation(.pi, 0, 1, 0)

In that code, the superlayer lay1 has two sublayers, lay2 and lay3. The sublayers are
added in that order, so lay3 is drawn in front of lay2. Then lay1 is flipped like a page
being turned by setting its transform. If lay1 is a normal CALayer, the sublayer
drawing order doesn’t change; lay3 is still drawn in front of lay2, even after the
transform is applied. But if lay1 is a CATransformLayer, lay3 is drawn behind lay2
after the transform; they are both sublayers of lay1, so their depth relationship is
maintained.

Figure 3-12 shows our page-turn rotation yet again, still with the sublayerTransform
applied to self, but this time the only sublayer of self is a CATransformLayer:

166 | Chapter 3: Layers

Figure 3-12. Page-turn rotation applied to a CATransformLayer

var transform = CATransform3DIdentity
transform.m34 = -1.0/1000.0
self.sublayerTransform = transform
let master = CATransformLayer()
master.frame = self.bounds
self.addSublayer(master)
self.rotationLayer = master

The CATransformLayer, to which the page-turn transform is applied, holds the gradi‐
ent layer, the circle layer, and the arrow layer. Those three layers are at different
depths (using different zPosition settings), and I’ve tried to emphasize the arrow’s
separation from the circle by adding a shadow (discussed in the next section):

circle.zPosition = 10
arrow.shadowOpacity = 1.0
arrow.shadowRadius = 10
arrow.zPosition = 20

You can see from its apparent offset that the circle layer floats in front of the gradient
layer, but I wish you could see this page-turn as an animation, which makes the circle
jump right out from the gradient as the rotation proceeds.

Even more remarkable, I’ve added a little white peg sticking through the arrow and
running into the circle! It is a CAShapeLayer, rotated to be perpendicular to the
CATransformLayer (I’ll explain the rotation code later in this chapter):

let peg = CAShapeLayer()
peg.contentsScale = UIScreen.main.scale
peg.bounds = CGRect(0,0,3.5,50)
let p2 = CGMutablePath()
p2.addRect(peg.bounds)
peg.path = p2
peg.fillColor = UIColor(red:1.0, green:0.95, blue:1.0, alpha:0.95).cgColor

Transforms | 167

peg.anchorPoint = CGPoint(0.5,0.5)
peg.position = master.bounds.center
master.addSublayer(peg)
peg.setValue(Float.pi/2, forKeyPath:"transform.rotation.x")
peg.setValue(Float.pi/2, forKeyPath:"transform.rotation.z")
peg.zPosition = 15

In that code, the peg runs straight out of the circle toward the viewer, so it is initially
seen end-on, and because a layer has no thickness, it is invisible. But as the
CATransformLayer pivots in our page-turn rotation, the peg maintains its orientation
relative to the circle, and comes into view. In effect, the drawing portrays a 3D model
constructed entirely out of layers.

There is, I think, a slight additional gain in realism if the same sublayerTransform is
applied also to the CATransformLayer, but I have not done so here.

Shadows, Borders, and Masks
A CALayer has many additional properties that affect details of how it is drawn. Since
these drawing details can be applied to a UIView’s underlying layer, they are effec‐
tively view features as well.

A CALayer can have a shadow, defined by its shadowColor, shadowOpacity, shadow-
Radius, and shadowOffset properties. To make the layer draw a shadow, set the
shadowOpacity to a nonzero value. The shadow is normally based on the shape of the
layer’s nontransparent region, but deriving this shape can be calculation-intensive (so
much so that in early versions of iOS, layer shadows weren’t implemented). You can
vastly improve performance by defining the shape yourself and assigning this shape
as a CGPath to the shadowPath property.

If a layer’s masksToBounds is true, no part of its shadow lying outside its bounds
is drawn. (This includes the underlying layer of a view whose clipsToBounds is
true.) Wondering why the shadow isn’t appearing for a layer that masks to its
bounds is a common beginner mistake.

A CALayer can have a border (borderWidth, borderColor); the borderWidth is
drawn inward from the bounds, potentially covering some of the content unless you
compensate.

A CALayer can be bounded by a rounded rectangle, by giving it a cornerRadius
greater than zero. If the layer has a border, the border has rounded corners too. If the
layer has a backgroundColor, that background is clipped to the shape of the rounded
rectangle. If the layer’s masksToBounds is true, the layer’s content and its sublayers are
clipped by the rounded corners.

168 | Chapter 3: Layers

Figure 3-13. A layer with a mask

A CALayer can have a mask. This is itself a layer, whose content must be provided
somehow. The transparency of the mask’s content in a particular spot becomes (all
other things being equal) the transparency of the layer at that spot. The mask’s colors
(hues) are irrelevant; only transparency matters. To position the mask, pretend it’s a
sublayer.

For example, Figure 3-13 shows our arrow layer, with the gray circle layer behind it,
and a mask applied to the arrow layer. The mask is silly, but it illustrates very well
how masks work: it’s an ellipse, with an opaque fill and a thick, semitransparent
stroke. Here’s the code that generates and applies the mask:

let mask = CAShapeLayer()
mask.frame = arrow.bounds
let path = CGMutablePath()
path.addEllipse(in: mask.bounds.insetBy(dx: 10, dy: 10))
mask.strokeColor = UIColor(white:0.0, alpha:0.5).cgColor
mask.lineWidth = 20
mask.path = path
arrow.mask = mask

Using a mask, we can do manually and in a more general way what the cornerRadius
and masksToBounds properties do. For example, here’s a utility method that generates
a CALayer suitable for use as a rounded rectangle mask:

func mask(size sz:CGSize, roundingCorners rad:CGFloat) -> CALayer {
 let rect = CGRect(origin:.zero, size:sz)
 let r = UIGraphicsImageRenderer(bounds:rect)
 let im = r.image {
 ctx in
 let con = ctx.cgContext
 con.setFillColor(UIColor(white:0, alpha:0).cgColor)
 con.fill(rect)
 con.setFillColor(UIColor(white:0, alpha:1).cgColor)
 let p = UIBezierPath(roundedRect:rect, cornerRadius:rad)
 p.fill()
 }
 let mask = CALayer()
 mask.frame = rect
 mask.contents = im.cgImage
 return mask
}

Shadows, Borders, and Masks | 169

The CALayer returned from that method can be placed as a mask anywhere in a layer
by adjusting its frame origin and assigning it as the layer’s mask. The result is that all
of that layer’s content drawing and its sublayers (including, if this layer is a view’s
underlying layer, the view’s subviews) are clipped to the rounded rectangle shape;
everything outside that shape is not drawn. That’s just one example of the sort of
thing you can do with a mask. A mask can have values between opaque and transpar‐
ent, and it can be any shape. And the transparent region doesn’t have to be on the
outside of the mask; you can use a mask that’s opaque on the outside and transparent
on the inside to punch a hole in a layer (or a view).

Alternatively, you can apply a mask as a view directly to another view through its
maskView property, rather than having to drop down to the level of layers. This may
be a notational convenience, but it is not functionally distinct from applying the mask
view’s layer to the view’s layer; under the hood, in fact, it is applying the mask view’s
layer to the view’s layer. Thus, for example, it does nothing to solve the problem that
the mask is not automatically resized along with the view.

Layer Efficiency
By now, you’re probably envisioning all sorts of compositing fun, with layers masking
sublayers and laid semitransparently over other layers. There’s nothing wrong with
that, but when an iOS device is asked to shift its drawing from place to place, the
movement may stutter because the device lacks the necessary computing power to
composite repeatedly and rapidly. This sort of issue is likely to emerge particularly
when your code performs an animation (Chapter 4) or when the user is able to ani‐
mate drawing through touch, as when scrolling a table view (Chapter 8). You may be
able to detect these problems by eye, and you can quantify them on a device by using
the Core Animation template in Instruments, which shows the frame rate achieved
during animation. Also, both the Core Animation template and the Simulator’s
Debug menu let you summon colored overlays that provide clues as to possible sour‐
ces of inefficient drawing which can lead to such problems.

In general, opaque drawing is most efficient. (Nonopaque drawing is what Instru‐
ments marks in red as “blended layers.”) If a layer will always be shown over a back‐
ground consisting of a single color, you can give the layer its own background of that
same color; when additional layer content is supplied, the visual effect will be the
same as if that additional layer content were composited over a transparent back‐
ground. For example, instead of an image masked to a rounded rectangle (with a lay‐
er’s cornerRadius or mask property), you could use Core Graphics to clip the drawing
of that image to a rounded rectangle shape within the graphics context of a layer
whose background color is the same as that of the destination in front of which the
drawing will be shown.

170 | Chapter 3: Layers

Another way to gain some efficiency is by “freezing” the entirety of the layer’s draw‐
ing as a bitmap. In effect, you’re drawing everything in the layer to a secondary cache
and using the cache to draw to the screen. Copying from a cache is less efficient than
drawing directly to the screen, but this inefficiency may be compensated for, if there’s
a deep or complex layer tree, by not having to composite that tree every time we ren‐
der. To do this, set the layer’s shouldRasterize to true and its rasterizationScale
to some sensible value (probably UIScreen.main.scale). You can always turn rasteri‐
zation off again by setting shouldRasterize to false, so it’s easy to rasterize just
before some massive or sluggish rearrangement of the screen and then unrasterize
afterwards.

In addition, there’s a layer property drawsAsynchronously. The default is false. If set
to true, the layer’s graphics context accumulates drawing commands and obeys them
later on a background thread. Thus, your drawing commands run very quickly,
because they are not in fact being obeyed at the time you issue them. I haven’t had
occasion to use this, but presumably there could be situations where it keeps your app
responsive when drawing would otherwise be time-consuming.

Layers and Key–Value Coding
All of a layer’s properties are accessible through key–value coding by way of keys with
the same name as the property. Thus, to apply a mask to a layer, instead of saying this:

layer.mask = mask

we could have said:

layer.setValue(mask, forKey: "mask")

In addition, CATransform3D and CGAffineTransform values can be expressed
through key–value coding and key paths. For example, instead of writing this:

self.rotationLayer.transform = CATransform3DMakeRotation(.pi/4.0, 0, 1, 0)

we can write this:

self.rotationLayer.setValue(.pi/4.0, forKeyPath:"transform.rotation.y")

This notation is possible because CATransform3D is key–value coding compliant for
a repertoire of keys and key paths. These are not properties, however; a CATrans‐
form3D doesn’t have a rotation property. It doesn’t have any properties, because it
isn’t even an object. You cannot say:

self.rotationLayer.transform.rotation.y = //... no, sorry

The transform key paths you’ll use most often are:

• "rotation.x", "rotation.y", "rotation.z"
• "rotation" (same as "rotation.z")

Layers and Key–Value Coding | 171

• "scale.x", "scale.y", "scale.z"
• "translation.x", "translation.y", "translation.z"
• "translation" (two-dimensional, a CGSize)

The Quartz Core framework also injects key–value coding compliance into CGPoint,
CGSize, and CGRect, allowing you to use keys and key paths matching their struct
component names. For a complete list of KVC compliant classes related to CALayer,
along with the keys and key paths they implement, plus rules for how to wrap nonob‐
ject values as objects, see “Core Animation Extensions to Key-Value Coding” in
Apple’s Core Animation Programming Guide.

Moreover, you can treat a CALayer as a kind of dictionary, and get and set the value
for any key. This means you can attach arbitrary information to an individual layer
instance and retrieve it later. For example, earlier I mentioned that to apply manual
layout to a layer’s sublayers, you will need a way of identifying those sublayers. This
feature could provide a way of doing that. For example:

myLayer1.setValue("manny", forKey:"pepboy")
myLayer2.setValue("moe", forKey:"pepboy")

A layer doesn’t have a pepboy property; the "pepboy" key is something I’m attaching
to these layers arbitrarily. Now I can identify these layers later by getting the value of
their respective "pepboy" keys.

Also, CALayer has a defaultValue(forKey:) class method; to implement it, you’ll
need to subclass and override. In the case of keys whose value you want to provide a
default for, return that value; otherwise, return the value that comes from calling
super. Thus, even if a value for a particular key has never been explicitly provided, it
can have a non-nil value.

The truth is that this feature, though delightful (and I often wish that all classes
behaved like this), is not put there for your convenience and enjoyment. It’s there to
serve as the basis for animation, which is the subject of the next chapter.

172 | Chapter 3: Layers

CHAPTER 4

Animation

Animation is an attribute changing over time. In general, this will be a visible
attribute of something in the interface. The changing attribute might be positional:
something moves or changes size, not jumping abruptly, but sliding smoothly. Other
kinds of attribute can animate as well. A view’s background color might change from
red to green, not switching colors abruptly, but fading from one to the other. A view
might change from opaque to transparent, not vanishing abruptly, but fading away.

Without help, most of us would find animation beyond our reach. There are just too
many complications — complications of calculation, of timing, of screen refresh, of
threading, and many more. Fortunately, help is provided. You don’t perform an ani‐
mation yourself; you describe it, you order it, and it is performed for you. You get
animation on demand.

Asking for an animation can be as simple as setting a property value; under some cir‐
cumstances, a single line of code will result in animation:

myLayer.backgroundColor = UIColor.red.cgColor // animate to red

Animation is easy because Apple wants to facilitate your use of it. Animation is cru‐
cial to the character of the iOS interface. It isn’t just cool and fun; it clarifies that
something is changing or responding.

For example, one of my first apps was based on a macOS game in which the user
clicks cards to select them. In the macOS version, a card was highlighted to show it
was selected, and the computer would beep to indicate a click on an ineligible card.
On iOS, these indications were insufficient: the highlighting felt weak, and you can’t
use a sound warning in an environment where the user might have the volume
turned off or be listening to music. So in the iOS version, animation is the indicator
for card selection (a selected card waggles eagerly) and for tapping on an ineligible
card (the whole interface shudders, as if to shrug off the tap).

173

Drawing, Animation, and Threading
Animation is based on an interesting fact about how iOS draws to the screen: drawing
doesn’t actually take place at the time you give your drawing commands. When you
give a command that requires a view to be redrawn, the system remembers your com‐
mand and marks the view as needing to be redrawn. Later, when all your code has
run to completion and the system has, as it were, a free moment, then it redraws all
views that need redrawing. Let’s call this the redraw moment. (I’ll explain what the
redraw moment really is later in this chapter.)

Animation works the same way, and is part of the same process. When you ask for an
animation to be performed, the animation doesn’t start happening on the screen until
the next redraw moment. (You can force an animation to start immediately, but this is
unusual.) Like a movie (especially an old-fashioned animated cartoon), an animation
has “frames.” An animated value does not change smoothly and continuously; it
changes in small, individual increments that give the illusion of smooth, continuous
change. This illusion works because the device itself undergoes a periodic, rapid,
more or less regular screen refresh — a constant succession of redraw moments —
and the incremental changes are made to fall between these refreshes. Apple calls the
system component responsible for this the animation server.

Think of the “animation movie” as being interposed between the user and the “real”
screen. While the animation lasts, this movie is superimposed onto the screen. When
the animation is finished, the movie is removed, revealing the state of the “real”
screen behind it. The user is unaware of all this, because (if you’ve done things cor‐
rectly) at the time that it starts, the movie’s first frame looks just like the state of the
“real” screen at that moment, and at the time that it ends, the movie’s last frame looks
just like the state of the “real” screen at that moment.

So, when you animate a view’s movement from position 1 to position 2, you can envi‐
sion a typical sequence of events like this:

1. You reposition the view. The view is now set to position 2, but there has been no
redraw moment, so it is still portrayed at position 1.

2. You order an animation of the view from position 1 to position 2.
3. The rest of your code runs to completion.
4. The redraw moment arrives. If there were no animation, the view would now

suddenly be portrayed at position 2. But there is an animation, and so the “ani‐
mation movie” appears. It starts with the view portrayed at position 1, so that is
still what the user sees.

5. The animation proceeds, each “frame” portraying the view at intermediate posi‐
tions between position 1 and position 2. (The documentation describes the ani‐
mation as now in-flight.)

174 | Chapter 4: Animation

6. The animation ends, portraying the view ending up at position 2.
7. The “animation movie” is removed, revealing the view indeed at position 2 —

where you put it in the first step.

Realizing that the “animation movie” is different from what happens to the real view
is key to configuring an animation correctly. A frequent complaint of beginners is
that a position animation is performed as expected, but then, at the end, the view
“jumps” to some other position. This happens because you set up the animation but
failed to move the view to match its final position in the “animation movie”; the
“jump” happens because, when the “movie” is whipped away at the end of the anima‐
tion, the real situation that’s revealed doesn’t match the last frame of the “movie.”

There isn’t really an “animation movie” in front of the screen — but it’s a good anal‐
ogy, and the effect is much the same. In reality, it is not a layer itself that is portrayed
on the screen; it’s a derived layer called the presentation layer. Thus, when you ani‐
mate the change of a view’s position or a layer’s position from position 1 to position 2,
its nominal position changes immediately; meanwhile, the presentation layer’s posi‐
tion remains unchanged until the redraw moment, and then changes over time, and
because that’s what’s actually drawn on the screen, that’s what the user sees.

(A layer’s presentation layer can be accessed through its presentation method —
and the layer itself may be accessed through the presentation layer’s model method.
I’ll give examples, in this chapter and the next, of situations where accessing the pre‐
sentation layer is a useful thing to do.)

The animation server operates on an independent thread. You don’t have to worry
about the details (thank heavens, because multithreading is generally rather tricky
and complicated), but you can’t ignore it either. Your code runs independently of and
possibly simultaneously with the animation — that’s what multithreading means —
so communication between the animation and your code can require some planning.

Arranging for your code to be notified when an animation ends is a common need.
Most of the animation APIs provide a way to set up such a notification. One use of an
“animation ended” notification might be to chain animations together: one animation
ends and then another begins, in sequence. Another use is to perform some sort of
cleanup. A very frequent kind of cleanup has to do with handling of touches: while an
animation is in-flight, if your code is not running, the interface by default is respon‐
sive to the user’s touches, which might cause all kinds of havoc as your views try to
respond while the animation is still happening and the screen presentation doesn’t
match reality. To take care of this, it’s common practice to turn off your app’s respon‐
siveness to touches as you set up an animation and then turn it back on when you’re
notified that the animation is over.

Since your code can run even after you’ve set up an animation, or might start running
while an animation is in-flight, you need to be careful about setting up conflicting

Drawing, Animation, and Threading | 175

animations. Multiple animations can be set up (and performed) simultaneously, but
trying to animate or change a property that’s already in the middle of being animated
may be an incoherency. You’ll want to take care not to let your animations step on
each other’s feet accidentally.

Outside forces can interrupt your animations. The user might click the Home button
to send your app to the background, or an incoming phone call might arrive while an
animation is in-flight. The system deals coherently with this situation by simply can‐
celing all in-flight animations when an app is backgrounded; you’ve already arranged
before the animation for your views to assume the final states they will have after the
animation, so no harm is done — when your app resumes, everything is in that final
state you arranged beforehand. But if you wanted your app to resume an animation
in the middle, where it left off when it was interrupted, that would require some
canny coding on your part.

Image View and Image Animation
UIImageView provides a form of animation so simple as to be scarcely deserving of
the name; still, sometimes it might be all you need. You supply the UIImageView with
an array of UIImages, as the value of its animationImages or highlightedAnimation-
Images property. This array represents the “frames” of a simple cartoon; when you
send the startAnimating message, the images are displayed in turn, at a frame rate
determined by the animationDuration property, repeating as many times as specified
by the animationRepeatCount property (the default is 0, meaning to repeat forever),
or until the stopAnimating message is received. Before and after the animation, the
image view continues displaying its image (or highlightedImage).

For example, suppose we want an image of Mars to appear out of nowhere and flash
three times on the screen. This might seem to require some sort of Timer-based solu‐
tion, but it’s far simpler to use an animating UIImageView:

let mars = UIImage(named: "Mars")!
let r = UIGraphicsImageRenderer(size:mars.size)
let empty = r.image {_ in}
let arr = [mars, empty, mars, empty, mars]
let iv = UIImageView(image:empty)
iv.frame.origin = CGPoint(100,100)
self.view.addSubview(iv)
iv.animationImages = arr
iv.animationDuration = 2
iv.animationRepeatCount = 1
iv.startAnimating()

You can combine UIImageView animation with other kinds of animation. For exam‐
ple, you could flash the image of Mars while at the same time sliding the UIImage‐
View rightward, using view animation as described in the next section.

176 | Chapter 4: Animation

UIImage supplies a form of animation parallel to that of UIImageView: an image can
itself be an animated image. Just as with UIImageView, this really means that you’ve
prepared multiple images that form a sequence serving as the “frames” of a simple
cartoon. You can create an animated image with one of these UIImage class methods:

animatedImage(with:duration:)

As with UIImageView’s animationImages, you supply an array of UIImages. You
also supply the duration for the whole animation.

animatedImageNamed(_:duration:)

You supply the name of a single image file, as with init(named:), with no file
extension. The runtime appends "0" (or, if that fails, "1") to the name you supply
and makes that image file the first image in the animation sequence. Then it
increments the appended number, gathering images and adding them to the
sequence (until there are no more, or we reach "1024").

animatedResizableImageNamed(_:capInsets:resizingMode:duration:)

Combines an animated image with a resizable image (Chapter 2).

You do not tell an animated image to start animating, nor are you able to tell it how
long you want the animation to repeat. Rather, an animated image is always animat‐
ing, repeating its sequence once every duration seconds, so long as it appears in your
interface; to control the animation, add the image to your interface or remove it from
the interface, possibly exchanging it for a similar image that isn’t animated.

An animated image can appear in the interface anywhere a UIImage can appear as a
property of some interface object. In this example, I construct a sequence of red cir‐
cles of different sizes, in code, and build an animated image which I then display in a
UIButton:

var arr = [UIImage]()
let w : CGFloat = 18
for i in 0 ..< 6 {
 let r = UIGraphicsImageRenderer(size:CGSize(w,w))
 arr += [r.image { ctx in
 let con = ctx.cgContext
 con.setFillColor(UIColor.red.cgColor)
 let ii = CGFloat(i)
 con.addEllipse(in:CGRect(0+ii,0+ii,w-ii*2,w-ii*2))
 con.fillPath()
 }]
}
let im = UIImage.animatedImage(with:arr, duration:0.5)
b.setImage(im, for:.normal) // b is a button in the interface

Image View and Image Animation | 177

View Animation
All animation is ultimately layer animation, which I’ll discuss later in this chapter.
However, for a limited range of properties, you can animate a UIView directly: these
are its alpha, bounds, center, frame, transform, and (if the view doesn’t implement
draw(_:)) backgroundColor. You can also animate a UIView’s change of contents.
This list of animatable features, despite its brevity, will often prove quite sufficient.

A Brief History of View Animation
The view animation API has evolved historically by way of three distinct major
stages. Older stages have not been deprecated or removed; all three stages are present
simultaneously:

Begin and commit
Way back at the dawn of iOS time, a view animation was constructed impera‐
tively using a sequence of UIView class methods. To use this API, you call begin-
Animations, configure the animation, set an animatable property, and commit the
animation by calling commitAnimations. For example:

UIView.beginAnimations(nil, context: nil)
UIView.setAnimationDuration(1)
self.v.backgroundColor = .red
UIView.commitAnimations()

Block-based animation
When Objective-C blocks were introduced, the entire operation of configuring a
view animation was reduced to a single UIView class method, to which you pass a
block in which you set the animatable property. In Swift, an Objective-C block is
a function — usually an anonymous function:

UIView.animate(withDuration:1) {
 self.v.backgroundColor = .red
}

Property animator
iOS 10 introduces a new object — a property animator (UIViewPropertyAnima‐
tor). It, too, receives a function:

let anim = UIViewPropertyAnimator(duration: 1, curve: .linear) {
 self.v.backgroundColor = .red
}
anim.startAnimation()

Block-based animation completely supersedes begin-and-commit animation, except
that in the special situation where you want an animation that repeats a specific num‐
ber of times, you have to fall back to a begin-and-commit animation command (as I’ll
show later in this chapter).

178 | Chapter 4: Animation

The iOS 10 property animator does not supersede block-based animation; rather, it
supplements and expands it. There are certain kinds of animation (repeating anima‐
tion, autoreversing animation, transition animation) where a property animator can’t
help you, and you’ll go on using block-based animation. But for the bulk of basic
view animations, the property animator brings some valuable advantages — a full
range of timing curves, multiple completion functions, and the ability to pause,
resume, reverse, and interact by touch with a view animation.

The chief UIView class method for performing view animation is:

• animate(withDuration:delay:options:animations:completion:)

There are shortened versions of the same command; for example, you can omit the
delay: and options: parameters, and even the completion: parameter, as in the
example I gave earlier.

Existing code from iOS 9 or before that calls the UIView class method can sometimes
be converted to use a property animator with only minimal changes, by calling this
UIViewPropertyAnimator class factory method:

• runningPropertyAnimator(with-

Duration:delay:options:animations:completion:)

That method has almost exactly the same parameters, with the same meaning, as the
UIView class method. The UIViewPropertyAnimator class factory method differs in
two respects from the earlier UIView class method:

• It returns the animator instance. You are free to ignore this instance if you don’t
need it for anything.

• The completion function takes a UIViewAnimatingPosition parameter (I’ll
explain later what that is), rather than a Bool parameter. If, however, you were
ignoring this parameter (which you probably were), you may be able to use your
existing completion function without change.

Property Animator Basics
The UIViewPropertyAnimator class, new in iOS 10, derives its methods and proper‐
ties not only from itself but also from its protocol inheritance. It adopts the UIVie‐
wImplicitlyAnimating protocol, which itself adopts the UIViewAnimating protocol.
(The reason for this division of powers won’t arise in this chapter; it has to do with
custom view controller transition animations, discussed in Chapter 6.) Here’s an
overview of UIViewPropertyAnimator’s inheritance:

View Animation | 179

UIViewAnimating protocol
As a UIViewAnimating protocol adopter, UIViewPropertyAnimator can have its
animation started, paused, or stopped with startAnimation, pauseAnimation,
and stopAnimation(_:). Its state property reflects its current state (UIViewA‐
nimatingState): a property animator is .inactive before starting, .active after
starting, and returns to .inactive after it finishes naturally.

In the special case where an animation is stopped by calling stopAnimation(:_)
with an argument of false, the property animator’s state is .stopped. It can sub‐
sequently be told to finishAnimation, at which point it returns to .inactive.

An .active property animator may be paused, in which case it is still .active.
So a further distinction is made by the isRunning property; if isRunning is true,
then the property animator is .active and not paused.

UIViewAnimating also provides two settable properties:

• The fractionComplete property is essentially the current “frame” of the ani‐
mation.

• The isReversed property dictates whether the animation is running for‐
wards or backwards.

UIViewImplicitlyAnimating protocol
As a UIViewImplicitlyAnimating protocol adopter, UIViewPropertyAnimator
can be given completion functions to be executed when the animation finishes,
with addCompletion(_:). It can also be given additional animation functions,
with addAnimations(_:) or addAnimations(_:delayFactor:); animations
defined by multiple animation functions are combined additively. It is also possi‐
ble to reuse a property animator that has been started and returned to .inactive,
by adding new animations.

UIViewImplicitlyAnimating also has a continueAnimation(withTiming-

Parameters:durationFactor:) method that allows a paused animation to be
resumed with altered timing and duration.

UIViewPropertyAnimator
UIViewPropertyAnimator’s own methods consist solely of initializers (plus the
class factory method I mentioned earlier). It has some read-only properties
describing how it was configured and started (for example, reporting its anima‐
tion’s duration).

UIViewPropertyAnimator also provides three settable properties:

• If isInterruptible is true (the default), the animator can be paused or
stopped.

180 | Chapter 4: Animation

• If isUserInteractionEnabled is true (the default), animated views can be
tapped midflight.

• If isManualHitTestingEnabled is true, hit-testing is up to you; the default is
false, meaning that the animator performs hit-testing on your behalf, which
is usually what you want. (See Chapter 5 for more about hit-testing animated
views.)

When a property animator is started with startAnimation, the animation doesn’t
actually start at that moment; rather, the animation is scheduled to start at the next
redraw moment, as I explained earlier — and the property animator itself is retained
by the animation server. That explains the example I gave earlier:

let anim = UIViewPropertyAnimator(duration: 1, curve: .linear) {
 self.v.backgroundColor = .red
}
anim.startAnimation()

The UIViewPropertyAnimator object anim is instantiated as a local variable, and we
are not retaining it in a persistent property; yet the animation works because the ani‐
mation server retains it. We can keep a persistent reference to the property animator
if we’re going to need it later, but the animation will still work even if we don’t.

View Animation Basics
A function in which you order a view animation by setting animatable properties is
an animations function. Any animatable change made within an animations function
will be animated, so we can, for example, animate a change both in the view’s color
and in its position simultaneously:

let anim = UIViewPropertyAnimator(duration: 1, curve: .linear) {
 self.v.backgroundColor = .red
 self.v.center.y += 100
}
anim.startAnimation()

You can add an animations function to a property animator after instantiating it;
indeed, the init(duration:timingParameters:) initializer actually requires that you
do this, as it lacks an animations: parameter. Thus a property animator can end up
with multiple animations functions:

let anim = UIViewPropertyAnimator(duration: 1,
 timingParameters: UICubicTimingParameters(animationCurve:.linear))
anim.addAnimations {
 self.v.backgroundColor = .red
}

View Animation | 181

anim.addAnimations {
 self.v.center.y += 100
}
anim.startAnimation()

Changes to multiple views can be combined into a single animations function. More‐
over, a completion function, which can be added to a property animator with the add-
Completion(_:) method, lets us specify what should happen after the animation
ends. (With a property animator, multiple completion functions are legal; just call add-
Completion(_:) multiple times. However, I suspect that this would be an unusual
thing to do.) In this way, elaborate effects can be combined into a single animation.

For example, suppose we want to make one view dissolve into another. We start with
the second view present in the view hierarchy, with the same frame as the first view,
but with an alpha of 0, so that it is invisible. Then we animate the change of the first
view’s alpha to 0 and the second view’s alpha to 1. Indeed, we can place the second
view in the view hierarchy just before the animation starts (invisibly, because its
alpha starts at 0) and remove the first view just after the animation ends (invisibly,
because its alpha ends at 0):

let v2 = UIView()
v2.backgroundColor = .black
v2.alpha = 0
v2.frame = self.v.frame
self.v.superview!.addSubview(v2)
let anim = UIViewPropertyAnimator(duration: 1, curve: .linear) {
 self.v.alpha = 0
 v2.alpha = 1
}
anim.addCompletion { _ in
 self.v.removeFromSuperview()
}
anim.startAnimation()

Another way to remove a view from the view hierarchy with animation is to call
perform(_:on:options:animations:completion:) with a first argu‐
ment .delete (the only possible first argument). This causes the view to blur,
shrink, and fade, and sends it removeFromSuperview() afterwards.

Code that isn’t about animatable view properties can appear in an animations func‐
tion with no problem, and will in fact run immediately when startAnimation is
called. But we must be careful to keep any changes to animatable properties that we
do not want animated out of the animations function. In the preceding example, in
setting v2.alpha to 0, I just want to set it right now, instantly; I don’t want that
change to be animated. So I’ve put that line before the animations function.

Sometimes, though, that’s not so easy; perhaps, within the animations function, we
must call a method that might perform animatable changes. The UIView class

182 | Chapter 4: Animation

method performWithoutAnimation(_:) solves the problem; it goes inside an anima‐
tions function, but whatever happens in its function is not animated. In this rather
artificial example, the view jumps to its new position and then slowly turns red:

let anim = UIViewPropertyAnimator(duration: 1, curve: .linear) {
 self.v.backgroundColor = .red
 UIView.performWithoutAnimation {
 self.v.center.y += 100
 }
}
anim.startAnimation()

The material inside an animations function (but not inside a performWithout-
Animation function) orders the animation — that is, it gives instructions for what the
animation will be when the redraw moment comes. If you change an animatable view
property as part of the animation, you should not change that property again after‐
wards; the results can be confusing. This code, for example, is essentially incoherent:

let anim = UIViewPropertyAnimator(duration: 2, curve: .linear) {
 self.v.center.y += 100
}
self.v.center.y += 300
anim.startAnimation()

What actually happens is that the view jumps 300 points down and then animates 100
points further down. That’s probably not what you intended. After you’ve ordered an
animatable view property to be animated inside an animations function, don’t change
that view property’s value again until after the animation is over.

On the other hand, this code, while somewhat odd, nevertheless does a smooth single
animation to a position 400 points further down:

let anim = UIViewPropertyAnimator(duration: 2, curve: .linear) {
 self.v.center.y += 100
 self.v.center.y += 300
}
anim.startAnimation()

That’s because basic positional view animations are additive by default (in iOS 8 and
later). This means that the second animation is run simultaneously with the first, and
is blended with it.

Starting in iOS 9, a UIVisualEffectView is animatable in the same ways as a regu‐
lar UIView. What’s more, setting a UIVisualEffectView’s effect is animatable!
Thus, for example, you can blur with animation by starting with a UIVisualEf‐
fectView whose effect is nil and then setting its effect to a UIBlurEffect inside
an animations function.

View Animation | 183

View Animation Configuration
There are various ways to configure the behavior of a view animation, represented by
the parameters of the full form of the UIView class method animate(with-
Duration:delay:options:animations:completion:).

Animations function
The animations function contains the commands setting animatable view properties.
With a property animator, the animations function is usually provided as the
animations: argument when the property animator is instantiated. However, a prop‐
erty animator can have one or more animations functions added after instantiation,
by calling addAnimations(:_), as we saw earlier.

Completion function
A completion function contains commands to be executed when the animation fin‐
ishes. A property animator can have multiple completion functions, provided by call‐
ing addCompletion(_:). A property animator that is told to stop its animation does
not execute its completion functions until it is also told to finish.

With a UIView class method, the completion function takes one parameter, a Bool
reporting whether the animation finished. With a property animator, the completion
function takes one parameter, a UIViewAnimatingPosition reporting where the ani‐
mation ended up: .end, .start, or .current. I’ll talk later about what those values
mean.

Animation duration

The duration of an animation is usually supplied as the duration: parameter when
the property animator is specified. It represents how long it takes (in seconds) to run
from start to finish. You can also think of this as the animation’s speed. Obviously, if
two views are told to move different distances in the same time, the one that must
move further must move faster.

Interestingly, a duration of 0 doesn’t really mean 0. It means “use the default dura‐
tion.” This fact will be of interest later when we talk about nesting animations. Out‐
side of a nested animation, the default is two-tenths of a second.

The duration is also available as a read-only property of the animator, its duration.

Animation delay
It is permitted to order the animation along with a delay before the animation goes
into action. The default is no delay. A delay is not the same as applying the animation

184 | Chapter 4: Animation

using delayed performance; the animation is applied immediately, but when it starts
running it spins its wheels, with no visible change, until the delay time has elapsed.

To apply a delay to an animation with a property animator, call start-

Animation(afterDelay:) instead of startAnimation.

Animation timing
An animation has a timing curve that maps interpolated values to time. For example,
the notion of moving a view downwards by 100 points in the course of 1 second can
have many meanings. Should we move at a constant rate the whole time? Should we
move slowly at first and more quickly later? There are a lot of possibilities.

With a UIView class method, you get a choice of just four timing curves (supplied as
part of the options: argument, as I’ll explain in a moment). But a property animator
gives you very broad powers to configure the timing curve the way you want. This is
such an important topic that I’ll deal with it in a separate section later.

Animation options

If you’re calling the UIView class method animate(with-

Duration:delay:options:animations:completion:), or if you call its property ani‐
mator analog, the class method runningPropertyAnimator, the options: argument
is a bitmask combining additional options. Here are some of the chief options: val‐
ues (UIViewAnimationOptions) that you might wish to use:

Timing curve
When supplied in this way, only four built-in timing curves are available. The
term “ease” means that there is a gradual acceleration or deceleration between the
animation’s central speed and the zero speed at its start or end. Specify one at
most:

• .curveEaseInOut (the default)
• .curveEaseIn

• .curveEaseOut

• .curveLinear (constant speed throughout)

.repeat

If included, the animation will repeat indefinitely. There is no way, as part of this
command, to specify a certain number of repetitions; you ask either to repeat for‐
ever or not at all. This feels like an oversight (a serious oversight); I’ll suggest a
workaround in a moment.

View Animation | 185

.autoreverse

If included, the animation will run from start to finish (in the given duration
time), and will then run from finish to start (also in the given duration time). The
documentation’s claim that you can autoreverse only if you also repeat is incor‐
rect; you can use either or both (or neither).

The .repeat and .autoreverse options work only when calling the UIView class
method. When using .autoreverse, you will want to clean up at the end so that the
view is back in its original position when the animation is over. To see what I mean,
consider this code:

let opts : UIViewAnimationOptions = [.autoreverse]
let xorig = self.v.center.x
UIView.animate(withDuration:1, delay: 0, options: opts, animations: {
 self.v.center.x += 100
 }, completion: nil
)

The view animates 100 points to the right and then animates 100 points back to its
original position — and then jumps 100 points back to the right. The reason is that the
last actual value we assigned to the view’s center x is 100 points to the right, so when
the animation is over and the “animation movie” is whipped away, the view is
revealed still sitting 100 points to the right. The solution is to move the view back to
its original position in the completion: function:

let opts : UIViewAnimationOptions = [.autoreverse]
let xorig = self.v.center.x
UIView.animate(withDuration:1, delay: 0, options: opts, animations: {
 self.v.center.x += 100
 }, completion: {
 _ in
 self.v.center.x = xorig
})

Working around the inability to specify a finite number of repetitions is tricky. One
solution is to resort to a command from the first generation of animation methods:

let opts : UIViewAnimationOptions = [.autoreverse]
let xorig = self.v.center.x
UIView.animate(withDuration:1, delay: 0, options: opts, animations: {
 UIView.setAnimationRepeatCount(3) // *
 self.v.center.x += 100
 }, completion: {
 _ in
 self.v.center.x = xorig
})

There are also some options saying what should happen if another animation is
already ordered or in-flight (so that we are effectively nesting animations):

186 | Chapter 4: Animation

.overrideInheritedDuration

Prevents inheriting the duration from a surrounding or in-flight animation (the
default is to inherit it).

.overrideInheritedCurve

Prevents inheriting the timing curve from a surrounding or in-flight animation
(the default is to inherit it).

.beginFromCurrentState

If this animation animates a property already being animated by an animation
that is previously ordered or in-flight, then instead of canceling the previous ani‐
mation (completing the requested change instantly), if that is what would nor‐
mally happen, this animation will use the presentation layer to decide where to
start, and, if possible, will “blend” its animation with the previous animation.

There is little need for .beginFromCurrentState in iOS 8 and later, where simple
view animations are additive by default. To illustrate what it means for animations to
be additive, let’s take advantage of the fact that a property animator allows us to add a
second animation that doesn’t take effect until some amount of the first animation
has elapsed:

let anim = UIViewPropertyAnimator(duration: 2, curve: .easeInOut) {
 self.v.center.y += 100
}
anim.addAnimations({
 self.v.center.x += 100
}, delayFactor: 0.5)
anim.startAnimation()

The delayFactor: of 0.5 means that the second animation will start halfway through
the duration. So the animated view heads straight downward for 1 second and then
smoothly swoops off to the right while continuing down for another second, ending
up 100 points down and 100 points to the right of where it started. The two anima‐
tions might appear to conflict — they are both changing the center of our view, and
they have different durations and therefore different speeds — but instead they blend
together seamlessly.

An even stronger example is what happens when the two animations directly oppose
one another:

let yorig = self.v.center.y
let anim = UIViewPropertyAnimator(duration: 2, curve: .easeInOut) {
 self.v.center.y += 100
}
anim.addAnimations({
 self.v.center.y = yorig
 }, delayFactor: 0.5)
anim.startAnimation()

View Animation | 187

Figure 4-1. An ease-in-out Bézier curve

That’s a smooth autoreversing animation. The animated view starts marching
towards a point 100 points down from its original position, but at about the halfway
point it smoothly — not abruptly or sharply — slows and reverses itself and returns
to its original position.

Timing Curves
A timing curve maps the fraction of the animation’s time that has elapsed (the x-axis)
against the fraction of the animation’s change that has occurred (the y-axis); its end‐
points are therefore at (0.0,0.0) and (1.0,1.0), because at the beginning of the ani‐
mation there has been no elapsed time and no change, and at the end of the
animation all the time has elapsed and all the change has occurred. There are two
kinds of timing curve: cubic Bézier curves and springing curves.

Cubic timing curves
A cubic Bézier curve is defined by its endpoints, where each endpoint needs only one
Bézier control point to define the tangent to the curve. Because the curve’s endpoints
are known, defining the two control points is sufficient to describe the entire curve.
That is, in fact, how it is expressed.

So, for example, the built-in ease-in-out timing function is defined by the two points
(0.42, 0.0) and (0.58, 1.0) — this is, it’s a Bézier curve with one endpoint at
(0.0,0.0), whose control point is (0.42,0.0), and the other endpoint at (1.0,1.0),
whose control point is (0.58,1.0) (Figure 4-1).

With a property animator, there are three ways to specify the animation’s timing
curve, corresponding to three initializers:

188 | Chapter 4: Animation

init(duration:curve:animations:)

The curve is a built-in timing curve, specified as a UIViewAnimationCurve
enum. The cases are:

• .easeInOut

• .easeIn

• .easeOut

• .linear

With the UIView class method, as I mentioned earlier, those are the only avail‐
able timing curves; you specify one of them through the options: argument.

init(duration:controlPoint1:controlPoint2:animations:)

The curve is supplied as the two control points that define it.

init(duration:timingParameters:)

This is most general form of initializer; the other two are convenience initializers
that call it. The timingParameters: is an object adopting the UITimingCurve‐
Provider protocol, which can be a UICubicTimingParameters instance. The
UICubicTimingParameters initializers are:

init(animationCurve:)

The value is one of the four built-in timing curves that I already mentioned,
specified as a UIViewAnimationCurve enum.

init()

This provides a fifth built-in timing curve, used as the default for many built-
in behaviors

init(controlPoint1:controlPoint2:)

Defines the curve by its control points.

For example, here’s a cubic timing curve that eases in very slowly and finishes up all
in a rush, whipping quickly into place after about two-thirds of the time has elapsed. I
call this the “clunk” timing function:

anim = UIViewPropertyAnimator(
 duration: 1, timingParameters:
 UICubicTimingParameters(
 controlPoint1:CGPoint(0.9,0.1),
 controlPoint2:CGPoint(0.7,0.9)))

Springing timing curves
A springing timing curve is the solution to a physics problem whose initial condi‐
tions describe a mass attached to a stretched spring. The animation mimics releasing

View Animation | 189

the spring and letting it rush towards and settle down at the destination value. With a
property animator, you can express a springing timing curve in two ways:

init(duration:dampingRatio:animations:)

The dampingRatio: argument, between 0.0 and 1.0, describes the amount of
final oscillation. A value of 0.9 is heavily damped and just settles directly into
place. A value of 0.8 just barely overshoots and snaps back to the final value. A
value of 0.1 waggles around the final value for a while before settling down.

init(duration:timingParameters:)

As the UITimingCurveProvider, you supply a UISpringTimingParameters object.
Its initializers are:

init(dampingRatio:)

Just like init(duration:dampingRatio:animations:).

init(dampingRatio:initialVelocity:)

The initialVelocity: is a CGVector whose value is the proportion of the
total distance to be covered in one second. (The default, used in the preced‐
ing initializer, is CGVector.zero.) Thus, for example, with a damping ratio of
0.3, a CGVector component value of 1 overshoots a little and bounces about
twice before settling into place, a value of 10 overshoots a bit further, and a
value of 100 overshoots by more than twice the distance. The y-component is
considered only if what’s being animated follows a two-dimensional path —
for example, if you’re changing both components of a view’s center.

The initialVelocity: is useful particularly when converting from a gesture
to an animation — that is, where the user is moving a view and releases it,
and you want a springing animation to take over from there, starting out at
the same velocity that the user was applying at the moment of release.

init(mass:stiffness:damping:initialVelocity:)

The duration: value is ignored; the actual duration will be calculated from
the other parameters (and this calculated duration can be discovered by
reading the resulting property animator’s duration). The first three parame‐
ters are in proportion to one another. A high mass: can cause a vast over‐
shoot. A low stiffness: or a low damping: can result in a long settle-down
time. Thus, the mass is usually quite small, while the stiffness and damping
are usually quite large.

init()

The duration: value is ignored. The default spring animation; it is quite
heavily damped, and settles into place in about half a second. In terms of the

190 | Chapter 4: Animation

previous initializer, the mass: is 3, the stiffness: is 1000, the damping: is
500, and the initialVelocity: is (0,0).

To specify a springing animation with a UIView class method, call:

• animate(withDuration:delay:usingSpringWithDamping:initialSpring-

Velocity:options:animations:completion:)

The initialSpringVelocity: is a CGFloat.

A springing animation doesn’t have to animate a view from place to place, and doesn’t
have to look particularly springy to be effective. A small initial spring velocity and a
high damping gives a normal animation that wouldn’t particularly remind anyone of
a spring, but that does have a pleasingly rapid beginning and slow ending; many of
Apple’s own system animations are actually spring animations of that type (consider,
for example, the way folders open in the springboard).

Canceling a View Animation
Once a view animation is in-flight, how can you cancel it? And what should “cancel”
mean in the first place? This is one of the key areas where a property animator shows
off its special powers.

To illustrate the problem, I’ll first show what you would have had to do before prop‐
erty animators were invented. Imagine a simple unidirectional positional animation,
with a long duration so that we can interrupt it in midflight. To facilitate the explana‐
tion, I’ll conserve both the view’s original position and its final position in properties:

self.pOrig = self.v.center
self.pFinal = self.v.center
self.pFinal.x += 100
UIView.animateWithDuration(4, animations: {
 self.v.center = self.pFinal
})

Now imagine that we have a button that we can tap during that animation, and that
this button is supposed to cancel the animation. How can we do that?

One possibility is to reach down to the CALayer level and call removeAllAnimations:

self.v.layer.removeAllAnimations()

(If the layer has more than one animation and you want to cancel only one of them,
you can call removeAnimation(forKey:); I’ll talk later in this chapter about how to
distinguish layer animations by key.) That has the advantage of simplicity, but the
effect is jarring: the “animation movie” is whipped away instantly, “jumping” the view
to its final position, effectively doing what the system does automatically when the
app goes into the background.

View Animation | 191

So let’s try to devise a more subtle form of cancellation: the view should hurry to its
final position. This is a case where the additive nature of animations actually gets in
our way. We cannot merely impose another animation that moves the view to its final
position with a short duration, because this doesn’t cancel the existing animation.
Therefore we must remove the first animation manually. We already know how to do
that: call removeAllAnimations. But we also know that if we do that, the view will
jump to its final position; we want it to remain, for the moment, at its current posi‐
tion — meaning the animation’s current position. But where on earth is that?

To find out, we have to ask the view’s presentation layer where it currently is. We repo‐
sition the view at the location of its presentation layer, and then remove the anima‐
tion, and then perform the final “hurry home” animation:

self.v.layer.position = self.v.layer.presentation()!.position
self.v.layer.removeAllAnimations()
UIView.animate(withDuration:0.1) {
 self.v.center = self.pFinal
}

Another alternative is that cancellation means returning the view to its original posi‐
tion. In that case, set the view’s center to its original position instead of its destina‐
tion position:

self.v.layer.position = self.v.layer.presentation()!.position
self.v.layer.removeAllAnimations()
UIView.animate(withDuration:0.1) {
 self.v.center = self.pOrig // need to have recorded original position
}

Yet another possibility is that cancellation means just stopping wherever we happen
to be. In that case, omit the final animation:

self.v.layer.position = self.v.layer.presentation()!.position
self.v.layer.removeAllAnimations()

Now I’ll show how do those things with a property animator. We won’t have to reach
down to the level of the layer. We won’t call removeAllAnimations; we won’t query
the presentation layer. We don’t have to memorize the start position or the end posi‐
tion. The property animator does all of that for us!

For the sake of ease and generality, let’s hold the animator in an instance property
where all of our code can see it. Here’s how it is configured:

self.anim = UIViewPropertyAnimator(
 duration: 4, timingParameters: UICubicTimingParameters())
self.anim.addAnimations {
 self.v.center.x += 100
}
self.anim.startAnimation()

Here’s how to cancel the animation by hurrying home to its end:

192 | Chapter 4: Animation

self.anim.pauseAnimation()
self.anim.continueAnimation(
 withTimingParameters: UICubicTimingParameters(animationCurve:.easeOut),
 durationFactor: 0.1)

We pause the animation because otherwise we can’t make changes to it. The anima‐
tion does not visibly pause. On the contrary, we resume at once with a modification
of the original animation, which is smoothly blended into the existing animation. The
short durationFactor: is the “hurry up” part; we want a much shorter duration than
the original duration. We don’t have to tell the animator where to animate to; in the
absence of any other commands, it animates to its original destination.

What about canceling the animation by hurrying home to its beginning? It’s exactly
the same, except that we reverse the animation:

self.anim.pauseAnimation()
self.anim.isReversed = true
self.anim.continueAnimation(
 withTimingParameters: UICubicTimingParameters(animationCurve:.easeOut),
 durationFactor: 0.1)

Again, we don’t have to tell the animator where to animate to; it knows where we
started, and reversing means to go there.

Using that same technique, we could interrupt the animation and hurry to anywhere
we like — by adding another animation function before continuing. Here, for exam‐
ple, cancellation causes us to rush right off the screen:

self.anim.pauseAnimation()
self.anim.addAnimations {
 self.v.center = CGPoint(-200,-200)
}
self.anim.continueAnimation(
 withTimingParameters: UICubicTimingParameters(animationCurve:.easeOut),
 durationFactor: 0.1)

What about canceling the animation by stopping wherever we are? Just stop the ani‐
mation:

self.anim.stopAnimation(false)
self.anim.finishAnimation(at: .current)

The false argument means: “Please allow me to call finishAnimation(at:).” We
want to call finishAnimation(at:) if we want any completion functions to be called
— and also if we want to specify where the view should end up when the “animation
movie” is removed. By passing in .current, we state that we want the animated view
to end up right where it is now. If we were to pass in .start or .end, the view would
jump to that position.

View Animation | 193

A property animator that is stopped in any other way — that is, by calling stop-
Animation(true), or by calling stopAnimation(false) without subsequently
calling finishAnimation(at:) — does not call its completion functions.

We can now understand the incoming parameter in the completion function. It is the
position where we end up. If the animation finishes by proceeding to its end, that
parameter is .end. If we reverse the animation and it finishes by proceeding back to
its start, as in our second cancellation example, that parameter is .start. If we call
finishAnimation(at:), it is whatever position value we pass in as argument.

Finally, suppose that the animation we want to cancel is an infinitely repeating
autoreversing animation. It will have to be created with the UIView class method:

self.pOrig = self.v.center
let opts : UIViewAnimationOptions = [.autoreverse, .repeat]
UIView.animate(withDuration:1, delay: 0, options: opts,
 animations: {
 self.v.center.x += 100
 })

Let’s say our idea of cancellation is to have the animated view hurry back to its origi‐
nal position; that is why we have saved the original position as an instance property.
This is a situation where the .beginFromCurrentState option is useful! That’s
because a repeating animation is not additive with a further animation. It is therefore
sufficient simply to impose the “hurry home” animation on top of the existing repeat‐
ing animation, because it does contradict the repeating animation and therefore also
cancels it. The .beginFromCurrentState option prevents the view from jumping
momentarily to the “final” position, 100 points to the right, to which we set it when
we initiated the repeating animation:

UIView.animate(withDuration:0.1, delay:0,
 options:.beginFromCurrentState,
 animations: {
 self.v.center = self.pOrig
 })

Frozen View Animation
Another important feature of a property animator is that its animation can be frozen.
We already know that the animation can be paused — or never even started. A frozen
animation is simply left in this state. It can be started or resumed at any time subse‐
quently. Alternatively, instead of starting it, we can keep the animation frozen, but
move it to a different “frame” of the animation by setting its fractionComplete.

In this simple example, we have in the interface a slider (a UISlider) and a small red
square view. As the user slides the slider from left to right, the red view follows along
— and gradually turns green, depending how far the user slides the slider. If the user

194 | Chapter 4: Animation

slides the slider all the way to the right, the view is at the right and is fully green. If the
user slides the slider all the way back to the left, the view is at the left and is fully red.

To accomplish this, the property animator is configured with an animation moving it
all the way to right and turning it all the way green. But the animation is never
started:

self.anim = UIViewPropertyAnimator(duration: 1, curve: .linear) {
 self.v.center.x = self.pTarget.x
 self.v.backgroundColor = .green()
}

The slider, whenever the user moves it, simply changes the animator’s fraction-
Complete to match its own percentage:

self.anim.fractionComplete = CGFloat(slider.value)

Apple refers to this technique of manually moving a frozen animation back and forth
from frame to frame as scrubbing. Typically, the user will seem to be touching and
moving the animated view itself. This will come in handy in connection with interac‐
tive view controller transitions in Chapter 6.

Custom Animatable View Properties
You can define your own custom view property that can be animated by changing it
in an animations function, provided the custom view property itself changes an ani‐
matable view property.

For example, imagine a UIView subclass, MyView, which has a Bool swing property.
All this does is reposition the view: when swing is set to true, the view’s center x-
coordinate is increased by 100; when swing is set to false, the view’s center x-
coordinate is decreased by 100. A view’s center is animatable, so the swing property
itself can be animatable.

The trick (which I had never thought of it until an Apple WWDC 2014 video sug‐
gested it) is to implement MyView’s swing setter with a zero-duration animation:

class MyView : UIView {
 var swing : Bool = false {
 didSet {
 var p = self.center
 p.x = self.swing ? p.x + 100 : p.x - 100
 UIView.animate(withDuration:0) {
 self.center = p
 }
 }
 }
}

View Animation | 195

If we now change a MyView’s swing directly, the view jumps to its new position; there
is no animation. But if an animations function changes the swing property, the swing
setter’s animation inherits the duration of the surrounding animations function —
because such inheritance is, as I mentioned earlier, the default. Thus the change in
position is animated, with the specified duration:

UIView.animate(withDuration:1) {
 self.v.swing = !self.v.swing // "animatable" Bool property
}

The animations function that sets the swing property can alternatively belong to a
property animator, and the resulting animation can then be paused.

Keyframe View Animation
A view animation can be described as a set of keyframes. This means that, instead of a
simple beginning and end point, you specify multiple stages in the animation and
those stages are joined together for you. This can be useful as a way of chaining ani‐
mations together, or as a way of defining a complex animation that can’t be described
as a single change of value.

To create a keyframe animation, you call the UIView class method animate-
Keyframes(withDuration:...). It takes an animations function, and inside that
function you call addKeyframe(withRelativeStartTime:relative-

Duration:animations:) multiple times to specify each stage. Each keyframe’s start
time and duration is between 0 and 1, relative to the animation as a whole. (Giving a
keyframe’s start time and duration in seconds is a common beginner mistake.)

For example, here I’ll waggle a view back and forth horizontally while moving it
down the screen vertically:

var p = self.v.center
let dur = 0.25
var start = 0.0
let dx : CGFloat = 100
let dy : CGFloat = 50
var dir : CGFloat = 1
UIView.animateKeyframes(withDuration:4, delay: 0, animations: {
 UIView.addKeyframe(withRelativeStartTime:start,
 relativeDuration: dur) {
 p.x += dx*dir; p.y += dy
 self.v.center = p
 }
 start += dur; dir *= -1
 UIView.addKeyframe(withRelativeStartTime:start,
 relativeDuration: dur) {
 p.x += dx*dir; p.y += dy
 self.v.center = p
 }

196 | Chapter 4: Animation

 start += dur; dir *= -1
 UIView.addKeyframe(withRelativeStartTime:start,
 relativeDuration: dur) {
 p.x += dx*dir; p.y += dy
 self.v.center = p
 }
 start += dur; dir *= -1
 UIView.addKeyframe(withRelativeStartTime:start,
 relativeDuration: dur) {
 p.x += dx*dir; p.y += dy
 self.v.center = p
 }
})

In that code, there are four keyframes, evenly spaced: each is 0.25 in duration (one-
fourth of the whole animation) and each starts 0.25 later than the previous one (as
soon as the previous one ends). In each keyframe, the view’s center x-coordinate
increases or decreases by 100, alternately, while its center y-coordinate keeps increas‐
ing by 50.

The keyframe values are points in space and time; the actual animation interpolates
between them. How this interpolation is done depends upon the options: parameter
(omitted in the preceding code). Several UIKeyframeAnimationOptions values have
names that start with calculationMode; pick one. The default is .calculationMode-
Linear. In our example, this means that the path followed by the view is a sharp zig-
zag, the view seeming to bounce off invisible walls at the right and left. But if our
choice is .calculationModeCubic, our view describes a smooth S-curve, starting at
the view’s initial position and ending at the last keyframe point, and passing through
the three other keyframe points like the maxima and minima of a sine wave.

Because my keyframes are perfectly even, I could achieve the same effects by
using .calculationModePaced or .calculationModeCubicPaced, respectively. The
paced options ignore the relative start time and relative duration values of the key‐
frames; you might as well pass 0 for all of them. Instead, they divide up the times and
durations evenly, exactly as my code has done.

Finally, .calculationModeDiscrete means that the changed animatable properties
don’t animate: the animation jumps to each keyframe.

The outer animations function can contain other changes to animatable view proper‐
ties, as long as they don’t conflict with the keyframe animations:; these are animated
over the total duration. For example:

UIView.animateKeyframes(withDuration:4, delay: 0, animations: {
 self.v.alpha = 0
 // ...

View Animation | 197

The result is that as the view zigzags back and forth down the screen, it also gradually
fades away.

It is also legal and meaningful to supply a timing curve as part of the options: argu‐
ment. Unfortunately, the documentation fails to make this clear; and Swift’s
obsessive-compulsive attitude towards data types resists folding a UIViewAnimation‐
Options timing curve directly into a value typed as a UIViewKeyframeAnimation‐
Options. Yet if you don’t do it, the default is .curveEaseInOut, which may not be
what you want. Here’s how to combine .calculationModeLinear with .curveLinear:

var opts : UIViewKeyframeAnimationOptions = .calculationModeLinear
let opt2 : UIViewAnimationOptions = .curveLinear
opts.insert(UIViewKeyframeAnimationOptions(rawValue:opt2.rawValue))

That’s two different senses of linear! The first means that the path described by the
moving view is a sequence of straight lines. The second means that the moving view’s
speed along that path is steady.

You might want to pause or reverse a keyframe view animation by way of a prop‐
erty animator. To do so, nest your call to UIView.animateKeyframes... inside
the property animator’s animations function. The property animator’s duration
and timing curve are then inherited, so this is another way to dictate the key‐
frame animation’s timing.

Transitions
A transition is an animation that emphasizes a view’s change of content. Transitions
are ordered using one of two UIView class methods:

• transition(with:duration:options:animations:completion:)

• transition(from:to:duration:options:completion:)

The transition animation types are expressed as part of the options: bitmask:

• .transitionFlipFromLeft, .transitionFlipFromRight
• .transitionCurlUp, .transitionCurlDown
• .transitionFlipFromBottom, .transitionFlipFromTop
• .transitionCrossDissolve

transition(with:...) takes one UIView parameter, and performs the transition
animation on that view. In this example, a UIImageView containing an image of Mars
flips over as its image changes to a smiley face; it looks as if the image view were two-
sided, with Mars on one side and the smiley face on the other:

198 | Chapter 4: Animation

let opts : UIViewAnimationOptions = .transitionFlipFromLeft
UIView.transition(with:self.iv, duration: 0.8, options: opts, animations: {
 self.iv.image = UIImage(named:"Smiley")
})

In that example, I’ve put the content change inside the animations function. That’s
conventional but misleading; the truth is that if all that’s changing is the content,
nothing needs to go into the animations function. The change of content can be any‐
where, before or even after this entire line of code. It’s the flip that’s being animated.
You might use the animations function here to order additional animations, such as a
change in a view’s center.

You can do the same sort of thing with a custom view that does its own drawing. Let’s
say that I have a UIView subclass, MyView, that draws either a rectangle or an ellipse
depending on the value of its Bool reverse property:

class MyView : UIView {
 var reverse = false
 override func draw(_ rect: CGRect) {
 let f = self.bounds.insetBy(dx: 10, dy: 10)
 let con = UIGraphicsGetCurrentContext()!
 if self.reverse {
 con.strokeEllipse(in:f)
 }
 else {
 con.stroke(f)
 }
 }
}

This code flips a MyView instance while changing its drawing from a rectangle to an
ellipse or vice versa:

let opts : UIViewAnimationOptions = .transitionFlipFromLeft
self.v.reverse = !self.v.reverse
UIView.transition(with:self.v, duration: 1, options: opts, animations: {
 self.v.setNeedsDisplay()
})

By default, if a view has subviews whose layout changes as part of a transition anima‐
tion, that change in layout is not animated: the layout changes directly to its final
appearance when the transition ends. If you want to display a subview of the transi‐
tioning view being animated as it assumes its final state, use .allowAnimatedContent
in the options: bitmask.

transition(from:to:...) takes two UIView parameters; the first view is replaced by
the second, while their superview undergoes the transition animation. There are two
possible configurations, depending on the options you provide:

View Animation | 199

Remove one subview, add the other
If .showHideTransitionViews is not one of the options, then the second subview
is not in the view hierarchy when we start; the transition removes the first sub‐
view from its superview and adds the second subview to that same superview.

Hide one subview, show the other
If .showHideTransitionViews is one of the options, then both subviews are in
the view hierarchy when we start; the isHidden of the first is false, the isHidden
of the second is true, and the transition reverses those values.

In this example, a label self.lab is already in the interface. The animation causes the
superview of self.lab to flip over, while at the same time a different label, lab2, is
substituted for the existing label:

let lab2 = UILabel(frame:self.lab.frame)
lab2.text = self.lab.text == "Hello" ? "Howdy" : "Hello"
lab2.sizeToFit()
UIView.transition(from:self.lab, to: lab2,
 duration: 0.8, options: .transitionFlipFromLeft) {
 _ in
 self.lab = lab2
}

It’s up to you to make sure beforehand that the second view has the desired position,
so that it will appear in the right place in its superview.

Implicit Layer Animation
Animating a layer can be as simple as setting a property. A change in what the docu‐
mentation calls an animatable property is automatically interpreted as a request to
animate that change. In other words, animation of layer property changes is the
default! Multiple property changes are considered part of the same animation. This
mechanism is called implicit animation.

You may be wondering: if implicit animation is the default, why didn’t we notice it
happening in any of the layer examples in Chapter 3? It’s because there are two com‐
mon situations where implicit layer animation doesn’t happen:

• Implicit layer animation doesn’t operate on a UIView’s underlying layer. You can
animate a UIView’s underlying layer directly, but you must use explicit layer ani‐
mation (discussed later in this chapter).

• Implicit layer animation doesn’t affect a layer as it is being created, configured,
and added to the interface. Implicit animation comes into play when you change
an animatable property of a layer that is already present in the interface.

200 | Chapter 4: Animation

In Chapter 3 we constructed a compass out of layers. The compass itself is a
CompassView that does no drawing of its own; its underlying layer is a Compass‐
Layer that also does no drawing, serving only as a superlayer for the layers that con‐
stitute the drawing. None of the layers that constitute the actual drawing is the
underlying layer of a view, so a property change to any of them, once they are estab‐
lished in the interface, is animated automatically.

So, presume that we have established all our compass layers in the interface. And sup‐
pose we have a reference to the arrow layer (arrow). If we rotate the arrow layer sim‐
ply by changing its transform property, the arrow rotation is animated:

arrow.transform = CATransform3DRotate(arrow.transform, .pi/4.0, 0, 0, 1)

CALayer properties listed in the documentation as animatable in this way are anchor-
Point and anchorPointZ, backgroundColor, borderColor, borderWidth, bounds,
contents, contentsCenter, contentsRect, cornerRadius, isDoubleSided,
isHidden, masksToBounds, opacity, position and zPosition, rasterizationScale
and shouldRasterize, shadowColor, shadowOffset, shadowOpacity, shadowRadius,
and sublayerTransform and transform.

In addition, a CAShapeLayer’s path, strokeStart, strokeEnd, fillColor, stroke-
Color, lineWidth, lineDashPhase, and miterLimit are animatable; so are a CAText‐
Layer’s fontSize and foregroundColor, and a CAGradientLayer’s colors,
locations, and endPoint.

Basically, a property is animatable because there’s some sensible way to interpolate the
intermediate values between one value and another. The nature of the animation
attached to each property is therefore generally just what you would intuitively
expect. When you change a layer’s isHidden property, it fades out of view (or into
view). When you change a layer’s contents, the old contents are dissolved into the
new contents. And so forth.

Animation Transactions
Animation operates with respect to a transaction (a CATransaction), which collects all
animation requests and hands them over to the animation server in a single batch.
Every animation request takes place in the context of some transaction. You can make
this explicit by wrapping your animation requests in calls to the CATransaction class
methods begin and commit; the result is a transaction block. Additionally, there is
always an implicit transaction surrounding your code, and you can operate on this
implicit transaction without any begin and commit.

To modify the characteristics of an implicit animation, you modify the transaction
that surrounds it. Typically, you’ll use these CATransaction class methods:

Implicit Layer Animation | 201

setAnimationDuration(_:)

The duration of the animation.

setAnimationTimingFunction(_:)

A CAMediaTimingFunction; layer timing functions are discussed in the next sec‐
tion.

setDisableActions(_:)

Toggles implicit animations for this transaction.

setCompletionBlock(_:)

A function (taking no parameters) to be called when the animation ends; it is
called even if no animation is triggered during this transaction.

CATransaction also implements key–value coding to allow you to set and retrieve a
value for an arbitrary key, similar to CALayer.

By nesting transaction blocks, you can apply different animation characteristics to
different elements of an animation. You can also use transaction commands outside
of any transaction block to modify the implicit transaction. So, in our previous exam‐
ple, we could slow down the animation of the arrow like this:

CATransaction.setAnimationDuration(0.8)
arrow.transform = CATransform3DRotate(arrow.transform, .pi/4.0, 0, 0, 1)

An important use of transactions is to turn implicit animation off. This is valuable
because implicit animation is the default, and can be unwanted (and a performance
drag). To turn off implicit animation, call setDisableActions(true). There are other
ways to turn off implicit animation (discussed later in this chapter), but this is the
simplest.

setCompletionBlock(_:) is an extraordinarily useful and probably underutilized
tool. The transaction’s completion function signals the end, not only of the implicit
layer property animations you yourself have ordered as part of this transaction, but of
all animations ordered during this transaction, including Cocoa’s own animations.
Thus, it’s a way to be notified when any and all animations come to an end.

The “redraw moment” that I’ve spoken of in connection with drawing, layout, layer
property settings, and animation is actually the end of the current transaction. Thus,
for example:

• You set a view’s background color; the displayed color of the background is
changed when the transaction ends.

• You call setNeedsDisplay; draw(_:) is called when the transaction ends.
• You call setNeedsLayout; layout happens when the transaction ends.

202 | Chapter 4: Animation

• You order an animation; the animation starts when the transaction ends.

What’s really happening is this. Your code runs within an implicit transaction. Your
code comes to an end, and the transaction commits itself. It is then, as part of the
transaction commit procedure, that the screen is updated: first layout, then drawing,
then obedience to layer property changes, then the start of any animations. The ani‐
mation server then continues operating on a background thread; it has kept a refer‐
ence to the transaction, and calls its completion function, if any, when the animations
are over.

An explicit transaction block that orders an animation to a layer, if the block is
not preceded by any other changes to the layer, can cause animation to begin
immediately when the CATransaction class method commit is called, without
waiting for the redraw moment, while your code continues running. In my expe‐
rience, this can cause trouble (animation delegate messages cannot arrive, and
the presentation layer can’t be queried properly) and should be avoided.

Media Timing Functions
The CATransaction class method setAnimationTimingFunction(_:) takes as its
parameter a media timing function (CAMediaTimingFunction). This is the Core
Animation way of describing the same cubic Bézier timing curves I discussed earlier.

To specify a built-in timing curve, call the CAMediaTimingFunction initializer
init(name:) with one of these parameters:

• kCAMediaTimingFunctionLinear

• kCAMediaTimingFunctionEaseIn

• kCAMediaTimingFunctionEaseOut

• kCAMediaTimingFunctionEaseInEaseOut

• kCAMediaTimingFunctionDefault

To define your own timing curve, supply the coordinates of the two Bézier control
points by calling init(controlPoints:). Its four parameters are the x- and y-
coordinates of the two control points. Here we define the “clunk” timing curve and
apply it to the rotation of the compass arrow:

let clunk = CAMediaTimingFunction(controlPoints: 0.9, 0.1, 0.7, 0.9)
CATransaction.setAnimationTimingFunction(clunk)
arrow.transform = CATransform3DRotate(arrow.transform, .pi/4.0, 0, 0, 1)

Implicit Layer Animation | 203

Core Animation
Core Animation is the fundamental underlying iOS animation technology. View ani‐
mation and implicit layer animation are merely convenient façades for Core Anima‐
tion. Core Animation is explicit layer animation, and revolves primarily around the
CAAnimation class and its subclasses, which allow you to create far more elaborate
specifications of an animation than anything we’ve encountered so far.

You may never program at the level of Core Animation, but you should read this sec‐
tion anyway, if only to learn how animation really works and to get a sense of its
mighty powers. Among other things:

• Core Animation works even on a view’s underlying layer. Thus, Core Animation
is the only way to apply full-on layer property animation to a view.

• Core Animation allows animations to be grouped into complex combinations.
• Core Animation provides transition animation effects that aren’t available other‐

wise, such as new content “pushing” the previous content out of a layer.

Animating a view’s underlying layer with Core Animation is layer animation, not
view animation — so you don’t get any automatic layout of that view’s subviews.
This can be a reason for preferring view animation.

CABasicAnimation and Its Inheritance
The simplest way to animate a property with Core Animation is with a CABasic‐
Animation object. CABasicAnimation derives much of its power through its inheri‐
tance, so I’ll describe that inheritance along with CABasicAnimation itself. You will
readily see that all the property animation features we have met so far are embodied
in a CABasicAnimation instance.

CAAnimation
CAAnimation is an abstract class, meaning that you’ll only ever use a subclass of
it. Some of CAAnimation’s powers come from its implementation of the
CAMediaTiming protocol.

delegate

New in iOS 10, the delegate is a true delegate adopting a protocol, CAAni‐
mationDelegate. (Previously, this was an informal protocol.) The delegate
messages are animationDidStart(_:) and animationDid-

Stop(_:finished:).

A CAAnimation instance retains its delegate; this is very unusual behavior
and can cause trouble if you’re not conscious of it (I’m speaking from experi‐
ence). Alternatively, don’t set a delegate; to make your code run after the

204 | Chapter 4: Animation

animation ends, call the CATransaction class method setCompletion-
Block(_:) before configuring the animation.

duration, timingFunction
The length of the animation, and its timing function (a CAMediaTiming‐
Function). A duration of 0 (the default) means 0.25 seconds unless overrid‐
den by the transaction.

autoreverses, repeatCount, repeatDuration
For an infinite repeatCount (in Swift), use Float.infinity. The repeat-
Duration property is a different way to govern repetition, specifying how
long the repetition should continue rather than how many repetitions should
occur; don’t specify both a repeatCount and a repeatDuration.

beginTime

The delay before the animation starts. To delay an animation with respect to
now, call CACurrentMediaTime and add the desired delay in seconds. The
delay does not eat into the animation’s duration.

timeOffset

A shift in the animation’s overall timing; looked at another way, specifies the
starting frame of the “animation movie,” which is treated as a loop. For
example, an animation with a duration of 8 and a time offset of 4 plays its
second half followed by its first half.

CAAnimation, along with all its subclasses, implements key–value coding to allow
you to set and retrieve a value for an arbitrary key, similar to CALayer (Chapter 3)
and CATransaction.

CAPropertyAnimation
CAPropertyAnimation is a subclass of CAAnimation. It too is abstract, and adds
the following:

keyPath

The all-important string specifying the CALayer key that is to be animated.
Recall from Chapter 3 that CALayer properties are accessible through KVC
keys; now we are using those keys! The convenience initializer init(key-
Path:) creates the instance and assigns it a keyPath.

isAdditive

If true, the values supplied by the animation are added to the current pre‐
sentation layer value.

Core Animation | 205

isCumulative

If true, a repeating animation starts each repetition where the previous repe‐
tition ended rather than jumping back to the start value.

valueFunction

Converts a simple scalar value that you supply into a transform.

There is no animatable CALayer key called "frame". To animate a layer’s frame
using explicit layer animation, if both its position and bounds are to change, you
must animate both. Similarly, you cannot use explicit layer animation to animate
a layer’s affineTransform property, because affineTransform is not a property
(it’s a pair of convenience methods); you must animate its transform instead.
Attempting to form an animation with a key path of "frame" or "affine-
Transform" is a common beginner error.

CABasicAnimation
CABasicAnimation is a subclass (not abstract!) of CAPropertyAnimation. It adds
the following:

fromValue, toValue
The starting and ending values for the animation. These values must be
Objective-C objects, so numbers and structs will have to be wrapped accord‐
ingly, using NSNumber and NSValue (Swift will automatically take care of
the former but not the latter). If neither fromValue nor toValue is provided,
the former and current values of the property are used. If just one of from-
Value or toValue is provided, the other uses the current value of the prop‐
erty.

byValue

Expresses one of the endpoint values as a difference from the other rather
than in absolute terms. So you would supply a byValue instead of a from-
Value or instead of a toValue, and the actual fromValue or toValue would
be calculated for you by subtraction or addition with respect to the other
value. If you supply only a byValue, the fromValue is the property’s current
value.

Using a CABasicAnimation
Having constructed and configured a CABasicAnimation, the way you order it to be
performed is to add it to a layer. This is done with the CALayer instance method
add(_:forKey:). (I’ll discuss the purpose of the forKey: parameter later; it’s fine to
ignore it and use nil, as I do in the examples that follow.)

However, there’s a slight twist. A CAAnimation is merely an animation; all it does is
describe the hoops that the presentation layer is to jump through, the “animation

206 | Chapter 4: Animation

movie” that is to be presented. It has no effect on the layer itself. Thus, if you naïvely
create a CABasicAnimation and add it to a layer with add(_:forKey:), the animation
happens and then the “animation movie” is whipped away to reveal the layer sitting
there in exactly the same state as before. It is up to you to change the layer to match
what the animation will ultimately portray. The converse, of course, is that you don’t
have to change the layer if it doesn’t change as a result of the animation.

To ensure good results, start by taking a plodding, formulaic approach to the use of
CABasicAnimation, like this:

1. Capture the start and end values for the layer property you’re going to change,
because you’re likely to need these values in what follows.

2. Change the layer property to its end value, first calling setDisable-

Actions(true) if necessary to prevent implicit animation.
3. Construct the explicit animation, using the start and end values you captured

earlier, and with its keyPath corresponding to the layer property you just
changed.

4. Add the explicit animation to the layer.

Here’s how you’d use this approach to animate our compass arrow rotation:

// capture the start and end values
let startValue = arrow.transform
let endValue = CATransform3DRotate(startValue, .pi/4.0, 0, 0, 1)
// change the layer, without implicit animation
CATransaction.setDisableActions(true)
arrow.transform = endValue
// construct the explicit animation
let anim = CABasicAnimation(keyPath:#keyPath(CALayer.transform))
anim.duration = 0.8
let clunk = CAMediaTimingFunction(controlPoints:0.9, 0.1, 0.7, 0.9)
anim.timingFunction = clunk
anim.fromValue = NSValue(caTransform3D:startValue)
anim.toValue = NSValue(caTransform3D:endValue)
// ask for the explicit animation
arrow.add(anim, forKey:nil)

Once you’re comfortable with the full form, you will find that in many cases it can be
condensed. For example, when the fromValue and toValue are not set, the former
and current values of the property are used automatically. (This magic is possible
because, at the time the CABasicAnimation is added to the layer, the presentation
layer still has the former value of the property, while the layer itself has the new value;
thus, the CABasicAnimation is able to retrieve them.) In our example, therefore,
there is no need to set the fromValue and toValue, and no need to capture the start
and end values beforehand. Here’s the condensed version:

Core Animation | 207

CATransaction.setDisableActions(true)
arrow.transform = CATransform3DRotate(arrow.transform, .pi/4.0, 0, 0, 1)
let anim = CABasicAnimation(keyPath:#keyPath(CALayer.transform))
anim.duration = 0.8
let clunk = CAMediaTimingFunction(controlPoints:0.9, 0.1, 0.7, 0.9)
anim.timingFunction = clunk
arrow.add(anim, forKey:nil)

As I mentioned earlier, you will omit changing the layer if it doesn’t change as a result
of the animation. For example, let’s make the compass arrow appear to vibrate rapidly,
without ultimately changing its current orientation. To do this, we’ll waggle it back
and forth, using a repeated animation, between slightly clockwise from its current
position and slightly counterclockwise from its current position. The “animation
movie” neither starts nor stops at the current position of the arrow, but for this ani‐
mation it doesn’t matter, because it all happens so quickly as to appear perfectly natu‐
ral:

// capture the start and end values
let nowValue = arrow.transform
let startValue = CATransform3DRotate(nowValue, .pi/40.0, 0, 0, 1)
let endValue = CATransform3DRotate(nowValue, -.pi/40.0, 0, 0, 1)
// construct the explicit animation
let anim = CABasicAnimation(keyPath:#keyPath(CALayer.transform))
anim.duration = 0.05
anim.timingFunction =
 CAMediaTimingFunction(name:kCAMediaTimingFunctionLinear)
anim.repeatCount = 3
anim.autoreverses = true
anim.fromValue = NSValue(caTransform3D:startValue)
anim.toValue = NSValue(caTransform3D:endValue)
// ask for the explicit animation
arrow.add(anim, forKey:nil)

That code, too, can be shortened considerably from its full form. We can eliminate
the need to calculate the new rotation values based on the arrow’s current transform
by setting our animation’s isAdditive property to true; this means that the anima‐
tion’s property values are added to the existing property value for us, so that they are
relative, not absolute. For a transform, “added” means “matrix-multiplied,” so we can
describe the waggle without any reference to the arrow’s current rotation. Moreover,
because our rotation is so simple (around a cardinal axis), we can take advantage of
CAPropertyAnimation’s valueFunction; the animation’s property values can then be
simple scalars (in this case, angles), because the valueFunction tells the animation to
interpret these as rotations around the z-axis:

let anim = CABasicAnimation(keyPath:#keyPath(CALayer.transform))
anim.duration = 0.05
anim.timingFunction =
 CAMediaTimingFunction(name:kCAMediaTimingFunctionLinear)
anim.repeatCount = 3
anim.autoreverses = true

208 | Chapter 4: Animation

anim.isAdditive = true
anim.valueFunction = CAValueFunction(name:kCAValueFunctionRotateZ)
anim.fromValue = Float.pi/40
anim.toValue = -Float.pi/40
arrow.add(anim, forKey:nil)

Instead of using a valueFunction, we could have set the animation’s key path to
"transform.rotation.z" to achieve the same effect. However, Apple advises
against this, as it can result in mathematical trouble when there is more than one
rotation.

Let’s return once more to our arrow “clunk” rotation for one final alternative imple‐
mentation using the isAdditive and valueFunction properties. We set the arrow
layer to its final transform at the outset, so when the time comes to configure the ani‐
mation, its toValue, in isAdditive terms, will be 0; the fromValue will be its current
value expressed negatively, like this:

let rot = CGFloat.pi/4.0
CATransaction.setDisableActions(true)
arrow.transform = CATransform3DRotate(arrow.transform, rot, 0, 0, 1)
// construct animation additively
let anim = CABasicAnimation(keyPath:#keyPath(CALayer.transform))
anim.duration = 0.8
let clunk = CAMediaTimingFunction(controlPoints:0.9, 0.1, 0.7, 0.9)
anim.timingFunction = clunk
anim.fromValue = -rot
anim.toValue = 0
anim.isAdditive = true
anim.valueFunction = CAValueFunction(name:kCAValueFunctionRotateZ)
arrow.add(anim, forKey:nil)

This is an interesting way of describing the animation; in effect, it expresses the ani‐
mation in reverse, regarding the final position as correct and the current position as
an aberration to be corrected. It also happens to be how additive view animations are
rewritten behind the scenes, and explains their behavior.

An explicit animation is copied when it is added to a layer. Therefore the anima‐
tion must be configured first and added to the layer later. The copy added to the
layer is immutable after that.

Springing Animation
Starting in iOS 9, springing animation is exposed at the Core Animation level,
through the CASpringAnimation class (a CABasicAnimation subclass). Its properties
are the same as the parameters of the fullest form of the UISpringTimingParameters
initializer, except that its initialVelocity is a CGFloat, not a CGVector. The
duration is ignored, but don’t omit it. The actual duration calculated from your spec‐
ifications can be extracted as the settlingDuration property. For example:

Core Animation | 209

CATransaction.setDisableActions(true)
self.v.layer.position.y += 100
let anim = CASpringAnimation(keyPath: #keyPath(CALayer.position))
anim.damping = 0.7
anim.initialVelocity = 20
anim.mass = 0.04
anim.stiffness = 4
anim.duration = 1 // ignored, but you need to supply something
self.v.layer.add(anim, forKey: nil)

Keyframe Animation
Keyframe animation (CAKeyframeAnimation) is an alternative to basic animation
(CABasicAnimation); they are both subclasses of CAPropertyAnimation and they are
used in identical ways. The difference is that a keyframe animation, in addition to
specifying a starting and ending value, also specifies multiple values through which
the animation should pass on the way, the stages (keyframes) of the animation. This
can be as simple as setting the animation’s values array.

Here’s a more sophisticated version of our animation for waggling the compass
arrow: the stages include the start and end states and eight alternating waggles in
between, with the degree of waggle becoming progressively smaller:

var values = [0.0]
let directions = sequence(first:1) {$0 * -1}
let bases = stride(from: 20, to: 60, by: 5)
for (base, dir) in zip(bases, directions) {
 values.append(Double(dir) * .pi / Double(base))
}
values.append(0.0)
let anim = CAKeyframeAnimation(keyPath:#keyPath(CALayer.transform))
anim.values = values
anim.isAdditive = true
anim.valueFunction = CAValueFunction(name: kCAValueFunctionRotateZ)
arrow.add(anim, forKey:nil)

Here are some CAKeyframeAnimation properties:

values

The array of values that the animation is to adopt, including the starting and end‐
ing value.

timingFunctions

An array of timing functions, one for each stage of the animation (so that this
array will be one element shorter than the values array).

210 | Chapter 4: Animation

keyTimes

An array of times to accompany the array of values, defining when each value
should be reached. The times start at 0 and are expressed as increasing fractions
of 1, ending at 1.

calculationMode

Describes how the values are treated to create all the values through which the
animation must pass:

• The default is kCAAnimationLinear, a simple straight-line interpolation from
value to value.

• kCAAnimationCubic constructs a single smooth curve passing through all the
values (and additional advanced properties, tensionValues, continuity-
Values, and biasValues, allow you to refine the curve).

• kCAAnimationPaced and kCAAnimationCubicPaced means the timing func‐
tions and key times are ignored, and the velocity is made constant through
the whole animation.

• kCAAnimationDiscrete means no interpolation: we jump directly to each
value at the corresponding key time.

path

When you’re animating a property whose values are pairs of floats (CGPoints),
this is an alternative way of describing the values; instead of a values array,
which must be interpolated to arrive at the intermediate values along the way,
you supply the entire interpolation as a single CGPath. The points used to draw
the path are the keyframe values, so you can still apply timing functions and key
times. If you’re animating a position, the rotationMode property lets you ask the
animated object to rotate so as to remain perpendicular to the path.

In this example, the values array is a sequence of five images to be presented succes‐
sively and repeatedly in a layer’s contents, like the frames in a movie; the effect is
similar to image animation, discussed earlier in this chapter:

// self.images is an array of UIImage
let anim = CAKeyframeAnimation(keyPath:#keyPath(CALayer.contents))
anim.values = self.images.map {$0.cgImage!}
anim.keyTimes = [0.0, 0.25, 0.5, 0.75, 1.0]
anim.calculationMode = kCAAnimationDiscrete
anim.duration = 1.5
anim.repeatCount = .infinity
// self.sprite is a CALayer
self.sprite.add(anim, forKey:nil)

Core Animation | 211

Making a Property Animatable
So far, we’ve been animating built-in animatable properties. If you define your own
property on a CALayer subclass, you can easily make that property animatable
through a CAPropertyAnimation. For example, here we animate the increase or
decrease in a CALayer subclass property called thickness, using essentially the pat‐
tern for explicit animation that we’ve already developed:

let lay = self.v.layer as! MyLayer
let cur = lay.thickness
let val : CGFloat = cur == 10 ? 0 : 10
lay.thickness = val
let ba = CABasicAnimation(keyPath:#keyPath(MyLayer.thickness))
ba.fromValue = cur
lay.add(ba, forKey:nil)

To make our layer responsive to such a command, it needs a thickness property
(obviously) and it must return true from the class method needsDisplay(forKey:)
for this property:

class MyLayer : CALayer {
 var thickness : CGFloat = 0
 override class func needsDisplay(forKey key: String) -> Bool {
 if key == #keyPath(thickness) {
 return true
 }
 return super.needsDisplay(forKey:key)
 }
}

Returning true from needsDisplay(forKey:) causes this layer to be redisplayed
repeatedly as the thickness property changes. So if we want to see the animation, this
layer also needs to draw itself in some way that depends on the thickness property.
Here, I’ll implement the layer’s draw(in:) to make thickness the thickness of the
black border around a red rectangle:

override func draw(in con: CGContext) {
 let r = self.bounds.insetBy(dx:20, dy:20)
 con.setFillColor(UIColor.red.cgColor)
 con.fill(r)
 con.setLineWidth(self.thickness)
 con.stroke(r)
}

At every frame of the animation, draw(in:) is called, and because the thickness
value differs at each step, it appears animated.

We have made MyLayer’s thickness property animatable when using explicit layer
animation, but it would be even cooler to make it animatable when using implicit

212 | Chapter 4: Animation

layer animation (that is, when setting lay.thickness directly). Later in this chapter,
I’ll show how to do that.

No law says that you have to draw in response to animated changes in a layer
property. Consider layer animation more abstractly as a way of getting the run‐
time to calculate and send you timed interpolated value changes! The possibili‐
ties are limitless.

Grouped Animations
A grouped animation (CAAnimationGroup) combines multiple animations into one,
by means of its animations property (an array of animations). By delaying and tim‐
ing the various component animations, complex effects can be achieved.

A CAAnimationGroup is itself an animation; it is a CAAnimation subclass, so it has a
duration and other animation features. Think of the CAAnimationGroup as the par‐
ent, and its animations as its children. Then the children inherit default property val‐
ues from their parent. Thus, for example, if you don’t set a child’s duration explicitly, it
will inherit the parent’s duration.

Let’s use a grouped animation to construct a sequence where the compass arrow
rotates and then waggles. This requires very little modification of code we’ve already
written. We express the first animation in its full form, with explicit fromValue and
toValue. We postpone the second animation using its beginTime property; notice
that we express this in relative terms, as a number of seconds into the parent’s dura‐
tion, not with respect to CACurrentMediaTime. Finally, we set the overall parent dura‐
tion to the sum of the child durations, so that it can embrace both of them (failing to
do this, and then wondering why some child animations never occur, is a common
beginner error):

// capture current value, set final value
let rot = .pi/4.0
CATransaction.setDisableActions(true)
let current = arrow.value(forKeyPath:"transform.rotation.z") as! Double
arrow.setValue(current + rot, forKeyPath:"transform.rotation.z")
// first animation (rotate and clunk)
let anim1 = CABasicAnimation(keyPath:#keyPath(CALayer.transform))
anim1.duration = 0.8
let clunk = CAMediaTimingFunction(controlPoints:0.9, 0.1, 0.7, 0.9)
anim1.timingFunction = clunk
anim1.fromValue = current
anim1.toValue = current + rot
anim1.valueFunction = CAValueFunction(name:kCAValueFunctionRotateZ)
// second animation (waggle)
var values = [0.0]
let directions = sequence(first:1) {$0 * -1}
let bases = stride(from: 20, to: 60, by: 5)
for (base, dir) in zip(bases, directions) {

Core Animation | 213

Figure 4-2. A boat and the course she’ll sail

 values.append(Double(dir) * .pi / Double(base))
}
values.append(0.0)
let anim2 = CAKeyframeAnimation(keyPath:#keyPath(CALayer.transform))
anim2.values = values
anim2.duration = 0.25
anim2.isAdditive = true
anim2.beginTime = anim1.duration - 0.1
anim2.valueFunction = CAValueFunction(name: kCAValueFunctionRotateZ)
// group
let group = CAAnimationGroup()
group.animations = [anim1, anim2]
group.duration = anim1.duration + anim2.duration
arrow.add(group, forKey:nil)

In that example, I grouped two animations that animated the same property sequen‐
tially. Now let’s go to the other extreme and group some animations that animate dif‐
ferent properties simultaneously. I have a small view (self.v), located near the top-
right corner of the screen, whose layer contents are a picture of a sailboat facing to the
left. I’ll “sail” the boat in a curving path, both down the screen and left and right
across the screen, like an extended letter “S” (Figure 4-2). Each time the boat comes
to a vertex of the curve, changing direction across the screen, I’ll flip the boat so that
it faces the way it’s about to move. At the same time, I’ll constantly rock the boat, so
that it always appears to be pitching a little on the waves.

Here’s the first animation, the movement of the boat along its curving path. It illus‐
trates the use of a CAKeyframeAnimation with a CGPath; the calculationMode of
kCAAnimationPaced ensures an even speed over the whole path. We don’t set an
explicit duration because we want to adopt the duration of the group:

214 | Chapter 4: Animation

let h : CGFloat = 200
let v : CGFloat = 75
let path = CGMutablePath()
var leftright : CGFloat = 1
var next : CGPoint = self.v.layer.position
var pos : CGPoint
path.move(to:CGPoint(next.x, next.y))
for _ in 0 ..< 4 {
 pos = next
 leftright *= -1
 next = CGPoint(pos.x+h*leftright, pos.y+v)
 path.addCurve(to:CGPoint(next.x, next.y),
 control1: CGPoint(pos.x, pos.y+30),
 control2: CGPoint(next.x, next.y-30))
}
let anim1 = CAKeyframeAnimation(keyPath:#keyPath(CALayer.position))
anim1.path = path
anim1.calculationMode = kCAAnimationPaced

Here’s the second animation, the reversal of the direction the boat is facing. This is
simply a rotation around the y-axis. It’s another CAKeyframeAnimation, but we
make no attempt at visually animating this reversal: the calculationMode is
kCAAnimationDiscrete, so that the boat image reversal is a sudden change, as in our
earlier “sprite” example. There is one less value than the number of points in our first
animation’s path, and the first animation has an even speed, so the reversals take place
at each curve apex with no further effort on our part. (If the pacing were more com‐
plicated, we could give both the first and the second animation identical keyTimes
arrays, to coordinate them.) Once again, we don’t set an explicit duration:

let revs = [0.0, .pi, 0.0, .pi]
let anim2 = CAKeyframeAnimation(keyPath:"transform")
anim2.values = revs
anim2.valueFunction = CAValueFunction(name:kCAValueFunctionRotateY)
anim2.calculationMode = kCAAnimationDiscrete

Here’s the third animation, the rocking of the boat. It has a short duration, and
repeats indefinitely:

let pitches = [0.0, .pi/60.0, 0.0, -.pi/60.0, 0.0]
let anim3 = CAKeyframeAnimation(keyPath:#keyPath(CALayer.transform))
anim3.values = pitches
anim3.repeatCount = .infinity
anim3.duration = 0.5
anim3.isAdditive = true
anim3.valueFunction = CAValueFunction(name:kCAValueFunctionRotateZ)

Finally, we combine the three animations, assigning the group an explicit duration
that will be adopted by the first two animations. As we hand the animation over to
the layer displaying the boat, we also change the layer’s position to match the final

Core Animation | 215

position from the first animation, so that the boat won’t jump back to its original
position afterwards:

let group = CAAnimationGroup()
group.animations = [anim1, anim2, anim3]
group.duration = 8
self.v.layer.add(group, forKey:nil)
CATransaction.setDisableActions(true)
self.v.layer.position = next

Here are some further CAAnimation properties (from the CAMediaTiming protocol)
that come into play especially when animations are grouped:

speed

The ratio between a child’s timescale and the parent’s timescale. For example, if a
parent and child have the same duration, but the child’s speed is 1.5, its anima‐
tion runs one-and-a-half times as fast as the parent.

fillMode

Suppose the child animation begins after the parent animation, or ends before
the parent animation, or both. What should happen to the appearance of the
property being animated, outside the child animation’s boundaries? The answer
depends on the child’s fillMode:

• kCAFillModeRemoved means the child animation is removed, revealing the
layer property at its actual current value whenever the child is not running.

• kCAFillModeForwards means the final presentation layer value of the child
animation remains afterwards.

• kCAFillModeBackwards means the initial presentation layer value of the
child animation appears right from the start.

• kCAFillModeBoth combines the previous two.

Freezing an Animation
An animation can be frozen at the level of the layer, with an effect similar to what we
did with a property animator earlier. CALayer adopts the CAMediaTiming protocol.
Thus, a layer can have a speed. This will affect any animation attached to it. A
CALayer with a speed of 2 will play a 10-second animation in 5 seconds. A CALayer
with a speed of 0 effectively freezes any animation attached to the layer.

A layer can also have a timeOffset. You can thus change the timeOffset to display
any single frame of the layer’s animation.

To illustrate freezing an animation at the CALayer level, let’s explore the animatable
path property of a CAShapeLayer. Consider a layer that can display a rectangle or an

216 | Chapter 4: Animation

ellipse or any of the intermediate shapes between them. I can’t imagine what the notion
of an intermediate shape between a rectangle or an ellipse may mean, let alone how to
draw such an intermediate shape; but thanks to frozen animations, I don’t have to.
Here, I’ll construct the CAShapeLayer, add it to the interface, give it an animation
from a rectangle to an ellipse, and keep a reference to it as a property:

let shape = CAShapeLayer()
shape.frame = v.bounds
v.layer.addSublayer(shape)
shape.fillColor = UIColor.clear.cgColor
shape.strokeColor = UIColor.red.cgColor
let path = CGPath(rect:shape.bounds, transform:nil)
shape.path = path
let path2 = CGPath(ellipseIn:shape.bounds, transform:nil)
let ba = CABasicAnimation(keyPath:#keyPath(CAShapeLayer.path))
ba.duration = 1
ba.fromValue = path
ba.toValue = path2
shape.speed = 0
shape.timeOffset = 0
shape.add(ba, forKey: nil)
self.shape = shape

I’ve added the animation to the layer, but because the layer’s speed is 0, no animation
takes place; the rectangle is displayed and that’s all. As in my earlier example, there’s a
UISlider in the interface. I’ll respond to the user changing the value of the slider by
setting the frame of the animation:

self.shape.timeOffset = Double(slider.value)

Transitions
A layer transition is an animation involving two “copies” of a single layer, in which
the second “copy” appears to replace the first. It is described by an instance of
CATransition (a CAAnimation subclass), which has these chief properties describing
the animation:

type

Your choices are:

• kCATransitionFade

• kCATransitionMoveIn

• kCATransitionPush

• kCATransitionReveal

subtype

If the type is not kCATransitionFade, your choices are:

Core Animation | 217

Figure 4-3. A push transition

• kCATransitionFromRight

• kCATransitionFromLeft

• kCATransitionFromTop

• kCATransitionFromBottom

For historical reasons, the terms bottom and top in the names of the subtype
settings have the opposite of their expected meanings.

To understand a layer transition, first implement one without changing anything else
about the layer:

let t = CATransition()
t.type = kCATransitionPush
t.subtype = kCATransitionFromBottom
t.duration = 2
lay.add(t, forKey: nil)

The entire layer exits moving down from its original place while fading away, and
another copy of the very same layer enters moving down from above while fading in.
If, at the same time, we change something about the layer’s contents, then the old
contents will appear to exit downward while the new contents appear to enter from
above:

// ... configure the transition as before ...
CATransaction.setDisableActions(true)
lay.contents = UIImage(named: "Smiley")!.cgImage
lay.add(t, forKey: nil)

A common device is for the layer that is to be transitioned to be inside a superlayer
that is exactly the same size and whose masksToBounds is true. This confines the visi‐
ble transition to the bounds of the layer itself. Otherwise, the entering and exiting
versions of the layer are visible outside the layer. In Figure 4-3, which shows a smiley
face pushing an image of Mars out of the layer, I’ve emphasized this arrangement by
giving the superlayer a border as well.

A transition on a superlayer can happen simultaneously with animation of a sublayer.
The animation will be seen to occur on the second “copy” of the layer as it moves into

218 | Chapter 4: Animation

position. This is analogous to the .allowAnimatedContent option for view anima‐
tion.

Animations List
The method that asks for an explicit animation to happen is CALayer’s add(_:for-
Key:). To understand how this method actually works (and what the “key” is), you
need to know about a layer’s animations list.

An animation is an object (a CAAnimation) that modifies how a layer is drawn. It
does this merely by being attached to the layer; the layer’s drawing mechanism does
the rest. A layer maintains a list of animations that are currently in force. To add an
animation to this list, you call add(_:forKey:). When the time comes to draw itself,
the layer looks through its animations list and draws itself in accordance with what‐
ever animations it finds there. (The list of things the layer must do in order to draw
itself is sometimes referred to by the documentation as the render tree.) The order in
which animations were added to the list is the order in which they are applied.

The animations list is maintained in a curious way. The list is not exactly a dictionary,
but it behaves somewhat like a dictionary. An animation has a key — the forKey:
parameter in add(_:forKey:). If an animation with a certain key is added to the list,
and an animation with that key is already in the list, the one that is already in the list
is removed. Thus a rule is maintained that only one animation with a given key can be
in the list at a time — the exclusivity rule. This explains why sometimes ordering an
animation can cancel an animation already ordered or in-flight: the two animations
had the same key, so the first one was removed. (In iOS 8 and later, additive view ani‐
mations affecting the same property work around this limitation simply by giving the
additional animations a different key name — for example, "position" and
"position-2".)

It is also possible to add an animation with no key (the key is nil); it is then not sub‐
ject to the exclusivity rule (that is, there can be more than one animation in the list
with no key).

The forKey: parameter in add(_:forKey:) is thus not a property name. It could be a
property name, but it can be any arbitrary value. Its purpose is to enforce the exclu‐
sivity rule. It does not have any meaning with regard to what property a CAProperty‐
Animation animates; that is the job of the animation’s keyPath. (Apple’s use of the
term “key” in add(_:forKey:) is thus unfortunate and misleading; I wish they had
named this method add(_:identifier:) or something like that.)

However, there is a relationship between the “key” in add(_:forKey:) and a CAPro‐
pertyAnimation’s keyPath. If a CAPropertyAnimation’s keyPath is nil at the time
that it is added to a layer with add(_:forKey:), that keyPath is set to the forKey:

Core Animation | 219

value. Thus, you can misuse the forKey: parameter in add(_:forKey:) as a way of
specifying what keyPath an animation animates. (Implicit layer animation crucially
depends on this fact.)

I have seen many prominent but misleading examples that use this technique,
apparently in the mistaken belief that the “key” in add(_:forKey:) is the way
you are supposed to specify what property to animate. This is wrong. Set the ani‐
mation’s keyPath explicitly (as do all my examples); that’s what it’s for.

You can use the exclusivity rule to your own advantage, to keep your code from step‐
ping on its own feet. Some code of yours might add an animation to the list using a
certain key; then later, some other code might come along and correct this, removing
that animation and replacing it with another. By using the same key, the second code
is easily able to override the first: “You may have been given some other animation
with this key, but throw it away; play this one instead.”

In some cases, the key you supply is ignored and a different key is substituted. In par‐
ticular, the key with which a CATransition is added to the list is always
kCATransition (which happens to be "transition"); thus there can be only one
transition animation in the list.

You can think of an animation in a layer’s animations list as being the “animation
movie” I spoke of at the start of this chapter. As long as an animation is in the list, the
movie is present, either waiting to be played or actually playing. An animation that
has finished playing is, in general, pointless; the animation should now be removed
from the list, as its presence serves no purpose and it imposes an extra burden on the
render tree. Therefore, an animation has an isRemovedOnCompletion property, which
defaults to true: when the “movie” is over, the animation removes itself from the list.

You may encounter examples that set isRemovedOnCompletion to false and set
the animation’s fillMode to kCAFillModeForwards or kCAFillModeBoth, as a
way of causing the layer to keep the appearance of the last frame of the “anima‐
tion movie” even after the animation is over, and preventing a property from
apparently jumping back to its initial value when the animation ends. This is
wrong. The correct approach, as I have explained, is to change the property value
to match the final frame of the animation. The proper use of kCAFillMode-
Forwards is in connection with a child animation within a grouped animation.

You can’t access the entire animations list directly. You can access the key names of
the animations in the list, with animationKeys; and you can obtain or remove an ani‐
mation with a certain key, with animation(forKey:) and removeAnimation(for-
Key:); but animations with a nil key are inaccessible. You can, however, remove all
animations, including animations with a nil key, using removeAllAnimations. When
your app is suspended, removeAllAnimations is called on all layers for you; that is
why it is possible to suspend an app coherently in the middle of an animation.

220 | Chapter 4: Animation

If an animation is in-flight when you remove it from the animations list manually, by
calling removeAllAnimations or removeAnimation(forKey:), it will stop; however,
that doesn’t happen until the next redraw moment. You might be able to work around
this, if you need an animation to be removed immediately, by wrapping the call in an
explicit transaction block.

Actions
For the sake of completeness, I will now explain how implicit animation really works
— that is, how implicit animation is turned into explicit animation behind the scenes.
The basis of implicit animation is the action mechanism. Feel free to skip this section
if you don’t want to get into the under-the-hood nitty-gritty of implicit animation.

What an Action Is
An action is an object that adopts the CAAction protocol. This means simply that it
implements run(forKey:object:arguments:). The action object could do anything
in response to this message. The notion of an action is completely general. The only
class that adopts the CAAction protocol is CAAnimation, but in fact the action object
doesn’t have to be an animation — it doesn’t even have to perform an animation.

You would never send run(forKey:object:arguments:) to an animation directly.
Rather, this message is sent to an action object for you, as the basis of implicit anima‐
tion. The key is the property that was set, and the object is the layer whose property
was set.

What an animation does when it receives run(forKey:object:arguments:) is to
assume that the object: is a layer, and to add itself to that layer’s animations list.
Thus, for an animation, receiving the run(forKey:object:arguments:) message is
like being told: “Play yourself!”

This is where the rule comes into play, which I mentioned earlier, that if an anima‐
tion’s keyPath is nil, the key by which the animation is assigned to a layer’s anima‐
tions list is used as the keyPath. When an animation is sent
run(forKey:object:arguments:), it calls add(_:forKey:) to add itself to the layer’s
animation’s list, using the name of the property as the key. The animation’s keyPath for
an implicit layer animation is usually nil, so the animation’s keyPath winds up being
set to the same key! That is how the property that you set ends up being the property
that is animated.

Action Search
When you set a property of a layer and trigger an implicit animation, you are actually
triggering the action search: the layer searches for an action object (a CAAction) to

Actions | 221

which it can send the run(forKey:object:arguments:) message. The procedure by
which the layer searches for this object is quite elaborate.

The search for an action object begins when something causes the layer to be sent the
action(forKey:) message. Three sorts of event can cause this to happen:

• A specially marked CALayer property is set — by calling the setter method
explicitly, by setting the property itself, or by means of setValue(_:forKey:). All
animatable properties, and indeed most (or all) other CALayer properties, are
marked in this special way. (You can mark a custom property in this same way by
designating it as @NSManaged, as I’ll demonstrate later in this chapter.)
Setting a layer’s frame property sets its position and bounds and calls
action(forKey:) for the "position" and "bounds" keys. Calling a layer’s set-
AffineTransform(_:) method sets its transform and calls action(forKey:) for
the "transform" key.

• The layer is sent setValue(_:forKey:) with a key that is not a property. This is
because CALayer’s setValue(_:forUndefinedKey:), by default, calls action(for-
Key:).

• Various other miscellaneous types of event take place, such as the layer being
added to the interface. I’ll give some examples later in this chapter.

CATransaction’s setDisableActions(_:), with an argument of true, prevents
the action(forKey:) message from being sent. That’s how it actually works
behind the scenes.

At each stage of the action search, the following rules are obeyed regarding what is
returned from that stage of the search:

An action object
If an action object is produced, that is the end of the search. The action mecha‐
nism sends that action object the run(forKey:object:arguments:) message; if
this an animation, the animation responds by adding itself to the layer’s anima‐
tions list.

NSNull()

If NSNull() is produced, that is the end of the search. There will be no implicit
animation; NSNull() means, “Do nothing and stop searching.”

nil

If nil is produced, the search continues to the next stage.

The action search proceeds by stages, as follows:

222 | Chapter 4: Animation

1. The layer’s action(forKey:) might terminate the search before it even starts.
The layer will do this if it is the underlying layer of a view, or if the layer is not
part of a window’s layer hierarchy. In such a case, there should be no implicit ani‐
mation, so the whole mechanism is nipped in the bud. (This stage is special in
that a returned value of nil ends the search and no animation takes place.)

2. If the layer has a delegate that implements action(for:forKey:), that message is
sent to the delegate, with this layer as the first parameter and the property name
as the key. If an action object or NSNull() is returned, the search ends.

3. The layer has a property called actions, which is a dictionary. If there is an entry
in this dictionary with the given key, that value is used, and the search ends.

4. The layer has a property called style, which is a dictionary. If there is an entry in
this dictionary with the key actions, it is assumed to be a dictionary; if this
actions dictionary has an entry with the given key, that value is used, and the
search ends. Otherwise, if there is an entry in the style dictionary called style,
the same search is performed within it, and so on recursively until either an
actions entry with the given key is found (the search ends) or there are no more
style entries (the search continues).
(If the style dictionary sounds profoundly weird, that’s because it is profoundly
weird. It is actually a special case of a larger, separate mechanism, which is also
profoundly weird, having to do not with actions, but with a CALayer’s imple‐
mentation of KVC. When you call value(forKey:) on a layer, if the key is unde‐
fined by the layer itself, the style dictionary is consulted. I have never written or
seen code that uses this mechanism for anything, and I’ll say no more about it.)

5. The layer’s class is sent defaultAction(forKey:), with the property name as the
key. If an action object or NSNull() is returned, the search ends.

6. If the search reaches this last stage, a default animation is supplied, as appropri‐
ate. For a property animation, this is a plain vanilla CABasicAnimation.

Hooking Into the Action Search
You can affect the action search at any of its various stages to modify what happens
when the search is triggered.

For example, you can turn off implicit animation for some particular property. One
way would be to return nil from action(forKey:) itself, in a CALayer subclass.
Here’s the code from a CALayer subclass that doesn’t animate its position property
(but does animate its other properties normally):

Actions | 223

override func action(forKey key: String) -> CAAction? {
 if key == "position" {
 return nil
 }
 return super.action(forKey:key)
}

For more flexibility, we can take advantage of the fact that a CALayer acts like a dic‐
tionary, allowing us to set an arbitrary key’s value. We’ll embed a switch in our CAL‐
ayer subclass that we can use to turn implicit position animation on and off at will:

override func action(forKey key: String) -> CAAction? {
 if key == "position" {
 if self.value(forKey:"suppressPositionAnimation") != nil {
 return nil
 }
 }
 return super.action(forKey:key)
}

To turn off implicit position animation for an instance of this layer, we set its
"suppressPositionAnimation" key to a non-nil value:

layer.setValue(true, forKey:"suppressPositionAnimation")

Another possibility is to cause some stage of the search to produce an action object of
your own. You would then be affecting how implicit animation behaves.

Let’s say we want a certain layer’s duration for an implicit position animation to be 5
seconds. We can achieve this with a minimally configured animation, like this:

let ba = CABasicAnimation()
ba.duration = 5

The idea now is to situate this animation where it will be produced by the action
search for the "position" key. We could, for instance, put it into the layer’s actions
dictionary:

layer.actions = ["position": ba]

The only property of this animation that we have set is its duration; that setting, how‐
ever, is final. Although animation properties that you don’t set can be set through
CATransaction, in the usual manner for implicit property animation, animation
properties that you do set can not be overridden through CATransaction. Thus, when
we set this layer’s position, if an implicit animation results, its duration is 5 seconds,
even if we try to change it through CATransaction:

CATransaction.setAnimationDuration(1.5) // won't work
layer.position = CGPoint(100,100) // animated, takes 5 seconds

Storing an animation in the actions dictionary, however, is a somewhat inflexible
way to hook into the action search. If we have to write our animation beforehand, we

224 | Chapter 4: Animation

know nothing about the layer’s starting and ending values for the changed property.
A much more powerful approach is to make our action object a custom CAAction
object — because in that case, it will be sent run(forKey:...), and we can construct
and run an animation now, when we are in direct contact with the layer to be anima‐
ted. Here’s a barebones version of such an object:

class MyAction : NSObject, CAAction {
 func run(forKey event: String, object anObject: Any,
 arguments dict: [AnyHashable : Any]?) {
 let anim = CABasicAnimation(keyPath: event)
 anim.duration = 5
 let lay = anObject as! CALayer
 let newP = lay.value(forKey:event)
 let oldP = lay.presentation()!.value(forKey:event)
 lay.add(anim, forKey:nil)
 }
}

The idea is that a MyAction instance would then be the action object that we store in
the actions dictionary:

layer.actions = ["position": MyAction()]

Our custom CAAction object, MyAction, doesn’t do anything very interesting — but
it could. That’s the point. As the code demonstrates, we have access to the name of the
animated property (event), the old value of that property (from the layer’s presenta‐
tion layer), and the new value of that property (from the layer itself). We are thus free
to configure the animation in all sorts of ways. In fact, we can add more than one
animation to the layer, or a group animation. We don’t even have to add an animation
to the layer! We are free to interpret the setting of this property in any way we like.

Here’s a modification of our MyAction object that creates and runs a keyframe ani‐
mation that “waggles” as it goes from the start value to the end value:

class MyWagglePositionAction : NSObject, CAAction {
 func run(forKey event: String, object anObject: Any,
 arguments dict: [AnyHashable : Any]?) {
 let lay = anObject as! CALayer
 let newP = (lay.value(forKey:event) as! NSValue).cgPointValue
 let val = lay.presentation()!.value(forKey:event) as! NSValue
 let oldP = val.cgPointValue
 let d = sqrt(pow(oldP.x - newP.x, 2) + pow(oldP.y - newP.y, 2))
 let r = Double(d/3.0)
 let theta = Double(atan2(newP.y - oldP.y, newP.x - oldP.x))
 let wag = 10 * .pi/180.0
 let p1 = CGPoint(
 oldP.x + CGFloat(r*cos(theta+wag)),
 oldP.y + CGFloat(r*sin(theta+wag)))
 let p2 = CGPoint(
 oldP.x + CGFloat(r*2*cos(theta-wag)),
 oldP.y + CGFloat(r*2*sin(theta-wag)))

Actions | 225

 let anim = CAKeyframeAnimation(keyPath: event)
 anim.values = [oldP,p1,p2,newP].map{NSValue(cgPoint:$0)}
 anim.calculationMode = kCAAnimationCubic
 lay.add(anim, forKey:nil)
 }
}

By adding this CAAction object to a layer’s actions dictionary under the "position"
key, we have created a CALayer that waggles when its position property is set. Our
CAAction doesn’t set the animation’s duration, so our own call to CATransaction’s
setAnimationDuration(_:) works. The power of this mechanism is simply stagger‐
ing. We can modify any layer in this way — even one that doesn’t belong to us.

Instead of modifying the layer’s actions dictionary, we could hook into the action
search by setting the layer’s delegate to an instance that responds to action(for:for-
Key:). This has the advantage of serving as a single locus that can do different things
depending on what the layer is and what the key is. Here’s an implementation that
does exactly what the actions dictionary did — it returns an instance of our custom
CAAction object, so that setting the layer’s position waggles it into place:

func action(for layer: CALayer, forKey key: String) -> CAAction? {
 if key == "position" {
 return MyWagglePositionAction()
 }
}

Finally, I’ll demonstrate overriding defaultAction(forKey:). This code would go
into a CALayer subclass; setting this layer’s contents will automatically trigger a push
transition from the left:

override class func defaultAction(forKey key: String) -> CAAction? {
 if key == "contents" {
 let tr = CATransition()
 tr.type = kCATransitionPush
 tr.subtype = kCATransitionFromLeft
 return tr
 }
 return super.defaultAction(forKey:key)
}

Both the delegate’s action(for:forKey:) and the subclass’s defaultAction(for-
Key:) are declared as returning a CAAction. Therefore, to return NSNull() from
your implemention of one of these methods, you’ll need to typecast it to
CAAction to quiet the compiler; you’re lying (NSNull does not adopt the CAAc‐
tion protocol), but it doesn’t matter.

226 | Chapter 4: Animation

Making a Custom Property Implicitly Animatable
Earlier in this chapter, we made a custom layer’s thickness property animatable
through explicit layer animation. Now that we know how implicit layer animation
works, we can make our layer’s thickness property animatable through implicit ani‐
mation as well. Thus, we will be able to animate our layer’s thickness with code like
this:

let lay = self.v.layer as! MyLayer
let cur = lay.thickness
let val : CGFloat = cur == 10 ? 0 : 10
lay.thickness = val // implicit animation

We have already implemented needsDisplay(forKey:) to return true for the
"thickness" key, and we have provided an appropriate draw(in:) implementation.
Now we’ll add two further pieces of the puzzle. As we now know, to make our
MyLayer class respond to direct setting of a property, we need to hook into the action
search and return a CAAction. The obvious place to do this is in the layer itself, at the
very start of the action search, in an action(forKey:) implementation:

override func action(forKey key: String) -> CAAction? {
 if key == #keyPath(thickness) {
 let ba = CABasicAnimation(keyPath: key)
 ba.fromValue = self.presentation()!.value(forKey:key)
 return ba
 }
 return super.action(forKey:key)
}

Finally, we must declare MyLayer’s thickness property @NSManaged. Otherwise,
action(forKey:) won’t be called in the first place (the action search will never hap‐
pen):

class MyLayer : CALayer {
 @NSManaged var thickness : CGFloat
 // ...
}

The @NSManaged declaration invites Cocoa to generate and dynamically inject
getter and setter accessors into our layer class; it is the equivalent of Objective-C’s
@dynamic (and is completely different from Swift’s dynamic).

Nonproperty Actions
An action search is also triggered when a layer is added to a superlayer (key kCAOn-
OrderIn) and when a layer’s sublayers are changed by adding or removing a sublayer
(key "sublayers").

Actions | 227

These triggers and their keys are incorrectly described in Apple’s documentation
(and headers).

In this example, we use our layer’s delegate so that when our layer is added to a super‐
layer, it will “pop” into view:

let layer = CALayer()
// ... configure layer here ...
layer.delegate = self
self.view.layer.addSublayer(layer)

In the layer’s delegate (self), we implement the actual animation as a group anima‐
tion, fading the layer quickly in from an opacity of 0 and at the same time scaling its
transform to make it momentarily appear a little larger:

func action(for layer: CALayer, forKey key: String) -> CAAction? {
 if key == kCAOnOrderIn {
 let anim1 = CABasicAnimation(keyPath:"opacity")
 anim1.fromValue = 0.0
 anim1.toValue = layer.opacity
 let anim2 = CABasicAnimation(keyPath:"transform")
 anim2.toValue = NSValue(caTransform3D:
 CATransform3DScale(layer.transform, 1.2, 1.2, 1.0))
 anim2.autoreverses = true
 anim2.duration = 0.1
 let group = CAAnimationGroup()
 group.animations = [anim1, anim2]
 group.duration = 0.2
 return group
 }
}

The documentation says that when a layer is removed from a superlayer, an action is
sought under the key kCAOnOrderOut. This is true but useless, because by the time the
action is sought, the layer has already been removed from the superlayer, so returning
an animation has no visible effect. A possible workaround is to trigger the animation
in some other way (and remove the layer afterwards, if desired).

Recall, for example, that an action search is triggered when an arbitrary key is set on a
layer. Let’s implement the key "farewell" so that it shrinks and fades the layer and
then removes it from its superlayer:

layer.delegate = self
layer.setValue("", forKey:"farewell")

The supplier of the action object — in this case, the layer’s delegate — returns the
shrink-and-fade animation; it also sets itself as that animation’s delegate, and removes
the layer when the animation ends:

228 | Chapter 4: Animation

func action(for layer: CALayer, forKey key: String) -> CAAction? {
 if key == "farewell" {
 let anim1 = CABasicAnimation(keyPath:"opacity")
 anim1.fromValue = layer.opacity
 anim1.toValue = 0.0
 let anim2 = CABasicAnimation(keyPath:"transform")
 anim2.toValue = NSValue(caTransform3D:
 CATransform3DScale(layer.transform, 0.1, 0.1, 1.0))
 let group = CAAnimationGroup()
 group.animations = [anim1, anim2]
 group.duration = 0.2
 group.delegate = self
 group.setValue(layer, forKey:"remove")
 layer.opacity = 0
 return group
 }
}
func animationDidStop(_ anim: CAAnimation, finished flag: Bool) {
 if let layer = anim.value(forKey:"remove") as? CALayer {
 layer.removeFromSuperlayer()
 }
}

Emitter Layers
Emitter layers (CAEmitterLayer) are, to some extent, on a par with animated images:
once you’ve set up an emitter layer, it just sits there animating all by itself. The nature
of this animation is rather narrow: an emitter layer emits particles, which are
CAEmitterCell instances. However, by clever setting of the properties of an emitter
layer and its emitter cells, you can achieve some astonishing effects. Moreover, the
animation is itself animatable using Core Animation.

Here are some useful basic properties of a CAEmitterCell:

contents, contentsRect
These are modeled after the eponymous CALayer properties, although
CAEmitterCell is not a CALayer subclass; so, respectively, an image (a CGImage)
and a CGRect specifying a region of that image. They define the image that a cell
will portray.

birthrate, lifetime
How many cells per second should be emitted, and how many seconds each cell
should live before vanishing, respectively.

velocity

The speed at which a cell moves. The unit of measurement is not documented;
perhaps it’s points per second.

Emitter Layers | 229

emissionLatitude, emissionLongitude
The angle at which the cell is emitted from the emitter, as a variation from the
perpendicular. Longitude is an angle within the plane; latitude is an angle out of
the plane.

So, here’s code to create a very elementary emitter cell:

// make a gray circle image
let r = UIGraphicsImageRenderer(size:CGSize(10,10))
let im = r.image {
 ctx in let con = ctx.cgContext
 con.addEllipse(in:CGRect(0,0,10,10))
 con.setFillColor(UIColor.gray.cgColor)
 con.fillPath()
}
// make a cell with that image
let cell = CAEmitterCell()
cell.contentsScale = UIScreen.main.scale
cell.birthRate = 5
cell.lifetime = 1
cell.velocity = 100
cell.contents = im.cgImage

The result is that little gray circles should be emitted slowly and steadily, five per sec‐
ond, each one vanishing in one second. Now we need an emitter layer from which
these circles are to be emitted. Here are some basic CAEmitterLayer properties
(beyond those it inherits from CALayer); these define an imaginary object, an emit‐
ter, that will be producing the emitter cells:

emitterPosition

The point at which the emitter should be located, in superlayer coordinates. You
can optionally add a third dimension to this point, emitterZPosition.

emitterSize

The size of the emitter.

emitterShape

The shape of the emitter. The dimensions of the shape depend on the emitter’s
size; the cuboid shape depends also on a third size dimension, emitterDepth.
Your choices are:

• kCAEmitterLayerPoint

• kCAEmitterLayerLine

• kCAEmitterLayerRectangle

• kCAEmitterLayerCuboid

• kCAEmitterLayerCircle

230 | Chapter 4: Animation

Figure 4-4. A really boring emitter layer

• kCAEmitterLayerSphere

emitterMode

The region of the shape from which cells should be emitted. Your choices are:

• kCAEmitterLayerPoints

• kCAEmitterLayerOutline

• kCAEmitterLayerSurface

• kCAEmitterLayerVolume

Let’s start with the simplest possible case, a single point emitter:

let emit = CAEmitterLayer()
emit.emitterPosition = CGPoint(30,100)
emit.emitterShape = kCAEmitterLayerPoint
emit.emitterMode = kCAEmitterLayerPoints

We tell the emitter what types of cell to emit by assigning those cells to its emitter-
Cells property (an array of CAEmitterCell). We then add the emitter to our inter‐
face, and presto, it starts emitting:

emit.emitterCells = [cell]
self.view.layer.addSublayer(emit)

The result is a constant stream of gray circles emitted from the point (30.0,100.0),
each circle marching steadily to the right and vanishing after one second (Figure 4-4).

Now that we’ve succeeded in creating a boring emitter layer, we can start to vary some
parameters. The emissionRange defines a cone in which cells will be emitted; if we
increase the birthRate and widen the emissionRange, we get something that looks
like a stream shooting from a water hose:

cell.birthRate = 100
cell.lifetime = 1.5
cell.velocity = 100
cell.emissionRange = .pi/5.0

In addition, as the cell moves, it can be made to accelerate (or decelerate) in each
dimension, using its xAcceleration, yAcceleration, and zAcceleration properties.
Here, we turn the stream into a falling cascade, like a waterfall coming from the left:

cell.xAcceleration = -40
cell.yAcceleration = 200

Emitter Layers | 231

All aspects of cell behavior can be made to vary randomly, using the following
CAEmitterCell properties:

lifetimeRange, velocityRange
How much the lifetime and velocity values are allowed to vary randomly for dif‐
ferent cells.

scale

scaleRange, scaleSpeed
The scale alters the size of the cell; the range and speed determine how far and
how rapidly this size alteration is allowed to change over the lifetime of each cell.

color

redRange, greenRange, blueRange, alphaRange
redSpeed, greenSpeed, blueSpeed, alphaSpeed

The color is painted in accordance with the opacity of the cell’s contents image; it
combines with the image’s color, so if we want the color stated here to appear in
full purity, our contents image should use only white. The range and speed deter‐
mine how far and how rapidly each color component is to change.

spin

spinRange

The spin is a rotational speed (in radians per second); its range determines how
far this speed is allowed to change over the lifetime of each cell.

Here we add some variation so that the circles behave a little more independently of
one another. Some live longer than others, some come out of the emitter faster than
others. And they all start out a shade of blue, but change to a shade of green about
half-way through the stream (Figure 4-5):

cell.lifetimeRange = 0.4
cell.velocityRange = 20
cell.scaleRange = 0.2
cell.scaleSpeed = 0.2
cell.color = UIColor.blue.cgColor
cell.greenRange = 0.5
cell.greenSpeed = 0.75

Once the emitter layer is in place and animating, you can change its parameters and
the parameters of its emitter cells through key–value coding on the emitter layer. You
can access the emitter cells through the emitter layer’s "emitterCells" key path; to
specify a cell type, use its name property (which you’ll have to have assigned earlier) as
the next piece of the key path. For example, suppose we’ve set cell.name to "circle";
now we’ll change the cell’s greenSpeed so that each cell changes from blue to green
much earlier in its lifetime:

emit.setValue(3.0, forKeyPath:"emitterCells.circle.greenSpeed")

232 | Chapter 4: Animation

Figure 4-5. An emitter layer that makes a sort of waterfall

The significance of this is that such changes can themselves be animated! Here, we’ll
attach to the emitter layer a repeating animation that causes our cell’s greenSpeed to
move slowly back and forth between two values. The result is that the stream varies,
over time, between being mostly blue and mostly green:

let key = "emitterCells.circle.greenSpeed"
let ba = CABasicAnimation(keyPath:key)
ba.fromValue = -1.0
ba.toValue = 3.0
ba.duration = 4
ba.autoreverses = true
ba.repeatCount = .infinity
emit.add(ba, forKey:nil)

A CAEmitterCell can itself function as an emitter — that is, it can have cells of its
own. Both CAEmitterLayer and CAEmitterCell conform to the CAMediaTiming pro‐
tocol, and their beginTime and duration properties can be used to govern their times
of operation, much as in a grouped animation. For example, this code causes our
existing waterfall to spray tiny droplets in the region of the “nozzle” (the emitter):

let cell2 = CAEmitterCell()
cell.emitterCells = [cell2]
cell2.contents = im.cgImage
cell2.emissionRange = .pi
cell2.birthRate = 200
cell2.lifetime = 0.4
cell2.velocity = 200
cell2.scale = 0.2
cell2.beginTime = 0.04
cell2.duration = 0.2

Emitter Layers | 233

Figure 4-6. The waterfall makes a kind of splash

But if we change the beginTime to be larger (hence later), the tiny droplets happen
near the bottom of the cascade. We must also increase the duration, or stop setting it
altogether, since if the duration is less than the beginTime, no emission takes place at
all (Figure 4-6):

cell2.beginTime = 1.4
cell2.duration = 0.4

We can also alter the picture by changing the behavior of the emitter itself. This
change turns the emitter into a line, so that our cascade becomes broader (more like
Niagara Falls):

emit.emitterPosition = CGPoint(100,25)
emit.emitterSize = CGSize(100,100)
emit.emitterShape = kCAEmitterLayerLine
emit.emitterMode = kCAEmitterLayerOutline
cell.emissionLongitude = 3 * .pi/4

There’s more to know about emitter layers and emitter cells, but at this point you
know enough to understand Apple’s sample code simulating such things as fire and
smoke and pyrotechnics, and you can explore further on your own.

CIFilter Transitions
Core Image filters (Chapter 2) include transitions. You supply two images and a
frame time between 0 and 1; the filter supplies the corresponding frame of a one-
second animation transitioning from the first image to the second. For example,
Figure 4-7 shows the frame at frame time 0.75 for a starburst transition from a solid
red image to a photo of me. (You don’t see the photo of me, because this transition, by

234 | Chapter 4: Animation

Figure 4-7. Midway through a starburst transition

default, “explodes” the first image to white first, and then quickly fades to the second
image.)

Animating a Core Image transition filter is up to you. Thus we need a way of rapidly
calling the same method repeatedly; in that method, we’ll request and draw each
frame of the transition. This could be a job for a Timer, but a better way is to use a
display link (CADisplayLink), a form of timer that’s highly efficient, especially when
repeated drawing is involved, because it is linked directly to the refreshing of the dis‐
play (hence the name). The display refresh rate is typically about one-sixtieth of a sec‐
ond; the actual value is given as the display link’s duration, and will undergo slight
fluctuations. Like a timer, the display link calls a designated method of ours every
time it fires. We can slow the rate of calls by setting the display link’s preferred-
FramesPerSecond. We can learn the exact time when the display link last fired by
querying its timestamp.

In this example, I’ll display the animation in a view’s layer. We initialize ahead of
time, in properties, everything we’ll need later to obtain an output image for a given
frame of the transition — the CIFilter, the image’s extent, and the CIContext. We
also have a timestamp property, which we initialize as well:

let moi = CIImage(image:UIImage(named:"moi")!)!
self.moiextent = moi.extent
let col = CIFilter(name:"CIConstantColorGenerator")!
let cicol = CIColor(color:.red)
col.setValue(cicol, forKey:"inputColor")
let colorimage = col.value(forKey:"outputImage") as! CIImage
let tran = CIFilter(name:"CIFlashTransition")!
tran.setValue(colorimage, forKey:"inputImage")
tran.setValue(moi, forKey:"inputTargetImage")
let center = CIVector(x:self.moiextent.width/2.0, y:self.moiextent.height/2.0)
tran.setValue(center, forKey:"inputCenter")
self.tran = tran
self.timestamp = 0.0 // signal that we are starting
self.context = CIContext()

CIFilter Transitions | 235

We create the display link, setting it to call into our nextFrame method, and set it
going by adding it to the main run loop, which retains it:

let link = CADisplayLink(target:self, selector:#selector(self.nextFrame))
link.add(to:.main, forMode:.defaultRunLoopMode)

Our nextFrame method is called with the display link as parameter (sender). We
store the initial timestamp in our property, and use the difference between that and
each successive timestamp value to calculate our desired frame. We ask the filter for
the corresponding image and display it. When the frame value exceeds 1, the anima‐
tion is over and we invalidate the display link (just like a repeating timer), which
releases it from the run loop:

let SCALE = 1.0
func nextFrame(_ sender:CADisplayLink) {
 if self.timestamp < 0.01 { // pick up and store first timestamp
 self.timestamp = sender.timestamp
 self.frame = 0.0
 } else { // calculate frame
 self.frame = (sender.timestamp - self.timestamp) * SCALE
 }
 sender.isPaused = true // defend against frame loss
 self.tran.setValue(self.frame, forKey:"inputTime")
 let moi = self.context.createCGImage(tran.outputImage!, from:self.moiextent)
 CATransaction.setDisableActions(true)
 self.v.layer.contents = moi
 if self.frame > 1.0 {
 sender.invalidate()
 }
 sender.isPaused = false
}

I have surrounded the time-consuming calculation and drawing of the image with
calls to the display link’s isPaused property, in case the calculation time exceeds the
time between screen refreshes; perhaps this isn’t necessary, but it can’t hurt. Our ani‐
mation occupies one second; changing that value is merely a matter of multiplying by
a different scale value when we set our frame property.

If you experiment with this code, run on the device, as display links do not work
well in the Simulator (or, in the Simulator, try an artificially slow scale such as
0.2).

UIKit Dynamics
The term UIKit dynamics refers to a suite of classes that supplies a convenient API for
animating views in a manner reminiscent of real-world physical behavior. For exam‐
ple, views can be subjected to gravity, collisions, bouncing, and momentary forces,
with effects that would otherwise be difficult to achieve.

236 | Chapter 4: Animation

UIKit dynamics should not be treated as a game engine. It is deliberately quite
cartoony and simple, animating only the position (center) and rotation transform of
views within a flat two-dimensional space. UIKit dynamics relies on CADisplayLink,
and the calculation of each frame takes place on the main thread (not on the anima‐
tion server’s background thread). There’s no “animation movie” and no distinct pre‐
sentation layer; the views really are being repositioned in real time. Thus, UIKit
Dynamics is not intended for extended use; it is a way of momentarily emphasizing
or clarifying functional transformations of your interface.

The Dynamics Stack
Implementing UIKit dynamics involves configuring a “stack” of three things:

A dynamic animator
A dynamic animator, a UIDynamicAnimator instance, is the ruler of the physics
world you are creating. It has a reference view, whose bounds define the coordi‐
nate system of the animator’s world. A view to be animated must be a subview of
the reference view (though it does not have to be within the reference view’s
bounds). Retaining the animator is up to you, typically with an instance property.
It’s fine for an animator to sit empty until you need it; an animator whose world
is empty (or at rest) is not running, and occupies no processor time.

A behavior
A UIDynamicBehavior is a rule describing how a view should behave. You’ll typi‐
cally use a built-in subclass, such as UIGravityBehavior or UICollisionBehavior.
You configure the behavior and add it to the animator; an animator has methods
and properties for managing its behaviors, such as addBehavior(_:), behaviors,
removeBehavior(_:), and removeAllBehaviors. A behavior’s configuration can
be changed, and behaviors can be added to and removed from an animator, even
while an animation is in progress.

An item
An item is any object that implements the UIDynamicItem protocol. A UIView is
such an object! You add a UIView (one that’s a subview of your animator’s refer‐
ence view) to a behavior (one that belongs to that animator) — and at that
moment, the view comes under the influence of that behavior. If this behavior is
one that causes motion, and if no other behaviors prevent, the view will now
move (the animator is running).

Some behaviors can accept multiple items, and have methods and properties
such as addItem(_:), items, and removeItem(_:). Others can have just one or
two items and must be initialized with these from the outset.

A UIDynamicItemGroup (introduced in iOS 9) is a way of combining multiple
items to form a single item. Its only property is its items. You apply behaviors to

UIKit Dynamics | 237

the resulting grouped item, not to the subitems that it comprises. Those subitems
maintain their physical relationship to one another. For purposes of collisions,
the boundaries of the individual subitems are respected.

That’s sufficient to get started, so let’s try it! I’ll start by creating my animator and
storing it in a property:

self.anim = UIDynamicAnimator(referenceView: self.view)

Now I’ll cause an existing subview of self.view (a UIImageView, self.iv) to drop
off the screen, under the influence of gravity. I create a UIGravityBehavior, add it to
the animator, and add self.iv to it:

let grav = UIGravityBehavior()
self.anim.addBehavior(grav)
grav.addItem(self.iv)

As a result, self.iv comes under the influence of gravity and is now animated down‐
ward off the screen. (A UIGravityBehavior object has properties configuring the
strength and direction of gravity, but I’ve left them here at their defaults.)

An immediate concern is that our view falls forever. This is a serious waste of mem‐
ory and processing power. If we no longer need the view after it has left the screen,
we should take it out of the influence of UIKit dynamics by removing it from any
behaviors to which it belongs (and we can also remove it from its superview). One
way to do this is by removing from the animator any behaviors that are no longer
needed. In our simple example, where the animator’s entire world contains just this
one item, it will be sufficient to call removeAllBehaviors.

But how will we know when the view is off the screen? A UIDynamicBehavior can be
assigned an action function, which is called repeatedly as the animator drives the
animation. I’ll configure our gravity behavior’s action function to check whether
self.iv is still within the bounds of the reference view, by calling the animator’s
items(in:) method. Here’s my first attempt:

grav.action = {
 let items = self.anim.items(in:self.view.bounds) as! [UIView]
 let ix = items.index(of:self.iv)
 if ix == nil {
 self.anim.removeAllBehaviors()
 self.iv.removeFromSuperview()
 }
}

This works in the sense that, after the image view leaves the screen, the image view is
removed from the window and the animation stops. Unfortunately, there is also a
memory leak: neither the image view nor the gravity behavior has been released. One
solution is, in grav.action, to set self.anim (the animator property) to nil, thus
breaking the retain cycle. This is a perfectly appropriate solution if, as here, we no

238 | Chapter 4: Animation

longer need the animator for anything; a UIDynamicAnimator is a lightweight object
and can very reasonably come into existence only for as long as we need to run an
animation. Another possibility is to use delayed performance; even a delay of 0 solves
the problem, presumably because the behavior’s action function is no longer running
at the time we remove the behavior:

grav.action = {
 let items = self.anim.items(in:self.view.bounds) as! [UIView]
 let ix = items.index(of:self.iv)
 if ix == nil {
 delay(0) {
 self.anim.removeAllBehaviors()
 self.iv.removeFromSuperview()
 }
 }
}

Now let’s add some further behaviors. If falling straight down is too boring, we can
add a UIPushBehavior to create a slight rightward impulse to be applied to the view
as it begins to fall:

let push = UIPushBehavior(items:[self.iv], mode:.instantaneous)
push.pushDirection = CGVector(1,0)
self.anim.addBehavior(push)

The view now falls in a parabola to the right. Next, let’s add a UICollisionBehavior to
make our view strike the “floor” of the screen:

let coll = UICollisionBehavior()
coll.collisionMode = .boundaries
coll.collisionDelegate = self
coll.addBoundary(withIdentifier:"floor" as NSString,
 from: CGPoint(0, self.view.bounds.maxY),
 to:CGPoint(self.view.bounds.maxX, self.view.bounds.maxY))
self.anim.addBehavior(coll)
coll.addItem(self.iv)

The view now falls in a parabola onto the floor of the screen, bounces a tiny bit, and
comes to rest. It would be nice if the view bounced a bit more. Characteristics inter‐
nal to a dynamic item’s physics, such as bounciness (elasticity), are configured by
assigning it to a UIDynamicItemBehavior:

let bounce = UIDynamicItemBehavior()
bounce.elasticity = 0.8
self.anim.addBehavior(bounce)
bounce.addItem(self.iv)

Our view now bounces higher; nevertheless, when it hits the floor, it stops moving to
the right, so it just bounces repeatedly, less and less, and ends up at rest on the floor.
I’d prefer that, after it bounces, it should roll to the right, so that it eventually leaves
the screen. Part of the problem here is that, in the mind of the physics engine, our

UIKit Dynamics | 239

view is not round. We can change that (starting in iOS 9). We’ll have to subclass our
view class (UIImageView), and make sure our view is an instance of this subclass:

class MyImageView : UIImageView {
 override var collisionBoundsType: UIDynamicItemCollisionBoundsType {
 return .ellipse
 }
}

Our image view now has the ability to roll. If the image view is portraying a circular
image, the effect is quite realistic: the image itself appears to roll to the right after it
bounces. However, it isn’t rolling very fast (because we didn’t initially push it very
hard). To remedy that, I’ll add some rotational velocity as part of the first bounce. A
UICollisionBehavior has a delegate to which it sends messages when a collision
occurs. I’ll make self the collision behavior’s delegate, and when the delegate mes‐
sage arrives, I’ll add rotational velocity to the existing dynamic item bounce behavior,
so that our view starts spinning clockwise:

func collisionBehavior(_ behavior: UICollisionBehavior,
 beganContactFor item: UIDynamicItem,
 withBoundaryIdentifier identifier: NSCopying?,
 at p: CGPoint) {
 // look for the dynamic item behavior
 let b = self.anim.behaviors
 if let ix = b.index(where:{$0 is UIDynamicItemBehavior}) {
 let bounce = b[ix] as! UIDynamicItemBehavior
 let v = bounce.angularVelocity(for:item)
 if v <= 6 {
 bounce.addAngularVelocity(6, for:item)
 }
 }
}

The view now falls in a parabola to the right, strikes the floor, spins clockwise, and
bounces off the floor and continues bouncing its way off the right side of the screen.

Custom Behaviors
You will commonly find yourself composing a complex behavior out of a combina‐
tion of several built-in UIDynamicBehavior subclass instances. For neatness, clarity,
maintainability, and reusability, it might make sense to express that combination as a
single custom UIDynamicBehavior subclass.

To illustrate, I’ll turn the behavior from the previous section into a custom UIDyna‐
micBehavior subclass. Let’s call it MyDropBounceAndRollBehavior. Now we can
apply this behavior to our view, self.iv, very simply:

self.anim.addBehavior(MyDropBounceAndRollBehavior(view:self.iv))

240 | Chapter 4: Animation

All the work is now done by the MyDropBounceAndRollBehavior instance. I’ve
designed it to affect just one view, so its initializer looks like this:

let v : UIView
init(view v:UIView) {
 self.v = v
 super.init()
}

A UIDynamicBehavior receives a reference to its dynamic animator just before being
added to it, by implementing willMove(to:), and can refer to it subsequently as
self.dynamicAnimator. To incorporate actual behaviors into itself, our custom
UIDynamicBehavior subclass creates and configures them, and calls addChild-
Behavior(_:); it can refer to the array of its child behaviors as self.child-
Behaviors. When our custom behavior is added to or removed from the dynamic
animator, the effect is the same as if its child behaviors themselves were added or
removed.

Here is the rest of MyDropBounceAndRollBehavior. Our precautions in the gravity
behavior’s action block not to cause a retain cycle are simpler than before; it suffices
to designate self as an unowned reference and remove self from the animator
explicitly:

override func willMove(to anim: UIDynamicAnimator?) {
 guard let anim = anim else { return }
 let sup = self.v.superview!
 let grav = UIGravityBehavior()
 grav.action = {
 [unowned self] in
 let items = anim.items(in: sup.bounds) as! [UIView]
 if items.index(of:self.v) == nil {
 anim.removeBehavior(self)
 self.v.removeFromSuperview()
 }
 }
 self.addChildBehavior(grav)
 grav.addItem(self.v)
 let push = UIPushBehavior(items:[self.v], mode:.instantaneous)
 push.pushDirection = CGVector(1,0)
 self.addChildBehavior(push)
 let coll = UICollisionBehavior()
 coll.collisionMode = .boundaries
 coll.collisionDelegate = self
 coll.addBoundary(withIdentifier:"floor" as NSString,
 from: CGPoint(0, sup.bounds.maxY),
 to:CGPoint(sup.bounds.maxX, sup.bounds.maxY))
 self.addChildBehavior(coll)
 coll.addItem(self.v)
 let bounce = UIDynamicItemBehavior()
 bounce.elasticity = 0.8

UIKit Dynamics | 241

 self.addChildBehavior(bounce)
 bounce.addItem(self.v)
}
func collisionBehavior(_ behavior: UICollisionBehavior,
 beganContactFor item: UIDynamicItem,
 withBoundaryIdentifier identifier: NSCopying?,
 at p: CGPoint) {
 // look for the dynamic item behavior
 let b = self.childBehaviors
 if let ix = b.index(where:{$0 is UIDynamicItemBehavior}) {
 let bounce = b[ix] as! UIDynamicItemBehavior
 let v = bounce.angularVelocity(for:item)
 if v <= 6 {
 bounce.addAngularVelocity(6, for:item)
 }
 }
}

Animator and Behaviors
Here are some further UIDynamicAnimator methods and properties:

delegate

The delegate (UIDynamicAnimatorDelegate) is sent messages dynamicAnimator-
DidPause(_:) and dynamicAnimatorWillResume(_:). The animator is paused
when it has nothing to do: it has no dynamic items, or all its dynamic items are at
rest.

isRunning

If true, the animator is not paused; some dynamic item is being animated.

elapsedTime

The total time during which this animator has been running since it first started
running. The elapsedTime does not increase while the animator is paused, nor is
it reset. You might use this in a delegate method or action method to decide that
the animation is over.

updateItem(usingCurrentState:)

Once a dynamic item has come under the influence of the animator, the anima‐
tor is responsible for positioning that dynamic item. If your code manually
changes the dynamic item’s position or other relevant attributes, call this method
so that the animator can take account of those changes.

Starting in iOS 9, you can turn on a display that reveals visually what the anima‐
tor is doing, showing its attachment lines and so forth; assuming that self.anim
refers to the dynamic animator, you would say:

self.anim.perform(Selector("setDebugEnabled:"), with:true)

242 | Chapter 4: Animation

The rest of this section surveys the various built-in UIDynamicBehavior subclasses.

UIDynamicItemBehavior
A UIDynamicItemBehavior doesn’t apply any force or velocity; instead, it is a way of
endowing items with internal physical characteristics that will affect how they
respond to other dynamic behaviors. Here are some of them:

density

Changes the impulse-resisting mass in relation to size. In other words, when we
speak of an item’s mass, we mean a combination of its size and its density.

elasticity

The item’s tendency to bounce on collision.

friction

The item’s tendency to be slowed by sliding past another item.

isAnchored

An anchored item is not affected by forces that would make an item move; thus it
remains stationary. This can give you something with friction and elasticity off of
which you can bounce and slide other items.

resistance, angularResistance, allowsRotation
The item’s tendency to come to rest unless forces are actively applied. allows-
Rotation prevents the item from acquiring any angular velocity at all.

charge

Meaningful only with respect to magnetic and electric fields, which I’ll get to in a
moment.

addLinearVelocity(_:for:), linearVelocity(for:)
addAngularVelocity(_:for:), angularVelocity(for:)

Methods for tweaking linear and angular velocity.

UIGravityBehavior
UIGravityBehavior imposes an acceleration on its dynamic items. By default, this
acceleration is downward with a magnitude of 1 (arbitrarily defined as 1000 points
per second per second). You can customize gravity by changing its gravity-
Direction (a CGVector) or its angle and magnitude.

Starting in iOS 9, UIGravityBehavior is effectively a specialization of UIFieldBehav‐
ior.

UIKit Dynamics | 243

UIFieldBehavior
UIFieldBehavior is a generalization of UIGravityBehavior. A field affects any of its
items for as long as they are within its region. A region (a UIRegion) has a shape,
which is a circle, a rectangle, or the union, intersection, or difference of two regions,
or the inverse of a region. An infinite region is legal, and is the default. The shape
defines the region’s size; the region’s location within the reference view is defined by
the field behavior’s position, which is the region’s effective center. The default
position is CGPoint.zero, the reference view’s top left corner.

A field has a strength property (which can be negative to reverse the directionality of
its forces) as well as a falloff defining a change in strength proportional to the dis‐
tance from the center, and a minimumRadius that specifies a central circle in which
there is no field effect. Other properties (direction, smoothness, and animation-
Speed) are applicable only to those built-in field types that define them.

The built-in field types are obtained by calling a class factory method:

linearGravityField(direction:)

Like UIGravityBehavior. Accelerates the item in the direction of a vector that you
supply, proportionally to its mass, the length of the vector, and the strength of
the field. The vector is the field’s direction, and can be changed.

velocityField(direction:)

Like UIGravityBehavior, but it doesn’t apply an acceleration (a force) — instead,
it applies a constant velocity.

radialGravityField(position:)

Like a point-oriented version of UIGravityBehavior. Accelerates the item
towards, or pushes it away from, the field’s designated central point (its
position).

springField

Behaves as if there were a spring stretching from the item to the center, so that
the item oscillates back and forth across the center until it settles there.

electricField

Behaves like an electric field emanating from the center. A negatively charged
item is attracted to the center but repelled as it reaches it.

magneticField

Behaves like a magnetic field emanating from the center. A moving charged
item’s path is bent away from the center.

vortexField

Accelerates the item sideways with respect to the center.

244 | Chapter 4: Animation

dragField

Reduces the item’s speed.

noiseField(smoothness:animationSpeed:)

Adds random disturbance to the position of the item. The smoothness is between
0 (noisy) and 1 (smooth). The animationSpeed is how many times per second
the field should change randomly. Both can be changed in real time.

turbulenceField(smoothness:animationSpeed:)

Like a noise field, but takes the item’s velocity into account.

Think of a field as an infinite grid of CGVectors, with the potential to affect the speed
and direction (that is, the velocity) of an item within its borders; these CGVectors are
interactive, in the sense that at every instant of time the vector applicable to a particu‐
lar item can be recalculated. You can write a custom field by calling the UIFieldBe‐
havior class method field(evaluationBlock:) with a function that takes the item’s
position, velocity, mass, and charge, along with the animator’s elapsed time, and
returns a CGVector.

In this (silly) example, we create a delayed drag field: for the first quarter second it
does nothing, but then it suddenly switches on and applies the brakes to its items,
bringing them to a standstill if they don’t already have enough velocity to escape the
region’s boundaries:

let b = UIFieldBehavior.field {
 (beh, pt, v, m, c, t) -> CGVector in
 if t > 0.25 {
 return CGVector(-v.dx, -v.dy)
 }
 return CGVector(0,0)
}

The evaluation function receives the behavior itself as a parameter, so it can consult
the behavior’s properties in real time. You can define your own properties by sub‐
classing UIFieldBehavior. If you’re going to do that, you might as well also define
your own class factory function to configure and return the custom field. To illus‐
trate, I’ll turn the hard-coded 0.25 delay from the previous example into an instance
property:

class MyDelayedFieldBehavior : UIFieldBehavior {
 var delay = 0.0
 class func dragField(delay del:Double) -> Self {
 let f = self.field {
 (beh, pt, v, m, c, t) -> CGVector in
 if t > (beh as! MyDelayedFieldBehavior).delay {
 return CGVector(-v.dx, -v.dy)
 }
 return CGVector(0,0)
 }

UIKit Dynamics | 245

 f.delay = del
 return f
 }
}

Here’s an example of creating and configuring our delayed drag field:

let b = MyDelayedFieldBehavior.dragField(delay:0.95)
b.region = UIRegion(size: self.view.bounds.size)
b.position = CGPoint(self.view.bounds.midX, self.view.bounds.midY)
b.addItem(v)
self.anim.addBehavior(b)

UIPushBehavior

UIPushBehavior applies a force either instantaneously or continuously (mode), the
latter constituting an acceleration. How this force affects an object depends in part
upon the object’s mass. The effect of a push behavior can be toggled with the active
property; an instantaneous push is repeated each time the active property is set to
true.

To configure a push behavior, set its pushDirection or its angle and magnitude. In
addition, a push may be applied at an offset from the center of an item. This will
apply an additional angular acceleration. Thus, in my earlier example, I could have
started the view spinning clockwise by means of its initial push, like this:

push.setTargetOffsetFromCenter(UIOffsetMake(0,-200), for: self.iv)

UICollisionBehavior
UICollisionBehavior watches for collisions either between items belonging to this
same behavior or between an item and a boundary (mode). One collision behavior can
have multiple items and multiple boundaries. A boundary may be described as a line
between two points or as a UIBezierPath, or you can turn the reference view’s bounds
into boundaries (setTranslatesReferenceBoundsIntoBoundary(with:)). Bound‐
aries that you create can have an identifier. The collisionDelegate (UICollision‐
BehaviorDelegate) is called when a collision begins and again when it ends.

How a given collision affects the item(s) involved depends on the physical character‐
istics of the item(s), which may be configured through a UIDynamicItemBehavior.

Starting in iOS 9, a dynamic item, such as a UIView, can have a customized collision
boundary, rather than its collision boundary being merely the edges of its frame. You
can have a rectangle dictated by the frame, an ellipse dictated by the frame, or a cus‐
tom shape — a convex counterclockwise simple closed UIBezierPath. The relevant
properties, collisionBoundsType and (for a custom shape) collisionBoundingPath,
are read-only, so you will have to subclass, as I did in my earlier example.

246 | Chapter 4: Animation

UISnapBehavior
UISnapBehavior causes one item to snap to one point as if pulled by a spring. Its
damping describes how much the item should oscillate as its settles into that point.
This is a very simple behavior: the snap occurs immediately when the behavior is
added to the animator, and there’s no notification when it’s over.

Starting in iOS 9, the snap behavior’s snapPoint is a settable property. Thus, having
performed a snap, you can subsequently change the snapPoint and cause another
snap to take place.

UIAttachmentBehavior
UIAttachmentBehavior attaches an item to another item or to a point in the reference
view, depending on how you initialize it:

• init(item:attachedTo:)

• init(item:attachedToAnchor:)

The attachment point is, by default, the item’s center; to change that, there’s a different
pair of initializers:

• init(item:offsetFromCenter:attachedTo:offsetFromCenter:)

• init(item:offsetFromCenter:attachedToAnchor:)

The attaching medium’s physics are governed by the behavior’s length, frequency,
and damping. If the frequency is 0 (the default), the attachment is like a bar; other‐
wise, and especially if the damping is very small, it is like a spring.

If the attachment is to another item, that item might move. If the attachment is to an
anchor, you can move the anchorPoint. When that happens, this item moves too, in
accordance with the physics of the attaching medium. An anchorPoint is particularly
useful for implementing a draggable view within an animator world, as I’ll demon‐
strate in the next chapter.

Starting in iOS 9, there are several more varieties of attachment:

Limit attachment
A limit attachment is created with this class method:

• limitAttachment(with:offsetFromCenter:attachedTo:offsetFrom-

Center:)

It’s like a rope running between two items. Each item can move freely and inde‐
pendently until the length is reached, at which point the moving item drags the
other item along.

UIKit Dynamics | 247

Fixed attachment
A fixed attachment is created with this class method:

• fixedAttachment(with:attachedTo:attachmentAnchor:)

It’s like two rods, each with an item at one end, and welded together at the other
end, which is at the anchor point. If one item moves, it must remain at a fixed
distance from the anchor, and will tend to rotate around it while pulling it along,
at the same time making the other item rotate around the anchor.

Pin attachment
A pin attachment is created with this class method:

• pinAttachment(with:attachedTo:attachmentAnchor:)

A pin attachment is like a fixed attachment, but instead of the rods being welded
together, they are hinged together. Each item is thus free to rotate around the
anchor point, at a fixed distance from it, independently, subject to the pin attach‐
ment’s frictionTorque which injects resistance into the hinge.

Sliding attachment
A sliding attachment can involve one or two items, and is created with one of
these class methods:

• slidingAttachment(with:attachmentAnchor:axisOfTranslation:)

• slidingAttachment(with:attachedTo:attachmentAnchor:axisOf-

Translation:)

Imagine a channel running through the anchor point, its direction defined by the
axis of translation (a CGVector). Then an item is attached to a rod whose other
end slots into that channel and is free to slide up and down it, but whose angle
relative to the channel is fixed by its initial definition (given the item’s position,
the anchor’s position, and the channel axis) and cannot change.

The channel is infinite by default, but you can add end caps that define the limits
of sliding, by specifying the attachment’s attachmentRange, whose type is a
UIFloatRange, which has a minimum and a maximum, plus you can use constants
UIFloatRangeZero and UIFloatRangeInfinite (and there’s a convenience func‐
tion UIFloatRangeIsEqualToRange). The anchor point is 0, and you are defining
the minimum and maximum with respect to that; thus, a float range (-100.0,100.0)
provides freedom of movement up to 100 points away from the initial anchor
point. It can take some experimentation to discover whether the end cap along a
given direction of the channel is the minimum or the maximum.

If there is one item, the anchor is fixed. If there are two items, they can slide
independently, and the anchor is free to follow along if one of the items pulls it.

248 | Chapter 4: Animation

Figure 4-8. A sliding attachment

Here’s an example of a sliding attachment. We start with a black square and a red
square, sitting on the same horizontal, and attached to an anchor midway between
them:

// first view
let v = UIView(frame:CGRect(0,0,50,50))
v.backgroundColor = .black
self.view.addSubview(v)
// second view
let v2 = UIView(frame:CGRect(200,0,50,50))
v2.backgroundColor = .red
self.view.addSubview(v2)
// sliding attachment
let a = UIAttachmentBehavior.slidingAttachment(with:v,
 attachedTo: v2, attachmentAnchor: CGPoint(125,25),
 axisOfTranslation: CGVector(0,1))
a.attachmentRange = UIFloatRangeMake(-200,200)
self.anim.addBehavior(a)

The axis through the anchor point is vertical, and we have permitted a maximum of
200. We now apply a slight vertical downward push to the black square:

let p = UIPushBehavior(items: [v], mode: .continuous)
p.pushDirection = CGVector(0,0.05)
self.anim.addBehavior(p)

The black square moves slowly downward, absolutely vertical, with its rod sliding
down the channel, until its rod hits the maximum end cap at 200. At that point, the
anchor breaks free and begins to move, dragging the red square with it, the two of
them continuing downward and slowly rotating round their connection of two rods
and the channel (Figure 4-8).

UIKit Dynamics | 249

Motion Effects
A view can respond in real time to the way the user tilts the device. Typically, the
view’s response will be to shift its position slightly. This is used in various parts of the
interface, to give a sense of the interface’s being layered (parallax). When an alert is
present, for example, if the user tilts the device, the alert shifts its position; the effect
is subtle, but sufficient to suggest subconsciously that the alert is floating slightly in
front of everything else on the screen.

Your own views can behave in the same way. A view will respond to shifts in the posi‐
tion of the device if it has one or more motion effects (UIMotionEffect). A view’s
motion effects are managed with methods addMotionEffect(_:) and removeMotion-
Effect(_:), and the motionEffects property.

The UIMotionEffect class is abstract. The chief subclass provided is UIInterpolating‐
MotionEffect. Every UIInterpolatingMotionEffect has a single key path, which uses
key–value coding to specify the property of its view that it affects. It also has a type,
specifying which axis of the device’s tilting (horizontal tilt or vertical tilt) is to affect
this property. Finally, it has a maximum and minimum relative value, the furthest dis‐
tance that the affected property of the view is to be permitted to wander from its
actual value as the user tilts the device.

Related motion effects should be combined into a UIMotionEffectGroup (a
UIMotionEffect subclass), and the group added to the view. So, for example:

let m1 = UIInterpolatingMotionEffect(
 keyPath:"center.x", type:.tiltAlongHorizontalAxis)
m1.maximumRelativeValue = 10.0
m1.minimumRelativeValue = -10.0
let m2 = UIInterpolatingMotionEffect(
 keyPath:"center.y", type:.tiltAlongVerticalAxis)
m2.maximumRelativeValue = 10.0
m2.minimumRelativeValue = -10.0
let g = UIMotionEffectGroup()
g.motionEffects = [m1,m2]
v.addMotionEffect(g)

You can write your own UIMotionEffect subclass by implementing a single method,
keyPathsAndRelativeValues(forViewerOffset:), but this will rarely be necessary.

Animation and Autolayout
The interplay between animation and autolayout can be tricky. As part of an anima‐
tion, you may be changing a view’s frame (or bounds, or center). You’re really not
supposed to do that when you’re using autolayout. If you do, an animation may not
work correctly. Or, it may appear to work perfectly, because no layout has happened;
however, it is entirely possible that layout will happen, and that it will be accompanied

250 | Chapter 4: Animation

by undesirable effects. As I explained in Chapter 1, when layout takes place under
autolayout, what matters are a view’s constraints. If the constraints affecting a view
don’t resolve to the size and position that the view has at the moment of layout, the
view will jump as the constraints are obeyed. This is almost certainly not what you
want.

To persuade yourself that this can be a problem, just animate a view’s position and
then ask for immediate layout, like this:

UIView.animateWithDuration(1, animations:{
 self.v.center.x += 100
 }, completion: {
 _ in
 self.v.superview!.setNeedsLayout()
 self.v.superview!.layoutIfNeeded()
})

If we’re using autolayout, the view slides to the right and then jumps back to the left.
This is bad. It’s up to us to keep the constraints synchronized with the reality, so that
when layout comes along in the natural course of things, our views don’t jump into
undesirable states.

One option is to revise the violated constraints to match the new reality. If we’ve plan‐
ned far ahead, we may have armed ourselves in advance with a reference to those
constraints; in that case, our code can now remove and replace them — or, if the only
thing that needs changing is the constant value of a constraint, we can change that
value in place. Otherwise, discovering what constraints are now violated, and getting
a reference to them, is not at all easy.

Alternatively, instead of performing the animation first and then revising the con‐
straints, we can change the constraints first and then animate the act of layout. Again,
this assumes that we have a reference to the constraints in question. For example, if
we are animating a view (v) 100 points rightward, and if we have a reference (con) to
the constraint whose constant positions that view horizontally, we would say this:

con.constant += 100
UIView.animate(withDuration:1) {
 v.superview!.layoutIfNeeded()
}

This technique is not limited to a simple change of constant. You can overhaul the
constraints quite dramatically and still animate the resulting change of layout. In this
example, I animate a view (v) from one side of its superview (self.view) to the other
by removing its leading constraint and replacing it with a trailing constraint:

let c = self.oldConstraint.constant
NSLayoutConstraint.deactivate([self.oldConstraint])
let newConstraint = v.trailingAnchor.constraint(
 equalTo:self.view.layoutMarginsGuide.trailingAnchor, constant:-c)

Animation and Autolayout | 251

NSLayoutConstraint.activate([newConstraint])
UIView.animate(withDuration:0.4) {
 v.superview!.layoutIfNeeded()
}

Another possibility is to use a snapshot of the original view (Chapter 1). Add the
snapshot temporarily to the interface — without using autolayout, and perhaps hid‐
ing the original view — and animate the snapshot:

let snap = self.v.snapshotView(afterScreenUpdates:false)!
snap.frame = self.v.frame
self.v.superview!.addSubview(snap)
self.v.isHidden = true
UIView.animate(withDuration:1) {
 snap.center.x += 100
}

That works because the snapshot view is not under the influence of autolayout, so it
stays where we put it even if layout takes place. If, however, we need to remove the
snapshot view and reveal the real view, then the real view’s constraints will probably
still have to be revised.

252 | Chapter 4: Animation

CHAPTER 5

Touches

[Winifred the Woebegone illustrates hit-testing:] Hey nonny nonny, is it you? — Hey nonny
nonny nonny no! — Hey nonny nonny, is it you? — Hey nonny nonny nonny no!

—Marshall Barer,
Once Upon a Mattress

A touch is an instance of the user putting a finger on the screen. The system and the
hardware, working together, know when a finger contacts the screen and where it is.
A finger is fat, but its location is cleverly reduced to a single point.

A UIResponder is a potential recipient of touches. A UIView is a UIResponder, and is
thus the visible recipient of touches. There are other UIResponder subclasses, but
none of them is visible on the screen. The user sees a view by virtue of its underlying
layer; the user touches a view by virtue of the fact that it is a UIResponder.

A touch is represented as an object (a UITouch instance) which is bundled up in an
envelope (a UIEvent) which the system delivers to your app. It is then up to your app
to deliver the envelope to the appropriate UIView. In the vast majority of cases, this
will happen automatically the way you expect, and you will respond to a touch by way
of the view in which the touch occurred.

In fact, usually you won’t concern yourself with UIEvents and UITouches at all. Most
built-in interface views deal with these low-level touch reports themselves, and notify
your code at a higher level — you hear about functionality and intention rather than
raw touches. When a UIButton emits an action message to report a Touch Up Inside
control event, it has already performed a reduction of a complex sequence of touches;
but what the button reports to you is simply that it was tapped. Similarly, a UIText‐
Field reports touches on the keyboard as changes in its own text. A UITableView
reports that the user selected a cell. A UIScrollView, when dragged, reports that it
scrolled; when pinched outward, it reports that it zoomed.

253

Nevertheless, it is useful to know how to respond to touches directly, so that you can
implement your own touchable views, and so that you understand what Cocoa’s built-
in views are actually doing. In this chapter, I’ll start by discussing touch detection and
response by views (and other UIResponders) at their lowest level, along with a
higher-level, more practical mechanism, gesture recognizers, that categorizes touches
into gesture types for you. Then I’ll deconstruct the touch-delivery architecture by
which touches are reported to your views in the first place.

Touch Events and Views
Imagine a screen that the user is not touching at all: the screen is “finger-free.” Now
the user touches the screen with one or more fingers. From that moment until the
time the screen is once again finger-free, all touches and finger movements together
constitute what Apple calls a single multitouch sequence.

The system reports to your app, during a given multitouch sequence, every change in
finger configuration, so that your app can figure out what the user is doing. Every
such report is a UIEvent. In fact, every report having to do with the same multitouch
sequence is the same UIEvent instance, arriving repeatedly, each time there’s a change
in finger configuration.

Every UIEvent reporting a change in the user’s finger configuration contains one or
more UITouch objects. Each UITouch object corresponds to a single finger; con‐
versely, every finger touching the screen is represented in the UIEvent by a UITouch
object. Once a UITouch instance has been created to represent a finger that has
touched the screen, the same UITouch instance is used to represent that finger
throughout this multitouch sequence until the finger leaves the screen.

Now, it might sound as if the system, during a multitouch sequence, constantly has to
bombard the app with huge numbers of reports. But that’s not really true. The system
needs to report only changes in the finger configuration. For a given UITouch object
(representing, remember, a specific finger), only four things can happen. These are
called touch phases, and are described by a UITouch instance’s phase property
(UITouchPhase):

.began

The finger touched the screen for the first time; this UITouch instance has just
been created. This is always the first phase, and arrives only once.

.moved

The finger moved upon the screen.

.stationary

The finger remained on the screen without moving. Why is it necessary to report
this? Well, remember, once a UITouch instance has been created, it must be

254 | Chapter 5: Touches

present every time the UIEvent for this multitouch sequence arrives. So if the
UIEvent arrives because something else happened (e.g., a new finger touched the
screen), we must report what this finger has been doing, even if it has been doing
nothing.

.ended

The finger left the screen. Like .began, this phase arrives only once. The
UITouch instance will now be destroyed and will no longer appear in UIEvents
for this multitouch sequence.

Those four phases are sufficient to describe everything that a finger can do. Actually,
there is one more possible phase:

.cancelled

The system has aborted this multitouch sequence because something interrupted
it. What might interrupt a multitouch sequence? There are many possibilities.
Perhaps the user clicked the Home button or the screen lock button in the mid‐
dle of the sequence. A local notification alert may have appeared (Chapter 13); on
an iPhone, a call may have come in. And as we shall see, a gesture recognizer rec‐
ognizing its gesture may also trigger touch cancellation. The point is, if you’re
dealing with touches yourself, you cannot afford to ignore touch cancellations;
they are your opportunity to get things into a coherent state when the sequence is
interrupted.

When a UITouch first appears (.began), your app works out which UIView it is asso‐
ciated with. (I’ll give full details, later in this chapter, as to how it does that.) This view
is then set as the touch’s view property, and remains so; from then on, this UITouch is
always associated with this view (until that finger leaves the screen).

The UITouches that constitute a UIEvent might be associated with different views.
Accordingly, one and the same UIEvent is distributed to all the views of all the
UITouches it contains. Conversely, if a view is sent a UIEvent, it’s because that UIEvent
contains at least one UITouch whose view is this view.

If every UITouch in a UIEvent associated with a certain UIView has the
phase .stationary, that UIEvent is not sent to that UIView. There’s no point, because
as far as that view is concerned, nothing happened.

Do not retain a reference to a UITouch or UIEvent object over time; it is mutable
and doesn’t belong to you. If you want to save touch information, extract and
save the information, not the touch itself.

Touch Events and Views | 255

Receiving Touches
A UIResponder, and therefore a UIView, has four methods corresponding to the four
UITouch phases that require UIEvent delivery. A UIEvent is delivered to a view by
calling one of the four touch methods. Here they are:

touchesBegan(_:with:)

A finger touched the screen, creating a UITouch.

touchesMoved(_:with:)

A finger previously reported to this view with touchesBegan(_:with:) has
moved. (On a device with 3D touch, “moved” might mean a change of pressure
rather than location.)

touchesEnded(_:with:)

A finger previously reported to this view with touchesBegan(_:with:) has left
the screen.

touchesCancelled(_:with:)

We are bailing out on a finger previously reported to this view with touches-
Began(_:with:).

The touch methods’ parameters are:

The relevant touches
These are the event’s touches whose phase corresponds to the name of the
method and (normally) whose view is this view. They arrive as a Set. If there is
only one touch in the set, or if any touch in the set will do, you can retrieve it
with first (a set is unordered, so which element is first is arbitrary).

The event
This is the UIEvent instance. It contains its touches as a Set, which you can
retrieve with the allTouches message. This means all the event’s touches, includ‐
ing but not necessarily limited to those in the first parameter; there might be
touches in a different phase or intended for some other view. You can call
touches(for:) to ask for the set of touches associated with a particular view or
window.

So, when we say that a certain view is receiving a touch, that is a shorthand expression
meaning that it is being sent a UIEvent containing this UITouch, over and over, by
calling one of its touch methods, corresponding to the phase this touch is in, from the
time the touch is created until the time it is destroyed.

A UITouch has some useful methods and properties:

256 | Chapter 5: Touches

location(in:), previousLocation(in:)
The current and previous location of this touch with respect to the coordinate
system of a given view. The view you’ll be interested in will often be self or
self.superview; supply nil to get the location with respect to the window. The
previous location will be of interest only if the phase is .moved.

timestamp

When the touch last changed. A touch is timestamped when it is created
(.began) and each time it moves (.moved). There can be a delay between the
occurrence of a physical touch and the delivery of the corresponding UITouch,
so to learn about the timing of touches, consult the timestamp, not the clock.

tapCount

If two touches are in roughly the same place in quick succession, and the first one
is brief, the second one may be characterized as a repeat of the first. They are dif‐
ferent touch objects, but the second will be assigned a tapCount one larger than
the previous one. The default is 1, so if (for example) a touch’s tapCount is 3, then
this is the third tap in quick succession in roughly the same spot.

view

The view with which this touch is associated.

majorRadius, majorRadiusTolerance
Respectively, the radius of the touch (approximately half its size) and the uncer‐
tainty of that measurement, in points.

(A UITouch carries some additional information that may be useful if the touch
arrived through an Apple Pencil rather than a finger; for example, it describes how
the pencil is oriented.)

Here are some additional UIEvent properties:

type

This will be UIEventType.touches. There are other event types, but you’re not
going to receive any of them this way.

timestamp

When the event occurred.

Starting in iOS 9, you can reduce the latency between the user’s touches and your
app’s rendering to the screen. On certain devices, the touch detection rate is dou‐
bled or even quadrupled, and you can ask for the extra touches. On all devices, a
few future touches may be predicted, and you can ask for these. Such features
would be useful, for example, in a drawing app.

Receiving Touches | 257

Restricting Touches
Touch events can be turned off entirely at the application level with UIApplication’s
beginIgnoringInteractionEvents. It is quite common to do this during animations
and other lengthy operations during which responding to a touch could cause unde‐
sirable results. This call should be balanced by endIgnoringInteractionEvents.
Pairs can be nested, in which case interactivity won’t be restored until the outermost
endIgnoringInteractionEvents has been reached.

A number of UIView properties also restrict the delivery of touches to particular
views:

isUserInteractionEnabled

If set to false, this view (along with its subviews) is excluded from receiving
touches. Touches on this view or one of its subviews “fall through” to a view
behind it.

alpha

If set to 0.0 (or extremely close to it), this view (along with its subviews) is exclu‐
ded from receiving touches. Touches on this view or one of its subviews “fall
through” to a view behind it.

isHidden

If set to true, this view (along with its subviews) is excluded from receiving
touches. This makes sense, since from the user’s standpoint, the view and its sub‐
views are not even present.

isMultipleTouchEnabled

If set to false, this view never receives more than one touch simultaneously;
once it receives a touch, it doesn’t receive any other touches until that first touch
has ended.

isExclusiveTouch

An isExclusiveTouch view receives a touch only if no other views in the same
window have touches associated with them; once an isExclusiveTouch view has
received a touch, then while that touch exists no other view in the same window
receives any touches. (This is the only one of these properties that can’t be set in
the nib editor.)

Interpreting Touches
Thanks to gesture recognizers (discussed later in this chapter), in most cases you
won’t have to interpret touches at all; you’ll let a gesture recognizer do most of that
work. Even so, it is beneficial to be conversant with the nature of touch interpretation;

258 | Chapter 5: Touches

this will help you interact with a gesture recognizer, write your own gesture recog‐
nizer, or subclass an existing one. Furthermore, not every touch sequence can be
codified through a gesture recognizer; sometimes, directly interpreting touches is the
best approach.

To figure out what’s going on as touches are received by a view, your code must essen‐
tially function as a kind of state machine. You’ll receive various touch method calls,
and your response will partly depend upon what happened previously, so you’ll have
to record somehow, such as in instance properties, the information that you’ll need in
order to decide what to do when the next touch method is called. Such an architec‐
ture can make writing and maintaining touch-analysis code quite tricky.

To illustrate the business of interpreting touches, we’ll start with a view that can be
dragged with the user’s finger. For simplicity, I’ll assume that this view receives only a
single touch at a time. (This assumption is easy to enforce by setting the view’s
isMultipleTouchEnabled to false, which is the default.)

The trick to making a view follow the user’s finger is to realize that a view is posi‐
tioned by its center, which is in superview coordinates, but the user’s finger might
not be at the center of the view. So at every stage of the drag we must change the
view’s center by the change in the user’s finger position in superview coordinates:

override func touchesMoved(_ touches: Set<UITouch>, with e: UIEvent?) {
 let t = touches.first!
 let loc = t.location(in:self.superview)
 let oldP = t.previousLocation(in:self.superview)
 let deltaX = loc.x - oldP.x
 let deltaY = loc.y - oldP.y
 var c = self.center
 c.x += deltaX
 c.y += deltaY
 self.center = c
}

Next, let’s add a restriction that the view can be dragged only vertically or horizon‐
tally. All we have to do is hold one coordinate steady; but which coordinate? Every‐
thing seems to depend on what the user does initially. So we’ll do a one-time test the
first time we receive touchesMoved(_:with:). Now we’re maintaining two Bool state
properties, self.decided and self.horiz:

override func touchesBegan(_ touches: Set<UITouch>, with e: UIEvent?) {
 self.decided = false
}
override func touchesMoved(_ touches: Set<UITouch>, with e: UIEvent?) {
 let t = touches.first!
 if !self.decided {
 self.decided = true
 let then = t.previousLocation(in:self)
 let now = t.location(in:self)

Interpreting Touches | 259

 let deltaX = abs(then.x - now.x)
 let deltaY = abs(then.y - now.y)
 self.horiz = deltaX >= deltaY
 }
 let loc = t.location(in:self.superview)
 let oldP = t.previousLocation(in:self.superview)
 let deltaX = loc.x - oldP.x
 let deltaY = loc.y - oldP.y
 var c = self.center
 if self.horiz {
 c.x += deltaX
 } else {
 c.y += deltaY
 }
 self.center = c
}

Look at how things are trending. We are maintaining multiple state properties, which
we are managing across multiple methods, and we are subdividing a touch method
implementation into tests depending on the state of our state machine. Our state
machine is very simple, but already our code is becoming difficult to read and to
maintain — and things will only become more messy as we try to make our view’s
behavior more sophisticated.

Another area in which manual touch handling can rapidly prove overwhelming is
when it comes to distinguishing between different gestures that the user is to be per‐
mitted to perform on a view. Imagine, for example, a view that distinguishes between
a finger tapping briefly and a finger remaining down for a longer time. We can’t know
how long a tap is until it’s over, so we must wait until then before deciding; once
again, this requires maintaining state in a property (self.time):

override func touchesBegan(_ touches: Set<UITouch>, with e: UIEvent?) {
 self.time = touches.first!.timestamp
}
override func touchesEnded(_ touches: Set<UITouch>, with e: UIEvent?) {
 let diff = e!.timestamp - self.time
 if (diff < 0.4) {
 print("short")
 } else {
 print("long")
 }
}

A similar challenge is distinguishing between a single tap and a double tap. The
UITouch tapCount property already makes this distinction, but that, by itself, is not
enough to help us react differently to the two. What we must do, having received a
tap whose tapCount is 1, is to use delayed performance in responding to it, so that we
wait long enough to give a second tap a chance to arrive. This is unfortunate, because

260 | Chapter 5: Touches

it means that if the user intends a single tap, some time will elapse before anything
happens in response to it; however, there’s nothing we can readily do about that.

Distributing our various tasks correctly is tricky. We know when we have a double tap
as early as touchesBegan(_:with:), but we respond to the double tap in touches-
Ended(_:with:). Therefore we use a property (self.single) to communicate
between the two. We don’t start our delayed response to a single tap until touches-
Ended(_:with:), because what matters is the time between the taps as a whole, not
between the starts of the taps:

override func touchesBegan(_ touches: Set<UITouch>, with e: UIEvent?) {
 let ct = touches.first!.tapCount
 switch ct {
 case 2:
 self.single = false
 default: break
 }
}
override func touchesEnded(_ touches: Set<UITouch>, with e: UIEvent?) {
 let ct = touches.first!.tapCount
 switch ct {
 case 1:
 self.single = true
 delay(0.3) {
 if self.single { // no second tap intervened
 print("single tap")
 }
 }
 case 2:
 print("double tap")
 default: break
 }
}

As that code weren’t confusing enough, let’s now consider combining our detection
for a single or double tap with our earlier code for dragging a view horizontally or
vertically. This is to be a view that can detect four kinds of gesture: a single tap, a dou‐
ble tap, a horizontal drag, and a vertical drag. We must include the code for all possi‐
bilities and make sure they don’t interfere with each other. The result is horrifying —
a forced join between two already complicated sets of code, along with an additional
pair of state properties (self.drag, self.decidedTapOrDrag) to track the decision
between the tap gestures on the one hand and the drag gestures on the other:

override func touchesBegan(_ touches: Set<UITouch>, with e: UIEvent?) {
 // be undecided
 self.decidedTapOrDrag = false
 // prepare for a tap
 let ct = touches.first!.tapCount
 switch ct {
 case 2:

Interpreting Touches | 261

 self.single = false
 self.decidedTapOrDrag = true
 self.drag = false
 return
 default: break
 }
 // prepare for a drag
 self.decidedDirection = false
}
override func touchesMoved(_ touches: Set<UITouch>, with e: UIEvent?) {
 if self.decidedTapOrDrag && !self.drag {return}
 self.superview!.bringSubview(toFront:self)
 let t = touches.first!
 self.decidedTapOrDrag = true
 self.drag = true
 if !self.decidedDirection {
 self.decidedDirection = true
 let then = t.previousLocation(in:self)
 let now = t.location(in:self)
 let deltaX = abs(then.x - now.x)
 let deltaY = abs(then.y - now.y)
 self.horiz = deltaX >= deltaY
 }
 let loc = t.location(in:self.superview)
 let oldP = t.previousLocation(in:self.superview)
 let deltaX = loc.x - oldP.x
 let deltaY = loc.y - oldP.y
 var c = self.center
 if self.horiz {
 c.x += deltaX
 } else {
 c.y += deltaY
 }
 self.center = c
}
override func touchesEnded(_ touches: Set<UITouch>, with e: UIEvent?) {
 if !self.decidedTapOrDrag || !self.drag {
 // end for a tap
 let ct = touches.first!.tapCount
 switch ct {
 case 1:
 self.single = true
 delay(0.3) {
 if self.single {
 print("single tap")
 }
 }
 case 2:
 print("double tap")

262 | Chapter 5: Touches

 default: break
 }
 }
}

That code seems to work, but it’s hard to say whether it covers all possibilities coher‐
ently; it’s barely legible and the logic borders on the mysterious. This is the kind of
situation for which gesture recognizers were devised.

Gesture Recognizers
Writing and maintaining a state machine that interprets touches across a combina‐
tion of three or four touch methods is hard enough when a view confines itself to
expecting only one kind of gesture, such as dragging. It becomes even more involved
when a view wants to accept and respond differently to different kinds of gesture.
Furthermore, many types of gesture are conventional and standard; it seems insane to
require developers to implement independently the elements that constitute what is,
in effect, a universal vocabulary.

The solution is gesture recognizers, which standardize common gestures and allow
the code for different gestures to be separated and encapsulated into different objects.
Thanks to gesture recognizers, it is unnecessary to subclass UIView merely in order
to implement touch analysis.

Gesture Recognizer Classes
A gesture recognizer (a subclass of UIGestureRecognizer) is an object whose job is to
detect that a multitouch sequence equates to one particular type of gesture. It is
attached to a UIView, which has for this purpose methods addGesture-

Recognizer(_:) and removeGestureRecognizer(_:), and a gestureRecognizers
property.

A UIGestureRecognizer implements the four touches handlers, but it is not a res‐
ponder (a UIResponder), so it does not participate in the responder chain. If, how‐
ever, a new touch is going to be delivered to a view, it is also associated with and
delivered to that view’s gesture recognizers if it has any, and to that view’s superview’s
gesture recognizers if it has any, and so on up the view hierarchy. Thus, the place of a
gesture recognizer in the view hierarchy matters, even though it isn’t part of the res‐
ponder chain.

UITouch and UIEvent provide complementary ways of learning how touches and
gesture recognizers are associated. UITouch’s gestureRecognizers lists the gesture
recognizers that are currently handling this touch. UIEvent’s touches(for:) can take
a gesture recognizer parameter; it then lists the touches that are currently being han‐
dled by that gesture recognizer.

Gesture Recognizers | 263

Each gesture recognizer maintains its own state as touch events arrive, building up
evidence as to what kind of gesture this is. When one of them decides that it has rec‐
ognized its own particular type of gesture, it emits either a single message (to indicate,
for example, that a finger has tapped) or a series of messages (to indicate, for example,
that a finger is moving); the distinction here is between a discrete and a continuous
gesture.

What message a gesture recognizer emits, and to what object it sends it, is set through
a target–action dispatch table attached to the gesture recognizer; a gesture recognizer
is rather like a UIControl in this regard. Indeed, one might say that a gesture recog‐
nizer simplifies the touch handling of any view to be like that of a control. The differ‐
ence is that one control may report several different control events, whereas each
gesture recognizer reports only one gesture type, with different gestures being
reported by different gesture recognizers.

UIGestureRecognizer itself is abstract, providing methods and properties to its sub‐
classes. Among these are:

init(target:action:)

The designated initializer. Each message emitted by a UIGestureRecognizer is a
matter of sending the action message to the target. Further target–action pairs
may be added with addTarget(_:action:) and removed with remove-

Target(_:action:).

Two forms of action: selector are possible: either there is no parameter, or there
is a single parameter which will be the gesture recognizer. Most commonly, you’ll
use the second form, so that the target can identify and query the gesture recog‐
nizer through one of its various methods and properties.

location(ofTouch:in:)

The second parameter is the view whose coordinate system you want to use. The
touch is specified by an index number. The numberOfTouches property provides
a count of current touches; the touches themselves are inaccessible by way of the
gesture recognizer.

isEnabled

A convenient way to turn a gesture recognizer off without having to remove it
from its view.

state, view
I’ll discuss state later on. The view is the view to which this gesture recognizer is
attached.

Built-in UIGestureRecognizer subclasses are provided for six common gesture types:
tap, pinch (inward or outward), pan (drag), swipe, rotate, and long press. Each
embodies properties and methods likely to be needed for each type of gesture, either

264 | Chapter 5: Touches

in order to configure the gesture recognizer beforehand or in order to query it as to
the state of an ongoing gesture:

UITapGestureRecognizer (discrete)
Configuration: numberOfTapsRequired, numberOfTouchesRequired (“touches”
means simultaneous fingers).

UIPinchGestureRecognizer (continuous)
Two fingers moving toward or away from each other. State: scale, velocity.

UIRotationGestureRecognizer (continuous)
Two fingers moving round a common center. State: rotation, velocity.

UISwipeGestureRecognizer (discrete)
A straight-line movement in one of the four cardinal directions. Configuration:
direction (meaning permitted directions, a bitmask), numberOfTouches-

Required.

UIPanGestureRecognizer (continuous)
Dragging. Configuration: minimumNumberOfTouches, maximumNumberOfTouches.
State: translation(in:), setTranslation(_:in:), velocity(in:); the coordi‐
nate system of the specified view is used.

UIScreenEdgePanGestureRecognizer
A UIPanGestureRecognizer subclass. It recognizes a pan gesture that starts at
an edge of the screen. It adds a configuration property, edges, a UIRectEdge;
despite the name (and the documentation), this must be set to a single edge.

UILongPressGestureRecognizer (continuous)
Configuration: numberOfTapsRequired, numberOfTouchesRequired, minimum-

PressDuration, allowableMovement. The numberOfTapsRequired is the count of
taps before the tap that stays down, so it can be 0 (the default). The allowable-
Movement setting lets you compensate for the fact that the user’s finger is unlikely
to remain steady during an extended press; thus we need to provide some limit
before deciding that this gesture is, say, a drag, and not a long press after all. On
the other hand, once the long press is recognized, the finger is permitted to drag
as part of the long press gesture.

UIGestureRecognizer also provides a location(in:) method. This is a single point,
even if there are multiple touches. The subclasses implement this variously. For
example, for UIPanGestureRecognizer, the location is where the touch is if there’s a
single touch, but it’s a sort of midpoint (“centroid”) if there are multiple touches.

We already know enough to implement, using a gesture recognizer, a view that
responds to a single tap, or a view that responds to a double tap. Here’s code (proba‐

Gesture Recognizers | 265

bly from our view controller’s viewDidLoad) that implements a view (self.v) that
responds to a single tap by calling our singleTap method:

let t1 = UITapGestureRecognizer(target:self, action:#selector(singleTap))
self.v.addGestureRecognizer(t1)

And here’s code that implements a view (self.v) that responds to a double tap by
calling our doubleTap method:

let t2 = UITapGestureRecognizer(target:self, action:#selector(doubleTap))
t2.numberOfTapsRequired = 2
self.v.addGestureRecognizer(t2)

For a continuous gesture like dragging, we need to know both when the gesture is in
progress and when the gesture ends. This brings us to the subject of a gesture recog‐
nizer’s state.

A gesture recognizer implements a notion of states (the state property, UIGesture‐
RecognizerState); it passes through these states in a definite progression. The gesture
recognizer remains in the .possible state until it can make a decision one way or the
other as to whether this is in fact the correct gesture. The documentation neatly lays
out the possible progressions:

Wrong gesture
.possible → .failed. No action message is sent.

Discrete gesture (like a tap), recognized
.possible → .ended. One action message is sent, when the state changes
to .ended.

Continuous gesture (like a drag), recognized
.possible → .began → .changed (repeatedly) → .ended. Action messages are
sent once for .began, as many times as necessary for .changed, and once
for .ended.

Continuous gesture, recognized but later cancelled
.possible → .began → .changed (repeatedly) → .cancelled. Action messages
are sent once for .began, as many times as necessary for .changed, and once
for .cancelled.

The same action message arrives at the same target every time, so the handler must
differentiate by asking about the gesture recognizer’s state. The usual implementa‐
tion involves a switch statement.

To illustrate, we will implement, using a gesture recognizer, a view that lets itself be
dragged around in any direction by a single finger. Our maintenance of state is greatly
simplified, because a UIPanGestureRecognizer maintains a delta (translation) for us.
This delta, available using translation(in:), is reckoned from the touch’s initial

266 | Chapter 5: Touches

position. We don’t even need to record the view’s original center, because we are
allowed to reset the UIPanGestureRecognizer’s delta, using setTranslation(_:in:).
So:

func viewDidLoad {
 super.viewDidLoad()
 let p = UIPanGestureRecognizer(target:self, action:#selector(dragging))
 self.v.addGestureRecognizer(p)
}
func dragging(_ p : UIPanGestureRecognizer) {
 let v = p.view!
 switch p.state {
 case .began, .changed:
 let delta = p.translation(in:v.superview)
 var c = v.center
 c.x += delta.x; c.y += delta.y
 v.center = c
 p.setTranslation(.zero, in: v.superview)
 default: break
 }
}

To illustrate the use of a UIPanGestureRecognizer’s velocity(in:), let’s imagine a
view that the user can drag, but which then springs back to where it was. We can
express “springs back” with a spring animation (Chapter 4). All we have to do is add
an .ended case to our dragging method (dest is the original center of our view v):

case .ended:
 let anim = UIViewPropertyAnimator(
 duration: 0.4,
 timingParameters: UISpringTimingParameters(
 dampingRatio: 0.6,
 initialVelocity: .zero))
 anim.addAnimations {
 v.center = dest
 }
 anim.startAnimation()

That’s good, but it would be even better if the view had some momentum at the
moment the user lets go of it. If the user drags the view quickly away from its home
and lets go, the view should keep moving a little in the same direction before spring‐
ing back into place. That’s what the spring animation’s initialVelocity: parameter
is for! We can easily find out what the view’s velocity is, at the moment the user relea‐
ses it, by asking the gesture recognizer:

let vel = p.velocity(in: v.superview!)

Unfortunately, we cannot use this value directly as the spring animation’s initial-
Velocity; there’s a type impedance mismatch. The view’s velocity is expressed as a
CGPoint measured in points per second. But the spring’s initialVelocity is

Gesture Recognizers | 267

expressed as a CGVector measured as a proportion of the distance to be travelled over
the course of the animation. Fortunately, the conversion is easy:

case .ended:
 let vel = p.velocity(in: v.superview!)
 let c = v.center
 let distx = abs(c.x - dest.x)
 let disty = abs(c.y - dest.y)
 let anim = UIViewPropertyAnimator(
 duration: 0.4,
 timingParameters: UISpringTimingParameters(
 dampingRatio: 0.6,
 initialVelocity: CGVector(vel.x/distx, vel.y/disty)))
 anim.addAnimations {
 v.center = dest
 }
 anim.startAnimation()

A pan gesture recognizer can be used also to make a view draggable under the influ‐
ence of a UIDynamicAnimator (Chapter 4). The strategy here is that the view is
attached to one or more anchor points through a UIAttachmentBehavior; as the user
drags, we move the anchor point(s), and the view follows. In this example, I set up the
whole UIKit dynamics “stack” of objects as the gesture begins, anchoring the view at
the point where the touch is; then I move the anchor point to stay with the touch.
Instance properties self.anim and self.att store the UIDynamicAnimator and the
UIAttachmentBehavior, respectively; self.view is our view’s superview, and is the
animator’s reference view:

@IBAction func dragging(_ p: UIPanGestureRecognizer) {
 switch p.state {
 case .began:
 self.anim = UIDynamicAnimator(referenceView:self.view)
 let loc = p.location(ofTouch:0, in:p.view)
 let cen = CGPoint(p.view!.bounds.midX, p.view!.bounds.midY)
 let off = UIOffsetMake(loc.x-cen.x, loc.y-cen.y)
 let anchor = p.location(ofTouch:0, in:self.view)
 let att = UIAttachmentBehavior(item:p.view!,
 offsetFromCenter:off, attachedToAnchor:anchor)
 self.anim.addBehavior(att)
 self.att = att
 case .changed:
 self.att.anchorPoint = p.location(ofTouch:0, in: self.view)
 default:
 self.anim = nil
 }
}

The outcome is that the view both moves and rotates in response to dragging, like a
plate being pulled about on a table by a single finger.

268 | Chapter 5: Touches

By adding behaviors to the dynamic animator, we can limit further what the view is
permitted to do as it is being dragged by its anchor. For example, imagine a view that
can be lifted vertically and dropped, but cannot be moved horizontally. As I demon‐
strated earlier, you can prevent horizontal dragging through the implementation of
your response to touch events (and later in this chapter, I’ll show how to do this by
subclassing UIPanGestureRecognizer). But the same sort of limitation can imposed
by way of the underlying physics of the world in which the view exists — with a slid‐
ing attachment, for example.

Gesture Recognizer Conflicts
The question naturally arises of what happens when multiple gesture recognizers are
in play. This isn’t a matter merely of multiple recognizers attached to a single view; as
I have said, if a view is touched, not only its own gesture recognizers but also any ges‐
ture recognizers attached to views further up the view hierarchy are in play simulta‐
neously. I like to think of a view as surrounded by a swarm of gesture recognizers —
its own, and those of its superview, and so on. (In reality, it is a touch that has a
swarm of gesture recognizers; that’s why a UITouch has a gestureRecognizers prop‐
erty, in the plural.)

The superview gesture recognizer swarm comes as a surprise to beginners, but it
makes sense, because without it, certain gestures would be impossible. Imagine, for
example, a pair of views, each of which the user can tap individually, but which the
user can also touch simultaneously (one finger on each view) to rotate them together
around their mutual centroid. Neither view can detect the rotation qua rotation,
because neither view receives both touches; only the superview can detect it, so the
fact that the views themselves respond to touches must not prevent the superview’s
gesture recognizer from operating.

In general, once a gesture recognizer succeeds in recognizing its gesture, any other
gesture recognizers associated with its touches are forced into the .failed state, and
whatever touches were associated with those gesture recognizers are no longer sent to
them; in effect, the first gesture recognizer in a swarm that recognizes its gesture
owns the gesture (and its touches) from then on.

In many cases, this “first past the post” behavior, on its own, will correctly eliminate
conflicts. If it doesn’t, you can modify it.

For example, we can add both our UITapGestureRecognizer for a single tap and our
UIPanGestureRecognizer to a view and everything will just work; dragging works,
and single tap works. Thus, “first past the post” is exactly the desired behavior.

What happens, though, if we also add the UITapGestureRecognizer for a double tap?
Dragging works, and single tap works; double tap works too, but without preventing
the single tap from working. So, on a double tap, both the single tap action handler

Gesture Recognizers | 269

and the double tap action handler are called. If that isn’t what we want, we don’t have
to use delayed performance, as we did earlier. Instead, we can create a dependency
between one gesture recognizer and another, telling the first to suspend judgement
until the second has decided whether this is its gesture. We can do this by sending the
first gesture recognizer the require(toFail:) message. (This method is rather badly
named; it doesn’t mean “force this other recognizer to fail,” but rather, “you can’t suc‐
ceed unless this other recognizer has failed.”)

So our view self.v is now configured as follows:

let t2 = UITapGestureRecognizer(target:self, action:#selector(doubleTap))
t2.numberOfTapsRequired = 2
self.v.addGestureRecognizer(t2)
let t1 = UITapGestureRecognizer(target:self, action:#selector(singleTap))
t1.require(toFail:t2) // *
self.v.addGestureRecognizer(t1)
let p = UIPanGestureRecognizer(target: self, action: #selector(dragging))
self.v.addGestureRecognizer(p)

Another conflict that can arise is between a gesture recognizer and a view that already
knows how to respond to the same gesture, such as a UIControl. This problem pops
up particularly when the gesture recognizer belongs to the UIControl’s superview.
The UIControl’s mere presence does not “block” the superview’s gesture recognizer
from recognizing a gesture on the UIControl, even if it is a UIControl that responds
autonomously to touches. For example, your window’s root view might have a UITap‐
GestureRecognizer attached to it (perhaps because you want to be able to recognize
taps on the background), but there is also a UIButton within it. How is that gesture
recognizer to ignore a tap on the button?

The UIView instance method gestureRecognizerShouldBegin(_:) solves the prob‐
lem. It is called automatically; to modify its behavior, use a custom UIView subclass
and override it. Its parameter is a gesture recognizer belonging to this view or to a
view further up the view hierarchy. That gesture recognizer has recognized its gesture
as taking place in this view; but by returning false, the view can tell the gesture rec‐
ognizer to bow out and do nothing, not sending any action messages, and permitting
this view to respond to the touch as if the gesture recognizer weren’t there.

Thus, for example, a UIButton could return false for a single tap UITapGesture‐
Recognizer; a single tap on the button would then trigger the button’s action message
and not the gesture recognizer’s action message. And in fact a UIButton, by default,
does return false for a single tap UITapGestureRecognizer whose view is not the
UIButton itself. (If the gesture recognizer is for some gesture other than a tap, then
the problem never arises, because a tap on the button won’t cause the gesture recog‐
nizer to recognize in the first place.) Other built-in controls may also implement
gestureRecognizerShouldBegin(_:) in such a way as to prevent accidental interac‐
tion with a gesture recognizer; the documentation says that a UISlider implements it

270 | Chapter 5: Touches

in such a way that a UISwipeGestureRecognizer won’t prevent the user from sliding
the “thumb,” and there may be other cases that aren’t documented explicitly. Natu‐
rally, you can take advantage of this feature in your own UIView subclasses as well.

Another way of resolving possible gesture recognizer conflicts is through the gesture
recognizer’s delegate, or with a gesture recognizer subclass. I’ll discuss those in a
moment.

Subclassing Gesture Recognizers
To subclass UIGestureRecognizer or a built-in gesture recognizer subclass, you must
do the following things:

• Import UIKit.UIGestureRecognizerSubclass. This allows you to set a gesture
recognizer’s state (which is otherwise read-only), and exposes declarations for the
methods you may need to override.

• Override any touch methods you need to (as if the gesture recognizer were a
UIResponder); if you’re subclassing a built-in gesture recognizer subclass, you
will almost certainly call super so as to take advantage of the built-in behavior. In
overriding a touch method, you need to think like a gesture recognizer. As these
methods are called, a gesture recognizer is setting its state; you must participate
in that process.

To illustrate, we will subclass UIPanGestureRecognizer so as to implement a view that
can be moved only horizontally or vertically. Our strategy will be to make two UIPan‐
GestureRecognizer subclasses — one that allows only horizontal movement, and
another that allows only vertical movement. They will make their recognition deci‐
sions in a mutually exclusive manner, so we can attach an instance of each to our
view. This encapsulates the decision-making logic in a gorgeously object-oriented
way — a far cry from the spaghetti code we wrote earlier to do this same task.

I will show only the code for the horizontal drag gesture recognizer, because the verti‐
cal recognizer is symmetrically identical. We maintain just one property, self.orig-
Loc, which we will use once to determine whether the user’s initial movement is
horizontal. We override touchesBegan(_:with:) to set our property with the first
touch’s location:

override func touchesBegan(_ touches: Set<UITouch>, with e: UIEvent) {
 self.origLoc = touches.first!.location(in:self.view!.superview)
 super.touchesBegan(touches, with:e)
}

We then override touchesMoved(_:with:); all the recognition logic is here. This
method will be called for the first time with the state still at .possible. At that
moment, we look to see if the user’s movement is more horizontal than vertical. If it

Gesture Recognizers | 271

isn’t, we set the state to .failed. But if it is, we just step back and let the superclass do
its thing:

override func touchesMoved(_ touches: Set<UITouch>, with e: UIEvent) {
 if self.state == .possible {
 let loc = touches.first!.location(in:self.view!.superview)
 let deltaX = abs(loc.x - self.origLoc.x)
 let deltaY = abs(loc.y - self.origLoc.y)
 if deltaY >= deltaX {
 self.state = .failed
 }
 }
 super.touchesMoved(touches, with:e)
}

We now have a view that moves only if the user’s initial gesture is horizontal. But that
isn’t the entirety of what we want; we want a view that, itself, moves horizontally only.
To implement this, we’ll simply lie to our client about where the user’s finger is, by
overriding translation(in:):

override func translation(in view: UIView?) -> CGPoint {
 var proposedTranslation = super.translation(in:view)
 proposedTranslation.y = 0
 return proposedTranslation
}

That example was simple, because we subclassed a fully functional built-in
UIGestureRecognizer subclass. If you were to write your own UIGestureRecognizer
subclass entirely from scratch, there would be more work to do:

• You should definitely implement all four touches handlers. Their job, at a mini‐
mum, is to advance the gesture recognizer through the canonical progression of
its states. When the first touch arrives at a gesture recognizer, its state will
be .possible; you never explicitly set the recognizer’s state to .possible your‐
self. As soon as you know this can’t be our gesture, you set the state to .failed
(Apple says that a gesture recognizer should “fail early, fail often”). If the gesture
gets past all the failure tests, you set the state instead either to .ended (for a dis‐
crete gesture) or to .began (for a continuous gesture); if .began, then you might
set it to .changed, and ultimately you must set it to .ended. Action messages will
be sent automatically at the appropriate moments.

• You should probably implement reset. This is called after you reach the end of
the progression of states to notify you that the gesture recognizer’s state is about
to be set back to .possible; it is your chance to return your state machine to its
starting configuration (resetting properties, for example).

Keep in mind that your gesture recognizer might stop receiving touches without
notice. Just because it gets a touchesBegan(_:with:) call for a particular touch

272 | Chapter 5: Touches

doesn’t mean it will ever get touchesEnded(_:with:) for that touch. If your gesture
recognizer fails to recognize its gesture, either because it declares failure or because it
is still in the .possible state when another gesture recognizer recognizes, it won’t get
any more touches calls for any of the touches that were being sent to it. This is why
reset is so important; it’s the one reliable signal that it’s time to clean up and get
ready to receive the beginning of another possible gesture.

Gesture Recognizer Delegate
A gesture recognizer can have a delegate (UIGestureRecognizerDelegate), which can
perform two types of task.

These delegate methods can block a gesture recognizer’s operation:

gestureRecognizerShouldBegin(_:)

Sent to the delegate before the gesture recognizer passes out of the .possible
state; return false to force the gesture recognizer to proceed to the .failed
state. (This happens after gestureRecognizerShouldBegin(_:) has been sent to
the view in which the touch took place. That view must not have returned false,
or we wouldn’t have reached this stage.)

gestureRecognizer(_:shouldReceive:)

Sent to the delegate before a touch is sent to the gesture recognizer’s touches-
Began(_:with:) method; return false to prevent that touch from ever being
sent to the gesture recognizer.

These delegate methods can mediate gesture recognition conflict:

gestureRecognizer(_:shouldRecognizeSimultaneouslyWith:)

Sent when a gesture recognizer recognizes its gesture, if this will force the failure
of another gesture recognizer, to the delegates of both gesture recognizers. Return
true to prevent that failure, thus allowing both gesture recognizers to operate
simultaneously. For example, a view could respond to both a two-fingered pinch
and a two-fingered pan, the one applying a scale transform, the other changing
the view’s center.

gestureRecognizer(_:shouldRequireFailureOf:)

gestureRecognizer(_:shouldBeRequiredToFailBy:)

Sent very early in the life of a gesture, when all gesture recognizers in a view’s
swarm are still in the .possible state, to the delegates of all of them, pairing the
gesture recognizer whose delegate this is with each of the other gesture recogniz‐
ers in the swarm. Return true to prioritize between this pair of gesture recogniz‐
ers, saying that one cannot succeed until the other has first failed. In essence,
these delegate methods turn the decision made once and permanently in

Gesture Recognizers | 273

require(toFail:) into a live decision that can be made freshly every time a ges‐
ture occurs.

As an example, we will use delegate messages to combine a UILongPressGesture‐
Recognizer and a UIPanGestureRecognizer, as follows: the user must perform a tap-
and-a-half (tap, then tap and hold) to “get the view’s attention,” which we will indicate
by a pulsing animation on the view; then (and only then) the user can drag the view.

The UIPanGestureRecognizer’s handler will take care of the drag, as shown earlier in
this chapter. The UILongPressGestureRecognizer’s handler will take care of starting
and stopping the animation:

func longPress(_ lp:UILongPressGestureRecognizer) {
 switch lp.state {
 case .began:
 let anim = CABasicAnimation(keyPath: #keyPath(CALayer.transform))
 anim.toValue =
 NSValue(caTransform3D:CATransform3DMakeScale(1.1, 1.1, 1))
 anim.fromValue = NSValue(caTransform3D:CATransform3DIdentity)
 anim.repeatCount = .infinity
 anim.autoreverses = true
 lp.view!.layer.add(anim, forKey:nil)
 case .ended, .cancelled:
 lp.view!.layer.removeAllAnimations()
 default: break
 }
}

As we created our gesture recognizers, we kept a reference to the UILongPress‐
GestureRecognizer (self.longPresser), and we made ourself the UIPanGestureRe‐
cognizer’s delegate. So we will receive delegate messages. If the
UIPanGestureRecognizer tries to declare success while the UILongPressGestureRe‐
cognizer’s state is .failed or still at .possible, we prevent it. If the UILongPress‐
GestureRecognizer succeeds, we permit the UIPanGestureRecognizer to operate as
well:

func gestureRecognizerShouldBegin(_ g: UIGestureRecognizer) -> Bool {
 switch self.longPresser.state {
 case .possible, .failed:
 return false
 default:
 return true
 }
}
func gestureRecognizer(_ g: UIGestureRecognizer,
 shouldRecognizeSimultaneouslyWith g2: UIGestureRecognizer) -> Bool {
 return true
}

274 | Chapter 5: Touches

The result is that the view can be dragged only while it is pulsing; in effect, what we’ve
done is to compensate, using delegate methods, for the fact that UIGestureRecognizer
has no require(toSucceed:) method.

If you are subclassing a gesture recognizer class, you can incorporate delegate-like
behavior into the subclass, by overriding the following methods:

• canPrevent(_:)

• canBePrevented(by:)

• shouldRequireFailure(of:)

• shouldBeRequiredToFail(by:)

The prevent methods are similar to the delegate shouldBegin method, and the fail
methods are similar to the delegate fail methods. In this way, you can mediate ges‐
ture recognizer conflict at the class level. The built-in gesture recognizer subclasses
already do this; that is why, for example, a single tap UITapGestureRecognizer does
not, by recognizing its gesture, cause the failure of a double tap UITapGesture‐
Recognizer.

You can also, in a gesture recognizer subclass, send ignore(_:for:) directly to a ges‐
ture recognizer (typically, to self) to ignore a specific touch of a specific event. This
has the same effect as the delegate method gestureRecognizer(_:shouldReceive:)
returning false, blocking all future delivery of that touch to the gesture recognizer.
For example, if you’re in the middle of an already recognized gesture and a new touch
arrives, you might well elect to ignore it.

Gesture Recognizers in the Nib
Instead of instantiating a gesture recognizer in code, you can create and configure it
in a .xib or .storyboard file. In the nib editor, drag a gesture recognizer from the
Object library onto a view; the gesture recognizer becomes a top-level nib object, and
the view’s gestureRecognizers outlet is connected to the gesture recognizer. (You
can add more than one gesture recognizer to a view in the nib: the view’s gesture-
Recognizers property is an array, and its gestureRecognizers outlet is an outlet col‐
lection.) The gesture recognizer’s properties are configurable in the Attributes
inspector, and the gesture recognizer has a delegate outlet. The gesture recognizer is
a full-fledged nib object, so you can make an outlet to it.

