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Preface
With the growth of data in volume and type, it is becoming very essential to perform data
mining in order to extract insights from large datasets. This is because organizations feel the
need to a get return on investment (ROI) from large-scale data implementations. The
fundamental reason behind data mining is to find out hidden treasure in large databases so
that the business stakeholders can take action about future business outcomes. Data mining
processes not only help the organizations reduce cost and increase profit but also help them
find out new avenues.

In this book, I am going to explain the fundamentals of data mining using an open source
tool and programming language known as R. R is a freely available language and
environment for performing statistical computation, graphical data visualization, predictive
modeling, and integration with other tools and platforms. I am going to explain the data
mining concepts by taking example datasets using the R programming language.

In this book, I am going to explain the topics, their mathematical formulation, their
implementation in a software environment, and also how the topics help in solving a
business problem. The book is designed in such a way that the user can start from data
management techniques, exploratory data analysis, data visualization, and modeling up to
creating advanced predictive modeling such as recommendation engines, neural network
models, and so on. It also gives an overview of the concept of data mining, its various facets
with data science, analytics, statistical modeling, and visualization. 

So let’s have a look at the chapters briefly!

What this book covers
Chapter 1, Data Manipulation Using In-built R Data, gives a glimpse of programming basics
using R, how to read and write data, programming notations, and syntax understanding
with the help of a real-world case study. It also includes R scripts for practice to get hands-
on experience of the concepts, terminologies, and underlying reasons for performing certain
tasks. The chapter is designed in such a way that any reader with little programming
knowledge should be able to execute R commands to perform various data mining tasks.
We will discuss in brief the meaning of data mining and its relations with other domains
such as data science, analytics, and statistical modeling; apart from this, we will start the
data management topics using R.
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Chapter 2, Exploratory Data Analysis with Automobile Data, helps the learners to understand
exploratory data analysis. It involves numerical as well as graphical representation of
variables in a dataset for easy understanding and quick conclusion about a dataset. It is
important to get an understanding of the dataset, type of variables considered for analysis,
the association between various variables, and so on. Creating cross-tabulations to
understand the relationship between categorical variables and performing classical
statistical tests on the data to verify various different hypotheses about the data can be
tested out.

Chapter 3, Visualize Diamond Dataset, covers the basics of data visualization along with
how to create advanced data visualization using existing libraries in the R programming
language. While looking at numbers and statistics, it may tell a similar story for the
variables we are looking at by different cuts; however, when we visually look at the
relationship between variables and factors, it shows a different story altogether. Hence, data
visualization tells you a message that numbers and statistics fail to do.

Chapter 4, Regression with Automobile Data, helps you to know the basics of predictive
analytics using regression methods, including various linear and nonlinear regression
methods using R programming. In this chapter, you will get to know the basics of
predictive analytics using regression methods, including various linear and nonlinear
regression methods using R programming. You will be able to understand the theoretical
background as well as get practical hands-on experience on all the regression methods
using R.

Chapter 5, Market Basket Analysis with Groceries Data, shows the second method of product
recommendation, popularly known as Market Basket Analysis (MBA) and also known as
association rules. This is about associating items purchased at transaction level, finding out
the sub-segments of users having similar products and hence, recommending the products.
MBA can also be used to form upsell and cross-sell strategies.

Chapter 6, Clustering with E-commerce Data, teaches the following things: what
segmentation is, how clustering can be applied to perform segmentation, what are the
methods used for clustering, and a comparative view of the various methods for
segmentation. In this chapter, you will know the basics of segmentation using various
clustering methods.

Chapter 7, Building a Retail Recommendation Engine, covers the following things and their
implementation using the R programming language: what recommendation is and how it
works, types and methods for performing recommendation, and implementation of product
recommendation using R.
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Chapter 8, Dimensionality Reduction, implements dimensionality reduction techniques
such as PCA, singular value decomposition (SVD), and iterative feature selection methods
using a practical dataset and R. With the growth of data in volumes and variety, dimensions
of data have been continuously on the rise. Dimensionality reduction techniques have many
applications in different industries, such as in image processing, speech recognition,
recommendation engines, text processing, and so on.

Chapter 9, Applying Neural Networks to Healthcare Data, teaches you various types of neural
networks, methods, and variants of neural networks with different functions to control the
training of artificial neural networks in performing standard data mining tasks such as
these: prediction of real-valued output using regression-based methods, prediction of
output levels in a classification-based task, forecasting future values of a numerical attribute
based on historical data, and compressing features to recognize important ones in order to
perform prediction or classification.

What you need for this book
To follow the examples and code shared along with this book, you need to have R software
downloaded from h t t p s : / / c r a n . r - p r o j e c t . o r g / (it is optional to download RStudio
from h t t p s : / / w w w . r s t u d i o . c o m /) and have it installed on the machine. There are no
specific hardware requirements; you can have any computer with more than 2 GB RAM
and it works on all platforms, including Mac, Linux, and Windows.

Who this book is for
This book is for readers who are starting their career in data mining, data science, or
predictive modeling, or they are at some intermediate level with some degree of statistical
knowledge and programming knowledge. Basic statistical knowledge is a must to
understand the data mining concepts covered in this book. Having prior programming
knowledge is not mandatory as first couple of chapters, I am going to cover data
management and basic statistical analysis using R. This book is also for students,
professionals, and experienced people aspiring to become data analysts.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

https://cran.r-project.org/
https://www.rstudio.com/
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Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "In the
current scenario from the ArtPiece dataset, we are trying to predict whether a work of art
is a good purchase, or not, by taking a few business-relevant variables."

Any command-line input or output is written as follows:

>fit<- neuralnet(formula = CurrentAuctionAveragePrice ~ Critic.Ratings +
Acq.Cost + CollectorsAverageprice + Min.Guarantee.Cost, data = train,
hidden = 15, err.fct = "sse", linear.output = F)
> fit
Call: neuralnet(formula = CurrentAuctionAveragePrice ~ Critic.Ratings +
Acq.Cost + CollectorsAverageprice + Min.Guarantee.Cost, data = train,
hidden = 15, err.fct = "sse", linear.output = F)
1 repetition was calculated.
Error Reached Threshold Steps
1 54179625353167 0.004727494957 23

 

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-
mail feedback@packtpub.com, and mention the book's title in the subject of your
message. If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/authors.

http://www.packtpub.com/authors
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Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p : / / w w w .
p a c k t p u b . c o m. If you purchased this book elsewhere, you can visit h t t p : / / w w w . p a c k t p u
b . c o m / s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s : / / g i t h u b . c o m / P a c k t P u
b l i s h i n g / R - D a t a - M i n i n g - B l u e p r i n t s. We also have other code bundles from our rich
catalog of books and videos available at h t t p s : / / g i t h u b . c o m / P a c k t P u b l i s h i n g /.
Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from h t t p s : / / w w w . p a c k t p u b . c o m / s i t e s / d e f a u l t / f i l e s /
d o w n l o a d s / R D a t a M i n i n g B l u e p r i n t s _ C o l o r I m a g e s . p d f.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/CHANGE%20THIS
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/RDataMiningBlueprints_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/RDataMiningBlueprints_ColorImages.pdf
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Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p : / / w w w . p a c k t p u b . c o m / s u b m i t - e r r a t a,
selecting your book, clicking on the Errata Submission Form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the
errata will be uploaded to our website or added to any list of existing errata under the
Errata section of that title.

To view the previously submitted errata, go to h t t p s : / / w w w . p a c k t p u b . c o m / b o o k s / c o n
t e n t / s u p p o r t and enter the name of the book in the search field. The required information
will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support


1
Data Manipulation Using In-built

R Data
The book R Data Mining Blueprints focuses mainly on learning methods and steps in
performing data mining using the R programming language as a platform. Since R is an
open source tool, learning data mining using R is very interesting for learners at all levels.
The book is designed in such a way that the user can start from data management
techniques, exploratory data analysis, data visualization, and modeling up to creating
advanced predictive modeling such as recommendation engines, neural network models,
and so on. This chapter gives an overview of the concept of data mining, its various facets
with data science, analytics, statistical modeling, and visualization. This chapter gives a
glimpse of programming basics using R, how to read and write data, programming
notations, and syntax understanding with the help of a real-world case study. This chapter
includes R scripts for practice to get hands-on experience of the concepts, terminologies,
and underlying reasons for performing certain tasks. The chapter is designed in such a way
that any reader with little programming knowledge should be able to execute R commands
to perform various data mining tasks.

In this chapter, we will discuss in brief the meaning of data mining and its relations with
other domains such as data science, analytics, and statistical modeling; apart from this, we
will start the data management topics using R so that you can achieve the following
objectives:

Understanding various data types used in R, including vector and its operations
Indexing of data frames and factors sequences
Sorting and merging dataframes and data type conversion
String manipulation and date object formatting
Handling missing values and NAs and missing value imputation techniques
Flow control, looping constructs, and the use of apply functions
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What is data mining?
Data mining can be defined as the process of deciphering meaningful insights from existing
databases and analyzing results for consumption by business users. Analyzing data from
various sources and summarizing it into meaningful information and insights is that part of
statistical knowledge discovery that helps not only business users but also multiple
communities such as statistical analysts, consultants, and data scientists. Most of the time,
the knowledge discovery process from databases is unexpected and the results can be
interpreted in many ways.

The growing number of devices, tablets, smartphones, computers, sensors, and various
other digital devices helps in generating and collecting data at a much faster rate than ever
before. With the ability of modern-day computers, the increased data can be preprocessed
and modeled to answer various questions related to any business decision-making process.
Data mining can also be defined as a knowledge-intensive search across discrete databases
and information repositories using statistical methodologies, machine learning techniques,
visualization, and pattern recognition technologies.

The growth of structured and unstructured data, such as the existence of bar codes in all
products in a retail store, attachment of RFID-based tags on all assets in a manufacturing
plant, Twitter feeds, Facebook posts, integrated sensors across a city to monitor the
changing weather conditions, video analysis, video recommendation based on viewership
statistics, and so on creates a conducive ecosystem for various tools, technologies, and
methodologies to splurge. Data mining techniques applied to the variety of data discussed
previously not only provide meaningful information about the data structure but also
recommend possible future actions to be taken by businesses.
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Figure 1: Data Mining – a multi-disciplinary subject

The process of data mining involves various steps:

Extract the required data from databases and data warehouses.1.
Perform a sanity check on the data to remove redundant characters and irrelevant2.
information.
At times, it is important to combine information from various other disjoint3.
databases. Hence, look for common attributes to combine databases.
Apply data transformation techniques. Sometimes, it is required to include a few4.
attributes and features in a model.
Pattern recognition among the input features, where any of the pattern5.
recognition methods can be applied.
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Knowledge representation. This includes representation of knowledge mined6.
from the databases in a visual form to various business stakeholders.

Figure 2: A typical data mining process flow

Having discussed the process flow of data mining and the core components, it is also
important to look at a few challenges that one may encounter in data mining, such as
computational efficiency, unstructured databases and their confluence with structured
databases, high-dimensional data visualization, and so on. These issues can be resolved
using innovative approaches. In this book, we are going to touch upon a few solutions
while performing practical activities on our projects.
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How is it related to data science, analytics, and
statistical modeling?
Data science is a broader topic under which the data mining concept resides. Going by the
aforementioned definition of data mining, it is a process of identifying patterns hidden in
data and some interesting correlations that can provide useful insights. Data mining is a
subset in data science projects that involves techniques such as pattern recognition, feature
selection, clustering, supervised classification, and so on. Analytics and statistical modeling
involve a wide range of predictive models-classification-based models to be applied on
datasets to solve real-world business problems. There is a clear overlap between the three
terminologies – data science, analytics, statistical modeling, and data mining. The three
terminologies should not be looked at in isolation. Depending upon the project
requirements and the kind of business problem, the overlap position might change, but at a
broad level, all the concepts are well associated. The process of data mining also includes
statistical and machine learning-based methods to extract data and automate rules and also
represent data using good visualizations.

Introduction to the R programming language
In this chapter, we are going to start with basic programming using R for data management
and data manipulation; we are also going to cover a few programming tips. R can be
downloaded fromh t t p s : / / c r a n . r - p r o j e c t . o r g /. Based on the operating system,
anyone can download and install R binary files on their systems. The R programming,
language which is an extension of the S language, is a statistical computing platform. It
provides advanced predictive modeling capability, machine learning algorithms
implementation capability, and better graphical visualization. R has various other plugins
such as R.Net, rJava, SparkR, and RHadoop, which increases the usability of R in big data
scenarios. The user can integrate R scripts with other programming platforms. Detailed
information about R can be accessed using the following link:

h t t p s : / / c r a n . r - p r o j e c t . o r g /.

https://cran.r-project.org/
https://cran.r-project.org/
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Getting started with R
The opening message when starting R would be as shown in the preceding screenshot.
Everything entered in the R console is an object, many objects created in an active R session
have different attributes associated with them, and one common attribute associated with
an object is called its class. There are two popular approaches to object-oriented
programming in R, which are S3 classes and S4 classes. The basic difference between the S3
and S4 approaches is that the former is a more flexible approach; however, the latter is a
more structured approach to object-oriented programming. Both S3 and S4 approaches
recognize any symbol, character, and number as an object in R sessions and provide
functionality where the object can be used for further computations.

