
www.allitebooks.com

http://www.allitebooks.org

Qt5 C++ GUI
Programming
Cookbook

Use Qt5 to design and build a graphical user interface
that is functional, appealing, and user-friendly for your
software application

Lee Zhi Eng

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Qt5 C++ GUI Programming Cookbook

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: July 2016

Production reference: 1220716

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-027-8

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Lee Zhi Eng

Reviewer
Symeon Huang

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Indrajit Das

Content Development Editor
Priyanka Mehta

Technical Editors
Dhiraj Chandanshive

Ravikiran Pise

Copy Editor
Safis Editing

Project Coordinator
Izzat Contractor

Proofreader
Safis Editing

Indexer
Rekha Nair

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author

Lee Zhi Eng is a 3D artist-turned-programmer who worked in the video game industry as
a game artist, game programmer, and a game programming lecturer. Later, he decided to
take a break from games and ventured into software engineering by co-founding his current
company, Reonyx Tech. Since then, he has been involved in multiple projects that are different
from what he used to do, including geolocation and near-real-time navigation systems, Big
Data analytics, and augmented reality. You can find out more about him at http://www.
zhieng.com, or you can find out about his company at http://www.reonyx.com.

www.allitebooks.com

http://www.zhieng.com
http://www.zhieng.com
http://www.reonyx.com
http://www.allitebooks.org

About the Reviewer

Symeon Huang is an experienced C++ GUI software developer and the author of Qt
5 Blueprints, Packt Publishing. He has finished his master's degree in high performance
computing and has been working as a software engineer in industry.

I'd like to thank Packt Publishing for giving me the opportunity to review this
book. As a reviewer, I've also learnt from this book and I'm sure this book
will be of great use to all readers.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

i

Table of Contents
Preface	 v
Chapter 1: Look and Feel Customization	 1

Introduction	 1
Use style sheets with Qt Designer	 2
Basic style sheet customization	 6
Creating a login screen using style sheets	 11
Using resources in style sheets	 19
Customizing properties and sub-controls	 23
Styling in QML	 27
Exposing QML object pointer to C++	 36

Chapter 2: States and Animations	 39
Introduction	 39
Property animation in Qt	 39
Using easing curves to control property animation	 42
Creating an animation group	 44
Creating a nested animation group	 47
State machines in Qt	 50
States, transitions, and animations in QML	 53
Animating widget properties using animators	 57
Sprite animation	 59

Chapter 3: QPainter and 2D Graphics	 65
Introduction	 65
Drawing basic shapes on screen	 66
Exporting shapes to SVG files	 69
Coordinate transformation	 75
Displaying images on screen	 80

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Applying image effects to graphics	 85
Creating a basic paint program	 88
2D canvas in QML	 94

Chapter 4: OpenGL Implementation	 99
Introduction	 99
Setting up OpenGL in Qt	 100
Hello world!	 103
Rendering 2D shapes	 106
Render 3D shapes	 109
Texturing in OpenGL	 114
Lighting and texture filter in OpenGL	 118
Moving an object using keyboard controls	 122
3D canvas in QML	 125

Chapter 5: Building a Touch Screen Application with Qt5	 131
Introduction	 131
Setting up Qt for mobile applications	 132
Designing a basic user interface with QML	 138
Touch events	 142
Animation in QML	 149
Displaying information using Model View	 155
Integrating QML and C++	 160

Chapter 6: XML Parsing Made Easy	 167
Introduction	 167
Processing XML data using stream reader	 167
Writing XML data using Stream Writer	 173
Processing XML data using the QDomDocument class	 176
Writing XML data using the QDomDocument class	 179
Using Google's Geocoding API	 182

Chapter 7: Conversion Library	 187
Introduction	 187
Data conversion	 187
Image conversion	 192
Video conversion	 196
Currency conversion	 202

www.allitebooks.com

http://www.allitebooks.org

iii

Table of Contents

Chapter 8: Accessing Databases	 207
Introduction	 207
Connecting to a database	 213
Writing basic SQL queries	 216
Creating a login screen with Qt	 221
Displaying information from a database on a model view	 227
Advanced SQL queries	 233

Chapter 9: Developing a Web Application Using Qt Web Engine	 245
Introduction	 245
Introduction to Qt WebEngine	 246
WebView and web settings	 252
Embedding Google Maps in your project	 259
Calling C++ functions from JavaScript	 264
Calling JavaScript functions from C++	 271

Index	 279

www.allitebooks.com

http://www.allitebooks.org

v

Preface
The continuous growth of the computer software market leads to a very competitive and
challenging era. Not only does your software need to be functional and easy to use, it must
also look appealing and professional to the users. In order to gain an upper hand and a
competitive advantage over other software products in the market, the look and feel of your
product is of utmost importance and should be taken care of early in the production stage. In
this book, we will teach you how to create a functional, appealing, and user friendly software
using the Qt5 development platform.

What this book covers
Chapter 1, Look and Feel Customization, shows how to design your program's user interface
using both the Qt Designer as well as the Qt Quick Designer.

Chapter 2, States and Animations, explains how to animate your user interface widgets by
empowering the state machine framework and the animation framework.

Chapter 3, QPainter and 2D Graphics, covers how to draw vector shapes and bitmap images
on screen using Qt's built-in classes.

Chapter 4, OpenGL Implementation, demonstrates how to render 3D graphics in your program
by integrating OpenGL in your Qt project.

Chapter 5, Building a Touch Screen Application with Qt5, explains how to create a program
that works on a touch screen device.

Chapter 6, XML Parsing Made Easy, shows how to process data in the XML format and use it
together with the Google Geocoding API to create a simple address finder.

Chapter 7, Conversion Library, covers how to convert between different variable types, image
formats, and video formats using Qt's built-in classes as well as third-party programs.

Preface

vi

Chapter 8, Accessing Databases, explains how to connect your program to an SQL database
using Qt.

Chapter 9, Developing a Web Application Using Qt Web Engine, covers how to use the web
rendering engine provided by Qt and develop programs that empower the web technology.

What you need for this book
The following are the prerequisites for this book:

1.	 Qt5 (for all chapters)

2.	 FFmpeg (for Chapter 7, Conversion Library)

3.	 XAMPP (for Chapter 8, Accessing Databases)

Who this book is for
This book intended for those who want to develop software using Qt5. If you want to improve
the visual quality and content presentation of your software application, this book will suit
you best.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

Preface

vii

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "In the
mylabel.cpp source file, define a function called SetMyObject() to save the object
pointer."

A block of code is set as follows:

QSpinBox::down-button
{
 image: url(:/images/spindown.png);
 subcontrol-origin: padding;
 subcontrol-position: right bottom;
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

QSpinBox::down-button
{
 image: url(:/images/spindown.png);
 subcontrol-origin: padding;
 subcontrol-position: right bottom;
}

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Go to the Imports tab in the
Library window and add a Qt Quick module called QtQuick.Controls to your project."

Preface

viii

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http://
www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.

2.	 Hover the mouse pointer on the SUPPORT tab at the top.

3.	 Click on Code Downloads & Errata.

4.	 Enter the name of the book in the Search box.

5.	 Select the book for which you're looking to download the code files.

6.	 Choose from the drop-down menu where you purchased this book from.

7.	 Click on Code Download.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

ix

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

ff WinRAR / 7-Zip for Windows

ff Zipeg / iZip / UnRarX for Mac

ff 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Qt5-C-GUI-Programming-Cookbook. We also have other code
bundles from our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from http://www.packtpub.com/sites/default/files/
downloads/Qt5CGUIProgrammingCookbook_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report
them by visiting http://www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded to our
website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

https://github.com/PacktPublishing/Qt5-C-GUI-Programming-Cookbook
https://github.com/PacktPublishing/Qt5-C-GUI-Programming-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
http://www.packtpub.com/sites/default/files/downloads/Qt5CGUIProgrammingCookbook_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/Qt5CGUIProgrammingCookbook_ColorImages.pdf

Preface

x

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

1

1
Look and Feel
Customization

In this chapter we will cover the following recipes:

ff Using style sheets with Qt Designer
ff Basic style sheet customization
ff Creating a login screen using style sheets
ff Using resources in style sheets
ff Customizing properties and sub-controls
ff Styling in QML
ff Exposing QML object pointer to C++

Introduction
Qt allows us to easily design our program's user interface through a method that most people
are familiar with. Qt not only provides us with a powerful user interface toolkit called Qt
Designer, which enables us to design our user interface without writing a single line of code,
but it also allows advanced users to customize their user interface components through a
simple scripting language called Qt Style Sheets.

Look and Feel Customization

2

Use style sheets with Qt Designer
In this example, we will learn how to change the look and feel of our program and make it look
more professional by using style sheets and resources. Qt allows you to decorate your Graphical
User Interfaces (GUIs) using a style sheet language called Qt Style Sheets, which is very similar
to Cascading Style Sheets (CSS) used by web designers to decorate their websites.

How to do it…
1.	 The first thing we need to do is open up Qt Creator and create a new project. If this is

the first time you have used Qt Creator, you can either click the big button that says
New Project with a + sign, or simply go to File | New File or New Project.

2.	 Then, select Application under the Project window and select Qt Widgets Application.

3.	 After that, click the Choose button at the bottom. A window will then pop out and
ask you to insert the project name and its location.

4.	 Once you're done with that, click Next several times and click the Finish button
to create the project. We will just stick to all the default settings for now. Once the
project has been created, the first thing you will see is the panel with tons of big icons
on the left side of the window that is called the Mode Selector panel; we will discuss
this more later in the How it works... section.

5.	 Then, you will also see all your source files listed on the Side Bar panel which is
located right next to the Mode Selector panel. This is where you can select which file
you want to edit, which, in this case, is mainwindow.ui because we are about to
start designing the program's UI!

6.	 Double-click mainwindow.ui and you will see an entirely different interface
appearing out of nowhere. Qt Creator actually helped you to switch from the script
editor to the UI editor (Qt Designer) because it detected the .ui extension on the file
you're trying to open.

7.	 You will also notice that the highlighted button on the Mode Selector panel has
changed from the Edit button to the Design button. You can switch back to the script
editor or change to any other tools by clicking one of the buttons located in the upper
half of the Mode Selector panel.

8.	 Let's go back to the Qt Designer and look at the mainwindow.ui file. This is basically
the main window of our program (as the filename implies) and it's empty by default,
without any widget on it. You can try to compile and run the program by pressing the
Run button (green arrow button) at the bottom of the Mode Selector panel, and you
will see an empty window popping up once the compilation is complete:

Chapter 1

3

9.	 Now, let's add a push button to our program's UI by clicking on the Push Button
item in the widget box (under the Buttons category) and dragging it to your main
window in the form editor. Then, keep the push button selected, and now you will
see all the properties of this button inside the property editor on the right side of
your window. Scroll down to somewhere around the middle and look for a property
called styleSheet. This is where you apply styles to your widget, which may or may
not inherit to its children or grandchildren recursively depending on how you set your
style sheet. Alternatively, you can also right-click on any widget in your UI at the form
editor and select Change Style Sheet from the pop-up menu.

10.	 You can click on the input field of the styleSheet property to directly write the style
sheet code, or click on the … button besides the input field to open up the Edit Style
Sheet window which has a bigger space for writing longer style sheet code. At the top
of the window you can find several buttons, such as Add Resource, Add Gradient,
Add Color, and Add Font, that can help you to kick-start your coding if you can't
remember the properties' names.

Let's try to do some simple styling with the Edit Style Sheet window.

11.	 Click Add Color and choose color.

12.	 Pick a random color from the color picker window, let's say, a pure red color. Then
click OK.

13.	 Now, you will see a line of code has been added to the text field on the Edit Style
Sheet window, which in my case is as follows:

color: rgb(255, 0, 0);

14.	 Click the OK button and now you will see the text on your push button has changed to
a red color.

Look and Feel Customization

4

How it works...
Let's take a bit of time to get ourselves familiar with Qt Designer's interface before we start
learning how to design our own UI:

1.	 Menu bar: The menu bar houses application-specific menus that provide easy access
to essential functions such as create new projects, save files, undo, redo, copy, paste,
and so on. It also allows you to access development tools that come with Qt Creator,
such as the compiler, debugger, profiler, and so on.

2.	 Widget box: This is where you can find all the different types of widget provided by
Qt Designer. You can add a widget to your program's UI by clicking one of the widgets
from the widget box and dragging it to the form editor.

3.	 Mode selector: The mode selector is a side panel that places shortcut buttons for
easy access to different tools. You can quickly switch between the script editor and
form editor by clicking the Edit or Design buttons on the mode selector panel which
is very useful for multitasking. You can also easily navigate to the debugger and
profiler tools in the same speed and manner.

4.	 Build shortcuts: The build shortcuts are located at the bottom of the mode selector
panel. You can build, run, and debug your project easily by pressing the shortcut
buttons here.

Chapter 1

5

5.	 Form editor: Form editor is where you edit your program's UI. You can add different
widgets to your program by selecting a widget from the widget box and dragging it to
the form editor.

6.	 Form toolbar: From here, you can quickly select a different form to edit, click the
drop-down box located above the widget box and select the file you want to open with
Qt Designer. Beside the drop-down box are buttons for switching between different
modes for the form editor and also buttons for changing the layout of your UI.

7.	 Object inspector: The object inspector lists all the widgets within your current .ui
file. All the widgets are arranged according to its parent-child relationship in the
hierarchy. You can select a widget from the object inspector to display its properties
in the property editor.

8.	 Property editor: Property editor will display all the properties of the widget you
selected either from the object inspector window or the form editor window.

9.	 Action Editor and Signals & Slots Editor: This window contains two editors, Action
Editor and the Signals & Slots Editor, which can be accessed from the tabs below
the window. The action editor is where you create actions that can be added to a
menu bar or toolbar in your program's UI.

10.	 Output panes: Output panes consist of several different windows that display
information and output messages related to script compilation and debugging. You
can switch between different output panes by pressing the buttons that carry a
number before them, such as 1-Issues, 2-Search Results, 3-Application Output,
and so on.

There's more…
In the previous section, we discussed how to apply style sheets to Qt widgets through C++
coding. Although that method works really well, most of the time the person who is in charge
of designing the program's UI is not the programmer, but a UI designer who specializes in
designing user-friendly UI. In this case, it's better to let the UI designer design the program's
layout and style sheet with a different tool and not mess around with the code.

Qt provides an all-in-one editor called Qt Creator. Qt Creator consists of several different tools,
such as script editor, compiler, debugger, profiler, and UI editor. The UI editor, which is also
called Qt Designer, is the perfect tool for designers to design their program's UI without writing
any code. This is because Qt Designer adopted the What-You-See-Is-What-You-Get approach by
providing accurate visual representation of the final result, which means whatever you design
with Qt Designer will turn out exactly the same when the program is compiled and run.

Look and Feel Customization

6

The similarities between Qt Style Sheets and CSS are as follows:

ff CSS: h1 { color: red; background-color: white;}

ff Qt Style Sheets: QLineEdit { color: red; background-color: white;}

ff As you can see, both of them contain a selector and a declaration block. Each
declaration contains a property and a value, separated by a colon.

ff In Qt, a style sheet can be applied to a single widget by calling
QObject::setStyleSheet() function in C++ code, for example:
myPushButton->setStyleSheet("color : blue");

ff The preceding code will turn the text of a button with the variable name
myPushButton to a blue color. You can also achieve the same result by writing
the declaration in the style sheet property field in Qt Designer. We will discuss more
about Qt Designer in the next section.

ff Qt Style Sheets also supports all the different types of selectors defined in CSS2
standard, including Universal selector, Type selector, Class selector, ID selector, and
so on, which allows us to apply styling to a very specific individual or group of widgets.
For instance, if we want to change the background color of a specific line edit widget
with the object name usernameEdit, we can do this by using an ID selector to refer
to it:
QLineEdit#usernameEdit { background-color: blue }

To learn about all the selectors available in CSS2 (which are also supported
by Qt Style Sheets), please refer to this document: http://www.w3.org/
TR/REC-CSS2/selector.html.

Basic style sheet customization
In the previous example, you learned how to apply a style sheet to a widget with Qt Designer.
Let's go crazy and push things further by creating a few other types of widgets and change
their style properties to something bizarre for the sake of learning. This time, however, we will
not apply the style to every single widget one by one, but we will learn to apply the style sheet
to the main window and let it inherit down the hierarchy to all the other widgets so that the
style sheet is easier to manage and maintain in long run.

How to do it…
1.	 First of all, let's remove the style sheet from the push button by selecting it and

clicking the small arrow button besides the styleSheet property. This button will
revert the property to the default value, which in this case is the empty style sheet.

http://www.w3.org/TR/REC-CSS2/selector.html
http://www.w3.org/TR/REC-CSS2/selector.html

Chapter 1

7

2.	 Then, add a few more widgets to the UI by dragging them one by one from the widget
box to the form editor. I've added a line edit, combo box, horizontal slider, radio
button, and a check box.

3.	 For the sake of simplicity, delete the menu bar, main toolbar, and the status bar from
your UI by selecting them from the object inspector, right click, and choose Remove.
Now your UI should look similar to this:

4.	 Select the main window either from the form editor or the object inspector, then right
click and choose Change Stylesheet to open up the Edit Style Sheet.

Insert the following style sheet:

border: 2px solid gray;
border-radius: 10px;
padding: 0 8px;
background: yellow;

5.	 Now what you will see is a completely bizarre-looking UI with everything covered in
yellow with a thick border. This is because the preceding style sheet does not have a
selector, which means the style will apply to the children widgets of the main window
all the way down the hierarchy. To change that, let's try something different:
QPushButton
{
 border: 2px solid gray;
 border-radius: 10px;
 padding: 0 8px;
 background: yellow;
}

Look and Feel Customization

8

6.	 This time, only the push button will get the style described in the preceding code, and
all other widgets will return to the default styling. You can try to add a few more push
buttons to your UI and they will all look the same:

7.	 This happens because we specifically tell the selector to apply the style to all the
widgets with the class called QPushButton. We can also apply the style to just one
of the push buttons by mentioning its name in the style sheet, like so:
QPushButton#pushButton_3
{
 border: 2px solid gray;
 border-radius: 10px;
 padding: 0 8px;
 background: yellow;
}

8.	 Once you understand this method, we can add the following code to the style sheet :
QPushButton
{
 color: red;
 border: 0px;
 padding: 0 8px;
 background: white;
}

QPushButton#pushButton_2
{
 border: 1px solid red;
 border-radius: 10px;
}

Chapter 1

9

QPushButton#pushButton_3
{
 border: 2px solid gray;
 border-radius: 10px;
 padding: 0 8px;
 background: yellow;
}

9.	 What it does is basically change the style of all the push buttons as well as some
properties of a specific button named pushButton_2. We keep the style sheet of
pushButton_3 as it is. Now the buttons will look like this:

10.	 The first set of style sheet will change all widgets of QPushButton type to a white
rectangular button with no border and red text. Then the second set of style sheet
changes only the border of a specific QPushButton widget called pushButton_2.
Notice that the background color and text color of pushButton_2 remain white and
red respectively because we didn't override them in the second set of style sheet,
hence it will return to the style described in the first set of style sheet since it's
applicable to all QPushButton widgets. Do notice that the text of the third button
has also changed to red because we didn't describe the color property in the third set
of style sheet.

11.	 After that, create another set of style using the universal selector, like so:
*
{
 background: qradialgradient(cx: 0.3, cy: -0.4, fx: 0.3,
 fy: -0.4, radius: 1.35, stop: 0 #fff, stop: 1 #888);
 color: rgb(255, 255, 255);
 border: 1px solid #ffffff;
}

Look and Feel Customization

10

12.	 The universal selector will affect all the widgets regardless of their type. Therefore,
the preceding style sheet will apply a nice gradient color to all the widgets'
background as well as setting their text as white and giving them a one-pixel solid
outline which is also in white. Instead of writing the name of the color (that is, white),
we can also use the rgb function (rgb(255, 255, 255)) or hex code (#ffffff)
to describe the color value.

13.	 Just as before, the preceding style sheet will not affect the push buttons because
we have already given them their own styles which will override the general style
described in the universal selector. Just remember that in Qt, the style that is more
specific will ultimately be used when there is more than one style having influence on
a widget. This is how the UI will look now:

How it works...
If you are ever involved in web development using HTML and CSS, Qt's style sheet works
exactly the same way as CSS. Style sheets provide the definitions for describing the
presentation of the widgets – what the colors are for each element in the widget group,
how thick the border should be, and so on and so forth.

If you specify the name of the widget to the style sheet, it will change the style of a particular
push button widget with the name you provide. None of the other widgets will be affected and
will remain as the default style.

To change the name of a widget, select the widget either from the form editor or the object
inspector and change the property called objectName in the property window. If you have
used the ID selector previously to change the style of the widget, changing its object name will
break the style sheet and lose the style. To fix this problem, simply change the object name in
the style sheet as well.

Chapter 1

11

Creating a login screen using style sheets
Next, we will learn how to put all the knowledge we learned in the previous example together
and create a fake graphical login screen for an imaginary operating system. Style sheets are
not the only thing you need to master in order to design a good UI. You will also need to learn
how to arrange the widgets neatly using the layout system in Qt Designer.

How to do it…
1.	 The first thing we need to do is design the layout of the graphical login screen before

we start doing anything. Planning is very important in order to produce good software.
The following is a sample layout design I made to show you how I imagine the login
screen will look. Just a simple line drawing like this is sufficient as long as it conveys
the message clearly:

2.	 Now that we know exactly how the login screen should look, let's go back to Qt
Designer again.

3.	 We will be placing the widgets at the top panel first, then the logo and the login
form below it.

4.	 Select the main window and change its width and height from 400 and 300 to 800
and 600 respectively because we'll need a bigger space in which to place all the
widgets in a moment.

5.	 Click and drag a label under the Display Widgets category from the widget box to the
form editor.

6.	 Change the objectName property of the label to currentDateTime and change
its Text property to the current date and time just for display purposes, such as
Monday, 25-10-2015 3:14 PM.

Look and Feel Customization

12

7.	 Click and drag a push button under the Buttons category to the form editor. Repeat
this process one more time because we have two buttons on the top panel. Rename
the two buttons restartButton and shutdownButton respectively.

8.	 Next, select the main window and click the small icon button on the form toolbar
that says Lay Out Vertically when you mouse-over it. Now you will see the widgets
are being automatically arranged on the main window, but it's not exactly what we
want yet.

9.	 Click and drag a horizontal layout widget under the Layouts category to the main
window.

10.	 Click and drag the two push buttons and the text label into the horizontal layout. Now
you will see the three widgets being arranged in a horizontal row, but vertically they
are located in the middle of the screen. The horizontal arrangement is almost correct,
but the vertical position is totally off.

11.	 Click and drag a vertical spacer from the Spacers category and place it below the
horizontal layout we created previously (below the red rectangular outline). Now you
will see all the widgets are being pushed to the top by the spacer.

12.	 Now, place a horizontal spacer between the text label and the two buttons to keep
them apart. This will make the text label always stick to the left and the buttons align
to the right.

13.	 Set both the Horizontal Policy and Vertical Policy properties of the two
buttons to Fixed and set the minimumSize property to 55x55. Then, set the text
property of the buttons to empty as we will be using icons instead of text. We will
learn how to place an icon in the button widgets in the following section.

14.	 Now your UI should look similar to this:

Next, we will be adding the logo by using the following steps:

1.	 Add a horizontal layout between the top panel and the vertical spacer to serve as a
container for the logo.

2.	 After adding the horizontal layout, you will find the layout is way too thin in height to
be able to add any widgets to it. This is because the layout is empty and it's being
pushed by the vertical spacer below it into zero height. To solve this problem, we can
set its vertical margin (either layoutTopMargin or layoutBottomMargin) to be
temporarily bigger until a widget is added to the layout.

Chapter 1

13

3.	 Next, add a label to the horizontal layout that you just created and rename it logo.
We will learn more about how to insert an image into the label to use it as a logo
in the next section. For now, just empty out the text property and set both its
Horizontal Policy and Vertical Policy properties to Fixed. Then, set
the minimumSize property to 150x150.

4.	 Set the vertical margin of the layout back to zero if you haven't done so.

5.	 The logo now looks invisible, so we will just place a temporary style sheet to make it
visible until we add an image to it in the next section. The style sheet is really simple:
border: 1px solid;

6.	 Now your UI should look similar to this:

Now let's create the login form by using the following steps:

1.	 Add a horizontal layout between the logo's layout and the vertical spacer. Just as we
did previously, set the layoutTopMargin property to a bigger number (that is, 100)
so that you can add a widget to it more easily.

2.	 After that, add a vertical layout inside the horizontal layout you just created. This
layout will be used as a container for the login form. Set its layoutTopMargin to
a number lower than that of the horizontal layout (that is, 20) so that we can place
widgets in it.

3.	 Next, right click the vertical layout you just created and choose Morph into ->
QWidget. The vertical layout is now being converted into an empty widget. This
step is essential because we will be adjusting the width and height of the container
for the login form. A layout widget does not contain any properties for width and
height, but only margins, due to the fact that a layout will expand toward the empty
space surrounding it, which does make sense, considering that it does not have
any size properties. After you have converted the layout to a QWidget object, it will
automatically inherit all the properties from the widget class, and so we are now able
to adjust its size to suit our needs.

www.allitebooks.com

http://www.allitebooks.org

Look and Feel Customization

14

4.	 Rename the QWidget object, which we just converted from the layout, to loginForm
and change both its Horizontal Policy and Vertical Policy properties to
Fixed. Then, set the minimumSize to 350x200.

5.	 Since we already placed the loginForm widget inside the horizontal layout, we can
now set its layoutTopMargin property back to zero.

6.	 Add the same style sheet as the logo to the loginForm widget to make it visible
temporarily, except this time we need to add an ID selector in front so that it will
only apply the style to loginForm and not its children widgets:
#loginForm { border: 1px solid; }

7.	 Now your UI should look something like this:

We are not done with the login form yet. Now that we have created the container for the login
form, it's time to put more widgets into the form:

1.	 Place two horizontal layouts into the login form container. We need two layouts as one
for the username field and another for the password field.

2.	 Add a label and a line edit to each of the layouts you just added. Change the text
property of the upper label to Username: and the one below as Password:. Then,
rename the two line edits as username and password respectively.

3.	 Add a push button below the password layout and change its text property to
Login. After that, rename it as loginButton.

Chapter 1

15

4.	 You can add a vertical spacer between the password layout and the login button
to distance them slightly. After the vertical spacer has been placed, change its
sizeType property to Fixed and change the Height to 5.

5.	 Now, select the loginForm container and set all its margins to 35. This is to make
the login form look better by adding some space to all its sides.

6.	 You can also set the Height property of the username, password, and
loginButton widgets to 25 so that they don't look so cramped.

7.	 Now your UI should look something like this:

We're not done yet! As you can see, the login form and the logo are both sticking to the top of
the main window due to the vertical spacer below them. The logo and the login form should
be placed at the center of the main window instead of the top. To fix this problem, use the
following steps:

1.	 Add another vertical spacer between the top panel and the logo's layout. This way it
will counter the spacer at the bottom which balances out the alignment.

2.	 If you think that the logo is sticking too close to the login form, you can also add
a vertical spacer between the logo's layout and the login form's layout. Set its
sizeType property to Fixed and the Height property to 10.

3.	 Right click the top panel's layout and choose Morph into -> QWidget. Then, rename
it topPanel. The reason why the layout has to be converted into QWidget is that,
we cannot apply style sheets to a layout, as it doesn't have any properties other
than margins.

Look and Feel Customization

16

4.	 Currently you can see there is a little bit of margin around the edges of the main
window – we don't want that. To remove the margins, select the centralWidget
object from the object inspector window, which is right under the MainWindow panel,
and set all the margin values to zero.

5.	 At this point, you can run the project by clicking the Run button (with the green arrow
icon) to see what your program looks like now. If everything went well, you should
see something like this:

6.	 After we've done the layout, it's time for us to add some fanciness to the UI using style
sheets! Since all the important widgets have been given an object name, it's easier
for us to apply the style sheets to it from the main window, since we will only write the
style sheets to the main window and let them inherit down the hierarchy tree.

7.	 Right click on MainWindow from the object inspector window and choose Change
Stylesheet.

8.	 Add the following code to the style sheet:
#centralWidget { background: rgba(32, 80, 96, 100); }

9.	 Now you will see that the background of the main window changes its color. We will
learn how to use an image for the background in the next section, so the color is
just temporary.

Chapter 1

17

10.	 In Qt, if you want to apply styles to the main window itself, you must apply it to
its central widget instead of the main window itself because the window is just
a container.

11.	 Then, we will add a nice gradient color to the top panel:
#topPanel { background-color:
 qlineargradient(spread:reflect, x1:0.5, y1:0, x2:0, y2:0,
 stop:0 rgba(91, 204, 233, 100), stop:1 rgba(32, 80, 96,
 100)); }

12.	 After that, we will apply black color to the login form and make it look semi-transparent.
After that, we will also make the corners of the login form container slightly rounded by
setting the border-radius property:
#loginForm
{
 background: rgba(0, 0, 0, 80);
 border-radius: 8px;
}

13.	 After we're done applying styles to the specific widgets, we will apply styles to the
general types of widgets instead:
QLabel { color: white; }
QLineEdit { border-radius: 3px; }

14.	 The preceding style sheets will change all the labels' texts to a white color, which
includes the text on the widgets as well because, internally, Qt uses the same type
of label on the widgets that have text on it. Also, we made the corners of the line
edit widgets slightly rounded.

15.	 Next, we will apply style sheets to all the push buttons on our UI:
QPushButton
{
 color: white;
 background-color: #27a9e3;
 border-width: 0px;
 border-radius: 3px;
}

16.	 The preceding style sheet changes the text of all the buttons to a white color, then
sets its background color to blue, and makes its corners slightly rounded as well.

17.	 To push things even further, we will change the color of the push buttons when we
mouse-over it, using the keyword hover:
QPushButton:hover { background-color: #66c011; }

Look and Feel Customization

18

18.	 The preceding style sheet will change the background color of the push buttons to
green when we mouse-over them. We will talk more about this in the following section.

19.	 You can further adjust the size and margins of the widgets to make them look even
better. Remember to remove the border line of the login form by removing the style
sheet that we applied directly to it earlier.

20.	 Now your login screen should look something like this:

How it works...
This example focuses more on the layout system of Qt. The Qt layout system provides a simple
and powerful way of automatically arranging child widgets within a widget to ensure that they
make good use of the available space.

The spacer items used in the preceding example help to push the widgets contained in a
layout outward to create spacing along the width of the spacer item. To locate a widget to the
middle of the layout, put two spacer items to the layout, one on the left side of the widget and
another on the right side of the widget. The widget will then be pushed to the middle of the
layout by the two spacers.

Chapter 1

19

Using resources in style sheets
Qt provides us with a platform-independent resource system which allows us to store any type
of files in our program's executable for later use. There is no limit to the types of files we can
store in our executable—images, audio, video HTML, XML, text files, binary files, and so on,
are all permitted. This is useful if your application always needs a certain set of files (icons,
translation files, and so on) and you don't want to run the risk of losing the files. To achieve
this, we must tell Qt which files we want to add to its resource system in the .qrc file and
Qt will handle the rest during the build process.

How to do it
To add a new .qrc file to our project, go to File | New File or Project. Then, select Qt under
the Files and Classes category and select Qt Resources File. After that, give it a name (that
is, resources) and click the Next button followed by the Finish button. The .qrc file will not
be created and automatically opened by Qt Creator.

You don't have to edit the .qrc file directly in the XML format as Qt Creator provides you the
user interface to manage your resources. To add images and icons to your project, first you
need to make sure that the images and icons are being placed in your project's directory.

While the .qrc file is opened in Qt Creator, click the Add button followed by Add Prefix
button. The prefix is used to categorize your resources so that it can be better managed
when you have a ton of resources in your project:

1.	 Rename the prefix you just created /icons.

2.	 Then, create another prefix by clicking Add followed by Add Prefix.

3.	 Rename the new prefix /images.

4.	 After that, select the /icon prefix and click Add followed by Add Files.

5.	 A file selection window will appear; use that to select all the icon files. You can select
multiple files at a time by holding the Ctrl key on your keyboard while clicking on the
files to select them. Click Open once you're done.

6.	 Then, select the /images prefix and click the Add button followed by the Add Files
button. The file selection window will pop up again, and this time we will select the
background image.

Look and Feel Customization

20

7.	 Repeat the preceding steps, but this time we will add the logo image to the
/images prefix.

Don't forget to save once you're done by pressing Ctrl + S. Your .qrc file should now
look like this:

8.	 After that, open back to our mainwindow.ui file; we will now make use of the
resources we have just added to our project. First, we will select the restart button
located on the top panel. Then, scroll down the property editor until you see the
icon property. Click the little button with a drop-down arrow icon and click Choose
Resources from its menu.

9.	 The Select Resource window will then pop up. Click on the icons prefix on the left
panel and then select the restart icon on the right panel. After that, press OK.

10.	 You will now see a tiny icon appearing on the button. The icon looks very tiny
because the default icon size is set at 16x16. Change the iconSize property
to 50x50 and you will see the icon appear bigger now.

Repeat the preceding steps for the shutdown button, except this time we will choose
the shutdown icon instead.

11.	 Once you're done, the two buttons should now look like this:

12.	 Next, we will use the image we added to the resource file as our logo. First, select the
logo widget and remove the style sheet that we added earlier to render its outline.

13.	 Scroll down the property editor until you see the pixmap property.

Chapter 1

21

14.	 Click the little drop-down button behind the pixmap property and select Choose
Resources from the menu. After that, select the logo image and click OK. You will
now see the logo size no longer follow the dimension you set previously and follow the
actual dimension of the image instead. We cannot change its dimension because this
is simply how pixmap works.

15.	 If you want more control over the logo's dimension, you can remove the image from
the pixmap property and use a style sheet instead. You can use the following code to
apply an image to the icon container:
border-image: url(:/images/logo.png);

16.	 To obtain the path of the image, right click the image name on the file list window
and choose Copy path. The path will be saved to your operating system clipboard and
now you can just paste it to the preceding style sheet. Using this method will ensure
that the image fits exactly the dimension of the widget that you applied the style to.
Your logo should now appear like so:

17.	 Lastly, we will apply the wallpaper image to the background using a style sheet.
Since the background dimension will change according to the window size, we
cannot use pixmap in this case. Instead, we will use the border-image property
in a style sheet to achieve this. Right click the main window and select Change
styleSheet to open up the Edit Style Sheet window. We will add a new line under
the style sheet of the central widget:
#centralWidget
{
 background: rgba(32, 80, 96, 100);
 border-image: url(:/images/login_bg.png);
}

Look and Feel Customization

22

18.	 It's really that simple and easy! Your login screen should now look like this:

How it works...
The resource system in Qt stores binary files, such as images, translation files, and so on,
in the executable when it gets compiled. It reads the resource collection files (.qrc) in your
project to locate the files that need to be stored in the executable and include them into the
build process. A .qrc file looks something like this:

<!DOCTYPE RCC><RCC version="1.0">
 <qresource>
 <file>images/copy.png</file>
 <file>images/cut.png</file>
 <file>images/new.png</file>
 <file>images/open.png</file>
 <file>images/paste.png</file>
 <file>images/save.png</file>
 </qresource>
</RCC>

It uses XML format to store the paths of the resource files which are relative to the directory
containing it. Do note that the listed resource files must be located in the same directory as
the .qrc file, or one of its sub-directories.

Chapter 1

23

Customizing properties and sub-controls
Qt's style sheet system enables us to create stunning and professional-looking UIs with ease.
In this example, we will learn how to set custom properties to our widgets and use them to
switch between different styles.

How to do it…
1.	 Let's try out the scenario described in the preceding paragraph by creating a new Qt

project. I have prepared the UI for this purpose. The UI contains three buttons on the
left side and a tab widget with three pages located at the right side, as shown in the
following screenshot:

2.	 The three buttons are blue in color because I've added the following style
sheet to the main window (not to the individual button):
QPushButton
{
 color: white;
 background-color: #27a9e3;
 border-width: 0px;
 border-radius: 3px;
}

Look and Feel Customization

24

3.	 Next, I will explain to you what pseudo states are in Qt by adding the following style
sheet to the main window, which you might be familiar with:
QPushButton:hover
{
 color: white;
 background-color: #66c011;
 border-width: 0px;
 border-radius: 3px;
}

4.	 We used the preceding style sheet in the previous tutorial to make the buttons change
color when there is a mouse-over. This is made possible by Qt Style Sheet's pseudo
state, which in this case is the word hover separated from the QPushButton
class by a colon. Every widget has a set of generic pseudo states, such as active,
disabled, enabled, and so on, and also a set of pseudo states which are applicable
to their widget type. For example, states such as open and flat are available for
QPushButton, but not for QLineEdit. Let's add the pressed pseudo state to
change the buttons' color to yellow when the user clicks on it:
QPushButton:pressed
{
 color: white;
 background-color: yellow;
 border-width: 0px;
 border-radius: 3px;
}

5.	 Pseudo states allow the users to load a different set of style sheet based on the
condition that applies to it. Qt pushes this concept further by implementing dynamic
properties in Qt Style Sheets. This allows us to change the style sheet of a widget
when a custom condition has been met. We can make use of this feature to change
the style sheet of our buttons based on a custom condition that we can set using
custom properties in Qt.

First, we will add this style sheet to our main window:

QPushButton[pagematches=true]
{
 color: white;
 background-color: red;
 border-width: 0px;
 border-radius: 3px;
}

Chapter 1

25

6.	 What it does is basically change the push button's background color to red if the
property called pagematches returns true. Obviously, this property does not
exist in the QPushButton class. However, we can add it to our buttons by using
QObject::setProperty():

�� In your MainWindow.cpp source code, add the following code right after
ui->setupUi(this);:
ui->button1->setProperty("pagematches", true);

�� The preceding code will add a custom property called pagematches to the
first button and set its value as true. This will make the first button turn red
by default.

�� After that, right click on the tab widget and choose Go to slot. A window will
then pop up; select the currentChanged(int) option from the list and click
Ok. Qt will generate a slot function for you, which looks something like this:
private slots:
void on_tabWidget_currentChanged(int index);

�� The slot function will be called whenever we change page of the tab widget.
We can then decide what we want it to do by adding our code into the
slot function. To do that, open up mainwindow.cpp and you will see
the function's declaration there. Let's add some code to the function:

void MainWindow::on_tabWidget_currentChanged(int index)
{
 // Set all buttons to false
 ui->button1->setProperty("pagematches", false);
 ui->button2->setProperty("pagematches", false);
 ui->button3->setProperty("pagematches", false);

 // Set one of the buttons to true
 if (index == 0)
 ui->button1->setProperty("pagematches", true);
 else if (index == 1)
 ui->button2->setProperty("pagematches", true);
 else
 ui->button3->setProperty("pagematches", true);

 // Update buttons style
 ui->button1->style()->polish(ui->button1);
 ui->button2->style()->polish(ui->button2);
 ui->button3->style()->polish(ui->button3);
}

Look and Feel Customization

26

7.	 The preceding code basically does this: when the tab widget switches its current
page, it sets the pagematches properties of all three buttons to false. Just be
sure to reset everything before we decide which button should change to red.

8.	 Then, check the index variable supplied by the event signal, which will tell you the
index number of the current page. Set the pagematches property of one of the
buttons to true based on the index number.