To configure a gesture recognizer’s target–action pair in the nib editor, treat it like a
UIControl’s control event. The action method’s signature should be marked
@IBAction, and it should take a single parameter, which will be a reference to the ges‐
ture recognizer. You will then be able to form the Sent Action connection in the usual
way. (A gesture recognizer can have multiple target–action pairs, but only one target–

Gesture Recognizers | 275

action pair can be configured for a gesture recognizer using the nib editor.) A view
retains its gesture recognizers, so there will usually be no need for additional memory
management on a gesture recognizer instantiated from a nib.

3D Touch Press Gesture
On a device with 3D touch, you can treat pressing as kind of gesture. It isn’t formally
a gesture; there is, unfortunately, no 3D touch press gesture recognizer. Nevertheless,
your code can easily detect a 3D touch press and respond dynamically to the degree
of force being applied.

The simplest way to implement such a response is through the UIPreviewInteraction
class (new in iOS 10). You initialize a UIPreviewInteraction object with the view in
which pressing is to be detected, retain the UIPreviewInteraction object, and assign it
a delegate (adopting the UIPreviewInteractionDelegate protocol). The delegate is sent
these messages, starting when the user begins to apply force within the view:

previewInteractionShouldBegin(_:)

Optional. Return false to ignore this press gesture. Among other things, this
method might query the UIPreviewInteraction’s view and location(in:) to
decide how to proceed.

previewInteraction(_:didUpdatePreviewTransition:ended:)

The amount of applied force has changed. The amount of force is reported (in
the second parameter) as a value between 0 and 1. When 1 is reached, ended: is
also true, and the device vibrates.

previewInteraction(_:didUpdateCommitTransition:ended:)

Optional; behaves exactly like the previous method. If implemented, the gesture
has two stages, increasing from 0 to 1 and reported by didUpdatePreview, and
then increasing from 0 to 1 and reported by didUpdateCommit.

previewInteractionDidCancel(_:)

The user has backed off the gesture completely, before reaching ended: (or the
touch was cancelled for some other reason, such a phone call arriving).

To illustrate, imagine a sort of Whack-a-Mole game where the user is to remove views
by pressing each one. (In real life, of course, there would also need to be a way to play
the game on a device that lacks 3D touch.) As the user presses, we’ll apply a scale
transform to the view, increasing its apparent size in proportion to the amount of
force, while at the same time fading the view away by decreasing its opacity; if the
user reaches a full press, we’ll remove the view completely.

276 | Chapter 5: Touches

We’ll implement this in the simplest possible way. The code will all go into the pressa‐
ble view itself. When the view is added to its superview, it creates and configures the
UIPreviewInteraction object, storing it in an instance property (self.prev):

override func didMoveToSuperview() {
 self.prev = UIPreviewInteraction(view: self)
 self.prev.delegate = self
}

As force reports arrive, we’ll increase the view’s scale transform and decrease its opac‐
ity accordingly:

func previewInteraction(_ prev: UIPreviewInteraction,
 didUpdatePreviewTransition prog: CGFloat,
 ended: Bool) {
 let scale = prog + 1
 self.transform = CGAffineTransform(scaleX: scale, y: scale)
 let alph = ((1-prog)*0.6) + 0.3
 self.alpha = alph
 if ended { // device vibrates
 self.removeFromSuperview()
 }
}

If the user backs off the gesture completely, we’ll remove the transform and restore
our opacity:

func previewInteractionDidCancel(_ prev: UIPreviewInteraction) {
 self.transform = .identity
 self.alpha = 1
}

That’s all! The view now expands and explodes off the screen with a satisfying pop
(“haptic feedback”) as the user presses on it.

Instead of applying the transform ourselves, directly, we might use a property anima‐
tor, taking advantage of the fact that it represents a “frozen” animation (“Frozen View
Animation” on page 194). Here’s a rewrite in which a property animator is used (held
in an instance property, self.anim):

func makeAnimator() {
 self.anim = UIViewPropertyAnimator(duration: 1, curve: .linear) {
 [unowned self] in
 self.alpha = 0.3
 self.transform = CGAffineTransform(scaleX: 2, y: 2)
 }
}
override func didMoveToSuperview() {
 self.prev = UIPreviewInteraction(view: self)
 self.prev.delegate = self
 self.makeAnimator()
}

3D Touch Press Gesture | 277

func previewInteractionDidCancel(_ prev: UIPreviewInteraction) {
 self.anim.pauseAnimation()
 self.anim.isReversed = true
 self.anim.addCompletion { _ in self.makeAnimator() }
 self.anim.continueAnimation(
 withTimingParameters: nil, durationFactor: 0.01)
}
func previewInteraction(_ prev: UIPreviewInteraction,
 didUpdatePreviewTransition prog: CGFloat,
 ended: Bool) {
 var prog = prog // clamp fraction complete
 if prog < 0.05 {prog = 0.05}
 if prog > 0.95 {prog = 0.95}
 self.anim.fractionComplete = prog
 if ended {
 self.anim.stopAnimation(false)
 self.anim.finishAnimation(at: .end)
 self.removeFromSuperview()
 }
}

Touch Delivery
Here’s the full standard procedure by which a touch is delivered to views and gesture
recognizers:

• Whenever a new touch appears, the application performs hit-testing to deter‐
mine the view that was touched. This view will be permanently associated with
this touch, and is called, appropriately, the hit-test view. The logic of ignoring a
view (denying it the ability to become the hit-test view) in response to its isUser-
InteractionEnabled, isHidden, and alpha properties is implemented at this
stage.

• Each time the touch situation changes, the application calls its own send-
Event(_:), which in turn calls the window’s sendEvent(_:). The window deliv‐
ers each of an event’s touches by calling the appropriate touch method(s), as
follows:

■ As a touch first appears, the logic of obedience to isMultipleTouchEnabled
and isExclusiveTouch is considered. If permitted by that logic:
⚬ The touch is delivered to the hit-test view’s swarm of gesture recognizers.
⚬ The touch is delivered to the hit-test view itself.

■ If a gesture is recognized by a gesture recognizer, then for any touch associ‐
ated with this gesture recognizer:
⚬ touchesCancelled(_:for:) is sent to the touch’s view, and the touch is no

longer delivered to its view.

278 | Chapter 5: Touches

⚬ If the touch was associated with any other gesture recognizer, that gesture
recognizer is forced to fail.

■ If a gesture recognizer fails, either because it declares failure or because it is
forced to fail, its touches are no longer delivered to it, but (except as already
specified) they continue to be delivered to their view.

■ If a touch would be delivered to a view, but that view does not respond to the
appropriate touch method, a responder further up the responder chain is
sought that does respond to it, and the touch is delivered there.

The rest of this chapter discusses the details of touch delivery. As you’ll see, nearly
every bit of the standard procedure can be customized to some extent.

Hit-Testing
Hit-testing is the determination of what view the user touched. View hit-testing uses
the UIView instance method hitTest(_:with:), whose first parameter is the
CGPoint of interest. It returns either a view (the hit-test view) or nil. The idea is to
find the frontmost view containing the touch point. This method uses an elegant
recursive algorithm, as follows:

1. A view’s hitTest(_:with:) first calls the same method on its own subviews, if it
has any, because a subview is considered to be in front of its superview. The sub‐
views are queried in front-to-back order (Chapter 1): thus, if two sibling views
overlap, the one in front reports the hit first.

2. If, as a view hit-tests its subviews, any of those subviews responds by returning a
view, it stops querying its subviews and immediately returns the view that was
returned to it. Thus, the very first view to declare itself the hit-test view immedi‐
ately percolates all the way to the top of the call chain and is the hit-test view.

3. If, on the other hand, a view has no subviews, or if all of its subviews return nil
(indicating that neither they nor their subviews was hit), then the view calls
point(inside:with:) on itself. If this call reveals that the touch was inside this
view, the view returns itself, declaring itself the hit-test view; otherwise it returns
nil.

(No problem arises if a view has a transform, because point(inside:with:) takes the
transform into account. That’s why a rotated button continues to work correctly.)

It is also up to hitTest(_:with:) to implement the logic of touch restrictions exclu‐
sive to a view. If a view’s isUserInteractionEnabled is false, or its isHidden is
true, or its alpha is close to 0.0, it returns nil without hit-testing any of its subviews
and without calling point(inside:with:). Thus these restrictions do not, of them‐

Hit-Testing | 279

selves, exclude a view from being hit-tested; on the contrary, they operate precisely by
modifying a view’s hit-test result.

However, hit-testing knows nothing about isMultipleTouchEnabled (which involves
multiple touches) or isExclusiveTouch (which involves multiple views). The logic of
obedience to these properties is implemented at a later stage of the story.

You can perform hit-testing yourself at any moment where it might prove useful. In
calling hitTest(_:with:), supply a point in the coordinates of the view to which the
message is sent. The second parameter is supposed to be a UIEvent, but it can be nil
if you have no event.

For example, suppose we have a UIView with two UIImageView subviews. We want
to detect a tap in either UIImageView, but we want to handle this at the level of the
UIView. We can attach a UITapGestureRecognizer to the UIView, but then the ges‐
ture recognizer’s view is the UIView, so how will we know which subview, if any, the
tap was in?

First, ensure that isUserInteractionEnabled is true for both UIImageViews.
UIImageView is one of the few built-in view classes where this property is false by
default, and a view whose isUserInteractionEnabled is false won’t normally be the
result of a call to hitTest(_:with:). Then, when our gesture recognizer’s action han‐
dler is called, we can perform hit-testing to determine where the tap was:

// g is the gesture recognizer
let p = g.location(ofTouch:0, in: g.view)
let v = g.view?.hitTest(p, with: nil)
if let v = v as? UIImageView { // ...

You can also override hitTest(_:with:) in a view subclass, to alter its results during
touch delivery, thus customizing the touch delivery mechanism. I call this hit-test
munging. Hit-test munging can be used selectively as a way of turning user interac‐
tion on or off in an area of the interface. In this way, some unusual effects can be pro‐
duced.

An important use of hit-test munging is to permit the touching of parts of subviews
outside the bounds of their superview. If a view’s clipsToBounds is false, a paradox
arises: the user can see the regions of its subviews that are outside its bounds, but can’t
touch them. This can be confusing and seems wrong. The solution is for the view to
override hitTest(_:with:) as follows:

override func hitTest(_ point: CGPoint, with e: UIEvent?) -> UIView? {
 if let result = super.hitTest(point, with:e) {
 return result
 }
 for sub in self.subviews.reversed() {
 let pt = self.convert(point, to:sub)
 if let result = sub.hitTest(pt, with:e) {

280 | Chapter 5: Touches

 return result
 }
 }
 return nil
}

Hit-Testing For Layers
Layers do not receive touches. A touch is reported to a view, not a layer. A layer,
except insofar as it is a view’s underlying layer and gets touch reporting because of its
view, is completely untouchable; from the point of view of touches and touch report‐
ing, it’s as if the layer weren’t on the screen at all. No matter where a layer may appear
to be, a touch falls through the layer, to whatever view is behind it.

Nevertheless, hit-testing for layers is possible. It doesn’t happen automatically, as part
of sendEvent(_:) or anything else; it’s up to you. It’s just a convenient way of finding
out which layer would receive a touch at a point, if layers did receive touches. To hit-
test layers, call hitTest(_:) on a layer, with a point in superlayer coordinates.

In the case of a layer that is a view’s underlying layer, you don’t need hit-testing. It is
the view’s drawing; where it appears is where the view is. So a touch in that layer is
equivalent to a touch in its view. Indeed, one might say (and it is often said) that this
is what views are actually for: to provide layers with touchability.

The only layers on which you’d need special hit-testing, then, would presumably be
layers that are not themselves any view’s underlying layer, because those are the only
ones you don’t find out about by normal view hit-testing. However, all layers, includ‐
ing a layer that is its view’s underlying layer, are part of the layer hierarchy, and can
participate in layer hit-testing. So the most comprehensive way to hit-test layers is to
start with the topmost layer, the window’s layer. In this example, we subclass
UIWindow (see Chapter 1) and override its hitTest(_:with:) so as to get layer hit-
testing every time there is view hit-testing:

override func hitTest(_ point: CGPoint, with e: UIEvent?) -> UIView? {
 let lay = self.layer.hitTest(point)
 // ... possibly do something with that information
 return super.hitTest(point, with:e)
}

In that example, self is the window, which is a special case. In general, you’ll have to
convert to superlayer coordinates. In this next example, we return to the Compass‐
View developed in Chapter 3, in which all the parts of the compass are layers; we
want to know whether the user tapped on the arrow layer, and if so, we’ll rotate the
arrow. For simplicity, we’ve given the CompassView a UITapGestureRecognizer, and
this is its action handler, in the CompassView itself. We convert to our superview’s
coordinates, because these are also our layer’s superlayer coordinates:

Hit-Testing | 281

@IBAction func tapped(_ t:UITapGestureRecognizer) {
 let p = t.location(ofTouch:0, in: self.superview)
 let hitLayer = self.layer.hitTest(p)
 let arrow = (self.layer as! CompassLayer).arrow!
 if hitLayer == arrow { // respond to touch
 arrow.transform = CATransform3DRotate(
 arrow.transform, .pi/4.0, 0, 0, 1)
 }
}

Layer hit-testing knows nothing of the restrictions on touch delivery; it just reports
on every sublayer, even one whose view (for example) has isUserInteraction-
Enabled set to false.

Hit-Testing For Drawings
The preceding example (letting the user tap on the compass arrow) does work, but we
might complain that it is reporting a hit on the arrow layer even if the hit misses the
drawing of the arrow. That’s true for view hit-testing as well. A hit is reported if we are
within the view or layer as a whole; hit-testing knows nothing of drawing, transparent
areas, and so forth.

If you know how the region is drawn and can reproduce the edge of that drawing as a
CGPath, you can test whether a point is inside it with
contains(_:using:transform:). So, in our compass layer, we could override hit-
Test(_:) along these lines:

override func hitTest(_ p: CGPoint) -> CALayer? {
 var lay = super.hitTest(p)
 if lay == self.arrow {
 // artificially restrict touchability to roughly the shaft/point area
 let pt = self.arrow.convert(p, from:self.superlayer)
 let path = CGMutablePath()
 path.addRect(CGRect(10,20,20,80))
 path.move(to:CGPoint(0, 25))
 path.addLine(to:CGPoint(20, 0))
 path.addLine(to:CGPoint(40, 25))
 path.closeSubpath()
 if !path.contains(pt, using: .winding) {
 lay = nil
 }
 }
 return lay
}

Alternatively, it might be the case that if a pixel of the drawing is transparent, it’s out‐
side the drawn region, so that it suffices to detect whether the pixel tapped is trans‐
parent. Unfortunately, there’s no built-in way to ask a drawing (or a view, or a layer)
for the color of a pixel. Instead, you have to make a bitmap graphics context and copy
the drawing into it, and then ask the bitmap for the color of a pixel. If you can repro‐

282 | Chapter 5: Touches

duce the content as an image, and all you care about is transparency, you can make a
one-pixel alpha-only bitmap, draw the image in such a way that the pixel you want to
test is the pixel drawn into the bitmap, and examine the transparency of the resulting
pixel:

// assume im is a UIImage, point is the CGPoint to test
let info = CGImageAlphaInfo.alphaOnly.rawValue
let pixel = UnsafeMutablePointer<UInt8>.allocate(capacity:1)
defer {
 pixel.deinitialize(count: 1)
 pixel.deallocate(capacity:1)
}
pixel[0] = 0
let sp = CGColorSpaceCreateDeviceGray()
let context = CGContext(data: pixel,
 width: 1, height: 1, bitsPerComponent: 8, bytesPerRow: 1,
 space: sp, bitmapInfo: info)!
UIGraphicsPushContext(context)
im.draw(at:CGPoint(-point.x, -point.y))
UIGraphicsPopContext()
let p = pixel[0]
let alpha = Double(p)/255.0
let transparent = alpha < 0.01

However, there may not be a one-to-one relationship between the pixels of the under‐
lying drawing and the points of the drawing as portrayed on the screen — because the
drawing is stretched, for example. In many cases, the CALayer method render(in:)
can be helpful here. This method allows you to copy a layer’s actual drawing into a
graphics context of your choice. If that context is an image context (Chapter 2), you
can use the resulting image as im in the code above.

Hit-Testing During Animation
Making a view user-touchable while it is being animated is a tricky problem. The rea‐
son is that the view may not be located where the user sees it. Recall (from Chapter 4)
that the animation is just an “animation movie” — what the user sees is the presenta‐
tion layer. The view itself, which the user is trying to touch, is at the location of the
model layer.

Therefore, if user interaction is allowed during an animation that moves a view from
one place to another, then if the user taps where the animated view appears to be, the
tap might mysteriously fail because the actual view is elsewhere; conversely, the user
might accidentally tap where the view actually is, and the tap will hit the animated
view even though it appears to be elsewhere.

A simple solution is to disallow touchability entirely during an animation. You can
temporarily turn off your entire interface’s touchability with UIApplication’s begin-
IgnoringInteractionEvents, as I mentioned earlier in this chapter. Even if you don’t

Hit-Testing | 283

do that, view animation ordered through a UIView class method, by default, turns off
touchability of a view while it is being animated — though you can override that
with .allowUserInteraction in the options: argument.

But what if you do want the user to be able to interact with an animated view? New in
iOS 10, there’s a simple solution for that, too: use a property animator! A property
animator makes touching an animated view easy; that is part of its purpose.

Before demonstrating that, let’s talk about what you have to do if you’re not using a
property animator. The trick, in that case, to hit-test the presentation layer. In this sim‐
ple example, we have a superview containing a subview. To allow the user to tap on
the subview even when it is being animated, we implement hit-test munging in the
subview:

override func hitTest(_ point: CGPoint, with e: UIEvent?) -> UIView? {
 let pres = self.layer.presentation()!
 let suppt = self.convert(point, to: self.superview!)
 let prespt = self.superview!.layer.convert(suppt, to: pres)
 return super.hitTest(prespt, with: e)
}

That works. At the same time, however, the animated view, as Apple puts it in the
WWDC 2011 videos, “swallows the touch.” For example, suppose the view in motion
is a button. Although our hit-test munging makes it possible for the user to tap the
button as it is being animated, and although the user sees the button highlight in
response, the button’s action message is not sent in response to this highlighting if the
animation is in-flight when the tap takes place. This behavior seems unfortunate, but
it’s generally possible to work around it — for instance, with a gesture recognizer.

How does a property animator help? By default, a property animator’s isUser-
InteractionEnabled is true. That means the animated view is touchable. As long as
you don’t set the property animator’s isManualHitTestingEnabled to true, the prop‐
erty animator will hit-test the animated view’s presentation layer for you, so that you
don’t have to. (If you do set isManualHitTestingEnabled to true, the job of hit-
testing is turned back over to you; you might want to do this in complicated situa‐
tions where the property animator’s hit-test munging isn’t sufficient.)

So view touchability, with a property animator, is the default. Moreover, the animated
view doesn’t “swallow the touch.” To animate a button that remains tappable while the
animation is in-flight, just animate the button:

let anim = UIViewPropertyAnimator(duration: 10, curve: .linear) {
 self.button.center = goal
}
anim.startAnimation()

So a property animator’s animated view is touchable by the user. And, as I explained
in Chapter 4, a property animator’s animation is interruptible. Together, these two

284 | Chapter 5: Touches

facts mean that, with a property animator, it is easy to alternate between a view’s
being animated and the same view’s being manipulated by the user.

In this example, we extend the preceding example. The view is slowly animating its
way towards the goal position. But at any time, the user can grab it and drag it
around (during which time, the animation is interrupted). As soon as the user relea‐
ses the view, the animation resumes: the view continues on its way towards the goal
position.

Obviously, in order to be draggable, the view has a UIPanGestureRecognizer. All the
work takes place in the gesture recognizer’s action handler. As usual, we have a switch
statement that tests the gesture recognizer’s state. In the .began case, we interrupt
the animation so that dragging can happen:

case .began:
 if anim.state == .active {
 anim.stopAnimation(true)
 }
 fallthrough

The .changed case is our usual code for making a view draggable, so I won’t bother to
repeat it here. The .ended case is the really interesting part. Our aim is to resume ani‐
mating the view from wherever it now is towards the goal. We can do this by supply‐
ing the same animation and calling
continueAnimation(withTimingParameters:durationFactor:), but we need first
to calculate the durationFactor: argument. This needs to be a ratio proportional to
our original duration. In my implementation, the speed at which the view moves
should remain the same. Thus, the ratio of durations is the ratio of distances — the
distance of the view’s original position from the goal, and its current distance from
the goal:

case .ended:
 // how far are we from the goal relative to original distance?
 func pyth(_ pt1:CGPoint, _ pt2:CGPoint) -> CGFloat {
 let x = pt1.x - pt2.x
 let y = pt1.y - pt2.y
 return sqrt(x*x + y*y)
 }
 let origd = pyth(self.oldButtonCenter, self.goal)
 let curd = pyth(v.center, self.goal)
 let factor = curd/origd
 anim.addAnimations {
 self.button.center = self.goal
 }
 anim.startAnimation()
 anim.pauseAnimation()
 anim.continueAnimation(
 withTimingParameters: anim.timingParameters,
 durationFactor: factor)

Hit-Testing | 285

Initial Touch Event Delivery
When the touch situation changes, an event containing all touches is handed to the
UIApplication instance by calling its sendEvent(_:), and the UIApplication in turn
hands it to the UIWindow by calling its sendEvent(_:). The UIWindow then per‐
forms the complicated logic of examining, for every touch, the hit-test view and its
superviews and their gesture recognizers, and deciding which of them should be sent
a touches message.

You can override sendEvent(_:) in a subclass of UIWindow or UIApplication. These
are delicate and crucial maneuvers, however, and you wouldn’t want to lame your
application by interfering with them. Moreover, it is unlikely, nowadays, that you
would need to resort to such measures. A typical case before the advent of gesture
recognizers was that you needed to detect touches directed to an object of some built-
in interface class in a way that subclassing it wouldn’t permit. For example, you want
to know when the user swipes a UIWebView; you’re not allowed to subclass UIWeb‐
View, and in any case it eats the touch. The solution used to be to subclass UIWindow
and override sendEvent(_:); you would then work out whether this was a swipe on
the UIWebView and respond accordingly, or else call super. Now, however, you can
attach a UISwipeGestureRecognizer to the UIWebView.

Gesture Recognizer and View
When a touch first appears and is delivered to a gesture recognizer, it is also delivered
to its hit-test view, the same touch method being called on both. Later, if a gesture
recognizer in a view’s swarm recognizes its gesture, that view is sent touches-
Cancelled(_:with:) for any touches that went to that gesture recognizer and were
hit-tested to that view, and subsequently the view no longer receives those touches.

This comes as a surprise to beginners, but it is the most reasonable approach, as it
means that touch interpretation by a view isn’t jettisoned just because gesture recog‐
nizers are in the picture. Later on in the multitouch sequence, if all the gesture recog‐
nizers in a view’s swarm declare failure to recognize their gesture, that view’s internal
touch interpretation just proceeds as if gesture recognizers had never been invented.

Moreover, touches and gestures are two different things; sometimes you want to
respond to both. In one of my apps, where the user can tap cards, each card has a
single tap gesture recognizer and a double tap gesture recognizer, but it also responds
directly to touchesBegan(_:with:) by reducing its own opacity, and to touches-
Ended(_:with:) and touchesCancelled(_:with:) by restoring its opacity. The
result is that the user always sees feedback when touching a card, instantly, regardless
of what the gesture turns out to be.

286 | Chapter 5: Touches

This behavior can be changed by setting a gesture recognizer’s cancelsTouchesIn-
View property to false. If this is the case for every gesture recognizer in a view’s
swarm, the view will receive touch events more or less as if no gesture recognizers
were in the picture.

If a gesture recognizer happens to be ignoring a touch (because, for example, it was
told to do so by ignore(_:for:)), then touchesCancelled(_:with:) won’t be sent to
the view for that touch when that gesture recognizer recognizes its gesture. Thus, a
gesture recognizer’s ignoring a touch is the same as simply letting it fall through to
the view, as if the gesture recognizer weren’t there.

Gesture recognizers can also delay the delivery of touches to a view, and by default
they do. The UIGestureRecognizer property delaysTouchesEnded is true by default,
meaning that when a touch reaches .ended and the gesture recognizer’s touches-
Ended(_:with:) is called, if the gesture recognizer is still allowing touches to be
delivered to the view because its state is still .possible, it doesn’t deliver this touch
until it has resolved the gesture. When it does, either it will recognize the gesture, in
which case the view will have touchesCancelled(_:with:) called instead (as already
explained), or it will declare failure and now the view will have touches-

Ended(_:with:) called.

The reason for this behavior is most obvious with a gesture where multiple taps are
required. The first tap ends, but this is insufficient for the gesture recognizer to
declare success or failure, so it withholds that touch from the view. In this way, the
gesture recognizer gets the proper priority. In particular, if there is a second tap, the
gesture recognizer should succeed and send touchesCancelled(_:with:) to the view
— but it can’t do that if the view has already been sent touchesEnded(_:with:).

It is also possible to delay the entire suite of touch methods from being called on a
view, by setting a gesture recognizer’s delaysTouchesBegan property to true. Again,
this delay would be until the gesture recognizer can resolve the gesture: either it will
recognize it, in which case the view will have touchesCancelled(_:with:) called, or
it will declare failure, in which case the view will receive touchesBegan(_:with:)
plus any further touches calls that were withheld — except that it will receive at most
one touchesMoved(_:with:) call, the last one, because if a lot of these were withheld,
to queue them all up and send them all at once now would be simply insane.

It is unlikely that you’ll change a gesture recognizer’s delaysTouchesBegan property
to true, however. You might do so, for example, if you have an elaborate touch analy‐
sis within a view that simply cannot operate simultaneously with a gesture recognizer,
but this is improbable, and the latency involved may look strange to your user.

When touches are delayed and then delivered, what’s delivered is the original touch
with the original event, which still have their original timestamps. Because of the
delay, these timestamps may differ significantly from now. For this reason (and many

Gesture Recognizer and View | 287

others), Apple warns that touch analysis that is concerned with timing should always
look at the timestamp, not the clock.

Touch Exclusion Logic
It is up to the UIWindow’s sendEvent(_:) to implement the logic of isMultiple-
TouchEnabled and isExclusiveTouch.

If a new touch is hit-tested to a view whose isMultipleTouchEnabled is false and
which already has an existing touch hit-tested to it, then sendEvent(_:) never deliv‐
ers the new touch to that view. However, that touch is delivered to the view’s swarm of
gesture recognizers.

Similarly, if there’s an isExclusiveTouch view in the window, then sendEvent(_:)
must decide whether a particular touch should be delivered, in accordance with the
meaning of isExclusiveTouch, which I described earlier. If a touch is not delivered
to a view because of isExclusiveTouch restrictions, it is not delivered to its swarm of
gesture recognizers either.

For example, suppose you have two views with touch handling, and their common
superview has a pinch gesture recognizer. Normally, if you touch both views simulta‐
nously and pinch, the pinch gesture recognizer recognizes. But if both views are
marked isExclusiveTouch, the pinch gesture recognizer does not recognize.

A comment in Apple’s Simple Gesture Recognizers sample code gets this wrong.
It says: “Recognizers ignore the exclusive touch setting for views. This is so that
they can consistently recognize gestures even if they cross other views. For exam‐
ple, suppose you had two buttons, each marked exclusive touch, and you added a
pinch gesture recognizer to their superview. That a finger came down in one of
the buttons shouldn’t prevent you from pinching in the general case.” That is
false; the isExclusiveTouch setting does prevent you from pinching.

Gesture Recognition Logic
When a gesture recognizer recognizes its gesture, everything changes. As we’ve
already seen, the touches for this gesture recognizer are sent to their hit-test views as
a touchesCancelled(_:with:) message, and then no longer arrive at those views
(unless the gesture recognizer’s cancelsTouchesInView is false). Moreover, all other
gesture recognizers pending with regard to these touches are made to fail, and then
are no longer sent the touches they were receiving either.

If the very same event would cause more than one gesture recognizer to recognize,
there’s an algorithm for picking the one that will succeed and make the others fail: a
gesture recognizer lower down the view hierarchy (closer to the hit-test view) prevails

288 | Chapter 5: Touches

over one higher up the hierarchy, and a gesture recognizer more recently added to its
view prevails over one less recently added.

There are various means for modifying this “first past the post” behavior:

Dependency order
Certain methods institute a dependency order, causing a gesture recognizer to be
put on hold when it tries to transition from the .possible state to the .began
(continuous) or .ended (discrete) state; only if a certain other gesture recognizer
fails is this one permitted to perform that transition. Apple says that in a depend‐
ency like this, the gesture recognizer that fails first is not sent reset (and won’t
receive any touches) until the second finishes its state sequence and is sent reset,
so that they resume recognizing together. The methods are:

• require(toFail:) (sent to a gesture recognizer)
• shouldRequireFailure(of:) (overridden in a subclass)
• shouldBeRequiredToFail(by:) (overridden in a subclass)
• gestureRecognizer(_:shouldRequireFailureOf:) (implemented by the

delegate)
• gestureRecognizer(_:shouldBeRequiredToFailBy:) (implemented by the

delegate)

The first of those methods sets up a permanent relationship between two gesture
recognizers, and cannot be undone; but the others are sent every time a gesture
starts in a view whose swarm includes both gesture recognizers, and each applies
only on this occasion.

The delegate methods work together as follows. For each pair of gesture recog‐
nizers in the hit-test view’s swarm, the members of that pair are arranged in a
fixed order (as I’ve already described). The first of the pair is sent shouldRequire
and then shouldBeRequired, and then the second of the pair is sent should-
Require and then shouldBeRequired. But if any of those four methods returns
true, the relationship between that pair is settled and we proceed to the next pair.

Success into failure
Certain methods, by returning false, turn success into failure; at the moment
when the gesture recognizer is about to declare that it recognizes its gesture,
transitioning from the .possible state to the .began (continuous) or .ended
(discrete) state, it is forced to fail instead:

• UIView’s gestureRecognizerShouldBegin(_:)
• The delegate’s gestureRecognizerShouldBegin(_:)

Gesture Recognition Logic | 289

Simultaneous recognition
A gesture recognizer succeeds, but some other gesture recognizer is not forced to
fail, in accordance with these methods:

• gestureRecognizer(_:shouldRecognizeSimultaneouslyWith:) (imple‐
mented by the delegate)

• canPrevent(_:) (overridden in a subclass)
• canBePrevented(by:) (overridden in a subclass)

In the subclass methods, prevent means “by succeeding, you force failure upon
this other,” and bePrevented means “by succeeding, this other forces failure on
you.” They work together as follows. canPrevent is called first; if it returns false,
that’s the end of the story for that gesture recognizer, and canPrevent is called on
the other gesture recognizer. But if canPrevent returns true when it is first
called, the other gesture recognizer is sent canBePrevented. If it returns true,
that’s the end of the story; if it returns false, the process starts over the other
way around, sending canPrevent to the second gesture recognizer, and so forth.
In this way, conflicting answers are resolved without the device exploding: pre‐
vention is regarded as exceptional (even though it is in fact the norm) and will
happen only if it is acquiesced to by everyone involved.

Touches and the Responder Chain
A UIView is a responder, and participates in the responder chain. In particular, if a
touch is to be delivered to a UIView (because, for example, it’s the hit-test view) and
that view doesn’t implement the relevant touch method, a walk up the responder
chain is performed, looking for a responder that does implement it; if such a res‐
ponder is found, the touch is delivered to that responder. Moreover, the default
implementation of the touch methods — the behavior that you get if you call super
— is to perform the same walk up the responder chain, starting with the next res‐
ponder in the chain.

The relationship between touch delivery and the responder chain can be useful, but
you must be careful not to allow it to develop into an incoherency. For example, if
touchesBegan(_:with:) is implemented in a superview but not in a subview, then a
touch to the subview will result in the superview’s touchesBegan(_:with:) being
called, with the first parameter (the touches) containing a touch whose view is the
subview. But most UIView implementations of the touch methods rely upon the
assumption that the first parameter consists of all and only touches whose view is
self; built-in UIView subclasses certainly assume this.

Here are some suggested guidelines for rational use of the responder chain:

290 | Chapter 5: Touches

• If all the responders in the affected part of the responder chain are instances of
your own subclass of UIView itself or of your own subclass of UIViewController,
you will generally want to follow the simplest possible rule: implement all the
touches events together in one class, so that touches arrive at an instance either
because it was the hit-test view or because it is up the responder chain from the
hit-test view; and do not call super in any of them. In this way, “the buck stops
here” — the touch handling for this object or for objects below it in the res‐
ponder chain is bottlenecked into one well-defined place.

• If you subclass a built-in UIView subclass and you override its touch handling,
you don’t have to override every single touches event, but you do need to call
super so that the built-in touch handling can occur.

• Never call a touch method directly (except to call super).
• Don’t allow touches to arrive from lower down the responder chain at an

instance of a built-in UIView subclass that implements built-in touch handling,
because such a class is completely unprepared for the first parameter of a touch
method containing a touch not intended for itself. Judicious use of isUser-
InteractionEnabled or hit-test munging can be a big help here.

(I’m not saying, however, that you have to block all touches from percolating up the
responder chain; on the contrary, it’s normal for unhandled touches to remain
unhandled all the way to the top of the responder chain, with no harm done.)

Touches and the Responder Chain | 291

PART II

Interface

This part of the book is about view controllers, and about all the various kinds of view
provided by the Cocoa framework — the built-in building blocks with which you’ll
construct an app’s interface.

• Chapter 6 is about view controllers, the fundamental iOS mechanism for allow‐
ing an entire interface to be replaced by another. Every app you write will have its
interface managed by at least one view controller.

• Chapter 7 is about scroll views, the iOS mechanism for letting the user scroll and
zoom the interface.

• Chapter 8 explains table views, a type of scroll view that lets the user navigate
through any amount of data, along with collection views, a generalization of table
views.

• Chapter 9 is about two forms of interface especially characteristic of the iPad —
popovers and split views — along with iPad multitasking.

• Chapter 10 describes several ways of presenting text (including styled text) in an
app’s interface — labels, text fields, text views, and text drawn directly.

• Chapter 11 discusses web views. A web view is an easy-to-use interface object
backed by the power of a full-fledged web browser.

• Chapter 12 describes all the remaining built-in iOS (UIKit) interface objects.
• Chapter 13 is about the forms of modal dialog that can appear in front of an app’s

interface.

CHAPTER 6

View Controllers

An iOS app’s interface is dynamic, and with good reason. On the desktop, an applica‐
tion’s windows can be big, and there can be more than one of them, so there’s room
for lots of interface. With iOS, everything needs to fit on a single display consisting of
a single window, which in the case of the iPhone can be almost forbiddingly tiny. The
iOS solution is to introduce, at will, completely new interface — a new view, possibly
with an elaborate hierarchy of subviews — replacing or covering the previous inter‐
face.

For this to work, regions of interface material — often the entire contents of the
screen — must come and go in an agile fashion that is understandable to the user.
There will typically be a logical, structural, and functional relationship between the
view that was present and the view that replaces or covers it, and this relationship will
need to be maintained behind the scenes, in your code, as well as being indicated to
the user: multiple views may be pure alternatives or siblings of one another, or one
view may be a temporary replacement for another, or views may be like successive
pages of a book. Animation is often used to emphasize and clarify these relationships
as one view is superseded by another. Navigational interface and a vivid, suggestive
gestural vocabulary give the user an ability to control what’s seen and an understand‐
ing of the possible options: a tab bar whose buttons summon alternate views, a back
button or a swipe gesture for returning to a previously visited view, a tap on an inter‐
face element to dive deeper into a conceptual world, a Done or Cancel button to
escape from a settings screen, and so forth.

In iOS, the management of this dynamic interface is performed through view con‐
trollers. A view controller is an instance of UIViewController. Actually, a view control‐
ler is most likely to be an instance of a UIViewController subclass; the
UIViewController class is designed to be subclassed, and you are very unlikely to use
a plain vanilla UIViewController object without subclassing it. You might write your

295

own UIViewController subclass; you might use a built-in UIViewController subclass
such as UINavigationController or UITabBarController; or you might subclass a
built-in UIViewController subclass such as UITableViewController (Chapter 8).

A view controller manages a single view (which can, of course, have subviews); its
view property points to the view it manages. This is the view controller’s main view,
or simply its view. A view controller’s main view has no explicit pointer to the view
controller that manages it, but a view controller is a UIResponder and is in the res‐
ponder chain just above its view, so it is the view’s next responder.

View Controller Responsibilities
A view controller’s most important responsibility is its view. A view controller must
have a view; it is useless without one. If that view is to be useful, it must somehow get
into the interface, and hence onto the screen; a view controller is usually responsible
for seeing to that, too, but typically not the view controller whose view this is; rather,
this will be taken care of by some view controller whose view is already in the inter‐
face. In many cases, this will happen automatically (I’ll talk more about that in the
next section), but you can participate in the process, and for some view controllers
you may have to do the work yourself. A view that comes may also eventually go, and
the view controller responsible for putting a view into the interface will then be
responsible also for removing it.

A view controller will typically provide animation of the interface as a view comes or
goes. Built-in view controller subclasses and built-in ways of summoning or remov‐
ing a view controller and its view come with built-in animations. We are all familiar,
for example, with tapping something to make new interface slide in from the side of
the screen, and then later tapping a back button to make that interface slide back out
again. In cases where you are responsible for getting a view controller’s view onto the
screen, you are also responsible for providing the animation. And you can take com‐
plete charge of the animation even for built-in view controllers.

View controllers, working together, can save and restore state automatically. This
feature helps you ensure that if your app is terminated in the background and subse‐
quently relaunched, it will quickly resume displaying the same interface that was
showing when the user last saw it.

The most powerful view controller is the root view controller. This is the view control‐
ler managing the root view, the view that sits at the top of the view hierarchy, as the
one and only direct subview of the main window, acting as the superview for all other
interface. I described in Chapter 1 how this view controller attains its lofty position: it
is assigned to the window’s rootViewController property. The window then takes
that view controller’s main view, gives it the correct frame (resizing it if necessary),

296 | Chapter 6: View Controllers

and makes it its own subview. The root view controller bears ultimate responsibility
for two important decisions about the behavior of your app:

Rotation of the interface
The user can rotate the device, and you might like the interface to rotate in
response, to compensate. This decision is made, in large part, by the root view
controller.

Manipulation of the status bar
The status bar is actually a secondary window belonging to the runtime, but the
runtime consults the root view controller as to whether the status bar should be
present and, if so, whether its text should be light or dark.

Above and beyond all this, view controllers are typically the heart of any app, by vir‐
tue of their role in the model–view–controller architecture: view controllers are con‐
trollers (hence the name). Views give the user something to tap, and display data for
the user to see; they are view. The data itself is model. But the logic of determining, at
any given moment, what views are shown, what data those views display, and what
the response to the user’s gestures should be, is controller logic. Typically, that means
view controller logic. In any app, view controllers will be the most important control‐
lers — frequently, in fact, the only controllers. View controllers are where you’ll put
the bulk of the code that actually makes your app do what your app does.

View Controller Hierarchy
There is always one root view controller, along with its view, the root view. There may
also be other view controllers, each of which has its own main view. Such view con‐
trollers are subordinate to the root view controller. In iOS, there are two subordina‐
tion relationships between view controllers:

Parentage (containment)
A view controller can contain another view controller. The containing view con‐
troller is the parent of the contained view controller; the contained view control‐
ler is a child of the containing view controller. A containment relationship
between two view controllers is reflected in their views: the child view controller’s
view, if it is in the interface at all, is a subview (at some depth) of the parent view
controller’s view.

The parent view controller is responsible for getting a child view controller’s view
into the interface, by making it a subview of its own view, and (if necessary) for
removing it later. Introduction of a view, removal of a view, and replacement of
one view with another often involve a parent view controller managing its chil‐
dren and their views.

View Controller Hierarchy | 297

Figure 6-1. The TidBITS News app

A familiar example is the navigation interface: the user taps something and new
interface slides in from the side, replacing the current interface. Figure 6-1 shows
the TidBITS News app displaying a typical iPhone interface, consisting of a list of
story headlines and summaries. This interface is managed by a parent view con‐
troller (a UINavigationController) with a child view controller whose view is the
list of headlines and summaries. If the user taps an entry in the list, the whole list
will slide away to one side and the text of that story will slide in from the other
side; the parent view controller has added a new child view controller, and has
manipulated the views of its children to bring about this animated change of the
interface. The parent view controller itself, meanwhile, stays put — and so does
its own view, which functions as a stable superview of the child view controllers’
views.

Presentation (modal views)
A view controller can present another view controller. The first view controller is
the presenting view controller (not the parent) of the second; the second view
controller is the presented view controller (not a child) of the first. The second
view controller’s view replaces or covers, completely or partially, the first view
controller’s view.

The name of this mechanism, and of the relationship between the view control‐
lers involved, has changed over time. In iOS 4 and before, the presented view
controller was called a modal view controller, and its view was a modal view; there

298 | Chapter 6: View Controllers

is an analogy here to the desktop, where a window is modal if it sits in front of,
and denies the user access to, the rest of the interface until it is explicitly dis‐
missed. The terms presented view controller and presented view are more recent
and more general, but the historical term “modal” still appears in the documenta‐
tion and in the API.

A presented view controller’s view does indeed sometimes look rather like a desk‐
top modal view; for example, it might have a button such as Done or Save for
dismissing the view, the implication being that this is a place where the user must
make a decision and can do nothing else until the decision is made. However, as
I’ll explain later, that isn’t the only use of a presented view controller.

There is thus a hierarchy of view controllers. In a properly constructed iOS app, there
should be exactly one root view controller, and it is the only nonsubordinate view
controller — it has neither a parent view controller nor a presenting view controller.
Any other view controller, if its view appears in the interface, must be either a child
view controller of some parent view controller or a presented view controller of some
presenting view controller.

Moreover, there is a clear relationship between the view hierarchy and the view con‐
troller hierarchy. Recall that, for a parent view controller and child view controller,
the child’s view, if present in the interface, must be a subview of the parent’s view.
Similarly, for a presenting view controller and presented view controller, the presen‐
ted view controller’s view is either a subview of, or completely replaces, the presenting
view controller’s view. In this way, the actual views of the interface form a hierarchy
dictated by and parallel to some portion of the view controller hierarchy: every view
visible in the interface owes its presence to a view controller’s view, either because it is
a view controller’s view, or because it’s a subview of a view controller’s view.

The place of a view controller’s view in the view hierarchy will often be automatic.
You might never need to put a UIViewController’s view into the view hierarchy man‐
ually. You’ll manipulate view controllers; their hierarchy and their built-in functional‐
ity will construct and manage the view hierarchy for you.

For example, in Figure 6-1, we see two interface elements:

• The navigation bar, containing the TidBITS logo.
• The list of stories, which is actually a UITableView.

I will describe how all of this comes to appear on the screen through the view control‐
ler hierarchy and the view hierarchy (Figure 6-2):

• The app’s root view controller is a UINavigationController; the UINavigation‐
Controller’s view is the window’s sole immediate subview (the root view). The
navigation bar is a subview of that view.

View Controller Hierarchy | 299

Figure 6-2. The TidBITS News app’s initial view controller and view hierarchy

• The UINavigationController contains a second UIViewController — a parent–
child relationship. The child is a custom UIViewController subclass; its view is
what occupies the rest of the window, as another subview of the UINavigation‐
Controller’s view. That view is the UITableView. This architecture means that
when the user taps a story listing in the UITableView, the whole table will slide
out, to be replaced by the view of a different UIViewController, while the naviga‐
tion bar stays.

In Figure 6-2, notice the word “automatic” in the two large right-pointing arrows
associating a view controller with its view. This is intended to tell you how the view
controller’s view became part of the view hierarchy. The UINavigationController’s
view became the window’s subview automatically, by virtue of the UINavigation‐
Controller being the window’s rootViewController. The custom UIViewController’s
view became the UINavigationController’s view’s subview automatically, by virtue of
the UIViewController being the UINavigationController’s child.

Sometimes, you’ll write your own parent view controller class. In that case, you will
be doing the kind of work that the UINavigationController was doing in that exam‐
ple, so you will need to put a child view controller’s view into the interface manually,
as a subview (at some depth) of the parent view controller’s view.

300 | Chapter 6: View Controllers

Figure 6-3. A Latin flashcard app

Figure 6-4. The Latin flashcard app’s initial view controller and view hierarchy

I’ll illustrate with another app of mine (Figure 6-3). The interface displays a flashcard
containing information about a Latin word, along with a toolbar (the dark area at the
bottom) where the user can tap an icon to choose additional functionality.

Again, I will describe how the interface shown in Figure 6-3 comes to appear on the
screen through the view controller hierarchy and the view hierarchy (Figure 6-4). The
app actually contains over a thousand of these Latin words, and I want the user to be

View Controller Hierarchy | 301

Figure 6-5. The Latin flashcard app, in drill mode

able to navigate between flashcards to see the next or previous word; there is an excel‐
lent built-in view controller for this purpose, the UIPageViewController. However,
that’s just for the card; the toolbar at the bottom stays there, so the toolbar can’t be
inside the UIPageViewController’s view. Therefore:

• The app’s root view controller is my own UIViewController subclass, which I call
RootViewController; its view contains the toolbar, and is also to contain the
UIPageViewController’s view. My RootViewController’s view becomes the win‐
dow’s subview (the root view) automatically, by virtue of the RootViewControl‐
ler’s being the window’s rootViewController.

• In order for the UIPageViewController’s view to appear in the interface, since it is
not the root view controller, it must be some view controller’s child. There is only
one possible parent — my RootViewController. My RootViewController must
function as a custom parent view controller, with the UIPageViewController as
its child. So I have made that happen, and I have therefore also had to put the
UIPageViewController’s view manually into my RootViewController’s view.

• I hand the UIPageViewController an instance of my CardController class
(another UIViewController subclass) as its child, and the UIPageViewController
displays the CardController’s view automatically.

Finally, here’s an example of a presented view controller. My Latin flashcard app has a
second mode, where the user is drilled on a subset of the cards in random order; the
interface looks very much like the first mode’s interface (Figure 6-5), but it behaves
completely differently.

To implement this, I have another UIViewController subclass, DrillViewController; it
is structured very much like RootViewController. When the user is in drill mode, a
DrillViewController is being presented by the RootViewController, meaning that the

302 | Chapter 6: View Controllers

Figure 6-6. The Latin flashcard app’s drill mode view controller and view hierarchy

DrillViewController’s interface takes over the screen automatically: the DrillView‐
Controller’s view, with its whole subview hierarchy, including the views of the Drill‐
ViewController’s children in the view controller hierarchy, replaces the
RootViewController’s view and its whole subview hierarchy (Figure 6-6). The Root‐
ViewController and its hierarchy of child view controllers remains in place, but the
corresponding view hierarchy is not in the interface; it will be returned to the inter‐
face automatically when we leave drill mode (because the presented DrillView‐
Controller is dismissed), and the situation will look like Figure 6-4 once again.

For any app that you write, for every moment in the lifetime of that app, you should
be able to construct a diagram showing the hierarchy of view controllers and charting
how each view controller’s view fits into the view hierarchy. The diagram should be
similar to mine! The view hierarchy should run neatly parallel with the view control‐

View Controller Hierarchy | 303

ler hierarchy; there should be no crossed wires or orphan views. And every view con‐
troller’s view should be placed automatically into the view hierarchy, unless you have
written your own parent view controller.

Do not put a view controller’s view into the interface manually, unless one of the
following is the case:

• The view controller is the child of your custom parent view control‐
ler. There is a complicated parent–child dance you have to do. See
“Container View Controllers” on page 388.

• You’re doing a custom transition animation. See “Custom Transition”
on page 362.

View Controller Creation
A view controller is an instance like any other instance, and it is created like any other
instance — by instantiating its class. You might perform this instantiation in code; in
that case, you will of course have to initialize the instance properly as you create it.
Here’s an example from one of my own apps:

let llc = LessonListController(terms: self.data)
let nav = UINavigationController(rootViewController: llc)

In that example, LessonListController is my own UIViewController subclass, so I
have called its designated initializer, which I myself have defined; UINavigation‐
Controller is a built-in UIViewController subclass, and I have used one of its conve‐
nience initializers.

Alternatively, a view controller instance might come into existence through the load‐
ing of a nib. To make it possible to get a view controller into the nib in the first place,
view controllers are included among the object types available through the Object
library in the nib editor.

It is legal, though in practice not common, for a .xib file to contain a view controller.
A .storyboard file, on the other hand, is chock full of view controllers; view controllers
are the basis of a storyboard’s structure, with each scene consisting of and corre‐
sponding to one view controller object. A view controller in a storyboard will go into
a nib file in the built app, and that nib file will be loaded when the view controller
instance is needed. Usually, that happens automatically. Nevertheless, a view control‐
ler in a storyboard is an ordinary nib object and, if it is to be used in the running app,
will be instantiated through the loading of the nib just like any other nib object. I’ll
give full details on how and why a view controller is instantiated from a storyboard
later in this chapter.

304 | Chapter 6: View Controllers

Once a view controller comes into existence, it must be retained so that it will persist.
This will happen automatically when the view controller is assigned a place in the
view controller hierarchy that I described in the previous section. A view controller
assigned as a window’s rootViewController is retained by the window. A view con‐
troller assigned as another view controller’s child is retained by the parent view con‐
troller. A presented view controller is retained by the presenting view controller. The
parent view controller or presenting view controller then takes ownership, and will
release the other view controller in good order when it is no longer needed.

Here’s an example, from one of my apps, of view controllers being instantiated and
then being retained by being placed into the view controller hierarchy:

let llc = LessonListController(terms: self.data)
let nav = UINavigationController(rootViewController: llc)
self.present(nav, animated: true)

That’s the same code I showed a moment ago, extended by one line. It comes from a
view controller class called RootViewController. Here’s how view controller creation
and memory management works in those three lines:

I instantiate LessonListController.

I instantiate UINavigationController, and I assign the LessonListController
instance to the UINavigationController instance as its child; the navigation con‐
troller retains the LessonListController instance and takes ownership of it.

I present the UINavigationController instance on self, a RootViewController
instance; the RootViewController instance is the presenting view controller, and
it retains and takes ownership of the UINavigationController instance as its pre‐
sented view controller. The RootViewController instance itself is already the win‐
dow’s rootViewController, and is retained by the window — and so the view
controller hierarchy is safely established.

All of this sounds straightforward, but it is worth dwelling on, because things can go
wrong. It is quite possible, if things are mismanaged, for a view controller’s view to
get into the interface while the view controller itself is allowed to go out of existence.
This must not be permitted. If such a thing happens, at the very least the view will
apparently misbehave, failing to perform its intended functionality, because that func‐
tionality is embodied by the view controller, which no longer exists. (I’ve made this
mistake, so I speak from experience here.) If you instantiate a view controller in code,
you should immediately ask yourself who will be retaining this view controller.

If a view controller is instantiated automatically from a storyboard, it will be retained
automatically. That isn’t magic, however; it’s done in exactly the same ways I just lis‐
ted — by assigning it as the window’s rootViewController, or by making it another
view controller’s child view controller or presented view controller.

View Controller Creation | 305

How a View Controller Obtains Its View
Initially, when it first comes into existence, a view controller has no view. A view con‐
troller is a small, lightweight object; a view is a relatively heavyweight object, involv‐
ing interface elements that occupy memory. Therefore, a view controller postpones
obtaining its view until it has to do so, namely, when it is asked for the value of its
view property. At that moment, if its view property is nil, the view controller sets
about obtaining its view. (We say that a view controller loads its view lazily.) Typically,
this happens because it is time to put the view controller’s view into the interface.

In working with a newly instantiated view controller, be careful not to refer to its
view property if you don’t need to, since this can trigger the view controller’s obtain‐
ing its view prematurely. (As usual, I speak from experience here.) To learn whether a
view controller has a view without causing it to load its view, consult its isView-
Loaded property. You can refer to a view controller’s view safely, without loading it, as
its viewIfLoaded (an Optional); you can also cause the view controller to load its
view explicitly, rather than as a side effect of mentioning its view, by calling loadView-
IfNeeded.

As soon as a view controller has its view, its viewDidLoad method is called. If this
view controller is an instance of your own UIViewController subclass, viewDidLoad
is your opportunity to modify the contents of this view — to populate it with sub‐
views, to tweak the subviews it already has, and so forth — as well as to perform other
initializations of the view controller consonant with its acquisition of a view. The
view property is now pointing to the view, so it is safe to refer to self.view. Bear in
mind, however, that the view may not yet be part of the interface! In fact, it almost
certainly is not. (To confirm this, check whether self.view.window is nil.) Thus, for
example, you cannot necessarily rely on the dimensions of the view at this point to be
the dimensions that the view will assume when it becomes visible in the interface.
Performing certain customizations prematurely in viewDidLoad is a common begin‐
ner mistake. I’ll have more to say about that later in the chapter.

Before viewDidLoad will be called, however, the view controller must obtain its view.
The question of where and how the view controller will get its view is often crucial. In
some cases, to be sure, you won’t care about this; in particular, when a view controller
is an instance of a built-in UIViewController subclass such as UINavigation‐
Controller or UITabBarController, its view is out of your hands — you might never
even have cause to refer to this view over the entire course of your app’s lifetime —
and you simply trust that the view controller will somehow generate its view. But
when the view controller is an instance of your own subclass of UIViewController,
and when you yourself will design or modify its view, it becomes essential to under‐
stand the process whereby a view controller gets its view.

306 | Chapter 6: View Controllers

This process is not difficult to understand, but it is rather elaborate, because there are
multiple possibilities. Most important, this process is not magic. Yet it quite possibly
causes more confusion to beginners than any other matter connected with iOS pro‐
gramming. Therefore, I will explain it in detail. The more you know about the details
of how a view controller gets its view, the deeper and clearer will be your understand‐
ing of the entire workings of your app, its view controllers, its .storyboard and .xib
files, and so on.

The main alternatives are as follows:

• The view may be instantiated in the view controller’s own code, manually.
• The view may be created as an empty generic view, automatically.
• The view may be loaded from a nib file.

In the rest of this section, I’ll demonstrate each of these three ways in which a view
controller can obtain its view. For purposes of the demonstration, we’ll need a view
controller that we instantiate manually (as opposed to a view controller that comes
automatically from a storyboard, as explained in the next section). Since I haven’t yet
described how to do anything with a view controller other than make it the window’s
rootViewController, this view controller will be the window’s rootViewController.
If you want to follow along with hands-on experimentation, you can start with a clean
project created from the Single View app template. The template includes a story‐
board and a UIViewController subclass called ViewController, but we’re going to
ignore both of those, behaving as if the storyboard didn’t exist: we’ll create our own
UIViewController subclass instance — which I’ll call RootViewController — and
make it the root view controller (as described in Chapter 1 and Appendix B). When
you launch the project, you’ll see RootViewController’s view, thus proving that the
view controller has successfully obtained its view.

Manual View
To supply a UIViewController’s view manually, in code, override its loadView
method. Your job here is to obtain an instance of UIView (or a subclass of UIView)
and assign it to self.view. You must not call super (for reasons that I’ll make clear
later on).

Let’s try it:

1. We need a UIViewController subclass, so choose File → New → File; specify iOS
→ Source → Cocoa Touch Class. Click Next.

2. Name the class RootViewController, and specify that it is to be a UIView‐
Controller subclass. Uncheck “Also create XIB file” (if it happens to be checked).
Click Next.

How a View Controller Obtains Its View | 307

3. Confirm that we’re saving into the appropriate folder and group, and that these
files will be part of the app target. Click Create.

We now have a RootViewController class, and we proceed to edit its code. In Root‐
ViewController.swift, we’ll implement loadView. To convince ourselves that the exam‐
ple is working correctly, we’ll give the view that we create manually an identifiable
color, and we’ll put some interface inside it, namely a “Hello, World” label:

override func loadView() {
 let v = UIView()
 v.backgroundColor = .green
 self.view = v
 let label = UILabel()
 v.addSubview(label)
 label.text = "Hello, World!"
 label.autoresizingMask = [
 .flexibleTopMargin,
 .flexibleLeftMargin,
 .flexibleBottomMargin,
 .flexibleRightMargin]
 label.sizeToFit()
 label.center = CGPoint(v.bounds.midX, v.bounds.midY)
 label.frame = label.frame.integral
}

In order to see that that code works, we need to instantiate RootViewController and
place that instance into our view controller hierarchy. As I explained a moment ago,
we’ll do that by making RootViewController the app’s root view controller. Edit App‐
Delegate.swift to look like this:

import UIKit
@UIApplicationMain
class AppDelegate : UIResponder, UIApplicationDelegate {
 var window : UIWindow?
 func application(_ application: UIApplication,
 didFinishLaunchingWithOptions
 launchOptions: [UIApplicationLaunchOptionsKey : Any]?)
 -> Bool {
 self.window = self.window ?? UIWindow()
 let theRVC = RootViewController() // *
 self.window!.rootViewController = theRVC // *
 self.window!.backgroundColor = .white
 self.window!.makeKeyAndVisible()
 return true
 }
}

The two starred lines are the key: we instantiate RootViewController and make that
instance the app’s root view controller. Build and run the app. Sure enough, there’s
our green background and our “Hello, world” label!

308 | Chapter 6: View Controllers

When we created our view controller’s view (self.view), we never gave it a reason‐
able frame. This is because we are relying on someone else to frame the view appro‐
priately. In this case, the “someone else” is the window, which responds to having its
rootViewController property set to a view controller by framing the view control‐
ler’s view appropriately as the root view before putting it into the window as a sub‐
view. In general, it is the responsibility of whoever puts a view controller’s view into
the interface to give the view the correct frame — and this will never be the view con‐
troller itself (although under some circumstances the view controller can express a
preference in this regard). Indeed, the size of a view controller’s view may be changed
as it is placed into the interface, and you must keep in mind, as you design your view
controller’s view and its subviews, that this can happen. (That’s why, in the preceding
code, I used autoresizing to keep the label centered in the view, no matter how the
view may be resized.)

Generic Automatic View
We should distinguish between creating a view and populating it. The preceding
example fails to draw this distinction. The lines that create our RootViewController’s
view are merely these:

let v = UIView()
self.view = v

Everything else configures and populates the view, turning it green and putting a
label into it. A more appropriate place to populate a view controller’s view is its view-
DidLoad implementation, which, as I’ve already mentioned, is called after the view
exists and can be referred to as self.view. We could therefore rewrite the preceding
example like this (just for fun, I’ll use autolayout this time):

override func loadView() {
 let v = UIView()
 self.view = v
}
override func viewDidLoad() {
 super.viewDidLoad()
 let v = self.view!
 v.backgroundColor = .green
 let label = UILabel()
 v.addSubview(label)
 label.text = "Hello, World!"
 label.translatesAutoresizingMaskIntoConstraints = false
 NSLayoutConstraint.activate([
 label.centerXAnchor.constraint(equalTo:v.centerXAnchor),
 label.centerYAnchor.constraint(equalTo:v.centerYAnchor)
])
}

How a View Controller Obtains Its View | 309

But if we’re going to do that, we can go even further and remove our implementation
of loadView entirely! It turns out that if you don’t implement loadView, and if no
view is supplied in any other way, then UIViewController’s default implementation of
loadView will do exactly what we are doing: it creates a generic UIView object and
assigns it to self.view.

If we needed our view controller’s view to be a particular UIView subclass, that
wouldn’t be acceptable; but in this case, our view controller’s view is a generic UIView
object, so it is acceptable. Comment out or delete the entire loadView implementation
from the preceding code, and build and run the app; our example still works!

View in a Separate Nib
In the preceding examples, we supplied and designed our view controller’s view in
code. That works, but of course we’re missing out on the convenience of configuring
and populating the view by designing it graphically in Xcode’s nib editor. So now let’s
see how a view controller can obtain its view, ready-made, from a nib file.

To make this work, the nib file must be properly configured in accordance with the
demands of the nib-loading mechanism. The view controller instance will already
have been created. It will load the nib, setting itself as the nib’s owner. The nib itself
must be prepared to match this situation. In the nib, the owner object must have
same class as the view controller, and its view outlet must point to the view object in
the nib. Thus, when the view controller loads the nib, it automatically obtains its view
through the nib-loading mechanism!

For details of the nib-loading mechanism, see my other book, iOS 10 Program‐
ming Fundamentals with Swift.

Suppose the nib is a .xib file. (Storyboards are discussed in the next section.) In a .xib
file, the owner object is the File’s Owner proxy object. Therefore, in a .xib file that is
to serve as the source of a view controller’s view, the following two things must be
true:

• The File’s Owner class must be set to a UIViewController subclass corresponding
to the class of the view controller whose view this will be. This will also cause the
File’s Owner to have a view outlet.

• The File’s Owner proxy object’s view outlet must be connected to the view.

Let’s try it. We can use the example we’ve already developed, with our RootView‐
Controller class. Delete the implementation of loadView and viewDidLoad from Root‐
ViewController.swift, because we want the view to come from a nib and we’re going to
populate it in the nib. Then:

310 | Chapter 6: View Controllers

1. Choose File → New → File and specify iOS → User Interface → View. This will be
a .xib file containing a UIView object. Click Next.

2. Name the file MyNib (meaning MyNib.xib). Confirm the appropriate folder and
group, and make sure that the file will be part of the app target. Click Create.

3. Edit MyNib.xib. Prepare it in the way I described a moment ago:
a. Select the File’s Owner object; in the Identity inspector, set its class to Root‐

ViewController.
b. Connect the File’s Owner view outlet to the View object.

4. Design the view. To make it clear that this is not the same view we were creating
previously, perhaps you should give the view a red background color (in the
Attributes inspector). Drag a UILabel into the middle of the view and give it
some text, such as “Hello, World!”

When our RootViewController instance wants its view, we want it to load the MyNib
nib. To make it do that, we must associate this nib with our RootViewController
instance. Recall these two lines from application(_:didFinishLaunchingWith-
Options:) in AppDelegate.swift:

let theRVC = RootViewController()
self.window!.rootViewController = theRVC

We’re going to change the first of those two lines. A UIViewController has a nibName
property that tells it what nib, if any, it should load to obtain its view. However, we are
not allowed to set the nibName property of theRVC (it is read-only). Instead, as we
instantiate the view controller, we use the designated initializer, init(nib-

Name:bundle:), like this:

let theRVC = RootViewController(nibName:"MyNib", bundle:nil)
self.window!.rootViewController = theRVC

(The nil argument to the bundle: parameter specifies the main bundle, which is
almost always what you want.)

To prove that this works, build and run. The red background appears! Our view is
loading from the nib.

Now I’m going to describe a shortcut, based on the name of the nib. It turns out that
if the nib name passed to init(nibName:bundle:) is nil, a nib will be sought auto‐
matically with the same name as the view controller’s class. Moreover, UIViewControl‐
ler’s init() turns out to be a convenience initializer: it actually calls
init(nibName:bundle:), passing nil for both arguments. This means, in effect, that
we can return to using init() to initialize the view controller, provided that the nib
file’s name matches the name of the view controller class.

How a View Controller Obtains Its View | 311

Let’s try it. Rename MyNib.xib to RootViewController.xib, and change the code that
instantiates and initializes our RootViewController back to what it was before:

let theRVC = RootViewController()
self.window!.rootViewController = theRVC

Build and run. It works!

The automatic search for an eponymous nib fails in iOS 8 (for code written in
Swift). Workarounds are provided in earlier editions of this book.

There’s an additional aspect to this shortcut based on the name of the nib. It seems
ridiculous that we should end up with a nib that has “Controller” in its name merely
because our view controller, as is so often the case, has “Controller” in its name. A
nib, after all, is not a controller. It turns out that the runtime, in looking for a view
controller’s corresponding nib, will in fact try stripping “Controller” off the end of the
view controller class’s name. Thus, we can name our nib file RootView.xib instead of
RootViewController.xib, and it will still be properly associated with our RootView‐
Controller instance.

When we created our UIViewController subclass, RootViewController, we saw in the
Xcode dialog a checkbox offering to create an eponymous .xib file at the same time:
“Also create XIB file.” We deliberately unchecked it. Suppose we had checked it; what
would have happened? In that case, Xcode would have created RootView‐
Controller.swift and RootViewController.xib. Moreover, it would have configured
RootViewController.xib for us: the File’s Owner’s class would already be set to the view
controller’s class, RootViewController, and its view outlet would already be hooked
up to the view. Thus, this view controller and .xib file are ready for use together: you
instantiate the view controller with a nil nib name, and it gets its view from the
eponymous nib.

The .xib file created by Xcode in response to checking “Also create XIB file” does
not have “Controller” stripped off the end of its name; you can rename it man‐
ually later (I generally do) if the default name bothers you.

Another convention involving the nib name has to do with the rules for loading
resources by name generally. The same naming rule that I mentioned in Chapter 2 for
an image file extended by the suffix ~ipad applies to nib files. A nib file named
RootViewController~ipad.xib will be loaded on an iPad when a nib named "RootView-
Controller" is sought. This principle can greatly simplify your life when you’re writ‐
ing a universal app, as you can easily use one nib on iPhone and another nib on iPad
— though you might not need to do that, since conditional interface design,
described in Chapter 1, may permit you to construct an interface differing on iPad
and iPhone in a single nib.

312 | Chapter 6: View Controllers

Summary
We are now in a position to summarize the sequence whereby a view controller’s view
is obtained. It turns out that the entire process is driven by loadView:

1. When the view controller first decides that it needs its view, loadView is always
called:

• If we override loadView, we supply and set the view in code, and we do not call
super. Therefore the process of seeking a view comes to an end.

• If we don’t override loadView, UIViewController’s built-in default implementa‐
tion of loadView takes over, and performs the rest of the process.

2. UIViewController’s default implementation of loadView looks for a nib:

• If the view controller was instantiated with an explicit nibName:, a nib with
that name is sought, and the process comes to an end. (If there is no such nib,
the app will crash at launch.)

• If the view controller was instantiated with a nil nibName:, then:
1. An eponymous nib is sought. If it is found, it is loaded and the process

comes to an end.
2. If the view controller’s name ends in “Controller,” an eponymous nib

without the “Controller” is sought. If it is found, it is loaded and the process
comes to an end.

3. If we reach this point, UIViewController’s default implementation of loadView
creates a generic UIView.

How Storyboards Work
By default, a storyboard uses the third approach to supply a view controller with its
view: the view is loaded from a nib. To understand how this works, distinguish
between what you see in a storyboard and what really happens. A scene in a story‐
board looks like a view controller’s view. Actually, if you look more closely at what the
scene represents, it is a view controller and its view. When the app is built and the
storyboard is compiled into a .storyboardc bundle, the scene is split into two nibs:

View controller nib
The first nib contains just the view controller. This works because a view control‐
ler can itself be a nib object.

How Storyboards Work | 313

View nib
The second nib contains the view, its subviews, and any other top-level objects
such as gesture recognizers. The view nib has a special name, such as 01J-lp-
oVM-view-Ze5-6b-2t3.nib. It is correctly configured: its File’s Owner class is the
view controller’s class, with its view outlet hooked to the view.

We can thus divide the tale of how storyboards work into two phases, corresponding
to how each of those nibs gets loaded.

How a View Controller Nib is Loaded
To instantiate a view controller from a storyboard’s view controller nib, we have only
to load that nib. The view controller is the nib’s sole top-level object. Loading a nib
provides a reference to the instances that come from the nib’s top-level objects, so
now we have a reference to the view controller instance.

Loading a view controller nib from a storyboard starts with a reference to the story‐
board. You can get a reference to a storyboard either by calling the UIStoryboard ini‐
tializer init(name:bundle:) or through the storyboard property of a view controller
that has already been instantiated from that storyboard.

When a view controller instance stored in a storyboard nib is needed, the nib can be
loaded and the view controller instantiated in one of four main ways:

Initial view controller
At most one view controller in the storyboard is designated the storyboard’s ini‐
tial view controller (also called its entry point). To instantiate that view controller,
call the UIStoryboard instance method instantiateInitialViewController.
The view controller instance is returned.

For an app with main storyboard, that happens automatically at launch time. The
main storyboard is designated the app’s main storyboard by the Info.plist key
“Main storyboard file base name” (UIMainStoryboardFile). As the app launches,
UIApplicationMain gets a reference to this storyboard by calling the UIStory‐
board initializer init(name:bundle:), instantiates its initial view controller by
calling instantiateInitialViewController, and makes that instance the win‐
dow’s rootViewController.

By identifier
A view controller in a storyboard can be assigned an arbitrary string identifier;
this is its Storyboard ID in the Identity inspector. To instantiate that view control‐
ler, call the UIStoryboard instance method instantiateViewController(with-
Identifier:). The view controller instance is returned.

314 | Chapter 6: View Controllers

By relationship
A parent view controller in a storyboard may have immediate children, such as a
UINavigationController and its initial child view controller. The nib editor will
show a relationship connection between them. When the parent is instantiated
(the source of the relationship), the initial children (the destination of the rela‐
tionship) are instantiated automatically at the same time.

By triggered segue
A view controller in a storyboard may be (or may contain) the source of a segue
whose destination is a future child view controller or a future presented view con‐
troller. When the segue is triggered and performed, it instantiates the destination
view controller.

Thus, you can set up your app in such a way that a storyboard is the source of every
view controller that your app will ever instantiate. Indeed, by starting with a main
storyboard and by configuring relationships and triggered segues in the storyboard,
you can arrange that every view controller your app will ever need will be instantiated
automatically. One downside to that sort of configuration is that the storyboard can
become large and overwhelming. To prevent that from happening, you can use a
storyboard for some view controllers but instantiate other view controllers in code
(perhaps getting their views from corresponding .xib files). Another way to keep
storyboards small is to have multiple storyboards containing different view control‐
lers; in fact, a segue in one storyboard can lead through a storyboard reference to a
view controller in another storyboard, which will then be loaded automatically.

I’ll go into much greater detail about storyboards and segues and storyboard refer‐
ences later in this chapter.

How a View Nib is Loaded
One way or another, a view controller has now been instantiated from its storyboard
nib — but its view has not. Views are loaded lazily, as we know. Sooner or later, the
view controller will probably want its view (typically because it is time to put that
view into the interface). How will it get it?

Recall that the view nib has been assigned a special name. Well, there’s something I
didn’t tell you: the view controller, in its nib, was handed that special name, so that
when it was instantiated, its nibName property was set to the name of the view nib.

Thus, when the view controller wants its view, it loads it in the normal way! It has a
non-nil nibName, so it looks for a nib by that name — and finds it. The nib is loaded
and the view becomes the view controller’s view.

This is true for every scene. A storyboard consists ultimately of pairs of nib files, each
pair consisting of a view controller and its view. As a result, a storyboard has all the
memory management advantages of nib files: none of these nib files are loaded until

How Storyboards Work | 315

the instances that they contain are needed, and they can be loaded multiple times to
give additional instances of the same nib objects. At the same time, you get the conve‐
nience of being able to see and edit a lot of your app’s interface simultaneously in one
place.

You don’t have to use the default scene structure in a storyboard. The default is that a
view controller in a storyboard scene contains its view — but you can delete the view.
If you do, then that view controller will obtain its view in any of the other ways we’ve
already discussed: by an implementation of loadView in the code of that view control‐
ler class, or by loading an eponymous nib file (which you supply as a .xib file) — or
even, if all of that fails, by creating a generic UIView.

There’s no way in a .storyboard file to specify, as the source of a view controller’s
view, a .xib file with a different name from the view controller’s class; the nib edi‐
tor lacks the NIB Name field in a view controller’s Attributes inspector when
you’re working in a storyboard. I presume that this is because Apple fears you
might break the automatic relationship between a view controller and its spe‐
cially named view nib.

View Resizing
A view controller’s view is likely to be resized:

• When it is put into the interface
• When the app rotates
• When the surrounding interface changes; for example, when a navigation bar

gets taller or shorter, appears or disappears

Other views can be resized as well, of course, but typically this is a direct consequence
of the resizing of a view controller’s view, of which they are subviews. Apple describes
views and view controllers as adaptive to size changes.

Because a view controller is a controller, it is typically the locus of logic for helping
the interface to cope with all this resizing. A view controller has properties and
receives events connected to the resizing of its view, so that it can respond when such
resizing takes place, and can even help dictate the arrangement of the interface if
needed.

View Size in the Nib Editor
When you design your interface in the nib editor, every view controller’s view has to
be displayed at some definite size. But that size may not be the size at which the view
will appear at runtime. If you design the interface only for the size you see in the nib

316 | Chapter 6: View Controllers

editor, you can get a rude surprise when you actually run the app and the view
appears at some other size. Failing to take account of this possibility is a common
beginner mistake. On the contrary, you should assume that the size at which a view
controller’s main view is portrayed in the nib editor canvas is probably not the size it
will assume at runtime.

In the nib editor, you can display the view at the size of any actual device. You can
also specify an orientation. Using the Simulated Metrics pop-up menus in the
Attributes inspector, you can even adjust for the presence or absence of interface ele‐
ments that can affect layout (status bar, top bar, bottom bar). But no single device size,
orientation, or metrics can reflect all the possible sizes the view may assume when the
app runs on different devices, in different orientations, and with different surround‐
ings.

To compensate for this uncertainty, you should take advantage of autolayout, along
with conditional interface (see “Conditional Interface Design” on page 87), together
with the nib editor’s ability to switch between displaying different device sizes (using
the View As button at the lower left of the canvas), to make sure that your layout is
coming out as you hope in every size and orientation. Your code can also take a hand
in layout, and later in this chapter I’ll talk about where you might put such code; but
in that case you’ll probably need to run in the simulators of different device sizes to
see your code at work.

Bars and Underlapping
A view controller’s view will often have to adapt to the presence of bars at the top and
bottom of the screen:

The status bar is underlapped
The status bar is transparent, so that the region of a view behind it is visible
through it. The root view, and any other fullscreen view, must occupy the entire
window, including the status bar area, the top of the view being visible behind the
transparent status bar. You’ll want to design your view so that its top doesn’t con‐
tain any interface objects that will be overlapped by the status bar.

Top and bottom bars may be underlapped
The top and bottom bars displayed by a navigation controller (navigation bar,
toolbar) or tab bar controller (tab bar) can be translucent. When they are, your
view controller’s view is, by default, extended behind the translucent bar, under‐
lapping it. Again, you’ll want to design your view so that this underlapping
doesn’t conceal any of your view’s important interface.

The status bar may be present or absent. Top and bottom bars may be present or
absent, and, if present, their height can change. How will your interface cope with
such changes? The primary coping mechanism is the view controller’s layout guides.

View Resizing | 317

Recall (from Chapter 1) that a view controller supplies two properties, its topLayout-
Guide and its bottomLayoutGuide. The position of these guide objects moves auto‐
matically at runtime to reflect the view’s environment:

topLayoutGuide

The topLayoutGuide is positioned as follows:

• If there is a status bar and no top bar, the topLayoutGuide is positioned at
the bottom of the status bar.

• If there is a top bar, the topLayoutGuide is positioned at the bottom of the
top bar.

• If there is no top bar and no status bar, the topLayoutGuide is positioned at
the top of the view.

bottomLayoutGuide

The bottomLayoutGuide is positioned as follows:

• If there is a bottom bar, the bottomLayoutGuide is positioned at the top of
the bottom bar.

• If there is no bottom bar, the bottomLayoutGuide is positioned at the bottom
of the view.

The easiest way to involve the layout guides in your view layout is through autolayout
and constraints. By constraining a view by its top to the bottom of the topLayout-
Guide, or by its bottom to the top of the bottomLayoutGuide, you guarantee that the
view will move when the layout guide moves. Such constraints are easy to form in the
nib editor — they are the default. When you’re using anchor notation for creating a
constraint in code, you’ll use the topLayoutGuide’s bottomAnchor and the bottom-
LayoutGuide’s topAnchor.

If you need actual numbers in order to perform layout-related calculations, a layout
guide’s spacing from the corresponding edge of the view controller’s main view is
reported by its length property. If you are constructing a constraint relative to the
height of a layout guide, you can use its heightAnchor property.

The layout guides are subviews of the view controller’s main view, imposed by
the view controller. Do not assume that the subviews you add to a view control‐
ler’s main view are its only subviews!

Status bar visibility
The default behavior of the status bar is that it is present, except in landscape orienta‐
tion on an iPhone, where it is absent. The root view controller, as I mentioned at the

318 | Chapter 6: View Controllers

start of this chapter, gets a say in this behavior; it also determines the look of the sta‐
tus bar when present. Your UIViewController subclass can override any of the follow‐
ing properties (your override will be a computed variable with a getter function):

preferredStatusBarStyle

Your choices (UIStatusBarStyle) are .default and .lightContent, meaning dark
text and light text, respectively. Use light text for legibility if the view content
underlapping the status bar is dark.

prefersStatusBarHidden

A value of true makes the status bar invisible; a value of false makes the status
bar visible, even in landscape orientation on an iPhone. (Your getter can return
the result of a call to super to get the default behavior.)

childViewControllerForStatusBarStyle

childViewControllerForStatusBarHidden

Used to delegate the decision on the status bar style or visibility to a child view
controller’s preferredStatusBarStyle or prefersStatusBarHidden. For exam‐
ple, a tab bar controller implements these properties to allow your view controller
to decide the status bar style and visibility when your view controller’s view occu‐
pies the tab bar controller’s view. Thus, your view controller gets to make the
decisions even though the tab bar controller is the root view controller.

You are not in charge of when these properties are consulted, but you can provide a
nudge: if the situation has changed and one of these properties would now give a dif‐
ferent answer, call setNeedsStatusBarAppearanceUpdate on your view controller. If
this call is inside an animations function, the change in the look of the status bar will
be animated with the specified duration. The character of the animation from visible
to invisible (and vice versa) is set by your view controller’s override of preferred-
StatusBarUpdateAnimation; the value you return (UIStatusBarAnimation) can
be .fade, .slide, or .none.

When you toggle the visibility of the status bar, the top layout guide will move up or
down by 20 points. If your main view has subviews with constraints to the top layout
guide, those subviews will move. If this happens when the main view is visible, the
user will see this movement as a jump. That is probably not what you want. To pre‐
vent it, call layoutIfNeeded on your view in the same animations function in which
you call setNeedsStatusBarAppearanceUpdate; your layout update will then be ani‐
mated together with the change in status bar visibility. In this example, a button’s
action method toggles the visibility of the status bar with smooth animation:

var hide = false
override var prefersStatusBarHidden : Bool {
 return self.hide
}

View Resizing | 319

@IBAction func doButton(_ sender: Any) {
 self.hide = !self.hide
 UIView.animate(withDuration:0.4) {
 self.setNeedsStatusBarAppearanceUpdate()
 self.view.layoutIfNeeded()
 }
}

Extended layout
If your UIViewController’s parent is a navigation controller or tab bar controller, you
can govern whether its view underlaps a top bar (navigation bar) or bottom bar (tool‐
bar, tab bar) with these UIViewController properties:

edgesForExtendedLayout

A UIRectEdge. The default is .all, meaning that this view controller’s view will
underlap a translucent top bar or a translucent bottom bar. The other extreme
is .none, meaning that this view controller’s view won’t underlap top and bottom
bars. Other possibilities are .top (underlap translucent top bars only)
and .bottom (underlap translucent bottom bars only).

extendedLayoutIncludesOpaqueBars

If true, then if edgesForExtendedLayout permits underlapping of bars, those
bars will be underlapped even if they are opaque. The default is false, meaning
that only translucent bars are underlapped.

Resizing Events
A UIViewController receives events that notify it of pending view size changes. (Trait
collections, size classes, and view layout events were discussed in Chapter 1.)

The following events are associated primarily with rotation of the interface (as well as
with iPad multitasking; see Chapter 9); UIViewController receives them by virtue of
adopting the appropriate protocol:

willTransition(to:with:) (UIContentContainer protocol)
The first parameter is the new trait collection (a UITraitCollection). Sent when
the app is about to undergo a change in the trait collection (because the size
classes will change). Common examples are rotation of 90 degrees on an iPhone,
or a change between fullscreen and splitscreen on an iPad. This event is not sent
on launch or when your view controller’s view is first embedded into the inter‐
face. If you override this method, call super.

viewWillTransition(to:with:) (UIContentContainer protocol)
The first parameter is the new size (a CGSize). Sent when the app is about to
undergo rotation (even if the rotation turns out to be 180 degrees and the size

320 | Chapter 6: View Controllers

won’t actually change) or an iPad multitasking size change. The old size is still
available as self.view.bounds.size. This event is not sent on launch or when
your view controller’s view is first embedded into the interface. If you override
this method, call super.

traitCollectionDidChange(_:) (UITraitEnvironment protocol)
Sent after the trait collection changes. The parameter is the old trait collection;
the new trait collection is available as self.traitCollection. Sent after the trait
collection changes, including on launch or when the trait collection is set for the
first time (in which case the old trait collection will be nil).

(The with: parameter in the first two methods is a transition coordinator; I’ll
describe its use later in this chapter.)

In addition, a UIViewController receives these events related to the layout of its view:

updateViewConstraints

The view is about to be told to update its constraints (updateConstraints),
including at application launch. If you override this method, call super.

viewWillLayoutSubviews

viewDidLayoutSubviews

These events surround the moment when the view is sent layoutSubviews,
including at application launch.

In a situation where all these events are sent, the order is:

• willTransition(to:with:) (the trait collection)
• viewWillTransition(to:with:) (the size)
• updateViewConstraints

• traitCollectionDidChange(_:)

• viewWillLayoutSubviews

• viewDidLayoutSubviews

There is no guarantee that any of these events, if sent, will be sent exactly once. Your
code should take some care to do nothing if nothing relevant has changed.

Your view can be resized under many circumstances, such as the showing and
hiding of a navigation bar that isn’t underlapped, without the viewWill-
TransitionToSize:... event being sent. Thus, to detect these changes, you’ll
have to fall back on layout events such as viewWillLayoutSubviews. I regard this
as a flaw in the iOS view controller event architecture.

View Resizing | 321

Rotation
Your app can rotate, moving its top to correspond to a different edge of the device’s
screen. Rotation expresses itself in two ways:

The status bar orientation changes
You can hear about this (though this will rarely be necessary) by way of these app
delegate events and notifications:

• application(_:willChangeStatusBarOrientation:duration:) (and the
corresponding .UIApplicationWillChangeStatusBarOrientation notifica‐
tion)

• application(_:didChangeStatusBarOrientation:) (and the correspond‐
ing .UIApplicationDidChangeStatusBarOrientation notification)

The current orientation (which is also the app’s current orientation) is available
from the UIApplication as its statusBarOrientation; the app delegate methods
also provide the other orientation (the one we are changing to or from, respec‐
tively) as the second parameter. Possible values (UIInterfaceOrientation) are:

• .portrait

• .portraitUpsideDown

• .landscapeLeft

• .landscapeRight

Two global convenience functions, UIInterfaceOrientationIsLandscape and
UIInterfaceOrientationIsPortrait, take a UIInterfaceOrientation and return
a Bool.

The view controller’s view is resized
The view controller receives events related to resizing, as I described in the pre‐
ceding section. These may or may not include a change in the trait collection.
Thus, the most general way to learn that rotation is taking place is by detecting
the size change, through viewWillTransition(to:with:). On the other hand,
you are more likely to care about a 90 degree rotation on an iPhone than any
other kind of rotation, and in that case detection of the trait collection change,
through willTransition(to:with:), may be appropriate.

There are two complementary uses for rotation:

Compensatory rotation
The app rotates to compensate for the orientation of the device, so that the app
appears right way up with respect to how the user is holding the device.

322 | Chapter 6: View Controllers

Forced rotation
The app rotates when a particular view appears in the interface, or when the app
launches, to indicate that the user needs to rotate the device in order to view the
app the right way up. This is typically because the interface has been specifically
designed, in the face of the fact that the screen is not square, to appear in just one
orientation (portrait or landscape).

In the case of the iPhone, no law says that your app has to perform compensatory
rotation. Most of my iPhone apps do not do so; indeed, I have no compunction about
doing just the opposite, namely forced rotation. My view controller views often look
best in just one orientation (either just portrait or just landscape), and they stub‐
bornly stay there regardless of how the user holds the device. A single app may con‐
tain view controller views that work best in different orientations; thus, my app forces
the user to rotate the device differently depending on what view is being displayed.
This is reasonable, because the iPhone is small and easily reoriented with a twist of
the user’s wrist, and it has a natural right way up. iPhone apps do not generally rotate
to an upside-down orientation, because the user is unlikely to hold the device that
way.

On the other hand, Apple thinks of an iPad as having no natural top, and would pre‐
fer iPad apps to rotate to at least two opposed orientations (such as portrait with the
button on the bottom and portrait with the button on the top), and preferably to all
four possible orientations, so that the user isn’t restricted in how the device is held.

It’s trivial to let your app rotate to two opposed orientations, because once the app is
set up to work in one of them, it can work with no change in the other. But allowing a
single interface to rotate between two orientations that are 90 degrees apart is trickier,
because its dimensions must change — roughly speaking, its height and width are
transposed — and this may require a change of layout and might even call for more
substantial alterations, such as removal or addition of part of the interface. A good
example is the behavior of Apple’s Mail app on the iPad: in landscape, the master pane
and the detail pane appear side by side, but in portrait, the master pane is removed
and must be summoned as a temporary overlay on top of the detail pane.

Permitting compensatory rotation
By default, when you create an Xcode project, the resulting app will perform compen‐
satory rotation in response to the user’s rotation of the device. For an iPhone app, this
means that the app can appear with its top at the top of the device or either of the two
sides of the device. For an iPad app, this means that the app can assume any orienta‐
tion.

If the default behavior isn’t what you want, it is up to you to change it. There are three
levels at which you can make changes:

View Resizing | 323

• The app itself, in its Info.plist, may declare once and for all every orientation the
interface will ever be permitted to assume. It does this under the “Supported
interface orientations” key, UISupportedInterfaceOrientations (supplemented,
for a universal app, by “Supported interface orientations (iPad),” UISupported-
InterfaceOrientations~ipad). These keys can be set through checkboxes when
you edit the app target, in the General tab.

• The app delegate may implement the application(_:supportedInterface-
OrientationsFor:) method, returning a bitmask listing every orientation the
interface is permitted to assume. This list overrides the Info.plist settings. Thus,
the app delegate can do dynamically what the Info.plist can do only statically.
application(_:supportedInterfaceOrientationsFor:) is called at least once
every time the device rotates.

• The top-level view controller — that is, the root view controller, or a view con‐
troller presented fullscreen — may override the supportedInterface-

Orientations property, returning a bitmask listing a set of orientations that
intersects the set of orientations permitted by the app or the app delegate. The
resulting intersection will then be the set of orientations permitted at that
moment. This intersection must not be empty; if it is, your app will crash (with a
useful message: “Supported orientations has no common orientation with the
application”). supportedInterfaceOrientations is consulted at least once every
time the device rotates.
The top-level view controller can also override shouldAutorotate. This is a Bool,
and the default is true. shouldAutorotate is consulted at least once every time
the device rotates; if it returns false, the interface will not rotate to compensate
at this moment, and supportedInterfaceOrientations is not consulted.

Built-in parent view controllers, when they are top-level view controller, do not
automatically consult their children about rotation. If your view controller is a
child view controller of a UITabBarController or a UINavigationController, it
has no direct say in how the app rotates. Those parent view controllers, however,
do consult their delegates about rotation, as I’ll explain later.

A UIViewController class method attemptRotationToDeviceOrientation prompts
the runtime to do immediately what it would do if the user were to rotate the device,
namely to walk the three levels I’ve just described and, if the results permit rotation of
the interface to match the current device orientation, to rotate the interface. This
would be useful if, say, your view controller had previously returned false from
shouldAutorotate, but is now for some reason prepared to return true and wants to
be asked again, immediately.

324 | Chapter 6: View Controllers

The bitmask you return from application(_:supportedInterfaceOrientations-
For:) or supportedInterfaceOrientations is a UIInterfaceOrientationMask. It may
be one of these values, or multiple values combined:

• .portrait

• .landscapeLeft

• .landscapeRight

• .portraitUpsideDown

• .landscape (a combination of .left and .right)
• .all (a combination of .portrait, .upsideDown, .left, and .right)
• .allButUpsideDown (a combination of .portrait, .left, and .right)

For example:

override var supportedInterfaceOrientations : UIInterfaceOrientationMask {
 return .portrait
}

If your code needs to know the current physical orientation of the device (as opposed
to the current orientation of the app), it can ask the device:

let orientation = UIDevice.current.orientation

Possible results (UIDeviceOrientation) are .unknown, .portrait, and so on. Global
convenience functions UIDeviceOrientationIsPortrait and UIDeviceOrientation-
IsLandscape take a UIDeviceOrientation and return a Bool. By the time you get a
rotation-related event, the device’s orientation has already changed.

Because of the iPad multitasking architecture (Chapter 9), an iPad app that
doesn’t permit all four orientations must include in its Info.plist the UIRequires-
FullScreen key with a value of YES, so as to opt out of multitasking. Moreover, if
the app’s Info.plist does not include UIRequiresFullScreen and does permit all
four orientations, then supportedInterfaceOrientations and should-

Autorotate are never consulted, presumably because the answer is known in
advance.

Initial orientation
I’ve talked about how to determine what orientations your app can support in the
course of its lifetime; but what about its initial orientation, the very first orientation
your app will assume when it launches?

On the iPad, an app has no fixed initial orientation. iPad apps are supposed to be
more or less orientation-agnostic, so the app will launch into whatever permitted ori‐
entation is closest to the device’s current orientation at launch time.

View Resizing | 325

An iPhone app would like to launch into portrait, but it may launch into landscape
for various reasons, depending on how the device is held and whether the Info.plist
includes portrait orientation (UIInterfaceOrientationPortrait):

Device is held in landscape
If both your Info.plist and your initial root view controller permit portrait orien‐
tation, but the user is holding the device in a landscape orientation that is also
permitted, then the app will launch normally, correctly, and fully into portrait
orientation, appearing to the user in portrait, and will then almost immediately
afterwards visibly rotate to landscape. This is essentially no different than if the
user had been holding the device in portrait orientation while launching your
app and then rotated it to landscape later.

There is no initial rotation, so no initial rotation events arrive. The app launches
in portrait, and layout is performed. Then rotation is signalled by trait and size
changes, and layout is performed again.

Launch does not allow portrait
If your Info.plist does not include portrait orientation, then the app launches
directly into landscape. Which landscape orientation the app will prefer is dicta‐
ted by the order in which the landscape orientations are listed in the Info.plist. If,
say, the first listing is “Landscape (left home button)” (UIInterfaceOrientation-
LandscapeLeft), but the user is holding the device in landscape with the Home
button at the right, then the app will launch directly into landscape upside down
(from the user’s point of view), and will then visibly rotate 180 degrees.

There is no initial rotation, so no initial rotation events arrive. If there is a 180-
degree rotation, it signals a size change after layout.

Launch allows portrait but root view controller does not
If your Info.plist does include portrait orientation but your initial root view con‐
troller does not permit portrait orientation, then the app will start out in portrait
orientation but will rotate to landscape. The order of orientations listed in the
Info.plist makes no difference: the app will initially appear to the user as if the
home button were on the right, and if in fact it is on the left, the app will then
visibly rotate 180 degrees.

The initial rotation will be signalled by a trait collection change but no size
change. Then layout takes place. If there is a 180-degree rotation, it signals a size
change after layout.

(This behavior, introduced in iOS 9, is different from how things worked in iOS 8
and before, where the order of orientations in the Info.plist mattered. I regard the
new behavior as somewhat incoherent. A possible workaround is to exclude por‐
trait orientation from the Info.plist but include it in your implementation of

326 | Chapter 6: View Controllers

application(_:supportedInterfaceOrientationsFor:); launch behavior will
then be identical to the preceding case.)

View Controller Manual Layout
A view controller governs its main view, and may well take charge of populating it
with subviews and configuring those subviews. What if that involves participating
manually in the layout of those subviews? As we have seen, a view controller’s view
can be resized, both as the view is first put into the interface and later as the app runs
and is rotated. Where should your view controller’s layout code be placed in order to
behave coherently in the face of these potential size changes?

Let’s start with the problem of initial layout. There is a natural temptation to perform
initial layout-related tasks in viewDidLoad. This method is extraordinarily conve‐
nient. It is guaranteed to be called exactly once in the life of the view controller; that
moment is as early as possible in the life of the view controller; and at that time, the
view controller has its view, and if it got that view from a nib, properties connected to
outlets from that nib have been set. So this seems like the perfect place for initializa‐
tions. And so it is — but initialization and layout are not the same thing.

Remember, at the time viewDidLoad is called, the view controller’s view has been
loaded, but it has not yet been inserted into the interface! And, in particular, the view
has not yet been fully resized for the first time. Thus, you cannot do anything here
that depends upon knowing the dimensions of the view controller’s view — for the
simple reason that you do not know them. It is a capital mistake to assume that you
do know them, and beginners often make this mistake.

Here’s an elementary (and artifical) example. Suppose we wish, in code, to create a
small black square subview and place it at the top of our view controller’s main view,
centered horizontally. A naïve attempt might look like this:

override func viewDidLoad() {
 super.viewDidLoad()
 let v = UIView(frame:CGRect(0,0,10,10))
 v.backgroundColor = .black
 v.center = CGPoint(self.view.bounds.width/2,5)
 self.view.addSubview(v)
}

That code assumes that self.view.bounds.width at the time viewDidLoad is called is
the width that our main view will have after it is resized and the user sees it. That
might be true, but then again it might not. That code is asking for trouble. You should
not be doing layout in viewDidLoad. It’s too soon.

View Controller Manual Layout | 327

However, you can certainly create and insert this black subview in viewDidLoad and
configure it for future layout. For example, it is perfectly fine, and completely normal,
to insert a view and give it autolayout constraints:

let v = UIView()
v.translatesAutoresizingMaskIntoConstraints = false
v.backgroundColor = .black
self.view.addSubview(v)
NSLayoutConstraint.activate([
 v.widthAnchor.constraint(equalToConstant: 10),
 v.heightAnchor.constraint(equalToConstant: 10),
 v.topAnchor.constraint(equalTo: self.view.topAnchor),
 v.centerXAnchor.constraint(equalTo: self.view.centerXAnchor)
])

That is not a case of doing manual layout in viewDidLoad. The constraints are not
layout; they are instructions as to how this view should be sized and positioned by the
runtime when layout does happen, as I explained in Chapter 1. Autoresizing would
work fine here too; if you center the black subview horizontally and give it an autore‐
sizing mask that keeps it centered regardless of future changes in the main view’s size,
all will be well.

Clearly, if you can lay out your views with constraints or autoresizing, either in code
in viewDidLoad or in the nib editor, you should do so. Even if you want to respond to
a change in size classes, you may be able to do so by means of conditional views and
constraints, configured entirely in the nib editor. But let’s say that, for some reason,
you can’t do that or you don’t want to. Let’s say you want to govern this view’s layout
actively and entirely in view controller code. Where should that code go?

Let’s start with the question of where to put code that positions the black square sub‐
view initially. The primary layout-related messages we are guaranteed to get in our
view controller as the app launches are traitCollectionDidChange(_:) and view-
WillLayoutSubviews. Of these, I prefer viewWillLayoutSubviews; after all, its very
name means that we are about to perform layout on our subviews, meaning that our
main view itself has achieved its initial size.

However, we then face the problem that viewWillLayoutSubviews may be called
many times over the life of our view controller. Moreover, when it is called, layout is
about to happen; we mustn’t impinge on that process or do more work than we abso‐
lutely have to. In this case, a sensible implementation is to use a property flag to make
sure we initialize only once; in this case, I’ll set an Optional, which will serve both as a
flag and as a future reference to this view:

weak var blackSquare : UIView?
override func viewWillLayoutSubviews() {
 if self.blackSquare == nil { // both reference and flag
 let v = UIView(frame:CGRect(0,0,10,10))
 v.backgroundColor = .black

328 | Chapter 6: View Controllers

 v.center = CGPoint(self.view.bounds.width/2,5)
 self.view.addSubview(v)
 self.blackSquare = v
 }
}

The black square will now certainly be horizontally centered at launch time. This
brings us to our second problem — how to deal with subsequent rotation. Presume
that we want to keep the black subview horizontally centered in response to further
changes in our main view’s size. For that, we have a choice of two primary events —
willTransition(to:with:) (the trait collection) and viewWill-

Transition(to:with:) (the size).

First, how to choose between the two methods? The question here is, do you want to
respond to rotation on iPhone only, or on both iPhone and iPad? The trouble with
the trait collection is that it doesn’t change when the iPad rotates. Therefore, if you
want to learn about iPad rotation, you will need to be notified of the size change. Let’s
say this is a universal app, and we want to do layout during rotation on iPad as well as
iPhone. So we’re going to implement viewWillTransition(to:with:).

Second, how should our implementation work? We should not assume, just because
we are called, that the size is actually changing; this method is called even on rota‐
tions of 180 degrees. And if we are going to reposition our black subview, we should
not reposition it immediately, in part because the size change hasn’t happened yet,
and in part because the subview will then jump to its new position, whereas we want
to animate the change as part of the rotation animation. With constraint-based lay‐
out, the repositioning is part of the rotation animation, because layout performed
during an animation is itself animated. We want our manual layout to behave like
that.

The solution lies in the second parameter. This is a UIViewControllerTransition‐
Coordinator, whose job is to perform the rotation animation and to attach to it any
animations we care to supply. To do that, we call the coordinator’s method
animate(alongsideTransition:completion:). The first parameter is an animations
function; the second is an optional completion function to be executed when the
rotation is over, which I’ll take advantage of in a later example.

Here’s our implementation, making use of the transition coordinator to animate our
subview’s position change:

override func viewWillTransition(to sz: CGSize,
 with coordinator: UIViewControllerTransitionCoordinator) {
 super.viewWillTransition(to:sz, with:coordinator)
 if sz != self.view.bounds.size {
 coordinator.animate(alongsideTransition:{ _ in

View Controller Manual Layout | 329

 self.blackSquare?.center = CGPoint(sz.width/2,5)
 })
 }
}

In that example, our manual layout was distributed over two events, viewWillLayout-
Subviews and viewWillTransition(to:with:) (the size). Sometimes, it is necessary
to involve three events, implementing willTransition(to:with:) (the trait collec‐
tion) as well. In this next example, I have a large green rectangle that should occupy
the left one-third of the interface, but only when we are in landscape orientation (the
main view’s width is larger than its height) and only when we are in a .regular hori‐
zontal size class (we might be on an iPhone 6 Plus but not on any other kind of
iPhone). This rectangle should come and go in a smooth animated fashion, of course;
let’s decide to have it appear from, or vanish off to, the left of the interface.

Clearly we have to implement viewWillTransition(to:with:) (the size), in order to
hear about rotation on an iPad. But we will also need to implement will-
Transition(to:with:) (the trait collection), in order to know what our horizontal
size class is about to be. If there is going to be change of size class, we will hear about
the trait collection transition before we hear about the size transition, so we’ll store
the trait collection information in a property where the size transition method can
learn about it.

We’re going to have three properties: a lazy UIView property to ensure that we have a
green view when we first need one (in real life, this would construct whatever this
interface element really is); a Bool flag so that we don’t run our initial viewWill-
LayoutSubviews code more than once; and the upcoming trait collection. And I’ll
factor my test for whether the green view should appear into a utility function:

lazy var greenView : UIView = {
 let v = UIView()
 v.backgroundColor = .green
 return v
}()
var firstTime = true
var nextTraitCollection = UITraitCollection()
func greenViewShouldAppear(size sz: CGSize) -> Bool {
 let tc = self.nextTraitCollection
 if tc.horizontalSizeClass == .regular {
 if sz.width > sz.height {
 return true
 }
 }
 return false
}

Our implementation of willTransition(to:with:) merely keeps self.nextTrait-
Collection updated:

330 | Chapter 6: View Controllers

override func willTransition(to newCollection: UITraitCollection,
 with coordinator: UIViewControllerTransitionCoordinator) {
 super.willTransition(to:newCollection, with:coordinator)
 self.nextTraitCollection = newCollection
}

Now for our actual manual layout. We need to decide about the green view at launch
time, so we implement viewWillLayoutSubviews, using our flag to make sure we
decide only once. The implementation is simple: either we place the green view into
the interface or we don’t:

override func viewWillLayoutSubviews() {
 if self.firstTime {
 self.firstTime = false
 self.nextTraitCollection = self.traitCollection
 let sz = self.view.bounds.size
 if self.greenViewShouldAppear(size:sz) {
 let v = self.greenView
 v.frame = CGRect(0,0,sz.width/3, sz.height)
 self.view.addSubview(v)
 }
 }
}

The implementation of viewWillTransition(to:with:) is more complicated. We
want to participate in the animation rotation, so the work must be done in a call to
animate(alongsideTransition:completion:). Moreover, there are two distinct
cases: either we insert the green view off to the left of the interface and animate it
rightwards onto the scene, or we animate the existing green view leftwards off the
scene and (in the completion function) remove it from the interface:

override func viewWillTransition(to sz: CGSize,
 with coordinator: UIViewControllerTransitionCoordinator) {
 super.viewWillTransition(to:sz, with:coordinator)
 if sz != self.view.bounds.size {
 if self.greenView.window != nil {
 if !self.greenViewShouldAppear(size:sz) {
 coordinator.animate(alongsideTransition: { _ in
 let f = self.greenView.frame
 self.greenView.frame =
 CGRect(-f.width,0,f.width,f.height)
 }) { _ in
 self.greenView.removeFromSuperview()
 }
 }
 } else {
 if self.greenViewShouldAppear(size:sz) {
 self.greenView.frame =
 CGRect(-sz.width/3,0,sz.width/3,sz.height)
 self.view.addSubview(self.greenView)
 coordinator.animate(alongsideTransition: { _ in

View Controller Manual Layout | 331

 self.greenView.frame.origin = CGPoint.zero
 })
 }
 }
 }
}

(This tripartite implementation is complicated, but unfortunately I see no way
around it. Things were much simpler in iOS 7 and before, where your view controller
received rotation events with rotate in their names. In iOS 8, those events were
replaced by the willTransition events, and there’s no change of trait collection when
an iPad rotates, so you have to bend over backwards to handle all the possibilities
coherently.)

Presented View Controller
Back when the only iOS device was an iPhone, a presented view controller was called
a modal view controller. When a modal view controller was presented, the root view
controller remained in place, but its view was taken out of the interface and the
modal view controller’s view was used instead. Thus, this was the simplest way to
replace the entire interface with a different interface.

You can see why this configuration is characterized as “modal.” The presented view
controller’s view has, in a sense, blocked access to the “real” view, the root view con‐
troller’s view. The user is forced to work in the presented view controller’s view, until
the modal view controller is dismissed — its view is removed and the “real” view is
visible again — similar to a modal dialog in a desktop application, where the user
can’t do anything else but work in the dialog as long as it is present. A presented view
controller’s view often reinforces this analogy with obvious dismissal buttons with
titles like Save, Done, or Cancel.

The color picker view in my own Zotz! app is a good example (Figure 6-7); this is an
interface that says, “You are now configuring a color, and that’s all you can do; change
the color or cancel, or you’ll be stuck here forever.” The user can’t get out of this view
without tapping Cancel or Done, and the view that the user was previously using is
visible as a blur behind this view, waiting for the user to return to it.

Figure 6-5, from my Latin flashcard app, is another example of a presented view. It
has a Cancel button, and the user is in a special “mode,” performing a drill exercise
rather than scrolling through flashcards.

Nevertheless, the “modal” characterization is not always apt. A presented view con‐
troller might be no more than a technique that you, the programmer, have used to
alter the interface; it might not feel “modal” at all. A presented view controller’s view
may have a complex interface; it may have child view controllers; it may present yet
another view controller; it may take over the interface permanently, with the user

332 | Chapter 6: View Controllers

Figure 6-7. A modal view

never returning to the interface that it replaced. Furthermore, the range of ways in
which a presented view controller’s view can be displayed now goes far beyond
merely replacing the root view controller’s view. For example:

• Instead of replacing the entire interface, a presented view controller’s view can
replace a subview within the existing interface.

• A presented view controller’s view may cover the existing interface only partially,
while the existing interface is never removed.

Presentation and Dismissal
The two key methods for presenting and dismissing a view controller are:

present(_:animated:completion:)

To make a view controller present another view controller, you send the first view
controller this message, handing it the second view controller, which you will
probably instantiate for this very purpose. (The first view controller is very typi‐
cally self.)

We now have two view controllers that stand in the relationship of being one
another’s presentingViewController and presentedViewController respec‐

Presented View Controller | 333

tively. The presented view controller is retained, and its view effectively replaces
or covers the presenting view controller’s view in the interface (I’ll talk later about
ways to refine that arrangement).

dismiss(animated:completion:)

The “presented” state of affairs described in the previous paragraph persists until
the presenting view controller is sent this message. The presented view control‐
ler’s view is then removed from the interface, the original interface is restored,
and the presented view controller is released; it will thereupon typically go out of
existence, together with its view, its child view controllers and their views, and so
on.

As the view of the presented view controller appears, and again when it is dismissed,
there’s an option for animation to be performed as the transition takes place (the
animated: argument, a Bool). The completion: parameter, which can be nil, lets
you supply a function to be run after the transition (including the animation) has
occurred. I’ll talk later about how to govern the nature of the animation.

The presenting view controller (the presented view controller’s presentingView-
Controller) is not necessarily the view controller to which you sent
present(_:animated:completion:). It will help if we distinguish three roles that
view controllers can play in presenting a view controller:

Presented view controller
The view controller specified as the first argument to
present(_:animated:completion:).

Original presenter
The view controller to which present(_:animated:completion:) was sent.
Apple sometimes refers to this view controller as the source; “original presenter”
is my own term.

The presented view controller is set as the original presenter’s presentedView-
Controller.

Presenting view controller
The view controller whose view is replaced or covered by the presented view con‐
troller’s view. By default, it is the view controller whose view is the entire interface
— namely, either the root view controller or an already existing presented view
controller. It might not be the same as the original presenter.

This view controller is set as the presented view controller’s presentingView-
Controller. The presented view controller is set as the presenting view control‐
ler’s presentedViewController. (Thus, the presented view controller might be
the presentedViewController of two different view controllers.)

334 | Chapter 6: View Controllers

The receiver of dismiss(animated:completion:) may be any of those three objects;
the runtime will use the linkages between them to transmit the necessary messages up
the chain on your behalf to the presentingViewController.

You can test whether a view controller’s presentedViewController or presenting-
ViewController is nil to learn whether presentation is occurring. For example, a
view controller whose presentingViewController is nil is not a presented view con‐
troller at this moment.

A view controller can have at most one presentedViewController. If you send
present(_:animated:completion:) to a view controller whose presentedView-
Controller isn’t nil, nothing will happen and the completion function is not called
(and you’ll get a warning from the runtime).

However, a presented view controller can itself present a view controller, so there can
be a chain of presented view controllers. If you send
dismiss(animated:completion:) to a view controller in the middle of a presentation
chain — a view controller that has both a presentingViewController and a
presentedViewController — then its presentedViewController is dismissed.

If you send dismiss(animated:completion:) to a view controller whose presented-
ViewController is nil and that has no presentingViewController, nothing will
happen (not even a warning in the console), and the completion function is not
called.

Let’s make one view controller present another. We could do this simply by connect‐
ing one view controller to another in a storyboard with a modal segue, but I don’t
want you to do that: a modal segue calls present(_:animated:completion:) for you,
whereas I want you to call it yourself.

So start with an iPhone project made from the Single View app template. This con‐
tains one view controller class, called ViewController. Our first move must be to add
a second view controller class, an instance of which will function as the presented
view controller:

1. Choose File → New → File and specify iOS → Source → Cocoa Touch Class.
Click Next.

2. Name the class SecondViewController, make sure it is a subclass of UIView‐
Controller, and check the XIB checkbox so that we can design this view control‐
ler’s view quickly and easily in the nib editor. Click Next.

3. Confirm the folder, group, and app target membership, and click Create.
4. Edit SecondViewController.xib, and do something there to make the view distinc‐

tive, so that you’ll recognize it when it appears; for example, give it a red back‐
ground color.

Presented View Controller | 335

5. In ViewController.swift, add some code that instantiates SecondViewController
and presents it:

@IBAction func doPresent(_ sender: Any?) {
 let svc = SecondViewController(nibName: nil, bundle: nil)
 self.present(svc, animated:true)
}

6. Finally, let’s put a button into the interface that triggers doPresent. Edit
Main.storyboard and add a button to the ViewController’s view’s interface. Con‐
nect that button to ViewController’s doPresent.

Run the project. In ViewController’s view, tap the button. SecondViewController’s
view slides into place over ViewController’s view.

In our lust for instant gratification, we have neglected to provide a way to dismiss the
presented view controller. If you’d like to do that, edit SecondViewController.xib, put a
button into SecondViewController’s view, and connect it to an action method in
SecondViewController.swift:

@IBAction func doDismiss(_ sender: Any?) {
 self.presentingViewController!.dismiss(animated:true)
}

Run the project. You can now alternate between ViewController’s view and Second‐
ViewController’s view, presenting and dismissing in turn. Go ahead and play for a
while with your exciting new app; I’ll wait.

Configuring a Presentation
This section describes some configurable aspects of how a view controller’s view
behaves as the view controller is presented.

Transition style
When a view controller is presented and later when it is dismissed, a simple anima‐
tion of its view can be performed, according to whether the animated: parameter of
the corresponding method is true. There are a few different built-in animation types
(modal transition styles) to choose from.

Instead of choosing a simple built-in modal transition style, you can supply your
own animation, as I’ll explain later in the chapter.

Your choice of built-in transition style is not passed as a parameter when presenting
or dismissing a view controller; rather, it is attached beforehand to a presented view
controller as its modalTransitionStyle property. This value can be set in code or in
the nib editor. Your choices (UIModalTransitionStyle) are:

336 | Chapter 6: View Controllers

.coverVertical (the default)
The view slides up from the bottom to cover the presenting view controller’s view
on presentation and down to reveal it on dismissal. The “bottom” is defined dif‐
ferently depending on the orientation of the device and the orientations the view
controllers support.

.flipHorizontal

The view flips on the vertical axis as if the two views were the front and back of a
piece of paper. The “vertical axis” is the device’s long axis, regardless of the app’s
orientation.

This transition style provides one of those rare occasions where the user may
directly glimpse the window behind the transitioning views. You may want to set
the window’s background color appropriately.

.crossDissolve

The views remain stationary, and one fades into the other.

.partialCurl

The presenting view controller’s view curls up like a page in a notepad to reveal
the presented view controller’s view.

In iOS 7 and before, an image of the .partialCurl curl remains covering the
top-left region of the presented view; if the user clicks on the curl,
dismiss(animated:completion:) is called on the original presenter. In iOS 8
and later, the curl is not visible, but tapping where it would be dismisses the pre‐
sented view controller anyway! That will probably surprise and confuse the user;
for that reason, I recommend avoiding .partialCurl entirely.

Presentation style
By default, the presented view controller’s view occupies the entire screen, completely
replacing that of the presenting view controller. But you can choose from some other
built-in options expressing how the presented view controller’s view should cover the
screen (modal presentation styles).

Instead of choosing a simple built-in modal presentation style, you can custom‐
ize the presentation to place the presented view controller’s view anywhere you
like, as I’ll explain later in this chapter.

To choose a presentation style, set the presented view controller’s modalPresentation-
Style property. This value can be set in code or in the nib editor. Your choices
(UIModalPresentationStyle) are:

Presented View Controller | 337

.fullScreen

The default. The presenting view controller is the root view controller or a full‐
screen presented view controller, and its view — meaning the entire interface —
is replaced.

.overFullScreen

Similar to .fullScreen, but the presenting view controller’s view is not replaced;
instead, it stays where it is, possibly being visible during the transition, and
remaining visible behind the presented view controller’s view if the latter has
some transparency.

.pageSheet

Similar to .fullScreen, but in portrait orientation on the iPad it’s a little shorter
(leaving a gap behind the status bar), and in landscape orientation on the iPad
and the iPhone 6 Plus it’s also narrower, with the presenting view controller’s
view remaining partially visible (and dimmed) behind it. Treated as .fullScreen
on the iPhone (including the iPhone 6 Plus in portrait).

.formSheet

Similar to .pageSheet, but on the iPad it’s even smaller, allowing the user to see
more of the presenting view controller’s view behind it. As the name implies, this
is intended to allow the user to fill out a form (Apple describes this as “gathering
structured information from the user”). On the iPhone 6 Plus in landscape,
indistinguishable from .pageSheet. Treated as .fullScreen on the iPhone
(including the iPhone 6 Plus in portrait).

A .formSheet presented view controller, even on an iPad, has a .compact hori‐
zontal size class.

.currentContext

The presenting view controller can be any view controller, such as a child view
controller. The presented view controller’s view replaces the presenting view con‐
troller’s view, which may have been occupying only a portion of the screen. I’ll
explain in a moment how to specify the presenting view controller.

.overCurrentContext

Like .currentContext, but the presented view controller’s view covers the pre‐
senting view controller’s view rather than replacing it. Again, this may mean that
the presented view controller’s view now covers only a portion of the
screen. .overCurrentContext will often be a better choice than .current-
Context, because some subviews don’t behave well when automatically removed
from their superview and restored later.

338 | Chapter 6: View Controllers

When the presented view controller’s modalPresentationStyle is .currentContext
or .overCurrentContext, a decision has to be made by the runtime as to what view
controller should be the presenting view controller. This will determine what view
will be replaced or covered by the presented view controller’s view. The decision
involves another UIViewController property, definesPresentationContext (a
Bool), and possibly still another UIViewController property, providesPresentation-
ContextTransitionStyle. Here’s how the decision operates:

1. Starting with the original presenter (the view controller to which
present(_:animated:completion:) was sent), we walk up the chain of parent
view controllers, looking for one whose definesPresentationContext property
is true. If we find one, that’s the one; it will be the presentingViewController,
and its view will be replaced or covered by the presented view controller’s view.
(If we don’t find one, things work as if the presented view controller’s modal-
PresentationStyle had been .fullScreen.)

2. If, during the search just described, we find a view controller whose defines-
PresentationContext property is true, we look to see if that view controller’s
providesPresentationContextTransitionStyle property is also true. If so,
that view controller’s modalTransitionStyle is used for this transition anima‐
tion, instead of using the presented view controller’s modalTransitionStyle.

To illustrate, I need a parent–child view controller arrangement to work with. This
chapter hasn’t yet discussed any parent view controllers in detail, but the simplest is
UITabBarController, which I discuss in the next section, and it’s easy to create a
working app with a UITabBarController-based interface, so that’s the example I’ll use.

1. Start with the Tabbed app template.
2. As in the previous example, I want us to create and present the presented view

controller manually, rather than letting the storyboard do it automatically; so
make a new view controller class with an accompanying .xib file, to use as a pre‐
sented view controller — call it ExtraViewController.

3. In ExtraViewController.xib, give the view a distinctive background color, so you’ll
recognize it when it appears.

4. In the storyboard, put a button in the First View Controller view, and connect it
to an action method in FirstViewController.swift that summons the new view
controller as a presented view controller:

Presented View Controller | 339

@IBAction func doPresent(_ sender: Any?) {
 let vc = ExtraViewController(nibName: nil, bundle: nil)
 vc.modalTransitionStyle = .flipHorizontal
 self.present(vc, animated: true)
}

Run the project and tap the button. Observe that the presented view controller’s view
occupies the entire interface, covering even the tab bar; it replaces the root view,
because the presentation style is .fullScreen. The presenting view controller is the
root view controller, which is the UITabBarController.

Now change the code to look like this:

@IBAction func doPresent(_ sender: Any?) {
 let vc = ExtraViewController(nibName: nil, bundle: nil)
 vc.modalTransitionStyle = .flipHorizontal
 self.definesPresentationContext = true // *
 vc.modalPresentationStyle = .currentContext // *
 self.present(vc, animated: true)
}

Run the project and tap the button. The presented view controller’s view replaces only
the first view controller’s view; the tab bar remains visible. That’s because the presen‐
ted view controller’s modalPresentationStyle is .currentContext, and defines-
PresentationContext is true in FirstViewController, which is the original presenter.
Thus the search for a context stops in FirstViewController, which thus becomes the
presenting view controller — meaning that the presented view replaces FirstView‐
Controller’s view instead of the root view.

We can also override the presented view controller’s transition animation through the
modalTransitionStyle property of the presenting view controller:

@IBAction func doPresent(_ sender: Any?) {
 let vc = ExtraViewController(nibName: nil, bundle: nil)
 vc.modalTransitionStyle = .flipHorizontal
 self.definesPresentationContext = true
 self.providesPresentationContextTransitionStyle = true // *
 self.modalTransitionStyle = .coverVertical // *
 vc.modalPresentationStyle = .currentContext
 self.present(vc, animated: true)
}

Because the presenting view controller’s providesPresentationContextTransition-
Style is true, the transition uses the .coverVertical animation belonging to the
presenting view controller, rather than the .flipHorizontal animation of the pre‐
sented view controller.

340 | Chapter 6: View Controllers

When a view controller is presented, if its presentation style is not .fullScreen, a
question arises of whether its status bar properties (prefersStatusBarHidden and
preferredStatusBarStyle) should be consulted. By default, the answer is no,
because this view controller is not the top-level view controller. To make the answer
be yes, set this view controller’s modalPresentationCapturesStatusBarAppearance
to true.

Configuration presentation in the nib editor
Most of what I’ve described so far can be configured in a .storyboard or .xib file. A
view controller’s Attributes inspector lets you set its transition style and presentation
style, as well as definesPresentationContext and providesPresentationContext-
TransitionStyle.

If you’re using a storyboard, you can configure one view controller to present another
view controller by connecting them with a Present Modally segue; to do the presenta‐
tion, you trigger the segue (or give the user a way to trigger it) instead of calling
present(_:animated:). The segue’s Attributes inspector lets you set the presentation
style and transition style (and whether there is to be animation). Dismissal is a little
more involved; either you must dismiss in code, by calling
dismiss(animated:completion:), or you must use an unwind segue. I’ll discuss trig‐
gered segues and unwind segues in detail later in this chapter.

Communication With a Presented View Controller
In real life, it is highly probable that the original presenter will have additional infor‐
mation to impart to the presented view controller as the latter is created and presen‐
ted, and that the presented view controller will want to pass information back to the
original presenter as it is dismissed. Knowing how to arrange this exchange of infor‐
mation is very important.

Passing information from the original presenter to the presented view controller is
usually easy, because the original presenter typically has a reference to the presented
view controller before the latter’s view appears in the interface. For example, suppose
the presented view controller has a public data property. Then the original presenter
can easily set this property, especially if the original presenter is the one instantiating
the presented view controller in the first place:

@IBAction func doPresent(_ sender: Any?) {
 let svc = SecondViewController(nibName: nil, bundle: nil)
 svc.data = "This is very important data!" // *
 self.present(svc, animated:true)
}

Indeed, if you’re instantiating the presented view controller in code, as we are here,
you might even give its class a designated initializer that accepts — and thus requires

Presented View Controller | 341

— this data. In my Latin vocabulary app, for example, I’ve given DrillViewController
a designated initializer init(data:) precisely so that whoever creates it must pass it
the data it will need to do its job while it exists.

Passing information back from the presented view controller to the original presenter
is a more interesting problem. The presented view controller will need to know who
the original presenter is, but it doesn’t automatically have a reference to it (the origi‐
nal presenter, remember, is not necessarily the same as the presentingView-
Controller). Moreover, the presented view controller will need to know the signature
of some method, implemented by the original presenter, which it can call in order to
hand over the information — and this needs to work regardless of the original pre‐
senter’s class.

The standard solution is to use delegation, as follows:

1. The presented view controller defines a protocol declaring a method that the pre‐
sented view controller wants to call before it is dismissed.

2. The original presenter conforms to this protocol: it declares adoption of the pro‐
tocol, and it implements the required method.

3. The presented view controller provides a means whereby it can be handed a ref‐
erence to an object conforming to this protocol. Think of that reference as the
presented view controller’s delegate. Very often, this will be a property — perhaps
called delegate — typed as the protocol. (Such a property should probably be
weak, since an object usually has no business retaining its delegate.)

4. As the original presenter creates and configures the presented view controller, it
hands the presented view controller a reference to itself, in its role as adopter of
the protocol, by assigning itself as the presented view controller’s delegate.

This sounds elaborate, but with practice you’ll find yourself able to implement it very
quickly. And you can see why it works: because its delegate is typed as the protocol,
the presented view controller is guaranteed that this delegate, if it has one, imple‐
ments the method declared in the protocol. Thus, the desired communication from
the presented view controller to whoever configured and created it is assured.

Let’s modify our example to embody this architecture. First, edit SecondView‐
Controller.swift to look like this:

protocol SecondViewControllerDelegate : class {
 func accept(data:Any!)
}
class SecondViewController : UIViewController {
 var data : Any?
 weak var delegate : SecondViewControllerDelegate?

342 | Chapter 6: View Controllers

 @IBAction func doDismiss(_ sender: Any?) {
 self.delegate?.accept(data:"Even more important data!")
 }
}

It is now ViewController’s job to adopt the SecondViewControllerDelegate protocol,
and to set itself as the SecondViewController’s delegate. If it does so, then when the
delegate method is called, ViewController will be handed the data, and it should then
dismiss the SecondViewController:

class ViewController : UIViewController, SecondViewControllerDelegate {
 @IBAction func doPresent(_ sender: Any?) {
 let svc = SecondViewController(nibName: nil, bundle: nil)
 svc.data = "This is very important data!"
 svc.delegate = self // *
 self.present(svc, animated:true)
 }
 func accept(data:Any!) {
 // do something with data here
 self.dismiss(animated:true)
 }
}

That is a perfectly satisfactory implementation, and we could stop at this point. For
completeness, I’ll just show a variation that I consider slightly better. One might
object that too much responsibility rests upon the original presenter (the delegate): it
is sent the data and then it must also dismiss the presented view controller. Perhaps
the presented view controller should hand back any data and should then dismiss
itself (as in the preceding section). Even better, the presented view controller should
hand back any data automatically, regardless of how it is dismissed.

We can arrange that by putting all the responsibility on the presented view controller.
First, edit ViewController’s accept(data:) so that it accepts the data and no more —
that is, delete the self.dismiss call. Second, back in SecondViewController, we will
implement both the task of dismissal and the task of handing back the data, separately.
To make the latter task automatic, SecondViewController will arrange to hear about
its own dismissal by implementing viewWillDisappear (discussed later in this chap‐
ter), which will then call accept(data:) to ensure that the data is handed across.
There is more than one reason why viewWillDisappear might be called; we can
ensure that this really is the moment of our own dismissal by consulting isBeing-
Dismissed. Here is what SecondViewController looks like now:

protocol SecondViewControllerDelegate : class {
 func accept(data:Any!)
}
class SecondViewController : UIViewController {
 var data : Any?
 weak var delegate : SecondViewControllerDelegate?
 @IBAction func doDismiss(_ sender: Any?) {

Presented View Controller | 343

 self.presentingViewController!.dismiss(animated:true)
 }
 override func viewWillDisappear(_ animated: Bool) {
 super.viewWillDisappear(animated)
 if self.isBeingDismissed {
 self.delegate?.accept(data:"Even more important data!")
 }
 }
}

If you’re using a storyboard and a Present Modally segue, things are a bit different.
You don’t have access to the presented view controller at the moment of creation;
instead, in the original presenter (the source of the segue) you implement
prepare(for:sender:) as a moment when the original presenter and the presented
view controller will meet, and the former can hand across any needed data, set itself
as delegate, and so forth. If you dismiss the presented view controller automatically
by way of an unwind segue, the same is true in reverse: the presented view controller
calls the delegate method in its own prepare(for:sender:). I’ll give more details
later in this chapter.

Adaptive Presentation
When a view controller with a modalPresentationStyle of .pageSheet or .form-
Sheet is about to appear, you get a second opportunity to change its effective modal-
PresentationStyle, and even to substitute a different view controller, based on the
current trait collection environment. This is called adaptive presentation. The idea is
that your presented view controller might appear one way for certain trait collections
and another way for others — for example, on an iPad as opposed to an iPhone.

To implement adaptive presentation, you use a view controller’s presentation controller
(presentationController, a UIPresentationController). Before presenting a view
controller, you set its presentation controller’s delegate (adopting the
UIAdaptivePresentationControllerDelegate protocol). Before the presented view con‐
troller’s view appears, the delegate is sent these messages:

adaptivePresentationStyle(for:traitCollection:)

Asks for a modal presentation style. The first parameter is the presentation con‐
troller; you can consult its presentationStyle to learn what the modal-
PresentationStyle would be. Return .none if you don’t want to change the
presentation style.

presentationController(_:willPresentWithAdaptiveStyle:transition-

Coordinator:)

Called just before the presentation takes place. If the adaptiveStyle: is .none,
adaptive presention is not going to take place.

344 | Chapter 6: View Controllers

presentationController(_:viewControllerForAdaptivePresentationStyle:)

Called only if adaptive presention is going to take place. Return a view controller
to be presented, substituting it for the current presented view controller (or nil
to keep the current presented view controller).

What adaptations are you permitted to perform? First, as I’ve already said, the origi‐
nal modalPresentationStyle should be .pageSheet or .formSheet. It isn’t illegal to
try to adapt from other presentation styles, but it isn’t going to work either. Then the
possibilities are as follows:

Adapt sheet to full screen
You can adapt .pageSheet or .formSheet to .fullScreen or .overFullScreen.

(If the trait collection’s horizontal size class is .compact — an iPhone, including
an iPhone 6 Plus in portrait —then if you adapt .pageSheet or .formSheet
to .pageSheet, .currentContext, .overCurrentContext, or even .popover, the
runtime behaves as if you had adapted to .fullScreen.)

Adapt page sheet to form sheet
You can adapt .pageSheet to .formSheet.

On an iPad, the difference is clearly visible; on an iPhone 6 Plus in landscape, the
two sheet types are indistinguishable.

On an iPhone (including an iPhone 6 Plus in portrait), the result is something a
little unusual and unexpected. It’s similar to .pageSheet on the iPad in portrait
orientation: it is full width, but a little shorter than full height, leaving a gap
behind the status bar. (You can also obtain this configuration by adapting .page-
Sheet or .formSheet to .none.)

For example, here’s how to present a view controller as a .pageSheet on iPad but
as .overFullScreen on iPhone:

extension ViewController : UIAdaptivePresentationControllerDelegate {
 @IBAction func doPresent(_ sender: Any?) {
 let svc = SecondViewController(nibName: nil, bundle: nil)
 svc.modalPresentationStyle = .pageSheet
 svc.presentationController!.delegate = self // *
 self.present(svc, animated:true)
 }
 func adaptivePresentationStyle(for controller: UIPresentationController,
 traitCollection: UITraitCollection) -> UIModalPresentationStyle {
 if traitCollection.horizontalSizeClass == .compact {
 return .overFullScreen
 }
 return .none // don't adapt
 }
}

Presented View Controller | 345

Now let’s extend that example by also replacing the view controller presented on iPad
with a different view controller to be presented on iPhone (this method won’t be
called when adaptivePresentationStyle returns .none):

extension ViewController : UIAdaptivePresentationControllerDelegate {
 func presentationController(_ controller: UIPresentationController,
 viewControllerForAdaptivePresentationStyle: UIModalPresentationStyle)
 -> UIViewController? {
 let newvc = ThirdViewController(nibName: nil, bundle: nil)
 return newvc
 }
}

In real life, of course, when substituting a different view controller, you might need to
prepare it before returning it (for example, giving it data and setting its delegate). A
common scenario is to return the same view controller wrapped in a navigation con‐
troller; I’ll illustrate in Chapter 9.

Presentation and Rotation
When the presenting view controller is the top-level view controller — the root view
controller, or a fullscreen presented view controller — the presented view controller
becomes the new top-level view controller. This means that its supportedInterface-
Orientations is consulted and honored. If these supportedInterfaceOrientations
do not intersect with the app’s current orientation, the app’s orientation will rotate, as
the presented view appears, to an orientation that the presented view controller sup‐
ports — and the same thing will be true in reverse when the presented view controller
is dismissed.

Thus, a presented view controller allows you to force the interface to rotate. In fact, a
presented view controller is the only officially sanctioned way to force the interface to
rotate.

Forced rotation is a perfectly reasonable thing to do, especially on the iPhone, where
the user can easily rotate the device to compensate for the new orientation of the
interface. Some views work better in portrait than landscape, or better in landscape
than portrait (especially on the small screen). Forced rotation lets you ensure that
each view appears only in the orientation in which it works best.

The presented view controller’s supportedInterfaceOrientations bitmask might
permit multiple possible orientations. The view controller may then also wish to spec‐
ify which of those multiple orientations it should have initially when it is presented.
To do so, override preferredInterfaceOrientationForPresentation; this property
is consulted before supportedInterfaceOrientations, and its value is a single
UIInterfaceOrientation (not a bitmask).

346 | Chapter 6: View Controllers

Tab Bar Controller
A tab bar (UITabBar, see also Chapter 12) is a horizontal bar containing items. Each
item is a UITabBarItem; it displays, by default, an image and a title. At all times,
exactly one of these items is selected (highlighted); when the user taps an item, it
becomes the selected item.

If there are too many items to fit on a tab bar, the excess items are automatically sub‐
sumed into a final More item. When the user taps the More item, a list of the excess
items appears, and the user can select one; the user can also be permitted to edit the
tab bar, determining which items appear in the tab bar itself and which ones spill over
into the More list.

A tab bar is an independent interface object, but it is most commonly used in con‐
junction with a tab bar controller (UITabBarController, a subclass of UIView‐
Controller) to form a tab bar interface. The tab bar controller displays the tab bar at
the bottom of its own view. From the user’s standpoint, the tab bar items correspond
to views; when the user selects a tab bar item, the corresponding view appears, filling
the remainder of the space. The user is thus employing the tab bar to choose an entire
area of your app’s functionality. In reality, the UITabBarController is a parent view
controller; you give it child view controllers, which the tab bar controller then con‐
tains, and the views summoned by tapping the tab bar items are the views of those
child view controllers.

Familiar examples of a tab bar interface on the iPhone are Apple’s Clock app and
Music app.

You can get a reference to the tab bar controller’s tab bar through its tabBar property.
In general, you won’t need this. When using a tab bar interface by way of a UITabBar‐
Controller, you do not interact (as a programmer) with the tab bar itself; you don’t
create it or set its delegate. You provide the UITabBarController with children, and it
does the rest; when the UITabBarController’s view is displayed, there’s the tab bar
along with the view of the selected item. You can, however, customize the look of the
tab bar (see Chapter 12 for details).

If a tab bar controller is the top-level view controller, it determines your app’s com‐
pensatory rotation behavior. To take a hand in that determination without having to
subclass UITabBarController, make one of your objects the tab bar controller’s dele‐
gate (UITabBarControllerDelegate) and implement these methods, as needed:

• tabBarControllerSupportedInterfaceOrientations(_:)

• tabBarControllerPreferredInterfaceOrientationForPresentation(_:)

A top-level tab bar controller also determines your app’s status bar appearance. How‐
ever, a tab bar controller implements childViewControllerForStatusBarStyle and

Tab Bar Controller | 347

childViewControllerForStatusBarHidden so that the actual decision is relegated to
the child view controller whose view is currently being displayed. Thus, your
preferredStatusBarStyle and prefersStatusBarHidden are consulted and obeyed.

Tab Bar Items
For each view controller you assign as a tab bar controller’s child, you’re going to
need a tab bar item, which will appear as its representative in the tab bar. This tab bar
item will be your child view controller’s tabBarItem. A tab bar item is a UITabBar‐
Item; this is a subclass of UIBarItem, an abstract class that provides some of its most
important properties, such as title, image, and isEnabled.

There are two ways to make a tab bar item:

By borrowing it from the system
Instantiate UITabBarItem using init(tabBarSystemItem:tag:), and assign the
instance to your child view controller’s tabBarItem. Consult the documentation
for the list of available system items. Unfortunately, you can’t customize a system
tab bar item’s title; you must accept the title the system hands you. (You can’t
work around this restriction by somehow copying a system tab bar item’s image.)

By making your own
Instantiate UITabBarItem using init(title:image:tag:) and assign the
instance to your child view controller’s tabBarItem. Alternatively, use the view
controller’s existing tabBarItem and set its image and title. Instead of setting
the title of the tabBarItem, you can set the title property of the view control‐
ler itself; doing this automatically sets the title of its current tabBarItem (unless
the tab bar item is a system tab bar item), though the converse is not true.

You can add a separate selectedImage later, or possibly by initializing with
init(title:image:selectedImage:). The selectedImage will be displayed in
place of the normal image when this tab bar item is selected in the tab bar.

The image (and selectedImage) for a tab bar item should be a 30×30 PNG; if it is
larger, it will be scaled down as needed. By default, it will be treated as a transparency
mask (a template): the hue of its pixels will be ignored, and the transparency of its
pixels will be combined with the tab bar’s tintColor, which may be inherited from
higher up the view hierarchy. However, you can instead display the image as is, and
not as a transparency mask, by deriving an image whose rendering mode is .always-
Original (see Chapter 2).

You can also give a tab bar item a badge (see the documentation on the badgeValue
property). Other ways in which you can customize the look of a tab bar item are dis‐
cussed in Chapter 12. For example, you can control the font and style of the title, or
you can give it an empty title and offset the image.

348 | Chapter 6: View Controllers

Configuring a Tab Bar Controller
Basic configuration of a tab bar controller is very simple: just hand it the view con‐
trollers that will be its children. To do so, collect those view controllers into an array
and set the UITabBarController’s viewControllers property to that array. The view
controllers in the array are now the tab bar controller’s child view controllers; the tab
bar controller is the parent of the view controllers in the array. The tab bar controller
is also the tabBarController of the view controllers in the array and of all their chil‐
dren; thus a child view controller at any depth can learn that it is contained by a tab
bar controller and can get a reference to that tab bar controller. The tab bar controller
retains the array, and the array retains the child view controllers.

Here’s a simple example from one of my apps, in which I construct and display a tab
bar interface in code:

func application(_ application: UIApplication,
 didFinishLaunchingWithOptions
 launchOptions: [UIApplicationLaunchOptionsKey : Any]?)
 -> Bool {
 self.window = self.window ?? UIWindow()
 let vc1 = GameBoardController()
 let vc2 =
 UINavigationController(rootViewController:SettingsController())
 let tabBarController = UITabBarController()
 tabBarController.viewControllers = [vc1, vc2]
 tabBarController.selectedIndex = 0
 tabBarController.delegate = self
 self.window!.rootViewController = tabBarController
 self.window!.makeKeyAndVisible()
 return true
}

The tab bar controller’s tab bar will automatically display the tabBarItem of each
child view controller. The order of the tab bar items is the order of the view control‐
lers in the tab bar controller’s viewControllers array. Thus, a child view controller
will probably want to configure its tabBarItem property early in its lifetime, so that
the tabBarItem is ready by the time the view controller is handed as a child to the tab
bar controller. Observe that viewDidLoad is not early enough! That’s because the view
controllers (other than the initially selected view controller) have no view when the
tab bar controller initially appears. Thus it is common to implement an initializer for
this purpose.

Here’s an example from the same app as the previous code (in the GameBoardCon‐
troller class):

Tab Bar Controller | 349

init() {
 super.init(nibName:nil, bundle:nil)
 // tab bar configuration
 self.tabBarItem.image = UIImage(named: "game")
 self.title = "Game"
}

If you change the tab bar controller’s view controllers array later in its lifetime and
you want the corresponding change in the tab bar’s display of its items to be anima‐
ted, call setViewControllers(_:animated:).

Initially, by default, the first child view controller’s tab bar item is selected and its view
is displayed. To ask the tab bar controller which tab bar item the user has selected,
you can couch your query in terms of the child view controller (selectedView-
Controller) or by index number in the array (selectedIndex). You can also set these
properties to switch between displayed child view controllers programmatically. (In
fact, it is legal to set a tab bar controller’s tab bar’s isHidden to true and take charge
of switching between children yourself — though if that’s your desired architecture, a
UIPageViewController without animation or gesture response might be more appro‐
priate.)

You can supply an animation when a tab bar controller’s selected tab item
changes and one child view controller’s view is replaced by another. I’ll discuss
that topic later in the chapter.

You can also set the UITabBarController’s delegate (adopting UITabBarController‐
Delegate). The delegate gets messages allowing it to prevent a given tab bar item from
being selected, and notifying it when a tab bar item is selected and when the user is
customizing the tab bar from the More item.

If the tab bar contains few enough items that it doesn’t need a More item, there won’t
be one, and the tab bar won’t be user-customizable. If there is a More item, you can
exclude some tab bar items from being customizable by setting the customizable-
ViewControllers property to an array that lacks them; setting this property to nil
means that the user can see the More list but can’t rearrange the items. Setting the
viewControllers property sets the customizableViewControllers property to the
same value, so if you’re going to set the customizableViewControllers property, do
it after setting the viewControllers property. The moreNavigationController prop‐
erty can be compared with the selectedViewController property to learn whether
the user is currently viewing the More list; apart from this, the More interface is
mostly out of your control, but I’ll discuss some sneaky ways of customizing it in
Chapter 12.

(If you allow the user to rearrange items, you would presumably want to save the new
arrangement and restore it the next time the app runs. You might use UserDefaults

350 | Chapter 6: View Controllers

for this; you could also take advantage of the built-in automatic state saving and
restoration facilities, discussed later in this chapter.)

You can configure a UITabBarController in a .storyboard or .xib file. The UITabBar‐
Controller’s contained view controllers can be set directly — in a storyboard, there
will be a “view controllers” relationship between the tab bar controller and each of its
children — and the contained view controllers will be instantiated together with the
tab bar controller. Moreover, each contained view controller has a Tab Bar Item; you
can select this and set many aspects of the tabBarItem, such as its system item or its
title, image, selected image, and tag, directly in the nib. (If a view controller in a nib
doesn’t have a Tab Bar Item and you want to configure this view controller for use in
a tab bar interface, drag a Tab Bar Item from the Object library onto the view control‐
ler.)

To start a project with a main storyboard that has a UITabBarController as its root
view controller, begin with the Tabbed app template.

Navigation Controller
A navigation bar (UINavigationBar, see also Chapter 12) is a horizontal bar displaying
a center title and a right button. When the user taps the right button, the navigation
bar animates, sliding its interface out to the left and replacing it with a new interface
that enters from the right. The new interface displays a back button at the left side,
and a new center title — and possibly a new right button. The user can tap the back
button to go back to the first interface, which slides in from the left; or, if there’s a
right button in the second interface, the user can tap it to go further forward to a
third interface, which slides in from the right.

The successive interfaces of a navigation bar thus behave like a stack. In fact, a naviga‐
tion bar does represent an actual stack — an internal stack of navigation items
(UINavigationItem). It starts out with one navigation item: the root or bottom item of
the stack. Since there is just one navigation item, this is also the top item of the stack
(the navigation bar’s topItem). It is the top item whose interface is always reflected in
the navigation bar. When the user taps a right button, a new navigation item is
pushed onto the stack; it becomes the top item, and its interface is seen. When the
user taps a back button, the top item is popped off the stack, and what was previously
the next item beneath it in the stack — the back item (the navigation bar’s backItem)
— becomes the top item, and its interface is seen.

The state of the stack is thus reflected in the navigation bar’s interface. The navigation
bar’s center title comes automatically from the top item, and its back button comes
from the back item. (See Chapter 12 for a complete description.) Thus, the title tells
the user what item is current, and the left side is a button telling the user what item

Navigation Controller | 351

we would return to if the user were to tap that button. The animations reinforce this
notion of directionality, giving the user a sense of position within a chain of items.

A navigation bar is an independent interface object, but it is most commonly used in
conjunction with a navigation controller (UINavigationController, a subclass of
UIViewController) to form a navigation interface. Just as there is a stack of navigation
items in the navigation bar, there is a stack of view controllers in the navigation con‐
troller. These view controllers are the navigation controller’s children, and each navi‐
gation item belongs to a view controller — it is a view controller’s navigationItem.

The navigation controller performs automatic coordination of the navigation bar and
the overall interface. Whenever a view controller comes to the top of the navigation
controller’s stack, its view is displayed in the interface. At the same time, its
navigationItem is automatically pushed onto the top of the navigation bar’s stack —
and is thus displayed in the navigation bar. Moreover, the animation in the navigation
bar is reinforced by animation of the interface as a whole: by default, a view control‐
ler’s view slides into the main interface from the left or right just as its navigation item
slides into the navigation bar from the left or right.

You can supply a different animation when a view controller is pushed onto or
popped off of a navigation controller’s stack. I’ll discuss this topic later in the
chapter.

Your code can control the overall navigation, so in real life, the user may well navigate
to the right, not by tapping the right button in the navigation bar, but by tapping
something inside the main interface, such as a listing in a table view. (Figure 6-1 is a
navigation interface that works this way.) In this situation, your app is deciding in real
time, in response to the user’s tap, what the next view controller should be; typically,
you won’t even create the next view controller until the user asks to navigate to it. The
navigation interface thus becomes a master–detail interface.

Conversely, you might put a view controller inside a navigation controller just to get
the convenience of the navigation bar, with its title and buttons, even when no actual
navigation is going to take place.

You can get a reference to the navigation controller’s navigation bar through its
navigationBar property. In general, you won’t need this. When using a navigation
interface by way of a UINavigationController, you do not interact (as a programmer)
with the navigation bar itself; you don’t create it or set its delegate. You provide the
UINavigationController with children, and it does the rest, handing each child view
controller’s navigationItem to the navigation bar for display and showing the child
view controller’s view each time navigation occurs. You can, however, customize the
look of the navigation bar (see Chapter 12 for details).

A navigation interface may also optionally display a toolbar at the bottom. A toolbar
(UIToolbar) is a horizontal view displaying a row of items. As in a navigation bar, a

352 | Chapter 6: View Controllers

toolbar item may provide information, or it may be something the user can tap. A
tapped item is not selected, as in a tab bar; rather, it represents the initiation of an
action, like a button. You can get a reference to a UINavigationController’s toolbar
through its toolbar property. The look of the toolbar can be customized (Chap‐
ter 12). In a navigation interface, however, the contents of the toolbar are determined
automatically by the view controller that is currently the top item in the stack: they
are its toolbarItems.

A UIToolbar can also be used independently, and often is. It then typically
appears at the bottom on an iPhone — Figure 6-3 has a toolbar at the bottom —
but often appears at the top on an iPad, where it plays something of the role that
the menu bar plays on the desktop. When a toolbar is displayed by a navigation
controller, though, it always appears at the bottom.

A familiar example of a navigation interface is Apple’s Settings app on the iPhone.
The Mail app on the iPhone is a navigation interface that includes a toolbar.

If a navigation controller is the top-level view controller, it determines your app’s
compensatory rotation behavior. To take a hand in that determination without having
to subclass UINavigationController, make one of your objects the navigation control‐
ler’s delegate (UINavigationControllerDelegate) and implement these methods, as
needed:

• navigationControllerSupportedInterfaceOrientations(_:)

• navigationControllerPreferredInterfaceOrientationForPresentation(_:)

A top-level navigation controller also determines your app’s status bar appearance.
However, a navigation controller implements childViewControllerForStatusBar-
Hidden so that the actual decision is relegated to the child view controller whose view
is currently being displayed.

Your child view controllers can implement preferredStatusBarStyle, and the navi‐
gation controller’s childViewControllerForStatusBarStyle defers to its top child
view controller — but only if the navigation bar is hidden. If the navigation bar is
showing, the navigation controller sets the status bar style based on the navigation
bar’s barStyle — to .default if the bar style is .default, and to .lightContent if
the bar style is .black. So the way for your view controller to set the status bar style is
to set the navigation controller’s navigation bar style.

Bar Button Items
The items in a UIToolbar or a UINavigationBar are bar button items — UIBar‐
ButtonItem, a subclass of UIBarItem. A bar button item comes in one of two broadly
different flavors:

Navigation Controller | 353

Basic bar button item
The bar button item behaves like a simple button.

Custom view
The bar button item has no inherent behavior, but has (and displays) a custom-
View.

UIBarItem is not a UIView subclass. A basic bar button item is button-like, but it has
no frame, no UIView touch handling, and so forth. A UIBarButtonItem’s customView,
however, is a UIView — indeed, it can be any kind of UIView. Thus, a bar button item
with a customView can display any sort of view in a toolbar or navigation bar, and that
view can implement touch handling as appropriate, or it can be informational.

Let’s start with the basic bar button item (no custom view). A bar button item, like a
tab bar item, inherits from UIBarItem the title, image, and isEnabled properties.
The title text color, by default, comes from the bar button item’s tintColor, which
may be inherited from the bar itself or from higher up the view hierarchy. Assigning
an image removes the title. The image should usually be quite small; Apple recom‐
mends 22×22. By default, it will be treated as a transparency mask (a template): the
hue of its pixels will be ignored, and the transparency of its pixels will be combined
with the bar button item’s tintColor. However, you can instead display the image as
is, and not as a transparency mask, by deriving an image whose rendering mode
is .alwaysOriginal (see Chapter 2).

A basic bar button item has a style property (UIBarButtonItemStyle); this will usu‐
ally be .plain. The alternative, .done, causes the title to be bold. You can further
refine the title font and style. In addition, a bar button item can have a background
image; this will typically be a small, resizable image, and can be used to provide a bor‐
der. Full details appear in Chapter 12.

A bar button item also has target and action properties. These contribute to its
button-like behavior: tapping a bar button item can trigger an action method else‐
where.

There are three ways to make a bar button item:

By borrowing it from the system
Make a UIBarButtonItem with init(barButtonSystemItem:target: action:).
Consult the documentation for the list of available system items; they are not the
same as for a tab bar item. You can’t assign a title or change the image. (But you
can change the tint color or assign a background image.)

By making your own basic bar button item
Make a UIBarButtonItem with init(title:style:target:action:) or with
init(image:style:target:action:).

354 | Chapter 6: View Controllers

An additional initializer, init(image:landscapeImagePhone:style:target:

action:), lets you supply two images, one for portrait orientation, the other for
landscape orientation; this is because by default, the bar’s height might change
when the interface is rotated. Alternatively, you can use size class–aware images
to handle this situation (see Chapter 2).

By making a custom view bar button item
Make a UIBarButtonItem with init(customView:), supplying a UIView that the
bar button item is to display. The bar button item has no action and target; the
UIView itself must somehow implement button behavior if that’s what you want.
For example, the customView might be a UISegmentedButton, but then it is the
UISegmentedButton’s target and action that give it button behavior.

Bar button items in a toolbar are horizontally positioned automatically by the system.
You can provide hints to help with this positioning. If you know that you’ll be chang‐
ing an item’s title dynamically, you’ll probably want its width to accommodate the
longest possible title right from the start; to arrange that, set the possibleTitles
property to a Set of strings that includes the longest title. Alternatively, you can sup‐
ply an absolute width. Also, you can incorporate spacers into the toolbar; these are
created with init(barButtonSystemItem:target:action:), but they have no visible
appearance, and cannot be tapped. Place .flexibleSpace system items between the
visible items to distribute the visible items equally across the width of the toolbar.
There is also a .fixedSpace system item whose width lets you insert a space of
defined size.

Navigation Items and Toolbar Items
What appears in a navigation bar (UINavigationBar) depends upon the navigation
items (UINavigationItem) in its stack. In a navigation interface, the navigation con‐
troller will manage the navigation bar’s stack for you, but you must still configure
each navigation item by setting properties of the navigationItem of each child view
controller. The UINavigationItem properties are as follows (see also Chapter 12):

title or titleView
Determines what is to appear in the center of the navigation bar when this navi‐
gation item is at the top of the stack.

The title is a string. Setting the view controller’s title property sets the title
of the navigationItem automatically, and is usually the best approach.

The titleView can be any kind of UIView; if set, it will be displayed instead of
the title. The titleView can implement further UIView functionality; for
example, it can be tappable. Even if you are using a titleView, you should still

Navigation Controller | 355

Figure 6-8. A segmented control in the center of a navigation bar

give your view controller a title, as it will be needed for the back button when a
view controller is pushed onto the stack on top of this one.

Figure 6-1 shows the TidBITS News master view, with the navigation bar display‐
ing a titleView which is a (tappable) image view; the master view controller’s
title, which is "TidBITS", is therefore not displayed. In the TidBITS News detail
view controller’s navigation item, the titleView is a segmented control providing
a Previous and Next button; when it is pushed onto the stack, the back button
displays the master view controller’s title (Figure 6-8).

prompt

An optional string to appear centered above everything else in the navigation bar.
The navigation bar’s height will be increased to accommodate it.

rightBarButtonItem or rightBarButtonItems
A bar button item or, respectively, an array of bar button items to appear at the
right side of the navigation bar; the first item in the array will be rightmost.

In Figure 6-8, the text size button is a right bar button item; it has nothing to do
with navigation, but is placed here merely because space is at a premium on the
small iPhone screen.

backBarButtonItem

When a view controller is pushed on top of this view controller, the navigation
bar will display at its left a button pointing to the left, whose title is this view con‐
troller’s title. That button is this view controller’s navigation item’s backBar-
ButtonItem. That’s right: the back button displayed in the navigation bar belongs,
not to the top item (the navigationItem of the current view controller), but to
the back item (the navigationItem of the view controller that is one level down
in the stack). In Figure 6-8, the back button in the detail view is the master view
controller’s default back button, displaying its title.

The vast majority of the time, the default behavior is the behavior you’ll want,
and you’ll leave the back button alone. If you wish, though, you can customize
the back button by setting a view controller’s navigationItem.backBarButton-
Item so that it contains an image, or a title differing from the view controller’s
title. The best technique is to provide a new UIBarButtonItem whose target
and action are nil; the runtime will add a correct target and action, so as to cre‐

356 | Chapter 6: View Controllers

ate a working back button. Here’s how to create a back button with a custom
image instead of a title:

let b = UIBarButtonItem(
 image:UIImage(named:"files"), style:.plain, target:nil, action:nil)
self.navigationItem.backBarButtonItem = b

A Bool property, hidesBackButton, allows the top navigation item to suppress
display of the back item’s back bar button item. If you set this to true, you’ll
probably want to provide some other means of letting the user navigate back.

The visible indication that the back button is a back button is a left-pointing
chevron (the back indicator) that’s separate from the button itself. This chevron
can also be customized, but it’s a feature of the navigation bar, not the bar button
item: set the navigation bar’s backIndicatorImage and backIndicator-

TransitionMask. (I’ll give an example in Chapter 12.) But if the back button is
assigned a background image — not an internal image, as in the example I just
gave, but a background image, by calling setBackButtonBackgroundImage —
then the back indicator is removed; it is up to the background image to point left,
if desired.

leftBarButtonItem or leftBarButtonItems
A bar button item or, respectively, an array of bar button items to appear at the
left side of the navigation bar; the first item in the array will be leftmost. The left-
ItemsSupplementBackButton property, if set to true, allows both the back but‐
ton and one or more left bar button items to appear.

A view controller’s navigation item can have its properties set at any time while being
displayed in the navigation bar. This (and not direct manipulation of the navigation
bar) is the way to change the navigation bar’s contents dynamically. For example, in
one of my apps, we play music from the user’s library using interface in the navigation
bar. The titleView is a progress view (UIProgressView, Chapter 12) that needs
updating every second to reflect the playback position in the current song, and the
right bar button should be either the system Play button or the system Pause button,
depending on whether we are paused or playing. So I have a timer that periodically
checks the state of the music player; observe how we access the progress view and the
right bar button by way of self.navigationItem:

// change the progress view
let prog = self.navigationItem.titleView!.subviews[0] as! UIProgressView
if let item = self.nowPlayingItem {
 let current = self.mp.currentPlaybackTime
 let total = item.playbackDuration
 prog.progress = Float(current / total)
} else {
 prog.progress = 0
}

Navigation Controller | 357

// change the bar button
let whichButton : UIBarButtonSystemItem? = {
 switch self.mp.currentPlaybackRate {
 case 0..<0.1:
 return .play
 case 0.1...1.0:
 return .pause
 default:
 return nil
 }
}()
if let which = whichButton {
 let bb = UIBarButtonItem(barButtonSystemItem: which,
 target: self, action: #selector(doPlayPause))
 self.navigationItem.rightBarButtonItem = bb
}

Each view controller to be pushed onto the navigation controller’s stack is responsible
also for supplying the items to appear in the navigation interface’s toolbar, if there is
one. To configure this, set the view controller’s toolbarItems property to an array of
UIBarButtonItem instances. You can change the toolbar items even while the view
controller’s view and current toolbarItems are showing, optionally with animation,
by sending setToolbarItems(_:animated:) to the view controller.

Configuring a Navigation Controller
You configure a navigation controller by manipulating its stack of view controllers.
This stack is the navigation controller’s viewControllers array property, though you
will rarely need to manipulate that property directly.

The view controllers in a navigation controller’s viewControllers array are the navi‐
gation controller’s child view controllers; the navigation controller is the parent of
the view controllers in the array. The navigation controller is also the navigation-
Controller of the view controllers in the array and of all their children; thus a child
view controller at any depth can learn that it is contained by a navigation controller
and can get a reference to that navigation controller. The navigation controller retains
the array, and the array retains the child view controllers.

The normal way to manipulate a navigation controller’s stack is by pushing or pop‐
ping one view controller at a time. When the navigation controller is instantiated, it is
usually initialized with init(rootViewController:); this is a convenience method
that assigns the navigation controller a single initial child view controller, the root
view controller that goes at the bottom of the stack:

let fvc = FirstViewController()
let nav = UINavigationController(rootViewController:fvc)

358 | Chapter 6: View Controllers

Instead of init(rootViewController:), you might choose to create the navigation
controller with init(navigationBarClass:toolbarClass:), in order to set a custom
subclass of UINavigationBar or UIToolbar. Typically, this will be in order to custom‐
ize the appearance of the navigation bar and toolbar; sometimes you’ll create, say, a
UIToolbar subclass for no other reason than to mark this kind of toolbar as needing a
certain appearance. I’ll explain about that in Chapter 12. If you use this initializer,
you’ll have to set the navigation controller’s root view controller separately.

You can also set the UINavigationController’s delegate (adopting UINavigation‐
ControllerDelegate). The delegate receives messages before and after a child view
controller’s view is shown.

A navigation controller will typically appear on the screen initially containing just its
root view controller, and displaying its root view controller’s view. There will be no
back button, because there is no back item; there is nowhere to go back to. Subse‐
quently, when the user asks to navigate to a new view, you (typically meaning code in
the current view controller) obtain the next view controller (typically by creating it)
and push it onto the stack by calling pushViewController(_:animated:) on the nav‐
igation controller. The navigation controller performs the animation, and displays the
new view controller’s view:

let svc = SecondViewController(nibName: nil, bundle: nil)
self.navigationController!.pushViewController(svc, animated: true)

The command for going back is popViewController(animated:), but you might
never need to call it yourself; when the user taps the back button to navigate back, the
runtime will call popViewController(animated:) for you. When a view controller is
popped from the stack, the viewControllers array removes and releases the view
controller, which is usually permitted to go out of existence at that point.

Alternatively, there’s a second way to push a view controller onto the navigation
controller’s stack, without referring to the navigation controller: show(_:sender:).
This UIViewController method lets the caller be agnostic about the current interface
situation; for example, it pushes onto a navigation controller if the view controller to
which it is sent is in a navigation interface, but performs view controller presentation
if not. I’ll talk more about this method in Chapter 9; meanwhile, I’ll continue using
pushViewController(_:animated:) in my examples.

Instead of tapping the back button, the user can go back by dragging a pushed view
controller’s view from the left edge of the screen. This is actually a way of calling pop-
ViewController(animated:), with the difference that the animation is interactive.
(Interactive view controller transition animation is the subject of the next section.)
The UINavigationController uses a UIScreenEdgePanGestureRecognizer to detect
and track the user’s gesture. You can obtain a reference to this gesture recognizer as
the navigation controller’s interactivePopGestureRecognizer; thus you can disable

Navigation Controller | 359

the gesture recognizer and prevent this way of going back, or you can mediate
between your own gesture recognizers and this one (see Chapter 5).

You can manipulate the stack more directly if you wish. You can call popView-
Controller(animated:) explicitly; to pop multiple items so as to leave a particular
view controller at the top of the stack, call popToViewController(_:animated:), or
to pop all the items down to the root view controller, call popToRootView-
Controller(animated:). All of these methods return the popped view controller (or
view controllers, as an array), in case you want to do something with them.

To set the entire stack at once, call setViewControllers(_:animated:). You can
access the stack through the viewControllers property. Manipulating the stack
directly is the only way, for instance, to delete or insert a view controller in the middle
of the stack.

The view controller at the top of the stack is the topViewController; the view con‐
troller whose view is displayed is the visibleViewController. Those will normally
be the same, but they needn’t be, as the topViewController might present a view
controller, in which case the presented view controller will be the visibleView-
Controller. Other view controllers can be accessed through the viewControllers
array by index number. The root view controller is at index 0; if the array’s count is c,
the back view controller (the one whose navigationItem.backBarButtonItem is cur‐
rently displayed in the navigation bar) is at index c-2.

The topViewController may need to communicate with the next view controller as
the latter is pushed onto the stack, or with the back view controller as it itself is pop‐
ped off the stack. The problem is parallel to that of communication between an origi‐
nal presenter and a presented view controller, which I discussed earlier in this chapter
(“Communication With a Presented View Controller” on page 341), so I won’t say
more about it here.

A child view controller will probably want to configure its navigationItem early in
its lifetime, so as to be ready for display in the navigation bar by the time the view
controller is handed as a child to the navigation controller. Apple warns (in the
UIViewController class reference, under navigationItem) that loadView and view-
DidLoad are not appropriate places to do this, because the circumstances under which
the view is needed are not related to the circumstances under which the navigation
item is needed. Apple’s own code examples routinely violate this warning, but it is
probably best to override init(nibName:bundle:) — or init(coder:) or awakeFrom-
Nib, if appropriate — for this purpose.

A navigation controller’s navigation bar is accessible as its navigationBar, and can be
hidden and shown with setNavigationBarHidden(_:animated:). (It is possible,
though not common, to maintain and manipulate a navigation stack through a navi‐

360 | Chapter 6: View Controllers

gation controller whose navigation bar never appears.) Its toolbar is accessible as its
toolbar, and can be hidden and shown with setToolbarHidden(_:animated:).

A view controller also has the power to specify that its ancestor’s bottom bar (a navi‐
gation controller’s toolbar, or a tab bar controller’s tab bar) should be hidden as this
view controller is pushed onto a navigation controller’s stack. To do so, set the view
controller’s hidesBottomBarWhenPushed property to true. The trick is that you must
do this very early, before the view loads; the view controller’s initializer is a good
place. The bottom bar remains hidden from the time this view controller is pushed to
the time it is popped, even if other view controllers are pushed and popped on top of
it in the meantime.

A navigation controller can perform automatic hiding and showing of its navigation
bar (and, if normally shown, its toolbar) in response to various situations, as config‐
ured by properties:

When tapped
If the navigation controller’s hidesBarsOnTap is true, a tap that falls through the
top view controller’s view is taken as a signal to toggle bar visibility. The relevant
gesture recognizer is the navigation controller’s barHideOnTapGesture-

Recognizer.

When swiped
If the navigation controller’s hidesBarsOnSwipe is true, an upward or downward
swipe respectively hides or shows the bars. The relevant gesture recognizer is the
navigation controller’s barHideOnSwipeGestureRecognizer.

In landscape
If the navigation controller’s hidesBarsWhenVerticallyCompact is true, bars are
automatically hidden when the app rotates to landscape on the iPhone (and
hidesBarsOnTap is treated as true, so the bars can be shown again by tapping).

When the user is typing
If the navigation controller’s hidesBarsWhenKeyboardAppears is true, bars are
automatically hidden when the onscreen keyboard appears (see Chapter 10).

You can configure a UINavigationController, or any view controller that is to serve in
a navigation interface, in a .storyboard or .xib file. In the Attributes inspector, use a
navigation controller’s Bar Visibility and Hide Bars checkboxes to determine the pres‐
ence of the navigation bar and toolbar. The navigation bar and toolbar are themselves
subviews of the navigation controller, and you can configure them with the Attributes
inspector as well. A navigation controller’s root view controller can be specified; in a
storyboard, there will be a “root view controller” relationship between the navigation
controller and its root view controller.

Navigation Controller | 361

A view controller in a .storyboard or .xib file has a Navigation Item where you can
specify its title, its prompt, and the text of its back button. (If a view controller in a
nib doesn’t have a Navigation Item and you want to configure this view controller for
use in a navigation interface, drag a Navigation Item from the Object library onto the
view controller.) You can drag Bar Button Items into a view controller’s navigation
bar in the canvas to set the left buttons and right buttons of its navigationItem.
Moreover, the Navigation Item has outlets, one of which permits you to set its title-
View. Similarly, you can give a view controller Bar Button Items that will appear in the
toolbar.

To start an iPhone project with a main storyboard that has a UINavigationController
as its root view controller, begin with the Master–Detail app template. Alternatively,
start with the Single View app template, remove the existing view controller from the
storyboard, and add a Navigation Controller in its place. Unfortunately, the nib editor
assumes that the navigation controller’s root view controller should be a UITable‐
ViewController. If that’s not the case, here’s a better way: start with the Single View
app template, select the existing view controller, and choose Editor → Embed In →
Navigation Controller. A view controller to be subsequently pushed onto the naviga‐
tion stack can be configured in the storyboard as the destination of a push segue; I’ll
talk more about that later in the chapter.

Custom Transition
You can customize certain built-in transitions between view controller views:

Tab bar controller
When a tab bar controller changes which of its child view controllers is selected,
by default there is no animation; you can add a custom animation.

Navigation controller
When a navigation controller pushes or pops a child view controller, by default
there is a sideways sliding animation; you can replace this with a custom anima‐
tion.

Presented view controller
When a view controller is presented or dismissed, there is a limited set of built-in
animations; you can supply a custom animation. Moreover, you can customize
the ultimate size and position of the presented view, and how the presenting view
is seen behind it; you can also provide intermediate views that remain during the
presentation.

Given the extensive animation resources of iOS (see Chapter 4), this is an excellent
chance for you to provide your app with variety and distinction. The view of a child
view controller pushed onto a navigation controller’s stack needn’t arrive sliding from
the side; it can expand by zooming from the middle of the screen, drop from above

362 | Chapter 6: View Controllers

and fall into place with a bounce, snap into place like a spring, or whatever else you
can dream up. A familiar example is Apple’s Calendar app, which transitions from a
year to a month, in a navigation controller, by zooming in.

A custom transition animation can optionally be interactive — meaning that it is
driven in real time by the user’s gesture. The user does not merely tap and cause an
animation to take place; the user performs an extended gesture and gradually sum‐
mons the new view to supersede the old one. The user can thus participate in the pro‐
gress of the transition. A familiar example is the way a navigation controller’s view
can be popped by dragging from the leading edge of the screen. Another example is
the Photos app, which lets the user pinch a photo, in a navigation controller, to pop to
the album containing it.

New in iOS 10, a custom transition animation can be interruptible. You can provide a
way for the user to pause the animation, possibly interact with the animated view by
means of a gesture, and then resume (or cancel) the animation.

Noninteractive Custom Transition Animation
In the base case, you provide a custom animation that is not interactive. Configuring
your custom animation requires three steps:

1. Before the transition begins, you must have given the view controller in charge of
the transition a delegate.

2. As the transition begins, the delegate will be asked for an animation controller.
You will supply a reference to some object adopting the UIViewController‐
AnimatedTransitioning protocol (or nil to specify that the default animation, if
any, should be used).

3. The animation controller will be sent these messages:

transitionDuration(using:)

The animation controller must return the duration of the custom animation.

animateTransition(using:)

The animation controller should perform the animation.

interruptibleAnimator(using:)

Optional; if implemented, the animation controller should return an object
adopting the UIViewImplicitlyAnimating protocol, which may be a property
animator.

animationEnded(_:)

Optional; if implemented, the animation controller may perform cleanup fol‐
lowing the animation.

Custom Transition | 363

Here’s the strategy we’ll use to implement the animation controller methods. We’ll
implement all four of them, as follows:

transitionDuration(using:)

We’ll return a constant.

animateTransition(using:)

We’ll call interruptibleAnimator(using:) to obtain a property animator and
tell it to start animating.

interruptibleAnimator(using:)

We’ll form the property animator and return it. We’ll also assign the property
animator to an instance property of our view controller, so that it persists
throughout the animation. That way, if we are asked for the animator again dur‐
ing this animation, we can just return the instance property.

animationEnded(_:)

We’ll clean up any instance properties; at a minimum, we’ll set our property ani‐
mator to nil.

Now let’s get down to the nitty-gritty of what the interruptibleAnimator implemen‐
tation actually does to form the property animator’s animation. In general, a custom
transition animation works as follows:

1. The parameter is an object called the transition context (adopting the UIView‐
ControllerContextTransitioning protocol). By querying the transition context,
you can obtain:

• The container view, an already existing view within which all the action is to
take place.

• The outgoing and incoming view controllers.
• The outgoing and incoming views. These are probably the main views of the

outgoing and incoming view controllers, but you should obtain the views
directly from the transition context, just in case they aren’t. The outgoing view
is already inside the container view.

• The initial frame of the outgoing view, and the ultimate frame where the
incoming view must end up.

2. Having gathered this information, your mission is to put the incoming view into
the container view and animate it in such a way as to end up at its correct ultimate
frame. You may also animate the outgoing view if you wish.

3. When the animation ends, your completion function must call the transition
context’s completeTransition to tell it that the animation is over. In response,

364 | Chapter 6: View Controllers

the outgoing view is removed automatically and the animation comes to an end
(and our animationEnded will be called).

As a simple example, I’ll use the transition between two child view controllers of a tab
bar controller, when the user taps a different tab bar item. By default, this transition
isn’t animated; one view just replaces the other. Let’s animate the transition.

A possible custom animation is that the new view controller’s view should slide in
from one side while the old view controller’s view should slide out the other side. The
direction of the slide should depend on whether the index of the new view controller
is greater or less than that of the old view controller. Let’s implement that.

Take the steps in order. First, configure a delegate for the tab bar controller. Assume
that the tab bar controller is our app’s root view controller. For simplicity, I’ll set its
delegate in code, in the app delegate’s application(_:didFinishLaunchingWith-
Options:), and I’ll make that delegate be the app delegate itself:

(self.window!.rootViewController as! UITabBarController).delegate = self

On to the second step. The app delegate, in its role as UITabBarControllerDelegate,
will be sent a message whenever the tab bar controller is about to change view con‐
trollers. That message is:

• tabBarController(_:animationControllerForTransitionFrom:to:)

We must return our animation controller, namely, some object implementing
UIViewControllerAnimatedTransitioning. I’ll return self. Here we go:

func tabBarController(_ tabBarController: UITabBarController,
 animationControllerForTransitionFrom fromVC: UIViewController,
 to toVC: UIViewController) -> UIViewControllerAnimatedTransitioning? {
 return self
}

(There is no particular reason why the animation controller should be self; I’m just
using self to keep things simple. The animation controller can be any object — even
a dedicated lightweight object instantiated just to govern this transition. There is also
no particular reason why the animation controller should be the same object every
time this method is called; depending on the circumstances, we could readily provide
a different animation controller, or we could return nil to use the default transition
— meaning, in this case, no animation.)

On to the third step! Here we are in the animation controller (UIViewController‐
AnimatedTransitioning). Our first job is to reveal in advance the duration of our ani‐
mation:

Custom Transition | 365

func transitionDuration(using ctx: UIViewControllerContextTransitioning?)
 -> TimeInterval {
 return 0.4
}

(Again, the value returned needn’t be a constant; we could decide on the duration
based on the circumstances. But the value returned here must be the same as the
duration of the animation we’ll actually be constructing in interruptibleAnimator.)

As promised, our animateTransition simply calls interruptibleAnimator and tells
the resulting animator to animate:

func animateTransition(using ctx: UIViewControllerContextTransitioning) {
 let anim = self.interruptibleAnimator(using: ctx)
 anim.startAnimation()
}

At last we come to interruptibleAnimator itself:

func interruptibleAnimator(
 using ctx: UIViewControllerContextTransitioning)
 -> UIViewImplicitlyAnimating {
 // ...
}

I take a plodding, boilerplate approach, and I suggest you do the same. First, look to
see if we’ve already formed this property animator. There is a danger that
interruptibleAnimator may be called multiple times during the animation, and in
that case we don’t want to reconfigure the animator and form it again; we want to
return the same animator. So we have a property, self.anim, typed as an Optional
wrapping a UIViewImplicitlyAnimating object. If that isn’t nil, we unwrap it and
return it, and that’s all:

if self.anim != nil {
 return self.anim!
}

If we haven’t returned, we need to form the property animator. First, we thoroughly
query the transition context ctx to learn all about the parameters of this animation:

let vc1 = ctx.viewController(forKey:.from)!
let vc2 = ctx.viewController(forKey:.to)!
let con = ctx.containerView
let r1start = ctx.initialFrame(for:vc1)
let r2end = ctx.finalFrame(for:vc2)
let v1 = ctx.view(forKey:.from)!
let v2 = ctx.view(forKey:.to)!

Now we can prepare for our intended animation. In this case, we are sliding the
views, so we need to decide the final frame of the outgoing view and the initial frame
of the incoming view. We are sliding the views sideways, so those frames should be
positioned sideways from the initial frame of the outgoing view and the final frame of

366 | Chapter 6: View Controllers

the incoming view, which the transition context has just given us. Which side they go
on depends upon the relative place of these view controllers among the children of
the tab bar controller — is this to be a leftward slide or a rightward slide? Since the
animation controller is the app delegate, we can get a reference to the tab bar control‐
ler the same way we did before:

let tbc = self.window!.rootViewController as! UITabBarController
let ix1 = tbc.viewControllers!.index(of:vc1)!
let ix2 = tbc.viewControllers!.index(of:vc2)!
let dir : CGFloat = ix1 < ix2 ? 1 : -1
var r1end = r1start
r1end.origin.x -= r1end.size.width * dir
var r2start = r2end
r2start.origin.x += r2start.size.width * dir

Now we’re ready to animate! We put the second view controller’s view into the con‐
tainer view at its initial frame, and animate our views:

v2.frame = r2start
con.addSubview(v2)
let anim = UIViewPropertyAnimator(duration: 0.4, curve: .linear) {
 v1.frame = r1end
 v2.frame = r2end
}

We must not neglect to supply the completion function that calls complete-
Transition:

anim.addCompletion { _ in
 ctx.completeTransition(true)
}

Our property animator is now formed. We retain it in our self.anim property, and
we also return it:

self.anim = anim
return anim

That’s all there is to it. Our example animation wasn’t very complex, but an animation
needn’t be complex to be interesting, significant, and helpful to the user; I use this
exact same animation in my own apps, and I think it enlivens and clarifies the transi‐
tion. And even a more complex animation would be implemented along the same
basic lines. One possibility that I didn’t illustrate in my example is that you are free to
introduce additional views temporarily into the container view during the course of
the animation; you’ll probably want to remove them in the completion function. For
example, you might make some interface object appear to migrate from one view
controller’s view into the other (in reality you’d probably use a snapshot view; see
Chapter 1).

Custom Transition | 367

Interactive Custom Transition Animation
With an interactive custom transition animation, the idea is that we track something
the user is doing, typically by means of a gesture recognizer (see Chapter 5), and per‐
form the “frames” of the transition in response.

(There are actually two ways to write an interactive custom transition animation. One
is to use an object that I call a percent driver, which is an instance of the built-in
UIPercentDrivenInteractiveTransition class. The other is to implement interactivity
yourself. Thanks to the iOS 10 property animator, the second way is just as easy as the
first way — in a very real sense, the property animator is a sort of percent driver — so
I won’t discuss the first way.)

To make a custom transition animation interactive, you supply, in addition to the ani‐
mation controller, an interaction controller. This is an object adopting the UIView‐
ControllerInteractiveTransitioning protocol. This object needn’t be the same as the
animation controller, though in my examples it will be. This, in turn, causes the run‐
time to call the interaction controller’s startInteractiveTransition(_:) instead of
the animation controller’s animateTransition(using:).

Thus, configuring your custom animation requires the following steps:

1. Before the transition begins, you must have given the view controller in charge of
the transition a delegate.

2. You’ll have a gesture recognizer that tracks the interactive gesture. When the ges‐
ture recognizer recognizes, it triggers the transition.

3. As the transition begins, the delegate will be asked for an animation controller
and you’ll return a UIViewControllerAnimatedTransitioning object.

4. If you didn’t return nil as the animation controller, the delegate will also be
asked for an interaction controller. You’ll return a UIViewControllerInteractive‐
Transitioning object (or nil if you don’t want interactivity).

5. If you didn’t return nil as the interaction controller, the transition is now inter‐
active! In addition to the animation controller messages (and instead of animate-
Transition(using:)), the interaction controller will be sent
startInteractiveTransition(_:).

6. The gesture recognizer continues by constantly updating the transition context,
by calling updateInteractiveTransition(_:), as well managing the frames of
the animation.

7. Sooner or later the gesture will end. At this point, we must decide whether to
declare the transition completed or cancelled. A typical approach is to say that if
the user performed more than half the full gesture, that constitutes completion;
otherwise, it constitutes cancellation. We finish the animation accordingly.

368 | Chapter 6: View Controllers

8. The animation is now completed, and its completion function is called. We must
call the transition context’s finishInteractiveTransition or cancel-

InteractiveTransition, and then call completeTransition(_:), with the argu‐
ment stating whether the transition was finished or cancelled. Our
animationEnded is then called, and we clean up.

As an example, I’ll describe how to make an interactive version of the tab bar control‐
ler transition animation that we developed in the previous section, such that the user
can drag from the edge of the screen to bring the tab bar controller’s adjacent view
controller in from the right or from the left. All the code we’ve already written can be
left more or less as is! In fact, we can easily expand the previous example so that the
transition is either noninteractive (the user taps a tab bar item, just as before) or inter‐
active (the user drags from one edge).

I’m going to need two more instance properties, in addition to self.anim:

var interacting = false
var anim : UIViewImplicitlyAnimating?
var context : UIViewControllerContextTransitioning?

The self.interacting property will be used a signal that our transition is to be
interactive. The self.context property is needed because the gesture recognizer’s
action handler is going to need access to the transition context. (Sharing the transi‐
tion context through a property may seem ugly, but the elegant alternatives would
make the example more complicated, so we’ll just do it this way.)

To track the user’s gesture, I’ll put a pair of UIScreenEdgePanGestureRecognizers into
the interface. The gesture recognizers are attached to the tab bar controller’s view
(tbc.view), as this will remain constant while the views of its view controllers are
sliding across the screen. In addition to making myself the target for the gesture rec‐
ognizers’ action messages, I also make myself their delegate so I can dictate which
gesture recognizer is applicable to the current situation:

let sep =
 UIScreenEdgePanGestureRecognizer(target:self, action:#selector(pan))
sep.edges = UIRectEdge.right
tbc.view.addGestureRecognizer(sep)
sep.delegate = self
let sep2 =
 UIScreenEdgePanGestureRecognizer(target:self, action:#selector(pan))
sep2.edges = UIRectEdge.left
tbc.view.addGestureRecognizer(sep2)
sep2.delegate = self

Acting as the delegate of the two gesture recognizers, we prevent either pan gesture
recognizer from operating unless there is another child of the tab bar controller avail‐
able on that side of the current child:

Custom Transition | 369

func gestureRecognizerShouldBegin(_ g: UIGestureRecognizer) -> Bool {
 let tbc = self.window!.rootViewController as! UITabBarController
 var result = false
 if (g as! UIScreenEdgePanGestureRecognizer).edges == .right {
 result = (tbc.selectedIndex < tbc.viewControllers!.count - 1)
 } else {
 result = (tbc.selectedIndex > 0)
 }
 return result
}

If the gesture recognizer action handler pan is called, our interactive transition ani‐
mation is to take place. I’ll break down the discussion according to the gesture recog‐
nizer’s states. In .began, I raise the self.interacting flag and trigger the transition
by changing the tab bar controller’s selectedIndex:

func pan(_ g:UIScreenEdgePanGestureRecognizer) {
 switch g.state {
 case .began:
 self.interacting = true
 let tbc = self.window!.rootViewController as! UITabBarController
 if g.edges == .right {
 tbc.selectedIndex = tbc.selectedIndex + 1
 } else {
 tbc.selectedIndex = tbc.selectedIndex - 1
 }
 // ...
 }
}

The transition begins. We are asked for our animation controller and our transition
controller; we will supply a transition controller only if the self.interacting flag
was raised (and if the self.interacting flag is not raised, the user tapped a tab bar
item and everything is like the preceding example):

func tabBarController(_ tabBarController: UITabBarController,
 animationControllerForTransitionFrom fromVC: UIViewController,
 to toVC: UIViewController) -> UIViewControllerAnimatedTransitioning? {
 return self
}
func tabBarController(_ tabBarController: UITabBarController,
 interactionControllerFor ac: UIViewControllerAnimatedTransitioning)
 -> UIViewControllerInteractiveTransitioning? {
 return self.interacting ? self : nil
}

We are interactive, so our startInteractiveTransition(_:) is called instead of our
animateTransition(using:). It sets up our other two instance properties; so now we
have our transition context and our property animator. But it does not tell the prop‐
erty animator to animate! We are interactive; that means we intend to manage the
“frames” of the animation ourselves:

370 | Chapter 6: View Controllers

func startInteractiveTransition(_ ctx:UIViewControllerContextTransitioning){
 self.context = ctx
 self.anim = self.interruptibleAnimator(using: ctx)
}

We are now back in the gesture recognizer’s action handler, in the .changed state. We
calculate the completed percentage of the gesture, and update both the property ani‐
mator’s “frame” and the transition context:

case .changed:
 let v = g.view!
 let delta = g.translation(in:v)
 let percent = abs(delta.x/v.bounds.size.width)
 self.anim?.fractionComplete = percent
 self.context?.updateInteractiveTransition(percent)

Finally, the gesture ends. This is where the use of the property animator really pays
off. Our goal is to “hurry home” to the start of the animation or the end of the anima‐
tion, depending on how far the user got through the gesture. Well, with a property
animator, that’s really easy (see “Canceling a View Animation” on page 191):

case .ended:
 let anim = self.anim as! UIViewPropertyAnimator
 anim.pauseAnimation()
 if anim.fractionComplete < 0.5 {
 anim.isReversed = true
 }
 anim.continueAnimation(
 withTimingParameters:
 UICubicTimingParameters(animationCurve:.linear),
 durationFactor: 0.2)

The animation comes to an end, and the completion function that we gave our prop‐
erty animator in interruptibleAnimator is called. This is the one place in our
interruptibleAnimator that needs to be a little different from the preceding exam‐
ple; we must send different messages to the transition context, depending on whether
we finished to the end or reversed to the start:

anim.addCompletion { finish in
 if finish == .end {
 ctx.finishInteractiveTransition()
 ctx.completeTransition(true)
 } else {
 ctx.cancelInteractiveTransition()
 ctx.completeTransition(false)
 }
}

Finally, our animationEnded is called, and we clean up our instance properties:

Custom Transition | 371

func animationEnded(_ transitionCompleted: Bool) {
 self.interacting = false
 self.context = nil
 self.anim = nil
}

You may be asking: why must we keep talking to our transition context throughout
the process, calling updateInteractiveTransition throughout the progress of the
gesture, and finishInteractiveTransition or cancelInteractiveTransition at
the end? For a tab bar controller’s transition, these calls have little or no significance.
But in the case, say, of a navigation controller, the animation has a component sepa‐
rate from what you’re doing — the change in the appearance of the navigation bar, as
the old title departs and the new title arrives and so forth. The transition context
needs to coordinate that animation with the interactive gesture and with your anima‐
tion. So you need to keep telling it where things are in the course of the interaction.

Interruptible Custom Transition Animation
A property animator (UIViewPropertyAnimator) makes interruptible animations
possible. While a view is in the middle of being animated, the property animator
implements touchability of the animated view, and allows you to pause the animation.
You can incorporate these features into a custom transition animation.

As an example, I’ll describe a navigation controller custom push animation that will
be interruptible. A custom transition animation for a navigation controller is similar
to a custom transition animation for a tab bar controller, so there’s no need to repeat
the details from the preceding examples. The chief difference is that a navigation con‐
troller delegate has its own methods that will be called to discover whether there’s an
animation controller and an interaction controller:

navigationController(_:animationControllerFor:from:to:)

navigationController(_:interactionControllerFor:)

In the first method, the for: parameter is a UINavigationControllerOperation,
allowing you to distinguish a push from a pop.

In my example, we’re going to have a custom push animation without a custom pop
animation; to keep things simple, the animation won’t be interactive:

func navigationController(_ navigationController: UINavigationController,
 animationControllerFor operation: UINavigationControllerOperation,
 from fromVC: UIViewController, to toVC: UIViewController)
 -> UIViewControllerAnimatedTransitioning? {
 if operation == .push {
 return self
 }
 return nil
}

372 | Chapter 6: View Controllers

Returning nil for the pop animation controller, as in the preceding code, will
cause the built-in swipe-to-pop interactive transition to stop working. I regard
this as a bug.

The user will tap as usual to trigger the push transition (a push segue, or pushView-
Controller, or show). Our delegate method is called and returns an animation con‐
troller, so the animation controller’s transitionDuration and animateTransition
are called. Our animateTransition calls interruptibleAnimator, which, if the
instance property self.anim doesn’t already exist, creates the property animator,
stores it in self.anim, and returns it; animateTransition then starts the property
animator’s animation. So far, this is exactly like the tab bar controller example from
the preceding section. In fact, they are so exactly alike that there is no need for me to
show you any of that code! Just imagine that we have implemented interruptible-
Animator to provide a UIViewPropertyAnimator that animates the pushed view con‐
troller’s view onto the scene somehow.

Now I’ll make that animation interruptible. I’ll allow the user to grab the animated
view and drag it around. To keep things simple, when the user lets go of the view, I’ll
just finish the animation. (The idea is sort of silly, but it demonstrates interruptibil‐
ity.)

The animated view can be grabbed because I’ve given it a pan gesture recognizer —
and because the property animator makes the view touchable during animation. The
gesture recognizer’s action handler starts by pausing the property animator, and then
proceeds as for any draggable-view action handler:

func drag (_ g : UIPanGestureRecognizer) {
 let v = g.view!
 switch g.state {
 case .began:
 self.anim?.pauseAnimation()
 fallthrough
 case .changed:
 let delta = g.translation(in:v.superview)
 var c = v.center
 c.x += delta.x; c.y += delta.y
 v.center = c
 g.setTranslation(.zero, in: v.superview)
 // ...
 }
}

(If this were an interactive transition, my .began case would also need to call the
transition context’s pauseInteractiveTransition.)

The interesting part is what happens when the user lets go of the draggable view. We
want to continue animating from here to the goal. When I created the property ani‐

Custom Transition | 373

mator in interruptibleAnimator, I stored the transition context in a property,
self.context; now, I query the transition context to learn what the goal is:

case .ended:
 let anim = self.anim as! UIViewPropertyAnimator
 let ctx = self.context!
 anim.addAnimations {
 let vc2 = ctx.viewController(forKey:.to)!
 v.frame = ctx.finalFrame(for: vc2)
 }
 let factor = 1 - anim.fractionComplete
 anim.continueAnimation(withTimingParameters: nil, durationFactor: factor)

When the animation reaches its end, the property animator’s completion function is
called, and it calls the transition context’s completeTransition; our animationEnded
is then called, and we clean up by setting self.anim and self.context to nil.

Custom Presented View Controller Transition
Customizing what happens when a view controller is presented is more complex, and
more powerful, than customizing a tab bar controller or navigation controller transi‐
tion. With a presented view controller, you can customize not only the animation but
also the final position of the presented view. Moreover, you can introduce extra views
which remain in the scene while the presented view is presented, and are not removed
until after dismissal is complete; for example, if the presented view is smaller than the
presenting view and covers it only partially, you might add a dimming view between
them, to darken the presenting view (just as a .formSheet presentation does).

What the runtime must do while a view is being presented in order to make the pre‐
sentation customizable is also more complex. There is no existing view to serve as the
container view; therefore, when the presentation starts, the runtime must construct
the container view and insert it into the interface and leave it there for only as long as
the view remains presented. In the case of a .fullScreen presentation, the runtime
must also rip the presenting view out of the interface and insert it into the container
view, because you might want the presenting view to participate in the animation. For
other styles of presentation, the container view is in front of the presenting view,
which can’t be animated and is left in place as the presentation proceeds.

The work of customizing a presentation is distributed between two objects: the ani‐
mation controller (or interaction controller) on the one hand, and the presentation
controller on the other. The idea is that the animation controller should be responsi‐
ble for only the animation, the movement of the presented view into its final position.
The determination of that final position is the job of the presentation controller. The
presentation controller is also responsible for inserting any extra views, such as a
dimming view, into the container view; Apple says that the animation controller ani‐
mates the content, while the presentation controller animates the “chrome.” This dis‐

374 | Chapter 6: View Controllers

tribution of responsibilities simplifies considerably the task of customizing the
animation itself.

Customizing the animation
I’ll start with a situation where we don’t need to use the presentation controller: all we
want to do is customize the animation part of a built-in presentation style. The steps
are almost completely parallel to how we customized a tab bar controller animation:

1. Give the presented view controller a delegate. This means that we set the presen‐
ted view controller’s transitioningDelegate property to an object adopting the
UIViewControllerTransitioningDelegate protocol.

2. The delegate will be asked for an animation controller, and will return an object
adopting the UIViewControllerAnimatedTransitioning protocol. Unlike a tab bar
controller or navigation controller, a presented view controller’s view undergoes
two animations — the presentation and the dismissal — and therefore the dele‐
gate is asked separately for controllers:

• animationController(forPresented:presenting:source:)

• interactionControllerForPresentation(using:)

• animationController(forDismissed:)

• interactionControllerForDismissal(using:)

You are free to customize just one animation, leaving the other at the default by
not providing a controller for it.

3. The animation controller will implement transitionDuration and animate-
Transition and interruptibleAnimator and animationEnded as usual.

To illustrate, let’s say we’re running on an iPad, and we want to present a view using
the .formSheet presentation style. But instead of using any of the built-in animation
types (transition styles), we’ll have the presented view appear to grow from the mid‐
dle of the screen.

The only mildly tricky step is the first one. The problem is that the transitioning-
Delegate must be set very early in the presented view controller’s life — before the
presentation begins. But the presented view controller doesn’t exist before the presen‐
tation begins. The most reliable approach, therefore, is for the presented view con‐
troller to assign its own delegate in its own initializer:

required init?(coder aDecoder: NSCoder) {
 super.init(coder:aDecoder)
 self.transitioningDelegate = self
}

Custom Transition | 375

On to step two. The transitioning delegate is asked for an animation controller; here,
I’ll have it supply self once again, and I’ll do this only for the presentation, leaving
the dismissal to use the default animation (and I’m not making this example interac‐
tive, so I don’t implement the interactionController methods):

func animationController(forPresented presented: UIViewController,
 presenting: UIViewController, source: UIViewController)
 -> UIViewControllerAnimatedTransitioning? {
 return self
}

Finally, step three — the actual animation. Our implementations of transition-
Duration, animateTransition, and animationEnded are the usual boilerplate. The
animation itself is created in interruptibleAnimator. It is extremely simple, because
we don’t care about the .from view controller, which remains in place during the pre‐
sentation (indeed, its view isn’t even in the container view):

func interruptibleAnimator(using ctx: UIViewControllerContextTransitioning)
 -> UIViewImplicitlyAnimating {
 if self.anim != nil {
 return self.anim!
 }
 let vc2 = ctx.viewController(forKey:.to)
 let con = ctx.containerView
 let r2end = ctx.finalFrame(for:vc2!)
 let v2 = ctx.view(forKey:.to)!
 v2.frame = r2end
 v2.transform = CGAffineTransform(scaleX: 0.1, y: 0.1)
 v2.alpha = 0
 con.addSubview(v2)
 let anim = UIViewPropertyAnimator(duration: 0.4, curve: .linear) {
 v2.alpha = 1
 v2.transform = .identity
 }
 anim.addCompletion { _ in
 ctx.completeTransition(true)
 }
 self.anim = anim
 return anim
}

If we customize both animation and dismissal using the same animation controller,
there is a complication: the roles of the view controllers are reversed in the mind of
the transition context. On presentation, the presented view controller is the .to view
controller, but on dismissal, it is the .from view controller. For a presentation that
isn’t .fullScreen, the unused view is nil, so you can distinguish the cases by struc‐
turing your code like this:

376 | Chapter 6: View Controllers

let v1 = ctx.view(forKey:.from)
let v2 = ctx.view(forKey:.to)
if let v2 = v2 { // presenting
 // ...
} else if let v1 = v1 { // dismissing
 // ...
}

Customizing the presentation
Now let’s involve the presentation controller: we will customize the final frame of the
presented view controller’s view, and we’ll even add some “chrome” to the presenta‐
tion. This will require some additional steps:

1. In addition to setting a transitioningDelegate, we must set the presented view
controller’s modalPresentationStyle to .custom.

2. The result of the preceding step is that the delegate (our adopter of UIViewCon‐
trollerTransitioningDelegate) is sent an additional message:

• presentationController(forPresented:presenting:source:)

(The source: parameter is what I have termed the “original presenter.”) Your
mission is to return an instance of a custom UIPresentationController subclass.
This will then be the presented view controller’s presentation controller during
the course of this presentation, from the time presentation begins to the time dis‐
missal ends. You must create this instance by calling (directly or indirectly) the
designated initializer:

• init(presentedViewController:presenting:)

3. By overriding appropriate methods in your UIPresentationController subclass,
you participate in the presentation, dictating the presented view’s final position
(frameOfPresentedViewInContainerView) and adding “chrome” to the presenta‐
tion as desired.

It is perfectly legal for the transitioning delegate to supply a custom presentation
controller and no animation controller! In that case, a default animation will be
performed, but the presented view will end up at the position your custom pre‐
sentation controller dictates. This is a good example of the delightful “separation
of powers” of the presentation controller and the animation controller.

The UIPresentationController has properties pointing to the presentingView-
Controller as well the presentedViewController and the presentedView, plus the
presentationStyle set by the presented view controller. It also obtains the
containerView, which it subsequently communicates to the animation controller’s

Custom Transition | 377

transition context. It has some methods and properties that you can override in your
subclass; you only need to override the ones that require customization for your par‐
ticular implementation:

frameOfPresentedViewInContainerView

The final position of the presented view. If there is an animation controller, it will
receive this from the transition context’s finalFrame(for:) method.

presentationTransitionWillBegin

presentationTransitionDidEnd

dismissalTransitionWillBegin

dismissalTransitionDidEnd

Use these events as signals to add or remove “chrome” (extra views) to the con‐
tainer view.

containerViewWillLayoutSubviews

containerViewDidLayoutSubviews

Use these layout events as signals to update the “chrome” views if needed.

shouldPresentInFullscreen

The default is true; a value of false turns this presentation into a .current-
Context presentation.

shouldRemovePresentersView

The default is false, except that of course it is true for a standard .fullScreen
presentation, meaning that the presenting view is ripped out of the interface at
the end of the presentation transition. You can return true for a custom presen‐
tation, but it would be rare to do this; even if the presented view completely cov‐
ers the presenting view, there is no harm in leaving the presenting view in place.

A presentation controller is not a view controller, but UIPresentationController
adopts some protocols that UIViewController adopts, and thus gets the same
resizing-related messages that a UIViewController gets, as I described earlier in this
chapter. It adopts UITraitEnvironment, meaning that it has a traitCollection and
participates in the trait collection inheritance hierarchy, and receives the trait-
CollectionDidChange(_:) message. It also adopts UIContentContainer, meaning
that it receives willTransition(to:with:) and viewWillTransition(to:with:).

In addition, a presentation controller functions as the parent of the presented view
controller, and can override its inherited trait collection and respond to changes in its
preferredContentSize, as I’ll explain later.

To illustrate the use of a custom presentation controller, I’ll expand the preceding
example to implement a custom presentation style that looks like a .formSheet even

378 | Chapter 6: View Controllers

on an iPhone. The first step is to set the presentation style to .custom at the same time
that we set the transitioning delegate:

required init?(coder aDecoder: NSCoder) {
 super.init(coder:aDecoder)
 self.transitioningDelegate = self
 self.modalPresentationStyle = .custom // *
}

The result (step two) is that the extra delegate method is called so that we can provide
a custom presentation controller, and we do so:

func presentationController(forPresented presented: UIViewController,
 presenting: UIViewController?, source: UIViewController)
 -> UIPresentationController? {
 let pc = MyPresentationController(
 presentedViewController: presented, presenting: presenting)
 return pc
}

Everything else happens in our implementation of MyPresentationController. To
make the presentation look like a .formSheet, we inset the presented view’s frame:

override var frameOfPresentedViewInContainerView : CGRect {
 return super.frameOfPresentedViewInContainerView.insetBy(dx:40, dy:40)
}

We could actually stop at this point! The presented view now appears in the correct
position. However, the presenting view is appearing undimmed behind it. Let’s add
dimming, by inserting a translucent dimming view into the container view. Note that
we are careful to deal with the possibility of subsequent rotation:

override func presentationTransitionWillBegin() {
 let con = self.containerView!
 let shadow = UIView(frame:con.bounds)
 shadow.backgroundColor = UIColor(white:0, alpha:0.4)
 con.insertSubview(shadow, at: 0)
 shadow.autoresizingMask = [.flexibleWidth, .flexibleHeight]
}

Again, this works perfectly, but now I don’t like what happens when the presented
view is dismissed: the dimming view vanishes suddenly at the end of the dismissal. I’d
rather have the dimming view fade out, and I’d like it to fade out in coordination with
the dismissal animation. The way to arrange that is through the object vended by the
presented view controller’s transitionCoordinator method. This object is just like
the transition coordinator I’ve already discussed earlier in this chapter in connection
with resizing events and rotation: in particular, we can call its animate(alongside-
Transition:completion:) method to add our own animation:

Custom Transition | 379

override func dismissalTransitionWillBegin() {
 let con = self.containerView!
 let shadow = con.subviews[0]
 let tc = self.presentedViewController.transitionCoordinator!
 tc.animate(alongsideTransition: {
 _ in
 shadow.alpha = 0
 })
}

Once again, we could stop at this point. But I’d like to add a further refinement.
A .formSheet view has rounded corners. I’d like to make our presented view look the
same way:

override var presentedView : UIView? {
 let v = super.presentedView!
 v.layer.cornerRadius = 6
 v.layer.masksToBounds = true
 return v
}

Finally, for completeness, it would be nice, during presentation, to dim the appear‐
ance of any button titles and other tinted interface elements visible through the dim‐
ming view, to emphasize that they are disabled:

override func presentationTransitionDidEnd(_ completed: Bool) {
 let vc = self.presentingViewController
 let v = vc.view
 v?.tintAdjustmentMode = .dimmed
}
override func dismissalTransitionDidEnd(_ completed: Bool) {
 let vc = self.presentingViewController
 let v = vc.view
 v?.tintAdjustmentMode = .automatic
}

Transition Coordinator
Earlier in this chapter, we encountered resizing-related methods such as viewWill-
Transition(to:with:), whose second parameter is a UIViewControllerTransition‐
Coordinator. As I suggested at that time, you can use this transition coordinator to
add your own animation to the runtime’s animation when the app rotates. The transi‐
tion coordinator also appears just before adaptive presentation, as the third parame‐
ter to
presentationController(_:willPresentWithAdaptiveStyle:transition-

Coordinator:). Now it turns out that the view controller itself can obtain its transi‐
tion coordinator during a view controller transition, through its
transitionCoordinator property.

380 | Chapter 6: View Controllers

The transition coordinator adopts the UIViewControllerTransitionCoordinator‐
Context protocol, just like the transition context; indeed, it is a kind of wrapper
around the transition context. Thus, in effect, view controllers can find out about the
transition they are involved in.

In addition to the methods that it implements by virtue of adopting the UIView‐
ControllerTransitionCoordinatorContext protocol, a transition coordinator imple‐
ments the following methods:

animate(alongsideTransition:completion:)

Takes an animations function and a completion function. The animation you
supply is incorporated into the transition coordinator’s animation. Returns a
Bool, informing you in case your commands couldn’t be animated. Both func‐
tions receive the transition context as a parameter. (See also “View Controller
Manual Layout” on page 327, where I discussed this method in connection with
rotation.)

A view controller’s use of this method will typically be to add animation of its
view’s internal interface as part of a transition animation. This works equally for
a custom animation or a built-in animation; in fact, the point is that the view
controller can behave agnostically with regard to how its own view is being ani‐
mated. In this example, a presented view controller animates part of its interface
into place as the animation proceeds (whatever that animation may be):

override func viewWillAppear(_ animated: Bool) {
 super.viewWillAppear(animated)
 if let tc = self.transitionCoordinator {
 tc.animate(alongsideTransition:{
 _ in
 self.buttonTopConstraint.constant += 200
 self.view.layoutIfNeeded()
 })
 }
}

animateAlongsideTransition(in:animation:completion:)

Just like the previous method, except that the animated view can be outside the
container view. Used in conjunction with a UIPercentDrivenInteractiveTransi‐
tion, which, as I suggested earlier, is unlikely in iOS 10.

notifyWhenInteractionChanges(_:)

The parameter is a function to be called; the transition context is the function’s
parameter. New in iOS 10, this method supersedes notifyWhenInteraction-
Ends(_:). The older method arranged for your function to be called when the
user abandons an interactive gesture and the transition is about to be either com‐
pleted or cancelled. This is useful particularly if the interactive transition is being

Custom Transition | 381

cancelled, as it may well be that what your view controller wants to do will differ
in this situation. The new method is needed because an interactive transition
might be interruptible; your function is now called whenever the transition
changes between being interactive and being noninteractive.

In this example, a navigation controller has pushed a view controller, and now
the user is popping it interactively (using the default drag-from-the-left-edge ges‐
ture). If the user cancels, the back view controller can hear about it, like this:

override func viewWillAppear(_ animated: Bool) {
 super.viewWillAppear(animated)
 let tc = self.transitionCoordinator
 tc?.notifyWhenInteractionChanges { ctx in
 if ctx.isCancelled {
 // ...
 }
 }
}

I have not found any occasion when the child of a tab bar controller has a non-
nil transition coordinator (perhaps because this transition has no built-in ani‐
mation). I regard this as a bug.

Page View Controller
A page view controller (UIPageViewController) is like a book that can be viewed only
one page (or two pages) at a time. The user, by a gesture, can navigate in one direc‐
tion or the other to see the next or the previous page, successively — like turning the
pages of a book.

Actually, a page view controller only seems to have multiple pages. In reality, it has
only the one page (or two pages) that the user sees at any given moment. That page is
its child view controller’s view. The page view controller has only one child view con‐
troller at a time (or, if so configured, two at a time); it navigates by releasing its exist‐
ing child view controller and replacing it with another. This is a very efficient
architecture: it makes no difference whether the page view controller lets the user
page through three pages or ten thousand pages, because each page is created in real
time, on demand, and exists only as long as the user is looking at it.

The page view controller’s children are its viewControllers, and there will always be
at most one of them (or two). The page view controller is its current child’s (or child‐
ren’s) parent.

Preparing a Page View Controller
To create a UIPageViewController, use its designated initializer:

382 | Chapter 6: View Controllers

• init(transitionStyle:navigationOrientation:options:)

Here’s what the parameters mean:

transitionStyle:

The animation type during navigation (UIPageViewControllerTransitionStyle).
Your choices are:

• .pageCurl

• .scroll (sliding)

navigationOrientation:

The direction of navigation (UIPageViewControllerNavigationOrientation). Your
choices are:

• .horizontal

• .vertical

options:

A dictionary. Possible keys are:

UIPageViewControllerOptionSpineLocationKey

If you’re using the page curl transition, this is the position of the pivot line
around which those page curl transitions rotate. The value (UIPageView‐
ControllerSpineLocation) is one of the following:

• .min (left or top)
• .mid (middle; two pages are shown at once)
• .max (right or bottom)

UIPageViewControllerOptionInterPageSpacingKey

If you’re using the scroll transition, this is the spacing between successive
pages, visible as a gap during the transition (the default is 0).

You configure the page view controller’s initial content by handing it its initial child
view controller(s). You do that by calling this method:

• setViewControllers(_:direction:animated:completion:)

Here’s what the parameters mean:

Page View Controller | 383

viewControllers:

An array of one view controller — unless you’re using the page curl transition
and the .mid spine location, in which case it’s an array of two view controllers.

direction:

The animation direction (UIPageViewControllerNavigationDirection). This
probably won’t matter when you’re assigning the page view controller its initial
content, as you are not likely to want any animation. Possible values are:

• .forward

• .backward

animated:, completion:
A Bool and a completion function.

To allow the user to page through the page view controller, and to supply the page
view controller with a new page at that time, you also assign the page view controller
a dataSource, which should conform to the UIPageViewControllerDataSource pro‐
tocol. The dataSource is told whenever the user starts to change pages, and should
respond by immediately providing another view controller whose view will constitute
the new page. Typically, the data source will create this view controller on the spot.

Here’s a minimal example. Each page in the page view controller is to portray an
image of a named Pep Boy. The first question is where the pages will come from. My
data model consists of an array (self.pep) of the string names of the three Pep Boys:

let pep : [String] = ["Manny", "Moe", "Jack"]

To match these, I have three eponymous image files, portraying each Pep Boy. I’ve
also got a UIViewController subclass called Pep, capable of displaying a Pep Boy. I
initialize a Pep object with Pep’s designated initializer init(pepBoy:), supplying the
name of a Pep Boy from the array; the Pep object sets its own boy property:

init(pepBoy boy:String) {
 self.boy = boy
 super.init(nibName: nil, bundle: nil)
}

Pep’s viewDidLoad then fetches the corresponding image and assigns it as the image
of a UIImageView within its own view:

override func viewDidLoad() {
 super.viewDidLoad()
 self.pic.image = UIImage(named:self.boy.lowercased())
}

384 | Chapter 6: View Controllers

At any given moment, then, our page view controller will have one Pep instance as its
child, and thus will portray a Pep Boy. Here’s how I create the page view controller
itself (in my app delegate):

// make a page view controller
let pvc = UIPageViewController(
 transitionStyle: .scroll, navigationOrientation: .horizontal)
// give it an initial page
let page = Pep(pepBoy: self.pep[0])
pvc.setViewControllers([page], direction: .forward, animated: false)
// give it a data source
pvc.dataSource = self
// put its view into the interface
self.window!.rootViewController = pvc

The page view controller is a UIViewController, and its view must get into the inter‐
face by standard means. You can make the page view controller the window’s root-
ViewController, as I do here; you can make it a presented view controller; you can
make it a child view controller of a tab bar controller or a navigation controller. If you
want the page view controller’s view to be a subview of a custom view controller’s
view, that view controller must be a custom container view controller, as I’ll describe
later.

Page View Controller Navigation
We now have a page view controller’s view in our interface, itself containing and dis‐
playing the view of one Pep view controller that is its child. In theory, we have three
pages, because we have three Pep Boys and their images — but the page view control‐
ler knows about only one of them. Just as with a navigation controller, you don’t sup‐
ply (or even create) a page until the moment comes to navigate to it. When that
happens, one of these data source methods will be called:

• pageViewController(_:viewControllerAfter:)

• pageViewController(_:viewControllerBefore:)

The job of those methods is to return the requested successive view controller — or
nil, to signify that there is no further page in this direction. Your strategy for doing
that will depend on how your model maintains the data.