Data types, vectors, arrays, and matrices
There are two broad sets of data types: atomic vectors and compound vectors. There are
basically five data types in R programming under the atomic vector category: numeric or
numbers, characters or strings, factors, logical, and complex. And there are four compound
data types: data frame, lists, array, and matrix. The primary data object in R is a vector; even
when we assign a single-digit number to any alphabet, it is a single element vector in R. All
data objects contain a mode and a length. The mode determines the kind of data stored in
the object, and the length determines the number of elements contained in that object. The
c() function in R implies concatenating of various elements in a vector.
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Let's take a look at various examples showing different data types in R:

    > x1<-c(2.5,1.4,6.3,4.6,9.0)
    > class(x1)
    [1] "numeric"
    > mode(x1)
    [1] "numeric"
    > length(x1)
    [1] 5

In the preceding script, the x1 vector is a numeric vector and the number of elements is 5.
Both class() and mode() return the same results, hence both determine the type of vector:

    > x2<-c(TRUE,FALSE,TRUE,FALSE,FALSE)
    > class(x2)
    [1] "logical"
    > mode(x2)
    [1] "logical"
    > length(x2)
    [1] 5

The x2 vector is a logical vector having five elements. The logical vector elements or values
can be written as either T/F or TRUE/FALSE.

    > x3<-
c("DataMining","Statistics","Analytics","Projects","MachineLearning")
    > class(x3)
    [1] "character"
    > length(x3)
    [1] 5

Object x3 represents a character vector of length 25. All elements of the vector can be
mentioned within double quote (" ") or single quote (' ').

The factor is another form of data where various categories listed in the vector are known as
levels, in the preceding example; vector a is a character vector with two levels or categories,
which are repeated with some frequency. The as.factor() command is used to convert a
character vector into a factor data type. After applying that, it indicates there are five levels
such as Analytics, DataMining, MachineLearning, Projects, and Statistics. The
table() command indicates the frequency table computed from the factor variable:

    > x<-data.frame(x1,x2,x3)
    > class(x)
    [1] "data.frame"
    > print(x)
      x1    x2              x3
    1 12  TRUE       Analytics



Data Manipulation Using In-built R Data

[ 14 ]

    2 13 FALSE      DataMining
    3 24  TRUE MachineLearning
    4 54 FALSE        Projects
    5 29  TRUE      Statistics

Dataframes are another popular form of data type in the R programming language that
include all different data types. A dataframe is a list that contains multiple vectors of the
same length and different types of data. If you simply import a dataset from a spreadsheet,
the data type by default becomes dataframe. Later on, the data type for individual variables
can be changed. So, dataframe can be defined as a matrix that contains columns of different
data types. In the preceding script, the dataframe x contains three different data types:
numeric, logical, and character. Most real-world datasets contain different data types; for
example, in a retail store, information about customers is stored in a database. This includes
customer ID, purchase date, amount purchased, whether part of any loyalty program or
not, and so on.

One important point about vectors: all elements of a vector should be of the same type. If
not, R will forcibly convert that by coercion. For example, in a numeric vector, if one
element contains a character value, the vector type will change from numeric to character.
The script is given as follows:

    > x1<-c(2.5,1.4,6.3,4.6,9.0)
    > class(x1)
    [1] "numeric"
    > x1<-c(2.5,1.4,6.3,4.6,9.0,"cat")
    > class(x1)
    [1] "character"

R is case sensitive, so "cat" is different from "Cat". Hence, please be careful while
assigning object names to the vectors. At times, it would be difficult to remember the object
names:

    > ls()
     [1] "a"              "centers"        "df"             "distances"
     [5] "dt2"            "i"              "indexes"        "km"
     [9] "kmd"            "kmeans.results" "log_model"      "mtcars"
    [13] "outliers"       "pred"           "predict.kmeans" "probs"
    [17] "Smarket"        "start"          "sumsq"          "t"
    [21] "test"           "Titanic"        "train"          "x"
    [25] "x1"             "x2"             "x3"             "x4"
    [29] "x5"             "y"              "z"
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To know what all objects are active in the current R session, the ls() command can be
used; the list command will print all the active objects in the current session. Let's take a
look at what a list is, how to retrieve the elements of a list, and how the list function can be
used.

List management, factors, and sequences
A list is an ordered collection of objects that can contain arbitrary objects. Elements of a list
can be accessed using the double square bracket. Those collections of objects are not
necessarily of the same type. They can be of different types:

    > mylist<-list(custid=112233, custname="John R", mobile="989-101-1011",
    + email="JohnR@gmail.com")
    > mylist
    $custid
    [1] 112233
    $custname
    [1] "John R"
    $mobile
    [1] "989-101-1011"
    $email
    [1] "JohnR@gmail.com"

In the preceding example, the customer ID and mobile number are of numeric data type;
however, the customer name and e-mail ID are of character data type. There are basically
four elements in the preceding list. To extract elements from a list, we use double square
brackets, and if we need to extract only a sublist from the list, we can use a single square
bracket:

    > mylist[[2]]
    [1] "John R"
    > mylist[2]
    $custname
    [1] "John R"

The next thing related to lists is how to combine more than one list. Lists can be combined
using the cbind() function, that is, the column bind function:

    > mylist1<-list(custid=112233, custname="John R",
mobile="989-101-1011",
    + email="JohnR@gmail.com")
    > mylist2<-list(custid=443322, custname="Frank S",
mobile="781-101-6211",
    + email="SFranks@hotmail.com")
    > mylist<-cbind(mylist1,mylist2)
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    > mylist
             mylist1           mylist2
    custid   112233            443322
    custname "John R"          "Frank S"
    mobile   "989-101-1011"    "781-101-6211"
    email    "JohnR@gmail.com" "SFranks@hotmail.com"

Factors can be defined as various levels occurring in a categorical or nominal variable with
a certain frequency. In other words, levels that are repetitive in a categorical variable are
known as factors. In the following sample script, a character vector “domains” contains
many levels; using the factor command, the frequency for each level can be estimated.

Sequences are repeated number of iterations, either numerical values or categorical or
nominal values that can be part of a dataset. Numeric sequences can be created using a
colon operator. To generate sequences using factor variables, the gl() function can be used.
This is a very useful function while computing quantiles and graphical functions. Also,
there are various other possible scenarios where you can use the function:

    > seq(from=1,to=5,length=4)
    [1] 1.000000 2.333333 3.666667 5.000000
    > seq(length=10,from=-2,by=.2)
     [1] -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2
    > rep(15,10)
     [1] 15 15 15 15 15 15 15 15 15 15
    > gl(2,5,labels=c('Buy','DontBuy'))
     [1] Buy     Buy     Buy     Buy     Buy     DontBuy DontBuy DontBuy
DontBuy
    [10] DontBuy
    Levels: Buy DontBuy

The first line of code generates the sequence in ascending order, the second line creates a
reverse sequence, and the last line creates a sequence for the factor data type.

Import and export of data types
If the Windows directory path is set, to import a file into the R system, it is not required to
write the complete path where the file resides. If the Windows directory path is set to some
other location in your system and still you want to access the file, then the complete path
needs to be given to read the file:

    > getwd()
    [1] "C:/Users/Documents"
    > setwd("C:/Users/Documents")
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Any file in the documents folder can be read without mentioning the detailed path. Hence it
is always suggested to change the Windows directory to the folder where the file resides.

There are different file formats; among them, CSV or text format is the best for the R
programming platform. However, we can import from other file formats:

    > dt<-read.csv("E:/Datasets/hs0.csv")
    > names(dt)
     [1] "X0"      "X70"     "X4"      "X1"      "X1.1"    "general" "X57"
     [8] "X52"     "X41"     "X47"     "X57.1"

If you are using the read.csv command, there is no need to write the header True and
separator as comma, but if you are using the read.table command, it is mandatory to use.
Otherwise, it will read the first variable from the dataset:

    > data<- read.table("E:/Datasets/hs0.csv",header=T,sep=",")
    > names(data)
     [1] "X0"      "X70"     "X4"      "X1"      "X1.1"    "general" "X57"
     [8] "X52"     "X41"     "X47"     "X57.1"

While mentioning paths to extract the files, you can use either / or \\; both ways will work.
In real-life projects, typically data is stored in Excel format. How to read data from Excel
format is a challenge. It is not always convenient to store data in CSV format and then
import. The following script shows how we can import Excel files in R. Two additional
libraries are required to import an RDBMS file such as Excel. Those libraries are mentioned
in the script and the sample data snippets are given as well:

    > library(xlsx)
    Loading required package: rJava
    Loading required package: xlsxjars
    > library(xlsxjars)
    > dat<-read.xlsx("E:/Datasets/hs0.xls","hs0")
    > head(dat)
      gender  id race ses schtyp  prgtype read write math science socst
    1      0  70    4   1      1  general   57    52   41      47    57
    2      1 121    4   2      1   vocati   68    59   53      63    61
    3      0  86    4   3      1  general   44    33   54      58    31
    4      0 141    4   3      1   vocati   63    44   47      53    56
    5      0 172    4   2      1 academic   47    52   57      53    61
    6      0 113    4   2      1 academic   44    52   51      63    61

Importing data from SPSS files is explained as follows. Legacy enterprise-based software
systems generate data in either SPSS format or SAS format. The syntax for importing data
from SPSS and SAS files needs additional packages or libraries. To import SPSS files, the
Hmisc package is used, and to import SAS files, the sas7bdat library is used:
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    > library(Hmisc)
    > mydata <- spss.get("E:/Datasets/wage.sav", use.value.labels=TRUE)
    > head(mydata)
       HRS  RATE ERSP ERNO NEIN ASSET  AGE   DEP RACE SCHOOL
    1 2157 2.905 1121  291  380  7250 38.5 2.340 32.1   10.5
    2 2174 2.970 1128  301  398  7744 39.3 2.335 31.2   10.5
    3 2062 2.350 1214  326  185  3068 40.1 2.851   NA    8.9
    4 2111 2.511 1203   49  117  1632 22.4 1.159 27.5   11.5
    5 2134 2.791 1013  594  730 12710 57.7 1.229 32.5    8.8
    6 2185 3.040 1135  287  382  7706 38.6 2.602 31.4   10.7
    > library(sas7bdat)
    > mydata <- read.sas7bdat("E:/Datasets/sales.sas7bdat")
    > head(mydata)
      YEAR NET_SALES PROFIT
    1 1990       900    123
    2 1991       800    400
    3 1992       700    300
    4 1993       455     56
    5 1994       799    299
    6 1995       666    199

Exporting a dataset from R to any external location can be done by changing the read
command to the write command and changing the directory path where you want to store
the file.

Data type conversion
There are various types of data such as numeric, factor, character, logical, and so on.
Changing one data type to another if the formatting is not done properly is not difficult at
all using R. Before changing the variable type, it is essential to look at the data type it
currently is. To do that, the following command can be used:

    > is.numeric(x1)
    [1] TRUE
    > is.character(x3)
    [1] TRUE
    > is.vector(x1)
    [1] TRUE
    > is.matrix(x)
    [1] FALSE
    > is.data.frame(x)
    [1] TRUE
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When we are checking a numeric variable as numeric or not, the resultant output will
display TRUE or FALSE. The same holds for other data types as well. If any data type is not
right, that can be changed by the following script:

    > as.numeric(x1)
    [1] 2.5 1.4 6.3 4.6 9.0
    > as.vector(x2)
    [1]  TRUE FALSE  TRUE FALSE FALSE
    > as.matrix(x)
         x1    x2      x3                x4  x5
    [1,] "2.5" " TRUE" "DataMining"      "1" "1+ 0i"
    [2,] "1.4" "FALSE" "Statistics"      "2" "6+ 5i"
    [3,] "6.3" " TRUE" "Analytics"       "3" "2+ 2i"
    [4,] "4.6" "FALSE" "Projects"        "4" "4+ 1i"
    [5,] "9.0" "FALSE" "MachineLearning" "5" "6+55i"
    > as.data.frame(x)
       x1    x2              x3 x4    x5
    1 2.5  TRUE      DataMining  1 1+ 0i
    2 1.4 FALSE      Statistics  2 6+ 5i
    3 6.3  TRUE       Analytics  3 2+ 2i
    4 4.6 FALSE        Projects  4 4+ 1i
    5 9.0 FALSE MachineLearning  5 6+55i
    > as.character(x2)
    [1] "TRUE"  "FALSE" "TRUE"  "FALSE" "FALSE"

When using as.character(), even a logical vector is changed from logical to character
vector. For a numeric variable, nothing is changed as the x1 variable was already in
numeric form. A logical vector can also be changed from logical to factor using this
command:

    > as.factor(x2)
    [1] TRUE  FALSE TRUE  FALSE FALSE
    Levels: FALSE TRUE

Sorting and merging dataframes
Sorting and merging are two importantconcepts in data management. The object can be a
single vector or it can be a data frame or matrix. To sort a vector in R, the sort() command
is used. An decreasing order option can be used to change the order to ascending or
descending. For a data frame such as ArtPiece.csv, the order command is used to sort the
data, where ascending or descending order can be set for multiple variables. Descending
order can be executed by putting a negative sign in front of a variable name. Let's use the
dataset to explain the concept of sorting in R as shown in the following script:

www.allitebooks.com

http://www.allitebooks.org
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    > # Sorting and Merging Data
    > ArtPiece<-read.csv("ArtPiece.csv")
    > names(ArtPiece)
     [1] "Cid"                        "Critic.Ratings"
"Acq.Cost"
     [4] "Art.Category"               "Art.Piece.Size"
"Border.of.art.piece"
     [7] "Art.Type"                   "Prominent.Color"
"CurrentAuctionAveragePrice"
    [10] "Brush"                      "Brush.Size"
"Brush.Finesse"
    [13] "Art.Nationality"            "Top.3.artists"
"CollectorsAverageprice"
    [16] "Min.Guarantee.Cost"
    > attach(ArtPiece))

In the ArtPiece dataset, there are 16 variables: 10 numeric variables, and 6 categorical
variables. Using the names command, all the names of the variables in the dataset can be
printed. The attach function helps in keeping all the variable names in the current session
of R, so that every time the user will not have to type the dataset name before the variable
name in the code:

    > sort(Critic.Ratings)
     [1] 4.9921 5.0227 5.2106 5.2774 5.4586 5.5711 5.6300 5.7723 5.9789
5.9858 6.5078 6.5328
    [13] 6.5393 6.5403 6.5617 6.5663 6.5805 6.5925 6.6536 6.8990 6.9367
7.1254 7.2132 7.2191
    [25] 7.3291 7.3807 7.4722 7.5156 7.5419 7.6173 7.6304 7.6586 7.7694
7.8241 7.8434 7.9315
    [37] 7.9576 8.0064 8.0080 8.0736 8.0949 8.1054 8.2944 8.4498 8.4872
8.6889 8.8958 8.9046
    [49] 9.3593 9.8130

By default, the sorting is done by ascending order. To sort the vector based on descending
order, it is required to put a negative sing before the name of the variable. The
Critic.Ratings variable can also be sorted based on descending order, which is shown as
follows. To sort in descending order, decreasing is true and it can be set within the
command:

    > sort(Critic.Ratings, decreasing = T)
     [1] 9.8130 9.3593 8.9046 8.8958 8.6889 8.4872 8.4498 8.2944 8.1054
8.0949 8.0736 8.0080
    [13] 8.0064 7.9576 7.9315 7.8434 7.8241 7.7694 7.6586 7.6304 7.6173
7.5419 7.5156 7.4722
    [25] 7.3807 7.3291 7.2191 7.2132 7.1254 6.9367 6.8990 6.6536 6.5925
6.5805 6.5663 6.5617
    [37] 6.5403 6.5393  6.5328 6.5078 5.9858 5.9789 5.7723 5.6300 5.5711



Data Manipulation Using In-built R Data

[ 21 ]

5.4586 5.2774 5.2106
    [49] 5.0227 4.9921

Instead of sorting a single numeric vector, most of the times, it is required to sort a dataset
based on some input variables or attributes present in the dataframe. Sorting a single
variable is quite different from sorting a dataframe. The following script shows how a
dataframe can be sorted using the order function:

    > i2<-ArtPiece[order(Critic.Ratings,Acq.Cost),1:5]
    > head(i2)
       Cid Critic.Ratings Acq.Cost          Art.Category Art.Piece.Size
    9    9         4.9921    39200             Vintage I  26in. X 18in.
    50  50         5.0227    52500        Portrait Art I  26in. X 24in.
    26  26         5.2106    31500           Dark Art II    1in. X 7in.
    45  45         5.2774    79345             Gothic II   9in. X 29in.
    21  21         5.4586    33600  Abstract Art Type II  29in. X 29in.
    38  38         5.5711    35700 Abstract Art Type III   9in. X 12in.

The preceding code shows critic ratings and acquisition cost sorted in ascending order. The
order command is used instead of the sort command. The head command prints the first
six observations by default from the sorted dataset. The number 1:5 in the second
argument after the order command implies that we want to print the first six observations
and five variables from the ArtPiece dataset. If it is required to print 10 observations from
the beginning, head(i2, 10) can be executed. The dataset does not have any missing
values; however, the existence of NA or missing values cannot be ruled out from any
practical dataset. Hence, with the presence of NA or missing values, sorting a data frame
can be tricky. So by including some arbitrary NA values in the dataset, the order command
produced the following result:

    > i2<-ArtPiece[order(Border.of.art.piece, na.last = F),2:6]
    > head(i2)
       Critic.Ratings Acq.Cost         Art.Category Art.Piece.Size
Border.of.art.piece
    18         7.5156    34300          Vintage III   29in. X 6in.
    43         6.8990    59500 Abstract Art Type II  23in. X 21in.
    1          8.9046    49700  Abstract Art Type I  17in. X 27in.
Border 1
    12         7.5419    37100        Silhoutte III   28in. X 9in.
Border 10
    14         7.1254    54600           Vintage II   9in. X 12in.
Border 11
    16         7.2132    23100           Dark Art I  10in. X 22in.
Border 11

The NA.LAST command is used to separate the missing values and NAs from the dataset.
They can be either placed at the bottom of the dataset using NA.LAST is TRUE or at the
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beginning of the data set as NA.LAST is FALSE. By keeping NAs separate from the order
function, data sanity can be maintained.

The merge function helps in combining two data frames. To combine two data frames, at
least one column name should be identical. The two data frames can also be joined by using
a function called column bind. To display the difference between the column bind and
merge functions, we have taken audit.CSV dataset. There are two small datasets, A and B,
prepared out of the audit dataset:

    > A<-audit[,c(1,2,3,7,9)]
    > names(A)
    [1] "ID"         "Age"        "Employment" "Income"     "Deductions"
    > B<-audit[,c(1,3,4,5,6)]
    > names(B)
    [1] "ID"         "Employment" "Education"  "Marital"    "Occupation"

Two columns, ID and Employment, are common in both datasets A and B, which can be
used as a primary key for merging two data frames. Using the merge command, the
common columns are taken once in the result dataset from the merge function. The
merged data frame contains all the rows that have complete entries in both the data frames:

    > head(merge(A,B),3)
           ID Employment Age   Income Deductions Education   Marital
Occupation
    1 1004641    Private  38  81838.0          0   College Unmarried
Service
    2 1010229    Private  35  72099.0          0 Associate    Absent
Transport
    3 1024587    Private  32 154676.7          0    HSgrad  Divorced
Clerical

The merge function allows four different ways of combining data: natural join, full outer
join, left outer join, and right outer join. Apart from these joins, two data frames can also be
merged using any specific column or multiple columns. Natural join helps to keep only
rows that match from the data frames, which can be specified by the all=F argument:

    > head(merge(A,B, all=F),3)
           ID Employment Age   Income Deductions Education Marital
Occupation
    1 1044221    Private  60  7568.23          0   College Married
Executive
    2 1047095    Private  74 33144.40          0    HSgrad Married
Service
    3 1047698    Private  43 43391.17          0  Bachelor Married
Executive
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Full outer join allows us to keep all rows from both data frames, and this can be specified by
the all=T command. This performs the complete merge and fills the columns with NA
values where there is no matching data in both the data frames. The default setting of the
merge function drops all unmatched cases from both the data frames; to keep all the cases
in new data frame, we need to specify all=T:

    > head(merge(A,B, all=T),3)
           ID Employment Age   Income Deductions Education Marital
Occupation
    1 1004641    Private  38  81838.0          0      <NA>    <NA>
<NA>
    2 1010229    Private  35  72099.0          0      <NA>    <NA>
<NA>
    3 1024587    Private  32 154676.7          0      <NA>    <NA>
<NA>

Left outer join allows us to include all the rows of data frame one (A) and only those from
data frame two (B) that match; to perform this, we need to specify all.x=T:

    > head(merge(A,B, all.x = T),3)
           ID Employment Age   Income Deductions Education Marital
Occupation
    1 1004641    Private  38  81838.0          0      <NA>    <NA>
<NA>
    2 1010229    Private  35  72099.0          0      <NA>    <NA>
<NA>
    3 1024587    Private  32 154676.7          0      <NA>    <NA>
<NA>

Right outer join allows us to include all the rows of data frame B and only those from A that
match; specify all.y=T:

    > head(merge(A,B, all.y = T),3)
           ID Employment Age   Income Deductions Education Marital
Occupation
    1 1044221    Private  60  7568.23          0   College Married
Executive
    2 1047095    Private  74 33144.40          0    HSgrad Married
Service
    3 1047698    Private  43 43391.17          0  Bachelor Married
Executive

In data frames A and B, two columns are common; they are ID and Employment. Using the
merge command, if we select by one common variable, the other common variable would
appear on the result data frame. If we select multiple data frames as the criteria to merge,
then all duplicate columns from the resulting data frame will disappear:
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    > head(merge(A,B,by="ID"),3)
           ID Age Employment.x   Income Deductions Employment.y Education
Marital Occupation
    1 1044221  60      Private  7568.23          0      Private   College
Married  Executive
    2 1047095  74      Private 33144.40          0      Private    HSgrad
Married    Service
    3 1047698  43      Private 43391.17          0      Private  Bachelor
Married  Executive
    > head(merge(A,B,by=c("ID","Employment")),3)
           ID Employment Age   Income Deductions Education Marital
Occupation
    1 1044221    Private  60  7568.23          0   College Married
Executive
    2 1047095    Private  74 33144.40          0    HSgrad Married
Service
    3 1047698    Private  43 43391.17          0  Bachelor Married
Executive

The merge function works when two data frames contain at least one common column, if
both the data frames contain disjoint columns or there is no common column between the
two data frames, then to combine both data frames, the column bind function can be used.
The column bind function prints all the columns in data frame A and data frame B and puts
them side by side:

    > A<-audit[,c(2,7,9)]
    > names(A)
    [1] "Age"        "Income"     "Deductions"
    > B<-audit[,c(4,5,6)]
    > names(B)
    [1] "Education"  "Marital"    "Occupation"
    > head(cbind(A,B),3)
      Age   Income Deductions Education   Marital Occupation
    1  38  81838.0          0   College Unmarried    Service
    2  35  72099.0          0 Associate    Absent  Transport
    3  32 154676.7          0    HSgrad  Divorced   Clerical

Indexing or subsetting dataframes
While working on a client dataset with a large number of observations, it is required to
subset the data based on some selection criteria and with or without replacement-based
sampling. Indexing is the process of extracting the subset of data from the dataframe based
on some logical conditions. The subset function helps in extracting elements from the data
frame like indexing:
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    > newdata <- audit[ which(audit$Gender=="Female" & audit$Age > 65), ]
    > rownames(newdata)
     [1] "49"   "537"  "552"  "561"  "586"  "590"  "899"  "1200" "1598"
"1719"

The preceding code explains: select those observations from the audit dataset where the
gender is female and the age is more than 65 years. Which command is used to select that
subset of data audit based on the preceding two criteria? There are 10 observations
satisfying the preceding condition; the row numbers of the data frame are printed
previously. A similar result can be obtained by using the subset function as well. Instead
of the which function, the subset function should be used, as the latter is more efficient in
passing multiple conditions. Let's take a look at the way the subset function is used:

    > newdata <- subset(audit, Gender=="Female" & Age > 65,
select=Employment:Income)
    > rownames(newdata)
     [1] "49"   "537"  "552"  "561"  "586"  "590"  "899"  "1200" "1598"
"1719"

The additional argument in the subset function makes the function more efficient as it
provides the additional benefit of selecting specific columns from the dataframe where the
logical condition is satisfied.

Date and time formatting
The date functions return a Date class that represents the number of days since January 1,
1970. The as.numeric() function can be used to create a numeric variable with the
number of days since 1/1/1970. The return value of as.Date() is a Date class object:

    > Sys.time()
    [1] "2015-11-10 00:43:22 IST"
    > dt<-as.Date(Sys.time())
    > class(dt)
    [1] "Date"

The system time function captures the date and time with the time zone. When we convert
the system time using the as.Date function and stored as a new object in R, we find that
the class of that object is Date. The weekdays function returns the name of the day such as
"Monday" or "Wednesday". The months function returns the name of the month from the
date variable. The quarters function returns the name of the quarter for the date object
and year value also can be extracted using the substr() command:

    > weekdays(as.Date(Sys.time()))
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    [1] "Monday"
    > months(as.Date(Sys.time()))
    [1] "November"
    > quarters(as.Date(Sys.time()))
    [1] "Q4"
    > substr(as.POSIXct(as.Date(Sys.time())),1,4)
    [1] "2015"

If the date variable given in the dataset is not in proper format for further computations, it
can be formatted using the format function:

    > format(Sys.time(),format = "%m %d %y")
    [1] "11 10 15"

There are various options that can be passed to the format argument based on the user
requirement:

Option What it does

#%d Means day as a number from (0-31) 01-31

#%a Means abbreviated weekday as Mon

#% A means unabbreviated weekday, Monday

#%m Month (00-12)

#%b Abbreviated month

#%B Unabbreviated month January

#%y Two-digit year (13)

#%Y Four-digit year (2013)

Table 1: Formatting date options

Practical datasets contain date fields such as the transaction date in retail, visit date in
healthcare, and processing date in BFSI; and any time series data contains at least one time
element. To include the date variable in any statistical model, data transformation is
required, such as calculating the vintage of a customer in a retail scenario. The data
transformation can be done using the aforementioned options.

Creating new functions
There are two different types of functions in R, user-defined functions and built-in
functions.
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User-defined functions
A user-defined function provides customization and flexibility to users to write their
functions to perform computations. It has a general notation shown as follows:

 

    newFunc <- function(x){define function}
    > int<-seq(1:20)
    > int
     [1]  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
    > myfunc<-function(x){x*x}
    > myfunc(int)
     [1]   1   4   9  16  25  36  49  64  81 100 121 144 169 196 225 256
289 324
     361 400

In the preceding script, we are creating a small sequence of numbers from 1 to 20 and a
user-defined function to calculate the square of each integer. Using the new function, we
can calculate the square of any number. So the user can define and create his or her own
custom function.