9.	 Lastly, refresh the style of all three buttons by calling polish().

Then, build and run the project. You should now see the three buttons changing their
color to red whenever you switch the tab widget to a different page. Also, the buttons
will change color to green when there is a mouse-over, as well as change their color
to yellow when you click on them:

How it works...
Qt provides users the freedom of adding their own custom properties to any type of widget.
Custom properties are very useful if you want to change a particular widget when a special
condition is met, where Qt doesn't provide such a context by default. This allows the user to
extend the usability of Qt and makes it a flexible tool for customized solutions.

For example, if we have a row of buttons on our main window and we need one of them
to change its color depending on which page the tab widget is currently showing, then
there is no way the buttons would know when they should change their color, because Qt
itself has no built-in context for this type of situation. To solve this issue, Qt provides us a
method to add our own properties to the widgets, which is using a generic function called
QObject::setProperty(). To read the custom property, we can use another function
called QObject::property().

Chapter 1

27

Next, we will talk about sub-controls in Qt Style Sheets. It's actually quite self-explanatory by
looking at the term sub-controls. Often, a widget is not just a single object but a combination
of more than one object or control in order to form a more complex widget, and such objects
are called sub-controls.

For example, a spin box widget contains an input field, a down button, an up button, an up
arrow, and a down arrow, which is quite complicated compared to some other widgets. In this
case, Qt grants us more flexibility by allowing us to change every single sub-control using a
style sheet, if we wanted to. We can do so by specifying the name of the sub-control behind
the widget's class name, separated by a double colon. For instance, if I want to change the
image of the down button in a spin box, I can write my style sheet like this:

QSpinBox::down-button
{
 image: url(:/images/spindown.png);
 subcontrol-origin: padding;
 subcontrol-position: right bottom;
}

That will only apply the image to the down button of my spin box, and not to any other parts of
the widget.

By combining custom properties, pseudo states, and sub-controls, Qt provides us with a very
flexible method to customize our user interface.

Visit the following link to learn more about pseudo states and sub-
controls in Qt:
http://doc.qt.io/qt-4.8/stylesheet-reference.html

Styling in QML
Qt Meta Language or Qt Modeling Language (QML) is a Javascript-inspired user interface
mark-up language used by Qt for designing user interfaces. Qt provides you with Qt Quick
components (widgets powered by the QML technology) to easily design touch-friendly
UI without C++ programming. We will learn more about how to use QML and Qt Quick
components to design our program's UI by following the steps given in the following section.

How to do it…
1.	 Create a new project by going to File | New File or Project. Select Application under

Project category and choose Qt Quick Application.

2.	 Press the Choose button, and that will bring you to the next window. Insert a name for
your project and click the Next button again.

http://doc.qt.io/qt-4.8/stylesheet-reference.html

Look and Feel Customization

28

3.	 Another window will now appear and ask you to choose a minimum required Qt
version. Pick the latest version installed on your computer and click Next.

4.	 After that, click Next again followed by Finish. Qt Creator will now create a new
project for you.

5.	 Once the project is being created, you will see there are some differences compare
to a C++ Qt project. You will see two .qml files, namely main.qml and MainForm.
ui.qml, inside the project resource. These two files are the UI description files using
the QML mark-up language. If you double click main.qml file, Qt Creator will open up
the script editor and you will see something like this:
import QtQuick 2.5
import QtQuick.Window 2.2

Window {
 visible: true
 MainForm {
 anchors.fill: parent
 mouseArea.onClicked: {
 Qt.quit();
 }
 }
}

6.	 This file basically tells Qt to create a window and insert a set of UI called MainForm
which is actually from the other .qml file called MainForm.ui.qml. It also tells Qt
that when the user clicks on the mouseArea widget, the entire program should be
terminated.

7.	 Now, try to open the MainForm.ui.qml file by double-clicking on it. This time, Qt
Designer (UI editor) will be opened instead, and you will see a completely different UI
editor compared to the C++ project we did previously. This editor is also called the Qt
Quick Designer, specially designed for editing QML-based UI only.

8.	 If you open up the main.cpp file in your project, you will see this line of code:
QQmlApplicationEngine engine;
engine.load(QUrl(QStringLiteral("qrc:/main.qml")));

9.	 The preceding code basically tells Qt's QML engine to load the main.qml file when
the program starts. If you want to load the other .qml file instead of main.qml, you
know where to look for the code.

Chapter 1

29

10.	 When main.qml is loaded by the QML engine, it will also import MainForm.
ui.qml into the UI, since MainForm is being called in the main.qml file. Qt will
check if MainForm is a valid UI by searching for its .qml file based on the naming
convention. Basically the concept is similar to the C++ project we did in the previous
section, whereby the main.qml file acts like the main.cpp file and MainForm.
ui.qml acts like the MainWindow class. You can also create other UI templates and
use them in main.qml. Hopefully this comparison will make it easier to understand
how QML works.

11.	 Now let's open up MainForm.ui.qml. You should see three items listed on
the navigator window: Rectangle, mouseArea, and Text. When these items are
interpreted by the QML engine, it produces the following result on the canvas:

12.	 The Rectangle item is basically the base layout of the window, which cannot be
deleted. It is similar to the centralWidget we used in the previous section. The
mouseArea item is an invincible item that gets triggered when the mouse is clicking
on it, or when a finger is touching it (for mobile platforms). The mouse area is also
used in a button component, which we will be using in a while. The Text component is
self-explanatory: it is a label that displays a block of text on the application.

Look and Feel Customization

30

13.	 On the Navigator window, we can hide or show an item by clicking on the icon
besides the item which resembles an eye. When an item is hidden, it will not show on
the canvas nor the compiled application. Just like the widgets in a C++ Qt project, Qt
Quick components are arranged in a hierarchy based on the parent-child relationship.
All the children items will be placed below the parent item with an indented position.
In our case, you can see the mouseArea and Text items are all positioned slightly
to the right compared to the Rectangle item, because they are both the children of
the Rectangle item. We can re-arrange the parent-child relationship as well as their
position in the hierarchy by using a click-and-drag method from the navigator window.
You can try clicking on the Text item and dragging it on top of mouseArea. You will
then see the Text item changes its position and is now located below the mouseArea
with a wider indentation:

14.	 We can also re-arrange them by using the arrow buttons located on top of the
navigator window, as shown in the preceding screenshot. Anything that happens to
the parent item will also affect all its children, such as moving the parent item, hide
and show the parent item, and so on.

You can pan around the canvas view by holding the middle mouse
button (or mouse scroll) while moving your mouse around. You can
also zoom in and out by scrolling your mouse while holding the Ctrl
key on your keyboard. By default, scrolling your mouse will move the
canvas view up and down. However, if your mouse cursor is on top of
the horizontal scroll bar of the canvas, scrolling the mouse will move
the view to the left and right.

15.	 Next, delete both the mouseArea and Text items as we will be learning how to create
a user interface from scratch using QML and Qt Quick.

16.	 After you've done, let's set the Rectangle item's size to 800x600, as we're going to
need a bigger space for the widgets.

Chapter 1

31

17.	 Open up main.qml and remove these lines of code:
mouseArea.onClicked: {
 Qt.quit();
}

This is because the mouseArea item no longer exists and it will cause an error
when compiling.

18.	 After that, remove the following code from MainForm.ui.qml:
property alias mouseArea: mousearea

19.	 This is removed for the same reason as the previous code, because the mouseArea
item no longer exists.

20.	 Then, copy the images we used in the previous C++ project over to the QML project's
folder, because we are going re-create the same login screen, with QML!

21.	 Add the images to the resource file so that we can use them for our UI.

22.	 Once you're done with that, open up Qt Quick Designer again and switch to the
resource window. Click and drag the background image directly to the canvas.
Then, switch over to the Layout tab on the properties pane and click the fill anchor
button marked in red circle. This will make the background image always stick to
the window size:

23.	 Next, click and drag a Rectangle component from the library window to the
canvas. We will use this as the top panel for our program.

24.	 For the top panel, enable top anchor, left anchor, and right anchor so that it sticks to
the top of the window and follow its width. Make sure all the margins are set to zero.

25.	 Then, go to the Color property of the top panel and select Gradient mode. Set the
first color to #805bcce9 and the second color to #80000000. This will create a half-
transparent panel with a blue gradient.

26.	 After that, add a text widget to the canvas and make it a child of the top panel. Set
its text property to the current date and time (for example, Monday, 26-10-2015 3:14
PM) for display purposes. Then, set the text color to white.

Look and Feel Customization

32

27.	 Switch over to the Layout tab and enable top anchor and left anchor so that the text
widget will always stick to the top left corner of the screen.

28.	 Next, add a mouse area to the screen and set its size to 50x50. Then, make it a child
of the top panel by dragging it on top of the top panel in the navigator window.

29.	 Set the color of the mouse area to blue (#27a9e3) and set its radius to 2 to make its
corners slightly rounded. Then, enable top anchor and right anchor to make it stick to
the top right corner of the window. Set the top anchor's margin to 8 and right anchor's
margin to 10 to give out some space.

30.	 After that, open up the resources window and drag the shutdown icon to the canvas.
Then, make it a child of the mouse area item we created a moment ago. Then, enable
the fill anchor to make it fit the size of the mouse area.

31.	 Phew, that's a lot of steps! Now your items should be arranged like this on the
Navigator window:

32.	 The parent-child relationship and the layout anchors are both very important to keep
the widgets in the correct positions when the main window changes its size.

33.	 At this point, your top panel should look something like this:

34.	 Next, we will be working on the login form. First, add a new rectangle to the canvas
by dragging it from the Library window. Resize the rectangle to 360x200 and set its
radius to 15.

Chapter 1

33

35.	 Then, set its color to #80000000, which will change it to black with 50% transparency.

36.	 After that, enable the vertical center anchor and the horizontal center anchor to make
it always align to the center of the window. Then, set the margin of the vertical center
anchor to 100 so that it moves slightly lower to the bottom to give space to the logo.
The following screenshot illustrates the settings of the anchors:

37.	 Add the text widgets to the canvas. Make them the children of the login
form (rectangle widget) and set their text property to Username: and Password:
respectively. Then, change their text color to white and position them accordingly. We
don't need to set a margin this time because they will follow the rectangle's position.

38.	 Next, add two text input widgets to the canvas and place them next to the text widgets
we created just now. Make sure the text inputs are also the children of the login form.
Since the text inputs don't contain any background color property, we need to add two
rectangles to the canvas to use as their background.

39.	 Add two rectangles to the canvas and make each of them a child of one of the text
inputs we created just now. Then, set the radius property to 5 to give them some
rounded corners. After that, enable fill anchors on both of the rectangles so that they
will follow the size of the text input widgets.

www.allitebooks.com

http://www.allitebooks.org

Look and Feel Customization

34

40.	 After that, we're going to create the login button below the password field. First, add a
mouse area to the canvas and make it a child of the login form. Then, resize it to your
preferred dimension and move it into place.

41.	 Since the mouse area also does not contain any background color property, we need
to add a rectangle widget and make it a child of the mouse area. Set the color of the
rectangle to blue (#27a9e3) and enable the fill anchor so that it fits nicely with the
mouse area.

42.	 Next, add a text widget to the canvas and make it a child of the login button. Change
its text color to white and set its text property to Login. Finally, enable the horizontal
center anchor and the vertical center anchor to align it to the center of the button.

43.	 You will now get a login form that looks pretty similar to the one we made in the
C++ project:

44.	After we have done the login form, it's time to add the logo. It's actually very simple.
First, open up the resources window and drag the logo image to the canvas.

45.	 Make it a child of the login form and set its size to 512x200.

46.	 Position it above the login form and you're done!

47.	 This is what the entire UI look like when compiled. We have successfully re-created
the login screen from the C++ project, but this time we did it with QML and Qt Quick!

Chapter 1

35

How it works...
Qt Quick editor uses a very different approach for placing widgets in the application compared
to the form editor. It's entirely up to the user which method is best suited for him/her.

The following screenshot shows what the Qt Quick Designer looks like:

We will now look at the various elements of the editor's UI:

1.	 Navigator: The Navigator window displays the items in the current QML file as a tree
structure. It's similar to the object operator window in the other Qt Designer we used
in previous section.

2.	 Library: The Library window displays all the Qt Quick Components or Qt Quick
Controls available in QML. You can click and drag it to the canvas window to add to
your UI. You can also create your own custom QML components and display it here.

3.	 Resources: The Resources window displays all the resources in a list which can then
be used in your UI design.

4.	 Imports: The Imports window allows you to import different QML modules into your
current QML file, such as a bluetooth module, webkit module, positioning module,
and so on, to add additional functionality to your QML project.

Look and Feel Customization

36

5.	 State pane: Stat pane displays the different states in the QML project which typically
describe UI configurations, such as the UI controls, their properties and behavior, and
the available actions.

6.	 Properties pane: Similar to the property editor we used in previous section, this
properties pane in QML Designer displays the properties of the selected item. You
can also change the properties of the items in the code editor as well.

7.	 Canvas: Canvas is the working area where you create QML components and
design applications.

Exposing QML object pointer to C++
Sometimes we want to modify the properties of a QML object through C++ scripting, such as
changing the text of a label, hiding/showing the widget, changing its size, and so on. Qt's QML
engine allows you to register your QML objects to C++ types which automatically exposes all
its properties.

How to do it…
We want to create a label in QML and change its text occasionally. In order to expose the label
object to C++, we can do the following steps. First, create a C++ class called MyLabel that
extends from QObject class:

mylabel.h:
class MyLabel : public QObject
{
 Q_OBJECT
 public:
 // Object pointer
 QObject* myObject;

 explicit MyLabel(QObject *parent = 0);

 // Must call Q_INVOKABLE so that this function can be used in QML
 Q_INVOKABLE void SetMyObject(QObject* obj);
}

In the mylabel.cpp source file, define a function called SetMyObject() to save the object
pointer. This function will later be called in QML:

mylabel.cpp:
void MyLabel::SetMyObject(QObject* obj)
{
 // Set the object pointer
 myObject = obj;
}

Chapter 1

37

After that, in main.cpp, include MyLabel header and register it to QML engine using the
function qmlRegisterType():

#include "mylabel.h"
int main(int argc, char *argv[])
{
 // Register your class to QML
 qmlRegisterType<MyClass>("MyLabelLib", 1, 0, "MyLabel");
}

Notice that there are four parameters you need to declare in qmlRegisterType().
Besides declaring your class name (MyLabel), you also need to declare your library name
(MyLabelLib) and its version (1.0), which will be used for importing your class to QML
later on.

Now that the QML engine is fully aware of our custom label class, we can then map it to
our label object in QML and import the class library we defined earlier by calling import
MyLabelLib 1.0 in our QML file. Notice that the library name and its version number
have to match with the one you declared in main.cpp, otherwise it will throw you an error.

After declaring MyLabel in QML and setting its ID as mylabels, call mylabel.
SetMyObject(myLabel) to expose its pointer to C/C++ right after the label is
being initialized:

import MyLabelLib 1.0

ApplicationWindow
{
 id: mainWindow
 width: 480
 height: 640

 MyLabel
 {
 id: mylabel
 }

 Label
 {
 id: helloWorldLabel
 text: qsTr("Hello World!")
 Component.onCompleted:
 {
 mylabel.SetMyObject(hellowWorldLabel);
 }
 }
}

Look and Feel Customization

38

Please be aware that you need to wait until the label is fully initiated before exposing its
pointer to C/C++, otherwise you may cause the program to crash. To make sure it's fully
initiated, call SetMyObject() within Component.onCompleted and not any other places.

Now that the QML label has been exposed to C/C++, we can change any of its properties by
calling setProperty() function. For instance, we can set its visibility to true and change
its text to Bye bye world!:

// QVariant automatically detects your data type
myObject->setProperty("visible", QVariant(true));
myObject->setProperty("text", QVariant("Bye bye world!"));

Besides changing the properties, we can also call its functions by calling
QMetaObject::invokeMethod():

QVariant returnedValue;
QVariant message = "Hello world!";

QMetaObject::invokeMethod(myObject, "myQMLFunction",
Q_RETURN_ARG(QVariant, returnedValue),
Q_ARG(QVariant, message));

qDebug() << "QML function returned:" << returnedValue.toString();

Or simply, we can call the invokedMethod() function with only two parameters if we do not
expect any values to be returned from it:

QMetaObject::invokeMethod(myObject, "myQMLFunction");

How it works...
QML is designed to be easily extensible through C++ code. The classes in the Qt QML module
enable QML objects to be loaded and manipulated from C++, and the nature of the QML
engine's integration with Qt's meta object system enables C++ functionality to be invoked
directly from QML. To provide some C++ data or functionality to QML, it must be made
available from a QObject-derived class.

QML object types can be instantiated from C++ and inspected in order to access their
properties, invoke their methods, and receive their signal notifications. This is possible due to
the fact that all QML object types are implemented using QObject-derived classes, enabling
the QML engine to dynamically load and introspect objects through the Qt meta object system.

39

2
States and Animations

In this chapter, we will cover the following recipes:

ff Property animation in Qt

ff Using easing curves to control property animation

ff Creating the animation group

ff Creating the nested animation group

ff State machine in Qt

ff States, transitions, and animations in QML

ff Animation widget properties using animators

ff Sprite animation

Introduction
Qt provides an easy way to animate widgets or any other objects that inherit the QObject
class, through its powerful animation framework. The animation can be used either on its
own or used together with the state machine framework, which allows different animations
to be played based on the current active state of the widget. Qt's animation framework
also supports grouped animation, which allows you to move more than one graphics item
simultaneously, or move them in sequence one after the other.

Property animation in Qt
In this example, we will learn how to animate our Graphical User Interface (GUI) elements
using Qt's property animation class, part of its powerful animation framework, which allows
us to create fluid looking animation with minimal effort.

States and Animations

40

How to do it…
1.	 First, let's create a new Qt Widgets Application project. After that, open up

mainwindow.ui with Qt Designer and place a button on the main window,
as shown here:

2.	 Next, open up mainwindow.cpp and add the following line of code at the beginning
of the source code:
#include <QPropertyAnimation>

3.	 After that, open up mainwindow.cpp and add the following code to the constructor:
QPropertyAnimation *animation = new QPropertyAnimation
 (ui->pushButton, "geometry");
animation->setDuration(10000);
animation->setStartValue(ui->pushButton->geometry());
animation->setEndValue(QRect(200, 200, 100, 50));
animation->start();

How it works...
One of the more common methods to animate a GUI element is through the property
animation class provided by Qt, known as the QPropertyAnimation class. This class is
part of the animation framework and it makes use of the timer system in Qt to change the
properties of a GUI element over a given duration.

What we are trying to accomplish here is to animate the button from one position to another,
while at the same time we also enlarge the button size along the way.

By including the QPropertyAnimation header in our source code in Step 2, we will
be able to access the QPropertyAnimation class provided by Qt and make use of its
functionalities.

Chapter 2

41

The code in Step 3 basically creates a new property animation and applies it to the push
button we just created in Qt Designer. We specifically request the property animation
class changes the geometry properties of the push button and sets its duration to 3,000
milliseconds (3 seconds).

Then, the start value of the animation is set to the initial geometry of the push button,
because obviously we want it to start from where we initially place the button in Qt Designer.
The end value is then set to what we want it to become; in this case we will move the button
to a new position at x: 200, y: 200 while changing its size to width: 100, height: 50 along
the way.

After that, call animation->start() to start the animation.

Compile and run the project and now you should see the button start to move slowly across
the main window while expanding in size a bit at a time, until it reaches its destination. You
can change the animation duration and the target position and scale by altering the values
in the preceding code. It's really that simple to animate a GUI element using Qt's property
animation system!

There's more…
Qt provides us with several different sub-systems to create animations for our GUI, including
timer, timeline, animation framework, state machine framework, and graphics view framework:

ff Timer: Qt provides us with repetitive and single-shot timers. When the timeout value
is reached, an event callback function will be triggered through Qt's signal-and-slot
mechanism. You can make use of a timer to change the properties (color, position,
scale, and so on) of your GUI element within a given interval, in order to create
an animation.

ff Timeline: Timeline calls a slot periodically to animate a GUI element. It is quite similar
to a repetitive timer, but instead of doing the same thing all the time when the slot
is triggered, timeline provides a value to the slot to indicate its current frame index,
so that you can do different things (such as offset to a different space of the sprite
sheet) based on the given value.

ff Animation framework: The animation framework makes animating a GUI element
easy by allowing its properties to be animated. The animations are controlled by using
easing curves. Easing curves describe a function that controls what the speed of the
animation should be, resulting in different acceleration and deceleration patterns.
The types of easing curve supported by Qt include: linear, quadratic, cubic, quartic,
sine, exponential, circular, and elastic.

ff State machine framework: Qt provides us with classes for creating and executing
state graphs, which allow each GUI element to move from one state to another when
triggered by signals. The state graph in the state machine framework is hierarchical,
which means every state can also be nested inside of other states.

States and Animations

42

ff Graphics view framework: The graphics view framework is a powerful graphics
engine for visualizing and interacting with a large number of custom-made 2D
graphical items. You can use the graphics view framework to draw your GUI and
have them animated in a totally manual way if you are an experienced programmer.

By making use of all the powerful features mentioned here, we're able to create an intuitive
and modern GUI with ease. In this chapter, we will look into the practical approaches to
animating GUI elements using Qt.

Using easing curves to control property
animation

In this example, we will learn how to make our animation more interesting by utilizing easing
curves. We will still use the previous source code, which uses the property animation to
animate a push button.

How to do it…
1.	 Define an easing curve and add it to the property animation before calling the

start() function:
QPropertyAnimation *animation =
 new QPropertyAnimation(ui->pushButton, "geometry");
animation->setDuration(3000);
animation->setStartValue(ui->pushButton->geometry());
animation->setEndValue(QRect(200, 200, 100, 50));
QEasingCurve curve;
curve.setType(QEasingCurve::OutBounce);
animation->setEasingCurve(curve);
animation->start();

2.	 Call the setLoopCount() function to set how many loops you want it to repeat for:
QPropertyAnimation *animation =
 new QPropertyAnimation(ui->pushButton, "geometry");
animation->setDuration(3000);
animation->setStartValue(ui->pushButton->geometry());
animation->setEndValue(QRect(200, 200, 100, 50));
QEasingCurve curve;
Curve.setType(EasingCurve::OutBounce);
animation->setEasingCurve(curve);
animation->setLoopCount(2);
animation->start();

Chapter 2

43

3.	 Call setAmplitude(), setOvershoot(), and setPeriod() before applying the
easing curve to the animation:
QEasingCurve curve;
curve.setType(QEasingCurve::OutBounce);
curve.setAmplitude(1.00);
curve.setOvershoot(1.70);
curve.setPeriod(0.30);
animation->setEasingCurve(curve);
animation->start();

How it works...
In order to let an easing curve control the animation, all you need to do is to define an easing
curve and add it to the property animation before calling the start() function. You can also
try several other types of easing curve and see which one suits you best. Here is an example:

animation->setEasingCurve(QEasingCurve::OutBounce);

If you want the animation to loop after it has finished playing, you can call the
setLoopCount() function to set how many loops you want it to repeat for, or
set the value to -1 for an infinite loop:

animation->setLoopCount(-1);

There are several parameters that you can set to refine the easing curve before applying it
to the property animation. These parameters include amplitude, overshoot, and period:

ff Amplitude: The higher the amplitude, the higher the bounce or elastic spring effect
that will be applied to the animation.

ff Overshoot: Some curve functions will produce an overshoot (exceeding its final value)
curve due to damping effect. By adjusting the overshoot value, we are able to increase
or decrease this effect.

ff Period: Setting a small period value will give a high frequency to the curve. A large
period will give it a small frequency.

These parameters, however, are not applicable to all curve types. Please refer to the Qt
documentation to see which parameter is applicable to which curve type.

States and Animations

44

There's more…
While the property animation works perfectly fine, sometimes it feels a little boring to look at a
GUI element animated at a constant speed. We can make the animation look more interesting
by adding an easing curve to control the motion. There are many types of easing curve that
you can use in Qt, and here are some of them:

As you can see from the preceding diagram, each easing curve produces a different ease-in
and ease-out effect.

For the full list of easing curves available in Qt, please refer to the Qt
documentation at http://doc.qt.io/qt-5/qeasingcurve.
html#Type-enum.

Creating an animation group
In this example, we will learn how to use an animation group to manage the states of the
animations contained in the group.

http://doc.qt.io/qt-5/qeasingcurve.html#Type-enum
http://doc.qt.io/qt-5/qeasingcurve.html#Type-enum

Chapter 2

45

How to do it…
1.	 We will use the previous example, but this time, we add two more push buttons to the

main window, like so:

2.	 Next, define the animation for each of the push buttons in the main window's
constructor:
QPropertyAnimation *animation1 =
 new QPropertyAnimation(ui->pushButton, "geometry");
animation1->setDuration(3000);
animation1->setStartValue(ui->pushButton->geometry());
animation1->setEndValue(QRect(50, 200, 100, 50));

QPropertyAnimation *animation2 =
 new QPropertyAnimation(ui->pushButton_2, "geometry");
animation2->setDuration(3000);
animation2->setStartValue(ui->pushButton_2->geometry());
animation2->setEndValue(QRect(150, 200, 100, 50));

QPropertyAnimation *animation3 =
 new QPropertyAnimation(ui->pushButton_3, "geometry");
animation3->setDuration(3000);
animation3->setStartValue(ui->pushButton_3->geometry());
animation3->setEndValue(QRect(250, 200, 100, 50));

States and Animations

46

3.	 After that, create an easing curve and apply the same curve to all three animations:
QEasingCurve curve;
curve.setType(QEasingCurve::OutBounce);
curve.setAmplitude(1.00);
curve.setOvershoot(1.70);
curve.setPeriod(0.30);

animation1->setEasingCurve(curve);
animation2->setEasingCurve(curve);
animation3->setEasingCurve(curve);

4.	 Once you have applied the easing curve to all three animations, we will then create
an animation group and add all three animations to the group:
QParallelAnimationGroup *group = new QParallelAnimationGroup;
group->addAnimation(animation1);
group->addAnimation(animation2);
group->addAnimation(animation3);

5.	 Call the start() function from the animation group we just created:
group->start();

How it works...
Since we are using an animation group now, we no longer call the start() function from the
individual animation, but instead we will be calling the start() function from the animation
group we just created.

If you compile and run the example now, you will see all three buttons being played at the
same time. This is because we are using the parallel animation group. You can replace it
with a sequential animation group and run the example again:

QSequentialAnimationGroup *group = new QSequentialAnimationGroup;

This time, only a single button will play its animation at a time, while the other buttons will wait
patiently for their turn to come.

The priority is set based on which animation is added to the animation group first. You can
change the animation sequence by simply rearranging the sequence of an animation being
added to the group. For example, if we want button 3 to start the animation first, followed by
button 2, and then button 1, the code will look like this:

group->addAnimation(animation3);
group->addAnimation(animation2);
group->addAnimation(animation1);

Chapter 2

47

Since property animations and animation groups are both inherited from the
QAbstractAnimator class, it means that you can also add an animation group
to another animation group to form a more complex, nested animation group.

There's more…
Qt allows us to create multiple animations and group them into an animation group. A group is
usually responsible for managing the state of its animations (that is, it decides when to start,
stop, resume, and pause them). Currently, Qt provides two types of class for animation groups,
QParallelAnimationGroup and QSequentialAnimationGroup:

ff QParallelAnimationGroup: As its name implies, a parallel animation group runs
all the animations in its group at the same time. The group is deemed finished when
the longest-lasting animation has finished running.

ff QSequentialAnimationGroup: A sequential animation group runs its animations
in sequence, meaning it will only run a single animation at a time, and only play the
next animation when the current one has finished.

Creating a nested animation group
One good example of using a nested animation group is when you have several parallel
animation groups and you want to play the groups in a sequential order.

How to do it…
1.	 We will use the UI from the previous example and add a few more buttons to the main

window, like so:

States and Animations

48

2.	 First, create all the animations for the buttons, then create an easing curve and apply
it to all the animations:
QPropertyAnimation *animation1 =
 new QPropertyAnimation(ui->pushButton, "geometry");
animation1->setDuration(3000);
animation1->setStartValue(ui->pushButton->geometry());
animation1->setEndValue(QRect(50, 50, 100, 50));

QPropertyAnimation *animation2 =
 new QPropertyAnimation(ui->pushButton_2, "geometry");
animation2->setDuration(3000);
animation2->setStartValue(ui->pushButton_2->geometry());
animation2->setEndValue(QRect(150, 50, 100, 50));

QPropertyAnimation *animation3 =
 new QPropertyAnimation(ui->pushButton_3, "geometry");
animation3->setDuration(3000);
animation3->setStartValue(ui->pushButton_3->geometry());
animation3->setEndValue(QRect(250, 50, 100, 50));

QPropertyAnimation *animation4 =
 new QPropertyAnimation(ui->pushButton_4, "geometry");
animation4->setDuration(3000);
animation4->setStartValue(ui->pushButton_4->geometry());
animation4->setEndValue(QRect(50, 200, 100, 50));

QPropertyAnimation *animation5 =
 new QPropertyAnimation(ui->pushButton_5, "geometry");
animation5->setDuration(3000);
animation5->setStartValue(ui->pushButton_5->geometry());
animation5->setEndValue(QRect(150, 200, 100, 50));

QPropertyAnimation *animation6 =
 new QPropertyAnimation(ui->pushButton_6, "geometry");
animation6->setDuration(3000);
animation6->setStartValue(ui->pushButton_6->geometry());
animation6->setEndValue(QRect(250, 200, 100, 50));

QEasingCurve curve;
curve.setType(QEasingCurve::OutBounce);
curve.setAmplitude(1.00);
curve.setOvershoot(1.70);
curve.setPeriod(0.30);

Chapter 2

49

animation1->setEasingCurve(curve);
animation2->setEasingCurve(curve);
animation3->setEasingCurve(curve);
animation4->setEasingCurve(curve);
animation5->setEasingCurve(curve);
animation6->setEasingCurve(curve);

3.	 Create two animation groups, one for the buttons in the upper column and another
one for the lower column:
QParallelAnimationGroup *group1 = new QParallelAnimationGroup;
group1->addAnimation(animation1);
group1->addAnimation(animation2);
group1->addAnimation(animation3);

QParallelAnimationGroup *group2 = new QParallelAnimationGroup;
group2->addAnimation(animation4);
group2->addAnimation(animation5);
group2->addAnimation(animation6);

4.	 We will create yet another animation group, which will be used to store the two
animation groups we created previously:
QSequentialAnimationGroup *groupAll =
 new QSequentialAnimationGroup;
groupAll->addAnimation(group1);
groupAll->addAnimation(group2);
groupAll->start();

How it works...
What we're trying to do here is to play the animation of the buttons in the upper column first,
followed by the buttons in the lower column.

Since both of the animation groups are parallel animation groups, the buttons belonging
to the respective groups will be animated at the same time when the start() function
is called.

This time, however, the group is a sequential animation group, which means only a single
parallel animation group will be played at a time, followed by the other when the first one
is finished.

Animation groups are a very handy system that allows us to create very complex GUI
animations with simple coding. Qt will handle the difficult part for us so we don't have to.

States and Animations

50

State machines in Qt
State machines can be used for many purposes, but in this chapter we will only cover topics
related to animation.

How to do it…
1.	 First, we will set up a new user interface for our example program, which looks

like this:

2.	 Next, we will include some headers in our source code:
#include <QStateMachine>
#include <QPropertyAnimation>
#include <QEventTransition>

3.	 After that, in our main window's constructor, add the following code to create a new
state machine and two states, which we will be using later:
QStateMachine *machine = new QStateMachine(this);
QState *s1 = new QState();
QState *s2 = new QState();

4.	 Then, we will define what we should do within each state, which in this case will be
to change the label's text, as well as the button's position and size:
QState *s1 = new QState();
s1->assignProperty(ui->stateLabel, "text", "Current state: 1");
s1->assignProperty(ui->pushButton, "geometry", QRect(50, 200, 100,
 50));

Chapter 2

51

QState *s2 = new QState();
s2->assignProperty(ui->stateLabel, "text", "Current state: 2");
s2->assignProperty(ui->pushButton, "geometry", QRect(200, 50, 140,
 100));

5.	 Once you are done with that, let's proceed by adding event transition classes to our
source code:
QEventTransition *t1 = new QEventTransition(ui->changeState,
 QEvent::MouseButtonPress);
t1->setTargetState(s2);
s1->addTransition(t1);

QEventTransition *t2 = new QEventTransition(ui->changeState,
 QEvent::MouseButtonPress);
T2->setTargetState(s1);
s2->addTransition(t2);

6.	 Next, add all the states we have just created to the state machine and define state 1 as
the initial state. Then, call machine->start() to start running the state machine:
machine->addState(s1);
machine->addState(s2);

machine->setInitialState(s1);
machine->start();

7.	 If you run the example program now, you will notice everything works fine, except
the button is not going through a smooth transition and it simply jumps instantly to
the position and size we set previously. This is because we have not used a property
animation to create a smooth transition.

8.	 Go back to the event transition step and add the following lines of code:
QEventTransition *t1 =
 new QEventTransition(ui->changeState, QEvent::MouseButtonPress);
t1->setTargetState(s2);
t1->addAnimation(new QPropertyAnimation(ui->pushButton,
 "geometry"));
s1->addTransition(t1);

QEventTransition *t2 = new QEventTransition(ui->changeState,
 QEvent::MouseButtonPress);
t2->setTargetState(s1);
t2->addAnimation(new QPropertyAnimation(ui->pushButton,
 "geometry"));
s2->addTransition(t2);

States and Animations

52

9.	 You can also add an easing curve to the animation to make it look more interesting:
QPropertyAnimation *animation =
 new QPropertyAnimation(ui->pushButton, "geometry");
animation->setEasingCurve(QEasingCurve::OutBounce);
QEventTransition *t1 = new QEventTransition(ui->changeState,
 QEvent::MouseButtonPress);
t1->setTargetState(s2);
t1->addAnimation(animation);
s1->addTransition(t1);

QEventTransition *t2 = new QEventTransition(ui->changeState,
 QEvent::MouseButtonPress);
t2->setTargetState(s1);
t2->addAnimation(animation);
s2->addTransition(t2);

How it works...
There are two push buttons and a label on the main window layout. The button at the top-left
corner will trigger the state change when pressed, while the label at the top-right corner will
change its text to show which state we are currently in, and the button below will animate
according to the current state.

The QEventTransition classes define what will trigger the transition between one state
and another.

In our case, we want the state to change from state 1 to state 2 when the ui->changeState
button (the one at the upper left) is clicked. After that, we also want to change from state 2
back to state 1 when the same button is pressed again. This can be achieved by creating
another event transition class and setting the target state back to state 1. Then, add these
transitions to their respective states.

Instead of just assigning the properties directly to the widgets, we tell Qt to use the property
animation class to smoothly interpolate the properties toward the target values. It is that
simple!

There is no need to set the start value and end value, because we have already called the
assignProperty() function, which has automatically assigned the end value.

There's more…
The state machine framework in Qt provides classes for creating and executing state graphs.
Qt's event system is used to drive the state machines, where transitions between states can
be triggered by using signals, then the slots on the other end will be invoked by the signals
to perform an action, such as playing an animation.

Chapter 2

53

Once you understand the basics of state machines, you can use them to do other things as
well. The state graph in the state machine framework is hierarchical. Just like the animation
group in the previous section, states can also be nested inside of other states:

States, transitions, and animations in QML
If you prefer to work with QML instead of C++, Qt also provides similar features in Qt Quick
that allow you to easily animate a GUI element with the minimum lines of code. In this
example, we will learn how to achieve this with QML.

How to do it…
1.	 First we will create a new Qt Quick Application project and set up our user interface

like so:

States and Animations

54

2.	 Here is what my main.qml file looks like:
import QtQuick 2.3
import QtQuick.Window 2.2

Window {
 visible: true
 width: 480;
 height: 320;

 Rectangle {
 id: background;
 anchors.fill: parent;
 color: "blue";
 }

 Text {
 text: qsTr("Hello World");
 anchors.centerIn: parent;
 color: "white";
 font.pointSize: 15;
 }
}

3.	 Add the color animation to the Rectangle object:
Rectangle {
 id: background;
 anchors.fill: parent;
 color: "blue";
 SequentialAnimation on color
 {
 ColorAnimation { to: "yellow"; duration: 1000 }
 ColorAnimation { to: "red"; duration: 1000 }
 ColorAnimation { to: "blue"; duration: 1000 }
 loops: Animation.Infinite;
 }
}

4.	 Then, add a number animation to the text object:
Text {
 text: qsTr("Hello World");
 anchors.centerIn: parent;
 color: "white";
 font.pointSize: 15;
 SequentialAnimation on opacity {

Chapter 2

55

 NumberAnimation { to: 0.0; duration: 200}
 NumberAnimation { to: 1.0; duration: 200}
 loops: Animation.Infinite;
 }
}

5.	 Next, add another number animation to it:
Text {
 text: qsTr("Hello World");
 anchors.centerIn: parent;
 color: "white";
 font.pointSize: 15;
 SequentialAnimation on opacity {
 NumberAnimation { to: 0.0; duration: 200}
 NumberAnimation { to: 1.0; duration: 200}
 loops: Animation.Infinite;
 }
 NumberAnimation on rotation {
 from: 0;
 to: 360;
 duration: 2000;
 loops: Animation.Infinite;
 }
}

6.	 Define two states, one called the PRESSED state and another called the RELEASED
state. Then, set the default state to RELEASED:
Rectangle {
 id: background;
 anchors.fill: parent;

 state: "RELEASED";
 states: [
 State {
 name: "PRESSED"
 PropertyChanges { target: background; color: "blue"}
 },
 State {
 name: "RELEASED"
 PropertyChanges { target: background; color: "red"}
 }
]
}

States and Animations

56

7.	 After that, create a mouse area within the Rectangle object so that we can click
on it:
MouseArea {
 anchors.fill: parent;
 onPressed: background.state = "PRESSED";
 onReleased: background.state = "RELEASED";
}

8.	 Add some transitions to the Rectangle object:
transitions: [
 Transition {
 from: "PRESSED"
 to: "RELEASED"
 ColorAnimation { target: background; duration: 200}
 },
 Transition {
 from: "RELEASED"
 to: "PRESSED"
 ColorAnimation { target: background; duration: 200}
 }
]

How it works...
The main window consists of a blue rectangle and static text that says Hello World.

We want the background color to change from blue to yellow, then to red, and back to blue in
a loop. This can be easily achieved using the color animation type in QML.

What we're doing at Step 3 is basically creating a sequential animation group within the
Rectangle object, then creating three different color animations within the group, which
will change the color of the object every 1,000 milliseconds (1 second). We also set the
animations to loop infinitely.

In Step 4, we want to use the number animation to animate the alpha value of the static
text. We created another sequential animation group within the Text object and created
two number animations to animate the alpha value from 0 to 1 and back. Then, we set the
animations to loop infinitely.

Then in Step 5, we rotate the Hello World text by adding another number animation to it.

In Step 6, we wanted to make the Rectangle object change from one color to another when
we click on it. When the mouse is released, the Rectangle object will change back to its
initial color. To achieve that, first we need to define the two states, one called the PRESSED
state and another called the RELEASED state. Then, we set the default state to RELEASED.