My data is an array of unique strings, so all I have to do is find the previous name or
the next name in the array. Here’s one of my data source methods:

func pageViewController(_ pvc: UIPageViewController,
 viewControllerAfter vc: UIViewController) -> UIViewController? {
 let boy = (vc as! Pep).boy
 let ix = self.pep.index(of:boy)! + 1

Page View Controller | 385

 if ix >= self.pep.count {
 return nil
 }
 return Pep(pepBoy: self.pep[ix])

The other data source method is completely parallel, so there’s no point showing it.
We now have a working page view controller! The user, with a sliding gesture, can
page through it, one page at a time. When the user reaches the first page or the last
page, it is impossible to go further in that direction.

You can also, at any time, call setViewControllers to change programmatically what
page is being displayed, possibly with animation. In this way, you can “jump” to a
page other than a successive page (something that the user cannot do with a gesture).

Page indicator
If you’re using the scroll style, the page view controller will optionally display a page
indicator (a UIPageControl, see Chapter 12). The user can look at this to get a sense
of what page we’re on, and can tap to the left or right of it to navigate. To get the page
indicator, you must implement two more data source methods; they are consulted in
response to setViewControllers. We called that method initially to configure the
page view controller; if we never call it again (because the user simply keeps navigat‐
ing to the next or previous page), these data source methods won’t be called again
either, but they don’t need to be: the page view controller will thenceforth keep track
of the current index on its own. Here’s my implementation for the Pep Boy example:

func presentationCount(for pvc: UIPageViewController) -> Int {
 return self.pep.count
}
func presentationIndex(for pvc: UIPageViewController) -> Int {
 let page = pvc.viewControllers![0] as! Pep
 let boy = page.boy
 return self.pep.index(of:boy)!
}

Unfortunately, the page view controller’s page indicator by default has white dots and
a clear background, so it is invisible in front of a white background. You’ll want to
customize it to change that. There is no direct access to it, so it’s simplest to use the
appearance proxy (Chapter 12). For example:

let proxy = UIPageControl.appearance()
proxy.pageIndicatorTintColor = UIColor.red.withAlphaComponent(0.6)
proxy.currentPageIndicatorTintColor = .red
proxy.backgroundColor = .yellow

Navigation gestures

If you’ve assigned the page view controller the .pageCurl transition style, the user
can navigate by tapping at either edge of the view or by dragging across the view.

386 | Chapter 6: View Controllers

These gestures are detected through two gesture recognizers, which you can access
through the page view controller’s gestureRecognizers property. The documenta‐
tion suggests that you might change where the user can tap or drag by attaching them
to a different view, and other customizations are possible as well. In this code, I
change the behavior of a .pageCurl page view controller (pvc) so that the user must
double tap to request navigation:

for g in pvc.gestureRecognizers {
 if let g = g as? UITapGestureRecognizer {
 g.numberOfTapsRequired = 2
 }
}

Of course you are also free to add to the user’s stock of gestures for requesting naviga‐
tion. You can supply any controls or gesture recognizers that make sense for your
app, and respond by calling setViewControllers. For example, if you’re using
the .scroll transition style, there’s no tap gesture recognizer, so the user can’t tap at
either edge of the page view controller’s view to request navigation. Let’s change that.
I’ve added invisible views at either edge of my Pep view controller’s view, with tap ges‐
ture recognizers attached. When the user taps, the tap gesture recognizer fires, and
the action handler posts a notification whose object is the tap gesture recognizer:

@IBAction func tap (_ sender: UIGestureRecognizer?) {
 NotificationCenter.default.post(name:.tap, object: sender)
}

In the app delegate, where the page view controller management code is, I have regis‐
tered to receive this notification. When it arrives, I use the tap gesture recognizer’s
view’s tag to learn which view was tapped; I then navigate accordingly:

NotificationCenter.default.addObserver(
 forName:.tap, object: nil, queue: .main) { n in
 let g = n.object as! UIGestureRecognizer
 let which = g.view!.tag
 let vc0 = pvc.viewControllers![0]
 guard let vc = (which == 0 ?
 self.pageViewController(pvc, viewControllerBefore: vc0) :
 self.pageViewController(pvc, viewControllerAfter: vc0))
 else {return}
 let dir : UIPageViewControllerNavigationDirection =
 which == 0 ? .reverse : .forward
 pvc.setViewControllers([vc], direction: dir, animated: true)
 }
}

Other Page View Controller Configurations
It is possible to assign a page view controller a delegate (UIPageViewController‐
Delegate), which gets an event when the user starts turning the page and when the

Page View Controller | 387

user finishes turning the page, and can change the spine location dynamically in
response to a change in device orientation. As with a tab bar controller’s delegate or a
navigation controller’s delegate, a page view controller’s delegate also gets messages
allowing it to specify the page view controller’s rotation policy, so there’s no need to
subclass UIPageViewController solely for that purpose.

One further bit of configuration applicable to a .pageCurl page view controller is the
isDoubleSided property. If it is true, the next page occupies the back of the previous
page. The default is false, unless the spine is in the middle, in which case it’s true
and can’t be changed. Your only option here, therefore, is to set it to true when the
spine isn’t in the middle, and in that case the back of each page would be a sort of
throwaway page, glimpsed by the user during the page curl animation.

A page view controller in a storyboard lets you configure its transition style, naviga‐
tion orientation, page spacing, spine location, and isDoubleSided property. (It also
has delegate and data source outlets, but you’re not allowed to connect them to other
view controllers, because you can’t draw an outlet from one scene to another in a
storyboard.) It has no child view controller relationship, so you can’t set the page view
controller’s initial child view controller in the storyboard; you’ll have to complete the
page view controller’s initial configuration in code.

Container View Controllers
UITabBarController, UINavigationController, and UIPageViewController are built-in
parent view controllers: you hand them a child view controller and they put that child
view controller’s view into the interface for you, inside their own view. What if you
want your own view controller to do the same thing?

Back in iOS 3 and 4, that was illegal; the only way a view controller’s view could get
into the interface was if a built-in parent view controller put it there. You could put a
view into the interface, of course — but not a view controller’s view. (Naturally, devel‐
opers ignored this restriction, and got themselves into all kinds of difficulties.) In iOS
5, Apple introduced a coherent way for you to create your own parent view control‐
lers, which can legally manage child view controllers and put their views into the
interface — provided you follow certain rules. A custom parent view controller of this
sort is called a container view controller.

An example appears in Figure 6-3 — and the way that interface is constructed is
explained in Figure 6-4. We have a page view controller, but it is not the root view
controller, and its view does not occupy the entire interface. How is that achieved? We
have our own view controller, RootViewController, which acts as a container view
controller. The page view controller is its child. Therefore, RootViewController is
permitted — as long it follows the rules — to put the page view controller’s view into
the interface, as a subview of its own view.

388 | Chapter 6: View Controllers

That’s a simple example, and simplicity might be sufficient. But you can take advan‐
tage of container view controllers to achieve powerful and complex view controller
hierarchies. Your own view controller becomes like one of the built-in parent view
controllers, except that you get to define what it does — what it means for a view con‐
troller to be a child of this kind of parent view controller, how many children it has,
which of its children’s views appear in the interface and where they appear, and so on.
A container view controller can also participate actively in the business of trait collec‐
tion inheritance and view resizing.

Adding and Removing Children
A view controller has a childViewControllers array. This is what gives it the power
to be a parent! You must not, however, just wantonly populate this array. A child view
controller needs to receive certain definite events at particular moments:

• As it becomes a child view controller
• As its view is added to and removed from the interface
• As it ceases to be a child view controller

Therefore, to act as a parent view controller, your UIViewController subclass must
fulfill certain responsibilities:

Adding a child
When a view controller is to become your view controller’s child, your view con‐
troller must do these things, in this order:

1. Send addChildViewController(_:) to itself, with the child as argument.
The child is automatically added to your childViewControllers array and is
retained.

2. Get the child view controller’s view into the interface (as a subview of your
view controller’s view), if that’s what adding a child view controller means.

3. Send didMove(toParentViewController:) to the child with your view con‐
troller as its argument.

Removing a child
When a view controller is to cease being your view controller’s child, your view
controller must do these things, in this order:

1. Send willMove(toParentViewController:) to the child with a nil argu‐
ment.

2. Remove the child view controller’s view from your interface.

Container View Controllers | 389

3. Send removeFromParentViewController to the child. The child is automati‐
cally removed from your childViewControllers array and is released.

This is a clumsy and rather confusing dance. The underlying reason for it is that a
child view controller must always receive willMove(toParentViewController:) fol‐
lowed by didMove(toParentViewController:) (and your own child view controllers
can take advantage of these events however you like). But it turns out that you don’t
always send both these messages explicitly, because:

• addChildViewController(_:) sends willMove(toParentViewController:) for
you automatically.

• removeFromParentViewController sends didMove(toParentViewController:)
for you automatically.

Thus, in each case you must send manually the other message, the one that adding or
removing a child view controller doesn’t send for you — and of course you must send
it so that everything happens in the correct order, as dictated by the rules I just listed.

When you do this dance correctly, the proper parent–child relationship results: the
container view controller can refer to its children as its childViewControllers, and
any child has a reference to the parent as its parent. If you don’t do it correctly, all
sorts of bad things can happen; in a worst-case scenario, the child view controller
won’t even survive, and its view won’t work correctly, because the view controller was
never properly retained as part of the view controller hierarchy (see “View Controller
Hierarchy” on page 297). So do the dance correctly!

Example 6-1 provides a schematic approach for how to obtain an initial child view
controller and put its view into the interface, where no child view controller’s view
was previously. (Alternatively, a storyboard can do this work for you, with no code, as
I’ll explain later in this chapter.)

Example 6-1. Adding an initial child view controller

let vc = // whatever; this is the initial child view controller
self.addChildViewController(vc) // "will" called for us
// insert view into interface between "will" and "did"
self.view.addSubview(vc.view)
vc.view.frame = // whatever, or use constraints
// when we call add, we must call "did" afterwards
vc.didMove(toParentViewController: self)

In many cases, the situation I’ve just described is all you’ll need. You have a parent
view controller and a child view controller, and they are paired permanently, for the
lifetime of the parent. That’s how Figure 6-3 behaves: RootViewController has a page

390 | Chapter 6: View Controllers

view controller as its child, and the page view controller’s view as its own view’s sub‐
view, for the entire lifetime of the app.

To show how that’s done, I’ll use the same the page view controller that I used in my
earlier examples, the one that displays Pep Boys. My root view controller will be
called RootViewController. I’ll create and configure my page view controller as a
child of RootViewController, in RootViewController’s viewDidLoad:

let pep : [String] = ["Manny", "Moe", "Jack"]
override func viewDidLoad() {
 super.viewDidLoad()
 let pvc = UIPageViewController(
 transitionStyle: .scroll, navigationOrientation: .horizontal)
 pvc.dataSource = self
 self.addChildViewController(pvc)
 self.view.addSubview(pvc.view)
 // ... configure frame or constraints here ...
 pvc.didMove(toParentViewController: self)
 let page = Pep(pepBoy: self.pep[0])
 pvc.setViewControllers([page], direction: .forward, animated: false)
}

But it is also possible to replace one child view controller’s view in the interface with
another (comparable to how UITabBarController behaves when a different tab bar
item is selected). The simplest, most convenient way to do that is for the parent view
controller to send itself this message:

• transition(from:to:duration:options:animations:completion:)

That method manages the stages in good order, adding the view of one child view
controller (to:) to the interface before the transition and removing the view of the
other child view controller (from:) from the interface after the transition, and seeing
to it that the child view controllers receive lifetime events (such as viewWill-
Appear(_:)) at the right moment. Here’s what the last three arguments are for:

options:

A bitmask (UIViewAnimationOptions) comprising the same possible options
that apply to any view transition (see “Transitions” on page 198).

animations:

An animations function that may be used for view animations other than the
transition animation specified in the options: argument. Alternatively, if none
of the built-in transition animations is suitable, you can animate the views your‐
self here; they are both in the interface during this function.

completion:

This function will be important if the transition involves the removal or addition
of a child view controller. At the time when transition is called, both view con‐

Container View Controllers | 391

trollers must be children of the parent view controller; so if you’re going to
remove one of the view controllers as a child, you’ll do it in the completion func‐
tion. Similarly, if you owe a new child view controller a didMove(toParentView-
Controller:) call, you’ll use the completion function to fulfill that debt.

Here’s an example. To keep things simple, suppose that our view controller has just
one child view controller at a time, and displays the view of that child view controller
within its own view. So let’s say that when our view controller is handed a new child
view controller, it substitutes that new child view controller for the old child view
controller and replaces the old child view controller’s view with the new child view
controller’s view. Here’s code that does that correctly; the view controllers are fromvc
and tovc:

// we have already been handed the new view controller
// set up the new view controller's view's frame
tovc.view.frame = // ... whatever
// must have both as children before we can transition between them
self.addChildViewController(tovc) // "will" called for us
// when we call remove, we must call "will" (with nil) beforehand
fromvc.willMove(toParentViewController: nil)
// then perform the transition
self.transition(
 from:fromvc, to:tovc,
 duration:0.4, options:.transitionFlipFromLeft,
 animations:nil) { _ in
 // when we call add, we must call "did" afterwards
 tovc.didMove(toParentViewController: self)
 fromvc.removeFromParentViewController() // "did" called for us
}

If we’re using constraints to position the new child view controller’s view, where will
we set up those constraints? Before transition is too soon, as the new child view
controller’s view is not yet in the interface. The completion function is too late: if the
view is added with no constraints, it will have no initial size or position, so the anima‐
tion will be performed and then the view will suddenly seem to pop into existence as
we provide its constraints. The animations function turns out to be a very good place:

// must have both as children before we can transition between them
self.addChildViewController(tovc) // "will" called for us
// when we call remove, we must call "will" (with nil) beforehand
fromvc.willMove(toParentViewController: nil)
// then perform the transition
self.transition(
 from:fromvc, to:tovc,
 duration:0.4, options:.transitionFlipFromLeft,
 animations: {
 tovc.view.translatesAutoresizingMaskIntoConstraints = false
 // ... configure tovc.view constraints here ...
 }) { _ in

392 | Chapter 6: View Controllers

 // when we call add, we must call "did" afterwards
 tovc.didMove(toParentViewController: self)
 fromvc.removeFromParentViewController() // "did" called for us
}

Alternatively, you can use a layout-related event, such as viewWillLayoutSubviews;
still, I prefer the animations function, as it is called just once at exactly the right
moment.

If the built-in transition animations are unsuitable, you can omit the options: argu‐
ment and provide your own animation in the animations function, at which time
both views are in the interface. In this example, I animate a substitute view (an image
view showing a snapshot of tovc.view) to grow from the top left corner; then I con‐
figure the real view’s constraints and remove the substitute:

// tovc.view.frame is already set
let r = UIGraphicsImageRenderer(size:tovc.view.bounds.size)
let im = r.image { ctx in
 let con = ctx.cgContext
 tovc.view.layer.render(in:con)
}
let iv = UIImageView(image:im)
iv.frame = CGRect.zero
self.view.addSubview(iv)
tovc.view.alpha = 0 // hide the real view
// must have both as children before we can transition between them
self.addChildViewController(tovc) // "will" called for us
// when we call remove, we must call "will" (with nil) beforehand
fromvc.willMove(toParentViewController: nil)
// then perform the transition
self.transition(
 from:fromvc, to:tovc,
 duration:0.4, // no options:
 animations: {
 iv.frame = tovc.view.frame // animate bounds change
 // ... configure tovc.view constraints here ...
 }) { _ in
 tovc.view.alpha = 1
 iv.removeFromSuperview()
 // when we call add, we must call "did" afterwards
 tovc.didMove(toParentViewController: self)
 fromvc.removeFromParentViewController() // "did" called for us
}

If your parent view controller is going to be consulted about the status bar (whether it
should be shown or hidden, and if shown, whether its text should be light or dark), it
can elect to defer the decision to one of its children, by overriding these properties
(just as a UITabBarController does):

• childViewControllerForStatusBarStyle

Container View Controllers | 393

• childViewControllerForStatusBarHidden

Container View Controllers, Traits, and Resizing
A container view controller participates in trait collection inheritance and view resiz‐
ing. In fact, you may well insert a container view controller into your view controller
hierarchy for no other purpose than to engage in such participation.

Thus far, I have treated trait collection inheritance as immutable; and for the most
part, it is. A UITraitEnvironment (an object with a traitCollection property:
UIScreen, UIView, UIViewController, or UIPresentationController) ultimately gets
its trait collection from the environment, and the environment is simply a fact. Nev‐
ertheless, a parent view controller has the amazing ability to lie to a child view con‐
troller about the environment, thanks to this method:

• setOverrideTraitCollection(_:forChildViewController:)

The first parameter is a UITraitCollection that will be combined with the inherited
trait collection and communicated to the specified child.

This is a UIViewController instance method, so only view controllers have this
mighty power. Moreover, you have to specify a child view controller, so only parent
view controllers have this mighty power. However, UIPresentationController has a
similar power, through its overrideTraitCollection property; setting this property
combines the override trait collection with the inherited collection and communi‐
cates it to the presented view controller.

Why would you want to do such a thing as lie to a child view controller about its
environment? Well, imagine that we’re writing an iPad app, and we have a view con‐
troller whose view can appear either fullscreen or as a small subview of a parent view
controller’s main view. The view’s interface might need to be different when it appears
in the smaller size. You could configure that using size classes (conditional con‐
straints) in the nib editor, with one interface for a .regular horizontal size class
(iPad) and another interface for a .compact horizontal size class (iPhone). Then,
when the view is to appear in its smaller size, we lie to its view controller and tell it
that this is an iPhone:

let vc = // the view controller we're going to use as a child
self.addChildViewController(vc) // "will" called for us
let tc = UITraitCollection(horizontalSizeClass: .compact)
self.setOverrideTraitCollection(tc, forChildViewController: vc) // heh heh
vc.view.frame = // whatever
self.view.addSubview(vc.view)
vc.didMove(toParentViewController: self)

394 | Chapter 6: View Controllers

Apple’s own motivating example involves UISplitViewController, a class that behaves
differently depending on its trait environment. For example, by lying to a split view
controller and making it believe we’re on an iPad, you can cause the split view con‐
troller to look like a split view controller (displaying two subviews, such as a master
table view and a detail view) even on an iPhone. I’ll talk more about that in Chap‐
ter 9.

A parent view controller sets the size of a child view controller’s view. A child view
controller, however, can express a preference as to what size it would like its view to
be, by setting its own preferredContentSize property. The chief purpose of this
property is to be consulted by a parent view controller when this view controller is its
child. This property is a preference and no more; no law says that the parent must
consult the child, or that the parent must obey the child’s preference.

If a view controller’s preferredContentSize is set while it is a child view controller,
the runtime automatically communicates this fact to the parent view controller, by
calling this UIContentContainer method:

• preferredContentSizeDidChange(forChildContentContainer:)

The parent view controller may implement this method to consult the child’s
preferredContentSize and change the child’s view’s size in response. Again, no law
requires the parent to do this. This method, and the preferredContentSize property,
are ways of allowing a child view controller a voice in its view’s size; it is the parent
who dictates what that size will actually be.

A parent view controller, as an adopter of the UIContentContainer protocol (along
with UIPresentationController), is also responsible for communicating to its children
that their sizes are changing and what their new sizes will be. It is the parent view
controller’s duty to implement this method:

size(forChildContentContainer:withParentContainerSize:)

Should be implemented to return each child view controller’s correct size at any
moment. Failure to implement this method will cause the child view controller to
be handed the wrong size in its implementation of viewWill-

Transition(to:with:) — it will be given the parent’s new size rather than its
own new size!

If your parent view controller implements viewWillTransition(to:with:), calling
super is sufficient to get the same message passed on to the children. This works even
if your implementation explicitly changed the size of a child view controller at this
time, provided that you implemented size(forChildContentContainer:withParent-
ContainerSize:) to return the new size.

Container View Controllers | 395

Peek and Pop
On a device with 3D touch, if the user can tap to trigger a transition to a new view
controller, you can permit the user to do a partial press to preview the new view con‐
troller’s view from within the current view controller’s view, without actually per‐
forming the transition. The user can then either back off the press completely, in
which case the preview vanishes, or do a full press, in which case the transition is per‐
formed. Apple calls this peek and pop.

Apple’s own apps use peek and pop extensively throughout the interface. For exam‐
ple, in the Mail app, viewing a mailbox’s list of messages, the user can peek at a messa‐
ge’s content; in the Calendar app, viewing a month, the user can peek at a day’s events;
and so on.

The preview during peek and pop is only a preview; the user can’t interact with it.
(For example, in the Mail app, the user can see the start of a previewed message, but
can’t scroll it.) In effect, the preview is just a snapshot. However, to give the preview
some additional functionality, it can be accompanied by menu items, similar to an
action sheet (see Chapter 13). The user slides the preview upwards to reveal the menu
items, and can then tap a menu item to perform its action — still without performing
the full transition. (For example, in the Mail app, the user can mark the message as
read.) The user can then tap the preview to back out and return to the original view
controller — still without ever having performed the full transition.

To implement peek and pop, your source view controller (the one that the user would
transition from if the full transition were performed) must register by calling this
method:

registerForPreviewing(with:sourceView:)

The first parameter is an object adopting the UIViewControllerPreviewingDele‐
gate protocol; this will typically be self. The second parameter is a view contain‐
ing as subviews all the tappable areas that you want the user to be able to press in
order to summon a preview.

This method also returns a value, a system-supplied context manager conform‐
ing to the UIViewControllerPreviewing protocol. However, for straightforward
peek and pop you won’t need to capture this object; it will be supplied again in
the delegate method calls.

Your UIViewControllerPreviewingDelegate adopter must implement two methods:

previewingContext(_:viewControllerForLocation:)

The user is pressing within the sourceView you supplied in registerFor-
Previewing. The first parameter is the context manager I mentioned a moment
ago. The second parameter, the location:, is the point where the user is press‐

396 | Chapter 6: View Controllers

ing, in sourceView coordinates. If it is within an area corresponding to a tappable
element for which you want to trigger peek and pop, then you should do the fol‐
lowing:

1. Set the context manager’s sourceRect to the frame of the tappable element,
in sourceView coordinates. The reason you have to do this is that the run‐
time has not bothered to do any hit-testing; all it knows or cares about is that
the user is pressing within your sourceView.

2. Instantiate the destination view controller and return it. The runtime will
snapshot the view controller’s view and present that snapshot as the preview.

If the user is not pressing within a tappable area, or if for any other reason you
don’t want any peek and pop, return nil.

previewingContext(_:commit:)

The user, while previewing, has continued to press harder and has reached full
force. Your job is now to perform the actual transition, just as if the user had tap‐
ped the tappable area. The first parameter is the context manager; the second
parameter is the view controller you provided in the previous delegate method.
Typically, the second parameter is all you need; this is the view controller
instance to transition to, and you just perform the transition.

Here’s a simple (and somewhat artificial) example. I’ll reuse my Pep view controller
from the earlier page view controller examples. Suppose I have a container view con‐
troller; its child is to be a Pep view controller, and I’ll display that child view control‐
ler’s view inside the container view controller’s view. I also have three buttons: Manny,
Moe, and Jack. The user can tap a button, and that Pep Boy will be displayed as the
child view controller’s view. All three buttons have the same control event handler,
using the button title to decide which Pep Boy to display:

@IBAction func doShowBoy(_ sender : UIButton) {
 let title = sender.title(for: .normal)!
 let pep = Pep(pepBoy: title)
 self.transitionContainerTo(pep)
}
func transitionContainerTo(_ pep:Pep) {
 let oldvc = self.childViewControllers[0]
 pep.view.frame = self.container.bounds
 self.addChildViewController(pep)
 oldvc.willMove(toParentViewController: nil)
 self.transition(
 from: oldvc, to: pep,
 duration: 0.2, options: .transitionCrossDissolve,
 animations: nil) { _ in

Peek and Pop | 397

 pep.didMove(toParentViewController: self)
 oldvc.removeFromParentViewController()
 }
}

Now I want to implement peek and pop for those three buttons. To make things sim‐
pler, the buttons are the arranged subviews of a stack view, self.stackView. I’ll regis‐
ter for previewing in my container view controller’s viewDidLoad:

override func viewDidLoad() {
 super.viewDidLoad()
 self.registerForPreviewing(with: self, sourceView: self.stackView)
}

In the first delegate method, I hit-test the press location; if the user is pressing on a
button, I set the context manager’s sourceRect, instantiate the correctly configured
Pep view controller, and return it:

func previewingContext(_ ctx: UIViewControllerPreviewing,
 viewControllerForLocation loc: CGPoint) -> UIViewController? {
 let sv = ctx.sourceView
 guard let button =
 sv.hitTest(loc, with: nil) as? UIButton else {return nil}
 let title = button.title(for: .normal)!
 let pep = Pep(pepBoy: title)
 ctx.sourceRect = button.frame
 return pep
}

In the second delegate method, I simply perform the transition, exactly as if the user
had tapped a button:

func previewingContext(_ ctx: UIViewControllerPreviewing,
 commit vc: UIViewController) {
 if let pep = vc as? Pep {
 self.transitionContainerTo(pep)
 }
}

Alternatively, you can configure peek and pop in a storyboard, with no need for
any code. In the nib editor, select a triggered segue emanating from a tappable
interface object (an action segue) and check the Peek & Pop checkbox in the
Attributes inspector.

Suppose now that we also want menu items to accompany the preview. That is the job
of the destination view controller. All it has to do is override the previewActionItems
property to supply an array of UIPreviewActionItems. A UIPreviewActionItem can
be a UIPreviewAction, which is basically a simple tappable menu item. Alternatively,
it can be a UIPreviewActionGroup, consisting of an array of UIPreviewActions; this
looks like a menu item, but when the user taps it the menu items vanish and are
replaced by the group’s menu items, giving in effect a second level of menu hierarchy.

398 | Chapter 6: View Controllers

A UIPreviewActionItem can have a style: .default, .selected (the menu item has a
checkmark), or .destructive (the menu item has a warning red color).

In this example (in the Pep view controller), I demonstrate the use of a UIPreviewAc‐
tionGroup and the .selected style. The user can tap a Colorize menu item to see a
secondary menu of three possible colors; tapping one of those will presumably some‐
how colorize this Pep Boy, but I haven’t bothered to implement that in the example.
The user can also tap a Favorite menu item to make this Pep Boy the favorite one
(implemented through UserDefaults); if this Pep Boy is already the favorite one, this
menu item has a checkmark:

override var previewActionItems: [UIPreviewActionItem] {
 // example of submenu (group)
 let col1 = UIPreviewAction(title:"Blue", style: .default) {
 action, vc in // ...
 }
 let col2 = UIPreviewAction(title:"Green", style: .default) {
 action, vc in // ...
 }
 let col3 = UIPreviewAction(title:"Red", style: .default) {
 action, vc in // ...
 }
 let group = UIPreviewActionGroup(
 title: "Colorize", style: .default, actions: [col1, col2, col3])
 // example of selected style
 let favKey = "favoritePepBoy"
 let style : UIPreviewActionStyle =
 self.boy == UserDefaults.standard.string(forKey:favKey) ?
 .selected : .default
 let fav = UIPreviewAction(title: "Favorite", style: style) {
 action, vc in
 if let pep = vc as? Pep {
 UserDefaults.standard.set(pep.boy, forKey:favKey)
 }
 }
 return [group, fav]
}

Observe that the action function supplied as part of the UIPreviewAction initializer
receives as parameters the UIPreviewAction and the view controller instance (so that
you can refer to the view controller without causing a retain cycle). I take advantage
of the latter in the Favorite menu item implementation, pulling out the boy instance
property string to use as the value saved into user defaults, thus identifying which Pep
Boy is now the favorite.

Peek and Pop | 399

Figure 6-9. The storyboard of an app

Instead of peek and pop, you can use a UIPreviewInteraction (“3D Touch Press
Gesture” on page 276) to drive a view controller custom transition animation.
The structure of your code can be identical to that of any other interactive cus‐
tom transition animation, the only difference being that you have a UIPrevie‐
wInteraction and its delegate methods instead of a gesture recognizer and its
action handler.

Storyboards
Throughout this chapter, I’ve been describing how to create a view controller and
present it or make it another view controller’s child manually, entirely in code. But if
you’re using a storyboard, you will often (or always) allow the storyboard to do those
things for you automatically. A storyboard can be helpful and convenient in this
regard, though not, perhaps, for the reasons one might expect. It doesn’t necessarily
reduce the amount of code you’ll have to write; indeed, in some cases using a story‐
board may compel you to write more code, and in a less readable and maintainable
way, than if you were creating your view controllers manually. But a storyboard does
clarify the relationships between your view controllers over the course of your app’s
lifetime. Instead of having to hunt around in each of your classes to see which class
creates which view controller and when, you can view and manage the chain of view
controller creation graphically in the nib editor. Figure 6-9 shows the storyboard of a
small test app.

400 | Chapter 6: View Controllers

A storyboard, as I’ve already explained, is basically a collection of view controller nibs
(scenes) and view nibs. Each view controller is instantiated from its own nib, as
needed, and will then obtain its view, as needed — typically from a view nib that
you’ve configured in the same storyboard by editing the view controller’s view. I
described this process in detail in “How Storyboards Work” on page 313. As I
explained there, a view controller can be instantiated from a storyboard in various
ways:

Manual instantiation
Your code can instantiate a view controller manually from a storyboard, by call‐
ing one of these methods:

• instantiateInitialViewController

• instantiateViewController(withIdentifier:)

Initial view controller
If your app has a main storyboard, as specified by its Info.plist, that storyboard’s
initial view controller will be instantiated and assigned as the window’s rootView-
Controller automatically as the app launches. To specify that a view controller is
a storyboard’s initial view controller, check the “Is Initial View Controller” check‐
box in its Attributes inspector. This will cause any existing initial view controller
to lose its initial view controller status. The initial view controller is distinguished
graphically in the canvas by an arrow pointing to it from the left, and in the
document outline by the presence of the Storyboard Entry Point.

Relationship
Two built-in parent view controllers can specify their children directly in the
storyboard, setting their viewControllers array:

• UITabBarController can specify multiple children (its “view controllers”).
• UINavigationController can specify its single initial child (its “root view

controller”).

To add a view controller as a viewControllers child to one of those parent view
controller types, Control-drag from the parent view controller to the child view
controller; in the little HUD that appears, choose the appropriate listing under
Relationship Segue. The result is a relationship whose source is the parent and
whose destination is the child. The destination view controller will be instanti‐
ated automatically when the source view controller is instantiated, and will be
assigned into its viewControllers array, thus making it a child and retaining it.

Triggered segue
A triggered segue configures a future situation, when the segue will be triggered.
At that time, one view controller that already exists will cause the instantiation of

Storyboards | 401

another, bringing the latter into existence automatically. Two types of triggered
segue are particularly common; they have special names in the nib editor if your
storyboard’s “Use Trait Variations” checkbox is checked in the File inspector:

Show (without trait variations: “push”)
The future view controller will be pushed onto the stack of the navigation
controller of which the existing view controller is already a child.

The name “show” comes from the show(_:sender:) method, which pushes a
view controller onto the parent navigation controller if there is one, but
behaves adaptively if there is not (I’ll talk more about that in Chapter 9). This
means that a “show” segue from a view controller that is not a navigation
controller’s child will present the future view controller rather than pushing
it, as there is no navigation stack to push onto. Setting up a “show” segue
without a navigation controller and then wondering why there is no push is a
common beginner mistake.

Present modally (without trait variations: “modal”)
The future view controller will be a presented view controller (and the exist‐
ing view controller will be its original presenter).

Unlike a relationship, a triggered segue does not have to emanate from a view
controller; it can emanate from certain kinds of gesture recognizer, or from an
appropriate view (such as a button or a table view cell) in the first view control‐
ler’s view. This is a graphical shorthand signifying that the segue should be trig‐
gered, bringing the second view controller into existence, when a tap or other
gesture occurs.

To create a triggered segue, Control-drag from the view in the first view control‐
ler, or from the first view controller itself, to the second view controller. In the
little HUD that appears, choose the type of segue you want (listed under Action
Segue if you dragged from a button, or Manual Segue if you dragged from the
view controller).

Triggered Segues
A triggered segue is a true segue. (Relationships are not really segues at all.) The most
common types, as I’ve just explained, are a push segue (show) or a modal segue
(present modally). A segue is a full-fledged object, an instance of UIStoryboardSegue,
and it can be configured in the nib editor through its Attributes inspector. In a story‐
board, however, it is not a nib object, in the sense that it is not instantiated by the
loading of a nib, and it cannot be pointed to by an outlet. Rather, it will be instanti‐
ated when the segue is triggered, at which time its designated initializer will be called,
namely init(identifier:source:destination:).

402 | Chapter 6: View Controllers

A segue’s source and destination are the two view controllers between which it
runs. The segue is directional, so the source and destination are clearly distinguished.
The source view controller is the one that will exist already, before the segue is trig‐
gered; the destination view controller will be instantiated together with the segue
itself, when the segue is triggered.

A segue’s identifier is a string. You can set this string for a segue in a storyboard
through its Attributes inspector; this can be useful when you want to trigger the segue
manually in code (you’ll specify it by means of its identifier), or when you have code
that can receive a segue as parameter and you need to distinguish which segue this is.

Triggered segue behavior
The default behavior of a segue, when it is triggered, is exactly the behavior of the
corresponding manual transition described earlier in this chapter:

Push segue
The segue is going to call pushViewController(_:animated:) for you (if we are
in a navigation interface). To set animated: to false, uncheck the Animates
checkbox in the Attributes inspector.

Modal segue
The segue is going to call present(_:animated:completion:) for you. To set
animated: to false, uncheck the Animates checkbox in the Attributes inspector.
Other presentation options, such as the modal presentation style and the modal
transition style, can be set in the destination view controller’s Attributes inspector
or in the segue’s Attributes inspector (the segue settings will override the destina‐
tion view controller settings).

(As I mentioned earlier, if a triggered segue emanates from a tappable interface
object, its Attributes inspector will have a Peek & Pop checkbox, which you can check
to configure peek and pop for this transition automatically.)

You can further customize a triggered segue’s behavior by providing your own
UIStoryboardSegue subclass. The key thing is that you must implement your custom
segue’s perform method, which will be called after the segue is triggered and instanti‐
ated, in order to do the actual transition from one view controller to another. Starting
in Xcode 7 and iOS 9, you can do this even for a push segue or a modal segue: in the
Attributes inspector for the segue, you specify your UIStoryboardSegue subclass, and
in that subclass, you call super in your perform implementation.

Let’s say, for example, that you want to add a custom transition animation to a modal
segue. You can do this by writing a segue class that makes itself the destination con‐
troller’s transitioning delegate in its perform implementation before calling super:

Storyboards | 403

class MyCoolSegue: UIStoryboardSegue {
 override func perform() {
 let dest = self.destination
 dest.modalPresentationStyle = .custom
 dest.transitioningDelegate = self
 super.perform()
 }
}

The rest is then exactly as in “Custom Presented View Controller Transition” on page
374. MyCoolSegue’s animationController(forPresented:...) and animation-

Controller(forDismissed:) will be called, as well as its presentation-

Controller(forPresented:...) if implemented, and we are now off to the races
with a custom presented view controller transition. All the code can live inside
MyCoolSegue, resulting in a pleasant encapsulation of functionality.

You can also create a completely custom segue. To do so, in the HUD when you
Control-drag to create the segue, ask for a Custom segue, and then, in the Attributes
inspector, specify your UIStoryboardSegue subclass. Again, you must override
perform, but now you don’t call super — the whole transition is completely up to you!
Your perform implementation can access the segue’s identifier, source, and
destination properties. The destination view controller has already been instanti‐
ated, but that’s all; doing something with this view controller so as to make it a child
view controller or presented view controller, retaining it and causing its view to
appear in the interface, is entirely up to your code.

How a segue is triggered
A triggered segue will be triggered in one of two ways:

Through a user gesture
If a segue emanates from a gesture recognizer or from a tappable view, it becomes
an action segue, meaning that it will be triggered automatically when the tap or
other gesture occurs.

Your source view controller class can prevent an action segue from being trig‐
gered. To do so, override this method:

shouldPerformSegue(withIdentifier:sender:)

Sent when an action segue is about to be triggered. Returns a Bool (and the
default is true), so if you don’t want this segue triggered on this occasion,
return false.

In code
If a segue emanates from a view controller as a whole, then triggering it is up to
your code. Send this message to the source view controller:

404 | Chapter 6: View Controllers

performSegue(withIdentifier:sender:)

Triggers a segue whose source is this view controller. The segue will need an
identifier in the storyboard so that you can specify it here! (shouldPerform-
Segue(withIdentifier:sender:) will not be called, because if you didn’t
want the segue triggered, you wouldn’t have called performSegue in the first
place.)

View controller communication
When a segue is triggered, the destination view controller is instantiated automati‐
cally; your code does not instantiate it. This raises a crucial question: how on earth
are you going to communicate between the source view controller and the destination
view controller? This, you’ll remember, was the subject of an earlier section of this
chapter (“Communication With a Presented View Controller” on page 341), where I
used this code as an example:

let svc = SecondViewController(nibName: nil, bundle: nil)
svc.data = "This is very important data!"
svc.delegate = self
self.present(svc, animated:true)

In that code, the first view controller creates the second view controller, and therefore
has a reference to it at that moment. Thus, it has an opportunity to communicate
with it, passing along some data to it, and setting itself as its delegate, before present‐
ing it. With a modal segue, however, the second view controller is instantiated for
you, and the segue itself is going to call present(_:animated:completion:). So
when and how will the first view controller be able to set svc.data and set itself as
svc’s delegate?

The answer is that, after a segue has instantiated the destination view controller but
before the segue is actually performed, the source view controller is sent
prepare(for:sender:). The first parameter is the segue, and the segue has a refer‐
ence to the destination view controller — so this is the moment when the source view
controller and the destination view controller meet! The source view controller can
thus perform configurations on the destination view controller, hand it data, and so
forth. The source view controller can work out which segue is being triggered by
examining the segue’s identifier and destination properties, and the sender is the
interface object that was tapped to trigger the segue (or, if performSegue(with-
Identifier:sender:) was called in code, whatever object was supplied as the
sender: argument).

So, for example:

Storyboards | 405

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if segue.identifier == "second" {
 let svc = segue.destination as! SecondViewController
 svc.data = "This is very important data!"
 svc.delegate = self
 }
}

This solves the communication problem. Unfortunately, it solves it in a clumsy way;
prepare(for:sender:) feels like a blunt instrument. The destination arrives typed
as a generic UIViewController, and it is up to your code to know its actual type, cast
it, and configure it. Moreover, if more than one segue emanates from a view control‐
ler, they are all bottlenecked through the same prepare(for:sender:) implementa‐
tion, which thus devolves into an ugly collection of conditions to distinguish them. I
regard this as a flaw in the storyboard architecture.

Container Views and Embed Segues
As I mentioned earlier, the only parent view controllers for which you can create rela‐
tionship segues specifying their children in a storyboard are the built-in UITabBar‐
Controller and UINavigationController. That’s because the nib editor understands
how they work. If you write your own custom container view controller, the nib edi‐
tor doesn’t even know that your view controller is a container view controller, so it
can’t be the source of a relationship segue.

Nevertheless, you can perform some initial parent–child configuration of your cus‐
tom container view controller in a storyboard, if your situation conforms to these
assumptions:

• Your parent view controller will have one initial child view controller.
• You want the child view controller’s view placed somewhere in the parent view

controller’s view.

Those are reasonable assumptions, and you can work around them if they don’t quite
give the desired effect. For example, if your parent view controller is to have addi‐
tional children, you can always add them later, in code; and if the child view control‐
ler’s view is not to be initially visible in the parent view controller’s view, you can
always hide it.

To configure your parent view controller in a storyboard, drag a Container View
object from the Object library into the parent view controller’s view in the canvas.
The result is a view, together with an embed segue leading from it to an additional
child view controller. You can then assign the child view controller its correct class in
its Identity inspector. Alternatively, delete the child view controller, replace it with a
different view controller, and Control-drag from the container view to this view con‐
troller and, in the HUD, specify an embed segue.

406 | Chapter 6: View Controllers

When an embed segue is triggered, the destination view controller is instantiated and
made the source view controller’s child, and its view is placed exactly inside the con‐
tainer view as its subview. Thus, the container view is not only a way of generating the
embed segue, but also a way of specifying where you want the child view controller’s
view to go. The entire child-addition dance is performed correctly and automatically
for you: addChildViewController(_:) is called, the child’s view is put into the inter‐
face, and didMove(toParentViewController:) is called.

An embed segue is a triggered segue. It can have an identifier, and the standard mes‐
sages are sent to the source view controller when the segue is triggered. At the same
time, it has this similarity to a relationship: when the source (parent) view controller
is instantiated, the runtime wants to trigger the segue automatically, instantiating the
child view controller and embedding its view in the container view now. If that isn’t
what you want, override shouldPerformSegue(withIdentifier:sender:) in the
parent view controller to return false for this segue, and call performSegue(with-
Identifier:sender:) later when you do want the child view controller instantiated.

The parent view controller is sent prepare(for:sender:) before the child’s view
loads. At this time, the child has not yet been added to the parent’s childView-
Controllers array. If you allow the segue to be triggered when the parent view con‐
troller is instantiated, then by the time the parent’s viewDidLoad is called, the child’s
viewDidLoad has already been called, the child has already been added to the parent’s
childViewControllers, and the child’s view is already inside the parent’s view.

If you subsequently want to replace the child view controller’s view with another child
view controller’s view in the interface, you will do so in code, probably by calling
transition(from:to:duration:options:animations:completion:) as I described
earlier in this chapter. If you really want to, you can configure this through a story‐
board as well, by using a custom segue and a UIStoryboardSegue subclass.

Storyboard References
Starting in Xcode 7 and iOS 9, when you create a segue in the storyboard (a triggered
segue or a relationship), you don’t have to Control-drag to a view controller as the
destination; instead, you can Control-drag to a storyboard reference which you have
previously placed in the canvas of this storyboard. A storyboard reference is a place‐
holder for a specific view controller. Thus, instead of a large and complicated network
of segues running all over your storyboard, possibly crisscrossing in confusing ways,
you can effectively jump through the storyboard reference to the actual view control‐
ler.

To specify what view controller a storyboard reference stands for, you need to per‐
form two steps:

Storyboards | 407

1. Select the view controller and, in the Identity inspector, give it a Storyboard ID.
2. Select the storyboard reference and, in the Attributes inspector, enter that same

Storyboard ID as its Referenced ID.

But wait — there’s more! The referenced view controller doesn’t even have to be in the
same storyboard as the storyboard reference. You can use a storyboard reference to
jump to a view controller in a different storyboard. This allows you to organize your
app’s interface into multiple storyboards. That was always possible, but loading any
storyboards apart from the automatically loaded main storyboard was up to you (in
code). With a storyboard reference that leads into a different storyboard, that story‐
board is loaded automatically.

To configure a storyboard reference to refer to a view controller in a different story‐
board, use the Storyboard pop-up menu in its Attributes inspector. The rule is that if
you specify the Storyboard but not the Referenced ID, the storyboard reference
stands for the target storyboard’s initial view controller (the one marked as the Story‐
board Entry Point in that storyboard’s document outline). If you do specify the Refer‐
enced ID, then of course the storyboard reference stands for the view controller with
that Storyboard ID in the target storyboard. (I find that as a practical matter, things
work best if you always specify both the storyboard reference’s Storyboard and its ref‐
erenced ID.)

Unwind Segues
Here’s an interesting puzzle: Storyboards and segues would appear to be useful only
half the time, because segues are asymmetrical. There is a push segue but no pop
segue. There is a present modally segue but no dismiss segue.

The reason, in a nutshell, is that you can’t possibly use a normal segue to mean “go
back.” Triggering a triggered segue instantiates the destination view controller; it cre‐
ates a new view controller instance. But when dismissing a presented view controller
or popping a pushed view controller, we don’t need any new view controller instances.
We want to return, somehow, to an existing instance of a view controller.

The solution is an unwind segue. An unwind segue does let you express the notion “go
back” in a storyboard. Basically, it lets you jump to any view controller that is already
instantiated further up your view controller hierarchy, destroying the source view
controller and any intervening view controllers in good order.

408 | Chapter 6: View Controllers

Figure 6-10. Creating an unwind segue

A common mistake among beginners is to make a triggered segue from view
controller A to view controller B, and then try to express the notion “go back” by
making another triggered segue from view controller B to view controller A. The
result is a cycle of segues, with presentation piled on presentation, or push piled
on push, one view controller instantiated on top of another on top of another. Do
not construct a cycle of segues. (Unfortunately, the nib editor doesn’t alert you to
this mistake.)

Creating an unwind segue
Before you can create an unwind segue, you must implement an unwind method in
the class of any view controller represented in the storyboard. This should be a
method marked @IBAction as a hint to the storyboard editor, and taking a single
parameter, a UIStoryboardSegue. You can call it unwind if you like, but the name
doesn’t really matter:

@IBAction func unwind(_ seg:UIStoryboardSegue!) {
 // ...
}

Think of this method as a marker, specifying that the view controller in which it
appears can be the destination for an unwind segue. It is, in fact, a little more than a
marker: it will also be called when the unwind segue is triggered. But its marker func‐
tionality is much more important — so much so that, in many cases, you won’t give
this method any code at all. Its presence, and its name, are what matters.

Now you can create an unwind segue. Doing so involves the use of the Exit proxy
object that appears in every scene of a storyboard. Control-drag from the view con‐
troller you want to go back from, or from something like a button in that view con‐
troller’s view, connecting it to the Exit proxy object in the same scene (Figure 6-10). A
little HUD appears, listing all the known unwind methods (similar to how action
methods are listed in the HUD when you connect a button to its target). Click the
name of the unwind method you want. You have now made an unwind segue, bound
to that unwind method.

Storyboards | 409

How an unwind segue works
When the unwind segue is triggered, the following steps are performed:

1. The source view controller’s shouldPerformSegue(withIdentifier:sender:) is
called — just as for a normal segue. This is your chance to stop the whole process
dead at this point by returning false.

2. The name of the unwind method to which the unwind segue is bound is only a
name. The unwind segue’s actual destination view controller is unknown! There‐
fore, the runtime now starts walking up the view controller hierarchy looking for a
destination view controller. Put simply, the first view controller it finds that
implements the unwind method will, by default, be the destination view controller.

Assume that the destination view controller has been found. (I’ll explain how it is
found in a moment.) Then we proceed to perform the segue, as follows:

1. The source view controller’s prepare(for:sender:) is now called — just as for a
normal segue. The two view controllers are now in contact (because the other
view controller is the segue’s destination). This is an opportunity for the source
view controller to hand information to the destination view controller before
being destroyed! (Thus, an unwind segue is an alternative to delegation as a way
of putting one view controller into communication with another: see “Communi‐
cation With a Presented View Controller” on page 341.)

2. The destination view controller’s unwind method is called. Its parameter is the
segue; this segue can be identified through its identifier property. The two view
controllers are now in contact again (because the other view controller is the
segue’s source). It is perfectly reasonable, as I’ve already said, for the unwind
method body to be empty; the unwind method’s real purpose is to mark this view
controller as the destination view controller.

3. The segue is actually performed, destroying the source controller and any inter‐
vening view controllers up to (but not including) the destination view controller,
in good order.

Now I’ll go back and explain in detail how the destination view controller is found,
and how the segue is actually performed. This is partly out of sheer interest — they
are both devilishly clever — and partly in case you need to customize the process.
(You can skip the discussion if you’re satisfied with how your unwind segue is work‐
ing.)

What I’m about to describe is applicable to iOS 9 and later. It is not backwards-
compatible to earlier systems; in fact, Apple has revised unwind segues, some‐
times quite dramatically, with each major iOS update since they were introduced
in iOS 6.

410 | Chapter 6: View Controllers

How the destination view controller is found
The process of locating the destination view controller starts by walking up the view
controller hierarchy. What do I mean by “up” the hierarchy? Well, every view control‐
ler has either a parent or a presentingViewController, so the next view controller
up the hierarchy is that view controller. However, it might also be necessary to walk
back down the hierarchy, to a child (at some depth) of one of the parents we
encounter.

Here’s how the walk proceeds:

1. At each step up the view controller hierarchy, the runtime sends this view con‐
troller the following event:

• allowedChildViewControllersForUnwinding(from:)

This view controller’s job is to supply an array of its own direct children. The array
can be empty, but it must be an array. To do so, the view controller calls this
method:

• childViewControllerContaining(_:)

This tells the view controller which of its own children is, or is the ultimate par‐
ent of, the source view controller. We don’t want to go down that branch of the
view hierarchy; that’s the branch we just came up. So this view controller sub‐
tracts that view controller from the array of its own child view controllers, and
returns the resulting array.

2. There are two possible kinds of result from the previous step (the value returned
from allowedChildViewControllers...):

There are children
If the previous step yielded an array with one or more child view controllers
in it, the runtime performs step 1 on all of them (stopping if it finds the des‐
tination), thus going down the view hierarchy.

There are no children
If, on the other hand, the previous step yielded an empty array, the runtime
asks this same view controller the following question:
• canPerformUnwindSegueAction(_:from:withSender:)

The default implementation of this method is simply to call responds(to:)
on self, asking whether this view controller contains an implementation of
the unwind method we’re looking for. The result is a Bool. If it is true, we
stop. This is the destination view controller. If it is false, we continue with the

Storyboards | 411

search up the view controller hierarchy, finding the next view controller and
performing step 1 again.

A moment’s thought will reveal that the recursive application of this algorithm will
eventually arrive at an existing view controller instance with an implementation of
the unwind method if there is one. Okay, maybe a moment’s thought didn’t reveal that
to you, so here’s an actual example. I’ll use the app whose storyboard is pictured in
Figure 6-9. Its root view controller is a UITabBarController with two children:

• The first tab bar controller child is a UINavigationController with a root view
controller called FirstViewController, which has a push segue to another view
controller called ExtraViewController.

• The second tab bar controller child is called SecondViewController, which has a
modal segue to another view controller called ExtraViewController2.

The unwind method is in FirstViewController, and is called iAmFirst(_:). The cor‐
responding unwind segue, whose action is "iAmFirst:", is triggered from a button in
ExtraViewController2. Assume that the user starts in the tab bar controller’s first view
controller, where she triggers the push segue, thus showing ExtraViewController. She
then switches to the tab bar controller’s second view controller, where she triggers the
modal segue, thus showing ExtraViewController2. All the view controllers pictured in
Figure 6-9 now exist simultaneously.

The user now taps the button in ExtraViewController2 and thus triggers the "iAm-
First:" unwind segue. What will happen? First, ExtraViewController2 is sent should-
PerformSegue(withIdentifier:sender:) and returns true, permitting the segue to
go forward. The runtime now needs to walk the view controller hierarchy and locate
the iAmFirst(_:) method. Here’s how it does that:

1. We start by walking up the view hierarchy. We thus arrive at the original pre‐
senter from which ExtraViewController2 was presented, namely SecondView‐
Controller. The runtime sends SecondViewController
allowedChildViewControllersForUnwinding(from:); SecondViewController
has no children, so it returns an empty array.
So the runtime also asks SecondViewController canPerformUnwindSegueAction
to find out whether this is the destination — but SecondViewController returns
false, so we know this is not the destination.

2. We therefore proceed up the view hierarchy to SecondViewController’s parent,
the UITabBarController. The runtime sends the UITabBarController allowed-
ChildViewControllersForUnwinding(from:).
The UITabBarController has two child view controllers, namely the
UINavigationController and SecondViewController — but one of them, Second‐

412 | Chapter 6: View Controllers

ViewController, contains the source (as it discovers by calling childView-
ControllerContaining(_:)). Therefore the UITabBarController returns an
array containing just one child view controller, namely the UINavigation‐
Controller.

3. The runtime has received an array with a child in it; it therefore proceeds down
the view hierarchy to that child, the UINavigationController, and asks it the same
question: allowedChildViewControllersForUnwinding(from:).
The navigation controller has two children, namely FirstViewController and
ExtraViewController, and neither of them is or contains the source, so it returns
an array containing both of them.

4. The runtime has received an array with two children in it. It therefore notes
down that it now has two hierarchy branches to explore, and proceeds down the
hierarchy to explore them:
a. The runtime starts with ExtraViewController, asking it allowedChildView-

ControllersForUnwinding(from:). ExtraViewController has no children, so
the reply is an empty array.
So the runtime asks ExtraViewController canPerformUnwindSegueAction to
find out whether this is the destination — but ExtraViewController replies
false, so we know this is not the destination.

b. So much for that branch of the UINavigationController’s children; we’ve
reached a dead end. So the runtime proceeds to the other branch, namely
FirstViewController. The runtime asks FirstViewController allowedChild-
ViewControllersForUnwinding(from:). FirstViewController has no children,
so the reply is an empty array.
So the runtime asks canPerformUnwindSegueAction to find out whether this
is the destination — and FirstViewController replies true. We’ve found the
destination view controller!

The destination having been found, the runtime now sends prepare(for:sender:)
to the source, and then calls the destination’s unwind method, iAmFirst(_:). We are
now ready to perform the segue.

How an unwind segue is performed
The way an unwind segue is performed is just as ingenious as how the destination is
found. During the walk, the runtime remembers the walk. Thus, it knows where all
the presented view controllers are, and it knows where all the parent view controllers
are. Thus we have a path of presenting view controllers and parent view controllers
between the source and the destination. The runtime then proceeds as follows:

Storyboards | 413

• For any presented view controllers, the runtime itself calls
dismiss(animated:completion:) on the presenting view controller.

• For any parent view controllers, the runtime tells each of them, in turn, to
unwind(for:towardsViewController:).

The second parameter of unwind(for:towardsViewController:) is the direct child of
this parent view controller leading down the branch where the destination lives. This
child might or might not be the destination, but that’s no concern of this parent view
controller. Its job is merely to get us onto that branch, whatever that may mean for this
kind of parent view controller. A moment’s thought will reveal (don’t you wish I’d
stop saying that?) that if each parent view controller along the path of parent view
controllers does this correctly, we will in fact end up at the destination, releasing in
good order all intervening view controllers that need to be released. This procedure is
called incremental unwind.

Thus, the unwind procedure for our example runs as follows:

1. The runtime sends dismiss(animated:completion:) to the root view controller,
namely the UITabBarController. Thus, ExtraViewController2 is destroyed in
good order.

2. The runtime sends unwind(for:towardsViewController:) to the UITabBar‐
Controller. The second parameter is the tab bar controller’s first child, the
UINavigationController. The UITabBarController therefore changes its selected-
ViewController to be the UINavigationController.

3. The runtime sends unwind(for:towardsViewController:) to the UINavigation‐
Controller. The second parameter is the FirstViewController. The navigation
controller therefore pops its stack down to the FirstViewController. Thus, Extra‐
ViewController is destroyed in good order, and we are back at the FirstViewCon‐
troller — which is exactly what was supposed to happen.

Unwind segue customization
Knowing how an unwind segue works, you can see how to intervene in and custom‐
ize the process:

• In a custom view controller that contains an implementation of the unwind
method, you might implement canPerformUnwindSegueAction(_:from:with-
Sender:) to return false instead of true so that it doesn’t become the destina‐
tion on this occasion.

• In a custom parent view controller, you might implement allowedChildView-
ControllersForUnwinding(from:). In all probability, your implementation will

414 | Chapter 6: View Controllers

consist simply of listing your childViewControllers, calling childView-

ControllerContaining(_:) to find out which of your children is or contains the
source, subtracting that child from the array, and returning the array — just as
the built-in parent view controllers do.
In allowedChildViewControllersForUnwinding(from:) and childView-

ControllerContaining(_:), the parameter is not a UIStoryboardSegue. It’s an
instance of special value class called a UIStoryboardUnwindSegueSource, which
has no other job than to communicate, in these two methods, the essential infor‐
mation about the unwind segue needed to make a decision. It has a source, a
sender, and an unwindAction (the Selector specified when forming the unwind
segue).

• In a custom parent view controller, you might implement unwind(for:towards-
ViewController:). The second parameter is one of your current children; you
will do whatever it means for this parent view controller to make this the cur‐
rently displayed child.

Do not override childViewControllerContaining(_:). It knows more than you
do; you wouldn’t want to interfere with its operation.

View Controller Lifetime Events
As views come and go, driven by view controllers and the actions of the user, events
arrive that give your view controller the opportunity to respond to the various stages
of its own existence and the management of its view. By overriding these methods,
your UIViewController subclass can perform appropriate tasks at appropriate
moments. Here’s a list:

viewDidLoad

The view controller has obtained its view. See the discussion earlier in this chap‐
ter of how a view controller gets its view. Recall that this does not mean that the
view is in the interface or that it has been given its correct size.

willTransition(to:with:)

viewWillTransition(to:with:)

traitCollectionDidChange(_:)

The view controller’s view is being resized or the trait environment is changing
(or both). See the discussion of resizing events earlier in this chapter. Your imple‐
mentation of the first two methods should call super.

View Controller Lifetime Events | 415

updateViewConstraints

viewWillLayoutSubviews

viewDidLayoutSubviews

The view is receiving updateConstraints and layoutSubviews events. See Chap‐
ter 1, and the discussion of resizing events earlier in this chapter. Your implemen‐
tation of updateViewConstraints should call super.

willMove(toParentViewController:)

didMove(toParentViewController:)

The view controller is being added or removed as a child of another view control‐
ler. See the discussion of container view controllers earlier in this chapter.

viewWillAppear(_:)

viewDidAppear(_:)

viewWillDisappear(_:)

viewDidDisappear(_:)

The view is being added to or removed from the interface. This includes being
supplanted by another view controller’s view or being restored through the
removal of another view controller’s view. A view that has appeared is in the win‐
dow; it is part of your app’s active view hierarchy. A view that has disappeared is
not in the window; its window is nil. You should call super in your override of
any of these four methods; if you forget to do so, things may go wrong in subtle
ways.

To distinguish more precisely why your view is appearing or disappearing, con‐
sult any of these properties of the view controller:

• isBeingPresented

• isBeingDismissed

• isMovingToParentViewController

• isMovingFromParentViewController

A good way to get a sense for when these events are useful is to examine some situa‐
tions in which they normally occur. Take, for example, a UIViewController being
pushed onto the stack of a navigation controller. It receives, in this order, the follow‐
ing messages:

• willMove(toParentViewController:)

• viewWillAppear(_:)

• updateViewConstraints

• traitCollectionDidChange(_:)

416 | Chapter 6: View Controllers

• viewWillLayoutSubviews

• viewDidLayoutSubviews

• viewDidAppear(_:)

• didMove(toParentViewController:)

(There is then a second round of layout messages.)

When this same UIViewController is popped off the stack of the navigation control‐
ler, it receives, in this order, the following messages:

• willMove(toParentViewController:) (with parameter nil)
• viewWillDisappear(_:)

• viewDidDisappear(_:)

• didMove(toParentViewController:) (with parameter nil)

Disappearance, as I mentioned a moment ago, can happen because another view con‐
troller’s view supplants this view controller’s view. For example, consider a UIView‐
Controller functioning as the top (and visible) view controller of a navigation
controller. When another view controller is pushed on top of it, the first view control‐
ler gets these messages:

• viewWillDisappear(_:)

• viewDidDisappear(_:)

• didMove(toParentViewController:)

The converse is also true. For example, when a view controller is popped from a navi‐
gation controller, the view controller that was below it in the stack (the back view
controller) receives these messages:

• viewWillAppear(_:)

• viewDidAppear

• didMove(toParentViewController:)

Incoherencies in View Controller Events
Unfortunately, the exact sequence of events and the number of times they will be
called for any given view controller transition situation sometimes seems nondeter‐
ministic or incoherent. For example:

View Controller Lifetime Events | 417

• Sometimes didMove(toParentViewController:) arrives without a correspond‐
ing willMove(toParentViewController:).

• Sometimes didMove(toParentViewController:) arrives even though this view
controller was previously the child of this parent and remains the child of this
parent.

• Sometimes the layout events updateViewConstraints, viewWillLayout-

Subviews, and viewDidLayoutSubviews arrive more than once for the same view
controller for the same transition.

• Sometimes viewWillAppear(_:) or viewWillDisappear(_:) arrives without a
corresponding viewDidAppear(_:) or viewDidDisappear(_:). A notable case in
point is when an interactive transition animation begins and is cancelled.

I regard all such behaviors as bugs, but Apple clearly does not. The best advice I can
offer is that you should try to structure your code in such a way that incoherencies of
this sort don’t matter.

Appear and Disappear Events
The appear and disappear events are particularly appropriate for making sure that a
view reflects the model or some form of saved state whenever it appears. Changes to
the interface performed in viewDidAppear(_:) or viewWillDisappear(_:) may be
visible to the user as they occur! If that’s not what you want, use the other member of
the pair. For example, in a certain view containing a long scrollable text, I want the
scroll position to be the same when the user returns to this view as it was when the
user left it, so I save the scroll position in viewWillDisappear(_:) and restore it in
viewWillAppear(_:) — not viewDidAppear(_:), where the user might see the scroll
position jump.

These methods are useful also when something must be true exactly so long as a view
is in the interface. For example, a repeating Timer that must be running while a view
is present can be started in the view controller’s viewDidAppear(_:) and stopped in
its viewWillDisappear(_:). (This architecture also allows you to avoid the retain
cycle that could result if you waited to invalidate the timer in a deinit that might
otherwise never arrive.)

A view does not disappear if a presented view controller’s view merely covers it rather
than supplanting it. For example, a view controller that presents another view con‐
troller using the .formSheet presentation style gets no lifetime events during presen‐
tation and dismissal.

A view does not disappear merely because the app is backgrounded and suspended.
Once suspended, your app might be killed. So you cannot rely on viewWill-

418 | Chapter 6: View Controllers

Disappear(_:) or viewDidDisappear(_:) alone for saving data that the app will
need the next time it launches. If you are to cover every case, you may need to ensure
that your data-saving code also runs in response to an application lifetime event such
as applicationWillResignActive or applicationDidEnterBackground (and see
Appendix A for a discussion of the application lifetime events).

Event Forwarding to a Child View Controller
A custom container (parent) view controller, as I explained earlier, must effectively
send willMove(toParentViewController:) and didMove(toParentView-

Controller:) to its children manually.

It must also forward resizing events to its children. This will happen automatically if
you call super in your implementation of the willTransition methods. By the same
token, if you implement these methods, failure to call super may prevent them from
being forwarded correctly to the child view controller.

The appear and disappear events are normally passed along automatically. However,
you can take charge by overriding this property:

shouldAutomaticallyForwardAppearanceMethods

If you override this property to return false, you are responsible for seeing that
the four appear and disappear methods are called on your view controller’s chil‐
dren. You do not do this by calling these methods directly. The reason is that you
have no access to the correct moment for sending them. Instead, you call these
two methods on your child view controller:

• beginAppearanceTransition(_:animated:); the first parameter is a Bool
saying whether this view controller’s view is about to appear (true) or disap‐
pear (false)

• endAppearanceTransition

Here’s what to do if you’ve implemented shouldAutomaticallyForwardAppearance-
Methods to return false. There are two main occasions on which your custom con‐
tainer view controller must forward appear and disappear events to a child.

First, what happens when your custom container view controller’s own view itself
appears or disappears? If it has a child view controller’s view within its own view, it
must implement and forward all four appear and disappear events to that child.
You’ll need an implementation along these lines, for each of the four events:

override func viewWillAppear(_ animated: Bool) {
 super.viewWillAppear(animated)
 let child = // whatever
 if child.isViewLoaded && child.view.superview != nil {

View Controller Lifetime Events | 419

 child.beginAppearanceTransition(true, animated: true)
 }
}
override func viewDidAppear(_ animated: Bool) {
 super.viewDidAppear(animated)
 let child = // whatever
 if child.isViewLoaded && child.view.superview != nil {
 child.endAppearanceTransition()
 }
}

(The implementations for viewDidAppear(_:) and viewDidDisappear(_:) are simi‐
lar, except that the first argument for beginAppearanceTransition is false.)

Second, what happens when you swap one view controller’s child for another in your
interface? Apple warns that you should not call the UIViewController method
transition(from:...); instead, you perform the transition animation directly, call‐
ing beginAppearanceTransition(_:animated:) and endAppearanceTransition

yourself.

A minimal correct implementation might involve the UIView transition class
method (see Chapter 4). Here’s an example of a parent view controller swapping one
child view controller and its view for another, while taking charge of notifying the
child view controllers of the appearance and disappearance of their views. I’ve put
asterisks to call attention to the additional method calls that forward the appear and
disappear events to the children (fromvc and tovc):

self.addChildViewController(tovc) // "will" called for us
fromvc.willMove(toParentViewController: nil)
fromvc.beginAppearanceTransition(false, animated:true) // *
tovc.beginAppearanceTransition(true, animated:true) // *
UIView.transition(
 from:fromvc.view, to:tovc.view,
 duration:0.4, options:.transitionFlipFromLeft) {_ in
 tovc.endAppearanceTransition() // *
 fromvc.endAppearanceTransition() // *
 tovc.didMove(toParentViewController: self)
 fromvc.removeFromParentViewController()
}

View Controller Memory Management
Memory is at a premium on a mobile device. Thus you want to minimize your app’s
use of memory. Your motivations are partly altruistic and partly selfish. While your
app is running, other apps are suspended in the background; you want to keep your
memory usage as low as possible so that those other apps have room to remain sus‐
pended and the user can readily switch to them from your app. You also want to pre‐
vent your own app from being terminated! If your app is backgrounded and

420 | Chapter 6: View Controllers

suspended while using a lot of memory, it may be terminated in the background
when memory runs short. If your app uses an inordinate amount of memory while in
the foreground, it may be summarily killed before the user’s very eyes.

One strategy for avoiding using too much memory is to release any memory-hogging
objects you’re retaining if they are not needed at this moment. Because a view con‐
troller is the basis of so much of your application’s architecture, it is likely to be a
place where you’ll concern yourself with releasing unneeded memory.

One of your view controller’s most memory-intensive objects is its view. Fortunately,
the iOS runtime manages a view controller’s view’s memory for you. If a view control‐
ler’s view is not in the interface, it can be temporarily dispensed with. In such a situa‐
tion, if memory is getting tight, then even though the view controller itself persists,
and even though it retains its actual view, the runtime may release its view’s backing
store (the cached bitmap representing the view’s drawn contents). The view will then
be redrawn when and if it is to be shown again later.

In addition, if memory runs low, your view controller may be sent this message:

didReceiveMemoryWarning

Sent to a view controller to advise it of a low-memory situation. It is preceded by
a call to the app delegate’s applicationDidReceiveMemoryWarning, together with
a .UIApplicationDidReceiveMemoryWarning notification posted to any regis‐
tered objects. You are invited to respond by releasing any data that you can do
without. Do not release data that you can’t readily and quickly recreate! The doc‐
umentation advises that you should call super.

If you’re going to release data in didReceiveMemoryWarning, you must concern your‐
self with how you’re going to get it back. A simple and reliable mechanism is lazy
loading — a getter that reconstructs or fetches the data if it is nil.

For example, suppose we have a property myBigData which might be a big piece of
data. We make this a calculated property, storing the real data in a private property
(I’ll call it _myBigData). Our calculated property’s setter simply writes through to the
private property. In didReceiveMemoryWarning, we write myBigData out as a file to
disk (Chapter 23) and set myBigData to nil — thus setting _myBigData to nil as well,
and releasing the big data from memory. The getter for myBigData implements lazy
loading: if we try to get myBigData when _myBigData is nil, we attempt to fetch the
data from disk — and if we succeed, we delete it from disk (to prevent stale data):

private var _myBigData : Data! = nil
var myBigData : Data! {
 set (newdata) { self._myBigData = newdata }
 get {
 if _myBigData == nil {
 let fm = FileManager()
 let f = URL(fileURLWithPath: NSTemporaryDirectory())

View Controller Memory Management | 421

 .appendingPathComponent("myBigData")
 if let d = try? Data(contentsOf:f) {
 self._myBigData = d
 do {
 try fm.removeItem(at:f)
 } catch {
 print("Couldn't remove temp file")
 }
 }
 }
 return self._myBigData
 }
}
func saveAndReleaseMyBigData() {
 if let myBigData = self.myBigData {
 let f = URL(fileURLWithPath: NSTemporaryDirectory())
 .appendingPathComponent("myBigData")
 try? myBigData.write(to:f)
 self.myBigData = nil
 }
}
override func didReceiveMemoryWarning() {
 super.didReceiveMemoryWarning()
 self.saveAndReleaseMyBigData()
}

When your big data can be reconstructed from scratch on demand, you can take
advantage of the built-in NSCache class, which is like a dictionary with the ability to
clear out its own entries automatically under memory pressure. As in the previous
example, a calculated property can be used as a façade:

private let _cache = NSCache<NSString, NSData>()
var cachedData : Data {
 let key = "somekey" as NSString
 var data = self._cache.object(forKey:key) as? Data
 if data != nil {
 return data!
 }
 data = // ... recreate data ...
 self._cache.setObject(data! as NSData, forKey: key)
 return data!
}

Another built-in class that knows how to clear itself out is NSPurgeableData. It is a
subclass of NSMutableData that adopts the NSDiscardableContent protocol (which
your own classes can also adopt). NSCache knows how to work with classes that
adopt NSDiscardableContent, or you can use such classes independently. To signal
that the data should be discarded, send your object discardContentIfPossible.
Wrap any access to data in calls to beginContentAccess and endContentAccess; the
former returns a Bool to indicate whether the data was accessible. The tricky part is

422 | Chapter 6: View Controllers

getting those access calls right; when you create an NSPurgeableData, you must send
it an unbalanced endContentAccess to make its content discardable:

private var _purgeable = NSPurgeableData()
var purgeabledata : Data {
 if self._purgeable.beginContentAccess() && self._purgeable.length > 0 {
 let result = self._purgeable.copy() as! Data
 self._purgeable.endContentAccess()
 return result
 } else {
 let data = // ... recreate data ...
 self._purgeable = NSPurgeableData(data:data)
 self._purgeable.endContentAccess()
 return data
 }
}

(For more about NSCache and NSPurgeableData, see the “Caching and Purgeable
Memory” chapter of Apple’s Memory Usage Performance Guidelines.)

At an even lower level, you can store your data on disk (in some reasonable location
such the Caches directory) and read it using the Data initializer init(contentsOf-
URL:options:) with an options: argument .alwaysMapped. This creates a memory-
mapped data object, which has the remarkable feature that it isn’t considered to
belong to your memory at all; the system has no hesitation in clearing it from RAM,
because it is backed through the virtual memory system by the file on disk, and will
be read back into memory automatically when you next access it. This is suitable only
for large immutable data, because small data runs the risk of fragmenting a virtual
memory page.

To test low-memory circumstances artificially, run your app in the Simulator and
choose Hardware → Simulate Memory Warning. I don’t believe this has any actual
effect on memory, but a memory warning of sufficient severity is sent to your app, so
you can see the results of triggering your low-memory response code, including the
app delegate’s applicationDidReceiveMemoryWarning and your view controller’s did-
ReceiveMemoryWarning.

Another approach, which works also on the device, is to call an undocumented
method. First, define a dummy protocol to make the selector legal:

@objc protocol Dummy {
 func _performMemoryWarning()
}

Now you can send that selector to the shared application:

UIApplication.shared.perform(#selector(Dummy._performMemoryWarning))

(Be sure to remove that code when it is no longer needed for testing, as the App Store
won’t accept it.)

View Controller Memory Management | 423

You will also wish to concern yourself with releasing memory when your app is about
to be suspended. If your app has been backgrounded and suspended and the system
later discovers it is running short of memory, it will go hunting through the sus‐
pended apps, looking for memory hogs that it can kill in order to free up that mem‐
ory. If the system decides that your suspended app is a memory hog, it isn’t politely
going to wake your app and send it a memory warning; it’s just going to terminate
your app in its sleep. The time to be concerned about releasing memory, therefore, is
before the app is suspended. You’ll probably want your view controller to be regis‐
tered with the shared application to receive .UIApplicationDidEnterBackground.
The arrival of this notification is an opportunity to release any easily restored
memory-hogging objects, such as myBigData in the previous example:

override func viewDidLoad() {
 super.viewDidLoad()
 NotificationCenter.default.addObserver(self,
 selector: #selector(backgrounding),
 name: .UIApplicationDidEnterBackground,
 object: nil)
}
func backgrounding(_ n:Notification) {
 self.saveAndReleaseMyBigData()
}

A very nice feature of NSCache is that it evicts its objects automatically when
your app goes into the background.

Testing how your app’s memory behaves in the background isn’t easy. In a WWDC
2011 video, an interesting technique is demonstrated. The app is run under Instru‐
ments on the device, using the virtual memory instrument, and is then backgrounded
by pressing the Home button, thus revealing how much memory it voluntarily relin‐
quishes at that time. Then a special memory-hogging app is launched on the device:
its interface loads and displays a very large image in a UIImageView. Even though
your app is backgrounded and suspended, the virtual memory instrument continues
to track its memory usage, and you can see whether further memory is reclaimed
under pressure from the demands of the memory-hogging app in the foreground.

State Restoration
When the user leaves your app and then later returns to it, one of two things might
have happened in the meantime (see Appendix A):

Your app was suspended
Your app was suspended in the background, and remained suspended while the
user did something else. When the user returns to your app, the system simply
unfreezes your app, and there it is, looking just as it did when the user left it.

424 | Chapter 6: View Controllers

Your app was terminated
Your app was suspended in the background, and then, as the user worked with
other apps, a moment came where the system decided it needed the resources
(such as memory) being held by your suspended app. Therefore it terminated
your app. When the user returns to your app, the app launches from scratch.

The user, however, doesn’t know the difference between those two things, so why
should the app behave differently some of the time? Ideally, your app, when it comes
to the foreground, should always appear looking as it did when the user left it, even if
in fact it was terminated while suspended in the background. Otherwise, as the
WWDC 2013 video on this topic puts it, the user will feel that the app has “lost my
place.”

That’s where state restoration comes in. Your app has a state at every moment: some
view controller’s view is occupying the screen, and views within it are displaying cer‐
tain values (for example, a certain switch is set to On, or a certain table view is scrol‐
led to a certain position). The idea of state restoration is to save that information
when the app goes into the background, and use it to make all those things true again
if the app is subsequently launched from scratch.

iOS provides a general solution to the problem of state restoration. This solution is
centered around view controllers, which makes sense, since view controllers are the
heart of the problem. What is the user’s “place” in the app, which we don’t want to
“lose”? It’s the chain of view controllers that got us to where we were when the app
was backgrounded, along with the configuration of each one. The goal of state resto‐
ration must therefore be to reconstruct all existing view controllers, initializing each
one into the state it previously had.

Note that state, in this sense, is neither user defaults nor data. If something is a prefer‐
ence, store it in UserDefaults. If something is data, keep it in a file (Chapter 23). Don’t
misuse the state saving and restoration mechanism for such things. The reason for
this is not only conceptual; it’s also because saved state can be lost. You don’t want to
commit anything to the state restoration mechanism if it would be a disaster to have
lost it the next time the app launches.

For example, suppose the user kills your app outright by double-clicking the Home
button to show the app switcher interface and flicking your app’s snapshot upward;
the system will throw away its state. Similarly, if your app crashes, the system will
throw away its state. In both cases, the system assumes that something went wrong,
and doesn’t want to launch your app into what might be a troublesome saved state.
Instead, your app will launch cleanly, from the beginning. There’s no problem for the
user, barring a mild inconvenience — as long as the only thing that gets thrown away
is state.

State Restoration | 425

How to Test State Restoration
To test whether your app is saving and restoring state as you expect:

1. Run the app from Xcode as usual, in the Simulator or on a device.
2. At some point, in the Simulator or on the device, click the Home button (Hard‐

ware → Home in the Simulator). This causes the app to be suspended in good
order, and state is saved.

3. Now, back in Xcode, stop the running project (Product → Stop).
4. Run the project again. If there is saved state, it is restored.

(To test the app’s behavior from a truly cold start, delete it from the Simulator or
device. You might need to do this after changing something about the underlying
save-and-restore model.)

Apple also provides some debugging tools (look for “restorationArchiveTool for
iOS” at https://developer.apple.com/download/more/):

restorationArchiveTool

A command-line tool letting you examine a saved state archive in textual format.
The archive is in a folder called Saved Application State in your app’s sandboxed
Library. See Chapter 23 for more about the app’s sandbox, and how to copy it to
your computer from a device.

StateRestorationDebugLogging.mobileconfig
A configuration profile. When installed on a device, it causes the console to
dump information as state saving and restoration proceeds.

StateRestorationDeveloperMode.mobileconfig
A configuration profile. When installed on a device, it prevents the state archive
from being jettisoned after unexpected termination of the app (a crash, or man‐
ual termination through the app switcher interface). This can allow you to test
state restoration a bit more conveniently.

To install a .mobileconfig file on a device, the simplest approach is to email it to your‐
self on the device and tap the file in the Mail message. You can subsequently delete
the file, if desired, through the Settings app.

Participating in State Restoration
Built-in state restoration is an opt-in technology: it operates only if you explicitly tell
the system that you want to participate in it. To do so, you take three basic steps:

Implement app delegate methods
The app delegate must implement these methods to return true:

426 | Chapter 6: View Controllers

https://developer.apple.com/download/more/

• application(_:shouldSaveApplicationState:)

• application(_:shouldRestoreApplicationState:)

(Naturally, your code can instead return false to prevent state from being saved
or restored on some particular occasion.)

Implement application(_:willFinishLaunchingWithOptions:)
Although it is very early, application(_:didFinishLaunchingWithOptions:) is
too late for state restoration. Your app needs its basic interface before state resto‐
ration begins. The solution is to use a different app delegate method,
application(_:willFinishLaunchingWithOptions:).

Typically, you can just change did to will in the name of this method, keeping
your existing code unchanged. However, your implementation must call makeKey-
AndVisible explicitly on the window! Otherwise, the interface doesn’t come into
existence soon enough for restoration to happen during launch.

Provide restoration IDs
Both UIViewController and UIView have a restorationIdentifier property,
which is a string. Setting this string to a non-nil value is your signal to the sys‐
tem that you want this view controller (or view) to participate in state restoration.
If a view controller’s restorationIdentifier is nil, neither it nor any subse‐
quent view controllers down the chain will be saved or restored. (A nice feature
of this architecture is that it lets you participate partially in state restoration,
omitting some view controllers by not assigning them a restoration identifier.)

You can set the restorationIdentifier manually, in code; typically you’ll do
that early in a view controller’s lifetime. If a view controller or view is instantiated
from a nib, you’ll want to set the restoration identifier in the nib editor; the Iden‐
tity inspector has a Restoration ID field for this purpose. If you’re using a story‐
board, it’s a good idea, in general, to make a view controller’s restoration ID in
the storyboard the same as its storyboard ID, the string used to identify the view
controller in a call to instantiateViewController(withIdentifier:); in fact,
it’s such a good idea that the storyboard editor provides a checkbox, “Use Story‐
board ID,” that makes the one value automatically the same as the other.

In the case of a simple storyboard-based app, where each needed view controller
instance can be reconstructed directly from the storyboard, those steps alone can be
sufficient to bring state restoration to life, operating correctly at the view controller
level. Let’s test it! Start with a storyboard-based app with the following architecture
(Figure 6-11):

• A navigation controller.

State Restoration | 427

Figure 6-11. Architecture of an app for testing state restoration

• Its root view controller, connected by a relationship from the navigation control‐
ler. Call its class RootViewController.

■ A presented view controller, connected by a modal segue from a Present but‐
ton in the root view controller’s view. Call its class PresentedViewController.
Its view contains a Dismiss button.

• A second view controller, connected by a push segue from a Push button in the
root view controller’s view. Call its class SecondViewController.

■ The very same presented view controller (PresentedViewController), also
connected by a modal segue from a Present button in the second view con‐
troller’s view.

This storyboard-based app runs perfectly with just about no code at all; all we need is
an empty implementation of an unwind method in RootViewController and Second‐
ViewController so that we can create an unwind segue from the PresentedView‐
Controller Dismiss button.

428 | Chapter 6: View Controllers

We will now make this app implement state restoration:

1. Change the name of application(_:didFinishLaunchingWithOptions:) in the
app delegate to application(_:willFinishLaunchingWithOptions:), and insert
this line of code:

self.window?.makeKeyAndVisible()

2. Implement application(_:shouldSaveApplicationState:) and
application(_:shouldRestoreApplicationState:) in the app delegate to
return true.

3. In the storyboard, give restoration IDs to all four view controller instances: let’s
call them "nav", "root", "second", and "presented".

That’s all! The app now saves and restores state. When we run the app, navigate to any
view controller, quit, and later relaunch, the app appears in the same view controller
it was in when we quit.

Before calling makeKeyAndVisible, it may also be useful to assign the window a
restoration identifier: self.window?.restorationIdentifier = "window". This
might not make any detectable difference, but in some cases it can help restore
size class information.

Restoration ID, Identifier Path, and Restoration Class
Having everything done for us by the storyboard reveals nothing about what’s really
happening. To learn more, let’s rewrite the example without using the storyboard.
Implement the same architecture using code alone:

// AppDelegate.swift:
func application(_ application: UIApplication,
 didFinishLaunchingWithOptions
 launchOptions: [UIApplicationLaunchOptionsKey : Any]?)
 -> Bool {
 self.window = self.window ?? UIWindow()
 let rvc = RootViewController()
 let nav = UINavigationController(rootViewController:rvc)
 self.window!.rootViewController = nav
 self.window!.backgroundColor = .white
 self.window!.makeKeyAndVisible()
 return true
}

// RootViewController.swift:
override func viewDidLoad() {
 super.viewDidLoad()
 // ... color view background, create buttons ...
}

State Restoration | 429

func doPresent(_ sender: Any?) {
 let pvc = PresentedViewController()
 self.present(pvc, animated:true)
}
func doPush(_ sender: Any?) {
 let svc = SecondViewController()
 self.navigationController!.pushViewController(svc, animated:true)
}

// SecondViewController.swift:
override func viewDidLoad() {
 super.viewDidLoad()
 // ... color view background, create button ...
}
func doPresent(_ sender: Any?) {
 let pvc = PresentedViewController()
 self.present(pvc, animated:true)
}

// PresentedViewController.m:
override func viewDidLoad() {
 super.viewDidLoad()
 // ... color view background, create button ...
}
func doDismiss(_ sender: Any?) {
 self.presentingViewController!.dismiss(animated:true)
}

That’s a working app. Now let’s start adding state restoration, just as before:

1. Change the name of application(_:didFinishLaunchingWithOptions:) in the
app delegate to application(_:willFinishLaunchingWithOptions:).

2. Implement application(_:shouldSaveApplicationState:) and
application(_:shouldRestoreApplicationState:) in the app delegate to
return true.

3. Give all four view controller instances restoration IDs: let’s call them "nav",
"root", "second", and "presented". We’ll have to do this in code. We’re creating
each view controller instance manually, so we may as well assign its restoration-
Identifier in the next line, like this:

let rvc = RootViewController()
rvc.restorationIdentifier = "root"
let nav = UINavigationController(rootViewController:rvc)
nav.restorationIdentifier = "nav"

And so on.

Run the app. We are not getting state restoration. Why not?

430 | Chapter 6: View Controllers

The reason is that the restorationIdentifier alone is not sufficient to tell the state
restoration mechanism what to do as the app launches. The restoration mechanism
knows the chain of view controller classes that needs to be generated, but it is up to us
to generate the instances of those classes. (Our storyboard-based example didn’t
exhibit this problem, because the storyboard itself was the source of the instances.) To
do that, we need to know about the identifier path and the restoration class.

Identifier path

The restorationIdentifier serves as a guide during restoration as to what view
controller is needed at each point in the view controller hierarchy. Any particular
view controller instance, given its position in the view controller hierarchy, is
uniquely identified by the sequence of restorationIdentifier values of all the view
controllers (including itself) in the chain that leads to it. Those restoration-
Identifier values, taken together and in sequence, constitute the identifier path for
any given view controller instance.

Each identifier path is, in fact, merely an array of strings. In effect, the identifier paths
are like a trail of breadcrumbs that you left behind as you created each view controller
while the app was running, and that will now be used to identify each view controller
again as the app launches.

For example, if we launch the app and press the Push button and then the Present
button, then all four view controllers have been instantiated; those instances are iden‐
tified as:

• ["nav"]

• ["nav", "root"]

• ["nav", "second"]

• ["nav", "presented"] (because the navigation controller is the actual present‐
ing view controller)

Observe that a view controller’s identifier path is not a record of the full story of how
we got here. It’s just an identifier! The state-saving mechanism uses those identifiers
to save a relational tree, which does tell the full story. For example, if the app is sus‐
pended in the current situation, then the state-saving mechanism will record the true
state of affairs, namely that the root view controller (["nav"]) has two children
(["nav", "root"] and ["nav", "second"]) and a presented view controller
(["nav", "presented"]).

Now consider what the state restoration mechanism needs to do when the app has
been suspended and killed, and comes back to life, from the situation I just described.
We need to restore four view controllers; we know their identifiers and mutual rela‐

State Restoration | 431

tionships. State restoration doesn’t start until after application(_:willFinish-
LaunchingWithOptions:). So when the state restoration mechanism starts examining
the situation, it discovers that the ["nav"] and ["nav", "root"] view controller
instances have already been created! However, the view controller instances for
["nav", "second"] and ["nav", "presented"] must also be created now. The state
restoration mechanism doesn’t know how to do that — so it’s going to ask your code
for the instances.

Restoration class
The state restoration mechanism needs to ask your code for the view controller
instances that haven’t been created already. But what code should it ask? One way of
specifying this is for you to provide a restoration class for each view controller
instance that is not restored by the time application(_:willFinishLaunchingWith-
Options:) returns. Here’s how you do that:

1. Give the view controller a restorationClass. Typically, this will be the view con‐
troller’s own class, or the class of the view controller responsible for creating this
view controller instance.

2. Implement the class method viewController(withRestorationIdentifier-
Path:coder:) on the class named by each view controller’s restorationClass
property, returning a view controller instance as specified by the identifier path.
Very often, the implementation will be to instantiate the view controller directly
and return that instance.

3. Specify formally that each class named as a restorationClass implements the
UIViewControllerRestoration protocol. (If you omit this step, you’ll get a helpful
warning message at runtime: “Restoration class for view controller does not con‐
form to UIViewControllerRestoration protocol.”)

Let’s make our PresentedViewController and SecondViewController instances restor‐
able. I’ll start with PresentedViewController. Our app can have two PresentedView‐
Controller instances (though not simultaneously) — the one created by
RootViewController, and the one created by SecondViewController. Let’s start with
the one created by RootViewController.

Since RootViewController creates and configures a PresentedViewController
instance, it can reasonably act also as the restoration class for that instance. In its
implementation of viewController(withRestorationIdentifierPath:coder:),
RootViewController should then create and configure a PresentedViewController
instance exactly as it was doing before we added state restoration to our app — except
for putting it into the view controller hierarchy! The state restoration mechanism
itself, remember, is responsible for assembling the view controller hierarchy; our job
is merely to supply any needed view controller instances.

432 | Chapter 6: View Controllers

So RootViewController now must adopt UIViewControllerRestoration, and will con‐
tain this code:

func doPresent(_ sender: Any?) {
 let pvc = PresentedViewController()
 pvc.restorationIdentifier = "presented"
 pvc.restorationClass = type(of:self) // *
 self.present(pvc, animated:true)
}
class func viewController(withRestorationIdentifierPath ip: [Any],
 coder: NSCoder) -> UIViewController? {
 var vc : UIViewController? = nil
 let last = ip.last as! String
 switch last {
 case "presented":
 let pvc = PresentedViewController()
 pvc.restorationIdentifier = "presented"
 pvc.restorationClass = self
 vc = pvc
 default: break
 }
 return vc
}

You can see what I mean when I say that the restoration class must do exactly what it
was doing before state restoration was added. Clearly this situation has led to some
annoying code duplication, so let’s factor out the common code. In doing so, we must
bear in mind that doPresent is an instance method, whereas viewController(with-
RestorationIdentifierPath:coder:) is a class method; our factored-out code must
therefore be a class method, so that they can both call it:

class func makePresentedViewController () -> UIViewController {
 let pvc = PresentedViewController()
 pvc.restorationIdentifier = "presented"
 pvc.restorationClass = self
 return pvc
}
func doPresent(_ sender: Any?) {
 let pvc = type(of:self).makePresentedViewController()
 self.present(pvc, animated:true)
}
class func viewController(withRestorationIdentifierPath ip: [Any],
 coder: NSCoder) -> UIViewController? {
 var vc : UIViewController? = nil
 let last = ip.last as! String
 switch last {
 case "presented":
 vc = self.makePresentedViewController()
 default: break
 }
 return vc
}

State Restoration | 433

The structure of our viewController(withRestorationIdentifierPath:coder:) is
typical. We test the identifier path — usually, it’s sufficient to examine its last element
— and return the corresponding view controller; ultimately, we are also prepared to
return nil, in case we are called with an identifier path we can’t interpret. We can also
return nil deliberately, to tell the restoration mechanism, “Go no further; don’t
restore the view controller you’re asking for here, or any view controller further down
the same path.”

Continuing in the same vein, we expand RootViewController still further to make it
also the restoration class for SecondViewController, and SecondViewController can
make itself the restoration class for the PresentedViewController instance that it cre‐
ates. There’s no conflict in the notion that both RootViewController and Second‐
ViewController can fulfill the role of PresentedViewController restoration class, as
we’re talking about two different PresentedViewController instances. (The details are
left as an exercise for the reader.)

The app now performs state saving and restoration correctly!

App delegate instead of restoration class
I said earlier that the state restoration mechanism can ask your code for needed
instances in two ways. The second way is that you implement this method in your
app delegate:

• application(_:viewControllerWithRestorationIdentifierPath:coder:)

If you implement that method, it will be called for every view controller that doesn’t
have a restoration class. This works in a storyboard-based app, and thus is a chance
for you to intervene and prevent the restoration of a particular view controller on a
particular occasion (by returning nil). Be prepared to receive identifier paths for an
existing view controller! If that happens, return the existing view controller — don’t
make a new one (and don’t return nil).

Restoring View Controller State
I have explained how the state restoration mechanism creates a view controller and
places it into the view controller hierarchy. But at that point, the work of restoration is
only half done. What about the state of that view controller?

A newly restored view controller probably won’t have the data and property values it
was holding at the time the app was terminated. The history of the configuration of
this view controller throughout the time the app was previously running is not magi‐
cally recapitulated during restoration. It is up to each view controller, therefore, to
restore its own state when it itself is restored. And in order to do that, it must previ‐
ously save its own state when the app is backgrounded. The state saving and restora‐

434 | Chapter 6: View Controllers

tion mechanism provides a way of helping your view controllers do this, through the
use of a coder (an NSCoder object). Think of this coder as a box in which the view
controller is invited to place its valuables for safekeeping, and from which it can
retrieve them later. Each of these valuables needs to be identified, so it is tagged with a
key (an arbitrary string) when it is placed into the box, and is then later retrieved by
using the same key, much as in a dictionary.

Anyone who has anything to save at the time it is handed a coder can do so by calling
encode(_:forKey:). If an object’s class doesn’t adopt the NSCoding protocol, you
may have to archive it to an NSData object before you can encode it. However, views
and view controllers can be handled by the coder directly, because they are treated as
references. Whatever was saved in the coder can later be extracted using the same key.
You can call decodeObject(forKey:) and cast down as needed, or you can call a spe‐
cialized method corresponding to the expected type, such as decodeFloat(forKey:).

The keys do not have to be unique across the entire app; they only need to be unique
for a particular view controller. Each object that is handed a coder is handed its own
personal coder. It is handed this coder at state saving time, and it is handed the same
coder (that is, a coder with the same archived objects and keys) at state restoration
time.

Here’s the sequence of events involving coders:

Saving state
When it’s time to save state (as the app is about to be backgrounded), the state
saving mechanism provides coders as follows:

1. The app delegate is sent application(_:shouldSaveApplicationState:).
The coder is the second parameter.

2. The app delegate is sent application(_:willEncodeRestorableState-

With:). The coder is the second parameter, and in fact it is the same coder as
in the previous step, because this is the same object (the app delegate).

3. Each view controller down the chain, starting at the root view controller, is
sent encodeRestorableState(with:). The coder is the parameter. The
implementation should call super. Each view controller gets its own coder.

Restoring state
When it’s time to restore state (as the app is launched), the state restoration mech‐
anism provides coders as follows:

1. The app delegate is sent application(_:shouldRestoreApplication-

State:). The coder is the second parameter.

State Restoration | 435

2. As each view controller down the chain is to be created, one of these meth‐
ods is called (as I’ve already explained); the coder is the one appropriate to
the view controller that’s to be created:
• The restoration class’s viewController(withRestorationIdentifier-

Path:coder:), if the view controller has a restoration class.
• Otherwise, the app delegate’s application(_:viewControllerWith-

RestorationIdentifierPath:coder:).

3. Each view controller down the chain, starting at the root view controller, is
sent decodeRestorableState(with:). The coder is the parameter. The
implementation should call super.

4. The app delegate is sent application(_:didDecodeRestorableStateWith:).
The coder is the second parameter, and is the same one sent to
application(_:shouldRestoreApplicationState:).

The UIStateRestoration.h header file describes five built-in keys that are available
from every coder during restoration:

UIStateRestorationViewControllerStoryboardKey

A reference to the storyboard from which this view controller came, if any.

UIApplicationStateRestorationBundleVersionKey

Your Info.plist CFBundleVersion string at the time of state saving.

UIApplicationStateRestorationUserInterfaceIdiomKey

An NSNumber wrapping a UIUserInterfaceIdiom value, either .phone or .pad,
telling what kind of device we were running on when state saving happened. You
can extract this information as follows:

let key = UIApplicationStateRestorationUserInterfaceIdiomKey
if let idiomraw = coder.decodeObject(forKey: key) as? Int {
 if let idiom = UIUserInterfaceIdiom(rawValue:idiomraw) {
 if idiom == .phone {
 // ...
 }
 }
}

UIApplicationStateRestorationTimestampKey

A Date telling when state saving happened.

UIApplicationStateRestorationSystemVersionKey

A NSString telling the system version under which state saving happened.

436 | Chapter 6: View Controllers

One purpose of these keys is to allow your app to opt out of state restoration, wholly
or in part, because the archive is too old, was saved on the wrong kind of device (and
presumably migrated to this one by backup and restore), and so forth.

A typical implementation of encodeRestorableState(with:) and decode-

RestorableState(with:) will concern itself with properties and interface views.
decodeRestorableState(with:) is guaranteed to be called after viewDidLoad, so you
know that viewDidLoad won’t overwrite any direct changes to the interface per‐
formed in decodeRestorableState(with:).

To illustrate, I’ll add state saving and restoration to my earlier UIPageViewController
example, the one that displays a Pep Boy on each page. Recall how that example is
architected. The project has no storyboard. The code defines just two classes, the app
delegate and the Pep view controller. The app delegate creates a UIPageView‐
Controller and makes it the window’s root view controller, and makes itself the page
view controller’s data source; its self.pep instance variable holds the data model,
which is just an array of string Pep Boy names. The page view controller’s data source
methods create and supply an appropriate Pep instance whenever a page is needed
for the page view controller, along these lines:

// ... work out index of new name ...
return Pep(pepBoy: self.pep[ix])

The challenge is to restore the Pep object displayed in the page view controller as the
app launches. One solution involves recognizing that a Pep object is completely con‐
figured once created, and it is created just by handing it the name of a Pep Boy in its
designated initializer, which becomes its boy property. Thus we can mediate between
a Pep object and a mere string, and all we really need to save and restore is that string.

All the additional work, therefore, can be performed in the app delegate. As usual, we
change did to will so that we are now implementing application(_:willFinish-
LaunchingWithOptions:), and we implement application(_:shouldSave-

ApplicationState:) and application(_:shouldRestoreApplicationState:) to
return true. Now we save and restore the current Pep Boy name in the app delegate’s
encode and decode methods:

func application(_ application: UIApplication,
 willEncodeRestorableStateWith coder: NSCoder) {
 let pvc = self.window!.rootViewController as! UIPageViewController
 let boy = (pvc.viewControllers![0] as! Pep).boy
 coder.encode(boy, forKey:"boy")
}
func application(_ application: UIApplication,
 didDecodeRestorableStateWith coder: NSCoder) {
 let boyMaybe = coder.decodeObject(forKey:"boy")
 guard let boy = boyMaybe as? String else {return}

State Restoration | 437

 let pvc = self.window!.rootViewController as! UIPageViewController
 let pep = Pep(pepBoy: boy)
 pvc.setViewControllers([pep], direction: .forward, animated: false)
}

A second, more general solution is to make our Pep view controller class itself capa‐
ble of saving and restoration. This means that every view controller down the chain
from the root view controller to our Pep view controller must have a restoration iden‐
tifier. In our simple app, there’s just one such view controller, the UIPageView‐
Controller; the app delegate can assign it a restoration ID when it creates it:

let pvc = UIPageViewController(
 transitionStyle: .scroll, navigationOrientation: .horizontal)
pvc.restorationIdentifier = "pvc" // *

We’ll have a Pep object assign itself a restoration ID in its own designated initializer.
The Pep object will also need a restoration class; as I mentioned earlier, this can per‐
fectly well be the Pep class itself, and that seems most appropriate here:

required init(pepBoy boy:String) { // *
 self.boy = boy
 super.init(nibName: nil, bundle: nil)
 self.restorationIdentifier = "pep" // *
 self.restorationClass = type(of:self) // *
}

The only state that a Pep object needs to save is its boy string, so we implement
encodeRestorableState to do that. We don’t need to implement decodeRestorable-
State, because the coder that will come back to us in viewController(with-
RestorationIdentifierPath:coder:) contains the boy string, and once we use it to
create the Pep instance, the Pep instance is completely configured. This is a class
method, and it can’t call an initializer on self unless that initializer is marked as
required; we did mark it required (in the previous code):

override func encodeRestorableState(with coder: NSCoder) {
 super.encodeRestorableState(with:coder)
 coder.encode(self.boy, forKey:"boy")
}
class func viewController(withRestorationIdentifierPath ip: [Any],
 coder: NSCoder) -> UIViewController? {
 let boy = coder.decodeObject(forKey:"boy") as! String
 return self.init(pepBoy: boy)
}

Now comes a surprise. We run the app and test it, and we find that we’re not getting
saving and restoration of our Pep object. It isn’t being archived; its encodeRestorable-
State(with:) isn’t even being called! The reason is that the state saving mechanism
doesn’t work automatically for a UIPageViewController and its children (or for a cus‐
tom container view controller and its children, for that matter). It is up to us to see to
it that the current Pep object is archived.

438 | Chapter 6: View Controllers

To do so, we can archive and unarchive the current Pep object in an implementation
of encodeRestorableState(with:) and decodeRestorableState(with:) that is
being called. For our app, that would have to be in the app delegate. The code we’ve
written so far has all been necessary to make the current Pep object archivable and
restorable; now the app delegate will make sure that it is archived and restored:

func application(_ application: UIApplication,
 willEncodeRestorableStateWith coder: NSCoder) {
 let pvc = self.window!.rootViewController as! UIPageViewController
 let pep = pvc.viewControllers![0] as! Pep
 coder.encode(pep, forKey:"pep")
}
func application(_ application: UIApplication,
 didDecodeRestorableStateWith coder: NSCoder) {
 let pepMaybe = coder.decodeObject(forKey:"pep")
 guard let pep = pepMaybe as? Pep else {return}
 let pvc = self.window!.rootViewController as! UIPageViewController
 pvc.setViewControllers([pep], direction: .forward, animated: false)
}

This solution may seem rather heavyweight, but it isn’t. We’re not really archiving an
entire Pep instance; it’s just a reference. The Pep instance that arrives in
application(_:didDecodeRestorableStateWith:) was never in the archive; it is the
instance created by Pep’s viewController(withRestorationIdentifier-

Path:coder:).

Restoration Order of Operations
When you implement state saving and restoration for a view controller, the view con‐
troller ends up with two different ways of being configured. One way involves the
view controller lifetime events I discussed earlier (“View Controller Lifetime Events”
on page 415). The other involves the state restoration events I’ve been discussing
here. You want your view controller to be correctly configured no matter whether this
view controller is undergoing state restoration or not.

Before state saving and restoration, you were probably configuring your view control‐
ler, at least in part, in viewWillAppear(_:) and viewDidAppear(_:). So you’d like to
know when these will arrive during state restoration in relation to decodeRestorable-
State(with:). But you don’t know; it might be before or after decodeRestorable-
State(with:). In fact, you don’t even know whether viewDidAppear(_:) will arrive:
it might well never arrive, even if viewWillAppear(_:) arrives. This is another of
those view controller lifetime event incoherencies I complained about earlier in this
chapter.

Fortunately, there’s another view controller event I haven’t mentioned yet:
applicationFinishedRestoringState. If you implement this method in a view con‐

State Restoration | 439

troller subclass, it will be called if and only if we’re doing state restoration, at a time
when all view controllers have already been sent decodeRestorableState(with:).

Thus, the known order of events during state restoration is like this:

1. application(_:shouldRestoreApplicationState:)

2. application(_:viewControllerWithRestorationIdentifierPath:coder:)

3. viewController(withRestorationIdentifierPath:coder:), in order down the
chain

4. viewDidLoad, in order down the chain; possibly interleaved with the foregoing
5. decodeRestorableState(with:), in order down the chain
6. application(_:didDecodeRestorableStateWith:)

7. applicationFinishedRestoringState, in order down the chain

You still don’t know when viewWillAppear(_:) and viewDidAppear(_:) will arrive,
or whether viewDidAppear(_:) will arrive at all. But in applicationFinished-
RestoringState you can reliably finish configuring your view controller and your
interface.

A typical situation is that you will want to update your interface after all properties
have been set. So you’ll factor out your interface-updating code into a single method.
Now there are two possibilities, and they are both handled coherently:

We’re not restoring state
Properties will be set through initialization and configuration, and then viewWill-
Appear(_:) calls your interface-updating method.

We are restoring state
Properties will be set by decodeRestorableState(with:), and then application-
FinishedRestoringState calls your interface-updating method.

There is still some indeterminacy as to what’s going to happen, but the interface-
updating method can mediate that indeterminacy by checking for two things that can
go wrong:

It is called too soon
The interface-updating method should check to see that the properties have in
fact been set; if not, it should just return. It will be called again when the proper‐
ties have been set.

It is called unnecessarily
The interface-updating method might run twice in quick succession with the
same set of properties. This is not a disaster, but if you don’t like it, you can pre‐

440 | Chapter 6: View Controllers

vent it by comparing the properties to the interface and return if the interface has
already been configured with these properties.

If your app has additional state restoration work to do on a background thread
(Chapter 25), the documentation says you should call UIApplication’s extend-
StateRestoration as you begin and completeStateRestoration when you’ve
finished. The idea is that if you don’t call completeStateRestoration, the system
can assume that something has gone wrong and will throw away the saved state
information in case it is faulty.

Restoration of Other Objects
A view will participate in automatic saving and restoration of state if its view control‐
ler does, and if it itself has a restoration identifier. Some built-in UIView subclasses
have built-in restoration abilities. For example, a scroll view that participates in state
saving and restoration will automatically return to the point to which it was scrolled
previously. You should consult the documentation on each UIView subclass to see
whether it participates usefully in state saving and restoration, and I’ll mention a few
significant cases when we come to discuss those views in later chapters.

In addition, an arbitrary object can be made to participate in automatic saving and
restoration of state. There are three requirements for such an object:

• The object’s class must adopt the UIStateRestoring protocol. This declares three
optional methods:

■ encodeRestorableState(with:)
■ decodeRestorableState(with:)
■ applicationFinishedRestoringState

• When the object is created, someone must register it with the runtime by calling
this UIApplication class method:

■ registerObject(forStateRestoration:restorationIdentifier:)
• Someone who participates in state saving and restoration, such as a view control‐

ler, must make the archive aware of this object by storing a reference to it in the
archive (typically in encodeRestorableState(with:)) — much as we did with
the Pep object earlier.

So, for example, here’s an NSObject subclass Thing with a word property, that partici‐
pates in state saving and restoration:

class Thing : NSObject, UIStateRestoring {
 var word = ""
 func encodeRestorableState(with coder: NSCoder) {
 coder.encode(self.word, forKey:"word")

State Restoration | 441

 }
 func decodeRestorableState(with coder: NSCoder) {
 self.word = coder.decodeObject(forKey:"word") as! String
 }
 func applicationFinishedRestoringState() {
 // not used
 }
}

And here’s a view controller with an Optional Thing property (self.thing):

class func makeThing () -> Thing {
 let thing = Thing()
 UIApplication.registerObject(
 forStateRestoration: thing, restorationIdentifier: "thing")
 return thing
}
override func awakeFromNib() {
 super.awakeFromNib()
 self.thing = type(of:self).makeThing()
}
override func encodeRestorableState(with coder: NSCoder) {
 super.encodeRestorableState(with:coder)
 coder.encode(self.thing, forKey: "mything")
}

That last line is crucial; it introduces our Thing object to the archive and brings its
UIStateRestoring methods to life. The result is that if we background the app while an
instance of this view controller exists, and if state restoration is performed on the next
launch, the view controller’s Thing has the same word that it had before; the Thing
has participated in state saving and restoration along with the view controller that
owns it.

There is an optional objectRestorationClass property of the restorable object, and
an object(withRestorationIdentifierPath:coder:) method that the designated
class must implement. The class in question should formally adopt the UIObjectRes‐
toration protocol. Its implementation of object(withRestorationIdentifier-

Path:coder:) should return the restorable object, by creating it or pointing to it;
alternatively, it can return nil to prevent restoration. If you want to assign an object-
RestorationClass, you’ll have to declare the property:

var objectRestorationClass: UIObjectRestoration.Type?

However, our Thing object was restorable even without an objectRestorationClass!
Presumably, just calling registerObject sufficiently identifies this object to the run‐
time.

Another optional property of the restorable object is restorationParent. Again, if
you want to assign to it, you’ll have to declare it:

var restorationParent: UIStateRestoring?

442 | Chapter 6: View Controllers

The purpose of the restoration parent is to give the restorable object an identifier
path. For example, if we have a chain of view controllers with a path ["nav",
"second"], then if that last view controller is the restorationParent of our Thing
object, the Thing object’s identifier path in object(withRestorationIdentifier-
Path:coder:) will be ["nav", "second", "thing"], rather than simply ["thing"].
This is useful if we are worried that ["thing"] alone will not uniquely identify this
object.

Snapshot Suppression
When your app is backgrounded, the system takes a snapshot of your interface. It is
used in the app switcher interface, and as a launch image when your app is resumed.
But what happens if your app is killed in the background and relaunched?

If your app isn’t participating in state restoration, then its default launch image is
used. This makes sense, because your app is starting from scratch. But if your app is
participating in state restoration, then the snapshot is used as a launch image. This
makes sense, too, because the interface that was showing when the app was back‐
grounded is presumably the very interface your state restoration process is about to
restore.

However, you might decide, while saving state, that there is reason not to use the sys‐
tem’s snapshot when relaunching. (Perhaps there is something in your interface that
would be inappropriate to display when the app is subsequently launched.) In that
case, you can call the UIApplication instance method ignoreSnapshotOnNext-
ApplicationLaunch. When the app launches with state restoration, the user will see
your app’s default launch image, followed by a change to the restored interface. They
may not match, but at least there is a nice cross-dissolve between them.

By the same token, if the view controller whose view was showing at state saving time
is not restorable (it has no restoration ID), then if the app is killed in the background
and subsequently launches with state restoration, the restoration mechanism knows
that the snapshot taken at background time doesn’t match the interface we’re about to
restore to, so the user will initially see your app’s default launch image.

State Restoration | 443

CHAPTER 7

Scroll Views

A scroll view (UIScrollView) is a view whose content is larger than its bounds. To
reveal a desired area, the user can scroll the content by dragging, or you can reposi‐
tion the content in code.

A scroll view isn’t magic; it takes advantage of ordinary UIView features (Chapter 1).
The content is simply the scroll view’s subviews. When the scroll view scrolls, what’s
really changing is the scroll view’s own bounds origin; the subviews are positioned
with respect to the bounds origin, so they move with it. The scroll view’s clipsTo-
Bounds is usually true, so any content positioned within the scroll view is visible and
any content positioned outside it is not.

In addition, a scroll view brings to the table some nontrivial abilities:

• It knows how to shift its bounds origin in response to the user’s gestures.
• It provides scroll indicators whose size and position give the user a clue as to the

content’s size and position.
• It can enforce paging, whereby the user can scroll only by a fixed amount.
• It supports zooming, so that the user can resize the content with a pinch gesture.
• It provides a plethora of delegate methods, so that your code knows exactly how

the user is scrolling and zooming.

As I’ve just said, a scroll view’s subviews, like those of any view, are positioned with
respect to its bounds origin; to scroll is to change the bounds origin. The scroll view
already knows how far it should be allowed to slide its subviews downward and right‐
ward — the limit is reached when the scroll view’s bounds origin is CGPoint.zero.
What the scroll view needs to know is how far it should be allowed to slide its sub‐
views upward and leftward. That is the scroll view’s content size — its contentSize

445

property. The scroll view uses its contentSize, in combination with its own bounds
size, to set the limits on how large its bounds origin can become. It may be helpful to
think of the scroll view’s scrollable content as the rectangle defined by
CGRect(origin:.zero, size:contentSize); this is the rectangle that the user can
inspect by scrolling.

If a dimension of the contentSize isn’t larger than the same dimension of the scroll
view’s own bounds, the content won’t be scrollable in that dimension: there is nothing
to scroll, as the entire scrollable content is already showing. The default is that the
contentSize is .zero — meaning that the scroll view isn’t scrollable. To get a working
scroll view, therefore, it will be crucial to set its contentSize correctly. You can do
this directly, in code; or, if you’re using autolayout (Chapter 1), the contentSize is
calculated for you based on the constraints of the scroll view’s subviews. I’ll demon‐
strate both approaches.

Creating a Scroll View in Code
I’ll start by creating a scroll view, providing it with subviews, and making those sub‐
views viewable by scrolling, entirely in code.

Manual Content Size
In the first instance, let’s not use autolayout. Our project is based on the Single View
app template, with a single view controller class, ViewController. In the ViewControl‐
ler’s viewDidLoad, I’ll create the scroll view to fill the main view, and populate it with
a vertical column of 30 UILabels whose text contains a sequential number so that we
can see where we are when we scroll:

let sv = UIScrollView(frame: self.view.bounds)
sv.autoresizingMask = [.flexibleWidth, .flexibleHeight]
self.view.addSubview(sv)
sv.backgroundColor = .white
var y : CGFloat = 10
for i in 0 ..< 30 {
 let lab = UILabel()
 lab.text = "This is label \(i+1)"
 lab.sizeToFit()
 lab.frame.origin = CGPoint(10,y)
 sv.addSubview(lab)
 y += lab.bounds.size.height + 10
}
var sz = sv.bounds.size
sz.height = y
sv.contentSize = sz // *

446 | Chapter 7: Scroll Views

The crucial move is the last line, where we tell the scroll view how large its content is
to be. If we omit this step, the scroll view won’t be scrollable; the window will appear
to consist of a static column of labels.

There is no rule about the order in which you perform the two operations of setting
the contentSize and populating the scroll view with subviews. In that example, we
set the contentSize afterwards because it is more convenient to track the heights of
the subviews as we add them than to calculate their total height in advance. Similarly,
you can alter a scroll view’s content (subviews) or contentSize, or both, dynamically
as the app runs.

Any direct subviews of the scroll view may need to have their autoresizing set appro‐
priately in case the scroll view is resized, as would happen, for instance, if our app
performs compensatory rotation (“Rotation” on page 322). To see this, add these lines
to the preceding example, inside the for loop:

lab.frame.size.width = self.view.bounds.width - 20
lab.backgroundColor = .red // make label bounds visible
lab.autoresizingMask = .flexibleWidth

Run the app, and rotate the device or the Simulator. The labels are wider in portrait
orientation because the scroll view itself is wider.

This, however, has nothing to do with the contentSize! The contentSize does not
change just because the scroll view’s bounds change; if you want the contentSize to
change in response to rotation, you will need to change it manually, in code. Con‐
versely, resizing the contentSize has no effect on the size of the scroll view’s sub‐
views; it merely determines the scrolling limit.

Automatic Content Size With Autolayout
With autolayout, things are different. A scroll view interprets the constraints of its
immediate subviews in a special way. A constraint between a scroll view and its direct
subview is not a way of positioning the subview relative to the scroll view (as it would
be if the superview were an ordinary UIView). Rather, it’s a way of describing the
scroll view’s contentSize.

To see this, let’s rewrite the preceding example to use autolayout. The scroll view and
its subviews have their translatesAutoresizingMaskIntoConstraints set to false,
and we’re giving them explicit constraints:

let sv = UIScrollView()
sv.backgroundColor = .white
sv.translatesAutoresizingMaskIntoConstraints = false
self.view.addSubview(sv)
var con = [NSLayoutConstraint]()
con.append(contentsOf:
 NSLayoutConstraint.constraints(withVisualFormat:

Creating a Scroll View in Code | 447

 "H:|[sv]|",
 metrics:nil,
 views:["sv":sv]))
con.append(contentsOf:
 NSLayoutConstraint.constraints(withVisualFormat:
 "V:|[sv]|",
 metrics:nil,
 views:["sv":sv]))
var previousLab : UILabel? = nil
for i in 0 ..< 30 {
 let lab = UILabel()
 lab.translatesAutoresizingMaskIntoConstraints = false
 lab.text = "This is label \(i+1)"
 sv.addSubview(lab)
 con.append(contentsOf:
 NSLayoutConstraint.constraints(withVisualFormat:
 "H:|-(10)-[lab]",
 metrics:nil,
 views:["lab":lab]))
 if previousLab == nil { // first one, pin to top
 con.append(contentsOf:
 NSLayoutConstraint.constraints(withVisualFormat:
 "V:|-(10)-[lab]",
 metrics:nil,
 views:["lab":lab]))
 } else { // all others, pin to previous
 con.append(contentsOf:
 NSLayoutConstraint.constraints(withVisualFormat:
 "V:[prev]-(10)-[lab]",
 metrics:nil,
 views:["lab":lab, "prev":previousLab!]))
 }
 previousLab = lab
}
NSLayoutConstraint.activate(con)

The labels are correctly positioned relative to one another, but the scroll view isn’t
scrollable. Moreover, setting the contentSize manually doesn’t help. The problem is
that we are missing a constraint. We have to add one more constraint, showing the
scroll view what the height of its contentSize should be. Replace the last line of that
code with this:

// ... everything else as before ...
// last one, pin to bottom, this dictates content size height!
con.append(contentsOf:
 NSLayoutConstraint.constraints(withVisualFormat:
 "V:[lab]-(10)-|",
 metrics:nil,
 views:["lab":previousLab!]))
NSLayoutConstraint.activate(con)

448 | Chapter 7: Scroll Views

The constraints of the scroll view’s subviews now describe the contentSize height:
the top label is pinned to the top of the scroll view, the next one is pinned to the one
above it, and so on — and the bottom one is pinned to the bottom of the scroll view.
Consequently, the runtime calculates the contentSize height from the inside out, as
it were, as the sum of all the vertical constraints (including the intrinsic heights of the
labels), and the scroll view is vertically scrollable to show all the labels.

Using a Content View
Instead of putting all of our scroll view’s content directly inside the scroll view as its
immediate subviews, we can provide a generic UIView as the sole immediate subview
of the scroll view; everything else inside the scroll view is to be a subview of this
generic UIView, which we may term the content view. This is a commonly used
arrangement.

Under autolayout, we then have two choices for setting the scroll view’s contentSize:

• Set the content view’s translatesAutoresizingMaskIntoConstraints to true,
and set the scroll view’s contentSize manually to the size of the content view.

• Set the content view’s translatesAutoresizingMaskIntoConstraints to false,
set its size with constraints, and pin its edges with constraints to its superview
(the scroll view). Usually, all four of those edge constraints will have a constant
of 0, thus making the scroll view’s contentSize the same as the size of the con‐
tent view.

A convenient consequence of this arrangement is that it works independently of
whether the content view’s own subviews are positioned explicitly by their frames or
using constraints. There are thus four possible combinations:

No constraints
The content view is sized by its frame, its contents are positioned by their frames,
and the scroll view’s contentSize is set explicitly.

Content view constraints
The content view is sized by its own height and width constraints, and its edges are
pinned to the scroll view to set the scroll view’s content size.

Content view and content constraints
The content view is sized from the inside out by the constraints of its subviews,
and its edges are pinned to the scroll view to set the scroll view’s content size.

Content constraints only
The content view is sized by its frame and the scroll view’s contentSize is set
explicitly, but the content view’s subviews are positioned using constraints.

Creating a Scroll View in Code | 449

I’ll illustrate by rewriting the previous example to use a content view. All four possible
combinations start the same way:

let sv = UIScrollView()
sv.backgroundColor = .white
sv.translatesAutoresizingMaskIntoConstraints = false
self.view.addSubview(sv)
var con = [NSLayoutConstraint]()
con.append(contentsOf:
 NSLayoutConstraint.constraints(withVisualFormat:
 "H:|[sv]|",
 metrics:nil,
 views:["sv":sv]))
con.append(contentsOf:
 NSLayoutConstraint.constraints(withVisualFormat:
 "V:|[sv]|",
 metrics:nil,
 views:["sv":sv]))
let v = UIView() // content view
sv.addSubview(v)

The differences lie in what happens next. The first combination is that no constraints
are used (apart from the constraints that frame the scroll view), and the scroll view’s
content size is set explicitly. It’s just like the first example in the chapter, except that
the labels are added to the content view, not to the scroll view:

var y : CGFloat = 10
for i in 0 ..< 30 {
 let lab = UILabel()
 lab.text = "This is label \(i+1)"
 lab.sizeToFit()
 lab.frame.origin = CGPoint(10,y)
 v.addSubview(lab) // *
 y += lab.bounds.size.height + 10
}
// set content view frame and content size explicitly
v.frame = CGRect(0,0,0,y)
sv.contentSize = v.frame.size
NSLayoutConstraint.activate(con)

The second combination is that the content view is sized by width and height con‐
straints and its edges are pinned by constraints to the scroll view to give the scroll
view a content size. It’s just like the preceding code, except that we set the content
view’s constraints rather than the scroll view’s content size:

var y : CGFloat = 10
for i in 0 ..< 30 {
 let lab = UILabel()
 lab.text = "This is label \(i+1)"
 lab.sizeToFit()
 lab.frame.origin = CGPoint(10,y)
 v.addSubview(lab) // *

450 | Chapter 7: Scroll Views

 y += lab.bounds.size.height + 10
}
// set content view width, height, and frame-to-superview constraints
// content size is calculated for us
v.translatesAutoresizingMaskIntoConstraints = false
con.append(contentsOf:
 NSLayoutConstraint.constraints(withVisualFormat:
 "V:|[v(y)]|",
 metrics:["y":y],
 views:["v":v]))
con.append(contentsOf:
 NSLayoutConstraint.constraints(withVisualFormat:
 "H:|[v(0)]|",
 metrics:nil,
 views:["v":v]))
NSLayoutConstraint.activate(con)

The third combination is that explicit constraints are used throughout. The labels are
positioned within the content view by constraints; the content view’s edges are pinned
by constraints to the scroll view. In a very real sense, the scroll view gets its content
size from the labels. This is just like the second example in the chapter, except that the
labels are added to the content view:

var previousLab : UILabel? = nil
for i in 0 ..< 30 {
 let lab = UILabel()
 // lab.backgroundColor = UIColor.red()
 lab.translatesAutoresizingMaskIntoConstraints = false
 lab.text = "This is label \(i+1)"
 v.addSubview(lab) // *
 con.append(contentsOf: // *
 NSLayoutConstraint.constraints(withVisualFormat:
 "H:|-(10)-[lab]",
 metrics:nil,
 views:["lab":lab]))
 if previousLab == nil { // first one, pin to top
 con.append(contentsOf: // *
 NSLayoutConstraint.constraints(withVisualFormat:
 "V:|-(10)-[lab]",
 metrics:nil,
 views:["lab":lab]))
 } else { // all others, pin to previous
 con.append(contentsOf: // *
 NSLayoutConstraint.constraints(withVisualFormat:
 "V:[prev]-(10)-[lab]",
 metrics:nil,
 views:["lab":lab, "prev":previousLab!]))
 }
 previousLab = lab
}
// last one, pin to bottom, this dictates content size height!
con.append(contentsOf: // *

Creating a Scroll View in Code | 451

 NSLayoutConstraint.constraints(withVisualFormat:
 "V:[lab]-(10)-|",
 metrics:nil,
 views:["lab":previousLab!]))
// pin content view to scroll view, sized by its subview constraints
// content size is calculated for us
v.translatesAutoresizingMaskIntoConstraints = false
con.append(contentsOf: // *
 NSLayoutConstraint.constraints(withVisualFormat:
 "V:|[v]|",
 metrics:nil,
 views:["v":v]))
con.append(contentsOf: // *
 NSLayoutConstraint.constraints(withVisualFormat:
 "H:|[v]|",
 metrics:nil,
 views:["v":v]))
NSLayoutConstraint.activate(con)

The fourth combination is that the content view’s subviews are positioned using con‐
straints, but we set the content view’s frame and the scroll view’s content size explic‐
itly. There is no y to track as we position the subviews, so how can we find out the
final content size height? Fortunately, systemLayoutSizeFitting(_:) tells us:

// ... same as previous ...
// last one, pin to bottom, this dictates content size height!
con.append(contentsOf: // *
 NSLayoutConstraint.constraints(withVisualFormat:
 "V:[lab]-(10)-|",
 metrics:nil,
 views:["lab":previousLab!]))
NSLayoutConstraint.activate(con)
NSLayoutConstraint.activateConstraints(con)
// autolayout helps us learn the consequences of those constraints
let minsz = v.systemLayoutSizeFitting(UILayoutFittingCompressedSize)
// set content view frame and content size explicitly
v.frame = CGRect(0,0,0,minsz.height)
sv.contentSize = v.frame.size // *

Scroll View in a Nib
A UIScrollView is available in the nib editor in the Object library, so you can drag it
into a view in the canvas and give it subviews. Alternatively, you can wrap existing
views in the canvas in a UIScrollView as an afterthought: to do so, select the views
and choose Editor → Embed In → Scroll View. The scroll view can’t be scrolled in the
nib editor, so to design its subviews, you make the scroll view large enough to accom‐
modate them; if this makes the scroll view too large, you can resize the actual scroll
view instance later, in code or by means of autolayout, after the nib loads. If the scroll
view is inside the view controller’s main view, you may have to make that view too

452 | Chapter 7: Scroll Views

Figure 7-1. A scroll view in the nib editor

large as well, in order to see and work with the full scroll view and its contents
(Figure 7-1). Set the view controller’s Size pop-up menu in the Simulated Metrics sec‐
tion of its Attributes inspector to Freeform; now you can change the main view’s size.

If you’re not using autolayout, judicious use of autoresizing settings in the nib editor
can be a big help here. In Figure 7-1, the scroll view is the main view’s subview; the
scroll view’s edges are pinned (struts) to its superview, and its width and height are
flexible (springs). Thus, when the app runs and the main view is resized (as I dis‐
cussed in Chapter 6), the scroll view will be resized too, to fit the main view. The con‐
tent view, on the other hand, must not be resized, so its width and height are not
flexible (they are struts, not springs), and only its top and left edges are pinned to its
superview (struts).

But although everything is correctly sized at runtime, the scroll view doesn’t scroll.
That’s because we have failed to set the scroll view’s contentSize. Unfortunately, the
nib editor provides no way to do that! Thus, we’ll have to do it in code. This, in fact, is
why I’m using a content view. The content view is the correct size in the nib, and it
won’t be resized through autoresizing, so at runtime, when the nib loads, its size will
be the desired contentSize. I have an outlet to the scroll view (self.sv) and an out‐
let to the content view (self.cv), and I set the scroll view’s contentSize to the con‐
tent view’s size in viewDidLayoutSubviews:

Scroll View in a Nib | 453

var didSetup = false
override func viewDidLayoutSubviews() {
 if !self.didSetup {
 self.didSetup = true
 self.sv.contentSize = self.cv.bounds.size
 }
}

If you are using autolayout, constraints take care of everything; there is no need for
any code to set the scroll view’s contentSize. The scroll view’s own size is determined
by constraints; typically, its edges are pinned to those of its superview. The content
view’s edges are also pinned to those of its superview, the scroll view. If the constant
of each edge constraint between the content view and the scroll view is 0, then that
tells the scroll view: “Your contentSize is the size of the content view.”

The only question now is how you’d like to dictate the content view’s size. You have
two choices, corresponding to the second and third combinations in the preceding
section: you can set the content view’s width and height constraints explicitly, or you
can let the content view’s width and height be completely determined by the con‐
straints of its subviews. Do whichever feels suitable. The nib editor understands this
aspect of scroll view configuration, and will alert you with a warning (about the
“scrollable content size”) until you’ve provided enough constraints to determine
unambiguously the scroll view’s contentSize.

Scrolling
For the most part, the purpose of a scroll view will be to let the user scroll. A number
of properties affect the user experience with regard to scrolling:

isScrollEnabled

If false, the user can’t scroll, but you can still scroll in code (as explained later in
this section). You could put a UIScrollView to various creative purposes other
than letting the user scroll; for example, scrolling in code to a different region of
the content might be a way of replacing one piece of interface by another, possi‐
bly with animation.

scrollsToTop

If true (the default), and assuming scrolling is enabled, the user can tap on the
status bar as a way of making the scroll view scroll its content to the top (that is,
the content moves all the way down). You can also override this setting dynami‐
cally through the scroll view’s delegate, discussed later in this chapter.

bounces

If true (the default), then when the user scrolls to a limit of the content, it is pos‐
sible to scroll somewhat further (possibly revealing the scroll view’s background-

454 | Chapter 7: Scroll Views

Color behind the content, if a subview was covering it); the content then snaps
back into place when the user releases it. Otherwise, the user experiences the
limit as a sudden inability to scroll further in that direction.

alwaysBounceVertical

alwaysBounceHorizontal

If true, and assuming that bounces is true, then even if the contentSize in the
given dimension isn’t larger than the scroll view (so that no scrolling is actually
possible in that dimension), the user can nevertheless scroll somewhat and the
content then snaps back into place when the user releases it; otherwise, the user
experiences a simple inability to scroll in that dimension.

isDirectionalLockEnabled

If true, and if scrolling is possible in both dimensions (even if only because the
appropriate alwaysBounce... is true), then the user, having begun to scroll in
one dimension, can’t scroll in the other dimension without ending the gesture
and starting over. In other words, the user is constrained to scroll vertically or
horizontally but not both at once.

decelerationRate

The rate at which scrolling is damped out, and the content comes to a stop, after
the user’s gesture ends. As convenient examples, standard constants are provided:

• UIScrollViewDecelerationRateNormal (0.998)
• UIScrollViewDecelerationRateFast (0.99)

Lower values mean faster damping; experimentation suggests that values lower
than 0.5 are viable but barely distinguishable from one another. You can also
effectively override this value dynamically through the scroll view’s delegate, dis‐
cussed later in this chapter.

showsHorizontalScrollIndicator

showsVerticalScrollIndicator

The scroll indicators are bars that appear only while the user is scrolling in a
scrollable dimension (where the content is larger than the scroll view), and serve
to indicate both the size of the content in that dimension relative to the scroll
view and where the user is within it. The default is true for both.

Because the user cannot see the scroll indicators except when actively scrolling,
there is normally no indication that the view is scrollable. I regard this as some‐
what unfortunate, because it makes the possibility of scrolling less discoverable;
I’d prefer an option to make the scroll indicators constantly visible. Apple sug‐
gests that you call flashScrollIndicators when the scroll view appears, to
make the scroll indicators visible momentarily.

Scrolling | 455

The scroll indicators are subviews of the scroll view (they are actually UIImage‐
Views). Do not assume that the subviews you add to a UIScrollView are its only
subviews!

indicatorStyle

The way the scroll indicators are drawn. Your choices (UIScrollViewIndicator‐
Style) are .black, .white, and .default (black with a white border).

You can scroll in code even if the user can’t scroll. The content simply moves to the
position you specify, with no bouncing and no exposure of the scroll indicators. You
can specify the new position in two ways:

contentOffset

The point (CGPoint) of the content that is located at the scroll view’s top left
(effectively the same thing as the scroll view’s bounds origin). You can get this
property to learn the current scroll position, and set it to change the current
scroll position. The values normally go up from (0.0,0.0) until the limit dicta‐
ted by the contentSize and the scroll view’s own bounds size is reached.

To set the contentOffset with animation, call setContent-

Offset(_:animated:). The animation does not cause the scroll indicators to
appear; it just slides the content to the desired position.

If a scroll view participates in state restoration (Chapter 6), its contentOffset is
saved and restored, so when the app is relaunched, the scroll view will reappear
scrolled to the same position as before.

scrollRectToVisible(_:animated:)

Adjusts the content so that the specified CGRect of the content is within the
scroll view’s bounds. This is less precise than setting the contentOffset, because
you’re not saying exactly what the resulting scroll position will be, but sometimes
guaranteeing the visibility of a certain portion of the content is exactly what
you’re after.

If you call a method to scroll with animation and you need to know when the anima‐
tion ends, implement scrollViewDidEndScrollingAnimation(_:) in the scroll
view’s delegate.

Finally, these properties affect the scroll view’s structural dimensions:

contentInset

A UIEdgeInsets struct (four CGFloats: top, left, bottom, right) specifying mar‐
gin space around the content.

If a scroll view participates in state restoration (Chapter 6), its contentInset is
saved and restored.

456 | Chapter 7: Scroll Views

scrollIndicatorInsets

A UIEdgeInsets struct specifying a shift in the position of the scroll indicators.

A typical use for the contentInset would be that your scroll view underlaps an inter‐
face element, such as a status bar, navigation bar, or toolbar, and you want your con‐
tent to be visible even when scrolled to its limit.

A good example is the app with 30 labels that we created at the start of this chapter.
The scroll view occupies the entirety of the view controller’s main view. But that
means that the scroll view underlaps the status bar. And that means that at launch
time, and whenever the scroll view’s content is scrolled all the way down, the first
label, which is as far down as it can go, is partly hidden by the text of the status bar.
We can prevent this by setting the scroll view’s contentInset:

sv.contentInset = UIEdgeInsetsMake(20, 0, 0, 0)

The scroll view still underlaps the status bar, and its scrolled content is still visible
behind the status bar; what’s changed is only that at the extreme scrolled-down posi‐
tion, where the content offset is (0.0,0.0), the scroll view’s content is not behind the
status bar.

When changing the contentInset, you will probably want to change the scroll-
IndicatorInsets to match. Consider again the scroll view whose contentInset we
have just set. When scrolled all the way down, it now has a nice gap between the bot‐
tom of the status bar and the top of the first label; but the top of the scroll indicator is
still up behind the status bar. We can prevent this by setting the scrollIndicator-
Insets to the same value as the contentInset:

sv.contentInset = UIEdgeInsetsMake(20, 0, 0, 0)
sv.scrollIndicatorInsets = sv.contentInset

As I mentioned in Chapter 6, top bars and bottom bars are likely to be translucent,
and the runtime would like to make your view underlap them. With a scroll view, this
looks cool, because the scroll view’s contents are visible in a blurry way through the
translucent bar; but the contentInset and scrollIndicatorInsets need to be adjus‐
ted so that the scrolling limits stay between the top bar and the bottom bar. Moreover,
the height of the bars can change, depending on such factors as how the interface is
rotated.

Therefore, if a scroll view is going to underlap top and bottom bars, it would be nice,
instead of hard-coding the top inset as in the preceding code, to make the scroll
view’s inset respond to its environment. A layout event seems the best place for such a
response, and we can use the view controller’s topLayoutGuide and bottomLayout-
Guide to help us:

Scrolling | 457

override func viewWillLayoutSubviews() {
 if let sv = self.sv {
 let top = self.topLayoutGuide.length
 let bot = self.bottomLayoutGuide.length
 sv.contentInset = UIEdgeInsetsMake(top, 0, bot, 0)
 sv.scrollIndicatorInsets = self.sv.contentInset
 }
}

Even better, if our view controller’s main view contains one primary scroll view, and if
it contains it sufficiently early — in the nib, for example — then if our view control‐
ler’s automaticallyAdjustsScrollViewInsets property is true, the runtime will
adjust our scroll view’s contentInset and scrollIndicatorInsets with no code on
our part. This property won’t help us in the examples earlier in this chapter where we
create the scroll view in code. But if the scroll view is created from the nib, as in
Figure 7-1, this property applies and works. Moreover, a value of true is the default!
In the nib editor, you can change it with the Adjust Scroll View Insets checkbox in the
Attributes inspector. Be sure to set this property to false if you want to take charge
of adjusting a scroll view’s contentInset and scrollIndicatorInsets yourself.

Paging
If its isPagingEnabled property is true, the scroll view doesn’t let the user scroll
freely; instead, the content is considered to consist of equal-sized sections. The user
can scroll only in such a way as to move to a different section. The size of a section is
set automatically to the size of the scroll view’s bounds. The sections are the scroll
view’s pages.

When the user stops dragging, a paging scroll view gently snaps automatically to the
nearest whole page. For example, let’s say that the scroll view scrolls only horizontally,
and that its subviews are image views showing photos, sized to match the scroll view’s
bounds. If the user drags horizontally to the left to a point where less than half of the
next photo to the right is visible, and raises the dragging finger, the paging scroll view
snaps its content back to the right until the entire first photo is visible again. If the
user drags horizontally to the left to a point where more than half of the next photo to
the right is visible, and raises the dragging finger, the paging scroll view snaps its con‐
tent further to the left until the entire second photo is visible.

The usual arrangement is that a paging scroll view is at least as large, or nearly as
large, in its scrollable dimension, as the screen. A moment’s thought will reveal that,
under this arrangement, it is impossible for the user to move the content more than a
single page in any direction with a single gesture. The reason is that the size of the
page is the size of the scroll view’s bounds. Thus the user will run out of surface area
to drag on before being able to move the content the distance of a page and a half,

458 | Chapter 7: Scroll Views

which is what would be needed to make the scroll view snap to a page not adjacent to
the page we started on.

Sometimes, indeed, the paging scroll view will be slightly larger than the window in
its scrollable dimension. This allows each page’s content to fill the scroll view while
also providing gaps between the pages, visible when the user starts to scroll. The user
is still able to move from page to page, because it is still readily possible to drag more
than half a new page into view (and the scroll view will then snap the rest of the way
when the user raises the dragging finger).

When the user raises the dragging finger, the scroll view’s action in adjusting its con‐
tent is considered to be decelerating, and the scroll view’s delegate (discussed in more
detail later in this chapter) will receive scrollViewWillBeginDecelerating(_:), fol‐
lowed by scrollViewDidEndDecelerating(_:) when the scroll view’s content has
stopped moving and a full page is showing. Thus, these messages can be used to
detect efficiently that the page may have changed.

You can take advantage of this, for example, to coordinate a paging scroll view with a
UIPageControl (Chapter 12). In this example, a page control (self.pager) is updated
whenever the user causes a horizontally scrollable scroll view (self.sv) to display a
different page:

func scrollViewDidEndDecelerating(_ scrollView: UIScrollView) {
 let x = self.sv.contentOffset.x
 let w = self.sv.bounds.size.width
 self.pager.currentPage = Int(x/w)
}

Conversely, we can scroll the scroll view to a new page manually when the user taps
the page control; in this case we have to calculate the page boundaries ourselves:

@IBAction func userDidPage(_ sender: Any?) {
 let p = self.pager.currentPage
 let w = self.sv.bounds.size.width
 self.sv.setContentOffset(CGPoint(CGFloat(p)*w,0), animated:true)
}

A useful interface is a paging scroll view where you supply pages dynamically as the
user scrolls. In this way, you can display a huge number of pages without having to
put them all into the scroll view at once. A scrolling UIPageViewController (Chap‐
ter 6) provides exactly that interface. Its UIPageViewControllerOptionInterPage-
SpacingKey even provides the gap between pages that I mentioned earlier.

A compromise between a UIPageViewController and a completely preconfigured
paging scroll view is a scroll view whose contentSize can accommodate all pages,
but whose actual page content is supplied lazily. The only pages that have to be
present at all times are the page visible to the user and the two pages adjacent to it on
either side, so that there is no delay in displaying a new page’s content when the user

Scrolling | 459

starts to scroll. (This approach is exemplified by Apple’s PageControl sample code;
unfortunately, that example does not also remove page content that is no longer
needed, so there is ultimately no conservation of memory.)

There are times when a scroll view, even one requiring a good deal of dynamic con‐
figuration, is better than a scrolling UIPageViewController, because the scroll view
provides full information to its delegate about the user’s scrolling activity (as
described later in this chapter). For example, if you wanted to respond to the user’s
dragging one area of the interface by programmatically scrolling another area of the
interface in a coordinated fashion, you might want what the user is dragging to be a
scroll view, because it tells you what the user is up to at every moment.

Tiling
Suppose we have some finite but really big content that we want to display in a scroll
view, such as a very large image that the user can inspect, piecemeal, by scrolling. To
hold the entire image in memory may be onerous or impossible.

Tiling is one solution to this kind of problem. It takes advantage of the insight that
there’s really no need to hold the entire image in memory; all we need at any given
moment is the part of the image visible to the user right now. Mentally, divide the
content rectangle into a matrix of rectangles; these rectangles are the tiles. In reality,
divide the huge image into corresponding rectangles. Then whenever the user scrolls,
we look to see whether part of any empty tile has become visible, and if so, we supply
its content. At the same time, we can release the content of all tiles that are completely
offscreen. Thus, at any given moment, only the tiles that are showing have content.
There is some latency associated with this approach (the user scrolls, then any empty
newly visible tiles are filled in), but we will have to live with that.

There is actually a built-in CALayer subclass for helping us implement tiling —
CATiledLayer. Its tileSize property sets the dimensions of a tile. The usual approach
to using CATiledLayer is to implement draw(_:) in a UIView whose underlying layer
is the CATiledLayer; under that arrangement, the host view’s draw(_:) is called every
time a new tile is needed, and its parameter is the rect of the tile we are to draw.

The tileSize may need to be adjusted for the screen resolution. On a double-
resolution device, for example, the CATiledLayer’s contentsScale will be doubled,
and the tiles will be half the size that we ask for. If that isn’t acceptable, we can double
the tileSize dimensions.

To illustrate, we’ll use some tiles already created for us as part of Apple’s own Photo‐
Scroller sample code. In particular, I’ll use a few of the “CuriousFrog” images. The
images I’ll use all have names of the form CuriousFrog_500_x_y.png, where x and y
are integers corresponding to the picture’s position within the matrix. The images are
256×256 pixels, except for the ones on the extreme right and bottom edges of the

460 | Chapter 7: Scroll Views

matrix, which are shorter in one dimension, but I won’t be using those in this exam‐
ple; I’ve selected a square matrix of 9 square images.

We will give our scroll view (self.sv) one subview, a TiledView, a UIView subclass
that exists purely to give our CATiledLayer a place to live. TILESIZE is defined as 256,
to match the image dimensions:

override func viewDidLoad() {
 let f = CGRect(0,0,3*TILESIZE,3*TILESIZE)
 let content = TiledView(frame:f)
 let tsz = TILESIZE * content.layer.contentsScale
 (content.layer as! CATiledLayer).tileSize = CGSize(tsz, tsz)
 self.sv.addSubview(content)
 self.sv.contentSize = f.size
 self.content = content
}

Here’s the code for TiledView. As Apple’s sample code points out, we must fetch
images with init(contentsOfFile:) in order to avoid the automatic caching behav‐
ior of init(named:) — after all, we’re going to all this trouble exactly to avoid using
more memory than we have to:

override class var layerClass : AnyClass {
 return CATiledLayer.self
}
override func draw(_ r: CGRect) {
 let tile = r
 let x = Int(tile.origin.x/TILESIZE)
 let y = Int(tile.origin.y/TILESIZE)
 let tileName = String(format:"CuriousFrog_500_\(x+3)_\(y)")
 let path = Bundle.main.path(forResource: tileName, ofType:"png")!
 let image = UIImage(contentsOfFile:path)!
 image.draw(at:CGPoint(CGFloat(x)*TILESIZE,CGFloat(y)*TILESIZE))
}

In this configuration, our TiledView’s drawRect is called on a background thread. This
is unusual, but it shouldn’t cause any trouble as long as you confine yourself to stan‐
dard thread-safe activities. Fortunately, fetching the image and drawing it are thread-
safe.

You may encounter a nasty issue where a CATiledLayer’s host view’s draw(_:) is
called simultaneously on multiple background threads. It isn’t clear to me
whether this problem is confined to the Simulator or whether it can also occur
on a device. The workaround is to wrap the whole interior of draw(_:) in a call
to a serial DispatchQueue’s sync (see Chapter 25).

There is no special call for invalidating an offscreen tile. You can call setNeeds-
Display on the TiledView, but this doesn’t erase offscreen tiles. You’re just supposed

Scrolling | 461

to trust that the CATiledLayer will eventually clear offscreen tiles if needed to con‐
serve memory.

CATiledLayer has a class method fadeDuration that dictates the duration of the ani‐
mation that fades a new tile into view. You can create a CATiledLayer subclass and
override this method to return a value different from the default (0.25), but this is
probably not worth doing, as the default value is a good one. Returning a smaller
value won’t make tiles appear faster; it just replaces the nice fade-in with an annoying
flash.

Zooming
To implement zooming of a scroll view’s content, you set the scroll view’s minimum-
ZoomScale and maximumZoomScale so that at least one of them isn’t 1 (the default).
You also implement viewForZooming(in:) in the scroll view’s delegate to tell the
scroll view which of its subviews is to be the scalable view. The scroll view then zooms
by applying a scale transform (Chapter 1) to this subview. The amount of that trans‐
form is the scroll view’s zoomScale property. Typically, you’ll want the scroll view’s
entire content to be scalable, so you’ll have one direct subview of the scroll view that
acts as the scalable view, and anything else inside the scroll view will be a subview of
the scalable view, so as to be scaled together with it. This is another reason for arrang‐
ing your scroll view’s subviews inside a single content view, as I suggested earlier.

To illustrate, we can start with any of the four content view–based versions of our
scroll view containing 30 labels. I called the content view v. Now we add these lines:

v.tag = 999
sv.minimumZoomScale = 1.0
sv.maximumZoomScale = 2.0
sv.delegate = self

We have assigned a tag to the view that is to be scaled, so that we can refer to it later.
We have set the scale limits for the scroll view. And we have made ourselves the scroll
view’s delegate. Now all we have to do is implement viewForZooming(in:) to return
the scalable view:

func viewForZooming(in scrollView: UIScrollView) -> UIView? {
 return scrollView.viewWithTag(999)
}

This works: the scroll view now responds to pinch gestures by scaling appropriately!
But it doesn’t look quite as good as I’d like when we zoom, and in particular I don’t
like the way the labels snap into place when we stop zooming. The reason is that, in
my earlier examples, I gave the content view and the contentSize a zero width; that
was sufficient to prevent the scroll view from scrolling horizontally, which was all that
mattered. Now, however, these widths also affect how the content behaves as the user

462 | Chapter 7: Scroll Views

zooms it. This particular example, I think, looks best while zooming if the content
view width is a bit wider than the widest label. (Implementing that is left as an exer‐
cise for the reader.)

The user can actually scale considerably beyond the limits we set in both directions;
in that case, when the gesture ends, the scale snaps back to the limit value. If we wish
to confine scaling strictly to our defined limits, we can set the scroll view’s bounces-
Zoom to false; when the user reaches a limit, scaling will simply stop.

The actual amount of zoom is reflected as the scroll view’s current zoomScale. If a
scroll view participates in state restoration, its zoomScale is saved and restored, so
when the app is relaunched, the scroll view will reappear zoomed by the same
amount as before.

If the minimumZoomScale is less than 1, then when the scalable view becomes smaller
than the scroll view, it is pinned to the scroll view’s top left. If you don’t like this, you
can change it by subclassing UIScrollView and overriding layoutSubviews, or by
implementing the scroll view delegate method scrollViewDidZoom(_:). Here’s a sim‐
ple example (drawn from a WWDC 2010 video) demonstrating an override of
layoutSubviews that keeps the scalable view centered in either dimension whenever
it is smaller than the scroll view in that dimension:

override func layoutSubviews() {
 super.layoutSubviews()
 if let v = self.delegate?.viewForZooming?(in:self) {
 let svw = self.bounds.width
 let svh = self.bounds.height
 let vw = v.frame.width
 let vh = v.frame.height
 var f = v.frame
 if vw < svw {
 f.origin.x = (svw - vw) / 2.0
 } else {
 f.origin.x = 0
 }
 if vh < svh {
 f.origin.y = (svh - vh) / 2.0
 } else {
 f.origin.y = 0
 }
 v.frame = f
 }
}

Earlier, I said that the scroll view zooms by applying a scale transform to the scalable
view. This has two important secondary consequences that can surprise you if you’re
unprepared:

Zooming | 463

• The frame of the scalable view is scaled to match the current zoomScale. This fol‐
lows as a natural consequence of applying a scale transform to the scalable view.

• The scroll view is concerned to make scrolling continue to work correctly: the
limits as the user scrolls should continue to match the limits of the content, and
commands like scrollRectToVisible(_:animated:) should continue to work
the same way for the same values. Therefore, the scroll view automatically scales
its own contentSize to match the current zoomScale.

Zooming Programmatically
To zoom programmatically, you have two choices:

setZoomScale(_:animated:)

Zooms in terms of scale value. The contentOffset is automatically adjusted to
keep the current center centered and the content occupying the entire scroll view.

zoomTo(_:animated:)

Zooms so that the given rectangle of the content occupies as much as possible of
the scroll view’s bounds. The contentOffset is automatically adjusted to keep
the content occupying the entire scroll view.

In this example, I implement double tapping as a zoom gesture. In my action handler
for the double-tap UITapGestureRecognizer attached to the scalable view, a double
tap means to zoom to maximum scale, minimum scale, or actual size, depending on
the current scale value:

@IBAction func tapped(_ tap : UIGestureRecognizer) {
 let v = tap.view!
 let sv = v.superview as! UIScrollView
 if sv.zoomScale < 1 {
 sv.setZoomScale(1, animated:true)
 let pt = CGPoint((v.bounds.width - sv.bounds.width)/2.0,0)
 sv.setContentOffset(pt, animated:false)
 }
 else if sv.zoomScale < sv.maximumZoomScale {
 sv.setZoomScale(sv.maximumZoomScale, animated:true)
 }
 else {
 sv.setZoomScale(sv.minimumZoomScale, animated:true)
 }
}

Zooming with Detail
By default, when a scroll view zooms, it merely applies a scale transform to the scaled
view. The scaled view’s drawing is cached beforehand into its layer, so when we zoom

464 | Chapter 7: Scroll Views

in, the bits of the resulting bitmap are drawn larger. This means that a zoomed-in
scroll view’s content may be fuzzy (pixellated). In some cases this might be acceptable,
but in others you might like the content to be redrawn more sharply at its new size.

(On a high-resolution device, this might not be such an issue. For example, if the user
is allowed to zoom only up to double scale, you can draw at double scale right from
the start; the results will look good at single scale, because the screen has high resolu‐
tion, as well as at double scale, because that’s the scale you drew at.)

One solution is to take advantage of a CATiledLayer feature that I didn’t mention ear‐
lier. It turns out that CATiledLayer is aware not only of scrolling but also of scaling:
you can configure it to ask for tiles to be drawn when the layer is scaled to a new
order of magnitude. When your drawing routine is called, the graphics context itself
has already been scaled appropriately by a transform.

In the case of an image into which the user is to be permitted to zoom deeply, you
would be forearmed with multiple tile sets constituting the image, each set having
double the tile size of the previous set (as in Apple’s PhotoScroller example). In other
cases, you may not need tiles at all; you’ll just draw again, at the new resolution.

Besides its tileSize, you’ll need to set two additional CATiledLayer properties:

levelsOfDetail

The number of different resolutions at which you want to redraw, where each
level has twice the resolution of the previous level. So, for example, with two lev‐
els of detail we can ask to redraw when zooming to double size (2x) and when
zooming back to single size (1x).

levelsOfDetailBias

The number of levels of detail that are larger than single size (1x). For example, if
levelsOfDetail is 2, then if we want to redraw when zooming to 2x and when
zooming back to 1x, the levelsOfDetailBias needs to be 1, because one of those
levels is larger than 1x. (If we were to leave levelsOfDetailBias at 0, the default,
we would be saying we want to redraw when zooming to 0.5x and back to 1x —
we have two levels of detail but neither is larger than 1x, so one must be smaller
than 1x.)

The CATiledLayer will ask for a redraw at a higher resolution as soon as the view’s
size becomes larger than the previous resolution. In other words, if there are two lev‐
els of detail with a bias of 1, the layer will be redrawn at 2x as soon as it is zoomed
even a little bit larger than 1x. This is an excellent approach, because although a level
of detail would look blurry if scaled up, it looks pretty good scaled down.

For example, let’s say I have a TiledView that hosts a CATiledLayer, in which I intend
to draw an image. I haven’t broken the image into tiles, because the maximum size at
which the user can view it isn’t prohibitively large; the original image is 838×958, and

Zooming | 465

can be held in memory easily. Rather, I’m using a CATiledLayer in order to take
advantage of its ability to change resolutions automatically. The image will be dis‐
played initially at 208×238, and if the user never zooms in to view it larger, we can
save memory by drawing a quarter-size version of the image.

The CATiledLayer is configured like this:

let scale = lay.contentsScale
lay.tileSize = CGSize(208*scale,238*scale)
lay.levelsOfDetail = 3
lay.levelsOfDetailBias = 2

The tileSize has been adjusted for screen resolution, so the result is as follows:

• As originally displayed at 208×238, there is one tile and we can draw our image at
quarter size.

• If the user zooms in, to show the image larger than its originally displayed size,
there will be 4 tiles and we can draw our image at half size.

• If the user zooms in still further, to show the image larger than double its origi‐
nally displayed size (416×476), there will be 16 tiles and we can draw our image
at full size, which will continue to look good as the user zooms all the way in to
the full size of the original image.

We do not, however, need to draw each tile individually. Each time we’re called upon
to draw a tile, we’ll draw the entire image into the TiledView’s bounds; whatever falls
outside the requested tile will be clipped out and won’t be drawn.

Here’s my TiledView’s draw(_:) implementation. I have an Optional UIImage prop‐
erty currentImage, initialized to nil, and a CGSize property currentSize initialized
to .zero. Each time draw(_:) is called, I compare the tile size (the incoming rect
parameter’s size) to currentSize. If it’s different, I know that we’ve changed by one
level of detail and we need a new version of currentImage, so I create the new version
of currentImage at a scale appropriate to this level of detail. Finally, I draw current-
Image into the TiledView’s bounds:

override func drawRect(rect: CGRect) {
 let oldSize = self.currentSize
 if !oldSize.equalTo(rect.size) {
 // make a new size
 self.currentSize = rect.size
 // make a new image
 let lay = self.layer as! CATiledLayer
 let tr = UIGraphicsGetCurrentContext()!.ctm
 let sc = tr.a/lay.contentsScale
 let scale = sc/4.0
 let path = Bundle.main.path(
 forResource: "earthFromSaturn", ofType:"png")!
 let im = UIImage(contentsOfFile:path)!

466 | Chapter 7: Scroll Views

 let sz = CGSize(im.size.width * scale, im.size.height * scale)
 let f = UIGraphicsImageRendererFormat.default()
 f.opaque = true; f.scale = 1 // *
 let r = UIGraphicsImageRenderer(size: sz, format: f)
 self.currentImage = r.image { _ in
 im.draw(in:CGRect(origin:.zero, size:sz))
 }
 }
 self.currentImage?.draw(in:self.bounds)
}

An alternative and much simpler approach (from a WWDC 2011 video) is to make
yourself the scroll view’s delegate so that you get an event when the zoom ends, and
then change the scalable view’s contentScaleFactor to match the current zoom
scale, compensating for the high-resolution screen at the same time:

func scrollViewDidEndZooming(_ scrollView: UIScrollView,
 with view: UIView?, atScale scale: CGFloat) {
 scrollView.bounces = self.oldBounces
 view.contentScaleFactor = scale * UIScreen.main.scale // *
 }
}

In response, the scalable view’s draw(_:) will be called, and its rect parameter will be
the CGRect to draw into. Thus, the view may appear fuzzy for a while as the user
zooms in, but when the user stops zooming, the view is redrawn sharply. That
approach comes with a caveat, however: you mustn’t overdo it. If the zoom scale,
screen resolution, and scalable view size are high, you will be asking for a very large
graphics context to be maintained in memory, which could cause your app to run low
on memory or even to be abruptly terminated by the system.

For more about displaying a large image in a zoomable scroll view, see Apple’s Large
Image Downsizing example.

Scroll View Delegate
The scroll view’s delegate (adopting the UIScrollViewDelegate protocol) receives lots
of messages that can help you track, in great detail, exactly what the scroll view is up
to:

scrollViewDidScroll(_:)

If you scroll in code without animation, you will receive this message once after‐
wards. If the user scrolls, either by dragging or with the scroll-to-top feature, or if
you scroll in code with animation, you will receive this message repeatedly
throughout the scroll, including during the time the scroll view is decelerating
after the user’s finger has lifted; there are other delegate messages that tell you, in
those cases, when the scroll has finally ended.

Scroll View Delegate | 467

scrollViewDidEndScrollingAnimation(_:)

If you scroll in code with animation, you will receive this message afterwards,
when the animation ends.

scrollViewWillBeginDragging(_:)

scrollViewWillEndDragging(_:withVelocity:targetContentOffset:)

scrollViewDidEndDragging(_:willDecelerate:)

If the user scrolls by dragging, you will receive these messages at the start and
end of the user’s finger movement. If the user brings the scroll view to a stop
before lifting the finger, willDecelerate is false and the scroll is over. If the
user lets go of the scroll view while the finger is moving, or when paging is
turned on, willDecelerate is true and we proceed to the delegate messages
reporting deceleration.

The purpose of scrollViewWillEndDragging is to let you customize the outcome
of the content’s deceleration. The third argument is a pointer to a CGPoint; you
can use it to set a different CGPoint, specifying the contentOffset value the
scroll view should have when the deceleration is over. By taking the velocity:
into account, you can allow the user to “fling” the scroll view with momentum
before it comes to a halt.

scrollViewWillBeginDecelerating(_:)

scrollViewDidEndDecelerating(_:)

Sent once each after scrollViewDidEndDragging(_:willDecelerate:) arrives
with a value of true. When scrollViewDidEndDecelerating(_:) arrives, the
scroll is over.

scrollViewShouldScrollToTop(_:)

scrollViewDidScrollToTop(_:)

These have to do with the feature where the user can tap the status bar to scroll
the scroll view’s content to its top. You won’t get either of them if scrollsToTop is
false, because the scroll-to-top feature is turned off in that case. The first lets
you prevent the user from scrolling to the top on this occasion even if scrollsTo-
Top is true. The second tells you that the user has employed this feature and the
scroll is over.

So, if you wanted to do something after a scroll ends completely regardless of how the
scroll was performed, you’d need to implement multiple delegate methods:

• scrollViewDidEndDragging(_:willDecelerate:) in case the user drags and
stops (willDecelerate is false).

• scrollViewDidEndDecelerating(_:) in case the user drags and the scroll con‐
tinues afterwards.

468 | Chapter 7: Scroll Views

• scrollViewDidScrollToTop(_:) in case the user uses the scroll-to-top feature.
• scrollViewDidEndScrollingAnimation(_:) in case you scroll with animation.

(You don’t need a delegate method to tell you when the scroll is over after you scroll
in code without animation: it’s over immediately, so if you have work to do after the
scroll ends, you can do it in the next line of code.)

In addition, the scroll view has read-only properties reporting its state:

isTracking

The user has touched the scroll view, but the scroll view hasn’t decided whether
this is a scroll or some kind of tap.

isDragging

The user is dragging to scroll.

isDecelerating

The user has scrolled and has lifted the finger, and the scroll is continuing.

There are also three delegate messages that report zooming:

scrollViewWillBeginZooming(_:with:)

If the user zooms or you zoom in code, you will receive this message as the zoom
begins.

scrollViewDidZoom(_:)

If you zoom in code, even with animation, you will receive this message once. If
the user zooms, you will receive this message repeatedly as the zoom proceeds.
(You will probably also receive scrollViewDidScroll(_:), possibly many times,
as the zoom proceeds.)

scrollViewDidEndZooming(_:with:atScale:)

If the user zooms or you zoom in code, you will receive this message after the last
scrollViewDidZoom(_:).

In addition, the scroll view has read-only properties reporting its state during a zoom:

isZooming

The scroll view is zooming. It is possible for isDragging to be true at the same
time.

isZoomBouncing

The scroll view is returning automatically from having been zoomed outside its
minimum or maximum limit. As far as I can tell, you’ll get only one scrollView-
DidZoom(_:) while the scroll view is in this state.

Scroll View Delegate | 469

Scroll View Touches
Improvements in UIScrollView’s internal implementation have eliminated most of
the worry once associated with scroll view touches. A scroll view will interpret a drag
or a pinch as a command to scroll or zoom, and any other gesture will fall through to
the subviews; thus buttons and similar interface objects inside a scroll view work just
fine.

You can even put a scroll view inside a scroll view, and this can be quite a useful thing
to do, in contexts where you might not think of it at first. Apple’s PhotoScroller exam‐
ple, based on principles discussed in a delightful WWDC 2010 video, is an app where
a single photo fills the screen: you can page-scroll from one photo to the next, and
you can zoom into the current photo with a pinch gesture. This is implemented as a
scroll view inside a scroll view: the outer scroll view is for paging between images,
and the inner scroll view contains the current image and is for zooming (and for
scrolling to different parts of the zoomed-in image). Similarly, a WWDC 2013 video
deconstructs the iOS 7 lock screen in terms of scroll views embedded in scroll views.

Gesture recognizers (Chapter 5) have also greatly simplified the task of adding cus‐
tom gestures to a scroll view. For instance, some older code in Apple’s documentation,
showing how to implement a double tap to zoom in and a two-finger tap to zoom
out, uses old-fashioned touch handling, but this is no longer necessary. Simply attach
to your scroll view’s scalable subview any gesture recognizers for these sorts of ges‐
ture, and they will mediate automatically among the possibilities.

In the past, making something inside a scroll view draggable required setting the
scroll view’s canCancelContentTouches property to false. (The reason for the name
is that the scroll view, when it realizes that a gesture is a drag or pinch gesture, nor‐
mally sends touchesCancelled(_:with:) to a subview tracking touches, so that the
scroll view and not the subview will be affected.) However, unless you’re implement‐
ing old-fashioned direct touch handling, you probably won’t have to concern yourself
with this. Regardless of how canCancelContentTouches is set, a draggable control,
such as a UISlider, remains draggable inside a scroll view.

Here’s an example of a draggable object inside a scroll view implemented through a
gesture recognizer. Suppose we have an image of a map, larger than the screen, and
we want the user to be able to scroll it in the normal way to see any part of the map,
but we also want the user to be able to drag a flag into a new location on the map.
We’ll put the map image in an image view and wrap the image view in a scroll view,
with the scroll view’s contentSize the same as the map image view’s size. The flag is a
small image view; it’s another subview of the scroll view, and it has a UIPanGesture‐
Recognizer. The gesture recognizer’s action handler allows the flag to be dragged,
exactly as described in Chapter 5:

470 | Chapter 7: Scroll Views

Figure 7-2. A scrollable map with a draggable flag

@IBAction func dragging (_ p: UIPanGestureRecognizer) {
 let v = p.view!
 switch p.state {
 case .began, .changed:
 let delta = p.translation(in:v.superview!)
 v.center.x += delta.x
 v.center.y += delta.y
 p.setTranslation(.zero, in: v.superview)
 default: break
 }
}

The user can now drag the map or the flag (Figure 7-2). Dragging the map brings the
flag along with it, but dragging the flag doesn’t move the map. The state of the scroll
view’s canCancelContentTouches is irrelevant, because the flag view isn’t tracking the
touches manually.

An interesting addition to that example would be to implement autoscrolling, mean‐
ing that the scroll view scrolls itself when the user drags the flag close to its edge.
This, too, is greatly simplified by gesture recognizers; in fact, we can add autoscrolling
code directly to the dragging action handler:

@IBAction func dragging (_ p: UIPanGestureRecognizer) {
 let v = p.view!
 switch p.state {
 case .began, .changed:

Scroll View Touches | 471

 let delta = p.translation(in:v.superview!)
 v.center.x += delta.x
 v.center.y += delta.y
 p.setTranslation(.zero, in: v.superview)
 if p.state == .changed {fallthrough}
 case .changed:
 // autoscroll
 let sv = self.sv!
 let loc = p.location(in:sv)
 let f = sv.bounds
 var off = sv.contentOffset
 let sz = sv.contentSize
 var c = v.center
 // to the right
 if loc.x > f.maxX - 30 {
 let margin = sz.width - sv.bounds.maxX
 if margin > 6 {
 off.x += 5
 sv.contentOffset = off
 c.x += 5
 v.center = c
 self.keepDragging(p)
 }
 }
 // to the left
 if loc.x < f.origin.x + 30 {
 let margin = off.x
 if margin > 6 {
 // ...
 }
 }
 // to the bottom
 if loc.y > f.maxY - 30 {
 let margin = sz.height - sv.bounds.maxY
 if margin > 6 {
 // ...
 }
 }
 // to the top
 if loc.y < f.origin.y + 30 {
 let margin = off.y
 if margin > 6 {
 // ...
 }
 }
 default: break
 }
}
func keepDragging (_ p: UIPanGestureRecognizer) {
 let del = 0.1

472 | Chapter 7: Scroll Views

 delay(del) {
 self.dragging(p)
 }
}

The delay in keepDragging (see Appendix B), combined with the change in offset,
determines the speed of autoscrolling. The material marked as omitted in the second,
third, and fourth cases is obviously parallel to the first case, and is left as an exercise
for the reader.

A scroll view’s touch handling is itself based on gesture recognizers attached to the
scroll view, and these are available to your code through the scroll view’s panGesture-
Recognizer and pinchGestureRecognizer properties. This means that if you want to
customize a scroll view’s touch handling, it’s easy to add more gesture recognizers and
have them interact with those already attached to the scroll view.

To illustrate, I’ll build on the previous example. Suppose we want the flag to start out
offscreen, and we’d like the user to be able to summon it with a rightward swipe. We
can attach a UISwipeGestureRecognizer to our scroll view, but it will never recognize
its gesture because the scroll view’s own pan gesture recognizer will recognize first.
But we have access to the scroll view’s pan gesture recognizer, so we can compel it to
yield to our swipe gesture recognizer by sending it require(toFail:):

self.sv.panGestureRecognizer.require(toFail:self.swipe)

The UISwipeGestureRecognizer will recognize a rightward swipe. In my implementa‐
tion of its action handler, we position the flag, which has been waiting invisibly off‐
screen, just off to the top left of the scroll view’s visible content, and animate it onto
the screen:

@IBAction func swiped (_ g: UISwipeGestureRecognizer) {
 let sv = self.sv!
 let p = sv.contentOffset
 self.flag.frame.origin = p
 self.flag.frame.origin.x -= self.flag.bounds.width
 self.flag.isHidden = false
 UIView.animate(withDuration:0.25) {
 self.flag.frame.origin.x = p.x
 // thanks for the flag, now stop operating altogether
 g.isEnabled = false
 }
}

Floating Scroll View Subviews
A scroll view’s subview will appear to “float” over the scroll view if it remains station‐
ary while the rest of the scroll view’s content is being scrolled. Before autolayout, this
sort of thing was rather tricky to arrange; you had to use a delegate event to respond

Floating Scroll View Subviews | 473

to every change in the scroll view’s bounds origin by shifting the “floating” view’s
position to compensate, so as to appear to remain fixed. With autolayout, however, all
you have to do is set up constraints pinning the subview to something outside the
scroll view. Here’s an example:

let iv = UIImageView(image:UIImage(named:"smiley.png"))
iv.translatesAutoresizingMaskIntoConstraints = false
self.sv.addSubview(iv)
let sup = self.sv.superview!
NSLayoutConstraint.activate([
 iv.rightAnchor.constraint(equalTo:sup.rightAnchor, constant: -5),
 iv.topAnchor.constraint(equalTo:sup.topAnchor, constant: 25)
])

Scroll View Performance
At several points in earlier chapters I’ve mentioned performance problems and ways
to increase drawing efficiency. Nowhere are you so likely to need these as in connec‐
tion with a scroll view. As a scroll view scrolls, views must be drawn very rapidly as
they appear on the screen. If the drawing system can’t keep up with the speed of the
scroll, the scrolling will visibly stutter.

Performance testing and optimization is a big subject, so I can’t tell you exactly what
to do if you encounter stuttering while scrolling. But certain general suggestions
(mostly extracted from a really great WWDC 2010 video) should come in handy:

• Everything that can be opaque should be opaque: don’t force the drawing system
to composite transparency, and remember to tell it that an opaque view or layer is
opaque by setting its isOpaque property to true. If you really must composite
transparency, keep the size of the nonopaque regions to a minimum; for example,
if a large layer is transparent at its edges, break it into five layers — the large cen‐
tral layer, which is opaque, and the four edges, which are not.

• If you’re drawing shadows, don’t make the drawing system calculate the shadow
shape for a layer: supply a shadowPath, or use Core Graphics to create the
shadow with a drawing. Similarly, avoid making the drawing system composite
the shadow as a transparency against another layer; for example, if the back‐
ground layer is white, your opaque drawing can itself include a shadow already
drawn on a white background.

• Don’t make the drawing system scale images for you; supply the images at the
target size for the correct resolution.

• In a pinch, you can just eliminate massive swatches of the rendering operation by
setting a layer’s shouldRasterize to true. You could, for example, do this when
scrolling starts and then set it back to false when scrolling ends.

474 | Chapter 7: Scroll Views

Apple’s documentation also says that setting a view’s clearsContextBeforeDrawing
to false may make a difference. I can’t confirm or deny this; it may be true, but I
haven’t encountered a case that positively proves it.

Xcode provides tools that will help you detect inefficiencies in the drawing system. In
the Simulator, the Debug menu shows you blended layers (where transparency is
being composited) and images that are being copied, misaligned, or rendered off‐
screen. On the device, the Core Animation module of Instruments provides the same
functionality, plus it tracks the frame rate for you, allowing you to scroll and measure
performance objectively where it really counts.

Scroll View Performance | 475

CHAPTER 8

Table Views and Collection Views

I’m gonna ask you the three big questions. — Go ahead. — Who made you? — You did. —
Who owns the biggest piece of you? — You do. — What would happen if I dropped you? —

I’d go right down the drain.
—Dialogue by Garson Kanin and Ruth

Gordon,
Pat and Mike

A table view (UITableView) is a vertically scrolling UIScrollView (Chapter 7) con‐
taining a single column of rectangular cells (UITableViewCell, a UIView subclass). It
is a keystone of Apple’s strategy for making the small iPhone screen useful and pow‐
erful, and has three main purposes:

Presentation of information
The cells typically contain text, which the user can read. The cells are usually
quite small, in order to maximize the quantity appearing on the screen at once, so
this text is often condensed, truncated, or simplified.

Selection
A table view can provide the user with a column of choices. The user chooses by
tapping a cell, which selects the cell; the app responds appropriately to that
choice.

Navigation
The appropriate response to the user’s choosing a cell is often navigation to
another interface. This might be done, for example, through a presented view
controller or a navigation interface (Chapter 6). An extremely common configu‐
ration is a master–detail interface, where the master view is a table view within a
navigation interface: the user taps a table view cell to navigate to the details about
that cell. This is one reason why truncation of text in a table view cell is accepta‐
ble: the detail view contains the full information.

477

In addition to its column of cells, a table view can be extended by a number of other
features that make it even more useful and flexible:

• A table can display a header view at the top and a footer view at the bottom.
• The cells can be clumped into sections. Each section can have a header and

footer, and these remain visible as long as the section itself occupies the screen,
giving the user a clue as to where we are within the table. Moreover, a section
index can be provided, in the form of an overlay column of abbreviated section
titles, which the user can tap or drag to jump to the start of a section, thus mak‐
ing a long table tractable.

• Tables can be editable: the user can be permitted to insert, delete, and reorder
cells.

• A table can have a grouped format, with large section headers and footers that
travel with their neighbor cells. This is often used for presenting small numbers
of related cells; the headers and footers can provide ancillary information.

Table view cells, too, can be extremely flexible. Some basic cell formats are provided,
such as a text label along with a small image view, but you are free to design your own
cell as you would any other view. There are also some standard interface items that
are commonly used in a cell, such as a checkmark to indicate selection or a right-
pointing chevron to indicate that tapping the cell navigates to a detail view.

Figure 8-1 shows two familiar table views: Apple’s Music app and Contacts app. In the
Music app, each table cell displays a song’s name and artist, in truncated form; the
user can tap to play the song or to see further options. In the Contacts app, the table is
divided into sections; as the user scrolls, the current section header stays pinned to
the top of the table view. The table can also be navigated using the section index at the
right.

Figure 8-2 shows a familiar grouped table: Apple’s Settings app. It’s a master–detail
interface. The master view has sections, but they aren’t labeled: they merely clump
related topics. The detail view often has a single cell per section, using section headers
and footers to explain what that cell does.

It would be difficult to overstate the importance of table views. An iOS app without a
table view somewhere in its interface would be a rare thing, especially on the small
iPhone screen. I’ve written apps consisting almost entirely of table views. Indeed, it is
not uncommon to use a table view even in situations that have nothing particularly
table-like about them, simply because it is so convenient.

For example, in one of my apps I want the user to be able to choose between three
levels of difficulty and two sets of images. In a desktop application I’d probably use
radio buttons; but there are no radio buttons among the standard iOS interface
objects. Instead, I use a grouped table view so small that it doesn’t even scroll. This

478 | Chapter 8: Table Views and Collection Views

Figure 8-1. Two familiar table views

gives me section headers, tappable cells, and a checkmark indicating the current
choice (Figure 8-3).

There is a UIViewController subclass, UITableViewController, whose main view is a
table view. You never really need to use a UITableViewController; it’s a convenience,
but it doesn’t do anything that you couldn’t do yourself by other means. Here’s some
of what using a UITableViewController gives you:

• UITableViewController’s init(style:) initializer creates the table view with a
plain or grouped format.

• The view controller is automatically made the table view’s delegate and data
source, unless you specify otherwise.

• The table view is made the view controller’s tableView. It is also, of course, the
view controller’s view, but the tableView property is typed as a UITableView, so
you can send table view messages to it without casting.

Table Views and Collection Views | 479

Figure 8-2. A familiar grouped table

Figure 8-3. A grouped table view as an interface for choosing options

480 | Chapter 8: Table Views and Collection Views

Table View Cells
Beginners may be surprised to learn that a table view’s structure and contents are gen‐
erally not configured in advance. Rather, you supply the table view with a data source
and a delegate (which will often be the same object), and the table view turns to these
in real time, as the app runs, whenever it needs a piece of information about its own
structure and contents.

This architecture may sound odd, but in fact it is part of a brilliant strategy to con‐
serve resources. Imagine a long table consisting of thousands of rows. It must appear,
therefore, to consist of thousands of cells as the user scrolls. But a cell is a UIView and
is memory-intensive; to maintain thousands of cells internally would put a terrible
strain on memory. Therefore, the table typically maintains only as many cells as are
showing simultaneously at any one moment (about twelve, let’s say). As the user
scrolls to reveal new cells, those cells are created on the spot; meanwhile, the cells that
have been scrolled out of view are permitted to die.

That’s ingenious, but wouldn’t it be even cleverer if, instead of letting a cell die as it is
scrolled out of view, it were whisked around to the other side and used again as one of
the cells being scrolled into view? Yes, and in fact that’s exactly what you’re supposed
to do. You do it by assigning each cell a reuse identifier.

As cells with a given reuse identifier are scrolled out of view, the table view maintains
a bunch of them in a pile. As cells are scrolled into view, you ask the table view for a
cell from that pile, specifying it by means of the reuse identifier. The table view hands
an old used cell back to you, and now you can configure it as the cell that is about to
be scrolled into view. Cells are thus reused to minimize not only the number of actual
cells in existence at any one moment, but the number of actual cells ever created. A
table of 1000 rows might very well never need to create more than about a dozen cells
over the entire lifetime of the app.

To facilitate this architecture, your code must be prepared, on demand, to supply the
table with pieces of requested data. Of these, the most important is the cell to be slot‐
ted into a given position. A position in the table is specified by means of an index
path (IndexPath), a class used here to combine a section number with a row number,
and is often referred to simply as a row of the table. Your data source object may at
any moment be sent the message tableView(_:cellForRowAt:), and must respond
by returning the UITableViewCell to be displayed at that row of the table. And you
must return it fast: the user is scrolling now, so the table needs the next cell now.

In this section, I’ll discuss what you’re going to be supplying — the table view cell.
After that, I’ll talk about how you supply it.

Table View Cells | 481

Built-In Cell Styles
The simplest way to obtain a table view cell is to start with one of the four built-in
table view cell styles. To create a cell using a built-in style, call init(style:reuse-
Identifier:). The reuseIdentifier: is what allows cells previously assigned to
rows that are no longer showing to be reused for cells that are; it will usually be the
same for all cells in a table. Your choices of cell style (UITableViewCellStyle) are:

.default

The cell has a UILabel (its textLabel), with an optional UIImageView (its image-
View) at the left. If there is no image, the label occupies the entire width of the
cell.

.value1

The cell has two UILabels (its textLabel and its detailTextLabel) side by side,
with an optional UIImageView (its imageView) at the left. The first label is left-
aligned; the second label is right-aligned. If the first label’s text is too long, the
second label won’t appear.

.value2

The cell has two UILabels (its textLabel and its detailTextLabel) side by side.
No UIImageView will appear. The first label is right-aligned; the second label is
left-aligned. The label sizes are fixed, and the text of either will be truncated if it’s
too long.

.subtitle

The cell has two UILabels (its textLabel and its detailTextLabel), one above
the other, with an optional UIImageView (its imageView) at the left.

To experiment with the built-in cell styles, do this:

1. Start with the Single View app template.
2. We’re going to ignore the storyboard (as in the examples at the start of Chap‐

ter 6). So we need a class to serve as our root view controller. Choose File → New
→ File and specify iOS → Source → Cocoa Touch Class. Click Next.

3. Make this class a UITableViewController subclass called RootViewController.
The XIB checkbox should be checked; Xcode will create an eponymous .xib file
containing a table view, correctly configured with its File’s Owner as our Root‐
ViewController class. Click Next.

4. Make sure you’re saving into the correct folder and group, and that the app target
is checked. Click Create.

5. Rewrite AppDelegate’s application(_:didFinishLaunchingWithOptions:) to
make our RootViewController the window’s rootViewController:

482 | Chapter 8: Table Views and Collection Views

Figure 8-4. The world’s simplest table

self.window = self.window ?? UIWindow()
self.window!.rootViewController = RootViewController() // *
self.window!.backgroundColor = .white
self.window!.makeKeyAndVisible()
return true

6. Now modify the RootViewController class (which comes with a lot of templated
code), as in Example 8-1.

Run the app to see the world’s simplest table (Figure 8-4).

Example 8-1. The world’s simplest table

let cellIdentifier = "Cell"
override func numberOfSections(in tableView: UITableView) {
 -> Int {
 return 1
}
override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return 20
}
override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 var cell : UITableViewCell! = tableView.dequeueReusableCell(
 withIdentifier: cellIdentifier)
 if cell == nil {
 cell = UITableViewCell(style:.default,
 reuseIdentifier:cellIdentifier)
 cell.textLabel!.textColor = .red
 }
 cell.textLabel!.text = "Hello there! \(indexPath.row)"
 return cell
}

The key parts of the code are:

Table View Cells | 483

Our table will have one section.

Our table will consist of 20 rows. Having multiple rows will give us a sense of
how our cell looks when placed next to other cells.

In tableView(_:cellForRowAt:), you always start by asking the table view for a
reusable cell. Here, we will receive either an already existing reused cell or nil; in
the latter case, we must create the cell from scratch, ourselves.

If we did receive nil, we do create the cell. This is where you specify the built-in
table view cell style you want to experiment with.

At this point in the code you can modify characteristics of the cell (cell) that are
to be the same for every cell of the table. For the moment, I’ve symbolized this by
assuming that every cell’s text is to be the same color.

We now have the cell to be used for this row of the table, so at this point in the
code you can modify characteristics of the cell (cell) that are unique to this row.
I’ve symbolized this by appending the row number to the text of each row. Of
course, in real life the different cells would reflect meaningful data. I’ll talk about
that later in this chapter.

Now you can experiment with your cell’s appearance by tweaking the code and run‐
ning the app. Feel free to try different built-in cell styles in the place where we are
now specifying .default.

The flexibility of each built-in style is based mostly on the flexibility of UILabels. Not
everything can be customized, because after you return the cell some further configu‐
ration takes place, which may override your settings. For example, the size and posi‐
tion of the cell’s subviews are not up to you. (I’ll explain, a little later, how to get
around that.) But you get a remarkable degree of freedom. Here are a few basic UILa‐
bel properties for you to play with now (by customizing cell.textLabel), and I’ll
talk much more about UILabels in Chapter 10:

text

The string shown in the label.

textColor, highlightedTextColor
The color of the text. The highlightedTextColor applies when the cell is high‐
lighted or selected (tap on a cell to select it).

textAlignment

How the text is aligned; some possible choices (NSTextAlignment)
are .left, .center, and .right.

484 | Chapter 8: Table Views and Collection Views

numberOfLines

The maximum number of lines of text to appear in the label. Text that is long but
permitted to wrap, or that contains explicit linefeed characters, can appear com‐
pletely in the label if the label is tall enough and the number of permitted lines is
sufficient. 0 means there’s no maximum; the default is 1.

font

The label’s font. You could reduce the font size as a way of fitting more text into
the label. A font name includes its style. For example:

cell.textLabel!.font = UIFont(name:"Helvetica-Bold", size:12.0)

shadowColor, shadowOffset
The text shadow. Adding a little shadow can increase clarity and emphasis for
large text.

You can also assign the image view (cell.imageView) an image. The frame of the
image view can’t be changed, but you can inset its apparent size by supplying a
smaller image and setting the image view’s contentMode to .center. It’s probably a
good idea in any case, for performance reasons, to supply images at their drawn size
and resolution rather than making the drawing system scale them for you (see the last
section of Chapter 7). For example:

let im = UIImage(named:"moi.png")!
let r = UIGraphicsImageRenderer(size:CGSize(36,36))
let im2 = r.image { _ in
 im.draw(in:CGRect(0,0,36,36))
}
cell.imageView!.image = im2
cell.imageView!.contentMode = .center

The cell itself also has some properties you can play with:

accessoryType

A built-in type (UITableViewCellAccessoryType) of accessory view, which
appears at the cell’s right end. For example:

cell.accessoryType = .disclosureIndicator

accessoryView

Your own UIView, which appears at the cell’s right end (overriding the accessory-
Type). For example:

let b = UIButton(type:.system)
b.setTitle("Tap Me", for:.normal)
b.sizeToFit()
// ... add action and target here ...
cell.accessoryView = b

Table View Cells | 485

indentationLevel, indentationWidth
These properties give the cell a left margin, useful for suggesting a hierarchy
among cells. You can also set a cell’s indentation level in real time, with respect to
the table row into which it is slotted, by implementing the delegate’s table-
View(_:indentationLevelForRowAt:) method.

separatorInset

A UIEdgeInsets. Only the left and right insets matter. The default is a left inset of
15, but the built-in table view cell styles may shift it to match the left layout mar‐
gin of the root view (so, 16 or 20). This property affects both the drawing of the
separator between cells and the indentation of content of the built-in cell styles. If
you don’t like the default, you can take control of the inset by setting the
separatorInset yourself (though this was not so easy on earlier versions of iOS).

selectionStyle

How the background looks when the cell is selected (UITableViewCellSelection‐
Style). The default is solid gray (.default), or you can choose .none.

backgroundColor

backgroundView

selectedBackgroundView

What’s behind everything else drawn in the cell. The selectedBackgroundView is
drawn in front of the backgroundView (if any) when the cell is selected, and will
appear instead of whatever the selectionStyle dictates. The backgroundColor
is behind the backgroundView. There is no need to set the frame of the
backgroundView and selectedBackgroundView; they will be resized automati‐
cally to fit the cell.

multipleSelectionBackgroundView

If defined (not nil), and if the table’s allowsMultipleSelection (or, if editing,
allowsMultipleSelectionDuringEditing) is true, used instead of the selected-
BackgroundView when the cell is selected.

In this example, we set the cell’s backgroundView to display an image with some
transparency at the outside edges, so that the backgroundColor shows behind it, and
we set the selectedBackgroundView to an almost transparent blue rectangle, to
darken that image when the cell is selected (Figure 8-5):

cell.textLabel!.textColor = .white
let v = UIImageView() // no need to set frame
v.contentMode = .scaleToFill
v.image = UIImage(named:"linen.png")
cell.backgroundView = v

486 | Chapter 8: Table Views and Collection Views

Figure 8-5. A cell with an image background

let v2 = UIView() // no need to set frame
v2.backgroundColor = UIColor.blue.withAlphaComponent(0.2)
cell.selectedBackgroundView = v2
cell.backgroundColor = .red

If those features are to be true of every cell ever displayed in the table, then that code
should go in the spot numbered 5 in Example 8-1; there’s no need to waste time doing
the same thing all over again when an existing cell is reused.

Finally, here are a few properties of the table view itself worth playing with:

rowHeight

The height of a cell. A taller cell may accommodate more information. You can
also change this value in the nib editor; the table view’s row height appears in the
Size inspector. With a built-in cell style, the cell’s subviews have their autoresizing
set so as to compensate correctly. You can also set a cell’s height in real time by
implementing the delegate’s tableView(_:heightForRowAt:) method; thus a
table’s cells may differ from one another in height (more about that later in this
chapter).

separatorStyle, separatorColor, separatorInset
These can also be set in the nib. The table’s separatorInset is adopted by indi‐
vidual cells that don’t have their own explicit separatorInset. Separator styles
(UITableViewCellSeparatorStyle) are .none and .singleLine.

backgroundColor, backgroundView
What’s behind all the cells of the table; this may be seen if the cells have transpar‐
ency, or if the user scrolls the cells beyond their limit. The backgroundView is
drawn on top of the backgroundColor.

tableHeaderView, tableFooterView
Views to be shown before the first row and after the last row, respectively (as part
of the table’s scrolling content). Their background color is, by default, the back‐
ground color of the table, but you can change that. You dictate their heights; their
widths will be dynamically resized to fit the table. The user can, if you like, inter‐
act with these views (and their subviews); for example, a view can be (or can con‐
tain) a UIButton.

Table View Cells | 487

You can alter a table header or footer view dynamically during the lifetime of the
app; if you change its height, you must set the corresponding table view property
afresh to notify the table view of what has happened.

Registering a Cell Class
In Example 8-1, I used this method to obtain the reusable cell:

• dequeueReusableCell(withIdentifier:)

However, there’s another way:

• dequeueReusableCell(withIdentifier:for:)

The outward difference is that the second method has a second parameter — an
IndexPath. This should in fact always be the index path you received to begin with as
the last parameter of tableView(_:cellForRowAt:). The functional difference is very
dramatic. The second method has three advantages:

The result is never nil
Unlike dequeueReusableCell(withIdentifier:), the value returned by dequeue-
ReusableCell(withIdentifier:for:) is never nil (in Swift, it isn’t an
Optional). If there is a free reusable cell with the given identifier, it is returned. If
there isn’t, a new one is created for you. Step 4 of Example 8-1 can thus be elimi‐
nated!

The cell size is known earlier
Unlike dequeueReusableCell(withIdentifier:), the cell returned by dequeue-
ReusableCell(withIdentifier:for:) has its final bounds. That’s possible
because you’ve passed the index path as an argument, so the runtime knows this
cell’s ultimate destination within the table, and has already consulted the table’s
rowHeight or the delegate’s tableView(_:heightForRowAt:). This makes laying
out the cell’s contents much easier.

The identifier is consistent
A danger with dequeueReusableCell(withIdentifier:) is that you may acci‐
dentally pass an incorrect reuse identifier, and end up not reusing cells. With
dequeueReusableCell(withIdentifier:for:), that can’t happen (for reasons
that I will now explain).

Before you call dequeueReusableCell(withIdentifier:for:) for the first time, you
must register with the table view itself (unless the cell is coming from a storyboard, as
I’ll describe later). You can do this by calling register(_:forCellReuse-

Identifier:). The first parameter can be a class (which must be UITableViewCell or
a subclass thereof). Then you have now associated this class with a string identifier.

488 | Chapter 8: Table Views and Collection Views

That’s how dequeueReusableCell(withIdentifier:for:) knows what class to
instantiate when it creates a new cell for you: you pass an identifier, and you’ve
already told the table view what class it signifies. The only cell types you can obtain
are those for which you’ve registered in this way; if you pass a bad identifier, the app
will crash (with a helpful log message).

This is a very elegant mechanism. It also raises some new questions:

When should I register with the table view?
Do it early, before the table view starts generating cells; viewDidLoad is a good
place:

override func viewDidLoad() {
 super.viewDidLoad()
 self.tableView.register(
 UITableViewCell.self, forCellReuseIdentifier: "Cell")
}

How do I specify a built-in table view cell style?
We are no longer calling init(style:reuseIdentifier:), so where do we make
our choice of built-in cell style? The default cell style is .default, so if that’s what
you wanted, the problem is solved. Otherwise, subclass UITableViewCell and
override init(style:reuseIdentifier:) to substitute the cell style you’re after
(passing along the reuse identifier you were handed).

For example, suppose we want the .subtitle style. Let’s call our UITableView‐
Cell subclass MyCell. So we now specify MyCell.self in our call to
register(_:forCellReuseIdentifier:). MyCell’s initializer looks like this:

override init(style: UITableViewCellStyle, reuseIdentifier: String?) {
 super.init(style:.subtitle, reuseIdentifier: reuseIdentifier)
}

How do I know whether the returned cell is new or reused?
Good question! dequeueReusableCell(withIdentifier:for:) never returns
nil, so we need some other way to distinguish between configurations that are to
apply once and for all to a new cell (step 5 of Example 8-1) and configurations
that differ for each row (step 6). The answer is: It’s up to you, when performing
one-time configuration on a cell, to give that cell some distinguishing mark that
you can look for later to determine whether a cell requires one-time configura‐
tion.

For example, if every cell is to have a two-line text label, there is no point config‐
uring the text label of every cell returned by dequeueReusableCell(with-
Identifier:for:); the reused cells have already been configured. But how will
we know which cells need their text label to be configured? It’s easy: they are the
ones whose text label hasn’t been configured:

Table View Cells | 489

override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(
 withIdentifier:"Cell", for: indexPath) as! MyCell
 if cell.textLabel!.numberOfLines != 2 { // never configured
 cell.textLabel!.numberOfLines = 2
 // other one-time configurations here ...
 }
 cell.textLabel!.text = // ...
 // other individual configurations here ...
 return cell
}

Based on our new understanding of dequeueReusableCell(withIdentifier:for:),
let’s rewrite Example 8-1 to use it. The result is Example 8-2, representing the univer‐
sal scheme that I use in real life (and that I’ll be using throughout the rest of this
book).

Example 8-2. The world’s simplest table, take two

let cellIdentifier = "Cell"
override func viewDidLoad() {
 super.viewDidLoad()
 self.tableView.register(
 UITableViewCell.self, forCellReuseIdentifier: cellIdentifier)
}
override func numberOfSections(in tableView: UITableView) {
 -> Int {
 return 1
}
override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return 20
}
override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(
 withIdentifier: cellIdentifier, for: indexPath)
 if cell.textLabel!.numberOfLines != 2 {
 cell.textLabel!.numberOfLines = 2
 // ... other universal configurations here ...
 }
 cell.textLabel!.text = "Hello there! \(indexPath.row)"
 // ... other individual configurations here ...
 return cell
}

Register the cell identifier with the table view. No law requires that this be done
in viewDidLoad, but it’s a good place because it’s called once, early. You might

490 | Chapter 8: Table Views and Collection Views

specify a UITableViewCell subclass here — or, as I’ll explain later, a nib. (This
step must be omitted if the cell is to come from a storyboard.)

Give the number of sections our table is to have.

Give the number of rows each section is to have.

Obtain a cell for the cell identifier, passing along the incoming index path. (If the
registered cell class is a UITableViewCell subclass, you’ll probably need to cast
down here.)

If there are configurations to be performed that are the same for every cell, look
to see whether this cell has already been configured in this way. If not, configure
it.

Modify characteristics of the cell that are unique to this row, and return the cell.

Custom Cells
The built-in cell styles give the beginner a leg up in getting started with table views,
but there is nothing sacred about them, and soon you’ll probably want to transcend
them, putting yourself in charge of how a table’s cells look and what subviews they
contain. You are perfectly free to do this. The thing to remember is that the cell has a
contentView property, which is one of its subviews; things like the accessoryView
are outside the contentView. All your customizations must be confined to subviews
of the contentView; this allows the cell to continue working correctly.

I’ll illustrate four possible approaches to customizing the contents of a cell:

• Start with a built-in cell style, but supply a UITableViewCell subclass and over‐
ride layoutSubviews to alter the frames of the built-in subviews.

• In tableView(_:cellForRowAt:), add subviews to each cell’s contentView as the
cell is created. This approach can be combined with the previous one, or you can
ignore the built-in subviews and use your own exclusively.

• Design the cell in a nib, and load that nib in tableView(_:cellForRowAt:) each
time a cell needs to be created.

• Design the cell in a storyboard.

What causes the built-in subviews to be present is not the cell style but the fact
that you refer to them. As long as you never speak of the cell’s textLabel, detail-
TextLabel, or imageView, they are never created or inserted into the cell. Thus,
you don’t need to remove them if you don’t want to use them.

Table View Cells | 491

Figure 8-6. A cell with its label and image view swapped

Overriding a cell’s subview layout

You can’t directly change the frame of a built-in cell style subview in table-
View(_:cellForRowAt:), because the cell’s layoutSubviews comes along later and
overrides your changes. The workaround is to override the cell’s layoutSubviews!
This is a straightforward solution if your main objection to a built-in style is the
frame of an existing subview.

To illustrate, let’s modify a .default cell so that the image is at the right end instead
of the left end (Figure 8-6). We’ll make a UITableViewCell subclass, MyCell, remem‐
bering to register MyCell with the table view, so that dequeueReusableCell(with-
Identifier:for:) produces a MyCell instance; here is MyCell’s layoutSubviews:

override func layoutSubviews() {
 super.layoutSubviews()
 let cvb = self.contentView.bounds
 let imf = self.imageView!.frame
 self.imageView!.frame.origin.x = cvb.size.width - imf.size.width - 15
 self.textLabel!.frame.origin.x = 15
}

Adding subviews in code
Instead of modifying the existing default subviews, you can add completely new
views to each UITableViewCell’s content view. The best place to do this in code is
tableView(_:cellForRowAt:). Here are some things to keep in mind:

• The new views must be added when we instantiate a new cell — but not when we
reuse a cell, because a reused cell already has them. (Adding multiple copies of
the same subview repeatedly, as the cell is reused, is a common beginner mis‐
take.)

• We must never send addSubview(_:) to the cell itself — only to its contentView
(or some subview thereof).

• We should assign the new views an appropriate autoresizingMask or con‐
straints, because the cell’s content view might be resized.

• Each new view should be assigned a tag so that it can be identified and referred to
elsewhere.

I’ll rewrite the previous example (Figure 8-6) to use this technique. We are no longer
using a UITableViewCell subclass; the registered cell class is UITableViewCell itself. If

492 | Chapter 8: Table Views and Collection Views

this is a new cell, we add the subviews and assign them tags. (Since we are now
adding the subviews ourselves, we can use autolayout to position them.) If this is a
reused cell, we don’t add the subviews — the cell already has them! Either way, we
then use the tags to refer to the subviews:

override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(
 withIdentifier:"Cell", for: indexPath)
 if cell.viewWithTag(1) == nil { // no subviews! add them
 let iv = UIImageView(); iv.tag = 1
 cell.contentView.addSubview(iv)
 let lab = UILabel(); lab.tag = 2
 cell.contentView.addSubview(lab)
 // autolayout
 let d = ["iv":iv, "lab":lab]
 iv.translatesAutoresizingMaskIntoConstraints = false
 lab.translatesAutoresizingMaskIntoConstraints = false
 var con = [NSLayoutConstraint]()
 con.append(iv.centerYAnchor.constraint(
 equalTo:cell.contentView.centerYAnchor))
 con.append(iv.widthAnchor.constraint(
 equalTo:iv.heightAnchor))
 con.append(contentsOf:
 NSLayoutConstraint.constraints(
 withVisualFormat:"V:|[lab]|",
 metrics:nil, views:d))
 // horizontal margins
 con.append(contentsOf:
 NSLayoutConstraint.constraints(
 withVisualFormat:"H:|-15-[lab]-15-[iv]-15-|",
 metrics:nil, views:d))
 NSLayoutConstraint.activate(con)
 // ...
 }
 // can refer to subviews by their tags
 let lab = cell.viewWithTag(2) as! UILabel
 let iv = cell.viewWithTag(1) as! UIImageView
 // ...
 return cell
}

Designing a cell in a nib
We can avoid the verbosity of the previous code by designing the cell in a nib. We
start by creating a .xib file that will consist, in effect, solely of this one cell; then we
design the cell:

1. In Xcode, create the .xib file by specifying iOS → User Interface → View. Let’s call
it MyCell.xib.

Table View Cells | 493

2. In the nib editor, delete the existing View and replace it with a Table View Cell
from the Object library.
The cell’s design window shows a standard-sized cell; you can resize it as desired,
but the actual size of the cell in the interface will be dictated by the table view’s
width and its rowHeight (or the delegate’s response to tableView(_:heightFor-
RowAt:)). The cell already has a contentView, and any subviews you add will be
inside that; do not subvert that arrangement.

3. You can choose a built-in table view cell style in the Style pop-up menu of the
Attributes inspector, and this gives you the default subviews, locked in their stan‐
dard positions; for example, if you choose Basic, the textLabel appears, and if
you specify an image, the imageView appears. If you set the Style pop-up menu to
Custom, you start with a blank slate. Let’s do that.

4. Design the cell! For example, let’s implement, from scratch, the same subviews
we’ve already implemented in the preceding two examples: a UILabel on the left
side of the cell, and a UIImageView on the right side. Just as when adding sub‐
views in code, we should set each subview’s autoresizing behavior or constraints,
and give each subview a tag, so that later, in tableView(_:cellForRowAt:), we’ll
be able to refer to the label and the image view using viewWithTag(_:), exactly as
in the previous example.

The only remaining question is how to load the cell from the nib. It’s simple! When
we register with the table view, which we’re currently doing in viewDidLoad, when we
call register(_:forCellReuseIdentifier:), we supply a nib instead of a class. To
specify the nib, call UINib’s initializer init(nibName:bundle:), like this:

self.tableView.register(
 UINib(nibName:"MyCell", bundle:nil), forCellReuseIdentifier: "Cell")

That’s all there is to it. In tableView(_:cellForRowAt:), when we call dequeue-
ReusableCell(withIdentifier:for:), if the table has no free reusable cell already in
existence, the nib will automatically be loaded and the cell will be instantiated from it
and returned to us.

You may wonder how that’s possible, when we haven’t specified a File’s Owner class or
added an outlet from the File’s Owner to the cell in the nib. The answer is that the nib
conforms to a specific format. The UINib instance method instantiate(with-
Owner:options:) can load a nib with a nil owner, and it returns an array of the nib’s
instantiated top-level objects. A nib registered with the table view is expected to have
exactly one top-level object, and that top-level object is expected to be a UITable‐
ViewCell; that being so, the cell can easily be extracted from the resulting array, as it is
the array’s only element. Our nib meets those expectations!

494 | Chapter 8: Table Views and Collection Views

The nib must conform to this format: it must have exactly one top-level object, a
UITableViewCell. This means that some configurations are difficult or impossi‐
ble in the nib. For example, a cell’s backgroundView cannot be configured in the
nib, because this would require the presence of a second top-level nib object. The
simplest workaround is to add the backgroundView in code.

The advantages of this approach should be immediately obvious. The subviews can
now be designed in the nib editor, and code that was creating and configuring each
subview can be deleted. All the autolayout code from the previous example can be
removed; we can specify the constraints in the nib editor. If we were assigning the
label a font, a line break mode, a numberOfLines, all of that code can be removed; we
can specify those things in the nib editor.

But we can go further. In tableView(_:cellForRowAt:), we are still referring to the
cell’s subviews by way of viewWithTag(_:). There’s nothing wrong with that, but per‐
haps you’d prefer to use names. Now that we’re designing the cell in a nib, that’s easy.
Provide a UITableViewCell subclass with outlet properties, and configure the nib file
accordingly:

1. Create a UITableViewCell subclass — let’s call it MyCell — and declare two outlet
properties:

class MyCell : UITableViewCell {
 @IBOutlet var theLabel : UILabel!
 @IBOutlet var theImageView : UIImageView!
}

That is the entirety of MyCell’s code; it exists solely so that we can create these
outlets.

2. Edit the table view cell nib MyCell.xib. Change the class of the cell (in the Identity
inspector) to MyCell, and connect the outlets from the cell to the respective sub‐
views.

The result is that in our implementation of tableView(_:cellForRowAt:), once
we’ve typed the cell as a MyCell, the compiler will let us use the property names to
access the subviews:

let cell = tableView.dequeueReusableCell(
 withIdentifier:"Cell", for: indexPath) as! MyCell // note the cast!
let lab = cell.theLabel!
let iv = cell.theImageView!
// ... configure lab and iv ...

Designing a cell in a storyboard
If you are using a UITableViewController subclass that gets its view from a story‐
board — that is, if it corresponds to a UITableViewController scene in the storyboard

Table View Cells | 495

— then, in addition to all the ways of obtaining and designing its cells that I’ve
already described, there is an additional option. You can have the table view obtain its
cells from the storyboard itself, and you can also design those cells directly in the table
view in the storyboard.

Let’s experiment with this way of obtaining and designing a cell:

1. Start with a project based on the Single View app template.
2. In the storyboard, delete the View Controller scene.
3. In the project, create a file for a UITableViewController subclass called Root‐

ViewController, without a corresponding .xib file.
4. In the storyboard, drag a Table View Controller into the empty canvas, and set its

class to RootViewController. Make sure it’s the initial view controller.
5. The table view controller in the storyboard comes with a table view. In the story‐

board, select that table view, and, in the Attributes inspector, set the Content pop-
up menu to Dynamic Prototypes, and set the number of Prototype Cells to 1
(these are the defaults).

The table view in the storyboard now contains a single table view cell with a content
view. You can do in this cell exactly what we were doing before when designing a
table view cell in a .xib file! So, let’s do that. I like being able to refer to my custom cell
subviews with property names. Our procedure is just like what we did in the previous
example:

1. In the project, add a UITableViewCell subclass — let’s call it MyCell — and
declare two outlet properties:

class MyCell : UITableViewCell {
 @IBOutlet var theLabel : UILabel!
 @IBOutlet var theImageView : UIImageView!
}

2. In the storyboard, select the table view’s prototype cell and change its class to
MyCell.

3. Drag a label and an image view into the prototype cell, position and configure
them as desired, and connect the cell’s outlets to them appropriately.

So far, so good; but there is one crucial question I have not yet answered: how will
your code tell the table view to get its cells from the storyboard? The answer is: by not
calling register(_:forCellReuseIdentifier:)! Instead, when you call dequeue-
ReusableCell(withIdentifier:for:), you supply an identifier that matches the
prototype cell’s identifier in the storyboard. So:

496 | Chapter 8: Table Views and Collection Views

1. If you are calling register(_:forCellReuseIdentifier:) in RootViewControl‐
ler’s code, delete that line.

2. In the storyboard, select the prototype cell. In the Attributes inspector, enter Cell
in the Identifier field (capitalization counts).

Now RootViewController’s tableView(_:cellForRowAt:) works exactly as it did in
the previous example:

let cell = tableView.dequeueReusableCell(
 withIdentifier:"Cell", for: indexPath) as! MyCell
let lab = cell.theLabel!
let iv = cell.theImageView!

If you are trying to get your UITableViewController’s table view to get its cells from
the UITableViewController scene in the storyboard, there are several ways to go
wrong. These are all common beginner mistakes:

Wrong class
In the storyboard, make sure that your UITableViewController’s class, in the
Identity inspector, matches the class of your UITableViewController subclass in
code. If you get this wrong, none of your table view controller code will run.

Wrong cell identifier
In the storyboard, make sure that the prototype cell identifier matches the reuse
identifier in your code’s dequeueReusableCell(withIdentifier:for:) call. If
you get this wrong, your app will crash (with a helpful message in the console).

Wrong registration
In your table view controller code, make sure you do not call register(_:for-
CellReuseIdentifier:). If you do call it, you will be telling the runtime not to
get the cell from the storyboard.

A table view controller in the storyboard is very convenient. But what if your
view controller is not a table view controller and its main view is not a table
view? If the table view is a subview of your view controller’s main view, how can
you keep the advantages of using a table view controller? It’s easy: make your
view controller a custom parent view controller, and your table view controller its
child view controller. You can easily configure this in the storyboard, using a
Container View, with no extra code.

Table View Data
The structure and content of the actual data portrayed in a table view comes from the
data source, an object pointed to by the table view’s dataSource property and adopt‐
ing the UITableViewDataSource protocol. The data source is thus the heart and soul

Table View Data | 497

of the table. What surprises beginners is that the data source operates not by setting
the table view’s structure and content, but by responding on demand. The data source,
qua data source, consists of a set of methods that the table view will call when it needs
information; in effect, it will ask your data source some questions. This architecture
has important consequences for how you write your code, which can be summarized
by these simple guidelines:

Be ready
Your data source cannot know when or how often any of these methods will be
called, so it must be prepared to answer any question at any time.

Be fast
The table view is asking for data in real time; the user is probably scrolling
through the table right now. So you mustn’t gum up the works; you must be ready
to supply responses just as fast as you possibly can. (If you can’t supply a piece of
data fast enough, you may have to skip it, supply a placeholder, and insert the
data into the table later. This may involve you in threading issues that I don’t
want to get into here. I’ll give an example in Chapter 24.)

Be consistent
There are multiple data source methods, and you cannot know which one will be
called at a given moment. So you must make sure your responses are mutually
consistent at any moment. For example, a common beginner error is forgetting
to take into account, in your data source methods, the possibility that the data
might not yet be ready.

This may sound daunting, but you’ll be fine as long as you maintain an unswerving
adherence to the principles of model–view–controller. How and when you accumu‐
late the actual data, and how that data is structured, is a model concern. Acting as a
data source is a controller concern. So you can acquire and arrange your data when‐
ever and however you like, just so long as when the table view actually turns to you
and asks what to do, you can lay your hands on the relevant data rapidly and consis‐
tently. You’ll want to design the model in such a way that the controller can access any
desired piece of data more or less instantly.