Built-in functions
Built-in functions, such as mean, median, standard deviation, and so on, provide the user
the ability to compute basic statistics using R. There are many built-in functions; the
following table displays a few important built-in functions:

 

Function Description

abs(x) Absolute value

sqrt(x) Square root

ceiling(x) Rounding up the number

floor(x) Rounding down the number

trunc(x) trunc(5.99) is 5

round(x, digits=n) round(3.475, digits=2) is 3.48

signif(x, digits=n) signif(3.475, digits=2) is 3.5
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cos(x), sin(x), tan(x) Also acos(x), cosh(x), acosh(x), and so on

log(x) Natural logarithm

log10(x) Common logarithm

exp(x) e^x

Table 2: Some built-in functions

Loop concepts – the for loop
The for loop is the most popular looping construct in R. Using a for loop, a similar task
can be performed many times iteratively, let's look at a sample example where the for loop
concept is applied. In the following code, a series of numbers from 10 to 25 is created. The
null vector v is acting like a storage unit. If the condition mentioned in the following code is
not met, the loop is never executed:

    x<-100:200
    y <- NULL # NULL vector as placeholder
    for(i in seq(along=x)) {
       if(x[i] < 150) {
       y <- c(y, x[i] - 50)
       } else {
       y <- c(y, x[i] + 50)
       }
       }
    print(y)

Loop concepts – the repeat loop
The repeat loop is used to iterate a certain calculation over a vector or dataframe. There is
no provision to check the condition to exit the loop; generally a break statement is used to
exit the loop. If you fail to provide any break condition within the repeat loop, you will
end up running the repeat loop infinitely. Let's look at the code showing how to write a
repeat loop. The break condition used in the following code is if x > 2.6:

    x <- 100
    repeat {
      print(x)
      x = sqrt(x)+10
      if (x > 2.6){
        break
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      }
    }

Loop concepts – while conditions
The structure of the while loop in R is simple; it starts with a desired result that the user
wants to see from the experiment. As the condition is entered in the beginning, the body of
the loop will start iteration and go on as long the condition is being met. The skeleton
structure of a while loop consists of a constraint condition to start with; here is an example:

    x <- 10
    while (x < 60) {
      print(x)
      x = x+10
    }

If we compare different types of loops in the R programming language, for loop and while
loop are very frequently used; repeat loop is not used that frequently because of the time it
takes to complete the run. If we compare the loops with the apply group of functions, the
latter set of functions is quite effective in handling different tasks in R. Let's look at the
apply group of functions.

Apply concepts
The apply function uses an array, a matrix, or a dataframe as an input and returns the
result in an array format. The calculation or operation is defined by the user's custom
function or using any built-in functions. The margin argument is used to specify which
margin we want to apply to the function and which margin we wish to keep. If the array we
are using is a matrix, then we can specify the margin to be either 1 (apply the function to the
rows) or 2 (apply the function to the columns). The function can be any function such as
mean, median, standard deviation, variance, and so on that is built in or user defined.
Here we are going to use iris dataset to perform the task:

    > apply(ArtPiece[,2:3],2,mean)
    Critic.Ratings       Acq.Cost
          7.200416   44440.900000
    > apply(ArtPiece[,2:3],1,mean)
     [1] 24854.45 26604.68 17153.69 14353.28 14003.47 19604.05 14703.27
15753.29 19602.50
    [10] 26954.24 19254.00 18553.77 18903.97 27303.56 24153.74 11553.61
23804.04 17153.76
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    [19] 19953.30 24854.22 16802.73 20303.33 14354.91 26952.99 24503.28
15752.61 28004.45
    [28] 30803.81 29403.27 19604.00 29053.88 17152.81 33253.91 24502.89
37453.92 12604.15
    [37] 21353.82 17852.79 28703.83 29753.25 23453.27 18204.34 29753.45
27654.05 39675.14
    [46] 24853.61 16102.99 13653.98 14353.66 26252.51

The lapply function is useful when dealing with (applying any function) dataframes. In R,
the dataframe is considered a list and the variables in the dataframe are the elements of the
list. We can, therefore, apply a function to all the variables in a dataframe using the lapply
function:

    > lapply(ArtPiece[,2:3],mean)
    $Critic.Ratings
    [1] 7.200416
    $Acq.Cost
    [1] 44440.9

The sapply function applies to elements in a list and returns the results in a vector, matrix,
or list. When the argument is simplify=F, then the sapply function returns the results in a
list just like the lapply function. However, when the argument is simplify=T, which is
the default argument, the sapply function returns the results in a simplified form if at all
possible:

    > sapply(ArtPiece[,2:3],mean)
    Critic.Ratings       Acq.Cost
          7.200416   44440.900000

When we want to apply a function to subsets of a vector and the subsets are defined by
some other vector, usually a factor. The output from tapply is a matrix/array, where an
element in the matrix/array is the value of f at a grouping g of the vector, and g gets pushed
to the row/col names:

    > head(tapply(Critic.Ratings,Acq.Cost,summary),3)
    $`23100`
       Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
      7.213   7.213   7.213   7.213   7.213   7.213
    $`25200`
       Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
      8.294   8.294   8.294   8.294   8.294   8.294
    $`27300`
       Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
      7.958   7.958   7.958   7.958   7.958   7.958
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There are other functions in the apply family of functions, such as:

eapply: Apply a function over values in an environment
mapply: Apply a function to multiple list or vector arguments
rapply: Recursively apply a function to a list

String manipulation
String manipulation or character manipulation is an important aspect of any data
management system. In a typical real-world dataset, names of customers for example are
written in different ways, such as J H Smith, John h Smith, John h smith, and so on. Upon
verifying, it is observed that all three names belong to the same person. In typical data
management, it is important to standardize the text columns or variables in a dataset
because R is case sensitive and it reads any discrepancy as a new data point. There can be
many other variables such as the name/model of a vehicle, product description, and so on.
Let's look how the text can be standardized using some functions:

    > x<-"data Mining is not a difficult subject, anyone can master the
subject"
    > class(x)
    [1] "character"
    > substr(x, 1, 12)
    [1] "data Mining "

The object X in the preceding script is a string or character object. The substr command is
used to pull a sub string from the string with the position defined in the function. If certain
patterns or texts need to be altered or changed, then the sub command can be used. There
are four important arguments that the user needs to pass: the string in which a pattern
needs to be searched, the pattern, the modified pattern that needs to be replaced, and
whether case sensitivity is acceptable or not. Let's look at a sample script:

    > sub("data mining", "The Data Mining", x, ignore.case =T, fixed=FALSE)
    [1] "The Data Mining is not a difficult subject, anyone can master the
subject"
    > strsplit(x, "")
    [[1]]
     [1] "d" "a" "t" "a" " " "M" "i" "n" "i" "n" "g" " " "i" "s" " " "n"
"o" "t" " " "a" " "
    [22] "d" "i" "f" "f" "i" "c" "u" "l" "t" " " "s" "u" "b" "j" "e" "c"
"t" "," " " "a" "n"
    [43] "y" "o" "n" "e" " " "c" "a" "n" " " "m" "a" "s" "t" "e" "r" " "
"t" "h" "e" " " "s"
    [64] "u" "b" "j" "e" "c" "t"
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The strsplit function helps in expanding the letters from a string. The sub command is
used to alter a pattern that is not right in the string. The ignore.Case option provides the
user the chance to keep the case sensitivity on or off while searching for the pattern in the
defined string.

NA and missing value management
Missing value treatment is an important task in standard data mining literature. In the R
programming language, missing values are represented as NA. NAs are not string or
numeric values; they are considered as an indicator for missing values. After importing a
dataset into the R programming platform, it is important to check whether, for any variable,
missing values exist or not; to check that, the is.na() command is used. Please see the
example given here:

    > x<-c(12,13,14,21,23,24,NA,25,NA,0,NA)
    > is.na(x)
     [1] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE
    > mean(x,na.rm=TRUE)
    [1] 16.5
    > mean(x)
    [1] NA

Object x is a numeric vector that contains some NA values, to verify that is.na() can be
used, wherever it is satisfied the result would be TRUE. If we compute anything with the
presence of NA, we end up getting an error or no result. Either we can replace the data set by
altering the NA values, or we can remove those NA values while performing any
computation. As in the preceding script, it is na.rm=T that is used to remove the NAs from
the mean computation for object x.

Missing value imputation techniques
To delete missing values from the dataset, na.omit() can be used. It removes the entire
row even if the data is missing for a single variable. There are various missing value
imputation methods:

Mean imputation: The missing values in a data vector is replaced by the mean or
median value of that vector, excluding the NA
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Local average method: Taking the local average for the missing value, by taking
into account 3 or 5 periods moving average, that is for a 3 period the average of
missing data prior value and posterior value can decide what the missing value
should be
Keeping that separate: Sometimes the imputation is simply not possible, and
may be the client would be interested in keeping the missing values separate to
understand the missing behavior separately
Model-based: There are some model-based missing value imputation techniques
such as the regression-based missing value prediction method
Clustering: Similar to regression-based prediction to the missing value
imputation, k-means clustering can be used to impute the missing values from
the dataset

Summary
In the light of the preceding discussion, it can be summarized that data manipulation and
data management is an important step in performing data mining on various live projects.
Since R provides a better statistical programming platform and visualization, the use of R to
explain various data mining concepts to the readers makes sense. In this chapter, we looked
at an introduction to data mining and R with concepts, a few programming basics, R data
types, and so on. We also covered importing and exporting of various external file formats
using R, sorting and merging concepts, and missing data management techniques.

In the next chapter, we are going to learn more about performing exploratory data analysis
using R and how to understand univariate, bivariate and multivariate datasets. First of all,
we are going to understand the concepts, practical interpretation, and then R
implementation to gain knowledge on exploratory data analysis.



2
Exploratory Data Analysis with

Automobile Data
Exploratory data analysis is an integral part of data mining. It involves numerical as well as
graphical representation of variables in a dataset for easy understanding and quick
conclusion about a dataset. It is important to get an understanding about the dataset, type
of variables considered for analysis, association between various variables, and so on.
Creating cross tabulations to understand the relationship between categorical variables and
performing classical statistical tests on the data to verify various different hypotheses about
the data can be tested out.

You will now get an understanding about the following things:

How to use basic statistics to know properties of a single and multiple variables
How to calculate correlation and association between two or more variables
Performing multivariate data analysis
Statistical properties of various probability functions for any dataset
Applying statistical tests on data to conclude hypotheses
Comparing two or more samples
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Univariate data analysis
To generate univariate statistics about a dataset, we have to follow two approaches, one for
continuous variables and the other for discrete or categorical variables. Univariate statistics
for continuous variables includes numerical measures such as averages (mean), variance,
standard deviation, quantiles, median quartiles, and so on. The mean represents each and
every point in the dataset; the variance indicates the fluctuation/deviation of the individual
data points from the mean, which is the center of the distribution. Quantiles are also known
as percentiles, which divide the distribution into 100 equal parts. The 10th percentile value is
equivalent to 1 decile, the 25th percentile value is equivalent to the 1st quartile, and 75th

percentile value is equivalent to the 3rd quartile.

There are other statistical measures of central tendency for understanding the univariate
characteristics of a dataset. Median and mode are referred to as positional values, but still
mode can be looked at for a continuous variable to check whether it is a bimodal series. In
case of bimodal series, it is difficult to compute the center of the distribution. For ordinal
data or rank data calculation of mean, representation is a good idea; it is always suggested
to represent univariate statistics using median or mode. Comparison of mean, median, and
mode values along with skewness, kurtosis, and standard deviation gives a clear picture
about the shape of the data distribution. All of these measures of central tendency and
measures of dispersion together can be calculated using a single command and also using
different individual commands, which are given as follows.

Here, we are going to use two datasets, diamonds.csv and Cars93.csv.
Both belong to two libraries that are inbuilt in the R software for practical
demo purposes.

Let's use a few commands in R to understand the data better:

> names(Cars93)
[1] "Manufacturer" "Model" "Type" "Min.Price"
[5] "Price" "Max.Price" "MPG.city" "MPG.highway"
[9] "AirBags" "DriveTrain" "Cylinders" "EngineSize"
[13] "Horsepower" "RPM" "Rev.per.mile" "Man.trans.avail"
[17] "Fuel.tank.capacity" "Passengers" "Length" "Wheelbase"
[21] "Width" "Turn.circle" "Rear.seat.room" "Luggage.room"
[25] "Weight" "Origin" "Make"

The Cars93.csv dataset contains the previously mentioned variable names and it has 27
variables and 93 observations. The variable type can be printed using the str() function:

> str(Cars93)
'data.frame': 93 obs. of 27 variables:
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$ Manufacturer : Factor w/ 32 levels "Acura","Audi",..: 1 1 2 2 3 4 4 4 4 5
...
$ Model : Factor w/ 93 levels "100","190E","240",..: 49 56 9 1 6 24 54 74
73 35 ...
$ Type : Factor w/ 6 levels "Compact","Large",..: 4 3 1 3 3 3 2 2 3 2 ...
$ Min.Price : num 12.9 29.2 25.9 30.8 23.7 14.2 19.9 22.6 26.3 33 ...
$ Price : num 15.9 33.9 29.1 37.7 30 15.7 20.8 23.7 26.3 34.7 ...
$ Max.Price : num 18.8 38.7 32.3 44.6 36.2 17.3 21.7 24.9 26.3 36.3 ...
$ MPG.city : int 25 18 20 19 22 22 19 16 19 16 ...
$ MPG.highway : int 31 25 26 26 30 31 28 25 27 25 ...
$ AirBags : Factor w/ 3 levels "Driver & Passenger",..: 3 1 2 1 2 2 2 2 2 2
...
$ DriveTrain : Factor w/ 3 levels "4WD","Front",..: 2 2 2 2 3 2 2 3 2 2 ...
$ Cylinders : Factor w/ 6 levels "3","4","5","6",..: 2 4 4 4 2 2 4 4 4 5
...
$ EngineSize : num 1.8 3.2 2.8 2.8 3.5 2.2 3.8 5.7 3.8 4.9 ...
$ Horsepower : int 140 200 172 172 208 110 170 180 170 200 ...
$ RPM : int 6300 5500 5500 5500 5700 5200 4800 4000 4800 4100 ...
$ Rev.per.mile : int 2890 2335 2280 2535 2545 2565 1570 1320 1690 1510 ...
$ Man.trans.avail : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 1 1 1 1 1 ...
$ Fuel.tank.capacity: num 13.2 18 16.9 21.1 21.1 16.4 18 23 18.8 18 ...
$ Passengers : int 5 5 5 6 4 6 6 6 5 6 ...
$ Length : int 177 195 180 193 186 189 200 216 198 206 ...
$ Wheelbase : int 102 115 102 106 109 105 111 116 108 114 ...
$ Width : int 68 71 67 70 69 69 74 78 73 73 ...
$ Turn.circle : int 37 38 37 37 39 41 42 45 41 43 ...
$ Rear.seat.room : num 26.5 30 28 31 27 28 30.5 30.5 26.5 35 ...
$ Luggage.room : int 11 15 14 17 13 16 17 21 14 18 ...
$ Weight : int 2705 3560 3375 3405 3640 2880 3470 4105 3495 3620 ...
$ Origin : Factor w/ 2 levels "USA","non-USA": 2 2 2 2 2 1 1 1 1 1 ...
$ Make : Factor w/ 93 levels "Acura Integra",..: 1 2 4 3 5 6 7 9 8 10 ...