Chapter 2

57

Now, when you compile and run the example, the background will instantly change color to
blue when pressed and change back to red when the mouse is released. That works great and
we can further enhance it by giving it a little transition when switching color. This can be easily
achieved by adding transitions to the Rectangle object.

There's more…
In QML, there are eight different types of property animation you can use:

ff Anchor animation: Animates changes in anchor values

ff Color animation: Animates changes in color values

ff Number animation: Animates changes in qreal-type values

ff Parent animation: Animates changes in parent values

ff Path animation: Animates an item along a path

ff Property animation: Animates changes in property values

ff Rotation animation: Animates changes in rotation values

ff Vector3d animation: Animates changes in QVector3d values

Just like the C++ version, these animations can also be grouped together in an animation
group to play the animations in sequence or in parallel. You can also control the animations
using easing curves and determine when to play these animations using state machines, just
like what we have done in the previous section.

Animating widget properties using animators
In this recipe, we will learn how to animate the properties of our GUI widgets using the
animator feature provided by QML.

How to do it…
1.	 Create a rectangle object and add a scale animator to it:

Rectangle {
 id: myBox;
 width: 50;
 height: 50;
 anchors.horizontalCenter: parent.horizontalCenter;
 anchors.verticalCenter: parent.verticalCenter;
 color: "blue";

 ScaleAnimator {
 target: myBox;

States and Animations

58

 from: 5;
 to: 1;
 duration: 2000;
 running: true;
 }
}

2.	 Add a rotation animator and set the running value in the parallel animation group,
but not in any of the individual animators:
ParallelAnimation {
 ScaleAnimator {
 target: myBox;
 from: 5;
 to: 1;
 duration: 2000;
 }
 RotationAnimator {
 target: myBox;
 from: 0;
 to: 360;
 duration: 1000;
 }
 running: true;
}

3.	 Add an easing curve to the scale animator:
ScaleAnimator {
 target: myBox;
 from: 5;
 to: 1;
 duration: 2000;
 easing.type: Easing.InOutElastic;
 easing.amplitude: 2.0;
 asing.period: 1.5;
 running: true;
}

How it works...
The animator type can be used just like any other animation type. We want to scale a
rectangle from a size of 5 to a size of 1 within 2,000 milliseconds (2 seconds).

Chapter 2

59

We created a blue Rectangle object and added a scale animator to it. We set the initial
value to 5 and the final value to 1. Then, we set the animation duration to 2000 and set
the running value to true so that it will be played when the program starts.

Just like the animation types, animators can also be put into groups (that is, parallel
animation groups or sequential animation groups). An animation group will also be treated as
an animator by QtQuick and be run on the scene graph's rendering thread whenever possible.

In Step 2, we want to group two different animators into a parallel animation group so that
they run together at the same time.

We will keep the scale animator we have created previously and add another rotation
animator to rotate the Rectangle object. This time, set the running value in the parallel
animation group, but not in any of the individual animators.

Just like the C++ version, QML also supports easing curves and they can be easily applied
to any of the animations or animator types.

There is something called animator in QML, which is similar but different from the ordinary
animation type. Animator types are a special type of animation that operate directly on Qt
Quick's scene graph, rather than the QML objects and their properties like regular animation
types do.

The value of the QML property will be updated after the animation has finished. However, the
property is not updated while the animation is running. The benefits of using the animator
type is that the performance is slightly better because it doesn't run on the UI thread, but
operates directly on the scene graph's rendering thread.

Sprite animation
In this example, we will learn how to create sprite animation in QML.

How to do it…
1.	 First of all, we'll need to add our sprite sheet to Qt's resource system so that it can be

used in the program. Open up qml.qrc and click the Add | Add Files buttons. Select
your sprite sheet image and save the resource file by pressing Ctrl + S.

States and Animations

60

2.	 After that, create a new empty window in main.qml:
import QtQuick 2.3
import QtQuick.Window 2.2

Window {
 visible: true
 width: 420
 height: 380
 Rectangle {
 anchors.fill: parent
 color: "white"
 }
}

3.	 Once you're done with that, we will start creating an AnimatedSprite object
in QML:
import QtQuick 2.3
import QtQuick.Window 2.2

Window {
 visible: true;
 width: 420;
 height: 380;
 Rectangle {
 anchors.fill: parent;
 color: "white";
 }

 AnimatedSprite {
 id: sprite;
 width: 128;
 height: 128;
 anchors.centerIn: parent;
 source: "qrc:///horse_1.png";
 frameCount: 11;
 frameWidth: 128;
 frameHeight: 128;
 frameRate: 25;
 loops: Animation.Infinite;
 running: true;
 }
}

Chapter 2

61

4.	 Add a mouse area to the window and check for the onClicked event:
MouseArea {
 anchors.fill: parent;
 onClicked: {
 if (sprite.paused)
 sprite.resume();
 else
 sprite.pause();
 }
}

5.	 If you compile and run the example program now, you will see a little pony running in
the middle of the window. How fun!

6.	 Next, we want to try and do something cool. We will make the horse run across the
window and loop infinitely while playing its running animation!

First, we need to remove the anchors.centerIn: parent from QML and replace it
with x and y values:

AnimatedSprite {
 id: sprite;
 width: 128;
 height: 128;
 x: -128;
 y: parent.height / 2;
 source: "qrc:///horse_1.png";
 frameCount: 11;
 frameWidth: 128;
 frameHeight: 128;

States and Animations

62

 frameRate: 25;
 loops: Animation.Infinite;
 running: true;
}

7.	 After that, add a number animation to the sprite object and set its properties like this:
NumberAnimation {
 target: sprite;
 property: "x";
 from: -128;
 to: 512;
 duration: 3000;
 loops: Animation.Infinite;
 running: true;
}

8.	 Compile and run the example program now and you will see the pony go crazy and
start running across the window!

How it works...
In this recipe, we placed the animated sprite object in the middle of the window and set its
image source to the sprite sheet that we had just added to the project resource.

Then, we counted how many frames there are in the sprite sheet that belong to the running
animation, which in this case was 11 frames. We also told Qt about the dimension of each
frame of the animation, which in this case was 128 x 128. After that, we set the frame rate
to 25 to get a decent speed and then set it to loop infinitely. We then set the running value to
true so that the animation will be played by default when the program starts running.

Then in Step 4, we wanted to be able to pause the animation and resume it by clicking on the
window. We simply check whether the sprite is current paused when clicking on the mouse
area. If the sprite animation has been paused, then resume the animation; otherwise, pause
the animation.

In Step 6, we replaced anchors.centerIn with x and y values so that the animated sprite
object is not anchored to the center of the window, which would have made it impossible to
move around.

Then, we created a number animation within the animated sprite to animate its x property. We
set the start value to somewhere outside the window on the left side, and set the end value
to somewhere outside the window on the right side. After that, we set the duration to 3,000
milliseconds (3 seconds) and made it loop infinitely.

Lastly, we also set the running value to true so that it will play the animation by default when
the program starts running.

Chapter 2

63

There's more…
Sprite animation is used extensively, especially in game development. Sprites are used for
character animation, particle animation, and even GUI animation. A sprite sheet consists of
many images combined into one, which can then be chopped down and displayed on the
screen one at a time. The transitions between different images (or sprites) from the sprite
sheet creates the illusion of animation, which we usually refer to as sprite animation. Sprite
animation can be easily achieved in QML using the AnimatedSprite type.

In this example program, I'm using a free and open source image created by
bluecarrot16 under the CC-BY 3.0 / GPL 3.0 / GPL 2.0 / OGA-BY 3.0 license.
The image can be obtained legally at http://opengameart.org/
content/lpc-horse.

http://opengameart.org/content/lpc-horse
http://opengameart.org/content/lpc-horse

65

3
QPainter and
2D Graphics

In this chapter, we will cover the following recipes:

ff Drawing basic shapes on screen

ff Exporting shapes to an SVG file

ff Coordinate transformation

ff Displaying images on screen

ff Applying image effects to graphics

ff Creating a basic paint program

ff 2D Canvas in QML

Introduction
In this chapter, we will learn how to render 2D graphics on screen with Qt. Internally, Qt uses
a low-level class called QPainter to render its widgets on the main window. Qt allows us to
access and use the QPainter class for drawing vector graphics, text, 2D images, and even
3D graphics. You can make use of the QPainter class to create your own custom widgets
or to create programs that rely heavily on computer graphics rendering such as video games,
photo editors, 3D modeling tools, and so on.

QPainter and 2D Graphics

66

Drawing basic shapes on screen
In this section, we will learn how to draw simple vector shapes (line, rectangle, circle, and so
on) and display text on the main window using the QPainter class. We will also learn how
to change the drawing style of the vector shapes using the QPen class.

How to do it…
First, let's create a new Qt Widgets Application project:

1.	 Open up mainwindow.ui and remove the menu bar, main tool bar, and status bar
so that we get a clean, empty main window. Right-click on the bar widgets and select
Remove Menu Bar from the pop-up menu:

2.	 Then, open up mainwindow.h and add the following code to include the QPainter
header file:
#include <QMainWindow>
#include <QPainter>

3.	 Then, declare the paintEvent() event handler below the class destructor:
public:
explicit MainWindow(QWidget *parent = 0);
~MainWindow();
virtual void paintEvent(QPaintEvent *event);

4.	 Next, open up mainwindow.cpp and define the paintEvent() event handler:
void MainWindow::paintEvent(QPaintEvent *event)
{
}

5.	 After that, we will add text to the screen using the QPainter class inside the
paintEvent() event handler. We set the text font settings before drawing it
on the screen at the position (20, 30):
QPainter textPainter(this);
textPainter.setFont(QFont("Times", 14, QFont::Bold));
textPainter.drawText(QPoint(20, 30), "Testing");

Chapter 3

67

6.	 Then, we will draw a straight line that starts from (50, 60) and ends at (100,
100):
QPainter linePainter(this);
linePainter.drawLine(QPoint(50, 60), QPoint(100, 100));

7.	 We can also easily draw a rectangle shape by calling the drawRect() function using
a QPainter class. This time however, we also apply a background pattern to the
shape before drawing it:
QPainter rectPainter(this);
rectPainter.setBrush(Qt::BDiagPattern);
rectPainter.drawRect(QRect(40, 120, 80, 30));

8.	 Next, declare a QPen class, set its color to red, and set its drawing style to
Qt::DashDotLine. Then, apply the QPen class to QPainter and draw an ellipse
shape at (80, 200) with a horizontal radius of 50 and a vertical radius of 20:
QPen ellipsePen;
ellipsePen.setColor(Qt::red);
ellipsePen.setStyle(Qt::DashDotLine);

QPainter ellipsePainter(this);
ellipsePainter.setPen(ellipsePen);
ellipsePainter.drawEllipse(QPoint(80, 200), 50, 20);

9.	 We can also use QPainterPath class to define a shape before passing it over to the
QPainter class for rendering:
QPainterPath rectPath;
rectPath.addRect(QRect(150, 20, 100, 50));

QPainter pathPainter(this);
pathPainter.setPen(QPen(Qt::red, 1, Qt::DashDotLine, Qt::FlatCap,
Qt::MiterJoin));
pathPainter.setBrush(Qt::yellow);
pathPainter.drawPath(rectPath);

10.	 You can also draw any other shapes by using QPainterPath, such as an ellipse:
QPainterPath ellipsePath;
ellipsePath.addEllipse(QPoint(200, 120), 50, 20);

QPainter ellipsePathPainter(this);
ellipsePathPainter.setPen(QPen(QColor(79, 106, 25), 5,
Qt::SolidLine, Qt::FlatCap, Qt::MiterJoin));
ellipsePathPainter.setBrush(QColor(122, 163, 39));
ellipsePathPainter.drawPath(ellipsePath);

QPainter and 2D Graphics

68

11.	QPainter can also be used to draw an image file onto the screen. In the following
example, we load an image file called tux.png and draw it on the screen at position
(100, 150):
QImage image;
image.load("tux.png");

QPainter imagePainter(this);
imagePainter.drawImage(QPoint(100, 150), image);

12.	 The final result should look something like this:

How it works...
If you want to draw something on screen using QPainter, basically all you need to do is tell it
what type of graphics it should be drawing (text, vector shape, image, polygon, and so on) with
its position and size.

QPen determines what the outline of the graphic should look like, such as its color, line width,
line style (solid, dashed, dotted, and so on), cap style, join style, and so on.

Chapter 3

69

On the other hand, QBrush sets the style of the background of the graphics, such as the
background color, pattern (solid color, gradient, dense brush, crossing diagonal lines, and
so on) and pixmap.

The options for the graphics should be set before calling the draw function (drawLine(),
drawRect(), drawEllipse(), and so on).

If your graphics do not appear on screen and you see warnings such as
QPainter::setPen: Painter not active and QPainter::setBrush: Painter
not active appearing on the application output window in Qt Creator, it means that the
QPainter class is not currently active and your program will not trigger its paint event. To
solve this problem, set the main window as the parent of the QPainter class. Usually, if
you're writing code in the mainwindow.cpp file, all you need to do is to put this in the
bracket when initializing QPainter. For example:

QPainter linePainter(this);

QImage can load images from both the computer directories and from the program resources.

There's more…
Think of QPainter as a robot with a pen and an empty canvas. You just have to tell the robot
what type of shape it should be drawing and its location on the canvas, then the robot will do
its job based on your description. To make your life easier, the QPainter class also provides
numerous functions such as drawArc(), drawEllipse(), drawLine(), drawRect(),
drawPie(), and so on that allow you to easily render a predefined shape.

In Qt, all the widget classes (including the main window) have an event handler called
QWidget::paintEvent(). This event handler will be triggered whenever the operating
system thinks that the main window should re-draw its widgets. Many things can lead to that
decision, such as the main window being scaled, a widget changing its state (that is, a button
being pressed), or functions such as repaint() or update() being invoked manually in the
code. Different operating system may behave differently when it comes to deciding whether
or not to trigger the update event on the same set of conditions. If you're making a program
that requires continuous and consistent graphical updates, call repaint() or update()
manually with a timer.

Exporting shapes to SVG files
Scalable Vector Graphics (SVG) is an XML-based language for describing two-dimensional
vector graphics. Qt provides classes for saving vector shapes into an SVG file. This feature can
be used to create a simple vector graphics editor similar to Adobe Illustrator and Inkscape.

In the next example, we will continue using the same project file from the previous example.

QPainter and 2D Graphics

70

How to do it…
Let's learn how to create a simple program that displays SVG graphics on screen:

1.	 First of all, let's create a menu bar by right-clicking the main window widget on the
hierarchy window and selecting Create Menu Bar option from the pop-up menu. After
that, add a File option to the menu bar and a Save as SVG action underneath it:

2.	 After that, you will see an item called actionSave_as_SVG in the Action Editor
window at the bottom of the Qt Creator window. Right-click on the item and choose
Go to slot… from the pop-up menu. A window will now appear, which carries a
list of slots available for the particular action. Choose the default signal called
triggered() and click the OK button:

Chapter 3

71

3.	 Once you have clicked the OK button, Qt Creator will switch over to the script
editor. You will realize that a slot called on_actionSave_as_SVG_triggered()
has been automatically added to your main window class. At the bottom of your
mainwindow.h, you will see something like this:
void MainWindow::on_actionSave_as_SVG_triggered()
{
}

The preceding function will be called when you clicked on the Save as SVG option
from the menu bar. We will write our code within this function to save all the vector
graphics into an SVG file.

4.	 To do that, we need to first of all include a class header called QSvgGenerator at
the top of our source file. This header is very important as it's required for generating
SVG files. Then, we also need to include another class header called QFileDialog,
which will be used to open the save dialog:
#include <QtSvg/QSvgGenerator>
#include <QFileDialog>

5.	 We also need to add the SVG module to our project file, like so:
QT += core gui svg

6.	 Then, create a new function called paintAll() within mainwindow.h, like so:
public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

 virtual void paintEvent(QPaintEvent *event);
 void paintAll(QSvgGenerator *generator = 0);

7.	 After that, in mainwindow.cpp, move all the code from paintEvent() to the
paintAll() function. Then, replace all the individual QPainter objects with a
single, unified QPainter for drawing all the graphics. Also, call the begin() function
before drawing anything and call the end() function after finishing drawing. The code
should look like this:
void MainWindow::paintAll(QSvgGenerator *generator)
{
 QPainter painter;

 if (engine)
 painter.begin(engine);
 else
 painter.begin(this);

QPainter and 2D Graphics

72

 painter.setFont(QFont("Times", 14, QFont::Bold));
 painter.drawText(QPoint(20, 30), "Testing");

 painter.drawLine(QPoint(50, 60), QPoint(100, 100));

 painter.setBrush(Qt::BDiagPattern);
 painter.drawRect(QRect(40, 120, 80, 30));

 QPen ellipsePen;
 ellipsePen.setColor(Qt::red);
 ellipsePen.setStyle(Qt::DashDotLine);

 painter.setPen(ellipsePen);
 painter.drawEllipse(QPoint(80, 200), 50, 20);

 QPainterPath rectPath;
 rectPath.addRect(QRect(150, 20, 100, 50));

 painter.setPen(QPen(Qt::red, 1, Qt::DashDotLine, Qt::FlatCap,
 Qt::MiterJoin));
 painter.setBrush(Qt::yellow);
 painter.drawPath(rectPath);

 QPainterPath ellipsePath;
 ellipsePath.addEllipse(QPoint(200, 120), 50, 20);

 painter.setPen(QPen(QColor(79, 106, 25), 5, Qt::SolidLine,
 Qt::FlatCap, Qt::MiterJoin));
 painter.setBrush(QColor(122, 163, 39));
 painter.drawPath(ellipsePath);

 QImage image;
 image.load("tux.png");

 painter.drawImage(QPoint(100, 150), image);

 painter.end();
}

8.	 Since we have moved all the code from paintEvent() to paintAll(), we shall
now call the paintAll() function inside paintEvent(), like so:
void MainWindow::paintEvent(QPaintEvent *event)
{
 paintAll();
}

Chapter 3

73

9.	 Then, we will write the code for exporting the graphics to an SVG file. The code will
be written inside the slot function called on_actionSave_as_SVG_triggered(),
which was generated by Qt. We start by calling the save file dialog and obtain the
directory path with the desired file name from the user:
void MainWindow::on_actionSave_as_SVG_triggered()
{
 QString filePath = QFileDialog::getSaveFileName(this, "Save
 SVG", "", "SVG files (*.svg)");

 if (filePath == "")
 return;
}

10.	 After that, create a QSvgGenerator object and save the graphics to an SVG file by
passing the QSvgGenerator object to the paintAll() function:
void MainWindow::on_actionSave_as_SVG_triggered()
{
 QString filePath = QFileDialog::getSaveFileName(this, "Save
 SVG", "", "SVG files (*.svg)");

 if (filePath == "")
 return;

 QSvgGenerator generator;
 generator.setFileName(filePath);
 generator.setSize(QSize(this->width(), this->height()));
 generator.setViewBox(QRect(0, 0, this->width(),
 this->height()));
 generator.setTitle("SVG Example");
 generator.setDescription("This SVG file is generated by Qt.");

 paintAll(&generator);
}

QPainter and 2D Graphics

74

11.	 Compile and run the program now and you should be able to export the graphics by
going to File | Save as SVG:

How it works...
By default, QPainter will use the paint engine from its parent object to draw the graphics
assigned to it. If you don't assign any parent to QPainter, you can manually assign a paint
engine to it, which is what we have done in this example.

The reason why we placed the code into paintAll() is because we want to reuse the same
code for two different purposes: for displaying the graphics on the window and exporting
the graphics to an SVG file. Notice the default value of the generator variable in the
paintAll() function is set to 0, which means no QSvgGenerator object is required to run
the function unless specified. Later on, in the paintAll() function, we check whether the
generator object exists. If it does exist, use it as the paint engine for the painter, like so:

if (engine)
 painter.begin(engine);
else
 painter.begin(this);

Chapter 3

75

Otherwise, pass the main window to the begin() function (since we're writing the code in
mainwindow.cpp, we can directly use this to refer to main window's pointer) so that it will
use the paint engine of the main window itself, which means the graphics will be drawn onto
the surface of the main window.

In this example, it's required to use a single QPainter object to save the graphics into the
SVG file. If you use multiple QPainter objects, the resulting SVG file will contain multiple
XML header definitions and thus the file will be deemed to be invalid by any graphics editor
software out there.

QFileDialog::getSaveFileName() will open up the native save file dialog for the user
to choose the save directory and set a desired file name. Once the user is done with that,
the full path will be returned as a string and we will be able to pass that information to the
QSvgGenerator object to export the graphics.

Notice that in the previous screenshot, the penguin in the SVG file has been cropped. This is
because the canvas size of the SVG was set to follow the size of the main window. To help the
poor penguin getting its body back, scale the window bigger before exporting the SVG file.

There's more…
Scalable Vector Graphics (SVG) defines the graphics in XML format. Since it is vector
graphics, SVG graphics do not lose any quality if they are zoomed or resized.

SVG allows three types of graphic object: vector graphics, raster graphics, and text. Graphical
objects, including PNG and JPEG raster images, can be grouped, styled, transformed, and
composited into previously rendered objects.

You can check out the full specification of SVG graphics at https://www.w3.org/TR/SVG.

Coordinate transformation
In this example, we will learn how to use coordinate transformation and a timer to create a
real-time clock display.

How to do it…
To create our first graphical clock display, let's follow these steps:

1.	 First, create a new Qt Widgets Application project. Then, open up mainwindow.ui
and remove the menu bar, tool bar, and status bar.

https://www.w3.org/TR/SVG

QPainter and 2D Graphics

76

2.	 After that, open up mainwindow.h and include the following headers:
#include <QTime>
#include <QTimer>
#include <QPainter>

3.	 Then, declare the paintEvent() function, like so:
public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

virtual void paintEvent(QPaintEvent *event);

4.	 In mainwindow.cpp, create three arrays to store the shapes of the hour hand,
minute hand, and second hand, where each of the arrays contains three sets of
coordinates:
void MainWindow::paintEvent(QPaintEvent *event)
{
 static const QPoint hourHand[3] =
 {
 QPoint(4, 4),
 QPoint(-4, 4),
 QPoint(0, -40)
 };

 static const QPoint minuteHand[3] =
 {
 QPoint(4, 4),
 QPoint(-4, 4),
 QPoint(0, -70)
 };

 static const QPoint secondHand[3] =
 {
 QPoint(2, 2),
 QPoint(-2, 2),
 QPoint(0, -90)
 };
}

5.	 After that, add the following code below the arrays to create the painter and move it
to the center of the main window. Also, we adjust the size of the painter so that it fits
nicely in the main window, even when the window is being resized:
int side = qMin(width(), height());

Chapter 3

77

QPainter painter(this);
painter.setRenderHint(QPainter::Antialiasing);
painter.translate(width() / 2, height() / 2);
painter.scale(side / 250.0, side / 250.0);

6.	 Once you are done with that, we will start drawing the dials by using a for loop. Each
dial is rotated by an increment of 6 degrees, so 60 dials would complete a full circle.
Also, the dial at every 5 minutes will look slightly longer:
for (int i = 0; i < 60; ++i)
{
 if ((i % 5) != 0)
 painter.drawLine(92, 0, 96, 0);
 else
 painter.drawLine(86, 0, 96, 0);
 painter.rotate(6.0);
}

7.	 Then, we proceed with drawing the hands of the clock. Each hand's rotation is
calculated according to the current time and its respective unit over 360 degrees:
QTime time = QTime::currentTime();

// Draw hour hand
painter.save();
painter.rotate((time.hour() * 360) / 12);
painter.setPen(Qt::NoPen);
painter.setBrush(Qt::black);
painter.drawConvexPolygon(hourHand, 3);
painter.restore();

// Draw minute hand
painter.save();
painter.rotate((time.minute() * 360) / 60);
painter.setPen(Qt::NoPen);
painter.setBrush(Qt::black);
painter.drawConvexPolygon(minuteHand, 3);
painter.restore();

// Draw second hand
painter.save();
painter.rotate((time.second() * 360) / 60);
painter.setPen(Qt::NoPen);
painter.setBrush(Qt::black);
painter.drawConvexPolygon(secondHand, 3);
painter.restore();

QPainter and 2D Graphics

78

8.	 Last but not least, create a timer to refresh the graphics every second so that the
program will work like a real clock!
MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent), ui(new Ui::MainWindow)
{
 ui->setupUi(this);

 QTimer* timer = new QTimer(this);
 timer->start(1000);
 connect(timer, SIGNAL(timeout()), this, SLOT(update()));
}

9.	 Compile and run the program now and you should see something like this:

How it works...
Each of the arrays contain three QPoint data, which form the shape of an elongated triangle.
The arrays are then passed to the painter and rendered as a convex polygon using the
drawConvexPolygon() function.

Before drawing each of the clock hands, we use painter.save() to save the state of the
QPainter object and then proceed with drawing the hand using coordinate transformation.
Once we're done with the drawing, we restore the painter to its previous state by calling
painter.restore(). This function will undo all the transformations before painter.
restore() so that the next clock hand will not inherit the transformations of the previous
one. Without using painter.save() and painter.restore(), we will have to manually
change back the position, rotation, and scale before drawing the next hand.

Chapter 3

79

A good example of not using painter.save() and painter.restore() is when drawing
the dials. Since each dial's rotation is an increment of 6 degrees from the previous one, we
don't need to save the painter's state at all. We just have to call painter.rotate(6.0) in a
loop and each dial will inherit the previous dial's rotation. We also use a modulus operator (%)
to check whether the unit represented by the dial can be divided by 5. If it can, then we draw it
slightly longer.

Without using a timer to constantly call the update() slot, the clock will not function properly.
This is because paintEvent() will not be called by Qt when there is no change to the state
of the parent widget, which in this case is the main window. Therefore, we need to manually
tell Qt that we need to refresh the graphics by calling update()every second.

We used the painter.setRenderHint(QPainter::Antialiasing) function to enable
anti-aliasing when rendering the clock. Without anti-aliasing, the graphics will look very jagged
and pixelated:

There's more…
The QPainter class uses the coordinate system to determine the position and size of
the graphics before rendering them on screen. This information can be altered to make
the graphics appear at a different position, rotation, and size. This process of altering the
coordinate information of a graphic is what we called coordinate transformation. There are
several types of transformation, among them are translation, rotation, scaling and shearing:

QPainter and 2D Graphics

80

Qt uses a coordinate system that has its origin at the top-left corner, meaning the x values
increase to the right and the y values increase downwards. This coordinate system might be
different from the coordinate system used by the physical device, such as a computer screen.
Qt handles this automatically by using the QPaintDevice class, which maps Qt's logical
coordinates to the physical coordinates.

QPainter provides four transform operations to perform different types of transformation:

ff QPainter::translate(): Offset the graphic's position by a given set of units

ff QPainter::rotate(): Rotate the graphics around the origin in a clockwise
direction

ff QPainter::scale(): Offset the graphic's size by a given factor

ff QPainter::shear(): Twist the graphic's coordinate system around the origin

Displaying images on screen
Qt not only allows us to draw shapes and images on screen, but it also allows us to overlay
multiple images on top of each other and combine the pixel information from all the layers
using different types of algorithms to create very interesting results. In this example, we will
learn how to overlay images on top of each other and apply different composition effects
to them.

How to do it…
Let's create a simple demo that shows the effect of different image compositions by following
these steps:

1.	 First, set up a new Qt Widgets Application project and remove the menu bar, tool
bar, and status bar.

2.	 Next, add the QPainter class header to mainwindow.h:
#include <QPainter>

3.	 After that, declare the paintEvent() virtual function like so:
virtual void paintEvent(QPaintEvent* event);

4.	 In mainwindow.cpp, we will first load several image files using the QImage class:
void MainWindow::paintEvent(QPaintEvent* event)
{
 QImage image;
 image.load("checker.png");

Chapter 3

81

 QImage image2;
 image2.load("tux.png");

 QImage image3;
 image3.load("butterfly.png");
}

5.	 Then, create a QPainter object and use it to draw two pairs of images, where one
image is on top of another:
QPainter painter(this);
painter.drawImage(QPoint(10, 10), image);
painter.drawImage(QPoint(10, 10), image2);
painter.drawImage(QPoint(300, 10), image);
painter.drawImage(QPoint(300, 40), image3);

6.	 Compile and run the program now and you should see something like this:

7.	 Next, we will set the composition mode before drawing each image on screen:
QPainter painter(this);

painter.setCompositionMode(QPainter::CompositionMode_Difference);
painter.drawImage(QPoint(10, 10), image);
painter.setCompositionMode(QPainter::CompositionMode_Multiply);
painter.drawImage(QPoint(10, 10), image2);

painter.setCompositionMode(QPainter::CompositionMode_Xor);
painter.drawImage(QPoint(300, 10), image);
painter.setCompositionMode(QPainter::CompositionMode_SoftLight);
painter.drawImage(QPoint(300, 40), image3);

QPainter and 2D Graphics

82

8.	 Compile and run the program again and you will now see something like this:

How it works...
When drawing images with Qt, the sequence of calling the drawImage() function will
determine which image is being rendered first and which one is rendered later. This will
affect the depth order of the images and yield different outcomes.

In the previous example, we called drawImage() four times to draw four different images
on screen. The first drawImage() renders checker.png and the second drawImage()
renders tux.png (the penguin). The image that gets rendered later will always appear in front
of the others, which is why the penguin is showing in front of the checker box. The same goes
for the butterfly and the checker on the right. The reason why you can still see the checker
even though the butterfly is rendered in front of it is because the butterfly image is not fully
opaque.

Now let's invert the render sequence and see what happens. We will try to render the penguin
first, followed by the checker box. The same goes for the other pair of images on the right: the
butterfly gets rendered first, followed by the checker box:

Chapter 3

83

To apply a composition effect to the image, we'll have to set the painter's composition
mode before drawing the image, by calling the painter.setCompositionMode()
function. You can pick a desired composition mode from the auto-complete menu by
typing QPainter::CompositionMode.

In the previous example, we applied QPainter::CompositionMode_Difference
to the checker box on the left, which inverted its color. Next, we applied
QPainter::CompositionMode_Overlay to the penguin which makes it
blend with the checker and we're able to see both images overlaying each other.

On the right-hand side, we applied QPainter::CompositionMode_Xor to the checker,
where if differences exist between the source and destination, colors are shown; otherwise,
it will be rendered black. Since it's comparing differences with the white background,
the non-transparent part of the checker becomes completely black. We also applied
QPainter::CompositionMode_SoftLight to the butterfly image. This blends the
pixels with the background with reduced contrast.

If you want to disable the composition mode you have just set for the previous
rendering before proceeding to the next, simply set it back to the default mode,
which is QPainter::CompositionMode_SourceOver.

There's more…
For example, we can overlay multiple images on top of each other and use Qt's image
composition feature to merge them together and calculate the resulting pixels on screen,
based on the composition mode we used. This is often used in image editing software
such as Photoshop and GIMP to composite image layers.

www.allitebooks.com

http://www.allitebooks.org

QPainter and 2D Graphics

84

There are more than 30 types of composition mode available in Qt. Some of the most
commonly used modes are:

ff Clear: The pixels in the destination are set to fully transparent, independent of
the source.

ff Source: The output is the source pixel. This mode is the inverse of
CompositionMode_Destination.

ff Destination: The output is the destination pixel. This means that the blending has no
effect. This mode is the inverse of CompositionMode_Source.

ff Source Over: Often referred to as alpha blending. The alpha of the source is used to
blend the pixel on top of the destination. This is the default mode used by QPainter.

ff Destination Over: The alpha of the destination is used to blend it on top of the source
pixels. This mode is the inverse of CompositionMode_SourceOver.

ff Source In: The output is the source, where the alpha is reduced by that of the
destination.

ff Destination In: The output is the destination, where the alpha is reduced by that of
the source. This mode is the inverse of CompositionMode_SourceIn.

ff Source Out: The output is the source, where the alpha is reduced by the inverse of
the destination.

ff Destination Out: The output is the destination, where the alpha is reduced by the
inverse of the source. This mode is the inverse of CompositionMode_SourceOut.

ff Source Atop: The source pixel is blended on top of the destination, with the alpha of
the source pixel reduced by the alpha of the destination pixel.

ff Destination Atop: The destination pixel is blended on top of the source, with the
alpha of the source pixel reduced by the alpha of the destination pixel. This mode is
the inverse of CompositionMode_SourceAtop.

ff Xor: This is short for Exclusive OR, which is an advanced blending mode that is
primarily used for image analysis. The source, whose alpha is reduced by the inverse
of the destination alpha, is merged with the destination, whose alpha is reduced by
the inverse of the source alpha.

The following image shows the outcome of overlaying two images with different
composition modes:

Chapter 3

85

Applying image effects to graphics
Qt provides an easy way to add image effects to any graphics drawn using the QPainter
class. In this example, we will learn how to apply different images effects, such as drop
shadow, blur, colorize, and opacity effects, to a graphic before displaying it on screen.

How to do it…
Let's learn how to apply image effects to text and graphics by following these steps:

1.	 Create a new Qt Widgets Application and remove the menu bar, tool bar,
and status bar.

2.	 Create a new resource file by going to File | New File or Project and adding all the
images required by the project:

QPainter and 2D Graphics

86

3.	 Next, open up mainwindow.ui and add four labels to the window. Two of the labels
will be text and the two others we will load with the images we have just added to the
resource file:

4.	 You may already notice the font sizes are way bigger than the default size. That can
be achieved by adding a style sheet to the label widget, for example:
font: 26pt "MS Shell Dlg 2";

5.	 After that, open up mainwindow.cpp and include the following headers at the top of
the source code:
#include <QGraphicsBlurEffect>
#include <QGraphicsDropShadowEffect>
#include <QGraphicsColorizeEffect>
#include <QGraphicsOpacityEffect>

6.	 Then, within the constructor of the MainWindow class, add the following code to
create a drop shadow effect, and apply it to one of the labels:
MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent), ui(new Ui::MainWindow)
{
 ui->setupUi(this);

 QGraphicsDropShadowEffect* shadow = new
 QGraphicsDropShadowEffect();
 shadow->setXOffset(4);
 shadow->setYOffset(4);
 ui->label->setGraphicsEffect(shadow);
}

Chapter 3

87

7.	 Next, we will create a colorized effect and apply it to one of the images, in this case
the butterfly. We also set the effect color to red:
QGraphicsColorizeEffect* colorize = new QGraphicsColorizeEffect();
colorize->setColor(QColor(255, 0, 0));
ui->butterfly->setGraphicsEffect(colorize);

8.	 Once we're done with that, create a blur effect and set its radius to 12. Then, apply
the graphics effect to the other label:
QGraphicsBlurEffect* blur = new QGraphicsBlurEffect();
blur->setBlurRadius(12);
ui->label2->setGraphicsEffect(blur);

9.	 Lastly, create an alpha effect and apply it to the penguin image. We set the opacity
value to 0.2, which means 20% opacity:
QGraphicsOpacityEffect* alpha = new QGraphicsOpacityEffect();
alpha->setOpacity(0.2);
ui->penguin->setGraphicsEffect(alpha);

10.	 Compile and run the program now and you should be able to see something like this:

How it works...
Each of the graphic effects is a class of its own that inherits the QGraphicsEffect
parent class. You can create your own custom effect by creating a new class that inherits
QGraphicsEffect and re-implementing some of the functions in it.

Each effect has its own set of variables that are specifically created for it. For example, you
can set the color of the colorized effect, but there is no such variable in the blur effect. This is
because each effect is vastly different from the others, which is also why it needs to be a class
of its own rather than using the same class for all the different effects.

QPainter and 2D Graphics

88

It's only possible to add a single graphics effect to a widget at a time. If you add more than
one effect, only the last one will be applied to the widget as it replaces the previous one. Other
than that, be aware that if you create a graphics effect, say the drop shadow effect, you can't
assign it to two different widgets as it will only get assigned to the last widget you applied it to.
If you need to apply the same type of effect to several different widgets, create a few graphics
effects of the same type and apply each of them to their respective widgets.

There's more…
Currently Qt supports blur, drop shadow, colorize, and opacity effects. These
effects can be used by calling the following classes: QGraphicsBlurEffect,
QGraphicsDropShadowEffect, QGraphicsColorizeEffect, and
QGraphicsOpacityEffect. All these classes are inherited from the QGraphicsEffect
class. You can also create your own custom image effect by creating a subclass of
QGrapicsEffect (or any other existing effects) and re-implementing the draw() function.

The graphics effect changes only the bounding rectangle of the source. If you want to increase
the margin of the bounding rectangle, re-implement the virtual boundingRectFor()
function, and call updateBoundingRect() to notify the framework whenever this
rectangle changes.

Creating a basic paint program
Since we have learned so much about the QPainter class and how to use it to display
graphics on screen, I guess it's time for us to do something fun so that we can put our
knowledge into practice.

In this recipe, we will learn how to make a basic paint program that allows us to draw lines on
a canvas with different brush sizes and colors. We will also learn how to use the QImage class
and the mouse events in order to construct the paint program.

How to do it…
Let us start our fun project through the following steps:

1.	 Again, we start by creating a new Qt Widgets Application project and removing the
tool bar and status bar. We will keep the menu bar this time.