Another source of confusion for beginners is that methods are rather oddly dis‐
tributed between the data source and the delegate, an object pointed to by the table
view’s delegate property and adopting the UITableViewDelegate protocol; in some
cases, one may seem to be doing the job of the other. This is not usually a cause of any
real difficulty, because the object serving as data source will probably also be the
object serving as delegate. Nevertheless, it is rather inconvenient when you’re consult‐
ing the documentation; you’ll probably want to keep the data source and delegate
documentation pages open simultaneously as you work.

498 | Chapter 8: Table Views and Collection Views

When you’re using a table view controller with a corresponding table view in the
storyboard (or in a .xib file created at the same time), the table view controller
comes to you already configured as both the table view’s data source and the
table view’s delegate. Creating a table view in some other way, and then forgetting
to set its dataSource and delegate, is a common beginner mistake.

The Three Big Questions
Like Katherine Hepburn in Pat and Mike, the basis of your success (as a data source)
is your ability, at any time, to answer the Three Big Questions. The questions the table
view will ask you are a little different from the questions Mike asks Pat, but the prin‐
ciple is the same: know the answers, and be able to recite them at any moment. Here
they are:

How many sections does this table have?
The table will call numberOfSections(in:); respond with an integer. In theory
you can sometimes omit this method, as the default response is 1, which is often
correct. However, I never omit it; for one thing, returning 0 is a good way to say
that you’ve no data yet, and will prevent the table view from asking any other
questions.

How many rows does this section have?
The table will call tableView(_:numberOfRowsInSection:). The table supplies a
section number — the first section is numbered 0 — and you respond with an
integer. In a table with only one section, of course, there is probably no need to
examine the incoming section number.

What cell goes in this row of this section?
The table will call tableView(_:cellForRowAt:). The index path is expressed as
an IndexPath; this is a sophisticated and powerful class, but you don’t actually
have to know anything about it, because UITableView provides a category on it
that adds two read-only properties — section and row. Using these, you extract
the requested section number and row number, and return a fully configured
UITableViewCell, ready for display in the table view. The first row of a section is
numbered 0. I have already explained how to obtain the cell in the first place, by
calling dequeueReusableCell(withIdentifier:for:) (see Example 8-2).

I have nothing particular to say about precisely how you’re going to fulfill these obli‐
gations. It all depends on your data model and what your table is trying to portray.
The important thing is to remember that you’re going to be receiving an IndexPath
specifying a section and a row, and you need to be able to lay your hands on the data
corresponding to that slot now and configure the cell now. So construct your model,
and your algorithm for consulting it in the Three Big Questions, and your way of
configuring the cell, in accordance with that necessity.

Table View Data | 499

For example, suppose our table is to list the names of the Pep Boys. Our data model
might be an array of string names (self.pep). Our table has only one section. We’re
using a UITableViewController, and it is the table view’s data source. So our code
might look like this:

let pep = ["Manny", "Moe", "Jack"]
override func numberOfSections(in tableView: UITableView) -> Int {
 return 1
}
override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return self.pep.count
}
override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(
 withIdentifier:"Cell", for: indexPath)
 cell.textLabel!.text = pep[indexPath.row]
 return cell
}

At this point you may be feeling some exasperation. You want to object: “But that’s
trivial!” Exactly so! Your access to the data model should be trivial. That’s the sign of a
data model that’s well designed for access by your table view’s data source. Your
implementation of tableView(_:cellForRowAt:) might have some interesting work
to do in order to configure the form of the cell, but accessing the actual data should
be simple and boring.

If a table view’s contents are known beforehand, you can alternatively design the
entire table, including the contents of individual cells, in a storyboard. I’ll give an
example later in this chapter.

Reusing Cells
Another important goal of tableView(_:cellForRowAt:) should be to conserve
resources by reusing cells. As I’ve already explained, once a cell’s row is no longer
visible on the screen, that cell can be slotted into a row that is visible — with its por‐
trayed data appropriately modified, of course! — so that only a few more than the
number of simultaneously visible cells will ever need to be instantiated.

A table view is ready to implement this strategy for you; all you have to do is call
dequeueReusableCell(withIdentifier:for:). For any given identifier, you’ll be
handed either a newly minted cell or a reused cell that previously appeared in the
table view but is now no longer needed because it has scrolled out of view.

The table view can maintain more than one cache of reusable cells; this could be use‐
ful if your table view contains more than one type of cell (where the meaning of the
concept “type of cell” is pretty much up to you). This is why you must name each

500 | Chapter 8: Table Views and Collection Views

cache, by attaching an identifier string to any cell that can be reused. All the examples
in this chapter (and in this book, and in fact in every UITableView I’ve ever created)
use just one cache and just one identifier, but there can be more than one. If you’re
using a storyboard as a source of cells, there would then need to be more than one
prototype cell.

To prove to yourself the efficiency of the cell-caching architecture, do something to
differentiate newly instantiated cells from reused cells, and count the newly instanti‐
ated cells, like this:

override func numberOfSections(in tableView: UITableView) -> Int {
 return 1
}
override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return 1000 // make a lot of rows this time!
}
var cells = 0
override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(
 withIdentifier:"Cell", for: indexPath) as! MyCell
 let lab = cell.theLabel!
 lab.text = "Row \(indexPath.row) of section \(indexPath.section)"
 if lab.tag != 999 {
 lab.tag = 999
 self.cells += 1; print("New cell \(self.cells)")
 }
}

When we run this code and scroll through the table, every cell is numbered correctly,
so there appear to be 1000 cells. But the console messages show that only about a
dozen distinct cells are ever actually created.

Be certain that your table view code passes that test, and that you are truly reusing
cells! Fortunately, one of the benefits of calling dequeueReusableCell(with-

Identifier:for:) is that it forces you to use a valid reuse identifier.

A common beginner error is to obtain a cell in some other way, such as instanti‐
ating it directly every time tableView(_:cellForRowAt:) is called. I have even
seen beginners call dequeueReusableCell(withIdentifier:for:), only to
instantiate a fresh cell manually in the next line. Don’t do that.

When your tableView(_:cellForRowAt:) implementation configures individual
cells (step 6 in Example 8-2), the cell might be new or reused; at this point in your
code, you don’t know or care which. Therefore, you should always configure every‐
thing about the cell that might need configuring. If you fail to do this, and if the cell is
reused, you might be surprised when some aspect of the cell is left over from its pre‐

Table View Data | 501

vious use; similarly, if you fail to do this, and if the cell is new, you might be surprised
when some aspect of the cell isn’t configured at all.

As usual, I learned that lesson the hard way. In the TidBITS News app, there is a little
loudspeaker icon that should appear in a given cell in the master view’s table view
only if there is a recording associated with this article. So I initially wrote this code:

if item.enclosures != nil && item.enclosures.count > 0 {
 cell.speaker.isHidden = false
}

That turned out to be a mistake, because the cell might be reused. Every reused cell
always had a visible loudspeaker icon if, in a previous usage, that cell had ever had a
visible loudspeaker icon! The solution was to rewrite the logic to cover all possibilities
completely, like this:

cell.speaker.isHidden =
 !(item.enclosures != nil && item.enclosures.count > 0)

You do get a sort of second bite of the cherry: there’s a delegate method, table-
View(_:willDisplay:forRowAt:), that is called for every cell just before it appears in
the table. This is absolutely the last minute to configure a cell. But don’t misuse this
method. You’re functioning as the delegate here, not the data source; you may set the
final details of the cell’s appearance, but you shouldn’t be consulting the data model at
this point. It is of great importance that you not do anything even slightly time-
consuming in tableView(_:willDisplay:forRowAt:); the cell is literally just milli‐
seconds away from appearing in the interface.

An additional delegate method is tableView(_:didEndDisplaying:forRowAt:). This
tells you that the cell no longer appears in the interface and has become free for reuse.
You could take advantage of this to tear down any resource-heavy customization of
the cell or simply to prepare it somehow for subsequent future reuse.

Table View Sections
Your table data may be expressed as divided into sections. You might clump your data
into sections for various reasons (and doubtless there are other reasons beyond
these):

• You want to supply section headers (or footers, or both).
• You want to make navigation of the table easier by supplying an index down the

right side. You can’t have an index without sections.
• You want to facilitate programmatic rearrangement of the table. For example, it’s

very easy to hide or move an entire section at once, possibly with animation.

502 | Chapter 8: Table Views and Collection Views

Section headers and footers
A section header or footer appears between the cells, before the first row of a section
or after the last row of a section, respectively. In a nongrouped table, a section header
or footer detaches itself while the user scrolls the table, pinning itself to the top or
bottom of the table view and floating over the scrolled rows, giving the user a sense,
at every moment, of where we are within the table. Also, a section header or footer
can contain custom views, so it’s a place where you might put additional information,
or even functional interface, such as a button the user can tap.

Don’t confuse the section headers and footers with the header and footer of the
table as a whole. The latter are view properties of the table view itself, its table-
HeaderView and tableFooterView, discussed earlier in this chapter. The table
header appears only when the table is scrolled all the way down; the table footer
appears only when the table is scrolled all the way up.

The number of sections is determined by your reply to the first Big Question, number-
OfSections(in:). For each section, the table view will consult your data source and
delegate to learn whether this section has a header or a footer, or both, or neither (the
default).

The UITableViewHeaderFooterView class is a UIView subclass intended specifically
for use as the view of a header or footer; much like a table view cell, it is reusable. It
has the following properties:

textLabel

Label (UILabel) for displaying the text of the header or footer.

detailTextLabel

This label, if you set its text, appears only in a grouped style table.

contentView

A subview of the header or footer, to which you can add custom subviews. If you
do, you probably should not use the built-in textLabel; the textLabel is not
inside the contentView and in a sense doesn’t belong to you.

backgroundView

Any view you want to assign. The contentView is in front of the background-
View. The contentView has a clear background by default, so the background-
View shows through. An opaque contentView.backgroundColor, on the other
hand, would completely obscure the backgroundView.

If the backgroundView is nil (the default), the header or footer view will supply
its own background view whose backgroundColor is derived (in some annoy‐
ingly unspecified way) from the table’s backgroundColor.

Table View Data | 503

Don’t set a UITableViewHeaderFooterView’s backgroundColor; instead, set the
backgroundColor of its contentView, or assign a backgroundView and configure
it as you like. Also, setting its tintColor has no effect. (This feels like a bug; the
tintColor should affect the color of subviews, such as a UIButton’s title, but it
doesn’t.)

There are two ways in which you can supply a header or footer. You can use both, but
it is better to pick just one:

Header or footer title string
You implement the data source method tableView(_:titleForHeaderIn-

Section:) or tableView(_:titleForFooterInSection:) (or both). Return nil
to indicate that the given section has no header (or footer). The header or footer
view itself is a UITableViewHeaderFooterView, and is reused automatically: there
will be only as many as needed for simultaneous display on the screen. The string
you supply becomes the view’s textLabel.text.

(In a grouped style table, the string’s capitalization may be changed. To avoid
that, use the second way of supplying the header or footer.)

Header or footer view
You implement the delegate method tableView(_:viewForHeaderInSection:)
or tableView(_:viewForFooterInSection:) (or both). The view you supply is
used as the entire header or footer and is automatically resized to the table’s width
and the section header or footer height (I’ll discuss how the height is determined
in a moment).

You are not required to return a UITableViewHeaderFooterView, but you will
probably want to, in order to take advantage of reusability. To do so, the proce‐
dure is much like making a cell reusable. You register beforehand with the table
view by calling register(_:forHeaderFooterViewReuseIdentifier:) to regis‐
ter the UITableViewHeaderFooterView class or a subclass. To supply the reusable
view, send the table view dequeueReusableHeaderFooterView(with-

Identifier:); the result will be either a newly instantiated view or a reused view.

You can then configure this view as desired. For example, you can set its text-
Label.text, or you can give its contentView custom subviews. In the latter case,
be sure to set proper autoresizing or constraints, so that the subviews will be
positioned and sized appropriately when the view itself is resized.

The documentation says that you can call register(_:forHeaderFooterView-
ReuseIdentifier:) to register a nib instead of a class. But the nib editor’s Object
library doesn’t include a UITableViewHeaderFooterView, so this approach is use‐
less.

504 | Chapter 8: Table Views and Collection Views

In addition, two pairs of delegate methods permit you to perform final configurations
on your header or footer views:

tableView(_:willDisplayHeaderView:forSection:)

tableView(_:willDisplayFooterView:forSection:)

You can perform further configuration here, if desired. A useful possibility is to
generate the default UITableViewHeaderFooterView by implementing title-
For... and then tweak its form slightly here. These delegate methods are
matched by didEndDisplaying methods.

tableView(_:heightForHeaderInSection:)

tableView(_:heightForFooterInSection:)

The runtime resizes your header or footer before displaying it. Its width will be
the table view’s width; its height will be the table view’s sectionHeaderHeight or
sectionFooterHeight unless you implement one of these methods to say other‐
wise. Returning UITableViewAutomaticDimension means 0 if titleFor...
returns nil or the empty string (or isn’t implemented); otherwise, it means the
table view’s sectionHeaderHeight or sectionFooterHeight. Be sure to dictate
the height somehow or you might not see any headers (or footers).

Some lovely effects can be created by making use of the fact that a header or footer
view in a nongrouped table will be further forward than the table’s cells. For example,
a header with transparency, when pinned to the top of the table view, shows the cells
as they scroll behind it; a header with a shadow casts that shadow on the adjacent cell.

When a header or footer view is not pinned to the top or bottom of the table view, so
that there are no cells behind it, there is a transparent gap behind it. If the header or
footer view has some transparency, the table view’s background is visible through this
gap. You’ll want to take this into account when planning your color scheme.

Section data
Clearly, a table that is to have sections may require some advance planning in the
construction and architecture of its data model. The row data must somehow be
clumped into sections, because you’re going to be asked for a row with respect to its
section. And, just as with a cell, a section title must be readily available so that it can
be supplied quickly in real time. A structure that I commonly use is a pair of parallel
arrays: an array of section data, and an array of arrays of row data for each section.
This isn’t a very sophisticated data structure, but it works, and I’ll use it for examples
throughout the rest of this chapter.

To illustrate, suppose we intend to display the names of all 50 U.S. states in alphabeti‐
cal order as the rows of a table view, and that we wish to divide the table into sections
according to the first letter of each state’s name. Let’s say I have the alphabetized list as
a text file, which starts like this:

Table View Data | 505

Alabama
Alaska
Arizona
Arkansas
California
Colorado
Connecticut
Delaware
...

I have properties already initialized as empty arrays, waiting to hold the data model:

var sectionNames = [String]()
var cellData = [[String]]()

I’ll prepare the data model by loading the text file and walking through it, line by line,
creating a new section name and a new subarray when I encounter a new first letter:

let s = try! String(contentsOfFile:
 Bundle.main.path(forResource: "states", ofType: "txt")!)
let states = s.components(separatedBy:"\n")
var previous = ""
for aState in states {
 // get the first letter
 let c = String(aState.characters.prefix(1))
 // only add a letter to sectionNames when it's a different letter
 if c != previous {
 previous = c
 self.sectionNames.append(c.uppercased())
 // and in that case also add new subarray to array of subarrays
 self.cellData.append([String]())
 }
 self.cellData[self.cellData.count-1].append(aState)
}

The value of this preparatory dance is evident when we are bombarded with ques‐
tions from the table view about cells and headers; supplying the answers is trivial, just
as it should be:

override func numberOfSections(in tableView: UITableView) -> Int {
 return self.sectionNames.count
}
override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return self.cellData[section].count
}
override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(
 withIdentifier:"Cell", for: indexPath)
 let s = self.cellData[indexPath.section][indexPath.row]
 cell.textLabel!.text = s
 return cell

506 | Chapter 8: Table Views and Collection Views

}
override func tableView(_ tableView: UITableView,
 titleForHeaderInSection section: Int) -> String? {
 return self.sectionNames[section]
}

Let’s modify that example to illustrate customization of a header view. I’ve already
registered my header identifier in viewDidLoad:

self.tableView.register(UITableViewHeaderFooterView.self,
 forHeaderFooterViewReuseIdentifier: "Header")

Now, instead of tableView(_:titleForHeaderInSection:), I’ll implement table-
View(_:viewForHeaderInSection:). For completely new views, I’ll place my own
label and an image view inside the contentView and give them their basic configura‐
tion; then I’ll perform individual configuration on all views, new or reused:

override func tableView(_ tableView: UITableView,
 viewForHeaderInSection section: Int) -> UIView? {
 let h = tableView.dequeueReusableHeaderFooterView(
 withIdentifier:"Header")!
 if h.viewWithTag(1) == nil {
 h.backgroundView = UIView()
 h.backgroundView?.backgroundColor = .black
 let lab = UILabel()
 lab.tag = 1
 lab.font = UIFont(name:"Georgia-Bold", size:22)
 lab.textColor = .green
 lab.backgroundColor = .clear
 h.contentView.addSubview(lab)
 // ... add constraints ...
 }
 let lab = h.contentView.viewWithTag(1) as! UILabel
 lab.text = self.sectionNames[section]
 return h
}

Section index
If your table view has the plain style, you can add an index down the right side of the
table, where the user can tap or drag to jump to the start of a section — helpful for
navigating long tables. To generate the index, implement the data source method
sectionIndexTitles(for:), returning an array of string titles to appear as entries in
the index. For our list of state names, that’s trivial once again, just as it should be:

override func sectionIndexTitles(for tv: UITableView) -> [String]? {
 return self.sectionNames
}

The index can appear even if there are no section headers. It will appear only if the
number of rows exceeds the table view’s sectionIndexMinimumDisplayRowCount

Table View Data | 507

property value; the default is 0, so the index is always displayed by default. You will
want the index entries to be short — preferably just one character — because they will
be partially obscuring the right edge of the table; plus, each cell’s content view will
shrink to compensate, so you’re sacrificing some cell real estate.

You can modify three properties that affect the index’s appearance:

sectionIndexColor

The index text color.

sectionIndexBackgroundColor

The index background color. I advise giving the index some background color,
even if it is clearColor, because otherwise the index distorts the colors of what’s
behind it in a distracting way.

sectionIndexTrackingBackgroundColor

The index background color while the user’s finger is sliding over it. By default,
it’s the same as the sectionIndexBackgroundColor.

Normally, there will be a one-to-one correspondence between the index entries and
the sections; when the user taps an index entry, the table jumps to the start of the cor‐
responding section. However, under certain circumstances you may want to custom‐
ize this correspondence.

For example, suppose there are 100 sections, but there isn’t room to display 100 index
entries comfortably on the iPhone. The index will automatically curtail itself, omit‐
ting some index entries and inserting bullets to suggest the omission, but you might
prefer to take charge of the situation.

To do so, supply a shorter index, and implement the data source method table-
View(_:sectionForSectionIndexTitle:at:), returning the number of the section
to jump to. You are told both the title and the index number of the section index list‐
ing that the user chose, so you can use whichever is convenient.

Refreshing Table View Data
The table view has no direct connection to the underlying data. If you want the table
view display to change because the underlying data have changed, you have to cause
the table view to refresh itself; basically, you’re requesting that the Big Questions be
asked all over again. At first blush, this seems inefficient (“regenerate all the data??”);
but it isn’t. Remember, in a table that caches reusable cells, there are no cells of inter‐
est other than those actually showing in the table at this moment. Thus, having
worked out the layout of the table through the section header and footer heights and
row heights, the table has to regenerate only those cells that are actually visible.

You can cause the table data to be refreshed using any of several methods:

508 | Chapter 8: Table Views and Collection Views

reloadData

The table view will ask the Three Big Questions all over again, including heights
of rows and section headers and footers, and the index, exactly as it does auto‐
matically when the table view first appears.

reloadRows(at:with:)

The table view will ask the Three Big Questions all over again, including heights,
but not index entries. Cells are requested only for visible cells among those you
specify. The first parameter is an array of index paths; to form an index path, use
the initializer init(row:section:).

reloadSections(_:with:)

The table view will ask the Three Big Questions all over again, including heights
of rows and section headers and footers, and the index. Cells, headers, and foot‐
ers are requested only for visible elements of the sections you specify. The first
parameter is an IndexSet.

The latter two methods can perform animations that cue the user as to what’s chang‐
ing. For the with: argument, you’ll specify what animation you want by passing one
of the following (UITableViewRowAnimation):

.fade

The old fades into the new.

.right, .left, .top, .bottom
The old slides out in the stated direction, and is replaced from the opposite
direction.

.none

No animation.

.middle

Hard to describe; it’s a sort of venetian blind effect on each cell individually.

.automatic

The table view just “does the right thing.” This is especially useful for grouped
style tables, because if you pick the wrong animation, the display can look very
funny as it proceeds.

If all you need to do is to refresh the index, call reloadSectionIndexTitles; this calls
the data source’s sectionIndexTitles(for:).

If you want the table view to be laid out freshly without reloading any cells, send it
beginUpdates immediately followed by endUpdates. The section and row structure
of the table will be asked for, along with calculation of all heights, but no cells and no
headers or footers are requested. This is useful as a way of alerting the table that its

Table View Data | 509

measurements have changed. It might be considered a misuse of an updates block
(the real use of such a block is discussed later in this chapter); but Apple takes advan‐
tage of this trick in the Table View Animations and Gestures example, in which a
pinch gesture is used to change a table’s row height in real time, so it must be legal.

Direct access to cells
It is also possible to access and alter a table’s individual cells directly. This can be a
lightweight approach to refreshing the table, plus you can supply your own animation
within the cell as it alters its appearance. It is important to bear in mind, however,
that the cells are not the data (view is not model). If you change the content of a cell
manually, make sure that you have also changed the model corresponding to it, so
that the row will appear correctly if its data is reloaded later.

To do this, you need direct access to the cell you want to change. You’ll probably want
to make sure the cell is visible within the table view’s bounds; nonvisible cells don’t
really exist (except as potential cells waiting in the reuse cache), and there’s no point
changing them manually, as they’ll be changed when they are scrolled into view,
through the usual call to tableView(_:cellForRowAt:).

Here are some UITableView properties and methods that mediate between cells,
rows, and visibility:

visibleCells

An array of the cells actually showing within the table’s bounds.

indexPathsForVisibleRows

An array of the rows actually showing within the table’s bounds.

cellForRow(at:)

Returns a UITableViewCell if the table is maintaining a cell for the given row
(typically because this is a visible row); otherwise, returns nil.

indexPath(for:)

Given a cell obtained from the table view, returns the row into which it is slotted.

By the same token, you can get access to the views constituting headers and footers,
by calling headerView(forSection:) or footerView(forSection:). Thus you could
modify a view directly. You should assume that if a section is returned by indexPaths-
ForVisibleRows, its header or footer might be visible.

Refresh control
If you want to grant the user some interface for requesting that a table view be
refreshed, you might like to use a UIRefreshControl. You aren’t required to use this;
it’s just Apple’s attempt to provide a standard interface. It is located behind the top of

510 | Chapter 8: Table Views and Collection Views

the scrolling part of the table view. To request a refresh, the user scrolls the table view
downward to reveal the refresh control and holds long enough to indicate that this
scrolling is deliberate. The refresh control then acknowledges visually that it is
refreshing, and remains visible until refreshing is complete.

To give a table view a refresh control, assign a UIRefreshControl to the table view
controller’s refreshControl property. Alternatively, assign the refresh control to the
table view’s refreshControl property; this property is new in iOS 10, and is actually
inherited from UIScrollView. In a UITableViewController, the two are equivalent; if
you have old code that refers to the refreshControl as a property of the table view
controller, that code will continue to work.

In the nib editor, you can set a table view controller’s Refreshing pop-up menu to
Enabled. But as of this writing, there is no such option for a scroll view in the nib
editor.

A refresh control is a control (UIControl, Chapter 12), and you will want to hook its
Value Changed event to an action method; you can do that in the nib editor by mak‐
ing an action connection, or you can do it in code. Here’s an example of creating and
configuring a refresh control entirely in code:

self.tableView!.refreshControl = UIRefreshControl()
self.tableView!.refreshControl!.addTarget(
 self, action: #selector(doRefresh), for: .valueChanged)

Once a refresh control’s action message has fired, the control remains visible and
indicates by animation (similar to an activity indicator) that it is refreshing, until you
send it the endRefreshing message:

@IBAction func doRefresh(_ sender: Any) {
 // ...
 (sender as! UIRefreshControl).endRefreshing()
}

You can initiate a refresh animation in code with beginRefreshing, but this does not
fire the action message or display the refresh control; to display it, scroll the table
view:

self.tableView.setContentOffset(
 CGPoint(0, -self.refreshControl!.bounds.height),
 animated:true)
self.refreshControl!.beginRefreshing()
self.doRefresh(self.refreshControl!)

A refresh control also has these properties:

isRefreshing (read-only)
Whether the refresh control is refreshing.

Table View Data | 511

tintColor

The refresh control’s color. It is not inherited from the view hierarchy (I regard
this as a bug).

attributedTitle

Styled text displayed below the refresh control’s activity indicator. On attributed
strings, see Chapter 10.

backgroundColor (inherited from UIView)
If you give a table view controller’s refreshControl a background color, that
color completely covers the table view’s own background color when the refresh
control is revealed. For some reason, I find the drawing of the attributedTitle
more reliable if the refresh control has a background color.

Variable Row Heights
Most tables have rows that are all the same height, as set by the table view’s row-
Height. However, the delegate’s tableView(_:heightForRowAt:) can be used to
make different rows different heights. You can see an example in the TidBITS News
app (Figure 6-1).

Back when I first wrote TidBITS News, variable row heights were possible but virtu‐
ally unheard-of; I knew of no other app that was using them, and Apple provided no
guidance, so I had to invent my own technique by sheer trial-and-error. There were
three main challenges:

Measurement
What should the height of a given row be?

Timing
When should the determination of each row’s height be made?

Layout
How should the subviews of each cell be configured for its individual height?

Over the years since then, implementing variable row heights has become considera‐
bly easier. In iOS 6, with the advent of constraints, both measurement and layout
became much simpler. In iOS 7, new table view properties made it possible to
improve the timing. And iOS 8 permitted variable row heights to be implemented
automatically, without your having to worry about any of these problems.

I will briefly describe four different approaches that I have used, in historical order.
Perhaps you won’t use any of the first three, because the automatic variable row
heights feature makes them unnecessary; nevertheless, a basic understanding of them
will give you an appreciation of what the fourth approach is doing for you. Besides, in

512 | Chapter 8: Table Views and Collection Views

my experience, the automatic variable row heights feature can be slow; for efficiency
and speed, you might want to revert to one of the earlier techniques.

Manual row height measurement
The TidBITS News app, in its earliest incarnation, works as follows. Each cell con‐
tains two labels. The measurement question is, then, given the content that each label
will have in a particular cell in a particular row of the table, how tall should the cell be
in order to accomodate both labels and their contents?

The cells don’t use autolayout, so we have to measure them manually. The procedure
is simple but somewhat laborious. The NSAttributedString method bounding-
Rect(with:options:context:) (Chapter 10) answers the question, “How tall would
this text be if laid out at a fixed width?” Thus, for each cell, we must answer that ques‐
tion for each label, allow for any vertical spacing above the first label, below the sec‐
ond label, and between the labels, and sum the results.

Then, however, the question of timing intrudes. The problem is that the moment
when tableView(_:heightForRowAt:) is called is very different from the moment
when tableView(_:cellForRowAt:) is called. The runtime needs to know the
heights of everything in the table immediately, before it starts asking for any cells.
Thus, before we are asked tableView(_:cellForRowAt:) for even one row, we are
asked tableView(_:heightForRowAt:) for every row.

In effect, this means we have to gather all the data and lay out all the cells before we
can start showing the data in any single row. You can see why this can be problematic.
We are being asked up front to measure the entire table, row by row. If that measure‐
ment takes a long time, the table view will remain blank during the calculation.

In addition, there is now a danger of duplicating our own work later on, during lay‐
out (in tableView(_:cellForRowAt:), or perhaps in tableView(_:willDisplay:for-
RowAt:)); it appears we will ultimately be laying out every cell twice, once when we’re
asked for all the heights initially, and again later when we’re asked for an actual cell.

My solution is to start with an empty array of CGFloat stored in a property, self.row-
Heights. (A single array is all that’s needed, because the table has just one section; the
row number can thus serve directly as an index into the array.) Once that array is
constructed, it can be used to supply a requested height instantly.

Calculating a cell height requires me to lay out that cell in at least a theoretical way.
Thus, I have a utility method that lays out a cell for a given row, using the actual data
for that row; let’s say its name is setUpCell(_:for:). It takes a cell and an index path,
lays out the cell, and returns the cell’s required height as a CGFloat.

When the delegate’s tableView(_:heightForRowAt:) is called, either this is the very
first time it’s been called or it isn’t. Thus, either we’ve already constructed self.row-

Table View Data | 513

Heights or we haven’t. If we haven’t, we construct it, by immediately calling the setUp-
Cell(_:for:) utility method for every row and storing each resulting height in
self.rowHeights. (I have no real cells at this point in the story, but I’m using a
UITableViewCell subclass designed in a nib, so I simply load the nib directly and pull
out the cell to use as a model.)

Now I’m ready to answer tableView(_:heightForRowAt:) for any row, immediately
— all I have to do is return the appropriate value from the self.rowHeights array!

Finally, we come to tableView(_:cellForRowAt:). Every time it is called, I call my
setUpCell(_:for:) utility method again — but this time, I’m laying out the real cell
(and ignoring the returned height value).

Measurement and layout with constraints

Constraints assist the process in two ways. Early in the process, in table-
View(_:heightForRowAt:), they perform the measurement for us. How do they do
that? Well, if the cell is designed with constraints that ultimately pin every subview to
the contentView in such a way as to size the contentView height unambiguously
from the inside out — because every subview either is given explicit size constraints or
else is the kind of view that has an implicit size based on its contents, like a label or an
image view — then we can simply call systemLayoutSizeFitting(_:) to tell us the
resulting height of the cell.

Later in the process, when we come to tableView(_:cellForRowAt:), constraints
obviously help with layout of each cell, because that’s what constraints do. Thanks to
dequeueReusableCell(withIdentifier:for:), the cell has the correct height, so the
constraints are now determining the size of the subviews from the outside in.

The one danger to watch out for here is that a .singleLine separator eats into
the cell height. This can cause the height of the cell in real life to differ very
slightly from its height as calculated by systemLayoutSizeFitting(_:). If you’ve
overdetermined the subview constraints, this can result in a conflict among con‐
straints. Careful use of lowered constraint priorities can solve this problem nicely
if it arises (though it is simpler, in practice, to set the cell separator to .none).

I’ll show the actual code from another app of mine that uses this technique. My setUp-
Cell(_:for:) no longer needs to return a value; I hand it a reference to a cell, it sets
up the cell, and now I can do whatever I like with that cell. If this is the model cell
being used for measurement in tableView(_:heightForRowAt:), I call systemLayout-
SizeFitting(_:) to get the height; if it’s the real cell generated by dequeuing in
tableView(_:cellForRowAt:), I return it. Thus, setUpCell(_:for:) is extremely
simple: it just configures the cell with actual data from the model:

514 | Chapter 8: Table Views and Collection Views

func setUpCell(_ cell:UITableViewCell, for indexPath:IndexPath) {
 let row = indexPath.row
 (cell.viewWithTag(1) as! UILabel).text = self.titles[row]
 (cell.viewWithTag(2) as! UILabel).text = self.artists[row]
 (cell.viewWithTag(3) as! UILabel).text = self.composers[row]
}

My self.rowHeights property is typed as [CGFloat?], and has been initialized to an
array the same size as my data model (self.titles and so on) with every element set
to nil. My implemention of tableView(_:heightForRowAt:): is called repeatedly
(self.titles.count times, in fact) before the table is displayed; the first time it is
called, I calculate all the row height values once and store them all in self.row-
Heights:

override func tableView(_ tableView: UITableView,
 heightForRowAt indexPath: IndexPath) -> CGFloat {
 let ix = indexPath.row
 if self.rowHeights[ix] == nil {
 let objects = UINib(nibName: "TrackCell2", bundle: nil)
 .instantiate(withOwner: nil)
 let cell = objects.first as! UITableViewCell
 for ix in 0..<self.rowHeights.count {
 let indexPath = IndexPath(row: ix, section: 0)
 self.setUpCell(cell, for: indexPath)
 let v = cell.contentView
 let sz = v.systemLayoutSizeFitting(
 UILayoutFittingCompressedSize)
 self.rowHeights[ix] = sz.height
 }
 }
 return self.rowHeights[ix]!
}

My tableView(_:cellForRowAt:) implementation is trivial, because setUp-

Cell(_:for:) does all the real work:

override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(
 withIdentifier: "TrackCell", for: indexPath)
 self.setUpCell(cell, for:indexPath)
 return cell
}

Estimated height
In iOS 7, three new table view properties were introduced:

• estimatedRowHeight

• estimatedSectionHeaderHeight

Table View Data | 515

• estimatedSectionFooterHeight

To accompany those, there are also three table view delegate methods:

• tableView(_:estimatedHeightForRowAt:)

• tableView(_:estimatedHeightForHeaderInSection:)

• tableView(_:estimatedHeightForFooterInSection:)

The purpose of these properties and methods is to reduce the amount of time spent
calculating row heights at the outset. If you supply an estimated row height, for exam‐
ple, then when tableView(_:heightForRowAt:) is called repeatedly before the table
is displayed, it is called only for the visible cells of the table; for the remaining cells, the
estimated height is used. The runtime thus has enough information to lay out the
entire table very quickly: in a table with 300 rows, you don’t have to provide the real
heights for all 300 rows up front — you only have to provide real heights for, say, the
dozen visible rows. The downside is that this layout is incorrect, and will have to be
corrected later: as new rows are scrolled into view, tableView(_:heightForRowAt:)
will be called again for those new rows, and the layout of the whole table will be
revised accordingly.

Thus, using an estimated height changes the timing of when tableView(_:heightFor-
RowAt:) is called. To illustrate, I’ll revise the previous example to use estimated
heights. The estimated height is set in viewDidLoad:

self.tableView.estimatedRowHeight = 75

Now in my tableView(_:heightForRowAt:) implementation, when I find that a
requested height value in self.rowHeights is nil, I don’t fill in all the values of
self.rowHeights — I fill in just that one height. It’s simply a matter of removing the
for loop:

override func tableView(_ tableView: UITableView,
 heightForRowAt indexPath: IndexPath) -> CGFloat {
 let ix = indexPath.row
 if self.rowHeights[ix] == nil {
 let objects = UINib(nibName: "TrackCell2", bundle: nil)
 .instantiate(withOwner: nil)
 let cell = objects.first as! UITableViewCell
 let indexPath = IndexPath(row: ix, section: 0)
 self.setUpCell(cell, for: indexPath)
 let v = cell.contentView
 let sz = v.systemLayoutSizeFitting(
 UILayoutFittingCompressedSize)
 self.rowHeights[ix] = sz.height
 }
 return self.rowHeights[ix]!
}

516 | Chapter 8: Table Views and Collection Views

Automatic row height
In iOS 8, a completely automatic calculation of variable row heights was introduced.
This, in effect, simply does behind the scenes what I’m already doing in table-
View(_:heightForRowAt:) in the preceding code: it relies upon autolayout for the
calculation of each row’s height, and it calculates and caches a row’s height the first
time it is needed, as it is about to appear on the screen.

To use this mechanism, first configure your cell using autolayout to determine the
size of the contentView from the inside out. Now all you have to do is to set the table
view’s estimatedRowHeight and don’t implement tableView(_:heightForRowAt:) at
all!

Thus, to adopt this approach in my app, all I have to do at this point is delete my
tableView(_:heightForRowAt:) implementation entirely.

Obviously, that’s very easy: but easy does not necessarily mean best. There is also a
question of performance. The four techniques I’ve outlined here run not only from
oldest to newest but also from fastest to slowest. Manual layout is faster than calling
systemLayoutSizeFitting(_:), and calculating the heights of all rows up front,
though it may cause a longer pause initially, makes scrolling faster for the user because
no row heights have to be calculated while scrolling. You will have to measure and
decide which approach is most suitable.

And there’s one more thing to watch out for. I said earlier that the cell returned to you
from dequeueReusableCell(withIdentifier:for:) in your implementation of
tableView(_:cellForRowAt:) already has its final size. But if you use automatic vari‐
able row heights, that’s not true, because automatic calculation of a cell’s height can’t
take place until after the cell exists! Any code that relies on the cell having its final size
in tableView(_:cellForRowAt:) will break when you switch to automatic variable
row heights, and may need to be moved to tableView(_:willDisplay:forRowAt:),
where the final cell size has definitely been achieved.

Table View Cell Selection
A table view cell has a normal state, a highlighted state (according to its
isHighlighted property), and a selected state (according to its isSelected prop‐
erty). It is possible to change these states directly, possibly with animation, by calling
setHighlighted(_:animated:) or setSelected(_:animated:) on the cell. But you
don’t want to act behind the table’s back, so you are more likely to manage selection
through the table view, letting the table view manage and track the state of its cells.

Selection implies highlighting. When a cell is selected, it propagates the highlighted
state down through its subviews by setting each subview’s isHighlighted property if
it has one. That is why a UILabel’s highlightedTextColor applies when the cell is

Table View Cell Selection | 517

selected. Similarly, a UIImageView (such as the cell’s imageView) can have a
highlightedImage that is shown when the cell is selected, and a UIControl (such as a
UIButton) takes on its .highlighted state when the cell is selected.

One of the chief purposes of your table view is likely to be to let the user select a cell.
This will be possible, provided you have not set the value of the table view’s allows-
Selection property to false. The user taps a cell, and the cell switches to its selected
state. Table views can also permit the user to select multiple cells simultaneously; set
the table view’s allowsMultipleSelection property to true. If the user taps an
already selected cell, by default it stays selected if the table doesn’t allow multiple
selection, but is deselected if the table does allow multiple selection.

By default, being selected will mean that the cell is redrawn with a gray background
view, but you can change this at the individual cell level, as I’ve already explained: you
can set a cell’s selectedBackgroundView (or multipleSelectionBackgroundView), or
change its selectionStyle.

Managing Cell Selection
Your code can learn and manage the selection through these UITableView properties
and instance methods:

indexPathForSelectedRow

indexPathsForSelectedRows

These read-only properties report the currently selected row(s), or nil if there is
no selection. Don’t accidentally examine the wrong one. For example, asking for
indexPathForSelectedRow when the table view allows multiple selection gives a
result that will have you scratching your head in confusion. (As usual, I speak
from experience.)

selectRow(at:animated:scrollPosition:)

The animation involves fading in the selection, but the user may not see this
unless the selected row is already visible. The last parameter dictates whether and
how the table view should scroll to reveal the newly selected row; your choices
(UITableViewScrollPosition) are .top, .middle, .bottom, and .none. For the first
three options, the table view scrolls (with animation, if the second parameter is
true) so that the selected row is at the specified position among the visible cells.
For .none, the table view does not scroll; if the selected row is not already visible,
it does not become visible.

deselectRow(at:animated:)

Deselects the given row (if it is selected); the optional animation involves fading
out the selection. No automatic scrolling takes place.

To deselect all currently selected rows, call selectRow(at:...) with a nil index path.

518 | Chapter 8: Table Views and Collection Views

Selection is preserved when a selected cell is scrolled off the screen, and when it is
scrolled back on again. Calling a reload method, however, deselects any affected
cells; calling reloadData deselects all selected cells. (Calling reloadData and then
calling indexPathForSelectedRow, and wondering what happened to the selection, is
a common beginner mistake.)

Responding to Cell Selection
Response to user selection is through the table view’s delegate:

• tableView(_:shouldHighlightRowAt:)

• tableView(_:didHighlightRowAt:)

• tableView(_:didUnhighlightRowAt:)

• tableView(_:willSelectRowAt:)

• tableView(_:didSelectRowAt:)

• tableView(_:willDeselectRowAt:)

• tableView(_:didDeselectRowAt:)

Despite their names, the two will methods are actually should methods and expect a
return value:

• Return nil to prevent the selection (or deselection) from taking place.
• Return the index path handed in as argument to permit the selection (or deselec‐

tion), or a different index path to cause a different cell to be selected (or deselec‐
ted).

The highlight methods are more sensibly named, and they arrive first, so you can
return false from tableView(_:shouldHighlightRowAt:) to prevent a cell from
being selected.

Let’s focus in more detail on the relationship between a cell’s highlighted state and its
selected state. They are, in fact, two different states. When the user touches a cell, the
cell passes through a complete highlight cycle. Then, if the touch turns out to be the
beginning of a scroll motion, the cell is unhighlighted immediately, and the cell is not
selected. Otherwise, the cell is unhighlighted and selected.

But the user doesn’t know the difference between these two states: whether the cell is
highlighted or selected, the cell’s subviews are highlighted, and the selected-
BackgroundView appears. Thus, if the user touches and scrolls, what the user sees is
the flash of the selectedBackgroundView and the highlighted subviews, until the
table begins to scroll and the cell returns to normal. If the user touches and lifts the

Table View Cell Selection | 519

finger, the selectedBackgroundView and highlighted subviews appear and remain;
there is actually a moment in the sequence where the cell has been highlighted and
then unhighlighted and not yet selected, but the user doesn’t see any momentary
unhighlighting of the cell, because no redraw moment occurs (see Chapter 4).

Here’s a summary of the sequence:

1. The user’s finger goes down. If shouldHighlight permits, the cell highlights,
which propagates to its subviews. Then didHighlight arrives.

2. There is a redraw moment. Thus, the user will see the cell as highlighted (includ‐
ing the appearance of the selectedBackgroundView), regardless of what happens
next.

3. The user either starts scrolling or lifts the finger. The cell unhighlights, which also
propagates to its subviews, and didUnhighlight arrives.

• If the user starts scrolling, there is a redraw moment, so the user now sees the
cell unhighlighted. The sequence ends.

• If the user merely lifts the finger, there is no redraw moment, so the cell keeps
its highlighted appearance. The sequence continues.

4. If willSelect permits, the cell is selected, and didSelect arrives. The cell is not
highlighted, but highlighting is propagated to its subviews.

5. There’s another redraw moment. The user still sees the cell as highlighted
(including the appearance of the selectedBackgroundView).

When willSelect is called because the user taps a cell, and if this table view permits
only single cell selection, willDeselect will be called subsequently for any previously
selected cells.

Here’s an example of implementing tableView(_:willSelectRowAt:). The default
behavior for allowsSelection (not multiple selection) is that the user can select by
tapping, and the cell remains selected; if the user taps a selected row, the selection
does not change. We can alter this so that tapping a selected row deselects it:

override func tableView(_ tableView: UITableView,
 willSelectRowAt indexPath: IndexPath) -> IndexPath? {
 if tableView.indexPathForSelectedRow == indexPath {
 tableView.deselectRow(at:indexPath, animated:false)
 return nil
 }
 return indexPath
}

520 | Chapter 8: Table Views and Collection Views

Navigation From a Table View
An extremely common response to user selection is navigation. A master–detail
architecture is typical: the table view lists things the user can see in more detail, and a
tap displays the detailed view of the selected thing. On the iPhone, very often the
table view will be in a navigation interface, and you will respond to user selection by
creating the detail view and pushing it onto the navigation controller’s stack.

For example, here’s the code from my Albumen app that navigates from the list of
albums to the list of songs in the album that the user has tapped:

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 let t = TracksViewController(
 mediaItemCollection: self.albums[indexPath.row])
 self.navigationController!.pushViewController(t, animated: true)
}

In a storyboard, when you draw a segue from a UITableViewCell, you are given a
choice of two segue triggers: Selection Segue and Accessory Action. If you create a
Selection Segue, the segue will be triggered when the user selects a cell. Thus you can
readily push or present another view controller in response to cell selection.

If you’re using a UITableViewController, then by default, whenever the table view
appears, the selection is cleared automatically in viewWillAppear(_:), and the scroll
indicators are flashed in viewDidAppear(_:). You can prevent this automatic clearing
of the selection by setting the table view controller’s clearsSelectionOnViewWill-
Appear to false. I sometimes do that, preferring to implement deselection in view-
DidAppear(_:); the effect is that when the user returns to the table, the row is still
momentarily selected before it deselects itself.

By convention, if selecting a table view cell causes navigation, the cell should be given
an accessoryType (UITableViewCellAccessory) of .disclosureIndicator. This is a
plain gray right-pointing chevron at the right end of the cell. The chevron itself
doesn’t respond to user interaction; it is not a button, but just a visual cue that the
user can tap the cell to learn more.

Two additional accessoryType settings are buttons:

.detailButton

Drawn as a letter “i” in a circle.

.detailDisclosureButton

Drawn like .detailButton, along with a disclosure indicator chevron to its right.

To respond to the tapping of an accessory button, implement the table view delegate’s
tableView(_:accessoryButtonTappedForRowWith:). Or, in a storyboard, you can
Control-drag a connection from a cell and choose an Accessory Action segue.

Table View Cell Selection | 521

Figure 8-7. Designing a static table in the storyboard editor

A common convention is that selecting the cell as a whole does one thing and tapping
the detail button does something else. For example, in Apple’s Phone app, tapping a
contact’s listing in the Recents table places a call to that contact, but tapping the detail
button navigates to that contact’s detail view.

Cell Choice and Static Tables
Another use of cell selection is to implement a choice among cells, where a section of
a table effectively functions as an iOS alternative to macOS radio buttons. The table
view usually has the grouped format. An accessoryType of .checkmark is typically
used to indicate the current choice. Implementing radio button behavior is up to you.

As an example, I’ll implement the interface shown in Figure 8-3. The table view has
the grouped style, with two sections. The first section, with a “Size” header, has three
mutually exclusive choices: “Easy,” “Normal,” or “Hard.” The second section, with a
“Style” header, has two choices: “Animals” or “Snacks.”

This is a static table; its contents are known beforehand and won’t change. In a case
like this, if we’re using a UITableViewController subclass instantiated from a story‐
board, the nib editor lets us design the entire table, including the headers and the cells
and their content, directly in the storyboard. Select the table and set its Content pop-
up menu in the Attributes inspector to Static Cells to make the table editable in this
way (Figure 8-7).

Even though each cell is designed initially in the storyboard, I can still implement
tableView(_:cellForRowAt:) to call super and then add further functionality. And
even though the section header titles are set in the storyboard, I can call table-
View(_:titleForHeaderInSection:) to learn the title of the current section. So that’s
how I’ll add the checkmarks. The user defaults will store the current choice in each of

522 | Chapter 8: Table Views and Collection Views

the two categories; there are two preferences whose key is the section title and whose
value is the title of the chosen cell:

override func tableView(_ tv: UITableView,
 cellForRowAt ix: IndexPath) -> UITableViewCell {
 let cell = super.tableView(tv, cellForRowAt:ix)
 let ud = UserDefaults.standard
 cell.accessoryType = .none
 if let title = self.tableView(
 tv, titleForHeaderInSection:ix.section) {
 if let label = ud.value(forKey:title) as? String {
 if label == cell.textLabel!.text {
 cell.accessoryType = .checkmark
 }
 }
 }
 return cell
}

When the user taps a cell, the cell is selected. I want the user to see that selection
momentarily, as feedback, but then I want to deselect, adjusting the checkmarks so
that that cell is the only one checked in its section. In tableView(_:didSelectRow-
At:), I set the user defaults, and then I reload the table view’s data. This removes the
selection and causes tableView(_:cellForRowAt:) to be called to adjust the check‐
marks:

override func tableView(_ tv: UITableView, didSelectRowAt ix: IndexPath) {
 let ud = UserDefaults.standard
 let setting = tv.cellForRow(at:ix)!.textLabel!.text
 let header = self.tableView(tv, titleForHeaderInSection:ix.section)!
 ud.setValue(setting, forKey:header)
 tv.reloadData()
}

Table View Scrolling and Layout
A UITableView is a UIScrollView, so everything you already know about scroll views
is applicable (Chapter 7). In addition, a table view supplies two convenience scrolling
methods:

• scrollToRow(at:at:animated:)

• scrollToNearestSelectedRow(at:animated:)

One of the parameters is a scroll position, like the scrollPosition parameter for
selectRow, discussed earlier in this chapter.

The following UITableView methods mediate between the table’s bounds coordinates
on the one hand and table structure on the other:

Table View Scrolling and Layout | 523

• indexPathForRow(at:)

• indexPathsForRows(in:)

• rect(forSection:)

• rectForRow(at:)

• rectForFooter(inSection:)

• rectForHeader(inSection:)

The table’s own header and footer are direct subviews of the table view, so their posi‐
tions within the table’s bounds are given by their frames.

Table View State Restoration
If a UITableView participates in state saving and restoration (Chapter 6), the restora‐
tion mechanism would like to restore the selection and the scroll position. This
behavior is automatic; the restoration mechanism knows both what cells should be
visible and what cells should be selected, in terms of their index paths. If that’s satis‐
factory, you’ve no further work to do.

In some apps, however, there is a possibility that when the app is relaunched, the
underlying data may have been rearranged somehow. Perhaps what’s meaningful in
dictating what the user should see in such a case is not the previous rows but the pre‐
vious data. The state saving and restoration mechanism doesn’t know anything about
the relationship between the cells and the underlying data. If you’d like to tell it, adopt
the UIDataSourceModelAssociation protocol and implement two methods:

modelIdentifierForElement(at:in:)

Based on an index path, you return some string that you will later be able to use
to identify uniquely this bit of model data.

indexPathForElement(withModelIdentifier:in:)

Based on the unique identifier you provided earlier, you return the index path at
which this bit of model data is displayed in the table now.

Devising a system of unique identification and incorporating it into your data model
is up to you.

Table View Searching
A common need is to make a table view searchable, typically through a search field (a
UISearchBar; see Chapter 12). A commonly used interface for presenting the results
of such a search is a table view! Thus, in effect, entering characters in the search field
appears to filter the original table.

524 | Chapter 8: Table Views and Collection Views

This interface is managed through a UIViewController subclass, UISearchController.
UISearchController has nothing to do, per se, with table views! A table view is not the
only thing you might want to search, and a table view is not the only way you might
want to present the results of a search. UISearchController itself is completely agnos‐
tic about what is being searched and about the form in which the results are presen‐
ted. However, using a table view to present the results of searching a table view is a
common interface. (A collection view, described later in this chapter, is another com‐
mon thing to search and to present search results.) So this is a good place to intro‐
duce UISearchController.

Configuring a Search Controller
Here are the steps for configuring a UISearchController:

1. Create and retain a UISearchController instance. To do so, you’ll call the designa‐
ted initializer, init(searchResultsController:). The parameter is a view con‐
troller — a UIViewController subclass instance that you will have created for this
purpose. The search controller will retain this view controller as a child view con‐
troller. When the time comes to display search results, the search controller will
present itself as a presented view controller, with this view controller’s view inside
its own view; that is where the search results are to be displayed.

2. Assign to the search controller’s searchResultsUpdater an object to be notified
when the search results change. This must be an object adopting the UISearchRe‐
sultsUpdating protocol, which means that it implements one method: update-
SearchResults(for:). Very typically, this will be the same view controller that
you passed as the searchResultsController: parameter when you initialized
the search controller, but no law says that it has to be the same object or even that
it has to be a view controller.

3. Acquire the search controller’s searchBar and put it into the interface.

Thinking about these steps, you can see what the search controller is proposing to do
for you — and what it isn’t going to do for you. It isn’t going to display the search
results. It isn’t going to manage the search results. It isn’t even going to do any search‐
ing! It owns a search bar, which you have placed into the interface; and it’s going to
keep an eye on that search bar. When the user taps in that search bar to begin search‐
ing, the search controller will respond by presenting itself and managing the view
controller you specified. Then, as the user enters characters in the search bar, the
search controller will keep calling the search results updater’s updateSearch-
Results(for:). Finally, when the user taps the search bar’s Cancel button, the search
controller will dismiss itself.

A UISearchController has just a few other properties you might want to configure:

Table View Searching | 525

obscuresBackgroundDuringPresentation

Whether a “dimming view” should appear behind the search controller’s own
view. Defaults to true, but I’ll give an example later where it needs to be set to
false.

hidesNavigationBarDuringPresentation

Whether a navigation bar, if present, should be hidden. Defaults to true, but I’ll
give an example later where it needs to be set to false.

A UISearchController can also be assigned a delegate (UISearchControllerDelegate),
which is notified before and after presentation and dismissal. The delegate works in
one of two ways:

presentSearchController(_:)

If you implement this method, then you are expected to present the search con‐
troller yourself, by calling present(_:animated:completion:). In that case, the
other delegate methods are not called.

willPresentSearchController(_:)

didPresentSearchController(_:)

willDismissSearchController(_:)

didDismissSearchController(_:)

Called only if you didn’t implement presentSearchController(_:).

The minimalistic nature of the search controller’s behavior is exactly the source of its
power and flexibility, because it leaves you the freedom to take care of the details:
what searching means, and what displaying search results means, is up to you.

Using a Search Controller
I’ll demonstrate several variations on the theme of using a search controller to make a
table view searchable. In these examples, searching will mean finding the search bar
text within the text displayed in the table view’s cells. (My searchable table view will
be the list of U.S. states, with sections and an index, developed earlier in this chapter.)

Minimal search results table
Let’s start with the simplest possible case. We will have two table view controllers —
one managing the original table view, the other managing the search results table
view. I propose to make the search results table view as minimal as possible, a rock-
bottom table view with .default style cells, where each search result will be the text
of a cell’s textLabel (Figure 8-8).

In the original table’s UITableViewController, I configure the UISearchController as I
described earlier. I have a property, self.searcher, waiting to retain the search con‐

526 | Chapter 8: Table Views and Collection Views

Figure 8-8. Searching a table

troller. I also have a second UITableViewController subclass, which I have rather bor‐
ingly called SearchResultsController, whose job will be to obtain and present the
search results. In viewDidLoad, I instantiate SearchResultsController, create the
UISearchController, and put its search bar into the interface as the table view’s header
view (and scroll to hide that search bar initially, a common convention):

let src = SearchResultsController(data: self.cellData)
let searcher = MySearchController(searchResultsController: src)
self.searcher = searcher
searcher.searchResultsUpdater = src
let b = searcher.searchBar
b.sizeToFit() // crucial, trust me on this one
b.autocapitalizationType = .none
self.tableView.tableHeaderView = b
self.tableView.reloadData()
self.tableView.scrollToRow(
 at:IndexPath(row: 0, section: 0),
 at:.top, animated:false)

Adding the search bar as the table view’s header view has an odd side effect: it
causes the table view’s background color to be covered by an ugly gray color, visi‐
ble above the search bar when the user scrolls down. The official workaround is
to assign the table view a backgroundView with the desired color.

Now we turn to SearchResultsController. It is a completely vanilla table view control‐
ler, qua table view controller. But I’ve given it two special features:

• It is capable of receiving the searchable data. You can see this happening, in fact, in
the first line of the preceding code.

• It is capable of filtering that data and displaying the filtered data in its table view.

I’m not using sections in the SearchResultsController’s table, so it will simplify things
if, as I receive the searchable data in the SearchResultsController, I flatten it from an
array of arrays to a simple array:

Table View Searching | 527

init(data:[[String]]) {
 self.originalData = data.flatMap{$0}
 super.init(nibName: nil, bundle: nil)
}

I have stored the flattened data in the self.originalData array, but what I display in
the table view is a different array, self.filteredData. This is initially empty, because
there are no search results until the user starts typing in the search field:

override func numberOfSections(in tableView: UITableView) -> Int {
 return 1
}
override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return self.filteredData.count
}
override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(
 withIdentifier:"Cell", for: indexPath)
 cell.textLabel!.text = self.filteredData[indexPath.row]
 return cell
}

All of that is sheer boilerplate and is perfectly obvious; but how does our search
results table go from being empty to displaying any search results? That’s the second
special feature of SearchResultsController. It adopts UISearchResultsUpdating, so it
implements updateSearchResults(for:). And it is the searchResultsUpdater of
our UISearchController, so updateSearchResults(for:) will be called each time the
user changes the text of the search bar. It simply uses the current text of the search
controller’s searchBar to filter self.originalData into self.filteredData and
reloads the table view:

func updateSearchResults(for searchController: UISearchController) {
 let sb = searchController.searchBar
 let target = sb.text!
 self.filteredData = self.originalData.filter { s in
 let found = s.range(of:target, options: .caseInsensitive)
 return (found != nil)
 }
 self.tableView.reloadData()
}

That’s all! Of course, it’s an artificially simple example; I’m describing the interface
and the use of a UISearchController, not a real app. In real life you would presumably
want to allow the user to do something with the search results, perhaps by tapping on
a cell in the search results table.

528 | Chapter 8: Table Views and Collection Views

Search bar scope buttons

If we wanted our search bar to have scope buttons, we would set its scopeButton-
Titles immediately after calling sizeToFit in the preceding code:

let b = searcher.searchBar
b.sizeToFit() // crucial, trust me on this one
b.scopeButtonTitles = ["Starts", "Contains"]

The scope buttons don’t appear in the table header view, but they do appear when the
search controller presents itself. However, the search controller does not automati‐
cally call us back in updateSearchResults(for:) when the user taps on a scope but‐
ton. To work around that, we simply make ourselves the search bar’s delegate, so as
to be notified through the delegate method searchBar(_:selectedScopeButton-
IndexDidChange:) — which can then turn right around and call updateSearch-
Results(for:) (provided it has a reference to the search controller, which is easy to
arrange beforehand). Here, I’ll make our SearchResultsController respond to the dis‐
tinction that a state name either starts with or contains the search text:

func updateSearchResults(for searchController: UISearchController) {
 self.searchController = searchController // weak ref
 let sb = searchController.searchBar
 let target = sb.text!
 self.filteredData = self.originalData.filter {
 s in
 var options = String.CompareOptions.caseInsensitive
 // we now have scope buttons; 0 means "starts with"
 if searchController.searchBar.selectedScopeButtonIndex == 0 {
 options.insert(.anchored)
 }
 let found = s.range(of:target, options: options)
 return (found != nil)
 }
 self.tableView.reloadData()
}
func searchBar(_ searchBar: UISearchBar,
 selectedScopeButtonIndexDidChange selectedScope: Int) {
 self.updateSearchResults(for:self.searchController!)
}

Search bar in navigation bar
No law says that you have to put the UISearchController’s search bar into a table
view’s header view. Another common interface is for the search bar to appear in a
navigation bar at the top of the screen. For example, assuming we are already in a
navigation interface, you might make the search bar your view controller’s
navigationItem.titleView. You won’t want the navigation bar to vanish when the
user searches, so you’ll set the search controller’s hidesNavigationBarDuring-
Presentation to false. To prevent the presented search controller’s view from cover‐

Table View Searching | 529

ing the navigation bar, set your view controller’s definesPresentationContext to
true; the presented search controller’s view will cover your view controller’s view, but
not the navigation bar, which belongs to the navigation controller’s view:

let src = SearchResultsController(data: self.cellData)
let searcher = UISearchController(searchResultsController: src)
self.searcher = searcher
searcher.searchResultsUpdater = src
let b = searcher.searchBar
b.sizeToFit()
b.autocapitalizationType = .none
self.navigationItem.titleView = b // *
searcher.hidesNavigationBarDuringPresentation = false // *
self.definesPresentationContext = true // *

We might also want the search results to appear as a popover on an iPad (Chapter 9).
To arrange that, we add one more line:

searcher.modalPresentationStyle = .popover

No secondary search results view controller
You can also use a search controller without a distinct search results view controller.
There will be no SearchResultsController; instead, we’ll present the search results in
the original table view.

To configure our search controller, we pass nil as its searchResultsController and
set ourselves as the searchResultsUpdater. We also set the search controller’s
obscuresBackgroundDuringPresentation to false; this allows the original table
view to remain visible and touchable behind the search controller’s view:

let searcher = UISearchController(searchResultsController:nil)
self.searcher = searcher
searcher.obscuresBackgroundDuringPresentation = false
searcher.searchResultsUpdater = self
searcher.delegate = self

The implementation is a simple problem in table data source management. We keep
an immutable copy of our data model arrays, self.cellData and self.section-
Names — let’s call the copies self.originalCellData and self.originalSection-
Names. These copies are unused if we’re not searching. If we are searching, we hear
about it through the search controller’s delegate methods, and we raise a Bool flag in a
property:

func willPresentSearchController(_ searchController: UISearchController) {
 self.searching = true
}
func willDismissSearchController(_ searchController: UISearchController) {
 self.searching = false
}

530 | Chapter 8: Table Views and Collection Views

Any of our table view delegate or data source methods can consult this flag. For
example, it might be nice to remove the index while searching is going on:

override func sectionIndexTitlesForTableView(tableView: UITableView)
 -> [String]? {
 return self.searching ? nil : self.sectionNames
}

All that remains is to implement updateSearchResults(for:) to filter
self.originalCellData and self.originalSectionNames into the data model
arrays self.cellData and self.sectionNames — or to copy them unfiltered if the
search bar’s text is empty, which is also the signal that the search controller presenta‐
tion is over:

func updateSearchResults(for searchController: UISearchController) {
 let sb = searchController.searchBar
 let target = sb.text!
 if target == "" {
 self.sectionNames = self.originalSectionNames
 self.cellData = self.originalCellData
 self.tableView.reloadData()
 return
 }
 // we have a target string
 self.cellData = self.originalCellData.map {
 $0.filter {
 let found = $0.range(of:target, options: .caseInsensitive)
 return (found != nil)
 }
 }.filter {$0.count > 0}
 self.sectionNames =
 self.cellData.map {String($0[0].characters.prefix(1))}
 self.tableView.reloadData()
}

Table View Editing
A table view cell has a normal state and an editing state, according to its isEditing
property. The editing state (or edit mode) is typically indicated visually by one or
more of the following:

Editing controls
At least one editing control will usually appear, such as a Minus button (for dele‐
tion) at the left side.

Shrinkage
The content of the cell will usually shrink to allow room for an editing control. If
there is no editing control, you can prevent a cell shifting its left end rightward in
edit mode with the delegate’s tableView(_:shouldIndentWhileEditingRowAt:).

Table View Editing | 531

Changing accessory view
The cell’s accessory view will change automatically in accordance with its
editingAccessoryType or editingAccessoryView. If you assign neither, so that
they are nil, the cell’s existing accessory view will vanish when in edit mode.

As with selection, you could set a cell’s isEditing property directly, but you are more
likely to let the table view manage editability. Table view editability is controlled
through the table view’s isEditing property, usually by sending the table the set-
Editing(_:animated:) message. The table is then responsible for putting its cells
into edit mode.

A cell in edit mode can also be selected by the user if the table view’s allows-
SelectionDuringEditing or allowsMultipleSelectionDuringEditing is true.

Putting the table into edit mode is usually left up to the user. A typical interface
would be an Edit button that the user can tap. In a navigation interface, we might
have our view controller supply the button as a bar button item in the navigation bar:

let b = UIBarButtonItem(barButtonSystemItem: .edit,
 target: self, action: #selector(doEdit))
self.navigationItem.rightBarButtonItem = b

Our action handler will be responsible for putting the table into edit mode, so in its
simplest form it might look like this:

func doEdit(_ sender: Any?) {
 self.tableView.setEditing(true, animated:true)
}

But that does not solve the problem of getting out of edit mode. The standard solu‐
tion is to have the Edit button replace itself by a Done button:

func doEdit(_ sender: Any?) {
 var which : UIBarButtonSystemItem
 if !self.tableView.isEditing {
 self.tableView.setEditing(true, animated:true)
 which = .done
 } else {
 self.tableView.setEditing(false, animated:true)
 which = .edit
 }
 let b = UIBarButtonItem(barButtonSystemItem: which,
 target: self, action: #selector(doEdit))
 self.navigationItem.rightBarButtonItem = b
}

However, it turns out that all of that is completely unnecessary! If we want standard
behavior, it’s already implemented for us. A UIViewController’s editButtonItem
property vends a bar button item that calls the UIViewController’s set-

Editing(_:animated:) when tapped, tracks whether we’re in edit mode with the

532 | Chapter 8: Table Views and Collection Views

UIViewController’s isEditing property, and changes its own title accordingly (Edit
or Done). Moreover, a UITableViewController’s implementation of set-

Editing(_:animated:) is to call setEditing(_:animated:) on its table view. Thus, if
we’re using a UITableViewController, we get all of that behavior for free, just by
retrieving the editButtonItem and inserting the resulting button into our interface:

self.navigationItem.rightBarButtonItem = self.editButtonItem

When the table view enters edit mode, it consults its data source and delegate about
the editability of individual rows:

tableView(_:canEditRowAt:) to the data source
The default is true. The data source can return false to prevent the given row
from entering edit mode.

tableView(_:editingStyleForRowAt:) to the delegate
Each standard editing style corresponds to a control that will appear in the cell.
The choices (UITableViewCellEditingStyle) are:

.delete

The cell shows a Minus button at its left end. The user can tap this to sum‐
mon a Delete button, which the user can then tap to confirm the deletion.
This is the default.

.insert

The cell shows a Plus button at its left end; this is usually taken to be an
insert button.

.none

No editing control appears.

If the user taps an insert button (the Plus button) or a delete button (the Delete but‐
ton that appears after the user taps the Minus button), the data source is sent the
tableView(_:commit:forRowAt:) message. This is where the actual insertion or
deletion needs to happen. In addition to altering the data model, you will probably
want to alter the structure of the table, and UITableView methods for doing this are
provided:

• insertRows(at:with:)

• deleteRows(at:with:)

• insertSections(_:with:)

• deleteSections(_:with:)

• moveSection(_:toSection:)

Table View Editing | 533

• moveRow(at:to:)

The with: parameters are row animations that are effectively the same ones discussed
earlier in connection with refreshing table data; .left for an insertion means to slide
in from the left, and for a deletion it means to slide out to the left, and so on. The two
“move” methods provide animation with no provision for customizing it.

If you’re issuing more than one of these commands, you can combine them by sur‐
rounding them with beginUpdates and endUpdates, forming an updates block. An
updates block combines not just the animations but the requested changes them‐
selves. This relieves you from having to worry about how a command is affected by
earlier commands in the same updates block; indeed, the order of commands within
an updates block doesn’t really matter.

For example, if you delete row 1 of a certain section and then (in a separate command
in the same updates block) delete row 2 of the same section, you delete two successive
rows, just as you would expect; the notion “2” does not change its meaning because
you deleted an earlier row first, because you didn’t delete an earlier row first — the
updates block combines the commands for you, interpreting both index paths with
respect to the state of the table before any changes are made. If you perform inser‐
tions and deletions together in one updates block, the deletions are performed first,
regardless of the order of your commands, and the insertion row and section num‐
bers refer to the state of the table after the deletions.

An updates block can also include reloadRows and reloadSections commands (but
not reloadData).

I need hardly emphasize once again (but I will anyway) that view is not model. It is
one thing to rearrange the appearance of the table, another to alter the underlying
data. It is up to you to make certain you do both together. Do not, even for a moment,
permit the data and the view to get out of synch with each other! If you delete a row,
you must first remove from the model the datum that it represents. The runtime will
try to help you with error messages if you forget to do this, but in the end the respon‐
sibility is yours. I’ll give examples as we proceed.

Deleting Cells
Deletion of cells is the default, so there’s not much for us to do in order to implement
it. If our view controller is a UITableViewController and we’ve displayed the Edit but‐
ton in a navigation bar, the interface is managed automatically: when the user taps the
Edit button, the view controller’s setEditing(_:animated:) is called, the table view’s
setEditing(_:animated:) is called, and the cells all show the Minus button at the
left end. The user can then tap a Minus button; a Delete button is shown at the cell’s
right end. You can customize the Delete button’s title with the table view delegate
method tableView(_:titleForDeleteConfirmationButtonForRowAt:).

534 | Chapter 8: Table Views and Collection Views

What is not automatic is the actual response to the Delete button. For that, we need to
implement the data source method tableView(_:commit:forRowAt:). Typically,
you’ll remove the corresponding entry from the underlying data model, and you’ll
call deleteRows or deleteSections to update the appearance of the table.

To illustrate, let’s suppose once again that the underlying model is a pair of parallel
arrays of strings (self.sectionNames) and arrays (self.cellData). Our approach
will be in two stages:

1. Deal with the data model. We’ll delete the datum for the requested row; if this
empties the section array, we’ll also delete that section array and the correspond‐
ing section name.

2. Deal with the table’s appearance. If we deleted the section array, we’ll call delete-
Sections (and reload the section index if there is one); otherwise, we’ll call
deleteRows.

That’s the strategy; here’s the implementation:

override func tableView(_ tableView: UITableView,
 commit editingStyle: UITableViewCellEditingStyle,
 forRowAt ip: IndexPath) {
 self.cellData[ip.section].remove(at:ip.row)
 if self.cellData[ip.section].count == 0 {
 self.cellData.remove(at:ip.section)
 self.sectionNames.remove(at:ip.section)
 tableView.deleteSections(
 IndexSet(integer: ip.section), with:.automatic)
 tableView.reloadSectionIndexTitles()
 } else {
 tableView.deleteRows(at:[ip], with:.automatic)
 }
}

The user can also delete a row by sliding it to the left to show its Delete button
without having explicitly entered edit mode; no other row is editable, and no other
editing controls are shown. This feature is implemented “for free” by virtue of our
having supplied an implementation of tableView(_:commit:forRowAt:).

If you’re like me, your first response will be: “Thanks for the free functionality, Apple,
and now how do I turn this off?” Because the Edit button is already using the
UIViewController’s isEditing property to track edit mode, we can take advantage of
this and refuse to let any cells be edited unless the view controller is in edit mode:

override func tableView(_ tableView: UITableView,
 editingStyleForRowAt indexPath: IndexPath)
 -> UITableViewCellEditingStyle {
 return tableView.isEditing ? .delete : .none
}

Table View Editing | 535

Custom Action Buttons
When the user slides a cell to the left to reveal the Delete button behind it, or enters
edit mode and taps the Minus button, you can add more buttons to be revealed
behind the cell’s content view.

To configure the buttons for a row of the table, implement the table view delegate
method tableView(_:editActionsForRowAt:) and return an array of UITableView‐
RowAction objects in right-to-left order (or nil to get the default Delete button).
Create a row action button with its initializer, init(style:title:handler:). The
parameters are:

style:

A UITableViewRowActionStyle, either .default or .normal. By
default, .default is a red button signaling a destructive action, like the Delete
button, while .normal is a gray button. You can subsequently change the color by
setting the button’s backgroundColor.

title:

The text of the button.

handler:

A function to be called when the button is tapped; it takes two parameters, a ref‐
erence to the row action and the index path for this cell.

If you want the user to be able to slide the cell to reveal the buttons, you must imple‐
ment tableView(_:commit:forRowAt:), even if your implementation is empty. Even
if you don’t implement this method, the buttons can be revealed by putting the table
view into edit mode and tapping the Minus button. Your handler: can call table-
View(_:commit:forRowAt:) if appropriate; a custom Delete button, for example,
might do so.

In this example, we give our cells a blue Mark button in addition to the default Delete
button:

override func tableView(_ tableView: UITableView,
 editActionsForRowAt indexPath: IndexPath) -> [UITableViewRowAction]? {
 let act = UITableViewRowAction(style: .normal, title: "Mark") {
 action, ip in
 print("Mark") // in real life, do something here
 }
 act.backgroundColor = .blue
 let act2 = UITableViewRowAction(style: .default, title: "Delete") {
 action, ip in
 self.tableView(self.tableView, commit:.delete, forRowAt:ip)
 }
 return [act2, act]
}

536 | Chapter 8: Table Views and Collection Views

Figure 8-9. A simple phone directory app

Configuration of these buttons is disappointingly inflexible — for example, you can’t
achieve anything like the Mail app’s interface — and many developers will prefer to
continue rolling their own sliding table cells, as in the past.

Editable Content in Cells
A cell might have content that the user can edit directly, such as a UITextField (Chap‐
ter 10). Because the user is working in the view, you need a way to reflect the user’s
changes into the model. This will probably involve putting yourself in contact with
the interface objects where the user does the editing.

To illustrate, I’ll implement a table view cell with a text field that is editable when the
cell is in edit mode. Imagine an app that maintains a list of names and phone num‐
bers. A name and phone number are displayed as a grouped style table, and they
become editable when the user taps the Edit button (Figure 8-9).

We don’t need a button at the left end of the cell when it’s being edited:

override func tableView(_ tableView: UITableView,
 editingStyleForRowAt indexPath: IndexPath)
 -> UITableViewCellEditingStyle {
 return .none
}

A UITextField is editable if its isEnabled is true. To tie this to the cell’s isEditing
state, it is probably simplest to implement a custom UITableViewCell class. I’ll call it
MyCell, and I’ll design it in the nib editor, giving it a single UITextField that’s pointed
to through an outlet property called textField. In the code for MyCell, we override
didTransition(to:), as follows:

Table View Editing | 537

class MyCell : UITableViewCell {
 @IBOutlet weak var textField : UITextField!
 override func didTransition(to state: UITableViewCellStateMask) {
 self.textField.isEnabled = state.contains(.showingEditControlMask)
 super.didTransition(to:state)
 }
}

In the table view’s data source, we make ourselves the text field’s delegate when we
create and configure the cell:

override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(
 withIdentifier:"Cell", for: indexPath) as! MyCell
 switch indexPath.section {
 case 0:
 cell.textField.text = self.name
 case 1:
 cell.textField.text = self.numbers[indexPath.row]
 cell.textField.keyboardType = .numbersAndPunctuation
 default: break
 }
 cell.textField.delegate = self
 return cell
}

We are the UITextField’s delegate, so we are responsible for implementing the Return
button in the keyboard to dismiss the keyboard (I’ll talk more about this in Chap‐
ter 10):

func textFieldShouldReturn(_ textField: UITextField) -> Bool {
 textField.endEditing(true)
 return false
}

When a text field stops editing, we are its delegate, so we can hear about it in text-
FieldDidEndEditing(_:). We work out which cell this text field belongs to — I like
to do this by simply walking up the view hierarchy until I come to a table view cell —
and update the model accordingly:

func textFieldDidEndEditing(_ textField: UITextField) {
 // some cell's text field has finished editing; which cell?
 var v : UIView = textField
 repeat { v = v.superview! } while !(v is UITableViewCell)
 let cell = v as! MyCell
 // update data model to match
 let ip = self.tableView.indexPath(for:cell)!
 if ip.section == 1 {
 self.numbers[ip.row] = cell.textField.text!

538 | Chapter 8: Table Views and Collection Views

Figure 8-10. Phone directory app in edit mode

 } else if ip.section == 0 {
 self.name = cell.textField.text!
 }
}

Inserting Cells
You are unlikely to attach a Plus (insert) button to every row. A more likely interface
is that when a table is edited, every row has a Minus button except the last row, which
has a Plus button; this shows the user that a new row can be appended at the end of
the list.

Let’s implement this for phone numbers in our name-and-phone-number app, allow‐
ing the user to give a person any quantity of phone numbers (Figure 8-10):

override func tableView(_ tableView: UITableView,
 editingStyleForRowAt indexPath: IndexPath)
 -> UITableViewCellEditingStyle {
 if indexPath.section == 1 {
 let ct = self.tableView(
 tableView, numberOfRowsInSection:indexPath.section)
 if ct-1 == indexPath.row {
 return .insert
 }
 return .delete;
 }
 return .none
}

The person’s name has no editing control (a person must have exactly one name), so
we prevent it from indenting in edit mode:

Table View Editing | 539

override func tableView(_ tableView: UITableView,
 shouldIndentWhileEditingRowAt indexPath: IndexPath) -> Bool {
 if indexPath.section == 1 {
 return true
 }
 return false
}

When the user taps an editing control, we must respond. We immediately force our
text fields to cease editing: the user may have tapped the editing control while editing,
and we want our model to contain the very latest changes, so this is effectively a way
of causing our textFieldDidEndEditing to be called. The model for our phone num‐
bers is an array of strings (self.numbers). We already know what to do when the tap‐
ped control is a delete button; things are similar when it’s an insert button, but we’ve a
little more work to do. The new row will be empty, and it will be at the end of the
table; so we append an empty string to the self.numbers model array, and then we
insert a corresponding row at the end of the table view. But now two successive rows
have a Plus button; the way to fix that is to reload the first of those rows. Finally, we
also show the keyboard for the new, empty phone number, so that the user can start
editing it immediately; we do that outside the updates block:

override func tableView(_ tableView: UITableView,
 commit editingStyle: UITableViewCellEditingStyle,
 forRowAt indexPath: IndexPath) {
 tableView.endEditing(true)
 if editingStyle == .insert {
 self.numbers += [""]
 let ct = self.numbers.count
 tableView.beginUpdates()
 tableView.insertRows(at: [IndexPath(row:ct-1, section:1)],
 with:.automatic)
 tableView.reloadRows(at: [IndexPath(row:ct-2, section:1)],
 with:.automatic)
 tableView.endUpdates()
 // crucial that this next bit be *outside* the updates block
 let cell = self.tableView.cellForRow(
 at: IndexPath(row:ct-1, section:1))
 (cell as! MyCell).textField.becomeFirstResponder()
 }
 if editingStyle == .delete {
 self.numbers.remove(at:indexPath.row)
 tableView.beginUpdates()
 tableView.deleteRows(at:[indexPath], with:.automatic)
 tableView.reloadSections(IndexSet(integer:1), with:.automatic)
 tableView.endUpdates()
 }
}

540 | Chapter 8: Table Views and Collection Views

Rearranging Cells
If the data source implements tableView(_:moveRowAt:to:), the table displays a
reordering control at the right end of each row in edit mode (Figure 8-10), and the
user can drag it to rearrange cells. The reordering control can be suppressed for indi‐
vidual cells by implementing tableView(_:canMoveRowAt:). The user is free to move
rows that display a reordering control, but the delegate can limit where a row can be
moved to by implementing tableView(_:targetIndexPathForMoveFromRowAt:to-
ProposedIndexPath:).

To illustrate, we’ll add to our name-and-phone-number app the ability to rearrange
phone numbers. There must be multiple phone numbers to rearrange:

override func tableView(_ tableView: UITableView,
 canMoveRowAt indexPath: IndexPath) -> Bool {
 if indexPath.section == 1 && self.numbers.count > 1 {
 return true
 }
 return false
}

A phone number must not be moved out of its section, so we implement the delegate
method to prevent this. We also take this opportunity to dismiss the keyboard if it is
showing:

override func tableView(_ tableView: UITableView,
 targetIndexPathForMoveFromRowAt sourceIndexPath: IndexPath,
 toProposedIndexPath proposedDestinationIndexPath: IndexPath)
 -> IndexPath {
 tableView.endEditing(true)
 if proposedDestinationIndexPath.section == 0 {
 return IndexPath(row:0, section:1)
 }
 return proposedDestinationIndexPath
}

After the user moves an item, tableView(_:moveRowAt:to:) is called, and we triv‐
ially update the model to match. We also reload the table, to fix the editing controls:

override func tableView(_ tableView: UITableView,
 moveRowAt fromIndexPath: IndexPath,
 to toIndexPath: IndexPath) {
 let s = self.numbers[fromIndexPath.row]
 self.numbers.remove(at:fromIndexPath.row)
 self.numbers.insert(s, at: toIndexPath.row)
 tableView.reloadData()
}

Table View Editing | 541

Dynamic Cells
A table may be rearranged not just in response to the user working in edit mode, but
for some other reason entirely. In this way, many interesting and original interfaces
are possible.

In this example, we permit the user to double tap on a section header as a way of col‐
lapsing or expanding the section — that is, we’ll suppress or permit the display of the
rows of the section, with a nice animation as the change takes place. (This idea is
shamelessly stolen from a WWDC 2010 video.)

One more time, our data model consists of the two arrays, self.sectionNames and
self.cellData. I’ve also got a Set (of Int), self.hiddenSections, in which I’ll list the
sections that aren’t displaying their rows. That list is all I’ll need, since either a section
is showing all its rows or it’s showing none of them:

override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 if self.hiddenSections.contains(section) {
 return 0
 }
 return self.cellData[section].count
}

We need a correspondence between a section header and the number of its section.
It’s odd that UITableView doesn’t give us such a correspondence; it provides index-
Path(for:) to get from a cell to its index path, but there is no section(for:) to get
from a header view to its section. My solution is to subclass UITableViewHeaderFoo‐
terView and give my subclass a public property section:

class MyHeaderView : UITableViewHeaderFooterView {
 var section = 0
}

Whenever tableView(_:viewForHeaderInSection:) is called, I set the header view’s
section property:

override func tableView(_ tableView: UITableView,
 viewForHeaderInSection section: Int) -> UIView? {
 let h = tableView.dequeueReusableHeaderFooterView(
 withIdentifier:"Header") as! MyHeaderView
 if h.gestureRecognizers == nil {
 let tap = UITapGestureRecognizer(
 target: self, action: #selector(tapped))
 tap.numberOfTapsRequired = 2
 h.addGestureRecognizer(tap)
 // ...
 }

542 | Chapter 8: Table Views and Collection Views

 // ...
 h.section = section
 return h
}

As you can see, I’ve also attached a UITapGestureRecognizer to my header views, so
we can detect a double tap. When the user double taps a section header, we learn
from the header what section this is, we find out from the model how many rows this
section has, and we derive the index paths of the rows we’re about to insert or
remove. Now we look for the section number in our hiddenSections set. If it’s there,
we’re about to display the rows, so we remove that section number from hidden-
Sections, and we insert the rows. If it’s not there, we’re about to hide the rows, so we
insert that section number into hiddenSections, and we delete the rows:

func tapped (_ g : UIGestureRecognizer) {
 let v = g.view as! MyHeaderView
 let sec = v.section
 let ct = self.cellData[sec].count
 let arr = (0..<ct).map {IndexPath(row:$0, section:sec)}
 if self.hiddenSections.contains(sec) {
 self.hiddenSections.remove(sec)
 self.tableView.beginUpdates()
 self.tableView.insertRows(at:arr, with:.automatic)
 self.tableView.endUpdates()
 self.tableView.scrollToRow(at:arr[ct-1], at:.none, animated:true)
 } else {
 self.hiddenSections.insert(sec)
 self.tableView.beginUpdates()
 self.tableView.deleteRows(at:arr, with:.automatic)
 self.tableView.endUpdates()
 }
}

Table View Menus
A menu, in iOS, is a sort of balloon containing tappable words such as Copy, Cut, and
Paste. You can permit the user to display a menu from a table view cell by performing
a long press on the cell. The long press followed by display of the menu gives the cell
a selected appearance, which goes away when the menu is dismissed.

To allow the user to display a menu from a table view’s cells, you implement three
delegate methods:

tableView(_:shouldShowMenuForRowAt:)

Return true if the user is to be permitted to summon a menu by performing a
long press on this cell.

Table View Menus | 543

Figure 8-11. A table view cell with a menu

tableView(_:canPerformAction:forRowAt:withSender:)

You’ll be called repeatedly with selectors for various actions that the system
knows about. Returning true, regardless, causes the Copy, Cut, and Paste menu
items to appear in the menu, corresponding to the UIResponderStandardEdit‐
Actions copy, cut, and paste; return false to prevent the menu item for an
action from appearing. The menu itself will then appear unless you return false
to all three actions. The sender is the shared UIMenuController.

tableView(_:performAction:forRowAt:withSender:)

The user has tapped one of the menu items; your job is to respond to it somehow.

Here’s an example where the user can summon a Copy menu from any cell
(Figure 8-11):

@nonobjc let copy = #selector(UIResponderStandardEditActions.copy)
override func tableView(_ tableView: UITableView,
 shouldShowMenuForRowAt indexPath: IndexPath) -> Bool {
 return true
}
override func tableView(_ tableView: UITableView,
 canPerformAction action: Selector,
 forRowAt indexPath: IndexPath,
 withSender sender: Any?) -> Bool {
 return action == copy
}
override func tableView(_ tableView: UITableView,
 performAction action: Selector,
 forRowAt indexPath: IndexPath,
 withSender sender: Any?) {
 if action == copy {
 // ... do whatever copying consists of ...
 }
}

To add a custom menu item to the menu (other than copy, cut, and paste) is a little
more work. Imagine a table of the names of U.S. states, where one can copy a state’s
two-letter abbreviation to the clipboard. We want to give the menu an additional

544 | Chapter 8: Table Views and Collection Views

menu item whose title is Abbrev. The trick is that this menu item’s action must corre‐
spond to a method in the cell. We will therefore need our table to use a custom
UITableViewCell subclass; we’ll call it MyCell:

class MyCell : UITableViewCell {
 func abbrev(_ sender: Any?) {
 // ...
 }
}

We must tell the shared UIMenuController to append the menu item to the global
menu; the tableView(_:shouldShowMenuForRowAt:) delegate method is a good place
to do this:

@nonobjc let copy = #selector(UIResponderStandardEditActions.copy)
@nonobjc let abbrev = #selector(MyCell.abbrev)
override func tableView(_ tableView: UITableView,
 shouldShowMenuForRowAt indexPath: IndexPath) -> Bool {
 let mi = UIMenuItem(title: "Abbrev", action: abbrev)
 UIMenuController.shared.menuItems = [mi]
 return true
}

If we want this menu item to appear in the menu, and if we want to respond to it
when the user taps it, we must add its action selector to the two performAction: del‐
egate methods:

override func tableView(_ tableView: UITableView,
 canPerformAction action: Selector,
 forRowAt indexPath: IndexPath,
 withSender sender: Any?) -> Bool {
 return action == copy || action == abbrev
}
override func tableView(_ tableView: UITableView,
 performAction action: Selector,
 forRowAt indexPath: IndexPath,
 withSender sender: Any?) {
 if action == copy {
 // ... do whatever copying consists of ...
 }
 if action == abbrev {
 // ... do whatever abbreviating consists of ...
 }
}

The Abbrev menu item now appears when the user long-presses a cell of our table,
and the cell’s abbrev method is called when the user taps that menu item. It’s time to
implement that method! We could respond directly to the tap in the cell, but it seems
more consistent that our table view delegate should respond. So we work out what
table view this cell belongs to and send its delegate the very message it is already
expecting:

Table View Menus | 545

func abbrev(_ sender: Any?) {
 // find my table view
 var v : UIView = self
 repeat {v = v.superview!} while !(v is UITableView)
 let tv = v as! UITableView
 // ask it what index path we are
 let ip = tv.indexPath(for: self)!
 // talk to its delegate
 tv.delegate?.tableView?(tv,
 performAction:#selector(abbrev), forRowAt:ip, withSender:sender)
}

Collection Views
A collection view (UICollectionView) is a UIScrollView subclass that generalizes the
notion of a UITableView. Indeed, knowing about table views, you know a great deal
about collection views already; they are extremely similar:

• A collection view has reusable cells. These are UICollectionViewCell instances.
• Where a table view has rows, a collection view has items.
• A collection view can clump its items into sections, identified by section number.
• You’ll make the cells reusable, registering a class or nib with the collection view.
• A collection view has a data source (UICollectionViewDataSource) and a dele‐

gate (UICollectionViewDelegate), and it’s going to ask the data source Three Big
Questions:

■ numberOfSections(in:)
■ collectionView(_:numberOfItemsInSection:)
■ collectionView(_:cellForItemAt:)

• To answer the third Big Question, your data source will obtain a cell by calling:
■ dequeueReusableCell(withReuseIdentifier:for:)

• A collection view allows the user to select a cell, or multiple cells. The delegate is
notified of highlighting and selection. Your code can rearrange the cells, insert‐
ing, moving, and deleting cells or entire sections. If the delegate permits, the user
can long-press a cell to produce a menu, or rearrange the cells by dragging.

• A collection view can have a refresh control.
• You can manage your UICollectionView through a UIViewController subclass —

a subclass of UICollectionViewController. In that case, you get a cell prototype in
the storyboard (and you’ll assign the cell an identifier in the storyboard, and you
won’t register its class with the collection view).

546 | Chapter 8: Table Views and Collection Views

A collection view section can have a header and footer, but the collection view itself
does not call them that; instead, it generalizes its subview types into cells, on the one
hand, and supplementary views, on the other. A supplementary view is just a UICol‐
lectionReusableView, which happens to be UICollectionViewCell’s superclass. A sup‐
plementary view is associated with a kind, which is just a string identifying its type;
thus you can have a header as one kind, a footer as another kind, and anything else
you can imagine. A supplementary view in a collection view is then similar to a
header or footer view in a table view:

• You can make supplementary views reusable by registering a class with the col‐
lection view.

• The data source method where you are asked for a supplementary view will be:
■ collectionView(_:viewForSupplementaryElementOfKind:at:)

• In that method, your data source will obtain a supplementary view by calling:
■ dequeueReusableSupplementaryView(ofKind:withReuseIdentifier:for:)

The big difference between a table view and a collection view is how the collection view
lays out its elements (cells and supplementary views). A table view lays out its cells in
just one way: a vertically scrolling column, where the cells’ widths are the width of the
table view, their heights are dictated by the table view or the delegate, and the cells are
touching one another. A collection view has no such rules. In fact, a collection view
doesn’t lay out its elements at all! That job is left to another class, a subclass of UICol‐
lectionViewLayout.

A UICollectionViewLayout subclass instance is responsible for the overall layout of
the collection view that owns it. It does this by answering some Big Questions of its
own, posed by the collection view; the most important are these:

collectionViewContentSize

How big is the entire layout? The collection view needs to know this, because the
collection view is a scroll view (Chapter 7), and this will be the content size of the
scrollable material that it will display.

layoutAttributesForElements(in:)

Where do all the elements go? The layout attributes, as I’ll explain in more detail
in a moment, are bundles of positional information.

To answer these questions, the collection view layout needs to ask the collection view
some questions of its own. It will want to know the collection view’s bounds, and it
will probably call such methods as numberOfSections and numberOfItems(in-
Section:). The collection view, in turn, gets the answers to those questions from its
data source.

Collection Views | 547

Figure 8-12. A collection view in my Latin flashcard app

The collection view layout can thus assign the elements any positions it likes, and the
collection view will faithfully draw them in those positions within its content rectan‐
gle. That seems very open-ended, and indeed it is. To get you started, there’s a built-in
UICollectionViewLayout subclass — UICollectionViewFlowLayout.

UICollectionViewFlowLayout arranges its cells in something like a grid. The grid can
be scrolled either horizontally or vertically, but not both; so this grid is a series of
rows or columns. Through properties and a delegate protocol of its own (UICollec‐
tionViewDelegateFlowLayout), the UICollectionViewFlowLayout instance lets you
provide hints about how big the cells are and how they should be spaced out. It
defines two supplementary view types, using them to let you give each section a
header and a footer.

Figure 8-12 shows a collection view, laid out with a flow layout, from my Latin flash‐
card app. This interface simply lists the chapters and lessons into which the flashcards
themselves are divided, and allows the user to jump to a desired lesson by tapping it.
Previously, I was using a table view to present this list; when collection views were
introduced (in iOS 6), I adopted one for this interface, and you can see why. Instead
of a lesson item like “1a” occupying an entire row that stretches the whole width of a
table, it’s just a little rectangle; in landscape orientation, the flow layout fits five of
these rectangles onto a line for me (and on a bigger phone, it might be seven or
eight). So a collection view is a much more compact and appropriate way to present
this interface than a table view.

If UICollectionViewFlowLayout doesn’t quite meet your needs, you can subclass it, or
you can subclass UICollectionViewLayout itself. (I’ll talk more about that later on.) A
familiar example of a collection view interface is Apple’s Photos app; it probably uses
a UICollectionViewFlowLayout subclass.

548 | Chapter 8: Table Views and Collection Views

In addition to items (cells) and supplementary views (such as headers and foot‐
ers), a collection view layout can add decoration views to the collection view. I’ll
explain what they are and give an example later.

Collection View Classes
Here are the main classes associated with UICollectionView. This is just a conceptual
overview; I don’t recite all the properties and methods of each class, which you can
learn from the documentation:

UICollectionViewController
A UIViewController subclass. Like a table view controller, UICollectionView‐
Controller is convenient if a UICollectionView is to be a view controller’s view,
but is not required. It is the delegate and data source of its collectionView by
default. The designated initializer requires you to supply a layout instance, which
will be its collectionViewLayout. In the nib editor, there is a Collection View
Controller nib object, which comes with a collection view.

UICollectionView
A UIScrollView subclass. It has a backgroundColor (because it’s a view) and
optionally a backgroundView in front of that. Its designated initializer requires
you to supply a layout instance, which will be its collectionViewLayout. In the
nib editor, there is a Collection View nib object, which comes with a Collection
View Flow Layout by default; you can change the collection view layout class
with the Layout pop-up menu in the Attributes inspector.

A collection view’s capabilities are parallel to those of a UITableView, but fewer
and simpler:

• Where a table view speaks of rows, a collection view speaks of items. UICol‐
lectionView extends IndexPath so that you can refer to its item property
instead of its row property.

• Where a table view speaks of a header or footer, a collection view speaks of a
supplementary view.

• A collection view doesn’t do layout, so it is not where things like header and
cell size are configured.

• A collection view has no notion of editing.
• A collection view has no section index.
• Where a table view batches updates with beginUpdates and endUpdates, a

collection view uses performBatchUpdates(_:completion:), which takes
functions.

Collection Views | 549

• A collection view performs animation when you insert, delete, or move sec‐
tions or items, but you don’t specify an animation type. (The layout can
modify the animation.)

UICollectionViewLayoutAttributes
A value class (a bunch of properties), tying together an element’s indexPath with
the specifications for how and where it should be drawn — specifications that are
remarkably reminiscent of view or layer properties, with names like frame,
center, size, transform, and so forth. Layout attributes objects function as the
mediators between the layout and the collection view; they are what the layout
passes to the collection view to tell it where all the elements of the view should
go.

UICollectionViewCell
An extremely minimal view class. It has an isHighlighted property and an
isSelected property. It has a contentView, a selectedBackgroundView, a
backgroundView, and of course (since it’s a view) a backgroundColor, layered in
that order, just like a table view cell; everything else is up to you.

If you start with a collection view controller in a storyboard, you get prototype
cells, which you obtain by dequeuing. Otherwise, you obtain cells through regis‐
tration and dequeuing.

UICollectionReusableView
The superclass of UICollectionViewCell — so it is even more minimal! This is
the class of supplementary views such as headers and footers. You obtain reusa‐
ble views through registration and dequeuing; if you’re using a flow layout in a
storyboard, you are given header and footer prototype views.

UICollectionViewLayout
The layout workhorse class for a collection view. A collection view cannot exist
without a layout instance! As I’ve already said, the layout knows how much room
all the subviews occupy, and supplies the collectionViewContentSize that sets
the contentSize of the collection view, qua scroll view. In addition, the layout
must answer questions from the collection view, by supplying a UICollection‐
ViewLayoutAttributes object, or an array of such objects, saying where and how
elements should be drawn. These questions come in two categories:

Static attributes
The collection view wants to know the layout attributes of an item or supple‐
mentary view, specified by index path, or of all elements within a given rect.

550 | Chapter 8: Table Views and Collection Views

Dynamic attributes
The collection view is inserting or removing elements. It asks for the layout
attributes that an element, specified by index path, should have as insertion
begins or removal ends. The collection view can thus animate between the
element’s static attributes and these dynamic attributes. For example, if an
element’s layout attributes alpha is 0 as removal ends, the element will
appear to fade away as it is removed.

The collection view also notifies the layout of pending changes through some
methods whose names start with prepare and finalize. This is another way for
the layout to participate in animations, or to perform other kinds of preparation
and cleanup.

UICollectionViewLayout is an abstract class; to use it, you must subclass it, or
start with the built-in subclass, UICollectionViewFlowLayout.

UICollectionViewFlowLayout
A concrete subclass of UICollectionViewLayout; you can use it as is, or you can
subclass it. It lays out items in a grid that can be scrolled either horizontally or
vertically, and it defines two supplementary element types to serve as the header
and footer of a section. A collection view in the nib editor has a Layout pop-up
menu that lets you choose a Flow layout, and you can configure the flow layout
in the Size inspector; in a storyboard, you can even add and design a header and
a footer.

A flow layout has the following configurations:

• A scroll direction
• A sectionInset (the margins for a section)
• An itemSize, along with a minimumInteritemSpacing and minimumLine-
Spacing

• A headerReferenceSize and footerReferenceSize
• Starting in iOS 9, sectionHeadersPinToVisibleBounds and section-

FootersPinToVisibleBounds (causing the headers and footers to behave like
table view headers and footers when the user scrolls)

At a minimum, if you want to see any section headers, you must assign the flow
layout a headerReferenceSize, because the default is .zero. Otherwise, you get
initial defaults that will at least allow you to see something immediately, such as
an itemSize of (50.0,50.0) along with reasonable default spacing between
items and lines.

UICollectionViewFlowLayout also defines a delegate protocol of its own,
UICollectionViewDelegateFlowLayout. The flow layout automatically treats the

Collection Views | 551

collection view’s delegate as its own delegate. The section margins, item size, item
spacing, line spacing, and header and footer size can be set for individual sec‐
tions, cells, and supplementary views through this delegate.

Using a Collection View
Here’s how the view shown in Figure 8-12 is created. I have a UICollectionViewCon‐
troller subclass, LessonListController. Every collection view must have a layout, so
LessonListController’s designated initializer initializes itself with a UICollectionView‐
FlowLayout:

init(terms data:NSArray) {
 self.terms = data
 // ... other self-initializations here ...
 let layout = UICollectionViewFlowLayout()
 super.init(collectionViewLayout:layout)
}

In viewDidLoad, we give the flow layout its hints about the sizes of the margins, cells,
and headers, as well as registering for cell and header reusability:

let HEADERID = "LessonHeader"
let CELLID = "LessonCell"
override func viewDidLoad() {
 super.viewDidLoad()
 let layout = self.collectionView!.collectionViewLayout
 as! UICollectionViewFlowLayout
 layout.sectionInset = UIEdgeInsetsMake(10,20,10,20)
 layout.headerReferenceSize = CGSize(0,40)
 layout.itemSize = CGSize(70,45)
 self.collectionView!.register(
 UINib(nibName:CELLID, bundle:nil),
 forCellWithReuseIdentifier:CELLID)
 self.collectionView!.register(
 UICollectionReusableView.self,
 forSupplementaryViewOfKind:UICollectionElementKindSectionHeader,
 withReuseIdentifier:HEADERID)
 self.collectionView!.backgroundColor = .myGolden
}

The first two of the Three Big Questions to the data source are boring and familiar:

override func numberOfSections(
 in collectionView: UICollectionView) -> Int {
 return self.sectionNames.count
}
override func collectionView(_ collectionView: UICollectionView,
 numberOfItemsInSection section: Int) -> Int {
 return self.cellData[section].count
}

552 | Chapter 8: Table Views and Collection Views

The third of the Three Big Questions to the data source creates and configures the
cells. In a .xib file, I’ve designed the cell with a single subview, a UILabel with tag 1; if
the text of that label is still "Label", this is a sign that the cell has come freshly minted
from the nib and needs further initial configuration. Among other things, I assign
each new cell a selectedBackgroundView and give the label a highlightedText-
Color, to get an automatic indication of selection:

override func collectionView(_ collectionView: UICollectionView,
 cellForItemAt indexPath: IndexPath) -> UICollectionViewCell {
 let cell = collectionView.dequeueReusableCell(
 withReuseIdentifier: CELLID, for: indexPath)
 let lab = cell.viewWithTag(1) as! UILabel
 if lab.text == "Label" {
 lab.highlightedTextColor = .white
 cell.backgroundColor = .myPaler
 cell.layer.borderColor = UIColor.brown.cgColor
 cell.layer.borderWidth = 5
 cell.layer.cornerRadius = 5
 let v = UIView()
 v.backgroundColor = UIColor.blue.withAlphaComponent(0.8)
 cell.selectedBackgroundView = v
 }
 let term = self.cellData[indexPath.section][indexPath.item]
 lab.text = term.lesson + term.sectionFirstWord
 return cell
}

The fourth data source method asks for the supplementary element views; in my case,
these are the section headers. I configure the header entirely in code. Again I distin‐
guish between newly minted views and reused views; the latter will already have a sin‐
gle subview, a UILabel:

override func collectionView(_ collectionView: UICollectionView,
 viewForSupplementaryElementOfKind kind: String,
 at indexPath: IndexPath) -> UICollectionReusableView {
 let v = collectionView.dequeueReusableSupplementaryView(
 ofKind: UICollectionElementKindSectionHeader,
 withReuseIdentifier: HEADERID, for: indexPath)
 if v.subviews.count == 0 {
 let lab = UILabel(frame:CGRect(10,0,100,40))
 lab.font = UIFont(name:"GillSans-Bold", size:20)
 lab.backgroundColor = .clear
 v.addSubview(lab)
 v.backgroundColor = .black
 lab.textColor = .myPaler
 }
 let lab = v.subviews[0] as! UILabel
 lab.text = self.sectionNames[indexPath.section]
 return v
}

Collection Views | 553

As you can see from Figure 8-12, the first section is treated specially — it has no
header, and its cell is wider. I take care of that with two UICollectionViewDelegate‐
FlowLayout methods:

func collectionView(_ collectionView: UICollectionView,
 layout lay: UICollectionViewLayout,
 sizeForItemAt indexPath: IndexPath) -> CGSize {
 var sz = (lay as! UICollectionViewFlowLayout).itemSize
 if indexPath.section == 0 {
 sz.width = 150
 }
 return sz
}
func collectionView(_ collectionView: UICollectionView,
 layout lay: UICollectionViewLayout,
 referenceSizeForHeaderInSection section: Int) -> CGSize {
 var sz = (lay as! UICollectionViewFlowLayout).headerReferenceSize
 if section == 0 {
 sz.height = 0
 }
 return sz
}

When the user taps a cell, I hear about it through the delegate method collection-
View(:didSelectItemAt:) and respond accordingly. That is the entire code for man‐
aging this collection view!

Deleting cells
Here’s an example of deleting cells in a collection view. Let’s assume that the cells to be
deleted have been selected, with multiple selection being possible. The user now taps
a button asking to delete the selected cells. If there are selected cells, I obtain them as
an array of IndexPaths. My data model is once again the usual pair of an array of sec‐
tion names (sectionNames) and an array of arrays (cellData); each IndexPath gets
me directly to the corresponding piece of data in cellData, so I delete each piece of
data in reverse order, keeping track of any arrays (sections) that end up empty.
Finally, I delete the items from the collection view, and then do the same for the sec‐
tions (for the remove(at:) utility, see Appendix B):

@IBAction func doDelete(_ sender: Any) { // button, delete selected cells
 guard var arr =
 self.collectionView!.indexPathsForSelectedItems,
 arr.count > 0 else {return}
 arr.sort()
 var empties : Set<Int> = []
 for ip in arr.reversed() {
 self.cellData[ip.section].remove(at:ip.item)
 if self.cellData[ip.section].count == 0 {
 empties.insert(ip.section)
 }

554 | Chapter 8: Table Views and Collection Views

 }
 self.collectionView!.performBatchUpdates({
 self.collectionView!.deleteItems(at:arr)
 if empties.count > 0 {
 self.sectionNames.remove(at:Array(empties))
 self.cellData.remove(at:Array(empties))
 self.collectionView!.deleteSections(IndexSet(empties))
 }
 })
}

Rearranging cells
You can permit the user to rearrange cells by dragging them. If you’re using a collec‐
tion view controller, it supplies a gesture recognizer ready to respond to the user’s
long press gesture followed by a drag. (If you’re going to use this gesture recognizer,
you’ll have to turn off any menu handling, presumably because they both use a long
press gesture.)

To permit the drag to proceed, you implement two data source methods:

collectionView(_:canMoveItemAt:)

Return true to allow this item to be moved.

collectionView(_:moveItemAt:to:)

The item has been moved to a new index path. Update the data model, and
reload cells as needed.

You can also limit where the user can drag with this delegate method:

collectionView(_:targetIndexPathForMoveFromItemAt:toProposedIndexPath:)

Return either the proposed index path or some other index path. To prevent the
drag entirely, return the original index path (the second parameter).

To illustrate, I’ll continue with my example where the data model consists of an array
of strings (sectionNames) and an array of arrays (cellData). Things get very complex
very fast if dragging beyond the current section is permitted, so I’ll forbid that with
the delegate method:

override func collectionView(_ collectionView: UICollectionView,
 canMoveItemAt indexPath: IndexPath) -> Bool {
 return true // allow dragging
}
override func collectionView(_ collectionView: UICollectionView,
 targetIndexPathForMoveFromItemAt orig: IndexPath,
 toProposedIndexPath prop: IndexPath) -> IndexPath {
 if orig.section != prop.section {
 return orig // prevent dragging outside section
 }
 return prop

Collection Views | 555

}
override func collectionView(_ cv: UICollectionView,
 moveItemAt source: IndexPath, to dest: IndexPath) {
 // drag is over; rearrange model
 swap(
 &self.cellData[source.section][source.item],
 &self.cellData[dest.section][dest.item])
 // reload this section
 cv.reloadSections(IndexSet(integer:source.section))
}

If you prefer to provide your own gesture recognizer, then if you’re using a collection
view controller, set its installsStandardGestureForInteractiveMovement to false.
Your gesture recognizer action handler will need to call these collection view methods
to keep the collection view apprised of what’s happening (and the data source and
delegate methods will then be called appropriately):

• beginInteractiveMovementForItem(at:)

• updateInteractiveMovementTargetPosition(_:)

• endInteractiveMovement

• cancelInteractiveMovement

Custom Collection View Layouts
This section explores the basics of what might be involved in writing your own layout
class.

UICollectionViewFlowLayout subclass
UICollectionViewFlowLayout is a powerful starting point, so let’s introduce a simple
modification of it. By default, the flow layout wants to full-justify every row of cells
horizontally, spacing the cells evenly between the left and right margins, except for
the last row, which is left-aligned. Let’s say that this isn’t what you want — you’d
rather that every row be left-aligned, with every cell as far to the left as possible given
the size of the preceding cell and the minimum spacing between cells.

To achieve this, you’ll need to subclass UICollectionViewFlowLayout and override
two methods, layoutAttributesForElements(in:) and layoutAttributesFor-

Item(at:). Fortunately, we’re starting with a layout, UICollectionViewFlowLayout,
whose answers to these questions are almost right. So we can call super and make
modifications as necessary.

The really important method here is layoutAttributesForItem(at:), which takes
an index path and returns a single UICollectionViewLayoutAttributes object.

556 | Chapter 8: Table Views and Collection Views

If the index path’s item is 0, we have a degenerate case: the answer we got from super
is right. Alternatively, if this cell is at the start of a row — we can find this out by
asking whether the left edge of its frame is close to the margin — we have another
degenerate case: the answer we got from super is right.

Otherwise, where this cell goes depends on where the previous cell goes, so we obtain
the frame of the previous cell recursively. We wish to position our left edge a minimal
spacing amount from the right edge of the previous cell. We do that by copying the
layout attributes object that we got from super and changing the frame of that copy.
Then we return that object:

override func layoutAttributesForItem(at indexPath: IndexPath)
 -> UICollectionViewLayoutAttributes? {
 var atts = super.layoutAttributesForItem(at:indexPath)!
 if indexPath.item == 0 {
 return atts // degenerate case 1
 }
 if atts.frame.origin.x - 1 <= self.sectionInset.left {
 return atts // degenerate case 2
 }
 let ipPv =
 IndexPath(item:indexPath.row-1, section:indexPath.section)
 let fPv =
 self.layoutAttributesForItem(at:ipPv)!.frame
 let rightPv =
 fPv.origin.x + fPv.size.width + self.minimumInteritemSpacing
 atts = atts.copy() as! UICollectionViewLayoutAttributes
 atts.frame.origin.x = rightPv
 return atts
}

The other method, layoutAttributesForElements(in:), takes a CGRect and
returns an array of UICollectionViewLayoutAttributes objects for all the cells and
supplementary views in that rect. Again we call super and modify the resulting array
so that if an element is a cell, its UICollectionViewLayoutAttributes is the result of
our layoutAttributesForItem(at:):

override func layoutAttributesForElements(in rect: CGRect)
 -> [UICollectionViewLayoutAttributes]? {
 let arr = super.layoutAttributesForElements(in: rect)!
 return arr.map { atts in
 var atts = atts
 if atts.representedElementCategory == .cell {
 let ip = atts.indexPath
 atts = self.layoutAttributesForItem(at:ip)!
 }
 return atts
 }
}

Collection Views | 557

Apple supplies some further interesting examples of subclassing UICollectionView‐
FlowLayout. For instance, the LineLayout example, accompanying the WWDC 2012
videos, implements a single row of horizontally scrolling cells, where a cell grows as it
approaches the center of the screen and shrinks as it moves away (sometimes called a
carousel). To do this, it first of all overrides a UICollectionViewLayout method I
didn’t mention earlier, shouldInvalidateLayout(forBoundsChange:); this causes
layout to happen repeatedly while the collection view is scrolled. It then overrides
layoutAttributesForElements(in:) to do the same sort of thing I did a moment
ago: it calls super and then modifies, as needed, the transform3D property of the
UICollectionViewLayoutAttributes for the onscreen cells.

UICollectionViewLayout subclass
You can also subclass UICollectionViewLayout itself. The WWDC 2012 videos
demonstrate a UICollectionViewLayout subclass that arranges its cells in a circle; the
WWDC 2013 videos demonstrate a UICollectionViewLayout subclass that piles its
cells into a single stack in the center of the collection view, like a deck of cards seen
from above.

A collection view layout can be powerful and complex, but getting started writing one
from scratch is not difficult. To illustrate, I’ll write a simple collection view layout that
ignores sections and presents all cells as a plain grid of squares.

In my UICollectionViewLayout subclass, called MyLayout, the really big questions I
need to answer are collectionViewContentSize and layoutAttributesFor-

Elements(in:). To answer them, I’ll calculate the entire layout of my grid before‐
hand. The prepareLayout method is the perfect place to do this; it is called every
time something about the collection view or its data changes. I’ll calculate the grid of
cells and express their positions as an array of UICollectionViewLayoutAttributes
objects; I’ll store that information in a property self.atts, which is a dictionary
keyed by index path so that I can retrieve a given layout attributes object by its index
path quickly. I’ll also store the size of the grid in a property self.sz:

override func prepare() {
 let sections = self.collectionView!.numberOfSections
 // work out cell size based on bounds size
 let sz = self.collectionView!.bounds.size
 let width = sz.width
 let shortside = floor(width/50.0)
 let side = width/shortside
 // generate attributes for all cells
 var (x,y) = (0,0)
 var atts = [UICollectionViewLayoutAttributes]()
 for i in 0 ..< sections {
 let jj = self.collectionView!.numberOfItems(inSection:i)
 for j in 0 ..< jj {
 let att = UICollectionViewLayoutAttributes(

558 | Chapter 8: Table Views and Collection Views

 forCellWith:
 IndexPath(item:j, section:i))
 att.frame = CGRect(CGFloat(x)*side,CGFloat(y)*side,side,side)
 atts += [att]
 x += 1
 if CGFloat(x) >= shortside {
 x = 0; y += 1
 }
 }
 }
 for att in atts {
 self.atts[att.indexPath] = att
 }
 let fluff = (x == 0) ? 0 : 1
 self.sz = CGSize(width, CGFloat(y+fluff) * side)
}

It is now trivial to implement collectionViewContentSize, layoutAttributesFor-
Elements(in:), and layoutAttributesForItem(at:). I’ll just fetch the requested
information from the sz or atts property:

override var collectionViewContentSize : CGSize {
 return self.sz
}
override func layoutAttributesForElements(in rect: CGRect)
 -> [UICollectionViewLayoutAttributes]? {
 return Array(self.atts.values)
}
override func layoutAttributesForItem(at indexPath: IndexPath)
 -> UICollectionViewLayoutAttributes? {
 return self.atts[indexPath]
}

Finally, I want to implement shouldInvalidateLayout(forBoundsChange:) to
return true, so that if the interface is rotated, my prepareLayout will be called again
to recalculate the grid. There’s a potential source of inefficiency here, though: the user
scrolling the collection view counts as a bounds change as well. Therefore I return
false unless the bounds width has changed:

override func shouldInvalidateLayout(forBoundsChange newBounds: CGRect)
 -> Bool {
 return newBounds.size.width != self.sz.width
}

Decoration views
A decoration view is a third type of collection view item, on a par with cells and sup‐
plementary views. The difference is that it is implemented entirely by the layout. A
collection view will faithfully draw a decoration view imposed by the layout, but none
of the methods and properties of a collection view, its data source, or its delegate
involve decoration views; for example, there is no support for letting the user select a

Collection Views | 559

decoration view or reposition a decoration view, or even for finding out what decora‐
tion views exist or where they are located.

To supply any decoration views, you will need a UICollectionViewLayout subclass;
this subclass is free to define its own properties and delegate protocol methods that
customize how its decoration views are configured, but that’s entirely up to you.

To illustrate, I’ll subclass UICollectionViewFlowLayout to impose a title label at the
top of the collection view’s content rectangle. This is probably a silly use of a decora‐
tion view, but it illustrates the basic principles perfectly. For simplicity, I’ll start by
hard-coding the whole thing, giving the client no ability to customize any aspect of
this view.

There are four steps to implementing a decoration view in a layout subclass:

1. Define a UICollectionReusableView subclass.
2. Register the UICollectionReusableView subclass with the layout (not the collec‐

tion view), by calling register(_:forDecorationViewOfKind:). The layout’s ini‐
tializer is a good place to do this.

3. Implement layoutAttributesForDecorationView(ofKind:at:) to return layout
attributes that position the UICollectionReusableView. To construct the layout
attributes, call init(forDecorationViewOfKind:with:) and configure the
attributes.

4. Override layoutAttributesForElements(in:) so that the result of layout-
AttributesForDecorationView(ofKind:at:) is included in the returned array.

The last step is what causes the decoration view to appear in the collection view.
When the collection view calls layoutAttributesForElements(in:), it finds that the
resulting array includes layout attributes for a decoration view of a specified kind.
The collection view knows nothing about decoration views, so it comes back to the
layout, asking for an actual instance of this kind of decoration view. You’ve registered
this kind of decoration view to correspond to your UICollectionReusableView sub‐
class, so your UICollectionReusableView subclass is instantiated and that instance is
returned, and the collection view positions it in accordance with the layout attributes.

So let’s follow the steps. Define the UICollectionReusableView subclass:

class MyTitleView : UICollectionReusableView {
 weak var lab : UILabel!
 override init(frame: CGRect) {
 super.init(frame:frame)
 let lab = UILabel(frame:self.bounds)
 self.addSubview(lab)
 lab.autoresizingMask = [.flexibleWidth, .flexibleHeight]
 lab.font = UIFont(name: "GillSans-Bold", size: 40)
 lab.text = "Testing"

560 | Chapter 8: Table Views and Collection Views

 self.lab = lab
 }
 required init?(coder aDecoder: NSCoder) {
 fatalError("init(coder:) has not been implemented")
 }
}

Now we turn to our UICollectionViewLayout subclass, which I’ll call MyFlowLayout.
We register MyTitleView in the layout’s initializer; I’ve also defined some private
properties that I’ll need for the remaining steps:

private let titleKind = "title"
private let titleHeight : CGFloat = 50
private var titleRect : CGRect {
 return CGRect(10,0,200,self.titleHeight)
}
override init() {
 super.init()
 self.register(MyTitleView.self, forDecorationViewOfKind:self.titleKind)
}

Implement layoutAttributesForDecorationView(ofKind:at:):

override func layoutAttributesForDecorationView(
 ofKind elementKind: String, at indexPath: IndexPath)
 -> UICollectionViewLayoutAttributes? {
 if elementKind == self.titleKind {
 let atts = UICollectionViewLayoutAttributes(
 forDecorationViewOfKind:self.titleKind, with:indexPath)
 atts.frame = self.titleRect
 return atts
 }
 return nil
}

Override layoutAttributesForElements(in:); the index path here is arbitrary (I
ignored it in the preceding code):

override func layoutAttributesForElements(in rect: CGRect)
 -> [UICollectionViewLayoutAttributes]? {
 var arr = super.layoutAttributesForElements(in: rect)!
 if let decatts = self.layoutAttributesForDecorationView(
 ofKind:self.titleKind, at: IndexPath(item: 0, section: 0)) {
 if rect.contains(decatts.frame) {
 arr.append(decatts)
 }
 }
 return arr
}

This works! A title label reading “Testing” appears at the top of the collection view.

Collection Views | 561

Now I’ll show how to make the label customizable. Instead of the title “Testing,” we’ll
allow the client to set a property that determines the title. I’ll give my layout subclass
a public title property:

class MyFlowLayout : UICollectionViewFlowLayout {
 var title = ""
 // ...
}

Whoever uses this layout should set this property. For example, suppose this collec‐
tion view is displaying the 50 U.S. states:

func setUpFlowLayout(_ flow:UICollectionViewFlowLayout) {
 flow.headerReferenceSize = CGSize(50,50)
 flow.sectionInset = UIEdgeInsetsMake(0, 10, 10, 10)
 (flow as? MyFlowLayout)?.title = "States" // *
}

We now come to a curious puzzle. Our layout has a title property, the value of
which needs to be communicated somehow to our MyTitleView instance. But when
can that possibly happen? We are not in charge of instantiating MyTitleView; it hap‐
pens automatically, when the collection view asks for the instance behind the scenes.
There is no moment when the MyFlowLayout instance and the MyTitleView instance
meet.

The solution is to use the layout attributes as a messenger. MyFlowLayout never
meets MyTitleView, but it does create the layout attributes object that gets passed to
the collection view to configure MyFlowLayout. So the layout attributes object is like
an envelope. By subclassing UICollectionViewLayoutAttributes, we can include in
that envelope any information we like — such as a title:

class MyTitleViewLayoutAttributes : UICollectionViewLayoutAttributes {
 var title = ""
}

There’s our envelope! Now we rewrite our implementation of layoutAttributesFor-
DecorationView. When we instantiate the layout attributes object, we instantiate our
subclass and set its title property:

override func layoutAttributesForDecorationView(
 ofKind elementKind: String, at indexPath: IndexPath) ->
 UICollectionViewLayoutAttributes? {
 if elementKind == self.titleKind {
 let atts = MyTitleViewLayoutAttributes(// *
 forDecorationViewOfKind:self.titleKind, with:indexPath)
 atts.title = self.title // *
 atts.frame = self.titleRect
 return atts
 }
 return nil
}

562 | Chapter 8: Table Views and Collection Views

Finally, in MyTitleView, we implement the apply(_:) method. This will be called
when the collection view configures the decoration view — with the layout attributes
object as its parameter! So we pull out the title and use it as the text of our label:

class MyTitleView : UICollectionReusableView {
 weak var lab : UILabel!
 // ... the rest as before ...
 override func apply(_ atts: UICollectionViewLayoutAttributes) {
 if let atts = atts as? MyTitleViewLayoutAttributes {
 self.lab.text = atts.title
 }
 }
}

It’s easy to see how you might extend the example to make such label features as font
and height customizable. Since we are subclassing UICollectionViewFlowLayout,
some further modifications might also be needed to make room for the decoration
view by pushing down the other elements. All of that is left as an exercise for the
reader.

Switching Layouts
An astonishing feature of a collection view is that its layout object can be swapped out
on the fly. You can substitute one layout for another, by calling setCollectionView-
Layout(_:animated:completion:). The data hasn’t changed, and the collection view
can identify each element uniquely and persistently, so it responds by moving every
element from its position according to the old layout to its position according to the
new layout — and, if the animated: argument is true, it does this with animation!
Thus the elements are seen to rearrange themselves, as if by magic.

This animated change of layout can even be driven interactively (in response, for
example, to a user gesture; compare Chapter 6 on interactive transitions). You call
startInteractiveTransition(to:completion:) on the collection view, and a spe‐
cial layout object is returned — a UICollectionViewTransitionLayout instance (or a
subclass thereof; to make it a subclass, you need to have implemented collection-
View(_:transitionLayoutForOldLayout:newLayout:) in your collection view dele‐
gate). This transition layout is temporarily made the collection view’s layout, and
your job is then to keep it apprised of the transition’s progress (through its
transitionProgress property) and ultimately to call finishInteractive-

Transition or cancelInteractiveTransition on the collection view.

Furthermore, when one collection view controller is pushed on top of another in a
navigation interface, the runtime will do exactly the same thing for you, as a custom
view controller transition. To arrange this, the first collection view controller’s use-
LayoutToLayoutNavigationTransitions property must be false and the second
collection view controller’s useLayoutToLayoutNavigationTransitions property

Collection Views | 563

must be true. The result is that when the second collection view controller is pushed
onto the navigation controller, the collection view remains in place, and the layout
specified by the second collection view controller is substituted for the collection
view’s existing layout, with animation.

During the transition, as the second collection view controller is pushed onto the
navigation stack, the two collection view controllers share the same collection view,
and the collection view’s data source and delegate remain the first view controller.
After the transition is complete, however, the collection view’s delegate becomes the
second view controller, even though its data source is still the first view controller. I
find this profoundly weird; why does the runtime change who the delegate is, and
why would I want the delegate to be different from the data source? I solve the prob‐
lem by resetting the delegate in the second view controller, like this:

override func viewDidAppear(_ animated: Bool) {
 super.viewDidAppear(animated)
 let oldDelegate = self.collectionView!.delegate
 DispatchQueue.main.async {
 self.collectionView!.delegate = oldDelegate
 }
}

Collection Views and UIKit Dynamics
The UICollectionViewLayoutAttributes class adopts the UIDynamicItem protocol
(see Chapter 4). Thus, collection view elements can be animated under UIKit dynam‐
ics. The world of the animator here is not a superview but the layout itself; instead of
init(referenceView:), you’ll create the UIDynamicAnimator with
init(collectionViewLayout:). The layout’s collectionViewContentSize deter‐
mines the bounds of this world. Convenience methods are provided so that your code
can access an animated collection view item’s layout attributes directly from the ani‐
mator.

You’ll need a custom collection view layout subclass, because otherwise you won’t be
able to see any animation. On every frame of its animation, the UIDynamicAnimator
is going to change the layout attributes of some items, but the collection view is still
going to draw those items in accordance with the layout’s layoutAttributesFor-
Elements(in:). The simplest solution is to override layoutAttributesFor-

Elements(in:) so as to obtain those layout attributes from the UIDynamicAnimator.
(This cooperation will be easiest if the layout itself owns and configures the anima‐
tor.) There are UIDynamicAnimator convenience methods to help you:

layoutAttributesForCell(at:)

layoutAttributesForSupplementaryView(ofKind:at:)

The layout attributes for the requested item, in accordance with where the ani‐
mator wants to put them — or nil if the specified item is not being animated.

564 | Chapter 8: Table Views and Collection Views

In this example, we’re in the layout subclass, setting up the animation. The layout
subclass has a property to hold the animator, as well as a Bool property to signal
when an animation is in progress:

let visworld = self.collectionView!.bounds
let anim = MyDynamicAnimator(collectionViewLayout:self)
self.animator = anim
self.animating = true
// ... configure rest of animation

Our implementation of layoutAttributesForElements(in:), if we are animating,
substitutes the layout attributes that come from the animator for those we would nor‐
mally return. In this particular example, both cells and supplementary items can be
animated, so the two cases have to be distinguished:

override func layoutAttributesForElements(in rect: CGRect)
 -> [UICollectionViewLayoutAttributes]? {
 let arr = super.layoutAttributesForElements(in: rect)!
 if self.animating {
 return arr.map { atts in
 let path = atts.indexPath
 switch atts.representedElementCategory {
 case .cell:
 if let atts2 = self.animator?
 .layoutAttributesForCell(at: path) {
 return atts2
 }
 case .supplementaryView:
 if let kind = atts.representedElementKind {
 if let atts2 = self.animator?
 .layoutAttributesForSupplementaryView(
 ofKind: kind, at:path) {
 return atts2
 }
 }
 default: break
 }
 return atts
 }
 }
 return arr
}

Collection Views | 565

CHAPTER 9

iPad Interface

This chapter discusses some iOS interface features that differ between the iPad and
the iPhone.

Popovers and split views are forms of interface designed originally for the iPad. In
iOS 7 and before, they existed only on the iPad. Starting in iOS 8, both became avail‐
able also on the iPhone, where they can either adapt — appearing in an altered form,
more appropriate to the smaller screen — or appear just as they do on the iPad.

iPad multitasking, introduced in iOS 9, is an interface confined to a subset of iPad
models, where two apps can occupy the screen simultaneously.

Popovers
A popover is a sort of secondary window or dialog: it displays a view layered on top of
the main interface. It is usually associated, through a sort of arrow, with a view in the
main interface, such as the button that the user tapped to summon the popover. It
might be effectively modal, preventing the user from working in the rest of the inter‐
face; alternatively, it might vanish if the user taps outside it.

A popover can bring to the larger iPad the smaller, more lightweight flavor of the
iPhone. For example, in my LinkSame app, both the settings view (where the user
configures the game) and the help view (which describes how to play the game) are
popovers (Figure 9-1). On the iPhone, both these views would occupy the entire
screen; for each, we’d need a way to navigate to it, and then the user would have to
return to the main interface afterwards. But with the larger iPad screen, neither view
is large enough, or important enough, to occupy the entire screen exclusively. As
popovers, they are characterized as smaller, secondary views which the user sum‐
mons temporarily and then dismisses.

567

Figure 9-1. Two popovers

A popover, in iOS 8 and later, is actually a form of presented view controller — a pre‐
sented view controller with a modalPresentationStyle of .popover (which I didn’t
tell you about in Chapter 6). Among the advantages of this architecture are:

Memory management
In iOS 7 and before, it was necessary to create a UIPopoverController and retain
it explicitly. A presented view controller, on the other hand, is retained automati‐
cally by its presenting view controller.

Singularity
In iOS 7 and before, nothing enforced Apple’s guideline that a maximum of one
popover at a time should be shown. A presented view controller, on the other
hand, enforces it automatically (a view controller can’t have more than one pre‐
sented view controller at a time).

Adaptibility
In iOS 7 and before, a popover was illegal on the iPhone. Your universal app
therefore had to be filled with conditional code: “If we’re running on an iPad,
show this view controller as a popover; otherwise, make it a presented view con‐

568 | Chapter 9: iPad Interface

troller.” Dismissal and cleanup were conditional too, and could be even harder to
manage. A presented view controller, on the other hand, can adapt. A .popover
presented view controller, like a .formSheet presented view controller, is auto‐
matically treated by default as .fullScreen on the iPhone. Moreover, if you don’t
want the default, you don’t have to accept it; it is legal for a popover to appear on
the iPhone as a popover.

A view controller presented as a popover has a .compact horizontal size class,
even on an iPad.

Preparing a Popover
To show a popover, you’re going to present a view controller. Before that presentation
takes place, you’ll turn this into a popover presentation by setting the view control‐
ler’s modalPresentationStyle to .popover:

let vc = MyViewController()
vc.modalPresentationStyle = .popover
self.present(vc, animated: true)

This, however, is insufficient; without a little further configuration, that code will
crash at runtime when the popover is presented. The additional configuration is per‐
formed through the UIPopoverPresentationController (a UIPresentationController
subclass) that is responsible for showing this popover. Setting the view controller’s
modalPresentationStyle to .popover causes its presentationController to
become a UIPopoverPresentationController, and its popoverPresentation-

Controller points to that same UIPopoverPresentationController.

Arrow source and direction
At a minimum, the UIPopoverPresentationController needs you to set one of the fol‐
lowing:

barButtonItem

A bar button item in the interface, with which the popover should be associated.
The popover’s arrow will point to this bar button item. Typically, this will be the
bar button item that was tapped in order to summon the popover (as in
Figure 9-1).

sourceView, sourceRect
A UIView in the interface, along with the CGRect in that view’s coordinate system,
with which the popover should be associated. The popover’s arrow will point to
this rect. Typically, the sourceView will be the view that was tapped in order to
summon the popover, and the sourceRect will be its bounds.

Popovers | 569

Thus, here’s a minimal popover presentation that actually works; the popover is sum‐
moned by tapping a UIButton in the interface, and this is that button’s action method:

@IBAction func doButton(_ sender: Any) {
 let vc = MyViewController()
 vc.modalPresentationStyle = .popover
 self.present(vc, animated: true)
 if let pop = vc.popoverPresentationController {
 let v = sender as! UIView
 pop.sourceView = v
 pop.sourceRect = v.bounds
 }
}

(Observe that it is legal and effective to finish configuring the popover after present‐
ing it. That’s because the presentation hasn’t actually started yet, as your code has not
yet come to an end.)

In addition to the arrow source, you can set the desired arrow direction, as the popo‐
ver presentation controller’s permittedArrowDirections. This is a bitmask with pos‐
sible values .up, .down, .left, and .right. The default is .any, comprising all four
bitmask values; this will usually be what you want.

Popover size and position
The presentation of the popover won’t fail if you don’t supply a size for the popover,
but you probably will want to supply one, as the default is unlikely to be desirable.
This information is provided through the presented view controller’s preferred-
ContentSize.

Recall (from Chapter 6) that a view controller can use its preferredContentSize to
communicate to a parent view controller the size that it would like to be. The popover
presentation controller is a presentation controller (UIPresentationController), and is
therefore also a UIContentContainer; the presentation controller acts as the parent of
the presented view controller, and in this situation will consult the presented view
controller’s wishes and will try to respect them.

I’m deliberately leaving open the question of who will set the presented view control‐
ler’s preferredContentSize and when. The presented view controller might set its
own value here; its viewDidLoad is a reasonable place, or, if the view controller is
instantiated from a nib, the nib editor provides Content Size fields in the Attributes
inspector. Alternatively, you can set the presented view controller’s preferred-
ContentSize as you present it:

570 | Chapter 9: iPad Interface

if let pop = vc.popoverPresentationController {
 let v = sender as! UIView
 pop.sourceView = v
 pop.sourceRect = v.bounds
 vc.preferredContentSize = CGSize(200,500)
}

It is possible to change the presented view controller’s preferredContentSize while
the popover is showing. The popover presentation controller will hear about this
(through the mechanism discussed in Chapter 6) and will respond by changing the
popover’s size, with animation.

If the popover is a navigation controller, the navigation controller will look at its cur‐
rent view controller’s preferredContentSize, adjust for the presence of the naviga‐
tion bar, and set its own preferredContentSize appropriately. This is delightful, but
it is probably unwise to press it too far; subsequently pushing or popping a view con‐
troller with a different preferredContentSize may not work as you expect — to be
precise, the popover’s width will change to match the new preferred width, but the
popover’s height will change only if the new preferred height is taller. (It is possible to
work around this by resetting the navigation controller’s preferredContentSize in a
navigation controller delegate method.)

In theory, it should also be possible to set the popover presentation controller’s
popoverLayoutMargins as a way of encouraging the popover to keep a certain
distance from the edges of the presenting view controller’s view. In fact, however,
my experience is that this setting is ignored; I regard this as a bug.

Popover appearance
By default, a popover presentation controller takes charge of the background color of
the presented view controller’s view, including the arrow, as well the navigation bar in
a navigation interface. If the resulting color isn’t to your taste, you can set the popover
presentation controller’s backgroundColor. In a navigation interface, you can change
the navigation bar’s color separately, and customize the position and appearance of
the navigation bar’s bar button items (see Chapter 12).

You can also customize the outside of the popover — that is, the “frame” surrounding
the content, including the arrow. To do so, you set the UIPopoverPresentationCon‐
troller’s popoverBackgroundViewClass to your own subclass of UIPopover‐
BackgroundView (a UIView subclass) — at which point you can achieve just about
anything you want, including the very silly popover shown in Figure 9-2.

Configuring your UIPopoverBackgroundView subclass is a bit tricky, because this
single view is responsible for drawing both the arrow and the frame. Thus, in a com‐
plete and correct implementation, you’ll have to draw differently depending on the

Popovers | 571

Figure 9-2. A very silly popover

arrow direction, which you can learn from the UIPopoverBackgroundView’s arrow-
Direction property.

I’ll give a simplified example in which I cheat by assuming that the arrow direction
will be .up. I start by defining two class-level constants, ARBASE and ARHEIGHT, and
two instance properties, arrOff and arrDir; with the help of these, I implement four
inherited members that we are required to override:

class MyPopoverBackgroundView : UIPopoverBackgroundView {
 static let ARBASE : CGFloat = 20
 static let ARHEIGHT : CGFloat = 20
 var arrOff : CGFloat
 var arrDir : UIPopoverArrowDirection
 // we are required to implement all these
 override class func arrowBase() -> CGFloat {
 return self.ARBASE
 }
 override class func arrowHeight() -> CGFloat {
 return self.ARHEIGHT
 }
 override var arrowDirection : UIPopoverArrowDirection {
 get { return self.arrDir }
 set { self.arrDir = newValue }
 }
 override var arrowOffset : CGFloat {
 get { return self.arrOff }

572 | Chapter 9: iPad Interface

 set { self.arrOff = newValue }
 }
 // ...
}

Now I’ll implement draw(_:). Its job is to draw the frame and the arrow. Drawing the
frame is easy; here, I divide the view’s overall rect into two areas, the arrow area on
top and the frame area on the bottom, and I draw the frame into the bottom area as a
resizable image (Chapter 2):

override func draw(_ rect: CGRect) {
 let linOrig = UIImage(named: "linen.png")!
 let capw = linOrig.size.width / 2.0 - 1
 let caph = linOrig.size.height / 2.0 - 1
 let lin = linOrig.resizableImage(
 withCapInsets:UIEdgeInsetsMake(caph, capw, caph, capw),
 resizingMode:.tile)
 // ... draw arrow here ...
 let (_,body) = rect.divided(
 atDistance: type(of:self).ARHEIGHT, from: .minYEdge)
 lin.draw(in:body)
}

We could, in fact, stop at this point. Our popover would then have no arrow, but that’s
no disaster; many developers dislike the arrow and seek a way to remove it, and this
constitutes a legal way. However, let’s continue by drawing the arrow. As I said a
moment ago, I’ll cheat by assuming that our arrow direction is .up.

My arrow will consist simply of a texture-filled isosceles triangle, with an excess base
consisting of a rectangle joining it to the frame. The runtime has set the arrowOffset
property to tell us where to draw the arrow: this offset measures the positive distance
between the center of the view’s edge and the center of the arrow. However, the run‐
time will have no hesitation in setting the arrowOffset all the way at the edge of the
view, or even beyond its bounds (in which case it won’t be drawn); to prevent this, I
provide a maximum offset limit:

let con = UIGraphicsGetCurrentContext()!
con.saveGState()
// clamp offset
var propX = self.arrowOffset
let limit : CGFloat = 22.0
let maxX = rect.size.width/2.0 - limit
if propX > maxX { propX = maxX }
if propX < limit { propX = limit }
// draw the point
let klass = type(of:self)
con.translateBy(x: rect.size.width/2.0 + propX - klass.ARBASE/2.0, y: 0)
con.move(to:CGPoint(0, klass.ARHEIGHT))
con.addLine(to:CGPoint(klass.ARBASE / 2.0, 0))
con.addLine(to:CGPoint(klass.ARBASE, klass.ARHEIGHT))
con.closePath()

Popovers | 573

// draw the base
con.addRect(CGRect(0,klass.ARHEIGHT,klass.ARBASE,15))
con.clip()
lin.draw(at:CGPoint(-40,-40))
con.restoreGState()

Finally, the thickness of the four sides of the frame is dictated by implementing the
contentViewInsets class method:

override class func contentViewInsets() -> UIEdgeInsets {
 return UIEdgeInsetsMake(20,20,20,20)
}

Passthrough views
When you’re configuring your popover, you’ll want to plan ahead for how the popo‐
ver is to be dismissed. The default is that the user can tap anywhere outside the popo‐
ver to dismiss it, and this will often be what you want. You can, however, modify this
behavior in two ways:

UIPopoverPresentationController’s passthroughViews property
An array of views in the interface behind the popover; the user can interact nor‐
mally with these views while the popover is showing, and the popover will not be
dismissed.

What happens if the user taps a view that is not listed in the passthroughViews
array depends on the isModalInPopover property.

UIViewController’s isModalInPopover property
If this is true for the presented view controller (or for its current child view con‐
troller, as in a tab bar interface or navigation interface), then if the user taps out‐
side the popover on a view not listed in the popover presentation controller’s
passthroughViews, nothing happens (the popover is not dismissed). The default
is false.

Clearly, if you’ve set this property to true, you’ve removed the user’s ability to
dismiss the popover by tapping anywhere outside it. You would then presumably
provide some other way of letting the user dismiss the popover — typically, a
button inside the popover which the user can then tap to call
dismiss(animated:completion:).

The claim made by the documentation that isModalInPopover prevents all user
interaction outside a popover is wrong. The user can still interact with a view lis‐
ted in the passthroughViews, even if isModalInPopover is true.

Unfortunately — and I can’t believe I’m still having to warn about this after all these
years — if a popover is summoned by the user tapping a UIBarButton item in a tool‐
bar, other UIBarButtonItems in that toolbar are automatically turned into pass‐

574 | Chapter 9: iPad Interface

through views! This means that, while the popover is showing, the user can tap any
other button in the toolbar — including a button that summons another popover,
which is illegal (you can’t present a view controller when you’re already presenting a
view controller).

Working around this annoying problem is not easy. Setting the popover presentation
controller’s passthroughViews to nil or an empty array just after presenting it
doesn’t help; your setting is overridden by the runtime. My rather hacky solution is to
provide some extra delay, so as to assert my will after the runtime:

if let pop = vc.popoverPresentationController {
 // ... other configurations go here ...
 delay(0.1) {
 pop.passthroughViews = nil
 }
}

Popover Presentation, Dismissal, and Delegate
Because a popover is just a form of presented view controller, it is shown with
present(_:animated:completion:). Similarly, if you want to dismiss a popover in
code, rather than letting the user dismiss it by tapping outside it, you’ll dismiss it with
dismiss(animated:completion:).

Messages to the popover presentation controller’s delegate (UIPopoverPresentation‐
ControllerDelegate) provide further information and control. Typically, you’ll set the
delegate in the same place you’re performing the other configurations:

if let pop = vc.popoverPresentationController {
 // ... other configurations go here ...
 pop.delegate = self
}

The three most commonly used delegate methods are:

prepareForPopoverPresentation(_:)

The popover is being presented. There is time to perform further initial configu‐
rations here (but this method is still called too early for you to work around the
passthroughViews issue I discussed a moment ago).

popoverPresentationControllerShouldDismissPopover(_:)

The user is dismissing the popover by tapping outside it. Return false to prevent
dismissal. Not called when you dismiss the popover in code.

popoverPresentationControllerDidDismissPopover(_:)

The user has dismissed the popover by tapping outside it. The popover is gone
from the screen and dismissal is complete, even though the popover presentation
controller still exists. Not called when you dismissed the popover in code.

Popovers | 575

The delegate methods provide the popover presentation controller as parameter, and
if necessary you can probably identify the popover more precisely by querying it fur‐
ther. For example, you can learn what view controller is being presented by examin‐
ing its presentedViewController, or what interface object its arrow is connected to
by examining its sourceView or barButtonItem.

The delegate methods make up for the fact that, when the user dismisses the popover,
you don’t have the sort of direct information and control that you get from calling
dismiss(animated:completion:) and setting a completion function. If the user can
dismiss the popover either by tapping outside the popover or by tapping an interface
item that calls dismiss(animated:completion:), you may have to duplicate some
code in order to cover all cases.

For example, consider the first popover shown in Figure 9-1. It has a Done button
and a Cancel button; the idea here is that the user sets up a desired game configura‐
tion and then, while dismissing the popover, either saves it (Done) or doesn’t (Can‐
cel). My approach is to save the user’s configuration into UserDefaults in real time as
the user works within the popover; for example, if the user changes the Style by tap‐
ping Animals, I write this change into UserDefaults then and there (in my implemen‐
tation of tableView(_:didSelectRowAt:)). So far, so good; but what if the user then
cancels? To prepare for that possibility, I copy the relevant user defaults into a prop‐
erty (self.oldDefs) before the popover appears:

let ud = UserDefaults.standard
self.oldDefs = ud.dictionaryWithValues(
 forKeys: [Default.style, Default.size, Default.lastStage])

If the user taps Done, I dismiss the popover, clear out that property, and proceed to
start a new game:

func startNewGame() { // user tapped Done
 self.dismiss(animated: true) {
 self.oldDefs = nil
 self.prepareNewStage(nil)
 }
}

If the user taps Cancel, I dismiss the popover, restore the defaults from the property,
and clear out the property:

func cancelNewGame() { // user tapped Cancel
 self.dismiss(animated: true)
 if (self.oldDefs != nil) {
 let ud = UserDefaults.standard
 ud.setValuesForKeys(self.oldDefs)
 self.oldDefs = nil
 }
}

576 | Chapter 9: iPad Interface

But what if the user taps outside the popover? I interpret that as cancellation. So I’ve
implemented the shouldDismiss delegate method to duplicate what I would have
done if the user had tapped Cancel:

func popoverPresentationControllerShouldDismissPopover(
 _ pop: UIPopoverPresentationController) -> Bool {
 if (self.oldDefs != nil) {
 let ud = UserDefaults.standard
 ud.setValuesForKeys(self.oldDefs)
 self.oldDefs = nil
 }
 return true
}

There is one further delegate method:

popoverPresentationController(_:willRepositionPopoverTo:in:)

Called because the popover’s sourceView is involved in new layout activity. Typi‐
cally, this is because the interface is rotating. The to: and in: parameters are
mutable pointers representing the popover’s sourceRect and sourceView respec‐
tively; so you can change them (through their pointee properties), thus changing
the attachment of the arrow.

Adaptive Popovers
Back in iOS 7 and before, popovers were confined to the iPad. If you tried to sum‐
mon a popover on an iPhone, you’d crash. This meant that you had to summon your
view controller in two different ways, conditioned on the environment — for exam‐
ple, as a popover on iPad, but as a presented view controller on iPhone. Thus, you
had to write two interleaved sets of code. And it wasn’t just a matter of summoning
the view controller; you had the same problem on dismissal, because a popover and a
presented view controller were dismissed in two different ways.

In iOS 8 and later, however, a popover is a presented view controller. So much for that
problem! Moreover, this presented view controller is adaptive. By default, in a hori‐
zontally compact environment (such as an iPhone), the .popover modal presentation
style will be treated as .fullScreen; what appears as a popover on the iPad will
appear as a fullscreen presented view on the iPhone, completely replacing the inter‐
face. Thus, by default, with no extra code, you’ll get something eminently sensible on
both types of device.

Sometimes, however, the default is not quite what you want. A case in point appears
in Figure 9-1. The popover on the right, containing our help info, has no internal but‐
ton for dismissal. It doesn’t need one on the iPad, because the user can dismiss the
popover by tapping outside it. But suppose this is a universal app. The same help info
will appear on the iPhone as a fullscreen presented view — and the user will have no
way to dismiss it.

Popovers | 577

Clearly, we need a Done button that appears inside the presented view controller’s
view — but only on the iPhone. To achieve this, we can take advantage of UIPresenta‐
tionController delegate methods. A UIPopoverPresentationController is also a
UIPresentationController — and you can set its delegate (UIAdaptivePresentation‐
ControllerDelegate). The adaptive presentation delegate methods (see “Adaptive Pre‐
sentation” on page 344) thus spring to life, allowing you to tweak how the popover
adapts, and how it behaves when it adapts. The trick is that you must set the presenta‐
tion controller’s delegate before calling present(_:animated:completion:); other‐
wise, the adaptive presentation delegate methods won’t be called.

For example, we can implement the delegate method presentation-

Controller(_:viewControllerForAdaptivePresentationStyle:) to substitute a
different view controller. This might be nothing but the old view controller wrapped
in a UINavigationController! If our view controller has a navigationItem with a
working Done button, the problem is now solved: on the iPhone, there’s a navigation
bar at the top of the interface, and the Done button appears in it:

@IBAction func doButton(_ sender: Any) {
 let vc = MyViewController()
 vc.preferredContentSize = CGSize(400,500)
 vc.modalPresentationStyle = .popover
 if let pres = vc.presentationController {
 pres.delegate = self
 }
 self.present(vc, animated: true)
 if let pop = vc.popoverPresentationController {
 pop.sourceView = (sender as! UIView)
 pop.sourceRect = (sender as! UIView).bounds
 }
}
func presentationController(_ controller: UIPresentationController,
 viewControllerForAdaptivePresentationStyle
 style: UIModalPresentationStyle) -> UIViewController? {
 if style != .popover {
 let vc = controller.presentedViewController
 let nav = UINavigationController(rootViewController: vc)
 let b = UIBarButtonItem(barButtonSystemItem: .done,
 target: self, action: #selector(dismissHelp))
 vc.navigationItem.rightBarButtonItem = b
 return nav
 }
 return nil
}

The outcome is that in a .regular horizontal size class we get a popover that can be
dismissed by tapping outside it; otherwise, we get a fullscreen presented view control‐
ler that can be dismissed with a Done button.

578 | Chapter 9: iPad Interface

Figure 9-3. A popover appears on an iPhone

You can also implement the adaptivePresentationStyle(for:traitCollection:)
delegate method to customize how the popover adapts. In a .compact horizontal size
class, you don’t have to return .fullScreen; you can return some other adaptive pre‐
sentation style. One possibility is to return .none — in which case the presented view
controller will be a popover even on iPhone (Figure 9-3):

func adaptivePresentationStyle(for controller: UIPresentationController,
 traitCollection: UITraitCollection) -> UIModalPresentationStyle {
 return .none
}

Popover Segues
If you’re using a storyboard, you can draw (Control-drag) a segue from the button (or
view controller) that is to summon the popover to the view controller that is to be the
popover, and specify “popover presentation” as the segue type. The result is a popover
segue. (This feature requires that your storyboard be using trait variations.)

The segue, as it is triggered, configures the presentation just as you would configure it
in code. It instantiates and initializes the presented view controller, sets its modal pre‐
sentation style to .popover, and presents it. You can implement
prepare(for:sender:) to perform additional configurations: obtain the segue’s

Popovers | 579

destination, get a reference to its popoverPresentationController, and configure
it. At the time prepare(for:sender:) is called, the presentation has not yet begun, so
you can successfully set the popover presentation controller’s delegate here if desired.
You can set its passthroughViews too, but you’ll still have to provide a delay if your
goal is to overcome the default behavior of bar button items:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if segue.identifier == "MyPopover" {
 let dest = segue.destination
 if let pop = dest.popoverPresentationController {
 pop.delegate = self
 delay(0.1) {
 pop.passthroughViews = nil
 }
 }
 }
}

You’ll notice that I didn’t set the sourceView or barButtonItem in that code; that’s
because those properties can be set in the nib editor, in the segue’s Attributes inspec‐
tor, and so can the permittedArrowDirections. (You can also set the passthrough
views in the nib editor, but not in such a way as to override the unwanted default bar
button item behavior; thus, I’ve had to do that in code.)

The popover version of an unwind segue is dismissal of the popover. Thus, both pre‐
sentation and dismissal can be managed through the storyboard.

Another possibility is to specify a custom segue class. As I discussed in Chapter 6,
your perform method can call super, so it can concentrate on things that are specific
to this segue. Thus, for example, I can create a popover segue that encapsulates our
workaround for the passthroughViews issue:

class MyPopoverSegue: UIStoryboardSegue {
 override func perform() {
 let dest = self.destination
 if let pop = dest.popoverPresentationController {
 delay(0.1) {
 pop.passthroughViews = nil
 }
 }
 super.perform()
 }
}

Popover Presenting a View Controller
A popover can present a view controller internally; you’ll specify a modal-

PresentationStyle of .currentContext or .overCurrentContext, because other‐
wise the presented view will be fullscreen by default (see Chapter 6). In iOS 7 and

580 | Chapter 9: iPad Interface

before, it was necessary to restrict the modal transition style to .coverVertical; in
iOS 8, that restriction was lifted.

This raises the question of what happens when the user taps outside a popover that is
currently presenting a view controller and displaying its view internally. Unfortu‐
nately, different systems behave differently. Here’s a sample:

iOS 7 and before
Nothing happens; isModalInPopover is true.

iOS 8.1
The entire popover, including the internal presented view controller, is dismissed.

iOS 8.3
The internal presented view controller is dismissed, while the popover remains.

iOS 9 and later
Like iOS 8.1.

In my opinion, the iOS 7 behavior was correct. Presented view controllers are sup‐
posed to be modal. They don’t spontaneously dismiss themselves because the user
taps elsewhere; there has to be some internal interface, such as a Done button or a
Cancel button, that the user must tap in order to dismiss the view controller and pro‐
ceed. You can restore the iOS 7 behavior by implementing the delegate method
popoverPresentationControllerShouldDismissPopover(_:) to prevent dismissal if
the popover is itself presenting a view controller:

func popoverPresentationControllerShouldDismissPopover(
 _ pop: UIPopoverPresentationController) -> Bool {
 let ok = pop.presentedViewController.presentedViewController == nil
 return ok

Split Views
A split view appears in its typical configuration on the iPad as a combination of two
views, a narrow view and a wide view. Under the hood, there is a split view controller
(UISplitViewController); the two views are the main views of its two child view con‐
trollers. The child view controllers are the split view controller’s viewControllers. A
UIViewController that is a child, at any depth, of a UISplitViewController has a refer‐
ence to the UISplitViewController through its splitViewController property.

The split view controller manages its children’s views differently depending on the
orientation of the device:

The iPad is in landscape orientation
The two views appear side by side.

Split Views | 581

Figure 9-4. A familiar split view interface

The iPad is in portrait orientation
There are two possibilities:

• Both views continue to appear side by side; the second view is narrower than
in landscape orientation, because the screen is narrower, but it is still usually
wider than the first view. Apple’s Settings app is an example.

• Only the second view appears, with an option to summon the first view from
the left as an overlay, either by tapping a bar button item or by swiping from
left to right. Apple’s Mail app is an example (Figure 9-4).

A split view typically expresses a master–detail architecture. The narrower first view is
a UITableView where the user is presented with a list (the master). The user taps an
item of that list to specify what should appear in the wider second view (the detail).
We may thus speak of the two children of the split view controller as the master view
controller and the detail view controller. Officially speaking, they are the primary and
secondary view controllers.

On the smaller iPhone screen, a master–detail interface would usually be expressed as
a navigation interface: the user sees the master list, which occupies the entire inter‐
face, and taps an item of the list to navigate to the corresponding detail view, which
again occupies the entire interface — because the detail view controller has been
pushed onto the navigation stack. On the larger iPad screen, that interface seems
overblown and unnecessary: there is room, especially in landscape orientation, for
the master view and the detail view to appear simultaneously. In the split view inter‐
face, that’s exactly what happens.

In iOS 8 and later, a split view interface is adaptive. This means that a single UISplit‐
ViewController can create and manage both interfaces on both types of device:

582 | Chapter 9: iPad Interface

On the iPad
The split view interface appears as a side-by-side master–detail split view in land‐
scape, and possibly as a detail view with a temporary master view overlay in por‐
trait.

On the iPhone
The master view appears as the root view of a navigation controller; the detail
view, when summoned, is pushed onto the navigation stack.

If a split view controller is the top-level view controller, it determines your app’s com‐
pensatory rotation behavior. To take a hand in that determination without having to
subclass UISplitViewController, make one of your objects the split view controller’s
delegate (UISplitViewControllerDelegate) and implement these methods, as needed:

• splitViewControllerSupportedInterfaceOrientations(_:)

• splitViewControllerPreferredInterfaceOrientationForPresentation(_:)

A split view controller does not relegate decisions about the status bar appearance to
its children. Thus, for example, to hide the status bar when a split view controller is
the root view controller, you will have to subclass UISplitViewController. Alterna‐
tively, you might wrap the split view controller in a custom container view controller,
as I describe later in this chapter.

Expanded Split View Controller (iPad)
Xcode’s Master–Detail app template will give you an adaptive UISplitViewController
with no work on your part, but for pedagogical purposes I’ll start by constructing a
split view architecture entirely in code. We’ll get it working on the iPad before pro‐
ceeding to the iPhone version. For reasons that will be clear later, a split view control‐
ler on the iPad, by default, is called an expanded split view controller. An expanded
split view controller has two child view controllers, as I’ve already described.

Our master view (owned by MasterViewController) will be a table view listing the
names of the three Pep Boys. Our detail view (owned by DetailViewController) will
contain a single label displaying the name of the Pep Boy selected in the master view.

Our first cut at writing MasterViewController merely displays the table view:

class MasterViewController: UITableViewController {
 let model = ["Manny", "Moe", "Jack"]
 override func viewDidLoad() {
 super.viewDidLoad()
 self.tableView.register(UITableViewCell.self,
 forCellReuseIdentifier: "Cell")
 }
 override func numberOfSections(in tableView: UITableView) -> Int {
 return 1

Split Views | 583

 }
 override func tableView(_ tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 return model.count
 }
 override func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCell(
 withIdentifier:"Cell", for: indexPath)
 cell.textLabel!.text = model[indexPath.row]
 return cell
 }
}

DetailViewController, in its viewDidLoad implementation, puts the label (self.lab)
into the interface; it also has a public boy string property whose value appears in the
label. We are deliberately agnostic about the order of events; our interface works cor‐
rectly regardless of whether boy is set before or after viewDidLoad is called:

class DetailViewController: UIViewController {
 var lab : UILabel!
 var boy : String = "" {
 didSet {
 if self.lab != nil {
 self.lab.text = self.boy
 }
 }
 }
 override func viewDidLoad() {
 super.viewDidLoad()
 self.view.backgroundColor = .white
 let lab = UILabel()
 lab.translatesAutoresizingMaskIntoConstraints = false
 self.view.addSubview(lab)
 NSLayoutConstraint.activate([
 lab.topAnchor.constraint(
 equalTo: self.view.topAnchor, constant: 100),
 lab.centerXAnchor.constraint(
 equalTo: self.view.centerXAnchor)
])
 self.lab = lab
 self.lab.text = self.boy
 }
}

Our app delegate constructs the interface by making a UISplitViewController, giving
it its two initial children, and putting its view into the window:

func application(_ application: UIApplication,
 didFinishLaunchingWithOptions
 launchOptions: [UIApplicationLaunchOptionsKey : Any]?) -> Bool {
 self.window = self.window ?? UIWindow()

584 | Chapter 9: iPad Interface

 let svc = UISplitViewController()
 svc.viewControllers = [MasterViewController(), DetailViewController()]
 self.window!.rootViewController = svc
 self.window!.backgroundColor = .white
 self.window!.makeKeyAndVisible()
 return true
}

In a sense, this is already a working split view interface. In landscape orientation, the
two views appear side by side. In portrait orientation, only the detail view appears;
but the master view can be summoned by swiping from left to right, and can be dis‐
missed by tapping outside it.

However, the app doesn’t do anything. In particular, when we tap on a Pep Boy’s name
in the master view, the detail view doesn’t change. Let’s add that code (to MasterView‐
Controller):

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 let detail = DetailViewController()
 detail.boy = model[indexPath.row]
 self.showDetailViewController(detail, sender: self)
}

The last line is a major surprise. We have not implemented any showDetailView-
Controller(_:sender:) method; yet we are able to send this message to ourselves,
and it works: the new, correctly configured detail view seamlessly replaces the exist‐
ing detail view, causing the selected Pep Boy’s name to appear in the interface. How
can this be? This method effectively walks up the view controller hierarchy, looking
for someone to handle it. (I’ll discuss the details later.) Our DetailViewController
can’t handle it, but its parent view controller, the UISplitViewController, can! It
responds by making the specified view controller its second child.

Our app still doesn’t quite look like a standard master–detail view interface. The usual
thing is for both the master view and the detail view to contain a navigation bar. The
detail view in portrait orientation can then display in its navigation bar a left button
that summons the master view, so that the user doesn’t have to know about the swipe
gesture. This button is vended by the UISplitViewController, through the display-
ModeButtonItem property. Thus, to construct the interface properly, we need to
change our app delegate code as follows:

let svc = UISplitViewController()
let master = MasterViewController()
master.title = "Pep" // *
let nav1 = UINavigationController(rootViewController:master) // *
let detail = DetailViewController()
let nav2 = UINavigationController(rootViewController:detail) // *

Split Views | 585

svc.viewControllers = [nav1, nav2]
self.window!.rootViewController = svc
let b = svc.displayModeButtonItem // *
detail.navigationItem.leftBarButtonItem = b // *

Having made that adjustment, we must also adjust our MasterViewController code.
Consider what will happen when the user taps a Pep Boy name in the master view. At
the moment, we are making a new DetailViewController and making it the split view
controller’s second child. That is now wrong; we must make a new UINavigation‐
Controller instead, with a new DetailViewController as its child. Moreover, this new
DetailViewController doesn’t automatically have the displayModeButtonItem as its
leftBarButtonItem — we have to set it:

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 let detail = DetailViewController()
 detail.boy = model[indexPath.row]
 let b = self.splitViewController?.displayModeButtonItem
 detail.navigationItem.leftBarButtonItem = b
 detail.navigationItem.leftItemsSupplementBackButton = true
 let nav = UINavigationController(rootViewController: detail)
 self.showDetailViewController(nav, sender: self)
}

When the app is in landscape orientation with the two views displayed side by side,
the displayModeButtonItem automatically hides itself. So our iPad split view imple‐
mentation is finished!

Collapsed Split View Controller (iPhone)
Astoundingly, if we now launch our existing app on iPhone, it works almost per‐
fectly! There’s a navigation interface. Tapping a Pep Boy’s name in the master view
pushes the new detail view controller onto the navigation stack, with its view display‐
ing that name. The detail view’s navigation bar has a back button that pops the detail
view controller and returns us to the master view.

The only thing that isn’t quite right is that the app launches with the detail view show‐
ing, rather than the master view. To fix that, we first add one line to our app delegate,
to give the UISplitViewController a delegate:

let svc = UISplitViewController()
svc.delegate = self // *

We then implement one delegate method:

func splitViewController(_ svc: UISplitViewController,
 collapseSecondary vc2: UIViewController,
 onto vc1: UIViewController) -> Bool {
 return true
}

586 | Chapter 9: iPad Interface

That’s all; on the iPhone, the app now behaves correctly!

To understand what that delegate method does, you need to know more about how
the split view controller works. It adopts one of two states: it is either collapsed or
expanded, in accordance with its isCollapsed property. This distinction corresponds
to whether or not the environment’s trait collection has a .compact horizontal size
class: if so, the split view controller collapses. Thus, the split view controller collapses
as it launches on an iPhone.

An expanded split view controller, as we can see on the iPad, has two child view con‐
trollers. But a collapsed split view controller has only one child view controller. Thus,
as the app launches on the iPhone, and the split view controller collapses, it must
remove one child view controller. But which one? To find out, the split view control‐
ler asks its delegate how to proceed. In particular, it calls these delegate methods:

primaryViewController(forCollapsing:)

The collapsed split view controller will have only one child view controller. What
view controller should this be? By default, it will be the current first view control‐
ler, but you can implement this method to return a different answer.

splitViewController(_:collapseSecondary:onto:)

The collapsing split view controller is going to remove its second view controller,
leaving its first view controller as its only child view controller. Return true to
permit this to happen.

If this method returns false (the default), the split view controller sends
collapseSecondaryViewController(_:for:) to the first view controller. What
happens to the second view controller is now up to the first view controller.

Our first view controller is a UINavigationController, which has a built-in response to
collapseSecondaryViewController(_:for:) — namely, it pushes the specified sec‐
ondary view controller onto its own stack. That is not what we want; in our case, we
would then end up launching with the detail view showing on the iPhone, as we’ve
already seen. Therefore, we implement splitViewController(_:collapse-

Secondary:onto:) to return true. Thus, we permit the split view controller to
remove its second view controller, so that we end up launching with the master view
showing on the iPhone.

Our app has now launched on the iPhone. How does it work after that? Its root view
controller is the split view controller. The split view controller has one child — a
UINavigationController which, in turn, has one child, namely our MasterViewCon‐
troller. Thus, the table view is visible in a navigation interface. The user taps a row of
the table, and our code sends showDetailViewController(_:sender:) to the Mas‐
terViewController. As I mentioned before, the result is a walk up the view controller
hierarchy, looking for someone to handle this method. Here’s what happens:

Split Views | 587

1. MasterViewController doesn’t handle it, so we proceed to its parent, the
UINavigationController.

2. UINavigationController doesn’t handle it either! So we proceed to its parent, the
UISplitViewController.

3. UISplitViewController does handle this message, in one of two ways, depending
on its state:

The split view controller is expanded
The split view controller accepts the specified view controller and substitutes
it as its own second view controller. The second view controller’s view is dis‐
played, so the user now sees it as the detail view. That is what happened when
our app ran on the iPad.

The split view controller is collapsed
The split view controller sends show(_:sender:) to its first view controller.
The first view controller happens to be a UINavigationController, and we
already know (from Chapter 6) how it responds: it pushes the specified view
controller onto its stack. That is what happens when our app runs on the
iPhone.

In a standard split view controller architecture, the second view controller is a
UINavigationController. On an iPhone, therefore, we are pushing a
UINavigationController onto a UINavigationController’s stack. This is an odd
thing to do, but thanks to some internal voodoo, the parent UINavigation‐
Controller will do the right thing: in displaying this child’s view, it turns to the
child UINavigationController’s topViewController and displays its view (and its
navigationItem), and the child UINavigationController’s navigation bar never
gets into the interface. Do not imitate this architecture in any other context!

Expanding Split View Controller (iPhone 6 Plus)
The iPhone 6 Plus is a hybrid case: it’s horizontally compact in portrait orientation,
but not in landscape orientation. Thus, in effect, the split view controller thinks it’s on
an iPhone when the iPhone 6 Plus is in portrait, but it thinks it has been magically
moved over to an iPad when the iPhone 6 Plus interface rotates to landscape. Thus,
the split view controller alternates between isCollapsed being true and false on a
single device. In portrait, the split view displays a single navigation interface, with the
master view controller at its root, like an iPhone. In landscape, the master and detail
views are displayed side by side, like an iPad.

When the app, running on the iPhone 6 Plus, rotates to portrait, or if it launches into
portrait, the split view controller collapses, going through the very same procedure I
just described for an iPhone. But when it rotates to landscape, it performs the oppo‐

588 | Chapter 9: iPad Interface

site of collapsing — which Apple, not surprisingly, describes as expanding. As the split
view controller expands, it has the inverse of the problem it has when it collapses: a
collapsed split view controller has just one child view controller, but an expanded split
view controller has two child view controllers. Where will this second child view con‐
troller come from, and how should it be incorporated? To find out, the split view con‐
troller asks its delegate how to proceed:

primaryViewController(forExpanding:)

The collapsed split view controller has just one child. The expanded split view
controller will have two children. What view controller should be its first child
view controller? By default, it will be the current child view controller, but you
can implement this method to return a different answer.

splitViewController(_:separateSecondaryFrom:)

What view controller should be the expanded split view controller’s second child
view controller? Implement this method to return that view controller.

If you don’t implement this method, or if you return nil, the split view controller
sends separateSecondaryViewController(for:) to the first view controller.
This method returns a view controller, or nil. If it returns a view controller, the
split view controller makes that view controller its second view controller.

The default response of a plain vanilla UIViewController to separateSecondaryView-
Controller(for:) is to return nil. A UINavigationController, however, pops its own
topViewController and returns that view controller. Thus, when our app is rotated
from portrait to landscape, exactly the right thing happens: if the navigation control‐
ler has pushed a DetailViewController onto its stack, it now pops it and hands it to
the split view controller, which displays its view as the detail view!

One other new feature of our app’s behavior on the iPhone 6 Plus is that the display-
ModeButtonItem is present in landscape (whereas it disappears automatically on an
iPad in landscape). It takes on a new form: instead of appearing as a “back” chevron,
it’s an “expand” symbol (two arrows pointing away from each other). When the user
taps it, the master view is hidden and the detail view occupies the entire screen — and
the displayModeButtonItem changes to a chevron. Tapping the chevron toggles back
the other way: the master view is shown again.

An interesting problem arises when we rotate from landscape to portrait on the
iPhone 6 Plus. Suppose we’re in landscape (.regular horizontal size class) and the
user is looking at the detail view controller. Now the user rotates to portrait
(.compact horizontal size class). The split view controller collapses. Without extra
precautions, we’ll end up displaying the master view controller — because we went to
the trouble of arranging that, back when we thought the only way to collapse was to
launch into a .compact horizontal size class:

Split Views | 589

func splitViewController(_ svc: UISplitViewController,
 collapseSecondary vc2: UIViewController,
 onto vc1: UIViewController) -> Bool {
 return true
}

The result is that the user’s place in the application has been lost. I think we can solve
this satisfactorily simply by having the split view controller’s delegate keep track of
whether the user has ever chosen a detail view. I’ll use an instance property, self.did-
ChooseDetail:

override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 // ... as before ...
 let del = UIApplication.shared.delegate as! AppDelegate
 del.didChooseDetail = true
}

When the split view controller collapses, the split view controller’s delegate uses that
instance property to decide what to do — that is, whether to display the master view
controller or the detail view controller:

func splitViewController(_ svc: UISplitViewController,
 collapseSecondary vc2: UIViewController,
 onto vc1: UIViewController) -> Bool {
 return !self.didChooseDetail
}

Customizing a Split View Controller
Properties and delegate methods of a UISplitViewController allow it to be custom‐
ized:

presentsWithGesture

A Bool. If false, the left-to-right swipe gesture that shows the master view in
portrait orientation on an iPad is disabled. The default is true.

preferredDisplayMode

The display mode describes how an expanded split view controller’s primary
view is displayed. Set this property to change the current display mode of an
expanded split view controller programmatically, or set it to .automatic to allow
the display mode to adopt its default value. To learn the actual display mode
being used, ask for the current displayMode.

An expanded split view controller has three possible display modes (UISplit‐
ViewControllerDisplayMode):

.allVisible

The two views are shown side by side.

590 | Chapter 9: iPad Interface

.primaryHidden

The primary view is not present.

.primaryOverlay

The primary view is shown as a temporary overlay in front of the secondary
view.

The default automatic behaviors are:

iPad in landscape
The displayModeButtonItem is hidden, and the display mode is .all-
Visible.

iPad in portrait
The displayModeButtonItem is shown, and the display mode toggles
between .primaryHidden and .primaryOverlay.

iPhone 6 Plus in landscape
The displayModeButtonItem is shown, and the display mode toggles
between .primaryHidden and .allVisible.

preferredPrimaryColumnWidthFraction

Sets the master view width in .allVisible and .primaryOverlay display modes,
as a percentage of the whole split view (between 0 and 1). Your setting may have
no effect unless you also constrain the width limits absolutely through the
minimumPrimaryColumnWidth and maximumPrimaryColumnWidth properties. To
specify the default width, use UISplitViewControllerAutomaticDimension. To
learn the actual width being used, ask for the current primaryColumnWidth.

You can also track and govern the display mode with these delegate methods:

splitViewController(_:willChangeTo:)

The displayMode of an expanded split view controller is about to change, mean‐
ing that its first view controller’s view will be shown or hidden. You might want
to alter the interface somehow in response.

targetDisplayModeForAction(in:)

Called whenever something happens that might affect the display mode, such as:

• The split view controller is showing for the first time.
• The interface is rotating.
• The user summons or dismisses the primary view.

Return a display mode to specify what the user’s tapping the displayModeButton-
Item should subsequently do (and, by extension, how the button is portrayed),
or .automatic to accept what the split view controller would normally do.

Split Views | 591

Customizations on a more structural level are performed through the other delegate
methods. For example, there might be additional view controllers present, or you
might use a split view controller in some completely different way, so that the default
collapsed version of a split view controller might not be appropriate. Thus you would
implement the delegate methods I described in the preceding sections to determine
how the view controller structure should be rearranged when the split view controller
collapses and expands:

• primaryViewController(forCollapsing:)

• splitViewController(_:collapseSecondary:onto:)

• primaryViewController(forExpanding:)

• splitViewController(_:separateSecondaryFrom:)

Also, your custom view controller can implement collapseSecondaryView-

Controller(_:for:) and separateSecondaryViewController(for:), so that it can
take a hand in what happens during collapsing and expanding when it is the primary
view controller.

After collapsing or expanding, a UISplitViewController emits the .UIView-

ControllerShowDetailTargetDidChange notification.

Split View Controller in a Storyboard
To see how to configure a split view controller in a storyboard, make a new project
from the Universal version of the Master–Detail app template and study the story‐
board that it provides. This storyboard contains essentially the same configuration I
created in code at the start of this section. The split view controller has two relation‐
ships, “master view controller” and “detail view controller,” specifying its two chil‐
dren. Those two children are both navigation controllers. The first navigation
controller has a “root view controller” relationship to a MasterViewController, which
is a UITableViewController; the second has a “root view controller” relationship to a
DetailViewController (Figure 9-5).

There’s one more object in the storyboard, and it’s the interesting object: from the
prototype table view cell in the master table view comes a segue triggered by the user
selecting the cell — a “show detail” segue whose destination is the detail navigation
controller. It should now be clear what a “show detail” segue does: it calls showDetail-
ViewController(_:sender:). As you know, this means that when the split view con‐
troller is expanded, the newly instantiated detail navigation controller will replace the
split view controller’s second child view controller; when the split view controller is
collapsed, the newly instantiated detail navigation controller will be pushed onto the
master navigation controller’s stack.

592 | Chapter 9: iPad Interface

Figure 9-5. How the storyboard configures a split view interface

Unfortunately, that’s not the end of the initial configuration required to get this split
view controller to work. The app delegate template code also configures and adds the
displayModeButtonItem; to do this, it must verbosely obtain a reference to the split
view controller and to the detail view controller:

let splitViewController =
 self.window!.rootViewController as! UISplitViewController
let navigationController =
 splitViewController.viewControllers[
 splitViewController.viewControllers.count-1]
 as! UINavigationController
navigationController.topViewController!.navigationItem.leftBarButtonItem =
 splitViewController.displayModeButtonItem

Similarly, the master view controller, when the “show detail” segue is triggered, must
verbosely get a reference to the detail view controller in order to deal with the
displayModeButtonItem, as well as to pass the data on to the new view controller:

Split Views | 593

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 if segue.identifier == "showDetail" {
 if let indexPath = self.tableView.indexPathForSelectedRow {
 let controller =
 (segue.destination as! UINavigationController)
 .topViewController as! DetailViewController
 controller.detailItem = object
 controller.navigationItem.leftBarButtonItem =
 self.splitViewController?.displayModeButtonItem
 controller.navigationItem.leftItemsSupplementBackButton = true
 }
 }
}

That sort of thing is error-prone and opaque. The problem is that the architecture has
been constructed automatically, behind the code’s back, and so the code must scram‐
ble to get references to the pieces of that architecture. Moreover, the template still
needs all the rest of the code we developed earlier in the chapter: for example, the
split view controller still needs a delegate so that it can implement splitView-
Controller(_:collapseSecondary:onto:). Finally, the split view controller in the
storyboard has no configurable properties in the Attributes inspector; if you want to
set its preferredPrimaryColumnWidthFraction and so forth, you must still do that in
code.

Therefore, I avoid instantiating a split view controller in the storyboard. I prefer to
create and assemble my split view controller entirely in code. Code that creates a view
controller manually has a direct reference to that view controller, and is clearer and
cleaner.

Setting the Collapsed State
The split view controller can be in a collapsed or an expanded state — its
isCollapsed property can be true or false. But this property is read-only. How,
then, would you set the collapsed state? For example, perhaps you want side-by-side
display of the two child view controllers’ views in landscape even on an iPhone. How
would you arrange that?

The split view controller decides which state to adopt depending on the environment
— in particular, whether the current trait collection’s horizontal size class is .compact.
The solution, therefore, is to lie to the split view controller about its trait collection
environment, effectively making it believe, for example, that it’s on an iPad even
though it’s really on an iPhone.

You can do that by interposing your own custom container view controller above the
split view controller in the view controller hierarchy — typically, as the split view con‐
troller’s direct parent. You can then send your container view controller the set-
OverrideTraitCollection(_:forChildViewController:) message, thus causing it

594 | Chapter 9: iPad Interface

to pass the trait collection of your choosing down the view controller hierarchy to the
split view controller.

In this example, our container view controller is the app’s root view controller; its
child is a split view controller. The split view controller’s view completely occupies the
container view controller’s view (in other words, the container’s own view is never
seen independently; the container view controller exists solely in order to manage the
split view controller). Early in the life of the app, the container view controller config‐
ures the split view controller and lies to it about the environment:

override func viewWillLayoutSubviews() {
 if !self.didInitialSetup {
 self.didInitialSetup = true
 let svc = self.childViewControllers[0] as! UISplitViewController
 svc.preferredDisplayMode = .allVisible
 svc.preferredPrimaryColumnWidthFraction = 0.5
 svc.maximumPrimaryColumnWidth = 500
 let traits = UITraitCollection(traitsFrom: [
 UITraitCollection(horizontalSizeClass: .regular)
])
 self.setOverrideTraitCollection(traits,
 forChildViewController: svc)
 }
}

The result is that the split view controller displays both its children’s views side by
side, both in portrait and landscape, like the Settings app on the iPad, even on the
iPhone.

Another possibility, based on Apple’s AdaptivePhotos sample code, might be to make
the iPhone behave like an iPhone 6 Plus, with a .regular horizontal size class in
landscape (the split view controller expands) but a .compact horizontal size class in
portrait (the split view controller collapses):

override func viewWillTransition(to size: CGSize,
 with coordinator: UIViewControllerTransitionCoordinator) {
 let svc = self.childViewControllers[0] as! UISplitViewController
 if size.width > size.height {
 let traits = UITraitCollection(traitsFrom: [
 UITraitCollection(horizontalSizeClass: .regular)
])
 self.setOverrideTraitCollection(traits,
 forChildViewController: svc)
 } else {
 self.setOverrideTraitCollection(nil,
 forChildViewController: svc)
 }
 super.viewWillTransition(to: size, with: coordinator)
}

Split Views | 595

View Controller Message Percolation
The master–detail architecture that I’ve been using as an example throughout this
discussion uses showDetailViewController(_:sender:) as the standard response to
the user tapping an entry in the master list. However, I have not been sending this
message directly to the split view controller; instead, I’ve sent it to self (the master
view controller), with an assurance that the message will percolate up to the split view
controller. It’s now time to talk in more detail about this percolation process.

iOS provides a generalized architecture for percolating a message up the view con‐
troller hierarchy. The heart of this architecture is the method targetView-

Controller(forAction:sender:), where the action: parameter is the selector for
the method we’re inquiring about. This method, using some deep introspective voo‐
doo, looks to see whether the view controller to which the message was sent overrides
the UIViewController implementation of the method in question. If so, it returns self;
if not, it effectively recurses up the view controller hierarchy, returning the result of
calling the same method with the same parameters on its parent view controller or
presenting view controller — or nil if no view controller is ultimately returned to it.

A view controller subclass that does override the method in question but does not
want to be the target view controller can implement the UIResponder method
canPerformAction(_:withSender:) to return false.

The idea is that any UIViewController method can be implemented so as to percolate
up the view controller hierarchy in this way, analogously to how the responder chain
operates. In particular, two UIViewController methods are implemented in this way
— show(_:sender:) and showDetailViewController(_:sender:).

These methods are implemented to call targetViewController(for-

Action:sender:). If this returns a target, they send themselves to that target. If it
doesn’t return a target, they call present(_:animated:completion:).

Thus, what actually happens when the master view controller sends showDetailView-
Controller(_:sender:) to self is as follows:

1. The master view controller doesn’t implement any override of showDetailView-
Controller(_:sender:); it inherits the UIViewController implementation,
which is called.

2. The UIViewController implementation of showDetailView-

Controller(_:sender:) calls targetViewController(forAction:sender:) on
self (the master view controller).

3. targetViewController(forAction:sender:) sees that the method in question,
namely showDetailViewController(_:sender:), is not overridden by this view
controller (the master view controller); so it calls targetViewController(for-

596 | Chapter 9: iPad Interface

Action:sender:) on the parent view controller, which is a UINavigation‐
Controller.

4. Now we’re looking at the UINavigationController. targetViewController(for-
Action:sender:) sees that the method in question, namely showDetailView-
Controller(_:sender:), is not overridden by this view controller either! So it
calls targetViewController(forAction:sender:) on its parent view controller,
which is a UISplitViewController.

5. Now we’re looking at the UISplitViewController. It turns out that UISplitView‐
Controller does override the UIViewController implementation of showDetail-
ViewController(_:sender:). Thus,
targetViewController(forAction:sender:) in the split view controller returns
the split view controller instance, and all the nested calls to targetView-
Controller(forAction:sender:) return, with the split view controller as the
result.

6. We are now back in showDetailViewController(_:sender:), originally sent to
the master view controller. From its call to targetViewController(for-

Action:sender:), it has acquired a target — the split view controller. So it fin‐
ishes by sending showDetailViewController(_:sender:) to the split view
controller.

The flexibility illustrated here is what allows the two methods, show(_:sender:) and
showDetailViewController(_:sender:), to work differently depending on how the
view controller to which they are originally sent is situated in the view controller hier‐
archy. Two built-in UIViewController subclasses override one or both of these meth‐
ods, and thus, if they are further up the view controller hierarchy than the view
controller on which these methods are called, they will take charge of what happens:

UINavigationController show(_:sender:)
UINavigationController implements show(_:sender:) to call pushView-

Controller(_:animated:).

Thus, if you send show(_:sender:) to a view controller whose parent is a
UINavigationController, it is the navigation controller’s implementation that will
be called, meaning that the parameter view controller is pushed onto the stack.
But if you send show(_:sender:) to a view controller without a parent that over‐
rides this method, the default implementation is used, meaning that the parame‐
ter view is presented.

UISplitViewController showDetailViewController(_:sender:)
UISplitViewController implements showDetailViewController(_:sender:) as
follows. First, it calls the delegate method splitViewController(_:show-

Detail:sender:); if the delegate returns true, UISplitViewController does noth‐

Split Views | 597

ing. (In that case, you would be responsible for getting the parameter view
controller’s view into the interface.) Otherwise:

If the split view controller is expanded
It replaces its second child view controller with the parameter view control‐
ler.

If the split view controller is collapsed
If its first (and only) child view controller is a UINavigationController, it
sends show(_:sender:) to it. Otherwise, it calls
present(_:animated:completion:).

UISplitViewController show(_:sender:)
UISplitViewController implements show(_:sender:) as follows. First, it calls the
delegate method splitViewController(_:show:sender:); if the delegate
returns true, UISplitViewController does nothing. (In that case, you would be
responsible for getting the parameter view controller’s view into the interface.)
Otherwise:

If the split view controller is expanded
If the sender: is its first view controller, the split view controller replaces the
first view controller with the parameter view controller. Otherwise, it repla‐
ces its second view controller with the parameter view controller.

If the split view controller is collapsed
It calls present(_:animated:completion:).

Now that you understand the percolation mechanism, perhaps you’d like to know
whether your own custom methods can participate in it. They can! Extend UIView‐
Controller to implement your method such that it calls targetViewController(for-
Action:sender:) on self and sends the action method to the target if there is one.
For example:

extension UIViewController {
 func showHide(_ sender: Any?) {
 let target =
 self.targetViewController(
 forAction:#selector(showHide), sender: sender)
 if target != nil {
 target!.showHide(self)
 }
 }
}

In that example, I don’t know what any particular UIViewController subclass’s over‐
ride of showHide(_:) may do, and I don’t care! What matters is that if showHide(_:)
is sent to a view controller that doesn’t override it, it will percolate up the view con‐

598 | Chapter 9: iPad Interface

troller hierarchy until we find a view controller that does override it, and it is that
override that will be called.

iPad Multitasking
Starting in iOS 9, certain models of iPad can perform a kind of multitasking where
the windows of two different apps can appear simultaneously.

There are two multitasking modes:

Slideover
One app appears in a narrow format in front of the other, occupying roughly
one-third of the screen’s width. The rear app is deactivated but not backgroun‐
ded.

Splitscreen
The two apps appear side by side; they are both active simultaneously. The app on
the right might have the same size as the front app in slideover mode, or, if the
device is held in landscape orientation, the two apps might divide the screen
width equally. This multitasking mode is available on an even narrower range of
iPad models.

Your iPad or Universal app, by default, will participate in iPad multitasking if it is
built against iOS 9 or later, permits all four orientations, and uses a launch screen
storyboard or .xib. If you would like your app to opt out of participation in iPad mul‐
titasking, you can set the Info.plist key UIRequiresFullScreen to YES. An app that
doesn’t participate in iPad multitasking can still be deactivated while another app
appears in front of it in slideover mode, but it cannot itself appear as the front app in
slideover mode, and it cannot be involved in splitscreen mode at all.

What actually changes when your app’s size is changed is the size of its window. Thus,
iPad multitasking is a situation where the app’s window bounds can be different from
screen bounds. Moreover, if the app appears on the right, the window origin is shifted
to the right. This makes no difference to the window’s frame; a window has no frame
distinct from its bounds, because it has no superview. But it makes a difference to the
relationship between, say, a button’s position in window coordinates and its position
in screen coordinates. Fortunately, this difference is unlikely to matter to your code,
as it is improbable that you were ever concerned with either of those values to begin
with.

What will likely matter to your app is that the reduced app sizes may be accompanied
by a change in the trait collection. In particular:

iPad Multitasking | 599

Your app is on the left
Your app might have a .compact horizontal size class, depending on how large
this iPad’s screen is and what orientation the iPad is in, and whether the app
occupies half or two-thirds (roughly) of the screen.

Your app is on the right
There are two cases to distinguish:

Your app occupies half the screen
Your app might have a .compact horizontal size class, depending on how
large this iPad’s screen is.

Your app is in narrow format
Your app definitely has a .compact horizontal size class.

It follows that if your app participates in iPad multitasking:

• It can be launched or summoned into a .compact horizontal size class situation
even on an iPad.

• It can be toggled between a .compact horizontal size class and a .regular hori‐
zontal size class even on an iPad (and without an accompanying rotation).

When your app’s window changes size because of multitasking, your view controller
will receive viewWillTransition(to:with:) to report the size change. It may receive
this event more than once, and it will receive it while the app is inactive. If the size
change also involves a transition from one horizontal size class to another, then of
course your view controller will also receive willTransition(to:with:) and trait-
CollectionDidChange(_:) to report the trait collection change, also while the app is
inactive.

If your app is a universal app, it is probably prepared already to respond coherently to
these events. Thus, it can probably participate in iPad multitasking with no significant
change. You can’t assume that a .compact horizontal size class means you’re on an
iPhone, but you probably weren’t thinking in those terms anyway — and if even if
you were, you can still detect what kind of device you are really on simply by looking
at the trait collection’s userInterfaceIdiom.

If a view controller has been presented, then if the size transition involves a trait col‐
lection transition, the view controller will adapt. Thus, for example, a .formSheet
or .popover presented view controller will, by default, turn into a .fullScreen pre‐
sented view controller as the app transitions from a .regular horizontal size class
to .compact — and will then change back again as the app transitions back
to .regular. And of course you can take a hand in how it adapts by functioning as
the presentation controller’s delegate.

600 | Chapter 9: iPad Interface

Similarly, in a split view controller interface, the split view controller will collapse and
expand as the app transitions from a .regular horizontal size class to .compact and
back again. This is no different from the ability of a split view controller to collapse
and expand when an iPhone 6 Plus is rotated, and the same precautions will take care
of it satisfactorily. In landscape in splitscreen mode .regular horizontal size class, the
split view controller’s display mode toggles between .primaryHidden and .primary-
Overlay, as if we were in portrait; but that’s automatic and shouldn’t affect your code.

Nor should you be overly concerned about the absolute size that your app’s interface
might assume. It’s true that, from a purely numerical point of view, iPad multitasking
introduces your app to some new size possibilities. Even more dramatic are the differ‐
ences in the ratio between the longer and shorter dimensions of your app’s size, which
can range on the large iPad Pro from a roughly square 1.04 all the way up to a very
tall and narrow 3.6. Clearly, however, it would be foolish to concern yourself with
these sizes explicitly. If this is a universal app, then you are already taking care of a
wide range of possible sizes through size classes and autolayout, and you probably
won’t have to do anything new to cover these new sizes. At the same time, designing
an interface that looks decent and can be operated correctly on such a wide range of
ratios can be something of a challenge.

Another important challenge introduced by iPad multitasking is the possibility that
your app will effectively be frontmost at the same time as some other app. This means
that the other app can be using both the processor (especially the main thread) and
memory at a time when your app is not suspended. For this to work, all apps partici‐
pating in iPad multitasking need to be on their best behavior, adhering to best practi‐
ces with regard to threading (see Chapter 25) and memory usage (see “View
Controller Memory Management” on page 420).

iPad Multitasking | 601

CHAPTER 10

Text

Drawing text into your app’s interface is one of the most complex and powerful things
that iOS does for you. Fortunately, iOS also shields you from much of that complex‐
ity. All you need is some text to draw, and possibly an interface object to draw it for
you.

Text to appear in your app’s interface will be an NSString (bridged from Swift String)
or an NSAttributedString. NSAttributedString adds text styling to an NSString,
including runs of different character styles, along with paragraph-level features such
as alignment, line spacing, and margins.

To make your NSString or NSAttributedString appear in the interface, you can draw
it into a graphics context, or hand it to an interface object that knows how to draw it:

Self-drawing text
Both NSString and NSAttributedString have methods (supplied by the NSString‐
Drawing category) for drawing themselves into any graphics context.

Text-drawing interface objects
Interface objects that know how to draw an NSString or NSAttributedString are:

UILabel
Displays text, possibly consisting of multiple lines; neither scrollable nor
editable.

UITextField
Displays a single line of user-editable text; may have a border, a background
image, and overlay views at its right and left end.

UITextView
Displays scrollable multiline text, possibly user-editable.

603

Deep under the hood, all text drawing is performed through a low-level technology
with a C API called Core Text. Before iOS 7, certain powerful and useful text-drawing
features were available only by working with Core Text. Now, however, iOS provides
Text Kit, a middle-level technology lying on top of Core Text. UITextView is largely
just a lightweight drawing wrapper around Text Kit, and Text Kit can also draw
directly into a graphics context. By working with Text Kit, you can readily do all sorts
of useful text-drawing tricks that previously would have required you to sweat your
way through Core Text.

(Another way of drawing text is to use a web view, a scrollable view displaying ren‐
dered HTML. A web view can also display various additional document types, such
as PDF, RTF, and .doc. Web views draw their text using a somewhat different technol‐
ogy, and are discussed in Chapter 11.)

Fonts and Font Descriptors
There are two ways of describing a font: as a UIFont (suitable for use with an
NSString or a UIKit interface object) or as a CTFont (suitable for Core Text). Before
iOS 7, in order to perform font transformations, it was necessary to convert a UIFont
to a CTFont manually, work with the CTFont, and then convert back to a UIFont
manually — which was by no means trivial. Now, however, most font transformations
can be performed through UIFontDescriptor, and if you need to convert between
UIFont and CTFont, you can easily do so by passing through CTFontDescriptor,
which is toll-free bridged to UIFontDescriptor (so that you can cast between them).

Fonts
A font (UIFont) is an extremely simple object. You specify a font by its name and size
by calling the UIFont initializer init(name:size:), and you can also transform a
font of one size to the same font in a different size. UIFont also provides some meth‐
ods for learning a font’s various measurements, such as its lineHeight and cap-
Height.

To ask for a font by name, you have to know the font’s name. Every font variant (bold,
italic, and so on) counts as a different font, and font variants are clumped into fami‐
lies. UIFont has class methods that tell you the names of the families and the names
of the fonts within them. To learn, in the console, the name of every installed font,
you would say:

UIFont.familyNames.forEach {
 UIFont.fontNames(forFamilyName:$0).forEach {print($0)}}

When calling init(name:size:), you can specify a font by its family name or by its
font name (technically, its PostScript name). For example, "Avenir" is a family name;
the plain font within that family is "Avenir-Book". Either is legal as the name: argu‐

604 | Chapter 10: Text

ment. The initializer is failable, so you’ll know if you’ve specified the font incorrectly
— you’ll get nil.

System font
The system font (used, for example, by default in a UIButton) can be obtained by call‐
ing systemFontOfSize:weight:. Possible weights, expressed as constant names of
CGFloats, in order from lightest to heaviest, are:

• UIFontWeightUltraLight

• UIFontWeightThin

• UIFontWeightLight

• UIFontWeightRegular

• UIFontWeightMedium

• UIFontWeightSemibold

• UIFontWeightBold

• UIFontWeightHeavy

• UIFontWeightBlack

Starting in iOS 9, the system font is San Francisco, and comes in all of these weights,
except at sizes smaller than 20 points, where the extreme ultralight, thin, and black
are missing. A variety of the system font whose digits are monospaced can be
obtained by calling monospacedDigitSystemFont(ofSize:weight:).

Dynamic Type fonts
If you have text for the user to read or edit — in a UILabel, a UITextField, or a
UITextView (all discussed later in this chapter) — you are encouraged to use a
Dynamic Type font. The Dynamic Type fonts are actually the system font in another
guise; they have two salient features:

Their size is up to the user
The Dynamic Type fonts are linked to the size slider that the user can adjust in
the Settings app, under Display & Brightness → Text Size. Additional sizes may
be enabled under General → Accessibility → Larger Text. Possible sizes (UICon‐
tentSizeCategory) are:

• .unspecified

• .extraSmall

• .small

• .medium

Fonts and Font Descriptors | 605

• .large

• .extraLarge

• .extraExtraLarge

• .extraExtraExtraLarge

• .accessibilityMedium

• .accessibilityLarge

• .accessibilityExtraLarge

• .accessibilityExtraExtraLarge

• .accessibilityExtraExtraExtraLarge

They are specified by role
You specify a Dynamic Type font, not by its size (which, as I’ve just said, is up to
the user), but in terms of the role it is to play in your layout. Call the UIFont class
method preferredFont(forTextStyle:). Possible roles that you can specify
(UIFontTextStyle) are:

• .title1

• .title2

• .title3

• .headline

• .subheadline

• .body

• .callout

• .footnote

• .caption1

• .caption2

You’ll probably want to experiment with specifying various roles for your individual
pieces of text, to see which looks appropriate in context. For example, in Figure 6-1,
the headlines are .subheadline and the blurbs are .caption1.

New in iOS 10, Dynamic Type fonts, for the first time since their introduction in iOS
7, are actually dynamic! You set the adjustsFontForContentSizeCategory property
of your UILabel, UITextField, or UITextView to true, and the Dynamic Type font
will respond automatically if the user changes the Text Size preference in the Settings
app. By adopting Dynamic Type in this way, you are requiring that your app’s inter‐
face respond to the possibility that text will grow and shrink, and that interface

606 | Chapter 10: Text

objects will need to change size in response, possibly necessitating some adjustment
of the overall layout; obviously, autolayout can be a big help here (Chapter 1).

Also new in iOS 10, the mechanism by which changes in the user’s Text Size prefer‐
ence are communicated to your app is the trait collection mechanism. The user’s Text
Size preference is the preferredContentSizeCategory of a traitCollection. To
learn the user’s preference, just read it from any convenient traitCollection (of a
view, a view controller, or the screen). If your code needs to hear actively when the
user’s preference changes, all you have to do is implement traitCollectionDid-
Change(_:). Apple suggests that in this way you might make some font in your inter‐
face respond to a change in the preferredContentSizeCategory, even if it is not a
Dynamic Type font or not in an interface object that implements adjustsFontFor-
ContentSizeCategory.

When you call preferredFont(forTextStyle:), the answer comes back in terms of
the current trait environment. To specify a Dynamic Type font in terms of some other
trait environment, call the UIFont convenience method preferredFont(forText-
Style:compatibleWith:) with a different UITraitCollection as the second parameter.

In the nib editor, wherever the Attributes inspector lets you supply a font for an inter‐
face object, the Dynamic Type roles are available in a pop-up menu. But you will have
to set the interface object’s adjustsFontForContentSizeCategory in code.

A UILabel in a UITableViewCell, if its font is a Dynamic Type font, is automati‐
cally responsive to changes in the user’s Text Size preference. There is no need to
set the label’s adjustsFontForContentSizeCategory.

Adding fonts
You are not limited to the fonts installed by default as part of the system. There are
two ways to obtain additional fonts:

Include a font in your app bundle
A font included at the top level of your app bundle will be loaded at launch time
if your Info.plist lists it under the “Fonts provided by application” key (UIApp-
Fonts).

Download a font in real time
All macOS fonts are available for download from Apple’s servers; you can obtain
and install one while your app is running.

Figure 10-1 shows a font included in the app bundle, along with the Info.plist entry
that lists it. Observe that what you’re listing here is the name of the font file.

To download a font in real time, you’ll have to specify the font as a font descriptor
(discussed in the next section) and drop down to the level of Core Text (import Core-

Fonts and Font Descriptors | 607

Figure 10-1. Embedding a font in an app bundle

Text) to call CTFontDescriptorMatchFontDescriptorsWithProgressHandler. It
takes a function which is called repeatedly at every stage of the download process; it
will be called on a background thread, so if you want to use the downloaded font
immediately in the interface, you must step out to the main thread (see Chapter 25).

In this example, I’ll attempt to use Nanum Brush Script as my UILabel’s font; if it isn’t
installed, I’ll attempt to download it and then use it as my UILabel’s font. I’ve inserted
a lot of unnecessary logging to mark the stages of the download process (using NSLog
because print isn’t thread-safe):

let name = "NanumBrush"
let size : CGFloat = 24
let f : UIFont! = UIFont(name:name, size:size)
if f != nil {
 self.lab.font = f
 print("already installed")
 return
}
print("attempting to download font")
let desc = UIFontDescriptor(name:name, size:size)
CTFontDescriptorMatchFontDescriptorsWithProgressHandler(
 [desc] as CFArray, nil, { state, prog in
 switch state {
 case .didBegin:
 NSLog("%@", "matching did begin")
 case .willBeginDownloading:
 NSLog("%@", "downloading will begin")
 case .downloading:
 let d = prog as NSDictionary
 let key = kCTFontDescriptorMatchingPercentage
 let cur = d[key]
 if let cur = cur as? NSNumber {
 NSLog("progress: %@%%", cur)
 }
 case .didFinishDownloading:
 NSLog("%@", "downloading did finish")
 case .didFailWithError:
 NSLog("%@", "downloading failed")
 case .didFinish:
 NSLog("%@", "matching did finish")
 DispatchQueue.main.async {
 let f : UIFont! = UIFont(name:name, size:size)

608 | Chapter 10: Text

Figure 10-2. A Dynamic Type font with an italic variant

 if f != nil {
 NSLog("%@", "got the font!")
 self.lab.font = f
 }
 }
 default:break
 }
 return true
 })

Font Descriptors
A font descriptor (UIFontDescriptor, toll-free bridged to Core Text’s CTFont‐
Descriptor) is a way of specifying a font, or converting between one font description
and another, in terms of its features. For example, given a font descriptor desc, you
can ask for a corresponding italic font descriptor like this:

let desc2 = desc.withSymbolicTraits(.traitItalic)

If desc was originally a descriptor for Avenir-Book 15, desc2 is now a descriptor for
Avenir-BookOblique 15. However, it is not the font Avenir-BookOblique 15; a font
descriptor is not a font.

You can obtain a font descriptor just as you would obtain a font, by calling its initial‐
izer init(name:size:). Alternatively, to convert from a font to a font descriptor, ask
for the font’s fontDescriptor property; to convert from a font descriptor to a font,
call the UIFont initializer init(descriptor:size:), typically supplying a size of 0 to
signify that the size should not change. Thus, this will be a common pattern in your
code, as you convert from font to font descriptor to perform some transformation,
and then back to font:

let f = UIFont(name: "Avenir", size: 15)!
let desc = f.fontDescriptor
let desc2 = desc.withSymbolicTraits(.traitItalic)
let f2 = UIFont(descriptor: desc2!, size: 0) // Avenir-BookOblique 15

This same technique is useful for obtaining styled variants of the Dynamic Type
fonts. A UIFontDescriptor class method, preferredFontDescriptor(withText-

Style:), saves you from having to start with a UIFont. In this example, I prepare to
form an NSAttributedString whose font is mostly UIFontTextStyle.body, but with
one italicized word (Figure 10-2):

Fonts and Font Descriptors | 609

Figure 10-3. A small caps font variant

let body = UIFontDescriptor.preferredFontDescriptor(withTextStyle:.body)
let emphasis = body.withSymbolicTraits(.traitItalic)!
fbody = UIFont(descriptor: body, size: 0)
femphasis = UIFont(descriptor: emphasis, size: 0)

This, by the way, is a situation where you might need to use the technique I men‐
tioned earlier, implementing traitCollectionDidChange(_:) in order to catch the
change in the user’s Text Size preference. The fbody font is a Dynamic Type font, but
the femphasis font is not. Thus, if we’re displaying a UILabel whose text comprises
stretches of both fbody and femphasis, and if we want this label to respond to the
user changing the Text Size preference, we’d have to form femphasis again and reap‐
ply it when the preferredContentSizeCategory trait changes.

You can explore a font’s features by way of a UIFontDescriptor. Some features are
available directly as properties, such as postscriptName and symbolicTraits. The
symbolicTraits is expressed as a bitmask, which in Swift appears as an Option Set:

let f = UIFont(name: "GillSans-BoldItalic", size: 20)!
let d = f.fontDescriptor
let traits = d.symbolicTraits
let isItalic = traits.contains(.traitItalic) // true
let isBold = traits.contains(.traitBold) // true

For other types of information, start with the name of an attribute whose value you
want and call object(forKey:). For example:

let f = UIFont(name: "GillSans-BoldItalic", size: 20)!
let d = f.fontDescriptor
let vis = d.object(forKey:UIFontDescriptorVisibleNameAttribute)!
// Gill Sans Bold Italic

Another use of font descriptors is to access hidden built-in typographical features of
individual fonts. To do so, you need to construct a dictionary containing two pieces
of information: the feature type and the feature selector. In this example, I’ll obtain a
variant of the Didot font that draws its minuscules as small caps (Figure 10-3):

let desc = UIFontDescriptor(name:"Didot", size:18)
let d = [
 UIFontFeatureTypeIdentifierKey:kLetterCaseType,
 UIFontFeatureSelectorIdentifierKey:kSmallCapsSelector
]
let desc2 = desc.addingAttributes(
 [UIFontDescriptorFeatureSettingsAttribute:[d]]
)
let f = UIFont(descriptor: desc2, size: 0)

610 | Chapter 10: Text

New in iOS 10, the system font (and thus the Dynamic Type font) can also portray
small caps; in fact, it can do this in two different ways. If the type and selector are
kUpperCaseType and kUpperCaseSmallCapsSelector, then uppercase characters are
shown as small caps. If the type and selector are kLowerCaseType and kLowerCase-
SmallCapsSelector, then lowercase characters are shown as small caps.

Another system (and Dynamic Type) font feature is an alternative set of glyph forms
designed for legibility, available with a type of kStylisticAlternativesType. If the
selector is kStylisticAltOneOnSelector, the 6 and 9 glyphs have straight tails. New
in iOS 10, if the selector is kStylisticAltSixOnSelector, certain letters also have
special distinguishing shapes; for example, the lowercase “l” (ell) has a curved bot‐
tom, to distinguish it from capital I which has a top and bottom bar.

Typographical feature identifier constants such as kSmallCapsSelector come from
the Core Text header SFNTLayoutTypes.h. What isn’t so clear is how you’re supposed
to discover what features a particular font contains. The simple answer is that you
have to drop down to the level of Core Text. For example:

let desc = UIFontDescriptor(name: "Didot", size: 20) as CTFontDescriptor
let f = CTFontCreateWithFontDescriptor(desc,0,nil)
let arr = CTFontCopyFeatures(f)

The resulting array of dictionaries includes entries CTFeatureTypeIdentifier:3,
which is kLetterCaseType, and CTFeatureSelectorIdentifier:3, which is kSmall-
CapsSelector. A more practical (and fun) approach to exploring a font’s features is to
obtain a copy of the font on the desktop, install it, open TextEdit, choose Format →
Font → Show Fonts, select the font, and open the Typography panel, thus exposing
the font’s various features. Now you can experiment on selected text.

Attributed Strings
Styled text — that is, text consisting of multiple style runs, with different font, size,
color, and other text features in different parts of the text — is expressed as an attrib‐
uted string. Attributed strings (NSAttributedString and its mutable subclass, NSMuta‐
bleAttributedString) have been around in iOS for a long time, but before iOS 6 they
were difficult to use — you had to drop down to the level of Core Text — and they
couldn’t be used at all in connection with UIKit interface classes such as UILabel and
UITextView. Thus, such interface classes couldn’t display styled text. In iOS 6,
NSAttributedString became a first-class citizen, able to draw styled text directly, and
itself drawable by built-in interface classes.

An NSAttributedString consists of an NSString (its string) plus the attributes,
applied in ranges. For example, if the string “one red word” is blue except for the
word “red” which is red, and if these are the only changes over the course of the
string, then there are three distinct style runs — everything before the word “red,” the

Attributed Strings | 611

word “red” itself, and everything after the word “red.” However, we can apply the
attributes in two steps, first making the whole string blue, and then making the word
“red” red, just as you would expect.

Attributed String Attributes
The attributes applied to a range of an attributed string are described in dictionaries.
Each possible attribute has a predefined name, used as a key in these dictionaries;
here are some of the most important attributes:

NSFontAttributeName

A UIFont. The default is Helvetica 12 (not San Francisco, the new system font).

NSForegroundColorAttributeName

The text color, a UIColor.

NSBackgroundColorAttributeName

The color behind the text, a UIColor. You could use this to highlight a word, for
example.

NSLigatureAttributeName

An NSNumber wrapping 0 or 1, expressing whether or not you want ligatures
used. Some fonts, such as Didot, have ligatures that are on by default.

NSKernAttributeName

An NSNumber wrapping the floating-point amount of kerning. A negative value
brings a glyph closer to the following glyph; a positive value adds space between
them.

NSStrikethroughStyleAttributeName

NSUnderlineStyleAttributeName

An NSNumber wrapping one of these values (NSUnderlineStyle) describing the
line weight:

• .styleNone

• .styleSingle

• .styleDouble

• .styleThick

Optionally, you may append a specification of the line pattern, with names
like .patternDot, .patternDash, and so on.

Optionally, you may append .byWord; if you do not, then if the underline or
strikethrough range involves multiple words, the whitespace between the words
will be underlined or struck through.

612 | Chapter 10: Text

The value corresponding to the NSStrikethroughStyleAttributeName key
needs to be an NSNumber, but Swift sees NSUnderlineStyle as an enum. There‐
fore, you will have to take its rawValue, and if you want to append another piece
of information such as the line pattern, you’ll have to use bitwise-or to form the
bitmask from two raw values. I regard this as a bug.

NSStrikethroughColorAttributeName

NSUnderlineColorAttributeName

A UIColor. If not defined, the foreground color is used.

NSStrokeWidthAttributeName

An NSNumber wrapping a Float. The stroke width is peculiarly coded. If it’s posi‐
tive, then the text glyphs are stroked but not filled, giving an outline effect, and
the foreground color is used unless a separate stroke color is defined. If it’s nega‐
tive, then its absolute value is the width of the stroke, and the glyphs are both
filled (with the foreground color) and stroked (with the stroke color).

NSStrokeColorAttributeName

The stroke color, a UIColor.

NSShadowAttributeName

An NSShadow object. An NSShadow is just a value class, combining a shadow-
Offset, shadowColor, and shadowBlurRadius.

NSTextEffectAttributeName

If defined, the only possible value is NSTextEffectLetterpressStyle.

NSAttachmentAttributeName

An NSTextAttachment object. A text attachment is basically an inline image. I’ll
discuss text attachments later on.

NSLinkAttributeName

A URL. In a noneditable, selectable UITextView, the link is tappable to go to the
URL (as I’ll explain later in this chapter). By default, appears as blue without an
underline in a UITextView. Appears as blue with an underline in a UILabel, but is
not a tappable link there.