Calculating the univariate statistics for a few continuous (Price, MPG.city, and
MPG.highway) and discrete variables (Type, AirBags, and manual transmission available)
can be displayed here. You can practice the rest of the variable to get a complete
understanding of the dataset.

The max() command estimates the maximum value for a variable. min() computes the
minimum value. sum() calculates the total of all the values. The mean() function calculates
the arithmetic average of the values, the median() function calculates the median value,
and range() calculates the vector of min() and max(). var() computes the sample
variance and cor() correlation between two vectors. rank() calculates the vector of the
ranks of the values in a vector. The quantile() function computes a vector containing the
minimum, lower quartile, median, upper quartile, and maximum of a vector.
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Using the summary() function for univariate:

> summary(Cars93$Price)
Min. 1st Qu. Median Mean 3rd Qu. Max.
7.40 12.20 17.70 19.51 23.30 61.90
> summary(Cars93$MPG.city)
Min. 1st Qu. Median Mean 3rd Qu. Max.
15.00 18.00 21.00 22.37 25.00 46.00
> summary(Cars93$MPG.highway)
Min. 1st Qu. Median Mean 3rd Qu. Max.
20.00 26.00 28.00 29.09 31.00 50.00
> summary(Cars93$Type)
Compact Large Midsize Small Sporty Van
16 11 22 21 14 9
> summary(Cars93$AirBags)
Driver & Passenger Driver only None
16 43 34
> summary(Cars93$Man.trans.avail)
No Yes
32 61

Now let's look at the results of the summary function on the data frame. For a continuous
variable, the numerical measures of central tendency are computed, and, for a categorical
variable, the class frequencies are computed:

> summary(Cars93)
Manufacturer Model Type Min.Price
Chevrolet: 8 100 : 1 Compact:16 Min. : 6.70
Ford : 8 190E : 1 Large :11 1st Qu.:10.80
Dodge : 6 240 : 1 Midsize:22 Median :14.70
Mazda : 5 300E : 1 Small :21 Mean :17.13
Pontiac : 5 323 : 1 Sporty :14 3rd Qu.:20.30
Buick : 4 535i : 1 Van : 9 Max. :45.40
(Other) :57 (Other):87
Price Max.Price MPG.city MPG.highway
Min. : 7.40 Min. : 7.9 Min. :15.00 Min. :20.00
1st Qu.:12.20 1st Qu.:14.7 1st Qu.:18.00 1st Qu.:26.00
Median :17.70 Median :19.6 Median :21.00 Median :28.00
Mean :19.51 Mean :21.9 Mean :22.37 Mean :29.09
3rd Qu.:23.30 3rd Qu.:25.3 3rd Qu.:25.00 3rd Qu.:31.00
Max. :61.90 Max. :80.0 Max. :46.00 Max. :50.00
AirBags DriveTrain Cylinders EngineSize
Driver & Passenger:16 4WD :10 3 : 3 Min. :1.000
Driver only :43 Front:67 4 :49 1st Qu.:1.800
None :34 Rear :16 5 : 2 Median :2.400
6 :31 Mean :2.668
8 : 7 3rd Qu.:3.300
rotary: 1 Max. :5.700
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Horsepower RPM Rev.per.mile Man.trans.avail
Min. : 55.0 Min. :3800 Min. :1320 No :32
1st Qu.:103.0 1st Qu.:4800 1st Qu.:1985 Yes:61
Median :140.0 Median :5200 Median :2340
Mean :143.8 Mean :5281 Mean :2332
3rd Qu.:170.0 3rd Qu.:5750 3rd Qu.:2565
Max. :300.0 Max. :6500 Max. :3755
Fuel.tank.capacity Passengers Length Wheelbase
Min. : 9.20 Min. :2.000 Min. :141.0 Min. : 90.0
1st Qu.:14.50 1st Qu.:4.000 1st Qu.:174.0 1st Qu.: 98.0
Median :16.40 Median :5.000 Median :183.0 Median :103.0
Mean :16.66 Mean :5.086 Mean :183.2 Mean :103.9
3rd Qu.:18.80 3rd Qu.:6.000 3rd Qu.:192.0 3rd Qu.:110.0
Max. :27.00 Max. :8.000 Max. :219.0 Max. :119.0
Width Turn.circle Rear.seat.room Luggage.room
Min. :60.00 Min. :32.00 Min. :19.00 Min. : 6.00
1st Qu.:67.00 1st Qu.:37.00 1st Qu.:26.00 1st Qu.:12.00
Median :69.00 Median :39.00 Median :27.50 Median :14.00
Mean :69.38 Mean :38.96 Mean :27.83 Mean :13.89
3rd Qu.:72.00 3rd Qu.:41.00 3rd Qu.:30.00 3rd Qu.:15.00
Max. :78.00 Max. :45.00 Max. :36.00 Max. :22.00
NA's :2 NA's :11
Weight Origin Make
Min. :1695 USA :48 Acura Integra: 1
1st Qu.:2620 non-USA:45 Acura Legend : 1
Median :3040 Audi 100 : 1
Mean :3073 Audi 90 : 1
3rd Qu.:3525 BMW 535i : 1
Max. :4105 Buick Century: 1
(Other) :87

The summary command for continuous variables such as RPM, horsepower, and so on
shows the minimum, 1st quartile, mean, median, 3rd quartile, and maximum values. The
univariate statistics for the categorical variable, which are car type, airbags, manual
transmission availability, and so on, are represented as frequency tables. The class that has
the highest frequency is considered to be the modal class.

Similar summary statistics can be generated using a few more functions such as fivenum()
and describe(), which provides more information than the summary function:

> fivenum(Cars93$Price)
[1] 7.4 12.2 17.7 23.3 61.9
> fivenum(Cars93$MPG.city)
[1] 15 18 21 25 46
> fivenum(Cars93$MPG.highway)
[1] 20 26 28 31 50
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The describe() function from the library (Hmisc) can be used to get a better
understanding of the data description:

> library(Hmisc)
> describe(Cars93)
Cars93
27 Variables 93 Observations
Price
n missing unique Info Mean .05 .10 .25 .50 .75 .90
93 0 81 1 19.51 8.52 9.84 12.20 17.70 23.30 33.62
.95
36.74
lowest : 7.4 8.0 8.3 8.4 8.6, highest: 37.7 38.0 40.1 47.9 61.9
MPG.city
n missing unique Info Mean .05 .10 .25 .50 .75 .90
93 0 21 0.99 22.37 16.6 17.0 18.0 21.0 25.0 29.0
.95
31.4
lowest : 15 16 17 18 19, highest: 32 33 39 42 46
---------------------------------------------------------------------------
--------------
MPG.highway
n missing unique Info Mean .05 .10 .25 .50 .75 .90
93 0 22 0.99 29.09 22.0 23.2 26.0 28.0 31.0 36.0
.95
37.4
lowest : 20 21 22 23 24, highest: 38 41 43 46 50
---------------------------------------------------------------------------
--------------
AirBags
n missing unique
93 0 3
Driver & Passenger (16, 17%), Driver only (43, 46%)
None (34, 37%)
---------------------------------------------------------------------------
--------------
Man.trans.avail
n missing unique
93 0 2
No (32, 34%), Yes (61, 66%)
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The univariate summary statistics can also be calculated using the apply() function. The
univariate statistics gives an impression about the shape of the distribution:

> n_cars93<-Cars93[,c(5,7,8)]
> c_cars93<-Cars93[,c(3,9,16)]
> apply(n_cars93,2,mean)
Price MPG.city MPG.highway
19.50968 22.36559 29.08602

To understand the shape of a distribution for a variable, we can use skewness and box plot.
We can also use the skewness function, which is available in library(e1071):

> library(e1071)
> apply(n_cars93,2,skewness)
Price MPG.city MPG.highway
1.483982 1.649843 1.190507

We can create a custom function for measuring skewness and use that along with
the apply() function:

> skewness<-function(x){
+ m3<-sum((x-mean(x))^3)/length(x)
+ s3<-sqrt(var(x))^3
+ m3/s3 }
> apply(n_cars93,2,skewness)
Price MPG.city MPG.highway
1.483982 1.649843 1.190507

Skewness is known as a measure of symmetrical distribution where the value of skewness
indicates whether a distribution is positively skewed or negatively. When the value of
skewness approaches 0 or is close to zero, it indicates that the distribution is symmetric and
the mean, median, and mode are exactly the same. When the value of skewness is less than
0, it indicates the value of the mean is less than the mode, and this is because of availability
of extreme values on the negative side of the normal distribution. When the value of
skewness is greater than 0, it indicates that the value of the mean is greater than the mode,
and this is because of availability of extreme values on the right-hand side of the normal
distribution. Since identification of outliers and their removal is very important, the
measure of skewness helps in that direction, but that is not the only way to figure out
outliers. There are other methods such as boxplot, and other custom outlier detection
formulas. If we look at the previous three variables, it implies that there are indications that
outlier values may exist on the positive side of the normal curve for price, MPG.city, and
MPG.highway variables because the skewness value is greater than 0. To verify the
existence of outliers, we can take a boxplot and print the outliers.



Exploratory Data Analysis with Automobile Data

[ 41 ]

Bivariate analysis
The relationship or association between two variables is known as bivariate analysis. There
are three possible ways of looking at the relationship:

Numeric-to-numeric relationship
Numeric-to-categorical relationship
Categorical-to-categorical relationship

To know the bivariate relationship between two numeric variables, typically a scatter plot is
used if the two variables happen to be continuous, and a bar plot is used if one variable is
categorical and the other is continuous:

> library(ggplot2)
> library(gridExtra)
> ggplot(Cars93,
aes(Cars93$Price,Cars93$MPG.city))+geom_point(aes(colour=(Cars93$Type)))+ge
om_smooth()

Figure 1: Showing the relationship between price and mileage within a city for different car types
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Similarly, the relationship between price and highway mileage can be represented using
a scatter plot as well:

> library(ggplot2)
> library(gridExtra)
> ggplot(Cars93,
aes(Cars93$Price,Cars93$MPG.highway))+geom_point(aes(colour=(Cars93$Type)))
+geom_smooth()

Figure 2: Relationship between price and mileage on highways
The numeric-categorical and two categorical relationships are explained in Chapter 3,
Visualize Diamond Dataset, in detail.
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Multivariate analysis
The multivariate relationship is a statistical way of looking at multiple dependent and
independent variables and their relationships. In this chapter, we will briefly talk about
multivariate relationships between more than two variables, but we will discuss the details
of multivariate analysis in our subsequent chapters. Multivariate relationships between
various variables can be known by using the correlation method as well as cross tabulation:

> pairs(n_cars93,main="Correlation Plot", col="blue")
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Understanding distributions and
transformation
Understanding probability distributions is important in order to have a clear idea about the
assumptions of any statistical hypothesis test. For example, in linear regression analysis, the
basic assumption is that the error distribution should be normally distributed and the
variables' relationship should be linear. Hence, before moving to the stage of model
formation, it is important to look at the shape of the distribution and types of 
transformations that one may look into to make the things right. This is done so that any
further statistical techniques can be applied on the variables.

Normal probability distribution
The concept of normal distribution is based on Central Limit Theorem (CLT), which
implies that the population of all possible samples of size n drawn from a population with
mean μ and variance σ2 approximates a normal distribution with mean μ and σ2∕n when n
increases towards infinity. Checking the normality of variables is important to remove
outliers so that the prediction process does not get influenced. Presence of outliers not only
deviates the predicted values but would also destabilize the predictive model. The
following sample code and example show how to check normality graphically and interpret
the same.

To test out the normal distribution, we can use the mean, median, and mode for some of the
variables:

> mean(Cars93$Price)
[1] 19.50968
> median(Cars93$Price)
[1] 17.7
> sd(Cars93$Price)
[1] 9.65943
> var(Cars93$Price)
[1] 93.30458
> skewness(Cars93$Price)
[1] 1.483982
ggplot(data=Cars93, aes(Cars93$Price)) + geom_density(fill="blue")
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From the preceding image, we can conclude that the price variable is positively skewed
because of the presence of some outlier values on the right-hand side of the distribution.
The mean of the price variable is inflated and greater than the mode because the mean is
subject to extreme fluctuations.

Now let's try to understand a case where normal distribution can be used to answer any
hypothesis.

Suppose the variable mileage per gallon on a highway is normally distributed with a mean
of 29.08 and a standard deviation of 5.33. What is the probability that a new car would
provide a mileage of 35?

> pnorm(35,mean(Cars93$MPG.highway),sd(Cars93$MPG.highway),lower.tail = F)
[1] 0.1336708

Hence the required probability that a new car would provide a mileage of 35 is 13.36%,
since the expected mean is higher than the actual mean; the lower tail is equivalent to false.
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Binomial probability distribution
Binomial distribution is known as discrete probability distribution. It describes the outcome
of an experiment. Each trial is assumed to have only two outcomes: either success or failure,
either yes or no. For instance, in the Cars93 dataset variable, whether manual transmission
is available or not is represented as yes or no.

Let's take an example to explain where binomial distribution can be used. The probability of
a defective car given a specific component is not functioning is 0.1%. You have 93 cars
manufactured. What is the probability that at least 1 defective car can be detected from the
current lot of 93:

> pbinom(1,93,prob = 0.1)
[1] 0.0006293772

So the required probability that a defective car can get identified in a lot of 93 cars is
0.0006, which is very less, given the condition that the probability of a defective part is
0.10.