Chapter 3

89

2.	 After that, set up the menu bar like so:

3.	 We will leave the menu bar as it is for the moment and let's proceed to
mainwindow.h. First, include the following header files as it's required
for the project:
#include <QPainter>
#include <QMouseEvent>
#include <QFileDialog>

4.	 Next, declare the variables that we'll be using for this project, like so:
private:
Ui::MainWindow *ui;

QImage image;
bool drawing;
QPoint lastPoint;
int brushSize;
QColor brushColor;

5.	 Then, declare the event callback functions, which are inherited from the QWidget
class. These functions will be triggered by Qt when the respective event happens. We
will override these functions and tell Qt what to do when these events get called:
public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

 virtual void mousePressEvent(QMouseEvent *event);
 virtual void mouseMoveEvent(QMouseEvent *event);
 virtual void mouseReleaseEvent(QMouseEvent *event);
 virtual void paintEvent(QPaintEvent *event);
 virtual void resizeEvent(QResizeEvent *event);

QPainter and 2D Graphics

90

6.	 After that, go to mainwindow.cpp and add the following code to the class
constructor for setting up some of the variables:
MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent), ui(new Ui::MainWindow)
{
 ui->setupUi(this);

 image = QImage(this->size(), QImage::Format_RGB32);
 image.fill(Qt::white);

 drawing = false;
 brushColor = Qt::black;
 brushSize = 2;
}

7.	 Next, we will construct the mousePressEvent() event and tell Qt what to do when
the left mouse button is pressed:
void MainWindow::mousePressEvent(QMouseEvent *event)
{
 if (event->button() == Qt::LeftButton)
 {
 drawing = true;
 lastPoint = event->pos();
 }
}

8.	 Then, we will construct the mouseMoveEvent() event and tell Qt what to do when
the mouse is moving. In this case, we want to draw the lines on the canvas if the left
mouse button is being held:
void MainWindow::mouseMoveEvent(QMouseEvent *event)
{
 if ((event->buttons() & Qt::LeftButton) && drawing)
 {
 QPainter painter(&image);
 painter.setPen(QPen(brushColor, brushSize, Qt::SolidLine,
 Qt::RoundCap, Qt::RoundJoin));
 painter.drawLine(lastPoint, event->pos());

 lastPoint = event->pos();
 this->update();
 }
}

Chapter 3

91

9.	 After that, we will also construct the mouseReleaseEvent() event, which will be
triggered when the mouse button is released:
void MainWindow::mouseReleaseEvent(QMouseEvent *event)
{
 if (event->button() == Qt::LeftButton)
 {
 drawing = false;
 }
}

10.	 Once you're done with that, we will proceed to the paintEvent() event, which
is surprisingly simple compared to the other examples we have seen in previous
sections:
void MainWindow::paintEvent(QPaintEvent *event)
{
 QPainter canvasPainter(this);
 canvasPainter.drawImage(this->rect(), image, image.rect());
}

11.	 Remember we have a menu bar sitting around doing nothing? Let's right-click
on each of the actions below the GUI editor and select Go to slot… in the pop-up
menu. We want to tell Qt what to do when each of these options on the menu bar
is selected:

QPainter and 2D Graphics

92

12.	 Then, select the default slot called triggered() and press the OK button. Qt
will automatically generate a new slot function in both your mainwindow.h and
mainwindow.cpp. Once you are done with all the actions, you should see something
like this in your mainwindow.h:
private slots:
 void on_actionSave_triggered();
 void on_actionClear_triggered();
 void on_action2px_triggered();
 void on_action5px_triggered();
 void on_action10px_triggered();
 void on_actionBlack_triggered();
 void on_actionWhite_triggered();
 void on_actionRed_triggered();
 void on_actionGreen_triggered();
 void on_actionBlue_triggered();

13.	 Next, we will tell Qt what to do when each of these slots is triggered:
void MainWindow::on_actionSave_triggered()
{
 QString filePath = QFileDialog::getSaveFileName(this,
 "Save Image", "", "PNG (*.png);;JPEG (*.jpg *.jpeg);;All files
 (*.*)");

 if (filePath == "")
 return;

 image.save(filePath);
}
void MainWindow::on_actionClear_triggered()
{
 image.fill(Qt::white);
 this->update();
}
void MainWindow::on_action2px_triggered()
{
 brushSize = 2;
}
void MainWindow::on_action5px_triggered()
{
 brushSize = 5;
}
void MainWindow::on_action10px_triggered()
{
 brushSize = 10;

Chapter 3

93

}
void MainWindow::on_actionBlack_triggered()
{
 brushColor = Qt::black;
}

void MainWindow::on_actionWhite_triggered()
{
 brushColor = Qt::white;
}
void MainWindow::on_actionRed_triggered()
{
 brushColor = Qt::red;
}
void MainWindow::on_actionGreen_triggered()
{
 brushColor = Qt::green;
}
void MainWindow::on_actionBlue_triggered()
{
 brushColor = Qt::blue;
}

14.	 If we compile and run the program now, we will get a simple but usable
paint program:

QPainter and 2D Graphics

94

How it works...
In this example, we created a QImage widget when the program started. This widget acts as
the canvas and it will follow the size of the window whenever the window gets resized.

In order to draw something on the canvas, we will need to use the mouse events provided
by Qt. These events will tell us the position of the cursor and we will be able to use this
information to change the pixels on the canvas.

We use a Boolean variable called drawing to let the program know whether it should start
drawing when a mouse button is pressed. In this case, when the left mouse button is pressed,
the variable drawing will be set to true. We also save the current cursor position to the
lastPoint variable when the left mouse button is pressed, so that Qt will know where it
should start drawing.

When the mouse moves, the mouseMoveEvent() event will be triggered by Qt. This is where
we need to check whether the drawing variable is set to true. If it is, then QPainter can
start drawing the lines onto the QImage widget based on the brush settings that we provide.

The brush settings consist of the brush color as well as the brush size. These settings
are being saved as variables and can be altered by selecting a different setting from the
menu bar.

Please remember to call the update() function when the user is drawing on the canvas.
Otherwise, the canvas will remain empty even though we have changed the pixel information
of the canvas. We also have to call the update() function when we select File | Clear from
the menu bar to reset our canvas.

In this example, we use QImage::save() to save the image file, which is very easy and
straightforward. We use the file dialog to let the user decide where to save the image and its
desired file name. Then, we pass the information to QImage and it will do the rest by itself. If
we don't specify the file format to the QImage::save() function, QImage will try to figure it
out by looking at the extension of the desired file name.

2D canvas in QML
In all the previous examples of this chapter, we have discussed the methods and techniques
used to render 2D graphics with Qt's C++ API. However, we have yet to learn how to achieve
similar results using the powerful QML script.

Chapter 3

95

How to do it…
In this project, we'll be do something quite different:

1.	 As usual, the first step we should do is to create a new project by going to File | New
File or Project and selecting Qt Quick Application as the project template.

2.	 Once you are done creating the new project, open up qml.qrc from the Resource
folder in the project pane by right-clicking on it and selecting Open in Editor. Then,
remove MainForm.ui.qml from your project's resources, as we don't need it for
this project:

3.	 Next, open up main.qml, which is listed under qml.rc in the project pane. After
that, remove the entire section that references MainForm. Now what is left is only
the Window object in main.qml. After that, set an ID for the window and adjust its
width and height to higher values, like so:
import QtQuick 2.5
import QtQuick.Window 2.2

Window
{
 id: myWindow
 visible: true
 width: 540
 height: 380
}

4.	 Then, add a Canvas object under myWindow and call it myCanvas. After that, we
make its width and height the same as myWindow:
Window
{
 id: myWindow
 visible: true
 width: 540
 height: 380

QPainter and 2D Graphics

96

 Canvas
 {
 id: myCanvas
 width: myWindow.width
 height: myWindow.height
 }
}

5.	 Next, we define what will happen when the onPaint event is triggered; in this case,
we will draw a cross on the window:
Canvas
{
 id: myCanvas
 width: myWindow.width
 height: myWindow.height

 onPaint:
 {
 var context = getContext('2d')
 context.fillStyle = 'white'
 context.fillRect(0, 0, width, height)
 context.lineWidth = 2
 context.strokeStyle = 'black'

 // Draw cross
 context.beginPath()
 context.moveTo(50, 50)
 context.lineTo(100, 100)
 context.closePath()
 context.stroke()

 context.beginPath()
 context.moveTo(100, 50)
 context.lineTo(50, 100)
 context.closePath()
 context.stroke()
 }
}

6.	 After that, we add the following code to draw a tick besides the cross:
// Draw tick
context.beginPath()
context.moveTo(150, 90)
context.lineTo(158, 100)

Chapter 3

97

context.closePath()
context.stroke()

context.beginPath()
context.moveTo(180, 100)
context.lineTo(210, 50)
context.closePath()
context.stroke()

7.	 Then, draw a triangle shape by adding the following code:
// Draw triangle
context.lineWidth = 4
context.strokeStyle = "red"
context.fillStyle = "salmon"

context.beginPath()
context.moveTo(50,150)
context.lineTo(150,150)
context.lineTo(50,250)
context.closePath()
context.fill()
context.stroke()

8.	 After that, draw a half circle and a full circle with the following code:
// Draw circle
context.lineWidth = 4
context.strokeStyle = "blue"
context.fillStyle = "steelblue"

var pi = 3.141592653589793

context.beginPath()
context.arc(220, 200, 60, 0, pi, true)
context.closePath()
context.fill()
context.stroke()

context.beginPath()
context.arc(220, 280, 60, 0, 2 * pi, true)
context.closePath()
context.fill()
context.stroke()

QPainter and 2D Graphics

98

9.	 Finally, we draw a 2D image from a file:
// Draw image
context.drawImage("tux.png", 280, 10, 256, 297)

10.	 However, the preceding code alone will not successfully render an image on screen
because you must also load the image file beforehand. Add the following code
within the Canvas object to ask QML to load the image file when the program is
started, then call the requestPaint() signal when the image is loaded so that
the onPaint() event slot will be triggered:
Component.onCompleted:
{
 loadImage("tux.png")
}

onImageLoaded:requestPaint();
onPaint:
{
 // The code we added previously
}

11.	 Build and run the program now and you should get the following result:

99

4
OpenGL Implementation

In this chapter, we will cover the following recipes:

ff Setting up OpenGL in Qt

ff Hello World!

ff Rendering 2D shapes

ff Rendering 3D shapes

ff Texturing in OpenGL

ff Lighting and texture filter in OpenGL

ff Moving an object using keyboard controls

ff 3D Canvas in QML

Introduction
In this chapter, we will learn how to use Open Graphics Library (OpenGL), a powerful
rendering Application Program Interface (API), and combine it with Qt. OpenGL is a cross-
language, cross platform API for drawing 2D and 3D graphics on screen through the Graphics
Processing Unit (GPU) within our computer's graphics chip. In this chapter, we will be learning
OpenGL 2.x instead of 3.x, because the fixed-function pipeline is easier for beginners to grasp
compared to the newer programmable pipeline. Qt supports both versions, so there should
be no problem switching over to OpenGL 3.x and above once you have learned the basic
concepts of OpenGL rendering.

OpenGL Implementation

100

Setting up OpenGL in Qt
In this recipe, we will learn how to set up OpenGL in Qt.

How to do it…
1.	 First, let's create a new Qt widgets application by going to File | New File or Project.

2.	 Next, we will remove the mainwindow.ui file because we are not going to use it in
this example. Right-click on the mainwindow.ui file and select Remove File from
the drop-down menu. Then, a message box will appear and ask for your confirmation.
Tick Delete file permanently and press the OK button.

3.	 After that, open up your project file (.pro) and add the OpenGL module to your
project by adding an opengl keyword behind QT +=, like so:
QT += core gui opengl

4.	 You also need to add another line in your project file so that it will load both the
OpenGL and GLu (OpenGL Utilities) libraries during startup. Without these two
libraries, you program will not be able to run:
LIBS += -lopengl32 -lglu32

5.	 Then, open up mainwindow.h and remove several things from it:
#ifndef MAINWINDOW_H
#define MAINWINDOW_H
#include <QMainWindow>

namespace Ui {
 class MainWindow;
}
class MainWindow : public QMainWindow
{
 Q_OBJECT
 public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();
 private:
 Ui::MainWindow *ui;
};
#endif // MAINWINDOW_H

6.	 Next, add the following code to your mainwindow.h:
#ifndef MAINWINDOW_H
#define MAINWINDOW_H

Chapter 4

101

#include <QOpenGLWindow>

class MainWindow : public QOpenGLWindow
{
 Q_OBJECT
 public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

 protected:
 virtual void initializeGL();
 virtual void resizeGL(int w, int h);
 virtual void paintGL();
 void paintEvent(QPaintEvent *event);
 void resizeEvent(QResizeEvent *event);
};

#endif // MAINWINDOW_H

7.	 Once you have done that, we will proceed to the source file, which is mainwindow.
cpp. Functions that we have just added to the header, such as initializeGL(),
resizeGL(), and so on, can be left empty for now; we will only use these in the
next section:
#include "mainwindow.h"
#include "ui_mainwindow.h"

MainWindow::MainWindow(QWidget *parent):
 QMainWindow(parent),
 ui(new Ui::MainWindow)
MainWindow::MainWindow(QWidget *parent)
{
 ui->setupUi(this);
 setSurfaceType(QWindow::OpenGLSurface);
}

MainWindow::~MainWindow()
{
 delete ui;
}
void MainWindow::initializeGL()
{
 void MainWindow::resizeGL(int w, int h)
{
}

OpenGL Implementation

102

void MainWindow::paintGL()
{
}
void MainWindow::paintEvent(QPaintEvent *event)
{
}
void MainWindow::resizeEvent(QResizeEvent *event)
{
}

8.	 Lastly, set a title for the main window and resize it to 640x480 by adding the
following code to your main.cpp file:
#include "mainwindow.h"
#include <QApplication>

int main(int argc, char *argv[])
{
 QApplication a(argc, argv);
 MainWindow w;
 w.setTitle("OpenGL Hello World!");
 w.resize(640, 480);
 w.show();
 return a.exec();
}

9.	 If you compile and run the project now, you will see an empty window with a black
background. Don't worry about it, your program is now running on OpenGL!

Chapter 4

103

How it works...
The OpenGL module must be added to the project file (.pro) in order to access header files
that are related to OpenGL, such as QtOpenGL, QOpenGLFunctions, and so on. We used the
QOpenGLWindow class instead of QMainWindow for the main window because it's designed
to easily create windows that perform OpenGL rendering, and it offers better performance
compared to QOpenGLWidget due to the fact that it has no dependencies in its widget
module. We must call setSurfaceType(QWindow::OpenGLSurface) to tell Qt we prefer
to use OpenGL to render the images to screen, instead of QPainter. The QOpenGLWindow
class provides several virtual functions (initializeGL(), resizeGL(), paintGL(), and
so on) for us to conveniently set up OpenGL and perform graphics rendering.

There's more…
OpenGL is a cross-language, cross-platform API for drawing 2D and 3D graphics on screen
through the Graphics Processing Unit (GPU) within our computer's graphics chip.

Computer graphics technology has been evolving rapidly over the years, so rapidly that the
software industry can hardly keep up with its pace. In 2008, Khronos Group, the company
that maintains and develops OpenGL, announced the release of the OpenGL 3.0 specification,
which created a huge uproar and controversy throughout the industry. That was mainly
because OpenGL 3.0 was supposed to deprecate the entire fixed-function pipeline from the
OpenGL API, and it was simply an impossible task for the big players to make the sudden
switch overnight from a fixed-function pipeline to a programmable pipeline. This resulted in
two different major versions of OpenGL being maintained concurrently by the Khronos Group,
namely OpenGL 2.x and 3.x.

In this chapter, we will be learning OpenGL 2.x instead of 3.x, because the fixed-function
pipeline is easier for beginners to grasp than the programmable pipeline. It's very
straightforward and less confusing for learning the basics of computer graphics programming.
Qt supports both versions, so there should be no problem switching over to OpenGL 3.x (and
above) once you have learned the basic concepts of OpenGL rendering.

Qt uses OpenGL internally whenever it sees fit. Moreover, the new Qt Quick 2 renderer is
based on OpenGL and is now a core part of Qt's graphical offering. That makes OpenGL
more compatible with Qt than any other graphics APIs, such as DirectX.

Hello world!
In this recipe, we will learn about the pipeline of OpenGL and how to render a simple shape to
the window. We will continue from the example project used in the previous recipe.

OpenGL Implementation

104

How to do it…
1.	 First of all, go to mainwindow.h and add the following headers at the top of the

source code:
#include <QSurfaceFormat>
#include <QOpenGLFunctions>
#include <QtOpenGL>
#include <GL/glu.h>

2.	 Next, declare two private variables in mainwindow.h:
private:
 QOpenGLContext* context;
 QOpenGLFunctions* openGLFunctions;

3.	 After that, move over to mainwindow.cpp and set the surface format to
compatibility profile. We also set the OpenGL version to 2.1 and create the OpenGL
context using the format we just declared. Then, use the context we just created to
access the OpenGL functions that are relevant only to the OpenGL version we have
just set, by calling context->functions():
MainWindow::MainWindow(QWidget *parent)
{
 setSurfaceType(QWindow::OpenGLSurface);
 QSurfaceFormat format;
 format.setProfile(QSurfaceFormat::CompatibilityProfile);
 format.setVersion(2, 1); // OpenGL 2.1
 setFormat(format);

 context = new QOpenGLContext;
 context->setFormat(format);
 context->create();
 context->makeCurrent(this);

 openGLFunctions = context->functions();
}

4.	 Next, we will start adding some code to the paintGL() function:
void MainWindow::paintGL()
{
 // Initialize clear color (cornflower blue)
 glClearColor(0.39f, 0.58f, 0.93f, 1.f);

 // Clear color buffer
 glClear(GL_COLOR_BUFFER_BIT);

Chapter 4

105

 // Render quad
 glBegin(GL_QUADS);
 glVertex2f(-0.5f, -0.5f);
 glVertex2f(0.5f, -0.5f);
 glVertex2f(0.5f, 0.5f);
 glVertex2f(-0.5f, 0.5f);
 glEnd();

 glFlush();
}

5.	 Nothing will appear on the screen yet until we call paintGL() in the paintEvent()
function:
void MainWindow::paintEvent(QPaintEvent *event)
{

 paintGL();
}

6.	 If you compile and run the project now, you should be able to see a white rectangle
being drawn in front of a blue background:

OpenGL Implementation

106

How it works...
We must set the OpenGL version to 2.1 and the surface format to compatibility profile so
that we can access the fixed-function pipeline, which no longer exists in the newer version.
Alternatively, you can set the surface format to QSurfaceFormat::CoreProfile if you
want to use OpenGL 3.x and above.

We called glClearColor() and glClear(GL_COLOR_BUFFER_BIT) to remove the
previous render buffer (or in layman's terms, the previous frame) and fill the entire canvas
with the color we provided. We will repeat this step after an image has been rendered so that it
clears the entire screen before we proceed to the next frame. We called glBegin(GL_QUAD)
to tell OpenGL we are about to draw a quad on the screen. After that, we provided the positions
of all the vertices (or points) to OpenGL so that it will know how the quad should be positioned
on the screen by calling glVertex2f() four times, because a quad can only be constructed
by connecting four different points. Then, we called glEnd() to inform OpenGL that we are
done with the quad.

Always call glFlush() once you are done drawing images on screen so that OpenGL clears
away all the unwanted information from the memory to give space to the next drawing.

Lastly, we must call paintGL() in the paintEvent() function, or else nothing will be
drawn on the screen. Just like what we have learned in the previous chapters, all drawings
happen within the paintEvent() function, and it will only be called by Qt when it thinks it's
necessary to refresh the screen. To force Qt to update the screen, call update() manually.

Rendering 2D shapes
Since we have already learned how to draw our first rectangle on the screen, we will further
enhance it in this section. We will take the previous example and continue from there.

How to do it…
1.	 First, go to the paintGL() function in mainwindow.cpp and replace the quad

in the previous example with new code. This time, we draw a quad together with
a triangle:
void MainWindow::paintGL()
{
 // Initialize clear color (cornflower blue)
 glClearColor(0.39f, 0.58f, 0.93f, 1.f);

 // Clear color buffer
 glClear(GL_COLOR_BUFFER_BIT);

Chapter 4

107

 glBegin(GL_QUADS);
 glVertex2f(-0.5f, -0.5f);
 glVertex2f(0.5f, -0.5f);
 glVertex2f(0.5f, 0.5f);
 glVertex2f(-0.5f, 0.5f);
 glEnd();

 glBegin(GL_QUADS);
 glColor3f(1.f, 0.f, 0.f); glVertex2f(-0.8f, -0.8f);
 glColor3f(1.f, 1.f, 0.f); glVertex2f(0.3f, -0.8f);
 glColor3f(0.f, 1.f, 0.f); glVertex2f(0.3f, 0.3f);
 glColor3f(0.f, 0.f, 1.f); glVertex2f(-0.8f, 0.3f);
 glEnd();

 glBegin(GL_TRIANGLES);
 glColor3f(1.f, 0.f, 0.f); glVertex2f(-0.4f, -0.4f);
 glColor3f(0.f, 1.f, 0.f); glVertex2f(0.8f, -0.1f);
 glColor3f(0.f, 0.f, 1.f); glVertex2f(-0.1f, 0.8f);
 glEnd();

 glFlush();
}

2.	 Next, in the resizeGL() function, add the following code to adjust the viewport
and orthographic view so that the rendered image correctly follows the window's
aspect ratio:
void MainWindow::resizeGL(int w, int h)
{
 // Initialize Projection Matrix
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();

 glViewport(0, 0, w, h);

 qreal aspectRatio = qreal(w) / qreal(h);
 glOrtho(-1 * aspectRatio, 1 * aspectRatio, -1, 1, 1, -1);
}

3.	 Then, in the resizeEvent() function, call the resize() function and force the
main window to refresh the screen:
void MainWindow::resizeEvent(QResizeEvent *event)
{
 resizeGL(this->width(), this->height());
 this->update();
}

OpenGL Implementation

108

4.	 After that, in the initializeGL() function, we call resizeGL() once so that the
aspect ratio of the first rendered image is correct (before any window resize event
is triggered):
void MainWindow::initializeGL()
{
 resizeGL(this->width(), this->height());
}

5.	 Once you're done with that, compile and run the program. You should see something
like this:

How it works...
The geometric primitive types supported by OpenGL are points, lines, linestrips, line loops,
polygons, quads, quad strips, triangles, triangle strips, and triangle fans. In this example,
we drew a quad and a triangle, where each of the shapes is provided with a set of vertices
and colors so that OpenGL knows how the shapes should be rendered. The rainbow color
is created by giving a different color to each of the vertices. OpenGL will automatically
interpolate the colors between each vertex and display it onscreen. The shape that gets
rendered later will always appear in front of other shapes. In this case, the triangle is being
rendered later and hence it appears in front of the rectangle.

Chapter 4

109

We need to calculate the aspect ratio of the main window every time it's resized, so that
the rendered image will not be stretched and result in an odd appearance. Always reset
the projection matrix by calling glMatrixMode() and glLoadIdentity() before calling
glViewport() and glOrtho() so that the shapes are being rendered correctly when
resizing the main window. Without resetting the projection matrix, we will be using the
matrices from the previous frame and hence producing the wrong projection.

Remember to call update() when the window is being resized, otherwise
the screen will not be updated.

Render 3D shapes
We have learned how to draw simple 2D shapes onscreen in the previous section. However,
to fully utilize the OpenGL API, we also need to learn how to use it to render 3D images. In
a nutshell, 3D images are simply an illusion created using 2D shapes stacked in a way that
makes them look like 3D.

The main ingredient here is the depth value, which determines which shapes should appear
in front or at the back of the other shapes. The primitive shape that is positioned behind
another surface (with a shallower depth than another shape) will not be rendered (or partially
rendered). OpenGL provides a simple way to achieve this, without too much technical hassle.

How to do it…
1.	 First, add the QTimer header to your mainwindow.h:

#include <QTimer>

2.	 Then, add a private variable to your MainWindow class:
private:
 QOpenGLContext* context;
 QOpenGLFunctions* openGLFunctions;
 float rotation;

3.	 We also add a public slot to mainwindow.h for later use:
public slots:
 void updateAnimation();

OpenGL Implementation

110

4.	 After that, enable depth testing by adding glEnable(GL_DEPTH_TEST) to the
initializeGL() function in mainwindow.cpp:
void MainWindow::initializeGL()
{
 // Enable Z-buffer depth test
 glEnable(GL_DEPTH_TEST);
 resizeGL(this->width(), this->height());
}

5.	 Next, we will alter the resizeGL() function so that it uses the perspective view
instead of the orthogonal view:
void MainWindow::resizeGL(int w, int h)
{
 // Set the viewport
 glViewport(0, 0, w, h);
 qreal aspectRatio = qreal(w) / qreal(h);

 // Initialize Projection Matrix
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();

 glOrtho(-1 * aspectRatio, 1 * aspectRatio, -1, 1, 1, -1);
 gluPerspective(75, aspectRatio, 0.1, 400000000);

 // Initialize Modelview Matrix
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
}

6.	 After that, we need to alter the paintGL() function as well. First, add
GL_DEPTH_BUFFER_BIT to the glClear() function, because we also need to clear
the depth information for the previous frame before we proceed to render the next
frame. Then, remove the code we used in the previous example, which rendered a
quad and a triangle on the screen:
void MainWindow::paintGL()
{
 // Initialize clear color (cornflower blue)
 glClearColor(0.39f, 0.58f, 0.93f, 1.f);

 // Clear color buffer
 glClear(GL_COLOR_BUFFER_BIT);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

Chapter 4

111

 glBegin(GL_QUADS);
 glColor3f(1.f, 0.f, 0.f); glVertex2f(-0.8f, -0.8f);
 glColor3f(1.f, 1.f, 0.f); glVertex2f(0.3f, -0.8f);
 glColor3f(0.f, 1.f, 0.f); glVertex2f(0.3f, 0.3f);
 glColor3f(0.f, 0.f, 1.f); glVertex2f(-0.8f, 0.3f);
 glEnd();

 glBegin(GL_TRIANGLES);
 glColor3f(1.f, 0.f, 0.f); glVertex2f(-0.4f, -0.4f);
 glColor3f(0.f, 1.f, 0.f); glVertex2f(0.8f, -0.1f);
 glColor3f(0.f, 0.f, 1.f); glVertex2f(-0.1f, 0.8f);
 glEnd();

 glFlush();
}

7.	 Then, before calling glFlush(), we will add the following code to draw a 3D cube:
// Reset modelview matrix
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

// Transformations
glTranslatef(0.0, 0.0, -3.0);
glRotatef(rotation, 1.0, 1.0, 1.0);

// FRONT
glBegin(GL_POLYGON);
 glColor3f(0.0, 0.0, 0.0);
 glVertex3f(0.5, -0.5, -0.5); glVertex3f(0.5, 0.5, -0.5);
 glVertex3f(-0.5, 0.5, -0.5); glVertex3f(-0.5, -0.5, -0.5);
glEnd();

// BACK
glBegin(GL_POLYGON);
 glColor3f(0.0, 1.0, 0.0);
 glVertex3f(0.5, -0.5, 0.5); glVertex3f(0.5, 0.5, 0.5);
 glVertex3f(-0.5, 0.5, 0.5); glVertex3f(-0.5, -0.5, 0.5);
glEnd();

// RIGHT
glBegin(GL_POLYGON);
 glColor3f(1.0, 0.0, 1.0);
 glVertex3f(0.5, -0.5, -0.5); glVertex3f(0.5, 0.5, -0.5);
 glVertex3f(0.5, 0.5, 0.5); glVertex3f(0.5, -0.5, 0.5);

OpenGL Implementation

112

glEnd();

// LEFT
glBegin(GL_POLYGON);
 glColor3f(1.0, 1.0, 0.0);
 glVertex3f(-0.5, -0.5, 0.5); glVertex3f(-0.5, 0.5, 0.5);
 glVertex3f(-0.5, 0.5, -0.5); glVertex3f(-0.5, -0.5, -0.5);
glEnd();

// TOP
glBegin(GL_POLYGON);
 glColor3f(0.0, 0.0, 1.0);
 glVertex3f(0.5, 0.5, 0.5); glVertex3f(0.5, 0.5, -0.5);
 glVertex3f(-0.5, 0.5, -0.5); glVertex3f(-0.5, 0.5, 0.5);
glEnd();

// BOTTOM
glBegin(GL_POLYGON);
 glColor3f(1.0, 0.0, 0.0);
 glVertex3f(0.5, -0.5, -0.5); glVertex3f(0.5, -0.5, 0.5);
 glVertex3f(-0.5, -0.5, 0.5); glVertex3f(-0.5, -0.5, -0.5);
glEnd();

8.	 Once you are done with that, add a timer to the construction of the MainWindow
class, like so:
MainWindow::MainWindow(QWidget *parent)
{
 setSurfaceType(QWindow::OpenGLSurface);
 QSurfaceFormat format;
 format.setProfile(QSurfaceFormat::CompatibilityProfile);
 format.setVersion(2, 1); // OpenGL 2.1
 setFormat(format);

 context = new QOpenGLContext;
 context->setFormat(format);
 context->create();
 context->makeCurrent(this);

 openGLFunctions = context->functions();

 QTimer *timer = new QTimer(this);
 connect(timer, SIGNAL(timeout()), this,
 SLOT(updateAnimation()));
 timer->start(100);

 rotation = 0;
}

Chapter 4

113

9.	 Lastly, we increase the rotation variable by 10 every time the updateAnimation()
slot is called by the timer. We also manually call the update() function to update
the screen:
void MainWindow::updateAnimation()
{
 rotation += 10;
 this->update();
}

10.	 If you compile and run the program now, you should see a spinning cube in your
main window!

How it works...
In any 3D rendering, depth is very important and thus we need to enable the depth testing
feature in OpenGL by calling glEnable(GL_DEPTH_TEST). When we clear the buffer, we
also must specify GL_DEPH_BUFFER_BIT so that the depth information is also being cleared,
in order for the next image to be rendered correctly.

OpenGL Implementation

114

We use gluPerspective() to set up a perspective projection matrix so that the graphics
appear to have depth and distance. The opposite to the perspective view is the orthographic
view, which is the default view in OpenGL, and we have used it in our previous example.
Orthographic projection is a form of parallel projection where objects appear to be flat
and do not suggest depth and distance:

In this example, we used a timer to increase the rotation value by 10 every 100 milliseconds
(0.1 second). The rotation value is then applied to the cube by calling glRotatef() before
supplying the vertex data to OpenGL. We also called glTranslatef() to move the cube
slightly to the back so that it's not too close to the camera view.

Remember to call update() manually so that the screen gets refreshed, otherwise the cube
will not be animated.

Texturing in OpenGL
OpenGL allows us to map an image (also referred to as a texture) to a 3D shape or polygon.
This process is also called texture mapping. Qt appears to be the best combination with
OpenGL in this case because it provides an easy way to load images that belong to one of the
common formats (BMP, JPEG, PNG, TARGA, TIFF, and so on) and you don't have to implement
it by yourself. We will use the previous example with a spinning cube and try to map it with
a texture!

How to do it…
1.	 First of all, open up mainwindow.h and add the following header to it:

#include <QGLWidget>

2.	 Next, declare an array that stores the texture IDs created by OpenGL. We will be using
it later when it comes to rendering:
private:
 QOpenGLContext* context;
 QOpenGLFunctions* openGLFunctions;

 float rotation;
 GLuint texID[1];

Chapter 4

115

3.	 After that, open up mainwindow.cpp and add the following code to
initializeGL() to load the texture file:
void MainWindow::initializeGL()
{
 // Enable Z-buffer depth test
 glEnable(GL_DEPTH_TEST);

 // Enable texturing
 glEnable(GL_TEXTURE_2D);

 QImage image("bricks");
 QImage texture = QGLWidget::convertToGLFormat(image);

 glGenTextures(1, &texID[0]);
 glBindTexture(GL_TEXTURE_2D, texID[0]);

 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_
 NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_
 NEAREST);

 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, texture.width(),
 texture.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE,
 texture.bits());

 // Make sure render at the correct aspect ratio
 resizeGL(this->width(), this->height());
}

4.	 Then, add the following code to the paintGL() function to apply the texture to the
3D cube:
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, texID[0]);

// FRONT
glBegin(GL_POLYGON);
 glColor3f(0.0, 0.0, 0.0);
 glTexCoord2f(0.0f, 0.0f); glVertex3f(0.5, -0.5, -0.5);
 glTexCoord2f(1.0f, 0.0f); glVertex3f(0.5, 0.5, -0.5);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(-0.5, 0.5, -0.5);
 glTexCoord2f(0.0f, 1.0f); glVertex3f(-0.5, -0.5, -0.5);
glEnd();

OpenGL Implementation

116

// BACK
glBegin(GL_POLYGON);
 glColor3f(0.0, 1.0, 0.0);
 glTexCoord2f(1.0f, 0.0f); glVertex3f(0.5, -0.5, 0.5);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(0.5, 0.5, 0.5);
 glTexCoord2f(0.0f, 1.0f); glVertex3f(-0.5, 0.5, 0.5);
 glTexCoord2f(0.0f, 0.0f); glVertex3f(-0.5, -0.5, 0.5);
glEnd();

// RIGHT
glBegin(GL_POLYGON);
 glColor3f(1.0, 0.0, 1.0);
 glTexCoord2f(0.0f, 1.0f); glVertex3f(0.5, -0.5, -0.5);
 glTexCoord2f(0.0f, 0.0f); glVertex3f(0.5, 0.5, -0.5);
 glTexCoord2f(1.0f, 0.0f); glVertex3f(0.5, 0.5, 0.5);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(0.5, -0.5, 0.5);
glEnd();

// LEFT
glBegin(GL_POLYGON);
 glColor3f(1.0, 1.0, 0.0);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(-0.5, -0.5, 0.5);
 glTexCoord2f(0.0f, 1.0f); glVertex3f(-0.5, 0.5, 0.5);
 glTexCoord2f(0.0f, 0.0f); glVertex3f(-0.5, 0.5, -0.5);
 glTexCoord2f(1.0f, 0.0f); glVertex3f(-0.5, -0.5, -0.5);
glEnd();

// TOP
glBegin(GL_POLYGON);
 glColor3f(0.0, 0.0, 1.0);
 glTexCoord2f(1.0f, 0.0f); glVertex3f(0.5, 0.5, 0.5);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(0.5, 0.5, -0.5);
 glTexCoord2f(0.0f, 1.0f); glVertex3f(-0.5, 0.5, -0.5);
 glTexCoord2f(0.0f, 0.0f); glVertex3f(-0.5, 0.5, 0.5);
glEnd();

// Red side - BOTTOM
glBegin(GL_POLYGON);
 glColor3f(1.0, 0.0, 0.0);
 glTexCoord2f(0.0f, 0.0f); glVertex3f(0.5, -0.5, -0.5);
 glTexCoord2f(1.0f, 0.0f); glVertex3f(0.5, -0.5, 0.5);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(-0.5, -0.5, 0.5);
 glTexCoord2f(0.0f, 1.0f); glVertex3f(-0.5, -0.5, -0.5);
glEnd();

glDisable(GL_TEXTURE_2D);

Chapter 4

117

5.	 If you compile and run the program now, you should see a brick cube rotating around
the screen!

How it works...
The variable GLuint texID[1] is an array that stores the texture ID generated by OpenGL
when we call glGenTexture(), which OpenGL uses to allocate the texture from the
memory during rendering. In this case, we set the size of the array to 1 because we are only
using a single texture in this example. We must tell OpenGL to enable texturing by calling
glEnable(GL_TEXTURE_2D) before doing anything related to texturing. We used two QImage
classes to load the texture, the first one called image was used to load the image file, and the
second one called texture was used to convert the image to an OpenGL-compatible format.
Then we called glGenTextures() to generate an empty texture using OpenGL, and after that,
we called glBindTexture() to select that particular texture. This step was needed so that the
functions called after that will be applied to the texture that we just selected.

Next, we called glTexParameteri() twice to set both the texture minifying and texture
magnification settings to point sampling. This will tell OpenGL how the texture should be
rendered. More about that later. After that, we called glTexImage2D() to supply the pixel
information from the texture file loaded by Qt to the empty OpenGL texture we just created.
Call glEnabled(GL_TEXTURE_2D) and glBindTexture() to enable texturing in OpenGL
and select the texture we wanted to use before we start rendering the 3D cube. Then, we
must call glTexCoord2f() before calling glVertex3f() to tell OpenGL how the texture
should be mapped. We supply the coordinates for the texture and OpenGL will figure out the
rest for us.

Once you're done, call glDisable(GL_TEXTURE_2D) to disable texturing.

OpenGL Implementation

118

Lighting and texture filter in OpenGL
In this example, we will learn how to apply different types of filtering effects such as point
sampling, bilinear interpolation, and trilinear interpolation to the textures we use in OpenGL.

How to do it…
1.	 Again, we will use the previous example and add a light near the spinning cube. Open

up mainwindow.cpp and add the following code to the initializeGL() function:
// Trilinear interpolation
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_
MIPMAP_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D, GL_GENERATE_MIPMAP, GL_TRUE);

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, texture.width(), texture.
 height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, texture.bits());

// Enable smooth shading
glShadeModel(GL_SMOOTH);

// Lighting
glEnable(GL_LIGHT1);
GLfloat lightAmbient[]= { 0.5f, 0.5f, 0.5f, 1.0f };
GLfloat lightDiffuse[]= { 1.0f, 1.0f, 1.0f, 1.0f };
GLfloat lightPosition[]= { 3.0f, 3.0f, -5.0f, 1.0f };
glLightfv(GL_LIGHT1, GL_AMBIENT, lightAmbient);
glLightfv(GL_LIGHT1, GL_DIFFUSE, lightDiffuse);
glLightfv(GL_LIGHT1, GL_POSITION, lightPosition);

// Make sure render at the correct aspect ratio
resizeGL(this->width(), this->height());

2.	 Next, go to the paintGL() function and add the following code:
glEnable(GL_LIGHTING);

// FRONT
glBegin(GL_POLYGON);
 glNormal3f(0.0f, 0.0f, 1.0f);
 glTexCoord2f(0.0f, 0.0f); glVertex3f(0.5, -0.5, -0.5);

Chapter 4

119

 glTexCoord2f(1.0f, 0.0f); glVertex3f(0.5, 0.5, -0.5);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(-0.5, 0.5, -0.5);
 glTexCoord2f(0.0f, 1.0f); glVertex3f(-0.5, -0.5, -0.5);
glEnd();

// BACK
glBegin(GL_POLYGON);
 glNormal3f(0.0f, 0.0f,-1.0f);
 glTexCoord2f(1.0f, 0.0f); glVertex3f(0.5, -0.5, 0.5);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(0.5, 0.5, 0.5);
 glTexCoord2f(0.0f, 1.0f); glVertex3f(-0.5, 0.5, 0.5);
 glTexCoord2f(0.0f, 0.0f); glVertex3f(-0.5, -0.5, 0.5);
glEnd();

// RIGHT
glBegin(GL_POLYGON);
 glNormal3f(0.0f, 1.0f, 0.0f);
 glTexCoord2f(0.0f, 1.0f); glVertex3f(0.5, -0.5, -0.5);
 glTexCoord2f(0.0f, 0.0f); glVertex3f(0.5, 0.5, -0.5);
 glTexCoord2f(1.0f, 0.0f); glVertex3f(0.5, 0.5, 0.5);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(0.5, -0.5, 0.5);
glEnd();

// LEFT
glBegin(GL_POLYGON);
 glNormal3f(0.0f,-1.0f, 0.0f);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(-0.5, -0.5, 0.5);
 glTexCoord2f(0.0f, 1.0f); glVertex3f(-0.5, 0.5, 0.5);
 glTexCoord2f(0.0f, 0.0f); glVertex3f(-0.5, 0.5, -0.5);
 glTexCoord2f(1.0f, 0.0f); glVertex3f(-0.5, -0.5, -0.5);
glEnd();

// TOP
glBegin(GL_POLYGON);
 glNormal3f(1.0f, 0.0f, 0.0f);
 glTexCoord2f(1.0f, 0.0f); glVertex3f(0.5, 0.5, 0.5);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(0.5, 0.5, -0.5);
 glTexCoord2f(0.0f, 1.0f); glVertex3f(-0.5, 0.5, -0.5);
 glTexCoord2f(0.0f, 0.0f);glVertex3f(-0.5, 0.5, 0.5);
glEnd();

// Red side - BOTTOM
glBegin(GL_POLYGON);
 glNormal3f(-1.0f, 0.0f, 0.0f);

OpenGL Implementation

120

 glTexCoord2f(0.0f, 0.0f); glVertex3f(0.5, -0.5, -0.5);
 glTexCoord2f(1.0f, 0.0f); glVertex3f(0.5, -0.5, 0.5);
 glTexCoord2f(1.0f, 1.0f); glVertex3f(-0.5, -0.5, 0.5);
 glTexCoord2f(0.0f, 1.0f); glVertex3f(-0.5, -0.5, -0.5);
glEnd();

glDisable(GL_LIGHTING);

3.	 If you compile and run the program now, you should see the lighting in action!

How it works...
In the fixed pipeline, it's extremely easy to add lights to your scene. First, we need to choose
which shading model we want OpenGL to use. In our case, we chose the smooth shading
model by calling glShaderModel(GL_SMOOTH). Alternatively, you can also pick the flat
shading model by calling glShaderModel(GL_FLAT):

Chapter 4

121

After that, enable the first light in OpenGL by calling glEnable(GL_LIGHT1). Since there
is a limited number of lights allowed in the fixed pipeline, the names of the lights are all
static: GL_LIGHT1, GL_LIGHT2, GL_LIGHT3, and so on. Next, we created three arrays
that store the color of the ambient light, the color of the diffuse light, and the position of the
diffuse light. Ambient light is the environment lighting, which affects the entire scene and
has no position. Diffuse light, on the other hand, has a position and area of light influence.
We then supply this information to OpenGL by calling the glLightfv() functions. Then, in
paintGL(), we must enable the lighting by calling glEnable(GL_LIGHTING) before we
start rendering the cube. Without it, you won't see any lighting effects applied to the cube.