NSBaselineOffsetAttributeName

NSObliquenessAttributeName

NSExpansionAttributeName

An NSNumber wrapping a Float.

NSParagraphStyleAttributeName

An NSParagraphStyle object. This is basically just a value class, assembling text
features that apply properly to paragraphs as a whole, not merely to characters,

Attributed Strings | 613

even if your string consists only of a single paragraph. Here are its most impor‐
tant properties:

• alignment (NSTextAlignment)
■ .left
■ .center
■ .right
■ .justified
■ .natural (left-aligned or right-aligned depending on the writing direc‐

tion)

• lineBreakMode (NSLineBreakMode)
■ .byWordWrapping
■ .byCharWrapping
■ .byClipping
■ .byTruncatingHead
■ .byTruncatingTail
■ .byTruncatingMiddle

• firstLineHeadIndent, headIndent (left margin), tailIndent (right margin)
• lineHeightMultiple, maximumLineHeight, minimumLineHeight
• lineSpacing

• paragraphSpacing, paragraphSpacingBefore
• hyphenationFactor (0 or 1)
• defaultTabInterval, tabStops (the tab stops are an array of NSTextTab

objects; I’ll give an example in a moment)
• allowsDefaultTighteningForTruncation (if true, permits some negative

kerning to be applied automatically to a truncating paragraph if this would
prevent truncation)

To construct an NSAttributedString, you can call init(string:attributes:) if the
entire string has the same attributes; otherwise, you’ll use its mutable subclass
NSMutableAttributedString, which lets you set attributes over a range.

To construct an NSParagraphStyle, you’ll use its mutable subclass NSMutable‐
ParagraphStyle. It is sufficient to apply a paragraph style to the first character of a
paragraph; to put it another way, the paragraph style of the first character of a para‐
graph dictates how the whole paragraph is rendered.

614 | Chapter 10: Text

Figure 10-4. An attributed string

Both NSAttributedString and NSParagraphStyle come with default values for all
attributes, so you only have to set the attributes you care about.

Making an Attributed String
We now know enough for an example! I’ll draw my attributed strings in a disabled
(noninteractive) UITextView; its background is white, but its superview’s background
is gray, so you can see the text view’s bounds relative to the text. (Ignore the text’s ver‐
tical positioning, which is configured independently as a feature of the text view
itself.)

First, two words of my attributed string are made extra-bold by stroking in a different
color. I start by dictating the entire string and the overall style of the text; then I apply
the special style to the two stroked words (Figure 10-4):

let s1 = "The Gettysburg Address, as delivered on a certain occasion " +
 "(namely Thursday, November 19, 1863) by A. Lincoln"
let content = NSMutableAttributedString(string:s1, attributes:[
 NSFontAttributeName:
 UIFont(name:"Arial-BoldMT", size:15)!,
 NSForegroundColorAttributeName:
 UIColor(red:0.251, green:0.000, blue:0.502, alpha:1)
])
let r = (s1 as NSString).range(of:"Gettysburg Address")
content.addAttributes([
 NSStrokeColorAttributeName: UIColor.red,
 NSStrokeWidthAttributeName: -2.0
], range: r)
self.tv.attributedText = content

Carrying on from the previous example, I’ll also make the whole paragraph centered
and indented from the edges of the text view. To do so, I create a paragraph style and
apply it to the first character. Note how the margins are dictated: the tailIndent is
negative, to bring the right margin leftward, and the firstLineHeadIndent must be
set separately, as the headIndent does not automatically apply to the first line
(Figure 10-5):

Attributed Strings | 615

Figure 10-5. An attributed string with a paragraph style

let para = NSMutableParagraphStyle()
para.headIndent = 10
para.firstLineHeadIndent = 10
para.tailIndent = -10
para.lineBreakMode = .byWordWrapping
para.alignment = .center
para.paragraphSpacing = 15
content.addAttribute(
 NSParagraphStyleAttributeName,
 value:para, range:NSMakeRange(0,1))
self.tv.attributedText = content

When working with a value class such as NSMutableParagraphStyle, it feels
clunky to be forced to instantiate the class and configure the instance before
using it for the one and only time. So I’ve written a little Swift generic function,
lend (see Appendix B), that lets me do all that in an anonymous function at the
point where the value class is used.

In this next example, I’ll enlarge the first character of a paragraph. I assign the first
character a larger font size, I expand its width slightly, and I reduce its kerning
(Figure 10-6):

let s2 = "Fourscore and seven years ago, our fathers brought forth " +
 "upon this continent a new nation, conceived in liberty and " +
 "dedicated to the proposition that all men are created equal."
content2 = NSMutableAttributedString(string:s2, attributes: [
 NSFontAttributeName: UIFont(name:"HoeflerText-Black", size:16)!
])
content2.addAttributes([
 NSFontAttributeName: UIFont(name:"HoeflerText-Black", size:24)!,
 NSExpansionAttributeName: 0.3,
 NSKernAttributeName: -4
], range:NSMakeRange(0,1))
self.tv.attributedText = content2

Carrying on from the previous example, I’ll once again construct a paragraph style
and add it to the first character. My paragraph style illustrates full justification and
automatic hyphenation (Figure 10-7):

616 | Chapter 10: Text

Figure 10-6. An attributed string with an expanded first character

Figure 10-7. An attributed string with justification and autohyphenation

content2.addAttribute(NSParagraphStyleAttributeName,
 value:lend {
 (para:NSMutableParagraphStyle) in
 para.headIndent = 10
 para.firstLineHeadIndent = 10
 para.tailIndent = -10
 para.lineBreakMode = .byWordWrapping
 para.alignment = .justified
 para.lineHeightMultiple = 1.2
 para.hyphenationFactor = 1.0
 }, range:NSMakeRange(0,1))
self.tv.attributedText = content2

Now we come to the Really Amazing Part. I can make a single attributed string con‐
sisting of both paragraphs, and a single text view can portray it (Figure 10-8):

let end = content.length
content.replaceCharacters(in:NSMakeRange(end, 0), with:"\n")
content.append(content2)
self.tv.attributedText = content

Tab stops

A tab stop is an NSTextTab, a value class whose initializer lets you set its location
(points from the left edge) and alignment. An options: dictionary lets you set the
tab stop’s column terminator characters; a common use is to create a decimal tab stop,
for aligning currency values at their decimal point. The key, in that case, is NSTab-

Attributed Strings | 617

Figure 10-8. A single attributed string comprising differently styled paragraphs

Figure 10-9. Tab stops in an attributed string

ColumnTerminatorsAttributeName; you can obtain a value appropriate to a given
locale by calling NSTextTab’s class method columnTerminators(for:).

Here’s an example (Figure 10-9); I have deliberately omitted the last digit from the
second currency value, to prove that the tab stop really is aligning the numbers at
their decimal points:

let s = "Onions\t$2.34\nPeppers\t$15.2\n"
let mas = NSMutableAttributedString(string:s, attributes:[
 NSFontAttributeName:UIFont(name:"GillSans", size:15)!,
 NSParagraphStyleAttributeName:lend {
 (p:NSMutableParagraphStyle) in
 let terms = NSTextTab.columnTerminators(for:Locale.current)
 let tab = NSTextTab(textAlignment:.right, location:170,
 options:[NSTabColumnTerminatorsAttributeName:terms])
 p.tabStops = [tab]
 p.firstLineHeadIndent = 20
 }
])
self.tv.attributedText = mas

In that code, I set the paragraph style’s entire tabStops array at once. The tabStops
array can also be modified by calling addTabStop(_:) or removeTabStop(_:) on the
paragraph style. However, a paragraph style comes with default tab stops, so you
might want to remove them, or replace the tabStops array with an empty array,
before you start adding tab stops.

618 | Chapter 10: Text

Figure 10-10. Text attachments in an attributed string

Text attachments
A text attachment is basically an inline image. To make one, you need an instance of
NSTextAttachment initialized with image data; the easiest way is to start with a
UIImage and assign it directly to the NSTextAttachment’s image property. You must
also give the NSTextAttachment a nonzero bounds; the image will be scaled to the size
of the bounds you provide, and a zero origin places the image on the text baseline.

A text attachment is attached to an NSAttributedString using the NSAttachment-
AttributeName key; the text attachment itself is the value. The range of the string that
has this attribute must be a special nonprinting character whose codepoint is
NSAttachmentCharacter (0xFFFC). The simplest way to arrange that is to call the
NSAttributedString initializer init(attachment:); you hand it an NSTextAttach‐
ment and it hands you an attributed string consisting of the NSAttachmentCharacter
with the NSAttachmentAttributeName attribute set to that text attachment. You can
then insert this attributed string into your own attributed string at the point where
you want the image to appear.

To illustrate, I’ll add an image of onions and an image of peppers just after the words
“Onions” and “Peppers” in the attributed string (mas) that I created in the previous
example (Figure 10-10):

let onions = // ... get image ...
let peppers = // ... get image ...
let onionatt = NSTextAttachment()
onionatt.image = onions
onionatt.bounds = CGRect(0,-5,onions.size.width,onions.size.height)
let onionattchar = NSAttributedString(attachment:onionatt)
let pepperatt = NSTextAttachment()
pepperatt.image = peppers
pepperatt.bounds = CGRect(0,-1,peppers.size.width,peppers.size.height)
let pepperattchar = NSAttributedString(attachment:pepperatt)
let r = (mas.string as NSString).range(of:"Onions")
mas.insert(onionattchar, at:(r.location + r.length))
let r2 = (mas.string as NSString).range(of:"Peppers")
mas.insert(pepperattchar, at:(r2.location + r2.length))
self.tv.attributedText = mas

Other ways to create an attributed string
The nib editor provides an ingenious interface for letting you construct attributed
strings wherever built-in interface objects (such as UILabel or UITextView) accept

Attributed Strings | 619

them as a property; it’s not perfect, however, and isn’t suitable for lengthy or complex
text.

It is also possible to import an attributed string from text in some other standard for‐
mat, such as HTML or RTF. To do so, get the target text into an NSData and call
init(data:options:documentAttributes:); alternatively, start with a file and call
init(url:options:documentAttributes:). The options: allow you to specify the
target text’s format. For example, here we read an RTF file from the app bundle as an
attributed string and show it in a UITextView:

let url = Bundle.main.url(forResource: "test", withExtension: "rtf")!
let opts = [NSDocumentTypeDocumentAttribute: NSRTFTextDocumentType]
var d : NSDictionary? = nil
let s = try! NSAttributedString(
 url: url, options: opts, documentAttributes: &d)
self.tv.attributedText = s

I have not experimented to see how much can get lost in the translation or whether
longer strings can cause a delay, but this is certainly an excellent way to generate
attributed strings painlessly. There are also corresponding export methods.

Modifying and Querying an Attributed String
Although attributes are applied to ranges, they actually belong to each individual char‐
acter. Thus we can coherently modify just the string part of a mutable attributed
string. The key method here is replaceCharacters(in:with:), which takes an
NSRange and a substitute string. It can be used to replace characters with a plain
string or, using a zero range length, to insert a plain string at the start, middle, or end
of an attributed string. The question is then what attributes will be applied to the
inserted string. The rule is:

• If we replace characters, the inserted string takes on the attributes of the first
replaced character.

• If we insert characters, the inserted string takes on the attributes of the character
preceding the insertion — except that, if we insert at the start, there is no preced‐
ing character, so the inserted string takes on the attributes of the character follow‐
ing the insertion.

You can query an attributed string about its attributes one character at a time — ask‐
ing either about all attributes at once with attributes(at:effectiveRange:), or
about a particular attribute by name with attribute(_:at:effectiveRange:). In
those methods, the effectiveRange parameter is a pointer to an NSRange variable,
which will be set by indirection to the range over which this same attribute value, or
set of attribute values, applies:

620 | Chapter 10: Text

var range : NSRange = NSMakeRange(0,0)
let d = content.attributes(at:content.length-1, effectiveRange:&range)

Because style runs are something of an artifice, the effectiveRange might not be
what you would think of as the entire style run. The methods with longestEffective-
Range: parameters do (at the cost of some efficiency) work out the entire style run
range for you. In practice, however, you typically don’t need the entire style run
range, because you’re cycling through ranges, and speed, even at the cost of more iter‐
ations, matters more than getting the longest effective range on every iteration.

In this example, I start with the combined two-paragraph Gettysburg Address attrib‐
uted string constructed earlier, and change all the size 15 material to Arial Bold 20. I
don’t care whether I’m handed longest effective ranges (and my code explicitly says
so); I just want to cycle efficiently:

content.enumerateAttribute(NSFontAttributeName,
 in:NSMakeRange(0,content.length),
 options:.longestEffectiveRangeNotRequired) {
 value, range, stop in
 let font = value as! UIFont
 if font.pointSize == 15 {
 content.addAttribute(NSFontAttributeName,
 value:UIFont(name: "Arial-BoldMT", size:20)!,
 range:range)
 }
 }

Custom Attributes
You are permitted to apply your own custom attributes to a stretch of text in an
attributed string. Your attributes won’t directly affect how the string is drawn, because
the text engine doesn’t know what to make of them; but it doesn’t object to them
either. In this way, you can mark a stretch of text invisibly for your own future use.

In this example, I have a UILabel containing some text and a date. Every so often, I
want to replace the date by the current date. The problem is that when the moment
comes to replace the date, I don’t know where it is: I know neither its length nor the
length of the text that precedes it. The solution is to use an attributed string, and to
mark the date with a secret custom attribute when I first insert it. My attribute is
called "HERE", and I’ve assigned it a value of 1. Now I can readily find the date again
later, because the text engine will tell me where it is:

let mas =
 self.lab.attributedText!.mutableCopy() as! NSMutableAttributedString
mas.enumerateAttribute("HERE", in: NSMakeRange(0, mas.length)) {
 value, r, stop in
 if let value = value as? Int, value == 1 {
 mas.replaceCharacters(in:r, with: Date().description)

Attributed Strings | 621

 stop.pointee = true
 }
}
self.lab.attributedText = mas

Drawing and Measuring an Attributed String
You can draw an attributed string directly, without hosting it in a built-in interface
object, and sometimes this will prove to be the most reliable approach. An NSString
can be drawn into a rect with draw(in:withAttributes:) and related methods; an
NSAttributedString can be drawn with draw(at:), draw(in:), and
draw(with:options:context:).

Here, I draw an attributed string, content, into an image graphics context and extract
the image (which might then be displayed by an image view):

let rect = CGRect(0,0,280,250)
let r = UIGraphicsImageRenderer(size:rect.size)
let im = r.image { ctx in
 let con = ctx.cgContext
 UIColor.white.setFill()
 con.fill(rect)
 content.draw(in:rect)
}

Similarly, you can draw an attributed string directly in a UIView’s draw(_:) override.
For example, imagine that we have a UIView subclass called StringDrawer that has an
attributedText property. The idea is that we just assign an attributed string to that
property and the StringDrawer redraws itself:

self.drawer.attributedText = content

And here’s StringDrawer:

class StringDrawer : UIView {
 @NSCopying var attributedText : NSAttributedString! {
 didSet {
 self.setNeedsDisplay()
 }
 }
 override func draw(_ rect: CGRect) {
 let r = rect.offsetBy(dx: 0, dy: 2)
 let opts : NSStringDrawingOptions = .usesLineFragmentOrigin
 self.attributedText.draw(with:r, options: opts, context: context)
 }
}

The use of .usesLineFragmentOrigin is crucial here. Without it, the string is drawn
with its baseline at the rect origin (so that it appears above that rect) and it doesn’t
wrap. The rule is that .usesLineFragmentOrigin is the implicit default for simple
draw(in:), but with draw(with:options:context:) you must specify it explicitly.

622 | Chapter 10: Text

NSAttributedString also provides methods to measure an attributed string, such as
boundingRect(with:options:context:). Again, the option .usesLineFragment-
Origin is crucial; without it, the measured text doesn’t wrap and the returned height
will be very small. The documentation warns that the returned height can be frac‐
tional and that you should round up with the ceil function if the height of a view is
going to depend on this result.

The context: parameter of methods such as draw(with:options:context:) lets you
attach an instance of NSStringDrawingContext, a simple value class whose total-
Bounds property tells you where you just drew.

Other features of NSStringDrawingContext, such as its minimumScaleFactor,
appear to be nonfunctional.

Labels
A label (UILabel) is a simple built-in interface object for displaying text. I listed some
of its chief properties in Chapter 8 (in “Built-In Cell Styles” on page 482).

If you’re displaying a plain NSString in a label, by way of the label’s text property,
then you are likely also to set its font, textColor, and textAlignment properties, and
possibly its shadowColor and shadowOffset properties. The label’s text can have an
alternate highlightedTextColor, to be used when its isHighlighted property is
true — as happens, for example, when the label is in a selected cell of a table view.

On the other hand, if you’re using an NSAttributedString, then you’ll set just the
label’s attributedText property and let the attributes dictate things like color, align‐
ment, and shadow. In general, if your intention is to display text in a single font, size,
color, and alignment, you probably won’t bother with attributedText; but if you do
set the attributedText, you should let it do all the work of dictating text style fea‐
tures. Those other UILabel properties do mostly still work, but they’re going to
change the attributes of your entire attributed string, in ways that you might not
intend. Setting the text of a UILabel that has attributedText will basically eliminate
the attributes.

The highlightedTextColor property affects the attributedText only if the lat‐
ter is the same color as the textColor.

Number of Lines
A UILabel’s numberOfLines property is extremely important. Together with the label’s
line breaking behavior and resizing behavior, it determines how much of the text will

Labels | 623

appear. The default is 1 — a single line — which can come as a surprise. To make a
label display more than one line of text, you must explicitly set its numberOfLines to a
value greater than 1, or to 0 to indicate that there is to be no maximum.

Line break characters in a label’s text are honored. Thus, for example, in a single-line
label, you won’t see whatever follows the first line break character.

Wrapping and Truncation
UILabel line breaking (wrapping) and truncation behavior, which applies to both
single-line and multiline labels, is determined by the lineBreakMode (of the label or
the attributed string). The options (NSLineBreakMode) are those that I listed earlier
in discussing NSParagraphStyle, but their behavior within a label needs to be
described:

.byClipping

Lines break at word-end, but the last line can continue past its boundary, even if
this leaves a character showing only partially.

.byWordWrapping

Lines break at word-end, but if this is a single-line label, indistinguishable
from .byClipping.

.byCharWrapping

Lines break in midword in order to maximize the number of characters in each
line.

.byTruncatingHead

.byTruncatingMiddle

.byTruncatingTail

Lines break at word-end; if the text is too long for the label, then the last line dis‐
plays an ellipsis at the start, middle, or end of the line respectively, and text is
omitted at the point of the ellipsis.

The default line break mode for a new label is .byTruncatingTail. But the default
line break mode for an attributed string’s NSParagraphStyle is .byWordWrapping.

Starting in iOS 9, allowsDefaultTighteningForTruncation, if true, permits some
negative kerning to be applied automatically to a truncating label if this would pre‐
vent truncation.

UILabel line break behavior is not the same as what happens when an
NSAttributedString draws itself in an image context or a plain UIView, as I
described earlier. An NSAttributedString whose NSParagraphStyle’s lineBreak-
Mode doesn’t have wrapping in its name doesn’t wrap when it draws itself — it
consists of a single line.

624 | Chapter 10: Text

Resizing a Label to Fit Its Text
If a label is too small for its text, the entire text won’t show. If a label is too big for its
text, the text is vertically centered in the label, with space above and below. Either of
those might be undesirable. You might like to shrink or grow a label to fit its text
exactly.

If you’re not using autolayout, in most simple cases sizeToFit will do the right thing;
I believe that behind the scenes it is calling boundingRect(with:options:context:).

There are cases where UILabel’s sizeToFit will misbehave. The problem arises
particularly with paragraph styles involving margins (headIndent and tail-
Indent) — presumably because boundingRect(with:options:context:)

ignores the margins.

If you’re using autolayout, a label will correctly configure its own intrinsicContent-
Size automatically, based on its contents — and therefore, all other things being
equal, will size itself to fit its contents with no code at all. Every time you reconfigure
the label in a way that affects its contents (setting its text, changing its font, setting its
attributed text, and so forth), the label automatically invalidates and recalculates its
intrinsic content size. There are two general cases to consider:

Short single-line label
You might give the label no width or height constraints; you’ll constrain its posi‐
tion, but you’ll let the label’s intrinsicContentSize provide both the label’s
width and its height.

Multiline label
In this case, it is more likely that you’ll want to dictate the label’s width, while let‐
ting the label’s height change automatically to accommodate its contents. There
are two ways to do this:

Set the label’s width constraint
This is appropriate particularly when the label’s width is to remain fixed ever
after.

Set the label’s preferredMaxLayoutWidth
This property is a hint to help the label’s calculation of its intrinsicContent-
Size. It is the width at which the label, as its contents increase, will stop
growing horizontally to accommodate those contents, and start growing ver‐
tically instead.

If a label’s width is to be permitted to vary because of constraints, you can tell it recal‐
culate its height to fit its contents by setting its preferredMaxLayoutWidth to its
actual width. For example, consider a label whose left and right edges are both pinned
to the superview. And imagine that the superview’s width can change, possibly due to

Labels | 625

rotation, thus changing the width of the label. Nevertheless, if the preferredMax-
LayoutWidth is adjusted after every such change, the label’s height will always per‐
fectly fit its contents.

So how will you ensure that the preferredMaxLayoutWidth is adjusted when the
label’s width changes? Before giving the label constraints and text, set its preferred-
MaxLayoutWidth to 0! This happens to be the default, so there is nothing to do. Now
the label will change its preferredMaxLayoutWidth automatically as its width
changes, and will therefore always fit its contents, with no further effort on your part.
Here’s an example of creating such a label in code:

let lab = UILabel() // preferredMaxLayoutWidth is 0
lab.translatesAutoresizingMaskIntoConstraints = false
self.view.addSubview(lab)
NSLayoutConstraint.activate([
 NSLayoutConstraint.constraints(withVisualFormat:
 "H:|-(30)-[v]-(30)-|",
 metrics: nil, views: ["v":lab]),
 NSLayoutConstraint.constraints(withVisualFormat:
 "V:|-(30)-[v]",
 metrics: nil, views: ["v":lab])
].flatMap{$0})
lab.attributedText = // whatever

You can also perform this configuration in the nib editor: at the top of the Size
inspector, uncheck the Explicit checkbox (if it is checked). The Preferred Width field
says “Automatic,” meaning that the preferredMaxLayoutWidth will change automati‐
cally to match the label’s actual width as dictated by its constraints.

Instead of letting a label grow, you can permit its text font size to shrink if this would
allow more of the text to fit. How the text is repositioned when the font size shrinks is
determined by the label’s baselineAdjustment property. For this feature to operate,
all of the following conditions must be the case:

• The label’s adjustsFontSizeToFitWidth property must be true.
• The label’s minimumScaleFactor must be less than 1.0.
• The label’s size must be limited.
• Either this must be a single-line label (numberOfLines is 1) or the line break mode

(of the label or the attributed string) must not have wrapping in its name.

Customized Label Drawing
Methods that you can override in a subclass to modify a label’s drawing are draw-
Text(in:) and textRect(forBounds:limitedToNumberOfLines:).

626 | Chapter 10: Text

For example, this is the code for a UILabel subclass that outlines the label with a black
rectangle and puts a five-point margin around the label’s contents:

class BoundedLabel: UILabel {
 override func awakeFromNib() {
 super.awakeFromNib()
 self.backgroundColor = .myPaler
 self.layer.borderWidth = 2.0
 self.layer.cornerRadius = 3.0
 }
 override func drawText(in rect: CGRect) {
 super.drawText(in: rect.insetBy(dx: 5, dy: 5).integral)
 }
}

A CATextLayer (Chapter 3) is like a lightweight, layer-level version of a UILabel.
If the width of the layer is insufficient to display the entire string, we can get
truncation behavior with the truncationMode property. If the isWrapped prop‐
erty is set to true, the string will wrap. We can also set the alignment with the
alignmentMode property. And its string property can be an NSAttributedString.

Text Fields
A text field (UITextField) portrays just a single line of text; any line break characters
in its text are treated as spaces. It has many of the same properties as a label. You can
provide it with a plain NSString, setting its text, font, textColor, and text-
Alignment, or provide it with an attributed string, setting its attributedText. You
can learn a text field’s overall text attributes as an attributes dictionary through its
defaultTextAttributes property.

Under autolayout, a text field’s intrinsicContentSize will attempt to set its width to
fit its contents; if its width is fixed, you can set its adjustsFontSizeToFitWidth and
minimumFontSize properties to allow the text size to shrink somewhat.

Text that is too long for the text field is displayed with an ellipsis at the end. A text
field has no lineBreakMode, but you can change the position of the ellipsis by assign‐
ing the text field an attributed string with different truncation behavior, such as .by-
TruncatingHead. When long text is being edited, the ellipsis (if any) is removed, and
the text shifts horizontally to show the insertion point.

Regardless of whether you originally supplied a plain string or an attributed string, if
the text field’s allowsEditingTextAttributes property is true, the user, when edit‐
ing in the text field, can summon a menu toggling the selected text’s bold, italics, or
underline features.

A text field has a placeholder property, which is the text that appears faded within
the text field when it has no text (its text or attributedText has been set to nil, or

Text Fields | 627

the user has removed all the text); the idea is that you can use this to suggest to the
user what the text field is for. It has a styled text alternative, attributedPlaceholder.

If a text field’s clearsOnBeginEditing property is true, it automatically deletes its
existing text (and displays the placeholder) when editing begins within it. If a text
field’s clearsOnInsertion property is true, then when editing begins within it, the
text remains, but is invisibly selected, and will be replaced by the user’s typing.

A text field’s border drawing is determined by its borderStyle property. Your options
(UITextFieldBorderStyle) are:

.none

No border.

.line

A plain black rectangle.

.bezel

A gray rectangle, where the top and left sides have a very slight, thin shadow.

.roundedRect

A larger rectangle with slightly rounded corners and a flat, faded gray color.

You can supply a background image (background); if you combine this with a border-
Style of .none, or if the image has no transparency, you thus get to supply your own
border — unless the borderStyle is .roundedRect, in which case the background is
ignored. The image is automatically resized as needed (and you will probably supply
a resizable image). A second image (disabledBackground) can be displayed when the
text field’s isEnabled property, inherited from UIControl, is false. The user can’t
interact with a disabled text field, but without a disabledBackground image, the user
may lack any visual clue to this fact (though a .line or .roundedRect disabled text
field is subtly different from an enabled one). You can’t set the disabledBackground
unless you have also set the background.

A text field may contain one or two ancillary overlay views, its leftView and right-
View, and possibly a Clear button (a gray circle with a white X). The automatic visibil‐
ity of each of these is determined by the leftViewMode, rightViewMode, and
clearButtonMode, respectively. The view mode values (UITextFieldViewMode) are:

.never

The view never appears.

.whileEditing

A Clear button appears if there is text in the field and the user is editing. A left or
right view appears if there is no text in the field and the user is editing.

628 | Chapter 10: Text

.unlessEditing

A Clear button appears if there is text in the field and the user is not editing. A
left or right view appears if the user is not editing, or if the user is editing but
there is no text in the field.

.always

A Clear button appears if there is text in the field. A left or right view always
appears.

Depending on what sort of view you use, your leftView and rightView may have to
be sized manually so as not to overwhelm the text view contents. If a right view and a
Clear button appear at the same time, the right view may cover the Clear button
unless you reposition it.

The positions and sizes of any of the components of the text field can be set in rela‐
tion to the text field’s bounds by overriding the appropriate method in a subclass:

• clearButtonRect(forBounds:)

• leftViewRect(forBounds:)

• rightViewRect(forBounds:)

• borderRect(forBounds:)

• textRect(forBounds:)

• placeholderRect(forBounds:)

• editingRect(forBounds:)

You should make no assumptions about when or how frequently these methods
will be called; the same method might be called several times in quick succession.
Also, these methods should all be called with a parameter that is the bounds of
the text field, but some are sometimes called with a 100×100 bounds; this feels
like a bug.

You can also override in a subclass the methods drawText(in:) and draw-
Placeholder(in:). You should either draw the specified text or call super to draw it;
if you do neither, the text won’t appear. Both these methods are called with a parame‐
ter whose size is the dimensions of the text field’s text area, but whose origin is .zero.
In effect what you’ve got is a graphics context for just the text area; any drawing you
do outside the given rectangle will be clipped.

Summoning and Dismissing the Keyboard
Making the onscreen simulated keyboard appear when the user taps in a text field is
no work at all — it’s automatic. Making the keyboard vanish again, on the other hand,

Text Fields | 629

can be a bit tricky. (Another problem is that the keyboard can cover the text field that
the user just tapped in; I’ll talk about that in a moment.)

The presence or absence of the keyboard, and a text field’s editing state, are intimately
tied to one another, and to the text field’s status as the first responder:

• When a text field is first responder, it is being edited and the keyboard is present.
• When a text field is no longer first responder, it is no longer being edited, and if

no other text field (or text view) becomes first responder, the keyboard is not
present. The keyboard is not dismissed if one text field takes over first responder
status from another.

Thus, you can programmatically control the presence or absence of the keyboard,
together with a text field’s editing state, by way of the text field’s first responder status:

Becoming first responder
To make the insertion point appear within a text field and to cause the keyboard
to appear, you send becomeFirstResponder to that text field.

You won’t typically have to do that; usually, the user will tap in a text field and it
will become first responder automatically. Still, sometimes it’s useful to make a
text field the first responder programmatically; an example appeared in Chap‐
ter 8 (“Inserting Cells” on page 539).

Resigning first responder
To make a text field stop being edited and to cause the keyboard to disappear, you
send resignFirstResponder to that text field. (Actually, resignFirstResponder
returns a Bool, because a responder might return false to indicate that for some
reason it refuses to obey this command.)

Alternatively, call the UIView endEditing(_:) method on the first responder or
any superview (including the window) to ask or compel the first responder to
resign first responder status.

In a view presented in the .formSheet modal presentation style on the iPad
(Chapter 6), the keyboard, by default, does not disappear when a text field resigns
first responder status. This is presumably because a form sheet is intended pri‐
marily for text input, so the keyboard is felt as accompanying the form as a
whole, not individual text fields. Optionally, you can prevent this exceptional
behavior: in your UIViewController subclass, override disablesAutomatic-
KeyboardDismissal to return false.

There is no simple way to learn what view is first responder! This is very odd, because
a window surely knows what its first responder is — but it won’t tell you. There’s a
method isFirstResponder, but you’d have to send it to every view in a window until
you find the first responder. One workaround is to store a reference to the first res‐

630 | Chapter 10: Text

ponder yourself, typically in your implementation of the text field delegate’s text-
FieldDidBeginEditing(_:).

Once the user has tapped in a text field and the keyboard has automatically appeared,
how is the user supposed to get rid of it? On the iPad, and on the iPhone in land‐
scape, the keyboard may contain a button that dismisses the keyboard. Otherwise,
this is an oddly tricky issue. You would think that the Return key in the keyboard
would dismiss the keyboard, since you can’t enter a Return character in a text field;
but, of itself, it doesn’t.

One solution is to be the text field’s delegate and to implement a text field delegate
method, textFieldShouldReturn(_:). When the user taps the Return key in the key‐
board, we hear about it through this method, and we tell the text field to resign its
first responder status, which dismisses the keyboard:

func textFieldShouldReturn(_ tf: UITextField) -> Bool {
 tf.resignFirstResponder()
 return true
}

(Certain keyboards lack even a Return key. In that case, you’ll need some other way to
allow the user to dismiss the keyboard. I’ll return to this issue in a moment.)

Keyboard Covers Text Field
The keyboard, having appeared, has a position “docked” at the bottom of the screen.
This may cover the text field in which the user wants to type, even if it is first res‐
ponder. On the iPad, this may not be an issue, because the user can “undock” the key‐
board (possibly also splitting and shrinking it) and slide it up and down the screen
freely. On the iPhone, you’ll typically want to do something to reveal the text field.

To help with this, you can register for keyboard-related notifications:

• .UIKeyBoardWillShow

• .UIKeyBoardDidShow

• .UIKeyBoardWillHide

• .UIKeyBoardDidHide

Those notifications all have to do with the docked position of the keyboard. On the
iPhone, keyboard docking and keyboard visibility are equivalent: the keyboard is visi‐
ble if and only if it is docked. On the iPad, the keyboard is said to show if it is being
docked, whether that’s because it is appearing from offscreen or because the user is
docking it; and it is said to hide if it is undocked, whether that’s because it is moving
offscreen or because the user is undocking it.

Text Fields | 631

Two additional notifications are sent both when the keyboard enters and leaves the
screen and (on the iPad) when the user drags it, splits or unsplits it, and docks or
undocks it:

• .UIKeyBoardWillChangeFrame

• .UIKeyBoardDidChangeFrame

The notification’s userInfo dictionary contains information about the keyboard
describing what it will do or has done, under these keys:

• UIKeyboardFrameBeginUserInfoKey

• UIKeyboardFrameEndUserInfoKey

• UIKeyboardAnimationDurationUserInfoKey

• UIKeyboardAnimationCurveUserInfoKey

Thus, to a large extent, you can coordinate your actions with those of the keyboard.
In particular, by looking at the UIKeyboardFrameEndUserInfoKey, you know what
position the keyboard is moving to; you can compare this with the screen bounds to
learn whether the keyboard will now be on or off the screen and, if it will now be on
the screen, you can see whether it will cover a text field.

Finding a strategy for dealing with the keyboard’s presence depends on the needs of
your particular app. I’ll concentrate on the most universal case, where the keyboard
moves into and out of docked position and we detect this with .UIKeyBoardWillShow
and .UIKeyBoardWillHide. What should we do if, when the keyboard is shown, it
covers the text field being edited?

One natural-looking approach is to slide the entire interface upward as the keyboard
appears, just enough to expose the text field being edited above the top of the key‐
board. The simplest way to do that is for the entire interface to be inside a scroll view
(Chapter 7), which is, after all, a view that knows how to slide its contents.

This scroll view need not be ordinarily scrollable by the user — nor, in fact, does it
need to be scrollable by the user even after the keyboard appears, as our purpose is to
use it merely to slide the interface. But it will be better if, after the keyboard appears,
the scroll view is scrollable by the user, because the user will then be able to view the
entire interface at will, even while the keyboard is covering part of it. This is a job for
contentInset, whose purpose, you will recall, is precisely to make it possible for the
user to view all of the scroll view’s content even though part of the scroll view is being
covered by something.

This behavior is in fact implemented automatically by a UITableViewController.
When a text field inside a table cell is first responder, the table view controller adjusts

632 | Chapter 10: Text

the table view’s contentInset and scrollIndicatorInsets to compensate for the
keyboard. The result is that the entire table view content is available within the space
between the top of the table view and the top of the keyboard.

Moreover, a scroll view has two additional bits of built-in behavior that will help us:

• It scrolls automatically to reveal the first responder. This will make it easy for us
to expose the text field being edited.

• It has a keyboardDismissMode, governing what will happen to the keyboard
when the user scrolls. This can give us an additional way to allow the user to dis‐
miss the keyboard.

Let’s imitate UITableViewController’s behavior with a scroll view containing text
fields. In particular, our interface consists of a scroll view containing a content view;
the content view contains several text fields.

In viewDidLoad, we register for keyboard notifications:

NotificationCenter.default.addObserver(self,
 selector: #selector(keyboardShow),
 name: .UIKeyboardWillShow, object: nil)
NotificationCenter.default.addObserver(self,
 selector: #selector(keyboardHide),
 name: .UIKeyboardWillHide, object: nil)

We are the delegate of any text fields, so that we can hear about it when the user taps
the Return key in the keyboard. We use that as a signal to dismiss the keyboard, as I
suggested in the preceding section:

func textFieldShouldReturn(_ tf: UITextField) -> Bool {
 tf.resignFirstResponder()
 return true
}

When the keyboard appears, we first keep track of the fact that it is appearing; this is
because we can receive spurious .UIKeyboardWillShow notifications when the key‐
board is already showing, and we don’t want to do anything in that case. We then
store the current content offset, content inset, and scroll indicator insets; finally, we
alter the insets and allow the scroll view to scroll the first responder into view for us:

func keyboardShow(_ n:Notification) {
 if self.keyboardShowing {
 return
 }
 self.keyboardShowing = true
 self.oldContentInset = self.scrollView.contentInset
 self.oldIndicatorInset = self.scrollView.scrollIndicatorInsets
 self.oldOffset = self.scrollView.contentOffset
 let d = n.userInfo!
 var r = (d[UIKeyboardFrameEndUserInfoKey] as! NSValue).cgRectValue

Text Fields | 633

 r = self.scrollView.convert(r, from:nil)
 self.scrollView.contentInset.bottom = r.size.height
 self.scrollView.scrollIndicatorInsets.bottom = r.size.height
}

When the keyboard disappears, we reverse the process, which means that we simply
restore the saved values:

func keyboardHide(_ n:Notification) {
 if !self.keyboardShowing {
 return
 }
 self.keyboardShowing = false
 self.scrollView.contentOffset = self.oldOffset
 self.scrollView.scrollIndicatorInsets = self.oldIndicatorInset
 self.scrollView.contentInset = self.oldContentInset
}

Meanwhile, behind the scenes, we are already in an animations function at the time
that our notifications arrive. This means that our changes to the scroll view’s offset
and insets are nicely animated in coordination with the appearance and disappeance
of the keyboard.

A secondary benefit of having a flag that keeps track of whether the keyboard is
showing is that we can prevent rotation of the interface when the keyboard is
onscreen. I like to do that, as it simplifies matters considerably:

override var shouldAutorotate : Bool {
 return !self.keyboardShowing
}

A secondary benefit of using a UIScrollView, as I mentioned earlier, is that its
keyboardDismissMode provides ways of letting the user dismiss the keyboard. The
options (UIScrollViewKeyboardDismissMode) are:

.none

The default; if the keyboard doesn’t contain a button that lets the user dismiss it,
we must use code to dismiss it.

.interactive

The user can dismiss the keyboard by dragging it down.

.onDrag

The keyboard dismisses itself if the user scrolls the scroll view.

A scroll view with a keyboardDismissMode that isn’t .none, in addition to hiding the
keyboard, also calls resignFirstResponder on the text field. I like
using .interactive in this situation. Such a scroll view is a great alternative or sup‐
plement to our misuse of textFieldShouldReturn(_:) as a way of removing the key‐
board.

634 | Chapter 10: Text

iPad Multitasking and the Keyboard
Under iPad multitasking, your app can receive keyboard show and hide notifications
if another app summons or dismisses the keyboard. This makes sense because the
keyboard is, after all, covering your app. You can distinguish whether your app was
responsible for summoning the keyboard by examining the show notification user-
Info dictionary’s UIKeyboardIsLocalUserInfoKey; but in general you won’t have to.
If you were handling keyboard notifications coherently before iPad multitasking
came along, you are probably still handling them coherently; besides, getting out of
the keyboard’s way isn’t such an issue on the iPad, because the user can move the key‐
board if it’s covering something.

Configuring the Keyboard
A UITextField adopts the UITextInputTraits protocol, which defines properties on
the UITextField that you can set to determine how the keyboard will look and how
typing in the text field will behave. (These properties can also be set in the nib editor.)
For example, you can set the keyboardType to .phonePad to make the keyboard for
this text field consist of digits. You can set the returnKeyType to determine the text of
the Return key (if the keyboard is of a type that has one). You can give the keyboard a
dark or light shade (keyboardAppearance). You can turn off autocapitalization or
autocorrection (autocapitalizationType, autocorrectionType), make the Return
key disable itself if the text field has no content (enablesReturnKeyAutomatically),
and make the text field a password field (secureTextEntry).

You can attach an accessory view to the top of the keyboard by setting the text field’s
inputAccessoryView. In this example, the accessory view contains a button that lets
the user navigate to the next text field. The accessory view is loaded from a nib and is
available through a property, self.accessoryView. When editing starts, we configure
the keyboard and store a reference to the text field:

func textFieldDidBeginEditing(_ tf: UITextField) {
 self.fr = tf // keep track of first responder
 tf.inputAccessoryView = self.accessoryView
}

We have an array property populated with references to all our text fields (this might
be an appropriate use of an outlet collection). The accessory view contains a Next
button. The button’s action method moves editing to the next text field:

Text Fields | 635

func doNextButton(_ sender: Any) {
 var ix = self.textFields.index(of:self.fr as! UITextField)!
 ix = (ix + 1) % self.textFields.count
 let v = self.textFields[ix]
 v.becomeFirstResponder()
}

Observe that this same technique can also provide us with a way to let the user dis‐
miss keyboards whose type has no Return key, such as .numberPad, .phonePad,
and .decimalPad. Apparently this is exactly what Apple expects you to do; if you
don’t want to use an accessory view, perhaps you’ll have a Done button elsewhere in
the interface (and of course, as we’ve already seen, a scroll view’s keyboardDismiss-
Mode can solve the problem too).

You can even supply your own keyboard or other input mechanism by setting the text
field’s inputView. In this example, our text field’s keyboard is replaced by a UIPicker‐
View that allows the user to choose from the names of the three Pep Boys. We are the
text field’s delegate, so we can detect when the user starts editing as a moment to per‐
form the replacement; we also supply a Done button as an input accessory view:

extension ViewController: UITextFieldDelegate {
 func textFieldDidBeginEditing(_ textField: UITextField) {
 let p = UIPickerView()
 p.delegate = self
 p.dataSource = self
 self.tf.inputView = p
 // also supply a Done button
 let b = UIButton(type: .system)
 b.setTitle("Done", for: .normal)
 b.sizeToFit()
 b.addTarget(self, action: #selector(doDone), for: .touchUpInside)
 b.backgroundColor = UIColor.lightGray
 self.tf.inputAccessoryView = b
 }
}
extension ViewController : UIPickerViewDelegate, UIPickerViewDataSource {
 var pep : [String] {return ["Manny", "Moe", "Jack"]}
 func numberOfComponents(in pickerView: UIPickerView) -> Int {
 return 1
 }
 func pickerView(_ pickerView: UIPickerView,
 numberOfRowsInComponent component: Int) -> Int {
 return pep.count
 }
 func pickerView(_ pickerView: UIPickerView,
 titleForRow row: Int, forComponent component: Int) -> String? {
 return self.pep[row]
 }
 func pickerView(_ pickerView: UIPickerView,

636 | Chapter 10: Text

 didSelectRow row: Int, inComponent component: Int) {
 self.tf.text = self.pep[row]
 }
}

Instead of using the picker view itself as the inputView, I think Apple would prefer
that we use a UIInputView:

let p = // ... as before
let iv = UIInputView(frame: CGRect(origin:.zero, size:CGSize(200,200)),
 inputViewStyle: .keyboard)
iv.addSubview(p)
p.translatesAutoresizingMaskIntoConstraints = false
NSLayoutConstraint.activate([
 p.leadingAnchor.constraint(equalTo: iv.leadingAnchor),
 p.trailingAnchor.constraint(equalTo: iv.trailingAnchor),
 p.centerYAnchor.constraint(equalTo: iv.centerYAnchor)
])
self.tf.inputView = iv

Starting in iOS 8, your app can supply other apps with a keyboard. See the “Cus‐
tom Keyboard” chapter of Apple’s App Extension Programming Guide.

Starting in iOS 9, bar button items can appear on the iPad in the spelling suggestion
bar at the top of the keyboard. You can modify those bar button items. The spelling
suggestion bar is the text field’s inputAssistantItem (inherited from UIResponder),
and it has leadingBarButtonGroups and trailingBarButtonGroups. A button group
is a UIBarButtonItemGroup, an array of UIBarButtonItems along with an optional
representativeItem to be shown if there isn’t room for the whole array; if the repre‐
sentative item has no target–action pair, tapping it will summon a popover contain‐
ing the actual group.

In this example, we add a Camera bar button item to the right (trailing) side of the
spelling suggestion bar for our text field (self.tf):

let bbi = UIBarButtonItem(
 barButtonSystemItem: .camera, target: self, action: #selector(doCamera))
let group = UIBarButtonItemGroup(
 barButtonItems: [bbi], representativeItem: nil)
let shortcuts = self.tf.inputAssistantItem
shortcuts.trailingBarButtonGroups.append(group)

The user can control the localization of the keyboard character set in the Settings app,
either through a choice of the system’s base language or with General → Keyboard →
Keyboards (and possibly Add New Keyboard). In the latter case, the user can switch
among keyboard character sets while the keyboard is showing. But, as far as I can tell,
your code can’t make this choice; you cannot, for example, force a certain text field to
display the Cyrillic keyboard. You can ask the user to switch keyboards manually, but

Text Fields | 637

if you really want a particular keyboard to appear regardless of the user’s settings and
behavior, you’ll have to create it yourself and provide it as the inputView.

Text Field Delegate and Control Event Messages
As editing begins and proceeds in a text field, various messages are sent to the text
field’s delegate, adopting the UITextFieldDelegate protocol. Some of these messages
are also available as notifications. Using them, you can customize the text field’s
behavior during editing:

textFieldShouldBeginEditing(_:)

Return false to prevent the text field from becoming first responder.

textFieldDidBeginEditing(_:)

.UITextFieldTextDidBeginEditing

The text field has become first responder.

textFieldShouldClear(_:)

Return false to prevent the operation of the Clear button or of automatic clear‐
ing on entry (clearsOnBeginEditing). This event is not sent when the text is
cleared because clearsOnInsertion is true, because the user is not clearing the
text but rather changing it.

textFieldShouldReturn(_:)

The user has tapped the Return button in the keyboard. We have already seen
that this can be used as a signal to dismiss the keyboard.

textField(_:shouldChangeCharactersIn:replacementString:)

.UITextFieldTextDidChange

In the delegate method, you can distinguish whether the user is typing or pasting,
on the one hand, or backspacing or cutting, on the other; in the latter case, the
replacement string will have zero length. Return false to prevent the proposed
change; you can substitute text by changing the text field’s text directly (there is
no circularity, as this delegate method is not called when you do that).

In this example, the user can enter only lowercase characters:

func textField(_ textField: UITextField,
 shouldChangeCharactersIn range: NSRange,
 replacementString string: String) -> Bool {
 if string == "\n" {
 return true
 }
 let lc = string.lowercased()

638 | Chapter 10: Text

 textField.text = (textField.text! as NSString)
 .replacingCharacters(in:range, with:lc)
 return false
}

It is common practice to implement textField(_:shouldChangeCharacters-
In:replacementString:) as a way of learning that the text has been changed,
even if you then always return true. You are not notified when the user changes
text styling through the Bold, Italics, or Underline menu items.

textFieldShouldEndEditing(_:)

Return false to prevent the text field from resigning first responder (even if you
just sent resignFirstResponder to it). You might do this, for example, because
the text is invalid or unacceptable in some way. The user will not know why the
text field is refusing to end editing, so the usual thing is to put up an alert (Chap‐
ter 13) explaining the problem.

textFieldDidEndEditing(_:)

.UITextFieldTextDidEndEditing

The text field has resigned first responder. See Chapter 8 (“Editable Content in
Cells” on page 537) for an example of using textFieldDidEndEditing(_:) to
fetch the text field’s current text and store it in the model.

A text field is also a control (UIControl; see also Chapter 12). This means you can
attach a target–action pair to any of the events that it reports in order to receive a
message when that event occurs:

• The user can touch and drag, triggering Touch Down and the various Touch
Drag events.

• If the user touches in such a way that the text field enters edit mode (and the key‐
board appears), Editing Did Begin and Touch Cancel are triggered; if the user
causes the text field to enter edit mode in some other way (such as by tabbing
into it), Editing Did Begin is triggered without any Touch events.

• As the user edits (including changing attributes), Editing Changed is triggered.
• If the user taps while in edit mode, Touch Down (and possibly Touch Down

Repeat) and Touch Cancel are triggered.
• When editing ends, Editing Did End is triggered; if the user stops editing by tap‐

ping Return in the keyboard, Did End on Exit is triggered first.

In general, you’re more likely to treat a text field as a text field (through its delegate
messages) than as a control (through its control events). However, the Did End on
Exit event message has an interesting property: it provides an alternative way to dis‐
miss the keyboard when the user taps a text field keyboard’s Return button. If there is
a Did End on Exit target–action pair for this text field, then if the text field’s delegate

Text Fields | 639

does not return false from textFieldShouldReturn(_:), the keyboard will be dis‐
missed automatically when the user taps the Return key. The action handler for Did
End on Exit doesn’t actually have to do anything.

Thus we have a splendid trick for getting automatic keyboard dismissal with no code
at all. In the nib editor, edit the First Responder proxy object in the Attributes inspec‐
tor, adding a new First Responder Action; let’s call it dummy:. Now hook the Did End
on Exit event of the text field to the dummy: action of the First Responder proxy
object. That’s it! Because the text field’s Did End on Exit event now has a target–
action pair, the text field automatically dismisses its keyboard when the user taps
Return; there is no penalty for not finding a handler for a message sent up the res‐
ponder chain, so the app doesn’t crash even though there is no implementation of
dummy: anywhere.

Alternatively, you can implement the same trick in code. In this example, I create a
UITextField subclass that automatically dismisses itself when the user taps Return:

@objc protocol Dummy {
 func dummy(_ sender: Any?)
}
class MyTextField: UITextField {
 required init?(coder aDecoder: NSCoder) {
 super.init(coder:aDecoder)
 self.addTarget(nil,
 action:#selector(Dummy.dummy), for:.editingDidEndOnExit)
 }
}

A disabled text field emits no delegate messages or control events.

Text Field Menu
When the user double-taps or long-presses in a text field, the menu appears. It con‐
tains menu items such as Select, Select All, Paste, Copy, Cut, and Replace; which
menu items appear depends on the circumstances. Many of the selectors for these
standard menu items are listed in the UIResponderStandardEditActions protocol.
Commonly used standard actions are:

• cut(_:)

• copy(_:)

• select(_:)

• selectAll(_:)

• paste(_:)

640 | Chapter 10: Text

• delete(_:)

• toggleBoldface(_:)

• toggleItalics(_:)

• toggleUnderline(_:)

Some other menu items are known only through their Objective-C selectors:

• _promptForReplace:

• _define:

• _showTextStyleOptions:

The menu can be customized; just as with a table view cell’s menus (Chapter 8), this
involves setting the shared UIMenuController object’s menuItems property to an
array of UIMenuItem instances representing the menu items that may appear in addi‐
tion to those that the system puts there.

Actions for menu items are nil-targeted, so they percolate up the responder chain.
You can thus implement a menu item’s action anywhere up the responder chain; if
you do this for a standard menu item at a point in the responder chain before the sys‐
tem receives it, you can interfere with and customize what it does. You govern the
presence or absence of a menu item by implementing the UIResponder method can-
PerformAction(_:withSender:) in the responder chain.

As an example, we’ll devise a text field whose menu includes our own menu item,
Expand. I’m imagining here, for instance, a text field where the user can select a U.S.
state two-letter abbreviation (such as “CA”) and can then summon the menu and tap
Expand to replace it with the state’s full name (such as “California”).

I’ll implement this in a UITextField subclass called MyTextField, in order to guaran‐
tee that the Expand menu item will be available when an instance of this subclass is
first responder, but at no other time. My subclass has a property, self.list, which
has been set to a dictionary whose keys are state name abbreviations and whose val‐
ues are the corresponding state names. A utility function looks up an abbreviation in
the dictionary:

func state(for abbrev:String) -> String? {
 return self.list[abbrev.uppercased()]
}

At some moment before the user taps in an instance of MyTextField (such as viewDid-
Load), we modify the global menu:

let mi = UIMenuItem(title:"Expand", action:#selector(MyTextField.expand))
let mc = UIMenuController.shared
mc.menuItems = [mi]

Text Fields | 641

We implement canPerformAction(_:withSender:) to govern the contents of the
menu. Let’s presume that we want our Expand menu item to be present only if the
selection consists of a two-letter state abbreviation. UITextField itself provides no way
to learn the selected text, but it conforms to the UITextInput protocol, which does:

override func canPerformAction(_ action: Selector,
 withSender sender: Any?) -> Bool {
 if action == #selector(expand),
 let r = self.selectedTextRange,
 let s = self.text(in:r) {
 return s.characters.count == 2 && self.state(for:s) != nil
 }
 return super.canPerformAction(action, withSender:sender)
}

When the user chooses the Expand menu item, the expand message is sent up the res‐
ponder chain. We catch it in our UITextField subclass and obey it by replacing the
selected text with the corresponding state name:

func expand(_ sender: Any?) {
 if let r = self.selectedTextRange,
 let s = self.text(in:r),
 let ss = self.state(for:s) {
 self.replace(r, withText:ss)
 }
}

We can also implement the selector for, and thus modify the behavior of, any of the
standard menu items. For example, I’ll implement copy(_:) and modify its behavior.
First we call super to get standard copying behavior; then we modify what’s now on
the pasteboard:

override func copy(_ sender:Any?) {
 super.copy(sender)
 let pb = UIPasteboard.general
 if let s = pb.string {
 let ss = // ... alter s here ...
 pb.string = ss
 }
}

Implementing toggleBoldface(_:), toggleItalics(_:), and toggle-

Underline(_:) is probably the best way to get an event when the user changes
these attributes.

Text Views
A text view (UITextView) is a scroll view subclass (UIScrollView); it is not a control.
Many of its properties are similar to those of a text field:

642 | Chapter 10: Text

• A text view has text, font, textColor, and textAlignment properties; it can be
user-editable or not, according to its editable property.

• A text view has attributedText, allowsEditingTextAttributes, and typing-
Attributes properties, as well as clearsOnInsertion.

• An editable text view governs its keyboard just as a text field does: when it is first
responder, it is being edited and shows the keyboard, and it adopts the UIText‐
Input protocol and has inputView and inputAccessoryView properties.

• A text view’s menu works the same way as a text field’s.

A text view provides information about, and control of, its selection: it has a
selectedRange property which you can get and set, along with a scrollRangeTo-
Visible(_:) method so that you can scroll in terms of a range of its text.

A text view’s delegate messages (UITextViewDelegate protocol) and notifications, too,
are similar to those of a text field. The following delegate methods and notifications
should have a familiar ring:

• textViewShouldBeginEditing(_:)

• textViewDidBeginEditing(_:) and .UITextViewTextDidBeginEditing
• textViewShouldEndEditing(_:)

• textViewDidEndEditing(_:) and .UITextViewTextDidEndEditing
• textView(:shouldChangeTextIn:replacementText:)

Some differences are:

textViewDidChange(_:) and .UITextViewTextDidChange
Sent when the user changes text or attributes. A text field has no corresponding
delegate method, though the Editing Changed control event and notification are
similar.

textViewDidChangeSelection(_:)

Sent when the user changes the selection. In contrast, a text field is officially
uninformative about the selection (though you can learn about and manipulate a
UITextField’s selection by way of the UITextInput protocol).

A text view’s delegate can also decide how to respond when the user taps on a text
attachment or a link. The text view must have its isSelectable property set to true,
and its isEditable property set to false:

Text Views | 643

textView(_:shouldInteractWith:in:interaction:)

The third parameter is a range. The last parameter (new in iOS 10) tells you what
the user is doing: .invokeDefaultAction means tap, .presentActions means
long press, .preview means 3D touch. Comes in two forms:

The second parameter is a URL
The user is interacting with a link. The default is true. Default responses are:

• .invokeDefaultAction: the URL is opened in Safari.
• .presentActions: an action sheet is presented, with menu items Open,

Add to Reading List, Copy, and Share.
• .preview: a preview of the web page is presented, along with menu

items Open Link, Add to Reading List, and Copy.

The second parameter is an NSTextAttachment
The user is interacting with an inline image. The default is false. Default
responses are:

• .presentActions: an action sheet is presented, with menu items Copy
Image and Save to Camera Roll.

By returning false, you can substitute your own response, effectively treating
the link or image as a button.

A text view also has a dataDetectorTypes property; this, too, if the text view is select‐
able but not editable, allows text of certain types, specified as a bitmask (and presum‐
ably located using NSDataDetector), to be treated as tappable links.
textView(_:shouldInteractWith:in:interaction:) will catch these taps as well;
the second parameter will be a URL, but it won’t necessarily be much use to you. You
can distinguish a phone number through the URL’s scheme (it will be "tel"), and the
rest of the URL is the phone number; but other types will be more or less opaque (the
scheme is "x-apple-data-detectors"). However, you have the range, so you can
obtain the tapped text.

Again, you can return false and substitute your own response, or return true for the
default responses. In addition to .link, some common UIDataDetectorTypes are:

.phoneNumber

Default responses are:

• .invokeDefaultAction: an alert is presented, with an option to call the
number.

• .presentActions: an action sheet is presented, with menu items Call, Send
Message, Add to Contacts, and Copy.

644 | Chapter 10: Text

• .preview: a preview is presented, looking up the phone number in the user’s
Contacts database, along with menu items Call, Message, Add to Existing
Contact, and Create New Contact.

.address

Default responses are:

• .invokeDefaultAction: the address is looked up in the Maps app.
• .presentActions: an action sheet is presented, with menu items Get Direc‐

tions, Open in Maps, Add to Contacts, and Copy.
• .preview: a preview is presented, combining the preceding two.

.calendarEvent

Default responses are:

• .invokeDefaultAction: an action sheet is presented, with menu items Cre‐
ate Event, Show in Calendar, and Copy.

• .presentActions: same as the preceding.
• .preview: a preview is presented, displaying the relevant time from the user’s

Calendar, along with the same menu items.

New in iOS 10 are three more data detector types: shipmentTrackingNumber,
flightNumber, and lookupSuggestion.

Text View as Scroll View
A text view is a scroll view, so everything you know about scroll views applies (see
Chapter 7). It can be user-scrollable or not. Its contentSize is maintained for you
automatically as the text changes, so as to contain the text exactly; thus, if the text
view is scrollable, the user can see any of its text.

By watching for changes to a text view’s text, we can implement a self-sizing text view,
that is, a text view that adjusts its height automatically to embrace the amount of text
it contains. In this example, we have an outlet to the text view’s internal height con‐
straint:

func adjustHeight(tv:UITextView) {
 self.heightConstraint.constant = ceil(tv.contentSize.height)
}
override func viewWillLayoutSubviews() {
 self.adjustHeight(self.tv)
}
func textView(_ textView: UITextView, shouldChangeTextIn range: NSRange,

Text Views | 645

 replacementText text: String) -> Bool {
 delay(0.1) {
 self.view.setNeedsLayout()
 }
 return true
}

Text View and Keyboard
The fact that a text view is a scroll view comes in handy also when the keyboard parti‐
ally covers a text view. The text view quite often dominates the screen, or a large por‐
tion of the screen, and you can respond to the keyboard partially covering it by
adjusting the text view’s contentInset, just as we did earlier in this chapter with a
scroll view containing a text field (“Keyboard Covers Text Field” on page 631). The
text view will then scroll as needed to reveal the insertion point.

Now let’s talk about what happens when the keyboard is dismissed. First of all, how is
the keyboard to be dismissed? The Return key is meaningful for character entry; if
the virtual keyboard lacks a button that dismisses the keyboard, you aren’t likely to
want to misuse the Return key for that purpose.

On the iPhone, the interface might well consist of a text view and the keyboard,
which is always showing: instead of dismissing the keyboard, the user dismisses the
entire interface. For example, in Apple’s Mail app on the iPhone, when the user is
composing a message, in what is presumably a presented view controller, the key‐
board is present the whole time; the keyboard is dismissed because the user sends or
cancels the message and the presented view controller is dismissed.

Alternatively, you can provide interface for dismissing the keyboard explicitly. For
example, in Apple’s Notes app, a note alternates between being read fullscreen and
being edited with the keyboard present; in the latter case, a Done button appears, and
the user taps it to dismiss the keyboard. If there’s no good place to put a Done button
in the interface, you could attach an accessory view to the keyboard itself.

Here’s a possible implementation of a Done button’s action method, with resulting
dismissal of the keyboard:

func doDone(_ sender: Any) {
 self.view.endEditing(false)
}
func keyboardHide(_ n:Notification) {
 if !self.keyboardShowing {
 return
 }
 self.keyboardShowing = false
 self.tv.contentInset = .zero
 self.tv.scrollIndicatorInsets = .zero
}

646 | Chapter 10: Text

Being a scroll view, a text view has a keyboardDismissMode. Thus, by making the key‐
board dismiss mode .interactive, you can permit the user to hide the keyboard by
dragging it. Again, the Mail message compose view is a case in point.

Text Kit
Text Kit comes originally from macOS, where you may already be more familiar with
its use than you realize. For example, much of the text-editing “magic” of Xcode is
due to Text Kit. It comprises a small group of classes that are responsible for drawing
text; simply put, they turn an NSAttributedString into graphics. You can take advan‐
tage of Text Kit to modify text drawing in ways that were once possible only by dip‐
ping down to the low-level C-based world of Core Text.

A UITextView provides direct access to the underlying Text Kit engine. It has the fol‐
lowing Text Kit–related properties:

textContainer

The text view’s text container (an NSTextContainer instance). UITextView’s des‐
ignated initializer is init(frame:textContainer:); the textContainer: can be
nil to get a default text container, or you can supply your own custom text con‐
tainer.

textContainerInset

The margins of the text container, designating the area within the contentSize
rectangle in which the text as a whole is drawn. Changing this value changes the
margins immediately, causing the text to be freshly laid out.

layoutManager

The text view’s layout manager (an NSLayoutManager instance).

textStorage

The text view’s text storage (an NSTextStorage instance).

When you initialize a text view with a custom text container, you hand it the entire
“stack” of Text Kit instances: a text container, a layout manager, and a text storage. In
the simplest and most common case, a text storage has a layout manager, and a layout
manager has a text container, thus forming the “stack.” If the text container is a
UITextView’s text container, the stack is retained, and the text view is operative. Thus,
the simplest case might look like this:

let r = // ... frame for the new text view
let lm = NSLayoutManager()
let ts = NSTextStorage()
ts.addLayoutManager(lm)
let tc = NSTextContainer(size:CGSize(r.width, .greatestFiniteMagnitude))
lm.addTextContainer(tc)
let tv = UITextView(frame:r, textContainer:tc)

Text Kit | 647

Here’s what the three chief Text Kit classes do:

NSTextStorage
A subclass of NSMutableAttributedString. It is, or holds, the underlying text. It
has one or more layout managers, and notifies them when the text changes. By
subclassing and delegation (NSTextStorageDelegate), its behavior can be modi‐
fied so that it applies attributes in a custom fashion.

NSTextContainer
It is owned by a layout manager, and helps that layout manager by defining the
region in which the text is to be laid out. It does this in three primary ways:

Size
The text container’s top left is the origin for the text layout coordinate sys‐
tem, and the text will be laid out within the text container’s rectangle.

Exclusion paths
The exclusionPaths property consists of UIBezierPath objects within which
no text is to be drawn.

Subclassing
By subclassing, you can place each chunk of text drawing anywhere at all
(except inside an exclusion path).

NSLayoutManager
This is the master text drawing class! It has one or more text containers, and is
owned by a text storage — thus forming the Text Kit stack. It draws the text stor‐
age’s text into the boundaries defined by the text container(s).

A layout manager can have a delegate (NSLayoutManagerDelegate), and can be
subclassed. This, as you may well imagine, is a powerful and sophisticated class.

Text Container
An NSTextContainer has a size, within which the text will be drawn. By default, as in
the preceding code, a text view’s text container’s width is the width of the text view,
while its height is effectively infinite, allowing the drawing of the text to grow verti‐
cally but not horizontally beyond the bounds of the text view, and making it possible
to scroll the text vertically.

It also has heightTracksTextView and widthTracksTextView properties, causing the
text container to be resized to match changes in the size of the text view — for exam‐
ple, if the text view is resized because of interface rotation. By default, as you might
expect, widthTracksTextView is true (the documentation is wrong about this), while
heightTracksTextView is false: the text fills the width of the text view, and is laid
out freshly if the text view’s width changes, but its height remains effectively infinite.

648 | Chapter 10: Text

Figure 10-11. A text view with an exclusion path

The text view itself, of course, configures its own contentSize so that the user can
scroll just to the bottom of the existing text.

When you change a text view’s textContainerInset, it modifies its text container’s
size to match, as necessary. In the default configuration, this means that it modifies
the text container’s width; the top and bottom insets are implemented through the
text container’s position within the content rect. Within the text container, additional
side margins correspond to the text container’s lineFragmentPadding; the default is
5, but you can change it.

If the text view’s isScrollEnabled is false, then by default its text container’s height-
TracksTextView and widthTracksTextView are both true, and the text container size
is adjusted so that the text fills the text view. In that case, you can also set the text
container’s lineBreakMode. This works like the line break mode of a UILabel. For
example, if the line break mode is .byTruncatingTail, then the last line has an ellip‐
sis at the end (if the text is too long for the text view). You can also set the text con‐
tainer’s maximumNumberOfLines, which is like a UILabel’s numberOfLines. In effect,
you’ve turned the text view into a label!

But, of course, a nonscrolling text view isn’t just a label, because you’ve got access to
the Text Kit stack that backs it. For example, you can apply exclusion paths to the text
container. Figure 10-11 shows a case in point. The text wraps in longer and longer
lines, and then in shorter and shorter lines, because there’s an exclusion path on the
right side of the text container that’s a rectangle with a large V-shaped indentation.

In Figure 10-11, the text view (self.tv) is initially configured in the view controller’s
viewDidLoad:

self.tv.attributedText = // ...
self.tv.textContainerInset = UIEdgeInsetsMake(20, 20, 20, 0)
self.tv.isScrollEnabled = false

Text Kit | 649

Figure 10-12. A text view with a subclassed text container

The exclusion path is then drawn and applied in viewDidLayoutSubviews:

override func viewDidLayoutSubviews() {
 let sz = self.tv.textContainer.size
 let p = UIBezierPath()
 p.move(to: CGPoint(sz.width/4.0,0))
 p.addLine(to: CGPoint(sz.width,0))
 p.addLine(to: CGPoint(sz.width,sz.height))
 p.addLine(to: CGPoint(sz.width/4.0,sz.height))
 p.addLine(to: CGPoint(sz.width,sz.height/2.0))
 p.close()
 self.tv.textContainer.exclusionPaths = [p]
}

Instead of (or in addition to) an exclusion path, you can subclass NSTextContainer to
modify the rectangle in which the layout manager wants to position a piece of text.
(Each piece of text is actually a line fragment; I’ll explain in the next section what a
line fragment is.) In Figure 10-12, the text is inside a circle.

To achieve the layout shown in Figure 10-12, I set the attributed string’s line break
mode to .byCharWrapping (to bring the right edge of each line as close as possible to
the circular shape), and construct the Text Kit stack by hand to include an instance of
my NSTextContainer subclass:

let r = self.tv.frame
let lm = NSLayoutManager()
let ts = NSTextStorage()
ts.addLayoutManager(lm)
let tc = MyTextContainer(size:CGSize(r.width, r.height))
lm.addTextContainer(tc)
let tv = UITextView(frame:r, textContainer:tc)

That subclass overrides lineFragmentRect(forProposedRect:at:writing-

Direction:remaining:):

650 | Chapter 10: Text

class MyTextContainer : NSTextContainer {
 override var isSimpleRectangularTextContainer : Bool { return false }
 override func lineFragmentRect(forProposedRect proposedRect: CGRect,
 at characterIndex: Int,
 writingDirection baseWritingDirection: NSWritingDirection,
 remaining remainingRect: UnsafeMutablePointer<CGRect>?) -> CGRect {
 var result = super.lineFragmentRect(
 forProposedRect:proposedRect, at:characterIndex,
 writingDirection:baseWritingDirection,
 remaining:remainingRect)
 let r = self.size.height / 2.0
 // convert initial y so that circle is centered at origin
 let y = r - result.origin.y
 let theta = asin(y/r)
 let x = r * cos(theta)
 // convert resulting x from circle centered at origin
 let offset = self.size.width / 2.0 - r
 result.origin.x = r-x+offset
 result.size.width = 2*x
 return result
 }
}

Alternative Text Kit Stack Architectures
The default Text Kit stack is one text storage, which has one layout manager, which
has one text container. But a text storage can have multiple layout managers, and a
layout manager can have multiple text containers. What’s that all about?

If one layout manager has multiple text containers, the overflow from each text con‐
tainer is drawn in the next one. For example, in Figure 10-13, there are two text
views; the text has filled the first text view, and has then continued by flowing into
and filling the second text view. As far as I can tell, the text views can’t be made edita‐
ble in this configuration. But clearly this is a way to achieve a multicolumn or multi‐
page layout, or you could use text views of different sizes for a magazine-style layout.

It is possible to achieve that arrangement by disconnecting the layout managers of
existing text views from their text containers and rebuilding the stack from below. In
this example, though, I’ll build the entire stack by hand:

let r = // frame
let r2 = // frame
let mas = // content
let ts1 = NSTextStorage(attributedString:mas)
let lm1 = NSLayoutManager()
ts1.addLayoutManager(lm1)
let tc1 = NSTextContainer(size:r.size)
lm1.addTextContainer(tc1)

Text Kit | 651

Figure 10-13. A layout manager with two text containers

Figure 10-14. A text storage with two layout managers

let tv = UITextView(frame:r, textContainer:tc1)
let tc2 = NSTextContainer(size:r2.size)
lm1.addTextContainer(tc2)
let tv2 = UITextView(frame:r2, textContainer:tc2)

If one text storage has multiple layout managers, then each layout manager is laying
out the same text. For example, in Figure 10-14, there are two text views displaying
the same text. The remarkable thing is that if you edit one text view, the other
changes to match. (That’s how Xcode lets you edit the same code file in different win‐
dows, tabs, or panes.)

Again, this arrangement is probably best achieved by building the entire text stack by
hand:

let r = // frame
let r2 = // frame
let mas = // content
let ts1 = NSTextStorage(attributedString:mas)
let lm1 = NSLayoutManager()
ts1.addLayoutManager(lm1)

652 | Chapter 10: Text

let lm2 = NSLayoutManager()
ts1.addLayoutManager(lm2)
let tc1 = NSTextContainer(size:r.size)
let tc2 = NSTextContainer(size:r2.size)
lm1.addTextContainer(tc1)
lm2.addTextContainer(tc2)
let tv = UITextView(frame:r, textContainer:tc1)
let tv2 = UITextView(frame:r2, textContainer:tc2)

Layout Manager
The first thing to know about a layout manager is the geometry in which it thinks. To
envision a layout manager’s geometrical world, think in terms of glyphs and line
fragments:

Glyph
The drawn analog of a character. The layout manager’s primary job is to get
glyphs from a font and draw them.

Line fragment
A rectangle in which glyphs are drawn, one after another. (The reason it’s a line
fragment, and not just a line, is that a line might be interrupted by the text con‐
tainer’s exclusion paths.)

A glyph has a location in terms of the line fragment into which it is drawn. A line
fragment’s coordinates are in terms of the text container. The layout manager can
convert between these coordinate systems, and between text and glyphs. Given a
range of text in the text storage, it knows where the corresponding glyphs are drawn
in the text container. Conversely, given a location in the text container, it knows what
glyph is drawn there and what range of text in the text storage that glyph represents.

What’s missing from that geometry is what, if anything, the text container corre‐
sponds to in the real world. A text container is not, itself, a real rectangle in the real
world; it’s just a class that tells the layout manager a size to draw into. Making that
rectangle meaningful for drawing purposes is up to some other class outside the Text
Kit stack. A UITextView, for example, has a text container, which it shares with a lay‐
out manager. The text view knows how its own content is scrolled and how the rec‐
tangle represented by its text container is inset within that scrolling content. The
layout manager, however, doesn’t know anything about that; it sees the text container
as a purely theoretical rectangular boundary. Only when the layout manager actually
draws does it make contact with the real world of some graphics context — and it
must be told, on those occasions, how the text container’s rectangle is offset within
that graphics context.

To illustrate, I’ll use a Text Kit method to learn the index of the first character visible
at the top left of a text view (self.tv); I’ll then use NSLinguisticTagger to derive the
first word visible at the top left of the text view. I can ask the layout manager what

Text Kit | 653

character or glyph corresponds to a certain point in the text container, but what point
should I ask about? Translating from the real world to text container coordinates is
up to me; I must take into account both the scroll position of the text view’s content
and the inset of the text container within that content:

let off = self.tv.contentOffset
let top = self.tv.textContainerInset.top
var tctopleft = CGPoint(0, off.y - top)

Now I’m speaking in terms of text container coordinates, which are layout manager
coordinates. One possibility is then to ask directly for the index (in the text storage’s
string) of the corresponding character:

let ixx = self.tv.layoutManager.characterIndex(for:tctopleft,
 in:self.tv.textContainer,
 fractionOfDistanceBetweenInsertionPoints:nil)

That, however, does not give quite the results one might intuitively expect. If any of a
word is poking down from above into the visible area of the text view, that is the word
whose first character is returned. I think we intuitively expect, if a word isn’t fully
visible, that the answer should be the word that starts the next line, which is fully visi‐
ble. So I’ll modify that code in a simpleminded way. I’ll obtain the index of the glyph
at my initial point; from this, I can derive the rect of the line fragment containing it. If
that line fragment is not at least three-quarters visible, I’ll add one line fragment
height to the starting point and derive the glyph index again. Then I’ll convert the
glyph index to a character index:

var ix = self.tv.layoutManager.glyphIndex(for:tctopleft,
 in:self.tv.textContainer, fractionOfDistanceThroughGlyph:nil)
let frag = self.tv.layoutManager.lineFragmentRect(
 forGlyphAt:ix, effectiveRange:nil)
if tctopleft.y > frag.origin.y + 0.5*frag.size.height {
 tctopleft.y += frag.size.height
 ix = self.tv.layoutManager.glyphIndex(for:tctopleft,
 in:self.tv.textContainer, fractionOfDistanceThroughGlyph:nil)
}
let charRange = self.tv.layoutManager.characterRange(
 forGlyphRange: NSMakeRange(ix,0), actualGlyphRange:nil)
ix = charRange.location

Finally, I’ll use NSLinguisticTagger to get the range of the entire word to which this
character belongs:

let sch = NSLinguisticTagSchemeTokenType
let t = NSLinguisticTagger(tagSchemes:[sch], options:0)
t.string = self.tv.text
var r : NSRange = NSMakeRange(0,0)
let tag = t.tag(at:ix, scheme:sch, tokenRange:&r, sentenceRange:nil)
if tag == NSLinguisticTagWord {
 print((self.tv.text as NSString).substring(with:r))
}

654 | Chapter 10: Text

Clearly, the same sort of technique could be used to formulate a custom response to a
tap (“what word did the user just tap on?”).

By subclassing NSLayoutManager (and by implementing its delegate), many powerful
effects can be achieved. As a simple example, I’ll carry on from the preceding code by
drawing a rectangular outline around the word we just located. To make this possible,
I have an NSLayoutManager subclass, MyLayoutManager, an instance of which is
built into the Text Kit stack for this text view. MyLayoutManager has a public
NSRange property, wordRange. Having worked out what word I want to outline, I set
the layout manager’s wordRange and invalidate its drawing of that word, to force a
redraw:

let lm = self.tv.layoutManager as! MyLayoutManager
lm.wordRange = r
lm.invalidateDisplay(forCharacterRange:r)

In MyLayoutManager, I’ve overridden the method that draws the background behind
glyphs. At the moment this method is called, there is already a graphics context.

First, I call super. Then, if the range of glyphs to be drawn includes the glyphs for the
range of characters in self.wordRange, I ask for the rect of the bounding box of those
glyphs, and stroke it to form the rectangle. As I mentioned earlier, the bounding box
is in text container coordinates, but now we’re drawing in the real world, so I have to
compensate by offsetting the drawn rectangle by the same amount that the text con‐
tainer is supposed to be offset in the real world; fortunately, the text view tells us
(through the origin: parameter) what that offset is:

override func drawBackground(forGlyphRange glyphsToShow: NSRange,
 at origin: CGPoint) {
 super.drawBackground(forGlyphRange:glyphsToShow, at:origin)
 if self.wordRange.length == 0 {
 return
 }
 var range = self.glyphRange(forCharacterRange:self.wordRange,
 actualCharacterRange:nil)
 range = NSIntersectionRange(glyphsToShow, range)
 if range.length == 0 {
 return
 }
 if let tc = self.textContainer(forGlyphAt:range.location,
 effectiveRange:nil, withoutAdditionalLayout:true) {
 var r = self.boundingRect(forGlyphRange:range, in:tc)
 r.origin.x += origin.x
 r.origin.y += origin.y
 let c = UIGraphicsGetCurrentContext()!
 c.saveGState()
 c.setStrokeColor(UIColor.black.cgColor)
 c.setLineWidth(1.0)

Text Kit | 655

 c.stroke(r)
 c.restoreGState()
 }
}

Text Kit Without a Text View
UITextView is the only built-in iOS class that has a Text Kit stack to which you are
given programmatic access. But that doesn’t mean it’s the only place where you can
draw with Text Kit! You can draw with Text Kit anywhere you can draw — that is, in
any graphics context (Chapter 2). When you do so, you should always call both draw-
Background(forGlyphRange:at:) (the method I overrode in the previous example)
and drawGlyphs(forGlyphRange:at:), in that order. The at: argument is the point
where you consider the text container’s origin to be within the current graphics con‐
text.

To illustrate, I’ll change the implementation of the StringDrawer class that I described
earlier in this chapter. Previously, StringDrawer’s draw(_:) implementation told the
attributed string (self.attributedText) to draw itself:

override func draw(_ rect: CGRect) {
 let r = rect.offsetBy(dx: 0, dy: 2)
 let opts : NSStringDrawingOptions = .usesLineFragmentOrigin
 self.attributedText.draw(with:r, options: opts, context: context)
}

Instead, I’ll construct the Text Kit stack and tell its layout manager to draw the text:

override func draw(_ rect: CGRect) {
 let lm = NSLayoutManager()
 let ts = NSTextStorage(attributedString:self.attributedText)
 ts.addLayoutManager(lm)
 let tc = NSTextContainer(size:rect.size)
 lm.addTextContainer(tc)
 tc.lineFragmentPadding = 0
 let r = lm.glyphRange(for:tc)
 lm.drawBackground(forGlyphRange:r, at:CGPoint(0,2))
 lm.drawGlyphs(forGlyphRange: r, at:CGPoint(0,2))
}

Building the entire Text Kit stack by hand may seem like overkill for that simple
example, but imagine what else I could do now that I have access to the entire Text Kit
stack! I can use properties, subclassing, delegation, and alternative stack architectures
to achieve customizations and effects that, before Text Kit was migrated to iOS, were
difficult or impossible to achieve without dipping down to the level of Core Text.

For example, the two-column display of U.S. state names on the iPad shown in
Figure 10-15 was a Core Text example in early editions of this book, requiring 50 or
60 lines of elaborate C code, complicated by the necessity of flipping the context to

656 | Chapter 10: Text

Figure 10-15. Two-column text in small caps

Figure 10-16. The user has tapped on California

prevent the text from being drawn upside-down. Nowadays, it can be achieved easily
through Text Kit — effectively just by reusing code from earlier examples in this
chapter.

Furthermore, the example from previous editions went on to describe how to make
the display of state names interactive, with the name of the tapped state briefly out‐
lined with a rectangle (Figure 10-16). With Core Text, this was almost insanely diffi‐
cult, not least because we had to keep track of all the line fragment rectangles
ourselves. But it’s easy with Text Kit, because the layout manager knows all the
answers.

We have a UIView subclass, StyledText. In its layoutSubviews, it creates the Text Kit
stack — a layout manager with two text containers, to achieve the two-column layout
— and stores the whole stack, along with the rects at which the two text containers
are to be drawn, in properties:

Text Kit | 657

override func layoutSubviews() {
 super.layoutSubviews()
 var r1 = self.bounds
 r1.origin.y += 2 // a little top space
 r1.size.width /= 2.0 // column 1
 var r2 = r1
 r2.origin.x += r2.size.width // column 2
 let lm = MyLayoutManager()
 let ts = NSTextStorage(attributedString:self.text)
 ts.addLayoutManager(lm)
 let tc = NSTextContainer(size:r1.size)
 lm.addTextContainer(tc)
 let tc2 = NSTextContainer(size:r2.size)
 lm.addTextContainer(tc2)
 self.lm = lm; self.ts = ts; self.tc = tc; self.tc2 = tc2
 self.r1 = r1; self.r2 = r2
}

Our draw(_:) is just like the previous example, except that we have two text contain‐
ers to draw:

override func draw(_ rect: CGRect) {
 let range1 = self.lm.glyphRange(for:self.tc)
 self.lm.drawBackground(forGlyphRange:range1, at: self.r1.origin)
 self.lm.drawGlyphs(forGlyphRange:range1, at: self.r1.origin)
 let range2 = self.lm.glyphRange(for:self.tc2)
 self.lm.drawBackground(forGlyphRange:range2, at: self.r2.origin)
 self.lm.drawGlyphs(forGlyphRange:range2, at: self.r2.origin)
}

So much for drawing the text!

When the user taps on our view, a tap gesture recognizer’s action handler is called.
We are using the same layout manager subclass developed in the preceding section of
this chapter: it draws a rectangle around the glyphs corresponding to the characters
of its wordRange property. Thus, all we have to do in order to make the flashing rec‐
tangle around the tapped word is work out what that range is, set our layout manag‐
er’s wordRange property and redraw ourselves, and then (after a short delay) set the
wordRange property back to a zero range and redraw ourselves again to remove the
rectangle.

We start by working out which column the user tapped in; this tells us which text
container it is, and what the tapped point is in text container coordinates (g is the tap
gesture recognizer):

var p = g.location(in:self)
var tc = self.tc!
if !self.r1.contains(p) {
 tc = self.tc2!
 p.x -= self.r1.size.width
}

658 | Chapter 10: Text

Now we can ask the layout manager what glyph the user tapped on, and hence the
whole range of glyphs within the line fragment the user tapped in. If the user tapped
to the left of the first glyph or to the right of the last glyph, no word was tapped, and
we return:

var f : CGFloat = 0
let ix =
 self.lm.glyphIndex(for:p, in:tc, fractionOfDistanceThroughGlyph:&f)
var glyphRange : NSRange = NSMakeRange(0,0)
self.lm.lineFragmentRect(forGlyphAt:ix, effectiveRange:&glyphRange)
if ix == glyphRange.location && f == 0.0 {
 return
}
if ix == glyphRange.location + glyphRange.length - 1 && f == 1.0 {
 return
}

If the last glyph of the line fragment is a whitespace glyph, we don’t want to include it
in our rectangle, so we subtract it from the end of our range. Then we’re ready to con‐
vert to a character range, and thus we can learn the name of the state that the user
tapped on:

func lastCharIsControl () -> Bool {
 let lastCharRange = glyphRange.location + glyphRange.length - 1
 let property = self.lm.propertyForGlyph(at:lastCharRange)
 let mask1 = property.rawValue
 let mask2 = NSGlyphProperty.controlCharacter.rawValue
 return mask1 & mask2 != 0
}
while lastCharIsControl() {
 glyphRange.length -= 1
}
let characterRange =
 self.lm.characterRange(forGlyphRange:glyphRange, actualGlyphRange:nil)
let s = (self.text.string as NSString).substring(with:characterRange)

Finally, we flash the rectangle around the state name by setting and resetting the word-
Range property of the subclassed layout manager:

let lm = self.lm as! MyLayoutManager
lm.wordRange = characterRange
self.setNeedsDisplay()
delay(0.3) {
 lm.wordRange = NSMakeRange(0, 0)
 self.setNeedsDisplay()
}

Text Kit | 659

CHAPTER 11

Web Views

A web view is a web browser: it knows how to fetch resources from the Internet, and
it understands and can render text coded in HTML, along with associated instruc‐
tions coded as CSS and JavaScript. Thus it is a network communication device on the
one hand, and a powerful engine for layout, animation, and media display on the
other.

All of that power comes “for free” with a web view. It gives your app a browser inter‐
face, comparable to Mobile Safari; you can just stand back and let it do its work. You
don’t have to know anything about networking. Links and other ancillary resources
work automatically. If your web view’s HTML refers to an image, the web view will
fetch it and display it. If the user taps on a link, the web view will fetch that content
and display it; if the link is to some sort of media (a sound or video file), the web view
will allow the user to play it.

A web view also knows how to display various other types of content commonly
encountered as Internet resources. For example, a web view is an excellent way to dis‐
play PDF files. It can also display documents in such formats as .rtf, Microsoft Word
(.doc and .docx), and Pages. (A Pages file that is actually a bundle must be compressed
to form a single .pages.zip resource.)

A web view should also be able to display .rtfd files, but in iOS 8 and 9, it can’t. In
iOS 10, the file loads if it is zipped (type .rtfd.zip), but embedded images are not
displayed, which makes the .rtfd more or less pointless. Apple suggests that you
convert to an attributed string (as I described in Chapter 10; specify a document
type of NSRTFDTextDocumentType), or use a QLPreviewController (Chapter 23).

The loading and rendering of a Web view’s content takes time, and may involve net‐
working. Your app’s interface, however, is not blocked or frozen while the content is
loading. On the contrary, your interface remains accessible and operative. The web

661

view, in fetching a web page and its linked components, is doing something quite
complex, involving both threading and network interaction — I’ll have a lot more to
say about this in Chapters 24 and 25 — but it shields you from this complexity, and it
operates asynchronously (in the background, off the main thread). Your own interac‐
tion with the web view stays on the main thread and is straightforward. You ask the
web view to load some content; then you sit back and let it worry about the details.

It is possible to design an entire app that is effectively nothing but a web view —
especially if you have control of the server with which the user is interacting.
Indeed, before the advent of iOS, an iPhone app was a web application. There are
still iOS apps that work this way; but such an approach to app design is outside
the scope of this book.

There are actually three web view objects:

UIWebView
UIWebView, a UIView subclass, has been around since the earliest days of iOS.
Apple would like you to move away from use of UIWebView, though as far as I
can tell it has not yet been formally deprecated as of this writing.

WKWebView
WKWebView, a UIView subclass, appeared in iOS 8. The “WK” stands for Web‐
Kit; confusingly, both WKWebView and UIWebView use WebKit as their render‐
ing engine, but WebKit is also the name of a framework that was introduced in
iOS 8 as well. The arrival of the WebKit framework allows WKWebKit to per‐
form some cool tricks that UIWebKit can’t do.

SFSafariViewController
SFSafariViewController, a UIViewController subclass, was introduced in iOS 9,
as part of the Safari Services framework. It is a full-fledged browser, in effect
identical to introducing Mobile Safari into your app, except that the initially
loaded page is up to you, and the user cannot navigate to an arbitrary URL. It is,
in effect, a form of Safari itself, running as a separate process within your app; in
addition to built-in interface such as Forward and Back buttons and the Share
button, it provides Safari features such as autofill and Reader, and shares its
cookies with the real Safari app.

In this edition, I’ll describe WKWebView and SFSafariViewController. For a discus‐
sion of UIWebView, consult an earlier edition of this book.

iOS 9 introduced App Transport Security. Your app, by default, cannot load
external URLs that are not secure (https:). You can turn off this restriction com‐
pletely or in part in your Info.plist. See Chapter 24 for details.

662 | Chapter 11: Web Views

WKWebView
WKWebView is part of the WebKit framework; to use it, you’ll need to import Web-
Kit and create the web view in code, as there is no WKWebView in the nib editor’s
Object library. The designated initializer for WKWebView is
init(frame:configuration:), where the configuration: is a WKWebView‐
Configuration. You can create a configuration beforehand:

let config = WKWebViewConfiguration()
// ... configure config here ...
let wv = WKWebView(frame: .zero, configuration:config)

Alternatively, you can initialize your web view with init(frame:) to get a default
configuration and modify it through the web view’s configuration property later:

let wv = WKWebView(frame: .zero)
let config = wv.configuration
// ... configure config here ...

Either way, you’ll probably want to perform configurations before the web view has a
chance to load any content, because some settings will affect how it loads or renders
that content.

Here are some of the more important WKWebViewConfiguration properties:

suppressesIncrementalRendering

If true, the web view’s visible content doesn’t change until all linked renderable
resources (such as images) have finished loading. The default is false.

allowsInlineMediaPlayback

If true, linked media are played inside the web page. The default is false (the
fullscreen player is used).

mediaTypesRequiringUserActionForPlayback

Types of media that won’t start playing without a user gesture. A bitmask
(WKAudiovisualMediaTypes) with possible values .audio, .video, and .all.
New in iOS 10, superseding the more general requiresUserActionForMedia-
Playback.

allowsPictureInPictureMediaPlayback

See Chapter 15 for a discussion of picture-in-picture playback.

dataDetectorTypes

Types of content that may be transformed automatically into tappable links. Sim‐
ilar to a text view’s data detectors (Chapter 10). New in iOS 10.

WKWebView | 663

websiteDataStore

A WKWebsiteDataStore. By supplying a data store, you get control over stored
resources. You can thus implement private browsing, examine and delete cookies,
and so forth. For the types of data stored here, see the documentation on
WKWebsiteDataRecord.

preferences

A WKPreferences object. This is a value class embodying three properties:

• minimumFontSize

• javaScriptEnabled

• javaScriptCanOpenWindowsAutomatically

userContentController

A WKUserContentController object. This is how you can inject JavaScript into a
web page and communicate between your code and the web page’s content. I’ll
give an example later.

Having created your web view, you’ll place it in your interface and, if necessary, size
and position it:

self.view.addSubview(wv)
wv.translatesAutoresizingMaskIntoConstraints = false
NSLayoutConstraint.activate([
 NSLayoutConstraint.constraints(withVisualFormat:
 "H:|[wv]|", metrics: nil, views: ["wv":wv]),
 NSLayoutConstraint.constraints(withVisualFormat:
 "V:|[wv]|", metrics: nil, views: ["wv":wv])
].flatMap{$0})

A WKWebView is not a scroll view, but it has a scroll view (scrollView). You can use
this to scroll the web view’s content programatically; you can also get references to its
gesture recognizers, and add gesture recognizers of your own (see Chapter 7).

WKWebView Content
You can supply a web view with content using one of four methods, depending on the
type of your content. All four methods return a WKNavigation object, an opaque
object that can be used to identify an individual page-loading operation, but you will
usually ignore it. The content types and methods are:

A URLRequest
Form a URLRequest and call load(_:). A URLRequest can be created from a
URL. The initializer is init(url:cachePolicy:timeoutInterval:), but the sec‐
ond and third parameters are optional and will often be omitted. Additional con‐
figuration includes such properties as allowsCellularAccess. For example:

664 | Chapter 11: Web Views

let url = URL(string: "http://www.apple.com")!
self.wv.load(URLRequest(url:url))

A local file
Obtain a local file URL and call loadFileURL(_:allowingReadAccessTo:). The
second parameter effectively sandboxes the web view into a single file or direc‐
tory. For example:

let path = Bundle.main.path(forResource: "zotzhelp", ofType: "html")!
let url = URL(fileURLWithPath: path)
view.loadFileURL(url, allowingReadAccessTo: url)

An HTML string
Prepare a string consisting of valid HTML, and call loadHTMLString(_:base-
URL:). The baseURL: specifies how partial URLs in your HTML are to be
resolved; for example, the HTML might refer to resources within your app bun‐
dle.

Starting with an HTML string is useful particularly when you want to construct
your HTML programmatically or make changes to it before handing it to the web
view. In this example, my HTML consists of two strings: a wrapper with the usual
<html> tags, and the body content derived from an RSS feed. I assemble them
and hand the resulting string to my web view for display:

let templatepath = Bundle.main.path(forResource: "htmlTemplate", ofType:"txt")!
let base = URL(fileURLWithPath:templatepath)
var s = try! String(contentsOfFile:templatepath)
let ss = // actual body content for this page
s = s.replacingOccurrences(of:"<content>", with:ss)
self.wv.loadHTMLString(s, baseURL:base)

A Data object
Call load(_:MIMEType:characterEncodingName:baseURL:). This is useful par‐
ticularly when the content has itself arrived from the network, as the parameters
correspond to the properties of a URLResponse. This example will be more
meaningful to you after you’ve read Chapter 24:

let sess = URLSession.shared
let url = URL(string:"http://www.someplace.net/someImage.jpg")!
let task = sess.dataTask(with: url) {
 data, response, err in
 if let response = response,
 let mime = response.mimeType,
 let enc = response.textEncodingName,
 let data = data {
 self.wv.load(data,
 mimeType: mime, characterEncodingName: enc, baseURL: url)
 }
}

WKWebView | 665

Tracking Changes in a WKWebView
A WKWebView has properties that can be tracked with key–value observing, such as:

• loading

• estimatedProgress

• url

• title

You can observe these properties to be notified as a web page loads or changes. For
example, as preparation to give the user feedback while a page is loading, I’ll put an
activity indicator (Chapter 12) in the center of my web view, keep a reference to it,
and observe the web view’s loading property:

let act = UIActivityIndicatorView(activityIndicatorStyle:.whiteLarge)
act.backgroundColor = UIColor(white:0.1, alpha:0.5)
self.activity = act
wv.addSubview(act)
act.translatesAutoresizingMaskIntoConstraints = false
NSLayoutConstraint.activate([
 act.centerXAnchor.constraint(equalTo:wv.centerXAnchor),
 act.centerYAnchor.constraint(equalTo:wv.centerYAnchor)
])
wv.addObserver(self,
 forKeyPath: #keyPath(WKWebView.loading), options: .new, context: nil)

When the web view starts loading or stops loading, I’m notified, so I can show or hide
the activity view:

override func observeValue(forKeyPath keyPath: String?,
 of object: Any?,
 change: [NSKeyValueChangeKey : Any]?,
 context: UnsafeMutableRawPointer?) {
 guard let wv = object as? WKWebView else {return}
 guard let keyPath = keyPath else {return}
 guard let change = change else {return}
 switch keyPath {
 case "loading":
 if let val = change[.newKey] as? Bool {
 if val {
 self.activity.startAnimating()
 } else {
 self.activity.stopAnimating()
 }
 }
 default:break
 }
}

666 | Chapter 11: Web Views

Do not forget to remove yourself as an observer as you go out of existence. If, as is
usually the case, this means also that the web view itself is going out of existence, I
like to stop any loading that it may be doing at that moment as well:

deinit {
 self.wv.removeObserver(self, forKeyPath: #keyPath(WKWebView.loading))
 self.wv.stopLoading()
}

WKWebView Navigation
A WKWebView maintains a back and forward list of the URLs to which the user has
navigated. The list is its backForwardList, a WKBackForwardList, which is a collec‐
tion of read-only properties (and one method) such as:

• currentItem

• backItem

• forwardItem

• item(at:)

Each item in the list is a WKBackForwardItem, a simple value class basically consist‐
ing of a url and a title.

The WKWebView itself responds to goBack, goForward and go(to:), so you can tell
it in code to navigate the list. Its properties canGoBack and canGoForward are key–
value observable; typically you would use that fact to enable or disable a Back and
Forward button in your interface in response to the list changing.

A WKWebView also has a settable property, allowsBackForwardNavigation-

Gestures. The default is false; if true, the user can swipe sideways to go back and
forward in the list.

To prevent or reroute navigation that the user tries to perform by tapping links, set
yourself as the WKWebView’s navigationDelegate (WKNavigationDelegate) and
implement webView(_:decidePolicyFor:decisionHandler:). You are handed a
decisionHandler function which you must call, handing it a WKNavigationAction‐
Policy — either .cancel or .allow. You can examine the incoming navigation-
Action (the for: parameter, a WKNavigationAction) to help make your decision. It
has a request which is the URLRequest we are proposing to perform — and you can
look at its url to see where we are proposing to go — along with a navigationType
which will be one of the following (WKNavigationType):

• .linkActivated

• .backForward

WKWebView | 667

• .reload

• .formSubmitted

• .formResubmitted

• .other

In this example, I permit navigation in the most general case — otherwise nothing
would ever appear in my web view! — but if the user taps a link, I forbid it and show
that URL in Mobile Safari instead:

func webView(_ webView: WKWebView,
 decidePolicyFor navigationAction: WKNavigationAction,
 decisionHandler: @escaping (WKNavigationActionPolicy) -> Swift.Void) {
 if navigationAction.navigationType == .linkActivated {
 if let url = navigationAction.request.url {
 UIApplication.shared.open(url)
 decisionHandler(.cancel)
 return
 }
 }
 decisionHandler(.allow)
}

Starting iOS 9, the status bar displays a Back button making it easy for the user to
return to your app, so you needn’t be as reluctant as you might have been previously
to navigate the user away from your app to display web content in Safari. And there’s
a further alternative: you can present an SFSafariViewController within your own
app, as I’ll explain later in this chapter.

Several other WKNavigationDelegate methods can notify you as a page loads (or fails
to load). Under normal circumstances, you’ll receive them in this order:

• webView(_:didStartProvisionalNavigation:)

• webView(_:didCommit:)

• webView(_:didFinish:)

Those delegate methods, and all navigation commands, like the four ways of loading
your web view with initial content, supply a WKNavigation object. This object is
completely opaque and has no properties, but you can use it in an equality compari‐
son to determine whether the navigations referred to in different methods are the
same navigation (roughly speaking, the same page-loading operation).

668 | Chapter 11: Web Views

Communicating With a WKWebView Web Page
Your code can pass messages into and out of a WKWebView’s web page, thus allow‐
ing you to change the page’s contents or respond to changes within it, even while it is
being displayed.

Communicating into a web page

To send a message into an already loaded WKWebView web page, call evaluateJava-
Script(_:completionHandler:). Your JavaScript runs within the context of the web
page.

In this example, the user is able to decrease the size of the text in the web page. We
have prepared some JavaScript that generates a <style> element containing CSS that
sets the font-size for the page’s <body> in accordance with a property,
self.fontsize:

var fontsize = 18
var cssrule : String {
 var s = "var s = document.createElement('style');\n"
 s += "s.textContent = '"
 s += "body { font-size: \(self.fontsize)px; }"
 s += "';\n"
 s += "document.documentElement.appendChild(s);\n"
 return s
}

When the user taps a button, we decrement self.fontsize, construct that JavaScript,
and send it to the web page:

func doDecreaseSize (_ sender: Any) {
 self.fontsize -= 1
 if self.fontsize < 10 {
 self.fontsize = 20
 }
 let s = self.cssrule
 self.wv.evaluateJavaScript(s)
}

That’s clever, but we have not done anything about setting the web page’s initial
font-size. A WKWebView allows us to inject JavaScript into the web page at the
time it is loaded. To do so, we use the userContentController of the WKWebView’s
configuration. We create a WKUserScript, specifying the JavaScript it contains,
along with an injectionTime which can be either before (.documentStart) or after
(.documentEnd) a page’s content has loaded. In this case, we want it to be before;
otherwise, the user will see the font size change suddenly:

WKWebView | 669

let s = self.cssrule
let script = WKUserScript(source: s,
 injectionTime: .atDocumentStart, forMainFrameOnly: true)
let config = self.wv.configuration
config.userContentController.addUserScript(script)

Communicating out of a web page
To communicate out of a web page, you need first to install a message handler to
receive the communication. Again, this involves the userContentController. You
call add(_:name:), where the first argument is an object that must implement the
WKScriptMessageHandler protocol, so that its userContentController(_:did-

Receive:) method can be called later:

let config = self.wv.configuration
config.userContentController.add(self, name: "playbutton")

We have now installed a playbutton message handler. This means that the DOM for
our web page now contains an element, among its window.webkit.messageHandlers,
called playbutton. A message handler sends its message when it receives a post-
Message() function call. Thus, the WKScriptMessageHandler (self in this example)
will get a call to its userContentController(_:didReceive:) method if JavaScript
inside the web page sends postMessage() to the window.webkit.message-

Handlers.playbutton object.

To make that actually happen, I’ve put an tag into my web page’s HTML, speci‐
fying an image that will act as a tappable button:

<img src=\"listen.png\"
 onclick=\"window.webkit.messageHandlers.playbutton.postMessage('play')\">

When the user taps that image, the message is posted, and so my code runs and I can
respond:

func userContentController(_ userContentController: WKUserContentController,
 didReceive message: WKScriptMessage) {
 if message.name == "playbutton" {
 if let body = message.body as? String {
 if body == "play" {
 // ... do stuff here ...
 }
 }
 }
}

There’s just one little problem: that code causes a retain cycle. The reason is that a
WKUserContentController leaks, and it retains the WKScriptMessageHandler, which
in this case is self — and so self will never be deallocated. My solution is to create
an intermediate trampoline object that can be harmlessly retained, and that has a
weak reference to self:

670 | Chapter 11: Web Views

class MyMessageHandler : NSObject, WKScriptMessageHandler {
 weak var delegate : WKScriptMessageHandler?
 init(delegate:WKScriptMessageHandler) {
 self.delegate = delegate
 super.init()
 }
 func userContentController(_ ucc: WKUserContentController,
 didReceive message: WKScriptMessage) {
 self.delegate?.userContentController(ucc, didReceive: message)
 }
}

Now when I add myself as a script message handler, I do it by way of the trampoline
object:

let config = self.wv.configuration
let handler = MyMessageHandler(delegate:self)
config.userContentController.add(handler, name: "playbutton")

Now that I’ve broken the retain cycle, my own deinit is called, and I can release the
offending objects:

deinit {
 self.wv.removeObserver(self, forKeyPath: #keyPath(WKWebView.loading))
 self.wv.stopLoading()
 // break all retains
 let ucc = self.wv.configuration.userContentController
 ucc.removeAllUserScripts()
 ucc.removeScriptMessageHandler(forName:"playbutton")
}

WKWebView Shortcomings
A WKWebView can’t be instantiated from a nib. The Web View object in the nib edi‐
tor’s Object library is a UIWebView, not a WKWebView.

In iOS 8, a URL pointing to a resource on disk — including inside your app’s bundle
— will fail to load with a WKWebView. This makes WKWebView unsuitable, say, for
presentation of internal help documentation in iOS 8. The problem was fixed starting
in iOS 9, but the fix isn’t backward-compatible, so if your app runs on iOS 8 you
might have to continue using UIWebView.

WKWebView, as far as I can tell, does not automatically participate in any way in the
iOS view controller state saving and restoration mechanism. This is a major flaw in
WKWebView. With UIWebView, if it has an actual URL request as the source of its
content at the time the user leaves the app, then that URL request is archived by the
state saving mechanism, along with the UIWebView’s Back and Forward lists and the
content offset of its scroll view. If state restoration takes place, the UIWebView’s
request property, and its Back and Forward lists, and its scroll view’s content offset,
including the offsets of all previously viewed pages, are restored automatically; all you

WKWebView | 671

have to do is load the restored request, which you can easily do in application-
FinishedRestoringState, like this:

override func applicationFinishedRestoringState() {
 if self.wv.request != nil { // self.wv is a UIWebView
 self.wv.reload()
 }
}

But you can’t do anything like that with a WKWebView. It has no request property. It
has a url property, but that property is not saved and restored. Moreover, a WKWeb‐
View’s backForwardList is not writable. Thus, there is no way to save and restore a
WKWebView’s state as a web browser. This could be a reason for staying with
UIWebView for now.

Safari View Controller
A Safari view controller (SFSafariViewController, introduced in iOS 9) puts the
Mobile Safari interface in a separate process inside your app. It provides the user with
a browser interface familiar from Mobile Safari itself. In a toolbar, which can be
shown or hidden by scrolling, there are Back and Forward buttons, a Share button
including standard Safari features such as Add Bookmark and Add to Reading List,
and a Safari button that lets the user load the same page in the real Safari app. In a
navigation bar, which can be shrunk or grown by scrolling, are a read-only URL field
with a Reader button (if this page has a Reader mode available) and a Refresh button,
and a Done button. The user has access to autofill and to Safari cookies with no inter‐
vention by your app.

The idea, according to Apple, is that when you want to present internal HTML con‐
tent, such as an HTML string, you’ll use a WKWebView, but when you really want to
allow the user to access the web, you’ll use a Safari view controller. In this way, you
are saved from the trouble of trying to build a full-fledged web browser yourself.

To use a Safari view controller, you’ll need to import SafariServices. Create the
SFSafariViewController, initialize it with a URL, and present it:

let svc = SFSafariViewController(url: url)
self.present(svc, animated: true)

If you use the initializer init(url:entersReaderIfAvailable:), then if the initially
loaded URL page has a Reader mode available, the Safari view controller will switch
to Reader mode automatically.

The only other configuration you can perform on an SFSafariViewController is to set
the color of its navigation bar (preferredBarTintColor) and bar button items
(preferredControlTintColor). This feature, new in iOS 10, should allow the look of
the view to harmonize better with the rest of your app.

672 | Chapter 11: Web Views

When the user taps the Done button, the Safari view controller is dismissed.

If you like, you can make yourself the Safari view controller’s delegate (SFSafariView‐
ControllerDelegate) and implement any of these methods:

safariViewController(_:didCompleteInitialLoad:)

safariViewControllerDidFinish(_:)

Called on presentation and dismissal of the Safari view controller, respectively.

safariViewController(_:activityItemsFor:title:)

Allows you to supply your own Share button items; I’ll explain what activity
items are in Chapter 13.

I have not found any way in which a Safari view controller participates in view con‐
troller state saving and restoration. Needless to say, I regard this as a bug.

Developing Web View Content
Before designing the HTML to be displayed in a web view, you might want to read up
on the brand of HTML native to the mobile WebKit rendering engine. There are cer‐
tain limitations; for example, mobile WebKit notoriously doesn’t use plug-ins, such as
Flash, and it imposes limits on the size of resources (such as images) that it can dis‐
play. On the plus side, WebKit is in the vanguard of the march toward HTML 5 and
CSS 3, and has many special capabilities suited for display on a mobile device. For
documentation and other resources, see Apple’s Safari Dev Center.

A good place to start is the Safari Web Content Guide. It contains links to other rele‐
vant documentation, such as the Safari CSS Visual Effects Guide, which describes
some things you can do with WebKit’s implementation of CSS3 (like animations), and
the Safari HTML5 Audio and Video Guide, which describes WebKit’s audio and video
player support.

If nothing else, you’ll want to be aware of one important aspect of web page content
— the viewport. This is typically set through a <meta> tag in the <head> area. For
example:

<meta name="viewport" content="initial-scale=1.0, user-scalable=no">

Without that line, or something similar, a web page may be laid out incorrectly when
it is rendered. Without a viewport, your content may appear tiny (because it is being
rendered as if the screen were large), or it may be too wide for the view, forcing the
user to scroll horizontally to read it. See the Safari Web Content Guide for details.

New in iOS 10, the viewport’s user-scalable attribute can be treated as yes by
setting a WKWebViewConfiguration’s ignoresViewportScaleLimits to true.

Developing Web View Content | 673

Figure 11-1. The Web Inspector inspects an app running in the Simulator

Another important section of the Safari Web Content Guide describes how you can
use a media attribute in the <link> tag that loads your CSS to load different CSS
depending on what kind of device your app is running on. For example, you might
have one CSS file that lays out your web view’s content on an iPhone, and another
that lays it out on an iPad.

Inspecting, debugging, and experimenting with web view content is greatly eased by
the Web Inspector, built into Safari on the desktop. It can see a web view in your app
running in the Simulator, and lets you analyze every aspect of how it works. For
example, in Figure 11-1, I’m examining an image to understand how it is sized and
scaled.

You can hover the mouse over a web page element in the Web Inspector to highlight
the rendering of that element in the running app. Moreover, the Web Inspector lets
you change your web view’s content in real time, with many helpful features such as
CSS autocompletion.

JavaScript and the document object model (DOM) are also extremely powerful. Event
listeners allow JavaScript code to respond directly to touch and gesture events, so that
the user can interact with elements of a web page much as if they were iOS-native
touchable views; it can also take advantage of Core Location and Core Motion facili‐
ties to respond to where the user is on earth and how the device is positioned (Chap‐
ter 22). Additional helpful documentation includes Apple’s WebKit DOM
Programming Topics and Safari DOM Additions Reference.

674 | Chapter 11: Web Views

Be sure also to peruse Apple’s Safari release notes, What’s New in Safari; these
release notes often inform you of CSS and JavaScript details that are documented
nowhere else. For example, this is the only place you would learn about the
-apple-system font family, which lets your CSS specify a font that matches the
iOS system font.

Developing Web View Content | 675

CHAPTER 12

Controls and Other Views

This chapter discusses all UIView subclasses provided by UIKit that haven’t been dis‐
cussed already. It’s remarkable how few of them there are; UIKit exhibits a notable
economy of means in this regard.

Additional UIView subclasses, as well as UIViewController subclasses that create
interface, are provided by other frameworks. There will be examples in Part III. For
example, the Map Kit framework provides the MKMapView (Chapter 21), which dis‐
plays an interactive map; and the MessageUI framework provides MFMailCompose‐
ViewController, which supplies an interface for composing and sending a mail
message (Chapter 20).

UIActivityIndicatorView
An activity indicator (UIActivityIndicatorView) appears as the spokes of a small
wheel. You set the spokes spinning with startAnimating, giving the user a sense that
some time-consuming process is taking place. You stop the spinning with stop-
Animating. If the activity indicator’s hidesWhenStopped is true (the default), it is visi‐
ble only while spinning.

An activity indicator comes in a style, its activityIndicatorViewStyle; if it is cre‐
ated in code, you’ll set its style with init(activityIndicatorStyle:). Your choices
(UIActivityIndicatorViewStyle) are:

• .whiteLarge

• .white

• .gray

677

Figure 12-1. A large activity indicator

An activity indicator has a standard size, which depends on its style. Changing its size
in code changes the size of the view, but not the size of the spokes. For bigger spokes,
you can resort to a scale transform.

You can assign an activity indicator a color; this overrides the color assigned through
the style. An activity indicator is a UIView, so you can set its backgroundColor; a nice
effect is to give an activity indicator a contrasting background color and to round its
corners by way of the view’s layer (Figure 12-1).

Here’s some code from a UITableViewCell subclass in one of my apps. In this app, it
takes some time, after the user taps a cell to select it, for me to construct the next view
and navigate to it; to cover the delay, I show a spinning activity indicator in the center
of the cell while it’s selected:

override func setSelected(_ selected: Bool, animated: Bool) {
 if selected {
 let v = UIActivityIndicatorView(activityIndicatorStyle:.whiteLarge)
 v.color = .yellow
 DispatchQueue.main.async {
 v.backgroundColor = UIColor(white:0.2, alpha:0.6)
 }
 v.layer.cornerRadius = 10
 v.frame = v.frame.insetBy(dx: -10, dy: -10)
 let cf = self.contentView.convert(self.bounds, from:self)
 v.center = CGPoint(cf.midX, cf.midY);
 v.tag = 1001
 self.contentView.addSubview(v)
 v.startAnimating()
 } else {
 if let v = self.viewWithTag(1001) {
 v.removeFromSuperview()
 }
 }
 super.setSelected(selected, animated: animated)
}

If activity involves the network, you might want to set UIApplication’s isNetwork-
ActivityIndicatorVisible to true. This displays a small spinning activity indicator
in the status bar. The indicator is not reflecting actual network activity; if it’s visible,
it’s spinning. Be sure to set it back to false when the activity is over.

An activity indicator is simple and standard, but you can’t change the way it’s drawn.
One obvious alternative would be a UIImageView with an animated image, as

678 | Chapter 12: Controls and Other Views

Figure 12-2. A custom activity indicator

described in Chapter 4. Another solution is a CAReplicatorLayer, a layer that makes
multiple copies of its sublayer; by animating the sublayer, you animate the copies.
This is a very common approach (in fact, it wouldn’t surprise me to hear that
UIActivityIndicatorView is implemented using CAReplicatorLayer). For example:

let lay = CAReplicatorLayer()
lay.frame = CGRect(0,0,100,20)
let bar = CALayer()
bar.frame = CGRect(0,0,10,20)
bar.backgroundColor = UIColor.red.cgColor
lay.addSublayer(bar)
lay.instanceCount = 5
lay.instanceTransform = CATransform3DMakeTranslation(20, 0, 0)
let anim = CABasicAnimation(keyPath: #keyPath(CALayer.opacity))
anim.fromValue = 1.0
anim.toValue = 0.2
anim.duration = 1
anim.repeatCount = .infinity
bar.add(anim, forKey: nil)
lay.instanceDelay = anim.duration / Double(lay.instanceCount)
self.view.layer.addSublayer(lay)
lay.position = CGPoint(
 self.view.layer.bounds.midX, self.view.layer.bounds.midY)

Our single red vertical bar (bar) is replicated to make five red vertical bars. We
repeatedly fade the opacity of the bar to 0, but because we’ve set the replicator layer’s
instanceDelay, the replicated bars fade in sequence, so that the darkest bar appears
to be marching repeatedly to the right (Figure 12-2).

UIProgressView
A progress view (UIProgressView) is a “thermometer,” graphically displaying a per‐
centage. It is often used to represent a time-consuming process whose percentage of
completion is known (if the percentage of completion is unknown, you’re more likely
to use an activity indicator). But it’s good for static percentages too. In one of my
apps, I use a progress view to show the current position within the song being played
by the built-in music player; in another app, which is a card game, I use a progress
view to show how many cards are left in the deck.

UIProgressView | 679

Figure 12-3. A progress view

A progress view comes in a style, its progressViewStyle; if the progress view is cre‐
ated in code, you’ll set its style with init(progressViewStyle:). Your choices
(UIProgressViewStyle) are:

• .default

• .bar

A .bar progress view is intended for use in a UIBarButtonItem, as the title view of a
navigation item, and so on. Both styles by default draw the thermometer extremely
thin — just 2 pixels and 3 pixels, respectively. (Figure 12-3 shows a .default progress
view.) Changing a progress view’s frame height directly has no visible effect on how
the thermometer is drawn. Under autolayout, to make a thicker thermometer, supply
a height constraint with a larger value (thus overriding the intrinsic content height).
Alternatively, subclass UIProgressView and override sizeThatFits(_:).

The fullness of the thermometer is the progress view’s progress property. This is a
value between 0 and 1, inclusive; you’ll usually need to do some elementary arith‐
metic in order to convert from the actual value you’re reflecting to a value within that
range. (It is also a Float; in Swift, you may have to coerce explicitly.) A change in
progress value can be animated by calling setProgress(_:animated:). For example,
to reflect the number of cards remaining in a deck of 52 cards:

let r = self.deck.cards.count
self.prog.setProgress(Float(r)/52, animated: true)

The default color of the filled portion of a progress view is the tintColor (which may
be inherited from higher up the view hierarchy). The default color for the unfilled
portion is gray for a .default progress view and transparent for a .bar progress view.
You can customize the colors; set the progress view’s progressTintColor and track-
TintColor, respectively. This can also be done in the nib editor.

Alternatively, you can customize the image used to draw the filled portion of the pro‐
gress view, its progressImage, along with the image used to draw the unfilled portion,
the trackImage. This can also be done in the nib editor. Each image must be
stretched to the length of the filled or unfilled area, so you’ll want to use a resizable
image.

Here’s a simple example from one of my apps (Figure 12-4):

680 | Chapter 12: Controls and Other Views

Figure 12-4. A thicker progress view using a custom progress image

self.prog.backgroundColor = .black
self.prog.trackTintColor = .black
let r = UIGraphicsImageRenderer(size:CGSize(10,10))
let im = r.image { ctx in
 let con = ctx.cgContext
 con.setFillColor(UIColor.yellow.cgColor)
 con.fill(CGRect(0, 0, 10, 10))
 let r = con.boundingBoxOfClipPath.insetBy(dx: 1,dy: 1)
 con.setLineWidth(2)
 con.setStrokeColor(UIColor.black.cgColor)
 con.stroke(r)
 con.strokeEllipse(in: r)
}.resizableImage(withCapInsets:UIEdgeInsetsMake(4, 4, 4, 4),
 resizingMode:.stretch)
self.prog.progressImage = im

That code works in iOS 9 and later, and in iOS 7.0 and before. But in between,
from iOS 7.1 through all versions of iOS 8, it breaks; setting the progressImage
has no effect. A possible workaround, which is extremely fragile and hacky, is to
try to find the UIImageView that is intended to hold the UIProgressView’s
progressImage and set its image directly.

For maximum flexibility, you can design your own UIView subclass that draws some‐
thing similar to a thermometer. Figure 12-5 shows a simple custom thermometer
view; it has a value property, and you set this to something between 0 and 1 and call
setNeedsDisplay to make the view redraw itself. Here’s its draw(_:) code:

override func draw(_ rect: CGRect) {
 let c = UIGraphicsGetCurrentContext()!
 UIColor.white.set()
 let ins : CGFloat = 2.0
 let r = self.bounds.insetBy(dx: ins, dy: ins)
 let radius : CGFloat = r.size.height / 2.0
 let cgpi = CGFloat.pi
 let path = CGMutablePath()
 path.move(to:CGPoint(r.maxX - radius, ins))
 path.addArc(center:CGPoint(radius+ins, radius+ins),
 radius: radius, startAngle: -cgpi/2.0, endAngle: cgpi/2.0,
 clockwise: true)
 path.addArc(center:CGPoint(r.maxX - radius, radius+ins),
 radius: radius, startAngle: cgpi/2.0, endAngle: -cgpi/2.0,
 clockwise: true)
 path.closeSubpath()
 c.addPath(path)
 c.setLineWidth(2)

UIProgressView | 681

Figure 12-5. A custom progress view

Figure 12-6. A circular custom progress view

 c.strokePath()
 c.addPath(path)
 c.clip()
 c.fill(CGRect(r.origin.x, r.origin.y, r.width * self.value, r.height))
}

Your custom view doesn’t have to look like a thermometer. Apple has introduced
many other variants on the notion of graphically indicating progress, and you can
readily adopt these. For instance, the Music app shows the current playing position
within an album’s song by drawing the arc of a circle (Figure 12-6). This effect is
easily achieved by setting the strokeEnd of a CAShapeLayer with a circular path (and
possibly a rotation transform, to start the circle at the top).

A progress view has an observedProgress property. This is an instance of Progress, a
class that abstracts the notion of task progress: it has a totalUnitCount property and
a completedUnitCount property, and their ratio generates its fractionCompleted,
which can be tracked with KVO and can thus be used to update a UIProgressView.
The UIProgressView observedProgress property, however, saves you the trouble of
using KVO; its fractionCompleted is automatically used to update this progress view.

The power of Progress comes from two features:

Unification
Often, an operation’s progress is distributed over multiple methods. A network
download is an obvious case in point: the expected size, the accumulated data,
and the fact of completion are reported in three different delegate methods. A
single Progress object, visible to all these methods, provides a unified locus where
each method can play its part in updating the progress information.

Composability
A Progress object can have child Progress objects. The progress of an operation
reported to a child Progress automatically forms an appropriate fraction of the

682 | Chapter 12: Controls and Other Views

progress reported by the parent. Thus, a single Progress, acting as the ultimate
parent, can conglomerate the progress of numerous individual operations.

In general, there are three ways in which you might configure a UIProgressView’s
observedProgress:

• Set the UIProgressView’s observedProgress directly to a Progress object created,
vended, and updated by some other object that performs the operation. This has
the advantage of simplicity, but we now have two objects with strong references
to the same Progress object.

• Set the UIProgressView’s observedProgress to a new Progress object. Also, con‐
figure some other object that performs the operation and also has a Progress
object. Now set up an explicit parent–child relationship between the two Progress
objects. You can do this from the point of view of the parent by calling add-
Child(_:withPendingUnitCount:), or from the point of view of the child by cre‐
ating it with init(totalUnitCount:parent:pendingUnitCount:).

• Set the UIProgressView’s observedProgress to a new Progress object. Now cre‐
ate and configure some other object that performs the operation and also has a
Progress object, which it initializes in such a way that it becomes the child implic‐
itly. To do so:

1. Tell the prospective parent Progress to becomeCurrent(withPendingUnit-
Count:). The notion “current” means that this Progress is waiting to accept
another Progress as its child.

2. Create the operation object, which initializes its Progress with init(totalUnit-
Count:). As if by magic, this Progress becomes the other Progress’s child
(because the other Progress is “current”).

3. Tell the parent to resignCurrent. This balances the earlier become-

Current(withPendingUnitCount:) and brings the configuration to an end.

Here’s a simple illustration of the third approach. I’ve constructed a ProgressingOper‐
ation class that performs an operation that can be divided into stages:

class ProgressingOperation {
 let progress : Progress
 init(units:Int) {
 self.progress = Progress(totalUnitCount: Int64(units))
 }
 func start() {
 // ... whatever ...
 }
}

UIProgressView | 683

In the view controller that manages the UIProgressView (self.prog), I also have a
property (self.op) that is an Optional wrapping a ProgressingOperation:

var op : ProgressingOperation?

I begin the operation by configuring the progress view and the operation object, like
this:

self.prog.progress = 0
self.prog.observedProgress = Progress.discreteProgress(totalUnitCount: 10)
self.prog.observedProgress?.becomeCurrent(withPendingUnitCount: 10)
self.op = ProgressingOperation(units:10) // automatically becomes child!
self.prog.observedProgress?.resignCurrent()
self.op!.start()

The ProgressingOperation’s progress is now the child of the UIProgressView’s
observedProgress, and the view controller that configured everything takes its hands
off: the rest will happen automatically. The ProgressingOperation object begins its
operation. At each stage, it increments its own self.progress.completedUnitCount.
This change percolates up to the parent Progress belonging to our UIProgressView,
which increases its own progress to match, moving the visible thermometer. More‐
over, the change in the visible thermometer is animated.

UIPickerView
A picker view (UIPickerView) displays selectable choices using a rotating drum meta‐
phor. Starting in iOS 9, its default height is adaptive: the default height is 162 in an
environment with a .compact vertical size class (an iPhone in landscape orientation)
and 216 otherwise. Also starting in iOS 9, you are free to set the height; in earlier sys‐
tems, there were restrictions that would thwart your attempts to set a picker view’s
height outside an undocumented range, but these have now been removed. A picker
view’s width is generally up to you.

Each drum, or column, is called a component. Your code configures the UIPicker‐
View’s content through its data source (UIPickerViewDataSource) and delegate
(UIPickerViewDelegate), which are usually the same object. Your data source and
delegate must answer questions similar to those posed by a UITableView (Chapter 8):

numberOfComponents(in:) (data source)
How many components (drums) does this picker view have?

pickerView(_:numberOfRowsInComponent:) (data source)
How many rows does this component have? The first component is numbered 0.

684 | Chapter 12: Controls and Other Views

pickerView(_:titleForRow:forComponent:)

pickerView(_:attributedTitleForRow:forComponent:)

pickerView(_:viewForRow:forComponent:reusing:) (delegate)
What should this row of this component display? The first row is numbered 0.
You can supply a simple string, an attributed string (Chapter 10), or an entire
view such as a UILabel; but you should supply every row of every component the
same way.

The reusing: parameter, if not nil, is supposed to be a view that you supplied
for a row now no longer visible, giving you a chance to reuse it, much as cells are
reused in a table view. In actual fact, the reusing: parameter is always nil. Views
don’t leak — they go out of existence in good order when they are no longer visi‐
ble — but they aren’t reused. I regard this as a bug.

Here’s the code for a UIPickerView (Figure 12-7) that displays the names of the
50 U.S. states, stored in an array. We implement pickerView(_:viewForRow:for-
Component:reusing:) just because it’s the most interesting case; as our views, we
supply UILabel instances. The state names appear centered because the labels are cen‐
tered within the picker view:

func numberOfComponents(in pickerView: UIPickerView) -> Int {
 return 1
}
func pickerView(_ pickerView: UIPickerView,
 numberOfRowsInComponent component: Int) -> Int {
 return self.states.count
}
func pickerView(_ pickerView: UIPickerView,
 viewForRow row: Int,
 forComponent component: Int,
 reusing view: UIView?) -> UIView {
 let lab : UILabel
 if let label = view as? UILabel {
 lab = label // never happens
 } else {
 lab = UILabel()
 }
 lab.text = self.states[row]
 lab.backgroundColor = .clear
 lab.sizeToFit()
 return lab
}

The delegate may further configure the UIPickerView’s physical appearance by means
of these methods:

• pickerView(_:rowHeightForComponent:)

UIPickerView | 685

Figure 12-7. A picker view

• pickerView(_:widthForComponent:)

The delegate may implement pickerView(_:didSelectRow:inComponent:) to be
notified each time the user spins a drum to a new position. You can also query the
picker view directly by sending it selectedRow(inComponent:).

You can set the value to which any drum is turned using selectRow(_:in-
Component:animated:). Other handy picker view methods allow you to request that
the data be reloaded, and there are properties and methods to query the picker view’s
structure:

• reloadComponent(_:)

• reloadAllComponents

• numberOfComponents

• numberOfRows(inComponent:)

• view(forRow:forComponent:)

By implementing pickerView(_:didSelectRow:inComponent:) and calling reload-
Component(_:), you can make a picker view where the values displayed by one drum
depend dynamically on what is selected in another. For example, one can imagine
extending our U.S. states example to include a second drum listing major cities in
each state; when the user switches to a different state in the first drum, a different set
of major cities appears in the second drum.

UISearchBar
A search bar (UISearchBar) is essentially a wrapper for a text field; it has a text field
as one of its subviews, though there is no official access to it. It is displayed by default
as a rounded rectangle containing a magnifying glass icon, where the user can enter
text (Figure 12-8). It does not, of itself, do any searching or display the results of a
search; a common interface involves displaying the results of a search as a table, and
the UISearchController class makes this easy to do (see Chapter 8).

686 | Chapter 12: Controls and Other Views

Figure 12-8. A search bar with a search results button

A search bar’s current text is its text property. It can have a placeholder, which
appears when there is no text. A prompt can be displayed above the search bar to
explain its purpose. Delegate methods (UISearchBarDelegate) notify you of editing
events; for their use, compare the text field and text view delegate methods discussed
in Chapter 10:

• searchBarShouldBeginEditing(_:)

• searchBarTextDidBeginEditing(_:)

• searchBar(_:textDidChange:)

• searchBar(_:shouldChangeTextIn:replacementText:)

• searchBarShouldEndEditing(_:)

• searchBarTextDidEndEditing(_:)

A search bar has a barStyle, for which your choices and their default appearances
are (UIBarStyle):

• .default, a flat light gray background and a white search field
• .black, a black background and a black search field

In addition, there’s a searchBarStyle property (UISearchBarStyle):

• .default, as already described
• .prominent, identical to .default
• .minimal, transparent background and dark transparent search field

Alternatively, you can set a search bar’s barTintColor to change its background
color; if the bar style is .black, the barTintColor will also tint the search field itself.
An opaque barTintColor is a way to make a search bar opaque. The tintColor
property, meanwhile, whose value may be inherited from higher up the view hierar‐
chy, governs the color of search bar components such as the Cancel button title and
the flashing insertion cursor.

A search bar can also have a custom backgroundImage; this will be treated as a resiza‐
ble image. The full setter method is setBackgroundImage(_:for:barMetrics:); I’ll
talk later about what the parameters mean. The backgroundImage overrides all other

UISearchBar | 687

ways of determining the background, and the search bar’s backgroundColor, if any,
appears behind it — though under some circumstances, if the search bar’s
isTranslucent is false, the barTintColor may appear behind it instead.

The search field area where the user enters text can be offset with respect to its back‐
ground, using the searchFieldBackgroundPositionAdjustment property; you might
do this, for example, if you had enlarged the search bar’s height and wanted to posi‐
tion the search field within that height. The text can be offset within the search field
with the searchTextPositionAdjustment property.

You can also replace the image of the search field itself; this is the image that is nor‐
mally a rounded rectangle. To do so, call setSearchFieldBackgroundImage(_:for:);
the second parameter is a UIControlState (even though a search bar is not a control).
According to the documentation, the possible states are .normal and .disabled; but
the API provides no way to disable a search field, so what does Apple have in mind
here? The only way I’ve found is to cycle through the search bar’s subviews, find the
text field, and disable that:

for v in self.sb.subviews[0].subviews {
 if let tf = v as? UITextField {
 tf.isEnabled = false
 break
 }
}

The search field image will be drawn vertically centered in front of the background
and behind the contents of the search field (such as the text); its width will be adjus‐
ted for you, but it is up to you choose an appropriate height, and to ensure an appro‐
priate background color so the user can read the text.

A search bar displays an internal cancel button automatically (normally an X in a cir‐
cle) if there is text in the search field. Internally, at its right end, a search bar may dis‐
play a search results button (showsSearchResultsButton), which may be selected or
not (isSearchResultsButtonSelected), or a bookmark button (showsBookmark-
Button); if you ask to display both, you’ll get the search results button. These buttons
vanish if text is entered in the search bar so that the cancel button can be displayed.
There is also an option to display a Cancel button externally (showsCancelButton, or
call setShowsCancelButton(_:animated:)). The internal cancel button works auto‐
matically to remove whatever text is in the field; the other buttons do nothing, but
delegate methods notify you when they are tapped:

• searchBarResultsListButtonClicked(_:)

• searchBarBookmarkButtonClicked(_:)

• searchBarCancelButtonClicked(_:)

688 | Chapter 12: Controls and Other Views

You can customize the images used for the search icon (a magnifying glass, by
default) and any of the internal right icons (the internal cancel button, the search
results button, and the bookmark button) with setImage(_:for:state:). The
images will be resized for you, except for the internal cancel button, for which about
20×20 seems to be a good size. The icon in question (the for: parameter) is specified
with a constant (UISearchBarIcon):

• .search

• .clear (the internal cancel button)
• .bookmark

• .resultsList

The documentation says that the possible state: values are .normal and .disabled,
but this is wrong; the choices are .normal and .highlighted. The highlighted image
appears while the user taps on the icon (except for the search icon, which isn’t a but‐
ton). If you don’t supply a normal image, the default image is used; if you supply a
normal image but no highlighted image, the normal image is used for both. Setting
isSearchResultsButtonSelected to true reverses the search results button’s behav‐
ior: it displays the highlighted image, but when the user taps it, it displays the normal
image. The position of an icon can be adjusted with setPosition-

Adjustment(_:for:).

A search bar may also display scope buttons (see the example in Chapter 8). These are
intended to let the user alter the meaning of the search; precisely how you use them is
up to you. To make the scope buttons appear, use the showsScopeBar property; the
button titles are the scopeButtonTitles property, and the currently selected scope
button is the selectedScopeButtonIndex property. The delegate is notified when the
user taps a different scope button:

• searchBar(_:selectedScopeButtonIndexDidChange:)

The overall look of the scope bar can be heavily customized. Its background is the
scopeBarBackgroundImage, which will be stretched or tiled as needed. To set the
background of the smaller area constituting the actual buttons, call setScopeBar-
ButtonBackgroundImage(_:for:); the states (the for: parameter) are .normal
and .selected. If you don’t supply a separate selected image, a darkened version of
the normal image is used. If you don’t supply a resizable image, the image will be
made resizable for you; the runtime decides what region of the image will be
stretched behind each button.

The dividers between the buttons are normally vertical lines, but you can customize
them as well: call setScopeBarButtonDividerImage(_:forLeftSegmentState:right-

UISearchBar | 689

Figure 12-9. A horrible search bar

SegmentState:). A full complement of dividers consists of three images, one when
the buttons on both sides of the divider are normal (unselected) and one each when a
button on one side or the other is selected; if you supply an image for just one state
combination, it is used for the other two state combinations. The height of the divider
image is adjusted for you, but the width is not; you’ll normally use an image just a few
pixels wide.

The text attributes of the titles of the scope buttons can customized by calling set-
ScopeBarButtonTitleTextAttributes(_:for:). The attributes are simply the
attributes dictionary of an NSAttributedString (Chapter 10).

It may appear that there is no way to customize the external Cancel button, but
in fact, although you’ve no official direct access to it through the search bar, the
Cancel button is a UIBarButtonItem and you can customize it using the UIBar‐
ButtonItem appearance proxy, discussed later in this chapter.

By combining the various customization possibilities, a completely unrecognizable
search bar of inconceivable ugliness can easily be achieved (Figure 12-9). Let’s be
careful out there.

The problem of allowing the keyboard to appear without hiding the search bar is
exactly as for a text field (Chapter 10). Text input properties of the search bar config‐
ure its keyboard and typing behavior like a text field as well.

When the user taps the Search key in the keyboard, the delegate is notified, and it is
then up to you to dismiss the keyboard (resignFirstResponder) and perform the
search:

• searchBarSearchButtonClicked(_:)

A common interface is a search bar at the top of the screen. On the iPad, a search bar
can be embedded as a bar button item’s view in a toolbar at the top of the screen. On
the iPhone, a search bar can be a navigation item’s titleView. In Chapter 9, I gave an
example of a search bar in a navigation bar. A search bar used in this way, however,
has some limitations: for example, there may be no room for a prompt, scope but‐
tons, or an external Cancel button, and you might not be able to assign it a back‐
ground image or change its barTintColor.

690 | Chapter 12: Controls and Other Views

Alternatively, a UISearchBar can itself function as a top bar, without being inside any
other bar. If you use a search bar in this way, you’ll want its height to be extended
automatically under the status bar; I’ll explain later in this chapter how to arrange
that.

UIControl
UIControl is a subclass of UIView whose chief purpose is to be the superclass of sev‐
eral further built-in classes (controls) and to endow them with common behavior.

The most important thing that controls have in common is that they automatically
track and analyze touch events (Chapter 5) and report them to your code as signifi‐
cant control events by way of action messages. Each control implements some subset
of the possible control events. The control events (UIControlEvents) are:

• .touchDown

• .touchDownRepeat

• .touchDragInside

• .touchDragOutside

• .touchDragEnter

• .touchDragExit

• .touchUpInside

• .touchUpOutside

• .touchCancel

• .valueChanged

• .editingDidBegin

• .editingChanged

• .editingDidEnd

• .editingDidEndOnExit

• .allTouchEvents

• .allEditingEvents

• .allEvents

The control events also have informal names that are visible in the Connections
inspector when you’re editing a nib. I’ll mostly use the informal names in the next
couple of paragraphs.

UIControl | 691

Control events fall roughly into three groups: the user has touched the screen (Touch
Down, Touch Drag Inside, Touch Up Inside, etc.), edited text (Editing Did Begin,
Editing Changed, etc.), or changed the control’s value (Value Changed).

Apple’s documentation is rather coy about which controls normally emit actions for
which control events, so here’s a list obtained through experimentation (but keep in
mind that Apple’s silence on this matter may mean that the details are subject to
change):

UIButton
All Touch events.

UIDatePicker
Value Changed.

UIPageControl
All Touch events, Value Changed.

UIRefreshControl
Value Changed.

UISegmentedControl
Value Changed.

UISlider
All Touch events, Value Changed.

UISwitch
All Touch events, Value Changed.

UIStepper
All Touch events, Value Changed.

UITextField
All Touch events except the Up events, and all Editing events (see Chapter 10 for
details).

UIControl (generic)
All Touch events.

Starting in iOS 9, a control also has a primary control event, a UIControlEvent
called .primaryActionTriggered. The primary control event is Value Changed for all
controls except for UIButton, where it is Touch Up Inside, and UITextField, where it
is Did End On Exit.

For each control event that you want to hear about, you attach to the control one or
more target–action pairs. You can do this in the nib editor or in code.

692 | Chapter 12: Controls and Other Views

Touch Inside and Touch Outside
There is no explicit Touch Down Inside event, because any sequence of Touch events
begins with Touch Down, which must be inside the control. If it weren’t, this sequence
of touches would not belong to this control, and there would be no control events at
all!

When the user taps within a control and starts dragging, the Inside events are trig‐
gered even after the drag moves outside the control’s bounds. But after a certain dis‐
tance from the control is exceeded, an invisible boundary is crossed, Touch Drag Exit
is triggered, and now Outside events are reported until the drag crosses back within
the invisible boundary, at which point Touch Drag Enter is triggered and the Inside
events are reported again. In the case of a UIButton, the crossing of this invisible
boundary is exactly when the button automatically unhighlights (as the drag exits).
Thus, to catch a legitimate button press, you probably want to consider only Touch
Up Inside.

For other controls, there may be some slight complications. For example, a UISwitch
will unhighlight when a drag reaches a certain distance from it, but the touch is still
considered legitimate and can still change the UISwitch’s value; therefore, when the
user’s finger leaves the screen, the UISwitch reports a Touch Up Inside event, even
while reporting Touch Drag Outside events.

For any given control, each control event and its target–action pairs form a dispatch
table. The following methods and properties permit you to manipulate and query the
dispatch table:

• addTarget(_:action:for:)

• removeTarget(_:action:for:)

• actions(forTarget:forControlEvent:)

• allTargets

• allControlEvents (a bitmask of control events to which a target–action pair is
attached)

An action method (the method that will be called on the target when the control
event occurs) may adopt any of three signatures, whose parameters are:

• The control and the UIEvent
• The control only
• No parameters

UIControl | 693

The second signature is by far the most common. It’s unlikely that you’d want to dis‐
pense altogether with the parameter telling you which control sent the control event.
On the other hand, it’s equally unlikely that you’d want to examine the original UIE‐
vent that triggered this control event, since control events deliberately shield you
from dealing with the nitty-gritty of touches. (I suppose you might, on rare occasions,
have some reason to examine the UIEvent’s timestamp.)

When a control event occurs, the control consults its dispatch table, finds all the tar‐
get–action pairs associated with that control event, and reports the control event by
sending each action message to the corresponding target.

The action messaging mechanism is actually more complex than I’ve just stated.
The UIControl does not really send the action message directly; rather, it tells the
shared application to send it. When a control wants to send an action message
reporting a control event, it calls its own sendAction(_:to:for:) method. This
in turn calls the shared application instance’s sendAction(_:to:from:for:),
which actually sends the specified action message to the specified target. In
theory, you could call or override either of these methods to customize this
aspect of the message-sending architecture, but it is extremely unlikely that you
would do so.

To make a control emit its action message(s) corresponding to a particular control
event right now, in code, call its sendActions(for:) method (which is never called
automatically by the runtime). For example, suppose you tell a UISwitch program‐
matically to change its setting from Off to On. This doesn’t cause the switch to report
a control event, as it would if the user had slid the switch from Off to On; if you
wanted it to do so, you could use sendActions(for:), like this:

self.sw.setOn(true, animated: true)
self.sw.sendActions(for:.valueChanged)

You might also use sendActions(for:) in a subclass to customize the circumstances
under which a control reports control events. I’ll give an example later in this chapter.

A control has isEnabled, isSelected, and isHighlighted properties; any of these
can be true or false independently of the others. Together, they correspond to the
control’s state, which is reported as a bitmask of three possible values (UIControl‐
State):

• .highlighted

• .disabled

• .selected

A fourth state, .normal, corresponds to a zero state bitmask, and means that
isEnabled is true, and isSelected and isHighlighted are both false.

694 | Chapter 12: Controls and Other Views

Figure 12-10. A switch

A control that is not enabled does not respond to user interaction. Whether the con‐
trol also portrays itself differently, to cue the user to this fact, depends upon the con‐
trol. For example, a disabled UISwitch is faded; but a rounded rect text field gives the
user no cue that it is disabled. The visual nature of control selection and highlighting,
too, depends on the control. Neither highlighting nor selection make any difference
to the appearance of a UISwitch, but a highlighted UIButton usually looks quite dif‐
ferent from a nonhighlighted UIButton.

A control has contentHorizontalAlignment and contentVerticalAlignment prop‐
erties. These matter only if the control has content that can be aligned. You are most
likely to use them in connection with a UIButton to position its title and internal
image.

A text field (UITextField) is a control; see Chapter 10. A refresh control (UIRefresh‐
Control) is a control; see Chapter 8. The remaining controls are covered here, and
then I’ll give a simple example of writing your own custom control.

UISwitch
A switch (UISwitch, Figure 12-10) portrays a Bool value: it looks like a sliding switch,
and its isOn property is either true or false. The user can slide or tap to toggle the
switch’s setting. When the user changes the switch’s setting, the switch reports a Value
Changed control event. To change the isOn property’s value with accompanying ani‐
mation, call setOn(_:animated:).

A switch has only one size (51×31); any attempt to set its size will be ignored.

You can customize a switch’s appearance by setting these properties:

onTintColor

The color of the track when the switch is at the On setting.

thumbTintColor

The color of the slidable button.

tintColor

The color of the outline when the switch is at the Off setting.

A switch’s track when the switch is at the Off setting is transparent, and can’t be cus‐
tomized. I regard this as a bug. (Changing the switch’s backgroundColor is not a suc‐

UIControl | 695

Figure 12-11. A stepper

cessful workaround, because the background color shows outside the switch’s
outline.)

The UISwitch properties onImage and offImage, added in iOS 6 after much
clamoring (and hacking) by developers, were unfortunately withdrawn in iOS 7,
making a UISwitch once again almost impossible to customize to any appreciable
degree. I regard this as a bug.

UIStepper
A stepper (UIStepper, Figure 12-11) lets the user increase or decrease a numeric
value: it looks like two buttons side by side, one labeled (by default) with a minus
sign, the other with a plus sign. The user can tap or hold a button, and can slide a
finger from one button to the other as part of the same interaction with the stepper. It
has only one size (apparently 94×29). It maintains a numeric value, which is its value.
Each time the user increments or decrements the value, it changes by the stepper’s
stepValue. If the minimumValue or maximumValue is reached, the user can go no fur‐
ther in that direction, and to show this, the corresponding button is disabled —
unless the stepper’s wraps property is true, in which case the value goes beyond the
maximum by starting again at the minimum, and vice versa.

As the user changes the stepper’s value, a Value Changed control event is reported.
Portraying the numeric value itself is up to you; you might, for example, use a label or
(as here) a progress view:

@IBAction func doStep(_ sender: Any!) {
 let step = sender as! UIStepper
 self.prog.setProgress(
 Float(step.value / (step.maximumValue - step.minimumValue)),
 animated:true)
}

If a stepper’s isContinuous is true (the default), a long touch on one of the buttons
will update the value repeatedly; the updates start slowly and get faster. If the stepper’s
autorepeat is false, the updated value is not reported as a Value Changed control
event until the entire interaction with the stepper ends; the default is true.

The appearance of a stepper can be customized. The color of the outline and the but‐
ton captions is the stepper’s tintColor, which may be inherited from further up the
view hierarchy. You can also dictate the images that constitute the stepper’s structure
with these methods:

696 | Chapter 12: Controls and Other Views

Figure 12-12. A customized stepper

• setDecrementImage(_:for:)

• setIncrementImage(_:for:)

• setDividerImage(_:forLeftSegmentState:rightSegmentState:)

• setBackgroundImage(_:for:)

The images work similarly to a search bar’s scope bar (described earlier in this chap‐
ter). The background images should probably be resizable. They are stretched behind
both buttons, half the image being seen as the background of each button. If the but‐
ton is disabled (because we’ve reached the value’s limit in that direction), it displays
the .disabled background image; otherwise, it displays the .normal background
image, except that it displays the .highlighted background image while the user is
tapping it. You’ll probably want to provide all three background images if you’re
going to provide any; the default is used if a state’s background image is nil. You’ll
probably want to provide three divider images as well, to cover the three combina‐
tions of one or neither segment being highlighted. The increment and decrement
images, replacing the default minus and plus signs, are composited on top of the
background image; they are treated as template images, colored by the tintColor,
unless you explicitly provide an .alwaysOriginal image. If you provide only
a .normal image, it will be adjusted automatically for the other two states.
Figure 12-11 shows a customized stepper.

UIPageControl
A page control (UIPageControl) is a row of dots; each dot is called a page, because it
is intended to be used in conjunction with some other interface that portrays some‐
thing analogous to pages, such as a UIScrollView with its isPagingEnabled set to
true. Coordinating the page control with this other interface is usually up to you; see
Chapter 7 for an example. A UIPageViewController in scroll style can optionally dis‐
play a page control that’s automatically coordinated with its content (Chapter 6).

The number of dots is the page control’s numberOfPages. To learn the minimum size
required for a given number of pages, call size(forNumberOfPages:). You can make
the page control wider than the dots to increase the target region on which the user
can tap. The user can tap to one side or the other of the current page’s dot to incre‐
ment or decrement the current page; the page control then reports a Value Changed
control event.

UIControl | 697

The dot colors differentiate the current page, the page control’s currentPage, from
the others; by default, the current page is portrayed as a solid dot, while the others are
slightly transparent. You can customize a page control’s pageIndicatorTintColor
(the color of the dots in general) and currentPageIndicatorTintColor (the color of
the current page’s dot); you will almost certainly want to do this, as the default dot
color is white, which under normal circumstances may be hard to see.

It is possible to set a page control’s backgroundColor; you might do this to show the
user the tappable area, or to make the dots more clearly visible by contrast.

If a page control’s hidesForSinglePage is true, the page control becomes invisible
when its numberOfPages changes to 1.

If a page control’s defersCurrentPageDisplay is true, then when the user taps to
increment or decrement the page control’s value, the display of the current page is not
changed. A Value Changed control event is reported, but it is up to your code to han‐
dle this action and call updateCurrentPageDisplay. A case in point might be if the
user’s changing the current page triggers an animation, and you don’t want the cur‐
rent page dot to change until the animation ends.

UIDatePicker
A date picker (UIDatePicker) looks like a UIPickerView (discussed earlier in this
chapter), but it is not a UIPickerView subclass; it uses a UIPickerView to draw itself,
but it provides no official access to that picker view. Its purpose is to express the
notion of a date and time, taking care of the calendrical and numerical complexities
so that you don’t have to. When the user changes its setting, the date picker reports a
Value Changed control event.

A UIDatePicker has one of four modes (datePickerMode), determining how it is
drawn (UIDatePickerMode):

.time

The date picker displays a time; for example, it has an hour component and a
minutes component.

.date

The date picker displays a date; for example, it has a month component, a day
component, and a year component.

.dateAndTime

The date picker displays a date and time; for example, it has a component show‐
ing day of the week, month, and day, plus an hour component and a minutes
component.

698 | Chapter 12: Controls and Other Views

.countDownTimer

The date picker displays a number of hours and minutes; for example, it has an
hours component and a minutes component.

Exactly what components a date picker displays, and what values they contain,
depends by default upon the user’s preferences in the Settings app (General → Lan‐
guage & Region → Region). For example, a U.S. time displays an hour numbered 1
through 12 plus minutes and AM or PM, but a British time displays an hour num‐
bered 1 through 24 plus minutes. If the user changes the region format in the Settings
app, the date picker’s display will change immediately.

A date picker has calendar and timeZone properties, respectively a Calendar and a
TimeZone; these are nil by default, meaning that the date picker responds to the
user’s system-level settings. You can also change these values manually; for example,
if you live in California and you set a date picker’s timeZone to GMT, the displayed
time is shifted forward by 8 hours, so that 11 AM is displayed as 7 PM (if it is winter).

Don’t change the timeZone of a .countDownTimer date picker; if you do, the dis‐
played value will be shifted, and you will confuse the heck out of yourself (and
your users).

The minutes component, if there is one, defaults to showing every minute, but you
can change this with the minuteInterval property. The maximum value is 30, in
which case the minutes component values are 0 and 30. An attempt to set the minute-
Interval to a value that doesn’t divide evenly into 60 will be silently ignored.

The date represented by a date picker (unless its mode is .countDownTimer) is its
date property, a Date. The default date is now, at the time the date picker is instanti‐
ated. For a .date date picker, the time by default is 12 AM (midnight), local time; for
a .time date picker, the date by default is today. The internal value is reckoned in the
local time zone, so it may be different from the displayed value, if you have changed
the date picker’s timeZone.

The maximum and minimum values enabled in the date picker are determined by its
maximumDate and minimumDate properties. Values outside this range may appear dis‐
abled. There isn’t really any practical limit on the range that a date picker can display,
because the “drums” representing its components are not physical, and values are
added dynamically as the user spins them. In this example, we set the initial mini‐
mum and maximum dates of a date picker (dp) to the beginning and end of 1954. We
also set the actual date, so that the date picker will be set initially to a value within the
minimum–maximum range:

dp.datePickerMode = .date
var dc = DateComponents(year:1954, month:1, day:1)
let c = Calendar(identifier:.gregorian)
let d1 = c.date(from: dc)!

UIControl | 699

dp.minimumDate = d1
dp.date = d1
dc.year = 1955
let d2 = c.date(from: dc)!
dp.maximumDate = d2

Don’t set the maximumDate and minimumDate properties values for a .countDown-
Timer date picker; if you do, you might cause a crash with an out-of-range excep‐
tion.

To convert between a Date and a string, you’ll need a DateFormatter (see Apple’s Date
and Time Programming Guide):

@IBAction func dateChanged(_ sender: Any) {
 let dp = sender as! UIDatePicker
 let d = dp.date
 let df = DateFormatter()
 df.timeStyle = .full
 df.dateStyle = .full
 print(df.string(from: d))
 // Tuesday, August 10, 1954 at 3:16:00 AM GMT-07:00
}

The value displayed in a .countDownTimer date picker is its countDownDuration; this
is a TimeInterval, which is a Double representing a number of seconds, even though
the minimum interval displayed is a minute. A .countDownTimer date picker does not
actually do any counting down! You are expected to count down in some other way,
and to use some other interface to display the countdown. The Timer tab of Apple’s
Clock app shows a typical interface; the user configures the date picker to set the
countDownDuration initially, but once the counting starts, the date picker is hidden
and a label displays the remaining time.

Converting the countDownDuration from a TimeInterval to hours and minutes is up
to you; if your purpose is to display a string, you could use a DateComponentsFor‐
matter:

let t = dp.countDownDuration
let f = DateComponentsFormatter()
f.allowedUnits = [.hour, .minute]
f.unitsStyle = .abbreviated
if let s = f.string(from: t) {
 print(s) // "1h 12m"
}

A nasty bug makes the Value Changed event from a .countDownTimer date
picker unreliable (especially just after the app launches, and whenever the user
has tried to set the timer to zero). The workaround is not to rely on the Value
Changed event; for example, provide a button in the interface that the user can
tap to make your code read the date picker’s countDownDuration.

700 | Chapter 12: Controls and Other Views

UISlider
A slider (UISlider) is an expression of a continuously settable value (its value, a
Float) between some minimum and maximum (its minimumValue and maximumValue;
they are 0 and 1 by default). It is portrayed as an object, the thumb, positioned along a
track. As the user changes the thumb’s position, the slider reports a Value Changed
control event; it may do this continuously as the user presses and drags the thumb (if
the slider’s isContinuous is true, the default) or only when the user releases the
thumb (if isContinuous is false). While the user is pressing on the thumb, the slider
is in the .highlighted state. To change a slider’s value with animation of the thumb,
call setValue(_:animated:) in an animations function; I’ll show an example in a
moment.

A commonly expressed desire is to modify a slider’s behavior so that if the user taps
on its track, the slider moves to the spot where the user tapped. Unfortunately, a
slider does not, of itself, respond to taps on its track; such a tap doesn’t even cause it
to report a Touch Up Inside control event. However, with a gesture recognizer, most
things are possible; here’s the action handler for a UITapGestureRecognizer attached
to a UISlider:

func tapped(_ g:UIGestureRecognizer) {
 let s = g.view as! UISlider
 if s.isHighlighted {
 return // tap on thumb, let slider deal with it
 }
 let pt = g.location(in:s)
 let track = s.trackRect(forBounds: s.bounds)
 if !track.insetBy(dx: 0, dy: -10).contains(pt) {
 return // not on track, forget it
 }
 let percentage = pt.x / s.bounds.size.width
 let delta = Float(percentage) * (s.maximumValue - s.minimumValue)
 let value = s.minimumValue + delta
 delay(0.1) {
 UIView.animate(withDuration: 0.15) {
 s.setValue(value, animated:true) // animate sliding the thumb
 }
 }
}

A slider’s tintColor (which may be inherited from further up the view hierarchy)
determines the color of the track to the left of the thumb. You can change the color of
the thumb with the thumbTintColor property. You can change the color of the two
parts of the track with the minimumTrackTintColor and maximumTrackTintColor
properties.

UIControl | 701

Figure 12-13. Repositioning a slider’s images and track

To go further, you can provide your own thumb image and your own track image,
along with images to appear at each end of the track, and you can override in a sub‐
class the methods that position these.

The images at the ends of the track are the slider’s minimumValueImage and maximum-
ValueImage, and they are nil by default. If you set them to actual images (which can
also be done in the nib editor), the slider will attempt to position them within its own
bounds, shrinking the drawing of the track to compensate.

You can change that behavior by overriding these methods in a subclass:

• minimumValueImageRect(forBounds:)

• maximumValueImageRect(forBounds:)

• trackRect(forBounds:)

The bounds passed in are the slider’s bounds. In this example (Figure 12-13), we
expand the track width to the full width of the slider, and draw the images outside the
slider’s bounds. The images are still visible, because the slider does not clip its sub‐
views to its bounds. In the figure, I’ve given the slider a background color so you can
see how the track and images are related to its bounds:

override func maximumValueImageRect(forBounds bounds: CGRect) -> CGRect {
 return super.maximumValueImageRect(forBounds:bounds)
 .offsetBy(dx: 31, dy: 0)
}
override func minimumValueImageRect(forBounds bounds: CGRect) -> CGRect {
 return super.minimumValueImageRect(forBounds: bounds)
 .offsetBy(dx: -31, dy: 0)
}
override func trackRect(forBounds bounds: CGRect) -> CGRect {
 var result = super.trackRect(forBounds: bounds)
 result.origin.x = 0
 result.size.width = bounds.size.width
 return result
}

The thumb is also an image, and you set it with setThumbImage(_:for:). There are
two chiefly relevant states, .normal and .highlighted. If you supply images for both,
the thumb will change automatically while the user is dragging it. By default, the
image will be centered in the track at the point represented by the slider’s current
value; you can shift this position by overriding thumbRect(forBounds:track-

702 | Chapter 12: Controls and Other Views

Figure 12-14. Replacing a slider’s thumb

Rect:value:) in a subclass. In this example, the image is repositioned upward
slightly (Figure 12-14):

override func thumbRect(forBounds bounds: CGRect,
 trackRect rect: CGRect, value: Float) -> CGRect {
 return super.thumbRect(forBounds: bounds,
 trackRect: rect, value: value).offsetBy(dx: 0, dy: -7)
}

Enlarging or offsetting a slider’s thumb can mislead the user as to the area on which it
can be touched to drag it. The slider, not the thumb, is the touchable UIControl; only
the part of the thumb that intersects the slider’s bounds will be draggable. The user
may try to drag the part of the thumb that is drawn outside the slider’s bounds, and
will fail (and be confused). One solution is to increase the slider’s height; if you’re
using autolayout, you can add an explicit height constraint in the nib editor, or over‐
ride intrinsicContentSize in code (Chapter 1). Another solution is to subclass and
use hit-test munging (Chapter 5):

override func hitTest(_ point: CGPoint, with event: UIEvent?) -> UIView? {
 let tr = self.trackRect(forBounds: self.bounds)
 if tr.contains(point) { return self }
 let r = self.thumbRect(
 forBounds: self.bounds, trackRect: tr, value: self.value)
 if r.contains(point) { return self }
 return nil
}

The track is two images, one appearing to the left of the thumb, the other to its right.
They are set with setMinimumTrackImage(_:for:) and setMaximumTrack-

Image(_:for:). If you supply images both for .normal state and for .highlighted
state, the images will change while the user is dragging the thumb.

The images should be resizable, because that’s how the slider cleverly makes it look
like the user is dragging the thumb along a single static track. In reality, there are two
images; as the user drags the thumb, one image grows horizontally and the other
shrinks horizontally. For the left track image, the right end cap inset will be partially
or entirely hidden under the thumb; for the right track image, the left end cap inset
will be partially or entirely hidden under the thumb. Figure 12-15 shows a track
derived from a single 15×15 image of a circular object (a coin):

let coinEnd = UIImage(named:"coin")!.resizableImage(withCapInsets:
 UIEdgeInsetsMake(0,7,0,7), resizingMode: .stretch)
self.setMinimumTrackImage(coinEnd, for:.normal)
self.setMaximumTrackImage(coinEnd, for:.normal)

UIControl | 703

Figure 12-15. Replacing a slider’s track

Figure 12-16. A segmented control

UISegmentedControl
A segmented control (UISegmentedControl, Figure 12-16) is a row of tappable seg‐
ments; a segment is rather like a button. The user is thus choosing among options. By
default (isMomentary is false), the most recently tapped segment remains selected.
Alternatively (isMomentary is true), the tapped segment is shown as highlighted
momentarily (by default, highlighted is indistinguishable from selected, but you can
change that); afterwards, no segment selection is displayed, though internally the tap‐
ped segment remains the selected segment.

The selected segment can be set and retrieved with the selectedSegmentIndex prop‐
erty; when you set it in code, the selected segment remains visibly selected, even for
an isMomentary segmented control. A selectedSegmentIndex value of UISegmented-
ControlNoSegment means no segment is selected. When the user taps a segment that
isn’t already visibly selected, the segmented control reports a Value Changed event.

A segmented control’s change of selection is animatable; change the selection in an
animations function, like this:

UIView.animateWithDuration(0.4, animations: {
 self.seg.selectedSegmentIndex = 1
})

To animate the change more slowly when the user taps on a segment, set the segmen‐
ted control’s layer’s speed to a fractional value.

A segment can be separately enabled or disabled with setEnabled(_:forSegment-
At:), and its enabled state can be retrieved with isEnabledForSegment(at:). A dis‐
abled segment, by default, is drawn faded; the user can’t tap it, but it can still be
selected in code.

A segment has either a title or an image; when one is set, the other becomes nil. An
image is treated as a template image, colored by the tintColor, unless you explicitly
provide an .alwaysOriginal image. The methods for setting and fetching the title
and image for existing segments are:

704 | Chapter 12: Controls and Other Views

• setTitle(_:forSegmentAt:), titleForSegment(at:)
• setImage(_:forSegmentAt:), imageForSegment(at:)

You will also want to set the title or image when creating the segment. You can do this
in code if you’re creating the segmented control from scratch, with init(items:),
which takes an array each item of which is either a string or an image:

let seg = UISegmentedControl(items:
 [UIImage(named:"one")!.withRenderingMode(.alwaysOriginal), "Two"])
seg.frame.origin = CGPoint(30,30)
self.view.addSubview(seg)

Methods for managing segments dynamically are:

• insertSegment(withTitle:at:animated:)

• insertSegment(with:at:animated:) (the parameter is a UIImage)
• removeSegment(at:animated:)

• removeAllSegments

The number of segments can be retrieved with the read-only numberOfSegments
property.

A segmented control has a standard height; if you’re using autolayout, you can change
the height through constraints or by overriding intrinsicContentSize — or by set‐
ting its background image, as I’ll describe in a moment.

If you’re using autolayout, the widths of all segments and the intrinsicContentSize
width of the entire segmented control are adjusted automatically whenever you set a
segment’s title or image. If the segmented control’s apportionsSegmentWidthsBy-
Content property is false, segment sizes will be made equal to one another; if it is
true, each segment will be sized individually to fit its content. Alternatively, you can
set a segment’s width explicitly with setWidth(_:forSegmentAt:) (and retrieve it
with widthForSegment(at:)); setting a width of 0 means that this segment is to be
sized automatically.

To change the position of the content (title or image) within a segment, call set-
ContentOffset(_:forSegmentAt:) (and retrieve it with contentOffsetFor-

Segment(at:)).

The color of a segmented control’s outline, title text, and selection are dictated by its
tintColor, which may be inherited from further up the view hierarchy.

Further methods for customizing a segmented control’s appearance are parallel to
those for setting the look of a stepper or the scope bar portion of a search bar, both

UIControl | 705

Figure 12-17. A segmented control, customized

described earlier in this chapter. You can set the overall background, the divider
image, the text attributes for the segment titles, and the position of segment contents:

• setBackgroundImage(_:for:barMetrics:)

• setDividerImage(_:forLeftSegmentState:rightSegmentState:barMetrics:)

• setTitleTextAttributes(_:for:)

• setContentPositionAdjustment(_:forSegmentType:barMetrics:)

You don’t have to customize for every state, as the segmented control will use
the .normal state setting for the states you don’t specify. As I mentioned a moment
ago, setting a background image changes the segmented control’s height. The segment-
Type: parameter in the last method is needed because, by default, the segments at the
two extremes have rounded ends (and, if a segment is the lone segment, both its ends
are rounded). The argument (UISegmentedControlSegment) allows you distinguish
between the various possibilities:

• .any

• .left

• .center

• .right

• .alone

Here’s the code that achieved Figure 12-17. Selecting a segment automatically darkens
the background image for us (similar to a button’s adjustsImageWhenHighlighted,
described in the next section), so there’s no need to specify a separate selected image:

// background, set desired height but make width resizable
// sufficient to set for Normal only
let sz = CGSize(100,60)
let im = UIGraphicsImageRenderer(size:sz).image {_ in
 UIImage(named:"linen")!.draw(in:CGRect(origin: .zero, size: sz))
}.resizableImage(
 withCapInsets: UIEdgeInsetsMake(0,10,0,10), resizingMode: .stretch)
self.seg.setBackgroundImage(im, for:.normal, barMetrics: .default)
// segment images, redraw at final size
let pep = ["manny", "moe", "jack"]
for (i, boy) in pep.enumerated() {

706 | Chapter 12: Controls and Other Views

 let sz = CGSize(30,30)
 let im = UIGraphicsImageRenderer(size:sz).image {_ in
 UIImage(named:boy)!.draw(in:CGRect(origin: .zero, size: sz))
 }.withRenderingMode(.alwaysOriginal)
 self.seg.setImage(im, forSegmentAt: i)
 self.seg.setWidth(80, forSegmentAt: i)
}
// divider, set at desired width, sufficient to set for Normal only
let sz2 = CGSize(2,10)
let div = UIGraphicsImageRenderer(size:sz2).image { _ in
 UIColor.white.set()
 UIGraphicsGetCurrentContext()!.fill(CGRect(origin: .zero, size: sz2))
}
self.seg.setDividerImage(div,
 forLeftSegmentState: [], rightSegmentState: [], barMetrics: .default)

UIButton
A button (UIButton) is a fundamental tappable control, which may contain a title, an
image, and a background image (and may have a backgroundColor). A button has a
type, and the initializer is init(type:). The types (UIButtonType) are:

.system

The title text appears in the button’s tintColor, which may be inherited from
further up the view hierarchy; when the button is tapped, the title text color
momentarily changes to a color derived from what’s behind it (which might be
the button’s backgroundColor). The image is treated as a template image, colored
by the tintColor, unless you explicitly provide an .alwaysOriginal image;
when the button is tapped, the image (even if it isn’t a template image) is momen‐
tarily tinted to a color derived from what’s behind it.

.detailDisclosure, .infoLight, .infoDark, .contactAdd
Basically, these are all .system buttons whose image is set automatically to stan‐
dard button images. The first three are an “i” in a circle, and the last is a Plus in a
circle; the two info types are identical, and they differ from .detailDisclosure
only in that their showsTouchWhenHighlighted is true by default.

.custom

Similar to .system, except that there’s no automatic coloring of the title or image
by the tintColor or the color of what’s behind the button, and the image is a
normal image by default.

There is no built-in button type with an outline (border), comparable to the Rounded
Rect style of iOS 6 and before. You can add an outline — by adding a background
image, for example, or by manipulating the button’s layer — but the default look of a
button is the text or image alone. In one of my apps, I make a button appear as a
rounded rectangle, entirely through settings in the nib editor:

UIControl | 707

1. In the Attributes inspector, I give the button a background color.
2. In the Identity inspector, I use the User Defined Runtime Attributes to set the

button’s layer.borderWidth to 2 and its layer.cornerRadius to 5.

I’ll give a more sophisticated example later in this chapter (see Figure 12-20).

A button has a title, a title color, and a title shadow color — or you can supply an
attributed title, thus dictating these features and more in a single value through an
NSAttributedString (Chapter 10).

Distinguish a button’s image, which is an internal image, from its background image.
The background image, if any, is stretched, if necessary, to fill the button’s bounds
(technically, its backgroundRect(forBounds:)). The internal image, on the other
hand, if smaller than the button, is not resized. The button can have both a title and
an image, if the image is small enough; in that case, the image is shown to the left of
the title by default.

These six features — title, title color, title shadow color, attributed title, image, and
background image — can all be made to vary depending on the button’s current
state: .highlighted, .selected, .disabled, and .normal. The button can be in more
than one state at once, except for .normal which means “none of the other states.” A
state change, whether automatic (the button is highlighted while the user is tapping
it) or programmatically imposed, will thus in and of itself alter a button’s appearance.
The methods for setting these button features, therefore, all involve specifying a cor‐
responding state — or multiple states, using a bitmask:

• setTitle(_:for:)

• setTitleColor(_:for:)

• setTitleShadowColor(_:for:)

• setAttributedTitle(_:for:)

• setImage(_:for:)

• setBackgroundImage(_:for:)

Similarly, when getting these button features, you must either specify a single state
you’re interested in or ask about the feature as currently displayed:

• title(for:), currentTitle
• titleColor(for:), currentTitleColor
• titleShadowColor(for:), currentTitleShadowColor
• attributedTitle(for:), currentAttributedTitle

708 | Chapter 12: Controls and Other Views

• image(for:), currentImage
• backgroundImage(for:), currentBackgroundImage

If you don’t specify a feature for a particular state, or if the button adopts more than
one state at once, an internal heuristic is used to determine what to display. I can’t
describe all possible combinations, but here are some general observations:

• If you specify a feature for a particular state (highlighted, selected, or disabled),
and the button is in only that state, that feature will be used.

• If you don’t specify a feature for a particular state (highlighted, selected, or dis‐
abled), and the button is in only that state, the normal version of that feature will
be used as fallback. (That’s why many examples earlier in this book have assigned
a title for .normal only; this is sufficient to give the button a title in every state.)

• Combinations of states often cause the button to fall back on the feature for nor‐
mal state. For example, if a button is both highlighted and selected, the button
will display its normal title, even if it has a highlighted title, a selected title, or
both.

A .system button with an attributed normal title will tint the title to the tintColor if
you don’t give the attributed string a color, and will tint the title while highlighted to
the color derived from what’s behind the button if you haven’t supplied a highlighted
title with its own color. But a .custom button will not do any of that; it leaves control
of the title color for each state completely up to you.

In addition, a UIButton has some properties determining how it draws itself in vari‐
ous states, which can save you the trouble of specifying different images for different
states:

showsTouchWhenHighlighted

If true, then the button projects a circular white glow when highlighted. If the
button has an internal image, the glow is centered behind it. Thus, this feature is
suitable particularly if the button image is small and circular; for example, it’s the
default behavior for an .infoLight or .infoDark button. If the button has no
internal image, the glow is centered at the button’s center. The glow is drawn on
top of the background image or color, if any.

adjustsImageWhenHighlighted

In a .custom button, if this property is true (the default), then if there is no sepa‐
rate highlighted image (and if showsTouchWhenHighlighted is false), the nor‐
mal image is darkened when the button is highlighted. This applies equally to the
internal image and the background image. (A .system button is already tinting
its highlighted image, so this property doesn’t apply.)

UIControl | 709

adjustsImageWhenDisabled

If true, then if there is no separate disabled image, the normal image is shaded
when the button is disabled. This applies equally to the internal image and the
background image. The default is true for a .custom button and false for
a .system button.

A button has a natural size in relation to its contents. If you’re using autolayout, the
button can adopt that size automatically as its intrinsicContentSize, and you can
modify the way it does this by overriding intrinsicContentSize in a subclass or by
applying explicit constraints. If you’re not using autolayout and you create a button in
code, send it sizeToFit or give it an explicit size; otherwise, the button may have
size .zero. Creating a zero-size button and then wondering why the button isn’t visi‐
ble in the interface is a common beginner mistake.

The title is a UILabel (Chapter 10), and the label features of the title can be accessed
through the button’s titleLabel. For example, beginners often wonder how to make
a button’s title consist of more than one line; the answer is obvious, once you remem‐
ber that the title is displayed in a label: increase the button’s titleLabel.numberOf-
Lines. In general, the label’s properties may be set, provided they do not conflict with
existing UIButton features. For example, you can set the title’s font and shadow-
Offset by way of the label, but the title’s text, color, and shadow color should be set
using the appropriate button methods specifying a button state. If the title is given a
shadow in this way, then the button’s reversesTitleShadowWhenHighlighted prop‐
erty also applies: if true, the shadowOffset values are replaced with their additive
inverses when the button is highlighted. The modern way, however, is to do that sort
of thing through the button’s attributed title.

The internal image is drawn by a UIImageView (Chapter 2), whose features can be
accessed through the button’s imageView. Thus, for example, you can change the
internal image view’s alpha to make the image more transparent.

The internal position of the image and title as a whole are governed by the button’s
contentVerticalAlignment and contentHorizontalAlignment (inherited from
UIControl). You can also tweak the position of the image and title, together or sepa‐
rately, by setting the button’s contentEdgeInsets, titleEdgeInsets, or imageEdge-
Insets. Increasing an inset component increases that margin; thus, for example, a
positive top component makes the distance between that object and the top of the
button larger than normal (where “normal” is where the object would be according to
the alignment settings). The titleEdgeInsets or imageEdgeInsets values are added
to the overall contentEdgeInsets values. So, for example, if you really wanted to, you
could make the internal image appear to the right of the title by decreasing the left
titleEdgeInsets and increasing the left imageEdgeInsets.

Four methods also provide access to the button’s positioning of its elements:

710 | Chapter 12: Controls and Other Views

Figure 12-18. A custom button

• titleRect(forContentRect:)

• imageRect(forContentRect:)

• contentRect(forBounds:)

• backgroundRect(forBounds:)

These methods are called whenever the button is redrawn, including every time it
changes state. The content rect is the area in which the title and image are placed. By
default, the content rect and the background rect are the same. You can override these
methods in a subclass to change the way the button’s elements are positioned.

Here’s an example of a customized button (Figure 12-18). In a UIButton subclass, we
increase the button’s intrinsicContentSize to give it larger margins around its con‐
tent, and we configure the background rect to shrink the button slightly when high‐
lighted as a way of providing feedback (for sizeByDelta, see Appendix B):

override func backgroundRect(forBounds bounds: CGRect) -> CGRect {
 var result = super.backgroundRect(forBounds:bounds)
 if self.isHighlighted {
 result = result.insetBy(dx: 3, dy: 3)
 }
 return result
}
override var intrinsicContentSize : CGSize {
 return super.intrinsicContentSize.sizeByDelta(dw:25, dh: 20)
}

The button, which is a .custom button, is assigned an internal image and a back‐
ground image from the same resizable image, along with attributed titles for
the .normal and .highlighted states. The internal image glows when highlighted,
thanks to adjustsImageWhenHighlighted.

Custom Controls
If you create your own UIControl subclass, you automatically get the built-in Touch
events; in addition, there are several methods that you can override in order to cus‐
tomize touch tracking, along with properties that tell you whether touch tracking is
going on:

UIControl | 711

Figure 12-19. A custom control

• beginTracking(_:with:)

• continueTracking(_:with:)

• endTracking(_:with:)

• cancelTracking(with:)

• isTracking

• isTouchInside

To illustrate, I’ll give a simple example of creating a custom control. The main reason
for doing this (rather than using, say, a UIView and gesture recognizers) would prob‐
ably be to obtain the convenience of control events. Also, the touch-tracking meth‐
ods, though not as high-level as gesture recognizers, are at least a level up from the
UIResponder touch methods (Chapter 5): they track a single touch, and both begin-
Tracking and continueTracking return a Bool, giving you a chance to stop tracking
the current touch.

We’ll build a simplified knob control (Figure 12-19). The control starts life at its mini‐
mum position, with an internal angle value of 0; it can be rotated clockwise with a
single finger as far as its maximum position, with an internal angle value of 5 (radi‐
ans). To keep things simple, the words “Min” and “Max” appearing in the interface
are actually labels; the control just draws the knob, and to rotate it we’ll apply a rota‐
tion transform.

Our control is a UIControl subclass, MyKnob. It has a public CGFloat angle prop‐
erty, and a private CGFloat property self.initialAngle that we’ll use internally dur‐
ing rotation. Because a UIControl is a UIView, it can draw itself, which it does with
an image file included in our app bundle:

override func draw(_ rect: CGRect) {
 UIImage(named:"knob")!.draw(in: rect)
}

We’ll need a utility function for transforming a touch’s Cartesian coordinates into
polar coordinates, giving us the angle to be applied as a rotation to the view:

712 | Chapter 12: Controls and Other Views

func pToA (_ t:UITouch) -> CGFloat {
 let loc = t.location(in: self)
 let c = CGPoint(self.bounds.midX, self.bounds.midY)
 return atan2(loc.y - c.y, loc.x - c.x)
}

Now we’re ready to override the tracking methods. beginTracking simply notes
down the angle of the initial touch location. continueTracking uses the difference
between the current touch location’s angle and the initial touch location’s angle to
apply a transform to the view, and updates the angle property. endTracking triggers
the Value Changed control event. So our first draft looks like this:

override func beginTracking(_ t: UITouch, with _: UIEvent?) -> Bool {
 self.initialAngle = pToA(t)
 return true
}
override func continueTracking(_ t: UITouch, with _: UIEvent?) -> Bool {
 let ang = pToA(t) - self.initialAngle
 let absoluteAngle = self.angle + ang
 self.transform = self.transform.rotated(by: ang)
 self.angle = absoluteAngle
 return true
}
override func endTracking(_: UITouch?, with _: UIEvent?) {
 self.sendActions(for: .valueChanged)
}

This works: we can put a MyKnob into the interface and hook up its Value Changed
control event (this can be done in the nib editor), and sure enough, when we run the
app, we can rotate the knob and, when our finger lifts from the knob, the Value
Changed action handler is called.

However, our class needs modification. When the angle is set programmatically, we
should respond by rotating the knob; at the same time, we need to clamp the incom‐
ing value to the allowable minimum or maximum:

var angle : CGFloat = 0 {
 didSet {
 if self.angle < 0 {
 self.angle = 0
 }
 if self.angle > 5 {
 self.angle = 5
 }
 self.transform = CGAffineTransform(rotationAngle: self.angle)
 }
}

Now we should revise continueTracking. We no longer need to perform the rota‐
tion, since setting the angle will do that for us. On the other hand, we do need to
clamp the gesture when the minimum or maximum rotation is exceeded. My solution

UIControl | 713

is simply to stop tracking; in that case, endTracking will never be called, so we also
need to trigger the Value Changed control event. Also, it might be nice to give the
programmer the option to have the Value Changed control event reported continu‐
ously as continueTracking is called repeatedly; so we’ll add a public isContinuous
Bool property and obey it:

override func continueTracking(_ t: UITouch, with _: UIEvent?) -> Bool {
 let ang = pToA(t) - self.initialAngle
 let absoluteAngle = self.angle + ang
 switch absoluteAngle {
 case -CGFloat.infinity...0:
 self.angle = 0
 self.sendActions(for: .valueChanged)
 return false
 case 5...CGFloat.infinity:
 self.angle = 5
 self.sendActions(for: .valueChanged)
 return false
 default:
 self.angle = absoluteAngle
 if self.isContinuous {
 self.sendActions(for: .valueChanged)
 }
 return true
 }
}

Bars
There are three bar types: navigation bar (UINavigationBar), toolbar (UIToolbar),
and tab bar (UITabBar). They are often used in conjunction with a built-in view con‐
troller (Chapter 6):

• A UINavigationController has a UINavigationBar.
• A UINavigationController has a UIToolbar.
• A UITabBarController has a UITabBar.

You can also use these bar types independently. You are most likely to do that with a
UIToolbar, which is often used as an independent bottom bar. On the iPad, it can also
be used as a top bar, adopting a role analogous to a menu bar on the desktop.

This section summarizes the facts about the three bar types — along with UISearch‐
Bar, which can act as a top bar — and about the items that populate them.

714 | Chapter 12: Controls and Other Views

Bar Position and Bar Metrics
If a bar is to occupy the top of the screen, its apparent height should be increased to
underlap the transparent status bar. To make this possible, iOS provides the notion of
a bar position. The UIBarPositioning protocol, adopted by UINavigationBar, UITool‐
bar, and UISearchbar (the bars that can go at the top of the screen), defines one prop‐
erty, barPosition, whose possible values (UIBarPosition) are:

• .any

• .bottom

• .top

• .topAttached

But barPosition is read-only, so how are you supposed to set it? Use the bar’s dele‐
gate! The delegate protocols UINavigationBarDelegate, UIToolbarDelegate, and
UISearchBarDelegate all conform to UIBarPositioningDelegate. The UIBarPositio‐
ningDelegate protocol defines one method, position(for:). This provides a way for
a bar’s delegate to dictate the bar’s barPosition.

The rule is that the bar’s apparent height will be extended upward, so that its top can
go behind the status bar, if the bar’s delegate returns .topAttached from its imple‐
mentation of position(for:). To get the final position right, the bar’s top should also
have a zero-length constraint to the view controller’s top layout guide. If you’re not
using autolayout, then the bar’s top should have a y value of 20.

I say that a bar’s apparent height is extended upward, because in fact its height
remains untouched. It is drawn extended upward, and this drawing is visible
because the bar’s clipsToBounds is false. For this reason (and others), you
should not set a top bar’s clipsToBounds to true.

A bar’s height is reflected also by its bar metrics. This refers to a change in the stan‐
dard height of the bar in reponse to a change in the orientation of the app. This
change is not an automatic feature of the bar itself; rather, it is performed automati‐
cally by a UINavigationController on its own navigation bar or toolbar in a .compact
horizontal size class environment. The standard heights are 44 (.regular vertical size
class) and 32 (.compact vertical size class). Possible bar metrics values are (UIBar‐
Metrics):

• .default

• .compact

• .defaultPrompt

Bars | 715

• .compactPrompt

The compact metrics apply in a .compact vertical size class environment. The prompt
metrics apply to a bar whose height is extended downward to accommodate prompt
text (and to a search bar whose scope buttons are showing).

When you’re customizing a feature of a bar, you may find yourself calling a method
that takes a bar metrics parameter, and possibly a bar position parameter as well. The
idea is that you can customize that feature differently depending on the bar position
and the bar metrics. But you don’t have to set that value for every possible combina‐
tion of bar position and bar metrics; in general (though, unfortunately, the details are
a little inconsistent from class to class), UIBarPosition.any and UIBar-

Metrics.default are treated as defaults that encompass any positions and metrics
you don’t specify.

The interface object classes and their features that participate in this system are:

UISearchBar
A search bar can function as a top bar and can have a prompt. You can set its
background image.

UINavigationBar
A navigation bar can function as a top bar, it can have a prompt, and its height in
a navigation interface is changed automatically in a .compact horizontal size class
environment depending on the vertical size class. You can set its background
image. In addition, the vertical offset of its title can depend on the bar metrics.

UIToolbar
A toolbar can function as a top bar or a bottom bar, and its height in a navigation
interface is changed automatically in a .compact horizontal size class environ‐
ment depending on the vertical size class. You can set its background image. In
addition, its shadow can depend on its bar position.

UIBarButtonItem
You can set a bar button item’s image, image inset, background image, title offset,
and background offset, so as to depend upon the bar metrics of the containing
bar, either a UINavigationBar or a UIToolbar (and the bar position is irrelevant).

Bar Appearance
A bar can be styled at three levels:

barStyle, isTranslucent
The barStyle options are (UIBarStyle):

• .default

716 | Chapter 12: Controls and Other Views

• .black

The bar styles are flat white and flat black respectively. The isTranslucent prop‐
erty turns on or off the characteristic blurry translucency. The degree of translu‐
cency can vary from one device type to another; don’t expect complete control of
a translucent bar’s appearance.

barTintColor

This property tints the bar with a solid color. Like the transparency color, you
should not expect complete control of the resulting color. It is best to set the bar’s
isTranslucent to true; otherwise, odd things can happen. (For example, a tool‐
bar whose isTranslucent is false may ignore the bar tint color and appear
transparent instead.)

backgroundImage

The background image is set with setBackgroundImage(_:for:barMetrics:). If
the image is too large, it is sized down to fit; if it is too small, it is tiled by default,
but you can change that behavior by supplying a resizable image.

If a bar’s isTranslucent is false, then the barTintColor may appear behind the
background image, but a translucent bar with a background image is transparent
behind the image; thus, a background image provides maximum control over the
appearance of the bar.

In a UINavigationController, there is a reason why you might set the navigation
bar’s barStyle even if you are configuring the bar’s appearance in some other
way — namely, because the navigation controller will pass this setting along in its
implementation of preferredStatusBarStyle. In other words, you set the navi‐
gation controller’s navigation bar’s bar style as a way of setting the status bar’s bar
style.

If you assign a bar a background image, you can also customize its shadow, which is
cast from the bottom of the bar (if the bar is at the top) or the top of the bar (if the
bar is at the bottom) on whatever is behind it. To do so, set the shadowImage property
— except that a toolbar can be either at the top or the bottom, so its setter is set-
ShadowImage(_:forToolbarPosition:), and the barPosition is used to decide
whether the shadow should appear at the top or the bottom of the toolbar.

You’ll want a shadow image to be very small and very transparent; the image will be
tiled horizontally. If you’re going to set the bar’s isTranslucent, you should do so
after setting both the background image and the shadow image. You won’t see the
shadow if the bar’s clipsToBounds is true. Here’s an example for a navigation bar:

Bars | 717

do { // must set the background image if you want a shadow image
 let sz = CGSize(20,20)
 let r = UIGraphicsImageRenderer(size:sz)
 self.navbar.setBackgroundImage(r.image { _ in
 UIColor(white:0.95, alpha:0.85).setFill()
 //UIColor(red: 1, green: 0, blue: 0, alpha: 1).setFill()
 UIGraphicsGetCurrentContext()!.fill(CGRect(0,0,20,20))
 }, for:.any, barMetrics: .default)
}
do { // now we can set the shadow image
 let sz = CGSize(4,4)
 let r = UIGraphicsImageRenderer(size:sz)
 self.navbar.shadowImage = r.image { _ in
 UIColor.gray.withAlphaComponent(0.3).setFill()
 UIGraphicsGetCurrentContext()!.fill(CGRect(0,0,4,2))
 UIColor.gray.withAlphaComponent(0.15).setFill()
 UIGraphicsGetCurrentContext()!.fill(CGRect(0,2,4,2))
 }
}

UIBarButtonItem
The only things that can appear inside a navigation bar or a toolbar — aside from a
navigation bar’s title and prompt — are bar button items (UIBarButtonItem, a sub‐
class of UIBarItem). This is not much of a limitation, however, because a bar button
item can contain a custom view, which can be any type of UIView at all. A bar button
item itself, however, is not a UIView subclass.

A bar button item may be instantiated with any of five methods:

• init(barButtonSystemItem:target:action:)

• init(title:style:target:action:)

• init(image:style:target:action:)

• init(image:landscapeImagePhone:style:target:action:)

• init(customView:)

A bar button item’s image is treated by default as a template image, unless you explic‐
itly provide an .alwaysOriginal image.

The style: options are (UIBarButtonItemStyle):

• .plain

• .done (the title text is bold)

As I mentioned a moment ago, many aspects of a bar button item can be made
dependent upon the bar metrics of the containing bar. Thus, you can initialize a bar

718 | Chapter 12: Controls and Other Views

Figure 12-20. A bar button item with a border

button item with both an image and a landscapeImagePhone, the latter to be used
when the bar metrics has compact in its name. A bar button item inherits from
UIBarItem the ability to adjust the image position with imageInsets (and landscape-
ImagePhoneInsets), plus the isEnabled and tag properties. Recall from Chapter 6
that you can also set a bar button item’s possibleTitles and width properties, to
determine its width.

A bar button item’s tintColor property tints the title text or template image of the
button; it is inherited from the tintColor of the bar, or you can override it for an
individual bar button item.

You can apply an attributes dictionary to a bar button item’s title, and you can give a
bar button item a background image:

• setTitleTextAttributes(_:for:) (inherited from UIBarItem)
• setTitlePositionAdjustment(_:for:)

• setBackgroundImage(_:for:barMetrics:)

• setBackgroundImage(_:for:style:barMetrics:)

• setBackgroundVerticalPositionAdjustment(_:for:)

In addition, these methods apply only if the bar button item is being used as a back
button item in a navigation bar (as I’ll describe in the next section):

• setBackButtonTitlePositionAdjustment(_:for:)

• setBackButtonBackgroundImage(_:for:barMetrics:)

• setBackButtonBackgroundVerticalPositionAdjustment(_:for:)

No bar button item style supplies an outline (border); the default look of a button is
just the text or image. (The pre–iOS 7 bar button item style .bordered is deprecated,
and its appearance is identical to .plain.) If you want an outline, you have to supply
it yourself. For the left bar button item in the settings view of my Zotz! app
(Figure 12-20), I use a custom view that’s a UIButton with a background image:

let b = UIButton(type:.custom)
// ...
let r = UIGraphicsImageRenderer(size: CGSize(15,15))
let im = r.image { _ in
 let grad = CAGradientLayer()

Bars | 719

 grad.frame = CGRect(0,0,15,15)
 grad.colors = [
 UIColor(red: 1, green: 1, blue: 0, alpha: 0.8).cgColor,
 UIColor(red: 0.7, green: 0.7, blue: 0.3, alpha: 0.8).cgColor
]
 let p = UIBezierPath(roundedRect: CGRect(0,0,15,15), cornerRadius: 8)
 p.addClip()
 grad.render(in: UIGraphicsGetCurrentContext()!)
 UIColor.black.setStroke()
 p.lineWidth = 2
 p.stroke()
}.resizableImage(
 withCapInsets: UIEdgeInsetsMake(7,7,7,7), resizingMode: .stretch)
b.setBackgroundImage(im, for: .normal)
let bb = UIBarButtonItem(customView: b)
self.navigationItem.leftBarButtonItem = bb

UINavigationBar
A navigation bar (UINavigationBar) is populated by navigation items (UINavigation‐
Item). The UINavigationBar maintains a stack; UINavigationItems are pushed onto
and popped off of this stack. Whatever UINavigationItem is currently topmost in the
stack (the UINavigationBar’s topItem), in combination with the UINavigationItem
just beneath it in the stack (the UINavigationBar’s backItem), determines what
appears in the navigation bar:

title, titleView
The title (string) or titleView (UIView) of the topItem appears in the center
of the navigation bar.

prompt

The prompt (string) of the topItem appears at the top of the navigation bar,
whose height increases to accommodate it.

rightBarButtonItem, rightBarButtonItems
leftBarButtonItem, leftBarButtonItems

The rightBarButtonItem and leftBarButtonItem appear at the right and left
ends of the navigation bar. A UINavigationItem can have multiple right bar but‐
ton items and multiple left bar button items; its rightBarButtonItems and left-
BarButtonItems properties are arrays (of bar button items). The bar button
items are displayed from the outside in: that is, the first item in the leftBar-
ButtonItems is leftmost, while the first item in the rightBarButtonItems is
rightmost. If there are multiple buttons on a side, the rightBarButtonItem is the
first item of the rightBarButtonItems array, and the leftBarButtonItem is the
first item of the leftBarButtonItems array.

720 | Chapter 12: Controls and Other Views

Figure 12-21. A back button animating to the left

backBarButtonItem

The backBarButtonItem of the backItem appears at the left end of the navigation
bar. It is automatically configured so that, when tapped, the topItem is popped
off the stack. If the backItem has no backBarButtonItem, then there is still a back
button at the left end of the navigation bar, taking its title from the title of the
backItem. However, if the topItem has its hidesBackButton set to true, the back
button is suppressed. Also, unless the topItem has its leftItemsSupplementBack-
Button set to true, the back button is suppressed if the topItem has a leftBar-
ButtonItem.

The indication that the back button is a back button is supplied by the navigation
bar’s backIndicatorImage, which by default is a left-pointing chevron appearing to
the left of the back button. You can customize this image; the image that you supply is
treated as a template image by default. If you set the backIndicatorImage, you must
also supply a backIndicatorTransitionMaskImage. The purpose of the mask image
is to indicate the region where the back button should disappear as it slides out to the
left when a new navigation item is pushed onto the stack. For example, in
Figure 12-21, the back button title, which is sliding out to the left, is visible to the
right of the chevron but not to the left of the chevron; that’s because on the left side of
the chevron it is masked out.

In this example, I replace the chevron with a vertical bar. The vertical bar is not the
entire image; the image is actually a wider rectangle, with the vertical bar at its right
side. The mask is the entire wider rectangle, and is completely transparent; thus, the
back button disappears as it passes behind the bar and stays invisible as it continues
on to the left:

let sz = CGSize(10,20)
self.navbar.backIndicatorImage =
 UIGraphicsImageRenderer(size:sz).image { _ in
 UIGraphicsGetCurrentContext()!.fill(CGRect(6,0,4,20))
 }
self.navbar.backIndicatorTransitionMaskImage =
 UIGraphicsImageRenderer(size:sz).image {_ in}

Changes to the navigation bar’s buttons can be animated by sending its topItem any
of these messages:

• setRightBarButton(_:animated:)

• setLeftBarButton(_:animated:)

Bars | 721

Figure 12-22. A navigation bar

• setRightBarButtonItems(_:animated:)

• setLeftBarButtonItems(_:animated:)

• setHidesBackButton(_:animated:)

UINavigationItems are pushed and popped with pushItem(_:animated:) and pop-
ItemAnimated(_:), or you can set all items on the stack at once with set-
Items(_:animated:).

You can determine the attributes dictionary for the title by setting the navigation bar’s
titleTextAttributes, and you can shift the title’s vertical position by calling set-
TitleVerticalPositionAdjustment(for:).

When you use a UINavigationBar implicitly as part of a UINavigationController
interface, the navigation controller is the navigation bar’s delegate. If you were to use
a UINavigationBar on its own, you might want to supply your own delegate. The del‐
egate methods are:

• navigationBar(_:shouldPush:)

• navigationBar(_:didPush:)

• navigationBar(_:shouldPop:)

• navigationBar(_:didPop:)

This simple (and silly) example of a standalone UINavigationBar implements the leg‐
endary baseball combination trio of Tinker to Evers to Chance; see the relevant Wiki‐
pedia article if you don’t know about them (Figure 12-22, which also shows the
custom back indicator and shadow I described earlier):

override func viewDidLoad() {
 super.viewDidLoad()
 let ni = UINavigationItem(title: "Tinker")
 let b = UIBarButtonItem(title: "Evers", style: .plain,
 target: self, action: #selector(pushNext))
 ni.rightBarButtonItem = b
 self.navbar.items = [ni]
}
func pushNext(_ sender: Any) {
 let oldb = sender as! UIBarButtonItem
 let s = oldb.title!
 let ni = UINavigationItem(title:s)

722 | Chapter 12: Controls and Other Views

Figure 12-23. A toolbar

 if s == "Evers" {
 let b = UIBarButtonItem(title:"Chance", style: .plain,
 target:self, action:#selector(pushNext))
 ni.rightBarButtonItem = b
 }
 self.navbar.pushItem(ni, animated:true)
}

UIToolbar
A toolbar (UIToolbar, Figure 12-23) is intended to appear at the bottom of the screen;
on the iPad, it may appear at the top. It displays a row of UIBarButtonItems, which
are its items. The items are displayed from left to right in the order in which they
appear in the items array. You can set the items with animation by calling set-
Items(_:animated:). The items within the toolbar are positioned automatically; you
can intervene in this positioning by using the system bar button items .flexible-
Space and .fixedSpace, along with the UIBarButtonItem width property.

UITabBar
A tab bar (UITabBar) displays tab bar items (UITabBarItem), its items, each consist‐
ing of an image and a name. To change the items with animation, call set-
Items(_:animated:).

The tab bar maintains a current selection among its items, its selectedItem, which is
a UITabBarItem, not an index number; you can set it in code, or the user can set it by
tapping on a tab bar item. To hear about the user changing the selection, implement
tabBar(_:didSelect:) in the delegate (UITabBarDelegate).

You get some control over how the tab bar items are laid out:

itemPositioning

There are three possible values (UITabBarItemPositioning):

.centered

The items are crowded together at the center.

.fill

The items are spaced out evenly.

.automatic

On the iPad, the same as .centered; on the iPhone, the same as .fill.

Bars | 723

Figure 12-24. A tab bar

itemSpacing

The space between items, if the positioning is .centered. For the default space,
specify 0.

itemWidth

The width of items, if the positioning is .centered. For the default width, specify
0.

You can set the image drawn behind the selected tab bar item to indicate that it’s
selected, the selectionIndicatorImage.

A UITabBarItem is created with one of these methods:

• init(tabBarSystemItem:tag:)

• init(title:image:tag:)

• init(title:image:selectedImage:)

UITabBarItem is a subclass of UIBarItem, so in addition to its title and image it
inherits the ability to adjust the image position with imageInsets, plus the isEnabled
and tag properties. The UITabBarItem itself adds the selectedImage property.

A tab bar item’s images are treated, by default, as template images. Its title text and
and image are then tinted with the tab bar’s tintColor when selected; there’s no way
to set the deselected tint color (this was possible before iOS 7, so I regard the change
as a bug). To get full control of the title color (and other text attributes), call setTitle-
TextAttributes(:for:), inherited from UIBarItem; if you set a color for .normal
and a color for .selected, the .normal color will be used when the item is deselected.
You can also adjust the title’s position with the titlePositionAdjustment property.
To get full control of the image’s color, supply an .alwaysOriginal image for both the
image and selectedImage.

Figure 12-24 is an example of a customized tab bar; I’ve set the selection indicator
image (the checkmark) and the tint color of the tab bar, and the text attributes
(including the color, when selected) of the tab bar items.

The user can be permitted to alter the contents of the tab bar, setting its tab bar items
from among a larger repertoire of tab bar items. To summon the interface that lets the
user do this, call beginCustomizingItems(_:), passing an array of UITabBarItems
that may or may not appear in the tab bar. (To prevent the user from removing an

724 | Chapter 12: Controls and Other Views

item from the tab bar, include it in the tab bar’s items and don’t include it in the argu‐
ment passed to beginCustomizingItems(_:).) A presented view with a Done button
appears, behind the tab bar but in front of everything else, displaying the customiza‐
ble items. The user can then drag an item into the tab bar, replacing an item that’s
already there. To hear about the customizing view appearing and disappearing,
implement delegate methods:

• tabBar(_:willBeginCustomizing:)

• tabBar(_:didBeginCustomizing:)

• tabBar(_:willEndCustomizing:changed:)

• tabBar(_:didEndCustomizing:changed:)

A UITabBar on its own (outside a UITabBarController) does not provide any auto‐
matic access to the customization interface; it’s up to you. In this (silly) example, we
populate a UITabBar with four system tab bar items and a More item; we also popu‐
late an instance variable array with those same four system tab bar items, plus three
more. When the user taps the More item, we show the customization interface with
all seven tab bar items:

var items : [UITabBarItem] = {
 Array(1..<8).map {
 UITabBarItem(
 tabBarSystemItem:UITabBarSystemItem(rawValue:$0)!, tag:$0)
 }
}()
override func viewDidLoad() {
 super.viewDidLoad()
 self.tabbar.items = Array(self.items[0..<4]) +
 [UITabBarItem(tabBarSystemItem: .more, tag: 0)]
 self.tabbar.selectedItem = self.tabbar.items![0]
 self.tabbar.delegate = self
}
// delegate methods
func tabBar(_ tabBar: UITabBar, didSelect item: UITabBarItem) {
 if item.tag == 0 {
 // More button
 tabBar.selectedItem = nil
 tabBar.beginCustomizingItems(self.items)
 }
}
func tabBar(_ tabBar: UITabBar,
 didEndCustomizing items: [UITabBarItem], changed: Bool) {
 self.tabbar.selectedItem = self.tabbar.items![0]
}

When used in conjunction with a UITabBarController, the customization interface is
provided automatically, in an elaborate way. If there are a lot of items, a More item is

Bars | 725

Figure 12-25. Automatically generated More list

automatically present, and can be used to access the remaining items in a table view.
In this table view, the user can select any of the excess items, navigating to the corre‐
sponding view; or the user can switch to the customization interface by tapping the
Edit button. Figure 12-25 shows how a More list looks by default.

The way this works is that the automatically provided More item corresponds to a
UINavigationController with a root view controller (UIViewController) whose view
is a UITableView. Thus, a navigation interface containing this UITableView appears
through the tabbed interface when the user taps the More button. When the user
selects an item in the table, the corresponding UIViewController is pushed onto the
UINavigationController’s stack.

You can access this UINavigationController: it is the UITabBarController’s more-
NavigationController. Through it, you can access the root view controller: it is the
first item in the UINavigationController’s viewControllers array. And through that,
you can access the table view: it is the root view controller’s view. This means you can
customize what appears when the user taps the More button! For example, let’s make
the navigation bar red with white button titles, and let’s remove the word More from
its title:

let more = self.tabBarController.moreNavigationController
let list = more.viewControllers[0]
list.title = ""
let b = UIBarButtonItem()
b.title = "Back"
list.navigationItem.backBarButtonItem = b
more.navigationBar.barTintColor = .red
more.navigationBar.tintColor = .white

We can go even further by supplementing the table view’s data source with a data
source of our own, thus proceeding to customize the table itself. This is tricky because
we have no internal access to the actual data source, and we mustn’t accidentally dis‐
able it from populating the table. Still, it can be done. I’ll continue from the previous
example by replacing the table view’s data source with an instance of my own
MyDataSource, initializing it with a reference to the original data source object:

726 | Chapter 12: Controls and Other Views

Figure 12-26. Customized More list

let tv = list.view as! UITableView
let mds = MyDataSource(originalDataSource: tv.dataSource!)
self.myDataSource = mds
tv.dataSource = mds

In MyDataSource, I’ll use message forwarding (see Apple’s Objective-C Runtime Pro‐
gramming Guide) so that MyDataSource acts as a front end for the original data
source. MyDataSource will thus magically appear to respond to any message that the
original data source responds to, and any message that arrives that MyDataSource
can’t handle will be magically forwarded to the original data source. This way, the
insertion of the MyDataSource instance as data source doesn’t break whatever the
original data source does:

var orig : UITableViewDataSource
init(originalDataSource:UITableViewDataSource) {
 self.orig = originalDataSource
}
override func forwardingTarget(for aSelector: Selector) -> Any? {
 if self.orig.responds(to:aSelector) {
 return self.orig
 }
 return super.forwardingTarget(for:aSelector)
}

Finally, we’ll implement the two Big Questions required by the UITableViewData‐
Source protocol, to quiet the compiler. In both cases, we first pass the message along
to the original data source (somewhat analogous to calling super); then we add our
own customizations as desired. Here, as a proof of concept, I’ll change each cell’s text
font (Figure 12-26):

func tableView(_ tv: UITableView, numberOfRowsInSection sec: Int) -> Int {
 return self.orig.tableView(tv, numberOfRowsInSection: sec)
}
func tableView(_ tableView: UITableView,
 cellForRowAt indexPath: IndexPath) -> UITableViewCell {
 let cell = self.orig.tableView(tableView, cellForRowAt: indexPath)
 cell.textLabel!.font = UIFont(name: "GillSans-Bold", size: 14)!
 return cell
}

Bars | 727

Tint Color
The UIView and UIBarButtonItem tintColor property has a remarkable built-in fea‐
ture: its value, if not set explicitly (or if set to nil), is inherited from its superview.
The idea is to simplify the task of giving your app a consistent overall appearance.
Many built-in interface objects use the tintColor for some aspect of their appear‐
ance, as I’ve already described. For example, if a .system button’s tintColor is red,
either because you’ve set it directly or because it has inherited that color from higher
up the view hierarchy, it will have red title text by default.

This works exactly the way you would expect:

Inheritance
When you set the tintColor of a view, that value is inherited by all subviews of
that view. The ultimate superview is the window; thus, you can set the tintColor
of your UIWindow instance, and its value will be inherited by every view that
ever appears in your interface.

Overriding
The inherited tintColor can be overridden by setting a view’s tintColor explic‐
itly. Thus, you can set the tintColor of a view partway down the view hierarchy
so that it and all its subviews have a different tintColor from the rest of the
interface. In this way, you might subtly suggest that the user has entered a differ‐
ent world.

Propagation
If you change the tintColor of a view, the change immediately propagates down
the hierarchy of its subviews — except, of course, that a view whose tintColor
has been explicitly set to a color of its own is unaffected, along with its subviews.

Whenever a view’s tintColor changes, including when its tintColor is initially set at
launch time, and including when you set it in code, this view and all its affected sub‐
views are sent the tintColorDidChange message. A subview whose tintColor has
previously been explicitly set to a color of its own isn’t affected, so it is not sent the
tintColorDidChange message merely because its superview’s tintColor changes —
the subview’s own tintColor didn’t change.

When you ask a view for its tintColor, what you get is the tintColor of the view
itself, if its own tintColor has been explicitly set to a color, or else the tintColor
inherited from higher up the view hierarchy. In this way, you can always learn what
the effective tint color of a view is.

A UIView also has a tintAdjustmentMode. Under certain circumstances, such as the
summoning of an alert (Chapter 13) or a popover (Chapter 9), the system will set the
tintAdjustmentMode of the view at the top of the view hierarchy to .dimmed. This

728 | Chapter 12: Controls and Other Views

causes the tintColor to change to a variety of gray. The idea is that the tinting of the
background should become monochrome, thus emphasizing the primacy of the view
that occupies the foreground (the alert or popover). See “Custom Presented View
Controller Transition” on page 374 for an example of my own code making this
change.

By default, this change in the tintAdjustmentMode propagates all the way down the
view hierarchy, changing all tintAdjustmentMode values and all tintColor values —
and sending all subviews the tintColorDidChange message. When the foreground
view goes away, the system will set the topmost view’s tintAdjustmentMode
to .normal, and that change, too, will propagate down the hierarchy.

This propagation behavior is governed by the tintAdjustmentMode of the subviews.
The default tintAdjustmentMode value is .automatic, meaning that you want this
view’s tintAdjustmentMode to adopt its superview’s tintAdjustmentMode automati‐
cally. When you ask for such a view’s tintAdjustmentMode, what you get is just like
what you get for tintColor — you’re told the effective tint adjustment mode (.normal
or .dimmed) inherited from up the view hierarchy.

If, on the other hand, you set a view’s tintAdjustmentMode explicitly to .normal
or .dimmed, this tells the system that you want to be left in charge of the tint-
AdjustmentMode for this part of the hierarchy; the automatic propagation of the tint-
AdjustmentMode down the view hierarchy is prevented. To turn automatic
propagation back on, set the tintAdjustmentMode back to .automatic.

You can take advantage of tintColorDidChange to make your custom UIView sub‐
class behave like a built-in UIView subclass. For example, a .custom UIButton might
not automatically dim the title text color. But the button’s tintColor is still being
dimmed, even though that color isn’t being applied to the visible interface; thus, to
imitate a .system UIButton, you can apply the tintColor yourself.

In this example, my UIButton has an attributed title, configured in the nib editor, so
its title doesn’t automatically change color when the superview’s tintColor changes.
But I want my button to participate in dimming. So I subclass UIButton and change
the attributed title to a gray version of itself when the inherited tintAdjustmentMode
changes to .dimmed:

class MySpecialButton : UIButton {
 var orig : NSAttributedString?
 var dim : NSAttributedString?
 override func awakeFromNib() {
 super.awakeFromNib()
 self.orig = self.attributedTitle(for:.normal)!
 let t = NSMutableAttributedString(
 attributedString: self.attributedTitle(for:.normal)!)
 t.addAttribute(NSForegroundColorAttributeName, value: UIColor.gray,

Tint Color | 729

 range: NSMakeRange(0,t.length))
 self.dim = t
 }
 override func tintColorDidChange() {
 self.setAttributedTitle(
 self.tintAdjustmentMode == .dimmed ? self.dim : self.orig,
 for:.normal)
 }
}

Appearance Proxy
When you want to customize the look of an interface object, instead of sending a
message to the object itself, you can send that message to an appearance proxy for that
object’s class. The appearance proxy then passes that same message along to the actual
future instances of that class. You’ll usually configure your appearance proxies once
very early in the lifetime of the app, and never again. The app delegate’s
application(_:didFinishLaunchingWithOptions:), before the app’s window has
been displayed, is the most obvious and common location.