Poisson probability distribution
Poisson distribution is for count data where, given the data and information about an event,
you can predict the probability of any number occurring within that limit using the Poisson
probability distribution.

Let's take an example. Suppose 200 customers on an average visit a particular e-commerce
website portal every minute. Then find the probability of having 250 customers visit the
same website in a minute:

> ppois(250,200,lower.tail = F)
[1] 0.0002846214

Hence, the required probability is 0.0002, which is very rare. Apart from the
aforementioned common probability distributions, which are used very frequently, there
are many other distributions that can be used in rare situations.
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Interpreting distributions
Calculation of probability distributions and fitting data points specific to various types of
distribution and subsequent interpretation help in forming a hypothesis. That hypothesis
can be used to estimate the event probability given a set of parameters. Let's take a look at
the interpretation of different types of distributions.

Interpreting continuous data
The maximum likelihood estimation of the distributional parameters from any variable in
a dataset can be known by fitting a distribution. The density function is available for
distributions such as “beta”, “cauchy”, “chi-squared”, “exponential”, “f”, “gamma”,
“geometric”, “log-normal”, “lognormal”, “logistic”, “negative binomial”, “normal”,
“Poisson”, “t”, and “weibull”. These are recognized, case being ignored. For continuous
data, we will be using normal and t distributions:

> x<-fitdistr(Cars93$MPG.highway,densfun = "t")
> x$estimate
m s df
28.430527 3.937731 4.237910
> x$sd
m s df
0.5015060 0.5070997 1.9072796
> x$vcov
m s df
m 0.25150831 0.06220734 0.2607635
s 0.06220734 0.25715007 0.6460305
df 0.26076350 0.64603055 3.6377154
> x$loglik
[1] -282.4481
> x$n
[1] 93

In the preceding code, we have taken the MPG.highway variable from the Cars93 dataset.
By fitting a t distribution to the variable, we obtain the parameter estimates, the estimated
standard errors, the estimated variance co-variance matrix, the log likelihood value, as well
as the total count. Similar activity can be performed by fitting a normal distribution to the
continuous variable:

> x<-fitdistr(Cars93$MPG.highway,densfun = "normal")
> x$estimate
mean sd
29.086022 5.302983
> x$sd
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mean sd
0.5498938 0.3888336
> x$vcov
mean sd
mean 0.3023831 0.0000000
sd 0.0000000 0.1511916
> x$loglik
[1] -287.1104
> x$n
[1] 93

Now we are going to see how to graphically represent the variable normality:

> qqnorm(Cars93$MPG.highway)
> qqline(Cars93$MPG.highway)

The deviation of data points represented as circles are distanced from the straight line, t.

Interpreting discrete data: as all the categories in it:

> table(Cars93$Type)
Compact Large Midsize Small Sporty Van
16 11 22 21 14 9
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> freq<-table(Cars93$Type)
> rel.freq<-freq/nrow(Cars93)*100
> options(digits = 2)
> rel.freq
Compact Large Midsize Small Sporty Van
17.2 11.8 23.7 22.6 15.1 9.7
> cbind(freq,rel.freq)
freq rel.freq
Compact 16 17.2
Large 11 11.8
Midsize 22 23.7
Small 21 22.6
Sporty 14 15.1
Van 9 9.7

To visualize this graphically, we need to represent it through a bar plot:

> barplot(freq, main = "Distribution of Categorical Variable")
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Variable binning or discretizing continuous
data
The continuous variable is the most appropriate step that one needs to take before including
the variable in the model. This can be explained by taking one example fuel tank capacity of
a car from the Cars93 dataset. Based on the fuel tank capacity, we can create a categorical
variable with high, medium and low, lower medium:

> range(Cars93$Fuel.tank.capacity)
[1] 9.2 27.0
> cat
[1] 9.2 13.2 17.2 21.2 25.2
> options(digits = 2)
> t<-cut(Cars93$Fuel.tank.capacity,cat)
> as.data.frame(cbind(table(t)))
V1
(9.2,13.2] 19
(13.2,17.2] 33
(17.2,21.2] 36
(21.2,25.2] 3

The range of fuel tank capacity is identified as 9.2 and 27.0. Then, logically the class
difference of 4 is used to arrive at classes. Those classes define how each value from the
variable is assigned to each group. The final outcome table indicates that there are 4 groups;
the top fuel tank capacity is available on 4 cars only.

Variable binning or discretization not only helps in decision tree construction but is also
useful in the case of logistic regression mode and any other form of machine-learning-based
models.

Contingency tables, bivariate statistics, and
checking for data normality
Contingency tables are frequency tables represented by two or more categorical variables
along with the proportion of each class represented as a group. Frequency table is used to
represent one categorical variable; however, contingency table is used to represent two
categorical variables.
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Let's see an example to understand contingency tables, bivariate statistics, and data
normality using the Cars93 dataset:

> table(Cars93$Type)
Compact Large Midsize Small Sporty Van
16 11 22 21 14 9
> table(Cars93$AirBags)
Driver & Passenger Driver only None
16 43 34

The individual frequency table for two categorical variables AirBags and Type of the car is
represented previously:

> contTable<-table(Cars93$Type,Cars93$AirBags)
> contTable
Driver & Passenger Driver only None
Compact 2 9 5
Large 4 7 0
Midsize 7 11 4
Small 0 5 16
Sporty 3 8 3
Van 0 3 6

The conTable object holds the cross tabulation of two variables. The proportion of each cell
in percentage is reflected in the following table. If we need to compute the row percentages
or column percentages, then it is required to specify the values in the argument:

> prop.table(contTable)
Driver & Passenger Driver only None
Compact 0.022 0.097 0.054
Large 0.043 0.075 0.000
Midsize 0.075 0.118 0.043
Small 0.000 0.054 0.172
Sporty 0.032 0.086 0.032
Van 0.000 0.032 0.065

For row percentages, the value needs to be 1, and for column percentages, the value needs
to be entered as 2 in the preceding command:

> prop.table(contTable,1)
Driver & Passenger Driver only None
Compact 0.12 0.56 0.31
Large 0.36 0.64 0.00
Midsize 0.32 0.50 0.18
Small 0.00 0.24 0.76
Sporty 0.21 0.57 0.21
Van 0.00 0.33 0.67
> prop.table(contTable,2)
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Driver & Passenger Driver only None
Compact 0.125 0.209 0.147
Large 0.250 0.163 0.000
Midsize 0.438 0.256 0.118
Small 0.000 0.116 0.471
Sporty 0.188 0.186 0.088
Van 0.000 0.070 0.176

The summary of the contingency table performs a chi-square test of independence between
the two categorical variables:

> summary(contTable)
Number of cases in table: 93
Number of factors: 2
Test for independence of all factors:
Chisq = 33, df = 10, p-value = 3e-04
Chi-squared approximation may be incorrect

The chi-square test of independence for all factors is represented previously. The message
that the chi-squared approximation may be incorrect is due to the presence of null or less
than 5 values in the cells of the contingency table. As in the preceding case, two random
variables, car type and airbags, can be independent if the probability distribution of one
variable does not impact the probability distribution of the other variable. The null
hypothesis for the chi-square test of independence is that two variables are independent of
each other. Since the p-value from the test is less than 0.05, at 5% level of significance we
can reject the null hypothesis that the two variables are independent. Hence, the conclusion
is that car type and airbags are not independent of each other; they are quite related or
dependent.

Instead of two variables, what if we add one more dimension to the contingency table? Let's
take Origin, and then the table would look as follows:

> contTable<-table(Cars93$Type,Cars93$AirBags,Cars93$Origin)
> contTable
, , = USA
Driver & Passenger Driver only None
Compact 1 2 4
Large 4 7 0
Midsize 2 5 3
Small 0 2 5
Sporty 2 5 1
Van 0 2 3
, , = non-USA
Driver & Passenger Driver only None
Compact 1 7 1
Large 0 0 0
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Midsize 5 6 1
Small 0 3 11
Sporty 1 3 2
Van 0 1 3

The summary command for the test of independence of all factors can be used to test out the
null hypothesis:

> summary(contTable)
Number of cases in table: 93
Number of factors: 3
Test for independence of all factors:
Chisq = 65, df = 27, p-value = 5e-05
Chi-squared approximation may be incorrect

Apart from the graphical methods discussed previously, there are some numerical
statistical tests that can be used to know whether a variable is normally distributed or not.
There is a library called norm.test for performing data normality tests, a list of functions
that help in assessing the data normality from this library are listed as follows:

ajb.norm.test Adjusted Jarque-Bera test for normality

frosini.norm.test Frosini test for normality

geary.norm.test Geary test for normality

hegazy1.norm.test Hegazy-Green test for normality

hegazy2.norm.test Hegazy-Green test for normality

jb.norm.test Jarque-Bera test for normality

kurtosis.norm.test Kurtosis test for normality

skewness.norm.test Skewness test for normality

spiegelhalter.norm.test Spiegelhalter test for normality

wb.norm.test Weisberg-Bingham test for normality

ad.test                     Anderson-Darling test for normality

cvm.test Cramér-von Mises test for normality

lillie.test Lilliefors (Kolmogorov-Smirnov) test for normality

pearson.test Pearson chi-square test for normality

sf.test Shapiro-Francia test for normality
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Let's apply the normality test on the Price variable from the Cars93 dataset:

> library(nortest)
> ad.test(Cars93$Price) # Anderson-Darling test
Anderson-Darling normality test
data: Cars93$Price
A = 3, p-value = 9e-07
> cvm.test(Cars93$Price) # Cramer-von Mises test
Cramer-von Mises normality test
data: Cars93$Price
W = 0.5, p-value = 6e-06
> lillie.test(Cars93$Price) # Lilliefors (KS) test
Lilliefors (Kolmogorov-Smirnov) normality test
data: Cars93$Price
D = 0.2, p-value = 1e-05
> pearson.test(Cars93$Price) # Pearson chi-square
Pearson chi-square normality test
data: Cars93$Price
P = 30, p-value = 3e-04
> sf.test(Cars93$Price) # Shapiro-Francia test
Shapiro-Francia normality test
data: Cars93$Price

From the previously mentioned tests, it is evident that the Price variable is not normally
distributed as the p-values from all the statistical tests are less than 0.05. If we add more
dimensions to the bi-variate relationship, it becomes multivariate analysis. Let's try to
understand the relationship between horsepower and length of a car from the Cars93
dataset:

> library(corrplot)
> o<-cor(Cars93[,c("Horsepower","Length")])
> corrplot(o,method = "circle",main="Correlation Plot")
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When we include more variables, it becomes a multivariate relationship. Let's try to plot a
multivariate relationship between various variables from the Cars93 dataset:

> library(corrplot)
> t<-
cor(Cars93[,c("Price","MPG.city","RPM","Rev.per.mile","Width","Weight","Hor
sepower","Length")])
> corrplot(t,method = "ellipse")

There are various methods that can be passed as an argument to the correlation plot. They
are "circle", "square", "ellipse", "number", "shade", "color", and "pie".
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Hypothesis testing
The null hypothesis states that nothing has happened, the means are constant, and so on.
However, the alternative hypothesis states that something different has happened and the
means are different about a population. There are certain steps in performing a hypothesis
test:

State the null hypothesis: A statement about the population is assumed; for1.
example, the average mileage of cars within a city is 40.
State the alternative hypothesis: If the null hypothesis turns out to be false, then2.
what other possibility is there? For example, if the mileage within the city is not
40, then is it greater than 40 or less than 40? If it is not equal to 40, then it is a non-
directional alternative hypothesis.
Calculate the sample test statistic: The test statistic could be t-test, f-test, z-test,3.
and so on. Select the appropriate test statistic based on the data availability and
the hypothesis declared previously.
Decide the confidence limit: There are three different confidence limits: 90%,4.
95% and 99% depending on the degree of accuracy related to a specific business
problem. It is up to the researcher/analyst to choose the level of confidence
interval.
Define the alpha value: If the confidence level selected is 95%, the alpha value is5.
going to be 5%. Hence deciding the alpha value would help in calculating the p-
value for the test.
Decision: If the p-value selected is less than the alpha level, then there is evidence6.
that the null hypothesis can be rejected; if it is not, then we are going to accept the
null hypothesis.

Test of the population mean
Using the hypothesis testing procedure, let's take an example from the Cars93 dataset to
test out the population mean.

One tail test of mean with known variance
Suppose the researcher claims that the average mileage given by all the cars collected in the
sample is more than 35. In the sample of 93 cars, it is observed that the mean mileage of all
cars is 29. Should you accept or reject the researcher's claim?
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The following script explains how you are going to conclude this:

Null Hypothesis: mean = 35
Alternative hypothesis= mean > 35> mu<-mean(Cars93$MPG.highway)
> mu
[1] 29
> sigma<-sd(Cars93$MPG.highway)
> sigma
[1] 5.3
> n<-length(Cars93$MPG.highway)
> n
[1] 93
> xbar= 35
> z<-(xbar-mu)/(sigma/sqrt(n))
> z
[1] 11
> #computing the critical value at 5% alpha level
> alpha = .05
> z1 = qnorm(1-alpha)
> z1
[1] 1.6
> ifelse(z > z1,"Reject the Null Hypothesis","Accept the Null Hypothesis")
Null Hypothesis: mean = 35
Alternative hypothesis= mean < 35
Two tail test of mean, with known variance:> mu<-mean(Cars93$MPG.highway)
> mu
[1] 29.09
> sigma<-sd(Cars93$MPG.highway)
> sigma
[1] 5.332
> n<-length(Cars93$MPG.highway)
> n
[1] 93
> xbar= 35
> z<-(xbar-mu)/(sigma/sqrt(n))
> z
[1] 10.7
>
> #computing the critical value at 5% alpha level
> alpha = .05
> z1 = qnorm((1-alpha)/2))
Error: unexpected ')' in "z1 = qnorm((1-alpha)/2))"
> c(-z1,z1)
[1] -1.96 1.96
>
>
> ifelse(z > z1 | z < -z1,"Reject the Null Hypothesis","Accept the Null
Hypothesis")
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The way we analyzed the one-tail and two-tail test of population mean for the sample data
in the case of known variance.