Other than that, we also need to add a surface normal value to every surface of the cube.
Surface normal indicates where the surface is facing and is used for lighting calculations. Don't
forget to disable lighting once you're done with it by calling glDisable(GL_LIGHTING).

Besides adding a light to the scene, we also changed the texture filtering setting to trilinear
interpolation by calling glTexParameteri(), which makes the texture looks smoother.
You can also try out the other two types of filtering, point filtering and bilinear filtering, by
uncommenting the code.

The following image shows the distinction between three different types of filtering:

Bilinear and trilinear filtering require a mipmap in order to work, which we can ask OpenGL
to generate by calling glTexParameteri(GL_TEXTURE_2D, GL_GENERATE_MIPMAP,
GL_TRUE). Mipmaps are pre-calculated, optimized sequences of textures, each of which is
a progressively lower resolution representation of the same image. OpenGL will switch the
texture of an object to a lower resolution mipmap when moving further away from the camera,
which is effective for avoiding visual artifacts.

OpenGL Implementation

122

There's more…
In a 3D scene, lighting is a very important aspect that helps to define the 3D shape of an
object. A light doesn't just make the surfaces facing the light become brighter, but it also
makes other surfaces that are blocked become darker.

In OpenGL, at least in the fixed-function pipeline, you can only add a limited number of lights
to the scene. The number of lights is limited by the graphics chip – some support up to four
lights, some support up to eight, and some support up to 16. However, since the fixed-function
pipeline is slowly being phased out and people are starting to use the programmable pipeline,
this problem has been solved. In the programmable pipeline, you can have any number of
lights in the scene; however, the lighting model will need to be coded entirely by you in the
shaders, which is not an easy task.

In the fixed-function pipeline, if you want to add more lights than what your graphics chip
supports, what you can do is to turn off lights that are further away from the camera view and
only turn on a few that are closer to your camera view. The disadvantage of this method is that
you may see the lights popping on and off while walking along a maze, for example.

Moving an object using keyboard controls
In this topic we'll be looking at is how to move an object in OpenGL using keyboard
controls. Qt provides an easy way to detect keyboard events using virtual functions, namely
keyPressEvent() and keyReleaseEvent(). We will be using the previous example
and adding to it.

How to do it…
1.	 Open up mainwindow.h and declare two floating point numbers called moveX

and moveZ:
private:
 QOpenGLContext* context;
 QOpenGLFunctions* openGLFunctions;

 float rotation;
 GLuint texID[1];

 float moveX;
 float moveZ;

Chapter 4

123

2.	 After that, declare the keyPressEvent() function, like so:
public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

 void keyPressEvent(QKeyEvent *event);

3.	 Then, open up mainwindow.cpp and set the default values for the two variables we
just declared:
MainWindow::MainWindow(QWidget *parent)
{
 setSurfaceType(QWindow::OpenGLSurface);

 QSurfaceFormat format;
 format.setProfile(QSurfaceFormat::CompatibilityProfile);
 format.setVersion(2, 1); // OpenGL 2.1
 setFormat(format);

 context = new QOpenGLContext;
 context->setFormat(format);
 context->create();
 context->makeCurrent(this);

 openGLFunctions = context->functions();

 QTimer *timer = new QTimer(this);
 connect(timer, SIGNAL(timeout()), this,
 SLOT(updateAnimation()));
 timer->start(100);

 rotation = 0;

 moveX = 0;
 moveZ = 0;
}

OpenGL Implementation

124

4.	 Next, we will implement the keyPressEvent() function:
void MainWindow::keyPressEvent(QKeyEvent *event)
{
 if (event->key() == Qt::Key_W)
 {
 moveZ -= 0.2;
 }

 if (event->key() == Qt::Key_S)
 {
 moveZ += 0.2;
 }

 if (event->key() == Qt::Key_A)
 {
 moveX -= 0.2;
 }

 if (event->key() == Qt::Key_D)
 {
 moveX += 0.2;
 }
}

5.	 After that, we call glTranslatef() before drawing the 3D cube and putting both
moveX and moveZ into the function. Also, we disabled the rotation so that it's easier
to see the movement:
// Transformations
glTranslatef(0.0, 0.0, -3.0);
glRotatef(rotation, 1.0, 1.0, 1.0);
glTranslatef(moveX, 0.0, moveZ);

// Texture mapping
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, texID[0]);

glEnable(GL_LIGHTING);

Chapter 4

125

6.	 If you compile and run the program now, you should be able to move the cube around
by pressing W, A, S and D:

How it works...
Basically, what we did here was add or subtract the moveX and moveZ values when a key is
pressed. In keyPressEvent(), we checked whether the keyboard button pressed was W, A,
S, or D. Then, we add or subtract 0.2 from the variables accordingly. To get the full list of key
names used by Qt, visit http://doc.qt.io/qt-5/qt.html#Key-enum.

When we hold down the same key and don't release it, Qt will repeat the key press event after
an interval. The keyboard input interval varies between different operating systems. You can
set the interval by calling QApplication::setKeyboardInterval(), but this may not
work in every operating system. We called glTranslatef(moveX, 0.0, moveZ) before
drawing the cube, which moves the cube around when we press W, A, S, or D.

3D canvas in QML
In this recipe, we will learn how to render 3D images using Qt's powerful QML scripting
language.

http://doc.qt.io/qt-5/qt.html#Key-enum

OpenGL Implementation

126

How to do it…
1.	 Let's start this example by creating a new project in Qt Creator. This time around, we

will create Qt Canvas 3D Application and not the other options that we chose in all
previous examples:

2.	 After that, Qt Creator will ask you whether to create a project that is based on
three.js. Leave the option checked and press the Next button to proceed:

Chapter 4

127

3.	 Once the project is created, you will notice there are some JavaScript (.js) files
already added to your project's resources. This is normal as the Qt Canvas 3D
application uses JavaScript and WebGL technology to render 3D images on screen. In
this case, it's running a WebGL-based rendering library called three.js, which makes
our programming job simpler and easier compare to writing pure WebGL code:

4.	 Next, add an image file to our project resources as we'll be using it in this example.
Open up qml.qrc with Qt Creator by right-clicking on it in the Projects pane and
select Open in Editor. Once the resources file is opened by Qt Creator, click the Add
button, followed by the Add File button, then select the image file you want from your
computer. In my case, I've added a bricks.png image, which will be used as the
surface texture for our 3D object:

OpenGL Implementation

128

5.	 After that, open up glcode.js using Qt Creator. You will see there is already plenty of
code written in the file. What ithis does is basically render a simple 3D cube on screen
using the three.js library. You can build the project right away and run it to see what
it looks like. However, we will change the code a little bit to customize its output.

6.	 In the initializeGL() function, we'll add a directional light to the scene, load the
texture file we just added to our project resources, and then apply the texture to the
material that defines the surface properties of the 3D cube. Also, we will make the
scale of the cube slightly bigger by setting its scale to 3 in all dimensions:
function initializeGL(canvas) {
 scene = new THREE.Scene();
 camera = new THREE.PerspectiveCamera(75, canvas.width / canvas.
 height, 0.1, 1000);
 camera.position.z = 5;

 var directionalLight = new THREE.DirectionalLight(0xffffff);
 directionalLight.position.set(1, 1, 1).normalize();
 scene.add(directionalLight);

 var texture = THREE.ImageUtils.loadTexture('bricks.jpg');

 var material = new THREE.MeshBasicMaterial({ map: texture });
 var cubeGeometry = new THREE.BoxGeometry(3, 3, 3);
 cube = new THREE.Mesh(cubeGeometry, material);
 cube.rotation.set(0.785, 0.785, 0.0);
 scene.add(cube);

 renderer = new THREE.Canvas3DRenderer(
 { canvas: canvas, antialias: true, devicePixelRatio: canvas.
 devicePixelRatio });
 renderer.setSize(canvas.width, canvas.height);
}

7.	 Then, in the paintGL() function, add an extra line of code to rotate the 3D cube
before rendering the scene:
function paintGL(canvas) {
 cube.rotation.y -= 0.005;
 renderer.render(scene, camera);
}

8.	 I personally find the window size is a little too large, so I also changed the width and
height of the window in main.qml file:
import QtQuick 2.4
import QtCanvas3D 1.0
import QtQuick.Window 2.2

Chapter 4

129

import "glcode.js" as GLCode

Window {
 title: qsTr("Qt_Canvas_3D")
 width: 480
 height: 320
 visible: true

 Canvas3D {
 id: canvas3d
 anchors.fill: parent
 focus: true

 onInitializeGL: {
 GLCode.initializeGL(canvas3d);
 }

 onPaintGL: {
 GLCode.paintGL(canvas3d);
 }

 onResizeGL: {
 GLCode.resizeGL(canvas3d);
 }
 }
}

9.	 Once you're done, let's build and run the project. You should be able to see a 3D cube
with a brick texture, spinning slowly on the screen:

OpenGL Implementation

130

How it works...
Originally, three.js was a cross-browser JavaScript library/API that used WebGL technology
to display animated 3D computer graphics in a web browser. Qt Canvas 3D, however, also
uses web technology, specifically the WebGL technology, to render 3D images like it would
on a web browser. This means that not only is three.js supported on Qt Canvas 3D, but all
the different types of library that are based on WebGL technology will work flawlessly on Qt
Canvas 3D. However, Qt Canvas 3D only works on QML-based projects and does not work
in C++.

If you're interested to learn more about three.js, check out their website at
http://threejs.org.

http://threejs.org

131

5
Building a Touch Screen

Application with Qt5

In this chapter, we will cover the following recipes:

ff Setting up Qt for mobile applications

ff Designing a basic user interface with QML

ff Touch events

ff Animation in QML

ff Displaying information using model views

ff Integrating QML and C++

Introduction
Qt is not only a cross-platform software development kit for PC platforms, it also supports
mobile platforms such as iOS and Android. The developers of Qt introduced Qt Quick back in
2010, which provides an easy way to build custom user interfaces that are highly dynamic,
where users can easily create fluid transitions and effects with only minimal coding. Qt Quick
uses a declarative scripting language called QML, which is similar to the JavaScript language
used in web development. Advanced users can also create custom functions in C++ and port
them over to Qt Quick to enhance its functionality. At the moment, Qt Quick supports multiple
platforms such as Windows, Linux, Mac, iOS, and Android.

Building a Touch Screen Application with Qt5

132

Setting up Qt for mobile applications
In this example, we will learn how to set up our Qt project in Qt Quick and enable it to be build
and exported to mobile devices.

How to do it…
1.	 First of all, let's create a new project by going to File | New File or New Project.

Then, a window will pop up for you to choose a project template. Select Qt Quick
Application and click the Choose button:

2.	 After that, insert the project name and select the project location. Click the Next
button and it will ask you to select the minimum Qt version required for your project.
Please make sure that you select a version that exists on your computer, otherwise
you won't be able to run it properly. Once you have done that, proceed by clicking the
Next button.

3.	 Then, Qt Creator will ask you which kit you want to use for your project. These "kits"
are basically different compilers that you can use to compile your project for different
platforms. Since we're doing an application for a mobile platform, we will enable the
Android kit (or the iOS kit if you're running a Mac) in order to build and export your
app to your mobile device. Do note that you need to configure the Android kit if you're
using it for the first time, so that Qt can find the directory of the Android SDK. Click
Next once you're done with it:

Chapter 5

133

4.	 Once the project has been created, Qt Creator will automatically open up a file from
your project, called main.qml. You will see something like this on screen, which is
very different from your usual C/C++ project:
import QtQuick 2.3
import QtQuick.Window 2.2

Window {
 visible: true

 MouseArea {
 anchors.fill: parent
 onClicked: {
 Qt.quit();
 }
 }

 Text {
 text: qsTr("Hello World")
 anchors.centerIn: parent
 }
}

Building a Touch Screen Application with Qt5

134

5.	 Build and run the project now by clicking on the green arrow button located at the
bottom-left corner of your Qt Creator. If you set the default kit to Desktop, a window
will pop up which looks something like this:

6.	 We can switch between different kits by going to the Projects interface and
selecting the kit you want your project to be built with. You can also manage all the
kits available on your computer, or add a new kit to your project from the Projects
interface:

7.	 If this is your first time building and running your project, you need to create a
template for the Android kit under the Build settings. Once you have clicked the
Create Templates button, Qt will generate all the files required to run your app on an
Android device. If you don't plan to use Gradle in your project, disable the option Copy
the Gradles files to Android directory. Otherwise, you may encounter problems when
trying to compile and deploy your app to your mobile device:

Chapter 5

135

8.	 Once you have created the template, press the Run button and now you should see a
window popping up, asking which device it should export to:

Building a Touch Screen Application with Qt5

136

9.	 Select the device that is currently connected to your computer and press the OK
button. Wait for a while for it to build the project, and you should see something
like this on your mobile device:

How it works…
A Qt Quick application project is quite different from a form application project. You will be
writing QML script most of the time instead of writing C/C++ code.

The Android Software Development Kit (SDK), Android Native Development Kit (NDK), Java
Development Kit (JDK), and Apache Ant are required to build and export your app to the
Android platform. Alternatively, you can also use Gradle instead of Apache Ant for your Android
kit. All you need to do is to enable the Use Gradle instead of Ant option and provide Qt with
Gradle's installation path. Note that Android Studio is currently not supported by Qt Creator:

Chapter 5

137

If you're running the app on an Android device, make sure that you have enabled USB
Debugging Mode. To enable USB Debugging Mode, you need to first enable the developer
options on your Android device by going to Settings | About Phone and tap the Build Number
seven times. After that, go to Settings | Developer Options and you will see the Android
Debugging option in the menu. Enable that option and you can now export your app to your
device for testing.

To build for the iOS platform, you need to run Qt Creator on a Mac and make sure the latest
XCode is installed on your Mac as well.

To test your app on an iOS device, you need to register a developer account with Apple,
register your device at the developer portal, and install the provisioning to your XCode, which
is a lot trickier than Android. You will be given access to the developer portal once you have
obtained a developer account from Apple.

Building a Touch Screen Application with Qt5

138

Designing a basic user interface with QML
In this example, we will learn how to use Qt Quick Designer to design our program's user
interface.

How to do it…
1.	 First of all, create a new Qt Quick application project, just like we did in the previous

recipe. You can also use the previous project files if you wish to.

2.	 You will see two QML files in your project resources—main.qml and MainForm.
ui.qml. The former is where we implement the logic for our application, and the
latter is where we design our user interface. We will start with the UI design, so let's
open up MainForm.ui.qml. Once it's been opened by Qt Creator, you will see an
entirely different UI editor compared to the one we used in previous chapters. This
editor is called the Qt Quick Designer, which is used specifically to design UI for Qt
Quick projects. The components of this editor are described as follows:

�� Library: The Library window displays all the predefined QML types that you
can add to your UI canvas. You can also import custom Qt Quick components
from the Import tab and display them here.

�� Navigator: The Navigator window displays the items in the current QML file
in a tree structure.

�� Connections: You can use the tools provided in the Connections window to
connect objects to signals, specify dynamic properties for objects, and create
bindings between the properties of two objects.

�� State: The State window displays the different states of an item. You can
add a new state for an item by clicking on the + button on the right of the
State window.

�� Canvas: The canvas is where you design your program's user interface. You
can drag and drop a Qt Quick component from the Library window onto the
canvas and instantly see what it will look like in the program.

�� Properties: This is where you change the properties of a selected item.

3.	 Select everything under the Rectangle object (mouseArea and Text) in the Navigator
window and delete them.

4.	 We're about to make a simple login screen. From the Library window, drag two text
widgets onto the canvas.

Chapter 5

139

5.	 Set the text properties of both the text widgets to Username: and Password:

6.	 Drag two rectangles from the Library window to the canvas, then drag two text input
widgets onto the canvas and parent each of them to the rectangles you just added
to the canvas. Set the border property of the rectangles to 1 and the radius to 5.
Then, set the echo mode of one of the text fields to Password.

7.	 Now we're going to manually create a button widget by combining a mouse area
widget with a rectangle and a text widget. Drag a mouse area widget onto the canvas,
then drag a rectangle and a text widget onto the canvas and parent them both to the
mouse area. Set the color of the rectangle to #bdbdbd, then set its border property
to 1 and its radius to 5. Then, set the text to Login and make sure the size of the
mouse area is the same as the rectangle.

8.	 After that, drag another rectangle onto the canvas to act as the container for the
login form so that it will look neat. Set its border color to #5e5858 and its
border property to 2. Then, set its radius property to 5 to make its corners
look a little rounded.

9.	 Make sure the rectangle that we added in the previous step is positioned at the top of
the hierarchy in the Navigator window so that it appears behind all the other widgets.
You can arrange the widget positions within the hierarchy by pressing the arrow
buttons located at the top of the Navigator window:

Building a Touch Screen Application with Qt5

140

10.	 Next, we will export three widgets—mouse area and the two text input widgets—as
alias properties of the root item so that later on we can access these widgets from
the main.qml file. The widgets can be exported by clicking on the small icon behind
the widget name and making sure the icon changes to the On status:

11.	 By now, your UI should look something like this:

12.	 Now let's open up main.qml. Qt Creator will not open this file in Qt Quick Designer
by default, but instead, it will be opened with the Script Editor. This is because all the
UI design-related tasks were done in MainForm.ui.qml, and main.qml is only for
defining the logic and functions that will be applied to the UI. You can, however, open
it with Qt Quick Designer to preview the UI by clicking on the Design button located in
the side bar on the left of the editor.

13.	 At the top of the script, add the third line to import the dialog module to main.qml,
like so:
import QtQuick 2.5
import QtQuick.Window 2.2
import QtQuick.Dialogs 1.2

14.	 After that, replace the code below it with this:
Window {
 visible: true
 width: 360
 height: 360

Chapter 5

141

 MainForm {
 anchors.fill: parent
 loginButton.onClicked: {
 messageDialog.text = "Username is " +
 userInput.text + " and password is " +
 passInput.text
 messageDialog.visible = true
 }
 }

 MessageDialog {
 id: messageDialog
 title: "Fake login"
 text: ""
 onAccepted: {
 console.log("You have clicked the login button")
 Qt.quit()
 }
 }
}

15.	 Build and run this program on your PC and you should get a simple program that
shows a message box when you click on the Login button:

Building a Touch Screen Application with Qt5

142

How it works…
Since Qt 5.4, a new file extension called .ui.qml has been introduced. The QML engine
handles it like the normal .qml files, but forbids any logic implementation to be written in
it. It serves as the UI definition template, which can be reused in different .qml files. The
separation of UI definition and logic implementation improves the maintainability of QML
code and creates a better workflow.

All the widgets under Qt Quick – Basic are the most basic widgets that we can use to mix and
match and create a new type of widget. In the previous example, we have learned how to put
three widgets together—a text, a mouse area, and a rectangle, to form a button widget.

If you're lazy, however, you can import pre-made modules to your Qt Quick project by going to
the Imports tab in the Library window and clicking the <Add Import> button. Then, select the
module you want to add to your project from the drop-down list. You can also create your own
Qt Quick module once you have advanced in both QML scripting and C++ programming:

We imported QtQuick.dialogs module in main.qml and created a message box that
displays the user name and password filled in by the user when the Login button is pressed,
so that we can prove that the UI function is working. If the widgets are not exported from
MainForm.ui.qml, we will not be able to access its properties in main.qml.

At this point, we can export the program to iOS and Android, but the UI may not look accurate
on some of the devices that have higher resolution or higher Density-per-Pixel (DPI) unit. We
will cover this issue later on in this chapter.

Touch events
In this section, we will learn how to develop a touch-driven application that runs on mobile
devices using Qt Quick.

Chapter 5

143

How to do it…
1.	 First of all, create a new Qt Quick application project.

2.	 In Qt Creator, right-click on qml.qrc and select Open in Editor. Then, click Add |
Add Files and add tux.png to the project:

3.	 Next, open up MainForm.ui.qml. Drag an image widget from the Library window to
the canvas. Then, set the source of the image to tux.png and set its fillmode to
PreserveAspectFit. After that, set its width to 200 and its height to 220.

4.	 Make sure both the mouse area widget and the image widget are exported as alias
properties of the root item by clicking on the small icon besides their respective
widget name.

5.	 After that, switch over to the Script Editor by clicking on the Edit button on the side
bar located at the left side of the editor. We need to change the mouse area widget
to a multi-point touch area widget, like so:
MultiPointTouchArea {
 id: touchArea
 anchors.fill: parent
 touchPoints: [
 TouchPoint { id: point1 },
 TouchPoint { id: point2 }
]
}

Building a Touch Screen Application with Qt5

144

6.	 We also set the Image widget to be automatically placed at the center of the window
by default:
Image {
 id: tux
 x: (window.width / 2) - (tux.width / 2)
 y: (window.height / 2) - (tux.height / 2)
 width: 200
 height: 220
 fillMode: Image.PreserveAspectFit
 source: "tux.png"
}

The final UI should look something like this:

7.	 Once you're done with that, let's open up main.qml. First, clear everything within the
MainForm object except anchors.fill: parent, like so:
import QtQuick 2.5
import QtQuick.Window 2.2

Window {
 visible: true

 MainForm {
 anchors.fill: parent
 }
}

Chapter 5

145

8.	 After that, declare several variables within the MainForm object that will be used
to rescale the image widget. If you want to know more about the property keyword
used in the following code, check out the There's more… section at the end of
this example:
property int prevPointX: 0
property int prevPointY: 0
property int curPointX: 0
property int curPointY: 0

property int prevDistX: 0
property int prevDistY: 0
property int curDistX: 0
property int curDistY: 0

property int tuxWidth: tux.width
property int tuxHeight: tux.height

9.	 Next, we will define what will happen when our finger touches the multi-point area
widget. In this case, we will save the positions of the first and second touch points if
more than one finger touches the multi-point touch area. We also save the width and
height of the image widget so that later on we can use these variables to calculate
the scale of the image when the fingers start to move:
touchArea.onPressed:
{
 if (touchArea.touchPoints[1].pressed)
 {
 if (touchArea.touchPoints[1].x < touchArea.touchPoints[0].x)
 prevDistX = touchArea.touchPoints[1].x -
 touchArea.touchPoints[0].x
 else
 prevDistX = touchArea.touchPoints[0].x -
 touchArea.touchPoints[1].x

 if (touchArea.touchPoints[1].y < touchArea.touchPoints[0].y)
 prevDistY = touchArea.touchPoints[1].y -
 touchArea.touchPoints[0].y
 else
 prevDistY = touchArea.touchPoints[0].y -
 touchArea.touchPoints[1].y

Building a Touch Screen Application with Qt5

146

 tuxWidth = tux.width
 tuxHeight = tux.height
 }
}

The following image shows the example of touch points being registered when
two fingers are touching the screen, within the touchArea boundary. touchArea.
touchPoints[0] is the first registered touch point and touchArea.
touchPoints[1] is the second. We then calculate the X and Y distance between
the two touch points and save them as prevDistX and prevDistY:

10.	 After that, we will define what will happen when our fingers move while remaining
in contact with the screen and still within the boundary of the touch area. At this
point, we will calculate the scale of the image by using the variables we saved in the
previous step. At the same time, if we detect that only a single touch is found, then
we will move the image instead of altering its scale:
touchArea.onUpdated:{
 if (!touchArea.touchPoints[1].pressed)
 {
 tux.x += touchArea.touchPoints[0].x -
 touchArea.touchPoints[0].previousX
 tux.y += touchArea.touchPoints[0].y -
 touchArea.touchPoints[0].previousY
 }
 else
 {
 if (touchArea.touchPoints[1].x <
 touchArea.touchPoints[0].x)

Chapter 5

147

 curDistX = touchArea.touchPoints[1].x -
 touchArea.touchPoints[0].x
 else
 curDistX = touchArea.touchPoints[0].x -
 touchArea.touchPoints[1].x

 if (touchArea.touchPoints[1].y <
 touchArea.touchPoints[0].y)
 curDistY = touchArea.touchPoints[1].y -
 touchArea.touchPoints[0].y
 else
 curDistY = touchArea.touchPoints[0].y -
 touchArea.touchPoints[1].y

 tux.width = tuxWidth + prevDistX - curDistX
 tux.height = tuxHeight + prevDistY - curDistY
 }
}

The following image shows the example of moving touch points - touchArea.
touchPoints[0] moved from point A to point B while touchArea.
touchPoints[1] moved from point C to point D. We can then determine how
many units have the touch points moved by looking at the differences between
the previous X, Y variables with the current ones:

Building a Touch Screen Application with Qt5

148

11.	 You can now build and export the program to your mobile device. You will not be
able to test this program on a platform that does not support multi-touch. Once the
program is running on the mobile device (or desktop/laptop that supports multi-
touch), try two things: put only one finger on the screen and move it around, and put
two fingers on the screen and move them in opposite directions. What you should see
is that the penguin will be moved to another place if you use only one finger, and it
will be scaled up or down if you use two fingers:

How it works…
When a finger touches the screen of the device, the multi-point touch area widget triggers
the onPressed event and registers the position of each of the touch points in an internal
array. We can get this data by telling Qt which touch point you want to get access to. The first
touch will bear the index number of 0, the second touch will be 1, and so on. We will then
save this data into variables so that we can retrieve it later to calculate the scaling of the
penguin image.

When one or more fingers remain in contact with the screen while moving, a multi-point touch
area will trigger the onUpdate event. We will then check how many touches there are—if
only one touch is found, we will just move the penguin image based on how much our finger
has moved. If there is more than one touch, we will compare the distance between the two
touches and compare this with the previous variables we have saved, to determine how much
we should rescale the image.

Chapter 5

149

We must also check whether the first touch is on the left side of the second touch or the right
side. This way we can prevent the image from being scaled in the inverse direction of the
finger movement and producing an inaccurate result.

As for the movement of the penguin, we will just get the difference between the current touch
position and the previous one, add that to the coordinate of the penguin, and it's done. A
single touch event is usually a lot simpler and more straightforward than a multi-touch event.

There's more…
In Qt Quick, all its components have built-in properties such as width, height, color, and so on
that are attached to the components by default. However, Qt Quick also allows you to create
your own custom properties and attach them to the components you declared in your QML
script. A custom property of an object type may be defined in an object declaration in a QML
document by adding the property keyword before the type keyword, for example:

property int myValue;

You can also bind the custom property to a value by using a colon (:) before the value, like so:

property int myValue: 100;

To learn more about the property types supported by Qt Quick, check out this link:
http://doc.qt.io/qt-5/qtqml-typesystem-basictypes.html

Animation in QML
Qt allows us to easily animate a UI component without writing a bunch of code. In this
example, we will learn how to make our program's UI more interesting by applying
animations to it.

http://doc.qt.io/qt-5/qtqml-typesystem-basictypes.html

Building a Touch Screen Application with Qt5

150

How to do it…
1.	 Once again, we will start everything from scratch. Therefore, create a new Qt Quick

application project in Qt Creator and open up MainForm.ui.qml.

2.	 Go to the Imports tab in the Library window and add a Qt Quick module called
QtQuick.Controls to your project.

3.	 After that, you will see a new category appear in the QML Types tab called Qt Quick -
Controls, which contains many new widgets that can be placed on the canvas.

4.	 Next, drag three button widgets to the canvas and set their height to 45. Then, go to
the Layout tab on the Properties window and enable both the left and right anchors
for all the three button widgets. Make sure the target for the anchors are set to
Parent and the margins remain as 0. This will make the buttons resize horizontally
according to the width of the main window. After that, set the y value of the first
button to 0, the second to 45, and the third to 90. The UI should now look like this:

5.	 Now, open up qml.qrc with the Editor and add fan.png to the project:

6.	 Then, add two mouse area widgets to the canvas. After that, drag a rectangle widget
and an image widget on the canvas. Parent the rectangle and image to the mouse
areas we have just added before this.

Chapter 5

151

7.	 Set the color of the rectangle to #0000ff and apply fan.png to the image widget.
Your UI should now look like this:

8.	 After that, export all the widgets in your MainForm.ui.qml as alias properties of the
root item by clicking on the icons located to the right of the widget name:

9.	 Next, we will apply animation and logic to the UI but we won't be doing it in
MainForm.ui.qml. Instead, we will do it all in main.qml.

10.	 In main.qml, remove the default code for the mouse area and add in a width and
height for the window so that we get more space to preview:
import QtQuick 2.5
import QtQuick.Window 2.2

Building a Touch Screen Application with Qt5

152

Window {
 visible: true
 width: 480
 height: 550

 MainForm {
 anchors.fill: parent
 }
}

11.	 After that, add the code that defines the behavior of the buttons in the MainForm
widget:
button1 {
 Behavior on y { SpringAnimation { spring: 2;
 damping: 0.2 } }

 onClicked: {
 button1.y = button1.y + (45 * 3)
 }
}

button2 {
 Behavior on y { SpringAnimation { spring: 2;
 damping: 0.2 } }

 onClicked: {
 button2.y = button2.y + (45 * 3)
 }
}

button3 {
 Behavior on y { SpringAnimation { spring: 2;
 damping: 0.2 } }

 onClicked: {
 button3.y = button3.y + (45 * 3)
 }
}

12.	 Then, follow this with the behavior of the fan image and the mouse area widget it is
attached to:
fan {
 RotationAnimation on rotation {
 id: anim01
 loops: Animation.Infinite

Chapter 5

153

 from: 0
 to: -360
 duration: 1000
 }
}

mouseArea1 {
 onPressed: {
 if (anim01.paused)
 anim01.resume()
 else
 anim01.pause()
 }
}

13.	 Last but not least, add the behavior of the rectangle and the mouse area widget it's
attached to:

Building a Touch Screen Application with Qt5

154

14.	 If you compile and run the program now, you should see three buttons at the top of
the window and a moving rectangle at the bottom left, followed by a spinning fan at
the bottom right. If you click any of the buttons, they will move slightly downward with
a nice, smooth animation. If you click on the rectangle, it will change color from blue
to red. Meanwhile, the fan image will pause its animation if you click on it while it's
animating, and it will resume the animation if you click on it again:

How it works…
Most of the animation elements supported by the C++ version of Qt, such as transition,
sequential animation, parallel animation, and so on, are also available in Qt Quick. If you are
familiar with the Qt animation framework in C++, you should be able to grasp this pretty easily.

In this example, we added a spring animation element to all three buttons that specifically
tracked their respective y-axes. If Qt detects that the y value has changed, the widget will not
instantly pop to the new position, but instead it will be interpolated, move across the canvas,
and perform a little shaking animation when reaching its destination, which simulates the
spring effect. We just have to write one line of code and leave the rest to Qt.

As for the fan image, we added a rotation animation element to it and set the duration to
1000 milliseconds, which means it will complete a full rotation in one second. We also set it
to loop its animation infinitely. When we clicked on the mouse area widget it's attached to,
we just called pause() or resume() to enable or disable the animation.

Chapter 5

155

Next, for the rectangle widget, we added two states to it, one called BLUE and one called
RED, each of which carries a color property that will be applied to the rectangle upon state
change. At the same time, we added a sequential animation group to the mouse area widget
that the rectangle is attached to, and then added two property animation elements to the
group. You can also mix different types of group animation; Qt can handle this very well.

Displaying information using Model View
Qt includes a Model View framework that maintains separation between the way data is
organized and managed, and the way that it is presented to the user. In this section, we
will learn how to make use of the model view, in particular by using the list view to display
information and at the same time apply our own customization to make it look slick.

How to do it…
1.	 Create a new Qt Quick application project and open up qml.qrc with Qt Creator. Add

six images, home.png, map.png, profile.png, search.png, settings.png,
and arrow.png, to the project:

2.	 After that, open up MainForm.ui.qml. Delete all the default widgets on the canvas
and drag a List View widget from under the Qt Quick - Views category in the Library
window onto the canvas. Then, set its Anchors setting to Fill the parent size by
clicking on the button located in the middle of the Layout window:

Building a Touch Screen Application with Qt5

156

3.	 Next, switch over to the Script Editor, as we will define what the list view will look like:

Chapter 5

157

Building a Touch Screen Application with Qt5

158

4.	 After that, open up main.qml and replace the code with this:
import QtQuick 2.4
import QtQuick.Window 2.2

Window {
 visible: true
 width: 480
 height: 480

 MainForm {
 anchors.fill: parent

 MouseArea {
 onPressed: row1.opacity = 0.5
 onReleased: row1.opacity = 1.0
 }
 }
}

5.	 Build and run the program, and now your program should look like this:

How it works…
Qt Quick allows us to customize the look of each row of the list view with ease. The delegate
defines what each row will look like and the model is where you store the data that will be
displayed on the list view.

Chapter 5

159

In this example, we added a background with a gradient on each row, then we also added an
icon on each side of the item, a title, a description, and a mouse area widget that makes each
row of the list view clickable. The delegate is not static, as we allow the model to change the
title, description, and the icon to make each row look unique.

In main.qml, we defined the behavior of the mouse area widget, which will halve its own
opacity value lower when pressed and return to fully opaque when released. Since all other
elements, such as title, icon, and so on, are all the children of the mouse area widget, they all
will also automatically follow their parent widget's behavior and become semi-transparent.

Also, we have finally solved the display problem on mobile devices with high resolution and
DPI. It's a very simple trick—first, we defined a variable called sizeMultiplier. The value of
sizeMultiplier is the result of dividing the width of the window by a predefined value, say
480, which is the current window width we used for the PC. Then, multiply sizeMultiplier
by all the widget variables that have to do with size and position, including font size. Do note
that in this case, you should use the pixelSize property for text instead of pointSize,
so that you will get the correct display when multiplying by sizeMultiplier. The following
screenshot shows you what the app looks like on the mobile device with and without
sizeMultiplier:

Building a Touch Screen Application with Qt5

160

Notice that you may get a messed up UI in the editor once you multiply everything with the
sizeMultiplier variable. This is because the width variable may return as 0 in the editor.
Hence, by multiplying 0 by 480, you may get the result 0, which makes the entire UI to look
funny. However, it will look fine when running the actual program. If you want to preview the
UI on the editor, temporarily set the sizeMultiplier to 1.

Integrating QML and C++
Qt supports bridging between C++ classes with the QML engine. This combination allows
developers to take advantage of both the simplicity of QML and the flexibility of C++. You can
even integrate features that are not supported by Qt from an external library, then pass the
resulting data to Qt Quick to be displayed in the UI. In this example, we will learn how to export
our UI components from QML to the C++ framework and manipulate their properties before
displaying them on screen.

How to do it…
1.	 Once again, we will start everything from scratch. Therefore, create a new Qt Quick

application project in Qt Creator and open up MainForm.ui.qml.

2.	 We can keep the mouse area and text widget, but place the text widget at the bottom
of the window. Change the Text property of the text widget to Change this text
using C++ and set its font size to 18. After that, go to the Layout tab and enable
both Vertical center anchor and Horizontal center anchor to ensure it's always
somewhere in the middle of the window, regardless of how you rescale the window.
Set the Margin for the Vertical center anchor to 120:

Chapter 5

161

3.	 Next, drag a Rectangle widget from the Library window to the canvas and set its
color to #ff0d0d. Set its Width and Height to 200 and enable both the vertical and
horizontal center anchor. After that, set the Margin of the horizontal center anchor
to -14. Your UI should now look something like this:

4.	 Once you are done with that, right-click on your project directory in Qt Creator and
choose Add New. Then, a window will pop up and let you pick a file template. Select
C++ Class and press Choose…. After that, it will ask you to define the C++ class by
filling in the information for the class. In this case, insert MyClass in the Class Name
field and select QObject as the Base class. Then, make sure Include QObject option
is ticked and you can now click the Next button, follow by the Finish button. Two
files—myclass.h and myclass.cpp—will now be created and added to your project:

Building a Touch Screen Application with Qt5

162

5.	 Now, open up myclass.h and add a variable and function below the class
constructor, like so:
#ifndef MYCLASS_H
#define MYCLASS_H
#include <QObject>

class MyClass : public QObject
{
 Q_OBJECT
 public:
 explicit MyClass(QObject *parent = 0);

 // Object pointer
 QObject* myObject;

 // Must call Q_INVOKABLE so that this function can be used in
QML
 Q_INVOKABLE void setMyObject(QObject* obj);

 signals:

 public slots:
};

#endif // MYCLASS_H

6.	 After that, open up myclass.cpp and define the setMyObject() function:
#include "myclass.h"

MyClass::MyClass(QObject *parent) : QObject(parent)
{
}

void MyClass::setMyObject(QObject* obj)
{
 // Set the object pointer
 myObject = obj;
}

Chapter 5

163

7.	 We can now close myclass.cpp and open up main.qml. At the top of the file, add
in the third line, which imports the custom library we just created in C++:
import QtQuick 2.4
import QtQuick.Window 2.2
import MyClassLib 1.0

8.	 Then, define MyClass in the Window object and call its function setMyObject()
within the MainForm object, like so:
Window {
 visible: true
 width: 480
 height: 320

 MyClass
 {
 id: myclass
 }

 MainForm {
 anchors.fill: parent
 mouseArea.onClicked: {
 Qt.quit();
 }
 Component.onCompleted:
 myclass.setMyObject(messageText);
 }
}

9.	 Lastly, open up main.cpp and register the custom class to the QML engine. We also
change the properties of the text widget and the rectangle here using C++ code:
#include <QGuiApplication>
#include <QQmlApplicationEngine>
#include <QtQml>
#include <QQuickView>
#include <QQuickItem>
#include <QQuickView>
#include "myclass.h"

Building a Touch Screen Application with Qt5

164

int main(int argc, char *argv[])
{
 // Register your class to QML
 qmlRegisterType<MyClass>("MyClassLib", 1, 0, "MyClass");

 QGuiApplication app(argc, argv);

 QQmlApplicationEngine engine;
 engine.load(QUrl(QStringLiteral("qrc:/main.qml")));

 QObject* root = engine.rootObjects().value(0);

 QObject* messageText =
 root->findChild<QObject*>("messageText");
 messageText->setProperty("text", QVariant("C++ is now in
 control!"));
 messageText->setProperty("color", QVariant("green"));

 QObject* square = root->findChild<QObject*>("square");
 square->setProperty("color", QVariant("blue"));

 return app.exec();
}

10.	 Build and run the program now, and you should see the colors of the rectangle and
the text are completely different from what you defined earlier in Qt Quick. This is
because their properties have been changed by the C++ code:

Chapter 5

165

How it works…
QML is designed to be easily extensible through C++ code. The classes in the Qt QML module
enable QML objects to be loaded and manipulated from C++.

Only classes that are inherited from the QObject base class can be integrated with QML, as
it is part of the Qt ecosystem. Once the class has been registered with the QML engine, we get
the root item from the QML engine and use it to find the objects we want to manipulate. After
that, use the setProperty() function to change any of the properties belong to the widget.

Notice that the Q_INVOKABLE macro is required in front of the function that you intend to call
in QML. Without it, Qt will not expose the function to Qt Quick and you will not be able to call it.