Like the tintColor that I discussed in the previous section, this architecture helps
you give your app a consistent appearance, as well as saving you from having to write
a lot of code. For example, instead of having to send setTitleText-

Attributes(_:for:) to every UITabBarItem your app ever instantiates, you send it
once to the appearance proxy, and it is sent to all future UITabBarItems for you:

UITabBarItem.appearance().setTitleTextAttributes([
 NSFontAttributeName:UIFont(name:"Avenir-Heavy", size:14)!
], for:.normal)

Also, the appearance proxy sometimes provides access to interface objects that might
otherwise be difficult to refer to. For example, you don’t get direct access to a search
bar’s external Cancel button, but it is a UIBarButtonItem and you can customize it
through the UIBarButtonItem appearance proxy.

There are four class methods for obtaining an appearance proxy:

appearance

Returns a general appearance proxy for the receiver class. The method you call
on the appearance proxy will be applied generally to future instances of this class.

appearance(for:)

The parameter is a trait collection. The method you call on the appearance proxy
will be applied to future instances of the receiver class when the environment
matches the specified trait collection.

730 | Chapter 12: Controls and Other Views

appearance(whenContainedInInstancesOf:)

The argument is an array of classes, arranged in order of containment from inner
to outer. The method you call on the appearance proxy will applied only to
instances of the receiver class that are actually contained in the way you describe.
The notion of what “contained” means is deliberately left vague; basically, it
works the way you intuitively expect it to work.

appearance(for:whenContainedInInstancesOf:)

A combination of the preceding two.

When configuring appearance proxy objects, specificity trumps generality. Thus, you
could call appearance to say what should happen for most instances of some class,
and call the other methods to say what should happen instead for certain instances of
that class. Similarly, longer whenContainedInInstancesOf: chains are more specific
than shorter ones.

For example, here’s some code from my Latin flashcard app (myGolden and myPaler
are class properties defined by an extension on UIColor):

UIBarButtonItem.appearance().tintColor = .myGolden
UIBarButtonItem.appearance(
 whenContainedInInstancesOf: [UIToolbar.self])
 .tintColor = .myPaler
UIBarButtonItem.appearance(
 whenContainedInInstancesOf: [UIToolbar.self, DrillViewController.self])
 .tintColor = .myGolden

That means:

In general, bar button items should be tinted golden.

But bar button items in a toolbar are an exception: they should be tinted paler.

But bar button items in a toolbar in DrillViewController’s view are an exception
to the exception: they should be tinted golden.

Sometimes, in order to express sufficient specificity, I find myself defining subclasses
for no other purpose than to refer to them when obtaining an appearance proxy. For
example, here’s some more code from my Latin flashcard app:

UINavigationBar.appearance().setBackgroundImage(marble2, for:.default)
// counteract the above for the black navigation bar
BlackNavigationBar.appearance().setBackgroundImage(nil, for:.default)

In that code, BlackNavigationBar is a UINavigationBar subclass that does nothing
whatever. Its sole purpose is to tag one navigation bar in my interface so that I can
refer to it in that code! Thus, I’m able to say, in effect, “All navigation bars in this app
should have marble2 as their background image, unless they are instances of Black‐
NavigationBar.”

Appearance Proxy | 731

The ultimate in specificity is, of course, to customize the look of an instance directly.
Thus, for example, if you set one particular UIBarButtonItem’s tintColor property,
then setting the tint color by way of a UIBarButtonItem appearance proxy will have
no effect on that particular bar button item.

Be warned, however, that not every message that can be sent to an instance of a class
can be sent to that class’s appearance proxy. Unfortunately, the compiler can’t help
you here; illegal code like this will compile, but will crash at runtime:

UIBarButtonItem.appearance().action = #selector(configureAppearance)

The problem is not that UIBarButtonItem has no action property; in the contrary,
that code compiles because it does have an action property. But that property is not
one that you can set by way of the appearance proxy, and the mistake isn’t caught
until that line executes at runtime.

When in doubt, look at the class documentation; there should be a section that lists
the properties and methods applicable to the appearance proxy for this class. For
example, the UINavigationBar class documentation has a section called “Customizing
the Bar Appearance,” the UIBarButtonItem class documentation has a section called
“Customizing Appearance,” and so forth.

732 | Chapter 12: Controls and Other Views

CHAPTER 13

Modal Dialogs

A modal dialog demands attention; while it is present, the user can do nothing other
than work within it or dismiss it. This chapter discusses various forms of modal dia‐
log:

• Within your app, you might want to interrupt things to give the user some infor‐
mation or to ask the user how to proceed. For this purpose, iOS provides two
types of rudimentary modal dialog — alerts and action sheets. An alert is basi‐
cally a message, possibly with an opportunity for text entry, and some buttons.
An action sheet is effectively a column of buttons.

• You can provide a sort of action sheet even when your app is not frontmost (or
even running) by allowing the user to summon quick actions — also known as
shortcut items — by pressing with 3D touch on your app’s icon.

• A local notification is an alert that the system presents at a predetermined time or
place on your app’s behalf, even when your app isn’t frontmost.

• A today extension lets your app present interface on the Today side of the device’s
notification center. New in iOS 10, a today extension can also appear in the
search interface and as a quick action.

• An activity view is a modal dialog displaying icons representing possible courses
of action, and intended in certain circumstances to replace the action sheet. For
example, Mobile Safari’s Share button presents an activity view whose icons rep‐
resent possible operations on a URL, such as handing it off to Mail, Message, or
Twitter, or saving it internally as a bookmark or reading list item. You can present
an activity view; you can also provide your own activities, either privately within
your app or publicly as an action extension or share extension.

733

Alerts and Action Sheets
Alerts and action sheets are both forms of presented view controller (Chapter 6).
They are managed through the UIAlertController class, a UIViewController subclass.
To show an alert or an action sheet is a three-step process:

1. Instantiate UIAlertController with init(title:message:preferredStyle:).
The title: and message: are large and small descriptive text to appear at the top
of the dialog. The preferredStyle: (UIAlertControllerStyle) will be
either .alert or .actionSheet.

2. Configure the dialog by calling addAction(_:) on the UIAlertController as many
times as needed. An action is a UIAlertAction, which basically means it’s a button
to appear in the dialog, along with a function to be executed when the button is
tapped; to create one, call init(title:style:handler:). Possible style: values
are (UIAlertActionStyle):

• .default

• .cancel

• .destructive

An alert may also have text fields (I’ll talk about that in a moment).
3. Call present(_:animated:completion:) to present the UIAlertController.

The dialog is automatically dismissed when the user taps any button.

Alerts
An alert (UIAlertController style .alert) pops up unexpectedly in the middle of the
screen, with an elaborate animation, and may be thought of as an attention-getting
interruption. It contains a title, a message, and some number of buttons, one of which
may be the cancel button, meaning that it does nothing but dismiss the alert. In addi‐
tion, an alert may contain one or two text fields.

Alerts are minimal, but intentionally so; they are intended for simple, quick interac‐
tion or display of information. Often there is only a cancel button, the primary pur‐
pose of the alert being to show the user the message (“You won the game”); additional
buttons may be used to give the user a choice of how to proceed (“You won the game;
would you like to play another?” “Yes,” “No,” “Replay”). Text fields might allow the
user to supply login credentials.

Figure 13-1 shows a basic alert, illustrating the title, the message, and the three button
styles: .destructive, .default, and .cancel respectively. Here’s the code that gener‐
ated it:

734 | Chapter 13: Modal Dialogs

Figure 13-1. An alert

let alert = UIAlertController(title: "Not So Fast!",
 message: "Do you really want to do this " +
 "tremendously destructive thing?",
 preferredStyle: .alert)
func handler(_ act:UIAlertAction!) {
 print("User tapped \(act.title)")
}
alert.addAction(UIAlertAction(title: "No",
 style: .cancel, handler: handler))
alert.addAction(UIAlertAction(title: "Yes",
 style: .destructive, handler: handler))
alert.addAction(UIAlertAction(title: "Maybe",
 style: .default, handler: handler))
self.present(alert, animated: true)

In Figure 13-1, observe that the .destructive button appears first and the .cancel
button appears last, without regard to the order in which they are defined.
The .default button order of definition, on the other hand, will be the order of the
buttons themselves. If no .cancel button is defined, the last .default button will be
displayed as a .cancel button.

Starting in iOS 9, you can designate an action as the alert’s preferredAction. This
appears to boldify the title of that button. For example, suppose I append this to the
preceding code:

alert.preferredAction = alert.actions[2]

The order of the actions array is the order in which we added actions; thus, the pre‐
ferred action is now the Maybe button. The order isn’t changed — the Maybe button
still appears second — but the bold styling is removed from the No button and placed
on the Maybe button instead.

As I’ve already mentioned, the dialog is dismissed automatically when the user taps a
button. If you don’t want to respond to the tap of a particular button, you can supply
nil as the handler: argument (or omit the handler: argument altogether). In the

Alerts and Action Sheets | 735

preceding code, I’ve provided a minimal handler: function for each button, just to
show what one looks like. As the example demonstrates, the function receives the
original UIAlertAction as a parameter, and can examine it as desired. The function
can also access the alert controller itself, provided the alert controller is in scope at
the point where the handler function is defined (which will usually be the case). My
example code assigns the same function to all three buttons, but more often you’ll
give each button its own individual handler.

Now let’s talk about adding text fields to an alert. Because space is limited on the
smaller iPhone screen, especially when the keyboard is present, an alert that is to con‐
tain a text field should probably should have at most two buttons, with short titles
such as “OK” and “Cancel,” and at most two text fields. To add a text field to an alert,
call addTextField(configurationHandler:). The handler: function will receive the
text field as a parameter; it is called before the alert appears, and can be used to con‐
figure the text field. Other handlers, such as the handler of a button, can access the
text field through the alert’s textFields property, which is an array. In this example,
the user is invited to enter a number in the text field; if the alert is dismissed with the
OK button, its handler reads the text from the text field:

let alert = UIAlertController(title: "Enter a number:",
 message: nil, preferredStyle: .alert)
alert.addTextField { tf in
 tf.keyboardType = .numberPad
}
func handler(_ act:UIAlertAction) {
 let tf = alert.textFields![0]
 // ... can read tf.text here ...
}
alert.addAction(UIAlertAction(title: "Cancel", style: .cancel))
alert.addAction(UIAlertAction(title: "OK",
 style: .default, handler: handler))
self.present(alert, animated: true)

A puzzle arises as to how to prevent the user from dismissing the alert if the text
fields are not acceptably filled in. The alert will be dismissed if the user taps a button,
and no button handler can prevent this. The solution is to disable the relevant but‐
tons until the text fields are satisfactory. A UIAlertAction has an isEnabled property
for this very purpose. I’ll modify the preceding example so that the OK button is dis‐
abled initially:

alert.addAction(UIAlertAction(title: "Cancel", style: .cancel))
alert.addAction(UIAlertAction(title: "OK",
 style: .default, handler: handler))
alert.actions[1].isEnabled = false
self.present(alert, animated: true)

But this raises a new puzzle: how will the OK button ever be enabled? The text field
can have a delegate or a control event target–action pair (Chapter 10), and so we can

736 | Chapter 13: Modal Dialogs

hear about the user typing in it. I’ll modify the example again so that I’m notified as
the user edits in the text field:

alert.addTextField { tf in
 tf.keyboardType = .numberPad
 tf.addTarget(self,
 action: #selector(self.textChanged), for: .editingChanged)
}

Our textChanged method will now be called when the user edits, but this raises one
final puzzle: how will this method, which receives a reference to the text field, get a
reference to the OK button in the alert in order to enable it? My approach is to work
my way up the responder chain from the text field to the alert controller. Here, I
enable the OK button if and only if the text field contains some text:

func textChanged(_ sender: Any) {
 let tf = sender as! UITextField
 var resp : UIResponder! = tf
 while !(resp is UIAlertController) { resp = resp.next }
 let alert = resp as! UIAlertController
 alert.actions[1].isEnabled = (tf.text != "")
}

Action Sheets
An action sheet (UIAlertController style .actionSheet) may be considered the iOS
equivalent of a menu; it consists primarily of buttons. On the iPhone, it slides up
from the bottom of the screen; on the iPad, it appears as a popover.

Where an alert is an interruption, an action sheet is a logical branching of what the
user is already doing: it typically divides a single piece of interface into multiple possi‐
ble courses of action. For example, in Apple’s Mail app, a single Action button sum‐
mons an action sheet that lets the user reply to the current message, forward it, or
print it (or cancel and do nothing).

Figure 13-2 shows a basic action sheet on the iPhone. Here’s the code that constructed
it:

let action = UIAlertController(
 title: "Choose New Layout", message: nil, preferredStyle: .actionSheet)
action.addAction(UIAlertAction(title: "Cancel", style: .cancel))
func handler(_ act:UIAlertAction) {
 // ... do something here with act.title ...
}
for s in ["3 by 3", "4 by 3", "4 by 4", "5 by 4", "5 by 5"] {
 action.addAction(UIAlertAction(title: s,
 style: .default, handler: handler))
}
self.present(action, animated: true)

Alerts and Action Sheets | 737

Figure 13-2. An action sheet on the iPhone

On the iPad, the action sheet wants to be a popover. This means that a UIPopover‐
PresentationController will take charge of it. It will thus be incumbent upon you to
provide something for the popover’s arrow to point to; otherwise, you’ll crash at run‐
time. You already know (from Chapter 9) how to do that:

if let pop = action.popoverPresentationController {
 let v = sender as! UIView
 pop.sourceView = v
 pop.sourceRect = v.bounds
}

The Cancel button for a popover action sheet on the iPad is suppressed, because the
user can dismiss the popover by tapping outside it. On the iPhone, too, where the
Cancel button is displayed, the user can still dismiss the action sheet by tapping out‐
side it. When the user does that, the Cancel button’s handler function will be called,
just as if the user had tapped the Cancel button — even if the Cancel button is not
displayed.

An action sheet can also be presented inside a popover. In that case, the containing
popover is treated as an iPhone: the action sheet slides up from the bottom of the
popover, and the Cancel button is not suppressed. The action sheet’s modal presenta‐
tion style defaults to .overCurrentContext, which is exactly what we want, so there is
no need to set it. You are then presenting a view controller inside a popover; see
“Popover Presenting a View Controller” on page 580 for the considerations that
apply.

738 | Chapter 13: Modal Dialogs

Figure 13-3. A presented view behaving like an alert

Dialog Alternatives
Alerts and action sheets are limited, inflexible, and inappropriate to any but the sim‐
plest cases. Their interface can contain title text, buttons, and (for an alert) one or two
text fields, and that’s all. What if you wanted more interface than that?

Some developers have hacked into their alerts or action sheets in an attempt to force
them to be more customizable. This is wrong, and in any case there is no need for
such extremes. These are just presented view controllers, and if you don’t like what
they contain, you can make your own presented view controller with its own custom‐
ized view. If you also want that view to look and behave like an alert or an action
sheet, then simply make it so! As I have already shown (“Custom Presented View
Controller Transition” on page 374), it is easy to create a small presented view that
looks and behaves quite like an alert or action sheet, floating in front of the main
interface and darkening everything behind it — the difference being that this is an
ordinary view controller’s view, belonging entirely to you, and capable of being popu‐
lated with any interface you like (Figure 13-3). You can even add a UIMotionEffect to
your presented view, giving it the same parallax as a real alert.

Often, however, there will no need for such elaborate measures. A popover, after all,
is virtually a secondary window, and can be truly modal. The popovers in Figure 9-1,
for example, are effectively modal dialogs. A popover can internally display a secon‐
dary presented view or even an action sheet, as we’ve already seen. Also, a presented
view can use the .formSheet presentation style, which is effectively a dialog window
smaller than the screen. On the iPhone, furthermore, any presented view is essentially
a modal dialog. The color picker in my Zotz! app (Figure 13-4) has the same light‐
weight, temporary quality that an alert offers, and on the desktop would probably be
presented as part of a secondary Preferences window; it happens that, on the iPhone,
it occupies the entire screen, but it is still effectively a modal dialog.

Quick Actions
Quick actions, similar to an action sheet, are essentially a column of buttons. They
are summoned outside of your app, when the user employs 3D touch on your app’s
icon in the springboard. If the user’s device lacks 3D touch, quick actions won’t be

Quick Actions | 739

Figure 13-4. A presented view functioning as a modal dialog

available. They should represent convenient ways of accessing functionality that the
user could equally have performed from within your app.

Quick actions are of two kinds:

Static quick actions
Static quick actions are described in your app’s Info.plist. The system can present
them even if your app isn’t running — indeed, even if your app has never run —
because it can read your app’s Info.plist.

Dynamic quick actions
Dynamic quick actions are configured in code. This means that they are not
available until your app’s code has actually run. Your code can alter and remove
dynamic quick actions, but it cannot affect your app’s static quick actions.

When the user taps a quick action, your app is brought to the front (launching it if
necessary) and your app delegate’s application(_:performActionFor:completion-
Handler:) is called. The second parameter is a UIApplicationShortcutItem describing
the button the user tapped. You can now respond as appropriate. You are then sup‐
posed to call the completionHandler, passing a Bool to indicate success or failure
(though in fact I see no difference in behavior regardless of whether you pass true or
false, or even if you omit to call the completionHandler entirely).

740 | Chapter 13: Modal Dialogs

A UIApplicationShortcutItem is just a value class, embodying five properties describ‐
ing the button that will appear in the interface. In order for static quick actions to
work, those five properties all have analogs in the Info.plist. The Info.plist entry that
generates your static quick actions is an array called UIApplicationShortcutItems.
This array’s items are dictionaries, one for each quick action, containing the proper‐
ties and values you wish to set. The UIApplicationShortcutItem properties and corre‐
sponding Info.plist keys are:

type

UIApplicationShortcutItemType

An arbitrary string. You’ll use this string in your implementation of
application(_:performActionFor:completionHandler:) to identify the button
that was tapped. Required.

localizedTitle

UIApplicationShortcutItemTitle

The button title; a string. Required.

localizedSubtitle

UIApplicationShortcutItemSubtitle

The button subtitle; a string. Optional.

icon

UIApplicationShortcutItemIconType, UIApplicationShortcutItemIconFile
An icon, shown at the right end of the button. Optional, but it’s good to supply
some icon, because if you don’t, you’ll get an ugly filled circle by default.

When forming a UIApplicationShortcutItem in code, you’ll supply a UIApplica‐
tionShortcutIcon object. It has three initializers:

init(type:)

A UIApplicationShortcutIconType. This is an enum of about 30 cases, each
representing a built-in standard image, such as .time (which shows a clock
icon).

init(templateImageName:)

Works like UIImage’s init(named:). The image will be treated as a template
image. Apple says that the image should be 35x35, though a larger image will
be scaled down appropriately.

init(contact:)

A CNContact (see Chapter 18). The icon will be based on the contact’s pic‐
ture or initials.

In the Info.plist, you may use either of the two keys. The value for the type key is
the string Objective-C name of a UIApplicationShortcutIconType case — for

Quick Actions | 741

Figure 13-5. Quick actions

Figure 13-6. Static quick actions in the Info.plist

example, UIApplicationShortcutIconTypeTime. The value for the file key is
the string name of an image file in your app.

userInfo

UIApplicationShortcutItemUserInfo

A dictionary of additional information, whose usage in your
application(_:performActionFor:completionHandler:) is completely up to
you. Optional.

Imagine, for example, that our app’s purpose is to remind the user periodically to go
get a cup of coffee. Figure 13-5 shows a quick actions menu of three items generated
when the user uses 3D touch to press our app’s icon. The first two items are static
items, generated by our settings in the Info.plist, which is shown in Figure 13-6.

The third quick action item in Figure 13-5 is a dynamic item. The idea is that the
user, employing our app to configure a reminder, also gets to set a time interval as a
favorite default interval. We cannot know what this favorite interval will be until the
app runs and the user sets it; that’s why this is a dynamic item. Here’s the code that
generates it; as you can see, all we have to do is set our shared UIApplication object’s
shortcutItems property:

742 | Chapter 13: Modal Dialogs

// ... assume we have worked out the subtitle and time ...
let item = UIApplicationShortcutItem(type: "coffee.schedule",
 localizedTitle: "Coffee Reminder", localizedSubtitle: subtitle,
 icon: UIApplicationShortcutIcon(templateImageName: "cup"),
 userInfo: ["time":time])
UIApplication.shared.shortcutItems = [item]

When the user taps a quick action button, our app delegate’s application(_:perform-
ActionFor:completionHandler:) is called. Here you can see my purpose in setting
the userInfo (and UIApplicationShortcutItemUserInfo) of these shortcut items; to
learn what time interval the user wants to use for this reminder, we just look at the
"time" key:

func application(_ application: UIApplication,
 performActionFor shortcutItem: UIApplicationShortcutItem,
 completionHandler: @escaping (Bool) -> Void) {
 if shortcutItem.type == "coffee.schedule" {
 if let d = shortcutItem.userInfo {
 if let time = d["time"] as? Int {
 // ... do something with time ...
 completionHandler(true)
 }
 }
 }
 completionHandler(false)
}

Local Notifications
A local notification is an alert to the user that can appear even if your app is not run‐
ning. Where it may appear depends upon the user’s preferences in the Settings app,
either under Notification Center or under your app’s own listing:

• A momentary banner at the top of the screen, which vanishes automatically if the
user does nothing

• An alert, which in iOS 10 is identical to the banner, except that it doesn’t vanish
until the user dismisses it (this option is mutually exclusive with the momentary
banner)

• On the lock screen
• In the notification center

New in iOS 10, the appearance of a local notification alert is identical, regardless of
the location in which it appears. Figure 13-7 shows a local notification alert appearing
in the user’s notification center.

Your app does not present a local notification; the system does. You hand the system
instructions for when the local notification is to fire, and then you just stand back and

Local Notifications | 743

Figure 13-7. A local notification alert

Figure 13-8. The user will see this only once

let the system deal with it. That’s why the local notification can appear even if your
app isn’t frontmost or isn’t even running. New in iOS 10, the local notification’s alert
(or banner) can appear even when your app is frontmost; but even then it is the sys‐
tem that is presenting it on your behalf.

The user, in the Settings app, can veto any of your local notification’s interface
options, or turn off your app’s local notifications entirely. Thus, your local notification
can be effectively suppressed; you can still create a local notification, but when it fires,
only your app will hear about it, and only if it is frontmost. Moreover, the system will
suppress your local notifications entirely unless the user approves first; thus, the user
must deliberately opt in if your notification is ever to appear in any form. Figure 13-8
shows the alert that the system will show your user, once, offering the initial opportu‐
nity to opt in to your local notifications.

A local notification alert is also a way for the user to summon your app, bringing it to
the front if it is backgrounded, and launching it if it isn’t running. This response to
the alert is the default action when the user taps the alert.

You can add further custom actions, in the form of buttons. The user must manipulate
the alert in order to reveal the buttons. For example, on a device with 3D touch, the
user presses with force touch to summon the buttons; on a device without 3D touch,
the user drags downwards on the alert, or slides the alert sideways to reveal the View
button and taps the View button. The custom action buttons then appear, and the
user can tap one (but the user still remains free to tap the alert to perform the default
action, or to dismiss the alert). Let’s call this the alert’s secondary interface. An action

744 | Chapter 13: Modal Dialogs

Figure 13-9. Local notification with custom actions

button can communicate with your app without bringing it to the front — though it
can alternatively be told to bring your app to the front as well.

New in iOS 10, a local notification can carry an attachment, which may be an image, a
sound file, or a video. If it’s an image, the image is previewed with a small thumbnail
in the alert itself. But the real way the user gets to see the attachment is the same way
the user summons the custom actions. In the alert’s secondary interface, if the attach‐
ment is an image, the image is shown; if the attachment is audio or video, interface is
provided for playing it.

In Figure 13-7, the little image at the right of the alert is the thumbnail of an image
attachment. In Figure 13-9, the user has summoned the alert’s secondary interface,
revealing the image as well as two custom action buttons.

New in iOS 10, you can modify the secondary interface by writing a notification con‐
tent extension. Figure 13-10 shows an example; I’ve removed the default title and
subtitle display and replaced them with my own title in my own font, and the attach‐
ment image is shown in a smaller size.

Use of a local notification involves several steps:

Local Notifications | 745

Figure 13-10. Local notification with custom interface

1. Your app must request authorization for notifications. This ensures that the user
has seen the opt-in dialog (Figure 13-8).

2. If your notification has custom actions or a custom interface, you must register a
notification category, including the custom actions.

3. Your app creates and schedules the local notification itself.
4. Your app is prepared to hear about the user responding to the notification alert.

I’ll describe this sequence one step at a time, and then I’ll return to the business of
writing a notification content extension. The API for dealing with local notifications
is new in iOS 10, replacing the previous API completely. You’ll need to import the
User Notifications framework (import UserNotifications). Most of your activity
will ultimately involve the user notification center, a singleton UNUserNotification‐
Center instance available by calling UNUserNotificationCenter.current().

Authorizing for Local Notifications
The first step in requesting authorization for local notifications is to find out whether
we are already authorized. To do so, call getNotificationSettings on the user noti‐
fication center, which returns a UNNotificationSettings object asynchronously. You’ll
examine this property of the settings object:

authorizationStatus

A UNAuthorizationStatus: .authorized, .denied, or .notDetermined.

If the status is .notDetermined, the user has never seen the authorization request dia‐
log, and you’ll present it by sending requestAuthorization(options:) to the user
notification center. A Bool is returned asynchronously, telling you whether authoriza‐
tion was granted. The options: (UNAuthorizationOptions) are modes in which
you’d like to affect the user interface:

746 | Chapter 13: Modal Dialogs

.badge

You want to be allowed to badge your app’s icon with a number. Apple’s Phone
and Mail apps are familiar examples.

.sound

You want to play a sound when your notification fires.

.alert

You want to present a notification alert when your notification fires.

If the status is .authorized, there’s no point requesting authorization; you already
have it. If the status is .denied, there’s no point requesting authorization, and there’s
probably no point scheduling any local notifications, as the user will likely never
receive them.

The thing to watch out for is that both getNotificationSettings and request-
Authorization(options:) return their results asynchronously. This means that you
cannot simply follow a call to the first with a call to the second; you must chain the
calls by means of their completion handlers, like this:

let center = UNUserNotificationCenter.current()
center.getNotificationSettings { settings in
 switch settings.authorizationStatus {
 case .notDetermined:
 center.requestAuthorization(options:[.alert, .sound]) { ok, err in
 if let err = err {
 print(err); return
 }
 if ok {
 // authorized; could proceed to schedule a notification
 }
 }
 case .denied: break
 case .authorized: break // or proceed to schedule a notification
 }
}
// *

The point of the starred final line is that any code placed here will run before the
results from getNotificationSettings are returned, and thus before the switch con‐
struct is executed; such code thus cannot depend on those results. This is a standard
pattern with asynchronous code; failing to understand it is a common beginner mis‐
take.

You might also wish to call getNotificationSettings again later, perhaps just before
configuring and scheduling a local notification. Unlike earlier iOS versions, iOS 10
provides full information on how the user has configured the relevant settings
through the properties of the UNNotificationSettings object:

Local Notifications | 747

soundSetting

badgeSetting

alertSetting

notificationCenterSetting

lockScreenSetting

A UNNotificationSetting: .enabled, .disabled, or .notSupported.

alertStyle

A UNAlertStyle: .banner, .alert, or .none.

Notification Category
If your local notification alert is to have a secondary interface that displays custom
action buttons or a custom interface, you’ll need to register a notification category.
You might have expected to associate the custom action buttons directly with the
local notification itself, but this would be wasteful and inefficient. If, over the course
of your app’s lifetime, you’re going to be scheduling multiple notifications with the
same custom action buttons, it makes sense to create those buttons once and then,
when you create the notification itself, tell the notification center that this notification
should be accompanied by this set of action buttons. The notification itself is
matched with a previously registered category by a simple arbitrary string identifier.

An action button is a UNNotificationAction, a simple value class whose initializer is:

• init(identifier:title:options:)

The identifier, as I’ve already said, is arbitrary. The title is what will appear in the but‐
ton. The options: are a UNNotificationActionOptions bitmask:

.foreground

Tapping this button summons your app to the foreground. If not present, this
button will call your app in the background; your app, if suspended, will be awo‐
ken just long enough to respond.

.destructive

This button will be marked in the interface as dangerous (by being displayed in
red).

.authenticationRequired

If this option is present, and if this is not a .foreground button, then if the user’s
device requires a passcode to go beyond the lock screen, tapping this button in
the lock screen will also require a passcode. The idea is to prevent performance of
this action without authentication directly from the lock screen.

748 | Chapter 13: Modal Dialogs

An action, instead of being a button, can be a text field where the user can type and
then tap a button to send the text to your app. This is a UNTextInputNotificationAc‐
tion, and its initializer is:

• init(identifier:title:options:textInputButtonTitle:textInput-

Placeholder:)

To configure a category, create your UNNotificationActions and call the UNNotifica‐
tionCategory initializer:

• init(identifier:actions:intentIdentifiers:options:)

I’m not going to explain what the intent identifiers are. The key options: value
(UNNotificationCategoryOptions) is .customDismissAction; if you don’t set this,
your code won’t hear about it when the user simply dismisses your notification alert
(without tapping it to summon your app — the default action — and without tapping
a custom action button).

Having created all your categories, you then call setNotificationCategories on the
user notification center. So, for example:

let action1 = UNNotificationAction(identifier: "snooze", title: "Snooze")
let action2 = UNNotificationAction(identifier: "reconfigure",
 title: "Reconfigure", options: [.foreground])
let cat = UNNotificationCategory(identifier: self.categoryIdentifier,
 actions: [action1, action2], intentIdentifiers: [],
 options: [.customDismissAction])
let center = UNUserNotificationCenter.current()
center.setNotificationCategories([cat])

Scheduling a Local Notification
A local notification is scheduled to fire in accordance with a trigger — a way for the
system to know independently that it’s time to fire. This will be expressed as a sub‐
class of UNNotificationTrigger:

UNTimeIntervalNotificationTrigger
Fires starting a certain number of seconds from now, possibly repeating every
time that number of seconds elapses. The initializer is:

• init(timeInterval:repeats:)

UNCalendarNotificationTrigger
Fires at a certain date-time, expressed using DateComponents, possibly repeating
when the same DateComponents occurs again. (For example, you might use the
DateComponents to express nine o’clock in the morning, without regard to date;

Local Notifications | 749

the trigger, if repeating, would then be nine o’clock every morning.) The initial‐
izer is:

• init(dateMatching:repeats:)

UNLocationNotificationTrigger
Fires when the user enters or leaves a certain geographical region. I’ll discuss this
further in Chapter 22.

Unlike previous iOS versions, iOS 10 lets you retrieve scheduled notifications and
query them. If this notification has an interval trigger or a calendar trigger, you can
ask for its nextTriggerDate to learn when the notification will fire.

The payload of the notification is expressed as a UNMutableNotificationContent
object. Its properties are:

title, subtitle, body
Text visible in the notification alert.

attachments

UNNotificationAttachment objects. In the simplest case, attachments work best if
there is just one, as the secondary interface may not give the user a way to access
them all; however, if you are supplying a custom secondary interface, you might
be able to retrieve and display multiple attachments. Attachment objects must be
fairly small, because the system, in order to present them on your behalf when‐
ever this notification fires, is going to copy them off to a private secure area of its
own.

sound

A sound (UNNotificationSound) to be played when the notification fires. You
can specify a sound file in your app bundle by name, or call default to specify
the default sound.

badge

A number to appear on your app’s icon after this notification fires. Specify 0 to
remove an existing badge. (You can also set or remove your app’s icon badge at
any time by means of the shared application’s applicationIconBadgeNumber.)

categoryIdentifier

The identifier string of a previously registered category. This is how your local
notification will be associated at presentation time with custom action buttons or
a custom secondary interface.

userInfo

An arbitrary dictionary, to carry extra information you’ll retrieve later.

750 | Chapter 13: Modal Dialogs

threadIdentifier

A string; notification alerts with the same thread identifier are clumped together
physically.

launchImageName

Your app might be launched from scratch by the user tapping this notification’s
alert. Now suppose that you know that when this happens, you’re going to con‐
figure your app so that it appears differently from how it normally launches. You
might want the momentary screen, shown while your app is launching, to corre‐
spond to that different interface. This is how you specify the alternative launch
image to be used in that situation.

Having constructed your notification’s trigger and content, you package them up with
an arbitrary identifier into a UNNotificationRequest by calling its initializer:

• init(identifier:content:trigger:)

You then tell the user notification center to add this notification to its internal list of
scheduled notifications. As an example, here’s the code that generated Figure 13-7:

let interval = // ... whatever ...
let trigger = UNTimeIntervalNotificationTrigger(
 timeInterval: interval, repeats: false)
let content = UNMutableNotificationContent()
content.title = "Caffeine!"
content.body = "Time for another cup of coffee!"
content.sound = UNNotificationSound.default()
content.categoryIdentifier = self.categoryIdentifier
let url = Bundle.main.url(forResource: "cup2", withExtension: "jpg")!
if let att = try? UNNotificationAttachment(
 identifier: "cup", url: url, options:nil) {
 content.attachments = [att]
}
let req = UNNotificationRequest(
 identifier: "coffeeNotification", content: content, trigger: trigger)
let center = UNUserNotificationCenter.current()
center.add(req)

Hearing About a Local Notification
In order to hear about it when your scheduled local notification fires, you need to
configure some object to be the user notification center’s delegate, adopting the
UNUserNotificationCenterDelegate protocol. You need to do this very early your
app’s lifetime, because you might need to be sent a delegate message immediately
upon launching. Thus, application(_:didFinishLaunchingWithOptions:) is a
good place:

Local Notifications | 751

func application(_ application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
 [UIApplicationLaunchOptionsKey : Any]?) -> Bool {
 let center = UNUserNotificationCenter.current()
 center.delegate = self // or whatever
 return true
}

The UNUserNotificationCenterDelegate protocol consists of just two optional meth‐
ods:

userNotificationCenter(_:willPresent:withCompletionHandler:)

Called only if your local notification fires when your app is frontmost. The rea‐
son is that, in earlier iOS versions, there was a rule that your app’s local notifica‐
tion alert, sound, and badge would not appear when your app was frontmost;
new in iOS 10, you can ask that the system present the local notification alert and
play the sound and badge the icon even from within your app, and this is how you
do so.

The second parameter is a UNNotification object, itself containing the fire date
and your original request (UNNotificationRequest). Thus, you can identify the
local notification if desired, and can respond accordingly; you can also extract
information from it, such as an attachment or the userInfo dictionary.

You are handed a completion handler; you must call it with UNNotificationPre‐
sentationOptions consisting of some combination of .alert, .sound, and .badge
— or nothing, if you want to suppress the alert completely as in the past.

userNotificationCenter(_:didReceive:withCompletionHandler:)

Called when the user interacts with your local notification alert. The second
parameter is a UNNotificationResponse, consisting of two properties. One, the
notification, is the same UNNotification object that I described for the previ‐
ous method; again, you can use it to identify and extract information from this
local notification. The other, the actionIdentifier, is a string telling you what
the user did. There are three possibilities:

UNNotificationDefaultActionIdentifier

The user performed the default action, tapping the alert to summon your
app.

A custom action identifier string
The user tapped a custom action button, and this is its identifier.

UNNotificationDismissActionIdentifier

The user dismissed the local notification alert. You won’t hear about this
(and this method won’t even be called) unless you specified the .custom-
DismissAction option for this notification’s category.

752 | Chapter 13: Modal Dialogs

You are handed a completion handler, which you must call when you’re done.
Remember, you must be quick, because it may be that you are being awakened
momentarily in the background.

Here’s an example of implementing the first delegate method, telling the runtime to
present the local notification alert within our app:

func userNotificationCenter(_ center: UNUserNotificationCenter,
 willPresent notification: UNNotification,
 withCompletionHandler completionHandler:
 @escaping (UNNotificationPresentationOptions) -> Void) {
 completionHandler([.sound, .alert])
}

Here’s an example of implementing the second delegate method, responding to the
user tapping a custom action button; I use my delay utility (Appendix B) so as to
return immediately before proceeding to obey the button:

func userNotificationCenter(_ center: UNUserNotificationCenter,
 didReceive response: UNNotificationResponse,
 withCompletionHandler completionHandler: @escaping () -> Void) {
 let id = response.actionIdentifier
 if id == "snooze" {
 delay(0.1) {
 self.rescheduleNotification(response.notification)
 }
 }
 // ... other tests might go here ...
 completionHandler()
}

If the custom action was a text input action, then this UNNotificationResponse will
be a subclass, UNTextInputNotificationResponse, which has an additional userText
property. Thus, to learn whether this was a text input action, you simply test its class
with is or as?, and then retrieve its userText:

if let textresponse = response as? UNTextInputNotificationResponse {
 let text = textresponse.userText
 // ...
}

Managing Scheduled Notifications
New in iOS 10, the user notification center is completely introspectable. This means,
among other things, that you can examine the list of scheduled notifications. This
makes notification management much easier than in the past. You can learn when
each notification is scheduled to fire. You can remove a notification from the list, thus
canceling it. By removing, copying, and adding a notification, you can effectively
reschedule a notification. UNUserNotificationCenter methods for managing sched‐
uled notifications are:

Local Notifications | 753

• getPendingNotificationRequests(completionHandler:)

• removePendingNotificationRequests(withIdentifiers:)

• removeAllPendingNotificationRequests

You can also examine the list of notifications that have already fired but have not yet
been removed from the notification center. By judicious removal of notifications, you
can keep the user’s notification center trimmed; for example, you might like only
your most recently delivered notification to appear in the notification center. You can
even modify the text of a delivered notification, so that the notification will be up-to-
date when the user gets around to dealing with it; to do so, you add a notification
with the same identifier as an existing notification. UNUserNotificationCenter meth‐
ods for managing delivered notifications are:

• getDeliveredNotifications(completionHandler:)

• removeDeliveredNotifications(withIdentifiers:)

• removeAllDeliveredNotifications

Canceling a repeating local notification is up to your code; if you don’t provide
the user with a way of doing that, then if the user wants to prevent the notifica‐
tion from recurring, the user’s only recourse will be to delete your app.

Notification Content Extensions
If your local notification has a category, you can customize what appears in its secon‐
dary interface, in the central region between the app’s icon and display name, at the
top, and the custom actions (if any), at the bottom. To do so, you write a notification
content extension. This is a target, separate from your app target, because the system
needs to access it outside your app, and even if your app isn’t running.

To add a notification content extension to your app, create a new target and specify
iOS → Application Extension → Notification Content. The template gives you a good
start on your extension. You have a storyboard with a single scene, and the code for a
corresponding view controller that imports both the User Notifications framework
and the User Notifications UI framework, as well as adopting the UNNotification‐
ContentExtension protocol.

The view controller code contains a stub implementation of the didReceive(_:)
method, which is the only required method. (Other methods are optional and have
mostly to do with playback of media attached to your local notification; I’m not going
to discuss them.) The parameter is a UNNotification containing your original UNNo‐
tificationRequest; you can examine this and extract information from it. The idea is
that you might use this information to configure your interface. If you want to extract

754 | Chapter 13: Modal Dialogs

an attachment, you will have to wrap your access in calls to the URL methods start-
AccessingSecurityScopedResource and stopAccessingSecurityScopedResource.

The only other thing your view controller really needs to do is to set its own
preferredContentSize to the desired dimensions of the custom interface. Alterna‐
tively, you can use autolayout to size the interface from the inside out, like a table
view cell (Chapter 8).

For example, here’s how the custom interface in Figure 13-10 was attained. The inter‐
face consists of a label and an image view. The image view is to contain the image
attachment from the local notification, so I extract the image from the attachment
and set it as the image view’s image; I find that the interface doesn’t reliably appear
unless we also call setNeedsLayout at the end:

override func viewDidLoad() {
 super.viewDidLoad()
 self.preferredContentSize = CGSize(320, 80)
}
func didReceive(_ notification: UNNotification) {
 let req = notification.request
 let content = req.content
 let atts = content.attachments
 if let att = atts.first, att.identifier == "cup" {
 if att.url.startAccessingSecurityScopedResource() {
 if let data = try? Data(contentsOf: att.url) {
 self.imageView.image = UIImage(data: data)
 }
 att.url.stopAccessingSecurityScopedResource()
 }
 }
 self.view.setNeedsLayout()
}

The template also includes an Info.plist for your extension. You will need to modify it
by configuring these keys:

UNNotificationExtensionCategory

A string, corresponding to the categoryIdentifier of the local notification(s) to
which this custom secondary interface is to be applied.

UNNotificationExtensionInitialContentSizeRatio

A number representing the width of your custom interface divided by its height.
This doesn’t have to be perfect — and indeed it probably can’t be, since you don’t
know the actual width of the screen on which this interface will be displayed —
but the idea is to give the system a rough idea of the size as it prepares to display
the custom interface.

Local Notifications | 755

Figure 13-11. A content extension’s Info.plist

UNNotificationExtensionDefaultContentHidden

Optional. A Boolean. Set to YES if you want to eliminate the default display of the
local notification’s title, subtitle, and body from the custom interface.

Figure 13-11 shows the relevant part of the Info.plist for my content extension.

Bear in mind that your custom interface is not interactive. There is no point putting a
UIButton into the interface, for example, as the user cannot tap it. (This is why there
are methods for asking the system to insert a tappable play/pause button; it’s because
you cannot insert such a button directly.) What the user can tap are the custom action
buttons. You can hear about such a tap in your content extension’s view controller by
implementing this method:

• didReceive(_:completionHandler:)

If you implement this method, you have effectively put yourself in front of your user
notification center delegate’s userNotificationCenter(_:didReceive:with-

CompletionHandler:). All user actions will now be routed initially to the content
extension’s view controller instead. You call the completion handler with a UNNotifi‐
cationContentExtensionResponseOption:

.doNotDismiss

The local notification alert remains in place, still displaying the custom secon‐
dary interface — and you can modify that interface in response to the user
action. Thus you can make the interface feel interactive, even though it really
isn’t.

.dismiss

The alert is dismissed. You can still modify the custom interface, delaying the call
to the completion handler so that the user has time to see the change.

.dismissAndForwardAction

The alert is dismissed and the action is passed along to your user notification
center delegate’s userNotificationCenter(_:didReceive:withCompletion-

Handler:).

756 | Chapter 13: Modal Dialogs

Figure 13-12. A today extension

Today Extensions
The notification center that the user sees by pulling down from the top of the screen,
as well as on the lock screen, has two pages. The list of local notifications is actually
the second page. The first page is the today list. Here, apps can contribute widgets —
informative bits of interface. For example, Apple’s Weather app posts the local tem‐
perature here, and the user can tap to open the Weather app itself. New in iOS 10, the
today list appears also as part of the home screen search interface.

Your app, too, can provide a widget to appear here. To make that happen, you give
your app a today extension. Your app vends the extension, and the user has the option
of adding it to the today list (Figure 13-12).

To add a today extension to your app, create a new target and specify iOS → Applica‐
tion Extension → Today Extension. The template gives you a good start on your
extension. You have a storyboard with a single scene, and the code for a correspond‐
ing view controller that adopts the NCWidgetProviding protocol. You might need to
edit the extension’s Info.plist to set the “Bundle display name” entry — this is the title
that will appear above your extension in the notification center.

The today extension target will be explicitly linked to the Notification Center
framework (import NotificationCenter). Do not meddle with this linkage.
This framework is crucial; without it, your today extension target may compile,
but the today extension itself will crash.

Design your extension’s interface in the storyboard provided. To size your extension’s
height, either provide sufficient constraints to determine the full height of your exten‐
sion’s interface from the inside out (like a table view cell, Chapter 8), or set your view
controller’s preferredContentSize.

In previous versions of iOS, widgets were displayed using white-on-black with an
optional vibrancy effect. In iOS 10, widgets are displayed in ordinary black-on-
white. You should use the default view background for your interface’s main view,
so as to get the standard light blur which is provided automatically.

Today Extensions | 757

Figure 13-13. A custom URL declaration

Each time your today extension’s interface is about to appear, your code is given an
opportunity to update its interface, through its implementation of the NCWidgetPro‐
viding method widgetPerformUpdate(completionHandler:). Be sure to finish up by
calling the completionHandler, handing it an NCUpdateResult, which will be .new-
Data, .noData, or .failed. Time-consuming work should be performed off the main
thread (see Chapter 25):

func widgetPerformUpdate(completionHandler:
 @escaping (NCUpdateResult) -> Void) {
 // ... do stuff quickly ...
 completionHandler(.newData)
}

Communication back to your app can be a little tricky. In Figure 13-12, two buttons
invite the user to set up a reminder notification; I’ve implemented these to open our
CoffeeTime app by calling open(_:completionHandler:) — a method of the auto‐
matically provided extensionContext, not the shared application, which is not avail‐
able from here:

@IBAction func doButton(_ sender: Any) {
 let v = sender as! UIView
 var comp = URLComponents()
 comp.scheme = "coffeetime"
 comp.host = String(v.tag) // button's tag is number of minutes
 if let url = comp.url {
 self.extensionContext?.open(url)
 }
}

The CoffeeTime app receives this message because I’ve given it two things:

A custom URL scheme
The coffeetime scheme is declared in the app’s Info.plist (Figure 13-13).

An implementation of application(_:open:options:)
In the app delegate, I’ve implemented application(_:open:options:) to ana‐
lyze the URL when it arrives. I’ve coded the original URL so that the “host” is
actually the number of minutes announced in the tapped button; thus, I can
respond appropriately (presumably by scheduling a local notification for that
number of minutes from now):

758 | Chapter 13: Modal Dialogs

func application(_ app: UIApplication, open url: URL,
 options: [UIApplicationOpenURLOptionsKey : Any]) -> Bool {
 let scheme = url.scheme
 let host = url.host
 if scheme == "coffeetime" {
 if let host = host, let min = Int(host) {
 // ... do something here ...
 return true
 }
 }
 return false
}

New in iOS 10, a today extension’s widget interface can have two heights: compact
and expanded. If you take advantage of this feature, your widget will have a Show
More or Show Less button (similar to the Weather app’s widget). To do so, implement
widgetActiveDisplayModeDidChange(_:withMaximumSize:). The first parameter is
an NCWidgetDisplayMode, either .compact or .expanded. The idea is that you
would then change your view controller’s preferredContentSize to the larger or
smaller size.

New in iOS 10, if your app has a today extension, the today extension widget is dis‐
played automatically when the user performs the 3D touch gesture that summons
quick actions. Since our widget is interactive, we actually don’t need the static quick
action buttons shown in Figure 13-5!

Activity Views
An activity view is the view belonging to a UIActivityViewController, typically
appearing when the user taps a Share button. To display it, you start with one or more
pieces of data, such as a string or an image, that you want the user to have the option
of sharing or working with. The activity view, when it appears, will then contain an
icon for every activity (UIActivity) that can work with this type of data. The user may
tap an icon in the activity view, and is then perhaps shown additional interface,
belonging to the provider of the chosen activity. Figure 13-14 shows an example,
from Mobile Safari.

In Figure 13-14, the top row of the activity view lists some applicable built-in system-
wide activities; the bottom row shows some activities provided internally by Safari
itself. When you present an activity view within your app, your app can add to the
lower row additional activities that are available only within your app. Moreover,
your app can provide system-wide activities that are available when any app presents
an activity view; such system-wide activities come in two forms:

Activity Views | 759

Figure 13-14. An activity view

Share extensions
A share extension is shown in the upper row of an activity view. Share extensions
are for apps that can accept information into themselves, either for storage, such
as Notes and Reminders, or for sending out to a server, such as Twitter and Face‐
book.

Action extensions
An action extension is shown in the lower row of an activity view. Action exten‐
sions offer to perform some kind of manipulation on the data provided by the
host app, and can hand back the resulting data in reply.

I’ll describe how to present an activity view and how to construct an activity that’s
private to your app. Then I’ll give an example of writing an action extension, and
finally an example of writing a share extension.

Presenting an Activity View
You will typically want to present an activity view in response to the user tapping a
Share button in your app. To do so:

1. Instantiate UIActivityViewController. The initializer you’ll be calling is
init(activityItems:applicationActivities:), where the first argument is an
array of objects to be shared or operated on, such as string or image objects. Pre‐
sumably these are objects associated somehow with the interface the user is look‐
ing at right now.

2. Set the activity view controller’s completionWithItemsHandler property to a
function that will be called when the user’s interaction with the activity interface
ends.

760 | Chapter 13: Modal Dialogs

3. Present the activity view controller, as a presented view controller; on the iPad, it
will be a popover, so you’ll also configure the popover presentation controller.
The presented view or popover will be dismissed automatically when the user
cancels or chooses an activity.

So, for example:

let url = Bundle.main.url(forResource:"sunglasses", withExtension:"png")!
let things : [Any] = ["This is a cool picture", url]
let avc = UIActivityViewController(
 activityItems:things, applicationActivities:nil)
avc.completionWithItemsHandler = { type, ok, items, err in
 // ...
}
self.present(avc, animated:true)
if let pop = avc.popoverPresentationController {
 let v = sender as! UIView
 pop.sourceView = v
 pop.sourceRect = v.bounds
}

There is no Cancel button in the popover presentation of the activity view; the user
cancels by tapping outside the popover. Actually, the user can cancel by tapping out‐
side the activity view even on the iPhone.

The activity view is populated automatically with known system-wide activities that
can handle any of the types of data you provided as the activityItems: argument.
These activities represent UIActivity types, and are designated by UIActivityType
constants:

• .postToFacebook

• .postToTwitter

• .postToWeibo

• .message

• .mail

• .print

• .copyToPasteboard

• .assignToContact

• .saveToCameraRoll

• .addToReadingList

• .postToFlickr

• .postToVimeo

Activity Views | 761

• .postToTencentWeibo

• .airDrop

• .openInIBooks

Consult the UIActivity class documentation to learn what types of activity item each
of these activities can handle. For example, the .mail activity will accept a string, an
image, or a file on disk (such as an image file) designated by a URL; it will present a
mail composition interface with the activity item(s) in the body.

Since the default is to include all the system-wide activities that can handle the pro‐
vided data, if you don’t want a certain system-wide activity included in the activity
view, you must exclude it explicitly. You do this by setting the UIActivityViewCon‐
troller’s excludedActivityTypes property to an array of activity type constants.

The Notes and Reminders activities have no corresponding UIActivity, because
they are implemented as share extensions; it is up to the user to exclude them if
desired.

In the UIActivityViewController initializer init(activityItems:application-

Activities:), if you would prefer that an element of the activityItems: array be
an object that will supply the data, instead of the data itself, make that object adopt
the UIActivityItemSource protocol. Typically, this object will be self (the view con‐
troller in charge of all this code). Here’s a minimal, artificial example:

extension ViewController : UIActivityItemSource {
 func activityViewControllerPlaceholderItem(
 _ activityViewController: UIActivityViewController) -> Any {
 return ""
 }
 func activityViewController(
 _ activityViewController: UIActivityViewController,
 itemForActivityType activityType: UIActivityType) -> Any? {
 return "Coolness"
 }
}

The first method provides a placeholder that exemplifies the type of data that will be
returned; the second method returns the actual data. Observe that the second method
can return different data depending on the activity type that the user chose; for exam‐
ple, you could provide one string to Notes and another string to Mail.

The UIActivitySource protocol also answers a commonly asked question about how
to get the Mail activity to populate the mail composition form with a default subject:

extension ViewController : UIActivityItemSource {
 // ...
 func activityViewController(
 _ activityViewController: UIActivityViewController,

762 | Chapter 13: Modal Dialogs

 subjectForActivityType activityType: UIActivityType?) -> String {
 return "This is cool"
 }
}

(There is no official way to provide a default recipient, presumably because sharing is
up to the user. For a mail composition interface where you can provide a default
recipient, see Chapter 20.)

If your activityItems: data is time-consuming to provide, substitute an instance of
a UIActivityItemProvider subclass:

let avc = UIActivityViewController(
 activityItems:[MyProvider(placeholderItem: "")],
 applicationActivities:nil)

The placeholderItem: in the initializer signals the type of data that this UIActivity‐
ItemProvider object will actually provide. Your UIActivityItemProvider subclass
should override the item property to return the actual object. This property will be
consulted on a background thread, and UIActivityItemProvider is itself an Operation
subclass (see Chapter 25).

Custom Activities
The purpose of the applicationActivities: parameter of init(activity-

Items:applicationActivities:) is for you to list any additional activities imple‐
mented internally by your own app, so that their icons will appear as choices in the
lower row when your app presents an activity view. Each activity will be an instance
of one of your own UIActivity subclasses.

To illustrate, I’ll create a minimal (and nonsensical) activity called Be Cool that
accepts string activity items. It is a UIActivity subclass called MyCoolActivity. So, to
include Be Cool among the choices presented to the user by a UIActivityViewCon‐
troller, I’d say:

let things : [Any] = ["This is a cool picture", url]
let avc = UIActivityViewController(
 activityItems:things, applicationActivities:[MyCoolActivity()])

Now let’s implement MyCoolActivity. It has an array property called items, for rea‐
sons that will be apparent in a moment. We need to arm ourselves with an image to
represent this activity in the activity view; this will be treated as a template image. It
should be no larger than 60×60 (76×76 on iPad); it can be smaller, and looks better if
it is, because the system will draw a rounded rectangle around it, and the image
should be somewhat inset from this. It needn’t be square, as it will be centered in the
rounded rectangle automatically.

Here’s the preparatory part of the implementation of MyCoolActivity:

Activity Views | 763

override class var activityCategory : UIActivityCategory {
 return .action // the default
}
override var activityType : UIActivityType {
 return UIActivityType("com.neuburg.matt.coolActivity")
}
override var activityTitle : String? {
 return "Be Cool"
}
override var activityImage : UIImage? {
 return self.image
}
override func canPerform(withActivityItems activityItems: [Any]) -> Bool {
 for obj in activityItems {
 if obj is String {
 return true
 }
 }
 return false
}
override func prepare(withActivityItems activityItems: [Any]) {
 self.items = activityItems
}

If we return true from canPerform(withActivityItems:), then an icon for this
activity, labeled Be Cool and displaying our activityImage, will appear in the activity
view. If the user taps our icon, prepare(withActivityItems:) will be called. We
retain the activityItems into our items property, because they won’t be arriving
again when we are actually told to perform the activity.

The next step, if the user has tapped our icon in the activity view, is that we will be
called upon to perform the activity. To do so, we implement one of these:

perform method
We simply perform the activity directly, using the activity items we’ve already
retained. If the activity is time-consuming, the activity should be performed on a
background thread (Chapter 25) so that we can return immediately; the activity
view interface will be taken down and the user will be able to go on interacting
with the app.

activityViewController property
We have further interface that we’d like to show the user as part of the activity, so
we provide an instance of a UIViewController subclass. The activity view mecha‐
nism will present this view controller for us; it is not our job to present or dismiss
it. (We may, however, present or dismiss dependent interface. For example, if our
view controller is a navigation controller with a custom root view controller, we
might push another view controller onto its stack while the user is interacting
with the activity.)

764 | Chapter 13: Modal Dialogs

No matter which of these two methods we implement, we must eventually call this
activity instance’s activityDidFinish(_:). This is the signal to the activity view
mechanism that the activity is over. If the activity view mechanism is still presenting
any interface, it will be taken down, and the argument we supply here, a Bool signify‐
ing whether the activity completed successfully, will be passed into the function we
supplied earlier as the activity view controller’s completionWithItemsHandler. So, for
example:

override func perform() {
 // ... do something with self.items here ...
 self.activityDidFinish(true)
}

If your UIActivity is providing a view controller as its activityViewController, it
will want to hand that view controller a reference to self beforehand, so that the view
controller can call its activityDidFinish(_:) when the time comes.

For example, suppose our activity involves letting the user draw a mustache on a
photo of someone. Our view controller will provide interface for doing that, includ‐
ing some way of letting the user signal completion, such as a Cancel button and a
Done button. When the user taps either of those, we’ll do whatever else is necessary
(such as saving the altered photo somewhere if the user tapped Done) and then call
activityDidFinish(_:). Thus, we could implement activityViewController like
this:

override var activityViewController : UIViewController? {
 let mvc = MustacheViewController(activity: self, items: self.items!)
 return mvc
}

And then MustacheViewController would have code like this:

weak var activity : UIActivity?
var items: [Any]
init(activity:UIActivity, items:[Any]) {
 self.activity = activity
 self.items = items
 super.init(nibName: "MustacheViewController", bundle: nil)
}
// ... other stuff ...
@IBAction func doCancel(_ sender: Any) {
 self.activity?.activityDidFinish(false)
}
@IBAction func doDone(_ sender: Any) {
 self.activity?.activityDidFinish(true)
}

Note that MustacheViewController’s reference to the UIActivity (self.activity) is
weak; otherwise, a retain cycle ensues.

Activity Views | 765

The purpose of the SFSafariViewController delegate method safariView-
Controller(_:activityItemsFor:title:) (Chapter 11) is now clear. This view
controller’s view appears inside your app, but it isn’t your view controller, its
Share button is not your button, and the activity view that it presents is not your
activity view. Therefore you need some other way to add custom UIActivity
items to that activity view; to do so, implement this method.

Action Extensions
To provide a system-wide activity — one that appears when some other app puts up
an activity view — you can write a share extension (to appear in the upper row) or an
action extension (to appear in the lower row). Your app can provide just one share
extension, but can provide multiple action extensions. I’ll describe first the basics of
writing an action extension. (For full information, study the relevant documentation
and WWDC 2014 videos.)

As with today extensions, start with the appropriate target template, iOS → Applica‐
tion Extension → Action Extension. There are two kinds of action extension, with or
without an interface; you’ll make your choice in the second pane as you create the
target.

In the Info.plist, in addition to setting the bundle name, which will appear below the
activity’s icon in the activity view, you’ll need to specify what types of data this activity
accepts as its operands. In the NSExtensionActivationRule dictionary, you’ll provide
one or more keys, such as:

• NSExtensionActivationSupportsFileWithMaxCount

• NSExtensionActivationSupportsImageWithMaxCount

• NSExtensionActivationSupportsMovieWithMaxCount

• NSExtensionActivationSupportsText

• NSExtensionActivationSupportsWebURLWithMaxCount

For the full list, see the “Action Extension Keys” section of Apple’s Information Prop‐
erty List Key Reference. It is also possible to declare in a more sophisticated way what
types of data your activity accepts, by writing an NSPredicate string as the value of
the NSExtensionActivationRule key. Figure 13-15 shows the relevant part of the
Info.plist for an action extension that accepts one text object.

When your action extension appears in an activity view within some other app that
provides the appropriate type(s) of data, it will be represented by an icon which you
need to specify by editing your action extension target. This icon is the same size as
an app icon, and can conveniently come from an asset catalog; it will be treated as a
template image.

766 | Chapter 13: Modal Dialogs

Figure 13-15. An action extension Info.plist

There is one big difference between an action extension and a custom UIActivity: an
action extension can return data to the calling app. The transport mechanism for this
data is rather elaborate, as I shall now explain.

Action extension without an interface
I’ll start by giving an example of an action extension that has no interface. Our code
goes into the class provided by the template, ActionRequestHandler, an NSObject
subclass.

Our example extension takes a string object and returns a string. In particular, it
accepts a string that might be the two-letter abbreviation of one of the U.S. states, and
if it is, it returns the name of the actual state. To prepare, we provide some properties:

var extensionContext: NSExtensionContext?
let desiredType = kUTTypePlainText as String

self.extensionContext is a place to store the NSExtensionContext that will be pro‐
vided to us. self.desiredType is just a convenient constant expressing the accepta‐
ble data type. In addition, we have a property self.list which, as in Chapter 10, is a
dictionary whose keys are state name abbreviations and whose values are the corre‐
sponding state names.

There is just one entry point into our extension’s code — beginRequest(with:). Here
we must store a reference to the NSExtensionContext provided as the parameter,
retrieve the data, process the data, and return the result. You will probably want to
factor the processing of the data out into a separate function; I’ve called mine
process(item:). Here’s a sketch of my beginRequest(with:) implementation; as it
shows, my plan is to make one of two possible calls to self.process(item:), either
passing the string retrieved from items, or else passing nil to signify that there was
no data:

func beginRequest(with context: NSExtensionContext) {
 self.extensionContext = context
 let items = self.extensionContext!.inputItems
 // ... if there is no data, call self.process(item:) with nil ...
 // ... if there is data, call self.process(item:) with the data ...
}

Activity Views | 767

Now let’s implement the retrieval of the data. Think of this as a series of envelopes (or
nested matryoshka dolls) that we must examine and open:

• What arrives from the NSExtensionContext’s inputItems is an array of NSExten‐
sionItem objects.

• An NSExtensionItem has an attachments array of NSItemProvider objects.
• An NSItemProvider vends items, each of which represents the data in a particu‐

lar format. In particular:
■ We can ask whether an NSItemProvider has an item of a particular type, by

calling hasItemConformingToTypeIdentifier(_:).
■ We can retrieve the item of a particular type, by calling loadItem(forType-
Identifier:options:completionHandler:). The item may be vended lazily,
and can thus take time to prepare and provide; so we proceed in the
completionHandler: to receive the item and do something with it.

We are expecting only one item, so it will be provided by the first NSItemProvider
inside the first NSExtensionItem. Here, then, is the code that I omitted from begin-
RequestWithExtensionContext:

guard let extensionItem = items[0] as? NSExtensionItem,
 let provider = extensionItem.attachments?[0] as? NSItemProvider,
 provider.hasItemConformingToTypeIdentifier(self.desiredType)
 else {
 return self.process(item:nil)
}
provider.loadItem(forTypeIdentifier: self.desiredType) { item, err in
 DispatchQueue.main.async {
 self.process(item: item as? String)
 }
}

Now we have the data, and we’re ready to do something with it. In my code, that hap‐
pens in the method that I’ve named process(item:). This method must do two
things:

1. Call the NSExtensionContext’s completeRequest(returningItems:completion-
Handler:) to hand back the data.

2. Release the NSExtensionContext by setting our retaining property to nil.

I’ll start with the simplest case: we didn’t get any data. In that case, the returned value
is nil:

768 | Chapter 13: Modal Dialogs

func process(item:String?) {
 var result : [NSExtensionItem]? = nil
 // ... what goes here? ...
 self.extensionContext?.completeRequest(returningItems: result)
 self.extensionContext = nil
}

That was easy, because we cleverly omitted the only case where we have any work to
do. Now let’s implement that case. We have received a string in the item parameter.
The first question is: is it the abbreviation of a state? To answer that question, I’ve
implemented a utility function:

func state(for abbrev:String) -> String? {
 return self.list[abbrev.uppercased()]
}

If we call that method with our item string and the answer comes back nil, we sim‐
ply proceed just as before — we return nil:

func process(item:String?) {
 var result : [NSExtensionItem]? = nil
 if let item = item,
 let abbrev = self.state(for:item) {
 // ... what goes *here*? ...
 }
 self.extensionContext?.completeRequest(returningItems: result)
 self.extensionContext = nil
}

We come at last to the dreaded moment that I have been postponing all this time:
what if we get an abbreviation? In that case, we must reverse the earlier process of
opening envelopes: we must put envelopes within envelopes and hand back an array
of NSExtensionItems. We have only one result, so this will be an array of one
NSExtensionItem, whose attachments is an array of one NSItemProvider, whose
item is the string and whose typeIdentifier is the type of that string. Confused?
Here, I’ve written a little utility function that should clarify:

func stuffThatEnvelope(_ item:String) -> [NSExtensionItem] {
 let extensionItem = NSExtensionItem()
 let itemProvider = NSItemProvider(
 item: item as NSString, typeIdentifier: desiredType)
 extensionItem.attachments = [itemProvider]
 return [extensionItem]
}

We can now write the full implementation of process(item:), and our action exten‐
sion is finished:

func process(item:String?) {
 var result : [NSExtensionItem]? = nil
 if let item = item,
 let abbrev = self.state(for:item) {

Activity Views | 769

 result = self.stuffThatEnvelope(abbrev)
 }
 self.extensionContext?.completeRequest(returningItems: result)
 self.extensionContext = nil
}

Action extension with an interface
If an action extension has an interface, then the template provides a storyboard with
one scene, along with the code for a corresponding UIViewController class. The code
is actually simpler, because:

• A view controller already has an extensionContext property, and it is automati‐
cally set for us.

• There are no special entry points to our code. This is a UIViewController, and
everything happens just as you would expect.

So, in my implementation, I use viewDidLoad to open the data envelope from
self.extensionContext, get the abbreviation if there is one, get the expansion if
there is one (storing it in a property, self.expansion), and stop. I’ve equipped my
interface with a Done button and a Cancel button. The action handlers for those but‐
tons are where I hand the result back to the extensionContext:

@IBAction func cancel(_ sender: Any) {
 self.extensionContext?.completeRequest(returningItems: nil)
}
@IBAction func done(_ sender: Any) {
 self.extensionContext?.completeRequest(
 returningItems: self.stuffThatEnvelope(self.expansion!))
}

The runtime responds by dismissing the interface in good order.

Receiving data from an action extension
Now switch roles and pretend that your app is presenting a UIActivityViewControl‐
ler. We now know that this activity view might contain action extension icons. If the
user taps one, how will your code retrieve the result? In my earlier implementation, I
avoided this issue by pretending that action extensions didn’t exist. Here’s a more
complete sketch:

let avc = UIActivityViewController(
 activityItems:[things], applicationActivities:nil)
avc.completionWithItemsHandler = { type, ok, items, err in
 if ok {
 guard let items = items, items.count > 0 else {
 return
 }

770 | Chapter 13: Modal Dialogs

 // ... open the envelopes! ...
 }
}
self.present(avc, animated:true)

If what the user interacted with in the activity view is one of the built-in UIActivity
types, no data has been returned. But if the user interacted with an action extension,
then there may be data inside the items envelopes, and it is up to us to retrieve it.

The structure here is exactly the same as the items of an NSExtensionContext: items
is an array, each element of which is presumably an NSExtensionItem, whose
attachments is presumably an array of NSItemProvider objects, each of which can be
queried for its data. In the case where we are prepared to receive a string, therefore,
the code is effectively just the same as the envelope-opening code we’ve already writ‐
ten:

guard let items = items, items.count > 0 else {
 return
}
guard let extensionItem = items[0] as? NSExtensionItem,
 let provider = extensionItem.attachments?[0] as? NSItemProvider,
 provider.hasItemConformingToTypeIdentifier(self.desiredType)
 else {
 return
}
provider.loadItem(forTypeIdentifier: self.desiredType) { item, err in
 DispatchQueue.main.async {
 if let s = item as? String {
 // ... do something with s ...
 }
 }
}

Share Extensions
Your app can appear in the top row of an activity view if it provides a share extension.
A share extension is similar to an action extension, but simpler: it accepts some data
and returns nothing. The idea is that it will then do something with that data, such as
storing it or posting it to a server.

The user, after tapping an app’s icon in the activity view, is given an opportunity to
interact further with the data, possibly modifying it or canceling the share operation.
To make this possible, the Share Extension template, when you create the target (iOS
→ Application Extension → Share Extension), will give you a storyboard and a view
controller. This view controller can be one of two types:

Activity Views | 771

Figure 13-16. A share extension

An SLComposeServiceViewController
The SLComposeServiceViewController provides a standard interface for display‐
ing editable text in a UITextView along with a possible preview view, plus user-
configurable option buttons, along with a Cancel button and a Post button.

A plain view controller subclass
If you opt for a plain view controller subclass, then designing its interface,
including providing a way to dismiss it, will be up to you.

Whichever form of interface you elect to use, your way of dismissing it will be this
familiar-looking incantation:

self.extensionContext?.completeRequestReturningItems([])

As you are most likely to use an SLComposeServiceViewController, I’ll briefly
describe some of the basics of working with one. An SLComposeServiceViewControl‐
ler’s view is displayed with its text view already populated with the text passed along
from the host app, so there’s very little more for you to do; you can add a preview
view and option buttons, and that’s just about all. I’ll concentrate on option buttons.

An option button displays a title string and a value string. When tapped, it will typi‐
cally summon interface where the user can change the value string. In Figure 13-16,
I’ve created a single option button — a Size button, whose value can be Large,
Medium, or Small. (I have no idea what this choice is supposed to signify for my app;
it’s only an example!)

To create the configuration option, I override the SLComposeServiceViewController
configurationItems method to return an array of one SLComposeSheetConfigura‐
tionItem. Its title and value are displayed in the button. Its tapHandler will be
called when the button is tapped. Typically, you’ll create a view controller and push it
into the interface with pushConfigurationViewController:

772 | Chapter 13: Modal Dialogs

weak var config : SLComposeSheetConfigurationItem?
var selectedText = "Large" {
 didSet {
 self.config?.value = self.selectedText
 }
}
override func configurationItems() -> [Any]! {
 let c = SLComposeSheetConfigurationItem()!
 c.title = "Size"
 c.value = self.selectedText
 c.tapHandler = { [unowned self] in
 let tvc = TableViewController(style: .grouped)
 tvc.selectedSize = self.selectedText
 tvc.delegate = self
 self.pushConfigurationViewController(tvc)
 }
 self.config = c
 return [c]
}

My TableViewController is a UITableViewController subclass. Its table view displays
three rows whose cells are labeled Large, Medium, and Small, along with a checkmark
(compare the table view described in “Cell Choice and Static Tables” on page 522).
The tricky part is that I need a way to communicate with this table view controller: I
need to tell it what the configuration item’s value is now, and I need to hear from it
what the user chooses in the table view. So I’ve given the table view controller a prop‐
erty (selectedSize) where I can deposit the configuration item’s value, and I’ve
declared a delegate protocol so that the table view controller can set a property of
mine (selectedText). This is the relevant portion of my TableViewController class:

protocol SizeDelegate : class {
 var selectedText : String {get set}
}
class TableViewController: UITableViewController {
 var selectedSize : String?
 weak var delegate : SizeDelegate?
 override func tableView(_ tableView: UITableView,
 didSelectRowAt indexPath: IndexPath) {
 let cell = tableView.cellForRow(at:indexPath)!
 let s = cell.textLabel!.text!
 self.selectedSize = s
 self.delegate?.selectedText = s
 tableView.reloadData()
 }
 // ...
}

The navigation interface is provided for me, so I don’t have to do anything about pop‐
ping the table view controller: the user will do that by tapping the Back button after
choosing a size. In my configurationItems implementation, I cleverly kept a refer‐

Activity Views | 773

ence to my configuration item as self.config. When the user chooses from the table
view, its tableView(_:didSelectRowAt:) sets my selectedText, and my selected-
Text setter observer promptly changes the value of the configuration item to what‐
ever the user chose.

The user, when finished interacting with the share extension interface, will tap one of
the provided buttons, either Cancel or Post. The Cancel button is handled automati‐
cally: the interface is dismissed. The Post button is hooked automatically to my did-
SelectPost implementation, where I fetch the text from my own contentText
property, do something with it, and dismiss the interface:

override func didSelectPost() {
 let s = self.contentText
 // ... do something with it ...
 self.extensionContext?.completeRequest(returningItems:[])
}

If the material provided from the host app were more elaborate, I would pull it out of
self.extensionContext in the same way as for an action extension. If there were
networking to do at this point, I would initiate a background NSURLSession (Chap‐
ter 24).

There is no supported way, as far as I can tell, to change the title or appearance of
the Cancel and Post buttons. Apps that show different buttons, such as Remind‐
ers and Notes, are either not using SLComposeServiceViewController or are
using a technique available only to Apple.

774 | Chapter 13: Modal Dialogs

PART III

Some Frameworks

Cocoa supplies numerous specialized optional frameworks. This part of the book
explains the basics of some of these frameworks, showing you how to get started, and
training you to understand and explore these and related frameworks independently
if your app requires a further level of depth and detail.

• Chapter 14 introduces the various iOS means for playing sound files, including
audio sessions and playing sounds in the background.

• Chapter 15 describes some basic ways of playing video (movies), along with an
introduction to the powerful AV Foundation framework.

• Chapter 16 is about how an app can access the user’s music library.
• Chapter 17 is about how an app can access the user’s photo library, along with the

ability to take photos and capture movies.
• Chapter 18 discusses how an app can access the user’s contacts.
• Chapter 19 talks about how an app can access the user’s calendar data.
• Chapter 20 describes how an app can allow the user to compose and send email

and SMS messages and social media posts.
• Chapter 21 explains how an app can display a map, along with custom annota‐

tions and overlays. It also talks about how a map can display the user’s current
location and how to convert between a location and an address.

• Chapter 22 is about how an app can learn where the device is located, how it is
moving, and how it is oriented.

CHAPTER 14

Audio

iOS provides various means and technologies for allowing your app to produce,
record, and process sound. The topic is a large one, so this chapter can only introduce
it; I’ll concentrate on basic sound production. You’ll want to read Apple’s Multimedia
Programming Guide and Core Audio Overview.

None of the classes discussed in this chapter provides any interface within your app
for allowing the user to stop and start playback of sound (transport control). If you
want transport interface, here are some options:

• You can create your own interface.
• You can associate the built-in “remote control” buttons with your application, as

I’ll explain in this chapter.
• A web view (Chapter 11) supports the HTML 5 <audio> tag; this can be a simple,

lightweight way to play audio and to allow the user to control playback (including
use of AirPlay).

• You could treat the sound as a movie and use the interface-providing classes that
I’ll discuss in Chapter 15; this can also be a good way to play a sound file located
remotely over the Internet.

System Sounds
The simplest form of sound is system sound, which is the iOS equivalent of the basic
computer “beep.” This is implemented through System Sound Services, part of the
Audio Toolbox framework; you’ll need to import AudioToolbox.

The API for playing a system sound changed starting in iOS 9. I’ll show you the old
code first (it still works, and has not yet been deprecated); then I’ll demonstrate the

777

new code. The old code involves calling one of two C functions, which behave very
similarly to one another:

AudioServicesPlayAlertSound

On an iPhone, may also vibrate the device, depending on the user’s settings.

AudioServicesPlaySystemSound

On an iPhone, there won’t be an accompanying vibration, but you can specifi‐
cally elect to have this “sound” be a device vibration (by passing kSystemSound-
ID_Vibrate as the name of the “sound”).

The sound file to be played needs to be an uncompressed AIFF or WAV file (or an
Apple CAF file wrapping one of these). To hand the sound to these functions, you’ll
need a SystemSoundID, which you obtain by calling AudioServicesCreateSystem-
SoundID with a URL that points to a sound file. In this example, the sound file is in
our app bundle:

let sndurl = Bundle.main.url(forResource:"test", withExtension: "aif")!
var snd : SystemSoundID = 0
AudioServicesCreateSystemSoundID(sndurl as CFURL, &snd)
AudioServicesPlaySystemSound(snd)

That code works — we hear the sound — but there’s a problem: we have failed to
exercise proper memory management. We need to call AudioServicesDispose-
SystemSoundID to release our SystemSoundID. But when shall we do this? Audio-
ServicesPlaySystemSound executes asynchronously. So the solution can’t be to call
AudioServicesDisposeSystemSoundID in the next line of the same snippet, because
this would release our sound just as it is about to start playing, resulting in silence.

The solution is to implement a sound completion function, a function that is called
when the sound has finished playing. The sound completion function is specified by
calling AudioServicesAddSystemSoundCompletion. The sound completion function
must be supplied as a C pointer-to-function. Swift lets you pass a global or local Swift
function (including an anonymous function) where a C pointer-to-function is
expected. So our code now looks like this:

let sndurl = Bundle.main.url(forResource:"test", withExtension: "aif")!
var snd : SystemSoundID = 0
AudioServicesCreateSystemSoundID(sndurl as CFURL, &snd)
AudioServicesAddSystemSoundCompletion(snd, nil, nil, { sound, context in
 AudioServicesRemoveSystemSoundCompletion(sound)
 AudioServicesDisposeSystemSoundID(sound)
}, nil)
AudioServicesPlaySystemSound(snd)

Note that when we are about to release the sound, we first release the sound comple‐
tion function itself.

778 | Chapter 14: Audio

Now for the new way. The new calls take two parameters: a SystemSoundID and a
completion function. The completion function takes no parameters; we can still refer
to the SystemSoundID in order to dispose of its memory, because it is in scope. Here,
we’ll call AudioServicesPlaySystemSoundWithCompletion instead of AudioServices-
PlaySystemSound; we no longer need to call AudioServicesRemoveSystemSound-
Completion, because we never called AudioServicesAddSystemSoundCompletion:

let sndurl = Bundle.main.url(forResource:"test", withExtension: "aif")!
var snd : SystemSoundID = 0
AudioServicesCreateSystemSoundID(sndurl as CFURL, &snd)
AudioServicesPlaySystemSoundWithCompletion(snd) {
 AudioServicesDisposeSystemSoundID(snd)
}

Audio Session
Audio on the device — all audio belonging to all apps and processes — is controlled
and mediated by the media services daemon. This daemon must juggle many
demands; your app is just one of many clamoring for its attention and cooperation.
As a result, your app’s audio can be affected and even overruled by other apps and
external factors. Therefore, your app, if it is going to be producing sound, needs to
specify a policy regarding that sound and tell the media services daemon about it.
This policy will answer such questions as:

• Should your app’s sound stop when the screen is locked?
• Should your app stop other sound (being played, for example, by the Music app)

or should your app’s sound be layered on top of other sound?

Your communication with the audio services daemon is conducted through an audio
session, which is a singleton AVAudioSession instance created automatically as your
app launches. This is part of the AV Foundation framework; you’ll need to import
AVFoundation. You’ll refer to your app’s AVAudioSession by way of the class method
sharedInstance.

To declare your audio session’s policy, you’ll set its category, by calling set-
Category(_:mode:options:); this full form is new in iOS 10. I’ll explain later about
the options: and mode:; if you have no mode or options, you can omit both parame‐
ters, and if you have options but no mode, you can use a mode of AVAudioSession-
ModeDefault.

The basic policies for audio playback are:

Ambient (AVAudioSessionCategoryAmbient)
Your app’s audio plays even while another app is playing audio, and is silenced by
the phone’s Silent switch and screen locking.

Audio Session | 779

Solo Ambient (AVAudioSessionCategorySoloAmbient, the default)
Your app stops any audio being played by other apps, and is silenced by the
phone’s Silent switch and screen locking.

Playback (AVAudioSessionCategoryPlayback)
Your app stops any audio being played by other apps, and is not silenced by the
Silent switch. It is silenced by screen locking, unless it is also configured to play
in the background (as explained later in this chapter).

Starting in iOS 9, the audio session’s availableCategories property can tell you in
advance whether this device is capable of the policy you’re thinking of using.

Audio session category options (the options: parameter) allow you to modify the
playback policies (AVAudioSessionCategoryOptions):

Mixable audio (.mixWithOthers)
You can override the Playback policy so as to allow other apps to continue play‐
ing audio. Your sound is then said to be mixable. Note that mixability can also
affect you in the other direction: another app’s mixable audio can continue to
play even when your app’s Playback policy is not mixable.

Ducking audio (.duckOthers)
You can override a policy that allows other audio to play, so as to duck (diminish
the volume of) that audio. Ducking is thus a form of mixing.

Mixable except for speech (.interruptSpokenAudioAndMixWithOthers)
Starting in iOS 9, you can be mixable with other audio except for speech audio.
An app’s audio is marked as speech by setting the audio session mode to AVAudio-
SessionModeSpokenAudio. Your app will stop audio marked in this way, but
otherwise will be mixable (and can perform ducking).

It is common practice to declare your app’s initial audio session policy very early in
the life of the app, possibly as early as application(_:didFinishLaunchingWith-
Options:). You can later, if necessary, change your audio session policy as your app
runs.

For example, let’s say that, in general, we don’t play any sounds, and we want sound
from other apps, such as the Music app, to continue playing while our app runs. So
we configure our audio session to use the Ambient policy in application(_:did-
FinishLaunchingWithOptions:), as follows:

780 | Chapter 14: Audio

func application(_ application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
 [UIApplicationLaunchOptionsKey : Any]?) -> Bool {
 try? AVAudioSession.sharedInstance().setCategory(
 AVAudioSessionCategoryAmbient)
 return true
}

Activation
Your audio session policy is not in effect unless your audio session is also active. By
default, it isn’t. Thus, asserting your audio session policy is done by a combination of
configuring the audio session and activating the audio session. To activate (or deacti‐
vate) your audio session, you call setActive(_:).

The question then is when to call setActive(_:). This is a little tricky because your
audio session can be deactivated automatically if your app is no longer active. So if
you want your policy to be obeyed under all circumstances, you must explicitly acti‐
vate your audio session each time your app becomes active. The best place to do this
is in applicationDidBecomeActive(_:), as this is the only method guaranteed to be
called every time your app is reactivated under circumstances where your audio ses‐
sion might have been deactivated in the background (see Appendix A).

For example, let’s continue with the audio session we configured in the previous sec‐
tion. We’re using the Ambient category. We aren’t stopping other audio with this pol‐
icy, so it does no harm to activate our audio session every time our app becomes
active, no matter how, in applicationDidBecomeActive(_:), like this:

func applicationDidBecomeActive(_ application: UIApplication) {
 try? AVAudioSession.sharedInstance().setActive(true)
}

The parameter to setActive(_:) is a Bool saying whether we want to activate or
deactivate our audio session. There are various reasons why you might deactivate
(and perhaps reactivate) your audio session over the lifetime of your app.

One possible reason is that you want to change something about your audio session
policy. Certain changes in your audio session category and options don’t take effect
unless you deactivate the existing policy and activate the new policy. Ducking is a
good example; I’ll demonstrate in the next section.

Another reason for deactivating your audio session is that you no longer need to hog
the device’s audio, and you want to yield to other apps so that they can resume play‐
ing. You can even send a message to other apps as you do this. You call set-
Active(_:with:), where the first parameter is false and the second parameter is the
AVAudioSessionSetActiveOptions value .notifyOthersOnDeactivation.

Audio Session | 781

Apple suggests that you might want to register for the .AVAudioSessionMedia-
ServicesWereReset notification. If this notification arrives, the media services
daemon was somehow hosed. In this situation, you should basically start from
scratch, configuring your category and activating your audio session, as well as
resetting and recreating any audio-related objects. See Apple’s Technical Q&A
QA1749.

Ducking
As an example of deactivating and activating your audio session, I’ll describe how to
implement ducking.

Presume that we have configured and activated an Ambient category audio session, as
described in the preceding two sections. This category permits other audio to con‐
tinue playing. Now let’s say we do sometimes play a sound, but it’s brief and doesn’t
require other sound to stop entirely; it suffices for other audio to be quieter momen‐
tarily while we’re playing our sound. That’s ducking!

Background sound is not ducked automatically just because we play a sound of our
own. It is up to us to duck the background sound as we start to play a sound of our
own, and to stop ducking when our sound ends. We do this by changing our Ambient
category to use, or not to use, the .duckOthers option. To make such a change, the
most reliable approach is three steps:

1. Deactivate our audio session.
2. Reconfigure our audio session category with a changed set of options.
3. Activate our audio session.

So, just before we play our sound, we duck any other sound by adding .duckOthers
to the options on our Ambient category:

let sess = AVAudioSession.sharedInstance()
try? sess.setActive(false)
let opts = sess.categoryOptions.union(.duckOthers)
try? sess.setCategory(sess.category, mode: sess.mode, options: opts)
try? sess.setActive(true)

When our sound finishes playing, we unduck any other sound by removing .duck-
Others from the options on our Ambient category:

let sess = AVAudioSession.sharedInstance()
try? sess.setActive(false)
let opts = sess.categoryOptions.symmetricDifference(.duckOthers)
try? sess.setCategory(sess.category, mode: sess.mode, options:opts)
try? sess.setActive(true)

782 | Chapter 14: Audio

Interruptions
Your audio session can be interrupted. This could mean that some other app deacti‐
vates it: for example, on an iPhone a phone call can arrive or an alarm can go off. It
could mean that another app asserts its audio session over yours, possibly because
your app went into the background and the other app came into the foreground.

To learn of interruptions, register for the .AVAudioSessionInterruption notifica‐
tion. This notification can arrive either because an interruption begins or because it
ends. To learn whether the interruption began or ended, examine the AVAudio-
SessionInterruptionTypeKey entry in the notification’s userInfo dictionary; this
will be a UInt encoding an AVAudioSessionInterruptionType, either .began

or .ended. So, for example:

NotificationCenter.default.addObserver(forName:
 .AVAudioSessionInterruption, object: nil, queue: nil) { n in
 let why = AVAudioSessionInterruptionType(rawValue:
 n.userInfo![AVAudioSessionInterruptionTypeKey] as! UInt)!
 if why == .began {
 // began
 } else {
 // ended
 }
}

When an interruption to your audio session begins, your audio has already paused
and your audio session has been deactivated. If your app contains playing interface,
you might respond by altering something about that interface to reflect the fact that
your audio isn’t playing; for example, you might change a Pause button to a Play but‐
ton. But apart from this there’s no particular work for you to do.

When the interruption ends, on the other hand, activating your audio session and
possibly resuming playback of your audio might be up to you. If your app contains
playing interface, so that the user can resume playing manually, you should not
resume unless the notification tells you to do so. It does this by means of the user-
Info dictionary’s AVAudioSessionInterruptionOptionKey entry. This, if present, will
be a UInt encoding an AVAudioSessionInterruptionOptions, namely .shouldResume;
this means that some other app that interrupted you has now deactivated its audio
session, and is telling you, through the .notifyOthersOnDeactivation option, to feel
free to resume your audio:

guard let opt = n.userInfo![AVAudioSessionInterruptionOptionKey] as? UInt
 else {return}
if AVAudioSessionInterruptionOptions(rawValue:opt).contains(.shouldResume) {
 // resume
}

Audio Session | 783

When your app switches to the background, your audio is paused (unless your app
plays audio in the background, as discussed later in this chapter). What messages you
get depends on whether you were playing audio with an audio player (AVAudio‐
Player, discussed in the next section):

You were playing audio with an audio player
The audio player will probably handle the entire situation. When your app comes
back to the front, it will automatically reactivate your audio session and resume
playing, and you won’t get any interruption notifications.

You were not playing audio with an audio player
It is likely that being moved into the background will count as an interruption of
your audio session. You’ll get an interruption notification just after your app del‐
egate’s applicationDidEnterBackground(_:) is called. When your app comes
back to the front, you’ll be notified that the interruption ended, and then your
app delegate’s applicationDidBecomeActive(_:) will be called.

Secondary Audio
When your app is frontmost and the user brings up the control center and uses the
Play button to resume, say, the current Music app song, there may be no interruption
of your audio session, because your app never went into the background. Instead,
what you’ll get, if you’ve registered for it, is a notification of a different kind,
namely .AVAudioSessionSilenceSecondaryAudioHint. You’ll receive this notifica‐
tion only while your app is in the foreground.

This notification, corresponding to the AVAudioSession Bool property secondary-
AudioShouldBeSilencedHint, expresses a fine-grained distinction between primary
and secondary audio. Apple’s example is a game app, where intermittent sound effects
are the primary audio, while an ongoing underlying soundtrack is the secondary
audio. The idea is that the user might start playing a song from the Music app, and
that your app would therefore pause its secondary audio while continuing to produce
its primary audio — because the user’s chosen Music track will do just as well as a
background soundtrack behind your game’s sound effects.

To respond to this notification, examine the AVAudioSessionSilenceSecondary-
AudioHintTypeKey entry in the notification’s userInfo dictionary; this will be a UInt
equating to an AVAudioSessionSilenceSecondaryAudioHintType, either .begin

or .end. So, for example:

NotificationCenter.default.addObserver(forName:
 .AVAudioSessionSilenceSecondaryAudioHint, object: nil, queue: nil) {n in
 let why = AVAudioSessionSilenceSecondaryAudioHintType(rawValue:
 n.userInfo![AVAudioSessionSilenceSecondaryAudioHintTypeKey]
 as! UInt)!
 if why == .begin {

784 | Chapter 14: Audio

 // pause secondary audio
 } else {
 // resume secondary audio
 }
}

Routing Changes
Your audio is routed through a particular output (and input). The user can make
changes in this routing — for example, by plugging headphones into the device,
which causes sound to stop coming out of the speaker and to come out of the head‐
phones instead. By default, your playing audio continues uninterrupted when routing
is changed, but you can register for the .AVAudioSessionRouteChange notification to
hear about routing changes and respond to them.

The notification’s userInfo dictionary is chock full of useful information about what
just happened. Here’s the console log of the dictionary that results when I detach
headphones from the device:

AVAudioSessionRouteChangeReasonKey = 2;
AVAudioSessionRouteChangePreviousRouteKey =
 <AVAudioSessionRouteDescription: 0x174019ee0,
 inputs = (null);
 outputs = (
 <AVAudioSessionPortDescription: 0x174019f00,
 type = Headphones;
 name = Headphones;
 UID = Wired Headphones;
 selectedDataSource = (null)>
)>;

Upon receipt of this notification, I can find out what the audio route is now, by call‐
ing AVAudioSession’s currentRoute method:

<AVAudioSessionRouteDescription: 0x174019fc0,
 inputs = (null);
 outputs = (
 <AVAudioSessionPortDescription: 0x17401a000,
 type = Speaker;
 name = Speaker;
 UID = Speaker;
 selectedDataSource = (null)>
)>

The classes mentioned here — AVAudioSessionRouteDescription and AVAudio‐
SessionPortDescription — are value classes. The AVAudioSessionRouteChangeReason-
Key refers to an AVAudioSessionRouteChangeReason; the value here, 2,
is .oldDeviceUnavailable — we stopped using the headphones and started using
the speaker, because there are no headphones any longer.

Audio Session | 785

A routing change may not of itself interrupt your sound, but Apple suggests that in
this particular situation you might like to respond by stopping your audio deliber‐
ately, because otherwise sound may now suddenly be coming out of the speaker in a
public place.

Audio Player
The easiest way to play sounds is to use an audio player (AVAudioPlayer). AVAudio‐
Player is part of the AV Foundation framework; you’ll need to import AVFoundation.
An audio player should always be used in conjunction with an audio session. An
audio player is initialized with its sound, using a local file URL or NSData; optionally,
the initializer can also state the expected sound file format. A wide range of sound
types is acceptable, including MP3, AAC, and ALAC, as well as AIFF and WAV. A
single audio player can possess and play only one sound; but you can have multiple
audio players, they can play separately or simultaneously, and you can even syn‐
chronize them. You can set a sound’s volume and stereo pan features, loop a sound,
change the playing rate, and set playback to begin somewhere in the middle of a
sound. New in iOS 10, you can even execute a fade in or fade out over time.

Having created and initialized an audio player, you must retain it, typically by assign‐
ing it to an instance property; assigning an audio player to a local variable and telling
it to play, and hearing nothing — because the player has gone out of existence imme‐
diately, before it has a chance even to start playing — is a common beginner mistake.

To play the sound, first tell the audio player to prepareToPlay, causing it to load buf‐
fers and initialize hardware; then tell it to play. The audio player’s delegate (AVAu‐
dioPlayerDelegate) is notified when the sound finishes playing
(audioPlayerDidFinishPlaying(_:successfully:)); do not repeatedly check the
audio player’s isPlaying property to learn its state. Other useful methods include
pause and stop; the chief difference between them is that pause doesn’t release the
buffers and hardware set up by prepareToPlay, but stop does, so you’d want to call
prepareToPlay again before resuming play. Neither pause nor stop changes the play‐
head position, the point in the sound where playback will start if play is sent again;
for that, use the currentTime property.

Devising a strategy for instantiating, retaining, and releasing your audio players is up
to you. In one of my apps, I define a class called Player, which implements a play-
File(atPath:) method expecting a string path to a sound file. This method creates a
new AVAudioPlayer, stores it as a property, and tells it to play the sound file; it also
sets itself as that audio player’s delegate, and notifies its own delegate when the sound
finishes playing (by way of a PlayerDelegate protocol that I also define). In this way,
by maintaining a single Player instance, I can play different sounds in succession:

786 | Chapter 14: Audio

protocol PlayerDelegate : class {
 func soundFinished(_ sender: Any)
}
class Player : NSObject, AVAudioPlayerDelegate {
 var player : AVAudioPlayer!
 weak var delegate : PlayerDelegate?
 func playFile(atPath path:String) {
 self.player?.delegate = nil
 self.player?.stop()
 let fileURL = URL(fileURLWithPath: path)
 guard let p = try? AVAudioPlayer(contentsOf:fileURL) else {return}
 self.player = p
 self.player.prepareToPlay()
 self.player.delegate = self
 self.player.play()
 }
 func audioPlayerDidFinishPlaying(_ player: AVAudioPlayer,
 successfully flag: Bool) {
 self.delegate?.soundFinished(self)
}

Here are some useful AVAudioPlayer properties:

pan, volume
Stereo positioning and loudness, respectively.

numberOfLoops

How many times the sound should repeat after it finishes playing; 0 (the default)
means it doesn’t repeat. A negative value causes the sound to repeat indefinitely
(until told to stop).

duration

The length of the sound (read-only).

currentTime

The playhead position within the sound. If the sound is paused or stopped, play
will start at the currentTime. You can set this in order to “seek” to a playback
position within the sound.

enableRate, rate
These properties allow the sound to be played at anywhere from half speed (0.5)
to double speed (2.0). Set enableRate to true before calling prepareToPlay; you
are then free to set the rate.

isMeteringEnabled

If true (the default is false), you can call updateMeters followed by average-
Power(forChannel:) and/or peakPower(forChannel:) periodically to track how
loud the sound is. Presumably this would be so you could provide some sort of
graphical representation of this value in your interface.

Audio Player | 787

Figure 14-1. The software remote controls in the control center

settings

A read-only dictionary describing features of the sound, such as its bit rate
(AVEncoderBitRateKey), its sample rate (AVSampleRateKey), and its data format
(AVFormatIDKey). New in iOS 10, you can alternatively learn the sound’s data for‐
mat from the format property.

The playAtTime(_:) method allows playing to be scheduled to start at a certain time.
The time should be described in terms of the audio player’s deviceCurrentTime
property.

As I mentioned earlier, an audio player handles certain types of interruption seam‐
lessly; in particular, it resumes playing when your app comes to the front if it was
forced to stop playing when your app was moved to the background.

Remote Control of Your Sound
Various sorts of signal constitute remote control. There is hardware remote control:
for example, the user might be using earbuds with buttons. There is also software
remote control — the playback controls that you see in the control center
(Figure 14-1) and in the lock screen (Figure 14-2).

Your app can arrange to be targeted by remote control events reporting that the user
has tapped a remote control. Your sound-playing app can respond to the remote play/
pause button, for example, by playing or pausing its sound. For this to work, your
app’s audio session category must be Solo Ambient or Playback, and your app must
actually produce some sound; this causes your app’s sound to become the device’s
Now Playing sound. The rule is that the running app that is capable of receiving

788 | Chapter 14: Audio

Figure 14-2. The software remote controls on the lock screen

remote control events and that last actually produced sound is the target of remote
control events. The remote control event target defaults to the Music app if no other
app takes precedence by this rule.

To arrange for your app to receive remote control events, use the Media Player frame‐
work (import MediaPlayer). You talk to the remote command center, through the
shared command center that you get from the MPRemoteCommandCenter shared
class method, and configure its commands to send you messages, to which you then
respond as appropriate. There are two ways to perform such configuration: you can
give a command a target–action pair, or you can hand it a function directly (similar
to the two choices when you register with the NotificationCenter for a Notification).

For example, let’s say that our app plays audio, and we want to respond to remote
commands to pause or resume this audio. We will need to configure the play com‐
mand and the pause command, because they are triggered by the software play/pause
button, as well as the playpause commmand, because it is triggered by an earbud but‐
ton. I’ll demonstrate the target–action style of configuration. This code could appear
in our view controller’s viewDidLoad:

let scc = MPRemoteCommandCenter.shared()
scc.playCommand.addTarget(self, action:#selector(doPlay))
scc.pauseCommand.addTarget(self, action:#selector(doPause))
scc.togglePlayPauseCommand.addTarget(self, action: #selector(doPlayPause))

Obviously, that code won’t compile unless we also have doPlay, doPause, and doPlay-
Pause methods. Each of these methods will be sent the appropriate remote command
event (MPRemoteCommandEvent). Assuming that self.player is an AVAudio‐
Player, our implementations might look like this:

func doPlayPause(_ event:MPRemoteCommandEvent) {
 let p = self.player
 if p.isPlaying { p.pause() } else { p.play() }
}
func doPlay(_ event:MPRemoteCommandEvent) {
 let p = self.player
 p.play()
}

Remote Control of Your Sound | 789

func doPause(_ event:MPRemoteCommandEvent) {
 let p = self.player
 p.pause()
}

This works! Once our app is playing a sound, that sound can be paused and resumed
using the control center or an earbud switch. (It can also be paused and resumed
using the lock screen, but only if our app is capable of playing sound in the back‐
ground; I’ll explain in the next section how to arrange that.)

However, we are not quite finished. Having registered a target with the remote com‐
mand center, we must remember to unregister when that target is about to go out of
existence; otherwise, there is a danger that the remote command center will attempt
to send a remote command event to a nonexistent target, resulting in a crash (similar,
once again, to unregistering for notifications with the NotificationCenter). If we reg‐
istered in our view controller’s viewDidLoad, we can conveniently unregister in its
deinit:

deinit {
 let scc = MPRemoteCommandCenter.shared()
 scc.togglePlayPauseCommand.removeTarget(self)
 scc.playCommand.removeTarget(self)
 scc.pauseCommand.removeTarget(self)
}

Having formed the connection between our app and the software remote control
interface, we can proceed to refine that interface. For example, we can influence what
information the user will see, in the remote control interface, about what’s being
played. For that, we use the MPNowPlayingInfoCenter. Call the class method
default and set the resulting instance’s nowPlayingInfo property to a dictionary. The
relevant keys are listed in the class documentation; they will make more sense after
you’ve read Chapter 16, which discusses the Media Player framework. Here’s some
example code from my TidBITS News app:

let mpic = MPNowPlayingInfoCenter.default()
mpic.nowPlayingInfo = [
 MPMediaItemPropertyTitle:self.titleLabel!.text!,
 MPMediaItemPropertyArtist:self.authorLabel!.text!
]

Proceeding even further, if you look at the MPRemoteCommandCenter, you’ll see
that there are a lot of other commands you can configure. When you do so, the
appropriate software remote control interface springs to life. For example, if you
assign a target–action pair to the likeCommand, a menu button appears in the control
center (Figure 14-1); the user taps this button to see an action sheet that includes
your like command button. You’ll want to configure whatever commands your app
needs and can appropriately respond to.

790 | Chapter 14: Audio

Figure 14-3. Using Capabilities to enable background audio

Playing Sound in the Background
When the user switches away from your app to another app, by default, your app is
suspended and stops producing sound. But if the business of your app is to play
sound, you might like your app to continue playing sound in the background. To play
sound in the background, your app must do these things:

• In your Info.plist, you must include the “Required background modes” key
(UIBackgroundModes) with a value that includes “App plays audio or streams
audio/video using AirPlay” (audio). The simplest way to arrange this is through
the Background Modes checkbox in the Capabilities tab of the target editor
(Figure 14-3).

• Your audio session’s policy must be active and must be Playback.

If those things are true, then the sound that your app is playing will go right on play‐
ing when the user clicks the Home button and dismisses your app, or when the user
switches to another app, or when the screen is locked. Your app is now running in the
background for the purpose of playing sound.

Your app, playing in the background, may be interrupted by the foreground app’s
audio session policy. However, having registered for the .AVAudioSession-

Interruption notification, your app may receive this notification in the background,
and, if the AVAudioSessionInterruptionType is .ended, may be able to resume playing
— still in the background.

Your app may even be able to start playing in the background even if it was not play‐
ing previously — namely, if it is mixable (.mixWithOthers, see earlier in this chapter),
or if it is capable of being the remote control target.

Indeed, an extremely cool feature of playing sound in the background is that remote
control events continue to work. Even if your app was not actively playing at the time
it was put into the background, it may nevertheless be the remote control target
(because it was playing sound earlier, as explained in the preceding section). In that
case, if the user causes a remote control event to be sent, your app, if suspended in the
background, will be woken up (still in the background) in order to receive the remote
control event, and can then begin playing sound.

Playing Sound in the Background | 791

When your app is capable of playing sound in the background, there’s an interesting
byproduct: while it is playing sound, a Timer can fire in the background. The timer
must have been created and scheduled in the foreground, but after that, it will fire
even while your app is in the background, unless your app is currently not playing
any sound. This is remarkable, because many other sorts of activity are forbidden
when your app is running in the background.

Another byproduct of your app playing sound in the background has to do with app
delegate events (see Appendix A). Typically, your app delegate will probably never
receive the applicationWillTerminate(_:) message, because by the time the app
terminates, it will already have been suspended and incapable of receiving any events.
However, an app that is playing sound in the background is obviously not suspended,
even though it is in the background. If it is terminated while playing sound in the
background, it will receive applicationDidEnterBackground(_:), even though it has
already received this event previously when it was moved into the background, and
then it will receive applicationWillTerminate(_:).

AVAudioEngine
AVAudioEngine, introduced in iOS 8, is modeled after a mixer board. You can con‐
struct and manipulate a graph of sound-producing objects in real time, varying their
relative volumes and other attributes, mixing them down to a single sound (which
can optionally be recorded into a file as it plays). This is a deep topic; I’ll just provide
an introductory overview.

The key classes are:

AVAudioEngine
The overall engine object, representing the world in which everything else hap‐
pens. You’ll probably make and retain just one at a time; it is perfectly reasonable
to replace your engine with a new one, as a way of starting over with a clean slate.
Its chief jobs are:

• To connect and disconnect nodes (AVAudioNode), analogous to patch cords
on a mixer board. The engine itself has three built-in nodes — its inputNode,
its outputNode, and its mixerNode — and you can add others.

• To start and stop the production of sound. The engine must be running if
any sound is to be produced.

AVAudioNode
An abstract class embracing the various types of object for producing, process‐
ing, mixing, and receiving sound. An audio node is useful only when it has been
attached to the audio engine. An audio node has inputs and outputs, and the
audio engine can connect the output of one node to the input of another. An

792 | Chapter 14: Audio

audio node’s output can also be tapped for monitoring or recording into a file.
Some subclasses are:

AVAudioMixerNode
A node with an output volume; it mixes its inputs down to a single output.
The AVAudioEngine’s built-in mixerNode is an AVAudioMixerNode.

AVAudioIONode
A node that patches through to the system’s (device’s) own input (AVAudio‐
InputNode) or output (AVAudioOutputNode). The AVAudioEngine’s built-
in inputNode and outputNode are AVAudioIONodes.

AVAudioPlayerNode
A node that produces sound, analogous to an AVAudioPlayer. It can play
from a file or from a buffer.

AVAudioUnit
A node that processes its input with special effects before passing it to the
output. Built-in subclasses include:

AVAudioUnitTimePitch
Independently changes the pitch and rate of the input.

AVAudioUnitVarispeed
Changes the pitch and rate of the input together.

AVAudioUnitDelay
Adds to the input a delayed version of itself.

AVAudioUnitDistortion
Adds distortion to the input.

AVAudioUnitEQ
Constructs an equalizer, for processing different frequency bands sepa‐
rately.

AVAudioUnitReverb
Adds a reverb effect to the input.

Just to give an idea of what working with AVAudioEngine looks like, I’ll start by sim‐
ply playing a file. Our AVAudioEngine has already been instantiated and assigned to
an instance property, self.engine, so that it will persist for the duration of the exer‐
cise. We will need an AVAudioPlayerNode and an AVAudioFile. We attach the AVAu‐
dioPlayerNode to the engine and patch it to the engine’s built-in mixer node. (In this
simple case, we could have patched the player node to the engine’s output node; but
the engine’s mixer node is already patched to the output node, so it makes no differ‐

AVAudioEngine | 793

ence.) We associate the file with the player node and start the engine running. Finally,
we tell the player node to play:

let player = AVAudioPlayerNode()
let url = Bundle.main.url(forResource:"aboutTiagol", withExtension:"m4a")!
let f = try! AVAudioFile(forReading: url)
let mixer = self.engine.mainMixerNode
self.engine.attach(player)
self.engine.connect(player, to: mixer, format: f.processingFormat)
player.scheduleFile(f, at:nil)
self.engine.prepare()
try! self.engine.start()
player.play()

So far, we’ve done nothing that we couldn’t have done with an AVAudioPlayer. But
now let’s start patching some more nodes into the graph. I’ll play two sounds simulta‐
neously, the first one directly from a file, the second one through a buffer — which
will allow me to loop the second sound. I’ll pass the first sound through a time-pitch
effect node and then through a reverb effect node. And I’ll set the volumes and pan
positions of the two sounds:

// first sound
let player = AVAudioPlayerNode()
let url = Bundle.main.url(forResource:"aboutTiagol", withExtension:"m4a")!
let f = try! AVAudioFile(forReading: url)
self.engine.attach(player)
// add some effect nodes to the chain
let effect = AVAudioUnitTimePitch()
effect.rate = 0.9
effect.pitch = -300
self.engine.attach(effect)
self.engine.connect(player, to: effect, format: f.processingFormat)
let effect2 = AVAudioUnitReverb()
effect2.loadFactoryPreset(.cathedral)
effect2.wetDryMix = 40
self.engine.attach(effect2)
self.engine.connect(effect, to: effect2, format: f.processingFormat)
// patch last node into self.engine mixer and start playing first sound
let mixer = self.engine.mainMixerNode
self.engine.connect(effect2, to: mixer, format: f.processingFormat)
player.scheduleFile(f, at: nil)
self.engine.prepare()
try! self.engine.start()
player.play()
// second sound; loop it
let url2 = Bundle.main.url(forResource:"Hooded", withExtension: "mp3")!
let f2 = try! AVAudioFile(forReading: url2)
let buffer = AVAudioPCMBuffer(
 pcmFormat: f2.processingFormat, frameCapacity: UInt32(f2.length))
try! f2.read(into:buffer)
let player2 = AVAudioPlayerNode()
self.engine.attach(player2)

794 | Chapter 14: Audio

self.engine.connect(player2, to: mixer, format: f2.processingFormat)
player2.scheduleBuffer(buffer, at: nil, options: .loops)
// mix down a little, start playing second sound
player.pan = -0.5
player2.volume = 0.5
player2.pan = 0.5
player2.play()

Starting in iOS 9, you can split a node’s output between multiple nodes. Instead of
calling connect(_:to:format:), you call connect(_:to:fromBus:format:), where
the second argument is an array of AVAudioConnectionPoint objects, each of which
is simply a node and a bus. In this example, I’ll split my player’s output three ways: I’ll
connect it simultaneously to a delay effect and a reverb effect, both of which are con‐
nected to the output mixer, and I’ll connect the player itself directly to the output
mixer as well:

let effect = AVAudioUnitDelay()
effect.delayTime = 0.4
effect.feedback = 0
self.engine.attach(effect)
let effect2 = AVAudioUnitReverb()
effect2.loadFactoryPreset(.cathedral)
effect2.wetDryMix = 40
self.engine.attach(effect2)
let mixer = self.engine.mainMixerNode
// patch player node to _both_ effect nodes _and_ the mixer
let cons = [
 AVAudioConnectionPoint(node: effect, bus: 0),
 AVAudioConnectionPoint(node: effect2, bus: 0),
 AVAudioConnectionPoint(node: mixer, bus: 1),
]
self.engine.connect(player, to: cons,
 fromBus: 0, format: f.processingFormat)
// patch both effect nodes into the mixer
self.engine.connect(effect, to: mixer, format: f.processingFormat)
self.engine.connect(effect2, to: mixer, format: f.processingFormat)

Finally, I’ll demonstrate how to record sound into a file. This is done by installing a
tap on a node to collect its sound into a buffer and writing the buffer into a file. When
I started writing this example, I was hoping that the processing might be done rapidly
in the background, but that’s not how AVAudioEngine works: you have to play the
sound in real time.

So, I’ll pass a sound file through a reverb effect and patch the output into a new file.
The most interesting challenge in this example turned out to be knowing when to
stop! You can’t just stop when the original input file buffer empties, because the
reverb effect has yet to finish fading away. To know when that happens, I watch for
the last output buffer value to become very small:

AVAudioEngine | 795

let url2 = Bundle.main.url(forResource:"Hooded", withExtension: "mp3")!
let f2 = try! AVAudioFile(forReading: url2)
let buffer = AVAudioPCMBuffer(
 pcmFormat: f2.processingFormat, frameCapacity: UInt32(f2.length))
try! f2.read(into:buffer)
let player2 = AVAudioPlayerNode()
self.engine.attach(player2)
let effect = AVAudioUnitReverb()
effect.loadFactoryPreset(.cathedral)
effect.wetDryMix = 40
self.engine.attach(effect)
self.engine.connect(player2, to: effect, format: f2.processingFormat)
let mixer = self.engine.mainMixerNode
self.engine.connect(effect, to: mixer, format: f2.processingFormat)
// create the output file
let fm = FileManager.default
let doc = try! fm.url(for:.documentDirectory,
 in: .userDomainMask, appropriateFor: nil, create: true)
let outurl = doc.appendingPathComponent("myfile.aac", isDirectory:false)
let outurl = doc.appendingPathComponent("myfile.aac", isDirectory:false)
let outfile = try! AVAudioFile(forWriting: outurl, settings: [
 AVFormatIDKey : NSNumber(value:kAudioFormatMPEG4AAC),
 AVNumberOfChannelsKey : 1,
 AVSampleRateKey : 22050,
])
// install a tap on the reverb effect node
var done = false // flag: don't stop until input buffer is empty!
effect.installTap(onBus: 0, bufferSize: 4096,
 format: outfile.processingFormat) { buffer, time in
 let dataptrptr = buffer.floatChannelData!
 let dataptr = dataptrptr.pointee
 let datum = dataptr[Int(buffer.frameLength) - 1]
 // stop when input is empty and sound is very quiet
 if done && abs(datum) < 0.000001 {
 player2.stop()
 self.engine.stop()
 self.engine.reset()
 return
 }
 do {
 try outfile.write(from:buffer)
 } catch {
 print(error)
 }
}
player2.scheduleBuffer(buffer) {
 done = true
}
self.engine.prepare()
try! self.engine.start()
player2.play()

796 | Chapter 14: Audio

An AVAudioNode subclass that I haven’t talked about is AVAudioEnvironmentNode,
which gives three-dimensional spatial control over sound sources (suitable for
games). With it, a bunch of additional AVAudioNode properties spring to life.

MIDI Playback
iOS allows communication with MIDI devices through the CoreMIDI framework,
which I’m not going to discuss here. But playing a MIDI file is another matter. Before
iOS 8, this required use of the rather tricky Audio Toolbox framework. But starting in
iOS 8, playing a MIDI file became just as simple as playing an audio file. In this exam‐
ple, I’m already armed with a MIDI file, which provides the music, and a SoundFont
file, which provides the instrument that will play it; self.player will be an AVMIDI‐
Player:

let midurl = Bundle.main.url(forResource: "presto", withExtension: "mid")!
let sndurl = Bundle.main.url(forResource: "Piano", withExtension: "sf2")!
self.player = try! AVMIDIPlayer(contentsOf: midurl, soundBankURL: sndurl)
self.player.prepareToPlay()
self.player.play(nil)

Starting in iOS 9, a MIDI player can also act as a source in an AVAudioEngine. In this
case, you’ll want an AVAudioUnitSampler as your starting AVAudioUnit. The MIDI
file will be parsed by an AVAudioSequencer; this is not part of the audio engine node
structure, but rather it has the audio engine as a property, so you’ll need to retain it in
a property (self.seq in this example):

let midurl = Bundle.main.url(forResource: "presto", withExtension: "mid")!
let sndurl = Bundle.main.url(forResource: "Piano", withExtension: "sf2")!
let unit = AVAudioUnitSampler()
engine.attach(unit)
let mixer = engine.outputNode
engine.connect(unit, to: mixer, format: mixer.outputFormat(forBus:0))
try! unit.loadInstrument(at:sndurl) // only after configuring engine
self.seq = AVAudioSequencer(audioEngine: engine)
try! self.seq.load(from:midurl)
engine.prepare()
try! engine.start()
try! self.seq.start()

That code is rather mysterious: where’s the connection between the AVAudioSe‐
quencer and the AVAudioUnitSampler? The answer is that the sequencer just finds
the first AVAudioUnitSampler in the audio engine graph and proceeds to drive it. If
that isn’t what you want, get the AVAudioSequencer’s tracks property, which is an
array of AVMusicTrack; now you can set each track’s destinationAudioUnit explic‐
itly.

MIDI Playback | 797

Text to Speech
Text can be transformed into synthesized speech. This can be extremely easy to do,
using the AVSpeechUtterance and AVSpeechSynthesizer classes. As with an
AVAudioPlayer, you’ll need to retain the AVSpeechSynthesizer (self.talker in my
example); here, I also use the AVSpeechSynthesisVoice class to make sure the device
speaks the text in English, regardless of the user’s language settings:

let utter = AVSpeechUtterance(string:"Polly, want a cracker?")
let v = AVSpeechSynthesisVoice(language: "en-US")
utter.voice = v
self.talker.delegate = self
self.talker.speak(utter)

You can also set the speech rate. The delegate (AVSpeechSynthesizerDelegate) is told
when the speech starts, when it comes to a new range of text (usually a word), and
when it finishes.

Speech to Text
New in iOS 10, your app can participate in the same speech recognition engine used
by Siri and by the Dictate button in the onscreen keyboard. In this way, you can tran‐
scribe speech to text. To do so, you’ll use the Speech framework (import Speech).

Use of the speech recognition engine requires authorization from the user. You’ll need
to have an entry in your Info.plist under the “Privacy — Speech Recognition Usage
Description” key (NSSpeechRecognitionUsageDescription) explaining to the user
why you want to do speech recognition. In your code, check the value of SFSpeech-
Recognizer.authorizationStatus(). If it is .notDetermined, request authorization
by calling SFSpeechRecognizer.requestAuthorization. The system will put up an
alert containing both its own explanation of what speech recognition entails and your
entry from the Info.plist (Figure 14-4). A user who denies your app speech recogni‐
tion authorization may grant it later in Settings.

Once you have authorization, the basic procedure is simple. You form a speech recog‐
nition request and hand it off to an SFSpeechRecognizer. Recognition can be per‐
formed in various languages, which are expressed as locales; to learn what these are,
call SFSpeechRecognizer.supportedLocales. By default, the device’s current locale is
used; alternatively, you can specify a locale when you initialize the SFSpeechRecogn‐
izer.

There are two kinds of speech recognition: transcription of an existing file, and tran‐
scription of live speech. For transcription of a file, your speech recognition request
will be an SFSpeechURLRecognitionRequest initialized with the file URL. In this
example, I have a file that records me saying, “This is a test.” I speak American

798 | Chapter 14: Audio

Figure 14-4. The user is asked to authorize speech recognition

English, so just to be on the safe side, I initialize my SFSpeechRecognizer with the
"en-US" locale. Interestingly, none of the objects needs to be retained:

let f = Bundle.main.url(forResource: "test", withExtension: "aif")!
let req = SFSpeechURLRecognitionRequest(url: f)
let loc = Locale(identifier: "en-US")
guard let rec = SFSpeechRecognizer(locale:loc)
 else {return} // no recognizer
rec.recognitionTask(with: req) { result, err in
 if let result = result {
 let trans = result.bestTranscription
 let s = trans.formattedString
 print(s)
 if result.isFinal {
 print("finished!")
 }
 } else {
 print(err!)
 }
}

In that code, we’re calling recognitionTask(with:resultHandler:) with an anony‐
mous function. The function is called several times, passing us an SFSpeechRecogni‐
tionResult containing possible transcriptions (an array of SFTranscription). We
ignore these, asking instead for the bestTranscription and extracting its formatted-
String. We know when we’ve been called for the last time because the recognition
result’s isFinal is true. In real life, it might be sufficient to extract the transcription
only on the final pass, but for the purposes of this demonstration, I’ve logged every
call to the function; the resulting console log looks like this:

Speech to Text | 799

This
This is
This is a test
This is a test
This is a test
finished!

For transcription of live speech, your app is going to be using the device’s micro‐
phone. This requires separate authorization from the user. You’ll need to have an
entry in your Info.plist under the “Privacy — Microphone Usage Description” key
(NSMicrophoneUsageDescription) explaining to the user why you want to use the
microphone. You don’t have to request authorization explicitly; the system will put up
the authorization request dialog on your behalf as soon as you try to use microphone.
If you do want to request authorization explicitly, call your AVAudioSession’s record-
Permission to learn whether we have authorization, and call its requestRecord-
Permission, if necessary, to request authorization.

The problem of how to obtain authorization coherently and in sequence with
other actions can be tricky, particularly when you have to obtain two authoriza‐
tions in a row. I’ll provide a general solution in Chapter 17.

Once you have authorization for both speech recognition and microphone usage, the
procedure is almost exactly the same as before — except that the speech recognition
request will be an SFSpeechAudioBufferRecognitionRequest, and we need a way to
pass the microphone input to it. A buffer recognition request has an append method
whose parameter is an AVAudioPCMBuffer. But we already know how to obtain an
AVAudioPCMBuffer — use AVAudioEngine and put a tap on a node! Here, that node
will be the audio engine’s inputNode, representing the device’s microphone;
self.engine is our AVAudioEngine, and rec is our SFSpeechRecognizer, just as
before:

let input = self.engine.inputNode!
input.installTap(onBus: 0, bufferSize: 4096,
 format: input.outputFormat(forBus: 0)) { buffer, time in
 self.req.append(buffer)
}
self.engine.prepare()
try! self.engine.start()
// NB: provide the user with feedback here!
rec.recognitionTask(with: self.req) { result, err in
 // ... and the rest is as before ...
}

As the comment in the code points out, you must provide the user with a clear indi‐
cation in the interface that the microphone is now live and the speech recognition
engine is listening!

800 | Chapter 14: Audio

Observe that our buffer recognition request, req, is an instance property. The reason
has to do with our user interface. The user needs a way, not only to start recognition,
but also to stop it, signaling that speech is over — like the Done button in the dicta‐
tion interface. The buffer recognition request has an endAudio method that we can
call on the user’s behalf; thus, we need the request to be held in a property so that we
can call that method when the user taps our Done button. I also stop the audio engine
and remove the tap from its input node, so as to be ready if the user wants to do more
speech recognition later:

@IBAction func endLive(_ sender: Any) {
 self.engine.stop()
 self.engine.inputNode!.removeTap(onBus: 0)
 self.req.endAudio()
}

There is more to the speech recognition API if you want to go beyond the basics.
Note particularly that instead of calling recognitionTask(with:resultHandler:),
you can call recognitionTask(with:delegate:), providing an adopter of the
SFSpeechRecognitionTaskDelegate protocol. Here you can implement any of half a
dozen optional methods, called at various stages of the recognition process, thus
allowing your response to be more fine-grained. You can also assist the recognition
request with hints, retrieve confidence levels and alternatives from the segments of a
transcription, and move the task messages onto a background queue.

Also, keep in mind that speech recognition is a resource-heavy operation. It may
require an Internet connection, with the work being done by Apple’s servers; be pre‐
pared for the connection to fail (and you can also check the recognizer’s isAvailable
property beforehand). Apple warns that recognized snippets must be short, and that
excessive use of the server may result in access being throttled.

Further Topics in Sound
iOS is a powerful milieu for production and processing of sound; its sound-related
technologies are extensive. This is a big topic, and an entire book could be written
about it (in fact, such books do exist). I’ll talk in Chapter 16 about accessing sound
files in the user’s music library. But here are some further topics that there is no room
to discuss here:

Other audio session policies
If your app accepts sound input or does audio processing, you’ll want to look into
additional audio session policies I didn’t talk about earlier — Record, Play and
Record, and Audio Processing. In addition, if you’re using Record or Play and
Record, there are modes — voice chat, video recording, and measurement (of the
sound being input) — that optimize how sound is routed (for example, what

Further Topics in Sound | 801

microphone is used) and how it is modified. Note that your app must obtain the
user’s permission to use the microphone, as I explained in the previous section.

Recording sound
To record sound simply, use AVAudioRecorder. Your audio session will need to
adopt a Record policy before recording begins.

Audio queues
Audio queues — Audio Queue Services, part of the Audio Toolbox framework —
implement sound playing and recording through a C API with more granularity
than the Objective-C AVAudioPlayer and AVAudioRecorder (though it is still
regarded as a high-level API), giving you access to the buffers used to move
chunks of sound data between a storage format (a sound file) and sound hard‐
ware.

Extended Audio File Services
A C API for reading and writing sound files in chunks. It is useful in connection
with technologies such as audio queues.

Audio Converter Services
A C API for converting sound files between formats. Starting in iOS 9, the AVAu‐
dioConverter class (along with AVAudioCompressedBuffer) gives this API an
object-oriented structure.

Streaming audio
Audio streamed in real time over the network, such as an Internet radio station,
can be played with Audio File Stream Services, in connection with audio queues.

Audio units
Plug-ins that generate sound or modify sound as it passes through them. Starting
in iOS 9, the API has been migrated from C into Objective-C and given a modern
object-oriented structure; audio units can vend interface (AUViewController);
and an audio unit from one app can be hosted inside another (audio unit exten‐
sions).

802 | Chapter 14: Audio

CHAPTER 15

Video

Video playback is performed using classes such as AVPlayer provided by the AV
Foundation framework (import AVFoundation). An AVPlayer is not a view; rather,
an AVPlayer’s content is made visible through a CALayer subclass, AVPlayerLayer,
which can be added to your app’s interface.

An AV Foundation video playback interface can be wrapped in a simple view control‐
ler, AVPlayerViewController (introduced in iOS 8): you provide an AVPlayer, and the
AVPlayerViewController automatically hosts an associated AVPlayerLayer in its own
main view, providing standard playback transport controls so that the user can start
and stop play, seek to a different frame, and so forth. AVPlayerViewController is pro‐
vided by the AVKit framework; you’ll need to import AVKit.

AVPlayerViewController effectively supersedes the Media Player framework’s
MPMoviePlayerController and MPMoviePlayerViewController, which were dep‐
recated in iOS 9 and are not discussed in this edition.

A simple interface for letting the user trim video (UIVideoEditorController) is also
supplied. Sophisticated video editing can be performed through the AV Foundation
framework, as I’ll demonstrate later in this chapter.

If an AVPlayer produces sound, you may need to concern yourself with your applica‐
tion’s audio session; see Chapter 14. AVPlayer deals gracefully with the app being sent
into the background: it will pause when your app is backgrounded and resume when
your app returns to the foreground.

A movie file can be in a standard movie format, such as .mov or .mp4, but it can also
be a sound file. An AVPlayerViewController is thus an easy way to play a sound file,
including a sound file obtained in real time over the Internet, along with standard
controls for pausing the sound and moving the playhead — unlike AVAudioPlayer,
which, as I pointed out in Chapter 14, lacks a user interface.

803

A mobile device does not have unlimited power for decoding and presenting video in
real time. A video that plays on your computer might not play at all on an iOS device.
See the “Media Layer” chapter of Apple’s iOS Technology Overview for a list of specifi‐
cations and limits within which video is eligible for playing.

A web view (Chapter 11) supports the HTML 5 <video> tag. This can be a simple
lightweight way to present video and to allow the user to control playback. Both web
view video and AVPlayer support AirPlay.

AVPlayerViewController
An AVPlayerViewController is a view controller; thus, you already know (from
Chapter 6) how to work with it. The only other thing you need to know, in order to
get started, is that an AVPlayerViewController must be assigned a player, which is an
AVPlayer, and that an AVPlayer can be initialized directly from the URL of the video
it is to play, with init(url:). Thus, you’ll instantiate AVPlayerViewController, create
and set its AVPlayer, and get the AVPlayerViewController into the view controller
hierarchy; AVPlayerViewController adapts intelligently to its place in the hierarchy.

You can instantiate an AVPlayerViewController from a storyboard; look for the
AVKit Player View Controller object in the Object library. However, you will
then need to link your target manually to the AVKit framework: edit the target
and add AVKit.framework under Linked Frameworks and Libraries in the Gen‐
eral tab.

The absolute rock-bottom simplest approach is to use an AVPlayerViewController as
a presented view controller. In this example, I present a video from the app bundle:

let av = AVPlayerViewController()
let url = Bundle.main.url(forResource:"ElMirage", withExtension: "mp4")!
let player = AVPlayer(url: url)
av.player = player
self.present(av, animated: true)

The AVPlayerViewController knows that it’s being shown as a fullscreen presented
view controller, so it provides fullscreen video controls, including a Done button
which automatically dismisses the presented view controller! Thus, there is literally
no further work for you to do.

Figure 15-1 shows a fullscreen presented AVPlayerViewController. Exactly what con‐
trols you’ll see depends on the circumstances; in my case, at the top there’s the Done
button and the current playhead position slider, and at the bottom there are the three
standard transport buttons and a volume slider. (If my network were more interest‐
ing, we would also see an AirPlay button.) The user can hide or show the controls by
tapping the video.

804 | Chapter 15: Video

Figure 15-1. A presented AVPlayerViewController

Figure 15-2. The QuickTime symbol

If the movie file is in fact a sound file, the central region is replaced by a QuickTime
symbol (Figure 15-2), and the controls can’t be hidden.

If you want the convenience and the control interface that come from using an
AVPlayerViewController, while displaying its view as a subview of your own view
controller’s view, make your view controller a parent view controller with the
AVPlayerViewController as its child, adding the AVPlayerViewController’s view in
good order (see “Container View Controllers” on page 388):

let url = Bundle.main.url(forResource:"ElMirage", withExtension:"mp4")!
let player = AVPlayer(url:url)
let av = AVPlayerViewController()
av.player = player
av.view.frame = CGRect(10,10,300,200)
self.addChildViewController(av)
self.view.addSubview(av.view)
av.didMove(toParentViewController:self)

AVPlayerViewController | 805

Figure 15-3. An embedded AVPlayerViewController’s view

Once again, the AVPlayerViewController behaves intelligently, reducing its controls
to a minimum to adapt to the reduced size of its view. On my device, at the given view
size, there is room for a play button, a playhead position slider, a full-screen button,
and nothing else (Figure 15-3). However, the user can enter full-screen mode, either
by tapping the full-screen button or by pinching outwards on the video view, and
now the full complement of controls is present.

Other AVPlayerViewController Properties
An AVPlayerViewController has very few properties:

player

The view controller’s AVPlayer, whose AVPlayerLayer will be hosted in the view
controller’s view. You can set the player while the view is visible, to change what
video it displays (though you are more likely to keep the player and tell it to
change the video). It is legal to assign an AVQueuePlayer, an AVPlayer subclass;
an AVQueuePlayer has multiple items, and the AVPlayerViewController will
treat these as chapters of the video. New in iOS 10, an AVPlayerLooper object can
be used in conjunction with an AVQueuePlayer to repeat play automatically. (I’ll
give an example of using an AVQueuePlayer in Chapter 16.)

showsPlaybackControls

If false, the controls are hidden. This could be useful, for example, if you want
to display a video for decorative purposes, or if you are substituting your own
controls.

contentOverlayView

A UIView to which you are free to add subviews. These subviews will appear
overlaid in front of the video but behind the playback controls. This is a great
way to cover that dreadful QuickTime symbol (Figure 15-2).

videoGravity

How the video should be positioned within the view. Possible values are:

806 | Chapter 15: Video

• AVLayerVideoGravityResizeAspect (the default)
• AVLayerVideoGravityResizeAspectFill

• AVLayerVideoGravityResize (fills the view, possibly distorting the video)

videoBounds

isReadyForDisplay

The video position within the view, and the ability of the video to display its first
frame and start playing, respectively. If the video is not ready for display, we
probably don’t yet know its bounds either. In any case, isReadyForDisplay will
initially be false and the videoBounds will initially be reported as .zero. This is
because, with video, things take time to prepare. I’ll explain further later in this
chapter.

Everything else there is to know about an AVPlayerViewController comes from its
player, an AVPlayer. I’ll discuss AVPlayer in more detail in a moment.

Picture-in-Picture
Starting in iOS 9, an iPad that supports iPad multitasking also supports picture-in-
picture video playback. This means that the user can move your video into a small
system window that floats in front of everything else on the screen. This floating win‐
dow persists even if your app is put into the background. Your iPad app will support
picture-in-picture if it supports background audio, as I described in Chapter 14: you
check the checkbox in the Capabilities tab of the target editor (Figure 14-3), and your
audio session’s policy must be active and must be Playback.

If you want to do those things without supporting picture-in-picture, set the
AVPlayerViewController’s allowsPictureInPicturePlayback to false. Note
that even if you do support picture-in-picture, the user can turn it off in the Set‐
tings app.

The result is that, on an iPad that supports picture-in-picture, an extra button
appears among the lower set of playback controls (Figure 15-4). When the user taps
this button, the video is moved into the system window (and the AVPlayerViewCon‐
troller’s view displays a placeholder). The user is now free to leave your app while
continuing to see and hear the video. Moreover, if you are using a fullscreen
AVPlayerViewController and the user leaves your app while the video is playing, the
video is moved into the picture-in-picture system window automatically.

The user can move the system window to any corner. Buttons in the system window,
which can be shown or hidden by tapping, allow the user to play and pause the video,
to dismiss the system window, or to dismiss the system window plus return to your
app.

AVPlayerViewController | 807

Figure 15-4. The picture-in-picture button appears

If you’re using a presented AVPlayerViewController, and the user takes the video into
picture-in-picture mode, then when the user taps the button that dismisses the sys‐
tem window and returns to your app, the presented view controller, by default, has
also been dismissed — there is no AVPlayerViewController any longer. If that isn’t
what you want, declare yourself the AVPlayerViewController’s delegate (AVPlayer‐
ViewControllerDelegate) and deal with it in a delegate method. You have two choices:

Don’t dismiss the presented view controller
Implement playerViewControllerShouldAutomaticallyDismissAtPictureIn-
PictureStart(_:) to return false. Now the presented view controller remains,
and the video has a place in your app to which it can be restored.

Recreate the presented view controller
Implement playerViewController(_:restoreUserInterfaceForPictureIn-

PictureStopWithCompletionHandler:). Do what the name tells you: restore the
user interface! The first parameter is your original AVPlayerViewController; all
you have to do is get it back into the view controller hierarchy. At the end of the
process, call the completion function.

I’ll demonstrate the second approach:

func playerViewController(_ pvc: AVPlayerViewController,
 restoreUserInterfaceForPictureInPictureStopWithCompletionHandler
 ch: @escaping (Bool) -> Void) {
 self.present(pvc, animated:true) { _ in
 ch(true)
 }
}

Other delegate methods inform you of various stages as picture-in-picture mode
begins and ends. Thus you could respond by rearranging the interface. There is good
reason for being conscious that you’ve entered picture-in-picture mode: once that
happens, you are effectively a background app, and you should reduce resources and
activity so that playing the video is all you’re doing until picture-in-picture mode
ends.

Introducing AV Foundation
The video display performed by AVPlayerViewController is supplied by classes from
the AV Foundation framework. This is a big framework with a lot of classes; the AV
Foundation Framework Reference lists about 150 classes and 20 protocols. This may

808 | Chapter 15: Video

seem daunting, but there’s a good reason for it: video has a lot of structure and can be
manipulated in many ways, and AV Foundation very carefully and correctly draws all
the distinctions needed for good object-oriented encapsulation.

Because AV Foundation is so big, all I can do here is introduce it. I’ll point out some
of the principal classes, features, and techniques associated with video. Further AV
Foundation examples will appear in Chapters 16 and 17. Eventually you’ll want to
read Apple’s AV Foundation Programming Guide for a full overview.

Some AV Foundation Classes
The heart of AV Foundation video playback is AVPlayer. It is not a UIView; rather, it
is the locus of video transport (and the actual video, if shown, appears in an
AVPlayerLayer associated with the AVPlayer). For example, AVPlayerViewController
provides a play button, but what if you wanted to start video playback in code? You’d
tell the AVPlayerViewController’s player (an AVPlayer) to play or set its rate to 1.

An AVPlayer’s video is its currentItem, an AVPlayerItem. This may come as a sur‐
prise, because in the examples earlier in this chapter we initialized an AVPlayer
directly from a URL, with no reference to any AVPlayerItem. That, however, was just
a shortcut. AVPlayer’s real initializer is init(playerItem:); when we called
init(url:), the AVPlayerItem was created for us.

An AVPlayerItem, too, can be initialized from a URL with init(url:), but again, this
is just a shortcut. AVPlayerItem’s real initalizer is init(asset:), which takes an
AVAsset. An AVAsset is an actual video resource, and comes in one of two subclasses:

AVURLAsset

An asset specified through a URL.

AVComposition

An asset constructed by editing video in code. I’ll give an example later in this
chapter.

Thus, to configure an AVPlayer using the complete “stack” of objects that constitute
it, you could say something like this:

let url = Bundle.main.url(forResource:"ElMirage", withExtension:"mp4")!
let asset = AVURLAsset(url:url)
let item = AVPlayerItem(asset:asset)
let player = AVPlayer(playerItem:item)

Once an AVPlayer exists and has an AVPlayerItem, that player item’s tracks, as seen
from the player’s perspective, are AVPlayerItemTrack objects, which can be individu‐
ally enabled or disabled. That’s different from an AVAssetTrack, which is a fact about
an AVAsset. This distinction is a good example of what I said earlier about how AV
Foundation encapsulates its objects correctly: an AVAssetTrack is a hard and fast real‐

Introducing AV Foundation | 809

ity, but an AVPlayerItemTrack lets a track be manipulated for purposes of playback
on a particular occasion.

Things Take Time
Working with video is time-consuming. Just because you give an AVPlayer a com‐
mand or set a property doesn’t mean that reaction time is immediate. All sorts of
operations, from reading a video file and learning its metadata to transcoding and
saving a video file, take a significant amount of time. The user interface must not
freeze while a video task is in progress, so AV Foundation relies heavily on threading
(Chapter 25). In this way, AV Foundation covers the complex and time-consuming
nature of its operations; but your code must cooperate. You’ll frequently use key–
value observing and callbacks to run your code at the right moment.

Here’s an example; it’s slightly artificial, but it illustrates the principles and techniques
you need to know about. There’s an elementary interface flaw when we create an
embedded AVPlayerViewController:

let url = Bundle.main.url(forResource:"ElMirage", withExtension:"mp4")!
let asset = AVURLAsset(url:url)
let item = AVPlayerItem(asset:asset)
let player = AVPlayer(playerItem:item)
let av = AVPlayerViewController()
av.view.frame = CGRect(10,10,300,200)
av.player = player
self.addChildViewController(av)
self.view.addSubview(av.view)
av.didMove(toParentViewController: self)

There are two issues here:

• The AVPlayerViewController’s view is initially appearing empty in the interface,
because the video is not yet ready for display. There is then a visible flash when
the video appears, because now it is ready for display.

• The proposed frame of the AVPlayerViewController’s view doesn’t fit the actual
aspect ratio of the video, which results in the video being letterboxed within that
frame (visible in Figure 15-3).

To prevent the flash, we can start out with the AVPlayerViewController’s view hid‐
den, and not show it until isReadyForDisplay is true. But how will we know when
that is? Not by repeatedly polling the isReadyForDisplay property! That sort of
behavior is absolutely wrong. Rather, we should use KVO to register as an observer of
this property:

810 | Chapter 15: Video

// ... as before ...
self.addChildViewController(av)
av.view.isHidden = true // *
self.view.addSubview(av.view)
av.didMove(toParentViewController: self)
av.addObserver(self, // *
 forKeyPath: #keyPath(AVPlayerViewController.readyForDisplay),
 options: .new, context: nil)

Sooner or later, isReadyForDisplay will become true, and we’ll be notified. Now we
can unregister from KVO and show the AVPlayerViewController’s view:

override func observeValue(forKeyPath keyPath: String?,
 of object: Any?, change: [NSKeyValueChangeKey : Any]?,
 context: UnsafeMutableRawPointer?) {
 let ready = #keyPath(AVPlayerViewController.readyForDisplay)
 guard keyPath == ready else {return}
 guard let vc = object as? AVPlayerViewController else {return}
 guard let ok = change?[.newKey] as? Bool else {return}
 guard ok else {return}
 vc.removeObserver(self, forKeyPath:ready)
 DispatchQueue.main.async {
 vc.view.isHidden = false
 }
}

Note that, in that code, I make no assumptions about what thread KVO calls me back
on: I intend to operate on the interface, so I step out to the main thread.

Now let’s talk about setting the AVPlayerViewController’s view.frame in accordance
with the video’s aspect ratio. An AVAsset has tracks (AVAssetTrack); in particular, an
AVAsset representing a video has a video track. A video track has a naturalSize,
which will give me the aspect ratio I need.

However, it turns out that, for the sake of efficiency, these properties are among the
many AV Foundation object properties that are not even evaluated unless you specifi‐
cally ask for them. How do you do that? Well, AV Foundation objects that behave this
way conform to the AVAsynchronousKeyValueLoading protocol. You call load-
ValuesAsynchronously(forKeys:completionHandler:) ahead of time, for any prop‐
erties you’re going to be interested in. When your completion function is called, you
check the status of a key and, if its status is .loaded, you are now free to access it.

So let’s go all the way back to the beginning. I’ll start by creating the AVAsset and then
stop, waiting to hear that its tracks property is ready:

let url = Bundle.main.url(forResource:"ElMirage", withExtension:"mp4")!
let asset = AVURLAsset(url:url)
let track = #keyPath(AVURLAsset.tracks)
asset.loadValuesAsynchronously(forKeys:[track]) {
 let status = asset.statusOfValue(forKey:track, error: nil)
 if status == .loaded {

Introducing AV Foundation | 811

 DispatchQueue.main.async {
 self.getVideoTrack(asset)
 }
 }
}

When the tracks property is ready, my getVideoTrack method is called. I obtain the
video track and then stop once again, waiting to hear when the video track’s natural-
Size property is ready:

func getVideoTrack(_ asset:AVAsset) {
 let visual = AVMediaCharacteristicVisual
 let vtrack = asset.tracks(withMediaCharacteristic: visual)[0]
 let size = #keyPath(AVAssetTrack.naturalSize)
 vtrack.loadValuesAsynchronously(forKeys: [size]) {
 let status = vtrack.statusOfValue(forKey: size, error: nil)
 if status == .loaded {
 DispatchQueue.main.async {
 self.getNaturalSize(vtrack, asset)
 }
 }
 }
}

When the naturalSize property is ready, my getNaturalSize method is called. I get
the natural size and use it to finish constructing the AVPlayer and to set AVPlayer‐
Controller’s frame:

func getNaturalSize(_ vtrack:AVAssetTrack, _ asset:AVAsset) {
 let sz = vtrack.naturalSize
 let item = AVPlayerItem(asset:asset)
 let player = AVPlayer(playerItem:item)
 let av = AVPlayerViewController()
 av.view.frame = AVMakeRect(
 aspectRatio: sz, insideRect: CGRect(10,10,300,200))
 av.player = player
 // ... and the rest is as before ...
}

AVPlayerItem provides another way of loading an asset’s properties: initialize it with
init(asset:automaticallyLoadedAssetKeys:) and observe its status using KVO.
When that status is .readyToPlay, you are guaranteed that the player item’s asset
has attempted to load those keys, and you can query them just as you would in load-
ValuesAsynchronously.

Time is Measured Oddly
Another peculiarity of AV Foundation is that time is measured in an unfamiliar way.
This is necessary because calculations using an ordinary built-in numeric class such

812 | Chapter 15: Video

Playing a Remote Asset
An AVURLAsset’s URL doesn’t have to be a local file URL; it can point to a resource
located across the Internet. Management of such an asset, however, is tricky, because
now things really take time: the asset has to arrive by way of the network, which may
be slow, interrupted, or missing in action. There’s a buffer, and if it isn’t sufficiently
full of your AVAsset’s data, playback will stutter or stop.

In the past, management of such an asset could be tricky. You had to use your
AVPlayer’s AVPlayerItem as the locus of information about the arrival and playback
of your AVAsset from across the network, keeping track of properties such as
playbackLikelyToKeepUp and the accessLog, along with notifications such as
AVPlayerItemPlaybackStalled, to keep abreast of any issues, pausing and resuming
to optimize the user experience.

New in iOS 10, Apple has made this entire procedure much easier: just tell the
AVPlayer to play and stand back! Play won’t start until the buffer has filled to the
point where the whole video can play without stalling, and if it does stall, it will
resume automatically. The AVPlayer’s timeControlStatus and, if it is .waitingTo-
PlayAtSpecifiedRate, its reasonForWaitingToPlay, inform you of what’s happen‐
ing; to learn the actual current play rate, call CMTimebaseGetRate on the
AVPlayerItem’s timebase.

as CGFloat will always have slight rounding errors that quickly begin to matter when
you’re trying to specify a time within a large piece of media.

Therefore, the Core Media framework (import CoreMedia) provides the CMTime
class, which under the hood is a pair of integers; they are called the value and the
timescale, but they are simply the numerator and denominator of a rational number.
When you call the CMTime initializer init(value:timescale:) (equivalent to C
CMTimeMake), that’s what you’re providing. The denominator represents the degree of
granularity; a typical value is 600, sufficient to specify individual frames in common
video formats.

However, in the convenience initializer init(seconds:preferredTimescale:)

(equivalent to C CMTimeMakeWithSeconds), the two arguments are not the numerator
and denominator; they are the time’s equivalent in seconds and the denominator. For
example, CMTime(seconds:2.5, preferredTimescale:600) yields the CMTime
(1500,600).

Constructing Media
AV Foundation allows you to construct your own media asset in code as an AVCom‐
position, an AVAsset subclass, using its subclass, AVMutableComposition. An

Introducing AV Foundation | 813

AVMutableComposition is an AVAsset, so given an AVMutableComposition, we
could make an AVPlayerItem from it (by calling init(asset:)) and hand it over to
an AVPlayerViewController’s player; we will thus be creating and displaying our own
movie.

Let’s try it! In this example, I start with an AVAsset (asset1, a video file) and assem‐
ble its first 5 seconds of video and its last 5 seconds of video into an AVMutable‐
Composition (comp):

let type = AVMediaTypeVideo
let arr = asset1.tracks(withMediaType: type)
let track = arr.last!
let duration : CMTime = track.timeRange.duration
let comp = AVMutableComposition()
let comptrack = comp.addMutableTrack(withMediaType: type,
 preferredTrackID: Int32(kCMPersistentTrackID_Invalid))
try! comptrack.insertTimeRange(CMTimeRange(
 start: CMTime(seconds:0, preferredTimescale:600),
 duration: CMTime(seconds:5, preferredTimescale:600)),
 of:track, at:CMTime(seconds:0, preferredTimescale:600))
try! comptrack.insertTimeRange(CMTimeRange(
 start: CMTimeSubtract(duration,
 CMTime(seconds:5, preferredTimescale:600)),
 duration: CMTime(seconds:5, preferredTimescale:600)),
 of:track, at:CMTime(seconds:5, preferredTimescale:600))

This works perfectly. We are not very good video editors, however, as we have forgot‐
ten the corresponding soundtrack from asset1. Let’s go back and get it and add it to
our AVMutableComposition (comp):

let type2 = AVMediaTypeAudio
let arr2 = asset1.tracks(withMediaType: type2)
let track2 = arr2.last! //
let comptrack2 = comp.addMutableTrack(withMediaType: type2,
 preferredTrackID:Int32(kCMPersistentTrackID_Invalid))
try! comptrack2.insertTimeRange(CMTimeRange(
 start: CMTime(seconds:0, preferredTimescale:600),
 duration: CMTime(seconds:5, preferredTimescale:600)),
 of:track2, at:CMTime(seconds:0, preferredTimescale:600))
try! comptrack2.insertTimeRange(CMTimeRange(
 start: CMTimeSubtract(duration,
 CMTime(seconds:5, preferredTimescale:600)),
 duration: CMTime(seconds:5, preferredTimescale:600)),
 of:track2, at:CMTime(seconds:5, preferredTimescale:600))

But wait! Now let’s overlay another audio track from another asset; this might be, for
example, some additional narration:

let type3 = AVMediaTypeAudio
let s = Bundle.main.url(forResource:"aboutTiagol", withExtension:"m4a")!
let asset2 = AVURLAsset(url:s)
let arr3 = asset2.tracks(withMediaType: type3)

814 | Chapter 15: Video

let track3 = arr3.last!
let comptrack3 = comp.addMutableTrack(withMediaType: type3,
 preferredTrackID:Int32(kCMPersistentTrackID_Invalid))
try! comptrack3.insertTimeRange(CMTimeRange(
 start: CMTime(seconds:0, preferredTimescale:600),
 duration: CMTime(seconds:10, preferredTimescale:600)),
 of:track3, at:CMTime(seconds:0, preferredTimescale:600))

You can also apply audio volume changes and video opacity and transform changes
to the playback of individual tracks. I’ll continue from the previous example, applying
a fadeout to the last three seconds of the narration track (comptrack3) by creating an
AVAudioMix:

let params = AVMutableAudioMixInputParameters(track:comptrack3)
params.setVolume(1, at:CMTime(seconds:0, preferredTimescale:600))
params.setVolumeRamp(fromStartVolume: 1, toEndVolume:0,
 timeRange:CMTimeRange(
 start: CMTime(seconds:7, preferredTimescale:600),
 duration: CMTime(seconds:3, preferredTimescale:600)))
let mix = AVMutableAudioMix()
mix.inputParameters = [params]

The audio mix must be applied to a playback milieu, such as an AVPlayerItem. So
when we make an AVPlayerItem out of our AVComposition, we can set its audioMix
property to mix:

let item = AVPlayerItem(asset:comp)
item.audioMix = mix

Similar to AVAudioMix, you can use AVVideoComposition to dictate how video
tracks are to be composited. Starting in iOS 9, you can easily add a CIFilter (Chap‐
ter 2) to be applied to your video.

Synchronizing Animation With Video
An intriguing feature of AV Foundation is AVSynchronizedLayer, a CALayer subclass
that effectively crosses the bridge between video time (the CMTime within the pro‐
gress of a movie) and Core Animation time (the time within the progress of an ani‐
mation). This means that you can coordinate animation in your interface (Chapter 4)
with the playback of a movie. You attach an animation to a layer in more or less the
usual way, but the animation takes place in movie playback time: if the movie is stop‐
ped, the animation is stopped; if the movie is run at double rate, the animation runs
at double rate; and the current “frame” of the animation always corresponds to the
current frame, within its entire duration, of the video.

The synchronization is performed with respect to an AVPlayer’s AVPlayerItem. To
demonstrate, I’ll draw a long thin gray rectangle containing a little black square; the
horizontal position of the black square within the gray rectangle will be synchronized
to the movie playhead position:

Introducing AV Foundation | 815

Figure 15-5. The black square’s position is synchronized to the movie

let vc = self.childViewControllers[0] as! AVPlayerViewController
let p = vc.player!
// create synch layer, put it in the interface
let item = p.currentItem!
let syncLayer = AVSynchronizedLayer(playerItem:item)
syncLayer.frame = CGRect(10,220,300,10)
syncLayer.backgroundColor = UIColor.lightGray.cgColor
self.view.layer.addSublayer(syncLayer)
// give synch layer a sublayer
let subLayer = CALayer()
subLayer.backgroundColor = UIColor.black.cgColor
subLayer.frame = CGRect(0,0,10,10)
syncLayer.addSublayer(subLayer)
// animate the sublayer
let anim = CABasicAnimation(keyPath:#keyPath(CALayer.position))
anim.fromValue = NSValue(cgPoint: subLayer.position)
anim.toValue = NSValue(cgPoint: CGPoint(295,5))
anim.isRemovedOnCompletion = false
anim.beginTime = AVCoreAnimationBeginTimeAtZero // important trick
anim.duration = CMTimeGetSeconds(item.asset.duration)
subLayer.add(anim, forKey:nil)

The result is shown in Figure 15-5. The gray rectangle is the AVSynchronizedLayer,
tied to our movie. The little black square inside it is its sublayer; when we animate the
black square, that animation will be synchronized to the movie, changing its position
from the left end of the gray rectangle to the right end, starting at the beginning of the
movie and with the same duration as the movie. Thus, although we attach this anima‐
tion to the black square layer in the usual way, that animation is frozen: the black
square doesn’t move until we start the movie playing. Moreover, if we pause the movie,
the black square stops. The black square is thus automatically representing the cur‐
rent play position within the movie. This may seem a silly example, but if you were to
suppress the video controls it could prove downright useful.

816 | Chapter 15: Video

AVPlayerLayer
An AVPlayer is not an interface object. The corresponding interface object — an
AVPlayer made visible, as it were — is an AVPlayerLayer (a CALayer subclass). It has
no controls for letting the user play and pause a movie and visualize its progress; it
just shows the movie, acting as a bridge between the AV Foundation world of media
and the CALayer world of things the user can see.

An AVPlayerViewController’s view hosts an AVPlayerLayer for you automatically;
otherwise you would not see any video in the AVPlayerViewController’s view. But
there may certainly be situations where you find AVPlayerViewController too heavy‐
weight, where you don’t need the standard transport controls, where you don’t want
the video to be expandable or to have a fullscreen mode — you just want the simple
direct power that can be obtained only by putting an AVPlayerLayer into the interface
yourself. And you are free to do so!

Here, I’ll display the same movie as before, but without an AVPlayerViewController:

let m = Bundle.main.url(forResource:"ElMirage", withExtension:"mp4")!
let asset = AVURLAsset(url:m)
let item = AVPlayerItem(asset:asset)
let p = AVPlayer(playerItem:item)
self.player = p // might need a reference later
let lay = AVPlayerLayer(player:p)
lay.frame = CGRect(10,10,300,200)
self.playerLayer = lay // might need a reference later
self.view.layer.addSublayer(lay)

As before, if we want to prevent a flash when the video becomes ready for display, we
can postpone adding the AVPlayerLayer to our interface until its isReadyForDisplay
property becomes true — which we can learn through KVO.

In a WWDC 2016 video, Apple suggests an interesting twist on the preceding code:
create the AVPlayer without an AVPlayerItem, create the AVPlayerLayer, and then
assign the AVPlayerItem to AVPlayer, like this:

let m = Bundle.main.url(forResource:"ElMirage", withExtension:"mp4")!
let asset = AVURLAsset(url:m)
let item = AVPlayerItem(asset:asset)
let p = AVPlayer() // *
self.player = p
let lay = AVPlayerLayer(player:p)
lay.frame = CGRect(10,10,300,200)
self.playerLayer = lay
p.replaceCurrentItem(with: item) // *
self.view.layer.addSublayer(lay)

Apparently, there is some increase in efficiency if you do things in this order. The rea‐
son, it turns out, is that when an AVPlayerItem is assigned to an AVPlayer that
doesn’t have an associated AVPlayerLayer, the AVPlayer assumes that only the audio

Introducing AV Foundation | 817

track of the AVAsset is important — and then, when an AVPlayerLayer is assigned, it
must scramble to pick up the video track as well.

The movie is now visible in the interface, but it isn’t doing anything. We haven’t told
our AVPlayer to play, and there are no transport controls, so the user can’t tell the
video to play either. This is why I kept a reference to the AVPlayer in a property! We
can start play either by calling play or by setting the AVPlayer’s rate. Here, I imagine
that we’ve provided a simple play/pause button that toggles the playing status of the
movie by changing its rate:

@IBAction func doButton (_ sender: Any!) {
 let rate = self.player.rate
 self.player.rate = rate < 0.01 ? 1 : 0
}

Without trying to replicate the transport controls, we might also like to give the user
a way to jump the playhead back to the start of the movie. The playhead position is a
feature, not of an AVPlayer, but of an AVPlayerItem:

@IBAction func restart (_ sender: Any!) {
 let item = self.player.currentItem!
 item.seek(to:CMTime(seconds:0, preferredTimescale:600))
}

If we want our AVPlayerLayer to support picture-in-picture, then (in addition to
making the app itself support picture-in-picture, as I’ve already described) we need to
call upon AVKit to supply us with an AVPictureInPictureController. This is not a
view controller; it merely endows our AVPlayerLayer with picture-in-picture behav‐
ior. You create the AVPictureInPictureController (checking first to see whether the
environment supports picture-in-picture in the first place), initialize it with the
AVPlayerLayer, and retain it:

if AVPictureInPictureController.isPictureInPictureSupported() {
 let pic = AVPictureInPictureController(playerLayer: self.playerLayer)
 self.pic = pic
}

There are no transport controls, so there is no picture-in-picture button. Supplying
one is up to you. Don’t forget to hide the button if picture-in-picture isn’t supported!
When the button is tapped, tell the AVPictureInPictureController to startPictureIn-
Picture:

@IBAction func doPicInPic(_ sender: Any) {
 if self.pic.isPictureInPicturePossible {
 self.pic.startPictureInPicture()
 }
}

You might also want to set yourself as the AVPictureInPictureController’s delegate
(AVPictureInPictureControllerDelegate). This is very similar to the AVPlayerView‐

818 | Chapter 15: Video

Controller delegate, and serves the same purpose: you are informed of stages in the
life of the picture-in-picture window so that you can adjust your interface accord‐
ingly. When the user taps the button that dismisses the system window and returns to
your app, then if the AVPlayerLayer is still sitting in your interface, there may be no
work to do. If you removed the AVPlayerLayer from your interface, and you now
want to restore it, implement picture(_:restoreUserInterfaceForPictureIn-
PictureStopWithCompletionHandler:). In your implementation, be sure that the
AVPlayerLayer that you now put into your interface is the same one that was removed
earlier; in other words, your player layer must continue to be the same as the AVPic‐
tureInPictureController’s playerLayer.

Further Exploration of AV Foundation
Here are some other things you can do with AV Foundation:

• Extract single images (“thumbnails”) from a movie (AVAssetImageGenerator).
• Export a movie in a different format (AVAssetExportSession), or read/write raw

uncompressed data through a buffer to or from a track (AVAssetReader,
AVAssetReaderOutput, AVAssetWriter, AVAssetWriterInput, and so on).

• Capture audio, video, and stills through the device’s hardware (AVCaptureSession
and so on). I’ll say more about this in Chapter 17.

• Tap into video and audio being captured or played, including capturing video
frames as still images (AVPlayerItemVideoOutput, AVCaptureVideoDataOutput,
and so on; and see Apple’s Technical Q&A QA1702).

UIVideoEditorController
UIVideoEditorController is a view controller that presents an interface where the
user can trim video. Its view and internal behavior are outside your control, and
you’re not supposed to subclass it. You are expected to treat the view controller as a
presented view controller on the iPhone or as a popover on the iPad, and respond by
way of its delegate.

UIVideoEditorController is one of the creakiest pieces of interface in iOS. It
dates back to iOS 3.1, and hasn’t been revised since its inception — and it looks
and feels like it. It has never worked properly on the iPad, and still doesn’t. I’m
going to show how to use it, but I’m not going to explore its bugginess in any
depth or we’d be here all day.

Before summoning a UIVideoEditorController, be sure to call its class method can-
EditVideo(atPath:). (This call can take some noticeable time to return.) If it returns

UIVideoEditorController | 819

false, don’t instantiate UIVideoEditorController to edit the given file. Not every
video format is editable, and not every device supports video editing. You must also
set the UIVideoEditorController instance’s delegate and videoPath before present‐
ing it; the delegate should adopt both UINavigationControllerDelegate and UIVideo‐
EditorControllerDelegate. Setting the UIVideoEditorController’s
modalPresentationStyle to .popover on the iPad is up to you (a good instance of
the creakiness I was just referring to):

let path = Bundle.main.path(forResource:"ElMirage", ofType: "mp4")!
let can = UIVideoEditorController.canEditVideo(atPath:path)
if !can {
 print("can't edit this video")
 return
}
let vc = UIVideoEditorController()
vc.delegate = self
vc.videoPath = path
if UIDevice.current.userInterfaceIdiom == .pad {
 vc.modalPresentationStyle = .popover
}
self.present(vc, animated: true)
if let pop = vc.popoverPresentationController {
 let v = sender as! UIView
 pop.sourceView = v
 pop.sourceRect = v.bounds
 pop.delegate = self
}

The view’s interface (on the iPhone) contains Cancel and Save buttons, a trimming
box displaying thumbnails from the movie, a play/pause button, and the movie itself.
The user slides the ends of the trimming box to set the beginning and end of the
saved movie. The Cancel and Save buttons do not dismiss the presented view; you
must do that in your implementation of the delegate methods. There are three of
them, and you should implement all three and dismiss the presented view in all of
them:

• videoEditorController(_:didSaveEditedVideoToPath:)

• videoEditorControllerDidCancel(_:)

• videoEditorController(_:didFailWithError:)

Implementing the second two delegate methods is straightforward:

820 | Chapter 15: Video

func videoEditorControllerDidCancel(_ editor: UIVideoEditorController) {
 self.dismiss(animated:true)
}
func videoEditorController(_ editor: UIVideoEditorController,
 didFailWithError error: Error) {
 self.dismiss(animated:true)
}

Saving the trimmed video is more involved. Like everything else about a movie, it
takes time. When the user taps Save, there’s a progress view while the video is trim‐
med and compressed. By the time the delegate method videoEditor-

Controller(_:didSaveEditedVideoToPath:) is called, the trimmed video has
already been saved to a file in your app’s temporary directory (the same directory
returned from a call to NSTemporaryDirectory).

Doing something useful with the saved file at this point is up to you; if you merely
leave it in the temporary directory, you can’t rely on it to persist. In this example, I
copy the edited movie into the the Camera Roll album of the user’s photo library, by
calling UISaveVideoAtPathToSavedPhotosAlbum. For this to work, our app’s Info.plist
must have a “Privacy — Photo Library Usage Description” entry (NSPhotoLibraryU‐
sageDescription) so that the runtime can ask for the user’s permission on our behalf.
Saving takes time too, so I configure a callback to a method that dismisses the editor
after the saving is over:

func videoEditorController(_ editor: UIVideoEditorController,
 didSaveEditedVideoToPath path: String) {
 if UIVideoAtPathIsCompatibleWithSavedPhotosAlbum(path) {
 UISaveVideoAtPathToSavedPhotosAlbum(path, self,
 #selector(savedVideo), nil)
 } else {
 // can't save to photo album, try something else
 }
}

The function reference #selector(savedVideo) in that code refers to a callback
method that must take three parameters: a String (the path), an Optional wrapping
an Error, and an UnsafeMutableRawPointer. It’s important to check for errors,
because things can still go wrong. In particular, the user could deny us access to the
photo library (see Chapter 17 for more about that). If that’s the case, we’ll get an
NSError whose domain is ALAssetsLibraryErrorDomain:

func savedVideo(at path:String, withError error:Error?,
 ci:UnsafeMutableRawPointer) {
 if let error = error {
 print("error: \(error)")
 }
 self.dismiss(animated:true)
}

UIVideoEditorController | 821

CHAPTER 16

Music Library

This chapter has not yet been revised for iOS 10.

An iOS device can be used for the same purpose as the original iPod — to hold and
play music, podcasts, and audiobooks. These items constitute the device’s music
library. (The relevant guide in Apple’s documentation, iPod Library Access Program‐
ming Guide, preserves a more archaic name.) iOS provides the programmer with var‐
ious forms of access to the device’s music library; you can:

• Explore the music library.
• Play an item from the music library.
• Learn and control what the Music app’s music player is doing.
• Present a standard interface for allowing the user to select a music library item.

These abilities are provided by the Media Player framework; you’ll need to import
MediaPlayer.

Exploring the Music Library
Everything in the music library, as seen by your code, is an MPMediaEntity. This is
an abstract class. It has two concrete subclasses:

MPMediaItem
An MPMediaItem is a single item (a “song”).

MPMediaCollection
An MPMediaCollection is an ordered list of MPMediaItems, rather like an array;
it has a count, and its items property is an array.

823

MPMediaEntity endows its subclasses with the ability to describe themselves through
key–value pairs called properties. The property keys have names like MPMediaItem-
PropertyTitle. To fetch a property’s value, call valueForProperty: with its key. You
can fetch multiple properties with enumerateValuesForProperties:usingBlock:.
Thus, the use of the word “properties” here has nothing to do with object properties;
these properties are more like entries in a dictionary. On the other hand, MPMedia‐
Entity and its subclasses have instance properties whose names correspond to the
property names. Thus, for example, with an MPMediaItem you can say either
myItem.valueForProperty(MPMediaItemPropertyTitle) or myItem.title, and in
most cases you will surely prefer the latter. (You will, however, still need the full prop‐
erty key name if you’re going to form an MPMediaPropertyPredicate, as I’ll demon‐
strate later.)

An MPMediaItem has a type, according to the value of its MPMediaItemProperty-
MediaType: it might, for example, be music, a podcast, or an audiobook. A media
item’s properties will be intuitively familiar from your use of iTunes: it has a title, an
album title, a track number, an artist, a composer, and so on. Different types of item
have slightly different properties; for example, a podcast, in addition to its normal
title, has a podcast title.

A playlist is an MPMediaPlaylist, a subclass of MPMediaCollection. Its properties
include a title, a flag indicating whether it is a “smart” playlist, and so on.

An item’s artwork image is an instance of the MPMediaItemArtwork class, from
which you are supposed to be able to get the image itself scaled to a specified size by
calling imageWithSize:. My experience, however, is that in reality you’ll receive an
image of any old size the system cares to give you, so you may have to scale it further
yourself. This, for example, is what my Albumen app does (see Appendix B for my
imageOfSize: utility):

let art : MPMediaItemArtwork = // ...
guard let im = art.imageWithSize(CGSizeMake(36,36)) else {
 return // no image
}
let r = AVMakeRectWithAspectRatioInsideRect(im.size, CGRect(0,0,36,36))
let im2 = imageOfSize(CGSizeMake(36,36)) { im.drawInRect(r) }

Querying the Music Library
Obtaining actual information from the music library requires a query, an MPMedia‐
Query. First, you form the query. There are three main ways to do this:

Without limits
Create a simple MPMediaQuery by calling init (that is, MPMediaQuery()). The
result is an unlimited query; it asks for everything in the music library.

824 | Chapter 16: Music Library

With a convenience constructor
MPMediaQuery provides several class methods that form a query ready to ask
the music library for a limited subset of its contents — all of its songs, or all of its
podcasts, and so on. Here’s the complete list:

• songsQuery

• podcastsQuery

• audiobooksQuery

• playlistsQuery

• albumsQuery

• artistsQuery

• composersQuery

• genresQuery

• compilationsQuery

With filter predicates
You can limit a query more precisely by attaching to the query one or more
MPMediaPropertyPredicate instances. These predicates filter the music library
according to criteria you specify; to be included in the result, a media item must
successfully pass through all the filters (in other words, the predicates are com‐
bined using logical-and). A predicate is a simple comparison. It has three aspects:

A property
The key name of the property you want to compare against. Not every prop‐
erty can be used in a filter predicate; the documentation makes the distinc‐
tion clear (and you can get additional help from an MPMediaEntity class
method, canFilterByProperty:).

A value
The value that the property must have in order to pass through the filter.

A comparison type (optional)
An MPMediaPredicateComparison. In order to pass through the filter, a
media item’s property value can either match the value you provide (.Equal-
To, the default) or contain the value you provide (.Contains).

The two ways of forming a limited query are actually the same; a convenience con‐
structor is just a quick way of obtaining a query already endowed with a filter predi‐
cate.

A query also groups its results, according to its groupingType (MPMediaGrouping).
Your choices are:

Exploring the Music Library | 825

• .Title

• .Album

• .Artist

• .AlbumArtist

• .Composer

• .Genre

• .Playlist

• .PodcastTitle

The query convenience constructors all supply a groupingType in addition to a filter
predicate. Indeed, the grouping is often the salient aspect of the query. For example,
an albumsQuery is in fact merely a songsQuery with the added feature that its results
are grouped by album.

The groups resulting from a query are collections; that is, each is an MPMediaItem‐
Collection. This class, you will recall, is an MPMediaEntity subclass, so a collection
has properties. In addition, it has items and a count. It also has a representative-
Item property, which gives you just one item from the collection. The reason you
need this is that properties of a collection are often embodied in its items rather than
in the collection itself. For example, an album has no title; rather, its items have
album titles that are all the same. So to learn the title of an album, you ask for the
album title of a representative item.

After you form the query, you perform the query. You do this simply by asking for the
query’s results. You can ask either for its collections, if you care about the groups
returned from the query, or for its items. Here, I’ll discover the titles of all the
albums:

let query = MPMediaQuery.albumsQuery()
guard let result = query.collections else {return}
// prove we've performed the query, by logging the album titles
for album in result {
 print(album.representativeItem!.albumTitle!)
}
/*
Bach, CPE, Symphonies
Beethoven Canons
Beethoven Dances
Scarlatti Continuo
*/

Now let’s make our query more elaborate; we’ll get the titles of all the albums whose
name contains “Beethoven.” We simply add a filter predicate to the previous query:

826 | Chapter 16: Music Library

let query = MPMediaQuery.albumsQuery()
let hasBeethoven = MPMediaPropertyPredicate(value:"Beethoven",
 forProperty:MPMediaItemPropertyAlbumTitle,
 comparisonType:.Contains)
query.addFilterPredicate(hasBeethoven)
guard let result = query.collections else {return}
for album in result {
 print(album.representativeItem!.albumTitle!)
}
/*
Beethoven Canons
Beethoven Dances
*/

Similarly, we can get the titles of all the albums containing any songs whose name
contains “Sonata.” This is like the previous example, but here we are concerned with
the song’s own title rather than its album title:

let query = MPMediaQuery.albumsQuery()
let hasSonata = MPMediaPropertyPredicate(value:"Sonata",
 forProperty:MPMediaItemPropertyTitle,
 comparisonType:.Contains)
query.addFilterPredicate(hasSonata)
guard let result = query.collections else {return}
for album in result {
 print(album.representativeItem!.albumTitle!)
}
/*
Scarlatti Continuo
*/

The results of an albumsQuery are actually songs (MPMediaItems). That means we
can immediately access any song in any of those albums. Let’s modify the output from
our previous query to print the titles of all the matching songs in the first album
returned, which happens to be the only album returned. We don’t have to change our
query, so I’ll start at the point where we perform it; result is the array of collections
returned from our query, so result[0] is an MPMediaItemCollection holding the fil‐
tered songs of one album:

// ... same as before ...
let album = result[0]
for song in album.items {
 print(song.title!)
}
/*
Sonata in E minor Kk 81 - I Grave
Sonata in E minor Kk 81 - II Allegro
Sonata in E minor Kk 81 - III Grave

Exploring the Music Library | 827

Sonata in E minor Kk 81 - IV Allegro
Sonata in G minor Kk 88 - I Grave
... and so on ...
*/

Here are some more examples of query filter predicates that arise in my own apps.
The user’s music library can include songs that are actually off in “the cloud.” For
example, suppose the user subscribes to iTunes Match (now termed iCloud Music
Library in the Music settings). Some songs may have been downloaded for offline lis‐
tening; others may still be in the cloud. But they are all listed in the library. In my
Albumen app, I don’t want to include cloud-based songs in my results:

let notCloud = MPMediaPropertyPredicate(value: false,
 forProperty: MPMediaItemPropertyIsCloudItem,
 comparisonType: .EqualTo)
query.addFilterPredicate(notCloud)

When gathering playlists, I don’t want to include smart playlists, genius playlists, or
on-the-go playlists created on the user’s device. Here’s how I eliminate those:

let notSmart = MPMediaPropertyPredicate(value: 0,
 forProperty: MPMediaPlaylistPropertyPlaylistAttributes,
 comparisonType: .EqualTo)
query.addFilterPredicate(notSmart)

Persistence and Change in the Music Library
One of the properties of an MPMediaEntity is its persistent ID, which uniquely identi‐
fies this song (MPMediaItemPropertyPersistentID, or an MPMediaItem’s
persistentID) or playlist (MPMediaPlaylistPropertyPersistentID, or an MPMe‐
diaPlaylist’s persistentID). No other means of identification is guaranteed unique;
two songs or two playlists can have the same title, for example. Using the persistent
ID, you can retrieve again at a later time the same song or playlist you retrieved ear‐
lier, even across launches of your app. All sorts of things have persistent IDs — enti‐
ties in general (MPMediaEntityPropertyPersistentID), albums, artists, composers,
and more.

While you are maintaining the results of a search, the contents of the music library
may themselves change. For example, the user might connect the device to a com‐
puter and add or delete music with iTunes; or the user might switch away from your
app and turn iTunes Match (iCloud Music Library) on or off. This can put your
results out of date. For this reason, the library’s own modified date is available
through the MPMediaLibrary class. Call the class method defaultMediaLibrary to
get the actual library instance; now you can ask it for its lastModifiedDate. You can
also register to receive a notification, MPMediaLibraryDidChange, when the music
library is modified. This notification is not emitted unless you first send the library

828 | Chapter 16: Music Library

beginGeneratingLibraryChangeNotifications; you should eventually balance this
with endGeneratingLibraryChangeNotifications.

The library’s notion of what constitutes a change can be somewhat surprising
with regard to cloud-based items. For example, the user playing or downloading
a cloud song can cause MPMediaLibraryDidChange to be triggered numerous
times in quick succession.

Music Player
The Media Player framework class for playing an MPMediaItem is MPMusicPlayer‐
Controller. It comes in two flavors, depending on which class method you use to get
an instance:

systemMusicPlayer

The global music player — the very same player used by the Music app. This
might already be playing an item, or it might be paused with a current item, at
any time while your app runs; you can learn or change what item this is. The
global music player continues playing independently of the state of your app, and
the user, by way of the Music app, can at any time alter what it is doing. (The
name systemMusicPlayer supersedes the name iPodMusicPlayer from iOS 7
and before, which is deprecated.)

applicationMusicPlayer

The song being played by the applicationMusicPlayer can be different from the
Music app’s current song; what you do with this music player doesn’t affect, and is
not affected by, what the Music app does. Nevertheless, the applicationMusic-
Player is actually the global music player behaving differently; it isn’t really
inside your app. It has its own audio session. You cannot play its audio when your
app is in the background. You cannot make it the target of remote control events.
If these limitations prove troublesome, use the systemMusicPlayer (or some
other means of playing the song, as discussed later in this chapter).

A music player doesn’t merely play an item; it plays from a queue of items. This
behavior is familiar from iTunes and the Music app. For example, in the Music app,
when you tap the first song of a playlist to start playing it, when the end of that song
is reached, we proceed by default to the next song in the playlist. That’s because tap‐
ping the first song of a playlist causes the queue to be the totality of songs in the play‐
list. The music player behaves the same way: when it reaches the end of a song, it
proceeds to the next song in its queue.

Your methods for controlling playback also reflect this queue-based orientation. In
addition to the expected play, pause, and stop commands, there’s a skipToNextItem
and skipToPreviousItem command. Anyone who has ever used iTunes or the Music

Music Player | 829

app (or, for that matter, an old-fashioned iPod) will have an intuitive grasp of this and
everything else a music player does. For example, you can also set a music player’s
repeatMode and shuffleMode, just as in iTunes.

You provide a music player with its queue in one of two ways:

With a query
You hand the music player an MPMediaQuery. The query’s items are the items
of the queue.

With a collection
You hand the music player an MPMediaItemCollection. This might be obtained
from a query you performed, but you can also assemble your own collection of
MPMediaItems in any way you like, putting them into an array and calling
MPMediaItemCollection’s init(items:).

In this example, we collect all songs actually present in the library shorter than 30
seconds and set them playing in random order using the application music player.
Observe that I explicitly stop the player before setting its queue; I have found (in iOS
8.4 and later) that this is the most reliable approach:

let query = MPMediaQuery.songsQuery()
let isPresent = MPMediaPropertyPredicate(value:false,
 forProperty:MPMediaItemPropertyIsCloudItem,
 comparisonType:.EqualTo)
query.addFilterPredicate(isPresent)
guard let items = query.items else {return}
let shorties = items.filter {
 let dur = $0.playbackDuration
 return dur < 30
}
guard shorties.count > 0 else {
 print("no songs that short!")
 return
}
let queue = MPMediaItemCollection(items:shorties)
let player = MPMusicPlayerController.applicationMusicPlayer()
player.stop()
player.setQueueWithItemCollection(queue)
player.shuffleMode = .Songs
player.play()

You can ask a music player for its nowPlayingItem, and since this is an MPMedia‐
Item, you can learn all about it through its properties. Unfortunately, you can’t query
a music player as to its queue, but you can keep your own pointer to the MPMedia‐
ItemCollection constituting the queue when you hand it to the music player, and you
can ask the music player which song within the queue is currently playing (indexOf-
NowPlayingItem). The user can completely change the queue of the systemMusic-

830 | Chapter 16: Music Library

Player, however, so if control over the queue is important to you, use the
applicationMusicPlayer.

A music player has a playbackState that you can query to learn what it’s doing
(whether it is playing, paused, stopped, or seeking). It also emits notifications inform‐
ing you of changes in its state:

• MPMusicPlayerControllerPlaybackStateDidChange

• MPMusicPlayerControllerNowPlayingItemDidChange

• MPMusicPlayerControllerVolumeDidChange

These notifications are not emitted until you tell the music player to begin-
GeneratingPlaybackNotifications. (You should eventually balance this call with
endGeneratingPlaybackNotifications.) This is an instance method, so you can
arrange to receive notifications from just one of the two possible music players. If you
do receive notifications from both, you can distinguish them by examining the
NSNotification’s object and comparing it to each player.

To illustrate, I’ll extend the previous example to set the text of a UILabel in our inter‐
face (self.label) every time a different song starts playing. Before we start the
player playing, we insert these lines to generate the notifications:

player.beginGeneratingPlaybackNotifications()
NSNotificationCenter.defaultCenter().addObserver(
 self, selector: #selector(changed),
 name: MPMusicPlayerControllerNowPlayingItemDidChangeNotification,
 object: player)
self.q = queue // retain a pointer to the queue

And here’s how we respond to those notifications:

func changed(n:NSNotification) {
 self.label.text = ""
 let player = MPMusicPlayerController.applicationMusicPlayer()
 guard n.object === player else { return } // just playing safe
 guard let title = player.nowPlayingItem?.title else {return}
 let ix = player.indexOfNowPlayingItem
 guard ix != NSNotFound else {return}
 self.label.text = "\(ix+1) of \(self.q.count): \(title)"
}

There’s no periodic notification as a song plays and the current playhead position
advances. To get this information, you’ll have to resort to polling. This is not objec‐
tionable as long as your polling interval is reasonably sparse; your display may occa‐
sionally fall a little behind reality, but this won’t usually matter. To illustrate, let’s add
to our existing example a UIProgressView (self.prog) showing the current percent‐

Music Player | 831

age of the current song being played by the music player. I’ll use a Timer to poll the
state of the player every second:

self.timer = Timer.scheduledTimerWithTimeInterval(
 1, target: self, selector: #selector(timerFired),
 userInfo: nil, repeats: true)
self.timer.tolerance = 0.1

When the timer fires, the progress view displays the state of the currently playing
item:

func timerFired(_:AnyObject) {
 let player = MPMusicPlayerController.applicationMusicPlayer()
 guard let item = player.nowPlayingItem
 where player.playbackState != .Stopped else {
 self.prog.hidden = true
 return
 }
 self.prog.hidden = false
 let current = player.currentPlaybackTime
 let total = item.playbackDuration
 self.prog.progress = Float(current / total)
}

The applicationMusicPlayer has no user interface. It displays its currently playing
song in the MPNowPlayingInfoCenter, but the remote playback controls do not auto‐
matically work on it (Figure 14-1); if you want the user to have controls for playing
and stopping a song, you’ll have to create them yourself. The systemMusicPlayer, on
the other hand, has a complete user interface — the Music app, to which it is effec‐
tively a back door.

MPVolumeView
The Media Player framework offers a slider for letting the user set the system output
volume, along with an AirPlay route button if appropriate; this is an MPVolumeView.
An MPVolumeView works only on a device — not in the Simulator. It is customizable
similarly to a UISlider (Chapter 12); you can set the images for the two halves of the
track, the thumb, and even the AirPlay route button, for both the normal and the
highlighted state (while the user is touching the thumb).

For further customization, you can subclass MPVolumeView and override volume-
SliderRectForBounds:. (An additional overridable method is documented, volume-
ThumbRectForBounds:volumeSliderRect:value:, but in my testing it is never called;
I regard this as a bug.)

You can register for notifications when a wireless route (Bluetooth or AirPlay)
appears or disappears and when a wireless route becomes active or inactive.

832 | Chapter 16: Music Library

• MPVolumeViewWirelessRoutesAvailableDidChange

• MPVolumeViewWirelessRouteActiveDidChange

Playing Songs With AV Foundation
MPMusicPlayerController is convenient and simple, but it’s also simpleminded. Its
audio session isn’t your audio session; the music player doesn’t really belong to you.
An MPMediaItem, however, has an MPMediaItemPropertyAssetURL key (or assetURL
property) whose value is a URL. That gives you a reference to the music file on disk,
and everything from Chapters 14 and 15 comes into play.

So, for example, having obtained an MPMediaItem’s asset URL, you could use that
URL to initialize an AVAudioPlayer, an AVPlayer, or an AVAsset. Each of these ways
of playing an MPMediaItem has its advantages. For example, an AVAudioPlayer is
easy to use, and lets you loop a sound, poll the power value of its channels, and so
forth. An AVPlayer assigned to an AVPlayerViewController gives you a built-in play/
pause button and playhead slider. An AVAsset gives you the full power of the AV
Foundation framework, letting you edit the sound, assemble multiple sounds, per‐
form a fadeout effect, and even attach the sound to a video (and then play it with an
AVPlayer).

In this example, I’ll use an AVQueuePlayer (an AVPlayer subclass) to play a sequence
of MPMediaItems, just as MPMusicPlayerController does:

let arr = // array of MPMediaItem
let items = arr.map {
 let url = $0.assetURL!
 let asset = AVAsset(URL:url)
 return AVPlayerItem(asset: asset)
}
self.qp = AVQueuePlayer(items:items)
self.qp.play()

That works, but I have the impression, based on something said in one of the
WWDC 2011 videos, that instead of adding a whole batch of AVPlayerItems to an
AVQueuePlayer all at once, you’re supposed to add just a few AVPlayerItems to start
with and then append each additional AVPlayerItem when an item finishes playing.
So I’ll start out by adding just three AVPlayerItems, and use key–value observing to
watch for changes in the AVQueuePlayer’s currentItem:

let arr = // array of MPMediaItem
self.items = arr.map {
 let url = $0.assetURL!
 let asset = AVAsset(URL:url)
 return AVPlayerItem(asset: asset)
}

Playing Songs With AV Foundation | 833

self.total = self.items.count
let seed = min(3,self.items.count)
self.qp = AVQueuePlayer(items:Array(self.items.prefixUpTo(seed)))
self.items = Array(self.items.suffixFrom(seed))
// use .Initial option so that we get an observation for the first item
self.qp.addObserver(
 self, forKeyPath:"currentItem", options:.Initial, context:nil)
self.qp.play()

In observeValueForKeyPath:..., we pull an AVPlayerItem off the front of our items
array and add it to the end of the AVQueuePlayer’s queue. The AVQueuePlayer itself
deletes an item from the start of its queue after playing it, so in this way the queue
never exceeds three items in length:

let item = self.qp.currentItem
guard self.items.count > 0 else {return}
let newItem = self.items.removeFirst()
self.qp.insertItem(newItem, afterItem:nil) // means "at end"

As long as observeValueForKeyPath:... is notifying us each time a new song starts
playing, let’s insert some code to update a label’s text with the title of each successive
song. This will demonstrate how to extract metadata from an AVAsset by way of an
AVMetadataItem; here, we fetch the AVMetadataCommonKeyTitle and get its value
property:

self.curnum += 1
var arr = item.asset.commonMetadata
arr = AVMetadataItem.metadataItemsFromArray(arr,
 withKey:AVMetadataCommonKeyTitle,
 keySpace:AVMetadataKeySpaceCommon)
let met = arr[0]
met.loadValuesAsynchronouslyForKeys(["value"]) {
 if met.statusOfValueForKey("value", error: nil) == .Loaded {
 guard let title = met.value as? String else {return}
 dispatch_async(dispatch_get_main_queue()) {
 self.label.text = "\(self.curnum) of \(self.total): \(title)"
 }
 }
}

We can also update a progress view to reflect the current item’s current time and
duration. Unlike MPMusicPlayerController, we don’t need to poll with a Timer; we
can install a time observer on our AVQueuePlayer:

self.ob = self.qp.addPeriodicTimeObserverForInterval(
 CMTimeMakeWithSeconds(0.5, 600), queue: nil,
 usingBlock: self.timerFired)

To get our AVPlayerItems to load their duration property, we’ll need to go back and
modify the code we used to initialize them:

834 | Chapter 16: Music Library

let url = $0.assetURL!
let asset = AVAsset(URL:url)
return AVPlayerItem(
 asset: asset, automaticallyLoadedAssetKeys: ["duration"])

Our time observer calls us periodically, reporting the current time of the current
player item; we obtain the current item’s duration and configure our progress view
(self.prog):

func timerFired(time:CMTime) {
 if let item = self.qp.currentItem {
 let asset = item.asset
 if asset.statusOfValueForKey("duration", error: nil) == .Loaded {
 let dur = asset.duration
 self.prog.setProgress(
 Float(time.seconds/dur.seconds), animated: false)
 self.prog.hidden = false
 }
 }
}

Media Picker
The media picker (MPMediaPickerController), supplied by the Media Player frame‐
work, is a view controller whose view is a self-contained navigation interface in which
the user can select a media item from the music library, similar to the Music app. You
are expected to treat the picker as a presented view controller.

You can use the initializer, init(mediaTypes:), to limit the type of media items dis‐
played. You can make a prompt appear at the top of the navigation bar (prompt). You
can govern whether the user can choose multiple media items or just one, with the
allowsPickingMultipleItems property. You can filter out items stored in the cloud
by setting showsCloudItems to false.

In iOS 9, the mediaTypes: values .Podcast and .AudioBook don’t work. I believe
that this is because podcasts are considered to be the purview of the Podcasts
app, and audiobooks are considered to be the purview of iBooks — not the
Music app. You can see podcasts and audiobooks as MPMediaEntity objects in
the user’s music library, but not by way of an MPMediaPickerController.

While the view is showing, you learn what the user is doing through two delegate
methods (MPMediaPickerControllerDelegate); the presented view controller is not
automatically dismissed, so it is up to you dismiss it in these delegate methods:

• mediaPicker:didPickMediaItems:

• mediaPickerDidCancel:

Media Picker | 835

The behavior of the delegate methods depends on the value of the controller’s allows-
PickingMultipleItems:

The controller’s allowsPickingMultipleItems is false (the default)
There’s a Cancel button. When the user taps a media item, your media-
Picker:didPickMediaItems: is called, handing you an MPMediaItemCollection
consisting of that item; you are likely to dismiss the presented view controller at
this point. When the user taps Cancel, your mediaPickerDidCancel: is called.

The controller’s allowsPickingMultipleItems is true
There’s a Done button. Every time the user taps a media item, it is checked to
indicate that it has been selected. When the user taps Done, your media-
Picker:didPickMediaItems: is called, handing you an MPMediaItemCollection
consisting of all items the user tapped — unless the user tapped no items, in
which case your mediaPickerDidCancel: is called.

In this example, we put up the media picker; we then play the user’s chosen media
item(s) with the application’s music player. The example works equally well whether
allowsPickingMultipleItems is true or false:

func presentPicker (sender: Any) {
 let picker = MPMediaPickerController(mediaTypes:.Music)
 picker.delegate = self
 // picker.allowsPickingMultipleItems = true
 self.presentViewController(picker, animated: true, completion: nil)
}
func mediaPicker(mediaPicker: MPMediaPickerController,
 didPickMediaItems mediaItemCollection: MPMediaItemCollection) {
 let player = MPMusicPlayerController.applicationMusicPlayer()
 player.setQueueWithItemCollection(mediaItemCollection)
 player.play()
 self.dismissViewControllerAnimated(true, completion: nil)
}
func mediaPickerDidCancel(mediaPicker: MPMediaPickerController) {
 self.dismissViewControllerAnimated(true, completion: nil)
}

On the iPad, the media picker can be displayed as a fullscreen presented view, but it
also works reasonably well in a popover, especially if we increase its preferred-
ContentSize. This code presents as fullscreen on an iPhone and as a reasonably-sized
popover on an iPad:

func presentPicker (sender: Any) {
 let picker = MPMediaPickerController(mediaTypes:.Music)
 picker.delegate = self
 picker.allowsPickingMultipleItems = true
 picker.modalPresentationStyle = .Popover
 picker.preferredContentSize = CGSizeMake(500,600)
 self.presentViewController(picker, animated: true, completion: nil)

836 | Chapter 16: Music Library

 if let pop = picker.popoverPresentationController {
 if let b = sender as? UIBarButtonItem {
 pop.barButtonItem = b
 }
 }
}

Media Picker | 837

CHAPTER 17

Photo Library and Image Capture

This chapter has not yet been revised for iOS 10.

The photos and videos accessed by the user through the Photos app constitute the
device’s photo library. Your app can give the user an interface for exploring this
library through the UIImagePickerController class.

In addition, the Photos framework lets you access the photo library and its contents
programmatically — including the ability to modify a photo’s image. You’ll need to
import Photos.

The UIImagePickerController class can also be used to give the user an interface sim‐
ilar to the Camera app, letting the user take photos and videos on devices with the
necessary hardware. At a deeper level, the AV Foundation framework (Chapter 15)
provides direct control over the camera hardware. You’ll need to import

AVFoundation (and probably CoreMedia).

Constants such as kUTTypeImage, referred to in this chapter, are provided by the
Mobile Core Services framework; you’ll need to import MobileCoreServices.

Photo Library Authorization
Access to the photo library requires user authorization. You can use UIImagePicker‐
Controller without prior authorization, as authorization will automatically be reques‐
ted for you and the interface works coherently if authorization has been refused. Still,
it is probably good policy for any app that’s going to need photo library access to
ascertain authorization status beforehand, and to try to obtain authorization if
needed. My strategy is to check the authorization status every time the root view con‐
troller appears and whenever the app is brought to the foreground:

839

override func viewDidAppear(animated: Bool) {
 super.viewDidAppear(animated)
 self.determineStatus()
 NSNotificationCenter.defaultCenter().addObserver(self,
 selector: #selector(determineStatus),
 name: UIApplicationWillEnterForegroundNotification,
 object: nil)
}

My determineStatus method returns a Bool, even though I’m disregarding the
returned value in the preceding code; that way, I can also learn authorization status at
any time while the app runs. In determineStatus, I first ask what our authorization
status is. That’s done by way of the Photos framework, by calling PHPhoto-
Library.authorizationStatus(). There are four PHAuthorizationStatus responses:

.NotDetermined

Authorization has never been requested. In that case, I explicitly request it by
calling PHPhotoLibrary.requestAuthorization(), which causes the runtime to
present an authorization request alert on our behalf. It is possible to supply a
completion function here, which will be called when the user dismisses the alert;
but there is nothing of any particular importance to be learned at this point, since
I can always check the status again later, so I use an effectively empty completion
function.

.Authorized

There is nothing to do; we’re already authorized.

.Restricted

This means that we have been denied authorization and that the user may not
have the power to authorize us. There’s no point harassing the user about this, so
I do nothing.

.Denied

This means that we have been denied authorization. I could do nothing, but it is
also reasonable to put up an alert begging for authorization. You can take the
user directly to the spot in the Settings app where the user can provide authoriza‐
tion, so I offer to do that.

Here’s my determineStatus method for the photo library:

func determineStatus() -> Bool {
 let status = PHPhotoLibrary.authorizationStatus()
 switch status {
 case .Authorized:
 return true
 case .NotDetermined:
 PHPhotoLibrary.requestAuthorization() {_ in}
 return false

840 | Chapter 17: Photo Library and Image Capture

Figure 17-1. The system prompts for photo library access

 case .Restricted:
 return false
 case .Denied:
 let alert = UIAlertController(
 title: "Need Authorization",
 message: "Wouldn't you like to authorize this app " +
 "to use your Photo library?",
 preferredStyle: .Alert)
 alert.addAction(UIAlertAction(
 title: "No", style: .Cancel, handler: nil))
 alert.addAction(UIAlertAction(
 title: "OK", style: .Default, handler: {
 _ in
 let url = NSURL(string:UIApplicationOpenSettingsURLString)!
 UIApplication.shared.openURL(url)
 }))
 self.presentViewController(alert, animated:true, completion:nil)
 return false
 }
}

One final bit of preparation is needed: The Info.plist should contain some text that the
system authorization request alert can use to explain why your app wants access. For
the photo library, the relevant key is “Privacy — Photo Library Usage Description”
(NSPhotoLibraryUsageDescription). Figure 17-1 shows the authorization request
alert containing my (rather bland) usage description:

To retest the system authorization request alert and other access-related behav‐
iors, go to the Settings app and choose General → Reset → Reset Location & Pri‐
vacy. This, unfortunately, causes the system to revert to its default settings for
everything in the Privacy section of Settings: all permissions lists will be empty,
but Location Services and all System Services will be On.

Choosing From the Photo Library
UIImagePickerController is a view controller providing an interface in which the
user can choose an item from the photo library, similar to the Photos app. You are

Choosing From the Photo Library | 841

expected treat the UIImagePickerController as a presented view controller. You can
use a popover on the iPad, but it looks good as a fullscreen presented view.

The documentation claims that a fullscreen presented view is forbidden on the
iPad; this is not true (though it was true in early versions of iOS).

To let the user choose an item from the photo library, instantiate UIImagePicker‐
Controller and assign its sourceType one of these values (UIImagePickerController‐
SourceType):

.PhotoLibrary

The user is shown a table of all albums, and can navigate into any of them.

.SavedPhotosAlbum

In theory, the user is confined to the contents of the Camera Roll album. Instead,
in iOS 8 and 9, the user sees the Moments interface and all photos are shown (I
regard this as an atrocious bug).

You should call the class method isSourceTypeAvailable: beforehand; if it doesn’t
return true, don’t present the controller with that source type.

You’ll probably want to specify an array of mediaTypes you’re interested in. This array
will usually contain kUTTypeImage, kUTTypeMovie, or both; or you can specify all
available types by calling the class method availableMediaTypesForSourceType:.

After doing all of that, and having supplied a delegate (adopting UIImagePicker‐
ControllerDelegate and UINavigationControllerDelegate), present the picker:

let src = UIImagePickerControllerSourceType.SavedPhotosAlbum
let ok = UIImagePickerController.isSourceTypeAvailable(src)
if !ok {
 print("alas")
 return
}
let arr = UIImagePickerController.availableMediaTypesForSourceType(src)
if arr == nil {
 print("no available types")
 return
}
let picker = UIImagePickerController()
picker.sourceType = src
picker.mediaTypes = arr!
picker.delegate = self
self.presentViewController(picker, animated: true, completion: nil)

If authorization has not been granted, the UIImagePickerController is presented, but
it will be empty (with a reminder that the user has denied your app access to the

842 | Chapter 17: Photo Library and Image Capture

Figure 17-2. The image picker, when the user has denied access

photo library) and the user won’t be able to do anything but cancel (Figure 17-2).
Thus, your code is unaffected.

The delegate will receive one of these messages:

• imagePickerController:didFinishPickingMediaWithInfo:

• imagePickerControllerDidCancel:

If a UIImagePickerControllerDelegate method is not implemented, the view control‐
ler is dismissed automatically at the point where that method would be called; but
rather than relying on this, you should probably implement both delegate methods
and dismiss the view controller yourself in each.

The didFinish... method is handed a dictionary of information about the chosen
item. The keys in this dictionary depend on the media type:

An image
The keys are:

UIImagePickerControllerMediaType

A UTI; probably "public.image", which is the same as kUTTypeImage.

UIImagePickerControllerReferenceURL

An asset URL pointing to the image file in the library.

UIImagePickerControllerOriginalImage

A UIImage. This is the output you are expected to use. For example, you
might display it in a UIImageView.

A movie
The keys are:

Choosing From the Photo Library | 843

UIImagePickerControllerMediaType

A UTI; probably "public.movie", which is the same as kUTTypeMovie.

UIImagePickerControllerReferenceURL

An asset URL pointing to the movie file in the library.

UIImagePickerControllerMediaURL

A file URL to a copy of the movie saved into a temporary directory. This is
the output you are expected to use. For example, you might display it in an
AVPlayerViewController’s view or an AVPlayerLayer (Chapter 15).

Optionally, you can set the view controller’s allowsEditing to true. In the case of an
image, the interface then allows the user to scale the image up and to move it so as to
be cropped by a preset rectangle; the dictionary will include two additional keys:

UIImagePickerControllerCropRect

An NSValue wrapping a CGRect.

UIImagePickerControllerEditedImage

A UIImage. This becomes the image you are expected to use.

In the case of a movie, if the view controller’s allowsEditing is true, the user can
trim the movie just as with a UIVideoEditorController (Chapter 15). The dictionary
keys are the same as before.

Here’s an example implementation of imagePickerController:didFinishPicking-
MediaWithInfo: that covers the fundamental cases:

func imagePickerController(picker: UIImagePickerController,
 didFinishPickingMediaWithInfo info: [String : AnyObject]) {
 let url = info[UIImagePickerControllerMediaURL] as? NSURL
 var im = info[UIImagePickerControllerOriginalImage] as? UIImage
 let edim = info[UIImagePickerControllerEditedImage] as? UIImage
 if edim != nil {
 im = edim
 }
 self.dismissViewControllerAnimated(true) {
 let type = info[UIImagePickerControllerMediaType] as? String
 if type != nil {
 switch type! {
 case kUTTypeImage as NSString as String:
 if im != nil {
 self.showImage(im!)
 }
 case kUTTypeMovie as NSString as String:
 if url != nil {
 self.showMovie(url!)
 }
 default:break

844 | Chapter 17: Photo Library and Image Capture

 }
 }
 }
}

UIImagePickerController provides no way to govern its supported interface ori‐
entations (rotation). The delegate method navigationControllerSupported-
InterfaceOrientations: is ineffective. My solution is to subclass.

Photos Framework
The Photos framework, also known as Photo Kit, does for the photo library roughly
what the Media Player framework does for the music library (Chapter 16), letting
your code explore the library’s contents — and then some. You can manipulate
albums, and can even perform edits on the user’s photos.

The Assets Library framework from iOS 7 and before is now deprecated, and is
not discussed in this edition.

The photo library itself is represented by the PHPhotoLibrary class — which I used
earlier in this chapter to authorize access — and by its shared instance, which you can
obtain through the sharedPhotoLibrary method. You will not often need to use this
class, however, and you do not need to retain the shared photo library instance. More
important are the classes representing the kinds of things that inhabit the library (the
photo entities):

PHAsset

A single photo or video file.

PHCollection

An abstract class representing collections of all kinds. Its concrete subclasses are:

PHAssetCollection

A collection of photos; albums and moments are PHAssetCollections.

PHCollectionList

A collection of asset collections. For example, a year of moments is a collec‐
tion list; a folder of albums is a collection list.

Finer typological distinctions are drawn, not through subclasses, but through a sys‐
tem of types and subtypes. For example, a PHAsset might have a type of .Image and a
subtype of .PhotoPanorama; a PHAssetCollection might have a type of .Album and a
subtype of .AlbumRegular; and so on.

Photos Framework | 845

The photo entity classes are actually all subclasses of PHObject, an abstract class that
endows them all with a localIdentifier property that functions as a persistent
unique identifier.

Querying the Photo Library
When you want to know what’s in the photo library, start with one of the photo entity
classes — the one that represents the type of entity you want to know about. The
photo entity class will supply class methods whose names begin with fetch; you’ll
pick the class method that expresses the kind of criteria you’re starting with. For
example, to fetch one or more PHAssets, you’ll call a PHAsset fetch method; you can
fetch by containing asset collection, by local identifier, by media type, or by asset URL
(such as you might get from a UIImagePickerController). Similarly, you can fetch
PHAssetCollections by identifier, by URL, by whether they contain a given PHAsset;
you can fetch PHCollectionLists by identifier, by whether they contain given a PHAs‐
setCollection; and so on.

Many of these fetch methods have options that help to limit and define the search. In
addition, you can supply a PHFetchOptions object letting you refine the results even
further: you can set its predicate to limit your request results, and its sort-
Descriptors to determine the results order. New in iOS 9, a PHFetchOptions object’s
fetchLimit can limit the number of results returned, and its includeAssetSource-
Types can limit where the results should come from, such as eliminating cloud items
(as we did with MPMediaItems in Chapter 16). You may even be able to fetch based
entirely on a PHFetchOptions object (for instance, there’s PHAsset’s fetchAssetsWith-
Options:).

What you get back from a fetch method query is not images or videos but informa‐
tion. A fetch method returns a collection of PHObjects of the type to which you sent
the fetch method originally; these refer to entities in the photo library, rather than
handing you an entire file (which would be huge). The collection itself is expressed as
a PHFetchResult, which behaves very like an array: you can ask for its count, obtain
the object at a given index (including the use of subscripting), look for an object
within the collection, and enumerate the collection with an enumerate method.

You cannot enumerate a PHFetchResult with for...in in Swift, even though you can
do so in Objective-C. I regard this as a bug. The workaround is to extend PHFetchRe‐
sult to adopt the SequenceType protocol; you then can enumerate it with for...in
(and I do so in my examples):

extension PHFetchResult: SequenceType {
 public func generate() -> NSFastGenerator {
 return NSFastGenerator(self)
 }
}

846 | Chapter 17: Photo Library and Image Capture

For example, let’s say we want to know how moments are divided into years. A clump
of moments grouped by year is a PHCollectionList, so the relevant class is PHCollec‐
tionList. This code is a fairly standard template for any sort of information fetching:

let opts = PHFetchOptions()
let desc = NSSortDescriptor(key: "startDate", ascending: true)
opts.sortDescriptors = [desc]
let result = PHCollectionList.fetchCollectionListsWithType(
 .MomentList, subtype: .MomentListYear, options: opts)
for obj in result {
 let list = obj as! PHCollectionList
 let f = NSDateFormatter()
 f.dateFormat = "yyyy"
 print(f.stringFromDate(list.startDate!))
}
/*
1987
1988
1989
1990
...
*/

Each resulting list object in the preceding code is a PHCollectionList comprising a
list of moments. Let’s dive into that object to see how those moments are clumped
into clusters. A cluster of moments is a PHAssetCollection, so the relevant class is
PHAssetCollection:

let result = PHAssetCollection.fetchMomentsInMomentList(
 list, options: nil)
for (ix,obj) in result.enumerate() {
 let coll = obj as! PHAssetCollection
 if ix == 0 {
 print("======= \(result.count) clusters")
 }
 f.dateFormat = ("yyyy-MM-dd")
 print("starting \(f.stringFromDate(coll.startDate!)): " +
 "\(coll.estimatedAssetCount)")
}
/*
======= 12 clusters
starting 1987-05-15: 2
starting 1987-05-16: 6
starting 1987-05-17: 2
starting 1987-05-20: 4
....
*/

Observe that in that code we can learn how many moments are in each cluster only as
its estimatedAssetCount. This is probably the right answer, but to obtain the real
count, we’d have to dive one level deeper and fetch the cluster’s actual moments.

Photos Framework | 847

Next, let’s list all albums that have been synced onto the device from iPhoto. An
album is a PHAssetCollection, so the relevant class is PHAssetCollection:

let result = PHAssetCollection.fetchAssetCollectionsWithType(
 .Album, subtype: .AlbumSyncedAlbum, options: nil)
for obj in result {
 let album = obj as! PHAssetCollection
 print("\(album.localizedTitle): " +
 "approximately \(album.estimatedAssetCount) photos")
}

Again, let’s dive further: given an album, let’s fetch its contents. An album’s contents
are its assets (photos and videos), so the relevant class is PHAsset:

let result = PHAsset.fetchAssetsInAssetCollection(album, options: nil)
for obj in result {
 let asset = obj as! PHAsset
 print(asset)
}

There is no PHAsset fetch method for fetching from a collection all assets of a
certain type! Thus, for example, you cannot simply get all photos (and no videos)
from the user’s Camera Roll. You can perform such a fetch, but to do so, you
need to form an NSPredicate and use a PHFetchOptions object; I’ll give an
example later. This is a case of Apple making something easy into something
hard.

Modifying the Library
Structural modifications to the photo library are performed through a change request
class corresponding to the class of photo entity we wish to modify. The name of the
change request class is the name of a photo entity class followed by “ChangeRequest.”
Thus, for PHAsset, there’s the PHAssetChangeRequest class — and so on.

A change request is usable only by calling a performChanges method on the shared
photo library. Typically, the method you’ll call will be performChanges:completion-
Handler:, which takes two functions. The first function is where you describe the
changes you want performed; the second function is called back after the changes
have been performed. The reason for this peculiar structure is that the photo library
is a live database. While we are working, the photo library can change. Therefore, a
performChanges: block is used to batch our desired changes and send them off as a
single transaction to the photo library, which responds when the outcome of the
entire batch is known.

Each change request class comes with methods that ask for a change of some particu‐
lar type. For example, PHAssetChangeRequest has class methods deleteAssets:,
creationRequestForAssetFromImage:, and so on. PHAssetCollectionChangeRe‐
quest, in addition to the class methods deleteAssetCollections: and creation-

848 | Chapter 17: Photo Library and Image Capture

RequestForAssetCollectionWithTitle:, has initializers init?

(forAssetCollection:) and init?(forAssetCollection:assets:), along with
instance methods addAssets:, removeAssets:, and so on. The creationRequest
class methods also return change request instances, but you won’t need them unless
you plan to perform further changes as part of the same batch.

For example, let’s create an album called “Test Album.” An album is a PHAsset‐
Collection, so we start with the PHAssetCollectionChangeRequest class and call its
creation class method in the performChanges: block. This method returns a PHAsset‐
CollectionChangeRequest instance, but we don’t need that instance for anything, so
we simply throw it away:

PHPhotoLibrary.sharedPhotoLibrary().performChanges({
 let t = "TestAlbum"
 _ = PHAssetCollectionChangeRequest
 .creationRequestForAssetCollectionWithTitle(t)
 }, completionHandler: {
 (ok:Bool, err:NSError?) in
 print("created TestAlbum: \(ok)")
})

It may appear, in that code, that we didn’t actually do anything — we asked for a cre‐
ation request, but we didn’t tell it to do any creating. Nevertheless, that code is suffi‐
cient; generating the creation request for a new asset collection in the
performChanges: block constitutes an instruction to create an asset collection.