One tail and two tail test of proportions
Using the Cars93 dataset, suppose 40% of the USA-manufactured cars have an RPM of
more than 5000. From the sample data, we found that 17 out of 57 cars have RPM above
5000. What do you interpret from the context?

> mileage<-subset(Cars93,Cars93$RPM > 5000)
> table(mileage$Origin)
USA non-USA
17 40
> p1<-17/57
> p0<- 0.4
> n <- length(mileage)
> z <- (p1-p0)/sqrt(p0*(1-p0)/n)
> z
[1] -1.079
> #computing the critical value at 5% alpha level
> alpha = .05
> z1 = qnorm(1-alpha)
> z1
[1] 1.645
> ifelse(z > z1,"Reject the Null Hypothesis","Accept the Null Hypothesis")
[1] "Accept the Null Hypothesis"

If the alternative hypothesis is not directional, it is a case of two-tailed test of proportions;
nothing from the preceding calculation would change except the critical value calculation.
The detailed script is given as follows:

> mileage<-subset(Cars93,Cars93$RPM > 5000)
> table(mileage$Origin)
USA non-USA
17 40
> p1<-17/57
> p0<- 0.4
> n <- length(mileage)
> z <- (p1-p0)/sqrt(p0*(1-p0)/n)
> z
[1] -1.079
> #computing the critical value at 5% alpha level
> alpha = .05
> z1 = qnorm(1-alpha/2)
> c(-z1,z1)
[1] -1.96 1.96
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> ifelse(z > z1 | z < -z1,"Reject the Null Hypothesis","Accept the Null
Hypothesis")
[1] "Accept the Null Hypothesis"

Two sample paired test for continuous data: The null hypothesis that is being
tested in the two-sample paired test would be that there is no impact of a
procedure on the subjects, the treatment has no effect on the subjects, and so on.
The alternative hypothesis would be there is a statistically significant impact of a
procedure, effectiveness of a treatment, or drug on the subjects.

Though we don't have such a variable in the Cars93 dataset, we can still
assume the paired relationship between minimum prices and maximum
prices for different brands of cars.

Null hypothesis for the two sample t-test: There is no difference in the mean
prices.
Alternative hypothesis: There is a difference in the mean prices:

    > t.test(Cars93$Min.Price, Cars93$Max.Price, paired = T)
    Paired t-test
    data: Cars93$Min.Price and Cars93$Max.Price
    t = -9.6, df = 92, p-value = 2e-15
    alternative hypothesis: true difference in means is not equal to 0
    95 percent confidence interval:
    -5.765 -3.781
    sample estimates:
    mean of the differences
    -4.773

The p-value is less than 0.05. Hence, it can be concluded that the difference in
mean minimum price and maximum price is statistically significant at alpha
95% confidence level.

Two sample unpaired test for continuous data: From the Cars93 dataset, the
mileage on the highway and within the city is assumed to be different. If the
difference is statistically significant, can be tested by using the independent
samples t-test for comparison of means.
Null hypothesis: There is no difference in the MPG on highway and MPG within
city.
Alternative hypothesis: There is a difference in the MPG on highway and MPG
within city:

    Welch Two Sample t-test
    data: Cars93$MPG.city and Cars93$MPG.highway
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    t = -8.4, df = 180, p-value = 1e-14
    alternative hypothesis: true difference in means is not equal to 0
    95 percent confidence interval:
    -8.305 -5.136
    sample estimates:
    mean of x mean of y
    22.37 29.09

From the two samples t-test, when the two samples are independent, the p-value is less
than 0.05; hence, we can reject the null hypothesis that there is no difference in the mean
mileage on highway and within city. There is a statistically significant difference in the
mean mileage within city and on highway. This can be represented in a slightly different
way, by putting a null hypothesis is the mean mileage difference within city is different for
manual versus automatic cars:

, data=Cars93)
Welch Two Sample t-test
data: Cars93$MPG.city by Cars93$Man.trans.avail
t = -6, df = 84, p-value = 4e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-6.949 -3.504
sample estimates:
mean in group No mean in group Yes
18.94 24.16

So, the conclusion from the preceding test is that there is a statistically significant difference
in the mean mileage between automatic and manual transmission vehicle types; this is
because the p-value is less than 0.05.

Before applying t-test, it is important to check the data normality; normality of a variable
can be assessed using the Shapiro test function:

> shapiro.test(Cars93$MPG.city)
Shapiro-Wilk normality test
data: Cars93$MPG.city
W = 0.86, p-value = 6e-08
)
> qqline(Cars93$MPG.city)
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Looking at the QQ plot for the lineage per gallon within city and the histogram, it can be
concluded that the variable is not normally distributed. Since the mileage variable is not
normally distributed, it is required to apply non-parametric methods such as Wilcoxon
signed rank test or Kolmogorov-Smirnov test.
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Two sample variance test
To compare the variances of two samples, F-test is used as a statistic:

> var.test(Cars93$MPG.highway~Cars93$Man.trans.avail, data=Cars93)
F test to compare two variances
data: Cars93$MPG.highway by Cars93$Man.trans.avail
F = 0.24, num df = 31, denom df = 60, p-value = 5e-05
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.1330 0.4617
sample estimates:
ratio of variances
0.2402

Since the p-value is less than 0.05, we can reject the null hypothesis that there is no
difference in the variance of mileage on a highway for manual and automatic cars. This
implies there is a statistically significant difference in the variance of two samples at 95%
confidence level.

The variances of the two groups can also be tested using Bartlett test:

> bartlett.test(Cars93$MPG.highway~Cars93$Man.trans.avail, data=Cars93)
Bartlett test of homogeneity of variances
data: Cars93$MPG.highway by Cars93$Man.trans.avail
Bartlett's K-squared = 17, df = 1, p-value = 4e-05

From the preceding test, it can also be concluded that the null hypothesis of equal variances
can be rejected at alpha 0.05 level, and it can be proven that there is a statistically significant
difference in the variance of the two samples.

One-way ANOVA:, one-way ANOVA can be used. The variable considered is RPM, and the
grouping variable considered is Cylinders.

Null hypothesis: There is no difference in the means of RPM across different cylinder types.

Alternative hypothesis: There is a difference in the mean RPM for at least one cylinder type:

> aov(Cars93$RPM~Cars93$Cylinders)
Call:
aov(formula = Cars93$RPM ~ Cars93$Cylinders)
Terms:
Cars93$Cylinders Residuals
Sum of Squares 6763791 25996370
Deg. of Freedom 5 87
Residual standard error: 546.6
Estimated effects may be unbalanced
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> summary(aov(Cars93$RPM~Cars93$Cylinders))
Df Sum Sq Mean Sq F value Pr(>F)
Cars93$Cylinders 5 6763791 1352758 4.53 0.001 **
Residuals 87 25996370 298809
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

From the preceding ANOVA, the p-value is less than 0.05; hence, the null hypothesis can be
rejected. That means at least for one cylinder type, the mean RPM is statistically
significantly different. To identify which cylinder type is different, a post hoc test can be
performed on the results of the ANOVA model:

> TukeyHSD(aov(Cars93$RPM~Cars93$Cylinders))
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = Cars93$RPM ~ Cars93$Cylinders)
$`Cars93$Cylinders`
diff lwr upr p adj
4-3 -321.8 -1269.23 625.69 0.9201
5-3 -416.7 -1870.88 1037.54 0.9601
6-3 -744.1 -1707.28 219.11 0.2256
8-3 -895.2 -1994.52 204.04 0.1772
rotary-3 733.3 -1106.11 2572.78 0.8535
5-4 -94.9 -1244.08 1054.29 0.9999
6-4 -422.3 -787.90 -56.74 0.0140
8-4 -573.5 -1217.14 70.20 0.1091
rotary-4 1055.1 -554.08 2664.28 0.4027
6-5 -327.4 -1489.61 834.77 0.9629
8-5 -478.6 -1755.82 798.67 0.8834
rotary-5 1150.0 -801.03 3101.03 0.5240
8-6 -151.2 -817.77 515.47 0.9857
rotary-6 1477.4 -141.08 3095.92 0.0941
rotary-8 1628.6 -74.42 3331.57 0.0692

Wherever the p-adjusted value is less than 0.05, the mean difference in RPM is statistically
significantly different from other groups.

Two way ANOVA with post hoc tests: The factors considered are origin and airbags. The
hypothesis that needs to be tested is: is there any impact of both the categorical variables on
the RPM variable?

> aov(Cars93$RPM~Cars93$Origin + Cars93$AirBags)
Call:
aov(formula = Cars93$RPM ~ Cars93$Origin + Cars93$AirBags)
Terms:
Cars93$Origin Cars93$AirBags Residuals
Sum of Squares 8343880 330799 24085482
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Deg. of Freedom 1 2 89
Residual standard error: 520.2
Estimated effects may be unbalanced
> summary(aov(Cars93$RPM~Cars93$Origin + Cars93$AirBags))
Df Sum Sq Mean Sq F value Pr(>F)
Cars93$Origin 1 8343880 8343880 30.83 2.9e-07 ***
Cars93$AirBags 2 330799 165400 0.61 0.54
Residuals 89 24085482 270623
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> TukeyHSD(aov(Cars93$RPM~Cars93$Origin + Cars93$AirBags))
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = Cars93$RPM ~ Cars93$Origin + Cars93$AirBags)
$`Cars93$Origin`
diff lwr upr p adj
non-USA-USA 599.4 384.9 813.9 0
$`Cars93$AirBags`
diff lwr upr p adj
Driver only-Driver & Passenger -135.74 -498.8 227.4 0.6474
None-Driver & Passenger -25.68 -401.6 350.2 0.9855
None-Driver only 110.06 -174.5 394.6 0.6280

Non-parametric methods
When a training dataset does not conform to any specific probability distribution because of
non-adherence to the assumptions of that specific probability distribution, the only option
left to analyze the data is via non-parametric methods. Non-parametric methods do not
follow any assumption regarding the probability distribution. Using non-parametric
methods, one can draw inferences and perform hypothesis testing without adhering to
any assumptions. Now let's look at a set of on-parametric tests that can be used when a
dataset does not conform to the assumptions of any specific probability distribution.

Wilcoxon signed-rank test
If the assumption of normality is violated, then it is required to apply non-parametric
methods in order to answer a question such as: is there any difference in the mean mileage
within the city between automatic and manual transmission type cars?

> wilcox.test(Cars93$MPG.city~Cars93$Man.trans.avail, correct = F)
Wilcoxon rank sum test
data: Cars93$MPG.city by Cars93$Man.trans.avail
W = 380, p-value = 1e-06



Exploratory Data Analysis with Automobile Data

[ 65 ]

alternative hypothesis: true location shift is not equal to 0

The argument paired can be used if the two samples happen to be matching pairs and the
samples do not follow the assumptions of normality:

> wilcox.test(Cars93$MPG.city, Cars93$MPG.highway, paired = T)
Wilcoxon signed rank test with continuity correction
data: Cars93$MPG.city and Cars93$MPG.highway
V = 0, p-value <2e-16
alternative hypothesis: true location shift is not equal to 0

Mann-Whitney-Wilcoxon test
If two samples are not matched, are independent, and do not follow a normal distribution,
then it is required to use Mann-Whitney-Wilcoxon test to test the hypothesis that the mean
difference in the two samples are statistically significantly different from each other:

> wilcox.test(Cars93$MPG.city~Cars93$Man.trans.avail, data=Cars93)
Wilcoxon rank sum test with continuity correction
data: Cars93$MPG.city by Cars93$Man.trans.avail
W = 380, p-value = 1e-06
alternative hypothesis: true location shift is not equal to 0

Kruskal-Wallis test
To compare means of more than two groups, that is, the non-parametric side of ANOVA
analysis, we can use the Kruskal-Wallis test. It is also known as a distribution-free statistical
test:

> kruskal.test(Cars93$MPG.city~Cars93$Cylinders, data= Cars93)
Kruskal-Wallis rank sum test
data: Cars93$MPG.city by Cars93$Cylinders
Kruskal-Wallis chi-squared = 68, df = 5, p-value = 3e-13
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Summary
Exploratory data analysis is an important activity in almost all types of data mining
projects. Understanding the distribution, shape of the distribution, and vital parameters of
the distribution, is very important. Preliminary hypothesis testing can be done to know the
data better. Not only the distribution and its properties but also the relationship between
various variables is important. Hence in this chapter, we looked at bivariate and
multivariate relationships between various variables and how to interpret the relationship.
Classical statistical tests, such as t-test, F-test, z-test and other non-parametric tests are
important to test out the hypothesis. The hypothesis testing itself is also important to draw
conclusions and insights from the dataset.

In this chapter we discussed various statistical tests, their syntax, interpretations, and
situations where we can apply those tests. After performing exploratory data analysis, in
the next chapter we are going to look at various data visualization methods to get a 360-
degree view of data. Sometimes, a visual story acts as the simplest possible representation
of data. In the next chapter, we are going to use some inbuilt datasets with different
libraries to create intuitive visualizations.