167

6
XML Parsing Made Easy

In this chapter, we will cover the following recipes:

ff Processing XML data using stream reader

ff Writing XML data using stream writer

ff Processing XML data using the QDomDocument class

ff Writing XML data using the QDomDocument class

ff Using Google's Geocoding API

Introduction
XML is the file extension of a type of file format called Extensible Markup Language, which
is used to store information in a structured format. The XML format is used extensively for
the Web, as well as other applications. HTML, for instance, is the file format used for creating
web pages and is based upon the XML format. Starting from Microsoft Office 2007, Microsoft
Office uses the XML-based file formats, such as .docx, .xlsx, .pptx, and so on.

Processing XML data using stream reader
In this section, we will learn how to process data taken from an XML file and extract it using
the stream reader.

How to do it…
Let's create a simple program that reads and processes XML files by following these steps:

1.	 As usual, create a new Qt Widgets Application project at your desired location.

XML Parsing Made Easy

168

2.	 Next, open up any text editor and create an XML file that looks like the following, then
save it as scene.xml:
<?xml version="1.0" encoding="UTF-8"?>
<scene>
 <object tag="building">
 <name>Library</name>
 <position>120.0,0.0,50.68</position>
 <rotation>0.0,0.0,0.0</rotation>
 <scale>1.0,1.0,1.0</scale>
 </object>
 <object tag="building">
 <name>Town Hall</name>
 <position>80.2,0.0,20.5</position>
 <rotation>0.0,0.0,0.0</rotation>
 <scale>1.0,1.0,1.0</scale>
 </object>
 <object tag="prop">
 <name>Tree</name>
 <position>10.46,-0.2,80.2</position>
 <rotation>0.0,0.0,0.0</rotation>
 <scale>1.0,1.0,1.0</scale>
 </object>
</scene>

3.	 Next, go back to Qt Creator and open up mainwindow.h. Add the following headers
at the top of the script, right after #include <QMainWindow>:
#include <QXmlStreamReader>
#include <QDebug>
#include <QFile>
#include <QFileDialog>

4.	 Then, open up mainwindow.ui and drag a Push Button from the widget box
on the left-hand side to the UI editor. Change the object name of the button to
loadXmlButton and its display text to Load XML:

Chapter 6

169

5.	 After that, right-click on the button and select Go to slot…. A window will pop up with
a list of signals available for selection.

6.	 Choose the default clicked() option and press the OK button. Qt
will now insert a slot function in your header and source files called
on_loadXmlButton_clicked().

7.	 Now, add the following code to the on_loadXmlButton_clicked() function:

XML Parsing Made Easy

170

8.	 Build and run the project now and you see a window popping up that looks like the
one you made in Step 4:

9.	 Click on the Load XML button and you should see the file selector window popping up
on screen. Select the XML file you just created in Step 2 and press the Select button.
After that, you should see the following debug text appear on the application output
window in Qt Creator, which indicates the program has successfully loaded the data
from the XML file you just selected:

How it works…
What we're trying to do in this example is to extract and process data from an XML file using
the QXmlStreamReader class. Imagine you're making a computer game and you're using
XML files to store the attributes of all the objects in your game scene. In this case, the XML
format plays an important role in storing the data in a structured way, which allows for
easy extraction.

To begin with, we need to add the header of the class related to XML to our source file, which
in this case is the QXmlStreamReader class. QXmlStreamReader is built into Qt's core
library, so there is no need to include any additional modules with it, which also means that
it's the recommended class to use for processing XML data in Qt.

Chapter 6

171

Once we clicked on the Load XML button, the on_loadXmlButton_clicked() slot will be
called; this is where we write the code for processing the XML data.

First, we use a file dialog for selecting the XML file we want to process. Then, send the
selected file's filename, together with its path, to the QFile class to open and read the
text data of the XML file. After that, the file's data is sent to the QXmlStreamReader class
for processing.

We use a while-loop to read through the entire XML file and check every element processed by
the stream reader. We determine whether the element is a start element or an end element.
If it's a start element, we will then check the name of the element to determine whether the
element should contain any data that we need.

Then, we will extract the data, either in the form of an attribute or text. An element may have
more than one attribute, which is why we must loop through all the attributes and extract
them one by one.

There's more…
Besides the web browser, many commercial game engines and interactive applications also
use the XML format to store information for in-game scenes, meshes, and other forms of
asset used in their product. This is because the XML format provides many benefits over other
file formats, such as a compact file size, high flexibility and extendibility, easy file recovery, and
a relational tree structure that allows it to be used for highly efficient and performance-critical
applications such as search engines, intelligent data mining servers, scientific simulations,
and so on.

Let's learn a little bit about the format of an XML file. We will use scene.xml, which we used
in the previous example and looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<scene>
 <object tag="building">
 <name>Library</name>
 <position>120.0,0.0,50.68</position>
 <rotation>0.0,0.0,0.0</rotation>
 <scale>1.0,1.0,1.0</scale>
 </object>
 <object tag="building">
 <name>Town Hall</name>
 <position>80.2,0.0,20.5</position>
 <rotation>0.0,0.0,0.0</rotation>
 <scale>1.0,1.0,1.0</scale>
 </object>
 <object tag="prop">

XML Parsing Made Easy

172

 <name>Tree</name>
 <position>10.46,-0.2,80.2</position>
 <rotation>0.0,0.0,0.0</rotation>
 <scale>1.0,1.0,1.0</scale>
 </object>
</scene>

In XML, a tag is a line of markup text that starts with a < symbol and ends with a > symbol. For
example, <scene> is a tag called scene, <object> is a tag called object and so on. Tags
come in three flavors:

ff Start tag, for example <scene>

ff End tag, for example </scene>

ff Empty-element tag, for example <scene />

Whenever you write a start tag, it must end with an end tag, otherwise your XML data will be
invalid. An empty-element tag, however, is a standalone tag and does not need an end tag
behind it.

At the top of scene.xml, you will see a tag called xml which stores the version of the XML
format and the encoding type, which in this case is XML version 1.0 and UTF-8 (8-bit Unicode)
encoding. This line is called XML declaration and it must exist in any of your XML files to
validate its format.

After that, you will see tags that have attributes stored in them, for example
<object tag="building">. This means that the object tag contains an attribute called
tag, which contains a value, building. You can put as many attributes as you like in a tag, for
example <object tag="building" color="red" name="LA Community Hospital"
coordinate="34.0191757,-118.2567239">. Each of these attributes stores distinctive
data that can be retrieved easily using Qt.

Other than that, you can also store data between the start tag and the end tag, for example
<name>Town Hall</name>. This method, however, is not relevant to the empty-element
tag, since it is a standalone tag and isn't followed by a close tag. Therefore, you can only
store attributes in an empty-element tag.

To learn more about the XML format, visit http://www.w3schools.
com/xml.

http://www.w3schools.com/xml
http://www.w3schools.com/xml

Chapter 6

173

Writing XML data using Stream Writer
Since we have learned how to process data obtained from an XML file in the previous recipe,
we will move on to learning how to save data to an XML file. We will continue with the previous
example and add to it.

How to do it…
We will learn how to save data into an XML file through the following steps:

1.	 First, add another button to mainwindow.ui and set its object name as
saveXmlButton and its label as Save XML:

2.	 Next, right-click on the button and select Go to slot…. A window will pop up with a list
of signals available for selection. Select the clicked() option and click OK. A signal
function called on_saveXmlButton_clicked() will now be automatically added
to both your mainwindow.h and mainwindow.cpp file by Qt:

3.	 After that, add the following code to the on_saveXmlButton_clicked() function:
QXmlStreamWriter xml;

QString filename = QFileDialog::getSaveFileName(this, "Save
 Xml", ".", "Xml files (*.xml)");
QFile file(filename);
if (!file.open(QFile::WriteOnly | QFile::Text))
 qDebug() << "Error saving XML file.";

XML Parsing Made Easy

174

xml.setDevice(&file);

xml.setAutoFormatting(true);
xml.writeStartDocument();

xml.writeStartElement("contact");
xml.writeAttribute("category", "Friend");
xml.writeTextElement("name", "John Doe");
xml.writeTextElement("age", "32");
xml.writeTextElement("address", "114B, 2nd Floor, Sterling
 Apartment, Morrison Town");
xml.writeTextElement("phone", "0221743566");
xml.writeEndElement();

xml.writeStartElement("contact");
xml.writeAttribute("category", "Family");
xml.writeTextElement("name", "Jane Smith");
xml.writeTextElement("age", "24");
xml.writeTextElement("address", "13, Ave Park, Alexandria");
xml.writeTextElement("phone", "0025728396");
xml.writeEndElement();

xml.writeEndDocument();

4.	 Build and run the program and you should see an additional button on the
program UI:

5.	 Click on the Save XML button and a save file dialog will appear on the screen. Type
the filename you desire and click the Save button.

Chapter 6

175

6.	 Open up the XML file you just saved with any text editor. The content of the file should
look like this:
<?xml version="1.0" encoding="UTF-8"?>
<contact category="Friend">
 <name>John Doe</name>
 <age>32</age>
 <address>114B, 2nd Floor, Sterling Apartment, Morrison
 Town</address>
 <phone>0221743566</phone>
</contact>
<contact category="Family">
 <name>Jane Smith</name>
 <age>24</age>
 <address>13, Ave Park, Alexandria</address>
 <phone>0025728396</phone>
</contact>

How it works…
The saving process is more or less similar to loading an XML file in the previous example. The
only difference is instead of using the QXmlStreamReader class, we switched to using the
QXmlStreamWriter class instead.

We are still using the file dialog and the QFile class to save the XML file. This time, we have
to change the open mode from QFile::ReadOnly to QFile::WriteOnly before passing
the QFile class to the stream writer.

Before we start writing any data to the new XML file, we must set auto formatting to true,
otherwise there will be no spacing; it also adds new lines and indentation to the XML file
to make it look tidy and easier to read. However, if that is your intention (making it harder
to read and edit by the user), then you can just ignore the setAutoFormatting() function.

Next, start writing the XML file by calling writeStartDocument(), followed by all the
elements you want to save to the file, and at the end we call the writeEndDocument()
function to stop writing.

Each element must have a start and end tag in order for the reading process to work properly.
The attributes of an element will be stored in the start tag, while the text data will be stored
between the start and end tags.

If we're writing an element that contains a group of child elements, then we must call
writeStartElement() before writing the child elements. Then, call writeEndElement()
after saving all its child elements to close the group with an end tag. The
writetextElement() function, however, will automatically add the end tag for
you so you don't have to worry about that one.

XML Parsing Made Easy

176

You can call the writeAttribute() function to add an attribute to an element. There is no
limit on how many attributes you can add to a particular element.

Processing XML data using the
QDomDocument class

Qt allows multiple ways to parse XML data, including the common method that we have
covered in the previous examples. This time around, we're going to learn how to read data
from an XML file using another class, called QDomDocument.

How to do it…
Processing XML data using the QDomDocument class is really simple:

1.	 First of all, we need to add the XML module to our project by opening the project
(.pro) file and add the text xml at the back of core and gui, like so:
QT += core gui xml

2.	 Then, just like what we did in the first example in this chapter, create a user interface
that carries a button that says Load XML:

3.	 After that, right-click on the button, choose Go to slot…, and select the clicked()
option. Press the OK button and Qt will add a slot function to your source code.

4.	 Go to mainwindow.h and add the following headers so that we can make use of
these classes:
#include <QDomDocument>
#include <QDebug>
#include <QFile>
#include <QFileDialog>

Chapter 6

177

5.	 Next, go to mainwindow.cpp and insert the following code to the button's
clicked() slot function:

XML Parsing Made Easy

178

6.	 Compile and run the program now. Click on the Load XML button and select the XML
file used in the first example. You should see the following output:

How it works…
Compared to QXmlStreamReader, the QDomDocument class is less straightforward when
comes to loading or saving XML data. However, QDomDocument does it in a strict way by
making sure each element is linked to its respective parent element recursively, like in a tree
structure. Unlike QXmlStreamReader, QDomDocument allows us to save data to an element
created earlier, in a later timeframe.

Since QDomDocument is not part of the Qt core library, we must add the XML module to our
project manually. Otherwise, we will not be able to access QDomDocument and other classes
related to it.

First, we load the XML file and extract its content to the QDomDocument class. Then, we get
its document element, which acts as the root document, and obtain its direct children. We
then convert each of the child nodes to QDomElement and obtain their tag names.

By checking tag names, we are able to determine the type of data we're expecting from each
element. Since this is the first layer of elements with the tag name object, we don't expect
any data from them; we repeat Step 3 again but this time around, we're going to do it on
the element with the tag name object and obtain all its direct children, which means the
grandchildren of the document element.

Chapter 6

179

Again, by checking the tag name, we're able to know what data we're expecting from
its children elements. If the tag name matches the ones we're expecting (in this
case, name, position, rotation, scale) then we can obtain its data by calling
QDomElement::text().

Writing XML data using the QDomDocument
class

In this example, we will learn how to write data to an XML file using the QDomDocument class.
We will continue from the previous example and just add stuff to it.

How to do it…
To learn how to save data into an XML file using the QDomDocument class, let's do the
following:

1.	 First of all, add the second button to the UI, called Save XML:

2.	 Right-click on the Save XML button and select Go to slot…. Then, pick the clicked()
option and click OK. A new clicked() slot function will now be added to your
source files.

XML Parsing Made Easy

180

3.	 After that, write the following code within the button's clicked() slot function:

Chapter 6

181

4.	 Compile and run the program now and click on the Save XML button. Enter your
desired filename in the save file dialog and click Save.

5.	 Open up the XML file you just saved in Step 4 with any text editor and you should see
something like this:

<!DOCTYPE contact>
<contact category="Family">
 <name>John Doe</name>
 <age>32</age>
 <address>114B, 2nd Floor, Sterling Apartment,
 Morrisontown</address>
 <phone>0221743566</phone>
</contact>
<contact category="Friend">
 <name>John Doe</name>
 <age>32</age>
 <address>114B, 2nd Floor, Sterling Apartment,
 Morrisontown</address>
 <phone>0221743566</phone>
</contact>

How it works…
Similar to the previous example, we first initiate the file dialog and declare a QDomDocument
object.

Then, we create the root element by calling QDomDocument::createElement(). Any
element created from the QDomDocument will NOT automatically become its direct child
unless we append the newly created element as its child.

To create the grandchildren of QDomDocument, simply append the newly created elements
to the root element instead. By utilizing the append() function, we can easily arrange the
XML data in a tree structure without wrapping our head around it. This, in my opinion, is the
advantage of using QDomDocument instead of QXmlStreamReader.

We can then add attributes to an element by calling QDomElement::setAttribute(). We
can also create a text node by calling QDomDocument::createTextNode() and appending
it to any of the elements in the XML structure.

After we are done structuring the XML data, we can then output all the data in the form of text
to the QTextStream class and allow it to save the data into a file.

XML Parsing Made Easy

182

Using Google's Geocoding API
In this example, we will learn how to obtain the full address of a specific location by using
Google's Geocoding API.

How to do it…
Let's create a program that utilizes the Geocoding API by following these steps:

1.	 First, create a new Qt Widgets Application project.

2.	 Next, open up mainwindow.ui and add a couple of text labels, input fields, and
a button to make your UI to look similar to this:

3.	 After that, open up your project (.pro) file and add the network module to your
project. You can do that by simply adding the network text after core and gui,
like so:
QT += core gui network

4.	 Then, open up mainwindow.h and add the following headers to the source code,
right after the line #include <QMainWindow>:
#include <QDebug>
#include <QtNetwork/QNetworkAccessManager>
#include <QtNetwork/QNetworkReply>
#include <QXmlStreamReader>

5.	 Next, declare a slot function manually and call it getAddressFinished():
private slots:
 void getAddressFinished(QNetworkReply* reply);

6.	 Right after that, declare a private variable called addressRequest:
private:
 QNetworkAccessManager* addressRequest;

Chapter 6

183

7.	 Once you are done with that, open up mainwindow.ui again, right-click on the
Get Address button, and select Go to slot…. Then choose the clicked() option
and press OK. A slot function will now be added to both the mainwindow.h and
mainwindow.cpp source files.

8.	 Now, open up mainwindow.cpp and add the following code to the class constructor:
MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow)
{
 ui->setupUi(this);

 addressRequest = new QNetworkAccessManager();
 connect(addressRequest, SIGNAL(finished(QNetworkReply*)),
 SLOT(getAddressFinished(QNetworkReply*)));
}

9.	 Then, we will add the following code to the getAddressFinished() slot function
we declared manually just now:
void MainWindow::getAddressFinished(QNetworkReply* reply)
{
 QByteArray bytes = reply->readAll();

 //qDebug() << QString::fromUtf8(bytes.data(),
 bytes.size());

 QXmlStreamReader xml;
 xml.addData(bytes);

 while(!xml.atEnd())
 {
 if (xml.isStartElement())
 {
 QString name = xml.name().toString();
 //qDebug() << name;

 if (name == "formatted_address")
 {
 QString text = xml.readElementText();
 qDebug() << "Address:" << text;
 return;
 }
 }

XML Parsing Made Easy

184

 xml.readNext();
 }

 if (xml.hasError())
 {
 qDebug() << "Error loading XML:" <<
 xml.errorString();
 return;
 }

 qDebug() << "No result.";
}

10.	 Finally, add the following code to the clicked() slot function created by Qt:
void MainWindow::on_getAddressButton_clicked()
{
 QString latitude = ui->latitude->text();
 QString longitude = ui->longitude->text();

 QNetworkRequest request;
 request.setUrl(QUrl("http://maps.googleapis.com/
 maps/api/geocode/xml?latlng=" + latitude + "
 ," + longitude + "&sensor=false"));
 addressRequest->get(request);
}

11.	 Build and run the program now and you should be able to obtain the address by
inserting the longitude and latitude values and clicking the Get Address button:

12.	 Let's try with longitude -73.9780838 and latitude 40.6712957. Click the Get
Address button and you will see the following result in the application output window:

Address: "180-190 7th Ave, Brooklyn, NY 11215, USA"

Chapter 6

185

How it works…
I won't be able to tell you exactly how Google obtains the address from its backend system,
but I can teach you how to request the data from Google by using QNetworkRequest.
Basically, all you need to do is to set the URL of the network request to the URL I used in the
previous source code and append both the latitude and longitude information to the URL.
After that, all we can do is wait for the response from the Google API server.

Do notice that we need to specify XML as the desired format when sending the request to
Google; otherwise, it may return the results in JSON format instead. This can be done by
adding the xml keyword within the network request URL, as highlighted here:

request.setUrl(QUrl("http://maps.googleapis.com/maps/
 api/geocode/xml?latlng=" + latitude + "," + longitude +
 "&sensor=false"));

When the program the received the response from Google, the getAddressFinished()
slot function will be called and we will be able to obtain the data sent by Google through
QNetworkReply.

Google usually replies with a long text in XML format, which contains a ton of data we don't
need. We used QXmlStreamReader to parse the data because in this case we don't have
to care about the parent-child relationship of the XML structure.

All we need is the text stored in the formatted_address element in the XML data. Since
there is more than one element by the name of formatted_address, we just need to find
the first one and ignore the rest.

You can also do the reverse by providing an address to Google and obtain the location's
coordinate from its network response.

There's more…
Google's Geocoding API is part of the Google Maps APIs Web Services, which provides
geographical data for your map applications. Besides the Geocoding API, you can also use
their Location API, Geolocation API, Time Zone API, and so on to achieve your desired results.

For more information regarding the Google Maps APIs Web Services, visit this
link: https://developers.google.com/maps/web-services

https://developers.google.com/maps/web-services

187

7
Conversion Library

In this chapter, we will cover the following recipes:

ff Data conversion

ff Image conversion

ff Video conversion

ff Currency conversion

Introduction
Data kept within our computer environment is encoded in a variety of ways. Sometimes it can
be used directly for a certain purpose, other times it needs to be converted to another format
in order to fit the context of the task. The process of converting the data from one format to
another also varies, depending on the source format as well as the target format. Sometimes
the process can be very complex, especially when dealing with data that is feature-rich
and sensitive, such as image or video conversion. Even a small error during the conversion
process may render the file unusable.

Data conversion
Qt provides a set of classes and functions for easily converting between different types
of data. This makes Qt more than just a GUI library; it is a complete platform for software
development. The QVariant class, which we will be using in the following example, makes
Qt even more flexible and powerful compared to similar conversion functionalities provided
by the C++ standard library.

Conversion Library

188

How to do it…
Let's learn how to convert various data types in Qt by following these steps:

1.	 Open up Qt Creator and create a new Qt Console Application project by going to File
| New File or Project:

2.	 Next, open up main.cpp and add the following headers to it:
#include <QCoreApplication>
#include <QDebug>
#include <QtMath>
#include <QDateTime>
#include <QTextCodec>
#include <iostream>

3.	 Then, in the main() function, add the following code to convert a string to a number:
int numberA = 2;
QString numberB = "5";
qDebug() << "1) " << "2 + 5 =" << numberA + numberB.toInt();

Chapter 7

189

4.	 After that, we'll convert a number back to a string:
float numberC = 10.25;
float numberD = 2;
QString result = QString::number(numberC * numberD);
qDebug() << "2) " << "10.25 * 2 =" << result;

5.	 We also learn how to round down a value by using qFloor():
float numberE = 10.3;
float numberF = qFloor(numberE);
qDebug() << "3) " << "Floor of 10.3 is" << numberF;

6.	 Then, by using qCeil(), we are able to round a number to the smallest integral
value not smaller than its initial value:
float numberG = 10.3;
float numberH = qCeil(numberG);
qDebug() << "4) " << "Ceil of 10.3 is" << numberH;

7.	 After that, we will create a date time variable by converting from a string:
QString dateTimeAString = "2016-05-04 12:24:00";
QDateTime dateTimeA =
 QDateTime::fromString(dateTimeAString, "yyyy-MM-dd hh:mm:ss");
qDebug() << "5) " << dateTimeA;

8.	 Subsequently, we can also convert the date time variable back to a string with our
own custom format:
QDateTime dateTimeB = QDateTime::currentDateTime();
QString dateTimeBString = dateTimeB.toString("dd/MM/yy hh:mm");
qDebug() << "6) " << dateTimeBString;

9.	 We can call the QString::toUpper() function to convert a string variable to all
capital letters:
QString hello1 = "hello world!";
qDebug() << "7) " << hello1.toUpper();

10.	 On the other hand, calling QString::toLower() will convert the string to all
lowercase:
QString hello2 = "HELLO WORLD!";
qDebug() << "8) " << hello2.toLower();

11.	 The QVariant class provided by Qt is a very powerful data type that can be easily
converted to other types without any effort by the programmer:
QVariant aNumber = QVariant(3.14159);
double aResult = 12.5 * aNumber.toDouble();
qDebug() << "9) 12.5 * 3.14159 =" << aResult;

Conversion Library

190

12.	 This demonstrates how a single QVariant variable can be simultaneously converted
to multiple data types without any effort by the programmer:
qDebug() << "10) ";
QVariant myData = QVariant(10);
qDebug() << myData;
myData = myData.toFloat() / 2.135;
qDebug() << myData;
myData = true;
qDebug() << myData;
myData = QDateTime::currentDateTime();
qDebug() << myData;
myData = "Good bye!";
qDebug() << myData;

The full source code in main.cpp will now look like this:

Chapter 7

191

13.	 Compile and run the project now and you should see something like this:

Conversion Library

192

How it works...
All the data types provided by Qt, such as QString, QDateTime, QVariant, and so on,
contain functions that make conversion to other types easy and straightforward.

Qt also provides its own object conversion function, qobject_cast(), which doesn't rely on
the standard library. It is also more compatible with Qt and works well for converting between
Qt's widget types and data types.

Qt also provides you with the QtMath class, which helps you to manipulate number variables,
such as rounding up a floating point number or converting an angle from degrees to radians.

QVariant is a special class that can be used to store data of all kinds of type. It can
automatically determine the data type by examining the value stored in the variable. You
can also easily convert the data to any of the types supported by the QVariant class
by just calling a single function, such as toFloat(), toInt(), toBool(), toChar(),
toString(), and so on.

There's more…
Be aware that each of these conversions takes computing power to make it happen. Even
though modern computers are extremely fast at handling operations such as these, you
should be careful not to overdo it with a large quantity at the same time. If you're converting a
large set of variables for complex calculations, it might slow down your computer significantly,
so therefore try to convert variables only whenever it's deemed necessary.

Image conversion
In this section, we will learn how to build a simple image converter that converts an image
from one format to another. Qt supports reading and writing different types of image formats,
and this support comes in the form of external DLL files due to licensing issues. However, you
don't have to worry about that because as long as you include those DLL files in your project,
it will work seamlessly across different formats. There are certain formats that only support
reading and not writing, and some that support both. You can check out the full details at
http://doc.qt.io/qt-5/qtimageformats-index.html.

How to do it…
Qt's built-in image libraries make image conversion really simple:

1.	 First of all, open up Qt Creator and create a new Qt Widgets Application project.

2.	 Open up mainwindow.ui and add a line edit and push button to the canvas for
selecting image files, a combo box for selecting the desired file format, and another
push button for starting the conversion process:

http://doc.qt.io/qt-5/qtimageformats-index.html

Chapter 7

193

3.	 Next, double-click the combo box and a window will appear for editing the combo box.
We will add three items to the combo box list by clicking the + button three times and
renaming the items PNG, JPEG, and BMP:

4.	 After that, right-click on one of the push buttons and select Go to slot…, then click
the OK button. A slot function will then be automatically added to your source files.
Then, repeat this step for the other push button as well:

5.	 Once you are done with the UI, let's move over to the source code. Open up
mainwindow.h and add in the following header:
#include <QMainWindow>
#include <QFileDialog>
#include <QMessageBox>
#include <QDebug>

Conversion Library

194

6.	 Then, open up mainwindow.cpp and define what will happen when the Browse
button is clicked, which in this case is opening the file dialog to select an image file:
void MainWindow::on_browseButton_clicked()
{
 QString fileName = QFileDialog::getOpenFileName(this,
 "Open Image", "", "Image Files (*.png *.jpg *.bmp)");
 ui->filePath->setText(fileName);
}

7.	 Finally, we also define what will happen when the Convert button is clicked:

Chapter 7

195

8.	 Build and run the program now and we should get a pretty simple image converter
that looks like this:

How it works...
The previous example uses the native QImage class from Qt, which contains functions that
can access pixel data and manipulate it. It is also used to load an image file and extract its
data through different decompression methods, depending on the format of the image. Once
the data is extracted, you can then do anything you want with it, such as displaying the image
on screen, manipulating its color information, resizing the image, or compressing it with
another format and saving it as a file.

We used QFileInfo to separate the filename from the extension so that we can amend
the extension name with the new format selected by the user from the combo box. This
way we can save the newly converted image in the same folder as the original image and
automatically give it the same file name as well, except in a different format.

As long as you're trying to convert the image to a format supported by Qt, all you need to do
is to call QImage::save(). Internally, Qt will figure out the rest for you and output the image
to the chosen format. In the QImage::save() function, there is a parameter that sets the
image quality and another for setting the format. In this example, we just set both as the
default values, which saves the image at the highest quality and lets Qt figure out the format
by checking the extension stated in the output file name.

There's more…
Here are some tips. You can also convert an image to PDF by using the QPdfWriter class
provided by Qt. Essentially, what you do is paint the selected image to the layout of a newly
created PDF document and set its resolution accordingly. For more information about the
QPdfWriter class, visit http://doc.qt.io/qt-5/qpdfwriter.html.

http://doc.qt.io/qt-5/qpdfwriter.html

Conversion Library

196

Video conversion
In this recipe, we will create a simple video converter using Qt and FFmpeg, a leading
multimedia framework that is free and open source. Although Qt does support playing video
files through its widget, it does not support video conversion at the moment. Fear not! You
can actually still achieve the same goal by making your program cooperate with another
standalone program through the QProcess class provided by Qt.

How to do it…
Let's make a simple video converter with the following steps:

1.	 Download FFmpeg (static package) from http://ffmpeg.zeranoe.com/builds
and extract the contents to C:/FFmpeg/.

2.	 Then, open up Qt Creator and create a new Qt Widgets Application project by going
to File | New File or Project….

3.	 After that, open up mainwindow.ui and we're going to work on the program's user
interface. Its UI is very similar to the previous example, except we add an extra text
edit widget to the canvas, just below the combo box:

http://ffmpeg.zeranoe.com/builds

Chapter 7

197

4.	 Double-click the combo box and a window will appear to edit the combo box. We
will add three items to the combo box list by clicking the + button three times, and
rename the items AVI, MP4, and MOV:

5.	 After that, right-click on one of the push buttons and select Go to slot…, then click
the OK button. A slot function will then be automatically added to your source files.
Then, repeat this step for the other push button as well.

6.	 After that, open up mainwindow.h and add the following headers to the top:
#include <QMainWindow>
#include <QFileDialog>
#include <QProcess>
#include <QMessageBox>
#include <QScrollBar>
#include <QDebug>

7.	 Then, add the following pointers under the public keyword:
public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

 QProcess* process;
 QString outputText;
 QString fileName;
 QString outputFileName;

Conversion Library

198

8.	 Besides that, we also need to add three extra slot functions under the two functions
that Qt created for us previously:
private slots:
 void on_browseButton_clicked();
 void on_convertButton_clicked();

 void processStarted();
 void readyReadStandardOutput();
 void processFinished();

9.	 Next, open up mainwindow.cpp and add the following code to the class constructor:
MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent), ui(new Ui::MainWindow)
{
 ui->setupUi(this);

 process = new QProcess(this);
 connect(process, SIGNAL(started()), this,
 SLOT(processStarted()));
 connect(process,SIGNAL(readyReadStandardOutput()),
 this,SLOT(readyReadStandardOutput()));
 connect(process, SIGNAL(finished(int)), this,
 SLOT(processFinished()));
}

10.	 After that, we define what will happen when the Browse button is clicked, which in
this case will open up the file dialog to choose the video file:
void MainWindow::on_browseButton_clicked()
{
 QString fileName = QFileDialog::getOpenFileName(this,
 "Open Video", "", "Video Files (*.avi *.mp4 *.mov)");
 ui->filePath->setText(fileName);
}

Chapter 7

199

11.	 Then, we also define what will happen if the Convert button is clicked. What we
are doing here is passing the filenames and arguments to FFmpeg and then the
conversion process will be handled externally by FFmpeg:

12.	 Once we are done with that, we will then tell our program what to do when the
conversion process has started:
void MainWindow::processStarted()
{
 qDebug() << "Process started.";

 ui->browseButton->setEnabled(false);
 ui->fileFormat->setEditable(false);
 ui->convertButton->setEnabled(false);
}

Conversion Library

200

13.	 Next, we will write the slot function that gets called during the conversion process
whenever FFmpeg returns an output to the program:
void MainWindow::readyReadStandardOutput()
{
 outputText += process->readAllStandardOutput();
 ui->outputDisplay->setText(outputText);

 ui->outputDisplay->verticalScrollBar()->setSliderPosition
 (ui->outputDisplay->verticalScrollBar()->maximum());
}

14.	 Lastly, we define the slot function that gets called when the entire conversion process
has been completed:
void MainWindow::processFinished()
{
 qDebug() << "Process finished.";

 if (QFile::exists(outputFileName))
 {
 QMessageBox::information(this, "Success",
 "Video successfully converted.");
 }
 else
 {
 QMessageBox::information(this, "Failed",
 "Failed to convert video.");
 }

 ui->browseButton->setEnabled(true);
 ui->fileFormat->setEditable(true);
 ui->convertButton->setEnabled(true);
}

Chapter 7

201

15.	 Build and run the project now and you should get a simple yet workable video
converter:

How it works...
The QProcess class provided by Qt is used to start external programs and communicate with
them. In this case, we started ffmpeg.exe located in C:/FFmpeg/bin/ as a process and
started communicating with it. We also sent it a set of arguments to tell it what to do when
started. The arguments we used in this example are relatively basic; we only told FFmpeg the
path to the source image and the output filename. For more information regarding the argument
settings available in FFmpeg, check out https://www.ffmpeg.org/ffmpeg.html.

FFmpeg does more than just converting video files. You can also use it to convert audio
files and even images. For more information regarding all the formats supported by FFmpeg,
check out https://www.ffmpeg.org/general.html#File-Formats.

Other than that, you can also play a video or audio file by running ffplay.exe, located in
C:/FFmpeg/bin, or print out the information of the video or audio file in human-readable
fashion by running ffprobe.exe. Check out FFmpeg's full documentation at https://
www.ffmpeg.org/about.html.

There's more…
There are lots of things you can do using this method. It means that you're not limited to what Qt
provides and you can break out of such limitations by carefully selecting a third-party program
that provides what you need. One such example is making your own anti-virus GUI by utilizing the
command-line-only anti-virus scanners available on the market, such as Avira ScanCL, Panda
Antivirus Command Line Scanner, SAV32CLI, ClamavNet, and so on. You can build your own GUI
using Qt and essentially send commands to the anti-virus process to tell it what to do.

https://www.ffmpeg.org/ffmpeg.html
https://www.ffmpeg.org/general.html#File-Formats
https://www.ffmpeg.org/about.html
https://www.ffmpeg.org/about.html

Conversion Library

202

Currency conversion
In this example, we will learn how to create a simple currency converter using Qt, with the help
of an external service provider called Fixer.io.

How to do it…
Make yourself a currency converter with these simple steps:

1.	 We start by opening Qt Creator and creating a new Qt Widgets Application project
from File | New File or Project.

2.	 Next, open up the project file (.pro) and add the network module to our project:
QT += core gui network

3.	 After that, open up mainwindow.ui and remove the menu bar, tool bar, and status
bar from the UI.

4.	 Then, add three horizontal layouts, a horizontal line, and a push button to the
canvas. Once they're all placed, left-click on the canvas and follow by clicking the Lay
Out Vertically button above the canvas. Then, set the label of the push button as
Convert. The UI should now look something like this:

5.	 After that, add two labels to the top layout and set the text of the left one as From:,
followed by the right one as To:. Right after that, add two line edit widgets to the
second layout and set both their default values as 1:

Chapter 7

203

6.	 Before we proceed to add the last batch of widgets to the last layout, let's select
the line edit on the right and enable the readOnly checkbox located in the
property pane:

7.	 Other than that, we also must set its cursor property to Forbidden so that users know
it's not editable when mousing over the widget:

8.	 Once you're done with that, let's add two combo boxes to the third layout located at
the bottom. We will just leave them empty for now:

9.	 After that, right-click on the Convert button and select Go to slot…. A window will now
pop up, asking you to select an appropriate signal. Let's keep the default clicked()
signal as the selection and click OK. Qt Creator will now automatically add a slot
function for you to both mainwindow.h and mainwindow.cpp.

Conversion Library

204

10.	 Next, open up mainwindow.h and make sure the following headers are being added
to the top of the source file:
#include <QMainWindow>
#include <QDoubleValidator>
#include <QNetworkAccessManager>
#include <QNetworkRequest>
#include <QNetworkReply>
#include <QJsonDocument>
#include <QJsonObject>
#include <QDebug>
#include <QMessageBox>

11.	 Then, we need to add another slot function called finished():
private slots:
 void on_convertButton_clicked();
 void finished(QNetworkReply* reply);

12.	 Besides that, we also need to add two variables under the private label:
private:
 Ui::MainWindow *ui;
 QNetworkAccessManager* manager;
 QString targetCurrency;

13.	 Once you're done, let's open up mainwindow.cpp this time. We will add several
currency shortcodes to both the combo boxes in the class constructor. We also set
a validator to the line edit widget on the left so that it can only accept inputs that
are numbers. Lastly, we also initialize the network access manager and connect its
finished() signal to our finished() slot function:
MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent), ui(new Ui::MainWindow)
{
 ui->setupUi(this);

 QStringList currencies;
 currencies.push_back("EUR");
 currencies.push_back("USD");
 currencies.push_back("CAD");
 currencies.push_back("MYR");
 currencies.push_back("GBP");

 ui->currencyFrom->insertItems(0, currencies);
 ui->currencyTo->insertItems(0, currencies);

Chapter 7

205

 QValidator *inputRange = new QDoubleValidator(this);
 ui->amountFrom->setValidator(inputRange);

 manager = new QNetworkAccessManager(this);
 connect(manager, SIGNAL(finished(QNetworkReply*)),
 this, SLOT(finished(QNetworkReply*)));
}

14.	 After that, we define what will happen if the Convert button is being clicked by
the user:
void MainWindow::on_convertButton_clicked()
{
 if (ui->amountFrom->text() != "")
 {
 ui->convertButton->setEnabled(false);
 QString from = ui->currencyFrom->currentText();
 QString to = ui->currencyTo->currentText();
 targetCurrency = to;
 QString url = "http://api.fixer.io/latest?base=" +
 from + "&symbols=" + to;
 QNetworkRequest request= QNetworkRequest(QUrl(url));
 manager->get(request);
 }
 else
 {
 QMessageBox::warning(this, "Error", "Please insert a value.");
 }
}

15.	 Lastly, define what will happen when the finished() signal is triggered:
void MainWindow::finished(QNetworkReply* reply)
{
 QByteArray response = reply->readAll();
 qDebug() << response;
 QJsonDocument jsonResponse = QJsonDocument::fromJson(response);
 QJsonObject jsonObj = jsonResponse.object();
 QJsonObject jsonObj2 = jsonObj.value("rates").toObject();
 double rate = jsonObj2.value(targetCurrency).toDouble();
 if (rate == 0)
 rate = 1;
 double amount = ui->amountFrom->text().toDouble();
 double result = amount * rate;
 ui->amountTo->setText(QString::number(result));
 ui->convertButton->setEnabled(true);
}

Conversion Library

206

16.	 Compile and run the project now and you should be able to get a simple currency
converter that looks like this:

How it works...
Similar to the previous example we saw, which uses an external program to achieve
a specific task, this time we use an external service provider who provided us with an
open Application Programming Interface (API) that is free for all and easy to use.

This way, we don't have to think about the method to retrieve the latest currency rate. Instead,
the service provider has already done the job for us and we just have to send a polite request
and ask for it. Then, we just wait for the response from their server and process the data
according to our intended purposes.

There are quite a few different service providers you can choose from besides
Fixer.io (http://fixer.io). Some are free but without any advanced features; some
provide you with additional functionalities, although they come at a premium price. Some
of these alternatives are Open Exchange Rate (https://openexchangerates.org),
Currencylayer (https://currencylayer.com), Currency API (https://currency-api.
appspot.com), XE Currency Data API (http://www.xe.com/xecurrencydata), and
Jsonrates (http://jsonrates.com).

There's more…
Besides currency exchange rates, you can also use this method to do other more advanced
tasks that are perhaps too complicated to do by yourself, or are simply impossible to access
unless you use the services provided by specialists, for example, programmable Short
Message Service (SMS) and voice services, web analytics and statistic generation, online
payment gateways, and the list goes on. Most of these services are not free, but you can
easily achieve those functions in minutes without even setting up the server infrastructure,
backend system, and whatnot; it's definitely the cheapest and fastest way to get your product
up and running without much hassle.

http://fixer.io
https://openexchangerates.org
https://currencylayer.com
https://currency-api.appspot.com
https://currency-api.appspot.com
http://www.xe.com/xecurrencydata
http://jsonrates.com

207

8
Accessing Databases

In this chapter, we will cover the following recipes:

ff Setting up SQL Driver for Qt

ff Connecting to a database

ff Writing basic SQL queries

ff Creating a login screen with Qt

ff Displaying information from a database on a model view

ff Advanced SQL queries

Introduction
SQL stands for Structured Query Language, a special programming language used to
manage data held in a relational database management system. A SQL server is a database
system designed to use one of the many types of SQL programming language to manage
its data.