That code, however, is rather silly, in that we created an album but are left with no
reference to it. To fix that, we need a PHObjectPlaceholder. This minimal PHObject
subclass has just one property — localIdentifier, which it inherits from PHObject.
But this is enough to permit a reference to the created object to survive into the com‐
pletion function, where we can do something useful with it. So our code now looks
like this:

var ph : PHObjectPlaceholder?
PHPhotoLibrary.sharedPhotoLibrary().performChanges({
 let t = "TestAlbum"
 let cr = PHAssetCollectionChangeRequest
 .creationRequestForAssetCollectionWithTitle(t)
 ph = cr.placeholderForCreatedAssetCollection
 }, completionHandler: {
 (ok:Bool, err:NSError?) in
 print("created TestAlbum: \(ok)")
 if let ph = ph {
 print("and its id is \(ph.localIdentifier)")
 }
})

Now suppose we subsequently want to populate our newly created album. For exam‐
ple, let’s say we want to make the first asset in the user’s Recently Added smart album

Photos Framework | 849

a member of our new album as well. No problem! First, we need a reference to the
Recently Added album; then we need a reference to its first asset; and finally, we need
a reference to our newly created album (which is easy if we have captured its local-
Identifier from the preceding code). Those are all basic fetch requests:

// find Recently Added smart album
let result = PHAssetCollection.fetchAssetCollectionsWithType(
 .SmartAlbum, subtype: .SmartAlbumRecentlyAdded, options: nil)
guard let rec = result.firstObject as? PHAssetCollection else {
 print("no recently added album")
 return
}
// find its first asset
let result2 = PHAsset.fetchAssetsInAssetCollection(rec, options: nil)
guard let asset1 = result2.firstObject as? PHAsset else {
 print("no first item in recently added album")
 return
}
// find our newly created album by its local id
let result3 = PHAssetCollection
 .fetchAssetCollectionsWithLocalIdentifiers(
 [self.newAlbumId!], options: nil)
guard let alb2 = result3.firstObject as? PHAssetCollection else {
 print("no target album")
 return
}

Carrying on from there, it’s easy to make the change request; we are asking to add
asset1 to alb2:

PHPhotoLibrary.sharedPhotoLibrary().performChanges({
 let cr = PHAssetCollectionChangeRequest(forAssetCollection: alb2)
 cr?.addAssets([asset1])
 }, completionHandler: {
 (ok:Bool, err:NSError?) in
 print("added it: \(ok)")
})

What if we created an asset collection and wanted to add it to something (presumably
to a PHCollectionList), all in one batch request? Requesting the creation of an asset
collection gives us a PHAssetCollectionChangeRequest; you can’t add that to a collec‐
tion. And the requested PHAssetCollection itself hasn’t been created yet! Once again,
the solution would be to use placeholderForCreatedAssetCollection to obtain a
PHObjectPlaceholder object. The placeholder object has the remarkable feature that,
because it is a PHObject, it can be used instead of a “real” object in the argument of
calls such as addChildCollections:.

A PHAssetChangeRequest is a little different from a collection change request: you
can create an asset or delete an asset, but you obviously are not going to add or
remove anything from an asset. You can, however, change the asset’s features, such as

850 | Chapter 17: Photo Library and Image Capture

its creation date or its associated geographical location. By default, creating a PHAsset
puts it into the user’s Camera Roll album immediately. I’ll give an example later in
this chapter.

Being Notified of Changes
When the library is modified, either by your code or by some other means while your
app is running, any information you’ve collected about the library — information
which you may even be displaying in your interface at that very moment — may
become out-of-date. To cope with this possibility, you should, early in the life of your
app, register a change observer (adopting the PHPhotoLibraryChangeObserver pro‐
tocol) with the photo library:

PHPhotoLibrary.sharedPhotoLibrary().registerChangeObserver(self)

The outcome is that, whenever the library changes, the observer’s photoLibraryDid-
Change: method is called, with a PHChange object encapsulating a description of the
change. The observer can then probe the PHChange object, using one (or both) of
these methods:

changeDetailsForObject:

The parameter is a single PHAsset, PHAssetCollection, or PHCollectionList
you’re interested in. The result is a PHObjectChangeDetails object, with proper‐
ties like objectBeforeChanges, objectAfterChanges, and objectWasDeleted.

changeDetailsForFetchResult:

The parameter is a previously obtained PHFetchResult. The result is a PHFetch‐
ResultChangeDetails object, with properties like fetchResultBeforeChanges,
fetchResultAfterChanges, removedObjects, insertedObjects, and so on.

For example, suppose my interface is displaying a list of album names, which I
obtained originally through a PHAssetCollection fetch request. At the time that I per‐
formed the fetch request, I also retained, as an instance property (self.albums), the
fetch result that it returned. Thus, if my photoLibraryDidChange: method is called, I
can find out whether any albums in that fetch result were added or removed; from
there, I can update the fetch result and change my interface accordingly:

func photoLibraryDidChange(changeInfo: PHChange) {
 if self.albums !== nil {
 if let details =
 changeInfo.changeDetailsForFetchResult(self.albums) {
 dispatch_async(dispatch_get_main_queue()) {
 if details.insertedObjects != nil {
 self.albums = details.fetchResultAfterChanges
 // adjust interface here ...
 }

Photos Framework | 851

 }
 }
 }
}

Merely performing a fetch request can generate a PHChange report. If you don’t
want that, supply to the fetch request a PHFetchOptions object whose wants-
IncrementalChangeDetails is false.

Displaying Images
Sooner or later, you’ll probably want to go beyond information about the structure of
the photo library and fetch an actual photo or video for display in your app. PHAsset
image data is retrieved, in the first instance, through the PHImageManager default-
Manager object. For an image, you can ask for a UIImage or its NSData; for a video,
you can ask for an AVPlayerItem, an AVAsset, or an AVAssetExportSession suitable
for exporting the video file to a new location (see Chapter 15).

All of the methods for obtaining an image or video take a completion function called
resultHandler:. The thing you requested is not returned as the method call’s result;
rather, it is supplied as the first parameter of the completion function. The reason is
that the process of obtaining an image can be time-consuming, so there has to be a
way in which you can be called back asynchronously. This is true not only because the
data may be large but also because it may be stored in the cloud.

In fact, if you’re asking for a UIImage, information about the image may increase in
accuracy and detail in the course of this process — with the curious consequence that
your resultHandler: is not only called asynchronously but may be called multiple
times. The idea is to give you some image to display as fast as possible, with better
versions of the image arriving later. If you would rather receive just one version of the
image, you can, by passing into your call an appropriate PHImageRequestOptions
object (as I’ll explain in a moment).

You can specify details of the data-retrieval process by using the parameters of the
method that you call. For example, when asking for a UIImage, you supply these
parameters:

targetSize:

The size of the desired image. It is a waste of memory to ask for an image larger
than you need for actual display, and a larger image may take longer to supply.
The image retrieval process performs the desired downsizing so that you don’t
have to. For the largest possible size, pass PHImageManagerMaximumSize.

852 | Chapter 17: Photo Library and Image Capture

contentMode:

A PHImageContentMode, either .AspectFit or .AspectFill, with respect to
your targetSize. Again, with .AspectFill, the image retrieval process does any
needed cropping so that you don’t have to.

options:

A PHImageRequestOptions object. This is a value class representing a grab-bag
of additional tweaks, such as:

• Do you want the original image or the edited image?
• Do you want one resultHandler: call or many, and if one, do you want a

degraded thumbnail or the best possible quality?
• Do you want custom cropping?
• Do you want the image fetched over the network if necessary, and if so, do

you want to install a progress handler?
• Do you want the image fetched synchronously? If you do, you will get only

one resultHandler call. Keep in mind that in this case you must make your
call on a background thread, and the image will arrive on that same back‐
ground thread (see Chapter 25).

It sounds involved, but it needn’t be. In this simple example, I have a view controller
called DataViewController, good for viewing one photo. It has an image view outlet
(self.iv). It also has a PHAsset property, self.asset, which is assumed to have
been set when this DataViewController instance was created. In viewDidLoad, I call
my setUpInterface utility method to populate the interface:

func setUpInterface() {
 guard let asset = self.asset else { return }
 PHImageManager.defaultManager().requestImageForAsset(asset,
 targetSize: CGSizeMake(300,300), contentMode: .AspectFit,
 options: nil) {
 (im:UIImage?, info:[NSObject : AnyObject]?) in
 if let im = im {
 self.iv.image = im
 }
 }
}

This may result in the image view’s image being set multiple times as the requested
image’s quality improves, but there is nothing wrong with that.

Now imagine an app whose interface is a UIPageViewController permitting the user
to view each individual image in an album. I can use my DataViewController as the
pages of the UIPageViewController. Let’s say that the album is the user’s Camera Roll.
I’ll start by obtaining a fetch result collecting all the image assets in the Camera Roll:

Photos Framework | 853

self.recentAlbums = PHAssetCollection.fetchAssetCollectionsWithType(
 .SmartAlbum, subtype: .SmartAlbumUserLibrary, options: nil)
guard let rec = self.recentAlbums.firstObject as? PHAssetCollection
 else {return}
let options = PHFetchOptions() // photos only, please
let pred = NSPredicate(format: "mediaType = %@", NSNumber(
 integer:PHAssetMediaType.Image.rawValue))
options.predicate = pred
self.photos = PHAsset.fetchAssetsInAssetCollection(rec, options: options)

The fetch result, self.photos, is now our model object. Given an index number, I
can provide a DataViewController displaying the corresponding photo:

func viewControllerAtIndex(index: Int, storyboard: UIStoryboard)
 -> DataViewController? {
 if self.photos == nil ||
 self.photos.count == 0 ||
 index >= self.photos.count {
 return nil
 }
 let dvc = storyboard.instantiateViewControllerWithIdentifier(
 "DataViewController") as! DataViewController
 dvc.asset = self.photos[index] as! PHAsset
 return dvc
}

I can also find the index of any DataViewController’s corresponding asset in
self.photos:

func indexOfViewController(dvc: DataViewController) -> Int {
 let asset = dvc.asset
 let ix = self.photos.indexOfObject(asset)
 return ix
}

Writing the UIPageViewControllerDataSource methods is now trivial — and presto,
you’ve written a photo album browser! For a more elaborate example, displaying pho‐
tos in a UICollectionView, look at Apple’s SamplePhotosApp sample code.

The info parameter in an image request’s result handler is a dictionary whose ele‐
ments may be useful in a variety of circumstances; for example:

PHImageResultRequestIDKey

Uniquely identifies a single image request for which this result handler is being
called multiple times. This value is also returned by the original request method
call (I didn’t bother to capture it in the previous example). You can also use this
identifier to call cancelImageRequest: if it turns out that you don’t need this
image after all.

854 | Chapter 17: Photo Library and Image Capture

PHImageResultIsInCloudKey

Warns that the image is in the cloud and that your request must be resubmitted
with explicit permission to use the network.

PHImageCancelledKey

Reports that an attempt to cancel an image request with cancelImageRequest:
succeeded.

If you imagine that your interface is a table view or collection view, you can see why
the asynchronous, time-consuming nature of image fetching can be of importance.
As the user scrolls, a cell comes into view and you request the corresponding image.
But as the user keeps scrolling, that cell goes out of view, and now the requested
image, if it hasn’t arrived, is no longer needed, so you cancel the request. (I’ll tackle
the same sort of problem with regard to Internet-based images in a table view in
Chapter 24.) There is also a PHImageManager subclass, PHCachingImageManager,
that can help do the opposite: you can prefetch some images before the user scrolls to
view them, thus improving response time.

New in iOS 9, you can access an asset’s various kinds of data directly through the
PHAssetResource and PHAssetResourceManager classes. Conversely, PHAsset‐
ChangeRequest has a subclass PHAssetCreationRequest, which allows you to
supply the asset’s NSData directly. For a list of the data types we’re talking about
here, see the documentation on the PHAssetResourceType enum.

Editing Images
Astonishingly, Photo Kit allows you to change an image in the user’s photo library.
Why is this even legal? There are two reasons:

• The user will have to give permission every time your app proposes to modify a
photo in the library.

• Changes to library photos are undoable, because the original image remains in
the database along with the changed image that the user sees (and the user can
revert to that original at any time).

To change a photo is a three-step process:

1. You send a PHAsset the requestContentEditingInputWithOptions:completion-
Handler: message. Your completionHandler: is called, and is handed a
PHContentEditingInput object. This object wraps some image data which you
can display to the user (displaySizeImage), along with a pointer to the real
image data on disk (fullSizeImageURL).

2. You create a PHContentEditingOutput object by calling init(contentEditing-
Input:), handing it the PHContentEditingInput object. This PHContentEditing‐

Photos Framework | 855

Output object has a renderedContentURL property, which is a URL representing
a URL on disk. Your mission is to write the edited photo image data to that URL.
Thus, what you’ll typically do is:
a. Fetch the image data from the PHContentEditingInput object’s fullSize-

ImageURL.
b. Process the image.
c. Write the resulting image data to the PHContentEditingOutput object’s

renderedContentURL.
3. You notify the photo library that it should pick up the edited version of the

photo. To do so, you call performChanges:completionHandler: and, inside the
performChanges: block, create a PHAssetChangeRequest and set its content-
EditingOutput property to the PHContentEditingOutput object. This is when
the user will be shown the alert requesting permission to modify this photo; your
completionHandler: is then called, with a first parameter of false if the user
refuses (or if anything else goes wrong).

However, if you do only what I have just described, your attempt to modify the photo
will fail. The reason is that I have omitted something: before the third step, you must
set the PHContentEditingOutput object’s adjustmentData property to a newly
instantiated PHAdjustmentData object. The initializer is init(format-

Identifier:formatVersion:data:). What goes into these parameters is completely
up to you; the idea, however, is to send a message to your future self in case you are
called upon to edit the same photo again later.

The adjustmentData, too, works in three steps, interwoven with the three steps I
already outlined:

1. When you call the requestContentEditingInputWithOptions:completion-

Handler: method, the options: argument should be a PHContentEditingInput‐
RequestOptions object. You are to create this object and set its
canHandleAdjustmentData property to a function that takes a PHAdjustment‐
Data and returns a Bool. This Bool should be based simply on whether you rec‐
ognize this PHAdjustmentData as yours — typically because you recognize its
formatIdentifier. That determines what image you’ll get when you receive
your PHContentEditingInput object:

Your canHandleAdjustmentData function returns false
The image you’ll be editing is the edited image displayed in the Photos app.

856 | Chapter 17: Photo Library and Image Capture

Your canHandleAdjustmentData function returns true
The image you’ll be editing is the original image, stripped of your edits. This
is because, by returning true, you are asserting that you can recreate the
content of your edits based on what’s in the PHAdjustmentData’s data.

2. When your completionHandler: is called and you receive your PHContent‐
EditingInput object, it has (you guessed it) an adjustmentData property! Natu‐
rally, it is a PHAdjustmentData object. Its data is the data you put in the last
time you edited this image, and you are expected to extract it and use it to recre‐
ate the edited state of the image.

3. When you prepare the PHContentEditingOutput, you give it a new PHAdjust‐
mentData object, as I already explained. If you are performing edits, the data of
this new PHAdjustmentData object can be a summary of the edited state of the
photo from your point of view — and so the whole cycle can start again if the
same photo is to be edited again later.

If this image has no PHAdjustmentData, or if your canHandleAdjustmentData
returns false, the PHContentEditingInput’s adjustmentData property will be
`nil`. Unfortunately, in iOS 9, this property is typed as a PHAdjustmentData, not
an Optional. This is a serious mistake on Apple’s part. To work around it, you
must assign the adjustmentData immediately to an Optional variable.

This may sound confusing or complicated, but in fact an actual implementation is
quite straightforward and almost pure boilerplate. The details will vary only in regard
to the actual editing of the photo and the actual data by which you’ll summarize that
editing — so, in constructing an example, I’ll keep that part very simple. Recall, from
Chapter 2 (“CIFilter and CIImage” on page 118), my example of a custom “vignette”
CIFilter called MyVignetteFilter. I’ll provide an interface whereby the user can apply
that filter to a photo. My interface will include a slider that allows the user to set the
degree of vignetting that should be applied (MyVignetteFilter’s inputPercentage).
Moreover, my interface will include a button that lets the user remove all vignetting
from the photo, even if that vignetting was applied in a previous editing session.

First, I’ll plan the structure of the PHAdjustmentData. The formatIdentifier can be
any unique string; I’ll use "com.neuburg.matt.PhotoKitImages.vignette", a con‐
stant that I’ll store in a property (self.myidentifier). The formatVersion is like‐
wise arbitrary; I’ll use "1.0". Finally, the data will express the only thing about my
editing that is adjustable — the inputPercentage. The data will wrap an NSNumber
which itself wraps a Double whose value is the inputPercentage.

As editing begins, I construct the PHContentEditingInputRequestOptions object that
expresses whether a photo’s most recent editing belongs to me. I then obtain the
photo that is to be edited (a PHAsset) and ask for the PHContentEditingInput object:

Photos Framework | 857

let options = PHContentEditingInputRequestOptions()
options.canHandleAdjustmentData = {
 (adjustmentData : PHAdjustmentData!) in
 return adjustmentData.formatIdentifier == self.myidentifier
}
let asset = self.asset
asset.requestContentEditingInputWithOptions(options, completionHandler: {
 // ...
})

Inside the completionHandler:, I receive my PHContentEditingInput object. I’m
going to need this object later when editing ends, so I immediately store it in a prop‐
erty. I then unwrap its adjustmentData and construct the editing interface; in this
case, that happens to be a presented view controller, but the details are irrelevant and
are omitted here:

(input:PHContentEditingInput?, info:[NSObject : AnyObject]) in
guard let input = input else { return }
self.input = input
let im = input.displaySizeImage! // show this to the user during editing
let adj : PHAdjustmentData? = input.adjustmentData
if let adj = adj where adj.formatIdentifier == self.myidentifier {
 if let vigAmount =
 NSKeyedUnarchiver.unarchiveObjectWithData(adj.data) as? Double {
 // ... store vigAmount ...
 }
}
// ... present editing interface ...

The idea is that if we were able to extract a vigAmount from the adjustmentData, then
the displaySizeImage is the original, unvignetted image. Meanwhile, our editing
interface itself initially applies the vigAmount of vignetting to this image — thus
reconstructing the vignetted state of the photo as shown in the Photos app, while allow‐
ing the user to change the amount of vignetting, or even to remove all vignetting
entirely. On the other hand, if we weren’t able to extract a vigAmount from the
adjustmentData, then there is nothing to reconstruct; the displaySizeImage is just
the photo image from the Photos app, and we will apply vignetting to it directly.

Let’s skip ahead now to the point where the user’s interaction with our editing inter‐
face comes to an end. If the user cancelled, that’s all; the user doesn’t want to modify
the photo after all. Otherwise, the user either asked to apply a certain amount of
vignetting (vignette) or asked to remove all vignetting from the original image. In
the latter case, I use an arbitrary vignette value of -1 as a signal. Recall that we have
been working all this time, in the editing interface, with the PHContentEditingInput’s
displaySizeImage. Now, however, we must apply this amount of vignetting to the
real photo image, which has been sitting waiting for us all this time, untouched, at the
PHContentEditingInput’s fullSizeImageURL. This is a much bigger image, which will
take significant time to load, to alter, and to save — which is why we haven’t been

858 | Chapter 17: Photo Library and Image Capture

working with it live in the editing interface. Now, however, is the moment! So,
depending on the value of vignette requested by the user, I either run the input
image from the fullSizeImageURL through my vignette filter or I don’t; either way, I
write a JPEG to the PHContentEditingOutput’s renderedContentURL:

let input = self.input
let inurl = input.fullSizeImageURL!
let inorient = input.fullSizeImageOrientation
let output = PHContentEditingOutput(contentEditingInput: input)
let outurl = output.renderedContentURL
let outcgimage = {
 () -> CGImage in
 var ci = CIImage(contentsOfURL: inurl)!
 .imageByApplyingOrientation(inorient)
 if vignette >= 0.0 {
 let vig = MyVignetteFilter()
 vig.setValue(ci, forKey: "inputImage")
 vig.setValue(vignette, forKey: "inputPercentage")
 ci = vig.outputImage!
 }
 return CIContext(options: nil).createCGImage(ci, fromRect: ci.extent)
}()
let dest = CGImageDestinationCreateWithURL(outurl, kUTTypeJPEG, 1, nil)!
CGImageDestinationAddImage(dest, outcgimage, [
 kCGImageDestinationLossyCompressionQuality as String:1
])
CGImageDestinationFinalize(dest)

(The image that we save at the renderedContentURL must be a maximum-quality
JPEG. I achieve that by using the ImageIO framework, discussed in Chapter 23.)

But we are not quite done. As I’ve already mentioned, it is crucial that we set the
PHContentEditingOutput’s adjustmentData, and the goal here is to send a message
to myself, in case I am asked later to edit this same image again, as to what amount of
vignetting is already applied to the image. That amount is represented by vignette —
so that’s the value I store in the adjustmentData:

let data = NSKeyedArchiver.archivedDataWithRootObject(vignette)
output.adjustmentData = PHAdjustmentData(
 formatIdentifier: self.myidentifier, formatVersion: "1.0", data: data)

The finished image is now sitting at the renderedContentURL, and we conclude by
telling the photo library to retrieve it:

PHPhotoLibrary.sharedPhotoLibrary().performChanges({
 let asset = self.asset
 let req = PHAssetChangeRequest(forAsset: asset)
 req.contentEditingOutput = output
 }, completionHandler: {
 (ok:Bool, err:NSError?) in
 if ok {

Photos Framework | 859

 // image changed! adjust interface
 } else {
 print(err)
 }
})

Photo Editing Extension
A photo editing extension is photo-modifying code supplied by your app that is
effectively injected into the Photos app. When the user edits a photo from within the
Photos app, your extension appears as an option and can modify the photo being edi‐
ted.

To make a photo editing extension, create a new target in your app, specifying iOS →
Application Extension → Photo Editing Extension. The template supplies a story‐
board containing one scene, along with the code file for a corresponding UIView‐
Controller subclass. This file imports not only the Photos framework but also the
PhotosUI framework, which supplies the PHContentEditingController protocol, to
which the view controller conforms. This protocol specifies the methods through
which the runtime will communicate with your extension’s code.

A photo editing extension works almost exactly the same way as modifying photo
library assets in general, as I described in the preceding section. The chief differences
are:

• You don’t put a Done or a Cancel button into your editing interface. The Photos
app will wrap your editing interface in its own interface, which supplies them
when it presents your view.

• You must situate the pieces of your code in such a way that those pieces respond
to the calls that will come through the PHContentEditingController methods.

The PHContentEditingController methods are as follows:

canHandleAdjustmentData:

You will not be instantiating PHContentEditingInput; the runtime will do it for
you. Therefore, instead of configuring a PHContentEditingInputRequestOptions
object and setting its canHandleAdjustmentData, you implement this method to
return a Bool.

startContentEditingWithInput:placeholderImage:

The runtime has obtained the PHContentEditingInput object for you. Now it
supplies that object to you, along with a very temporary initial version of the
image to be displayed in your interface; you are expected to replace this with the
PHContentEditingInput object’s displaySizeImage. Just as in the previous sec‐

860 | Chapter 17: Photo Library and Image Capture

tion’s code, you should retain the PHContentEditingInput object in a property, as
you will need it again later.

cancelContentEditing

The user tapped Cancel. You may well have nothing to do here.

finishContentEditingWithCompletionHandler:

The user tapped Done. In your implementation, you get onto a background
thread (the template configures this for you) and do exactly the same thing you
would do if this were not a photo editing extension — get the PHContentEditin‐
gOutput object and set its adjustmentData; get the photo from the PHContentE‐
ditingInput object’s fullSizeImageURL, modify it, and save the modified image
as a full-quality JPEG at the PHContentEditingOutput object’s renderedContent-
URL. When you’re done, don’t notify the PHPhotoLibrary; instead, call the
completionHandler that arrived as a parameter, handing it the PHContentEdi‐
tingOutput object.

Using the Camera
The simplest way to prompt the user to take a photo or video is to use our old friend
UIImagePickerController, which provides an interface similar to the Camera app. I’ll
describe this approach first, and then proceed to talk about controlling the camera
directly through the AV Foundation framework.

Use of the camera is greatly curtailed, and is interruptible, under iOS 9’s new
iPad multitasking. Watch 2015 WWDC video 211 for details.

Camera Authorization
Starting in iOS 8, use of the camera requires explicit authorization from the user. The
system will present the access request dialog; you should modify the body of this dia‐
log by setting the “Privacy — Camera Usage Description” key (NSCameraUsage-
Description) in your app’s Info.plist.

Using the UIImagePickerController to control the camera for the first time will cause
the system to present the authorization dialog on your behalf, but if you’d like to
ascertain the authorization status beforehand and summon the authorization dialog,
you can. The relevant calls are completely parallel to the photo library authorization
code I presented at the start of this chapter; the difference is that you’ll be talking to
the AVCaptureDevice class (you’ll need to import AVFoundation). Here’s how to
learn the current authorization status for use of the camera:

let status =
 AVCaptureDevice.authorizationStatusForMediaType(AVMediaTypeVideo)

Using the Camera | 861

The term AVMediaTypeVideo here embraces both stills and video. If the status is .Not-
Determined and you’d like to summon the authorization dialog explicitly, here’s how:

AVCaptureDevice.requestAccessForMediaType(
 AVMediaTypeVideo, completionHandler: nil)

If your app will let the user record actual video (as opposed to stills), you will also
need to obtain permission from the user to access the microphone. The same meth‐
ods apply, but with argument AVMediaTypeAudio. You should modify the body of the
authorization alert by setting the “Privacy — Microphone Usage Description” key
(NSMicrophoneUsageDescription) in your app’s Info.plist.

Using the Camera with UIImagePickerController
To use UIImagePickerController to control the camera, first check isSourceType-
Available: for .Camera; it will be false if the user’s device has no camera or the
camera is unavailable. If it is true, call availableMediaTypesForSourceType: to
learn whether the user can take a still photo (kUTTypeImage), a video (kUTTypeMovie),
or both. Now instantiate UIImagePickerController, set its source type to .Camera, and
set its mediaTypes in accordance with which types you just learned are available; if
your setting is an array of both kUTTypeImage and kUTTypeMovie, the user will see a
Camera-like interface allowing a choice of either one. Finally, set a delegate (adopting
UINavigationControllerDelegate and UIImagePickerControllerDelegate), and
present the picker.

So, for example:

let cam = UIImagePickerControllerSourceType.Camera
let ok = UIImagePickerController.isSourceTypeAvailable(cam)
if (!ok) {
 print("no camera")
 return
}
let desiredType = kUTTypeImage as NSString as String
let arr = UIImagePickerController.availableMediaTypesForSourceType(cam)
if arr?.indexOf(desiredType) == nil {
 print("no capture")
 return
}
let picker = UIImagePickerController()
picker.sourceType = .Camera
picker.mediaTypes = [desiredType]
picker.delegate = self
self.presentViewController(picker, animated: true, completion: nil)

For video, you can also specify the videoQuality and videoMaximumDuration. More‐
over, these additional properties and class methods allow you to discover the camera
capabilities:

862 | Chapter 17: Photo Library and Image Capture

isCameraDeviceAvailable:

Checks to see whether the front or rear camera is available, using one of these
values as argument (UIImagePickerControllerCameraDevice):

• .Front

• .Rear

cameraDevice

Lets you learn and set which camera is being used.

availableCaptureModesForCameraDevice:

Checks whether the given camera can capture still images, video, or both. You
specify the front or rear camera; returns an array of integers. Possible modes are
(UIImagePickerControllerCameraCaptureMode):

• .Photo

• .Video

cameraCaptureMode

Lets you learn and set the capture mode (still or video).

isFlashAvailableForCameraDevice:

Checks whether flash is available.

cameraFlashMode

Lets you learn and set the flash mode (or, for a movie, toggles the LED “torch”).
Your choices are (UIImagePickerControllerCameraFlashMode):

• .Off

• .Auto

• .On

When the view controller’s view appears, the user will see the interface for taking a
picture, familiar from the Camera app, possibly including flash options, camera selec‐
tion button, digital zoom (if the hardware supports it), photo/video option (if your
mediaTypes setting allows both), and Cancel and shutter buttons. If the user takes a
picture, the presented view offers an opportunity to use the picture or to retake it.

Allowing the user to edit the captured image or movie (allowsEditing), and han‐
dling the outcome with the delegate messages, is the same as I described earlier for
dealing with an image or movie selected from the photo library. There won’t be any
UIImagePickerControllerReferenceURL key in the dictionary delivered to the dele‐
gate, because the image isn’t in the photo library. A still image might report a UIImage-

Using the Camera | 863

PickerControllerMediaMetadata key containing the metadata for the photo. The
photo library was not involved in the process of media capture, so no user permission
to access the photo library is needed; of course, if you now propose to save the media
into the photo library, you will need permission. The minimal case is that you want to
save into the user’s Camera Roll, just as the Camera app would do; this is as simple as
can be — creating the PHAsset is sufficient:

func imagePickerController(picker: UIImagePickerController,
 didFinishPickingMediaWithInfo info: [String : AnyObject]) {
 var im = info[UIImagePickerControllerOriginalImage] as? UIImage
 let edim = info[UIImagePickerControllerEditedImage] as? UIImage
 if edim != nil {
 im = edim
 }
 self.dismissViewControllerAnimated(true) {
 let type = info[UIImagePickerControllerMediaType] as? String
 if type != nil {
 switch type! {
 case kUTTypeImage as NSString as String:
 if im != nil {
 let lib = PHPhotoLibrary.sharedPhotoLibrary()
 lib.performChanges({
 PHAssetChangeRequest
 .creationRequestForAssetFromImage(im!)
 }, completionHandler: nil)
 }
 default:break
 }
 }
 }
}

Customizing the Image Capture Interface
You can customize the UIImagePickerController interface. If you need to do that, you
should probably consider dispensing with UIImagePickerController altogether and
designing your own image capture interface from scratch, based around AV Founda‐
tion and AVCaptureSession, which I’ll introduce in the next section. Still, it may be
that a modified UIImagePickerController is all you need.

In the image capture interface, you can hide the standard controls by setting shows-
CameraControls to false, replacing them with your own overlay view, which you
supply as the value of the cameraOverlayView. In this case, you’re probably going to
want some means in your overlay view to allow the user to take a picture! You can do
that through these methods:

• takePicture

• startVideoCapture

864 | Chapter 17: Photo Library and Image Capture

• stopVideoCapture

In this example, I’ll remove all the default controls and use a gesture recognizer on
the cameraOverlayView to permit the user to double-tap the image in order to take a
picture:

picker.showsCameraControls = false
let f = self.view.window!.bounds
let v = UIView(frame:f)
let t = UITapGestureRecognizer(target:self, action:#selector(tap))
t.numberOfTapsRequired = 2
v.addGestureRecognizer(t)
picker.cameraOverlayView = v
self.picker = picker // we'll need this later

Our tap: gesture recognizer action handler simply calls takePicture:

func tap (g:UIGestureRecognizer) {
 self.picker?.takePicture()
}

It would be nice, however, to tell the user to double-tap to take a picture; we also need
to give the user a way to dismiss the image capture interface. We could put a button
and a label into the cameraOverlayView, but here, I’ll take advantage of the fact that
the UIImagePickerController is a UINavigationController. Thus, it has a toolbar that
we can bend to our own purposes. Moreover, we are the UIImagePickerController’s
delegate, meaning that we are not only its UIImagePickerControllerDelegate but also
its UINavigationControllerDelegate; I’ll use a delegate method to populate the tool‐
bar:

func navigationController(nc: UINavigationController,
 didShowViewController vc: UIViewController, animated: Bool) {
 nc.toolbarHidden = false
 let sz = CGSizeMake(10,10)
 let im = imageOfSize(sz) {
 UIColor.black.colorWithAlphaComponent(0.1).setFill()
 CGContextFillRect(
 UIGraphicsGetCurrentContext()!,
 CGRect(origin: CGPoint(), size: sz))
 }
 nc.toolbar.setBackgroundImage(
 im, forToolbarPosition: .Any, barMetrics: .Default)
 nc.toolbar.translucent = true
 let b = UIBarButtonItem(
 title: "Cancel", style: .Plain,
 target: self, action: #selector(doCancel))
 let lab = UILabel()
 lab.text = "Double tap to take a picture"
 lab.textColor = UIColor.white
 lab.backgroundColor = UIColor.clear()

Using the Camera | 865

 lab.sizeToFit()
 let b2 = UIBarButtonItem(customView: lab)
 nc.topViewController.toolbarItems = [b,b2]
}

When the user double-taps to take a picture, our imagePickerController:did-
FinishPickingMediaWithInfo: delegate method is called, just as before. We don’t
automatically get the secondary interface where the user is shown the resulting image
and offered an opportunity to use it or retake the image. But we can provide such an
interface ourselves, by pushing another view controller onto the navigation control‐
ler:

func imagePickerController(picker: UIImagePickerController,
 didFinishPickingMediaWithInfo info: [NSObject : AnyObject]) {
 var im = info[UIImagePickerControllerOriginalImage] as? UIImage
 if im == nil {
 return
 }
 let svc = SecondViewController(image:im)
 picker.pushViewController(svc, animated: true)
}

(Designing the SecondViewController class is left as an exercise for the reader.)

Image Capture With AV Foundation
Instead of using UIImagePickerController, you can control the camera and capture
images directly using the AV Foundation framework (Chapter 15). You get no help
with interface (except for displaying in your interface what the camera “sees”), but
you get vastly more detailed control than UIImagePickerController can give you; for
example, for stills, you can control focus and exposure directly and independently,
and for video, you can determine the quality, size, and frame rate of the resulting
movie.

The heart of all AV Foundation capture operations is an AVCaptureSession object.
You configure this and provide it as desired with inputs (such as a camera) and out‐
puts (such as a file); then you call startRunning to begin the actual capture. You can
reconfigure an AVCaptureSession, possibly adding or removing an input or output,
while it is running — indeed, doing so is far more efficient than stopping the session
and starting it again — but you should wrap your configuration changes in begin-
Configuration and commitConfiguration.

As a rock-bottom example, let’s start by displaying in our interface, in real time, what
the camera sees. This requires an AVCaptureVideoPreviewLayer, a CALayer subclass.
This layer is not an AVCaptureSession output; rather, the layer receives its imagery by
owning the AVCaptureSession. Our AVCaptureSession’s input is the default video
camera. We have no intention, as yet, of doing anything with the captured video other
than displaying it in the interface, so our AVCaptureSession doesn’t need an output:

866 | Chapter 17: Photo Library and Image Capture

self.sess = AVCaptureSession()
let cam = AVCaptureDevice.defaultDeviceWithMediaType(AVMediaTypeVideo)
guard let input = try? AVCaptureDeviceInput(device:cam) else {return}
self.sess.addInput(input)
let lay = AVCaptureVideoPreviewLayer(session:self.sess)
lay.frame = self.previewRect
self.view.layer.addSublayer(lay)
self.previewLayer = lay // keep a ref
self.sess.startRunning()

Presto! Our interface now contains a window on the world, so to speak.

Expanding on that example, let’s permit the user to snap a still photo, which our
interface will then display. Now we do need an output for our AVCaptureSession;
since all we want is a still image, this will be an AVCaptureStillImageOutput, and we’ll
set its outputSettings to specify the quality of the JPEG image we’re after. We also
need to configure the quality of image that the camera is to capture; the simplest and
most common way is to apply a sessionPreset to the AVCaptureSession. In this
case, since this image is to go directly into our interface, we won’t need the vast multi‐
megapixel image size of which the camera is capable; so we’ll configure our AVCap‐
tureSession’s sessionPreset to ask for a much smaller image:

self.sess = AVCaptureSession()
self.sess.sessionPreset = AVCaptureSessionPreset640x480
self.snapper = AVCaptureStillImageOutput()
self.snapper.outputSettings = [
 AVVideoCodecKey: AVVideoCodecJPEG,
 AVVideoQualityKey: 0.6
]
self.sess.addOutput(self.snapper)
// ... and the rest is as before ...

When the user asks to snap a picture, we send captureStillImageAsynchronously-
FromConnection:completionHandler: to our AVCaptureStillImageOutput object.
The first argument is an AVCaptureConnection; to obtain it, we ask the output for its
connection that is currently inputting video. The second argument is the function
that will be called, possibly on a background thread, when the image data is ready; in
that function, we capture the data into a UIImage and, stepping out to the main
thread (Chapter 25), we remove the AVCaptureVideoPreviewLayer and stop the
AVCaptureSession (and at that point we can do something with the UIImage, such as
displaying it in the interface):

if self.sess == nil || !self.sess.running { return }
let vc = self.snapper.connectionWithMediaType(AVMediaTypeVideo)
self.snapper.captureStillImageAsynchronouslyFromConnection(vc) {
 (buf:CMSampleBuffer!, err:NSError!) in
 let data = AVCaptureStillImageOutput
 .jpegStillImageNSDataRepresentation(buf)
 let im = UIImage(data:data)
 dispatch_async(dispatch_get_main_queue()) {

Using the Camera | 867

 self.previewLayer.removeFromSuperlayer()
 self.sess.stopRunning()
 self.sess = nil
 // ... do something with im here ...
 }
}

My favorite part of that example is that capturing the image produces, automatically,
the built-in “shutter” sound!

Our code has not illustrated setting the focus, changing the flash settings, and so
forth; doing so is not difficult (see the class documentation on AVCaptureDevice),
but note that you should wrap such changes in calls to lockForConfiguration: and
unlockForConfiguration. Also, always call the corresponding is...Supported:
method before setting any feature of an AVCaptureDevice; for example, before setting
the flashMode, call isFlashModeSupported: for that mode. Starting in iOS 8, you get
direct hardware-level control over the camera focus, manual exposure, and white bal‐
ance; for a good introduction, watch the WWDC 2014 video on camera capture, and
look at the AVCamManual sample code. Also, the BracketStripes example shows how
to capture multiple bracketed images.

You can stop the flow of video data by setting the AVCaptureConnection’s isEnabled
to false, and there are some other interesting AVCaptureConnection features,
mostly involving stabilization of the video image (not relevant to the example,
because a preview layer’s video isn’t stabilized). Plus, AVCaptureVideoPreviewLayer
provides methods for converting between layer coordinates and capture device coor‐
dinates; without such methods, this can be a very difficult problem to solve. You can
also scan bar codes, shoot video at 60 frames per second (on some devices), and
more. You can turn on the LED “torch” by setting the back camera’s torchMode to
AVCaptureTorchModeOn, even if no AVCaptureSession is running.

AV Foundation’s control over the camera, and its ability to process incoming data —
especially video data — goes far deeper than there is room to discuss here, so consult
the documentation; in particular, see the “Media Capture” chapter of the AV Founda‐
tion Programming Guide. There are also excellent WWDC videos on AV Foundation,
and some fine sample code; I found Apple’s AVCam example very helpful while pre‐
paring this discussion.

868 | Chapter 17: Photo Library and Image Capture

CHAPTER 18

Contacts

This chapter has not yet been revised for iOS 10.

The user’s contacts, which the user sees through the Contacts app, constitute a data‐
base that your code can access programmatically through the Contacts framework.
You’ll need to import Contacts.

A user interface for interacting with the contacts database is provided by the Contacts
UI framework. You’ll need to import ContactsUI.

The Contacts framework, which is new in iOS 9, replaces the Address Book
framework and the Address Book UI framework. The Address Book framework
was an archaic C API without memory management information, so it was
almost impossible to use in Swift, and it wasn’t all that usable in Objective-C
either. The Address Book framework is not discussed in this edition.

Contacts Authorization
Access to the contacts database requires authorization from the user. To learn
whether you have authorization, call the CNContactStore class method
authorizationStatusForEntityType:; there is only one possible entity type (CNEn‐
tityType), namely .Contacts. To request authorization if your status is .Not-
Determined, call the CNContactStore instance method
requestAccessForEntityType:completionHandler:. The first time you do this with
a .NotDetermined status, the user will see the system alert requesting access on your
behalf. Your Info.plist should contain some text that the system authorization request
alert can use to explain why your app wants access; the relevant key is “Privacy —
Contacts Usage Description” (NSContactsUsageDescription).

869

A possible authorization strategy would thus be completely parallel to the strategy I
described at the start of Chapter 17. However, you will probably end up calling
requestAccessForEntityType:completionHandler: even when you believe that you
already have access. The reason is that talking to the contacts database, to fetch or
save contacts, is time-consuming and should therefore always be done on a back‐
ground thread. The completionHandler: function is called on a background thread.
Thus you can assure access and do your fetching and saving on a background thread
all in one move.

To retest the system authorization request alert and other access-related behav‐
iors, go to the Settings app and choose General → Reset → Reset Location & Pri‐
vacy. This, unfortunately, causes the system to revert to its default settings for
everything in the Privacy section of Settings: all permissions lists will be empty,
but Location Services and all System Services will be On.

Fetching Contact Information
Here are the chief object types you’ll be concerned with when you work with the
user’s contacts:

CNContactStore
The user’s database of contacts is accessed through an instance of the CNCon‐
tactStore class. You do not need to keep a reference to an instance of this class.
When you want to fetch a contact from the database, or when you want to save a
created or modified contact into the database, instantiate CNContactStore, do
your fetching or saving, and let the CNContactStore instance vanish.

CNContact
An individual contact is an instance of the CNContact class. Its properties corre‐
spond to the fields displayed in the Contacts app. In addition, it has an
identifier which is unique and persistent. A CNContact that comes from the
CNContactStore is immutable (its properties are read-only) and has no connec‐
tion with the database; it is safe to preserve it and to pass it around between
objects and between threads. To create your own CNContact, start with its muta‐
ble subclass, CNMutableContact; to modify an existing CNContact, call mutable-
Copy to make it a CNMutableContact.

The properties of a CNContact are matched by constant key names designating
those properties. For example, a CNContact has a familyName property, and
there is also a CNContactFamilyNameKey. This should remind you of MPMedia‐
Item (Chapter 16), and indeed the purpose is similar: the key names allow you,
when you fetch a CNContact from the CNContactStore, to state which properties
of the CNContact you want populated. By limiting the properties to be fetched,
you fetch more efficiently and quickly.

870 | Chapter 18: Contacts

CNContactFormatter, CNPostalAddressFormatter
A formatter is an engine for displaying aspects of a CNContact as a string. For
example, a CNContactFormatter whose style is .FullName assembles the name-
related properties of a CNContact into a name string. Moreover, a formatter will
hand you the key names of the properties that it needs in order to form its string,
so that you can easily include them in the list of contact properties you fetch
from the store.

Now let’s put it all together and fetch some contacts. When we perform a fetch, there
are two parameters to provide in order to limit the information to be returned to us:

predicate:

An NSPredicate. CNContact provides class methods that will generate some
common predicates; you are most likely to use predicateForContactsMatching-
Name: and predicateForContactsWithIdentifiers:.

keysToFetch:

An array of objects adopting the CNKeyDescriptor protocol; such an object will
be either a string key name such as CNContactFamilyNameKey or a descriptor
(actually an instance of a hidden class called CNAggregateKeyDescriptor) pro‐
vided by a formatter such as CNContactFormatter.

I’ll start by finding myself as a contact in my contacts database. To do so, I’ll first fetch
all contacts whose name is Matt. I’ll call the CNContactStore instance method
unifiedContactsMatchingPredicate:keysToFetch:. To determine which resulting
Matt is me, I don’t need more than the first name and the last name of those contacts.
I’ll cycle through the resulting array of contacts in an attempt to find one whose last
name is Neuburg. The structure of this code is very typical; we start with request-
AccessForEntityType: so that our actual fetch takes place on a background thread,
and the fetch is wrapped in a do...catch construct because it can throw:

CNContactStore().requestAccessForEntityType(.Contacts) {
 ok, err in
 guard ok else {
 print("not authorized")
 return
 }
 do {
 let pred = CNContact.predicateForContactsMatchingName("Matt")
 var matts = try CNContactStore().unifiedContactsMatchingPredicate(
 pred, keysToFetch:
 [CNContactFamilyNameKey, CNContactGivenNameKey])
 matts = matts.filter{$0.familyName == "Neuburg"}
 guard let moi = matts.first else {
 print("couldn't find myself")
 return
 }

Fetching Contact Information | 871

 // do something with moi here
 } catch {
 print(error)
 }
}

Alternatively, since I intend to cycle through the fetched contacts, I could call
enumerateContactsWithFetchRequest:, which hands me contacts one at a time. The
parameter is a CNContactFetchRequest, a simple value class; in addition to keysTo-
Fetch and predicate, it has some convenient properties allowing me to retrieve
CNMutableContacts instead of CNContacts, to dictate the sort order, and to suppress
the unification of linked contacts. I don’t need those extra features here, but I’ll
demonstrate the syntax anyway:

CNContactStore().requestAccessForEntityType(.Contacts) {
 ok, err in
 guard ok else {
 print("not authorized")
 return
 }
 do {
 let pred = CNContact.predicateForContactsMatchingName("Matt")
 let req = CNContactFetchRequest(keysToFetch: [
 CNContactFamilyNameKey, CNContactGivenNameKey])
 req.predicate = pred
 var matt : CNContact? = nil
 try CNContactStore().enumerateContactsWithFetchRequest(req) {
 con, stop in
 if con.familyName == "Neuburg" {
 matt = con
 stop.memory = true
 }
 }
 guard let moi = matt else {
 print("couldn't find myself")
 return
 }
 // do something with moi here
 } catch {
 print(error)
 }
}

In those examples, I boldly read the familyName from each fetched contact, because I
know that I included the CNContactFamilyNameKey in my list of properties to be
fetched. Nevertheless, this contact is only partially populated. To illustrate, let’s say
that I now want to access my email addresses. If I were to carry on directly from the
preceding code by reading the emailAddresses property of moi, I’d crash because that
property isn’t populated:

let emails = moi.emailAddresses // crash

872 | Chapter 18: Contacts

If I’m unsure what properties of a particular contact are populated, I can test for
safety beforehand with the isKeyAvailable: method:

if moi.isKeyAvailable(CNContactEmailAddressesKey) {
 let emails = moi.emailAddresses
}

But even though I’m not crashing any more, I still want those email addresses. One
solution, obviously, would have been to plan ahead and include CNContactEmail-
AddressesKey in the list of properties to be fetched. Unfortunately, I failed to do that.
Luckily, there’s another way; I can go back to the store and repopulate this contact,
based on its identifier:

moi = try CNContactStore().unifiedContactWithIdentifier(
 moi.identifier, keysToFetch: [
 CNContactFamilyNameKey, CNContactGivenNameKey,
 CNContactEmailAddressesKey
]
)
let emails = moi.emailAddresses

Now let’s talk about the structure of the thing I’ve just obtained — the value of the
emailAddresses property. It’s an array of CNLabeledValue objects. A CNLabeled‐
Value has a label and a value (and an identifier). This class handles the fact that
some contact attributes can have more than one value, each intended for a specific
purpose (the label). For example, I might have a home email address and a work
email address. These addresses are not keyed by their labels — we cannot, for exam‐
ple, use a dictionary here — because I can have, say, two work email addresses.
Rather, the label is simply another piece of information accompanying the value. You
can make up your own labels, or you can use the built-in labels. Under the hood, the
built-in labels are very strange-looking strings like "_$!<Work>!$_", but there are
also some constants that you can use instead, such as CNLabelWork. Carrying on from
the previous example, I’ll look for all my work email addresses:

let workemails = emails.filter{$0.label == CNLabelWork}.map{$0.value}

Postal addresses are similar, except that their value is a CNPostalAddress. (Recall that
there’s a CNPostalAddressFormatter, to be used when presenting an address as a
string.) Phone number values are CNPhoneNumber objects. And so on.

To illustrate the point about formatters and keys, let’s say that now I want to present
the full name and work email of this contact to the user, as a string. I should not
assume either that the full name is to be constructed as givenName followed by
familyName nor that those are the only two pieces that constitute it. Rather, I should
rely on the intelligence of a CNContactFormatter:

Fetching Contact Information | 873

let full = CNContactFormatterStyle.FullName
let keys = CNContactFormatter.descriptorForRequiredKeysForStyle(full)
moi = try CNContactStore().unifiedContactWithIdentifier(
 moi.identifier, keysToFetch: [keys, CNContactEmailAddressesKey])
if let name = CNContactFormatter.stringFromContact(moi, style: full) {
 print("\(name): \(workemails[0])") // Matt Neuburg: matt@tidbits.com
}

One more thing to watch out for regarding contact properties: dates, such as a birth‐
day, are not Dates. Rather, they are DateComponents. This is because they do not
require full date information; for example, I know when someone’s birthday is
without knowing the year they were born.

The user’s contacts database can change while your app is running. To detect this,
register for the CNContactStoreDidChange notification. The arrival of this notifica‐
tion means that any contacts-related objects that you are retaining, such as CNCon‐
tacts, may be outdated.

Saving Contact Information
All saving of information into the user’s contacts database involves a CNContactSave
object. This object batches the proposed changes that you give it by using instance
methods such as addContact:toContainerWithIdentifier:, updateContact:, and
deleteContact:. You then hand the CNContactSave object over to the CNContact‐
Store with executeSaveRequest:.

In this example, I’ll create a contact for Snidely Whiplash with a Home email
snidely@villains.com and add him to the contacts database:

let snidely = CNMutableContact()
snidely.givenName = "Snidely"
snidely.familyName = "Whiplash"
let email = CNLabeledValue(
 label: CNLabelHome, value: "snidely@villains.com")
snidely.emailAddresses.append(email)
snidely.imageData =
 UIImagePNGRepresentation(UIImage(named:"snidely.jpg")!)
let save = CNSaveRequest()
save.addContact(snidely, toContainerWithIdentifier: nil)
CNContactStore().requestAccessForEntityType(.Contacts) {
 ok, error in
 guard ok else {
 print("not authorized")
 return
 }
 do {
 try CNContactStore().executeSaveRequest(save)
 print("created snidely!")

874 | Chapter 18: Contacts

Figure 18-1. A contact created programmatically

 } catch {
 print(error)
 }
}

Sure enough, if we then check the state of the database through the Contacts app, our
Snidely contact exists (Figure 18-1).

Contact Sorting, Groups, and Containers
Contacts are naturally sorted either by family name or by given name, and the user
can choose between them (in the Settings app) in arranging the list of contacts to be
displayed by the Contacts app and other apps that display the same list. The CNCon‐
tact class provides a comparator, through the comparatorForNameSortOrder: class
method, suitable for handing to NSArray methods such as sortedArrayUsing-
Comparator:. To make sure your CNContact is populated with the properties needed
for sorting, call the class method descriptorForAllComparatorKeys(). Your choices
(CNContactSortOrder) are:

• .GivenName

• .FamilyName

• .UserDefault

Contacts can belong to groups, and the Contacts application in macOS provides an
interface for manipulating contact groups — though the Contacts app on an iOS
device does not. (The Contacts app on an iOS device allows contacts to be filtered by
group, but does not permit editing of groups — creation of groups, addition of con‐
tacts to groups, and so on. I am not clear on the reason for this curious omission.) A
group in the Contacts framework is a CNGroup; its mutable subclass, CNMuta‐
bleGroup, allows you to create a group and set its name. All manipulation of contacts
and groups — creating, renaming, or deleting a group, adding a contact to a group or

Contact Sorting, Groups, and Containers | 875

removing a contact from a group — is performed through CNSaveRequest instance
methods.

Contacts come from sources. A contact or group might be on the device or might
come from an Exchange server or a CardDAV server. The source really does, in a
sense, own the group or contact; a contact can’t belong to two sources. A complicat‐
ing factor, however, is that the same real person might be listed in two different sour‐
ces as two different contacts; to deal with this, it is possible for multiple contacts to be
linked, indicating that they are the same person. This is why the methods that fetch
contacts from the database describe the resulting contacts as “unified” — the linkage
between linked contacts from different sources has already been used to assemble the
information before you receive them as a single contact. In the Contacts framework, a
source is a CNContainer. When I called the CNSaveRequest instance method add-
Contact:toContainerWithIdentifier: earlier, I supplied a container identifier of
nil, signifying the user’s default container.

Contacts Interface
The Contacts UI framework puts a user interface, similar to the Contacts app, in front
of common tasks involving the listing, display, and editing of contacts in the database.
This is a great help, because designing your own interface to do the same thing would
be tedious and involved. The framework provides two UIViewController subclasses:

CNContactPickerViewController
Presents a navigation interface, effectively the same as the Contacts app but
without an Edit button: it lists the contacts in the database and allows the user to
pick one and view the details.

CNContactViewController
Presents an interface showing the properties of a specific contact. It comes in
three variants:

Existing contact
Displays the details, possibly editable, of an existing contact fetched from the
database.

Unknown contact
Displays a proposed contact with a partial set of properties, for editing and
saving or merging into an existing contact in the database.

New contact
Displays editable properties of a new contact, allowing the user to save the
edited contact into the database.

876 | Chapter 18: Contacts

CNContactPickerViewController
A CNContactPickerViewController is a UINavigationController. With it, the user can
see a list of all contacts in the database, and can filter that list by group. In effect, the
user appears to be inside the Contacts app — and in a sense, that is indeed the case, as
is shown by the fact that the picker operates without the user having to grant your app
permission to access the database.

How does this view controller operate without the user granting Contact data‐
base access? It may be because, as Apple puts it, the view controller is “out of pro‐
cess” with respect to your application — meaning that the user, though still
inside your app, is effectively using the Contacts app, something that, of itself,
requires no access permission. It’s true that your app can receive information
about contacts through the CNContactPickerViewController, despite the lack of
permission; but perhaps Apple’s rationale is that you receive only the information
that the user explicitly grants you by tapping on a contact — if the user cancels,
you get nothing — and so the user tapping is a form of permission.

To use CNContactPickerViewController, instantiate it, assign it a delegate (CNCon‐
tactPickerDelegate), and present it as a presented view controller:

let picker = CNContactPickerViewController()
picker.delegate = self
self.presentViewController(picker, animated:true, completion:nil)

That code works — the picker appears, and there’s a Cancel button so the user can
dismiss it — but it’s completely impractical, because we have provided no way for any
information to travel from the picker to our app. For that, we need to configure the
picker a bit further, and we need to implement at least one delegate method.

To understand configuration of the picker, we need to consider what the picker does
without configuration. At present, when the user taps a contact, that contact’s details
are pushed onto the navigation controller. And when the user taps a piece of informa‐
tion among the details, some default action is performed: for a postal address, it is
displayed in the Maps app; for an email address, it becomes the addressee of a new
message in the Mail app; for a phone number, the number is dialed; and so on. Our
goal is thus that, under some circumstances at least, a tap should instead convey the
corresponding information to our app. This is called selecting a contact or a property.

There are two stages to the accomplishing of this goal:

1. We must permit selection to occur. This is done by providing an NSPredicate,
setting the picker’s predicateForSelectionOfContact or its predicateFor-
SelectionOfProperty, or both. When the user taps a contact or property, our
predicate is evaluated; if it evalutes to true, selection is permitted.

Contacts Interface | 877

2. We must implement a delegate method. If the user taps and the predicate evalu‐
ates to true, then the interface doesn’t change; instead, the corresponding dele‐
gate method is called, either contactPicker:didSelectContact: or
contactPicker:didSelectContactProperty: — along with information about
that contact or property. We will then presumably dismiss the picker, which has
done its work.

For example, suppose our goal is that the user should hand us a contact’s email
address. Then we would enable selection of email addresses. For purposes of working
with arbitrary properties in these view controllers, there’s a CNContactProperty class,
consisting of a key, a value, a label, a contact, and an identifier. In the case of
predicateForSelectionOfProperty, the predicate will be evaluated against a
CNContactProperty. So our predicate looks like this:

picker.predicateForSelectionOfProperty =
 NSPredicate(format: "key == 'emailAddresses'")

The result is that when the user taps an email address, our delegate method is called,
and we do something with the result and dismiss the picker:

func contactPicker(picker: CNContactPickerViewController,
 didSelectContactProperty prop: CNContactProperty) {
 // ... do something with CNContactProperty here ...
 self.dismissViewControllerAnimated(true, completion: nil)
}

The CNContactProperty that we receive in our delegate method contains not only an
email address (its value) but the contact to which it belongs (its contact), which is
fully populated.

Now, our interface is not very sensible if our goal was to let the user choose only an
email address. The user is seeing all the other properties of every contact, and tapping
one of them will perform its action; for example, tapping a phone number will place a
phone call. That’s likely to be surprising. To prevent it, we can limit what properties
are displayed in the first place, by way of the picker’s displayedPropertyKeys prop‐
erty:

picker.displayedPropertyKeys = [CNContactEmailAddressesKey]
picker.predicateForSelectionOfProperty =
 NSPredicate(format: "key == 'emailAddresses'")

Interestingly, the CNContactProperty that we receive in our delegate method is still
fully populated. We may thus end up with information, such as the contact’s postal
addresses, that the user never saw.

There are two further bits of configuration we can perform on a CNContactPicker‐
ViewController. First, we can disable contacts selectively, so that they cannot be tap‐
ped. To do so, set the picker’s predicateForEnablingContact. This would make

878 | Chapter 18: Contacts

sense in our example; we are after an email address, so it is pointless to enable a con‐
tact who has no email address:

picker.displayedPropertyKeys = [CNContactEmailAddressesKey]
picker.predicateForSelectionOfProperty =
 NSPredicate(format: "key == 'emailAddresses'")
picker.predicateForEnablingContact =
 NSPredicate(format: "emailAddresses.@count > 0")

Second, we can enable multiple selection. To do so, there is no picker property to set;
rather, we simply implement a different delegate method, either contactPicker:did-
SelectContacts: or contactPicker:didSelectContactProperties: (or both). This
causes a Done button to appear in the interface, and our delegate method is called
when the user taps it.

The interface for letting the user select multiple properties is clumsy and confus‐
ing at best, and downright broken at worst; an injudicious combination of
predicateForSelectionOfProperty and contactPicker:didSelectContact-

Properties: can send your app into limbo. Experiment with this interface before
deciding to use it.

CNContactViewController
A CNContactViewController is a UIViewController. It comes, as I’ve already said, in
three flavors, depending on how you instantiate it.

Existing contact

To display an existing contact in a CNContactViewController, call init(for-
Contact:). However, there’s a catch. This call will crash your app unless the contact
has already been populated with all the information needed to display it in this view
controller. Therefore, CNContactViewController supplies a class method descriptor-
ForRequiredKeys, and you will want to call it to set the keys when you fetch your
contact from the store.

Having instantiated CNContactViewController, you set its delegate (CNContact‐
ViewControllerDelegate) and push the view controller onto an existing UINavigation‐
Controller’s stack. The user’s only way out of the resulting interface will be through
the back button.

An Edit button appears at the top right, and the user can tap it to edit this contact in a
presented view controller — unless you have set the view controller’s allowsEditing
property to false, in which case the Edit button is suppressed.

The allowsActions property refers to extra buttons that can appear in the interface if
it is true — things like Send Message, FaceTime, Share Contact, and Add to Favor‐

Contacts Interface | 879

ites. Exactly what buttons appear depends on what categories of information are dis‐
played.

As with CNContactPickerViewController, displayedPropertyKeys limits the prop‐
erties shown for this contact. The message is a string displayed beneath the contact’s
name.

Here’s a minimal working example; I’ll display the Snidely Whiplash contact that I
created earlier. Observe that, having successfully fetched Snidely on a background
thread, we need to step out to the main thread before we can display Snidely in the
interface:

CNContactStore().requestAccessForEntityType(.Contacts) {
 ok, err in
 guard ok else {
 print("not authorized")
 return
 }
 do {
 let pred = CNContact.predicateForContactsMatchingName("Snidely")
 let keys = CNContactViewController.descriptorForRequiredKeys()
 let snides = try CNContactStore()
 .unifiedContactsMatchingPredicate(pred, keysToFetch: [keys])
 guard let snide = snides.first else {
 print("no snidely")
 return
 }
 let vc = CNContactViewController(forContact:snide)
 dispatch_async(dispatch_get_main_queue()) {
 self.navigationController?
 .pushViewController(vc, animated: true)
 }
 } catch {
 print(error)
 }
}

The situation is like our first attempt with CNContactPickerViewController: it works
in the sense that Snidely’s contact is displayed, but the interface is silly in that the user
can’t do anything related to our app. We need to tweak our code depending on the
purpose of showing this view controller.

For example, suppose our goal is to let the user edit Snidely. By default, the user can
do that. So we need to do two things. First, we should turn off “actions” in our view
controller, so that the user doesn’t get rocketed off to the Mail app by accidentally tap‐
ping an email address. Second, we should capture the Snidely contact when the user
is finished editing. We can do both of those things by setting ourself as delegate and
implementing the two delegate methods:

880 | Chapter 18: Contacts

contactViewController:shouldPerformDefaultActionForContactProperty:

This is like a live version of the picker predicateForSelectionOfProperty,
except that the meaning is reversed: returning true means that the tapped prop‐
erty should proceed to trigger the Mail app or the Maps app or whatever is
appropriate.

contactViewController:didCompleteWithContact:

Sent when the user dismisses the editing interface. If you have set the view con‐
troller’s contactStore property to a contact store instance, then the edited con‐
tact is also saved into the database. If not, then you have the edited contact and
what happens to it is up to you. (If the user cancels from the editing interface, the
contact returned to you will be nil.)

Unknown contact
To use a CNContactViewController to allow the user to edit an unknown contact,
instantiate it with init(forUnknownContact:). You must provide a CNContact
parameter, which you may have made up from scratch using a CNMutableContact.
You must have database access, and you must set the view controller’s contactStore
to a CNContactStore instance; it’s not an error otherwise, but the view controller is
useless. You then set a delegate and push the view controller onto an existing naviga‐
tion controller:

let con = CNMutableContact()
con.givenName = "Johnny"
con.familyName = "Appleseed"
con.phoneNumbers.append(CNLabeledValue(
 label: "woods", value: CNPhoneNumber(stringValue: "555-123-4567")))
let unkvc = CNContactViewController(forUnknownContact: con)
unkvc.message = "He knows his trees"
unkvc.contactStore = CNContactStore()
unkvc.delegate = self
unkvc.allowsActions = false
self.navigationController?.pushViewController(unkvc, animated: true)

Aside from the actions such as Share Contact (which you can suppress), and the abil‐
ity to tap a phone number to call that number and so forth (which you can prevent),
the only thing the user can do besides pop the view controller is tap one of two but‐
tons, Create New Contact or Add to Existing Contact. Let’s take them in turn:

Create New Contact
The editing interface is presented, with a Cancel button and a Done button. If the
user taps Cancel, you’ll never hear about it. If the user taps Done, your contact-
ViewController:didCompleteWithContact: is called with the edited contact,
which has already been saved into the database.

Contacts Interface | 881

Add to Existing Contact
The picker is presented. The user can tap Cancel or tap an existing contact. If the
user taps an existing contact, that contact is presented for editing, with fields
from the partial contact merged in, along with a Cancel button and an Update
button. If the taps Cancel, you’ll never hear about it. If the user taps Update, your
contactViewController:didCompleteWithContact: is called with the edited
contact, which has already been saved into the database.

If the framework thinks that this partial contact is the same as an existing contact,
there will be a third button offering explicitly to update that particular contact. The
result is as if the user had tapped Add to Existing Contact and picked this existing
contact: the editing interface for that contact appears, with the fields from the partial
contact merged in, along with Cancel and Update buttons.

Unfortunately, as of this writing, after tapping Add to Existing Contact or
Update, the surrounding navigation interface is destroyed and the user can never
leave this view controller to return to your app. This is a major bug; ascertain
whether it is fixed before using this form of CNContactViewController.

New contact
To use a CNContactViewController to allow the user to create a new contact, instan‐
tiate it with init(forNewContact:). The parameter can be nil, or it can be a CNMu‐
tableContact that you’ve created and partially populated; but your properties will be
only suggestions, because the user is going to be launched directly into the contact
editing interface and can change anything you’ve put.

You should check for authorization before using this flavor of CNContactView‐
Controller, because if you don’t have it or can’t get it, the interface the user sees
will lack a Done button and this view controller will be pointless.

Having set the view controller’s delegate, you then do a little dance: you instantiate a
UINavigationController with the CNContactViewController as its root view control‐
ler, and present the navigation controller. Thus, this is a minimal implementation:

let con = CNMutableContact()
con.givenName = "Dudley"
con.familyName = "Doright"
let npvc = CNContactViewController(forNewContact: con) // or nil
npvc.delegate = self
self.presentViewController(
 UINavigationController(rootViewController: npvc),
 animated: true, completion:nil)

Your implementation of the delegate method contactViewController:didComplete-
WithContact: must call dismiss(animated:completion:). If the user tapped Cancel,
the contact returned to you will be nil. If the contact returned to you is not nil, then

882 | Chapter 18: Contacts

that contact has already been saved into the database. You can’t prevent this, but you
have the new contact’s identifier, so you are perfectly free at this point to delete that
contact from the database once again (which you can certainly do, because the user
would not have been able to save into the database if your app didn’t have authoriza‐
tion in the first place).

Contacts Interface | 883

CHAPTER 19

Calendar

This chapter has not yet been revised for iOS 10.

The user’s calendar information, which the user sees through the Calendar app, is
effectively a database of calendar events. The calendar database also includes remind‐
ers, which the user sees through the Reminders app. This database can be accessed
directly through the Event Kit framework. You’ll need to import EventKit.

A user interface for interacting with the calendar is also provided, through the Event
Kit UI framework. You’ll need to import EventKitUI.

Calendar Database
The calendar database is accessed as an instance of the EKEventStore class. This
instance is expensive to obtain but lightweight to maintain, so your usual strategy will
be to instantiate and retain one EKEventStore instance. There is no harm in initializ‐
ing a property as an EKEventStore instance and keeping that reference for the rest of
the app’s lifetime:

let database = EKEventStore()

In the examples in this chapter, my EKEventStore instance is called self.database
throughout.

Calendar Database Authorization
Although there is one database, access to calendar events and access to reminders are
considered two separate forms of access and require separate authorizations. To learn
authorization status, call the EKEventStore class method authorizationStatusFor-
EntityType: with an EKEntityType, either .Event (for access to calendar events)
or .Reminder (for access to reminders). To request authorization if the status is .Not-

885

Determined, call the EKEventStore instance method requestAccessToEntity-

Type:completion:. You should supply the body of the authorization request alert by
setting the “Privacy — Calendars Usage Description” key (NSCalendarsUsage-
Description) or the “Privacy — Reminders Usage Description” key (NSReminders-
UsageDescription) in your app’s Info.plist. A possible strategy is thus completely
parallel to the code at the start of Chapter 17 for access to the photo library.

To retest the system authorization request alert and other access-related behav‐
iors, go to the Settings app and choose General → Reset → Reset Location & Pri‐
vacy. This, unfortunately, causes the system to revert to its default settings for
everything in the Privacy section of Settings: all permissions lists will be empty,
but Location Services and all System Services will be On.

Calendar Database Contents
Starting with an EKEventStore instance, you can obtain two kinds of object — a cal‐
endar or a calendar item.

Calendars

A calendar represents a named (title) collection of calendar items, meaning events
or reminders. It is an instance of EKCalendar. Curiously, however, an EKCalendar
instance doesn’t contain or link to its calendar items; to obtain and create calendar
items, you work directly with the EKEventStore itself. A calendar’s allowedEntity-
Types, despite the plural, will probably return just one entity type; you can’t create a
single calendar that allows both.

Calendars have various types (type, an EKCalendarType), reflecting the nature of
their origin: a calendar can be created and maintained by the user locally (.Local),
but it might also live remotely on the network (.CalDAV, .Exchange); the Birthday
calendar (.Birthday) is generated automatically from information in the address
book; and so on.

The type is supplemented and embraced by the calendar’s source, an EKSource
whose sourceType (EKSourceType) can be .Local, .Exchange, .CalDAV (which
includes iCloud), and so forth; a source can also have a title, and it has a unique
identifier (sourceIdentifier). You can get an array of all sources known to the
EKEventStore, or specify a source by its identifier. You’ll probably use the source
exclusively and ignore the calendar’s type property.

There are three ways of requesting a calendar:

886 | Chapter 19: Calendar

All calendars
Fetch all calendars permitting a particular calendar item type (.Event
or .Reminder) by calling calendarsForEntityType:. You can send this message
either to the EKEventStore or to an EKSource.

Particular calendar
Fetch an individual calendar by means of a previously obtained calendar-
Identifier by calling calendarWithIdentifier:.

Default calendar
Fetch the default calendar for a particular calendar item type through the
defaultCalendarForNewEvents property or the defaultCalendarForNew-

Reminders property; this is appropriate particularly if your intention is to create a
new calendar item.

You can also create a calendar with the initializer init(forEntityType:event-
Store:). At that point, you can specify the source to which the calendar belongs.

Depending on the source, a calendar will be modifiable in various ways. The calendar
might be subscribed. If the calendar is immutable, you can’t delete the calendar or
change its attributes; but its allowsContentModifications might still be true, in
which case you can add, remove, and alter its events. You can update your copy of the
calendar from any remote sources by calling refreshSourcesIfNecessary.

Calendar items
A calendar item (EKCalendarItem) is either a calendar event (EKEvent) or a
reminder (EKReminder). Think of it as a memorandum describing when something
happens. As I mentioned a moment ago, you don’t get calendar items from a calen‐
dar; rather, a calendar item has a calendar, but you get it from the EKEventStore as a
whole. There are two chief ways of doing so:

By predicate
Fetch all events or reminders according to a predicate:

• eventsMatchingPredicate:

• enumerateEventsMatchingPredicate:

• fetchRemindersMatchingPredicate:completion:

Methods starting with predicate... help you to form the predicate.

By identifier
Fetch an individual calendar item by means of a previously obtained calendar-
ItemIdentifier by calling calendarItemWithIdentifier:.

Calendar Database | 887

Calendar Database Changes
Changes to the database can be atomic. There are two prongs to the implementation
of this feature:

• The methods for saving and removing calendar items and calendars have a
commit: parameter. If you pass false as the argument, the changes that you’re
ordering are batched; later, you can call commit: (or reset if you change your
mind). If you pass false and fail to call commit: later, your changes will never
happen.

• An abstract class, EKObject, functions as the superclass for all the other persis‐
tent object types, such as EKCalendar, EKCalendarItem, EKSource, and so on. It
endows those classes with methods new and hasChanges, along with refresh,
rollback, and reset.

A calendar can change while your app is running (the user might sync, or the user
might edit with the Calendar app), which can put your information out of date. You
can register for a single EKEventStore notification, EKEventStoreChanged; if you
receive it, you should assume that any calendar-related instances you’re holding are
invalid. This situation is made relatively painless by the fact that every calendar-
related instance can be refreshed with refresh. Keep in mind that refresh returns a
Boolean; if it returns false, this object is really invalid and you should stop working
with it entirely (it may have been deleted from the database).

Creating Calendars and Events
Let’s start by creating an events calendar. We need to assign a source type (EKSource‐
Type); we’ll choose .Local, meaning that the calendar will be created on the device
itself. We can’t ask the database for the local source directly, so we have to cycle
through all sources looking for it. When we find it, we make a new calendar called
“CoolCal”:

if !self.determineStatus() { // not authorized
 return
}
let locals = self.database.sources.filter {$0.sourceType == .Local}
guard let src = locals.first else {
 print("failed to find local source")
 return
}
let cal = EKCalendar(forEntityType:.Event, eventStore:self.database)
cal.source = src
cal.title = "CoolCal"
do {
 try self.database.saveCalendar(cal, commit:true)

888 | Chapter 19: Calendar

} catch {
 print("save calendar error: \(error)")
 return
}

If a device’s calendar is subscribed to a remote source (such as iCloud), .Local
calendars are inaccessible. The examples in this chapter use a local calendar
(because I don’t want to risk damaging your online calendars); to test them,
you’ll have to turn off iCloud for your Calendar app.

Now let’s create an event. EKEvent is a subclass of EKCalendarItem, from which it
inherits some of its important properties. If you’ve ever used the Calendar app in iOS
or macOS, you already have a sense for how an EKEvent can be configured. It has a
title and optional notes. It is associated with a calendar, as I’ve already said. It can
have one or more alarms and one or more recurrence rules; I’ll talk about both of
those in a moment. All of that is inherited from EKCalendarItem. EKEvent itself adds
the all-important startDate and endDate properties; these are Dates and involve
both date and time. If the event’s allDay property is true, the time aspect of its dates
is ignored; the event is associated with a day or a stretch of days as a whole. If the
event’s allDay property is false, the time aspect of its dates matters; an event will
then typically be bounded by two times on the same day.

Making an event is simple, if tedious. You must provide a startDate and an endDate!
The simplest way to construct dates, and to do the date math that you’ll often need in
order to derive one date from another, is with DateComponents. I’ll create an event
and add it to our new calendar. First, I need a way to locate the new calendar. I’ll
locate it by its title. I really should be using the calendarIdentifier; the title isn’t
reliable, since the user might change it, and since multiple calendars can have the
same title. However, it’s only an example:

func calendarWithName(name:String) -> EKCalendar? {
 let cals = self.database.calendarsForEntityType(.Event)
 return cals.filter {$0.title == name}.first
}

Now I’ll create an event, configure it, and add it to our CoolCal calendar:

if !self.determineStatus() { // not authorized
 return
}
guard let cal = self.calendarWithName("CoolCal") else { // no calendar
 return
}
let greg = NSCalendar(calendarIdentifier:NSCalendarIdentifierGregorian)!
let comp = NSDateComponents()
(comp.year, comp.month, comp.day, comp.hour) = (2016,8,10,15)
let d1 = greg.dateFromComponents(comp)!
comp.hour = comp.hour + 1
let d2 = greg.dateFromComponents(comp)!

Calendar Database | 889

let ev = EKEvent(eventStore:self.database)
ev.title = "Take a nap"
ev.notes = "You deserve it!"
ev.calendar = cal
(ev.startDate, ev.endDate) = (d1,d2)
do {
 try self.database.saveEvent(ev, span:.ThisEvent, commit:true)
} catch {
 print("save simple event \(error)")
 return
}

An alarm is an EKAlarm, a very simple class; it can be set to fire either at an absolute
date or at a relative offset from the event time. On an iOS device, an alarm fires
through a local notification (Chapter 13). We could easily have added an alarm to our
event as we were configuring it:

let alarm = EKAlarm(relativeOffset:-3600) // one hour before
ev.addAlarm(alarm)

Recurrence
Recurrence is embodied in a recurrence rule (EKRecurrenceRule); a calendar item
can have multiple recurrence rules, which you manipulate through its recurrence-
Rules property, along with methods addRecurrenceRule: and removeRecurrence-
Rule:. A simple EKRecurrenceRule is described by three properties:

Frequency
By day, by week, by month, or by year.

Interval
Fine-tunes the notion “by” in the frequency. A value of 1 means “every.” A value
of 2 means “every other.” And so on.

End
Optional, because the event might recur forever. It is an EKRecurrenceEnd
instance, describing the limit of the event’s recurrence either as an end date or as
a maximum number of occurrences.

The options for describing a more complex EKRecurrenceRule are best summarized
by its initializer:

init(recurrenceWithFrequency type: EKRecurrenceFrequency,
 interval: Int,
 daysOfTheWeek days: [EKRecurrenceDayOfWeek]?,
 daysOfTheMonth monthDays: [NSNumber]?,
 monthsOfTheYear months: [NSNumber]?,

890 | Chapter 19: Calendar

 weeksOfTheYear: [NSNumber]?,
 daysOfTheYear: [NSNumber]?,
 setPositions: [NSNumber]?,
 end: EKRecurrenceEnd?)

The meanings of all these parameters are mostly obvious from their names and types.
The EKRecurrenceDayOfWeek class allows specification of a week number as well as
a day number so that you can say things like “the fourth Thursday of the month.”
Many of the numeric values can be negative to indicate counting backward from the
last one. Numbers are all 1-based, not 0-based. The setPositions parameter is an
array of numbers filtering the occurrences defined by the rest of the specification
against the interval; for example, if daysOfTheWeek is Sunday, -1 means the final Sun‐
day.

An EKRecurrenceRule is intended to embody the RRULE event component in the
iCalendar standard specification (http://datatracker.ietf.org/doc/rfc5545); in fact, the
documentation tells you how each EKRecurrenceRule property corresponds to an
RRULE attribute, and if you log an EKRecurrenceRule, what you’re shown is the
underlying RRULE. RRULE can describe some amazingly sophisticated recurrence rules,
such as this one:

RRULE:FREQ=YEARLY;INTERVAL=2;BYMONTH=1;BYDAY=SU

That means “every Sunday in January, every other year.” Let’s form this rule. Observe
that we should attach it to an event whose startDate and endDate make sense as an
example of the rule — that is, on a Sunday in January. Fortunately, DateComponents
makes that easy:

// ... make sure we have authorization ...
// ... obtain our calendar (cal) ...
// form the rule
let everySunday = EKRecurrenceDayOfWeek(.Sunday)
let january = 1
let recur = EKRecurrenceRule(
 recurrenceWithFrequency:.Yearly, // every year
 interval:2, // no, every *two* years
 daysOfTheWeek:[everySunday],
 daysOfTheMonth:nil,
 monthsOfTheYear:[january],
 weeksOfTheYear:nil,
 daysOfTheYear:nil,
 setPositions: nil,
 end:nil)
let ev = EKEvent(eventStore:self.database)
ev.title = "Mysterious biennial Sunday-in-January morning ritual"
ev.addRecurrenceRule(recur)
ev.calendar = cal
// need a start date and end date
let greg = NSCalendar(calendarIdentifier:NSCalendarIdentifierGregorian)!
let comp = NSDateComponents()

Calendar Database | 891

http://datatracker.ietf.org/doc/rfc5545

Figure 19-1. The user specifies a span

comp.year = 2016
comp.month = 1
comp.weekday = 1 // Sunday
comp.weekdayOrdinal = 1 // *first* Sunday
comp.hour = 10
ev.startDate = greg.dateFromComponents(comp)!
comp.hour = 11
ev.endDate = greg.dateFromComponents(comp)!
do {
 try self.database.saveEvent(ev, span:.FutureEvents, commit:true)
} catch {
 print("save recurring event \(error)")
 return
}

In that code, the event we save into the database is a recurring event. When we save
or delete a recurring event, we must specify a span: argument (EKSpan). This is
either .ThisEvent or .FutureEvents, and corresponds to the two buttons the user
sees in the Calendar interface when saving or deleting a recurring event (Figure 19-1).
The buttons and the span types reflect their meaning exactly: the change affects either
this event alone, or this event plus all future (not past) recurrences. This choice deter‐
mines not only how this and future recurrences of the event are affected now, but also
how they relate to one another from now on.

Fetching Events
Now let’s talk about how to extract an event from the database. One way, as I men‐
tioned earlier, is by its identifier (calendarItemIdentifier). Not only is this identi‐
fier a fast and unique way to obtain an event, but also it’s just a string, which means
that it persists even if the EKEventStore subsequently goes out of existence. Remem‐
ber to obtain it, though, while the EKEventStore is still in existence; an EKEvent
drawn from the database loses its meaning and its usability if the EKEventStore
instance is destroyed. (Even this unique identifier might not survive changes in a cal‐
endar between launches of your app.)

892 | Chapter 19: Calendar

You can also extract events from the database by matching a predicate (NSPredicate).
To form this predicate, you specify a start and end date and an array of eligible calen‐
dars, and call the EKEventStore method predicateForEventsWithStartDate:end-
Date:calendars:. That’s the only kind of predicate you can use, so any further
filtering of events is then up to you. In this example, I’ll look through the events of
our CoolCal calendar to find the nap event I created earlier; because I have to specify
a date range, I ask for events occurring over the next two years (see Appendix B for
my lend function). Because enumerateEventsMatchingPredicate: can be time-
consuming, it’s best to run it on a background thread (Chapter 25):

// ... make sure we have authorization ...
// ... obtain our calendar (cal) ...
let d1 = NSDate() // today
let greg = NSCalendar(calendarIdentifier:NSCalendarIdentifierGregorian)!
let d2 = greg.dateByAddingComponents(lend {
 (comp:NSDateComponents) in comp.year = 2
 }, toDate:d1, options:[])!
let pred = self.database.predicateForEventsWithStartDate(
 d1, endDate:d2, calendars:[cal])
dispatch_async(dispatch_get_global_queue(0, 0)) {
 self.database.enumerateEventsMatchingPredicate(pred) {
 (event:EKEvent, stop:UnsafeMutablePointer<ObjCBool>) in
 if event.title.rangeOfString("nap") != nil {
 self.napid = event.calendarItemIdentifier
 stop.memory = true
 }
 }
}

When you fetch events from the database, they are provided in no particular order;
the convenience method compareStartDateWithEvent: is provided as a sort selector
to put them in order by start date.

When you extract events from the database, event recurrences are treated as separate
events. Recurrences of the same event will have different start and end dates but the
same calendarItemIdentifier. When you fetch an event by identifier, you get the
earliest event with that identifier. This makes sense, because if you’re going to make a
change affecting this and future recurrences of the event, you need the option to start
with the earliest possible recurrence (so that “future” means “all”).

Reminders
A reminder (EKReminder) is very parallel to an event (EKEvent); the chief difference
is that EKReminder was invented some years after EKEvent and so its API is a little
more modern. They both inherit from EKCalendarItem, so a reminder has a calendar
(which the Reminders app refers to as a “list”), a title, notes, alarms, and recurrence
rules. Instead of a start date and an end date, it has a start date, a due date, a comple‐

Calendar Database | 893

tion date, and a completed property. The start date and due date are expressed
directly as DateComponents, so you can supply as much detail as you wish: if you
don’t include any time components, it’s an all-day reminder.

To illustrate, I’ll make an all-day reminder for today:

if !self.determineStatus() { // no authorization
 return
}
let cal = self.database.defaultCalendarForNewReminders()
let rem = EKReminder(eventStore:self.database)
rem.title = "Get bread"
rem.calendar = cal
let today = NSDate()
let greg = NSCalendar(calendarIdentifier:NSCalendarIdentifierGregorian)!
let comps : NSCalendarUnit = [.Year, .Month, .Day]
rem.dueDateComponents = greg.components(comps, fromDate:today)
do {
 try self.database.saveReminder(rem, commit:true)
} catch {
 print("save calendar \(error)")
 return
}

When you call fetchRemindersMatchingPredicate:completion:, the possible pred‐
icates let you fetch all reminders in given calendars, incomplete reminders, or com‐
pleted reminders. You don’t have to call it on a background thread, because it calls
your completion function asynchronously.

Proximity Alarms
A proximity alarm is triggered by the user’s approaching or leaving a certain location
(also known as geofencing). This is appropriate particularly for reminders: one might
wish to be reminded of some task when approaching the place where that task can be
accomplished. To form the location, you’ll need to use the CLLocation class (see
Chapter 22). Here, I’ll attach a proximity alarm to a reminder (rem); the alarm will
fire when I’m near my local Trader Joe’s:

let alarm = EKAlarm()
let loc = EKStructuredLocation(title:"Trader Joe's")
loc.geoLocation = CLLocation(latitude:34.271848, longitude:-119.247714)
loc.radius = 10*1000 // metres
alarm.structuredLocation = loc
alarm.proximity = .Enter // alarm when *arriving*
rem.addAlarm(alarm)

Use of a proximity alarm requires Location Services authorization, but that’s of no
concern here, because the app that needs this authorization is not our app but the
Reminders app! Now that we’ve placed a reminder with a proximity alarm into the
database, the Reminders app will request authorization, if needed, the next time the

894 | Chapter 19: Calendar

user brings it frontmost. If you add a proximity alarm to the event database and the
Reminders app can’t perform background geofencing, the alarm will not fire (unless
the Reminders app is frontmost).

You can also construct a local notification based on geofencing without involving
reminders or the Reminders app. See Chapter 22.

Calendar Interface
The Event Kit UI framework provides three view controller classes that manage views
for letting the user work with events and calendars:

EKEventViewController
Shows the description of a single event, possibly editable.

EKEventEditViewController
Allows the user to create or edit an event.

EKCalendarChooser
Allows the user to pick a calendar.

These view controllers automatically listen for changes in the database and, if needed,
will automatically call refresh on the information being edited, updating their dis‐
play to match. If a view controller is displaying an event in the database and the event
is deleted while the user is viewing it, the delegate will get the same notification as if
the user had deleted it.

EKEventViewController
EKEventViewController shows the event display listing the event’s title, date and
time, calendar, alert, and notes, familiar from the Calendar app (Figure 19-2). To use
EKEventViewController, instantiate it, give it an event from the database, assign it a
delegate (EKEventViewDelegate), and push it onto an existing navigation controller:

let evc = EKEventViewController()
evc.event = ev
evc.allowsEditing = true
evc.delegate = self
self.navigationController?.pushViewController(evc, animated: true)

Do not use EKEventViewController for an event that isn’t in the database, or at a
time when the database isn’t open! It won’t function correctly if you do.

If allowsEditing is true, an Edit button appears in the navigation bar, and by tap‐
ping this, the user can edit the various aspects of an event in the same interface as the

Calendar Interface | 895

Figure 19-2. The event interface

Calendar app, including the Delete button at the bottom. If the user ultimately deletes
the event, or edits it and taps Done, the change is saved into the database.

If the user deletes the event, you will be notified in the delegate method, eventView-
Controller:didCompleteWithAction:; it is then up to you to pop the navigation
controller:

func eventViewController(controller: EKEventViewController,
 didCompleteWithAction action: EKEventViewAction) {
 if action == .Deleted {
 self.navigationController?.popViewControllerAnimated(true)
 }
}

Even if allowsEditing is false (the default), the user can change what calendar
this event belongs to, can change an alert’s firing time if there is one, and can
delete the event. I regard this as a bug.

EKEventEditViewController
EKEventEditViewController (a UINavigationController) presents the interface for
editing an event. To use it, set its eventStore and editViewDelegate (EKEventEdit‐
ViewDelegate, not delegate), and optionally its event, and present it as a presented
view controller (which looks best on the iPad as a popover). The event can be nil for
a completely empty new event; it can be an event you’ve just created (and possibly
partially configured) and not stored in the database; or it can be an existing event
from the database. If access to the database has been denied, the interface will be
empty and the user will simply cancel.

The delegate method eventEditViewControllerDefaultCalendarForNewEvents:

may be implemented to specify what calendar a completely new event should be

896 | Chapter 19: Calendar

assigned to. If you’re partially constructing a new event, you can assign it a calendar
then, and of course an event from the database already has a calendar.

You must implement the delegate method eventEditViewController:didComplete-
WithAction: so that you can dismiss the presented view controller. Possible actions
are that the user cancelled, saved the edited event into the database, or deleted an
already existing event from the database. You can get a reference to the edited event
as the EKEventEditViewController’s event.

EKCalendarChooser
EKCalendarChooser displays a list of calendars, choosable by tapping; a chosen cal‐
endar displays a checkmark. To use it, instantiate it with init(selection-

Style:displayStyle:entityType:eventStore:), set a delegate

(EKCalendarChooserDelegate), make it the root view controller of a UINavigation‐
Controller, and show the navigation controller as a presented view controller (which
looks best as a popover on the iPad). The selectionStyle dictates whether the user
can pick one or multiple calendars; the displayStyle states whether all calendars or
only writable calendars will be displayed. If access to the database has been denied,
the interface will be empty and the user will simply cancel.

Two properties, showsCancelButton and showsDoneButton, determine whether these
buttons will appear in the navigation bar. In a fullscreen presented view controller,
you’ll certainly show at least one and probably both, because otherwise the user has
no way to dismiss the presented view controller!

There are three delegate methods, the first two being required:

• calendarChooserDidFinish: (the user tapped Done)
• calendarChooserDidCancel:

• calendarChooserSelectionDidChange:

In the Finish and Cancel methods, you should dismiss the presented view controller.

In this example, we implement a potentially destructive action: we offer to delete the
selected calendar. Because this is potentially destructive, we pass through an action
sheet for confirmation:

@IBAction func deleteCalendar (sender: Any!) {
 let choo = EKCalendarChooser(
 selectionStyle:.Single,
 displayStyle:.AllCalendars,
 entityType:.Event,
 eventStore:self.database)
 choo.showsDoneButton = true
 choo.showsCancelButton = true

Calendar Interface | 897

 choo.delegate = self
 let nav = UINavigationController(rootViewController: choo)
 nav.modalPresentationStyle = .Popover
 self.presentViewController(nav, animated: true, completion: nil)
 if let pop = nav.popoverPresentationController {
 if let v = sender as? UIView {
 pop.sourceView = v
 pop.sourceRect = v.bounds
 }
 }
}
func calendarChooserDidCancel(calendarChooser: EKCalendarChooser) {
 self.dismissViewControllerAnimated(true, completion: nil)
}
func calendarChooserDidFinish(chooser: EKCalendarChooser) {
 let cals = chooser.selectedCalendars
 guard cals.count > 0 else {
 self.dismissViewControllerAnimated(true, completion:nil)
 return
 }
 let calsToDelete = cals.map {$0.calendarIdentifier}
 let alert = UIAlertController(
 title: "Delete selected calendar?", message: nil,
 preferredStyle: .ActionSheet)
 alert.addAction(UIAlertAction(
 title: "Cancel", style: .Cancel, handler: nil))
 alert.addAction(UIAlertAction(
 title: "Delete", style: .Destructive, handler: {
 _ in
 for id in calsToDelete {
 if let cal = self.database.calendarWithIdentifier(id) {
 _ = try? self.database.removeCalendar(cal, commit:true)
 }
 }
 // dismiss *everything*
 self.dismissViewControllerAnimated(true, completion: nil)
 }))
 // alert sheet inside presented-or-popover
 chooser.presentViewController(alert, animated: true, completion: nil)
}

898 | Chapter 19: Calendar

CHAPTER 20

Mail and Messages

This chapter has not yet been revised for iOS 10.

Your app can present an interface allowing the user to edit and send a mail message
or an SMS message. Two view controller classes are provided by the Message UI
framework; you’ll need to import MessageUI. In addition, the Social framework lets
you post to Twitter or Facebook on the user’s behalf. You’ll need to import Social.
The classes are:

MFMailComposeViewController
Allows composition and sending of a mail message.

MFMessageComposeViewController
Allows composition and sending of an SMS message.

SLComposeViewController
Allows composition and sending of a Twitter or Facebook post. Alternatively,
you can prepare and post a message directly using SLRequest.

UIActivityViewController (Chapter 13) also provides a unified interface for permit‐
ting the user to choose any of the built-in messaging milieus and to send a message
through it. However, the Message UI framework and the Social framework remain
important, because the user can be presented with a message form without having to
pass through an activity view, and because you can fill in fields, such as the recipient
field in a mail composition form, that UIActivityViewController doesn’t let you fill in.

Another option is to form a URL of the appropriate scheme and hand it to UIAppli‐
cation’s openURL: method. For example, given a mailto: URL, openURL: can generate
a proposed mail message with an initial recipient field and subject field. (See the
Apple URL Scheme Reference for a list of built-in URL schemes.) That takes the user

899

to the Mail app — and out of your app — but in iOS 9 that might not be so terrible,
because a Back button appears in the status bar.

Mail Message
The MFMailComposeViewController class, a UINavigationController, allows the user
to edit a mail message. The user can attempt to send the message there and then, or
can cancel but save a draft, or can cancel completely. Before using this class to present
a view, call canSendMail; if the result is false, go no further, as a negative result
means that the device is not configured for sending mail. A positive result does not
mean that the device is connected to the network and can send mail right now, only
that sending mail is generally possible with this device; actually sending the mail mes‐
sage (or storing it as a draft) will be up to the device’s internal processes.

To use MFMailComposeViewController, instantiate it, provide a mailCompose-
Delegate (not delegate) adopting MFMailComposeViewControllerDelegate, and
configure the message to any desired extent. Configuration methods are:

• setSubject:

• setToRecipients:

• setCcRecipients:

• setBccRecipients:

• setMessageBody:isHTML:

• addAttachmentData:mimeType:fileName:

Typically, you’ll show the MFMailComposeViewController as a presented view con‐
troller. (On the iPad, a .FormSheet presentation feels less overwhelming.) The user
can later alter your preset configurations, at which time the message details will be
out of your hands.

The delegate method mailComposeController:didFinishWithResult:error: will be
called, describing the user’s final action, which might be any of these:

• MFMailComposeResultCancelled

• MFMailComposeResultSaved

• MFMailComposeResultSent

• MFMailComposeResultFailed

Dismissing the presented view controller is up to you, in the delegate method. Here’s
a minimal example:

900 | Chapter 20: Mail and Messages

@IBAction func doMail (sender: Any!) {
 guard MFMailComposeViewController.canSendMail() else { return }
 let vc = MFMailComposeViewController()
 vc.mailComposeDelegate = self
 self.presentViewController(vc, animated:true, completion:nil)
}
func mailComposeController(
 controller: MFMailComposeViewController,
 didFinishWithResult result: MFMailComposeResult,
 error: NSError?) {
 // can do something with result here
 self.dismissViewControllerAnimated(true, completion: nil)
}

Text Message
The MFMessageComposeViewController class is a UINavigationController subclass.
Before using this class to present a view, call canSendText; if the result is false, go no
further. The user has no option to save an SMS message as a draft, so even if this
device sometimes can send text, there’s no point proceeding if the device can’t send
text now. However, you can register for the MFMessageComposeViewControllerText-
MessageAvailabilityDidChange in the hope that the device might later be able to
send text; if the notification arrives, examine its MFMessageComposeViewController-
TextMessageAvailabilityKey.

To use MFMessageComposeViewController, instantiate the class, give it a message-
ComposeDelegate (not delegate) adopting MFMessageComposeViewController‐
Delegate, and configure it as desired through the recipients (phone number strings)
and body properties. You can also configure the message subject and provide attach‐
ments. For the subject, call the class method canSendSubject, and if it returns true,
you can set the subject. For attachments, call the class method canSendAttachments,
and if it returns true, you may want to call isSupportedAttachmentUTI: to see if a
particular file type can be sent as an attachment; finally, call addAttachmentURL:with-
AlternateFilename: (if you have a file URL) or addAttachmentData:type-

Identifier:filename:. Conversely, you can prevent the user from adding
attachments by calling disableUserAttachments.

When you’ve finished configuring the MFMessageComposeViewController, show it
as a presented view controller. The user can later alter your preset configurations, at
which time the message details will be out of your hands.

The delegate method messageComposeViewController:didFinishWithResult: will
be called with a description of the user’s final action, which might be any of these:

• MessageComposeResultCancelled

Text Message | 901

• MessageComposeResultSent

• MessageComposeResultFailed

Dismissing the presented view controller is up to you, in the delegate method. Here’s
a minimal example:

@IBAction func doMessage (sender: Any!) {
 guard MFMessageComposeViewController.canSendText() else { return }
 let vc = MFMessageComposeViewController()
 vc.messageComposeDelegate = self
 self.presentViewController(vc, animated:true, completion:nil)
}
func messageComposeViewController(
 controller: MFMessageComposeViewController,
 didFinishWithResult result: MessageComposeResult) {
 // can do something with result here
 self.dismissViewControllerAnimated(true, completion: nil)
}

Twitter Post
The interface for letting the user construct a Twitter post is SLComposeViewControl‐
ler, part of the Social framework. Twitter, together with Facebook (and Weibo), are
represented by constant strings starting with SLServiceType. You’ll use the class
method isAvailableForServiceType: to learn whether the desired service is avail‐
able; if it is, you can instantiate SLComposeViewController for that service and
present it as a presented view controller.

SLComposeViewController has a more modern API than the mail and message view
controllers. Instead of a delegate, SLComposeViewController has a completion-
Handler. Set it to a function taking one parameter, an SLComposeViewControllerRe‐
sult. In the function, dismiss the view controller. The
SLComposeViewControllerResult parameter will be .Cancelled or .Done. Here’s a
minimal example:

@IBAction func doTwitter (sender: Any!) {
 guard SLComposeViewController
 .isAvailableForServiceType(SLServiceTypeTwitter) else { return }
 guard let vc = SLComposeViewController(
 forServiceType:SLServiceTypeTwitter) else { return }
 vc.completionHandler = {
 (result:SLComposeViewControllerResult) in
 // can do something with result here
 self.dismissViewControllerAnimated(true, completion:nil)
 };
 self.presentViewController(vc, animated:true, completion:nil)
}

902 | Chapter 20: Mail and Messages

You can also, with the user’s permission, gain secure access to the user’s account
information through the ACAccountStore class (part of the Accounts framework).
Using this, along with the SLRequest class, your app can construct and post a message
directly, without passing through the message composition interface. The ACAc‐
countStore class can manipulate accounts in other ways as well, without violating the
user’s privacy.

Twitter Post | 903

CHAPTER 21

Maps

This chapter has not yet been revised for iOS 10.

Your app can imitate the Maps app, displaying a map interface and placing annota‐
tions and overlays on the map. The relevant classes are provided by the Map Kit
framework. You’ll need to import MapKit. The classes used to describe locations in
terms of latitude and longitude, whose names start with “CL,” come from the Core
Location framework, but you won’t need to import it explicitly.

Displaying a Map
A map is displayed through a UIView subclass, an MKMapView.

You can instantiate an MKMapView from a nib. However, you will then need to
link your target manually to the MapKit framework: edit the target and add Map‐
Kit.framework under Linked Frameworks and Libraries in the General tab.

A map has a type, which is one of the following (MKMapType):

• .Standard

• .Satellite

• .Hybrid

The area displayed on the map is its region, an MKCoordinateRegion. This is a struct
comprising a location (its center, a CLLocationCoordinate2D), describing the lati‐
tude and longitude of the point at the center of the region, along with a span (an
MKCoordinateSpan), describing the quantity of latitude and longitude embraced by
the region and hence the scale of the map. Convenience functions help you construct
an MKCoordinateRegion.

905

Figure 21-1. A map view showing a happy place

In this example, I’ll initialize the display of an MKMapView (self.map) to show a
place where I like to go dirt biking (Figure 21-1):

let loc = CLLocationCoordinate2DMake(34.927752,-120.217608)
let span = MKCoordinateSpanMake(0.015, 0.015)
let reg = MKCoordinateRegionMake(loc, span)
self.map.region = reg

An MKCoordinateSpan is described in degrees of latitude and longitude. It may be,
however, that what you know is the region’s proposed dimensions in meters. To con‐
vert, call MKCoordinateRegionMakeWithDistance. The ability to perform this conver‐
sion is important, because an MKMapView shows the world through a Mercator
projection, where longitude lines are parallel and equidistant, and scale increases at
higher latitudes.

I happen to know that the area I want to display is about 1200 meters on a side.
Hence, this is another way of displaying roughly the same region:

let loc = CLLocationCoordinate2DMake(34.927752,-120.217608)
let reg = MKCoordinateRegionMakeWithDistance(loc, 1200, 1200)
self.map.region = reg

Yet another way of describing a map region is with an MKMapRect, a struct built up
from MKMapPoint and MKMapSize. The earth has already been projected onto the
map for us, and now we are describing a rectangle of that map, in terms of the units
in which the map is drawn. The exact relationship between an MKMapPoint and the
corresponding latitude/longitude coordinates is arbitrary and of no interest; what
matters is that you can ask for the conversion, along with the ratio of points to meters
(which will vary with latitude):

• MKMapPointForCoordinate

906 | Chapter 21: Maps

• MKCoordinateForMapPoint

• MKMetersPerMapPointAtLatitude

• MKMapPointsPerMeterAtLatitude

• MKMetersBetweenMapPoints

To determine what the map view is showing in MKMapRect terms, use its visible-
MapRect property. Thus, this is another way of displaying approximately the same
region:

let loc = CLLocationCoordinate2DMake(34.927752,-120.217608)
let pt = MKMapPointForCoordinate(loc)
let w = MKMapPointsPerMeterAtLatitude(loc.latitude) * 1200
self.map.visibleMapRect = MKMapRectMake(pt.x - w/2.0, pt.y - w/2.0, w, w)

In none of those examples did I bother with the question of the actual dimensions of
the map view itself. I simply threw a proposed region at the map view, and it decided
how best to portray the corresponding area. Values you assign to the map’s region
and visibleMapRect are unlikely to be the exact values the map adopts in any case;
that’s because the map view will optimize for display without distorting the map’s
scale. You can perform this same optimization in code by calling these methods:

• regionThatFits:

• mapRectThatFits:

• mapRectThatFits:edgePadding:

By default, the user can zoom and scroll the map with the usual gestures; you can
turn this off by setting the map view’s zoomEnabled and isScrollEnabled to false.
Usually you will set them both to true or both to false. For further customization of
an MKMapView’s response to touches, use a UIGestureRecognizer (Chapter 5).

You can change programmatically the region displayed, optionally with animation, by
calling these methods:

• setRegion:animated:

• setCenterCoordinate:animated:

• setVisibleMapRect:animated:

• setVisibleMapRect:edgePadding:animated:

The map view’s delegate (MKMapViewDelegate) is notified as the map loads and as
the region changes (including changes triggered programmatically):

• mapViewWillStartLoadingMap:

Displaying a Map | 907

• mapViewDidFinishLoadingMap:

• mapViewDidFailLoadingMap:withError:

• mapView:regionWillChangeAnimated:

• mapView:regionDidChangeAnimated:

You can also enable 3D viewing of the map (pitchEnabled), and there’s a large and
powerful API putting control of 3D viewing in your hands. Discussion of 3D map
viewing is beyond the scope of this chapter; an excellent WWDC 2013 video surveys
the topic. New in iOS 9 are 3D flyover map types .SatelliteFlyover and .Hybrid-
Flyover; a WWDC 2015 video explains about these.

Also new in iOS 9, an MKMapView has Bool properties showsCompass, showsScale,
and showsTraffic.

Data types such as MKCoordinateSpan are documented in the Map Kit Data
Types Reference, but convenience functions such as MKCoordinateSpanMake are
documented in the Map Kit Functions Reference — and there are some useful
constants in the Map Kit Constants Reference. For a better overview, refer to the
MKGeometry.h header.

Annotations
An annotation is a marker associated with a location on a map. To make an annota‐
tion appear on a map, two objects are needed:

The object attached to the MKMapView
The annotation itself is attached to the MKMapView. It consists of any instance
whose class adopts the MKAnnotation protocol, which specifies a coordinate, a
title, and a subtitle for the annotation. You might have reason to define your
own class to handle this task, or you can use the simple built-in MKPoint‐
Annotation class. The annotation’s coordinate is crucial; it says where on earth
the annotation should be drawn. The title and subtitle are optional, to be dis‐
played in a callout.

The object that draws the annotation
An annotation is drawn by an MKAnnotationView, a UIView subclass. This can
be extremely simple. In fact, even a nil MKAnnotationView might be perfectly
satisfactory: it draws a red pin. If red is not your favorite color, a built-in
MKAnnotationView subclass, MKPinAnnotationView, displays a pin in red,
green, or purple (conventionally designating destination points, starting points,
and user-specified points, respectively) — or, new in iOS 9, you are free to set an
MKPinAnnotationView’s pin color (its pinTintColor property) to any UIColor.

908 | Chapter 21: Maps

Figure 21-2. A simple annotation

If a pin is not your thing, you can provide your own UIImage as the MKAnnota‐
tionView’s image property. And for even more flexibility, you can take over the
drawing of an MKAnnotationView by overriding draw(_:) in a subclass.

Not only does an annotation require two separate objects, but in fact those objects do
not initially exist together. An annotation object has no pointer to the annotation
view object that will draw it. Rather, it is up to you to supply the annotation view
object in real time, on demand, in the MKMapView’s delegate. This architecture may
sound confusing, but in fact it’s a very clever way of reducing the amount of resources
needed at any given moment. An annotation itself is merely a lightweight object that
a map can always possess; the corresponding annotation view is a heavyweight object
that is needed only so long as that annotation’s coordinates are within the visible por‐
tion of the map.

Let’s add the simplest possible annotation to our map. The point where the annota‐
tion is to go has been stored in an instance variable:

self.annloc = CLLocationCoordinate2DMake(34.923964,-120.219558)

We create the annotation, configure its properties, and add it to the MKMapView:

let ann = MKPointAnnotation()
ann.coordinate = self.annloc
ann.title = "Park here"
ann.subtitle = "Fun awaits down the road!"
self.map.addAnnotation(ann)

That code is sufficient to produce Figure 21-2. I didn’t implement any MKMapView
delegate methods, so the MKAnnotationView is nil. But a nil MKAnnotationView,
as I’ve already said, produces a red pin. I’ve also tapped the annotation, to display its
callout, containing the annotation’s title and subtitle.

Custom Annotation View
The location marked by our annotation is the starting point of a suggested dirt bike
ride, so by convention the pin should be green. We can easily create a green pin using
MKPinAnnotationView, which has a pinTintColor property. To supply the annota‐

Annotations | 909

tion view, we must give the map view a delegate (MKMapViewDelegate) and imple‐
ment mapView:viewForAnnotation:.

The structure of mapView:viewForAnnotation: is rather similar to the structure of
tableView(_:cellForRowAt:) (Chapter 8), which is not surprising, considering that
they both do the same sort of thing. Recall that the goal of tableView(_:cellForRow-
At:) is to allow the table view to reuse cells, so that at any given moment only as
many cells are needed as are visible in the table view, regardless of how many rows the
table as a whole may consist of. The same thing holds for a map and its annotation
views. The map may have a huge number of annotations, but it needs to display
annotation views for only those annotations that are within its current region. Any
extra annotation views that have been scrolled out of view can thus be reused and are
held for us by the map view in a cache for exactly this purpose.

So, in mapView:viewForAnnotation:, we start by calling dequeueReusable-

AnnotationViewWithIdentifier: to see whether there’s an already existing annota‐
tion view that’s not currently being displayed and that we might be able to reuse. If
there isn’t, we create one, attaching to it an appropriate reuse identifier.

Here’s our implementation of mapView:viewForAnnotation:. Observe that in creat‐
ing our green pin, we explicitly set its canShowCallout to true, as this is not the
default:

func mapView(mapView: MKMapView,
 viewForAnnotation annotation: MKAnnotation) -> MKAnnotationView? {
 var v : MKAnnotationView! = nil
 if let t = annotation.title where t == "Park here" {
 let ident = "greenPin"
 v = mapView.dequeueReusableAnnotationViewWithIdentifier(ident)
 if v == nil {
 v = MKPinAnnotationView(
 annotation:annotation, reuseIdentifier:ident)
 (v as! MKPinAnnotationView).pinTintColor =
 MKPinAnnotationView.greenPin()
 v.canShowCallout = true
 }
 v.annotation = annotation
 }
 return v
}

The structure of this implementation of mapView:viewForAnnotation: is typical
(though it seems pointlessly elaborate when we have only one annotation in our
map):

We might have more than one reusable type of annotation view, so we must
somehow distinguish the possible cases, based on something about the incoming

910 | Chapter 21: Maps

annotation. Here, I use the annotation’s title as a distinguishing mark; later in this
chapter, I’ll suggest a much better approach.

For each reusable type, we proceed much as with table view cells. We have an
identifier that categorizes this sort of reusable view. We try to dequeue an unused
annotation view of the appropriate type. If we can’t, we’ll get nil; in that case, we
create an MKAnnotationView and configure it (compare Example 8-1).

Even if we can dequeue an unused annotation view, and even if we have no other
configuration to perform, we must associate the annotation view with the incom‐
ing annotation by assigning the annotation to this annotation view’s annotation
property. Forgetting to do this is a common beginner mistake.

MKPinAnnotationView has one more option of which we might avail ourselves:
when it draws the annotation view (the pin), it can animate it into place, dropping it
in the manner familiar from the Maps app. All we have to do is add one line of code:

(v as! MKPinAnnotationView).animatesDrop = true

Now let’s go further. Instead of a pin, we’ll substitute our own artwork. I’ll revise the
code at the heart of my mapView:viewForAnnotation: implementation, such that
instead of creating an MKPinAnnotationView, I create an instance of its superclass,
MKAnnotationView, and give it a custom image showing a dirt bike. The image is too
large, so I shrink the view’s bounds before returning it; I also move the view up a bit,
so that the bottom of the image is at the coordinates on the map (Figure 21-3):

func mapView(mapView: MKMapView,
 viewForAnnotation annotation: MKAnnotation) -> MKAnnotationView? {
 var v : MKAnnotationView! = nil
 if let t = annotation.title where t == "Park here" {
 let ident = "bike"
 v = mapView.dequeueReusableAnnotationViewWithIdentifier(ident)
 if v == nil {
 v = MKAnnotationView(
 annotation:annotation, reuseIdentifier:ident)
 v.image = UIImage(named:"clipartdirtbike.gif")
 v.bounds.size.height /= 3.0
 v.bounds.size.width /= 3.0
 v.centerOffset = CGPoint(0,-20)
 v.canShowCallout = true
 }
 v.annotation = annotation
 }
 return v
}

For more flexibility, we can create our own MKAnnotationView subclass and endow
it with the ability to draw itself. At a minimum, such a subclass should override the

Annotations | 911

Figure 21-3. A custom annotation image

initializer and assign itself a frame, and should implement draw(_:). Here’s the
implementation for a class MyAnnotationView that draws a dirt bike:

class MyAnnotationView : MKAnnotationView {
 override init(annotation:MKAnnotation?, reuseIdentifier:String?) {
 super.init(
 annotation: annotation, reuseIdentifier: reuseIdentifier)
 let im = UIImage(named:"clipartdirtbike.gif")!
 self.frame = CGRect(
 0, 0, im.size.width / 3.0 + 5, im.size.height / 3.0 + 5)
 self.centerOffset = CGPoint(0,-20)
 self.opaque = false
 }
 override init(frame: CGRect) {
 super.init(frame:frame)
 }
 required init(coder: NSCoder) {
 fatalError("NSCoding not supported")
 }
 override func drawRect(rect: CGRect) {
 let im = UIImage(named:"clipartdirtbike.gif")!
 im.drawInRect(self.bounds.insetBy(dx: 5, dy: 5))
 }
}

The corresponding implementation of mapView:viewForAnnotation: now has much
less work to do:

func mapView(mapView: MKMapView,
 viewForAnnotation annotation: MKAnnotation) -> MKAnnotationView? {
 var v : MKAnnotationView! = nil
 if let t = annotation.title where t == "Park here" {
 let ident = "bike"
 v = mapView.dequeueReusableAnnotationViewWithIdentifier(ident)
 if v == nil {
 v = MyAnnotationView(
 annotation:annotation, reuseIdentifier:ident)
 v.canShowCallout = true
 }

912 | Chapter 21: Maps

 v.annotation = annotation
 }
 return v
}

Custom Annotation Class
For ultimate flexibility, we can provide our own annotation class as well. A minimal
annotation class will look like this:

class MyAnnotation : NSObject, MKAnnotation {
 dynamic var coordinate: CLLocationCoordinate2D
 var title: String?
 var subtitle: String?
 init(location coord:CLLocationCoordinate2D) {
 self.coordinate = coord
 super.init()
 }
}

Now when we create our annotation and add it to our map, our code looks like this:

let ann = MyAnnotation(location:self.annloc)
ann.title = "Park here"
ann.subtitle = "Fun awaits down the road!"
self.map.addAnnotation(ann)

A major advantage of this change appears in our implementation of mapView:view-
ForAnnotation:, where we test for the annotation type. Formerly, it wasn’t easy to
distinguish those annotations that needed to be drawn as a dirt bike; we were rather
artificially examining the title:

if let t = annotation.title where t == "Park here" {

Now, however, we can just look at the class:

if annotation is MyAnnotation {

A further advantage of supplying our own annotation class is that this approach gives
our implementation room to grow. For example, at the moment, every MyAnnotation
is drawn as a bike, but we could now add another property to MyAnnotation that tells
us what drawing to use. We could also give MyAnnotation further properties saying
such things as which way the bike should face, what angle it should be drawn at, and
so on. Each instance of MyAnnotationView will end up with a reference to the corre‐
sponding MyAnnotation instance (as its annotation property), so it would be able to
read those MyAnnotation properties and draw itself appropriately.

Other Annotation Features
To add our own animation to an annotation view as it appears on the map, analogous
to the built-in MKPinAnnotationView pin-drop animation, we implement the map

Annotations | 913

view delegate method mapView:didAddAnnotationViews:. The key fact here is that at
the moment this method is called, the annotation view has been added but the redraw
moment has not yet arrived (Chapter 4). So if we animate the view, that animation
will be performed at the moment the view appears onscreen. Here, I’ll animate the
opacity of the view so that it fades in, while growing the view from a point to its full
size; I identify the view type through its reuseIdentifier:

func mapView(mapView: MKMapView,
 didAddAnnotationViews views: [MKAnnotationView]) {
 for aView in views {
 if aView.reuseIdentifier == "bike" {
 aView.transform = CGAffineTransformMakeScale(0, 0)
 aView.alpha = 0
 UIView.animateWithDuration(0.8) {
 aView.alpha = 1
 aView.transform = CGAffineTransform.identity
 }
 }
 }
}

The callout is visible in Figures 21-2 and 21-3 because before taking the screenshot, I
tapped on the annotation, thus selecting it. MKMapView has methods allowing anno‐
tations to be selected or deselected programmatically, thus (by default) causing their
callouts to appear or disappear. The delegate has methods notifying you when the
user selects or deselects an annotation, and you are free to override your custom
MKAnnotationView’s setSelected:animated: if you want to change what happens
when the user taps an annotation. For example, you could show and hide a custom
view instead of, or in addition to, the built-in callout.

A callout can contain left and right accessory views; these are the MKAnnotation‐
View’s leftCalloutAccessoryView and rightCalloutAccessoryView. They are
UIViews, and should be small (less than 32 pixels in height). New in iOS 9, there is
also a detailCalloutAccessoryView which replaces the subtitle; for example, you
could supply a multiline label with smaller text, something that was quite difficult in
earlier system versions. The map view’s tintColor (see Chapter 12) affects such
accessory view elements as template images and button titles. You can respond to taps
on these views as you would any view or control; as a convenience, a delegate method
mapView:annotationView:calloutAccessoryControlTapped: is called when the
user taps an accessory view, provided it is a UIControl.

An MKAnnotationView can optionally be draggable by the user; set its draggable
property to true and implement the map view delegate’s mapView:annotation-
View:didChangeDragState:fromOldState:. A minimal implementation must update
the MKAnnotationView’s dragState, like this:

914 | Chapter 21: Maps

func mapView(mapView: MKMapView, annotationView view: MKAnnotationView,
 didChangeDragState newState: MKAnnotationViewDragState,
 fromOldState oldState: MKAnnotationViewDragState) {
 switch (newState) {
 case .Starting:
 view.dragState = .Dragging
 case .Ending, .Canceling:
 view.dragState = .None
 default: break
 }
}

(You can also customize changes to the appearance of the view as it is dragged, by
implementing your annotation view class’s setDragState:animated: method.) If
you’re using a custom annotation class, its coordinate property must also be settable;
in our custom annotation class, MyAnnotation, the coordinate property is explicitly
declared as a read-write property (var), as opposed to the coordinate property in the
MKAnnotation protocol which is read-only.

Certain annotation properties and annotation view properties are automatically ani‐
matable through view animation, provided you’ve implemented them in a KVO com‐
pliant way. For example, in MyAnnotation, the coordinate property is KVO
compliant (because we declared it dynamic); therefore, we are able to animate shifting
the annotation’s position:

UIView.animateWithDuration(0.25) {
 var loc = ann.coordinate
 loc.latitude = loc.latitude + 0.0005
 loc.longitude = loc.longitude + 0.001
 ann.coordinate = loc
}

MKMapView has extensive support for adding and removing annotations. Also,
given a bunch of annotations, you can ask your MKMapView to zoom in such a way
that all of them are showing (showAnnotations:animated:).

Annotation views don’t change size as the map is zoomed in and out, so if there are
several annotations and they are brought close together by the user zooming out, the
display can become crowded. Moreover, if too many annotations are being drawn
simultaneously in a map view, scroll and zoom performance can degrade. The only
way to prevent this is to respond to changes in the map’s visible region (for example,
in the delegate method mapView:regionDidChangeAnimated:) by removing and
adding annotations dynamically. This is a tricky problem; MKMapView’s
annotationsInMapRect: efficiently lists the annotations within a given MKMapRect,
but deciding which ones to eliminate or restore, and when, is still up to you.

Annotations | 915

Figure 21-4. An overlay

Overlays
An overlay differs from an annotation in being drawn entirely with respect to points
on the surface of the earth. Thus, whereas an annotation’s size is always the same, an
overlay’s size is tied to the zoom of the map view.

Overlays are implemented much like annotations. You provide an object that adopts
the MKOverlay protocol (which itself conforms to the MKAnnotation protocol) and
add it to the map view. When the map view delegate method mapView:rendererFor-
Overlay: is called, you provide an MKOverlayRenderer and hand it the overlay
object; the overlay renderer then draws the overlay on demand. As with annotations,
this architecture means that the overlay itself is a lightweight object, and the overlay is
drawn only if the part of the earth that the overlay covers is actually being displayed
in the map view. An MKOverlayRenderer has no reuse identifier.

Some built-in MKShape subclasses adopt the MKOverlay protocol: MKCircle,
MKPolygon, and MKPolyline. In parallel to those, MKOverlayRenderer has built-in
subclasses MKCircleRenderer, MKPolygonRenderer, and MKPolylineRenderer, ready
to draw the corresponding shapes. Thus, as with annotations, you can base your over‐
lay entirely on the power of existing classes.

In this example, I’ll use MKPolygonRenderer to draw an overlay triangle pointing up
the road from the parking place annotated in our earlier examples (Figure 21-4). We
add the MKPolygon as an overlay to our map view, and derive the MKPolygonRen‐
derer from it in our implementation of mapView:rendererForOverlay:. First, the
MKPolygon overlay:

let lat = self.annloc.latitude
let metersPerPoint = MKMetersPerMapPointAtLatitude(lat)
var c = MKMapPointForCoordinate(self.annloc)
c.x += 150/metersPerPoint
c.y -= 50/metersPerPoint
var p1 = MKMapPointMake(c.x, c.y)
p1.y -= 100/metersPerPoint
var p2 = MKMapPointMake(c.x, c.y)
p2.x += 100/metersPerPoint
var p3 = MKMapPointMake(c.x, c.y)

916 | Chapter 21: Maps

p3.x += 300/metersPerPoint
p3.y -= 400/metersPerPoint
var pts = [
 p1, p2, p3
]
let tri = MKPolygon(points:&pts, count:3)
self.map.addOverlay(tri)

Second, the delegate method, where we provide the MKPolygonRenderer:

func mapView(mapView: MKMapView,
 rendererForOverlay overlay: MKOverlay) -> MKOverlayRenderer {
 if let overlay = overlay as? MKPolygon {
 let v = MKPolygonRenderer(polygon:overlay)
 v.fillColor = UIColor.red.colorWithAlphaComponent(0.1)
 v.strokeColor = UIColor.red.colorWithAlphaComponent(0.8)
 v.lineWidth = 2
 return v
 }
 return MKOverlayRenderer()
}

Custom Overlay Class
The triangle in Figure 21-4 is rather crude; I could draw a better arrow shape using a
CGPath (Chapter 2). The built-in MKOverlayRenderer subclass that lets me do that is
MKOverlayPathRenderer. To structure things similarly to the preceding example, I’d
like to supply the CGPath when I add the overlay instance to the map view. No built-
in class lets me do that, so I’ll use a custom class, MyOverlay, that adopts the MKO‐
verlay protocol.

A minimal overlay class looks like this:

class MyOverlay : NSObject, MKOverlay {
 var coordinate : CLLocationCoordinate2D {
 get {
 let pt = MKMapPointMake(
 MKMapRectGetMidX(self.boundingMapRect),
 MKMapRectGetMidY(self.boundingMapRect))
 return MKCoordinateForMapPoint(pt)
 }
 }
 var boundingMapRect : MKMapRect
 init(rect:MKMapRect) {
 self.boundingMapRect = rect
 super.init()
 }
}

Our actual MyOverlay class will also have a path property; this will be a UIBezierPath
that holds our CGPath and supplies it to the MKOverlayPathRenderer.

Overlays | 917

Just as the coordinate property of an annotation tells the map view where on earth
the annotation is to be drawn, the boundingMapRect property of an overlay tells the
map view where on earth the overlay is to be drawn. Whenever any part of the
boundingMapRect is displayed within the map view’s bounds, the map view will have
to concern itself with drawing the overlay. With MKPolygon, we supplied the points
of the polygon in earth coordinates and the boundingMapRect was calculated for us.
With our custom overlay class, we must supply or calculate it ourselves.

At first it may appear that there is a typological impedance mismatch: the bounding-
MapRect is an MKMapRect, whereas a CGPath is defined by CGPoints. However, it
turns out that these units are interchangeable: the CGPoints of our CGPath will be
translated for us directly into MKMapPoints on the same scale — that is, the distance
between any two CGPoints will be the distance between the two corresponding
MKMapPoints. However, the origins are different: the CGPath must be described rel‐
ative to the top-left corner of the boundingMapRect — to put it another way, the
boundingMapRect is described in earth coordinates, but the top-left corner of the
boundingMapRect is (0.0,0.0) as far as the CGPath is concerned. (You might think
of this difference as analogous to the difference between a UIView’s frame and its
bounds.)

To make life simple, I’ll think in meters; actually, I’ll think in chunks of 75 meters,
because this turns out to be a good unit for positioning and laying out the arrow.
Thus, a line one unit long would in fact be 75 meters long if I were to arrive at this
actual spot on the earth and discover the overlay literally drawn on the ground. Hav‐
ing derived this chunk (unit), I use it to lay out the boundingMapRect, four units on a
side and positioned slightly east and north of the annotation point (because that’s
where the road is). Then I simply construct the arrow shape within the 4×4-unit
square, rotating it so that it points in roughly the same direction as the road:

// start with our position and derive a nice unit for drawing
let lat = self.annloc.latitude
let metersPerPoint = MKMetersPerMapPointAtLatitude(lat)
let c = MKMapPointForCoordinate(self.annloc)
let unit = CGFloat(75.0/metersPerPoint)
// size and position the overlay bounds on the earth
let sz = CGSizeMake(4*unit, 4*unit)
let mr = MKMapRectMake(
 c.x + 2*Double(unit), c.y - 4.5*Double(unit),
 Double(sz.width), Double(sz.height))
// describe the arrow as a CGPath
let p = CGPathCreateMutable()
let start = CGPoint(0, unit*1.5)
let p1 = CGPoint(start.x+2*unit, start.y)
let p2 = CGPoint(p1.x, p1.y-unit)
let p3 = CGPoint(p2.x+unit*2, p2.y+unit*1.5)
let p4 = CGPoint(p2.x, p2.y+unit*3)
let p5 = CGPoint(p4.x, p4.y-unit)

918 | Chapter 21: Maps

Figure 21-5. A nicer overlay

let p6 = CGPoint(p5.x-2*unit, p5.y)
var points = [
 start, p1, p2, p3, p4, p5, p6
]
// rotate the arrow around its center
let t1 = CGAffineTransformMakeTranslation(unit*2, unit*2)
let t2 = CGAffineTransformRotate(t1, CGFloat(-M_PI)/3.5)
var t3 = CGAffineTransformTranslate(t2, -unit*2, -unit*2)
CGPathAddLines(p, &t3, &points, 7)
CGPathCloseSubpath(p)
// create the overlay and give it the path
let over = MyOverlay(rect:mr)
over.path = UIBezierPath(CGPath:p)
// add the overlay to the map
self.map.addOverlay(over)

The delegate method, where we provide the MKOverlayPathRenderer, is simple. We
pull the CGPath out of the MyOverlay instance and hand it to the MKOverlayPa‐
thRenderer, also telling the MKOverlayPathRenderer how to stroke and fill that path:

func mapView(mapView: MKMapView,
 rendererForOverlay overlay: MKOverlay) -> MKOverlayRenderer {
 if let overlay = overlay as? MyOverlay {
 let v = MKOverlayPathRenderer(overlay:overlay)
 v.path = overlay.path.CGPath
 v.fillColor = UIColor.red.colorWithAlphaComponent(0.2)
 v.strokeColor = UIColor.black
 v.lineWidth = 2
 return v
 }
 return MKOverlayRenderer()
}

The result is a much nicer arrow (Figure 21-5), and of course this technique can be
generalized to draw an overlay from any CGPath we like.

Custom Overlay Renderer
For full generality, you could define your own MKOverlayRenderer subclass; your
subclass must override and implement drawMapRect:zoomScale:inContext:. The

Overlays | 919

incoming mapRect: parameter describes a tile of the visible map (not the size and
position of the overlay). The overlay itself is available through the inherited overlay
property, and conversion methods such as rectForMapRect: are provided for con‐
verting between the map’s mapRect: coordinates and the overlay renderer’s graphics
context coordinates.

In our example, we can move the entire functionality for drawing the arrow into an
MKOverlayRenderer subclass, which I’ll call MyOverlayRenderer. Its initializer takes
an angle: parameter, with which I’ll set its angle property; now our arrow can point
in any direction. Another nice benefit of this architectural change is that we can use
the zoomScale: parameter to determine the stroke width. For simplicity, our imple‐
mentation of drawMapRect:zoomScale:inContext: ignores the incoming mapRect
value and just draws the entire arrow every time it is called:

var angle : CGFloat
init(overlay:MKOverlay, angle:CGFloat) {
 self.angle = angle
 super.init(overlay:overlay)
}
override func drawMapRect(
 mapRect: MKMapRect, zoomScale: MKZoomScale,
 inContext context: CGContext) {
 CGContextSetStrokeColorWithColor(
 context, UIColor.black.cgColor)
 CGContextSetFillColorWithColor(context,
 UIColor.red.colorWithAlphaComponent(0.2).cgColor)
 CGContextSetLineWidth(context, 1.2/zoomScale)
 let unit =
 CGFloat(MKMapRectGetWidth(self.overlay.boundingMapRect)/4.0)
 let p = CGPathCreateMutable()
 let start = CGPoint(0, unit*1.5)
 let p1 = CGPoint(start.x+2*unit, start.y)
 let p2 = CGPoint(p1.x, p1.y-unit)
 let p3 = CGPoint(p2.x+unit*2, p2.y+unit*1.5)
 let p4 = CGPoint(p2.x, p2.y+unit*3)
 let p5 = CGPoint(p4.x, p4.y-unit)
 let p6 = CGPoint(p5.x-2*unit, p5.y)
 let points = [
 start, p1, p2, p3, p4, p5, p6
]
 // rotate the arrow around its center
 let t1 = CGAffineTransformMakeTranslation(unit*2, unit*2)
 let t2 = CGAffineTransformRotate(t1, self.angle)
 var t3 = CGAffineTransformTranslate(t2, -unit*2, -unit*2)
 CGPathAddLines(p, &t3, points, 7)
 CGPathCloseSubpath(p)
 CGContextAddPath(context, p)
 CGContextDrawPath(context, .FillStroke)
}

920 | Chapter 21: Maps

To add the overlay to our map, we still must determine its MKMapRect:

let lat = self.annloc.latitude
let metersPerPoint = MKMetersPerMapPointAtLatitude(lat)
let c = MKMapPointForCoordinate(self.annloc)
let unit = 75.0/metersPerPoint
// size and position the overlay bounds on the earth
let sz = CGSizeMake(4*CGFloat(unit), 4*CGFloat(unit))
let mr = MKMapRectMake(
 c.x + 2*unit, c.y - 4.5*unit,
 Double(sz.width), Double(sz.height))
let over = MyOverlay(rect:mr)
self.map.addOverlay(over)

The delegate, providing the overlay renderer, now has very little work to do; in our
implementation, it merely supplies an angle for the arrow:

func mapView(mapView: MKMapView,
 rendererForOverlay overlay: MKOverlay) -> MKOverlayRenderer {
 if overlay is MyOverlay {
 let v = MyOverlayRenderer(
 overlay:overlay, angle: -CGFloat(M_PI)/3.5)
 return v
 }
 return MKOverlayRenderer()
}

Other Overlay Features
Our MyOverlay class, adopting the MKOverlay protocol, also implements the
coordinate getter method to return the center of the boundingMapRect. This is
crude, but it’s a good minimal implementation. The purpose of the MKOverlay
coordinate property is to specify the position where you would add an annotation
describing the overlay. For example:

// ... create overlay and assign it a path as before ...
self.map.addOverlay(over)
let annot = MKPointAnnotation()
annot.coordinate = over.coordinate
annot.title = "This way!"
self.map.addAnnotation(annot)

The MKOverlay protocol also lets you provide an implementation of intersectsMap-
Rect: to refine your overlay’s definition of what constitutes an intersection with itself;
the default is to use the boundingMapRect, but if your overlay is drawn in some non‐
rectangular shape, you might want to use its actual shape as the basis for determining
intersection.

Overlays are maintained by the map view as an array and are drawn from back to
front starting at the beginning of the array. MKMapView has extensive support for
adding and removing overlays, and for managing their layering order. When you add

Overlays | 921

the overlay to the map, you can say where you want it drawn among the map view’s
sublayers; methods for adding and inserting overlays have a level: parameter (for
example, addOverlay:level:). The levels are (MKOverlayLevel):

• .AboveRoads (and below labels)
• .AboveLabels

The MKTileOverlay class, adopting the MKOverlay protocol, lets you superimpose,
or even substitute (canReplaceMapContent), a map view’s drawing of the map itself. It
works much like CATiledLayer (Chapter 7): you provide a set of tiles at multiple sizes
to match multiple zoom levels, and the map view fetches and draws the tiles needed
for the current region and degree of zoom. In this way, for example, you could inte‐
grate your own topo map into an MKMapView’s display. It takes a lot of tiles to draw
an area of any size, so MKTileOverlay starts with a URL, which can be a remote URL
for tiles to be fetched across the Internet.

Map Kit and Current Location
A device may have sensors that can report its current location (Chapter 22). Map Kit
provides simple integration with these facilities. Keep in mind that the user can turn
off these sensors or can refuse your app access to them (in the Settings app, under
Privacy → Location Services), so trying to use these features may fail. Also, determin‐
ing the device’s location can take time.

You can ask an MKMapView in your app to display the device’s location just by set‐
ting its showsUserLocation property to true; the map will then automatically put an
annotation at that location. However, you must obtain authorization first. You’ll need
a CLLocationManager instance — the usual thing is to retain it in a property — and
you’ll request authorization through the instance method requestWhenInUse-

Authorization. Also, you must have an NSLocationWhenInUseUsageDescription
entry in your app’s Info.plist. (I’ll talk more about location authorization in Chap‐
ter 22.)

The userLocation property of the map view is an MKUserLocation, adopting the
MKAnnotation protocol. It has a location property, a CLLocation, whose
coordinate is a CLLocationCoordinate2D; if the map view’s showsUserLocation is
true and the map view has actually worked out the user’s location, the coordinate
describes that location. It also has title and subtitle properties, plus you can check
whether it is currently updating. The default annotation appearance comes from the
map view’s tintColor. You are free to supply your own annotation view to be dis‐
played for this annotation, just as for any annotation.

922 | Chapter 21: Maps

Displaying the appropriate region of the map — that is, actually showing the part of
the world where the user is located — is a separate task. The simplest way is to take
advantage of the MKMapView’s userTrackingMode property, which determines how
the user’s real-world location should be tracked automatically by the map display;
your options are (MKUserTrackingMode):

.None

If showsUserLocation is true, the map gets an annotation at the user’s location,
but that’s all; the map’s region is unchanged. You could set it manually by
responding to the delegate method mapView:didUpdateUserLocation:.

.Follow

Setting this mode sets showsUserLocation to true. The map automatically cen‐
ters the user’s location and scales appropriately. When the map is in this mode,
you should not set the map’s region manually, as you’ll be struggling against the
tracking mode’s attempts to do the same thing.

.FollowWithHeading

Like .Follow, but the map is also rotated so that the direction the user is facing is
up. In this case, the userLocation annotation also has a heading property, a
CLHeading; I’ll talk more about headings in Chapter 22.

So, presume we have a CLLocationManager property:

let locman = CLLocationManager()

Then this code is sufficient to start displaying the user’s location:

self.locman.requestWhenInUseAuthorization()
self.map.userTrackingMode = .Follow // sets showsUserLocation to true

When the userTrackingMode is one of the Follow modes, if the user is left free to
zoom and scroll the map, and if the user scrolls in such a way that the user location
annotation is no longer visible, the userTrackingMode may be automatically changed
back to .None (and the user location annotation may be removed). You’ll probably
want to provide a way to let the user turn tracking back on again, or to toggle among
the three tracking modes.

One way to do that is with an MKUserTrackingBarButtonItem, a UIBarButtonItem
subclass. You initialize MKUserTrackingBarButtonItem with a map view, and its
behavior is automatic from then on: when the user taps it, it switches the map view to
the next tracking mode, and its icon reflects the current tracking mode. This is the
same bar button item that appears at the far left in the toolbar of the Maps app.

You can ask the map view whether the user’s location, if known, is in the visible
region of the map (isUserLocationVisible).

Map Kit and Current Location | 923

Figure 21-6. The Maps app displays our point of interest

It is also possible to ask the Maps app to display the device’s current location, as I’ll
describe in the next section.

Communicating With the Maps App
Your app can communicate with the Maps app. For example, instead of displaying a
point of interest in a map view in our own app, we can ask the Maps app to display it.
The user could then bookmark or share the location. The channel of communication
between your app and the Maps app is the MKMapItem class.

Here, I’ll ask the Maps app to display the same point marked by the annotation in our
earlier examples, on a hybrid map portraying the same region of the earth
(Figure 21-6):

let p = MKPlacemark(coordinate:self.annloc, addressDictionary:nil)
let mi = MKMapItem(placemark: p)
mi.name = "A Great Place to Dirt Bike" // label to appear in Maps app
let opts = [
 MKLaunchOptionsMapTypeKey: MKMapType.Hybrid.rawValue
]
mi.openInMapsWithLaunchOptions(opts)

In theory it should be possible to set the zoom level of the Maps app display with
the MKLaunchOptionsMapSpanKey key, but in my experimentation this has no
effect. I regard that as a bug.

If you start with an MKMapItem returned by the class method mapItemForCurrent-
Location, you’re asking the Maps app to display the device’s current location. This
call doesn’t attempt to determine the device’s location, nor does it contain any loca‐

924 | Chapter 21: Maps

tion information; it merely generates an MKMapItem which, when sent to the Maps
app, will cause it to attempt to determine (and display) the device’s location:

let mi = MKMapItem.mapItemForCurrentLocation()
mi.openInMapsWithLaunchOptions(
 [MKLaunchOptionsMapTypeKey: MKMapType.Standard.rawValue])

Geocoding, Searching, and Directions
Map Kit provides your app with three services that involve performing queries over
the network. These services take time and might not succeed at all, as they depend
upon network and server availability; moreover, results may be more or less uncer‐
tain. Therefore, they involve a completion function that is called back asynchronously
on the main thread. The three services are:

Geocoding
Translation of a street address to a coordinate and vice versa. For example, what
address am I at right now? Or conversely, what are the coordinates of my home
address?

Searching
Lookup of possible matches for a natural language search. For example, what are
some Thai restaurants near me?

Directions
Lookup of turn-by-turn instructions and route mapping from a source location
to a destination location.

The completion function is called, in every case, with a single response object plus an
NSError. If the response object is nil, the NSError tells you what the problem was.

Geocoding
Geocoding functionality is encapsulated in the CLGeocoder class. The response, if
things went well, is an array of CLPlacemark objects, a series of guesses from best to
worst; if things went really well, the array will contain exactly one CLPlacemark.

A CLPlacemark can be used to initialize an MKPlacemark, a CLPlacemark subclass
that adopts the MKAnnotation protocol, and is therefore suitable to be handed
directly over to an MKMapView for display.

Here is an (unbelievably simpleminded) example that allows the user to enter an
address in a UISearchBar (Chapter 12) to be displayed in an MKMapView:

let s = searchBar.text
let geo = CLGeocoder()
geo.geocodeAddressString(s) {
 (placemarks : [CLPlacemark]?, error : NSError?) in

Geocoding, Searching, and Directions | 925

 guard let placemarks = placemarks else { return }
 self.map.showsUserLocation = false
 let p = placemarks[0]
 let mp = MKPlacemark(placemark:p)
 self.map.removeAnnotations(self.map.annotations)
 self.map.addAnnotation(mp)
 self.map.setRegion(
 MKCoordinateRegionMakeWithDistance(mp.coordinate, 1000, 1000),
 animated: true)
}

By default, the resulting annotation’s callout title contains a nicely formatted string
describing the address.

The converse operation is reverse geocoding: you start with a coordinate — actually a
CLLocation, which you’ll obtain from elsewhere, or construct from a coordinate
using init(latitude:longitude:) — and call reverseGeocode-

Location:completionHandler: in order to obtain an address. The address is
expressed through the CLPlacemark addressDictionary property, whose rather curi‐
ous key names are left over from the now-deprecated Address Book framework (they
have not been updated to match the structure of a CNPostalAddress; see Chapter 18).
You can consult directly various CLPlacemark properties, such as subthoroughfare
(a house number), thoroughfare (a street name), locality (a town), and
administrativeArea (a state); the "FormattedAddressLines" key yields an array of
strings, one per line of the printed address.

In this example of reverse geocoding, we have an MKMapView that is already track‐
ing the user, and so we have the user’s location as the map’s userLocation; we ask for
the corresponding address:

guard let loc = self.map.userLocation.location else { return }
let geo = CLGeocoder()
geo.reverseGeocodeLocation(loc) {
 (placemarks : [CLPlacemark]?, error : NSError?) in
 guard let ps = placemarks where ps.count > 0 else {return}
 let p = ps[0]
 if let d = p.addressDictionary {
 if let add = d["FormattedAddressLines"] as? [String] {
 for line in add {
 print(line)
 }
 }
 }
}

Searching
The MKLocalSearch class, along with MKLocalSearchRequest and MKLocalSearch‐
Response, lets you ask the server to perform a natural language search for you. This is

926 | Chapter 21: Maps

less formal than forward geocoding, described in the previous section; instead of
searching for an address, you can search for a point of interest by name or descrip‐
tion. It can be useful, for some types of search, to constrain the area of interest by
setting the MKLocalSearchRequest’s region. In this example, I’ll do a natural lan‐
guage search for a Thai restaurant near the user location currently displayed in the
map, and I’ll display it with an annotation in our map view:

guard let loc = self.map.userLocation.location else { return }
let req = MKLocalSearchRequest()
req.naturalLanguageQuery = "Thai restaurant"
req.region = MKCoordinateRegionMake(
 loc.coordinate, MKCoordinateSpanMake(1,1))
let search = MKLocalSearch(request:req)
search.startWithCompletionHandler() {
 (response : MKLocalSearchResponse?, error : NSError?) in
 guard let response = response else { print(error); return }
 self.map.showsUserLocation = false
 let mi = response.mapItems[0] // I'm feeling lucky
 let place = mi.placemark
 let loc = place.location!.coordinate
 let reg = MKCoordinateRegionMakeWithDistance(loc, 1200, 1200)
 self.map.setRegion(reg, animated:true)
 let ann = MKPointAnnotation()
 ann.title = mi.name
 ann.subtitle = mi.phoneNumber
 ann.coordinate = loc
 self.map.addAnnotation(ann)
}

Directions
The MKDirections class, along with MKDirectionsRequest and MKDirections‐
Response, looks up walking or driving directions between two locations expressed as
MKMapItem objects. The resulting MKDirectionsResponse includes an array of
MKRoute objects; each MKRoute includes an MKPolyline suitable for display as an
overlay in your map, as well as an array of MKRouteStep objects, each of which pro‐
vides its own MKPolyline plus instructions and distances. The MKDirectionsRes‐
ponse also has its own source and destination MKMapItems, which may be
different from what we started with.

To illustrate, I’ll continue from the Thai food example in the previous section, start‐
ing at the point where we obtained the Thai restaurant’s MKMapItem:

// ... same as before up to this point ...
let mi = response.mapItems[0] // I'm still feeling lucky
let req = MKDirectionsRequest()
req.source = MKMapItem.mapItemForCurrentLocation()
req.destination = mi
let dir = MKDirections(request:req)

Geocoding, Searching, and Directions | 927

dir.calculateDirectionsWithCompletionHandler() {
 (response:MKDirectionsResponse?, error:NSError?) in
 guard let response = response else { print(error); return }
 let route = response.routes[0] // I'm feeling really lucky
 let poly = route.polyline
 self.map.addOverlay(poly)
 for step in route.steps {
 print("After \(step.distance) metres: \(step.instructions)")
 }
}

The step-by-step instructions appear in the console; in real life, of course, we would
presumably display these in our app’s interface. The route is drawn in our map view,
provided we have an appropriate implementation of mapView:rendererForOverlay:,
such as this:

func mapView(mapView: MKMapView,
 rendererForOverlay overlay: MKOverlay) -> MKOverlayRenderer {
 if let overlay = overlay as? MKPolyline {
 let v = MKPolylineRenderer(polyline:overlay)
 v.strokeColor = UIColor.blue.colorWithAlphaComponent(0.8)
 v.lineWidth = 2
 return v
 }
 return MKOverlayRenderer()
}

You can also ask MKDirections to estimate the time of arrival, by calling calculate-
ETAWithCompletionHandler:, and iOS 9 introduces arrival time estimation for some
public transit systems (and you can tell the Maps app to display a transit directions
map).

928 | Chapter 21: Maps

CHAPTER 22

Sensors

This chapter has not yet been revised for iOS 10.

A device may contain hardware for sensing the world around itself — where it is
located, how it is oriented, how it is moving.

Information about the device’s current location and how that location is changing
over time, using its Wi-Fi, cellular networking, and GPS capabilities, along with
information about the device’s orientation relative to north, using its magnetometer,
is provided through the Core Location framework. You’ll need to import Core-
Location.

Information about the device’s change in speed and attitude using its accelerometer is
provided through the UIEvent class (for device shake) and the Core Motion frame‐
work, which provides increased accuracy by incorporating the device’s gyroscope, if it
has one, as well as the magnetometer; you’ll need to import CoreMotion. In addition,
the device may have an extra chip that analyzes and records the user’s activity, such as
walking or running; the Core Motion framework provides access to this information.

One of the major challenges associated with writing code that takes advantage of the
sensors is that different devices have different hardware. If you don’t want to impose
stringent restrictions on what devices your app will run on in the first place
(UIRequiredDeviceCapabilities in the Info.plist), your code must be prepared to
fail gracefully and possibly provide a subset of its full capabilities when it discovers
that the current device lacks certain features.

Moreover, certain sensors may experience momentary inadequacy; for example, Core
Location might not be able to get a fix on the device’s position because it can’t see cell
towers, GPS satellites, or both. And some sensors take time to “warm up,” so that the
values you’ll get from them initially will be invalid. You’ll want to respond to such

929

changes in the external circumstances, in order to give the user a decent experience of
your application regardless.

In addition, all sensor usage means battery usage, to a lesser or greater degree —
sometimes to a considerably greater degree. There’s a compromise to be made here:
you want to please the user with your app’s convenience and usefulness without disa‐
greeably surprising and annoying the user through the device’s rapid depletion of its
battery charge.

Core Location
The Core Location framework provides facilities for the device to determine and
report its location (location services). It takes advantage of three sensors:

Wi-Fi
The device, if Wi-Fi is turned on, may scan for nearby Wi-Fi devices and com‐
pare these against an online database.

Cell
The device, if it has cell capabilities and they are not turned off, may compare
nearby telephone cell towers against an online database.

GPS
The device’s GPS, if it has one, may be able to obtain a position fix from GPS
satellites. The GPS is obviously the most accurate location sensor, but it takes the
longest to get a fix, and in some situations it will fail — indoors, for example, or
in a city of tall buildings, where the device can’t “see” enough of the sky.

Core Location will automatically use whatever facilities the device has available; all
you have to do is ask for the device’s location. Core Location allows you to specify
how accurate a position fix you want; more accurate fixes may require more time.

The notion of a location is encapsulated by the CLLocation class and its properties,
which include:

coordinate

A CLLocationCoordinate2D, a struct consisting of two Doubles representing lati‐
tude and longitude.

altitude

A CLLocationDistance, which is a Double representing a number of meters.

speed

A CLLocationSpeed, which is a Double representing meters per second.

930 | Chapter 22: Sensors

course

A CLLocationDirection, which is a Double representing degrees (not radians)
clockwise from north.

horizontalAccuracy

A CLLocationAccuracy, which is a Double representing meters.

timestamp

A Date.

Behavior of your app may depend on the device’s physical location. To help you test,
Xcode lets you pretend that the device is at a particular location on earth. The Simu‐
lator’s Debug → Location menu lets you enter a location; the Scheme editor lets you
set a default location (under Options); and the Debug → Simulate Location menu lets
you switch among locations. You can set a built-in location or supply a standard GPX
file containing a waypoint. You can also set the location to None; it’s important to test
for what happens when no location information is available.

Location Manager and Delegate
Use of Core Location requires a location manager object, an instance of CLLocation‐
Manager. There is no reason not to create this object early and maintain it as a prop‐
erty. Moreover, your location manager will generally be useless without a delegate
(CLLocationManagerDelegate), so you will probably want to set its delegate as early
as possible. Thus, a good strategy is to initialize the location manager property lazily
and set its delegate at the same time:

lazy var locman : CLLocationManager = {
 let locman = CLLocationManager()
 locman.delegate = self
 return locman
}()

Core Location Authorization
Use of Core Location requires that you explicitly request authorization from the user;
moreover, there are two types of authorization (starting in iOS 8):

When In Use
When In Use authorization allows your app to perform basic location determina‐
tion and no more. Modes where the system tracks the device’s location on your
behalf, and notifies your app even if your app isn’t running, are unavailable. Your
app, tracking location in the foreground, can continue tracking location if the
user backgrounds it, but the device will make the user aware that this is happen‐
ing through a blue double-height status bar (similar to the in-call status bar).

Core Location | 931

Always
Always authorization gives your app use of all Core Location modes and features.
When you track location in the background, the blue double-height status bar
doesn’t appear. However, even after you are granted authorization, if your app
does in fact track location in the background, the system may present the author‐
ization dialog again, every few days, to remind the user of the situation.

In contrast to other types of authorization, you are unlikely to request authorization
in advance (merely because your app launches, or because a certain view controller
appears). Rather, you’ll probably request authorization on demand, in connection
with some specific action on the user’s part, such as tapping a button that initiates
functionality requiring authorization.

At the broadest level, the CLLocationManager class method locationServices-
Enabled reports whether location services as a whole are switched off; if they are, and
if you proceed to try to use Core Location anyway, the system may put up an alert on
your behalf offering to switch to the Settings app so that the user can turn location
services on. Thus, a good strategy is to call locationServicesEnabled and, if it is
false, immediately send your location manager the startUpdatingLocation mes‐
sage. Your attempt to learn the device’s location will fail in good order (and you can
hear about this in the delegate method locationManager:didFailWithError:), and
this failure was worthwhile because it may have caused the user to see the system
alert.

Once location services are enabled, call the CLLocationManager class method
authorizationStatus to learn your app’s actual authorization status; two possible
results correspond to the two types of authorization, .AuthorizedWhenInUse

and .AuthorizedAlways. To request authorization if the status is .NotDetermined,
call one of two instance methods, either requestWhenInUseAuthorization or
requestAlwaysAuthorization; you must also have a corresponding entry in your
app’s Info.plist, either NSLocationWhenInUseUsageDescription or NSLocationAlways-
UsageDescription, providing the body of the authorization request alert.

Here’s a utility method expressing a good general strategy for checking authorization:

func determineStatus() -> Bool {
 guard CLLocationManager.locationServicesEnabled() else {
 self.locman.startUpdatingLocation() // might get "enable" dialog
 return false
 }
 let status = CLLocationManager.authorizationStatus()
 switch status {
 case .AuthorizedAlways, .AuthorizedWhenInUse:
 return true
 case .NotDetermined:
 self.locman.requestWhenInUseAuthorization()
 // locman.requestAlwaysAuthorization()

932 | Chapter 22: Sensors

 return false
 case .Restricted:
 return false
 case .Denied:
 let message = "Wouldn't you like to authorize" +
 "this app to use Location Services?"
 let alert = UIAlertController(title: "Need Authorization",
 message: message, preferredStyle: .Alert)
 alert.addAction(UIAlertAction(title: "No",
 style: .Cancel, handler: nil))
 alert.addAction(UIAlertAction(title: "OK",
 style: .Default, handler: {
 _ in
 let url = NSURL(string:UIApplicationOpenSettingsURLString)!
 UIApplication.shared.openURL(url)
 }))
 self.presentViewController(alert, animated:true, completion:nil)
 return false
 }
}

The two request methods have no completion function. Instead, if you want to be
notified as soon as the user authorizes you, implement the delegate method location-
Manager:didChangeAuthorizationStatus:. A good strategy here might be to raise a
flag of some kind before requesting authorization, telling yourself that you are in the
middle of trying to start whatever procedure requires authorization. If the user
authorizes you in response to the authorization request alert, you can then start that
procedure immediately.

So, for example, here I’ve prepared an instance property which might or might not
contain a method call representing what I was trying to do when I requested authori‐
zation:

var doThisWhenAuthorized : (() -> ())?

Now imagine that the user taps a button asking for the device’s location. At the start
of the button’s action handler, I raise my flag and check my authorization status:

@IBAction func doFindMe (sender: Any!) {
 self.doThisWhenAuthorized = {
 [unowned self] in self.doFindMe(sender)
 }
 guard self.determineStatus() else { return }
 // if we get here, we have authorization
 self.doThisWhenAuthorized = nil
 // ... and now proceed to use the location manager ...
}

If my implementation of locationManager:didChangeAuthorizationStatus: hears
that we have changed to being authorized and we have a function waiting in self.do-
ThisWhenAuthorized, it calls that function:

Core Location | 933

func locationManager(manager: CLLocationManager,
 didChangeAuthorizationStatus status: CLAuthorizationStatus) {
 switch status {
 case .AuthorizedAlways, .AuthorizedWhenInUse:
 self.doThisWhenAuthorized?()
 default: break
 }
}

To retest the system authorization request alert and other access-related behav‐
iors, go to the Settings app and choose General → Reset → Reset Location & Pri‐
vacy. This, unfortunately, causes the system to revert to its default settings for
everything in the Privacy section of Settings: all permissions lists will be empty,
but Location Services and all System Services will be On.

Location Tracking
To use the location manager to track the user’s location:

1. Set yourself as the location manager’s delegate (CLLocationManagerDelegate).
I’ve already suggested a strategy for making sure you’ve done that in advance.

2. Configure the location manager (I’ll go into more detail in a moment).
3. Tell the location manager to startUpdatingLocation. The location manager, in

turn, will begin calling your locationManager:didUpdateLocations: delegate
method repeatedly. You’ll deal with each such call as it arrives. In this way, you
will be kept more or less continuously informed of where the device is — until
you call stopUpdatingLocation. Don’t forget to call it when you no longer need
location services.
Your delegate will also always implement locationManager:didFailWithError:
to receive error messages.

The pattern here is common to virtually all use of the location manager. It can do var‐
ious kinds of tracking, but they all work the same way: you’ll tell it to start, a corre‐
sponding delegate method will be called repeatedly, and ultimately you’ll tell it to
stop.

Here are some location manager configuration properties that are useful to set before
you start location tracking:

desiredAccuracy

Your choices are:

• kCLLocationAccuracyBestForNavigation

• kCLLocationAccuracyBest

• kCLLocationAccuracyNearestTenMeters

934 | Chapter 22: Sensors

• kCLLocationAccuracyHundredMeters

• kCLLocationAccuracyKilometer

• kCLLocationAccuracyThreeKilometers

It might be sufficient for your purposes to know very quickly but very roughly
the device’s location. Highest accuracy may also cause the highest battery drain;
indeed, kCLLocationAccuracyBestForNavigation is supposed to be used only
when the device is connected to external power. The accuracy setting is not a fil‐
ter: the location manager will send you whatever location information it has,
even if it isn’t as accurate as you asked for, and checking a location’s horizontal-
Accuracy is then up to you.

distanceFilter

Perhaps you don’t need a location report unless the device has moved a certain
distance since the previous report. This property can help keep you from being
bombarded with events you don’t need.

activityType

Your choices are (CLActivityType):

• .Fitness

• .AutomotiveNavigation

• .OtherNavigation

• .Other

This affects how persistently and frequently updates will be sent, based on the
movement of the device. With .AutomotiveNavigation, updates can cease tem‐
porarily if the device is not moving significantly. With .Fitness, on the other
hand, the user is assumed to be on foot, so updates may arrive even if the device
is stationary.

Where Am I?
Curiously, the previous section does not answer in any simple way the most basic
question you are likely to ask — namely, where is the device now? In this scenario,
you don’t want to track the location; you just want to learn the location, without being
subjected to ongoing calls to locationManager:didUpdateLocations:. Before iOS 9,
this was remarkably difficult to do. The location manager wasn’t configured to answer
this question, so your only option was to turn on location tracking for just long
enough to answer it yourself, and then turn location tracking off again.

This isn’t as simple as it might sound. You might think that it would be enough to
receive locationManager:didUpdateLocations: once and stop; but that is not at all

Core Location | 935

the case. On the contrary, many calls to locationManager:didUpdateLocations:
may be needed before the sensors warm up sufficiently to give a reading of the
desired accuracy. What’s more, a reading of the desired accuracy might never arrive,
so we must be prepared also to time out and accept whatever we’ve got.

I’ll demonstrate, even though in iOS 9 this approach is no longer necessary. A Bool
property, self.trying, acts as a flag stating whether we are in the middle of this
attempt, and an Optional Date property, self.startTime, tracks how long this
attempt has been going on:

if self.trying { return }
self.trying = true
self.locman.desiredAccuracy = kCLLocationAccuracyBest
self.locman.activityType = .Fitness
self.startTime = nil
self.locman.startUpdatingLocation()

We have a utility method for turning off updates and resetting our properties:

func stopTrying () {
 self.locman.stopUpdatingLocation()
 self.startTime = nil
 self.trying = false
}

If something goes wrong, we’ll turn updates back off:

func locationManager(manager: CLLocationManager,
 didFailWithError error: NSError) {
 print("failed: \(error)")
 self.stopTrying()
}

If things go well, we’ll be handed our location as soon as it is determined, in location-
Manager:didUpdateLocations:. For purposes of this example, I’m going to insist on
a fairly high level of accuracy; if I don’t get it, I wait for the next update. But I don’t
want to wait too long, either, so on the very first pass I record the current time, so
that I can compare the location’s timestamp on subsequent calls. (Observe that I also
return immediately from the first update, as I find that it contains spurious informa‐
tion.) If I get the desired accuracy within the desired time, I turn off updates and am
ready to use the location information:

let REQ_ACC : CLLocationAccuracy = 10
let REQ_TIME : NSTimeInterval = 10
func locationManager(manager: CLLocationManager,
 didUpdateLocations locations: [CLLocation]) {
 print("did update location ")
 let loc = locations.last!
 let acc = loc.horizontalAccuracy
 let time = loc.timestamp
 let coord = loc.coordinate

936 | Chapter 22: Sensors

 if self.startTime == nil {
 self.startTime = NSDate()
 return // ignore first attempt
 }
 print(acc)
 let elapsed = time.timeIntervalSinceDate(self.startTime)
 if elapsed > REQ_TIME {
 print("This is taking too long")
 self.stopTrying()
 return
 }
 if acc < 0 || acc > REQ_ACC {
 return // wait for the next one
 }
 // got it
 print("You are at \(coord.latitude) \(coord.longitude)")
 self.stopTrying()
}

Feel free to experiment with different values for the required accuracy and the
required time. On my device, it was clearly worth waiting a few cycles to get better
accuracy; you can see the accuracy improving as the sensors warm up:

did update location 1285.19869645162
did update location 1285.19869645172
did update location 1285.19869645173
did update location 65.0
did update location 65.0
did update location 30.0
did update location 30.0
did update location 30.0
did update location 10.0
You are at ...

Starting in iOS 9, however, none of that is necessary; it is all done for us. Instead of
calling startUpdatingLocation, call requestLocation:

self.locman.desiredAccuracy = kCLLocationAccuracyBest
self.locman.requestLocation()

Your locationManager:didUpdateLocations: will be called once with a good loca‐
tion, based on the desiredAccuracy you’ve already set and some internal sense of
when to time out (based on the fact that accuracy is failing to improve fast enough):

func locationManager(manager: CLLocationManager,
 didUpdateLocations locations: [CLLocation]) {
 let loc = locations.last!
 let coord = loc.coordinate
 print("You are at \(coord.latitude) \(coord.longitude)")
}

You do not have to call stopUpdatingLocation, though you can do so if you change
your mind and decide before the location arrives that it is no longer needed.

Core Location | 937

Heading
For appropriately equipped devices, Core Location supports use of the magnetometer
to determine which way the device is facing (its heading). Although this information
is accessed through a location manager, you do not need location services to be
turned on merely to use the magnetometer to report the device’s orientation with
respect to magnetic north; but you do need location services to be turned on in order
to report true north, as this depends on the device’s location.

As with location, you’ll first check that the desired feature is available (heading-
Available); then you’ll instantiate and configure the location manager, and call
startUpdatingHeading. The delegate will be sent locationManager:didUpdate-
Heading: repeatedly until you call stopUpdatingHeading (or else location-

Manager:didFailWithError: will be called).

A heading object is a CLHeading instance; its magneticHeading and trueHeading
properties are CLLocationDirection values, which report degrees (not radians) clock‐
wise from the reference direction (magnetic or true north, respectively). If the true-
Heading is not available, it will be reported as -1. The trueHeading will not be
available unless both of the following are true in the Settings app:

• Location services are turned on (Privacy → Location Services).
• Compass calibration is turned on (Privacy → Location Services → System Serv‐

ices).

Beyond that, explicit user authorization is not needed in order to get the device’s
heading with respect to true north.

In this example, I’ll use the device as a compass. The headingFilter setting is to pre‐
vent us from being bombarded constantly with readings. For best results, the device
should probably be held level (like a tabletop, or a compass); we are setting the
headingOrientation so that the reported heading will be the direction in which the
top of the device (the end away from the Home button) is pointing:

guard CLLocationManager.headingAvailable() else {return} // no hardware
if self.updating {return}
self.locman.headingFilter = 5
self.locman.headingOrientation = .Portrait
self.updating = true
self.locman.startUpdatingHeading()

In the delegate, I’ll display our heading as a rough cardinal direction in a label in the
interface (self.lab). If we have a trueHeading, I’ll use it; otherwise I’ll use the
magneticHeading:

938 | Chapter 22: Sensors

func locationManager(manager: CLLocationManager,
 didUpdateHeading newHeading: CLHeading) {
 var h = newHeading.magneticHeading
 let h2 = newHeading.trueHeading
 if h2 >= 0 {
 h = h2
 }
 let cards = ["N", "NE", "E", "SE", "S", "SW", "W", "NW"]
 var dir = "N"
 for (ix, card) in cards.enumerate() {
 if h < 45.0/2.0 + 45.0*Double(ix) {
 dir = card
 break
 }
 }
 if self.lab.text != dir {
 self.lab.text = dir
 }
}

Background Location
You can use Core Location when your app is not in the foreground. There are two
quite different ways to do this:

Continuous background location
This is an extension of basic location tracking. You tell the location manager to
startUpdatingLocation, and updates are permitted to continue even if the app
goes into the background. Your app runs in the background in order to receive
these updates (except during periods when you elect to receive deferred updates,
if the hardware supports it).

Location monitoring
Your app does not run in the background! Rather, the system monitors location
for you. If a significant location event occurs, your app may be awakened in the
background (or launched in the background, if it is not running) and notified.

Continuous background location
Use of Core Location to perform continuous background updates is parallel to pro‐
duction of sound in the background (Chapter 14). In your app’s Info.plist, the
“Required background modes” key (UIBackgroundModes) should include location;
you can set this up easily by checking “Location updates” under Background Modes
in the Capabilities tab when editing the target.

New in iOS 9, you must also set your location manager’s allowsBackground-
LocationUpdates to true. If you are retaining multiple location managers, you
must do this for all of them.

Core Location | 939

The result is that if you have a location manager to which you have sent start-
UpdatingLocation and the user sends your app into the background, your app is not
suspended: the use of location services continues, and your delegate keeps receiving
location updates. If your app has When In Use authorization, the blue double-height
status bar will be present as long as your app is in the background and is actively
updating the device’s location (and the user can tap it to summon your app to the
front).

Background use of location services can cause a power drain, but if you want your
app to function as a positional data logger, for instance, it may be the only way; you
can also help conserve power by making judicious choices, such as setting a coarse
distanceFilter value, by not requiring overly high accuracy, and by being correct
about the activityType.

Core Location may be able to operate in deferred mode (allowDeferredLocation-
UpdatesUntilTraveled:timeout:) so that your background app doesn’t receive
updates until the user has moved a specified amount or until a fixed time interval has
elapsed; this, too, can help conserve power, especially if the user locks the screen, as
the device may be able to power down some of its sensors temporarily, and your app
can be allowed to stop running in the background. This feature is dependent on hard‐
ware capabilities; use it only if the class method deferredLocationUpdates-
Available returns true. For this feature to work, the location manager’s
desiredAccuracy must be kCLLocationAccuracyBest or kCLLocationAccuracyBest-
ForNavigation, and its distanceFilter must be kCLDistanceFilterNone (the
default).

Deferred mode doesn’t mean that location updates are fewer or filtered; it affects only
the delivery of those updates. Updates are accumulated and then delivered all at once
after the specified distance or time: the delegate is sent these messages:

• locationManager:didFinishDeferredUpdatesWithError:

• locationManager:didUpdateLocations:

The locations: parameter of locationManager:didUpdateLocations: in this situa‐
tion is an array of all the accumulated updates. At this point, deferred updating has
ceased; asking for the next set of updates to be deferred is up to you, by calling allow-
Deferred... again. If the user brings your app to the foreground, any undelivered
accumulated updates are delivered then and there, so that your interface can present
the most recent information.

Location monitoring
Using Core Location to perform location monitoring without being in the fore‐
ground doesn’t require your app to run continuously in the background, and you do

940 | Chapter 22: Sensors

not have to set the UIBackgroundModes of your Info.plist. That’s because the system is
going to do all the work on your behalf. Your app still needs appropriate authoriza‐
tion, however.

Some forms of location monitoring involve use of a CLRegion, which basically
expresses a geofence, an area that triggers a notification when the user enters or leaves
it (or both). This class is divided into two subclasses, CLBeaconRegion and CLCircu‐
larRegion. CLBeaconRegion is used in connection with iBeacon monitoring; I’m not
going to discuss iBeacon in this book, so that leaves us with CLCircularRegion. Its
initializer is init(center:radius:identifier:); the center: parameter is a
CLLocationCoordinate2D, and the identifier: serves as a unique key. You should
also set the region’s notifyOnEntry or notifyOnExit to false if you’re interested in
just one type of event.

There are four distinct forms of location monitoring:

Geofenced local notifications
This is a local notification (UILocalNotification, Chapter 13) that is triggered, not
by the arrival of a certain time, but by the user’s crossing a geofence. You will
need a location manager and When In Use authorization. Create the local notifi‐
cation and set its region to a CLRegion. The notification’s regionTriggersOnce
is true by default; if false, the notification will be triggered every time the region
is entered or exited (in accordance with the notifyOnEntry and notifyOnExit
settings). Apart from this, the local notification is a standard local notification,
and you’ll hear about it only if the user uses the notification to summon your app
(or if your app is in the foreground when the notification fires).

Significant location monitoring
If the class method significantLocationChangeMonitoringAvailable returns
true, you can call startMonitoringSignificantLocationChanges. You will
need a location manager and Always authorization. The delegate’s location-
Manager:didUpdateLocations: will be called whenever the device’s location has
changed significantly.

Visit monitoring
By tracking significant changes in your location along with the pauses between
those changes, the system decides that the user is visiting a spot. Visit monitoring
is basically a form of significant location monitoring, but requires even less
power and notifies you less often, because locations that don’t involve pauses are
filtered out. You will need a location manager and Always authorization. If the
class method significantLocationChangeMonitoringAvailable returns true,
you can call startMonitoringVisits. The delegate’s locationManager:did-
Visit: will be called whenever the user’s location pauses in a way that suggests a
visit is beginning, and again whenever a visit ends. The second parameter is a

Core Location | 941

CLVisit, a simple value class wrapping visit data; in addition to coordinate and
horizontalAccuracy, you get an arrivalDate and departureDate. If this is an
arrival, the departureDate will be Date.distantFuture(). If this is a departure
and we were not monitoring visits when the user arrived, the arrivalDate will
be Date.distantPast().

Region monitoring
If the class method isMonitoringAvailableForClass: with an argument of
CLCircularRegion.self returns true, then you can call startMonitoringFor-
Region: for each region in which you are interested. You will need a location
manager and Always authorization. Regions being monitored are maintained as a
set, which is the location manager’s monitoredRegions. A region’s identifier
serves as a unique key, so that if you start monitoring for a region whose identi‐
fier matches that of a region already in the monitoredRegions set, the latter will
be ejected from the set. The following delegate methods may be called:

• locationManager:didEnterRegion:

• locationManager:didExitRegion:

• locationManager:monitoringDidFailForRegion:withError:

Location monitoring is much less battery-intensive than full-fledged location track‐
ing. That’s because it relies on cell tower positions to estimate the device’s location.
Since the cell is probably working anyway — for example, the device is a phone, so
the cell is always on and is always concerned with what cell towers are available —
little or no additional power is required. Apple says that the system will also take
advantage of other clues (requiring no extra battery drain) to decide that there may
have been a change in location: for example, the device may observe a change in the
available Wi-Fi networks, strongly suggesting that the device has moved.

Every startMonitoring method has a corresponding stopMonitoring method. Don’t
forget to call that method when location monitoring is no longer needed! The system
is performing this work on your behalf, and it will continue to do so until you tell it
not to.

If your app isn’t in the foreground at the time the system wants to send your location
manager delegate a location monitoring event, there are two possible states in which
your app might find itself:

Your app is suspended in the background
Your app is woken up (remaining in the background) long enough to receive the
delegate event and do something with it.

942 | Chapter 22: Sensors

Your app is not running at all
Your app is relaunched (remaining in the background), and your app delegate
will be sent application(_:didFinishLaunchingWithOptions:) with a dictio‐
nary containing UIApplicationLaunchOptionsLocationKey, thus allowing it to
discern the special nature of the situation. At this point you probably have no
location manager — your app has just launched from scratch. So you should get
yourself a location manager and assign it a delegate so that you have a way to
receive the delegate event.

Acceleration, Attitude, and Activity
Acceleration results from the application of a force to the device, and is detected
through the device’s accelerometer, supplemented by the gyroscope if it has one.
Gravity is a force, so the accelerometer always has something to measure, even if the
user isn’t consciously applying a force to the device; thus the device can report its atti‐
tude relative to the vertical.

Acceleration information can arrive in two ways:

As a prepackaged UIEvent
You can receive a UIEvent notifying you of a predefined gesture performed by
accelerating the device. At present, the only such gesture is the user shaking the
device.

With the Core Motion framework
You instantiate CMMotionManager and then obtain information of a desired
type. You can ask for accelerometer information, gyroscope information, or
device motion information (and you can also use Core Motion to get magneto‐
meter information); device motion combines the gyroscope data with data from
the other sensors to give you the best possible description of the device’s attitude
in space.

Shake Events
A shake event is a UIEvent (Chapter 5). Receiving shake events is rather like receiving
remote control events (Chapter 14), involving the notion of the first responder. To
receive shake events, your app must contain a UIResponder which:

• Returns true from canBecomeFirstResponder
• Is in fact first responder

This responder, or a UIResponder further up the responder chain, should implement
some or all of these methods:

Acceleration, Attitude, and Activity | 943

motionBegan:withEvent:

Something has started to happen that might or might not turn out to be a shake.

motionEnded:withEvent:

The motion reported in motionBegan:withEvent: is over and has turned out to
be a shake.

motionCancelled:withEvent:

The motion reported in motionBegan:withEvent: wasn’t a shake after all.

It might be sufficient to implement motionEnded:withEvent:, because this arrives if
and only if the user performs a shake gesture. The first parameter will be the event
subtype, but at present this is guaranteed to be .MotionShake, so testing it is point‐
less.

The view controller in charge of the current view is a good candidate to receive shake
events. Thus, a minimal implementation might look like this:

override func canBecomeFirstResponder() -> Bool {
 return true
}
override func viewDidAppear(animated: Bool) {
 super.viewDidAppear(animated)
 self.becomeFirstResponder()
}
override func motionEnded(
 motion: UIEventSubtype, withEvent event: UIEvent?) {
 print("hey, you shook me!")
}

By default, if some other object is first responder, and is of a type that supports undo
(such as a UITextField), and if motionBegan:withEvent: is sent up the responder
chain, and if you have not set the shared UIApplication’s applicationSupportsShake-
ToEdit property to false, a shake will be handled through an Undo or Redo alert.
Your view controller might not want to rob any responders in its view of this capabil‐
ity. A simple way to prevent this is to test whether the view controller is itself the first
responder; if it isn’t, we call super to pass the event on up the responder chain:

override func motionEnded(
 motion: UIEventSubtype, withEvent event: UIEvent?) {
 if self.isFirstResponder() {
 print("hey, you shook me!")
 } else {
 super.motionEnded(motion, withEvent: event)
 }
}

944 | Chapter 22: Sensors

Raw Acceleration
If the device has an accelerometer but no gyroscope, you can learn about the forces
being applied to it, but some compromises will be necessary. The chief problem is
that, even if the device is completely motionless, its acceleration values will constitute
a normalized vector pointing toward the center of the earth, popularly known as
gravity. The accelerometer is thus constantly reporting a combination of gravity and
user-induced acceleration. This is good and bad. It’s good because it means that, with
certain restrictions, you can use the accelerometer to detect the device’s attitude in
space. It’s bad because gravity values and user-induced acceleration values are mixed
together. Fortunately, there are ways to separate these values mathematically:

With a low-pass filter
A low-pass filter will damp out user acceleration so as to report gravity only.

With a high-pass filter
A high-pass filter will damp out the effect of gravity so as to detect user accelera‐
tion only, reporting a motionless device as having zero acceleration.

In some situations, it is desirable to apply both a low-pass filter and a high-pass filter,
so as to learn both the gravity values and the user acceleration values. A common
additional technique is to run the output of the high-pass filter itself through a low-
pass filter to reduce noise and small twitches. Apple provides some nice sample code
for implementing a low-pass or a high-pass filter; see especially the Accelerometer‐
Graph example, which is also very helpful for exploring how the accelerometer
behaves.

The technique of applying filters to the accelerometer output has some serious down‐
sides, which are inevitable in a device that lacks a gyroscope:

• It’s up to you to apply the filters; you have to implement boilerplate code and
hope that you don’t make a mistake.

• Filters mean latency. Your response to the accelerometer values will lag behind
what the device is actually doing; this lag may be noticeable.

Reading raw accelerometer values with Core Motion is really a subset of how you
read any values with Core Motion; in some ways it is similar to how you use Core
Location:

1. You start by instantiating CMMotionManager; retain the instance somewhere,
typically as a property. There is no reason not to initialize the property directly:

let motman = CMMotionManager()

2. Confirm that the desired hardware is available.

Acceleration, Attitude, and Activity | 945

3. Set the interval at which you wish the motion manager to update itself with new
sensor readings.

4. Call the appropriate start method.
5. You probably expect me to say that the motion manager will call into a delegate.

Surprise! A motion manager has no delegate. You have two choices:

• Poll the motion manager whenever you want data, asking for the appropriate
data property. The polling interval doesn’t have to be the same as the motion
manager’s update interval; when you poll, you’ll obtain the motion manager’s
current data — that is, the data generated by its most recent update, whenever
that was.

• If your app’s purpose is to collect all the data, then instead of calling a start
method, you can call a start...UpdatesToQueue:withHandler: method and
receive callbacks to your handler: function, possibly on a background thread,
managed by an OperationQueue (Chapter 25).

6. Don’t forget to call the corresponding stop method when you no longer need
data.

In this example, I will simply report whether the device is lying flat on its back. I start
by configuring my motion manager; then I launch a repeating timer to trigger poll‐
ing:

guard self.motman.accelerometerAvailable else { return }
self.motman.accelerometerUpdateInterval = 1.0 / 30.0
self.motman.startAccelerometerUpdates()
self.timer = Timer.scheduledTimerWithTimeInterval(
 self.motman.accelerometerUpdateInterval,
 target: self, selector: #selector(pollAccel),
 userInfo: nil, repeats: true)

My pollAccel: method is now being called repeatedly. In pollAccel:, I ask the
motion manager for its accelerometer data. This arrives as a CMAccelerometerData
object, which is a timestamp plus a CMAcceleration; a CMAcceleration is simply a
struct of three values, one for each axis of the device, measured in Gs. The positive x-
axis points to the right of the device. The positive y-axis points toward the top of the
device, away from the Home button. The positive z-axis points out the front of the
screen.

The two axes orthogonal to gravity, which are the x- and y-axes when the device is
lying more or less on its back, are much more accurate and sensitive to small varia‐
tion than the axis pointing toward or away from gravity. So our approach is to ask
first whether the x and y values are close to zero; only then do we use the z value to
learn whether the device is on its back or on its face. To keep from updating our
interface constantly, we implement a crude state machine; the state property

946 | Chapter 22: Sensors

(self.state) starts out at .Unknown, and then switches between .LyingDown (device
on its back) and .NotLyingDown (device not on its back), and we update the interface
only when there is a state change:

guard let dat = self.motman.accelerometerData else {return}
let acc = dat.acceleration
let x = acc.x
let y = acc.y
let z = acc.z
let accu = 0.08
if abs(x) < accu && abs(y) < accu && z < -0.5 {
 if self.state == .Unknown || self.state == .NotLyingDown {
 self.state = .LyingDown
 self.label.text = "I'm lying on my back... ahhh..."
 }
} else {
 if self.state == .Unknown || self.state == .LyingDown {
 self.state = .NotLyingDown
 self.label.text = "Hey, put me back down on the table!"
 }
}

This works, but it’s sensitive to small motions of the device on the table. To damp this
sensitivity, we can run our input through a low-pass filter. The low-pass filter code
comes straight from Apple’s own examples, and involves maintaining the previously
filtered reading as a set of properties:

func addAcceleration(accel:CMAcceleration) {
 let alpha = 0.1
 self.oldX = accel.x * alpha + self.oldX * (1.0 - alpha)
 self.oldY = accel.y * alpha + self.oldY * (1.0 - alpha)
 self.oldZ = accel.z * alpha + self.oldZ * (1.0 - alpha)
}

Our polling code now starts out by passing the data through the filter:

guard let dat = self.motman.accelerometerData else {return}
self.addAcceleration(dat.acceleration)
let x = self.oldX
let y = self.oldY
let z = self.oldZ
// ... and the rest is as before ...

As I mentioned earlier, instead of polling, you can receive callbacks to a function.
This approach is useful particularly if your goal is to receive every update or to
receive updates on a background thread (or both). To illustrate, I’ll rewrite the previ‐
ous example to use this technique; to keep things simple, I’ll ask for my callbacks on
the main thread (the documentation advises against this, but Apple’s own sample
code does it). We now start our accelerometer updates like this:

Acceleration, Attitude, and Activity | 947

self.motman.startAccelerometerUpdatesToQueue(
 OperationQueue.mainQueue(), withHandler: {
 (accelerometerData:CMAccelerometerData?, error:NSError?) in
 guard let dat = accelerometerData else {
 print(error)
 self.stopAccelerometer()
 return
 }
 self.receiveAccel(dat)
})

receiveAccel: is just like our earlier pollAccel:, except that we already have the
accelerometer data:

func receiveAccel (dat:CMAccelerometerData) {
 self.addAcceleration(dat.acceleration)
 // ... and the rest is as before ...
}

In this next example, the user is allowed to slap the side of the device into an open
hand — perhaps as a way of telling it to go to the next or previous image or whatever
it is we’re displaying. We pass the acceleration input through a high-pass filter to
eliminate gravity (again, the filter code comes straight from Apple’s examples):

func addAcceleration(accel:CMAcceleration) {
 let alpha = 0.1
 self.oldX = accel.x - ((accel.x * alpha) + (self.oldX * (1.0 - alpha)))
 self.oldY = accel.y - ((accel.y * alpha) + (self.oldY * (1.0 - alpha)))
 self.oldZ = accel.z - ((accel.z * alpha) + (self.oldZ * (1.0 - alpha)))
}

What we’re looking for, in our polling routine, is a high positive or negative x value. A
single slap is likely to consist of several consecutive readings above our threshold, but
we want to report each slap only once, sο we take advantage of the timestamp
attached to a CMAccelerometerData, maintaining the timestamp of our previous
high reading as a property and ignoring readings that are too close to one another in
time. Another problem is that a sudden jerk involves both an acceleration (as the user
starts the device moving) and a deceleration (as the device stops moving); thus a left
slap might be preceded by a high value in the opposite direction, which we might
interpret wrongly as a right slap. We can compensate crudely, at the expense of some
latency, with delayed performance; for the CancelableTimer object stored at
self.canceltimer, see Appendix B:

func pollAccel(_:AnyObject!) {
 guard let dat = self.motman.accelerometerData else {return}
 self.addAcceleration(dat.acceleration)
 let x = self.oldX
 let thresh = 1.0
 if x < -thresh {
 if dat.timestamp - self.oldTime > 0.5 || self.lastSlap == .Right {
 self.oldTime = dat.timestamp

948 | Chapter 22: Sensors

 self.lastSlap = .Left
 self.canceltimer?.cancel()
 self.canceltimer = CancelableTimer(once: true) {
 print("left")
 }
 self.canceltimer.startWithInterval(0.5)
 }
 } else if x > thresh {
 if dat.timestamp - self.oldTime > 0.5 || self.lastSlap == .Left {
 self.oldTime = dat.timestamp
 self.lastSlap = .Right
 self.canceltimer?.cancel()
 self.canceltimer = CancelableTimer(once: true) {
 print("right")
 }
 self.canceltimer.startWithInterval(0.5)
 }
 }
}

The gesture we’re detecting is a little tricky to make: the user must slap the device into
an open hand and hold it there; if the device jumps out of the open hand, that move‐
ment may be detected as the last in the series, resulting in the wrong report (left
instead of right, or vice versa). And the latency of our gesture detection is very high.

Of course we might try tweaking some of the magic numbers in this code to improve
accuracy and performance, but a more sophisticated analysis would probably involve
storing a stream of all the most recent CMAccelerometerData objects and studying
the entire stream to work out the overall trend.

New in iOS 9, some devices may be capable of recording accelerometer data for
later analysis. You’ll want to look into the CMSensorRecorder class (along with
CMSensorDataList and CMRecordedAccelerometerData).

Gyroscope
The inclusion of an electronic gyroscope in the panoply of onboard hardware in
some devices has made a huge difference in the accuracy and speed of gravity and
attitude reporting. A gyroscope has the property that its attitude in space remains
constant; thus it can detect any change in the attitude of the containing device. This
has two important consequences for accelerometer measurements:

• The accelerometer can be supplemented by the gyroscope to detect quickly the
difference between gravity and user-induced acceleration.

• The gyroscope can observe pure rotation, where little or no acceleration is
involved and so the accelerometer would not have been helpful. The extreme case
is constant attitudinal rotation around the gravity axis, which the accelerometer

Acceleration, Attitude, and Activity | 949

alone would be completely unable to detect (because there is no user-induced
force, and gravity remains constant).

It is possible to track the raw gyroscope data: make sure the device has a gyroscope
(gyroAvailable), and then call startGyroUpdates. What we get from the motion
manager is a CMGyroData object, which combines a timestamp with a CMRotation‐
Rate that reports the rate of rotation around each axis, measured in radians per sec‐
ond, where a positive value is counterclockwise as seen by someone whose eye is
pointed to by the positive axis. (This is the opposite of the direction graphed in
Figure 3-9.) The problem, however, is that the gyroscope values are scaled and biased.
This means that the values are based on an arbitrary scale and are gradually increas‐
ing (or decreasing) over time at a roughly constant rate. Thus there is very little merit
in the exercise of dealing with the raw gyroscope data.

What you are likely to be interested in is a combination of at least the gyroscope and
the accelerometer. The mathematics required to combine the data from these sensors
can be daunting. Fortunately, there’s no need to know anything about that. Core
Motion will happily package up the calculated combination of data as a CMDevice‐
Motion instance, with the effects of the sensors’ internal bias and scaling already fac‐
tored out. CMDeviceMotion consists of the following properties, all of which provide
a triple of values corresponding to the device’s natural 3D frame (x increasing to the
right, y increasing to the top, z increasing out the front):

gravity

A CMAcceleration expressing a vector with value 1 pointing to the center of the
earth, measured in Gs.

userAcceleration

A CMAcceleration describing user-induced acceleration, with no gravity compo‐
nent, measured in Gs.

rotationRate

A CMRotationRate describing how the device is rotating around its own center.
This is essentially the CMGyroData rotationRate with scale and bias accounted
for.

magneticField

A CMCalibratedMagneticField describing (in its field, a CMMagneticField) the
magnetic forces acting on the device, measured in microteslas. The sensor’s inter‐
nal bias has already been factored out. The accuracy is one of the following:

• CMMagneticFieldCalibrationAccuracyUncalibrated

• CMMagneticFieldCalibrationAccuracyLow

• CMMagneticFieldCalibrationAccuracyMedium

950 | Chapter 22: Sensors

• CMMagneticFieldCalibrationAccuracyHigh

attitude

A CMAttitude, descriptive of the device’s instantaneous attitude in space. When
you ask the motion manager to start generating updates, you can specify a refer‐
ence frame for the attitude (having first called the class method available-
AttitudeReferenceFrames to ascertain that the desired reference frame is
available on this device). In every case, the negative z-axis points at the center of
the earth:

CMAttitudeReferenceFrameXArbitraryZVertical

The x-axis and y-axis, though orthogonal to the other axes, could be pointing
anywhere.

CMAttitudeReferenceFrameXArbitraryCorrectedZVertical

The same as in the previous option, but the magnetometer is used to main‐
tain accuracy (preventing drift of the reference frame over time).

CMAttitudeReferenceFrameXMagneticNorthZVertical

The x-axis points toward magnetic north.

CMAttitudeReferenceFrameXTrueNorthZVertical

The x-axis points toward true north. This value will be inaccurate unless you
are also using Core Location to obtain the device’s location.

The attitude value’s numbers can be accessed through various CMAttitude
properties corresponding to three different systems, each being convenient for a
different purpose:

pitch, roll, yaw
The device’s angle of offset from the reference frame, in radians, around the
device’s natural x-axis, y-axis, and z-axis respectively.

rotationMatrix

A CMRotationMatrix struct embodying a 3×3 matrix expressing a rotation
in the reference frame.

quaternion

A CMQuaternion describing an attitude. (Quaternions are commonly used
in OpenGL.)

In this example, we turn the device into a simple compass/clinometer, merely by ask‐
ing for its attitude with reference to magnetic north and taking its pitch, roll, and
yaw. We begin by making the usual preparations; notice the use of the showsDevice-
MovementDisplay property, intended to allow the runtime to prompt the user if the
magnetometer needs calibration:

Acceleration, Attitude, and Activity | 951

guard self.motman.deviceMotionAvailable else { return }
let ref = CMAttitudeReferenceFrame.XMagneticNorthZVertical
let avail = CMMotionManager.availableAttitudeReferenceFrames()
guard avail.contains(ref) else { return }
self.motman.showsDeviceMovementDisplay = true
self.motman.deviceMotionUpdateInterval = 1.0 / 30.0
self.motman.startDeviceMotionUpdatesUsingReferenceFrame(ref)
let t = self.motman.deviceMotionUpdateInterval * 10
self.timer = Timer.scheduledTimerWithTimeInterval(t, target:self,
 selector: #selector(pollAttitude), userInfo: nil, repeats: true)

In pollAttitude:, we wait until the magnetometer is ready, and then we start taking
attitude readings (converted to degrees):

guard let mot = self.motman.deviceMotion else {return}
let acc = mot.magneticField.accuracy.rawValue
if acc <= CMMagneticFieldCalibrationAccuracyLow.rawValue {
 return // not ready yet
}
let att = mot.attitude
let to_deg = 180.0 / M_PI
print("\(att.pitch * to_deg), \(att.roll * to_deg), \(att.yaw * to_deg)")

The values are all close to zero when the device is level with its x-axis pointing to
magnetic north, and each value increases as the device is rotated counterclockwise
with respect to an eye that has the corresponding positive axis pointing at it. So, for
example, a device held upright (top pointing at the sky) has a pitch approaching 90; a
device lying on its right edge has a roll approaching 90; and a device lying on its
back with its top pointing north has a yaw approaching -90.

There are some quirks in the way Euler angles operate mathematically:

• roll and yaw increase with counterclockwise rotation from 0 to π (180 degrees)
and then jump to -π (-180 degrees) and continue to increase to 0 as the rotation
completes a circle; but pitch increases to π/2 (90 degrees) and then decreases to
0, then decreases to -π/2 (-90 degrees) and increases to 0. This means that
attitude alone, if we are exploring it through pitch, roll, and yaw, is insuffi‐
cient to describe the device’s attitude, since a pitch value of, say, π/4 (45 degrees)
could mean two different things. To distinguish those two things, we can supple‐
ment attitude with the z-component of gravity:

let g = mot.gravity
let whichway = g.z > 0 ? "forward" : "back"
print("pitch is tilted \(whichway)")

• Values become inaccurate in certain orientations. In particular, when pitch is
±90 degrees (the device is upright or inverted), roll and yaw become erratic.
(You may see this effect referred to as “the singularity” or as “gimbal lock.”) I
believe that, depending on what you are trying to accomplish, you can solve this

952 | Chapter 22: Sensors

by using a different expression of the attitude, such as the rotationMatrix,
which does not suffer from this limitation.

This next (simple and very silly) example illustrates a use of CMAttitude’s rotation-
Matrix property. Our goal is to make a CALayer rotate in response to the current atti‐
tude of the device. We start as before, except that our reference frame is
CMAttitudeReferenceFrameXArbitraryZVertical; we are interested in how the
device moves from its initial attitude, without reference to any particular fixed exter‐
nal direction such as magnetic north. In pollAttitude, our first step is to store the
device’s current attitude in a CMAttitude property, self.ref:

guard let mot = self.motman.deviceMotion else {return}
let att = mot.attitude
if self.ref == nil {
 self.ref = att
 return
}

That code works correctly because on the first few polls, as the attitude-detection
hardware warms up, att is nil, so we don’t get past the return call until we have a
valid initial attitude. Our next step is highly characteristic of how CMAttitude is used:
we call the CMAttitude instance method multiplyByInverseOfAttitude:, which
transforms our attitude so that it is relative to the stored initial attitude:

att.multiplyByInverseOfAttitude(self.ref)

Finally, we apply the attitude’s rotation matrix directly to a layer in our interface as a
transform. Well, not quite directly: a rotation matrix is a 3×3 matrix, whereas a
CATransform3D, which is what we need in order to set a layer’s transform, is a 4×4
matrix. However, it happens that the top left nine entries in a CATransform3D’s 4×4
matrix constitute its rotation component, so we start with an identity matrix and set
those entries directly:

let r = att.rotationMatrix
var t = CATransform3DIdentity
t.m11 = CGFloat(r.m11)
t.m12 = CGFloat(r.m12)
t.m13 = CGFloat(r.m13)
t.m21 = CGFloat(r.m21)
t.m22 = CGFloat(r.m22)
t.m23 = CGFloat(r.m23)
t.m31 = CGFloat(r.m31)
t.m32 = CGFloat(r.m32)
t.m33 = CGFloat(r.m33)
let lay = // whatever
CATransaction.setAnimationDuration(1.0/10.0)
lay.transform = t

Acceleration, Attitude, and Activity | 953

The result is that the layer apparently tries to hold itself still as the device rotates. The
example is rather crude because we aren’t using OpenGL to draw a three-dimensional
object, but it illustrates the principle well enough.

There is a quirk to be aware of in this case as well: over time, the transform has a
tendency to drift. Thus, even if we leave the device stationary, the layer will gradually
rotate. That is the sort of effect that CMAttitudeReferenceFrameXArbitrary-

CorrectedZVertical is designed to help mitigate, by bringing the magnetometer into
play.

Here are some additional considerations to be aware of when using Core Motion:

• The documentation warns that your app should create only one CMMotion‐
Manager instance. This is not a terribly onerous restriction, but it’s rather odd
that, if this is important, the API doesn’t provide a shared singleton instance
accessed through a class method.

• Use of Core Motion is legal while your app is running in the background. To take
advantage of this, your app would need to be running in the background for
some other reason; there is no Core Motion UIBackgroundModes setting in an
Info.plist. For example, you might run in the background because you’re using
Core Location, and take advantage of this to employ Core Motion as well.

• Core Motion requires that various sensors be turned on, such as the magnetome‐
ter and the gyroscope. This can result in some increased battery drain, so try not
to use any sensors you don’t have to, and remember to stop generating updates as
soon as you no longer need them.

Newer devices tend to have more hardware. For example, the iPhone 6 and
iPhone 6 Plus have a barometer! You can get altitude information using the
CMAltimeter and CMAltitudeData classes.

Motion Activity
Some devices have a motion coprocessor chip with the ability to detect, analyze, and
keep a record of device motion even while the device is asleep and with very little
drain on power. This is not a form of location determination; it is an analysis of the
device’s physical motion and attitude in order to draw conclusions about what the
user has been doing while carrying or wearing the device. You can learn that the user
is walking, or walked for an hour, but not where the user was walking.

Interaction with the motion coprocessor is through a CMMotionActivityManager
instance. There is no reason not to initialize a property with this instance:

let actman = CMMotionActivityManager()

954 | Chapter 22: Sensors

The device must actually have a motion coprocessor; call the class method
isActivityAvailable. The user must also grant authorization, and, having granted
it, can later deny it (in the Settings app, under Privacy → Motion Activity). There are
no authorization methods; the technique is to “tickle” the activity manager by trying
to query it and seeing if you get an error. In this example, I have a Bool property,
self.authorized, which I set based on the outcome of trying to query the activity
manager:

let now = NSDate()
self.actman.queryActivityStartingFromDate(now,
 toDate:now, toQueue:OperationQueue.mainQueue()) {
 (arr:[CMMotionActivity]?, err:NSError?) in
 let notauth = Int(CMErrorMotionActivityNotAuthorized.rawValue)
 if err != nil && err!.code == notauth {
 self.authorized = false
 } else {
 self.authorized = true
 }
}

On the first run of that code, the system puts up the authorization request alert. The
completion function is not called until the user deals with the alert, so the outcome
tells you what the user decided. On subsequent runs, that code reports the current
authorization status.

There are two approaches to querying the activity manager:

Real-time updates
This is similar to getting motion manager updates with a handler. You call start-
ActivityUpdatesToQueue:withHandler:, and the handler is called periodically.
When you no longer need updates, call stopActivityUpdates.

Historical data
The motion coprocessor records about a week’s-worth of data. You ask for a
chunk of that recorded data by calling queryActivityStartingFromDate:to-
Date:toQueue:withHandler:.

I’ll illustrate querying for historical data. In this example, I fetch the data for the past
24 hours. I have prepared an OperationQueue property, self.queue:

let now = NSDate()
let yester = now.dateByAddingTimeInterval(-60*60*24)
self.actman.queryActivityStartingFromDate(yester,
 toDate: now, toQueue: self.queue) {
 (arr:[CMMotionActivity]?, err:NSError?) -> Void in
 guard var acts = arr else {return}
 // ...
}

Acceleration, Attitude, and Activity | 955

We now have an array of CMMotionActivity objects representing every change in the
device’s activity status. This is a value class. It has a startDate, a confidence (a
CMMotionActivityConfidence, .Low, .Medium, or .High) ranking the activity manag‐
er’s faith in its own categorization of what the user was doing, and a bunch of Bool
properties actually categorizing the activity:

• stationary

• walking

• running

• automotive

956 | Chapter 22: Sensors

• cycling

• unknown

A common first response to the flood of data is to pare it down (sometimes referred
to as smoothing). To help with this, I’ve extended CMMotionActivity with a utility
method that summarizes its Bool properties as a string:

extension CMMotionActivity {
 private func tf(b:Bool) -> String {
 return b ? "t" : "f"
 }
 func overallAct() -> String {
 let s = tf(self.stationary)
 let w = tf(self.walking)
 let r = tf(self.running)
 let a = tf(self.automotive)
 let c = tf(self.cycling)
 let u = tf(self.unknown)
 return "\(s) \(w) \(r) \(a) \(c) \(u)"
 }
}

So, as a straightforward way of paring down the data, I walk backwards through the
data, removing every CMMotionActivity with no definite activity, with a low degree
of confidence, or whose activity is the same as its predecessor. Then I set a property,
and my data are ready for use:

let blank = "f f f f f f"
acts = acts.filter {act in act.overallAct() != blank}
acts = acts.filter {act in act.confidence == .High}
for i in (1..<acts.count).reverse() {
 if acts[i].overallAct() == acts[i-1].overallAct() {
 acts.removeAtIndex(i)
 }
}
dispatch_async(dispatch_get_main_queue()) {
 self.data = acts
}

There is also a CMPedometer class; before using it, check the isStepCounting-
Available class method. Some devices can deduce the size of the user’s stride and
compute distance (isDistanceAvailable); some devices can use barometric data to
estimate whether the user mounted a flight of stairs (isFloorCountingAvailable).
New in iOS 9, you can also ask for instantaneous cadence (isCadenceAvailable) and
pace (isPaceAvailable). Pedometer data is queried just like motion activity data;
you can either ask for constant updates or you can ask for the stored history. Each bit
of data arrives as a CMPedometerData object. The pedometer may work reliably
under circumstances where Core Location doesn’t.

Acceleration, Attitude, and Activity | 957

PART IV

Final Topics

This part of the book is a miscellany of topics.

• Chapter 23 is about files. It explains how your app can store data on disk to be
retrieved the next time the app runs (including both standalone files and user
defaults). It also discusses sharing files with the user through iTunes and with
other apps, plus the document architecture and iCloud, and concludes with a
survey of how iOS can work with some common file formats (XML, SQLite,
Core Data, and image files).

• Chapter 24 introduces networking, with an emphasis on HTTP downloading of
data. It also introduces some specialized forms of networking such as on-demand
resources and in-app purchasing.

• Chapter 25 is about threads. Making your code multithreaded can introduce
great complexity and is not a beginner topic, but you still might need to under‐
stand the basic concepts of multithreading, either in order to prevent a lengthy
task from blocking user interaction with your app, or because some framework
explicitly relies on it. Particular attention is paid to the advantages of Operation
and Grand Central Dispatch.

• Chapter 26 describes how iOS supports undo in your app.

CHAPTER 23

Persistent Storage

This chapter has not yet been revised for iOS 10.

The device on which your app runs contains flash memory that functions as the
equivalent of a hard disk, holding files that survive between runs of your app, even if
the device is powered down. This chapter is about how and where files are saved and
retrieved, and about some of the additional ways in which files can be manipulated:
for example, apps can define document types in which they specialize and can hand
such documents to one another, and can share documents into the cloud (iCloud), so
that multiple copies of the same app can retrieve them on different devices. The chap‐
ter also explains how user preferences are maintained in UserDefaults, and describes
some specialized file formats and ways of working with their data, such as XML,
SQLite, Core Data, and images.

The Sandbox
The hard disk as a whole is not open to your app’s view. A limited portion of the hard
disk is dedicated to your app alone: this is your app’s sandbox. The idea is that every
app, seeing only its own sandbox, is hindered from spying or impinging on the files
belonging to other apps, and in turn is protected from having its own files spied or
impinged on by other apps. Your app’s sandbox is thus a safe place for you to store
your data. Your sandbox, and hence your data, will be deleted if the user deletes your
app; otherwise, it should reliably persist.

Standard Directories
The sandbox contains some standard directories, and there are built-in methods for
referring to them. For example, suppose you want a reference to the Documents
directory. Here’s one way to access it:

961

let docs = NSSearchPathForDirectoriesInDomains(
 .DocumentDirectory, .UserDomainMask, true).last!

That code returns a path string for the Documents directory. The preferred way to
refer to a file or directory, however, is with a URL. You can obtain this from an
NSFileManager instance:

do {
 let fm = NSFileManager()
 let docsurl = try fm.URLForDirectory(
 .DocumentDirectory, inDomain: .UserDomainMask,
 appropriateForURL: nil, create: false)
 // use docsurl here
} catch {
 // examine error here
}

A question that will immediately occur to you is: where should I put files and folders
that I want to save now and read later? The Documents directory can be a good place.
But if your app supports file sharing (discussed later in this chapter), the user can see
and modify your app’s Documents directory through iTunes, so you might not want
to put things there that the user isn’t supposed to see and change.

Personally, I favor the Application Support directory for most purposes. In macOS,
this directory is shared by multiple applications, each of which must confine itself to
an individual subfolder, but on iOS each app has its own private Application Support
directory in its own sandbox, so you can safely put files anywhere within it. This
directory may not exist initially, but you can obtain it and create it at the same time:

do {
 let fm = NSFileManager()
 let docsurl = try fm.URLForDirectory(
 .ApplicationSupportDirectory, inDomain: .UserDomainMask,
 appropriateForURL: nil, create: true)
 // use docsurl here
} catch {
 // examine error here
}

Temporary files, whose loss you are willing to accept (because their contents can be
recreated), can be written into the Caches directory (NSCachesDirectory) or the
Temporary directory (NSTemporaryDirectory). You can write temporary files into
the Application Support folder, but by default this means they can be backed up by
the user through iTunes or iCloud; to prevent that, exclude such a file from backup by
way of its file URL:

try myDocumentURL.setResourceValue(
 true, forKey: NSURLIsExcludedFromBackupKey)

962 | Chapter 23: Persistent Storage

Figure 23-1. An app’s sandbox in the Simulator

Although URLs are the favored way of referring to files and folders, they are a more
recent innovation than path strings, and you may encounter file operations that still
require a string. To derive a path string from a URL, send it the path message.

Visually Inspecting the Sandbox
The Simulator’s sandbox is a folder on your Mac that you can, with some difficulty,
inspect visually. In your user ~/Library/Developer/CoreSimulator/Devices folder, you’ll
find mysteriously named folders representing the different simulators. The
device.plist file inside each folder can help you identify which simulator a folder rep‐
resents; so can xcrun simctl list at the command line. Inside a simulator’s data/
Containers/Data/Application folder are more mysteriously named folders represent‐
ing apps on that simulator. I don’t know how to identify the different apps, but one of
them is the app you’re interested in, and inside it is that app’s sandox.

In Figure 23-1, I’ve drilled down from my user Library to an app that I’ve run in the
Simulator. My app’s Documents folder is visible, and I’ve opened it to show a folder
and a couple of files that I’ve created programmatically (the code that created them
will appear later in this chapter).

You can also view the file structure of your app’s sandbox on the device. When the
device is connected and no app is being run from Xcode, choose Window → Devices.
Select your device on the left; on the right, under Installed Apps, select your app.
Click the Gear icon and choose Show Container to view your app’s sandbox hierarchy
in a modal sheet. Alternatively, choose Download Container to copy your app’s sand‐

The Sandbox | 963

box to your computer; the sandbox arrives on your computer as an .xcappdata pack‐
age, and you can open it in the Finder with Show Package Contents.

Basic File Operations
Let’s say we intend to create a folder MyFolder inside the Documents directory.
Assume that we have an NSFileManager instance fm and a URL docsurl pointing at
the Documents directory. We can then generate a reference to MyFolder, from which
we can ask our NSFileManager instance to create the folder if it doesn’t exist already:

let myfolder = docsurl.URLByAppendingPathComponent("MyFolder")
try fm.createDirectoryAtURL(
 myfolder, withIntermediateDirectories: true, attributes: nil)

To learn what files and folders exist within a directory, you can ask for an array of the
directory’s contents:

let arr = try fm.contentsOfDirectoryAtURL(
 docsurl, includingPropertiesForKeys: nil, options: [])
arr.forEach{ print($0.lastPathComponent!) } // MyFolder

The array resulting from contentsOfDirectoryAtURL:... lists full URLs of the
directory’s immediate contents; it is shallow. For a deep traversal of a directory’s con‐
tents, you can enumerate it; you are handed only one file reference at a time:

let dir = fm.enumeratorAtURL(docsurl, includingPropertiesForKeys: nil,
 options: [], errorHandler: nil)!
for case let f as NSURL in dir where f.pathExtension == "txt" {
 print(f.lastPathComponent!) // file1.txt, file2.txt
}

A directory enumerator also permits you to decline to dive into a particular subdirec‐
tory (skipDescendants), so you can make your traversal even more efficient.

Consult the NSFileManager class documentation for more about what you can do
with files, and see also Apple’s File System Programming Guide.

Saving and Reading Files
To save or read a simple file, you are likely to use one of the convenience methods for
the class appropriate to the file’s contents. NSString, NSData, NSArray, and NSDic‐
tionary provide methods writeToURL:... (for writing) and init(contentsOf-
URL:...) (for reading).

NSString and NSData objects map directly between their own contents and the con‐
tents of the file. Here, I’ll generate a text file directly from a string:

try "howdy".writeToURL(myfolder.URLByAppendingPathComponent("file1.txt"),
 atomically: true, encoding: NSUTF8StringEncoding)

964 | Chapter 23: Persistent Storage

You can also read and write an attributed string using a file in a standard format,
as I mentioned in Chapter 10.

NSArray and NSDictionary files are actually property lists, and will work only if all
the contents of the array or dictionary are property list types (NSString, NSData,
NSDate, NSNumber, NSArray, and NSDictionary).

So how do you save to a file an object of some other class? Well, if an object’s class
adopts the NSCoding protocol, you can convert it to an NSData and back again using
NSKeyedArchiver and NSKeyedUnarchiver; the problem is then solved, because an
NSData can be saved as a file or in a property list.

You can make your own class adopt the NSCoding protocol. This can become some‐
what complicated because an object can refer (through a property) to another object,
which may also adopt the NSCoding protocol, and thus you can end up saving an
entire graph of interconnected objects if you wish. However, I’ll confine myself to
illustrating a simple case (and you can read Apple’s Archives and Serializations Pro‐
gramming Guide for more information).

Let’s say, then, that we have a simple Person class with a firstName property and a
lastName property. We’ll declare that it adopts the NSCoding protocol:

class Person: NSObject, NSCoding {
 var firstName : String
 var lastName : String
 override var description : String {
 return self.firstName + " " + self.lastName
 }
 init(firstName:String, lastName:String) {
 self.firstName = firstName
 self.lastName = lastName
 super.init()
 }
}

To make this class actually conform to NSCoding, we must implement encodeWith-
Coder: to archive the object, and init(coder:) to unarchive the object. In encode-
WithCoder:, we must first call super if the superclass adopts NSCoding — in this
case, it doesn’t — and then call the appropriate encode method for each property we
want preserved:

func encodeWithCoder(coder: NSCoder) {
 // do not call super in this case
 coder.encodeObject(self.lastName, forKey: "last")
 coder.encodeObject(self.firstName, forKey: "first")
}

In init(coder:), we call the appropriate decode method for each property stored
earlier, thus restoring the state of our object. We must also call super, using either

The Sandbox | 965

init(coder:) if the superclass adopts the NSCoding protocol or the designated ini‐
tializer if not:

required init(coder: NSCoder) {
 self.lastName = coder.decodeObjectForKey("last") as! String
 self.firstName = coder.decodeObjectForKey("first") as! String
 // do not call super init(coder:) in this case
 super.init()
}

We can test our code by creating, configuring, and saving a Person instance as a file:

let moi = Person(firstName: "Matt", lastName: "Neuburg")
let moidata = NSKeyedArchiver.archivedDataWithRootObject(moi)
let moifile = docsurl.URLByAppendingPathComponent("moi.txt")
moidata.writeToURL(moifile, atomically: true)

We can retrieve the saved Person at a later time:

let persondata = NSData(contentsOfURL: moifile)!
let person =
 NSKeyedUnarchiver.unarchiveObjectWithData(persondata) as! Person
print(person) // Matt Neuburg

If the NSData object is itself the entire content of the file, as here, then instead of
using archivedDataWithRootObject: and unarchiveObjectWithData:, you can skip
the intermediate NSData object and use archiveRootObject:toFile: and unarchive-
ObjectWithFile:.