If you want to learn more about SQL, visit this link: http://www.
w3schools.com/sql/sql_intro.asp.

Qt supports several different types of SQL driver in the form of plugins/add-ons. However,
it's very easy to integrate these drivers to your Qt project. We will learn how to do it in the
following example.

http://www.w3schools.com/sql/sql_intro.asp
http://www.w3schools.com/sql/sql_intro.asp

Accessing Databases

208

How to do it…
Let's set up our SQL server before we dive into Qt:

1.	 Before setting up Qt for SQL, we need to install and set up a MySQL server. There are
many ways you can install it. The first method is to download MySQL from the official
website at http://dev.mysql.com/downloads/mysql/ and install it. After that,
you also need to install the MySQL Workbench from http://dev.mysql.com/
downloads/workbench/ to administrate your databases.

2.	 An alternative method is to install a third-party package that comes with MySQL and
other useful applications, such as Apache web server, phpMyAdmin, and so on, all in
a unified installer. Examples of such packages are XAMPP, https://sourceforge.
net/projects/xampp/, and AppServ, https://www.appservnetwork.com/
en/download/.

3.	 In this example, we will install XAMPP. Open up your web browser, download the
XAMPP installer from https://sourceforge.net/projects/xampp/, and
proceed to install it on your computer.

4.	 Once you have installed XAMPP, open up XAMPP Control Panel and you should see
something like this:

5.	 What we need is the Apache web server and the MySQL database server. Click the
Start buttons next to the Apache and MySQL options on the control panel.

6.	 Once the servers have been started, open up your web browser and visit
http://localhost/phpmyadmin/. You will see a web interface by the
name of PhpMyAdmin that looks like this:

http://dev.mysql.com/downloads/mysql/
http://dev.mysql.com/downloads/workbench/
http://dev.mysql.com/downloads/workbench/
https://sourceforge.net/projects/xampp/
https://sourceforge.net/projects/xampp/
https://www.appservnetwork.com/en/download/
https://www.appservnetwork.com/en/download/
https://sourceforge.net/projects/xampp/
http://localhost/phpmyadmin/

Chapter 8

209

7.	 phpMyAdmin is a web-based utility that help you manage your MySQL databases,
much like the official MySQL Workbench. In my opinion, phpMyAdmin is a lot simpler
and better suited for beginners, which is why I recommend using it instead of MySQL
Workbench.

8.	 By default, phpMyAdmin automatically logs in to MySQL using the default user
account root, which is saved in its configuration file. We don't want to use that
for security reasons. So the next thing we need to do is to create an account for
ourselves. Go to the Users tab located at the top and once you're on that page, click
Add user located at the bottom. Key in your desired username and password in the
fields in the login information pane. Choose Local for the Host option for now. At the
bottom, you will see options related to Global privileges; check the Check All option
and click Go:

Accessing Databases

210

9.	 Now that you have created your user account, go to XAMPP Control Panel and click
Stop for both Apache and MySQL. Then, click the Config button on the Apache
column and select the phpMyAdmin (config.inc.php) option. After that, the
config.inc.php file will be opened with your choice of text editor.

10.	 Search for the following line in config.inc.php and change the word config to
cookie:
$cfg['Servers'][$i]['auth_type'] = 'config';
$cfg['Servers'][$i]['auth_type'] = 'cookie';

11.	 After that, start Apache and MySQL again by clicking the Start buttons. This way,
we force phpMyAdmin to reload its configurations and apply the changes. Go to
phpmyAdmin again from your web browser, and this time around, a login screen
should appear on the screen:

12.	 Log in to phpMyAdmin, then click on the New link located on the side bar:

Chapter 8

211

13.	 Key in your desired database name and press the Create button. Once it's been
created, the database name will appear on the side bar. Click on the database name
and it will bring you to another page, which displays a message, No tables found in
database. Under the message, you can create your first data table by filling in your
desired table name and the number of columns for the table:

14.	 After you click the Go button, you will be brought to another page where you will set
up the new table you're going to create. In this example, we created an employee
table that consists of five columns of data: id, name, age, gender, and married:

15.	 Once you are done with that, click Save and now you will be able to see the
employee table name appear on the side bar. We have successfully installed
MySQL and set up our first database and data table.

Accessing Databases

212

16.	 After that, we need to insert data into the database from phpMyAdmin so that we will
be able to retrieve it in the next example. Click on the Insert tab while you're still in
the employee table; you will then be brought to another page for inserting new data
into the employee table:

17.	 Next, we will proceed to set up the SQL driver for our Qt project. Basically, all you need
to do is to go to your Qt installation folder and look for the sqldrivers folder. For
example, mine is located at C:\Qt\5.5\mingw492_32\plugins\sqldrivers.

18.	 Copy the entire sqldrivers folder to your project's build directory. You can remove
the DLL files that are not relevant to the SQL server you're running. In our case,
since we're using a MySQL server, we can delete everything except qsqlmysql.dll
and qsqlmysqld.dll. The DLL file with the letter d at the back is for debug builds
only, while the other one is for release builds. Put those DLL files in their respective
build directories, for example, builds/debug/sqldrivers/qsqlmysqld.dll
for debug builds and builds/release/sqldrivers/qsqlmysql.dll for
release builds.

19.	 The DLL files mentioned in the previous step are the drivers that enable Qt to
communicate with different types of SQL architecture. You may also need the DLL
file of the SQL client library in order for the driver to work. In our case, we need
libmysql.dll to be located in the same directory as our program's executable.
You can either get it from the installation directory of MySQL or download the
Connector/C++ package from the official website, https://dev.mysql.com/
downloads/connector/cpp/.

How it works…
Qt provides us with SQL drivers so that we can easily connect to different types of SQL servers
without implementing them ourselves.

Currently, Qt officially supports SQLite, MySQL, ODBC, and PostgreSQL. SQL architectures that
are forks from one of the supported architectures, such as MariaDB (a fork of MySQL), may
still compatible with Qt without much problem.

https://dev.mysql.com/downloads/connector/cpp/
https://dev.mysql.com/downloads/connector/cpp/

Chapter 8

213

If you are using an architecture that isn't supported by Qt, you can still interact with your
SQL database indirectly by sending an HTTP request using QNetworkAccessManager to
your backend script (such as PHP, ASP, JSP, and so on), which can then communicate
with the database.

If you only need a simple file-based database and don't plan to use a server-based database,
SQLite is a good choice for you.

Connecting to a database
In this recipe, we will learn how to connect to our SQL database using Qt's SQL module.

How to do it…
Connecting to SQL server in Qt is really simple:

1.	 First of all, open up Qt Creator and create a new Qt Widgets Application project.

2.	 Open up your project file (.pro) and add the SQL module to your project, like so:
QT += core gui sql

3.	 Next, open up mainwindow.ui and drag seven label widgets, a combo box, and a
checkbox to the canvas. Set the text properties of four of the labels to Name:, Age:,
Gender:, and Married:. Then, set the objectName properties of the rest to name,
age, gender, and married. There is no need to set the object name for the previous
four labels because they're for display purposes only:

Accessing Databases

214

4.	 After that, open up mainwindow.h and add the following headers below the
QMainWindow header:
#include <QMainWindow>
#include <QtSql>
#include <QSqlDatabase>
#include <QSqlQuery>
#include <QDebug>

5.	 Then, open up mainwindow.cpp and insert the following code to the class
constructor:
MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent), ui(new Ui::MainWindow)
{
 ui->setupUi(this);

 QSqlDatabase db = QSqlDatabase::addDatabase("QMYSQL");
 db.setHostName("127.0.0.1");
 db.setUserName("yourusername");
 db.setPassword("yourpassword");
 db.setDatabaseName("databasename");

 if (db.open())
 {
 QSqlQuery query;
 if (query.exec("SELECT name, age, gender, married FROM
employee"))
 {
 while (query.next())
 {
 qDebug() << query.value(0) << query.value(1) <<
 query.value(2) << query.value(3);

 ui->name->setText(query.value(0).toString());
 ui->age->setText(query.value(1).toString());
 ui->gender->setCurrentIndex(query.value(2).toInt());
 ui->married->setChecked(query.value(3).toBool());
 }
 }
 else
 {
 qDebug() << query.lastError().text();
 }

Chapter 8

215

 db.close();
 }
 else
 {
 qDebug() << "Failed to connect to database.";
 }
}

6.	 Compile and run your project now and you should get something like the following:

How it works…
The previous example shows you how to connect to your SQL database using the
QSqlDatabase class derived from the SQL module. You won't be able to access
any of the classes related to SQL without adding the module to your Qt project.

We must tell Qt which SQL architecture we are running by mentioning it when calling the
addDatabase() function. Options supported by Qt are QSQLITE, QMYSQL, QMYSQL3,
QODBC, QODBC3, QPSQL, and QPSQL7

If you encounter an error message that says, QSqlDatabase: QMYSQL driver not loaded,
then you should again check whether the DLL files are placed in the correct directory.

We can send our SQL statements to the database through the QSqlQuery class, and wait for
it to return the results, which usually are either the data you requested or error messages due
to invalid statements.

If there is any data coming from the database server, it will all be stored in the QSqlQuery
class. All you need to do to retrieve this data is to do a while loop on the QSqlQuery class
to check for all existing records, and retrieve them by calling the value() function.

Accessing Databases

216

Writing basic SQL queries
In the previous example, we wrote our very first SQL query, which involves the SELECT
statement. This time, we will learn how to use some other SQL statements, such as INSERT,
UPDATE, and DELETE.

How to do it…
Let's create a simple program that demonstrates basic SQL query commands by following
these steps:

1.	 We can use our previous project files, but there are couples of things we need to
change. First, open up mainwindow.ui and replace the labels for name and age
with line edit widgets. Then, add three buttons to the canvas and call them Update,
Insert, and Delete:

2.	 After that, open up mainwindow.h and add the following variables under private
inheritance:
private:
 Ui::MainWindow *ui;
 QSqlDatabase db;
 bool connected;
 int currentID;

3.	 Next, open up mainwindow.cpp and go to the class constructor. It is still pretty
much the same as the previous example, except we store the database connection
status in a Boolean variable called connected and we also obtain the ID of the data
from the database and store it to an integer variable called currentID:
MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent), ui(new Ui::MainWindow)
{

Chapter 8

217

 ui->setupUi(this);

 db = QSqlDatabase::addDatabase("QMYSQL");
 db.setHostName("127.0.0.1");
 db.setUserName("yourusername");
 db.setPassword("yourpassword");
 db.setDatabaseName("databasename");

 connected = db.open();

 if (connected)
 {
 QSqlQuery query;
 if (query.exec("SELECT id, name, age, gender, married FROM
employee"))
 {
 while (query.next())
 {
 currentID = query.value(0).toInt();
 ui->name->setText(query.value(1).toString());
 ui->age->setText(query.value(2).toString());
 ui->gender->setCurrentIndex(query.value(3).toInt());
 ui->married->setChecked(query.value(4).toBool());
 }
 }
 else
 {
 qDebug() << query.lastError().text();
 }
 }
 else
 {
 qDebug() << "Failed to connect to database.";
 }
}

4.	 Then, go to mainwindow.ui and right-click on one of the buttons we added to
the canvas in step 1. Select Go to slot… and click OK. Repeat these steps on the
other button, and now you should see three slot functions being added to both your
mainwindow.h and mainwindow.cpp:
private slots:
 void on_updateButton_clicked();
 void on_insertButton_clicked();
 void on_deleteButton_clicked();

Accessing Databases

218

5.	 After that, open up mainwindow.cpp and we will declare what the program will do
when we click on the Update button:
void MainWindow::on_updateButton_clicked()
{
 if (connected)
 {
 if (currentID == 0)
 {
 qDebug() << "Nothing to update.";
 }
 else
 {
 QString id = QString::number(currentID);
 QString name = ui->name->text();
 QString age = ui->age->text();
 QString gender = QString::number
 (ui->gender->currentIndex());
 QString married = QString::number(ui->married->isChecked());

 qDebug() << "UPDATE employee SET name = '" + name + "',
 age = '" + age + "', gender = " + gender + ",
 married = " + married + " WHERE id = " + id;

 QSqlQuery query;
 if (query.exec("UPDATE employee SET name = '" + name + "',
 age = '" + age + "', gender = " + gender + ",
 married = " + married + " WHERE id = " + id))
 {
 qDebug() << "Update success.";
 }
 else
 {
 qDebug() << query.lastError().text();
 }
 }
 }
 else
 {
 qDebug() << "Failed to connect to database.";
 }
}

Chapter 8

219

6.	 Once you have done that, we will proceed to declare what will happen when the
Insert button is clicked:
void MainWindow::on_insertButton_clicked()
{
 if (connected)
 {
 QString name = ui->name->text();
 QString age = ui->age->text();
 QString gender = QString::number(ui->gender->currentIndex());
 QString married = QString::number(ui->married->isChecked());

 qDebug() << "INSERT INTO employee (name, age, gender,
 married) VALUES ('" + name + "','" + age + "',
 " + gender + "," + married + ")";

 QSqlQuery query;
 if (query.exec("INSERT INTO employee (name, age, gender,
 married) VALUES ('" + name + "','" + age + "',
 " + gender + "," + married + ")"))
 {
 currentID = query.lastInsertId().toInt();
 qDebug() << "Insert success.";
 }
 else
 {
 qDebug() << query.lastError().text();
 }
 }
 else
 {
 qDebug() << "Failed to connect to database.";
 }
}

7.	 After that, we also declare what will happen when the Delete button is clicked:
void MainWindow::on_deleteButton_clicked()
{
 if (connected)
 {
 if (currentID == 0)
 {
 qDebug() << "Nothing to delete.";
 }

Accessing Databases

220

 else
 {
 QString id = QString::number(currentID);
 qDebug() << "DELETE FROM employee WHERE id = " + id;
 QSqlQuery query;
 if (query.exec("DELETE FROM employee WHERE id = " + id))
 {
 currentID = 0;
 qDebug() << "Delete success.";
 }
 else
 {
 qDebug() << query.lastError().text();
 }
 }
 }
 else
 {
 qDebug() << "Failed to connect to database.";
 }
}

8.	 Lastly, call QSqlDatabase::close() at the class destructor to properly terminate
the SQL connection before exiting the program:
MainWindow::~MainWindow()
{
 db.close();
 delete ui;
}

9.	 Compile and run the program now and you should be able to select the default data
from the database; then you can choose to update it or delete it from the database.
You can also insert new data into the database by clicking the Insert button. You can
use phpMyAdmin to check whether the data is being altered correctly or not:

Chapter 8

221

How it works…
It's very important to check whether or not the database is connected in the first place before
we proceed to send a SQL query to the database. Therefore, we keep that status in a variable
and use it to check before sending out any queries. This, however, is not recommended for
complex programs that are kept open for long periods of time, as the database might get
disconnected during these periods, and a fixed variable may not be accurate. In that case,
it's better to check the actual status by calling QSqlDatabase::isOpen().

The currentID variable is used to save the ID of the current data you obtained from the
database. When you want to update the data or delete it from the database, this variable is
crucial for letting the database know which data you're trying to update or delete. If you set
your database table correctly, MySQL will treat each item of data as a unique entry, so you can
be sure that no repeated ID will be produced in the database when new data is being saved.

After inserting new data into the database, we call QSqlQuery::lastInsertId() to obtain
the ID of the new data and save it as a currentID variable, so that it becomes the current
data that we can update or delete from the database.

It is a good habit to test your SQL queries on phpMyAdmin first before using them in Qt. You
can instantly find out whether your SQL statements are correct or incorrect, instead of waiting
for your project to get built, then try it out, then rebuild again. As a programmer, we must work
in the most efficient way. Work hard, and work smart.

Creating a login screen with Qt
In this recipe, we will learn how put our knowledge to use and create a functional login screen
using Qt and MySQL.

Accessing Databases

222

How to do it…
Create your first functional login screen by following these steps:

1.	 First, open up a web browser and go to phpMyAdmin. We will create a new data table
called user, which looks like this:

2.	 Next, insert our first item of data into the newly created table and set the
employeeID to the ID of an existing employee's data. This way, the user
account we created will be linked to the data of one of the employees:

3.	 After that, open up Qt Creator and create a new Qt Widgets Application project. We
will start off with mainwindow.ui. First, place a stacked widget on the canvas and
make sure it contains two pages. Then, set up the two pages in the stacked widget
like this:

Chapter 8

223

4.	 Then, on the first page of the stacked widget, click the Edit Tab Order button on top
of the widget so that we can adjust the order of the widgets in our program:

5.	 Once you click the Edit Tab Order button, you will see some numbers appear on top
of each widget in the canvas. Make sure the numbers look like this. Otherwise, click
on the numbers to change their order. We only do this for the first page of the stacked
widget; it's okay to keep the second page as it is:

Accessing Databases

224

6.	 Next, right-click on the Login button and select Go to slot…. Then, make sure the
clicked() option is selected and press OK. Qt will then create a slot function for
you in your project source files. Repeat this step for the Log Out button as well.

7.	 Then, open up mainwindow.h and add the following headers after the line
#include <QMainWindow>:
#include <QMainWindow>
#include <QtSql>
#include <QSqlDatabase>
#include <QSqlQuery>
#include <QMessageBox>
#include <QDebug>

8.	 After that, add the following variable to mainwindow.h:
private:
 Ui::MainWindow *ui;
 QSqlDatabase db;

9.	 Once we're done with that, let's open up mainwindow.cpp and put this code in the
class constructor:
MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow)
{
 ui->setupUi(this);
 ui->stackedWidget->setCurrentIndex(0);
 db = QSqlDatabase::addDatabase("QMYSQL");
 db.setHostName("127.0.0.1");
 db.setUserName("yourusername");
 db.setPassword("yourpassword");
 db.setDatabaseName("databasename");

 if (!db.open())
 {
 qDebug() << "Failed to connect to database.";
 }
}

10.	 After that, we will define what will happen if the Login button is clicked:
void MainWindow::on_loginButton_clicked()
{
 QString username = ui->username->text();
 QString password = ui->password->text();

Chapter 8

225

 QSqlQuery query;
 if (query.exec("SELECT employeeID from user WHERE
 username = '" + username + "' AND password = '" +
 password + "'"))
 {
 if (query.size() > 0)
 {
 while (query.next())
 {
 QString employeeID = query.value(0).toString();
 QSqlQuery query2;
 if (query2.exec("SELECT name, age, gender,
 married FROM employee WHERE id = " + employeeID))
 {
 while (query2.next())
 {
 QString name = query2.value(0).toString();
 QString age = query2.value(1).toString();
 int gender = query2.value(2).toInt();
 bool married = query2.value(3).toBool();
 ui->name->setText(name);
 ui->age->setText(age);

 if (gender == 0)
 ui->gender->setText("Male");
 else
 ui->gender->setText("Female");

 if (married)
 ui->married->setText("Yes");
 else
 ui->married->setText("No");

 ui->stackedWidget->setCurrentIndex(1);
 }
 }
 }
 }
 else
 {
 QMessageBox::warning(this, "Login failed",
 "Invalid username or password.");
 }

Accessing Databases

226

 }
 else
 {
 qDebug() << query.lastError().text();
 }
}

11.	 Then, we also define what will happen if the Log Out button is clicked:
void MainWindow::on_logoutButton_clicked()
{
 ui->stackedWidget->setCurrentIndex(0);
}

12.	 Lastly, close the database when the main window is closed:
MainWindow::~MainWindow()
{
 db.close();

 delete ui;
}

13.	 Compile and run the program now and you should be able to log in with the dummy
account. After you have logged in, you should be able to see the dummy employee
information linked to the user account. You can also log out by clicking on the Log
Out button:

Chapter 8

227

How it works…
In this example, we select data from the user table that matches the username and password
that we have inserted into the text fields. If nothing is found, it means we have provided an
invalid username or password. Otherwise, obtain the employeeID data from the user account
and do another SQL query to look for information from the employee table that matches the
employeeID variable. Then, display the data accordingly to the UI of our program.

We must set the widget order in the Edit Tab Order mode so that when the program has
started, the first widget that gets focused on is the username line edit widget. If the user
presses on the TAB button on the keyboard, the focus should switch to the second widget,
which is the password line edit. Incorrect widget order will totally ruin the user experience
and drive away your potential users.

Do make sure that the echoMode option of the password line edit is set to Password. That
setting will hide the actual password inserted into the line edit and replace it with dot symbols
for security purposes.

Displaying information from a database on a
model view

In this recipe, we will learn how to display multiple sets of data obtained from our SQL
database on a model view in our program.

How to do it…
Follow these steps to display information from a database on a model view widget:

1.	 We will be using the database table called employee, which we used in the previous
example. This time, we need a lot more data in the employee table. Open up your
web browser and log in to your phpMyAdmin control panel. Add data for a few more
employees so that we can display it later in our program:

Accessing Databases

228

2.	 After that, open up Qt Creator, create a new Qt Widgets Application project, and then
add the SQL module to your project.

3.	 Next, open up mainwindow.ui and add a table widget (not table view) from Item
Widget (Item-Based) under the Widget box pane. Select the main window on the
canvas and click on either the Layout Vertically or Layout Horizontally button to
make the table widget stick to the size of the main window, even when it's resized:

4.	 After that, double-click on the table widget and a window will then appear. Under the
Columns tab, add five items by clicking on the + button at the top-left corner. Name
the items ID, Name, Age, Gender, and Married. Click OK when you're done:

5.	 Then, right-click on the table widget and select Go to slot… in the pop-up menu.
Scroll all the way down, select the itemChanged(QTableWidgetItem*) option in the
pop-up window, and press OK. A slot function will be created in both your source files.

6.	 Open up mainwindow.h and add these private variables to our MainWindow class:
private:
 Ui::MainWindow *ui;
 bool hasInit;
 QSqlDatabase db;

Chapter 8

229

7.	 We also add the following class headers to mainwindow.h:
#include <QtSql>
#include <QSqlDatabase>
#include <QSqlQuery>
#include <QMessageBox>
#include <QDebug>
#include <QTableWidgetItem>

8.	 Once you're done with that, open up mainwindow.cpp and we're going to write
tons of code there. First, we need to declare what will happen when the program is
started. Add the following code to the constructor of the MainWindow class:
MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow)
{
 hasInit = false;

 ui->setupUi(this);

 db = QSqlDatabase::addDatabase("QMYSQL");
 db.setHostName("127.0.0.1");
 db.setUserName("yourusername");
 db.setPassword("yourpassword");
 db.setDatabaseName("databasename");

 ui->tableWidget->setColumnHidden(0, true);

 if (db.open())
 {
 QSqlQuery query;
 if (query.exec("SELECT id, name, age, gender,
 married FROM employee"))
 {
 while (query.next())
 {
 qDebug() << query.value(0) << query.value(1) <<
 query.value(2) << query.value(3) << query.value(4);

 QString id = query.value(0).toString();
 QString name = query.value(1).toString();
 QString age = query.value(2).toString();
 int gender = query.value(3).toInt();
 bool married = query.value(4).toBool();

Accessing Databases

230

 ui->tableWidget->setRowCount(ui->tableWidget->rowCount()
 + 1);

 QTableWidgetItem* idItem = new QTableWidgetItem(id);
 QTableWidgetItem* nameItem = new QTableWidgetItem(name);
 QTableWidgetItem* ageItem = new QTableWidgetItem(age);
 QTableWidgetItem* genderItem = new QTableWidgetItem();

 if (gender == 0)
 genderItem->setData(0, "Male");
 else
 genderItem->setData(0, "Female");

 QTableWidgetItem* marriedItem = new QTableWidgetItem();

 if (married)
 marriedItem->setData(0, "Yes");
 else
 marriedItem->setData(0, "No");

 ui->tableWidget->setItem(ui->tableWidget->rowCount() -
 1, 0, idItem);
 ui->tableWidget->setItem(ui->tableWidget->rowCount() -
 1, 1, nameItem);
 ui->tableWidget->setItem(ui->tableWidget->rowCount() -
 1, 2, ageItem);
 ui->tableWidget->setItem(ui->tableWidget->rowCount() -
 1, 3, genderItem);
 ui->tableWidget->setItem(ui->tableWidget->rowCount() -
 1, 4, marriedItem);
 }

 hasInit = true;
 }
 else
 {
 qDebug() << query.lastError().text();
 }
 }
 else
 {
 qDebug() << "Failed to connect to database.";
 }
}

Chapter 8

231

9.	 After that, declare what will happen when an item of the table widget
has been edited. Add the following code to the slot function called
on_tableWidget_itemChanged():
void MainWindow::on_tableWidget_itemChanged(QTableWidgetItem
 *item)
{
 if (hasInit)
 {
 QString id = ui->tableWidget->item(item->row(),
 0)->data(0).toString();
 QString name = ui->tableWidget->item(item->row(),
 1)->data(0).toString();
 QString age = QString::number(ui->tableWidget->
 item(item->row(), 2)->data(0).toInt());
 ui->tableWidget->item(item->row(), 2)->setData(0, age);

 QString gender;
 if (ui->tableWidget->item(item->row(), 3)->
 data(0).toString() == "Male")
 {
 gender = "0";
 }
 else
 {
 ui->tableWidget->item(item->row(), 3)->setData(0, "Female");
 gender = "1";
 }

 QString married;
 if (ui->tableWidget->item(item->row(),
 4)->data(0).toString() == "No")
 {
 married = "0";
 }
 else
 {
 ui->tableWidget->item(item->row(), 4)->setData(0, "Yes");
 married = "1";
 }

 qDebug() << id << name << age << gender << married;
 QSqlQuery query;

Accessing Databases

232

 if (query.exec("UPDATE employee SET name = '" + name + "',
 age = '" + age + "', gender = '" + gender + "',
 married = '" + married + "' WHERE id = " + id))
 {
 QMessageBox::information(this, "Update Success", "Data
 updated to database.");
 }
 else
 {
 qDebug() << query.lastError().text();
 }
 }
}

10.	 Lastly, close the database at the class destructor:
MainWindow::~MainWindow()
{
 db.close();
 delete ui;
}

11.	 Compile and run the example now and you should be getting something like this:

Chapter 8

233

How it works…
A table widget is similar to the one you see in spreadsheet applications such as Microsoft
Excel and Open Office Calc. In contrast with other types of model viewers such as list view or
tree view, table view (or table widget) is a two-dimensional model viewer, which displays data
in the form of rows and columns.

The main difference between a table view and table widget in Qt is that a table widget is built
on top of a table view class, which means a table widget is easier to use and more suitable for
beginners. However, a table widget is less flexible and tends to be less scalable than a table
view, which is not the best choice if you want to customize your table.

After retrieving data from MySQL, we created a QTableWidgetItem item for each of the
data items and set which column and row should be added to the table widget. Before
adding an item to the table widget, we must increase the row count of the table by calling
QTableWidget::setRowCount(). We can also get the current row count of the table
widget by simply calling QTableWidget::rowCount().

The first column from the left is hidden from view because we only use it to save the ID of
the data so that we can use it to update the database when one of the data items in its row
has changed.

The slot function on_tableWidget_itemChanged() will be called when the data in one
of the cells has changed. It will not only get called when you edit the data in the cell, but also
when the data is first added to the table after being retrieved from the database. To ensure
that this function is only triggered when we edit the data, we used a Boolean variable called
hasInit to check whether we have done the initialization process (adding the first batch of
data to the table) or not. If hasInit is false, ignore the function call.

To prevent users from entering a totally irrelevant type of data, such as inserting alphabets
into a supposedly numerical-only data cell, we checked manually whether the data is anything
close to what we'd expected when it's being edited. Revert it to a default value if it doesn't
come close to anything considered as valid. This is of course a simple hack, which does the
job but is not the most professional method. Alternatively, you can try to create a new class
that inherits the QItemDelegate class and define how your model view should behave.
Then, call QTableWidget::setItemDelegate() to apply the class to your table widget.

Advanced SQL queries
By following this recipe, we will learn how to use advanced SQL statements such as INNER
JOIN, COUNT, LIKE, DISTINCT, and so on.

Accessing Databases

234

How to do it…
You can do a lot more than just perform simple queries of SQL database:

1.	 First of all, we need to add a few tables to our database before we can dive into the
programming part. Open up your web browser and access your phpMyAdmin. We
need several tables for this example to work:

2.	 I will show you the structure of each of the tables required for this project and the
dummy data inserted to the tables for testing. The first table is called branch, which
is used to store the IDs and names of different branches of the dummy company:

3.	 Secondly, we have the department table, which stores the IDs and names of
different departments of the dummy company, which is also linked to the branch
data by the branch IDs:

Chapter 8

235

4.	 Next, we also have an employee table, which stores the information of all the
employees in the dummy company. This table is similar to the one we used in the
previous examples, except it has two more extra columns, namely birthday and
departmentID:

5.	 Other than that, we also have a table called log, which contains dummy records of
the login time for each employee. The loginTime column can be a timestamp or
date time variable type:

6.	 Lastly, we have the user table that we also used in the previous examples:

Accessing Databases

236

7.	 We are done with the database; let's move on to Qt. Open up Qt Creators, and this
time, instead of choosing Qt Widgets Application, we create Qt Console Application:

8.	 After you have done creating your console project, open up your project file (.pro)
and add the SQL module to your project:
QT += core sql
QT -= gui

9.	 Next, open up main.cpp and add the following header files to the top of the source
file:
#include <QSqlDatabase>
#include <QSqlQuery>
#include <QSqlError>
#include <QDate>
#include <QDebug>

10.	 Then, add the following function to display employees who are above 30 years old:
void filterAge()
{
 qDebug() << "== Employees above 30 year old =============";
 QSqlQuery query;
 if (query.exec("SELECT name, age FROM employee WHERE age > 30"))

Chapter 8

237

 {
 while (query.next())
 {
 qDebug() << query.value(0).toString() <<
 query.value(1).toString();
 }
 }
 else
 {
 qDebug() << query.lastError().text();
 }

 qDebug() << "\n";
}

11.	 After that, add this function for displaying the department and branch information of
each employee:
void getDepartmentAndBranch()
{
 qDebug() << "== Get employees' department and branch
 =============";

 QSqlQuery query;
 if (query.exec("SELECT myEmployee.name, department.name,
 branch.name FROM (SELECT name, departmentID FROM employee)
 AS myEmployee INNER JOIN department ON
 department.id = myEmployee.departmentID
 INNER JOIN branch ON branch.id = department.branchID"))
 {
 while (query.next())
 {
 qDebug() << query.value(0).toString() <<
 query.value(1).toString() << query.value(2).toString();
 }
 }
 else
 {
 qDebug() << query.lastError().text();
 }

 qDebug() << "\n";
}

Accessing Databases

238

12.	 Next, add this function, which displays employees who are working in the New York
branch and are below 30 years old:
void filterBranchAndAge()
{
 qDebug() << "== Employees from New York and age below 30
 =============";

 QSqlQuery query;
 if (query.exec("SELECT myEmployee.name, myEmployee.age,
 department.name, branch.name
 FROM (SELECT name, age, departmentID FROM employee) AS
 myEmployee INNER JOIN department ON
 department.id = myEmployee.departmentID INNER JOIN branch ON
 branch.id = department.branchID
 WHERE branch.name = 'New York' AND age < 30"))
 {
 while (query.next())
 {
 qDebug() << query.value(0).toString() <<
 query.value(1).toString() <<
 query.value(2).toString() << query.value(3).toString();
 }
 }
 else
 {
 qDebug() << query.lastError().text();
 }

 qDebug() << "\n";
}

13.	 Then, add this function which counts the total number of female employees in the
dummy company:
void countFemale()
{
 qDebug() << "== Count female employees =============";

 QSqlQuery query;
 if (query.exec("SELECT COUNT(gender) FROM employee WHERE
 gender = 1"))
 {
 while (query.next())
 {
 qDebug() << query.value(0).toString();
 }

Chapter 8

239

 }
 else
 {
 qDebug() << query.lastError().text();
 }

 qDebug() << "\n";
}

14.	 Once you're done with that, we will add another function, which filters the employee
list and only displays those who have name that starts with Ja:
void filterName()
{
 qDebug() << "== Employees name start with 'Ja' =============";

 QSqlQuery query;
 if (query.exec("SELECT name FROM employee WHERE name
 LIKE '%Ja%'"))
 {
 while (query.next())
 {
 qDebug() << query.value(0).toString();
 }
 }
 else
 {
 qDebug() << query.lastError().text();
 }

 qDebug() << "\n";
}

15.	 Next, we also add another function, which displays employees who have their
birthdays in August:
void filterBirthday()
{
 qDebug() << "== Employees birthday in August =============";

 QSqlQuery query;
 if (query.exec("SELECT name, birthday FROM employee WHERE
 MONTH(birthday) = 8"))
 {
 while (query.next())
 {

Accessing Databases

240

 qDebug() << query.value(0).toString() <<
 query.value(1).toDate().toString("d-MMMM-yyyy");
 }
 }
 else
 {
 qDebug() << query.lastError().text();
 }

 qDebug() << "\n";
}

16.	 Then, we add the last function, which checks who logged in to the dummy system on
27 April 2016 and displays their names on the terminal:
void checkLog()
{
 qDebug() << "== Employees who logged in on 27 April 2016
 =============";

 QSqlQuery query;
 if (query.exec("SELECT DISTINCT myEmployee.name, FROM
 (SELECT id, name FROM employee) AS myEmployee INNER JOIN
 user ON user.employeeID = myEmployee.id INNER JOIN log ON
 log.userID = user.id WHERE DATE(log.loginTime) =
 '2016-04-27'"))
 {
 while (query.next())
 {
 qDebug() << query.value(0).toString();
 }
 }
 else
 {
 qDebug() << query.lastError().text();
 }

 qDebug() << "\n";
}

Chapter 8

241

17.	 Lastly, in our main() function, connect our program to the MySQL database and
call all the functions that we have defined in the previous steps. After that, close
the database connection and we're done:
int main(int argc, char *argv[])
{
 QCoreApplication a(argc, argv);

 QSqlDatabase db = QSqlDatabase::addDatabase("QMYSQL");
 db.setHostName("127.0.0.1");
 db.setUserName("reonyx");
 db.setPassword("reonyx");
 db.setDatabaseName("testing");

 if (db.open())
 {
 filterAge();
 getDepartmentAndBranch();
 filterBranchAndAge();
 countFemale();
 filterName();
 filterBirthday();
 checkLog();

 db.close();
 }
 else
 {
 qDebug() << "Failed to connect to database.";
 }

 return a.exec();
}

Accessing Databases

242

18.	 Compile and run the project now and you should see a terminal window, which
displays the filtered results from the database as defined earlier:

How it works…
A console application does not have any GUI at all and only shows you a text display in
a terminal window. This is usually used in a backend system, as it uses fewer resources
compared to a widget application. We use it in this example because it's faster to display the
result without the need to place any widgets in the program, which we don't need in this case.

We separated the SQL queries into different functions so that it's easier to maintain the code
and it doesn't become too messy. Do note that in C++, the functions have to be located before
the main() function, or they will not be able to be called by main().

There's more…
The INNER JOIN statement used in the preceding example joins two tables together and
selects all rows from both tables, as long as there is a match between the columns in both
tables. There are many other types of JOIN statement that you can use in MySQL (and some
other types of SQL architecture), such as LEFT JOIN, RIGHT JOIN, FULL OUTER JOIN,
and so on. The following diagram shows the different types of JOIN statements and their
effects:

Chapter 8

243

1.	 The LIKE statement is normally used to search for a string variable in the database
without the full word. Notice that there are two % symbols, located before and after
the search keyword.

2.	 The DISTINCT statement used in the previous example filters out results that have
the exact same variable. For example, without the DISTINCT statement, you will see
two versions of Larry King appear in the terminal because there are two records of
him logging in to the system on the same day. By adding the DISTINCT statement,
MySQL will eliminate one of the repeating results and ensure every result is unique.

3.	 You may be wondering what d-MMMM-yyyy stands for and why we used it in the
preceding example. That is actually an expression supplied to the QDateTime
class in Qt to display the date time result using a given format. In this case, it will
change the date time data that we get from MySQL, 2016-08-06, to the format
that we specified, resulting in 6-August-2016. For more information, check out
Qt's documentation at http://doc.qt.io/qt-5/qdatetime.html#toString,
which has the full list of expressions that can be used to determine the format of the
date and time string.

http://doc.qt.io/qt-5/qdatetime.html#toString

245

9
Developing a Web
Application Using

Qt Web Engine

In this chapter, we will cover the following recipes:

ff Introduction to Qt WebEngine

ff WebView and web settings

ff Embedding Google Maps in your project

ff Calling C++ functions from JavaScript

ff Calling JavaScript functions from C++

Introduction
Qt includes a module called Qt WebEngine that allows us to embed a web browser widget into
our program and use it to display web pages or local HTML contents. Prior to version 5.6, Qt
used another similar module called Qt WebKit, which is now deprecated and has since been
replaced by the Chromium-based web engine module. Qt also allows communication between
JavaScript and C++ code through the "web channel", which enables us to make use of this
module in a much more effective fashion.

Developing a Web Application Using Qt Web Engine

246

Introduction to Qt WebEngine
In this example project, we will explore the basic features of the web engine module in
Qt and try building a simple working web browser. Since Qt 5.6, Qt's WebKit module has
been deprecated and replaced by the WebEngine module, which is based on Google's
Chromium engine. Note that when this chapter was written, WebEngine was still heavily
under development and may be subject to changes in the near future.

How to do it…
First, let's set up our web engine project:

1.	 First, you are required to download and install Microsoft Visual Studio if you do not
have it installed on your computer. This is because at the moment, Qt's WebEngine
module only works with the Visual C++ compiler and not others, such as MinGW or
Clang. This might change in the future, but it all depends on whether Google wants
to make their Chromium engine support other compilers or not. Meanwhile, you can
download the latest Visual Studio from here: https://www.visualstudio.com.

2.	 At the same time, you may also need to make sure that the Qt you installed on your
computer supports the Visual C++ compiler. You can add the mvc2015 component
to your Qt installation using Qt's maintenance tool. Also, make sure that you have
installed the Qt WebEngine component in your Qt as well:

https://www.visualstudio.com

Chapter 9

247

3.	 Once you are done with that, open up Qt Creator and create a new Qt Widgets
Application project. This time, you must select a kit that uses the Visual C++ compiler:

4.	 After that, open up your project file (.pro) and add the following modules to
your project:
QT += core gui webengine webenginewidgets

5.	 Open up mainwindow.ui and remove the menuBar, mainToolBar, and
statusBar objects, as we don't need those in this project:

Developing a Web Application Using Qt Web Engine

248

6.	 Place two horizontal layouts on the canvas, then place a line edit widget and a push
button for the layout at the top:

7.	 After that, select the canvas and click on the Lay Out Vertically button located at the
top of the editor:

8.	 Once you have clicked on the Lay Out Vertically button, the layouts will expand and
follow the size of the main window. The line edit will also expand horizontally based
on the width of the horizontal layout:

Chapter 9

249

9.	 Next, add two buttons to the left side of the line edit. We'll use these two buttons to
move back and forward between page histories. Then, add a Progress bar widget at
the bottom of the main window so that we can find out whether the page has finished
loading, or loading is still in progress. We don't have to worry about the horizontal
layout in the middle at this point, as we'll be adding the web view to it later using C++
code, and the space will then be occupied:

10.	 Right-click on one of the buttons and select Go to slot…, then select clicked() and
click OK. A slot function will be automatically created for you in mainwindow.h and
mainwindow.cpp. Repeat this step for all the other buttons as well.