Saving a single Person as an archive may seem like overkill; why didn’t we just make a
text file consisting of the first and last names? But imagine that a Person has a lot
more properties, or that we have an array of hundreds of Persons, or an array of hun‐
dreds of dictionaries where one value in each dictionary is a Person; now the power
of an archivable Person is evident. Even though Person now adopts the NSCoding
protocol, an NSArray containing a Person object still cannot be written to disk using
NSArray’s writeToURL..., because Person is still not a property list type. But the
array can be archived and written to disk with NSKeyedArchiver.

User Defaults
User defaults (UserDefaults) are intended as the persistent storage of the user’s prefer‐
ences. They are little more, really, than a special case of an NSDictionary property list
file. You talk to the UserDefaults standardUserDefaults object much as if it were a
dictionary; it has keys and values. And the only legal values are property list values;
thus, for example, to store a Person in user defaults, you’d have to archive it first to an
NSData object.

Somewhere on disk, this dictionary is being saved for you automatically as a property
list file — though you don’t concern yourself with that. You simply set or retrieve val‐

966 | Chapter 23: Persistent Storage

ues from the dictionary by way of their keys, secure in the knowledge that the file is
being read into memory or written to disk as needed. Your chief concern is to make
sure that you’ve written everything needful into user defaults before your app termi‐
nates; this will usually mean when the app delegate receives applicationDidEnter-
Background: at the latest. If you’re worried that your app might crash, you can tell the
standardUserDefaults object to synchronize as a way of forcing it to save right
now, but this is rarely necessary.

To provide the value for a key before the user has had a chance to do so — the default
default, as it were — use registerDefaults:. What you’re supplying here is a dictio‐
nary whose key–value pairs will each be written into the user defaults, but only if
there is no such key already. For example:

UserDefaults.standard.registerDefaults([
 Default.HazyStripy : HazyStripy.Hazy.rawValue,
 Default.Color1 :
 NSKeyedArchiver.archivedDataWithRootObject(UIColor.blue),
 Default.Color2 :
 NSKeyedArchiver.archivedDataWithRootObject(UIColor.red),
 Default.Color3 :
 NSKeyedArchiver.archivedDataWithRootObject(UIColor.green()),
 Default.CardMatrixRows : 4,
 Default.CardMatrixColumns : 3
])

The idea is that we call registerDefaults: extremely early as the app launches.
Either the app has run at some time previously and the user has set these preferences,
in which case this call has no effect and does no harm, or not, in which case we now
have initial values for these preferences with which to get started. So, for example, in
the game app from which that code comes, we start out with a 4×3 game layout, but
the user can change this at any time.

This leaves only the question of how the user is to interact with the defaults. One way
is that your app provides some kind of interface. For example, the game app from
which the previous code comes has a tab bar interface; the second tab is where the
user sets preferences (Figure 23-2).

Alternatively, you can provide a settings bundle, consisting mostly of one or more
property list files describing an interface and the corresponding user default keys and
their initial values; the Settings app is then responsible for translating your instruc‐
tions into an actual interface, and for presenting it to the user.

Using a settings bundle has some obvious disadvantages: the user has to leave your
app to access preferences, and you don’t get the kind of control over the interface that
you have within your own app. Also, the user can set your preferences while your app
is backgrounded or not running; you’ll need to register for UserDefaultsDidChange
in order to hear about this.

User Defaults | 967

Figure 23-2. An app’s preferences interface

In some situations, though, a settings bundle has some clear advantages. Keeping the
preferences interface out of your app can make your app’s own interface cleaner and
simpler. You don’t have to write any of the “glue” code that coordinates the preferen‐
ces interface with the user default values. And it may be appropriate for the user to be
able to set at least certain preferences for your app when your app isn’t running.

In iOS 7 and before, another objection to a settings bundle was that the user might
not think to look in the Settings app for your preferences. Nowadays, however, this is
less of an issue, because you can transport your user directly from your app to your
app’s preferences in the Settings app (and in iOS 9, a Back button appears in the status
bar, making it easy for the user to return from Settings to your app):

let url = NSURL(string:UIApplicationOpenSettingsURLString)!
UIApplication.shared.openURL(url)

Writing a settings bundle is described in Apple’s Preferences and Settings Programming
Guide.

It is common practice to misuse UserDefaults ever so slightly for various purposes.
For example, every method in your app can access the standardUserDefaults object,
so it often serves as a global “drop” where one instance can deposit a piece of infor‐
mation for another instance to pick up later, when those two instances might not
have ready communication with one another or might not even exist simultaneously.

UserDefaults is also a lightweight alternative to the built-in view controller–based
state saving and restoration mechanism discussed in Chapter 6. My Zotz! app
(Figure 23-2) is a case in point. In addition to using the user defaults to store the
user’s actual preferences, it also misuses them to store state information: it records the
state of the game board and the card deck into user defaults every time these change,

968 | Chapter 23: Persistent Storage

so that if the app is terminated and then launched again later, we can restore the game
as it was when the user left off. One might argue that the contents of the card deck are
not a user preference, so I am misusing the user defaults to store data. However, while
purists may grumble, it’s a very small amount of data and I don’t think the distinction
is terribly significant in this case.

Yet another use of UserDefaults is as a way to communicate data between your app
and an extension provided by your app. For example, let’s say you’ve written a today
extension (Chapter 13) whose interface details depend upon some data belonging to
your app. After configuring your extension and your app to constitute an app group,
both the extension and the app can access the UserDefaults associated with the app
group (call init(suiteName:) instead of standardUserDefaults). For more infor‐
mation, see the “Handling Common Scenarios” chapter of Apple’s App Extension Pro‐
gramming Guide.

Simple Sharing and Previewing of Files
iOS provides some simple and safe passageways by which a file can pass in and out of
your sandbox. File sharing lets the user manipulate the contents of your app’s Docu‐
ments directory. UIDocumentInteractionController allows the user to tell another
app to hand your app a copy of a document, or to tell your app to hand a copy of a
document to another app. UIDocumentInteractionController also permits preview‐
ing a document, provided it is compatible with Quick Look.

Starting in iOS 8, iOS provides an elaborate mechanism for allowing one app to
share an area of its sandbox directly with other apps — document provider
extensions, along with related classes such as UIDocumentMenuViewController
and UIDocumentPickerViewController. This edition does not discuss this topic;
see the “Document Provider” chapter of Apple’s App Extension Programming
Guide.

File Sharing
File sharing means simply that an app’s Documents directory becomes available to the
user through iTunes (Figure 23-3). The user can add files to your app’s Documents
directory, and can save files and folders from your app’s Documents directory to the
computer, as well as renaming and deleting files and folders. This could be appropri‐
ate, for example, if your app works with common types of file that the user might
obtain elsewhere, such as PDFs or JPEGs.

To support file sharing, set the Info.plist key “Application supports iTunes file sharing”
(UIFileSharingEnabled).

Simple Sharing and Previewing of Files | 969

Figure 23-3. The iTunes file sharing interface

Once your entire Documents directory is exposed to the user this way, you are
unlikely to use the Documents directory to store private files. As I mentioned earlier,
I like to use the Application Support directory instead.

Your app doesn’t get any automatic notification when the user has altered the con‐
tents of the Documents directory. Noticing that the situation has changed and
responding appropriately is entirely up to you; Apple’s DocInteraction sample code
demonstrates one approaching using the kernel-level kqueue mechanism.

Document Types and Receiving a Document
Your app can declare itself willing to open documents of a certain type. In this way, if
another app obtains a document of this type, it can propose to hand a copy of the
document over to your app. For example, the user might download the document
with Mobile Safari, or receive it in a mail message with the Mail app; now we need a
way to get it from Safari or Mail to you.

To let the system know that your app is a candidate for receiving a certain kind of
document, you will configure the “Document types” (CFBundleDocumentTypes) key
in your Info.plist. This is an array, where each entry will be a dictionary specifying a
document type by using keys such as “Document Content Type UTIs” (LSItem-
ContentTypes), “Document Type Name” (CFBundleTypeName), CFBundleTypeIcon-
Files, and LSHandlerRank. Far and away the simplest method for configuring the
Info.plist is through the interface available in the Info tab when you edit the target.

For example, suppose I want to declare that my app opens PDFs and text files. In my
target’s Info tab in Xcode, I would edit the Document Types section to look like
Figure 23-4.

Now suppose the user receives a PDF in an email message. The Mail app can display
this PDF, but the user can also bring up an activity view offering, among other things,

970 | Chapter 23: Persistent Storage

Figure 23-4. Creating a document type

Figure 23-5. The Mail app offers to hand off a PDF

to copy the file to some other app. The interface will resemble Figure 23-5; various
apps that can deal with a PDF are listed here, and my app is among them.

So far, so good. But what if the user actually taps the button that sends the PDF over
to my app? For this to work, my app delegate must implement application:open-
URL:options:. When that method is called, my app has been brought to the front,
either by launching it from scratch or by reviving it from background suspension; its
job is now to handle the opening of the document whose URL has arrived as the sec‐

Simple Sharing and Previewing of Files | 971

ond parameter. The system has already copied the document into my app’s Inbox
directory, which it has created in my Documents folder for exactly this purpose.

The Inbox directory is created in your Documents folder. Thus, if your app
implements file sharing, the user can see the Inbox folder; you may wish to delete
the Inbox folder, therefore, as soon as you’re done retrieving files from it.

In this simple example, my app has just one view controller, which has an outlet to a
web view where we will display any PDFs that arrive in this fashion. So my app dele‐
gate contains this code:

func application(app: UIApplication, openURL url: NSURL,
 options: [String : AnyObject]) -> Bool {
 let vc = self.window!.rootViewController as! ViewController
 vc.displayDoc(url)
 return true
}

And my view controller contains this code:

func displayDoc (url:NSURL) {
 let req = URLRequest(URL: url)
 self.wv.loadRequest(req)
}

In real life, things might be more complicated. Our implementation of
application:openURL:options: might check to see whether this really is a PDF, and
return false if it isn’t. Also, our app might be in the middle of something else, possi‐
bly displaying a completely different view controller’s view; because
application:openURL:options: can arrive at any time, we may have to be prepared
to drop whatever we were doing and display the incoming document instead.

If our app is launched from scratch by the arrival of this URL, application(_:did-
FinishLaunchingWithOptions:) will be sent to our app delegate as usual. The
options dictionary (the second parameter) will contain the UIApplicationLaunch-
OptionsURLKey, and we can take into account, if we like, the fact that we are being
launched specifically to open a document. We can also return false to refuse to open
the document. If we return true as usual, application:openURL:options: will arrive
in good order after our interface has been set up.

The example I’ve been discussing assumes that the UTI for the document type is stan‐
dard and well-known. It is also possible that your app will operate on a new docu‐
ment type, that is, a type of document that the app itself defines. In that case, you’ll
also want to add this UTI to your app’s list of Exported UTIs in the Info.plist. I’ll give
an example later in this chapter.

972 | Chapter 23: Persistent Storage

Handing Over a Document
The converse of the situation discussed in the previous section is this: your app has
somehow acquired a document and wants to let the user hand over a copy of it to
some other app to deal with it. This is done through the UIDocumentInteraction‐
Controller class. This class operates asynchronously, so retaining an instance of it is
up to you; typically, you’ll store it in a property, and there is no reason not to initialize
this property directly:

let dic = UIDocumentInteractionController()

For example, assuming we have a file URL url pointing to a document on disk, pre‐
senting the interface for handing the document over to some other application could
be as simple as this (sender is a button that the user has just tapped):

self.dic.URL = url
let v = sender as! UIView
let ok = self.dic.presentOpenInMenuFromRect(
 v.bounds, inView: v, animated: true)

The interface is an activity view (Chapter 13). There are actually two activity views
available:

presentOpenInMenuFromRect:inView:animated:

presentOpenInMenuFromBarButtonItem:animated:

Presents an activity view listing apps to which the document can be copied.

presentOptionsMenuFromRect:inView:animated:

presentOptionsMenuFromBarButtonItem:animated:

Presents an activity view listing apps to which the document can be copied, along
with other possible actions, such as Copy and Print.

Previewing a Document
A UIDocumentInteractionController can be used for an entirely different purpose: it
can present a preview of the document, if the document is of a type for which preview
is enabled, by calling presentPreviewAnimated:. You must give the UIDocument‐
InteractionController a delegate (UIDocumentInteractionControllerDelegate), and
the delegate must implement documentInteractionControllerViewControllerFor-
Preview:, returning an existing view controller that will contain the preview’s view
controller. So, here we ask for the preview:

self.dic.URL = url
self.dic.delegate = self
self.dic.presentPreviewAnimated(true)

In the delegate, we supply the view controller; it happens that, in my code, this dele‐
gate is a view controller, so it simply returns self:

Simple Sharing and Previewing of Files | 973

func documentInteractionControllerViewControllerForPreview(
 controller: UIDocumentInteractionController) -> UIViewController {
 return self
}

If the view controller returned were a UINavigationController, the preview’s view
controller would be pushed onto it. In this case it isn’t, so the preview’s view control‐
ler is a presented view controller with a Done button. The preview interface also con‐
tains an Action button that lets the user summon the Options activity view.

There is another way for the user to reach this interface. If you call presentOptions-
Menu... on your UIDocumentInteractionController, and if the UIDocument‐
InteractionController has a delegate that implements
documentInteractionControllerViewControllerForPreview:, then the activity
view will contain a Quick Look icon that the user can tap to summon the preview
interface.

Additional delegate methods allow you to track what’s happening in the interface pre‐
sented by the UIDocumentInteractionController. Probably most important are those
that inform you that key stages of the interaction are ending:

• documentInteractionControllerDidDismissOptionsMenu:

• documentInteractionControllerDidDismissOpenInMenu:

• documentInteractionControllerDidEndPreview:

• documentInteractionController:didEndSendingToApplication:

Previews are actually provided through the Quick Look framework, and you can skip
the UIDocumentInteractionController and present the preview yourself through a
QLPreviewController; you’ll need to import QuickLook. It’s a view controller, so to
display the preview you show it as a presented view controller or push it onto a navi‐
gation controller’s stack, just as UIDocumentInteractionController would have done.
A nice feature of QLPreviewController is that you can give it more than one docu‐
ment to preview; the user can move between these, within the preview, by paging
sideways or using a table of contents summoned by a button at the bottom of the
interface. Apart from this, the interface looks like the interface presented by the
UIDocumentInteractionController.

In this example, I may have in my Documents directory one or more PDF or text
documents. I acquire a list of their URLs and present a preview for them (self.exts
has been initialized to a set consisting of ["pdf", "txt"]):

self.docs = [NSURL]()
do {
 let fm = NSFileManager()
 let docsurl = try fm.URLForDirectory(.DocumentDirectory,
 inDomain: .UserDomainMask, appropriateForURL: nil, create: false)

974 | Chapter 23: Persistent Storage

 let dir = fm.enumeratorAtURL(docsurl, includingPropertiesForKeys: nil,
 options: [], errorHandler: nil)!
 for case let f as NSURL in dir {
 if self.exts.contains(f.pathExtension!) {
 if QLPreviewController.canPreviewItem(f) {
 self.docs.append(f)
 }
 }
 }
 guard self.docs.count > 0 else { return }
 let preview = QLPreviewController()
 preview.dataSource = self
 preview.currentPreviewItemIndex = 0
 self.presentViewController(preview, animated: true, completion: nil)
} catch {
 print(error)
}

You’ll notice that I haven’t told the QLPreviewController what documents to preview.
That is the job of QLPreviewController’s data source. In my code, I (self) am also the
data source. I simply fetch the requested information from the list of URLs, which I
previously saved into self.docs:

func numberOfPreviewItemsInPreviewController(
 controller: QLPreviewController!) -> Int {
 return self.docs.count
}
func previewController(controller: QLPreviewController!,
 previewItemAtIndex index: Int) -> QLPreviewItem! {
 return self.docs[index]
}

The second data source method requires us to return an object that adopts the
QLPreviewItem protocol. By a wildly improbable coincidence, URL does adopt this
protocol, so the example works.

Document Architecture
If your app opens and saves documents of a type peculiar to itself, you may want to
take advantage of the document architecture. This architecture revolves around a class,
UIDocument, that takes care of a number of pesky issues:

• Reading or writing your data might take some time, so UIDocument does those
things on a background thread.

• A document owned by your app may be exposed to reading and writing by other
apps. Thus, there needs to be a coherent way for your app to read and write to
that document without interference from other apps. The solution is to use an
NSFileCoordinator. UIDocument does this.

Document Architecture | 975

• Your document data needs to be synchronized to the document on disk. UIDo‐
cument provides autosaving behavior, so that your data is written out automati‐
cally whenever it changes.

• Conversely, information about an open document can become stale. To prevent
this, the NSFilePresenter protocol notifies editors that a document has changed.
UIDocument participates in this system.

• With iCloud, your app’s documents on one of the user’s devices can automatically
be mirrored onto another of the user’s devices. UIDocument is the simplest gate‐
way for allowing your documents to participate in iCloud.

Getting started with UIDocument is not difficult. You’ll declare a UIDocument sub‐
class, and you’ll override two methods:

loadFromContents:ofType:

Called when it’s time to open a document from disk. You are expected to convert
the contents value into a model object that your app can use, and to store that
model object.

contentsForType:

Called when it’s time to save a document to disk. You are expected to convert the
app’s model object into an NSData instance (or, if your document is a package, an
NSFileWrapper) and return it.

Your UIDocument subclass will need a place to store and retrieve the data model
object. Obviously, this can be a property of the UIDocument subclass itself. At the
same time, keep in mind that your UIDocument instance will probably be partnered
in some way with a view controller instance, which will also need access to the same
data.

To instantiate a UIDocument, call its designated initializer, init(fileURL:). This sets
the UIDocument’s fileURL property, and associates the UIDocument with this file on
disk, typically for the remainder of its lifetime.

In my description of the two key UIDocument methods that your subclass will over‐
ride, I used the phrase, “when it’s time” (to open or save the document). This raises
the question of how your UIDocument instance will know when to open and save a
document. There are three circumstances to distinguish:

Make a new document
The fileURL: points to a nonexistent file. Immediately after instantiating the
UIDocument, you send it saveToURL:forSaveOperation:completionHandler:,
where the second argument (a UIDocumentSaveOperation) is .ForCreating.
(The first argument will be the UIDocument’s own fileURL.) This in turn causes
contentsForType: to be called, and the contents of an empty document are

976 | Chapter 23: Persistent Storage

saved out to disk. This implies that your UIDocument subclass should know of
some default value that represents the model data when there is no data.

Open an existing document
Send the UIDocument instance openWithCompletionHandler:. This in turn
causes loadFromContents:ofType: to be called.

Save an existing document
There are two approaches to saving an existing document:

Autosave
Usually, you’ll mark the document as “dirty” by calling updateChangeCount:.
From time to time, the UIDocument will notice this situation and will save
the document to disk, calling contentsForType: in the process.

Manual save
On certain occasions, waiting for autosave won’t be appropriate. We’ve
already seen an example of such an occasion — when the file itself needs to
be created on the spot. Another is when the app is going into the back‐
ground; we will want to preserve our document there and then, in case the
app is terminated. You’ll call saveToURL:forSaveOperation:completion-
Handler:; if the file is not being created for the first time, the second argu‐
ment will be .ForOverwriting. Alternatively, if you know you’re finished
with the document (perhaps the interface displaying the document is about
to be torn down) you can call closeWithCompletionHandler:.

The open..., close..., and saveTo... methods have a completionHandler: argu‐
ment. This is UIDocument’s solution to the fact that reading and saving may take
time. The file operations themselves take place on a background thread; the
completionHandler: function is then called on the main thread.

We now know enough for an example! I’ll reuse my Person class from earlier in this
chapter. Imagine a document effectively consisting of multiple Person instances; I’ll
call each such document a people group. Our app, People Groups, will list all people
groups in the user’s Documents folder; it will also open any people group from disk
and display its contents, allowing the user to edit any Person’s firstName or lastName
(Figure 23-6).

My first step is to define a custom UTI in my app’s Info.plist, associating a file type
com.neuburg.pplgrp with a file extension "pplgrp". I then also define a document
type that uses this UTI, as shown earlier in this chapter (Figure 23-7).

A document consists of multiple Persons, so a natural model implementation is an
array of Persons. Moreover, as I mentioned earlier, since Person implements NSCod‐
ing, an array of Persons can be archived directly into an NSData. Thus, our UIDocu‐
ment subclass (which I’ll call PeopleDocument) has a public array people property,

Document Architecture | 977

Figure 23-6. The People Groups interface

Figure 23-7. Defining a custom UTI

and can be implemented very simply: we initialize our people property to an empty
Person array, so that we have something to save into a new empty document, and to
mediate between our model and the data on disk, we use NSKeyedUnarchiver and
NSKeyedArchiver exactly as in our earlier examples:

978 | Chapter 23: Persistent Storage

class PeopleDocument: UIDocument {
 var people = [Person]()
 override func loadFromContents(contents: AnyObject,
 ofType typeName: String?) throws {
 if let contents = contents as? NSData {
 if let arr = NSKeyedUnarchiver
 .unarchiveObjectWithData(contents) as? [Person] {
 self.people = arr
 return // all's well that ends well
 }
 }
 throw NSError(domain: "NoDataDomain", code: -1, userInfo: nil)
 }
 override func contentsForType(typeName: String) throws -> AnyObject {
 let data = NSKeyedArchiver.archivedDataWithRootObject(self.people)
 return data
 }
}

The remaining questions are architectural: when should a PeopleDocument be ini‐
tialized, where should it be stored, and what should be the nature of communications
with it?

The first view controller, DocumentLister, merely lists documents by name, and pro‐
vides an interface for letting the user create a new group; only the second view con‐
troller, PeopleLister, the one that displays the first and last names of the people in the
group, actually needs to work with PeopleDocument.

PeopleLister’s designated initializer therefore requires that it be given a fileURL:
argument, with which it sets its own fileURL property. In its viewDidLoad implemen‐
tation, PeopleLister instantiates a PeopleDocument with that same fileURL, and
retains it through a PeopleDocument property (self.doc); PeopleLister’s own people
property will be nothing but a front for this PeopleDocument’s people property. If
fileURL points to a nonexistent file, PeopleLister requests that it be created by calling
saveToURL:forSaveOperation:completionHandler:; otherwise, it requests that the
document be read, by calling openWithCompletionHandler:. Either way, the comple‐
tion function refreshes the interface:

let fileURL : NSURL
var doc : PeopleDocument!
var people : [Person] { // front end for the document's model object
 get {
 return self.doc.people
 }
 set (val) {
 self.doc.people = val
 }
}
init(fileURL:NSURL) {
 self.fileURL = fileURL

Document Architecture | 979

 super.init(nibName: "PeopleLister", bundle: nil)
}
required init(coder: NSCoder) {
 fatalError("NSCoding not supported")
}
override func viewDidLoad() {
 super.viewDidLoad()
 self.title = (self.fileURL.lastPathComponent! as NSString)
 .stringByDeletingPathExtension
 // ...
 let fm = NSFileManager()
 self.doc = PeopleDocument(fileURL:self.fileURL)
 func listPeople(success:Bool) {
 if success {
 self.tableView.reloadData()
 }
 }
 if !fm.fileExistsAtPath(self.fileURL.path!) {
 self.doc.saveToURL(self.doc.fileURL,
 forSaveOperation: .ForCreating,
 completionHandler: listPeople)
 } else {
 self.doc.openWithCompletionHandler(listPeople)
 }
}

When the user performs a significant editing maneuver, such as creating or deleting a
person or editing a person’s first or last name, PeopleLister tells its PeopleDocument
that the document is dirty, and allows autosaving to take it from there:

self.doc.updateChangeCount(.Done)

When the app is about to go into the background, or when PeopleLister’s own view is
disappearing, PeopleLister forces PeopleDocument to save immediately:

func forceSave(_:AnyObject?) {
 self.tableView.endEditing(true)
 self.doc.saveToURL(self.doc.fileURL,
 forSaveOperation:.ForOverwriting, completionHandler:nil)
}

That’s all it takes; adding UIDocument support to your app is easy, because UIDocu‐
ment is merely acting as a supplier and preserver of your app’s data model object.
UIDocument presents itself in the documentation as a large and complex class, but
that’s chiefly because it is so heavily customizable both at high and low levels; for the
most part, you won’t need any of that heavy customization, and use of UIDocument
really will be as simple as what I’ve shown here. You might go further in order to give
your UIDocument a more sophisticated understanding of what constitutes a signifi‐
cant change in your data by working with its undo manager; I’ll talk about undo
managers in Chapter 26. For further details, see Apple’s Document-based App Pro‐
gramming Guide for iOS.

980 | Chapter 23: Persistent Storage

Figure 23-8. Turning on iCloud support

iCloud
Once your app is operating through UIDocument, basic iCloud compatibility effec‐
tively falls right into your lap. You have just two steps to perform:

Obtain iCloud entitlements
Edit the target and, in the Capabilities tab, set the iCloud switch to On. This
causes a transaction to take place between Xcode and the Member Center; auto‐
matically, your app gets a ubiquity container, and an appropriately configured
entitlements file is added to the project (Figure 23-8).

Obtain an iCloud-compatible directory
Early in your app’s lifetime, call NSFileManager’s URLForUbiquityContainer-
Identifier: (typically passing nil as the argument), on a background thread, to
obtain the URL of the cloud-shared directory. Any documents your app puts here
by way of a UIDocument subclass will be automatically shared into the cloud.

Thus, having thrown the switch in the Capabilities tab (Figure 23-8), I can make my
People Groups example app iCloud-compatible with just two code changes. In the
app delegate, as my app launches, I step out to a background thread (Chapter 25),
obtain the cloud-shared directory’s URL, and then step back to the main thread and
retain the URL through a property, self.ubiq:

dispatch_async(dispatch_get_global_queue(0, 0)) {
 let fm = NSFileManager()
 let ubiq = fm.URLForUbiquityContainerIdentifier(nil)
 dispatch_async(dispatch_get_main_queue()) {
 self.ubiq = ubiq
 }
}

When I specify where to seek and save people groups, I continue using the user’s
Documents folder if ubiq is nil, but otherwise I use ubiq itself:

var docsurl : NSURL {
 var url = NSURL()
 let del = UIApplication.shared.delegate
 if let ubiq = (del as! AppDelegate).ubiq {

iCloud | 981

 url = ubiq
 } else {
 do {
 let fm = NSFileManager()
 url = try fm.URLForDirectory(.DocumentDirectory,
 inDomain: .UserDomainMask, appropriateForURL: nil,
 create: false)
 } catch {
 print(error)
 }
 }
 return url
}

To test, iCloud Drive must be turned on under iCloud in my Settings. I run the app
and create a people group with some people in it. I then switch to a different device
and run the app there, and tap the Refresh button. This is a very crude implementa‐
tion, purely for testing purposes; it looks through the docsurl directory, first for
cloud items to download, and then for pplgrp files:

do {
 let fm = NSFileManager()
 self.files = try fm.contentsOfDirectoryAtURL(
 self.docsurl, includingPropertiesForKeys: nil, options: [])
 .filter {
 if fm.isUbiquitousItemAtURL($0) {
 try fm.startDownloadingUbiquitousItemAtURL($0)
 }
 return $0.pathExtension! == "pplgrp"
 }
 self.tableView.reloadData()
} catch {
 print(error)
}

Presto, the app on this device now displays my people group containing my people,
created on a different device! It’s quite thrilling.

Although it works — possibly after a couple of tries — my Refresh button approach is
crude. My UIDocument works with iCloud, but my app is not yet a good iCloud citi‐
zen. The truth is that I should not be using NSFileManager like this. Instead, I should
be running an NSMetadataQuery. The usual strategy is:

1. Instantiate NSMetadataQuery and retain the instance.
2. Configure the search. This means giving the metadata query a search scope of

NSMetadataQueryUbiquitousDocumentsScope, and supplying a serial queue
(OperationQueue, see Chapter 25) for it to run on.

3. Register for notifications such as NSMetadataQueryDidFinishGathering and
NSMetadataQueryDidUpdate.

982 | Chapter 23: Persistent Storage

4. Start the search (startQuery). The NSMetadataQuery instance then remains in
place, with the search continuing to run more or less constantly, for the entire
lifetime of the app.

5. When a notification arrives, check the NSMetadataQuery’s results. These will
be NSMetadataItem objects, whose valueForAttribute(NSMetadataItem-

URLKey) is the document URL.

Similarly, in my earlier code I called fileExistsAtPath:, but for a cloud item I
should be calling URL’s checkPromisedItemIsReachableAndReturnError: instead.

Further iCloud details are outside the scope of this discussion; see Apple’s iCloud
Design Guide. Getting started is easy; making your app a good iCloud citizen, capable
of dealing with the complexities that iCloud may entail, is not. There are many com‐
plications to deal with: What if the currently open document changes because some‐
one edited it on another device? What if that change is in conflict with changes I’ve
made on this device? What if the availability of iCloud changes while the app is open
— for example, the user switches it on, or switches it off? Apple’s sample code has a
bad habit of skirting the knottier issues; for instance, the ShapeEdit example fails to
demonstrate how to accommodate the possibility that iCloud may be turned off.

XML
XML is a highly flexible and widely used general-purpose text file format for storage
and retrieval of structured data. You might use it yourself to store data that you’ll
need to retrieve later, or you could encounter it when obtaining information from
elsewhere, such as the Internet.

macOS Cocoa provides a set of classes (NSXMLDocument and so forth) for reading,
parsing, maintaining, searching, and modifying XML data in a completely general
way, but iOS does not include these. I think the reason must be that their tree-based
approach is too memory-intensive. Instead, iOS provides NSXMLParser, a much
simpler class that walks through an XML document, sending delegate messages as it
encounters elements. With this, you can parse an XML document once, but what you
do with the pieces as you encounter them is up to you. The general assumption here
is that you know in advance the structure of the particular XML data you intend to
read and that you have provided classes for storage of the same data in object form
and for transforming the XML pieces into that storage.

To illustrate, let’s return once more to our Person class with a firstName and a last-
Name property. Imagine that as our app starts up, we would like to populate it with
Person objects, and that we’ve stored the data describing these objects as an XML file
in our app bundle, like this:

XML | 983

<?xml version="1.0" encoding="utf-8"?>
<people>
 <person>
 <firstName>Matt</firstName>
 <lastName>Neuburg</lastName>
 </person>
 <person>
 <firstName>Snidely</firstName>
 <lastName>Whiplash</lastName>
 </person>
 <person>
 <firstName>Dudley</firstName>
 <lastName>Doright</lastName>
 </person>
</people>

This data could be mapped to an array of Person objects, each with its firstName and
lastName properties appropriately set. (This is a deliberately easy example, of course;
not all XML is so readily expressed as objects.) Let’s consider how we might do that.

Using NSXMLParser is not difficult in theory. You create the NSXMLParser, handing
it the URL of a local XML file (or an NSData, perhaps downloaded from the Inter‐
net), set its delegate, and tell it to parse. The delegate starts receiving delegate mes‐
sages. For simple XML like ours, there are only three delegate messages of interest:

parser:didStartElement:namespaceURI:qualifiedName:attributes:

The parser has encountered an opening element tag. In our document, this
would be <people>, <person>, <firstName>, or <lastName>.

parser:didEndElement:namespaceURI:qualifiedName:

The parser has encountered the corresponding closing element tag. In our docu‐
ment this would be </people>, </person>, </firstName>, or </lastName>.

parser:foundCharacters:

The parser has encountered some text between the starting and closing tags for
the current element. In our document this would be, for example, Matt or
Neuburg and so on.

In practice, responding to these delegate messages poses challenges of maintaining
state. If there is just one delegate, it will have to bear in mind at every moment what
element it is currently encountering; this could make for a lot of properties and a lot
of if-statements in the implementation of the delegate methods. To aggravate the
issue, parser:foundCharacters: can arrive multiple times for a single stretch of text;
that is, the text may arrive in pieces, so we have to accumulate it into a property.

An elegant way to meet these challenges is by resetting the NSXMLParser’s delegate
to different objects at different stages of the parsing process. We make each delegate
responsible for parsing one element; when a child of that element is encountered, we

984 | Chapter 23: Persistent Storage

make a new object and make it the delegate. The child element delegate is then
responsible for making the parent the delegate once again when it finishes parsing its
own element. This is slightly counterintuitive because it means parser:didStart-
Element... and parser:didEndElement... for the same element are arriving at two
different objects. Imagine, for example, what the job of our <people> parser will be:

1. When parser:didStartElement... arrives, the <people> parser looks to see if
this is a <person>. If so, it creates an object that knows how to deal with a
<person> (a <person> parser), handing that object a reference to itself (the
<people> parser), and makes it the delegate.

2. Delegate messages now arrive at this newly created <person> parser. If any text is
encountered, parser:foundCharacters: will be called, and the text must be
accumulated into a property.

3. Eventually, parser:didEndElement... arrives. The <person> parser now uses its
reference to make the <people> parser the delegate once again. The <people>
parser, having received from the <person> parser any data it may have collected,
is now ready in case another <person> element is encountered (and the old
<person> parser might now go quietly out of existence).

With this in mind, we can design a simple all-purpose base class for parsing an ele‐
ment (simple especially because we are taking no account of namespaces, attributes,
and other complications). I’ll show you the design and explain its architecture before
I fill in the blanks with actual code:

class MyXMLParserDelegate : NSObject {
 var name : String!
 var text = ""
 weak var parent : MyXMLParserDelegate?
 var child : MyXMLParserDelegate!
 required init(name:String, parent:MyXMLParserDelegate?) {/*...*/}
 func makeChild(klass:MyXMLParserDelegate.Type,
 elementName:String,
 parser:NSXMLParser) {/*...*/}
 func finishedChild(s:String) {/*...*/}
}

Here’s how these properties and methods are intended to work:

name

The name of the element we are parsing now.

text

A place for any characters to accumulate as we parse our element.

XML | 985

parent

A reference to the MyXMLParserDelegate who created us and whose child we
are.

child

If we encounter a child element, we’ll create a MyXMLParserDelegate and retain
it here, making it the delegate and making ourselves its parent.

makeChild:elementName:parser:

If we encounter a child element, there’s a standard dance to do: instantiate some
subclass of MyXMLParserDelegate, make ourself its parent, make it our child,
and make it the parser’s delegate. This is a utility method that embodies that
dance.

finishedChild:

When a child receives parser:didEndElement..., it should send this message to
its parent before making its parent the delegate. The parameter is the text, but
the parent can use this signal to obtain any information it expects from the child
before the child goes out of existence.

Now we can sketch in the default implementations for the methods I just described:

required init(name:String, parent:MyXMLParserDelegate?) {
 self.name = name
 self.parent = parent
 super.init()
}
func makeChild(klass:MyXMLParserDelegate.Type,
 elementName:String,
 parser:NSXMLParser) {
 let del = klass.init(name:elementName, parent:self)
 self.child = del
 parser.delegate = del
}
func finishedChild(s:String) { // subclasses must override!
 fatalError("Subclass must implement finishedChild:!")
}

But that’s only half the story. MyXMLParserDelegate is also an NSXMLParserDele‐
gate — that’s the point! Thus, I now extend MyXMLParserDelegate to adopt
NSXMLParserDelegate:

extension MyXMLParserDelegate : NSXMLParserDelegate {
 func parser(parser: NSXMLParser, foundCharacters string: String) {
 self.text = self.text + string
 }
 func parser(parser: NSXMLParser, didEndElement elementName: String,
 namespaceURI: String?, qualifiedName qName: String?) {
 if self.parent != nil {
 self.parent!.finishedChild(self.text)

986 | Chapter 23: Persistent Storage

 parser.delegate = self.parent
 }
 }
}

That completes the picture, and we can now proceed to create specialized subclasses
of MyXMLParserDelegate, one for each kind of element we expect to parse. Each sub‐
class has very little work to do:

• In parser:didStartElement..., if a child element is encountered, it should call
the utility method makeChild:elementName:parser: to create the appropriate
child parser.

• The reverse process is already built into the default implementation of
parser:didEndElement...: we call the parent’s finishedChild: and make the
parent the delegate. Each subclass should implement finishedChild: in order to
receive whatever data the child hands back.

We can now parse our sample XML into an array of Person objects very easily. We
start by obtaining the URL of the XML file, handing it to an NSXMLParser, creating
our first delegate parser and making it the delegate, and telling the NSXMLParser to
start parsing:

if let url = Bundle.main.URLForResource(
 "folks", withExtension: "xml") {
 if let parser = NSXMLParser(contentsOfURL: url) {
 let people = MyPeopleParser(name:"", parent:nil)
 parser.delegate = people
 parser.parse()
 // all done! do something with people.people here
 }
}

MyPeopleParser is the top-level parser. It has a people property that starts out as an
empty Person array; as it encounters a <person> element, it creates a <person> parser
— a MyPersonParser, whose person property is expected, when it finishes parsing
and finishedChild: is called, to be a Person object, suitable for appending to
people:

var people = [Person]()
func parser(parser: NSXMLParser, didStartElement elementName: String,
 namespaceURI: String?, qualifiedName qName: String?,
 attributes attributeDict: [NSObject : AnyObject]) {
 if elementName == "person" {
 self.makeChild(
 MyPersonParser.self, elementName: elementName,
 parser: parser)
 }

XML | 987

}
override func finishedChild(s: String) {
 self.people.append((self.child as! MyPersonParser).person)
}

MyPersonParser does the same child-making dance when it encounters a <first-
Name> or a <lastName> element; it uses a plain vanilla MyXMLParserDelegate to parse
these children, because the built-in ability to accumulate text and hand it back is all
that’s needed. In finishedChild:, key–value coding is elegantly used to match the
name of the element with the name of the Person property to be set:

var person = Person(firstName: "", lastName: "")
func parser(parser: NSXMLParser, didStartElement elementName: String,
 namespaceURI: String?, qualifiedName qName: String?,
 attributes attributeDict: [NSObject : AnyObject]) {
 self.makeChild(MyXMLParserDelegate.self,
 elementName: elementName, parser: parser)
}
override func finishedChild(s: String) {
 self.person.setValue(s, forKey:self.child.name)
}

This may seem like a lot of work to parse such a simple bit of XML, but it is neatly
object-oriented and requires very little new code once we’ve established the
MyXMLParserDelegate superclass, which is of course reusable in many other situa‐
tions.

A Foundation class for constructing and parsing JSON strings is also provided —
NSJSONSerialization. It’s a very simple class: all its methods are class methods, and
eligible structures are required to be an array or dictionary (corresponding to what
JSON calls an object) whose elements must be a string, number, array, dictionary, or
null. NSData is used as the medium of exchange; you’ll archive or unarchive as
appropriate. JSON arises often as a lightweight way of communicating structured data
across the network; for more information, see http://www.json.org/.

SQLite
SQLite (http://www.sqlite.org/docs.html) is a lightweight, full-featured relational data‐
base that you can talk to using SQL, the universal language of databases. This can be
an appropriate storage format when your data comes in rows and columns (records
and fields) and needs to be rapidly searchable. Also, the database as a whole is never
loaded into memory; the data is accessed only as needed. This is valuable in an envi‐
ronment like an iOS device, where memory is at a premium.

To use SQLite, edit the app target, go to the Link Binary With Libraries build phase,
click the Plus button, choose libsqlite3.tbd, and click Add. Talking to sqlite3
involves an elaborate C interface which may prove annoying; there are, however, a

988 | Chapter 23: Persistent Storage

http://www.json.org/
http://www.sqlite.org/docs.html

number of lightweight Objective-C front ends. In this example, I use fmdb (https://
github.com/ccgus/fmdb) to read the names of people out of a previously created data‐
base (this requires a bridging header in which we #import "FMDB.h"):

let db = FMDatabase(path:self.dbpath)
if !db.open() {
 return
}
if let rs = db.executeQuery("select * from people") {
 while rs.next() {
 print(rs["firstname"], rs["lastname"])
 }
}
db.close()
/*
Matt Neuburg
Snidely Whiplash
Dudley Doright
*/

You can include a previously constructed SQLite file in your app bundle, but you
can’t write to it there; the solution is to copy it from your app bundle into another
location, such as the Documents directory, before you start working with it.

Core Data
The Core Data framework provides a generalized way of expressing objects and prop‐
erties that form a relational graph; moreover, it has built-in facilities for persisting
those objects to disk — typically using SQLite as a storage format — and reading
them from disk only when they are needed, thus making efficient use of memory. For
example, a person might have not only multiple addresses but also multiple friends
who are also persons; expressing persons and addresses as explicit object types, work‐
ing out how to link them and how to translate between objects in memory and data
in storage, and tracking the effects of changes, such as when a person is deleted, can
be tedious. Core Data can help.

It is important to stress, however, that Core Data is not a beginner-level technology. It
is difficult to use and extremely difficult to debug. It expresses itself in a highly ver‐
bose, rigid, arcane way. It has its own elaborate way of doing things — everything you
already know about how to create, access, alter, or delete an object within an object
collection becomes completely irrelevant! — and trying to bend it to your particular
needs can be tricky and can have unintended side effects. Nor should Core Data be
seen as a substitute for a true relational database.

Therefore, I have no intention of explaining Core Data; that would require an entire
book. Indeed, such books exist, and if Core Data interests you, you should read some

Core Data | 989

https://github.com/ccgus/fmdb
https://github.com/ccgus/fmdb

of them. See also Apple’s Core Data Programming Guide and the other resources
referred to there. I will, however, illustrate what it’s like to work with Core Data.

I will rewrite the People Groups example from earlier in this chapter as a Core Data
app. We will no longer have multiple documents, each representing a single group of
people; instead, we will now have a single document, maintained for us by Core Data,
containing all of our groups and all of their people.

A Core Data project must import CoreData. To construct a Core Data project from
scratch, it is simplest to specify the Master–Detail app template (or the Single View
app template) and check Use Core Data in the second screen. This gives you template
code in the app delegate implementation file for constructing the Core Data persis‐
tence stack, a set of objects that work together to fetch and save your data; in most
cases there will no reason to alter this template code, and I have not done so for this
example.

The app delegate template code gives the app delegate three properties representing
the important singleton objects constituting the persistence stack: managedObject-
Context, managedObjectModel, and persistentStoreCoordinator. It also supplies
lazy initializers to give these properties their values when first needed. Of these, the
managedObjectContext is the most important for other classes to have access to. The
managed object context is the world in which your data objects live and move and
have their being: to obtain an object, you fetch it from the managed object context; to
create an object, you insert it into the managed object context; to save your data, you
save the managed object context.

The Master–Detail app template also gives the master view controller a managed-
ObjectContext property, and the app delegate sets its value. My master view control‐
ler is called GroupLister, so the app delegate’s
application(_:didFinishLaunchingWithOptions:) contains these lines:

let navigationController =
 self.window!.rootViewController as! UINavigationController
let controller = navigationController.topViewController as! GroupLister
controller.managedObjectContext = self.managedObjectContext

To describe the structure and relationships of the objects constituting your data
model, you design an object graph in a data model document. Our object graph is
very simple: a Group can have multiple Persons (Figure 23-9). The attributes, analo‐
gous to object properties, are all strings, except for the timestamps which are dates.
(The timestamps will be used for determining the sort order in which groups and
people will be displayed in the interface.)

Core Data attributes are not quite object properties. Group and Person are not
classes; they are entity names. All Core Data model objects are instances of NSMana‐
gedObject, and therefore they do not, of themselves, have a name property, a first-

990 | Chapter 23: Persistent Storage

Figure 23-9. The Core Data model for the People Groups app

Name property, a lastName property, and so on. Instead, Core Data model objects
make themselves dynamically KVC compliant for attribute names. For example, Core
Data knows, thanks to our object graph, that a Person entity is to have a firstName
attribute, so you can set a Person’s firstName attribute using KVC (setValue(_:for-
Key:)). I find this maddening, so, at the very least, I like to give NSManagedObject
the necessary properties through an extension:

extension NSManagedObject {
 @NSManaged var firstName : String
 @NSManaged var lastName : String
 @NSManaged var name : String
 @NSManaged var uuid : String
 @NSManaged var timestamp : NSDate
 @NSManaged var group : NSManagedObject
}

Now we’ll be able to use firstName and the rest as properties, and Core Data will
generate the corresponding accessors for us.

Now let’s talk about the first view controller, GroupLister. Its job is to list groups and
to allow the user to create a new group (Figure 23-6). The way you ask Core Data for
a model object is with a fetch request. In iOS, where Core Data model objects are
often the data source for a UITableView, fetch requests are conveniently managed
through an NSFetchedResultsController. The template code gives us an NSFetched‐
ResultsController private property with a corresponding public computed property
that generates an NSFetchedResultsController if the private property is nil; this
seems overblown, and in my implementation I’ve replaced it with a single lazy
NSFetchedResultsController property, which I’ve called frc. My entity name is

Core Data | 991

"Group" and my cache name is "Groups"; apart from that, and some shortened vari‐
able names, this is pure template code:

lazy var frc : NSFetchedResultsController = {
 let req = NSFetchRequest()
 let entity = NSEntityDescription.entityForName("Group",
 inManagedObjectContext:self.managedObjectContext)
 req.entity = entity
 req.fetchBatchSize = 20
 let sortDescriptor = NSSortDescriptor(key:"timestamp", ascending:true)
 req.sortDescriptors = [sortDescriptor]
 let afrc = NSFetchedResultsController(fetchRequest:req,
 managedObjectContext:self.managedObjectContext,
 sectionNameKeyPath:nil, cacheName:"Groups")
 afrc.delegate = self
 do {
 try afrc.performFetch()
 } catch {
 print("Unresolved error \(error)")
 fatalError("Aborting with unresolved error")
 }
 return afrc
}()

The result is that self.frc is the data model, analogous to an array of Group objects.
The implementation of the table view’s Three Big Questions to the data source, all
pretty much straight from the template code, looks like this:

override func numberOfSectionsInTableView(
 tableView: UITableView) -> Int {
 return self.frc.sections!.count
}
override func tableView(tableView: UITableView,
 numberOfRowsInSection section: Int) -> Int {
 let sectionInfo = self.frc.sections![section]
 return sectionInfo.numberOfObjects
}
override func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCellWithIdentifier(
 "Cell", forIndexPath:indexPath)
 cell.accessoryType = .DisclosureIndicator
 let object =
 self.frc.objectAtIndexPath(indexPath) as! NSManagedObject
 cell.textLabel!.text = object.name
 return cell
}

Now let’s talk about object creation. GroupLister’s table is initially empty because our
app starts life with no data. When the user asks to create a group, I put up an alert
asking for the name of the new group. In the handler for its OK button, if the user
provides a valid name, I create a new Group entity and save the managed object con‐

992 | Chapter 23: Persistent Storage

text. Again, this is almost boilerplate code, copied from the template’s insertNew-
Object: method:

av.addAction(UIAlertAction(title: "OK", style: .Default) {
 _ in
 guard let name = av.textFields![0].text where !name.isEmpty else {
 return
 }
 let context = self.frc.managedObjectContext
 let entity = self.frc.fetchRequest.entity!
 let mo = NSEntityDescription.insertNewObjectForEntityForName(
 entity.name!, inManagedObjectContext: context)
 mo.name = name
 mo.uuid = NSUUID().UUIDString
 mo.timestamp = NSDate()
 do {
 try context.save()
 } catch {
 print(error)
 return
 }
 let pl = PeopleLister(groupManagedObject: mo)
 self.navigationController!.pushViewController(pl, animated: true)
})

The second view controller class is PeopleLister. It lists all the people in a particular
Group, so I don’t want PeopleLister to be instantiated without a Group; therefore, its
designated initializer is init(groupManagedObject:). To navigate from the Group‐
Lister view to the PeopleLister view, I instantiate PeopleLister and push it onto the
navigation controller’s stack, as the preceding code shows; I do the same sort of thing
when the user taps an existing Group name in the GroupLister table view:

override func tableView(tableView: UITableView,
 didSelectRowAtIndexPath indexPath: IndexPath) {
 let pl = PeopleLister(groupManagedObject:
 self.frc.objectAtIndexPath(indexPath) as! NSManagedObject)
 self.navigationController!.pushViewController(pl, animated: true)
}

PeopleLister, too, has an frc property, along with a lazy initializer that is almost
identical to the template code for generating an NSFetchedResultsController —
almost, but not quite. In the case of GroupLister, we wanted every group; but a
PeopleLister instance should list only the People belonging to one particular group,
which has been stored as the groupObject property. So PeopleLister’s implementation
of the frc initializer contains these lines:

let pred = NSPredicate(format:"group = %@", self.groupObject)
req.predicate = pred // req is the fetch request we're configuring

As you can see from Figure 23-6, the PeopleLister interface consists of a table of text
fields. Populating the table is easy enough:

Core Data | 993

override func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCellWithIdentifier(
 "Person", forIndexPath:indexPath)
 let object =
 self.frc.objectAtIndexPath(indexPath) as! NSManagedObject
 let first = cell.viewWithTag(1) as! UITextField
 let last = cell.viewWithTag(2) as! UITextField
 first.text = object.firstName
 last.text = object.lastName
 first.delegate = self; last.delegate = self
 return cell
}

When the user edits a text field (the first or last name of a Person), I update the data
model and save the managed object context; the first part of this code should be
familiar from Chapter 8:

func textFieldDidEndEditing(textField: UITextField) {
 var v = textField.superview!
 while !(v is UITableViewCell) {v = v.superview!}
 let cell = v as! UITableViewCell
 let ip = self.tableView.indexPathForCell(cell)!
 let object = self.frc.objectAtIndexPath(ip) as! NSManagedObject
 object.setValue(textField.text, forKey: (
 (textField.tag == 1) ? "firstName" : "lastName"))
 do {
 try object.managedObjectContext!.save()
 } catch {
 print(error)
 }
}

The trickiest part is what happens when the user asks to make a new Person. It starts
out analogously to making a new Group: I make a new Person entity, configure its
attributes with an empty first name and last name, and save the context. But we must
also make this empty Person appear in the table! To do so, we act as the NSFetched‐
ResultsController’s delegate (NSFetchedResultsControllerDelegate); the delegate
methods are triggered by the change in the managed object context:

func doAdd(_:AnyObject) {
 self.tableView.endEditing(true)
 let context = self.frc.managedObjectContext
 let entity = self.frc.fetchRequest.entity!
 let mo = NSEntityDescription.insertNewObjectForEntityForName(
 entity.name!, inManagedObjectContext:context)
 mo.group = self.groupObject
 mo.lastName = ""
 mo.firstName = ""
 mo.timestamp = NSDate()
 do {
 try context.save()

994 | Chapter 23: Persistent Storage

 } catch {
 print(error)
 }
}
// ================= delegate methods ======================
func controllerWillChangeContent(controller: NSFetchedResultsController) {
 self.tableView.beginUpdates()
}
func controllerDidChangeContent(controller: NSFetchedResultsController) {
 self.tableView.endUpdates()
}
func controller(controller: NSFetchedResultsController,
 didChangeObject anObject: AnyObject,
 atIndexPath indexPath: IndexPath?,
 forChangeType type: NSFetchedResultsChangeType,
 newIndexPath: IndexPath?) {
 if type == .Insert {
 self.tableView.insertRowsAtIndexPaths(
 [newIndexPath!], withRowAnimation: .Automatic)
 dispatch_async(dispatch_get_main_queue()) {
 let cell =
 self.tableView.cellForRowAtIndexPath(newIndexPath!)!
 let tf = cell.viewWithTag(1) as! UITextField
 tf.becomeFirstResponder()
 }
 }
}

Image File Formats
The Image I/O framework provides a simple, unified way to open image files (from
disk or downloaded from the network, as described in Chapter 24), to save image
files, to convert between image file formats, and to read metadata from standard
image file formats, including EXIF and GPS information from a digital camera. You’ll
need to import ImageIO.

Obviously, such features were not entirely missing from iOS before the Image I/O
framework was introduced (starting in iOS 4). UIImage can read the data from most
standard image formats, and you can convert formats with functions such as UIImage-
JPEGRepresentation and UIImagePNGRepresentation. But you could not, for exam‐
ple, save an image as a TIFF without the Image I/O framework.

The Image I/O framework introduces the notion of an image source (CGImage‐
Source). This can be created from the URL of a file on disk or from an NSData object
(actually CFData, to which NSData is toll-free bridged). You can use this to obtain a
CGImage of the source’s image (or, if the source format contains multiple images, a
particular image). But you can also obtain metadata from the source without trans‐
forming the source into a CGImage, thus conserving memory. For example:

Image File Formats | 995

let url = Bundle.main.URLForResource(
 "colson", withExtension: "jpg")!
let src = CGImageSourceCreateWithURL(url, nil)!
let result = CGImageSourceCopyPropertiesAtIndex(src, 0, nil)!
 as [NSObject:AnyObject]
// ... do something with result ...

Without having opened the image file as an image, we now have a dictionary full of
information about it, including its pixel dimensions (kCGImagePropertyPixelWidth
and kCGImagePropertyPixelHeight), its resolution, its color model, its color depth,
and its orientation — plus, because this picture originally comes from a digital cam‐
era, the EXIF data such as the aperture and exposure at which it was taken, plus the
make and model of the camera.

We can obtain the image as a CGImage, with CGImageSourceCreateImageAtIndex.
Alternatively, we can request a thumbnail version of the image. This is a very useful
thing to do, and the name “thumbnail” doesn’t really do justice to its importance and
power. If your purpose in opening this image is to display it in your interface, you
don’t care about the original image data; a thumbnail is precisely what you want, espe‐
cially because you can specify any size for this “thumbnail” all the way up to the origi‐
nal size of the image! This is tremendously convenient, because to assign a large
image to a small image view wastes all the memory reflected by the size difference.

To generate a thumbnail at a given size, you start with a dictionary specifying the size
along with other instructions, and pass that, together with the image source, to
CGImageSourceCreateThumbnailAtIndex. The only pitfall is that, because we are
working with a CGImage and specifying actual pixels, we must remember to take
account of the scale of our device’s screen. So, for example, let’s say we want to scale
our image so that its largest dimension is no larger than the width of the UIImage‐
View (self.iv) into which we intend to place it:

let url = Bundle.main.URLForResource(
 "colson", withExtension: "jpg")!
let src = CGImageSourceCreateWithURL(url, nil)!
let scale = UIScreen.main.scale
let w = self.iv.bounds.width * scale
let d : [NSObject:AnyObject] = [
 kCGImageSourceShouldAllowFloat : true,
 kCGImageSourceCreateThumbnailWithTransform : true,
 kCGImageSourceCreateThumbnailFromImageAlways : true,
 kCGImageSourceThumbnailMaxPixelSize : w
]
let imref = CGImageSourceCreateThumbnailAtIndex(src, 0, d)!
let im = UIImage(CGImage: imref, scale: scale, orientation: .Up)
self.iv.image = im

The Image I/O framework also introduces the notion of an image destination, used
for saving an image into a specified file format. As a final example, I’ll show how to

996 | Chapter 23: Persistent Storage

save our image as a TIFF. We never open the image as an image! We save directly
from the image source to the image destination:

let url = Bundle.main.URLForResource(
 "colson", withExtension: "jpg")!
let src = CGImageSourceCreateWithURL(url, nil)!
let fm = NSFileManager()
let suppurl = try! fm.URLForDirectory(.ApplicationSupportDirectory,
 inDomain: .UserDomainMask, appropriateForURL: nil, create: true)
let tiff = suppurl.URLByAppendingPathComponent("mytiff.tiff")
let dest = CGImageDestinationCreateWithURL(tiff, kUTTypeTIFF, 1, nil)!
CGImageDestinationAddImageFromSource(dest, src, 0, nil)
let ok = CGImageDestinationFinalize(dest)

Image File Formats | 997

CHAPTER 24

Basic Networking

This chapter has not yet been revised for iOS 10.

Networking is difficult and complicated, chiefly because it’s ultimately out of your
control. My motto with regard to the network is, “There’s many a slip ’twixt the cup
and the lip.” You can ask for a resource from across the network, but at that point
anything can happen: the resource might not be found (the server is down, perhaps),
it might take a while to arrive, it might never arrive, the network itself might vanish
after the resource has partially arrived. iOS, however, makes at least the basics of net‐
working very easy, so that’s what this chapter will deal with.

To go further into networking than this chapter takes you, start with Apple’s URL
Loading System Programming Guide. To go even deeper under the hood, see the
CFNetwork Programming Guide. Apple also provides a generous amount of sample
code. See in particular SimpleURLConnections, AdvancedURLConnections, Simple‐
NetworkStreams, SimpleFTPSample, and MVCNetworking.

Many earlier chapters have described interface and frameworks that network for you
automatically. Put a web view in your interface (Chapter 11) and poof, you’re net‐
working; the web view does all the grunt work, and it does it a lot better than you’d be
likely to do it from scratch. The same is true of AVPlayer (Chapter 15), MKMapView
(Chapter 24), and so on.

New in iOS 9, App Transport Security is enforced, meaning that HTTP requests
must be HTTPS requests and that the server must be using TLS 1.2 or higher. To
tweak the behavior of App Transport Security, you must make an entry in the
Info.plist. For example, to allow arbitrary HTTP downloads, the NSAppTransport-
Security dictionary must contain an NSAllowsArbitraryLoads Bool set to
<true/> (and the examples in this chapter assume that this has been done). See
Apple’s App Transport Security Technote.

999

HTTP Requests
An HTTP request is made through an NSURLSession object. An NSURLSession is a
kind of grand overarching environment in which network-related tasks are to take
place. You will often need only one NSURLSession object:

• For very simple, occasional use, this object might be the singleton sharedSession
object.

• More generally, you’ll create your own NSURLSession by calling an initializer:
■ init(configuration:)
■ init(configuration:delegate:delegateQueue:)

You’ll hand these initializers an NSURLSessionConfiguration object describing
the desired environment.

To use the NSURLSession object to perform a request across the network, you ask it
for a new NSURLSessionTask object. This is the object that actually performs (and
represents) one upload or download process. NSURLSessionTask is an abstract super‐
class, embodying various properties, such as:

• A taskDescription and taskIdentifier; the former is up to you, while the lat‐
ter is a unique identifier within the NSURLSession

• The originalRequest and currentRequest (the request can change because
there might be a redirect)

• An initial response from the server
• Various countOfBytes... properties allowing you to track progress
• A state, which might be (NSURLSessionTaskState):

■ .Running
■ .Suspended
■ .Canceling
■ .Completed

• An error if the task failed

In addition, you can tell a task to resume, suspend, or cancel. A task is born sus‐
pended; it does not start until it is told to resume for the first time.

You can also set an NSURLSessionTask’s priority to a Float between 0 and 1; this is
just a hint to the system, and may be used to rank the relative importance of your
tasks. For convenience, three constant values are also provided:

1000 | Chapter 24: Basic Networking

• NSURLSessionTaskPriorityLow (0.25)
• NSURLSessionTaskPriorityDefault (0.5)
• NSURLSessionTaskPriorityHigh (0.75)

There are four kinds of actual session task:

NSURLSessionDataTask
An NSURLSessionTask subclass. With a data task, the data is provided incremen‐
tally to your app as it arrives across the network.

NSURLSessionDownloadTask
An NSURLSessionTask subclass. With a download task, the data is stored as a
file, and the saved file URL is handed to you at the end of the process. The file is
outside your sandbox and will be destroyed, so preserving it (or its contents) is
up to you.

NSURLSessionUploadTask
An NSURLSessionDataTask subclass. With an upload task, you can provide a file
to be uploaded and stand back, though you can also hear about the upload pro‐
gress if you wish.

NSURLStreamTask
An NSURLSessionTask subclass. New in iOS 9, this type of task makes it possible
to deal with streams without having to drop down to the level of NSStream.

Once you’ve obtained a new session task from the NSURLSession, the session retains
it; you can keep a reference to the task if you wish, but you don’t have to. The session
will provide you with a list of its tasks in progress; call getAllTasksWithCompletion-
Handler:. The completion function is handed an array of tasks. The session releases a
task after it is cancelled or completed; thus, if an NSURLSession has no running or
suspended tasks, the task array is empty.

There are two ways to ask your NSURLSession for a new NSURLSessionTask:

Call a convenience method
The convenience methods all take a completionHandler: parameter. This com‐
pletion function is called when the task process ends.

Call a delegate-based method
You give the NSURLSession a delegate when you create it, and the delegate is
called back at various stages of a task’s progress.

The two ways of asking for an NSURLSessionTask entail two different ways of work‐
ing with it. I’ll demonstrate both.

HTTP Requests | 1001

Simple HTTP Request
I’ll start by illustrating the utmost in simplicity:

• We use the shared NSURLSession.
• We obtain a download task, handing it a URL and a completion function.

The structure of the resulting code is indeed extremely simple. To kick things off, we
call resume to start the task, and our code then finishes:

let s = "http://www.someserver.com/somefolder/someimage.jpg"
let url = NSURL(string:s)!
let session = NSURLSession.sharedSession()
let task = session.downloadTaskWithURL(url) {
 (loc:NSURL?, response:NSURLResponse?, error:NSError?) in // ...
}
task.resume()

All that remains is to write the contents of the completion function. Observe that our
code has finished running, and the completion function will be called later. That’s
what asynchronous means! The download proceeds asynchronously on a background
thread; thus, the interface is not blocked, and the user can tap buttons and so forth.
The completion function won’t be called until the download finishes, whenever that
may be.

When the completion function is called, we can do something with the downloaded
data (here, an image file). We must make no assumptions about what thread the com‐
pletion function will be called on; indeed, unless we take steps to the contrary, it will
be a background thread. In this particular example, the URL is that of an image that I
intend to display in my interface; therefore, I step out to the main thread (Chapter 25)
in order to talk to the interface:

let s = "http://www.someserver.com/somefolder/someimage.jpg"
let url = NSURL(string:s)!
let session = NSURLSession.sharedSession()
let task = session.downloadTaskWithURL(url) {
 (loc:NSURL?, response:NSURLResponse?, error:NSError?) in
 let d = NSData(contentsOfURL:loc!)!
 let im = UIImage(data:d)
 dispatch_async(dispatch_get_main_queue()) {
 self.iv.image = im
 }
}
task.resume()

There’s many a slip, as I’ve already mentioned, so in real life I would probably hedge
my bets a little more by checking for errors along the way; but the skeleton of the
structure remains exactly the same:

1002 | Chapter 24: Basic Networking

let s = "http://www.someserver.com/somefolder/someimage.jpg"
let url = NSURL(string:s)!
let session = NSURLSession.sharedSession()
let task = session.downloadTaskWithURL(url) {
 (loc:NSURL?, response:NSURLResponse?, error:NSError?) in
 if error != nil {
 print(error)
 return
 }
 let status = (response as! NSHTTPURLResponse).statusCode
 if status != 200 {
 print("response status: \(status)")
 return
 }
 let d = NSData(contentsOfURL:loc!)!
 let im = UIImage(data:d)
 dispatch_async(dispatch_get_main_queue()) {
 self.iv.image = im
 }
}
task.resume()

Formal HTTP Request
Now let’s go to the other extreme and be very formal:

• We’ll create and retain our own NSURLSession.
• We’ll configure the NSURLSession with an NSURLSessionConfiguration object.
• We’ll give the session a delegate.
• Instead of a mere URL, we’ll start with an URLRequest.

The NSURLSession initializers permit us to supply an NSURLSessionConfiguration
object dictating various options to be applied to the session. Possible options include:

• Whether to permit cell data use, or to require Wi-Fi
• The maximum number of simultaneous connections to the remote server
• Timeout values:

timeoutIntervalForRequest

The maximum time you’re willing to wait between pieces of data.

timeoutIntervalForResource

The maximum time for the entire download to arrive.

• Cookie, caching, and credential policies

HTTP Requests | 1003

We’re going to call init(configuration:delegate:delegateQueue:), so we’ll also
specify a delegate, as well as stating the queue (roughly, the thread — see Chapter 25)
on which the delegate methods are to be called. For each type of task, there’s a dele‐
gate protocol, which is itself often a composite of multiple protocols.

For example, for a data task, we would want a data delegate — an object conforming
to the NSURLSessionDataDelegate protocol, which itself conforms to the
NSURLSessionTaskDelegate protocol, which in turn conforms to the NSURLSession‐
Delegate protocol, resulting in about a dozen delegate methods we could implement,
though only a few are crucial:

URLSession:dataTask:didReceiveData:

Some data has arrived, as an NSData object. The data will arrive piecemeal, so
this method may be called many times during the download process, supplying
new data each time. Our job is to accumulate all those chunks of data; this
involves maintaining state between calls.

URLSession:task:didCompleteWithError:

If there is an error, we’ll find out about it here. If there’s no error, this is our signal
that the download is over; we can now do something with the accumulated data.

Similarly, for a download task, we need a download delegate, conforming to NSURL‐
SessionDownloadDelegate, which conforms to NSURLSessionTaskDelegate, which
conforms to NSURLSessionDelegate. Here are some useful delegate methods:

URLSession:downloadTask:didResumeAtOffset:expectedTotalBytes:

This method is of interest only in the case of a resumable download that has in
fact been paused and resumed.

URLSession:downloadTask:didWriteData:totalBytesWritten:totalBytes-

ExpectedToWrite:

Called periodically, to keep us apprised of the download’s progress.

URLSession:downloadTask:didFinishDownloadingToURL:

Called at the end of the process; we must grab the downloaded file immediately,
as it will be destroyed. This is the only required delegate method.

It’s also a good idea to implement URLSession:task:didCompleteWithError:; if
there was a communication problem, the error: parameter will tell you about it.

Here, then, is my recasting of the same image file download as in the previous exam‐
ple. I’m going to keep a reference both to the NSURLSession (self.session) and to
the current download task (self.task). In this particular example, I’ll perform just
one task at a time, so I can use the task instance variable as a flag to indicate that the
task is in progress. Since one NSURLSession can perform multiple tasks, there will

1004 | Chapter 24: Basic Networking

typically be just one NSURLSession; so I’ll make a lazy initializer that creates and
configures it:

var task : NSURLSessionTask!
lazy var session : NSURLSession = {
 let config = NSURLSessionConfiguration.ephemeralSessionConfiguration()
 config.allowsCellularAccess = false
 let session = NSURLSession(configuration: config,
 delegate: self, delegateQueue: OperationQueue.mainQueue())
 return session
}()

I’ve specified, for purposes of the example, that no caching is to take place and that
data downloading via cell is forbidden; you could configure the NSURLSession much
more heavily and meaningfully, of course. I have specified self as the delegate, and I
have requested delegate callbacks on the main thread.

Here we go. I blank out the image view, to make the progress of the task more obvi‐
ous for test purposes, and I create, retain, and start the download task:

let s = "http://www.someserver.com/somefolder/someimage.jpg"
let url = NSURL(string:s)!
let req = NSMutableURLRequest(URL:url)
let task = self.session.downloadTaskWithRequest(req)
self.task = task
self.iv.image = nil
task.resume()

In this particular example, there is very little merit in using a URLRequest instead of
a URL to form our task. Still, a URLRequest can come in handy (as I’ll demonstrate
later in this chapter), and an upload task requires one.

Do not use the URLRequest to configure properties of the request that are con‐
figurable through the NSURLSession. Those properties are left over from the era
before NSURLSession existed. For example, there is no point setting the URLRe‐
quest’s timeoutInterval, as it is the NSURLSession’s timeout properties that are
significant.

Here are some delegate methods for responding to the download:

func URLSession(session: NSURLSession,
 downloadTask: NSURLSessionDownloadTask,
 didWriteData bytesWritten: Int64,
 totalBytesWritten writ: Int64,
 totalBytesExpectedToWrite exp: Int64) {
 print("downloaded \(100*writ/exp)%")
}
func URLSession(session: NSURLSession,
 task: NSURLSessionTask,
 didCompleteWithError error: NSError?) {
 print("completed: error: \(error)")

HTTP Requests | 1005

}
func URLSession(session: NSURLSession,
 downloadTask: NSURLSessionDownloadTask,
 didFinishDownloadingToURL location: NSURL) {
 self.task = nil
 let response = downloadTask.response as! NSHTTPURLResponse
 let stat = response.statusCode
 print("status \(stat)")
 if stat != 200 {
 return
 }
 let d = NSData(contentsOfURL:location)!
 let im = UIImage(data:d)
 dispatch_async(dispatch_get_main_queue()) {
 self.iv.image = im
 }
}

That was a download task; now I’ll describe a data task. A data task is a little more
elaborate than a download task, but not much; the chief difference is that it’s up to
you to accumulate the data as it arrives in chunks. For this purpose, you’ll want to
keep an NSMutableData object on hand; I’ll use a property:

var data = NSMutableData()

When I create the data task, I am careful to prepare self.data (by giving it a zero
length):

let s = "http://www.someserver.com/somefolder/someimage.jpg"
let url = NSURL(string:s)!
let req = NSMutableURLRequest(URL:url)
let task = self.session.dataTaskWithRequest(req) // *
self.task = task
self.iv.image = nil
self.data.length = 0 // *
task.resume()

As the chunks of data arrive, I keep appending them to self.data. When all the data
has arrived, it is ready for use:

func URLSession(session: NSURLSession,
 dataTask: NSURLSessionDataTask,
 didReceiveData data: NSData) {
 self.data.appendData(data)
}
func URLSession(session: NSURLSession,
 task: NSURLSessionTask,
 didCompleteWithError error: NSError?) {
 self.task = nil
 if error == nil {
 self.iv.image = UIImage(data:self.data)
 }
}

1006 | Chapter 24: Basic Networking

Some delegate methods provide a completionHandler: parameter. These are delegate
methods that require a response from you. For example, in the case of a data task,
URLSession:dataTask:didReceiveResponse:completionHandler: arrives when we
first connect to the server. Here, we could check the status code of the initial
NSHTTPURLResponse. We must also return a response saying whether or not to
proceed (or whether to convert the data task to a download task, which could cer‐
tainly come in handy). But because of the multithreaded, asynchronous nature of net‐
working, we do this, not by returning a value directly, but by calling the
completionHandler: that we’re handed as a parameter and passing our response into
it. Several of the delegate methods are constructed in this way.

There is one final and extremely important consideration when using NSURLSession
with a delegate — memory management. The NSURLSession retains its delegate. This
is understandable, as it would be disastrous if the delegate could simply vanish out
from the middle of an asynchronous time-consuming process; but it is also unusual,
and requires special measures on our part. In the examples I’ve been describing in
this section, we have a retain cycle! That’s because we have an NSURLSession instance
variable self.session, but that NSURLSession is retaining self as its delegate.

As with a Timer, the solution is to invalidate the NSURLSession at some appropriate
moment. There are two ways to do this:

finishTasksAndInvalidate

Allows any existing tasks to run to completion. Afterwards, the NSURLSession
releases the delegate and cannot be used for anything further.

invalidateAndCancel

Interrupts any existing tasks immediately. The NSURLSession releases the dele‐
gate and cannot be used for anything further.

Let’s suppose that self is a view controller. Then viewWillDisappear(_:) could be a
good place to invalidate the NSURLSession. (We cannot use deinit, because deinit
won’t be called until after we have invalidated the NSURLSession; that’s what it means
to have a retain cycle.) So, for example:

override func viewWillDisappear(animated: Bool) {
 super.viewWillDisappear(animated)
 self.session.finishTasksAndInvalidate()
}

Encapsulating the Session, Task, and Delegate
The little memory-management dance at the end of the preceding section reveals a
weakness in our architecture. I’ve been implementing all this code directly in a view
controller subclass: the NSURLSession is a property of the view controller, and the
view controller is the NSURLSession’s delegate. This is a misuse of a view controller.

HTTP Requests | 1007

Things would be better if we had an instance of some separate class whose job is to
hold the NSURLSession in a property and to serve as its delegate. There would still be
a retain cycle until the NSURLSession was invalidated, but at least the management of
this object’s memory would not be entangled with that of a view controller.

To illustrate, I’ll design a class MyDownloader, which holds an NSURLSession and
serves as its delegate, and which has a public method cancelAllTasks. I imagine that
our view controller will then create and maintain an instance of MyDownloader early
in its lifetime, and can invalidate it in deinit:

lazy var downloader : MyDownloader = {
 let d : MyDownloader = // ??
 return d
}()
deinit {
 self.downloader.cancelAllTasks()
}

In that code, I omitted the initialization of MyDownloader. How should this work?
The MyDownloader object will create its own NSURLSession, but I think the client
should be allowed to configure the session; fortunately, that’s extremely convenient,
because the NSURLSessionConfiguration is a separate object! So the missing initiali‐
zation should look like this:

let config : NSURLSessionConfiguration = // ...
let d = MyDownloader(configuration:config)

Now let’s decide how a client will communicate with a MyDownloader object. The
client will presumably hand a MyDownloader a URL string; the MyDownloader will
generate the NSURLSessionDownloadTask and tell it to resume. Acting as the
NSURLSession’s delegate, the MyDownloader will be told when the download is over.
At that point, the MyDownloader has a file URL for the downloaded object, which it
needs to hand back to the client immediately. How should this work?

One solution might be for MyDownloader to define a delegate protocol; the client
would then be the delegate, and the MyDownloader could call the client back using a
method defined by the protocol. But that’s far too rigid and restrictive. One NSURL‐
Session can have many simultaneous tasks; I want a MyDownloader to be able to
serve as a central locus for lots of downloading activity. I’m imagining, for example,
that a MyDownloader might have multiple clients, or that a single client might initiate
multiple downloads from various different contexts. All that downloading takes place
asynchronously, and perhaps simultaneously. When a download ends, how is the
MyDownloader to know which client to hand the downloaded file URL to? When the
MyDownloader hands a downloaded file’s URL to a client, how is that client to know
which download request this file URL corresponds to?

My solution, which I think is rather elegant, is that the client, when it hands the
MyDownloader object a URL string to initiate a download, should also hand the

1008 | Chapter 24: Basic Networking

MyDownloader a completion function. To return the file URL at the end of a down‐
load, the MyDownloader calls that handler, handing it the URL as a parameter. I can
even define a typealias naming my completion function type:

typealias MyDownloaderCompletion = (NSURL!) -> ()

From the client’s point of view, then, the process will look something like this:

let s = "http://www.someserver.com/somefolder/someimage.jpg"
self.downloader.download(s) {
 url in
 if url == nil {
 return
 }
 if let d = NSData(contentsOfURL: url) {
 let im = UIImage(data:d)
 dispatch_async(dispatch_get_main_queue()) {
 self.iv.image = im
 }
 }
}

That looks excellent, so now let’s implement this architecture within MyDownloader.
We have posited a method download:completionHandler:. When that method is
called, MyDownloader stores the completion function; it then asks for a new down‐
load task and sets it going:

func download(s:String,
 completionHandler ch : MyDownloaderCompletion)
 -> NSURLSessionTask {
 let url = NSURL(string:s)!
 let req = NSMutableURLRequest(URL:url)
 // ... store the completion function somehow ...
 let task = self.session.downloadTaskWithRequest(req)
 task.resume()
 return task
}

(I return to the client a reference to the task, so that the client can subsequently cancel
the task if need be. I’ll give an example later.)

When the download finishes, MyDownloader hears about it (as session delegate) and
calls the completion function:

func URLSession(session: NSURLSession,
 downloadTask: NSURLSessionDownloadTask,
 didFinishDownloadingToURL location: NSURL) {
 let response = downloadTask.response as! NSHTTPURLResponse
 let stat = response.statusCode
 var url : NSURL! = nil
 if stat == 200 {
 url = location

HTTP Requests | 1009

 }
 let ch = // ... retrieve the completion function somehow ...
 ch(url)
}

In my carefree speculative coding design, I have repeatedly postponed grappling with
the heart of the matter. It is now time to face the problem (signified by the word
“somehow” in the preceding two code snippets). I reason as follows:

• The completion function arrives in one method (download:completion-
Handler:) but is called in another (URLSession:downloadTask:didFinish-
DownloadingToURL:). The completion function clearly needs to be stored, in the
first method, in such a way that it can be retrieved, in the second method.

• You might respond: So put it in a property. But a simple property won’t do here.
In my design, there can be multiple download tasks — and each one has a differ‐
ent completion function associated with it. Thus we need a way to implement this
association between task and completion function. Clearly, we want to store each
completion function together with its download task.

• But wait! We are guaranteed that the same download task instance makes its
appearance in both methods, because the download task we create in the first
method is handed back to the delegate in the second method. Thus, the problem
would be completely solved if we could store the completion function in its
download task!

At first glance, it appears that this is impossible, because we can’t subclass
NSURLSessionDownloadTask (and even if we could, we can’t ask NSURLSession to
generate an instance of our subclass). But there is, in fact, a way to do this. It turns
out that we are allowed to attach an arbitrary property to a URLRequest, as long as we
start with an NSMutableURLRequest. The mechanism for doing this is a little weird
— we actually call an NSURLProtocol class method — but that doesn’t matter. The
URLRequest is attached to the download task as its originalRequest, and we can
retrieve it, and hence the arbitrary property, at the end of the download.

Doing this in Swift is a bit tricky. The methods for attaching a property to an
NSMutableURLRequest and retrieving it again later are:

• setProperty:forKey:inRequest:

• propertyForKey:inRequest:

The property: in the first method, and the result returned by the second method, is
an AnyObject. But a Swift function is not an AnyObject. A simple solution (see also
Appendix B) is a generic wrapper class:

1010 | Chapter 24: Basic Networking

class Wrapper<T> {
 let p:T
 init(_ p:T){self.p = p}
}

We can hand anything to a Wrapper, which will store it in its p property; and a Wrap‐
per is an AnyObject, so it can travel anywhere.

At long last we are ready to write MyDownloader for real. Here it is:

let config : NSURLSessionConfiguration
lazy var session : NSURLSession = {
 let queue = OperationQueue.mainQueue()
 return NSURLSession(configuration:self.config,
 delegate:self, delegateQueue:queue)
}()
init(configuration config:NSURLSessionConfiguration) {
 self.config = config
 super.init()
}
func download(s:String, completionHandler ch : MyDownloaderCompletion)
 -> NSURLSessionTask {
 let url = NSURL(string:s)!
 let req = NSMutableURLRequest(URL:url)
 NSURLProtocol.setProperty(Wrapper(ch), forKey:"ch", inRequest:req)
 let task = self.session.downloadTaskWithRequest(req)
 task.resume()
 return task
}
func URLSession(session: NSURLSession,
 downloadTask: NSURLSessionDownloadTask,
 didFinishDownloadingToURL location: NSURL) {
 let req = downloadTask.originalRequest!
 let ch : AnyObject =
 NSURLProtocol.propertyForKey("ch", inRequest:req)!
 let response = downloadTask.response as! NSHTTPURLResponse
 let stat = response.statusCode
 var url : NSURL! = nil
 if stat == 200 {
 url = location
 }
 let ch2 = (ch as! Wrapper).p as MyDownloaderCompletion
 ch2(url)
}
func cancelAllTasks() {
 self.session.invalidateAndCancel()
}

(As written, MyDownloader’s delegate methods are being called on the main thread.
It may be preferable to run that code on a background thread. I’ll describe in Chap‐
ter 25 how to do that.)

HTTP Requests | 1011

Downloading Table View Data
To exercise MyDownloader, I’ll show how to solve a pesky problem that arises quite
often in real life: we have a UITableView where each cell displays text and a picture,
and the picture needs to be downloaded in real time. We’ll supply each picture lazily,
on demand, downloading a picture only when its cell becomes visible. As you know,
however, we must not gum up the works in our implementation of table-
View(_:cellForRowAt:); this method needs to return a cell immediately, so we must
not wait around for the picture to arrive. The idea, therefore, is to put a placeholder
(or no image at all) in the cell at first, and then go back for a second bite of the apple:
we perform the download after having supplied the cell, and when we have the image,
we reload that row of the table. As you’ll see, MyDownloader is perfect for getting this
job done.

The model object for our table data could be an array of dictionaries, but it is better
to design a dedicated model object, even if it is nothing but a value class (a bundle of
properties):

class Model {
 var text : String!
 var im : UIImage!
 var picurl : String!
}

Our model is now an array of Model:

array
 Model
 text: @"Manny"
 im: initially nil
 picurl: String URL for a downloadable image of Manny
 Model
 text: @"Moe"
 im: initially nil
 picurl: String URL for a downloadable image of Moe
 Model
 text: @"Jack"
 im: initially nil
 picurl: String URL for a downloadable image of Jack

When the table turns to the data source for a cell (tableView(_:cellForRowAt:)),
the data source will turn to the model and consult the Model object corresponding to
the requested row, asking for its im property, which is supposed to be its image. Ini‐
tially, this will be nil. In that case, the data source will display no image in this cell,
and will immediately return a cell without an image. Meanwhile, however, the data
source also turns to the downloader and asks for the image to be downloaded from
this Model object’s picurl.

1012 | Chapter 24: Basic Networking

When the downloader succeeds in downloading an image, it calls the table’s data
source back through the completion function. Here we come to the Insanely Cool Part
(pat. pend.). This completion function has captured the contextual environment from
inside tableView(_:cellForRowAt:), where it was defined. In effect, therefore, we
are back in the very same call to tableView(_:cellForRowAt:), accessing the very
same Model object as before! We can thus set that Model object’s im property, and tell
the table to reload this row. The table thus calls tableView(_:cellForRowAt:) again,
for the very same row, and the data source turns to the same Model object and asks
for its im property again — and finds it, and displays the image in the cell:

override func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCellWithIdentifier(
 "Cell", forIndexPath:indexPath)
 let m = self.model[indexPath.row]
 cell.textLabel!.text = m.text
 // have we got a picture?
 if let im = m.im {
 cell.imageView!.image = im
 } else {
 cell.imageView!.image = nil
 self.downloader.download(m.picurl) {
 url in
 if url == nil {
 return
 }
 let data = NSData(contentsOfURL: url)!
 let im = UIImage(data:data)
 m.im = im
 dispatch_async(dispatch_get_main_queue()) {
 self.tableView.reloadRowsAtIndexPaths(
 [indexPath], withRowAnimation: .None)
 }
 }
 }
 return cell
}

A further refinement is to make it possible to cancel a download. Recall that
MyDownloader’s download:completionHandler: returns a reference to the down‐
load task exactly so that this will be possible. Why would we want to do this? Well,
consider what happens when the user scrolls quickly through the entire table, possi‐
bly passing through hundreds of rows. The downloads for all of those rows, if they do
not already have their pictures, will be initiated. If a row is scrolled out of sight before
it has its picture, it doesn’t need its picture after all. So to continue to download the
picture is wasteful.

To prevent such waste, we can implement tableView(_:didEndDisplaying:forRow-
At:) to send cancel to the NSURLSessionTask. To make that possible, we need to

HTTP Requests | 1013

capture the task when calling the downloader’s download:completionHandler: and
store it somewhere. Obviously, the place to store it is in the Model object for this row,
which now looks like this:

class Model {
 var text : String!
 var im : UIImage!
 var picurl : String!
 var task : NSURLSessionTask!
}

Our tableView(_:cellForRowAt:) is now a little more complicated. We store in our
Model object’s task property the value returned from download:completion-
Handler:, but we should also set that task property to nil as soon as we no longer
need it. Moreover, each task is retaining a closure that refers to self; that’s a poten‐
tial retain cycle, which we break through a weak reference to self:

override func tableView(tableView: UITableView,
 cellForRowAtIndexPath indexPath: IndexPath) -> UITableViewCell {
 let cell = tableView.dequeueReusableCellWithIdentifier(
 "Cell", forIndexPath:indexPath)
 let m = self.model[indexPath.row]
 cell.textLabel!.text = m.text
 // have we got a picture?
 if let im = m.im {
 cell.imageView!.image = im
 } else {
 if m.task == nil { // no task? start one!
 cell.imageView!.image = nil
 m.task = self.downloader.download(m.picurl) { // *
 [weak self] url in // *
 m.task = nil // *
 if url == nil {
 return
 }
 let data = NSData(contentsOfURL: url)!
 let im = UIImage(data:data)
 m.im = im
 dispatch_async(dispatch_get_main_queue()) {
 self!.tableView.reloadRowsAtIndexPaths(
 [indexPath], withRowAnimation: .None)
 }
 }
 }
 }
 return cell
}

Now when a row scrolls out of view its download task can be cancelled:

1014 | Chapter 24: Basic Networking

override func tableView(tableView: UITableView,
 didEndDisplayingCell cell: UITableViewCell,
 forRowAtIndexPath indexPath: IndexPath) {
 let m = self.model[indexPath.row]
 if let task = m.task {
 if task.state == .Running {
 task.cancel()
 m.task = nil
 }
 }
}

Further details are merely a matter of refinement. For example, if these are large
images, I’m going to end up retaining many large images in my Model array; that’s
bad, as we’re probably doomed to run out of memory. One solution could be to
reduce each image, as it arrives, to the size needed for display. If that’s still too much
memory, we’ll have to modify tableView:didEndDisplayingCell:forRowAtIndex-
Path: to expunge each image from its Model when the cell scrolls out of sight; if the
cell comes back into view, we’ll just have to download the image again.

Another question is what should happen when a picture download fails. If you
believe that the download might succeed later, you will want to try again later, rather
than letting the row sit there devoid of an image forever. If the user scrolls the failed
cell out of view and later scrolls it back into view, the table will ask the data source for
that cell and the downloader will try again to download its image. But that won’t hap‐
pen for a failed cell that’s never scrolled out of view. How you deal with this is up to
you; it’s a matter of providing the best user experience without having an undue
impact upon performance, battery, and so forth. In this instance, because these
images are fairly unimportant, I might arrange that when a Timer with a fairly large
interval fires (every 60 seconds, say), we reload the visible rows; this will cause any
visible row without an image to try again to download its image.

Finally, I have avoided a rather tricky problem by implementing MyDownloader to
perform an NSURLSessionDownloadTask. If there are multiple downloads, the run‐
time keeps their data separate and gives each completed download its own file URL.
But suppose we were to perform an NSURLSessionDataTask instead. Now we must
maintain the accumulated data ourselves — and in a world where multiple down‐
loads can happen simultaneously, that’s not going to be simple. A single NSMutable‐
Data property won’t do: different data tasks must not share the same NSMutableData!
One possible solution is to make our property a dictionary of NSMutableData buf‐
fers, keyed by the data task’s unique identifier (taskIdentifier).

Background Downloads
If your app goes into the background while in the middle of a download, the down‐
load might be completed coherently, or it might not. To ensure that an NSURLSes‐

HTTP Requests | 1015

sionDownloadTask (or an NSURLSessionUploadTask) is carried out regardless, even
if your app isn’t frontmost — indeed, even if your app isn’t running! — make your
NSURLSessionConfiguration a background configuration (call backgroundSession-
ConfigurationWithIdentifier: to create it).

A background configuration hands the work of downloading over to the system. Your
app is not actually involved. You still need an NSURLSession, but this serves primar‐
ily as a gateway for putting your app in touch with the download process; in particu‐
lar, you need to operate as the NSURLSession’s delegate.

The argument that you pass to backgroundSessionConfigurationWithIdentifier:
is a string identifier. It is arbitrary, but it will distinguish your background session
from all the other background sessions that other apps have requested from the sys‐
tem. Therefore, it should be unique to your app; a good approach is to use your app’s
bundle ID as its basis.

You may also want to set your configuration’s discretionary to true. This will per‐
mit the system to postpone network communications to some moment that will con‐
serve bandwidth and battery — for example, when Wi-Fi is available, and the device
is plugged into a power socket. Of course, that might be days from now! But this is
part of the beauty of background downloads.

There are three possibilities for how a background download will conclude, depend‐
ing on the state of your app at that moment:

Your app is frontmost
The download is treated normally: your session delegate will get the standard
delegate messages, such as URLSession:downloadTask:didWriteData:... and
URLSession:downloadTask:didFinishDownloadingToURL:, just as you would
expect.

Your app is suspended in the background
Your app is awakened, still in the background, long enough to receive
URLSession:downloadTask:didFinishDownloadingToURL: and deal with it.

Your app is not running
Your app is launched in the background. You have no NSURLSession, because
your app has just launched from scratch. You will need to create one, calling
backgroundSessionConfigurationWithIdentifier: with the same identifier as
before; you will then be able to receive delegate messages, including
URLSession:downloadTask:didFinishDownloadingToURL:.

As with location monitoring (Chapter 22), your app does not formally run in the
background, so you do not have to set the UIBackgroundModes of your Info.plist.

1016 | Chapter 24: Basic Networking

You do have to implement two extra methods, to be called if your app is not front‐
most at the time the download is completed:

application:handleEventsForBackgroundURLSession:completionHandler:

This message is sent to the app delegate. The session: parameter is the string
identifier you handed earlier to the configuration object; you might use this to
identify the session, or even as a prompt to create and configure the session if
you haven’t done so already. The app delegate must store the completion-
Handler: parameter as a property, because it will be needed later.

URLSessionDidFinishEventsForBackgroundURLSession:

This message is sent to the session delegate. The session delegate must call the pre‐
viously stored completion function. This is how the system knows that your app
has finished updating its interface. The system will thereupon take a new snap‐
shot of your app’s interface, still in the background, to serve as your app’s thumb‐
nail in the app switcher interface — and your app will then be suspended.

All of this is much easier if the app delegate and the session delegate are one and the
same object. In this example, the app delegate holds the NSURLSession property, as
well as the completion function property that will be needed if the download com‐
pletes when we are not frontmost:

lazy var session : NSURLSession = {
 let config =
 NSURLSessionConfiguration
 .backgroundSessionConfigurationWithIdentifier(
 "com.neuburg.matt.ch37backgroundDownload")
 config.allowsCellularAccess = false
 // could set config.discretionary here
 let sess = NSURLSession(
 configuration: config, delegate: self,
 delegateQueue: OperationQueue.mainQueue())
 return sess
}()
var ch : (() -> ())!

The NSURLSessionDownloadDelegate methods are as before, plus we have two extra
methods in case the download completes when we are not frontmost:

func application(application: UIApplication,
 handleEventsForBackgroundURLSession identifier: String,
 completionHandler: () -> Void) {
 self.ch = completionHandler
 let _ = self.session // make sure we have one
}
func URLSessionDidFinishEventsForBackgroundURLSession(sess: NSURLSession) {
 if self.ch != nil {
 self.ch()
 }
}

HTTP Requests | 1017

The last line of application:handleEventsForBackgroundURLSession:completion-
Handler: will “tickle” the session lazy initializer and bring the background session to
life. Thus, if we were not running when the download completed, the session dele‐
gate’s URLSession:downloadTask:didFinishDownloadingToURL: can be called
immediately and will pick up the downloaded data.

If the user kills your app in the background by way of the app switcher interface,
pending background downloads will not be completed. The system assumes that
the user doesn’t want your app coming magically back to life in the background.

Background App Refresh
The idea of background app refresh is that if your app has a periodic network down‐
load to perform — because, for example, it is a news app — you can ask the system to
wake or launch your app in the background from time to time so that it can perform
that download in the background. That way, the next time the user brings your app to
the front, it has already been refreshed with recent downloaded content.

The user can disable your app’s ability to use background app refresh, in the Set‐
tings app, under General → Background App Refresh.

This feature is a background mode; in the Capabilities tab for your app target, switch
on Background Modes and check “Background fetch.” Your code must also set the
shared application’s minimumBackgroundFetchInterval property; you can supply an
actual number here, but in most cases you’ll want to use UIApplicationBackground-
FetchIntervalMinimum, which lets the system work out the best moments for your
app to refresh its content, based on the user’s behavior.

When it’s time to perform a background fetch, the app delegate will be sent
application:performFetchWithCompletionHandler:. At that moment, a clock
starts counting down; your job is to do whatever needs doing, just as fast as possible,
and then call the completionHandler: parameter to stop the clock, passing in one of
these values (UIBackgroundFetchResult):

• .NewData

• .NoData

• .Failed

If you don’t do that fast enough, the clock will time out and your app will be sus‐
pended; and the longer you take, the less willing the system will be to send you
application:performFetchWithCompletionHandler: in the first place. If the value
you return is .NewData, a new snapshot will be taken, still with your app in the back‐
ground, so that the thumbnail in the app switcher matches your updated app.

1018 | Chapter 24: Basic Networking

Figure 24-1. An on-demand resource

On-Demand Resources
New in iOS 9, your app can store resources, such as images and sound files, on
Apple’s server (or your own server) instead of including them in the app bundle that
the user initially installs on the device, and can then download those resources as
needed when the app runs. This doesn’t require any conscious networking on your
part. In Xcode, you assign tags to your resources; in code, you instantiate an Bund‐
leResourceRequest by giving it some tags, and ask it for the corresponding resources.
See Apple’s On-Demand Resources Guide for more information.

In this simple example, my app contains a lot of JPG images. To save space when
installing the app, it includes only a handful of these images, and stores the rest on
Apple’s server. This is configured by marking the images folder in my app bundle with
the "pix" tag; this marking is performed in, and is visible in, the Resource Tags pane
of the target editor (Figure 24-1).

When my app needs an image, I check to see whether I’ve already downloaded the
bulk of the images. If not, I download them and copy them into the Application Sup‐
port directory:

func kickOffRequest() {
 if self.request != nil {
 return // request already in progress
 }
 self.request = BundleResourceRequest(tags: ["pix"])
 self.request?.beginAccessingResourcesWithCompletionHandler {
 (err:NSError?) in
 defer {
 self.request?.endAccessingResources()
 self.request = nil
 }
 if let err = err {
 print(err)
 return
 }
 do {

On-Demand Resources | 1019

 let fm = NSFileManager()
 let f = Bundle.main.URLForResource(
 "images", withExtension: nil)!
 let arr = try fm.contentsOfDirectoryAtURL(
 f, includingPropertiesForKeys: nil,
 options: .SkipsHiddenFiles)
 try arr.forEach {
 pic in
 if pic.pathExtension?.lowercaseString == "jpg" {
 let newpic = self.pixFolder!
 .URLByAppendingPathComponent(pic.lastPathComponent!)
 try fm.copyItemAtURL(pic, toURL: newpic)
 }
 }
 } catch {
 print(error)
 }
 }
}

In-App Purchases
An in-app purchase is a specialized form of network communication: your app com‐
municates with the App Store to permit the user to buy something there, or to con‐
firm that something has already been bought there. For example, your app might be
free, but the user could then be offered the opportunity to pay to unlock additional
functionality. In-app purchases are made possible through the Store Kit framework;
you’ll need to import StoreKit.

There are various kinds of in-app purchase; you’ll want to read the relevant chapter in
Apple’s iTunes Connect Developer Guide and the In-App Purchase Programming Guide,
along with the PDF Getting Started guide available at https://developer.apple.com/in-
app-purchase/In-App-Purchase-Guidelines.pdf.

I’ll describe the simplest possible in-app purchase: my app offers a single one-time
purchase, which unlocks additional functionality, allowing the user to choose a photo
from the photo library (Chapter 17). (This is what Apple calls a nonconsumable pur‐
chase.) When the user taps the Choose button, if the in-app purchase has not been
made, a pair of dialogs appear, offering and describing the purchase (Figure 24-2); if
the in-app purchase has been made, a UIImagePickerController’s view appears
instead.

To configure an in-app purchase, you need first to use iTunes Connect to create, in
connection with your app, something that the user can purchase; this is easiest to do
if your app is already available through the App Store. For a simple non-consumable
purchase like mine, you are associating your app’s bundle ID with a name and arbi‐
trary product ID representing your in-app purchase, along with a price. You’ll also

1020 | Chapter 24: Basic Networking

https://developer.apple.com/in-app-purchase/In-App-Purchase-Guidelines.pdf
https://developer.apple.com/in-app-purchase/In-App-Purchase-Guidelines.pdf

Figure 24-2. Interface for an in-app purchase

want to create a special Apple ID, called a sandbox ID, for testing purposes; you can’t
test your in-app purchase interface without such a sandbox ID. When testing, test on
a device only, and be sure to sign out of your real Apple ID and sign in to the sandbox
ID. (If you accidentally perform the in-app purchase later when logged into the App
Store with your real Apple ID, you’ll be charged for the purchase and you won’t be
able to get your money back. Can you guess how I know that?)

Let’s skip merrily past all that and proceed to your app’s interface and inner workings.
For a non-consumable in-app purchase, your app must provide the following inter‐
face (all of which is visible in Figure 24-2):

• A place where the in-app purchase is described. You do not hard-code the
description into your app; rather, it is downloaded in real time from the App
Store, using the Display Name and Description (and price) that you entered at
iTunes Connect.

• A button that launches the purchase process.
• A button that restores an existing purchase. The idea here is that the user has per‐

formed the purchase, but is now on a different device or has deleted and reinstal‐
led your app, so that the UserDefaults entry stating that the purchase has been
performed is missing. The user needs to be able to contact the App Store to get
your app to recognize that the purchase has been performed and turn on the pur‐
chased functionality.

Both the purchase process and the restore process are performed through dialogs
presented by the system; the purpose of the interface shown in Figure 24-2 is to give
the user a way to initiate those processes.

In my app, the purchase process proceeds in two stages. When the user taps the Learn
More button (StoreViewController), I first confirm that the user has not been restric‐
ted from making purchases, and I then create an SKProductsRequest, which will

In-App Purchases | 1021

attempt to download an SKProductsResponse object embodying the in-app purchase
corresponding to my single product ID:

if !SKPaymentQueue.canMakePayments() {
 // ... put up alert saying we can't do it ...
 return
}
let req = SKProductsRequest(productIdentifiers: ["DiabelliChoose"])
req.delegate = self
req.start()

This kicks off some network activity, and eventually the delegate of this SKProducts‐
Request, namely self (conforming to SKProductsRequestDelegate), is called back
with one of two delegate messages. If we get request:didFailWithError:, I put up
an apologetic alert, and that’s the end. But if we get productsRequest:didReceive-
Response:, the request has succeeded, and we can proceed to the second stage.

The response from the App Store arrives as an SKProductsResponse object contain‐
ing an SKProduct representing the proposed purchase. I create the second view con‐
troller, give it a reference to the SKProduct, and present it:

func productsRequest(request: SKProductsRequest,
 didReceiveResponse response: SKProductsResponse) {
 let p = response.products[0]
 let s = StoreViewController2(product:p)
 // and on to the next view controller
 if let presenter = self.presentingViewController {
 self.dismissViewControllerAnimated(true, completion: {
 presenter.presentViewController(
 s, animated: true, completion: nil)
 })
 }
}

We are now in my second view controller (StoreViewController2). It has a product
property, and in its viewDidLoad it populates its interface based on the information
that the product contains (for my lend utility, see Appendix B):

self.titleLabel.text = self.product.localizedTitle
self.descriptionLabel.text = self.product.localizedDescription
self.priceLabel.text = lend {
 (numberFormatter : NSNumberFormatter) in
 numberFormatter.formatterBehavior = .Behavior10_4
 numberFormatter.numberStyle = .CurrencyStyle
 numberFormatter.locale = self.product.priceLocale
}.stringFromNumber(self.product.price)

If the user taps the Purchase button, I dismiss the presented view controller, load the
SKProduct into the default SKPaymentQueue, and stand back:

1022 | Chapter 24: Basic Networking

self.dismissViewControllerAnimated(true, completion: {
 let p = SKPayment(product:self.product)
 let q = SKPaymentQueue.defaultQueue()
 q.addPayment(p)
})

The system is now in charge of presenting a sequence of dialogs, confirming the pur‐
chase, asking for the user’s App Store password, and so forth. My app knows nothing
about that. If the user performs the purchase, however, my transaction observer will
be sent paymentQueue:updatedTransactions:. I’ll return in a moment to the imple‐
mentation of this method.

Now let’s talk about what happens when the user taps the Restore button (back in the
first view controller, StoreViewController). It’s very simple; I just tell the default
SKPaymentQueue to restore any existing purchases:

self.dismissViewControllerAnimated(true, completion: {
 _ in
 SKPaymentQueue.defaultQueue().restoreCompletedTransactions()
})

Again, what happens now in the interface is out of my hands; the system will present
the necessary dialogs. If the purchase is restored, however, my transaction observer
will be sent paymentQueue:updatedTransactions:.

All the rest of the action, then, takes place in my transaction observer. But how does
the runtime know who that is? When my app launches, it must register a transaction
observer, that is, some object whose job it will be to receive transactions from the pay‐
ment queue:

func application(application: UIApplication,
 didFinishLaunchingWithOptions
 launchOptions: [UIApplicationLaunchOptionsKey : Any]?)
 -> Bool {
 SKPaymentQueue.defaultQueue().addTransactionObserver(
 self.window!.rootViewController as! SKPaymentTransactionObserver)
 return true
}

As you can see, I’ve made my root view controller the transaction observer. It adopts
the SKPaymentTransactionObserver protocol. There is only one required method —
paymentQueue:updatedTransactions:. This arrives with a reference to the payment
queue and an array of SKPaymentTransaction objects. My job is to cycle through
these transactions and, for each one, do whatever it requires, and then, if there was an
actual transaction (or an error), send finishTransaction: to the payment queue, to
clear the queue.

My implementation is extremely simple, because I have only one purchasable prod‐
uct, and because I’m not maintaining any separate record of receipts. For each trans‐

In-App Purchases | 1023

action, I check its transactionState (SKPaymentTransactionState). If this
is .Purchased or .Restored, I pull out its payment, confirm that the payment’s
productIdentifier is my product identifier (it had darned well better be, since I
have only the one product), and, if so, I throw the UserDefaults switch that indicates
to my app that the user has performed the purchase:

func paymentQueue(queue: SKPaymentQueue,
 updatedTransactions transactions: [SKPaymentTransaction]) {
 for t in transactions {
 switch t.transactionState {
 case .Purchasing, .Deferred: break // do nothing
 case .Purchased, .Restored:
 let p = t.payment
 if p.productIdentifier == "DiabelliChoose" {
 UserDefaults.standard.setBool(
 true, forKey: CHOOSE)
 // ... present "thank you" alert to the user ...
 queue.finishTransaction(t)
 }
 case .Failed:
 queue.finishTransaction(t)
 }
 }
}

1024 | Chapter 24: Basic Networking

CHAPTER 25

Threads

This chapter has not yet been revised for iOS 10.

A thread is, simply put, a subprocess of your app that can execute even while other
subprocesses are also executing. Such simultaneous execution is called concurrency.
The iOS frameworks use threads all the time; if they didn’t, your app would be less
responsive to the user — perhaps even completely unresponsive. The genius of the
frameworks, though, is that, for the most part, they use threads precisely so that you
don’t have to.

For example, suppose your app is downloading something from the network (Chap‐
ter 24). This download doesn’t happen all by itself; somewhere, someone is running
code that interacts with the network and obtains data. Yet none of that interferes with
your code, or prevents the user from tapping and swiping things in your interface.
That’s concurrency in action.

This chapter discusses concurrency that involves your code in deliberate use of
threading. It would have been nice to dispense with this topic altogether. Threads can
be difficult and are always potentially dangerous, and should be avoided if possible.
But sometimes that isn’t possible. So this chapter introduces threads, along with a
warning: threads entail complications and subtle pitfalls, and can make your code
hard to debug. There is much more to threading, and especially to making your
threaded code safe, than this chapter can possibly touch on. For detailed information
about the topics introduced in this chapter, read Apple’s Concurrency Programming
Guide and Threading Programming Guide.

Main Thread
You are always using some thread. All your code must run somewhere; “somewhere”
means a thread. When code calls a method, that method normally runs on the same

1025

thread as the code that called it. Your code is called through events generated by
Cocoa; those events normally call your code on the main thread.

The main thread is the interface thread. When the user interacts with the interface,
those interactions are reported as events — on the main thread. When your code
interacts with the interface, it must do so on the main thread. Of course that will usu‐
ally happen automatically, because your code normally runs on the main thread. But
when you are involved with multiple threads, you must be careful.

Trying to touch the interface with your code in any way other than on the main
thread is a huge mistake (and a very common beginner mistake). A typical sign
of it is an unaccountable delay of several seconds. In some cases, the console will
also help with a warning.

The main thread thus has a very great deal of work to do. Here’s how life goes in your
app:

1. An event arrives on the main thread; the user has tapped a button, for example,
and this is reported to your app as a UIEvent and to the button through the
touch delivery mechanism (Chapter 5) — on the main thread.

2. The control event causes your code (the action handler) to be called — on the
main thread. Your code now runs — on the main thread. While your code runs,
nothing else can happen on the main thread. Your code might command some
changes in the interface; this is safe, because your code is running on the main
thread.

3. Your code finishes. The main thread’s run loop is now free to report more events,
and the user is free to interact with the interface once again.

The bottleneck here is obviously step 2, the running of your code. Your code runs on
the main thread. That means the main thread can’t do anything else while your code
is running. No events can arrive while your code is running. The user can’t interact
with the interface while your code is running. But this is usually no problem, because:

• Your code executes really fast. It’s true that the user can’t interact with the inter‐
face while your code runs, but this is such a tiny interval of time that the user will
probably never even notice.

• Your code, as it runs, blocks the user from interacting with the interface. But
that’s not bad: it’s good! Your code, in response to what the user does, might
update the interface; it would be insane if the user could do something else in the
interface while you’re in the middle of updating it.

On the other hand, as I’ve already mentioned, the frameworks operate in secondary
threads all the time. The reason this doesn’t affect you is that they usually talk to your

1026 | Chapter 25: Threads

code on the main thread. You have seen many examples of this in the preceding chap‐
ters:

• During an animation (Chapter 4), the interface remains responsive to the user,
and it is possible for your code to run. The Core Animation framework is run‐
ning the animation and updating the presentation layer on a background thread.
But your delegate methods or completion functions are called on the main
thread.

• A web view’s fetching and loading of its content is asynchronous (Chapter 11);
that means the work is done in a background thread. But your delegate methods
are called on the main thread.

• Sounds are played asynchronously (Chapters 14 and 16). But your delegate meth‐
ods are called on the main thread. Similarly, loading, preparation, and playing of
movies happens asynchronously (Chapter 15). But your delegate methods are
called on the main thread.

• Saving a movie file takes time (Chapters 15 and 17). So the saving takes place on
a background thread. Similarly, UIDocument saves and reads on a background
thread (Chapter 23). But your delegate methods or completion functions are
called on the main thread.

Thus, you can (and should) usually ignore threads and just keep plugging away on
the main thread. However, there are two kinds of situation in which your code will
need to be explicitly aware of threading issues:

Your code is called back, but not on the main thread.
Some frameworks explicitly inform you in their documentation that callbacks are
not guaranteed to take place on the main thread. For example, the documenta‐
tion on CATiledLayer (Chapter 7) warns that draw(_:in:) is called in a back‐
ground thread. By implication, our draw(_:) code, triggered by CATiledLayer to
update tiles, is running in a background thread. (Fortunately, drawing into the
current context is thread-safe.)

Similarly, the documentation on AV Foundation (Chapters 15 and 17) warns that
its completion functions and notifications can arrive on a background thread. So
if you intend to update the user interface, or use a value that might also be used
by your main-thread code, you’ll need to be thread-conscious.

Your code takes significant time.
If your code takes significant time to run, you might need to run that code on a
background thread, rather than letting it block the main thread and prevent any‐
thing else from happening there. For example:

Main Thread | 1027

During startup
You want your app to launch as quickly as possible. In Chapter 23, I called
URLForUbiquityContainerIdentifier: during app launch. The documenta‐
tion told me to call this method on a background thread, because it can take
some time to return; we don’t want to block the main thread waiting for it,
because the app is trying to launch on the main thread, and the user won’t
see our interface until the launch process is over.

When the user can see or interact with the app
In Chapter 19, I called enumerateEventsMatchingPredicate: on a back‐
ground thread in order to prevent the user interface from freezing up in case
the enumeration took a long time. If I hadn’t done this, then when the user
taps the button that triggers this call, the button will stay highlighted for a
significant amount of time, during which the interface will be completely
frozen.

Similarly, when your app is in the process of being suspended into the back‐
ground, or resumed from the background, your app should not block the main
thread for too long; it must act quickly and get out of the way.

Moving time-consuming code off the main thread, so that the main thread is not
blocked, isn’t just a matter of aesthetics or politeness: the system “watchdog” will
summarily kill your app if it discovers that the main thread is blocked for too
long.

Why Threading Is Hard
The one certain thing about computer code is that it just clunks along the path of exe‐
cution, one statement at a time. Lines of code, in effect, are performed in the order in
which they appear. With threading, that certainty goes right out the window. If you
have code that can be performed on a background thread, then you don’t know when
it will be performed in relation to the code being performed on any other thread. Any
line of your background-thread code could be interleaved between any two lines of
your main-thread code.

You also might not know how many times a piece of your background-thread code
might be running simultaneously. Unless you take steps to prevent it, the same code
could be spawned off as a thread even while it’s already running in a thread. So any
line of your background-thread code could be interleaved between any two lines of
itself. (I’ll discuss later in this chapter a situation in which this very thing does hap‐
pen.)

This situation is particularly threatening with regard to shared data. Suppose two
threads were to get hold of the same object and change it. Who knows what horrors
might result? Objects in general have state, adding up to the state of your app as a

1028 | Chapter 25: Threads

whole. If multiple threads are permitted to access your objects, they and your entire
app can be put into an indeterminate or nonsensical state.

This problem cannot be solved by simple logic. For example, suppose you try to make
data access safe with a condition, as in this pseudocode:

if no other thread is touching this data {
 ... do something to the data ...
}

Such logic is utterly specious. Suppose the condition succeeds: no other thread is
touching this data. But between the time when that condition is evaluated and the
time when the next line executes and you start to do something to the data, another
thread can still come along and start touching the data!

It is possible to request assistance at a deeper level to ensure that a section of code is
not run by two threads simultaneously. For example, you can implement a lock
around a section of code. But locks generate an entirely new level of potential pitfalls.
In general, a lock is an invitation to forget to use the lock, or to forget to remove the
lock after you’ve set it. And threads can end up contending for a lock in a way that
permits neither thread to proceed.

Another problem is that the lifetime of a thread is independent of the lifetimes of
other objects in your app. When an object is about to go out of existence and its
deinit has been called and executed, you are guaranteed that none of your code in
that object will ever run again. But a thread might still be running, and might try to
talk to your object, even after your object has gone out of existence.

Not only is threaded code hard to get right; it’s also hard to test and hard to debug. It
introduces indeterminacy, so you can easily make a mistake that never appears in
your testing, but that does appear for some user. The real danger is that the user’s
experience will consist only of distant consequences of your mistake, long after the
point where you made it, making the true cause of the problem extraordinarily diffi‐
cult to track down.

Perhaps you think I’m trying to scare you away from using threads. You’re right! For
an excellent (and suitably frightening) account of some of the dangers and considera‐
tions that threading involves, see Apple’s technical note Simple and Reliable Threading
with NSOperation. If terms like race condition and deadlock don’t strike fear into your
veins, look them up on Wikipedia.

Xcode’s Debug navigator distinguishes threads; you can even see pending calls
and learn when a call was enqueued. Also, when you call NSLog in your multi‐
threaded code, the output in the console displays a number (in square brackets,
after the colon) identifying the thread on which it was called — a simple but
unbelievably helpful way of distinguishing threads.

Why Threading Is Hard | 1029

Blocking the Main Thread
To illustrate making your code multithreaded, I need some code that is worth making
multithreaded. I’ll use as my example an app that draws the Mandelbrot set. (This
code is adapted from a small open source project I downloaded from the Internet.)
All it does is draw the basic Mandelbrot set in black and white, but that’s a sufficiently
elaborate calculation to introduce a significant delay, especially on an older, slower
device. The idea is then to see how we can safely get that delay off the main thread.

The app contains a UIView subclass, MyMandelbrotView, which has one property, a
CGContext called bitmapContext. Here’s the structure of MyMandelbrotView’s
implementation:

let MANDELBROT_STEPS = 200 // determines how long the calculation takes
var bitmapContext: CGContext!
// jumping-off point: draw the Mandelbrot set
func drawThatPuppy () {
 self.makeBitmapContext(self.bounds.size)
 let center = CGPoint(self.bounds.midX, self.bounds.midY)
 self.drawAtCenter(center, zoom:1)
 self.setNeedsDisplay()
}
// create bitmap context
func makeBitmapContext(size:CGSize) {
 var bitmapBytesPerRow = Int(size.width * 4)
 bitmapBytesPerRow += (16 - (bitmapBytesPerRow % 16)) % 16
 let colorSpace = CGColorSpaceCreateDeviceRGB()
 let prem = CGImageAlphaInfo.PremultipliedLast.rawValue
 let context = CGBitmapContextCreate(
 nil, Int(size.width), Int(size.height), 8,
 bitmapBytesPerRow, colorSpace, prem)
 self.bitmapContext = context
}
// draw pixels of bitmap context
func drawAtCenter(center:CGPoint, zoom:CGFloat) {
 func isInMandelbrotSet(re:Float, _ im:Float) -> Bool {
 var fl = true
 var (x, y, nx, ny) : (Float,Float,Float,Float) = (0,0,0,0)
 for _ in 0 ..< MANDELBROT_STEPS {
 nx = x*x - y*y + re
 ny = 2*x*y + im
 if nx*nx + ny*ny > 4 {
 fl = false
 break
 }
 x = nx
 y = ny
 }
 return fl
 }
 CGContextSetAllowsAntialiasing(self.bitmapContext, false)

1030 | Chapter 25: Threads

 CGContextSetRGBFillColor(self.bitmapContext, 0, 0, 0, 1)
 var re : CGFloat
 var im : CGFloat
 let maxi = Int(self.bounds.size.width)
 let maxj = Int(self.bounds.size.height)
 for i in 0 ..< maxi {
 for j in 0 ..< maxj {
 re = (CGFloat(i) - 1.33 * center.x) / 160
 im = (CGFloat(j) - 1.0 * center.y) / 160
 re /= zoom
 im /= zoom
 if (isInMandelbrotSet(Float(re), Float(im))) {
 CGContextFillRect (
 self.bitmapContext, CGRect(CGFloat(i),
 CGFloat(j), 1.0, 1.0))
 }
 }
 }
}
// turn pixels of bitmap context into CGImage, draw into ourselves
override func drawRect(rect: CGRect) {
 if self.bitmapContext != nil {
 let context = UIGraphicsGetCurrentContext()!
 let im = CGBitmapContextCreateImage(self.bitmapContext)
 CGContextDrawImage(context, self.bounds, im)
 }
}

The drawAtCenter:zoom: method, which calculates the pixels of self.bitmap-
Context, is time-consuming, and we can see this by running the app on a device. If
the entire process is kicked off by tapping a button whose action handler calls draw-
ThatPuppy, there is a significant delay before the Mandelbrot graphic appears in the
interface, during which time the button remains highlighted. This is a sure sign that we
are blocking the main thread.

We need to move the calculation-intensive part of this code onto a background
thread, so that the main thread is not blocked by the calculation. In doing so, we have
two chief concerns:

Synchronization of threads
The button is tapped, and drawThatPuppy is called, on the main thread. Thus,
setNeedsDisplay is called on the main thread — and rightly so, since this affects
the interface. Therefore, draw(_:) is called on the main thread. In between, how‐
ever, the calculation-intensive drawAtCenter:zoom: is to be called on a back‐
ground thread. Yet these three methods must still be called in order:
drawThatPuppy, then drawAtCenter:zoom:, then draw(_:). How is this going to
work? Clearly it can’t work as we have things structured now; if drawThatPuppy
calls drawAtCenter:zoom: and immediately calls setNeedsDisplay, the former

Blocking the Main Thread | 1031

on a background thread and the latter on the main thread, the view will be
redrawn too soon, before drawAtCenter:zoom: has had a chance to update the
bitmap.

Shared data
The property self.bitmapContext is referred to in three different methods — in
makeBitmapContext:, which is called by drawThatPuppy; in drawAt-

Center:zoom:; and in draw(_:). But we have just said that those three methods
involve two different threads; they must not be permitted to touch the same
property in a way that might conflict or clash. A further danger is that drawAt-
Center:zoom: is run on a background thread, and we have no way of knowing
how many such background threads there may be; the user might tap the button
several times in quick succession, kicking off several simultaneous calculations.
The access to self.bitmapContext by drawAtCenter:zoom: must thus not be
permitted to conflict or clash with itself. (This problem, mercifully, does not arise
in connection with the main thread; there is only one main thread, so it can’t
conflict with itself.)

Manual Threading
A naïve solution would involve spawning off a background thread as we reach the
calculation-intensive part of the procedure, by calling performSelectorIn-

Background:withObject:. This is a very bad idea, and you should not imitate the
code in this section. I’m showing it to you only to demonstrate how horrible it is.

It is not at all simple to adapt your code to use performSelectorInBackground:with-
Object:. There is additional work to do:

Pack the arguments
The method designated by the selector argument to performSelectorIn-
Background:withObject: can take only one parameter, whose value you supply
as the second argument. So if you want to pass more than one piece of informa‐
tion into the thread, or if the information you want to pass isn’t an object, you’ll
need to pack it into a single object. Typically, this will be a dictionary.

Set up an autorelease pool
Secondary threads don’t participate in the global autorelease pool. So the first
thing you must do in your threaded code is to wrap everything in an autorelease
pool. Otherwise, you’ll probably leak memory as autoreleased objects are created
behind the scenes and are never released.

We’ll rewrite MyMandelbrotView to use manual threading. Our drawAtCenter:zoom:
method takes two parameters (and neither is an object), so the argument that we pass
into the thread will have to pack that information into a dictionary. Once inside the

1032 | Chapter 25: Threads

thread, we’ll set up our autorelease pool and unpack the dictionary. This will all be
made much easier if we interpose a trampoline method between drawThatPuppy and
drawAtCenter:zoom:. So our implementation now starts like this:

func drawThatPuppy () {
 self.makeBitmapContext(self.bounds.size)
 let center = CGPoint(self.bounds.midX, self.bounds.midY)
 let d = ["center":NSValue(CGPoint: center), "zoom":CGFloat(1)]
 self.performSelectorInBackground(#selector(reallyDraw), withObject: d)
}
// trampoline, background thread entry point
func reallyDraw(d:[NSObject:AnyObject]) {
 autoreleasepool {
 self.drawAtCenter(
 (d["center"] as! NSValue).CGPointValue(),
 zoom: d["zoom"] as! CGFloat)
 // ... ??? ...
 }
}

The comment with the question marks indicates a missing piece of functionality: we
have yet to call setNeedsDisplay, which will cause the actual drawing to take place.
This call used to be in drawThatPuppy, but that is now too soon; the call to perform-
SelectorInBackground:withObject: launches the thread and returns immediately,
so our bitmapContext property isn’t ready yet. Clearly, we need to call setNeeds-
Display after drawAtCenter:zoom: finishes generating the pixels of the graphics con‐
text. We can do this at the end of our trampoline method reallyDraw:, but we must
remember that we’re now in a background thread. Because setNeedsDisplay is a
form of communication with the interface, we should call it on the main thread, with
performSelectorOnMainThread:withObject:waitUntilDone:. For maximum flexi‐
bility, it will probably be best to implement a second trampoline method:

// trampoline, background thread entry point
func reallyDraw(d:[NSObject:AnyObject]) {
 autoreleasepool {
 self.drawAtCenter(
 (d["center"] as! NSValue).CGPointValue(),
 zoom: d["zoom"] as! CGFloat)
 self.performSelectorOnMainThread(#selector(allDone),
 withObject: nil, waitUntilDone: false)
 }
}
// called on main thread! background thread exit point
func allDone() {
 self.setNeedsDisplay()
}

This works, in the sense that when we tap the button, it is highlighted momentarily
and then immediately unhighlighted; the time-consuming calculation is taking place

Manual Threading | 1033

on a background thread. But the code is specious; the seeds of nightmare are already
sown. We now have a single object, MyMandelbrotView, some of whose methods are
to be called on the main thread and some on a background thread; this invites us to
become confused at some later time. Even worse, the main thread and the back‐
ground thread are constantly sharing a piece of data, the instance property
self.bitmapContext; what’s to stop some other code from coming along and trigger‐
ing draw(_:) while drawAtCenter:zoom: is in the middle of manipulating this bit‐
map context? To solve these problems, we might need to use locks, and we would
probably have to manage the thread more explicitly. Such code can become quite
elaborate and difficult to understand; guaranteeing its integrity is even more difficult.
There are much better ways, and I will now demonstrate two of them.

Operation
The essence of Operation is that it encapsulates a task, not a thread. The operation
described by an Operation object may be performed on a background thread, but you
don’t have to concern yourself with that directly. You describe the operation and add
the Operation to an OperationQueue to set it going. You arrange to be notified when
the operation ends, typically by the Operation posting a notification. You can query
both the queue and its operations from outside with regard to their state.

We’ll rewrite MyMandelbrotView to use Operation. We need a property, an Opera‐
tionQueue; we’ll call it queue, and we’ll create and configure it in its initializer:

let queue : OperationQueue = {
 let q = OperationQueue()
 // ... further configurations can go here ...
 return q
}()

We also have a new class, MyMandelbrotOperation, an Operation subclass. (It is pos‐
sible to take advantage of a built-in Operation subclass such as NSBlockOperation,
but I’m deliberately illustrating the more general case by subclassing Operation itself.)
Our implementation of drawThatPuppy thus creates an instance of MyMandelbrot‐
Operation, configures it, registers for its notification, and adds it to the queue:

func drawThatPuppy () {
 let center = CGPoint(self.bounds.midX, self.bounds.midY)
 let op = MyMandelbrotOperation(
 size: self.bounds.size, center: center, zoom: 1)
 NSNotificationCenter.defaultCenter().addObserver(
 self, selector: #selector(operationFinished),
 name: "MyMandelbrotOperationFinished", object: op)
 self.queue.addOperation(op)
}

1034 | Chapter 25: Threads

Our time-consuming calculations are performed by MyMandelbrotOperation. An
Operation subclass, such as MyMandelbrotOperation, will typically have at least two
methods:

A designated initializer
The Operation may need some configuration data. Once the Operation is added
to a queue, it’s too late to talk to it, so you’ll usually hand it this configuration
data as you create it, in its designated initializer.

A main method
This method will be called (with no parameters) automatically by the Operation‐
Queue when it’s time for the Operation to start.

MyMandelbrotOperation has three private properties for configuration (size,
center, and zoom), to be set in its initializer; it must be told MyMandelbrotView’s
geometry explicitly because it is completely separate from MyMandelbrotView.
MyMandelbrotOperation also has its own CGContext property, bitmapContext; it
must be publicly gettable so that MyMandelbrotView can retrieve a reference to this
graphics context when the operation has finished. Note that this is different from
MyMandelbrotView’s bitmapContext, thus helping to solve the problem of sharing
data promiscuously between threads:

private let size : CGSize
private let center : CGPoint
private let zoom : CGFloat
private(set) var bitmapContext : CGContext!
init(size sz:CGSize, center c:CGPoint, zoom z:CGFloat) {
 self.size = sz
 self.center = c
 self.zoom = z
 super.init()
}

All the calculation work has been transferred from MyMandelbrotView to
MyMandelbrotOperation without change; the only difference is that self.bitmap-
Context now means MyMandelbrotOperation’s property. The only method of real
interest is main. First, we call the Operation method isCancelled to make sure we
haven’t been cancelled while sitting in the queue; this is good practice. Then, we do
exactly what drawThatPuppy used to do, initializing our graphics context and drawing
into its pixels:

let MANDELBROT_STEPS = 200
// create instance variable
func makeBitmapContext(size:CGSize) {
 // ... same as before
}
func drawAtCenter(center:CGPoint, zoom:CGFloat) {
 // ... same as before

Operation | 1035

}
override func main() {
 if self.cancelled {
 return
 }
 self.makeBitmapContext(self.size)
 self.drawAtCenter(self.center, zoom: self.zoom)
 if !self.cancelled {
 NSNotificationCenter.defaultCenter().postNotificationName(
 "MyMandelbrotOperationFinished", object: self)
 }
}

The last line of main is our signal to MyMandelbrotView that the calculation is over
and it’s time to come and fetch our data. There are two ways to do this; either main
can post a notification through the NSNotificationCenter, or MyMandelbrotView can
use key–value observing to be notified when our isFinished property changes. We’ve
chosen the former approach; observe that we check one more time to make sure we
haven’t been cancelled.

Now we are back in MyMandelbrotView, hearing through the notification that
MyMandelbrotOperation has finished. We must immediately pick up any required
data, because the OperationQueue is about to release this Operation. However, we
must be careful; the notification may have been posted on a background thread, in
which case our method for responding to it will also be called on a background
thread. We are about to set our own graphics context and tell ourselves to redraw;
those are things we want to do on the main thread. So we immediately step out to the
main thread (using Grand Central Dispatch, described more fully in the next sec‐
tion). We remove ourselves as notification observer for this operation instance, copy
the operation’s bitmapContext into our own bitmapContext, and now we’re ready for
the last step, drawing ourselves:

// warning! called on background thread
func operationFinished(n:NSNotification) {
 if let op = n.object as? MyMandelbrotOperation {
 dispatch_async(dispatch_get_main_queue()) {
 NSNotificationCenter.defaultCenter().removeObserver(
 self, name: "MyMandelbrotOperationFinished", object: op)
 self.bitmapContext = op.bitmapContext
 self.setNeedsDisplay()
 }
 }
}

Adapting our code to use Operation involves some work, but the result has many
advantages that help to ensure that our use of multiple threads is coherent and safe:

1036 | Chapter 25: Threads

The operation is encapsulated.
Because MyMandelbrotOperation is an object, we’ve been able to move all the
code having to do with drawing the pixels of the Mandelbrot set into it. The only
MyMandelbrotView method that can be called in the background is operation-
Finished:, and that’s a method we’d never call explicitly ourselves, so we won’t
misuse it accidentally — and it immediately steps out to the main thread in any
case.

The data sharing is rationalized.
Because MyMandelbrotOperation is an object, it has its own bitmapContext
property. The only moment of data sharing comes in operationFinished:, when
we must set MyMandelbrotView’s bitmapContext to MyMandelbrotOperation’s
bitmapContext. Even if multiple MyMandelbrotOperation objects are added to
the queue, the moments when we set MyMandelbrotView’s bitmapContext and
then redraw ourselves using that bitmap context all occur on the main thread, so
they cannot conflict with one another.

The threads are synchronized.
The calculation-intensive operation doesn’t start until MyMandelbrotView tells it
to start (self.queue.addOperation(op)). MyMandelbrotView then takes its
hands off the steering wheel and makes no attempt to draw itself. If draw(_:) is
called by the runtime, self.bitmapContext will be nil (or will contain the
results of an earlier calculation operation) and no harm done. Nothing else hap‐
pens until the operation ends and the notification arrives (operationFinished:);
then and only then does MyMandelbrotView update the interface — on the main
thread.

If we are concerned with the possibility that more than one instance of
MyMandelbrotOperation might be added to the queue and executed concurrently, we
have a further line of defense — we can set the OperationQueue’s maximum concur‐
rency level to 1:

let q = OperationQueue()
q.maxConcurrentOperationCount = 1
return q

This turns the OperationQueue into a true serial queue; every operation on the queue
must be completely executed before the next can begin. This might cause an opera‐
tion added to the queue to take longer to execute, if it must wait for another opera‐
tion to finish before it can even get started; however, this delay might not be
important. What is important is that by executing the operations on this queue sepa‐
rately from one another, we guarantee that only one operation at a time can do any
data sharing. A serial queue is thus a form of data locking.

Operation | 1037

Because MyMandelbrotView can be destroyed (if, for example, its view controller is
destroyed), there is still a risk that it will create an operation that will outlive it and
will try to access it after it has been destroyed. We can reduce that risk by canceling
all operations in our queue before releasing it:

deinit {
 self.queue.cancelAllOperations()
}

Operation queues are good to know about for other reasons as well. A number of use‐
ful methods mentioned earlier in this book expect an OperationQueue argument; see,
for example, Chapter 22 (startDeviceMotionUpdatesToQueue:withHandler:, and
similarly for the other sensors) and Chapter 24 (sessionWith-
Configuration:delegate:delegateQueue:).

There is more to Operation as well. One Operation can have another Operation as a
dependency, meaning that the former cannot start until the latter has finished, even if
they are in different OperationQueues. Moreover, the behavior of an Operation can
be customized; an Operation subclass can redefine what it means to be ready and
capable of execution. Thus, Operations can be combined to express your app’s logic,
guaranteeing that one thing happens before another (as is cogently argued in a
WWDC 2015 video).

Grand Central Dispatch
Grand Central Dispatch, or GCD, is a sort of low-level analogue to Operation and
OperationQueue (in fact, OperationQueue uses GCD under the hood). When I say
GCD is low-level, I’m not kidding; it is effectively baked into the operating system
kernel. Thus it can be used by any code whatsoever and is tremendously efficient.

GCD is like OperationQueue in that it uses queues: you express a task and add it to a
queue, and the task is executed on a thread as needed. Moreover, by default these
queues are serial queues, with each task on a queue finishing before the next is
started, which, as I’ve already said, is a form of data locking. However, it has the
advantage over OperationQueue that there is no need to create any extra objects;
GCD uses blocks — in Swift, these will usually be anonymous functions — so all your
code to be executed on different threads can appear in the same place. Also, GCD is
about much more than threading, as I’ll discuss at the end of this section.

We’ll rewrite MyMandelbrotView to use GCD. Remarkably, the structure is only very
slightly changed from the original, nonthreaded version. We have a new property to
hold our queue, which is a dispatch queue; a dispatch queue is a lightweight opaque
pseudo-object consisting essentially of a list of functions to be executed:

1038 | Chapter 25: Threads

let MANDELBROT_STEPS = 200
var bitmapContext: CGContext!
let draw_queue : dispatch_queue_t = {
 let q = dispatch_queue_create("com.neuburg.mandeldraw", nil)
 return q
}()

(A call to dispatch_queue_create must be balanced by a call to dispatch_release.
However, Swift memory management understands GCD pseudo-objects and will take
care of this for us — in fact, calling dispatch_release explicitly is forbidden.)

Our makeBitmapContext: method now returns a graphics context rather than setting
a property directly:

func makeBitmapContext(size:CGSize) -> CGContext {
 // ... as before ...
 let context = CGBitmapContextCreate(
 nil, Int(size.width), Int(size.height), 8,
 bitmapBytesPerRow, colorSpace, prem)
 return context!
}

Also, our drawAtCenter:zoom: method now takes an additional parameter, the
graphics context to draw into:

func drawAtCenter(center:CGPoint, zoom:CGFloat, context:CGContext) {
 // ... as before, but we refer to local context, not self.bitmapContext
}

Now for the implementation of drawThatPuppy. This is where all the action is! Here it
is:

func drawThatPuppy () {
 let center = CGPoint(self.bounds.midX, self.bounds.midY)
 dispatch_async(self.draw_queue) {
 let bitmap = self.makeBitmapContext(self.bounds.size)
 self.drawAtCenter(center, zoom:1, context:bitmap)
 dispatch_async(dispatch_get_main_queue()) {
 self.bitmapContext = bitmap
 self.setNeedsDisplay()
 }
 }
}

That’s all there is to it: all our app’s multithreading is concentrated in those few lines.
There are no notifications; there is no sharing of data between threads; and the entire
sequential synchronization of our threads is completely handled and expressed with
startling clarity. Here’s how drawThatPuppy works:

We begin by calculating our center, as before. This value will be visible within
the subsequent anonymous functions, because the rules of scope say that func‐
tion body code can see its surrounding context.

Grand Central Dispatch | 1039

Now comes our task to be performed in a background thread on our queue,
self.draw_queue. We specify this task with the dispatch_async function. GCD
has a lot of functions, but this is the one you’ll use 99 percent of the time; it’s the
most important thing you need to know about GCD. We specify a queue and we
provide a function saying what we’d like to do on that queue.

In the function, we begin by declaring bitmap as a variable local to the function.
We then call makeBitmapContext: to create the graphics context bitmap, and
then call drawAtCenter:zoom:context: to set its pixels. Bear in mind that those
calls are made on a background thread, because self.draw_queue is a back‐
ground queue.

Now we need to step back out to the main thread. How do we do that? With
dispatch_async again! This time, we specify the main queue (which is effectively
the main thread) by calling dispatch_get_main_queue, and describe what we
want to do on the main queue in another anonymous function.

This second call to dispatch_async is the last line of the first anonymous func‐
tion; therefore, its anonymous function isn’t enqueued, and thus isn’t performed,
until the preceding commands in the first function have finished. Moreover,
because the first function is part of the second function’s surrounding context,
the second function can see our local bitmap variable! We set our bitmapContext
property and call setNeedsDisplay — on the main thread! — and we’re done.

The benefits and elegance of GCD as a form of concurrency management are simply
stunning. There is no data sharing, because the bitmap variable is not shared; it is
local to each specific call to drawThatPuppy. The threads are synchronized, because
the nested anonymous functions are executed in succession, so any instance of
bitmap must be completely filled with pixels before being used to set the bitmap-
Context property. Moreover, the background operation is performed on a serial
queue, and bitmapContext is touched only from code running on the main thread;
thus there is no possibility of conflict. Our code is also highly maintainable, because
the entire task on all threads is expressed within the single drawThatPuppy method;
indeed, the code is only very slightly modified from the original, nonthreaded ver‐
sion.

You might object that we still have methods makeBitmapContext: and drawAt-
Center:zoom:context: hanging around MyMandelbrotView, and that we must
therefore still be careful not to call them on the main thread, or indeed from any‐
where except from within drawThatPuppy. If that were true, we could at this point
destroy makeBitmapContext: and drawAtCenter:zoom:context: and move their
functionality completely into drawThatPuppy. But it isn’t true, because these methods
are now thread-safe: they are self-contained utilities that touch no properties or per‐

1040 | Chapter 25: Threads

sistent objects, so it doesn’t matter what thread they are called on. Still, I’ll demon‐
strate in a moment how we can intercept an accidental attempt to call a method on
the wrong thread.

The two most important GCD functions are:

dispatch_async

Push a function onto the end of a queue for later execution, and proceed imme‐
diately with our own code. Thus, we can finish our own execution without wait‐
ing for the function to execute.

Examples of using dispatch_async to execute code in a background thread
(dispatch_get_global_queue(0,0)) appeared in Chapters 19 and 23. Examples
of using dispatch_async as a way of stepping back onto the main thread
(dispatch_get_main_queue) in order to talk to the interface from inside code
that might be executed on a background thread appeared in Chapters 10, 15, 16,
17, and 24 (and elsewhere).

Also, it can be useful to call dispatch_async to step out to the main thread even
though you’re already on the main thread, as a way of waiting for the run loop to
complete and for the interface to settle down — a minimal form of delayed per‐
formance. I used that technique in Chapters 12 and 23.

dispatch_sync

Push a function onto the end of a queue for later execution, and wait until the
function has executed before proceeding with our own code — because, for
example, you intend to use a result that the function is to provide. The purpose of
the queue would be, once again, as a lightweight, reliable version of a lock, medi‐
ating access to a shared resource. Here’s a case in point, adapted from Apple’s
own code:

func asset() -> AVAsset? {
 var theAsset : AVAsset!
 dispatch_sync(self.assetQueue) {
 theAsset = self.getAssetInternal().copy() as! AVAsset
 }
 return theAsset
}

Any thread might call the asset method; to avoid problems with shared data, we
require that only functions that are executed from a particular queue
(self.assetQueue) may touch an AVAsset. But we need the result that this func‐
tion returns; hence the call to dispatch_sync.

In Chapter 7 I encountered a problem where I discovered that the runtime was call‐
ing my CATiledLayer’s draw(_:) simultaneously on multiple threads — a rare exam‐
ple of Apple’s code involving me in unexpected complications of threading. To close

Grand Central Dispatch | 1041

the door to this sort of behavior, it suffices to wrap the interior of my draw(_:)
implementation in a call to dispatch_sync. This is a safe and reliable mode of lock‐
ing: once any thread has started to run my draw(_:), no other thread can start to run
it until the first thread has finished with it. Thus my draw(_:), though it can be (and
will be) run on a background thread, is immune to being run on simultaneous back‐
ground threads. I have defined a property to hold a dedicated serial queue:

let drawQueue = dispatch_queue_create(nil, DISPATCH_QUEUE_SERIAL)

And here’s how draw(_:) is structured:

override func drawRect(r: CGRect) {
 dispatch_sync(drawQueue, {
 // ... draw here ...
 })
}

An interesting and useful exercise is to revise the MyDownloader class from Chap‐
ter 24 so that the delegate methods are run on a background thread, thus taking some
strain off the main thread (and hence the user interface) while these messages are fly‐
ing around behind the scenes. This looks like a reasonable and safe thing to do,
because the NSURLSession and the delegate methods are all packaged inside the
MyDownloader object, isolated from our view controller.

To do so, the first step is to declare our completion function typealias using the
@convention(block) attribute; otherwise, we won’t get proper Objective-C memory
management of our stored handler:

typealias MyDownloaderCompletion = @convention(block) (NSURL!) -> ()

We’ll also need our own background OperationQueue, which we can maintain as a
property:

let q = OperationQueue()

Our session is now configured and created using this background queue:

lazy var session : NSURLSession = {
 let queue = self.q
 return NSURLSession(configuration:self.config,
 delegate:self, delegateQueue:queue)
}()

We must now give some thought to what will happen in URLSession:download-
Task:didFinishDownloadingToURL: when we call back into the client through the
completion function (the one that we received in download:completionHandler: and
stored in the URLRequest). It would not be very nice to involve the client in thread‐
ing issues; our entire goal is to isolate such issues within MyDownloader itself. There‐
fore we must step out to the main thread as we call the completion function. But we
cannot do this by calling dispatch_async:

1042 | Chapter 25: Threads

let ch2 = (ch as! Wrapper).p as MyDownloaderCompletion
dispatch_async(dispatch_get_main_queue()) { // bad idea!
 ch2(url)
}

The reason is that the downloaded file is slated to be destroyed as soon as we return
from URLSession:downloadTask:didFinishDownloadingToURL: — and if we call
dispatch_async, we will return immediately. Thus the downloaded file will be
destroyed, and url will end up pointing at nothing by the time the client receives it.
The solution is to use dispatch_sync instead:

let ch2 = (ch as! Wrapper).p as MyDownloaderCompletion
dispatch_sync(dispatch_get_main_queue()) {
 ch2(url)
}

That code steps out to the main thread and also postpones returning from
URLSession:downloadTask:didFinishDownloadingToURL: until the client has had
an opportunity to do something with the file pointed to by url. We are blocking our
background OperationQueue, but only very briefly. Again, our real purpose in using
dispatch_sync is to lock down some shared data — in this case, the downloaded file.

It is also good to know about the GCD function dispatch_after; many examples in
this book have made use of it, by way of my utility method delay (see Appendix B) —
see, for instance, Chapters 2, 7, and 10.

Another useful GCD function is dispatch_once, a thread-safe way of ensuring that
code is run only once; I probably could have used this instead of the Bool property
flags scattered throughout my example code (such as self.viewInitializationDone
in Chapter 6). Your call to this function must be accompanied by a reference to an
already defined variable which serves as a token (a dispatch_once_t); the scope of
the notion “once” is determined by the scope and lifetime at which this token is
declared. Thus, in the following example, the code in question will run just once per
instance of this class, because the token is declared as a property, at the level of the
instance:

class SomeClass {
 var once_token : dispatch_once_t = 0
 func test() {
 dispatch_once(&once_token) {
 // this code will run just once in the life of this object
 }
 }
}

In Objective-C, dispatch_once is often used to vend a singleton; in Swift, however,
you are more likely to use the built-in lazy initialization feature.

Grand Central Dispatch | 1043

Besides serial dispatch queues, there are also concurrent dispatch queues. A concur‐
rent queue’s functions are started in the order in which they were submitted to the
queue, but a function is allowed to start while another function is still executing.
Obviously, you wouldn’t want to submit to a concurrent queue a task that touches a
shared resource! The advantage of concurrent queues is a possible speed boost when
you don’t care about the order in which multiple tasks are finished — for example,
when you want to do something with regard to every element of an array.

The built-in global queues (available by calling dispatch_get_global_queue) are
concurrent; you can also create a concurrent queue yourself, by passing
DISPATCH_QUEUE_CONCURRENT as the second argument to dispatch_queue_create.

A frequent use of concurrent queues is with dispatch_apply. This function is like
dispatch_sync (the caller pauses until everything has finished executing), but the
function that you supply is called multiple times with an iterator argument. Thus,
dispatch_apply on a concurrent queue is like a for loop whose iterations are multi‐
threaded; on a device with multiple cores, this could result in a speed improvement.
(Of course, this technique is applicable only if the iterations do not depend on one
another.)

Arbitrary context data can be attached to a queue in the form of key–value
pairs (dispatch_queue_set_specific) and retrieved by key. There are two ways to
retrieve the context data:

dispatch_queue_get_specific

Retrieves a key’s value for a queue to which we already have a valid reference.

dispatch_get_specific

Retrieves a key’s value for the current queue, the one in whose thread we are
actually running. In fact, dispatch_get_specific is the only valid way to iden‐
tify the current queue. (dispatch_get_current_queue, a function formerly used
for this purpose, has been shown to be potentially unsafe and is now deprecated.)

We can use this technique, for example, to make certain that a method is called only
on the correct queue. Recall that in our Mandelbrot-drawing example, we may be
concerned that a method such as makeBitmapContext: might be called on some other
queue than the background queue that we created for this purpose. If this is really a
worry, we can attach an identifying key–value pair to that queue when we create it.
The value should be a pointer; to make this possible, I’ll configure some global vari‐
ables beforehand:

let qkeyString = "label" as NSString
let QKEY = qkeyString.UTF8String
let qvalString = "com.neuburg.mandeldraw" as NSString
var QVAL = qvalString.UTF8String

We then create and configure the queue like this:

1044 | Chapter 25: Threads

let q = dispatch_queue_create(QVAL, nil)
dispatch_queue_set_specific(q, QKEY, &QVAL, nil)

Later, we can examine that identifying key–value pair for the queue on which a par‐
ticular method is called:

func assertOnBackgroundThread() {
 let s = dispatch_get_specific(QKEY)
 assert(s == &QVAL)
}

Threads and App Backgrounding
When your app is backgrounded and suspended, a problem arises if your code is run‐
ning. The system doesn’t want to stop your code while it’s executing; on the other
hand, some other app may need to be given the bulk of the device’s resources now. So
as your app goes into the background, the system waits a very short time for your app
to finish doing whatever it may be doing, and it then suspends your app.

This shouldn’t be a problem from your main thread’s point of view, because your app
shouldn’t have any time-consuming code on the main thread in the first place; you
now know that you can avoid this by using a background thread. On the other hand,
it could be a problem for lengthy background operations, including asynchronous
tasks performed by the frameworks. You can request extra time to complete a lengthy
task (or at to least abort it yourself, coherently) in case your app is backgrounded, by
wrapping it in calls to UIApplication’s beginBackgroundTaskWithExpiration-

Handler: and endBackgroundTask:. Here’s how you do it:

1. You call beginBackgroundTaskWithExpirationHandler: to announce that a
lengthy task is beginning; it returns an identification number. This tells the sys‐
tem that if your app is backgrounded, you’d like to be woken from suspension in
the background now and then in order to complete the task.

2. At the end of your lengthy task, you call endBackgroundTask:, passing in the
same identification number that you got from your call to beginBackgroundTask-
WithExpirationHandler:. This tells the system that your lengthy task is over and
that there is no need to grant you any more background time.

The function that you pass as argument to beginBackgroundTaskWithExpiration-
Handler: does not express the lengthy task. It expresses what you will do if your extra
time expires before you finish your lengthy task. This is a chance for you to clean up.
At the very least, your expiration handler must call endBackgroundTask:! Otherwise,
the runtime won’t know that you’ve run your expiration handler, and your app may
be killed, as a punishment for trying to use too much background time. If your expi‐
ration handler is called, you should make no assumptions about what thread it is run‐
ning on.

Threads and App Backgrounding | 1045

Let’s use MyMandelbrotView as an example. Let’s say that if drawThatPuppy is started,
we’d like it to be allowed to finish, even if the app is suspended in the middle of it, so
that our bitmapContext property is updated as requested. To try to ensure this, we
call beginBackgroundTaskWithExpirationHandler: beforehand and call end-

BackgroundTask: at the end of the innermost anonymous function:

func drawThatPuppy () {
 let center = CGPoint(self.bounds.midX, self.bounds.midY)
 // === configure background task
 var bti : UIBackgroundTaskIdentifier = 0
 bti = UIApplication.shared
 .beginBackgroundTaskWithExpirationHandler({
 UIApplication.shared.endBackgroundTask(bti)
 })
 if bti == UIBackgroundTaskInvalid {
 return
 }
 // ===
 dispatch_async(self.draw_queue) {
 let bitmap = self.makeBitmapContext(self.bounds.size)
 self.drawAtCenter(center, zoom:1, context:bitmap)
 dispatch_async(dispatch_get_main_queue()) {
 self.bitmapContext = bitmap
 self.setNeedsDisplay()
 UIApplication.shared.endBackgroundTask(bti) // *
 }
 }
}

If our app is backgrounded while drawThatPuppy is in progress, it will (we hope) be
given enough background time to run that it can eventually proceed all the way to the
end. Thus, the property bitmapContext will be updated, and setNeedsDisplay will
be called, while we are still in the background. Our draw(_:) will not be called until
our app is brought back to the front, but there’s nothing wrong with that.

It’s good policy to use a similar technique when you’re notified that your app is
being backgrounded. You might respond to the app delegate message application-
DidEnterBackground: (or the corresponding .UIApplicationDidEnterBackground)
by saving data and reducing memory usage, but this can take time, whereas you’d like
to return from applicationDidEnterBackground: as quickly as possible. A reason‐
able solution is to implement applicationDidEnterBackground: very much like
drawThatPuppy in the example I just gave: call beginBackgroundTaskWithExpiration-
Handler:, and then call dispatch_async to get off the main thread and do your sav‐
ing and so forth.

1046 | Chapter 25: Threads

CHAPTER 26

Undo

This chapter has not yet been revised for iOS 10.

The ability to undo the most recent action is familiar from macOS. The idea is that,
provided the user realizes soon enough that a mistake has been made, that mistake
can be reversed. Typically, a Mac application will maintain an internal stack of undoa‐
ble actions; choosing Edit → Undo or pressing Command-Z will reverse the action at
the top of the stack, and will also make that action available for redo.

Some iOS apps, too, may benefit from at least a limited undo facility, and this is not
difficult to implement. Some built-in views — in particular, those that involve text
entry, UITextField and UITextView (Chapter 10) — implement undo already. And
you can add it in other areas of your app.

Undo is provided through an instance of NSUndoManager, which basically just
maintains a stack of undoable actions, along with a secondary stack of redoable
actions. The goal in general is to work with the NSUndoManager so as to handle both
undo and redo in the standard manner: when the user chooses to undo the most
recent action, the action at the top of the undo stack is popped off and reversed and is
pushed onto the top of the redo stack.

In this chapter, I’ll illustrate an NSUndoManager for a simple app that has just one
kind of undoable action. More complicated apps, obviously, will be more compli‐
cated! On the other hand, iOS apps, unlike macOS apps, do not generally need deep
or pervasive undo functionality. For more about the NSUndoManager class and how
to use it, read Apple’s Undo Architecture as well as the documentation for the class
itself. Also, UIDocument (see Chapter 23) has an undo manager (its undoManager
property), which automatically and appropriately updates the document’s “dirty” state
for you.

1047

Undo Manager
In our artificially simple app, the user can drag a small square around the screen.
We’ll start with an instance of a UIView subclass, MyView, to which has been
attached a UIPanGestureRecognizer to make it draggable, as described in Chapter 5.
The gesture recognizer’s action target is the MyView instance itself:

func dragging (p : UIPanGestureRecognizer) {
 switch p.state {
 case .Began, .Changed:
 let delta = p.translationInView(self.superview!)
 var c = self.center
 c.x += delta.x; c.y += delta.y
 self.center = c
 p.setTranslation(CGPointZero, inView: self.superview!)
 default:break
 }
}

To make dragging of this view undoable, we need an NSUndoManager instance. Let’s
store this in a property of MyView itself, self.undoer:

let undoer = NSUndoManager()

Target–Action Undo
There are three ways to register an action as undoable. I’ll start with the NSUndo‐
Manager method registerUndoWithTarget:selector:object:. This method uses a
target–action architecture: you provide a target, a selector for a method that takes one
parameter, and the object value to be passed as argument when the method is called.
Then, later, if the NSUndoManager is sent the undo message, it simply sends that
action to that target with that argument. The job of the action method is to undo
whatever it is that needs undoing.

What we want to undo here is the setting of our center property. This can’t be
expressed directly using a target–action architecture, because the parameter of set-
Center: needs to be a CGPoint; we can’t use a CGPoint as the object: in register-
UndoWithTarget:selector:object:, because it isn’t an Objective-C object (Swift will
complain that it doesn’t conform to AnyObject). Therefore we’re going to have to
provide, as our action method, a secondary method that does take an object parame‐
ter. This is neither bad nor unusual; it is quite common for actions to have a special
representation just for the purpose of making them undoable.

So, in our dragging: method, instead of setting self.center to c directly, we now
call a secondary method (let’s call it setCenterUndoably:):

1048 | Chapter 26: Undo

var c = self.center
c.x += delta.x; c.y += delta.y
self.setCenterUndoably(NSValue(CGPoint:c))

At a minimum, setCenterUndoably: should do the job that setting self.center
used to do:

func setCenterUndoably (newCenter:NSValue) {
 self.center = newCenter.CGPointValue()
}

This works in the sense that the view is draggable exactly as before, but we have not
yet made this action undoable. To do so, we must ask ourselves what message the
NSUndoManager would need to send in order to undo the action we are about to
perform. We would want the NSUndoManager to set self.center back to the value
it has now, before we change it as we are about to do. And what method would
NSUndoManager call in order to do that? It would call setCenterUndoably:, the very
method we are implementing now! So:

func setCenterUndoably (newCenter:NSValue) {
 self.undoer.registerUndoWithTarget(
 self, selector: #selector(setCenterUndoably),
 object: NSValue(CGPoint:self.center))
 self.center = newCenter.CGPointValue()
}

That code has a remarkable effect: it makes our action not only undoable but also
redoable! The reason is that NSUndoManager has an internal state, and responds dif‐
ferently to registerUndoWithTarget:selector:object: depending on its state. If
the NSUndoManager is sent registerUndoWithTarget:selector:object: while it is
undoing, it puts the target–action information on the redo stack instead of the undo
stack (because redo is the undo of an undo, if you see what I mean).

Here’s how our code works to undo and then redo an action:

1. We perform an action by way of setCenterUndoably:, which calls registerUndo-
WithTarget:selector:object: with the old value of self.center. The
NSUndoManager adds this to its undo stack.

2. Now suppose we want to undo that action. We send undo to the NSUndo‐
Manager.

3. The NSUndoManager calls setCenterUndoably: with the old value that we
passed in earlier when we called registerUndoWithTarget:selector:object:.
Thus, we are going to set the center back to that old value. But before we do that,
we send registerUndoWithTarget:selector:object: to the NSUndoManager
with the current value of self.center. The NSUndoManager knows that it is
currently undoing, so it understands this registration as something to be added
to its redo stack.

Undo Manager | 1049

4. Now suppose we want to redo that undo. We send redo to the NSUndoManager,
and sure enough, the NSUndoManager calls setCenterUndoably: with the value
that we previously undid. (And, once again, we call registerUndoWith-

Target:selector:object: with an action that goes onto the NSUndoManager’s
undo stack.)

Undo Grouping
So far, so good. But our implementation of undo is very annoying, because we are
adding a single object to the undo stack every time dragging: is called — and it is
called many times during the course of a single drag. Thus, undoing merely undoes
the tiny increment corresponding to one individual dragging: call. What we’d like is
for undoing to undo an entire dragging gesture. We can implement this through undo
grouping. As the gesture begins, we start a group; when the gesture ends, we end the
group:

func dragging (p : UIPanGestureRecognizer) {
 switch p.state {
 case .Began:
 self.undoer.beginUndoGrouping()
 fallthrough
 case .Began, .Changed:
 let delta = p.translationInView(self.superview!)
 var c = self.center
 c.x += delta.x; c.y += delta.y
 self.setCenterUndoably(NSValue(CGPoint:c))
 p.setTranslation(CGPointZero, inView: self.superview!)
 case .Ended, .Cancelled:
 self.undoer.endUndoGrouping()
 default: break
 }
}

This works: each complete gesture of dragging MyView, from the time the user’s fin‐
ger contacts the view to the time it leaves, is now undoable (and redoable) as a single
unit.

A further refinement would be to animate the “drag” that the NSUndoManager per‐
forms when it undoes or redoes a user drag gesture. To do so, we take advantage of
the fact that we, too, can examine the NSUndoManager’s state by way of its
isUndoing and isRedoing properties; we animate the center change when the
NSUndoManager is “dragging,” but not when the user is dragging:

 func setCenterUndoably (newCenter:NSValue) {
 self.undoer.registerUndoWithTarget(
 self, selector: #selector(setCenterUndoably),
 object: NSValue(CGPoint:self.center))
 if self.undoer.undoing || self.undoer.redoing {

1050 | Chapter 26: Undo

 UIView.animateWithDuration(
 0.4, delay: 0.1, options: [], animations: {
 self.center = newCenter.CGPointValue()
 }, completion: nil)
 } else {
 // just do it
 self.center = newCenter.CGPointValue()
 }
 }

Invocation Undo
Earlier I said that registerUndoWithTarget:selector:object: was one of three
ways to register an action as undoable. The second way is prepareWithInvocation-
Target:. In general, the advantage of prepareWithInvocationTarget: is that it lets
you specify a method with any number of parameters, and those parameters needn’t
be objects. You provide the target and, in the same line of code, send to the object
returned from this call the message and arguments you want sent when the NSUndo‐
Manager is sent undo or redo. So, in our example, instead of this line:

self.undoer.registerUndoWithTarget(
 self, selector: #selector(setCenterUndoably),
 object: NSValue(CGPoint:self.center))

You’d say this:

self.undoer.prepareWithInvocationTarget(self)
 .setCenterUndoably(self.center)

That code seems impossible: how can we send setCenterUndoably: without calling
setCenterUndoably:? Either we are sending it to self, in which case it should
actually be called at this moment, or we are sending it to some other object that
doesn’t implement setCenterUndoably:, in which case our app should crash. How‐
ever, under the hood, the NSUndoManager is cleverly using dynamism (similarly to
the message-forwarding example in Chapter 12) to capture this call as an NSInvoca‐
tion object, which it can use later to send the same message with the same arguments
to the specified target.

If we’re going to use prepareWithInvocationTarget:, there’s no need to wrap the
CGPoint value representing the old and new center of our view as an NSValue. So
our complete implementation now looks like this:

func setCenterUndoably (newCenter:CGPoint) { // *
 self.undoer.prepareWithInvocationTarget(self)
 .setCenterUndoably(self.center) // *
 if self.undoer.undoing || self.undoer.redoing {
 UIView.animateWithDuration(
 0.4, delay: 0.1, options: [], animations: {
 self.center = newCenter // *
 }, completion: nil)

Undo Manager | 1051

 } else {
 // just do it
 self.center = newCenter // *
 }
}
func dragging (p : UIPanGestureRecognizer) {
 switch p.state {
 case .Began:
 self.undoer.beginUndoGrouping()
 fallthrough
 case .Began, .Changed:
 let delta = p.translationInView(self.superview!)
 var c = self.center
 c.x += delta.x; c.y += delta.y
 self.setCenterUndoably(c) // *
 p.setTranslation(CGPointZero, inView: self.superview!)
 case .Ended, .Cancelled:
 self.undoer.endUndoGrouping()
 default: break
 }
}

Functional Undo
New in iOS 9, there’s a third way to register an action as undoable: registerUndoWith-
Target:handler:. The handler: is a function that will take one parameter, namely
whatever you pass as the target: argument, and will be called when undoing (or, if
we register while undoing, when redoing). This gives us a more idiomatic way to do
what prepareWithInvocationTarget: does:

func setCenterUndoably (newCenter:CGPoint) {
 let oldCenter = self.center
 self.undoer.registerUndoWithTarget(self) {
 v in
 v.setCenterUndoably(oldCenter)
 }
 if self.undoer.undoing || self.undoer.redoing {
 UIView.animateWithDuration(
 0.4, delay: 0.1, options: [], animations: {
 self.center = newCenter // *
 }, completion: nil)
 } else {
 // just do it
 self.center = newCenter // *
 }
}

My handler code refers to v, rather than to self, even though self and v are the
same object, so that I don’t accidentally capture self strongly in the closure. The rea‐
son for setting oldCenter before calling registerUndoWithTarget:handler: is to

1052 | Chapter 26: Undo

capture the value of self.center as it is now; if our handler function were to call set-
CenterUndoably(v.center), we’d be using the value that v.center will have at undo
time, and we would be setting the center to the value it already has, which would be
pointless.

Our code works, but we are failing to take full advantage of the fact that we now have
the ability to register with the undo manager a full-fledged function rather than a
mere function call. This means that we can move into the handler: function every‐
thing that should happen when undoing. This includes the animation! So our set-
CenterUndoably: implementation now looks like this:

func setCenterUndoably (newCenter:CGPoint) {
 let oldCenter = self.center
 self.undoer.registerUndoWithTarget(self) {
 v in
 UIView.animateWithDuration(
 0.4, delay: 0.1, options: [], animations: {
 v.center = oldCenter
 }, completion: nil)
 v.setCenterUndoably(oldCenter)
 }
 if !(self.undoer.undoing || self.undoer.redoing) {
 // just do it
 self.center = newCenter
 }
}

That’s much cleaner. Our handler: function still needs to call setCenterUndoably:,
because otherwise we won’t get redo registration during undo. But if we are undoing
or redoing, our registerUndoWithTarget: call is the only thing that happens; we set
self.center to newCenter only if we were called by the dragging: gesture recog‐
nizer handler.

But wait! In that case, why are we setting self.center here at all? We can do it back
in the dragging: gesture recognizer handler, just we were doing before we added
undo to this app! The result is, I think, the cleanest and clearest implementation of
all:

func registerForUndo() {
 let oldCenter = self.center
 self.undoer.registerUndoWithTarget(self) {
 v in
 UIView.animateWithDuration(
 0.4, delay: 0.1, options: [], animations: {
 v.center = oldCenter
 }, completion: nil)
 v.registerForUndo()
 }
}
func dragging (p : UIPanGestureRecognizer) {

Undo Manager | 1053

 switch p.state {
 case .Began:
 self.undoer.beginUndoGrouping()
 fallthrough
 case .Began, .Changed:
 let delta = p.translationInView(self.superview!)
 var c = self.center
 c.x += delta.x; c.y += delta.y
 self.registerForUndo() // *
 self.center = c // *
 p.setTranslation(CGPointZero, inView: self.superview!)
 case .Ended, .Cancelled:
 self.undoer.endUndoGrouping()
 default: break
 }
}

(A further refinement might be to move registerForUndo inside the dragging: ges‐
ture recognizer handler as a local function.)

Undo Interface
We must also decide how to let the user request undo and redo. In developing the
code from the preceding section, I used two buttons: an Undo button that sent undo
to the NSUndoManager, and a Redo button that sent redo to the NSUndoManager.
This can be a perfectly reasonable interface, but let’s talk about some others.

Shake-To-Edit
By default, your app supports shake-to-edit. This means the user can shake the device
to bring up an undo/redo interface. We discussed this briefly in Chapter 22. If you
don’t turn off this feature by setting the shared UIApplication’s applicationSupports-
ShakeToEdit property to false, then when the user shakes the device, the runtime
walks up the responder chain, starting with the first responder, looking for a res‐
ponder whose inherited undoManager property returns an actual NSUndoManager
instance. If it finds one, it puts up an undo/redo interface, allowing the user to com‐
municate with that NSUndoManager.

You will recall what it takes for a UIResponder to be first responder in this sense: it
must return true from canBecomeFirstResponder, and it must actually be made first
responder through a call to becomeFirstResponder. Let’s make MyView satisfy these
requirements. For example, we might call becomeFirstResponder at the end of
dragging:, like this:

override func canBecomeFirstResponder() -> Bool {
 return true
}
func dragging (p : UIPanGestureRecognizer) {

1054 | Chapter 26: Undo

Figure 26-1. The shake-to-edit undo/redo interface

 switch p.state {
 // ... the rest as before ...
 case .Ended, .Cancelled:
 self.undoer.endUndoGrouping()
 self.becomeFirstResponder()
 default: break
 }
}

Then, to make shake-to-edit work, we have only to provide a getter for the undo-
Manager property that returns our undo manager, self.undoer:

let undoer = NSUndoManager()
override var undoManager : NSUndoManager? {
 return self.undoer
}

This works: shaking the device now brings up the undo/redo interface, and its but‐
tons work correctly. However, I don’t like the way the buttons are labeled; they just
say Undo and Redo. To make this interface more expressive, we should provide a
string describing each undoable action by calling setActionName:. We can appropri‐
ately and conveniently do this at the same time that we register our undo action:

self.undoer.setActionName("Move")

Now the undo/redo interface has more informative labels, as shown in Figure 26-1.

Undo Menu
Another possible interface is through a menu (Figure 26-2). Personally, I prefer this
approach, as I am not fond of shake-to-edit (it seems both violent and unreliable).
This is the same menu used by a UITextField or UITextView for displaying the Copy
and Paste menu items (Chapter 10). The requirements for summoning this menu are
effectively the same as those for shake-to-edit: we need a responder chain with a first
responder at the bottom of it. So the code we’ve just supplied for making MyView
first responder remains applicable.

Undo Interface | 1055

Figure 26-2. The shared menu as an undo/redo interface

We can make a menu appear, for example, in response to a long press on our MyView
instance. So let’s attach another gesture recognizer to MyView. This will be a UILong‐
PressGestureRecognizer, whose action handler is called longPress:. Recall from
Chapter 10 how to implement the menu: we get the singleton global UIMenu‐
Controller object and specify an array of custom UIMenuItems as its menuItems
property. We can make the menu appear by sending the UIMenuController the set-
MenuVisible:animated: message. But a particular menu item will appear in the
menu only if we also return true from canPerformAction(_:withSender:) for that
menu item’s action. Delightfully, the NSUndoManager’s canUndo and canRedo proper‐
ties tell us what value canPerformAction(_:withSender:) should return. We can
also get the titles for our custom menu items from the NSUndoManager itself,
through its undoMenuItemTitle property:

func longPress (g : UIGestureRecognizer) {
 if g.state == .Began {
 let m = UIMenuController.sharedMenuController()
 m.setTargetRect(self.bounds, inView: self)
 let mi1 = UIMenuItem(
 title: self.undoer.undoMenuItemTitle, action: #selector(undo))
 let mi2 = UIMenuItem(
 title: self.undoer.redoMenuItemTitle, action: #selector(redo))
 m.menuItems = [mi1, mi2]
 m.setMenuVisible(true, animated:true)
 }
}
override func canPerformAction(
 action: Selector, withSender sender: Any!) -> Bool {
 if action == #selector(undo) {
 return self.undoer.canUndo
 }
 if action == #selector(redo) {
 return self.undoer.canRedo
 }
 return super.canPerformAction(action, withSender: sender)
}
func undo(_:AnyObject?) {
 self.undoer.undo()

1056 | Chapter 26: Undo

}
func redo(_:AnyObject?) {
 self.undoer.redo()
}

Undo Interface | 1057

APPENDIX A

Application Lifetime Events

This chapter has not yet been revised for iOS 10.

Your app’s one and only application object (a UIApplication instance, or on rare occa‐
sions a UIApplication subclass instance) is created for you as the shared application
object by UIApplicationMain, along with its delegate; in the Xcode project templates,
this delegate is an instance of the AppDelegate class. The application reports lifetime
events through method calls to its delegate; other instances can also register to receive
most of these events as notifications.

These events, notifying you of stages in the lifetime of your app as a whole and giving
your code an opportunity to run in response, are extraordinarily important and fun‐
damental. This appendix is devoted to a survey of them, along with some typical
scenarios in which they will arrive.

Application States
In the early days of iOS — before iOS 4 — the lifetime of an app was extremely sim‐
ple: either it was running or it wasn’t. The user tapped your app’s icon in the spring‐
board, and your app was launched and began to run. The user used your app for a
while. Eventually, the user pressed the Home button (the physical button next to the
screen) and your app was terminated — it was no longer running. The user had quit
your app. Launch, run, quit: that was the entire life cycle of an app. If the user decided
to use your app again, the whole cycle started again.

The reason for this simplicity was that, before iOS 4, an iOS device, with its slow pro‐
cessor and its almost brutal paucity of memory and other resources, compensated for
its own shortcomings by a simple rule: it could run only one app at a time. While your
app was running, it occupied not only the entire screen but the vast majority of the

1059

device’s resources, leaving room only for the system and some hidden built-in pro‐
cesses to support it; it had, in effect, sole and complete control of the device.

Starting in iOS 4, that changed. Apple devised an ingenious architecture whereby,
despite the device’s limited resources, more than one app could run simultaneously —
sort of. The Home button changed its meaning and its effect upon your app: contrary
to the naïve perception of some users, the Home button was no longer a Quit button.
Nowadays, when the user presses the Home button to leave your app, your app does
not die; technically, the Home button does not terminate your app. When your app
occupies the entire screen, it is in the foreground (or frontmost); when some other app
proceeds to occupy the entire screen, your app is backgrounded and suspended. This
means that your app is essentially freeze-dried; its process still exists, but it isn’t
actively running, and it isn’t getting any events — though notifications can be stored
by the system for later delivery if your app comes to the front once again.

The cleverness of this arrangement is that your app, when the user returns to it after
having left it to use some other app for a while, is found in the very same state as
when the user left it. The app was not terminated; it simply stopped and froze, and
waited in suspended animation. Returning to your app no longer means that your
app is launched, but merely that it is resumed.

All of this is not to say, however, that your app can’t be terminated. It can be —
though not by the user pressing the Home button. The most common scenario is that
the system quietly kills your app while it is suspended. This undermines the app’s
ability to resume; when the user returns to your app, it will have to launch from
scratch, just as in the pre–iOS 4 days. The death of your app is rather like that of the
scientists killed by HAL 9000 in 2001: A Space Odyssey — they went to sleep expect‐
ing to wake up later, but instead their life-support systems were turned off while they
slept. The iOS system’s reasons for killing your app are not quite as paranoid as HAL’s,
but they do have a certain Darwinian ruthlessness: your app, while suspended, con‐
tinues to occupy a chunk of the device’s memory, and the system needs to reclaim that
memory so some other app can use it. It is also possible, of course, that the user will
switch off the device while your app is asleep.

Your app can opt out of background suspension: you set the “Application does
not run in background” key (UIApplicationExitsOnSuspend) in your Info.plist,
and now the Home button does terminate your app, just as in the pre–iOS 4 days.
It’s improbable that you would want to do this, but it could make sense for some
apps.

When the user leaves your app, therefore, one of two things might happen later. It
could be woken and resumed from suspended animation, in the very state that it was
in when the user left it, or it could be launched from scratch because it was termi‐
nated in the background. It is this bifurcation of your app’s possible fates that state
saving and restoration, discussed at the end of Chapter 6, is intended to cope with.

1060 | Appendix A: Application Lifetime Events

The idea, in theory, is that your app should behave the same way when it comes to the
front, regardless of whether it was terminated or merely suspended. We all know
from experience, however, that this goal is difficult to achieve, and Apple’s own apps
are noteworthy for failing to achieve it; for example, it is perfectly obvious whether
iBooks was suspended or terminated, as it behaves completely differently when it
comes to the front.

A further complication is that your app can be backgrounded without being sus‐
pended. This is a special privilege, accorded in order that your app may perform a
limited range of highly focussed activities. For example, an app that is playing music
or tracking the device’s location when it goes into the background may be permitted
to continue doing so in the background. In addition, an app that has been suspended
can be woken briefly, remaining in the background, in order to receive and respond to
a message — in order to update its data via the network, for example, or to be told
that the user has crossed a geofence. (See Chapters 14, 22, and 24.)

There is also an intermediate state in which your app can find itself, where it is nei‐
ther frontmost nor backgrounded. This happens, for example, when the user sum‐
mons the control center or notification center in front of your app — or, new in iOS
9, during iPad multitasking. In such situations, your app may be inactive without
actually being backgrounded.

Your app’s code can thus, in fact, be running even though the app is not frontmost. If
your code needs to know the app’s state in this regard, it can ask the shared UIAppli‐
cation object for its applicationState (UIApplicationState), which will be one of
these:

• .Active

• .Inactive

• .Background

App Delegate Events
The suite of basic application lifetime events that may be sent to your app delegate is
surprisingly limited; indeed, in my opinion, the information your app is given is
unfortunately rather too coarse-grained. The events are as follows:

application(_:didFinishLaunchingWithOptions:)

The app has started up from scratch. You’ll typically perform initializations here.
If an app doesn’t have a main storyboard, this code must also create the app’s
window and show it.

Application Lifetime Events | 1061

(Another event, application(_:willFinishLaunchingWithOptions:), arrives
even earlier. Its purpose is to allow your app to participate in the state saving and
restoration mechanism discussed in Chapter 6.)

applicationDidBecomeActive(_:)

Received after application(_:didFinishLaunchingWithOptions:). Also
received after the end of the situation that caused the app delegate to receive
applicationWillResignActive:.

applicationWillResignActive:

One possibility is that something has blocked the app’s interface — for example,
the screen has been locked. A local notification alert or an incoming phone call
could also cause this event. So too, in iOS 9, can an iPad multitasking situation.

When this situation ends, the app delegate will receive applicationDidBecome-
Active(_:). Alternatively, the app may be about to go into the background (and
will then probably be suspended); in that case, the next event will be
applicationDidEnterBackground:.

applicationDidEnterBackground:

The application has been backgrounded. Always preceded by applicationWill-
ResignActive:.

Your app will then probably be suspended; before that happens, you have a little
time to finish up last-minute tasks, such as relinquishing unneeded memory (see
Chapter 6), and if you need more time for a lengthy task, you can ask for it (see
Chapter 25).

applicationWillEnterForeground:

The application was backgrounded, and is now coming back to the front. Always
followed by applicationDidBecomeActive(_:). Note that this message is not
sent on launch, because the app wasn’t previously in the background.

applicationWillTerminate:

The application is about to be killed dead. Surprisingly, however, even though
every running app will eventually be terminated, it is extremely unlikely that
your app will ever receive this event (unless it has opted out of background sus‐
pension, with UIApplicationExitsOnSuspend). The reason is that, by the time
your app is terminated by the system, it is usually already suspended and incapa‐
ble of receiving events. (I’ll mention some exceptional cases, though, in a
moment; and see Chapter 14 for another.)

App Lifetime Scenarios
The application lifetime events are best understood through some typical scenarios:

1062 | Appendix A: Application Lifetime Events

The app launches from scratch
Your app delegate receives these messages:

• application(_:didFinishLaunchingWithOptions:)

• applicationDidBecomeActive(_:)

The user clicks the Home button
Your app delegate receives these messages:

• applicationWillResignActive:

• applicationDidEnterBackground:

The user summons your backgrounded app to the front
Your app delegate receives these messages:

• applicationWillEnterForeground:

• applicationDidBecomeActive(_:)

If the user summons your backgrounded app to the front indirectly, another del‐
egate message may be sent between these two calls. For example, if the user asks
another app to hand a file over to your app (Chapter 23), your app receives
application:openURL:options: between applicationWillEnterForeground:
and applicationDidBecomeActive(_:).

The user double-clicks the Home button
The user can now work in the app switcher interface. If your app is frontmost,
your app delegate receives this message:

• applicationWillResignActive:

The user, in the app switcher, chooses another app
If your app was frontmost, your app delegate receives this message:

• applicationDidEnterBackground:

The user, in the app switcher, chooses your app
If your app was the most recently frontmost app, then it was never backgroun‐
ded, so your app delegate receives this message:

• applicationDidBecomeActive(_:)

The user, in the app switcher, terminates your app
If your app was the most recently frontmost app, your app delegate receives these
messages:

Application Lifetime Events | 1063

• applicationDidEnterBackground:

• applicationWillTerminate:

This is one of the few extraordinary circumstances under which your app can
receive applicationWillTerminate:, because it was never backgrounded long
enough to be suspended.

The user summons the control center or notification center
If your app is frontmost, your app delegate receives this message:

• applicationWillResignActive:

The user dismisses the control center or notification center
If your app is frontmost, your app delegate receives this message:

• applicationDidBecomeActive(_:)

A local notification alert from another app appears
If your app is frontmost, your app delegate receives this message:

• applicationWillResignActive:

From a local notification alert, the user launches the other app
Your app delegate receives this message:

• applicationDidEnterBackground:

On a multitasking iPad, the user splits the screen to show the app switcher
Your app delegate receives this message:

• applicationWillResignActive:

On a multitasking iPad, the user splits the screen to show two apps
Your app delegate, if it received applicationWillResignActive:, receives this
message:

• applicationDidBecomeActive(_:) (both apps are active when they share
the screen)

On a multitasking iPad, the user toggles between split sizes
Your app delegate receives these messages:

• applicationWillResignActive:

1064 | Appendix A: Application Lifetime Events

• applicationDidBecomeActive(_:) (the app is inactive while the user is
dragging the divider)

The screen is locked
If your app is frontmost, your app delegate receives these messages:

• applicationWillResignActive:

• applicationDidEnterBackground:

The screen is unlocked
If your app is frontmost, your app delegate receives these messages:

• applicationWillEnterForeground:

• applicationDidBecomeActive(_:)

The user holds the screen-lock button down
The device offers to shut itself off. If your app is frontmost, your app delegate
receives this message:

• applicationWillResignActive:

The user, as the device offers to shut itself off, cancels
If your app is frontmost, your app delegate receives this message:

• applicationDidBecomeActive(_:)

The user, as the device offers to shut itself off, accepts
If your app is frontmost, the app delegate receives these messages:

• applicationDidEnterBackground:

• applicationWillTerminate:

Bear in mind that you can’t make any assumptions about the timing of the app dele‐
gate messages with respect to lifetime events received by other objects. They may well
be interwoven in surprising ways. For example, there are circumstances where the
root view controller may receive its initial lifetime events, such as viewDidLoad: and
viewWillAppear(_:), before application(_:didFinishLaunchingWithOptions:)

has even finished running.

Different systems can also introduce changes in timing. iOS 8 brought with it a
momentous change: the app delegate receives applicationDidBecomeActive(_:)
after the root view controller’s interface has appeared and the root view controller has

Application Lifetime Events | 1065

received viewDidAppear(_:), so that the opening sequence of events in iOS 8 is like
this:

• application(_:didFinishLaunchingWithOptions:)

• viewDidLoad

• viewWillAppear(_:)

• viewDidAppear(_:)

• applicationDidBecomeActive(_:)

This was a disaster for many of my apps. I very typically register for .UIApplication-
DidBecomeActive in the view controller’s viewDidAppear(_:) in order to be notified
of subsequent activations of the app; but if I do that in iOS 8, the notification I just
registered for arrives immediately. In iOS 9, however, the order returns to what it was
in iOS 7 and before:

• application(_:didFinishLaunchingWithOptions:)

• viewDidLoad

• viewWillAppear(_:)

• applicationDidBecomeActive(_:)

• viewDidAppear(_:)

Needless to say, this difference alone can make writing an app compatible with both
iOS 8 and iOS 9 a fairly daunting proposition.

1066 | Appendix A: Application Lifetime Events

APPENDIX B

Some Useful Utility Functions

This chapter has not yet been revised for iOS 10.

As you work with iOS and Swift, you’ll doubtless develop a personal library of fre‐
quently used convenience functions. Here are some that have come in handy in my
own life, to which I’ve referred in the course of this book.

App Without a Main Storyboard
As I explained in Chapter 1, if an app lacks a main storyboard, or if you want to
ignore the main storyboard and generate the app’s initial interface yourself, configur‐
ing the window and supplying the root view controller is up to you. A minimal app
delegate class would look something like this:

@UIApplicationMain
class AppDelegate : UIResponder, UIApplicationDelegate {
 var window : UIWindow?
 func application(_ application: UIApplication,
 didFinishLaunchingWithOptions
 launchOptions: [UIApplicationLaunchOptionsKey : Any]?)
 -> Bool {
 self.window = self.window ?? UIWindow()
 self.window!.backgroundColor = .white
 self.window!.rootViewController = ViewController() // *
 self.window!.makeKeyAndVisible()
 return true
 }
}

The starred line calls attention to the fact that I am failing to grapple with the ques‐
tion of where our ViewController instance is going to get its main view; the ways of
doing that are described in Chapter 6.

1067

Core Graphics Initializers
I’m furious at Swift 3 for removing the global CGRectMake function, which needs no
argument labels when you call it. This leaves us only with various CGRect initializers,
all of which do need argument labels. I find those labels otiose, clumsy, and verbose;
we all know perfectly well what each argument signifies, so why waste space and clut‐
ter the call with labels? I paste into every app project a CGRect extension supplying
an initializer without labels:

extension CGRect {
 init(_ x:CGFloat, _ y:CGFloat, _ w:CGFloat, _ h:CGFloat) {
 self.init(x:x, y:y, width:w, height:h)
 }
}

As long as we’re doing that, we may as well supply the three other common Core
Graphics initializers as well:

extension CGSize {
 init(_ width:CGFloat, _ height:CGFloat) {
 self.init(width:width, height:height)
 }
}
extension CGPoint {
 init(_ x:CGFloat, _ y:CGFloat) {
 self.init(x:x, y:y)
 }
}
extension CGVector {
 init (_ dx:CGFloat, _ dy:CGFloat) {
 self.init(dx:dx, dy:dy)
 }
}

Center of a CGRect
One so frequently wants the center point of a CGRect that even the shorthand
CGPoint(rect.midX, rect.midY) becomes tedious. You can extend CGRect to do
the work for you:

extension CGRect {
 var center : CGPoint {
 return CGPoint(self.midX, self.midY)
 }
}

1068 | Appendix B: Some Useful Utility Functions

Adjust a CGSize
There’s a CGRect insetBy(dx:dy:), but there’s no comparable method for changing
an existing CGSize by a width delta and a height delta. Let’s make one:

extension CGSize {
 func sizeByDelta(dw dw:CGFloat, dh:CGFloat) -> CGSize {
 return CGSizeMake(self.width + dw, self.height + dh)
 }
}

Delayed Performance
Delayed performance is of paramount importance in iOS programming, where it is
often the case that the interface must be given a moment to settle down before we
proceed to the next command in a sequence. Calling asyncAfter is not difficult, but
we can simplify with a utility function:

func delay(_ delay:Double, closure:@escaping ()->()) {
 let when = DispatchTime.now() + delay
 DispatchQueue.main.asyncAfter(deadline: when, execute: closure)
}

And call it like this:

delay(0.4) {
 // do something here
}

Dictionary of Views
There are no Swift macros (because there’s no Swift preprocessor), so you can’t write
the equivalent of Objective-C’s NSDictionaryOfVariableBindings, which turns a lit‐
eral list of view names into a dictionary of string names and view references for use in
connection with NSLayoutConstraint’s constraintsWithVisualFormat. You can,
however, generate such a dictionary with fixed string names, like this:

func dictionaryOfNames(_ arr:UIView...) -> [String:UIView] {
 var d = [String:UIView]()
 for (ix,v) in arr.enumerated() {
 d["v\(ix+1)"] = v
 }
 return d
}

This utility function takes a list of views and simply makes up new string names for
them, of the form "v1", "v2", and so on, in order. Knowing the rule by which the
string names are generated, you then use those string names in your visual format
strings. For example, if you generate the dictionary by calling dictionaryOf-

Some Useful Utility Functions | 1069

Names(mainView, myLabel), then in any visual format string that uses this dictio‐
nary, you will refer to mainView by the name v1 and myLabel by the name v2.

Constraint Issues
These are NSLayoutConstraint class methods, added in an extension, aimed at help‐
ing to detect and analyze constraint issues (referred to in Chapter 1):

extension NSLayoutConstraint {
 class func reportAmbiguity (_ v:UIView?) {
 var v = v
 if v == nil {
 v = UIApplication.shared.keyWindow
 }
 for vv in v!.subviews {
 print("\(vv) \(vv.hasAmbiguousLayout)")
 if vv.subviews.count > 0 {
 self.reportAmbiguity(vv)
 }
 }
 }
 class func listConstraints (_ v:UIView?) {
 var v = v
 if v == nil {
 v = UIApplication.shared.keyWindow
 }
 for vv in v!.subviews {
 let arr1 = vv.constraintsAffectingLayout(for:.horizontal)
 let arr2 = vv.constraintsAffectingLayout(for:.vertical)
 NSLog("\n\n%@\nH: %@\nV:%@", vv, arr1, arr2);
 if vv.subviews.count > 0 {
 self.listConstraints(vv)
 }
 }
 }
}

Configure a Value Class At the Point of Use
A recurring pattern in Cocoa is that a value class is instantiated and that instance is
configured beforehand for a one-time use:

let para = NSMutableParagraphStyle()
para.headIndent = 10
para.firstLineHeadIndent = 10
para.tailIndent = -10
para.lineBreakMode = .ByWordWrapping
para.alignment = .Center

1070 | Appendix B: Some Useful Utility Functions

para.paragraphSpacing = 15
content.addAttribute(
 NSParagraphStyleAttributeName,
 value:para, range:NSMakeRange(0,1))

This has a clunky, procedural feel. It would be clearer and more functional, as well as
reflecting the natural order of thought, if all of that could happen at the actual point
of use. Here’s a generic function that permits us to do that:

func lend<T> (closure:(T)->()) -> T where T:NSObject {
 let orig = T()
 closure(orig)
 return orig
}

Now we can express ourselves like this:

content.addAttribute(NSParagraphStyleAttributeName,
 value:lend {
 (para:NSMutableParagraphStyle) in
 para.headIndent = 10
 para.firstLineHeadIndent = 10
 para.tailIndent = -10
 para.lineBreakMode = .ByWordWrapping
 para.alignment = .Center
 para.paragraphSpacing = 15
 }, range:NSMakeRange(0,1))

Drawing Into an Image Context
My original goal was to encapsulate the boring, repetitive, clunky, imperative-
programming dance of beginning a UIGraphics image context with UIGraphics-
BeginImageContextWithOptions, drawing into it, extracting the image, and ending
the context; instead, I wanted a utility function that did everything but the drawing,
which would be provided as a function parameter. Then iOS 10 introduced UIGra‐
phicsImageRenderer, which works in exactly that way. But now there’s a new prob‐
lem: what if you want backwards compatibility? So now my utility function combines
its old implementation with a new one:

func imageOfSize(_ size:CGSize, opaque:Bool = false,
 closure: () -> ()) -> UIImage {
 if #available(iOS 10.0, *) {
 let f = UIGraphicsImageRendererFormat.default()
 f.opaque = opaque
 let r = UIGraphicsImageRenderer(size: size, format: f)
 return r.image {_ in closure()}
 } else {
 UIGraphicsBeginImageContextWithOptions(size, opaque, 0)
 closure()
 let result = UIGraphicsGetImageFromCurrentImageContext()!

Some Useful Utility Functions | 1071

 UIGraphicsEndImageContext()
 return result
 }
}

You call it like this:

let im = imageOfSize(CGSize(width:100, height:100)) {
 let con = UIGraphicsGetCurrentContext()!
 con.addEllipse(in:CGRect(0,0,100,100))
 con.setFillColor(UIColor.blue.cgColor)
 con.fillPath()
}

Finite Repetition of an Animation
This is a solution to the problem, posed in Chapter 4, of how to repeat a view anima‐
tion a small fixed number of times without using “begin/commit” syntax. My
approach is to employ tail recursion and a counter to chain the individual anima‐
tions. The delay call unwinds the call stack and works around possible drawing
glitches:

extension UIView {
 class func animateWithTimes(times:Int,
 duration dur: NSTimeInterval,
 delay del: NSTimeInterval,
 options opts: UIViewAnimationOptions,
 animations anim: () -> Void,
 completion comp: ((Bool) -> Void)?) {
 func helper(t:Int,
 _ dur: NSTimeInterval,
 _ del: NSTimeInterval,
 _ opt: UIViewAnimationOptions,
 _ anim: () -> Void,
 _ com: ((Bool) -> Void)?) {
 UIView.animateWithDuration(dur,
 delay: del, options: opt,
 animations: anim, completion: {
 done in
 if com != nil {
 com!(done)
 }
 if t > 0 {
 delay(0) {
 helper(t-1, dur, del, opt, anim, com)
 }
 }
 })

1072 | Appendix B: Some Useful Utility Functions

 }
 helper(times-1, dur, del, opts, anim, comp)
 }
}

The calling syntax is exactly like ordering a UIView animation in its full form, except
that there’s an initial times parameter:

let opts = UIViewAnimationOptions.Autoreverse
let xorig = self.v.center.x
UIView.animateWithTimes(3, duration:1, delay:0, options:opts, animations:{
 self.v.center.x += 100
 }, completion:{
 _ in
 self.v.center.x = xorig
})

Remove Multiple Indexes From Array
It is often convenient to collect the indexes of items to be deleted from an array, and
then to delete those items. An Array extension can be helpful here. We must be care‐
ful to sort the indexes in decreasing numeric order first, because array indexes will be
off by one after an item at a lower index is removed:

extension Array {
 mutating func remove(at ixs:[Int]) -> () {
 for i in ixs.sorted(by:>) {
 self.remove(at:i)
 }
 }
}

Cancelable Closure-Based Timer
The Objective-C methods performSelector:withObject:afterDelay: and cancel-
PreviousPerformRequestsWithTarget: were unavailable in Swift 1.2 and before, so I
created an alternative. They became available in Swift 2.0, but I still like my alterna‐
tive better! It is also a nice functional replacement for Timer.

My replacement is a class, CancelableTimer; it revolves around a GCD timer dispatch
source, along with Swift’s ability to receive a function as a parameter. The initializer is
init(once:handler:). The handler: is called when the timer fires. If once: is false,
this will be a repeating timer. It obeys two methods, startWithInterval: and
cancel:

class CancelableTimer: NSObject {
 private var q = dispatch_queue_create("timer",nil)
 private var timer : dispatch_source_t!
 private var firsttime = true

Some Useful Utility Functions | 1073

 private var once : Bool
 private var handler : () -> ()
 init(once:Bool, handler:()->()) {
 self.once = once
 self.handler = handler
 super.init()
 }
 func startWithInterval(interval:Double) {
 self.firsttime = true
 self.cancel()
 self.timer = dispatch_source_create(
 DISPATCH_SOURCE_TYPE_TIMER,
 0, 0, self.q)
 dispatch_source_set_timer(self.timer,
 dispatch_walltime(nil, 0),
 UInt64(interval * Double(NSEC_PER_SEC)),
 UInt64(0.05 * Double(NSEC_PER_SEC)))
 dispatch_source_set_event_handler(self.timer, {
 if self.firsttime {
 self.firsttime = false
 return
 }
 self.handler()
 if self.once {
 self.cancel()
 }
 })
 dispatch_resume(self.timer)
 }
 func cancel() {
 if self.timer != nil {
 dispatch_source_cancel(timer)
 }
 }
}

For an example of its use, see Chapter 22.

Generic Wrapper
This is the generic wrapper class used in Chapter 24. I didn’t think of this; the idea
comes from a Stack Overflow post (http://stackoverflow.com/a/24760061/341994):

class Wrapper<T> {
 let p:T
 init(_ p:T){self.p = p}
}

This is useful because it is an AnyObject and can therefore be passed into an
Objective-C API wherever an AnyObject is expected. Making a Wrapper object is
easy:

1074 | Appendix B: Some Useful Utility Functions

http://stackoverflow.com/a/24760061/341994

let w = Wrapper(anything)

Retrieving the anything when a Wrapper returns to you as an AnyObject requires
that you discover, or know in advance, the type of its p and that you cast to that type:

let thing : AnyObject = // some kind of Wrapper
let realthing = (thing as! Wrapper).p as SomeType

Some Useful Utility Functions | 1075

1077

About the Author
Matt Neuburg started programming computers in 1968, when he was 14 years old, as
a member of a literally underground high school club, which met once a week to do
timesharing on a bank of PDP-10s by way of primitive teletype machines. He also
occasionally used Princeton University’s IBM-360/67, but gave it up in frustration
when one day he dropped his punch cards. He majored in Greek at Swarthmore Col‐
lege, and received his PhD from Cornell University in 1981, writing his doctoral dis‐
sertation (about Aeschylus) on a mainframe. He proceeded to teach Classical
languages, literature, and culture at many well-known institutions of higher learning,
most of which now disavow knowledge of his existence, and to publish numerous
scholarly articles unlikely to interest anyone. Meanwhile he obtained an Apple IIc and
became hopelessly hooked on computers again, migrating to a Macintosh in 1990. He
wrote some educational and utility freeware, became an early regular contributor to
the online journal TidBITS, and in 1995 left academe to edit MacTech magazine. In
August 1996 he became a freelancer, which means he has been looking for work ever
since. He is the author of Frontier: The Definitive Guide, REALbasic: The Definitive
Guide, and AppleScript: The Definitive Guide.

Colophon
The animal on the cover of Programming iOS 10 is a kingbird, one of the 13 species of
North American songbirds making up the genus Tyrannus. A group of kingbirds is
called a “coronation,” a “court,” or a “tyranny.”

Kingbirds eat insects, which they often catch in flight, swooping from a perch to grab
the insect midair. They may also supplement their diets with berries and fruits. They
have long, pointed wings, and males perform elaborate aerial courtship displays.

Both the genus name (meaning “tyrant” or “despot”) and the common name (“king‐
bird”) refer to these birds’ aggressive defense of their territories, breeding areas, and
mates. They have been documented attacking red-tailed hawks (which are more than
twenty times their size), knocking bluejays out of trees, and driving away crows and
ravens. (For its habit of standing up to much larger birds, the gray kingbird has been
adopted as a Puerto Rican nationalist symbol.)

“Kingbird” most often refers to the Eastern kingbird (T. tyrannus), an average-size
kingbird (7.5–9 inches long, wingspan 13–15 inches) found all across North America.
This common and widespread bird has a dark head and back, with a white throat,
chest, and belly. Its red crown patch is rarely seen. Its high-pitched, buzzing, stutter‐
ing sounds have been described as resembling “sparks jumping between wires” or an
electric fence.

The cover image is from Cassell’s Natural History. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Cover
	Copyright
	Table of Contents
	Preface
	The Scope of This Book
	Versions
	Acknowledgments
	From the Programming iOS 4 Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Part I. Views
	Chapter 1. Views
	The Window
	Experimenting With Views
	Subview and Superview
	Visibility and Opacity
	Frame
	Bounds and Center
	Window Coordinates and Screen Coordinates
	Transform
	Trait Collections and Size Classes
	Layout
	Autoresizing
	Autolayout
	Constraints
	Autoresizing Constraints
	Creating Constraints in Code
	Constraints as Objects
	Guides and Margins
	Intrinsic Content Size and Alignment Rects
	Stack Views
	Internationalization
	Mistakes With Constraints

	Configuring Layout in the Nib
	Autoresizing in the Nib
	Creating a Constraint
	Viewing and Editing Constraints
	Problems With Constraints
	Varying the Screen Size
	Conditional Interface Design

	Nib Editor View Features
	View Debugger
	Previewing Your Interface
	Designable Views and Inspectable Properties

	Layout Events

	Chapter 2. Drawing
	Images and Image Views
	Image Files
	Image Views
	Resizable Images
	Transparency Masks
	Reversible Images

	Graphics Contexts
	UIImage Drawing
	CGImage Drawing
	Snapshots
	CIFilter and CIImage
	Blur and Vibrancy Views
	Drawing a UIView
	Graphics Context Commands
	Graphics Context Settings
	Paths and Shapes
	Clipping
	Gradients
	Colors and Patterns
	Graphics Context Transforms
	Shadows
	Erasing

	Points and Pixels
	Content Mode

	Chapter 3. Layers
	View and Layer
	Layers and Sublayers
	Manipulating the Layer Hierarchy
	Positioning a Sublayer
	CAScrollLayer
	Layout of Sublayers

	Drawing in a Layer
	Content Resizing and Positioning
	Layers that Draw Themselves

	Transforms
	Depth

	Shadows, Borders, and Masks
	Layer Efficiency
	Layers and Key–Value Coding

	Chapter 4. Animation
	Drawing, Animation, and Threading
	Image View and Image Animation
	View Animation
	A Brief History of View Animation
	Property Animator Basics
	View Animation Basics
	View Animation Configuration
	Timing Curves
	Canceling a View Animation
	Frozen View Animation
	Custom Animatable View Properties
	Keyframe View Animation
	Transitions

	Implicit Layer Animation
	Animation Transactions
	Media Timing Functions

	Core Animation
	CABasicAnimation and Its Inheritance
	Using a CABasicAnimation
	Springing Animation
	Keyframe Animation
	Making a Property Animatable
	Grouped Animations
	Freezing an Animation
	Transitions
	Animations List

	Actions
	What an Action Is
	Action Search
	Hooking Into the Action Search
	Making a Custom Property Implicitly Animatable
	Nonproperty Actions

	Emitter Layers
	CIFilter Transitions
	UIKit Dynamics
	The Dynamics Stack
	Custom Behaviors
	Animator and Behaviors

	Motion Effects
	Animation and Autolayout

	Chapter 5. Touches
	Touch Events and Views
	Receiving Touches
	Restricting Touches
	Interpreting Touches
	Gesture Recognizers
	Gesture Recognizer Classes
	Gesture Recognizer Conflicts
	Subclassing Gesture Recognizers
	Gesture Recognizer Delegate
	Gesture Recognizers in the Nib

	3D Touch Press Gesture
	Touch Delivery
	Hit-Testing
	Hit-Testing For Layers
	Hit-Testing For Drawings
	Hit-Testing During Animation

	Initial Touch Event Delivery
	Gesture Recognizer and View
	Touch Exclusion Logic
	Gesture Recognition Logic
	Touches and the Responder Chain

	Part II. Interface
	Chapter 6. View Controllers
	View Controller Responsibilities
	View Controller Hierarchy
	View Controller Creation
	How a View Controller Obtains Its View
	Manual View
	Generic Automatic View
	View in a Separate Nib
	Summary

	How Storyboards Work
	How a View Controller Nib is Loaded
	How a View Nib is Loaded

	View Resizing
	View Size in the Nib Editor
	Bars and Underlapping
	Resizing Events
	Rotation

	View Controller Manual Layout
	Presented View Controller
	Presentation and Dismissal
	Configuring a Presentation
	Communication With a Presented View Controller
	Adaptive Presentation
	Presentation and Rotation

	Tab Bar Controller
	Tab Bar Items
	Configuring a Tab Bar Controller

	Navigation Controller
	Bar Button Items
	Navigation Items and Toolbar Items
	Configuring a Navigation Controller

	Custom Transition
	Noninteractive Custom Transition Animation
	Interactive Custom Transition Animation
	Interruptible Custom Transition Animation
	Custom Presented View Controller Transition
	Transition Coordinator

	Page View Controller
	Preparing a Page View Controller
	Page View Controller Navigation
	Other Page View Controller Configurations

	Container View Controllers
	Adding and Removing Children
	Container View Controllers, Traits, and Resizing

	Peek and Pop
	Storyboards
	Triggered Segues
	Container Views and Embed Segues
	Storyboard References
	Unwind Segues

	View Controller Lifetime Events
	Incoherencies in View Controller Events
	Appear and Disappear Events
	Event Forwarding to a Child View Controller

	View Controller Memory Management
	State Restoration
	How to Test State Restoration
	Participating in State Restoration
	Restoration ID, Identifier Path, and Restoration Class
	Restoring View Controller State
	Restoration Order of Operations
	Restoration of Other Objects
	Snapshot Suppression

	Chapter 7. Scroll Views
	Creating a Scroll View in Code
	Manual Content Size
	Automatic Content Size With Autolayout
	Using a Content View

	Scroll View in a Nib
	Scrolling
	Paging
	Tiling

	Zooming
	Zooming Programmatically
	Zooming with Detail

	Scroll View Delegate
	Scroll View Touches
	Floating Scroll View Subviews
	Scroll View Performance

	Chapter 8. Table Views and Collection Views
	Table View Cells
	Built-In Cell Styles
	Registering a Cell Class
	Custom Cells

	Table View Data
	The Three Big Questions
	Reusing Cells
	Table View Sections
	Refreshing Table View Data
	Variable Row Heights

	Table View Cell Selection
	Managing Cell Selection
	Responding to Cell Selection
	Navigation From a Table View
	Cell Choice and Static Tables

	Table View Scrolling and Layout
	Table View State Restoration
	Table View Searching
	Configuring a Search Controller
	Using a Search Controller

	Table View Editing
	Deleting Cells
	Custom Action Buttons
	Editable Content in Cells
	Inserting Cells
	Rearranging Cells
	Dynamic Cells

	Table View Menus
	Collection Views
	Collection View Classes
	Using a Collection View
	Custom Collection View Layouts
	Switching Layouts
	Collection Views and UIKit Dynamics

	Chapter 9. iPad Interface
	Popovers
	Preparing a Popover
	Popover Presentation, Dismissal, and Delegate
	Adaptive Popovers
	Popover Segues
	Popover Presenting a View Controller

	Split Views
	Expanded Split View Controller (iPad)
	Collapsed Split View Controller (iPhone)
	Expanding Split View Controller (iPhone 6 Plus)
	Customizing a Split View Controller
	Split View Controller in a Storyboard
	Setting the Collapsed State
	View Controller Message Percolation

	iPad Multitasking

	Chapter 10. Text
	Fonts and Font Descriptors
	Fonts
	Font Descriptors

	Attributed Strings
	Attributed String Attributes
	Making an Attributed String
	Modifying and Querying an Attributed String
	Custom Attributes
	Drawing and Measuring an Attributed String

	Labels
	Number of Lines
	Wrapping and Truncation
	Resizing a Label to Fit Its Text
	Customized Label Drawing

	Text Fields
	Summoning and Dismissing the Keyboard
	Keyboard Covers Text Field
	Configuring the Keyboard
	Text Field Delegate and Control Event Messages
	Text Field Menu

	Text Views
	Text View as Scroll View
	Text View and Keyboard

	Text Kit
	Text Container
	Alternative Text Kit Stack Architectures
	Layout Manager
	Text Kit Without a Text View

	Chapter 11. Web Views
	WKWebView
	WKWebView Content
	Tracking Changes in a WKWebView
	WKWebView Navigation
	Communicating With a WKWebView Web Page
	WKWebView Shortcomings

	Safari View Controller
	Developing Web View Content

	Chapter 12. Controls and Other Views
	UIActivityIndicatorView
	UIProgressView
	UIPickerView
	UISearchBar
	UIControl
	UISwitch
	UIStepper
	UIPageControl
	UIDatePicker
	UISlider
	UISegmentedControl
	UIButton
	Custom Controls

	Bars
	Bar Position and Bar Metrics
	Bar Appearance
	UIBarButtonItem
	UINavigationBar
	UIToolbar
	UITabBar

	Tint Color
	Appearance Proxy

	Chapter 13. Modal Dialogs
	Alerts and Action Sheets
	Alerts
	Action Sheets
	Dialog Alternatives

	Quick Actions
	Local Notifications
	Authorizing for Local Notifications
	Notification Category
	Scheduling a Local Notification
	Hearing About a Local Notification
	Managing Scheduled Notifications
	Notification Content Extensions

	Today Extensions
	Activity Views
	Presenting an Activity View
	Custom Activities
	Action Extensions
	Share Extensions

	Part III. Some Frameworks
	Chapter 14. Audio
	System Sounds
	Audio Session
	Activation
	Ducking
	Interruptions
	Secondary Audio
	Routing Changes

	Audio Player
	Remote Control of Your Sound
	Playing Sound in the Background
	AVAudioEngine
	MIDI Playback
	Text to Speech
	Speech to Text
	Further Topics in Sound

	Chapter 15. Video
	AVPlayerViewController
	Other AVPlayerViewController Properties
	Picture-in-Picture

	Introducing AV Foundation
	Some AV Foundation Classes
	Things Take Time
	Time is Measured Oddly
	Constructing Media
	Synchronizing Animation With Video
	AVPlayerLayer
	Further Exploration of AV Foundation

	UIVideoEditorController

	Chapter 16. Music Library
	Exploring the Music Library
	Querying the Music Library
	Persistence and Change in the Music Library

	Music Player
	MPVolumeView
	Playing Songs With AV Foundation
	Media Picker

	Chapter 17. Photo Library and Image Capture
	Photo Library Authorization
	Choosing From the Photo Library
	Photos Framework
	Querying the Photo Library
	Modifying the Library
	Being Notified of Changes
	Displaying Images
	Editing Images
	Photo Editing Extension

	Using the Camera
	Camera Authorization
	Using the Camera with UIImagePickerController
	Customizing the Image Capture Interface
	Image Capture With AV Foundation

	Chapter 18. Contacts
	Contacts Authorization
	Fetching Contact Information
	Saving Contact Information
	Contact Sorting, Groups, and Containers
	Contacts Interface
	CNContactPickerViewController
	CNContactViewController

	Chapter 19. Calendar
	Calendar Database
	Calendar Database Authorization
	Calendar Database Contents
	Calendar Database Changes
	Creating Calendars and Events
	Recurrence
	Fetching Events
	Reminders
	Proximity Alarms

	Calendar Interface
	EKEventViewController
	EKEventEditViewController
	EKCalendarChooser

	Chapter 20. Mail and Messages
	Mail Message
	Text Message
	Twitter Post

	Chapter 21. Maps
	Displaying a Map
	Annotations
	Custom Annotation View
	Custom Annotation Class
	Other Annotation Features

	Overlays
	Custom Overlay Class
	Custom Overlay Renderer
	Other Overlay Features

	Map Kit and Current Location
	Communicating With the Maps App
	Geocoding, Searching, and Directions
	Geocoding
	Searching
	Directions

	Chapter 22. Sensors
	Core Location
	Location Manager and Delegate
	Core Location Authorization
	Location Tracking
	Where Am I?
	Heading
	Background Location

	Acceleration, Attitude, and Activity
	Shake Events
	Raw Acceleration
	Gyroscope
	Motion Activity

	Part IV. Final Topics
	Chapter 23. Persistent Storage
	The Sandbox
	Standard Directories
	Visually Inspecting the Sandbox
	Basic File Operations
	Saving and Reading Files

	User Defaults
	Simple Sharing and Previewing of Files
	File Sharing
	Document Types and Receiving a Document
	Handing Over a Document
	Previewing a Document

	Document Architecture
	iCloud
	XML
	SQLite
	Core Data
	Image File Formats

	Chapter 24. Basic Networking
	HTTP Requests
	Simple HTTP Request
	Formal HTTP Request
	Encapsulating the Session, Task, and Delegate
	Downloading Table View Data
	Background Downloads
	Background App Refresh

	On-Demand Resources
	In-App Purchases

	Chapter 25. Threads
	Main Thread
	Why Threading Is Hard
	Blocking the Main Thread
	Manual Threading
	Operation
	Grand Central Dispatch
	Threads and App Backgrounding

	Chapter 26. Undo
	Undo Manager
	Target–Action Undo
	Undo Grouping
	Invocation Undo
	Functional Undo

	Undo Interface
	Shake-To-Edit
	Undo Menu

	Appendix A. Application Lifetime Events
	Application States
	App Delegate Events
	App Lifetime Scenarios

	Appendix B. Some Useful Utility Functions
	App Without a Main Storyboard
	Core Graphics Initializers
	Center of a CGRect
	Adjust a CGSize
	Delayed Performance
	Dictionary of Views
	Constraint Issues
	Configure a Value Class At the Point of Use
	Drawing Into an Image Context
	Finite Repetition of an Animation
	Remove Multiple Indexes From Array
	Cancelable Closure-Based Timer
	Generic Wrapper

	Index
	About the Author

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