11.	 After that, right-click on the line edit and select Go to slot…, then select
returnPressed() and click OK. Another slot function will now be automatically
created for you in mainwindow.h and mainwindow.cpp.

12.	 Now that we are done with our UI design, let's hop over to mainwindow.h. The first
thing we need to do is to add the following header to mainwindow.h:
#include <QtWebEngineWidgets/QtWebEngineWidgets>

13.	 Then, declare loadUrl() function under the class destructor:
public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

 void loadUrl();

14.	 After that, add a custom slot function called loading() to mainwindow.h as we'll
be using it pretty soon:
private slots:
 void on_goButton_clicked();

Developing a Web Application Using Qt Web Engine

250

 void on_address_returnPressed();
 void on_backButton_clicked();
 void on_forwardButton_clicked();
 void loading(int progress);

15.	 Lastly, declare a QWebEngineView object and call it webview:
private:
 Ui::MainWindow *ui;
 QWebEngineView* webview;

16.	 Once you're done with that, open up mainwindow.cpp and initiate the web engine
view. Then, add it to the second horizontal layout and connect its loadProgress()
signal to the loading() slot function we just added to mainwindow.h:
MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow)
{
 ui->setupUi(this);

 webview = new QWebEngineView;
 ui->horizontalLayout_2->addWidget(webview);

 connect(webview, SIGNAL(loadProgress(int)),
 SLOT(loading(int)));
}

17.	 After that, we declare what will happen when the loadUrl() function is called:
void MainWindow::loadUrl()
{
 QUrl url = QUrl(ui->address->text());
 url.setScheme("http");
 webview->page()->load(url);
}

18.	 Next, call the loadUrl() function when the Go button is clicked or when the
Return/Enter key is clicked:
void MainWindow::on_goButton_clicked()
{
 loadUrl();
}

void MainWindow::on_address_returnPressed()
{
 loadUrl();
}

Chapter 9

251

19.	 As for the other two buttons, we'll ask the web view to load the previous page or the
next page if it is available in the history stack:
void MainWindow::on_backButton_clicked()
{
 webview->back();
}

void MainWindow::on_forwardButton_clicked()
{
 webview->forward();
}

20.	 Lastly, change the value of the progressBar when the web page is being loaded:
void MainWindow::loading(int progress)
{
 ui->progressBar->setValue(progress);
}

21.	 Build and run the program now and you will get a very basic but functional
web browser!

Developing a Web Application Using Qt Web Engine

252

How it works…
The old web view system was based on Apple's WebKit engine and only available in Qt 5.5
and its predecessor. Since 5.6, WebKit has been completely abandoned by Qt and replaced
with Google's Chromium engine. The API has been completely changed and therefore all the
code related to Qt WebKit will not work correctly once migrated to 5.6. If you're new to Qt,
it's recommended to skip WebKit and learn the WebEngine API since it is becoming the new
standard in Qt. If you have used Qt's WebKit in the past, this web page teaches you how to
port your old code over to WebEngine, https://wiki.qt.io/Porting_from_QtWebKit_
to_QtWebEngine.

In Step 16, we connected the loadProgress() signal that belongs to the web view widget
to the loading() slot function. The signal will be called automatically when the web view is
loading the web page you requested by calling QWebEnginePage::load() in Step 17. You
can also connect the loadStarted() and loadFinished() signals as well if you need to.

In Step 17, we used the QUrl class to convert the text obtained from the line edit to URL
format. By default, the address we inserted will lead to the local path if we do not specify the
URL scheme (http, https, ftp, and so on). We may not be able to load the page if, say, we
gave it packtpub.com instead of http://packtpub.com. Therefore, we manually specify
a URL scheme for it by calling QUrl::setScheme(). This will ensure the address is properly
formatted before passing it to the web view.

There's more…
If you're running Qt 5.6 or above and for some reason you need the WebKit module for your
project (usually for maintaining an old project), you can obtain the module code from GitHub
and build it by yourself:

https://github.com/qt/qtwebkit

WebView and web settings
In this section, we will dive deeper into the features available in Qt's WebEngine and explore
the settings that we can use to customize our WebView. We will use the source files from the
previous example and add more code to it.

https://wiki.qt.io/Porting_from_QtWebKit_to_QtWebEngine
https://wiki.qt.io/Porting_from_QtWebKit_to_QtWebEngine
https://github.com/qt/qtwebkit

Chapter 9

253

How to do it…
Let's explore some of the basic features of the Qt WebEngine:

1.	 First of all, open up mainwindow.ui and add a vertical layout under the progress
bar. Then, add a Plain Text Edit widget (under the input widget category) and a Push
button to the vertical layout. Change the display of the Push button to Load HTML
and set the plaintext property of the plain text edit widget to the following:
<Img src="https://www.google.com/images/
 branding/googlelogo/1x/googlelogo_color_272x92dp.png">

<h1>Hello World!</h1>
<h3>This is our custom HTML page.</h3>

<script>alert("Hello!");</script>

Developing a Web Application Using Qt Web Engine

254

2.	 Next, go to File | New File or Project. A window will then pop up and ask you to
choose a file template. Select Qt Resource File under the Qt category and click on
the Choose… button. Type in your desired filename and click Next followed by Finish.

3.	 After that, open up the resource file we just created by right-clicking on it in the
Projects pane and selecting the Open in Editor option. Once the file is opened by the
editor, click on the Add button, followed by Add Prefix. Then, set the prefix as / and
click Add, followed by Add Files. This time, the file browser window will appear and
we will select the tux.png image file and click Open. We have now added the image
file to our project, where it will be embedded into the executable file (.exe) once
it's compiled:

Chapter 9

255

4.	 Next, open up mainwindow.h and add the following headers to it:
#include <QMainWindow>
#include <QtWebEngineWidgets/QtWebEngineWidgets>
#include <QDebug>
#include <QFile>

5.	 Then, make sure the following functions and pointers have been declared in
mainwindow.h:
public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();
 void loadUrl();

private slots:
 void on_goButton_clicked();
 void on_address_returnPressed();
 void on_backButton_clicked();
 void on_forwardButton_clicked();

 void startLoading();
 void loading(int progress);
 void loaded(bool ok);

 void on_loadHtml_clicked();
private:
 Ui::MainWindow *ui;
 QWebEngineView* webview;

6.	 Once you're done with that, open up mainwindow.cpp and add the following code to
the class constructor:
MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow)
{
 ui->setupUi(this);

 webview = new QWebEngineView;
 ui->horizontalLayout_2->addWidget(webview);

 //webview->page()->settings()>
 setAttribute(QWebEngineSettings::JavascriptEnabled, false);
 //webview->page()->settings()
 ->setAttribute(QWebEngineSettings::AutoLoadImages, false);

Developing a Web Application Using Qt Web Engine

256

 //QString fontFamily = webview->page()->settings()
 ->fontFamily(QWebEngineSettings::SerifFont);
 QString fontFamily = webview->page()->settings()
 ->fontFamily(QWebEngineSettings::SansSerifFont);
 int fontSize = webview->page()->settings()
 ->fontSize(QWebEngineSettings::MinimumFontSize);
 QFont myFont = QFont(fontFamily, fontSize);
 webview->page()->settings()->setFontFamily
 (QWebEngineSettings::StandardFont, myFont.family());

 QFile file("://tux.png");
 if (file.open(QFile::ReadOnly))
 {
 QByteArray data = file.readAll();
 webview->page()->setContent(data, "image/png");
 }
 else
 {
 qDebug() << "File cannot be opened.";
 }

 connect(webview, SIGNAL(loadStarted()),
 SLOT(startLoading()));
 connect(webview, SIGNAL(loadProgress(int)),
 SLOT(loading(int)));
 connect(webview, SIGNAL(loadFinished(bool)),
 SLOT(loaded(bool)));
}

7.	 The MainWindow::loadUrl() function still remains the same as the previous
example, which sets the URL scheme to http before loading the page:
void MainWindow::loadUrl()
{
 QUrl url = QUrl(ui->address->text());
 url.setScheme("http");
 webview->page()->load(url);
}

8.	 The same goes for the following functions, which also remain the same:
void MainWindow::on_goButton_clicked()
{
 loadUrl();
}

Chapter 9

257

void MainWindow::on_address_returnPressed()
{
 loadUrl();
}

void MainWindow::on_backButton_clicked()
{
 webview->back();
}

void MainWindow::on_forwardButton_clicked()
{
 webview->forward();
}

9.	 In the previous example, we only had MainWindow::loading(), which sets the
value of the progress bar when the web page is being loaded. This time, we also
added both the MainWindow::startLoading() and MainWindow::loaded()
slot functions, which will be called by the loadStarted() and loadFinished()
signals. What these two functions do is basically show the progress bar when a page
is starting to load, and hide the progress bar when the page has finished loading:
void MainWindow::startLoading()
{
 ui->progressBar->show();
}

void MainWindow::loading(int progress)
{
 ui->progressBar->setValue(progress);
}

void MainWindow::loaded(bool ok)
{
 ui->progressBar->hide();
}

10.	 Lastly, we call webview->loadHtml() to convert the plain text to HTML content
when the Load HTML button is clicked:
void MainWindow::on_loadHtml_clicked()
{
 webview->setHtml(ui->source->toPlainText());
}

Developing a Web Application Using Qt Web Engine

258

11.	 Build and run the program now and you should see something like this:

How it works…
In this example, we used C++ to load an image file and set it as the WebView's default content
(instead of a blank page). We could achieve the same result by loading a default HTML file
with an image at startup.

Some of the code in the class constructor has been commented out. You can remove the
double slashes // and see the difference it makes—the JavaScript alert will no longer appear
(since JavaScript is being disabled) and any images will no longer appear in your web view.

Another thing you can try is to change the font family from QWebEngineSettings::SansS
erifFont to QWebEngineSettings::SerifFont. You will notice a slight difference in the
font as it appears in the web view:

By clicking the Load HTML button, we ask the WebView to treat the content of the plain text
edit widget as HTML code and load it as an HTML page. You can use this to make a simple
HTML editor powered by Qt!

Chapter 9

259

Embedding Google Maps in your project
In this example, we will learn how to embed Google Maps in our project through Qt's
WebEngine module. This example doesn't focus much on Qt and C++, but rather on
the Google Maps API in HTML code.

How to do it…
Let's create a program that displays Google Maps by following these steps:

1.	 First, create a new Qt Widgets Application project and remove the status bar, menu
bar, and tool bar.

2.	 Then, open up your project file (.pro) and add the following modules to your project:
QT += core gui webengine webenginewidgets

3.	 Next, open up mainwindow.ui and add a vertical layout to the canvas. Then, select
the canvas and click the Lay Out Vertically button on top of the canvas. You will get
something like this:

4.	 Then, open up mainwindow.cpp and add the following headers to the top of the
source code:
#include <QtWebEngineWidgets/QWebEngineView>
#include <QtWebEngineWidgets/QWebEnginePage>
#include <QtWebEngineWidgets/QWebEngineSettings>

Developing a Web Application Using Qt Web Engine

260

5.	 After that, add the following code to the MainWindow constructor:
MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow)
{
 ui->setupUi(this);
 QWebEngineView* webview = new QWebEngineView;
 QUrl url = QUrl("qrc:/map.html");
 webview->page()->load(url);
 ui->verticalLayout->addWidget(webview);
}

6.	 Then, go to File | New File or Project and create a Qt resource file (.qrc). We will
add an HTML file to our project called map.html:

7.	 Once you're done with that, open up map.html with your favorite text editor. It's not
recommended to open an HTML file using Qt Creator, as it does not provide any color
coding for HTML syntax.

8.	 After that, we will start writing the HTML code by declaring the important tags, such
as <html>, <head>, and <body>, like so:
<!DOCTYPE html>
<html>
 <head>
 </head>
 <body ondragstart="return false">
 </body>
</html>

Chapter 9

261

9.	 Then, add a <div> tag to the body and set its ID as map-canvas:
<body ondragstart="return false">
 <div id="map-canvas" />
</body>

10.	 After that, add the following code to the head of the HTML document:
<meta name="viewport" content="initial-scale=1.0,
 user-scalable=no" />
<style type="text/css">
 html { height: 100% }
 body { height: 100%; margin: 0; padding: 0 }
 #map-canvas { height: 100% }
</style>
<script type="text/javascript"
 src="https://maps.googleapis.com/maps/api/js?
 key=YOUR_KEY_HERE&libraries=drawing"></script>

11.	 Then, add the following code, also to the head of the HTML document, right at the
bottom of the code we inserted in the previous step:
<script type="text/javascript">
 var map;
 function initialize()
 {
 // Add map
 var mapOptions =
 {
 center: new google.maps.LatLng
 (40.705311, -74.2581939),
 zoom: 6
 };

 map = new google.maps.Map
 (document.getElementById
 ("map-canvas"),mapOptions);

 // Add event listener
 google.maps.event.addListener(map,
 'zoom_changed', function()
 {
 //alert(map.getZoom());
 });

Developing a Web Application Using Qt Web Engine

262

 // Add marker
 var marker = new google.maps.Marker(
 {
 position: new google.maps.LatLng
 (40.705311, -74.2581939),
 map: map,
 title: "Marker A",
 });
 google.maps.event.addListener
 (marker, 'click', function()
 {
 map.panTo(marker.getPosition());
 });
 marker.setMap(map);

 // Add polyline
 var points = [new google.maps.LatLng
 (39.8543, -73.2183), new google.maps.
 LatLng(41.705311, -75.2581939), new
 google.maps.LatLng(40.62388, -75.5483)];
 var polyOptions =
 {
 path: points,
 strokeColor: '#FF0000',
 strokeOpacity: 1.0,
 strokeWeight: 2
 };
 historyPolyline = new
 google.maps.Polyline(polyOptions);
 historyPolyline.setMap(map);

 // Add polygon
 var points = [new google.maps.LatLng
 (37.314166, -75.432),
 new google.maps.LatLng(40.2653, -74.4325),
 new google.maps.LatLng(38.8288, -76.5483)];
 var polygon = new google.maps.Polygon(
 {
 paths: points,
 fillColor: '#000000',
 fillOpacity: 0.2,
 strokeWeight: 3,
 strokeColor: '#fff000',
 });
 polygon.setMap(map);

Chapter 9

263

 // Setup drawing manager
 var drawingManager =
 new google.maps.drawing.DrawingManager();
 drawingManager.setMap(map);
 }

 google.maps.event.addDomListener
 (window, 'load', initialize);

</script>

12.	 Once you're done with that, compile and run the project. You should see something
similar to this:

How it works…
Google allows you to embed Google Maps in a web page by using their JavaScript library
called the Google Maps API. Through Qt's WebEngine module, we can embed Google Maps
in our C++ project by loading a HTML file to our web view widget, which uses the Google
Maps API. The only downside of this method is that we cannot load the map when there
is no Internet connection.

Developing a Web Application Using Qt Web Engine

264

Google allows your website to call any Google API, many thousands of times per day. If you
plan for heavier traffic, you should get a free API key from Google. Go to https://console.
developers.google.com to get a free key and replace the word YOUR_KEY_HERE in the
JavaScript source path with the API key you obtained from Google.

We must define a <div> object, which serves as a container for the map. Then, when we
initialize the map, we specify the ID of the <div> object so that the Google Maps API knows
which HTML element to look for when embedding the map.

By default, we set the center of the map to the coordinates of New York and set the default
zoom level to 6. Then, we added an event listener that gets triggered when the zoom level of
the map changes. Remove the double slashes // from the code to see it in action.

After that, we also added a marker to the map through JavaScript. The marker also has an
event listener attached to it, which will trigger the panTo() function when the marker is
clicked. What it does is basically pan the map view to the marker that has been clicked.

Although we have added the drawing manager to the map (the icon buttons beside the Map
and Satellite buttons), which allows users to draw any type of shape on top of the map, it's
also possible to add the shapes manually using JavaScript, similar to how we added the
marker in the previous step.

Lastly, you may have noticed that the headers are added to mainwindow.cpp instead of
mainwindow.h. This is totally fine unless you are declaring class pointers in mainwindow.h;
then you have to include those headers in it.

Calling C++ functions from JavaScript
In this recipe, we will learn how put our knowledge to use and create a functional login screen
using Qt and MySQL.

How to do it…
Learn how to call C++ functions from JavaScript through the following steps:

1.	 First, create a Qt Widgets Application project and, once you're done, open up the
project file (.pro) and add the following modules to the project:
QT += core gui webengine webenginewidgets

2.	 Then, open up mainwindow.ui and delete the tool bar, menu bar, and status bar,
as we don't need any of these in this example program.

https://console.developers.google.com
https://console.developers.google.com

Chapter 9

265

3.	 After that, add a vertical layout to the canvas, and then select the canvas and click on
the Lay Out Vertically button on top of the canvas. Then, add a text label to the top
of the vertical layout and set its text to Hello!. Also, make its font bigger by setting its
stylesheet property:
font: 75 26pt "MS Shell Dlg 2";

4.	 Next, go to File | New File or Project and create a resource file. Then, add an empty
HTML file and all the JavaScript files, CSS files, font files, and so on belonging to
jQuery, Boostrap, and Font Awesome to your project resources:

Developing a Web Application Using Qt Web Engine

266

5.	 After that, open up your HTML file, which in this case is called test.html. First, link
all the necessary JavaScript and CSS files to the HTML source code, between the
<head> tags:
<!DOCTYPE html>
<html>
 <head>
 <script src="qrc:///qtwebchannel/qwebchannel.js"></script>

 <script src="js/jquery.min.js"></script>
 <script src="js/bootstrap.js"></script>

 <link rel="stylesheet" type="text/css"
 href="css/bootstrap.css">
 <link rel="stylesheet" type="text/css" href="css/font-
 awesome.css">
 </head>
 <body>
 </body>
</html>

6.	 Then, add the following JavaScript to the <head> element, wrapped between the
<script> tags:
<script>
 $(document).ready(function()
 {
 new QWebChannel(qt.webChannelTransport,
 function(channel)
 {
 mainWindow = channel.objects.mainWindow;
 });

 $("#login").click(function(e)
 {
 e.preventDefault();

 var user = $("#username").val();
 var pass = $("#password").val();
 mainWindow.showLoginInfo(user, pass);
 });

 $("#changeText").click(function(e)
 {
 e.preventDefault();

Chapter 9

267

 mainWindow.changeQtText("Good bye!");
 });
 });
</script>

7.	 Then, add the following code to the <body> element:
<div class="container-fluid">
 <form id="example-form" action="#" class=
 "container-fluid">
 <div class="form-group">
 <div class="col-md-12"><h3>Call C++ Function
 from Javascript</h3></div>

 <div class="col-md-12"><div class="alert
 alert-info" role="alert">
 <i class="fa fa-info-circle"></i>
 Click "Login" to send
 username and password variables to C++.
 Click "Change Cpp Text" to change the text
 label on Qt GUI.</div></div>

 <div class="col-md-12">
 <label>Username:</label>
 <input id="username" type="text"><p />
 </div>

 <div class="col-md-12">
 <label>Password:</label> <input id=
 "password" type="password"><p />
 </div>

 <div class="col-md-12">
 <button id="login" class="btn btn-success"
 type="button"><i class="fa fa-check"></i>
 Login</button> <button id="changeText"
 class="btn btn-primary" type="button">
 <i class="fa fa-pencil"></i>
 Change Cpp Text</button>
 </div>
 </div>
 </form>
</div>

Developing a Web Application Using Qt Web Engine

268

8.	 Once you are done with that, let's open up mainwindow.h and add the following
public functions to the MainWindow class:
public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

 Q_INVOKABLE void changeQtText(QString newText);
 Q_INVOKABLE void showLoginInfo(QString user,
 QString pass);

9.	 After that, open up mainwindow.cpp and add the following headers to the top of
the source code:
#include <QtWebEngineWidgets/QWebEngineView>
#include <QtWebChannel/QWebChannel>
#include <QMessageBox>

10.	 Then, add the following code to the MainWindow constructor:
MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow)
{
 qputenv("QTWEBENGINE_REMOTE_DEBUGGING", "1234");

 ui->setupUi(this);

 QWebEngineView* webview = new QWebEngineView();
 ui->verticalLayout->addWidget(webview);

 QWebChannel* webChannel = new QWebChannel();
 webChannel->registerObject("mainWindow", this);
 webview->page()->setWebChannel(webChannel);

 webview->page()->load(QUrl("qrc:///html/test.html"));
}

11.	 After that, we will declare what happens when changeQtText() and
showLoginInfo() are called:
void MainWindow::changeQtText(QString newText)
{
 ui->label->setText(newText);
}

Chapter 9

269

void MainWindow::showLoginInfo(QString user, QString pass)
{
 QMessageBox::information(this, "Login info", "Username
 is " + user + " and password is " + pass);
}

12.	 Let's compile and run the program now; you should see something similar to
the following screenshot. If you click on the Change Cpp Text button, the word Hello!
at the top will change to Goodbye! If you click on the Login button, a message box
will appear and show you exactly what you typed in the Username and Password
input fields:

How it works…
In this example, we used two JavaScript libraries, jQuery and Boostrap. We also used an iconic
font package called Font Awesome. These third-party add-ons were used to make the HTML
user interface more interesting and responsive to different screen resolutions. We also used
jQuery to detect the document's ready status, as well as to obtain the values of the input
fields. You can download jQuery from https://jquery.com/download, Bootstrap from
http://getbootstrap.com/getting-started/#download, and Font Awesome from
http://fontawesome.io.

Qt's WebEngine uses a mechanism called Web Channel that enables peer-to-peer
communication between the C++ program and the HTML page. The WebEngine module
provides a JavaScript library that makes the integration a lot easier. The JavaScript is
embedded in your project's resource by default, so you don't need to import it into your
project manually. You just have to include it in your HTML page by calling the following:

<script src="qrc:///qtwebchannel/qwebchannel.js"></script>

https://jquery.com/download
http://getbootstrap.com/getting-started/#download
http://fontawesome.io

Developing a Web Application Using Qt Web Engine

270

Once you have included qwebchannel.js, you can initialize the QWebChannel class and
assign the Qt object we registered earlier in C++ to a JavaScript variable.

In C++, it as follows:

QWebChannel* webChannel = new QWebChannel();
webChannel->registerObject("mainWindow", this);
webview->page()->setWebChannel(webChannel);

Then in JavaScript, it is as follows:

new QWebChannel(qt.webChannelTransport, function(channel)
{
 mainWindow = channel.objects.mainWindow;
});

You may be wondering what this line means:

qputenv("QTWEBENGINE_REMOTE_DEBUGGING", "1234");

Qt's web engine uses the remote debugging method to check for JavaScript errors and other
problems. The number 1234 defines the port number you want to use for remote debugging.
Once you have enabled remote debugging, you can access the debugging page by opening
up a Chromium-based web browser, such as Google Chrome (this will not work in Firefox and
other browsers) and typing in http://127.0.0.1:1234. You will then see a page that look
like this:

The first page will display all the HTML pages that are currently running in your program, which
in this case is test.html. Click on the page link and it will take you to another page for
inspection. You can use this to check for CSS errors, JavaScript errors, missing files, and so
on. Note that you should disable remote debugging once your program is bug-free and ready
for deployment. This is because remote debugging takes time to initiate and it will increase
your program's startup time.

Chapter 9

271

If you want to call a C++ function from JavaScript, you must place the Q_INVOKABLE macro in
front the function's declaration; otherwise, it will not work:

Q_INVOKABLE void changeQtText(QString newText);

Calling JavaScript functions from C++
In the previous example, we have learned how to call C++ functions from JavaScript through
Qt's Web Channel system. In this example, we will try to do the reverse: call JavaScript
functions from C++ code.

How to do it…
We can call JavaScript functions from C++ through the following steps:

1.	 As usual, create a new Qt Widgets Application project and add the webengine and
webenginewidgets modules to your project.

2.	 Then, open up mainwindow.ui and remove the tool bar, menu bar, and status bar.

3.	 After that, add a vertical layout and a horizontal layout to the canvas. Then, select the
canvas and click Lay Out Vertically. Make sure the horizontal layout is located at the
bottom of the vertical layout.

4.	 Add two push buttons to the horizontal layout; one is called Change HTML Text and
the other one is called Play UI Animation. Right-click on one of the buttons and
click Go to slot…. A window will now pop up and ask you to pick a signal. Select the
clicked() option and click OK. Qt will automatically add a slot function to your source
code. Repeat this step for the other button as well:

Developing a Web Application Using Qt Web Engine

272

5.	 Now, open up mainwindow.h and add the following headers to it:
#include <QtWebEngineWidgets/QWebEngineView>
#include <QtWebChannel/QWebChannel>
#include <QMessageBox>

6.	 Then, declare the class pointer of a QWebEngineView object called webview:
public:
 explicit MainWindow(QWidget *parent = 0);
 ~MainWindow();

 QWebEngineView* webview;

7.	 After that, open up mainwindow.cpp and add the following code to the
MainWindow constructor:
MainWindow::MainWindow(QWidget *parent) :
 QMainWindow(parent),
 ui(new Ui::MainWindow)
{
 //qputenv("QTWEBENGINE_REMOTE_DEBUGGING", "1234");

 ui->setupUi(this);

 webview = new QWebEngineView();
 ui->verticalLayout->addWidget(webview);

 QWebChannel* webChannel = new QWebChannel();
 webChannel->registerObject("mainWindow", this);
 webview->page()->setWebChannel(webChannel);

 webview->page()->load(QUrl("qrc:///html/test.html"));
}

8.	 Then, define what will happen when the changeHtmlText button and the
playUIAnimation button are clicked:
void MainWindow::on_changeHtmlTextButton_clicked()
{
 webview->page()->runJavaScript("changeHtmlText('Text
 has been replaced by C++!');");
}

void MainWindow::on_playUIAnimationButton_clicked()
{
 webview->page()->runJavaScript("startAnim();");
}

Chapter 9

273

9.	 Once you're done with that, let's create a resource file for our project by going to File
| New File or Project. Then, select Qt Resource File under the Qt category and click
Choose. Then, insert your desired file name and click Next, followed by Finish.

10.	 Then, add an empty HTML file and all the required add-ons (jQuery, Bootstrap, and
Font Awesome) to our project resources. Also, add the tux.png image file to the
resources file as well, as we'll be using it in a short while.

11.	 After that, open up the HTML file we just created and add it to the project resources,
in our case, it's called test.html. Then, add the following HTML code to the file:
<!DOCTYPE html>
<html>
 <head>
 <script src="qrc:///qtwebchannel/qwebchannel.js">
 </script>

 <script src="js/jquery.min.js"></script>
 <script src="js/bootstrap.js"></script>

 <link rel="stylesheet" type="text/css"
 href="css/bootstrap.css">
 <link rel="stylesheet" type="text/css" href="css/
 font-awesome.css">
 </head>
 <body>
 </body>
</html>

12.	 Add the following JavaScript code, which is wrapped within the <script> tags, to the
<head> element of our HTML file:
<script>
 $(document).ready(function()
 {
 $("#tux").css({ opacity:0, width:"0%",
 height:"0%" });
 $("#listgroup").hide();
 $("#listgroup2").hide();

 new QWebChannel(qt.webChannelTransport,
 function(channel)
 {
 mainWindow = channel.objects.mainWindow;
 });
 });

Developing a Web Application Using Qt Web Engine

274

 function changeHtmlText(newText)
 {
 $("#infotext").html(newText);
 }

 function startAnim()
 {
 // Reset
 $("#tux").css({ opacity:0, width:"0%",
 height:"0%" });
 $("#listgroup").hide();
 $("#listgroup2").hide();

 $("#tux").animate({ opacity:1.0, width:"100%",
 height:"100%" }, 1000, function()
 {
 // tux animation complete
 $("#listgroup").slideDown(1000,
 function()
 {
 // listgroup animation complete
 $("#listgroup2").fadeIn(1500);
 });
 });
 }
</script>

13.	 Lastly, add the following code to the <body> element of our HTML file:
<div class="container-fluid">
 <form id="example-form" action="#" class="container-
 fluid">
 <div class="form-group">
 <div class="col-md-12"><h3>Call Javascript Function
 from C++</h3></div>

 <div class="col-md-12"><div class="alert alert-
 info" role="alert"><i class="fa
 fa-info-circle"></i>
 Change this text using C++.</div></div>

 <div class="col-md-2">

 </div>

Chapter 9

275

 <div class="col-md-5">
 <ul id="listgroup" class="list-group">
 <li class="list-group-item">Cras justo
 odio
 <li class="list-group-item">Dapibus ac
 facilisis in
 <li class="list-group-item">Morbi leo
 risus
 <li class="list-group-item">Porta ac
 consectetur ac
 <li class="list-group-item">Vestibulum at
 eros

 </div>

 <div id="listgroup2" class="col-md-5">

 <h4 class="list-group-item-heading">
 Item heading</h4>
 <p class="list-group-item-text">
 Cras justo odio</p>

 <h4 class="list-group-item-heading">
 Item heading</h4>
 <p class="list-group-item-text">
 Dapibus ac facilisis in</p>

 <h4 class="list-group-item-heading">
 Item heading</h4>
 <p class="list-group-item-text">
 Morbi leo risus</p>

 </div>

 </div>
 </form>
</div>

Developing a Web Application Using Qt Web Engine

276

14.	 Build and run the program now; you should get a similar result to that shown in
the following screenshot. When you click on the Change HTML Text button, the
information text is located within the top panel. If you click on the Play UI Animation
button, the penguin image alongside the two sets of widgets will appear one after the
other, with different animations:

How it works…
This example is similar to the previous one. Once we have included the Web Channel
JavaScript library and initiated the QWebChannel class, we can call any of the JavaScript
functions from C++ by calling webview->page()->runJavascript("jsFunctionNameH
ere();"). Don't forget to apply the web channel created in C++ to the WebView's page
as well; otherwise, it will not be able to communicate with the QWebChannel class in your
HTML file.

By default, we change the CSS properties of the penguin image and set its opacity to 0,
width to 0%, and height to 0%. We also hide the two list groups by calling the jQuery function
hide(). When the Play UI Animation button is clicked, we repeat the same steps again just
in case the animations have been played before (the same button has been clicked before),
then we hide them again in order for the animations to be replayed.

Chapter 9

277

One powerful feature of jQuery is that you can define what happens after an animation is
done, which allows us to play the animations in sequence. In this example, we started with the
penguin image and interpolated its CSS properties to a targeted setting within a second (1000
milliseconds). Once that's done, we start another animation, which makes the first list group
slide from top to bottom in 1 second. After that, we run the third animation, which makes the
second list group fade in from nowhere within 1.5 seconds.

To replace the information text located in the top panel, we created a JavaScript function
called changeHtmlText() and within the function itself, we got the HTML element by
referring to its ID and calling html() to change its contents.

279

Index
Symbols
2D canvas

rendering, in QML 94-98
2D shapes

rendering 106-109
3D images

rendering, with QML 125-130
3D shapes

rendering 109-114

A
advanced SQL queries

using 233-243
Android Native Development Kit (NDK) 136
Android Software Development Kit (SDK) 136
animation group

creating 44-46
animations

in QML 53-57
animators

used, for animating widget properties 57-59
Apache Ant 136
Application Program Interface (API) 99
AppServ

reference link 208

B
basic paint program

creating 88-94
basic shapes

drawing, on screen 66-69

basic SQL queries
writing 216-221

basic style sheet customization 6-10
basic user interface

designing, with QML 138-142
Bootstrap

download link 269

C
C++

integrating, with QML 160-165
JavaScript functions, calling from 271-276
QML object pointer, exposing to 36-38

Cascading Style Sheets (CSS)
about 1
and Qt Style Sheets, similarities 6

C++ functions
calling, from JavaScript 264-270

Connector/C++ package
download link 212

coordinate transformation
using 75-80

currency
converting 202-206

Currency API
Jsonrates 206
reference link 206
XE Currency Data API 206

Currencylayer
reference link 206

custom properties
setting 23-27

280

D
data

converting 187-192
database

information, displaying on model
view 227-233

Density-per-Pixel (DPI) 142

E
easing curves

reference link 44
used, for controlling property

animation 42-44
Extensible Markup Language. See XML

F
FFmpeg

documentation, reference link 201
formats, reference link 201
settings, reference link 201

Fixer.io
reference link 206

Font Awesome
about 269
download link 269

G
Geocoding API, Google

using 182-185
Google

reference link 264
Google Maps

embedding, in project 259-264
Google Maps APIs Web Services

reference link 185
Graphical User Interface (GUI) 39
graphics

image effects, applying to 85-88

H
Hello world project

creating 103-106

I
image effects

applying, to graphics 85-88
image formats

reference link 192
images

converting 192-195
displaying, on screen 80-84

information
displaying, with model view 155-159

J
Java Development Kit (JDK) 136
JavaScript

C++ functions, calling from 264-270
JavaScript functions

calling, from C++ 271-276
jQuery

download link 269

K
keyboard control

used, for moving object 122-125
key names

reference link 125

L
login screen

creating, with Qt 221-227
creating, with style sheet 11-18

M
mobile application

Qt, setting up for 132-137
model view

information, displaying from
database 227-233

used, for displaying information 155-159
mvc2015 component 246
MySQL

reference link 208
MySQL Workbench

installation link 208

281

N
nested animation group

creating 47-49

O
object

moving, with keyboard control 122-125
Open Exchange Rate

reference link 206
Open Graphics Library (OpenGL)

filtering effects, applying 118-122
lighting effects, applying 118-122
setting up, in Qt 100-103
texture filter, applying 118-122
texturing 114-117

P
parameters, curves

amplitude 43
overshoot 43
period 43

PhpMyAdmin
reference link 208

Plain Text Edit widget 253
property animation, Qt

controlling, with easing curves 42-44
using 39-42

property animations, QML
anchor animation 57
color animation 57
number animation 57
parent animation 57
path animation 57
property animation 57
rotation animation 57
vector3d animation 57

pseudo states
reference link 27

Push Button 168

Q
QDomDocument class

used, for processing XML data 176-178
used, for writing XML data 179-181

QML
2D canvas, rendering 94-98
animation 149-155
animations 53-56
integrating, with C++ 160-165
sprite animation, using 59-63
states 53-56
styling 27-36
transitions 53-56
used, for designing basic user

interface 138-142
used, for rendering 3D images 125-130

QML elements
canvas 36
imports window 35
library window 35
navigator window 35
properties pane 36
resources window 35
state pane 36

QML object pointer
exposing, to C++ 36-38

QPdfWriter class
reference link 195

QPropertyAnimation class 40
Qt

about 1
documentation, reference link 243
OpenGL, setting up 100-103
property animation, using 39-41
QParallelAnimationGroup class 47
QSequentialAnimationGroup class 47
setting up, for mobile application 132-137
state machine, using 50-52
used, for creating login screen 221-227

Qt Designer
style sheets, using with 1-5

Qt Designer interface
Action Editor and Signals & Slots Editor 5
build shortcuts 4
form editor 5
form toolbar 5
menu bar 4
mode selector 4
object inspector 5
output panes 5

282

property editor 5
widget box 4

Qt Modeling Language. See QML
Qt Quick

reference link 149
used, for developing touch-driven

application 142-149
Qt Style Sheets

and Cascading Style Sheets (CSS)
similarities 6

Qt WebEngine
about 246
reference link 252
setting up 246-252

Qt WebKit 245
Qt Widgets Application project 167, 182

R
resources

using, in style sheet 19-22

S
Scalable Vector Graphics (SVG) files

about 75
reference link 75
shapes, exporting to 69-75

screen
basic shapes, drawing 66-69
images, displaying 80-84

selectors, CSS2
reference link 6

shapes
exporting, to Scalable Vector Graphics (SVG)

files 69-75
Short Message Service (SMS) 206
sprite animation

creating, in QML 59-63
example, reference link 63

SQL
reference link 207
setting up 208-213

SQL database
connecting to 213-215

state machine
using, in Qt 50-52

states
in QML 53-57

stream reader
used, for processing XML data 167-172

Stream Writer
used, for writing XML data 173-175

Structured Query Language. See SQL
style sheet

resources, using 19-22
used, for creating login screen 11-18
using, with Qt Designer 1-5

sub-controls
reference link 27
setting 23-27

sub-systems, Qt
animation framework 41
graphics view framework 42
state machine framework 41
timeline 41
timer 41

T
texture mapping 114
three.js

reference link 130
touch-driven application

developing, with Qt Quick 142-149
transitions

in QML 53-57

U
Use Gradle instead of Ant option 136

V
videos

converting 196-201
Visual Studio

reference link 246

283

W
Web Channel 269
web engine module 245
web settings 252-258
WebView 252-258
widget properties

animating, with animators 57-59

X
XAMPP

download link 208
reference link 208

XML
about 167
format, reference link 172

XML data
processing, with QDomDocument

class 176-178
processing, with stream reader 167-172
writing, with QDomDocument class 179-181
writing, with Stream Writer 173-175

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Look and Feel Customization
	Introduction
	Use style sheets with Qt Designer
	Basic style sheet customization
	Creating a login screen using style sheets
	Using resources in style sheets
	Customizing properties and sub-controls
	Styling in QML
	Exposing QML object pointer to C++

	Chapter 2: States and Animations
	Introduction
	Property animation in Qt
	Using easing curves to control property animation
	Creating an animation group
	Creating a nested animation group
	State machines in Qt
	States, transitions, and animations in QML
	Animating widget properties using animators
	Sprite animation

	Chapter 3: QPainter and
2D Graphics
	Introduction
	Drawing basic shapes on screen
	Exporting shapes to SVG files
	Coordinate transformation
	Displaying images on screen
	Applying image effects to graphics
	Creating a basic paint program
	2D canvas in QML

	Chapter 4: OpenGL Implementation
	Introduction
	Setting up OpenGL in Qt
	Hello world!
	Rendering 2D shapes
	Render 3D shapes
	Texturing in OpenGL
	Lighting and texture filter in OpenGL
	Moving an object using keyboard controls
	3D canvas in QML

	Chapter 5: Building a Touch Screen Application with Qt5
	Introduction
	Setting up Qt for mobile applications
	Designing a basic user interface with QML
	Touch events
	Animation in QML
	Displaying information using Model View
	Integrating QML and C++

	Chapter 6: XML Parsing Made Easy
	Introduction
	Processing XML data using stream reader
	Writing XML data using Stream Writer
	Processing XML data using the QDomDocument class
	Writing XML data using the QDomDocument class
	Using Google's Geocoding API

	Chapter 7: Conversion Library
	Introduction
	Data conversion
	Image conversion
	Video conversion
	Currency conversion

	Chapter 8: Accessing Databases
	Introduction
	Connecting to a database
	Writing basic SQL queries
	Creating a login screen with Qt
	Displaying information from a database on a model view
	Advanced SQL queries

	Chapter 9: Developing a Web Application using
Qt Web Engine
	Introduction
	Introduction to Qt WebEngine
	WebView and web settings
	Embedding Google Maps in your project
	Calling C++ functions from JavaScript
	Calling JavaScript functions from C++

	Index