3
Visualize Diamond Dataset

Every data mining project is incomplete without proper data visualization. While looking at
numbers and statistics it may tell a similar story for the variables we are looking at by
different cuts, however, when we visually look at the relationship between variables and
factors it shows a different story altogether. Hence data visualization tells you a message,
that numbers and statistics fail to do that. From a data mining perspective, data
visualization has many advantages, which can be summarized in three important points:

Data visualization establishes a robust communication between the data and the
consumer of the data
It imprints a long lasting impact as people may fail to remember numbers but
they do remember charts and shapes
When data scales up to higher dimension, representation in numbers does not
make sense, but visually it does

In this chapter, the reader will get to know the basics of data visualization along with how
to create advanced data visualization using existing libraries in R programming language.
Typically, data visualization approach can be addressed in two different ways:

What do you want to display to the audience? Is it comparison, relationship, or
any other functionality?
How do you want to display the insights? Which one is the most intuitive way of
chart or graph to display the insights?

Based on the preceding two points, let's have a look at the data visualization rules and
theories behind each visualization, and then we are going to look at the practical aspect of
implementing the graphs and charts using R Script.
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From a functional point of view, the following are the graphs and charts which a data
scientist would like the audience to look at to infer the information:

Comparisons between variables: Basically, when it is needed to represent two or
more categories within a variable, then the following charts are used:

Bar chart
Box plot
Bubble chart
Histogram
Line graph
Stacked bar chart
Radar chart
Pie chart

Testing/viewing proportions: It is used when there is a need to display the
proportion of contribution by one category to the overall level:

Bubble chart
Bubble map
Stacked bar chart
Word cloud

Relationship between variables: Association between two or more variables can
be shown using the following charts:

Scatterplot
Bar chart
Radar chart
Line graph
Tree diagram

Variable hierarchy: When it is required to display the order in the variables, such
as a sequence of variables, then the following charts are used:

Tree diagram
Tree map

Data with locations: When a dataset contains the geographic location of different
cities, countries, and states names, or longitudes and latitudes, then the following
charts can be used to display visualization:

Bubble map
Geo mapping
Dot map
Flow map
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Contribution analysis or part-to-whole: When it is required to display
constituents of a variable and contribution of each categorical level towards the
overall variable, then the following charts are used:

Pie chart
Stacked bar chart
Donut chart

Statistical distribution: In order to understand the variation in a variable across
different dimensions, represented by another categorical variable, the following
charts are used:

Box plot
Bubble chart
Histogram
Stem and leaf plot

Unseen patterns: For pattern recognition and relative importance of data points
on different dimensions of a variable, the following charts are used:

Bar chart
Box plot
Bubble chart
Scatterplot
Spiral plot
Line chart

Spread of values or range: The following charts only give the spread of the data
points across different bounds:

Span chart
Box plot
Histogram

Textual data representation: This is a very interesting way of representing the
textual data:

Word cloud

Keeping in mind the preceding functionalities that people use in displaying insights to the
readers, we can see that one graph is referred by much functionality. In other words, one
graph can be used in multiple functions to show the insights. These graphs and charts can
be displayed by using various open source R packages, such as ggplot2, ggvis, rCharts,
plotly, and googleVis by taking one open source dataset.
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In the light of the previously mentioned ten points, the data visualization rules can be
created to select the best representation depending on what you want to represent:

Relationship between two variables can be represented using a scatterplot
Relationship between more than two variables can be represented using a bubble
chart
For understanding the distribution of a single variable with few sample size,
histogram is used
For understanding the distribution of a single variable with large sample size,
density plot is used
Distribution of two variables can be represented using scatterplot
For representation of distribution between 3 variables, 3D scatterplot is used
Any variable with a time stamp, such as day, week, month, year, and so on, can
be represented using line chart
Time should always be on the horizontal axis and the metric to be measured
should always be on the vertical axis
Each graph should have a name and label so that the user does not have to go
back to the data to understand what it is

In this chapter, we will primarily focus on the ggplot2 library and plotly library. Of 
course we will cover a few more interesting libraries to create data visualization. The
graphics packages in R can be organized as per the following sequences:

Plotting
Graphic applications (such as effect ordering, large datasets and trees, and
graphs)
Graphics systems
Devices
Colors
Interactive graphics
Development

A detailed explanation of the various libraries supporting the previous functionalities can
be found in the link h t t p s : / / c r a n . r - p r o j e c t . o r g / w e b / v i e w s / G r a p h i c s . h t m l. For
good visual object, we need more data points so that the density of the graphs can be more.
In this context, we will be using two datasets, diamonds.csv and cars93.csv, to show
data visualization.

https://cran.r-project.org/web/views/Graphics.html
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Data visualization using ggplot2
There are two approaches to go ahead with data visualization, horizontally and vertically.
Horizontal drill down means creating different charts and graphs using ggplot2 and
vertical drill down implies creating one graph and adding different components to the
graph. First, we will understand how to add and modify different components to a graph,
and then we will move horizontally to create different types of charts.

Let's look at the dataset and libraries required to create data visualization:

> #getting the library
> library(ggplot2);head(diamonds);names(diamonds)
X carat cut color clarity depth table price x y z
1 1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
2 2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
3 3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
4 4 0.29 Premium I VS2 62.4 58 334 4.20 4.23 2.63
5 5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
6 6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
[1] "X" "carat" "cut" "color" "clarity" "depth" "table" "price" "x"
[10] "y" "z"

The ggplot2 library is also known as the grammar of graphics for data visualization. The
process to start the graph requires a dataset and two variables, and then different
components of a graph can be added to the base graph by using the + sign. Let's get into
creating a nice visualization using the diamonds.csv dataset:

> #starting a basic ggplot plot object
> gg<-ggplot(diamonds,aes(price,carat))+geom_point(color="brown4")
> gg

In the preceding script, diamonds is the dataset, and carat and price are the two
variables. Using ggplot function, the base graph is created and adding point to the
ggplot, the object is stored in object gg.
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Now we are going to add various components of a graph to make the ggplot graph more
interesting:

After creating the base plot, it is required to add title and label to the graph. This can be
done using two functions, ggtitle or labs. Then, let's add a theme to the plot for
customizing text element:

> #adding a title or label to the graph
> gg<-gg+ggtitle("Diamond Carat & Price")
> gg
> gg<-gg+labs("Diamond Carat & Price")
> gg
> #adding theme to the plot
> gg<-gg+theme(plot.title= element_text(size = 20, face = "bold"))
> gg
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Currently, the graph looks a little congested. To make the graph more intuitive, we need to
add labels to the x axis and y axis, removing ticks and text from any axis to make the graph
more clear. Rotating text in any axis is required when the row name or the column name
contains text or a large number which is difficult to read in full length:

> #adding labels to the graph
> gg<-gg+labs(x="Price in Dollar", y="Carat", )
> gg
> #removing text and ticks from an axis
> gg<-gg+theme(axis.ticks.y=element_blank(),axis.text.y=element_blank())
> gg
> gg<-gg + theme(axis.text.x=element_text(angle=50, size=10, vjust=0.5))
> gg
> gg<-gg + theme(axis.text.x=element_text(color = "chocolate", vjust=0.45),
+ axis.text.y=element_text(color = "brown1", vjust=0.45))
> gg
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In order to focus on any specific portion of the plot, the x axis limit and y axis limit can be
changed as follows. It also shows the number of rows removed while executing the limit on
both the axes:

> #setting limits to both axis
> gg<-gg + ylim(0,0.8)+xlim(250,1500)
> gg
Warning message:
Removed 33937 rows containing missing values (geom_point).

If both x axis and y axis represent continuous data, any third variable as a factor can be
introduced to the ggplot object to set legends and look at the data how it is distributed
across the factor variable:

> #how to set legends in a graph
> gg<-ggplot(diamonds,aes(price,carat,color=factor(cut)))+geom_point()
> gg
> gg<-ggplot(diamonds,aes(price,carat,color=factor(color)))+geom_point()
> gg
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> gg<-ggplot(diamonds,aes(price,carat,color=factor(clarity)))+geom_point()
> gg
> gg<-gg+theme(legend.title=element_blank())
> gg

> gg<-gg+theme(legend.title = element_text(colour="darkblue", size=16,
+ face="bold"))+scale_color_discrete(name="By Different Grids of Clarity")
> #changing the backgroup boxes in legend
> gg<-gg+theme(legend.key=element_rect(fill='dodgerblue1'))
> gg
> #changing the size of the symbols used in legend
> gg<-gg+guides(colour = guide_legend(override.aes = list(size=4)))
> gg
> #changing the size of the symbols used in legend
> gg<-gg+guides(colour = guide_legend(override.aes = list(size=4)))
> gg
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In addition to the previous visualization, it is required to connect the scatterplots and
change the background. Add lines to the scatterplot in order to understand the sequence r
pattern that exists between the variables which are related:

> #adding line to the data points
> gg<-gg+geom_line(color="darkcyan")
> gg
> #changing the background of an image
> gg<-gg+theme(panel.background = element_rect(fill = 'chocolate3'))
> gg
> #changing plot background
> gg<-gg+theme(plot.background = element_rect(fill = 'skyblue'))
> gg
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Another important aspect of data visualization is how to display multi-dimensional cuts in
a plot. For example, in the diamonds datasets, we are currently looking at the relationship
between the price of the diamond and the carat it contains. There are three more variables:
cut, color, and clarity. It makes sense to understand if the relationship is consistent
across those three variables. That means, understanding if we can plot the relationship
between the carat and the price of the diamond by different cut, different color, and
different clarity categories. Let's look at the distribution of the three categorical variables:

> table(diamonds$cut);table(diamonds$clarity);table(diamonds$color)
Fair Good Very Good Premium Ideal
1610 4906 12082 13791 21551
I1 SI2 SI1 VS2 VS1 VVS2 VVS1 IF
741 9194 13065 12258 8171 5066 3655 1790
D E F G H I J
6775 9797 9542 11292 8304 5422 2808
> #adding a multi-variable cut to the graph
> gg<-gg+facet_wrap(~cut, nrow=4)
> gg
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In the preceding graph, the cut variable is used to show the relationship between the carat
and the price. The number of rows selected is four, to represent the graphs in a clear
manner. If we add one more variable to the cut variable, that is clarity, the graph would
be more intuitive and insightful:

> #adding two variables as cut to display the relationship
> gg<-gg+facet_wrap(~cut+clarity, nrow=4)
> gg
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While creating the graphs using a multi-dimensional cut variable, it is not necessary that all
the graphs would be on the same scale. In automatic mode, the scales become a standard for
all the plots, hence, sometimes certain plots get compressed. Thus, it is required to make the
graphs scale free in order to rearrange the scales based on observed values:

> #scale free graphs in multi-panels
> gg<-gg+facet_wrap(~color, ncol=2, scales="free")
> gg
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Using the facet_grid() option, we can display the bi-variate relationship between two
categorical variables using the ggplot2 library:

> #bi-variate plotting using ggplot2
> gg<-gg+facet_grid(color~cut)
> gg
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There are certain external graphical themes which can be imported to the ggplot2 function
for visualization, such as library(ggthemes). Tableau, which is a tool known for data
visualization, its color, and themes, can also be used along with ggplots:

> #changing discrete category colors
> ggplot(diamonds, aes(price, carat, color=factor(cut)))+
+ geom_point() +
+ scale_color_brewer(palette="Set1")
> #Using tableau colors
> library(ggthemes)
> ggplot(diamonds, aes(price, carat, color=factor(cut)))+
+ geom_point() +
+ scale_color_tableau()
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Plots created can be slightly modified using the  color gradient and plotting a distribution
on the graph itself:

> #using color gradient
> ggplot(diamonds, aes(price, carat))+
+ geom_point() +
+ scale_color_gradient(low = "blue", high = "red")
> #plotting a distribution on a graph
> mid<-mean(diamonds$price)
> ggplot(diamonds, aes(price, carat, color=depth))+geom_point()+
+ scale_color_gradient2(midpoint=mid,
+ low="blue", mid="white", high="red" )
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Having discussed in depth about the components in a graph building process, now let's try
to understand how to create different charts and graphs using ggplot2. qplot() is a basic
plotting function in ggplot2, which is a wrapper for creating different types of plots. There
are two options for a user, either go plotting with the qplot() or ggplot() function. To
create different graphs, we are going to use the Cars93.csv dataset.

Bar chart
Bar charts are preferred as a method of visualization for the categorical variables, also used
to represent the count or percentage of each group. The horizontal axis represents the
categories and the vertical axis either represents the count or the percentage:

> #creating bar chart
> barplot <- ggplot(Cars93,aes(Type))+
+ geom_bar(width = 0.5,fill="royalblue4",color="red")+
+ ggtitle("Vehicle Count by Category")
> barplot



Visualize Diamond Dataset

[ 84 ]

Boxplot
It is not only easy to interpret boxplots using the ggplot package, but also easy to
customize the plot. One can easily recognize the outliers imposed on each of the
corresponding boxplots:

> #creating boxplot
> boxplot <- ggplot(Cars93,aes(Type,Price))+
+ geom_boxplot(width = 0.5,fill="firebrick",color="cadetblue2",
+ outlier.colour = "purple",outlier.shape = 2)+
+ ggtitle("Boxplot of Price by Car Type")
> boxplot
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Bubble chart
The bubble chart belongs to the family of the scatterplot. It is preferred when it is required
to represent three quantitative variables. Two quantitative variables are represented on two
axis and one quantitative variable is used to represent the size of each bubble in a bubble
chart:

> #creatting Bubble chart
> bubble<-ggplot(Cars93, aes(x=EngineSize, y=MPG.city)) +
+ geom_point(aes(size=Price,color="red")) +
+ scale_size_continuous(range=c(2,15)) +
+ theme(legend.position = "bottom")
> bubble
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Donut chart
Donut chart is used in place of pie chart when the number of categories exceeds five:

> #creating Donut charts
> ggplot(Cars93) + geom_rect(aes(fill=Cylinders, ymax=Max.Price,
+ ymin=Min.Price, xmax=4, xmin=3)) +
+ coord_polar(theta="y") + xlim(c(0, 4))
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Geo mapping
Any dataset that has a city name and state name or a country name can be plotted on a 
geographical map using google visualization library in R. Using another open source
dataset, state.x77 inbuilt in R, we can show how a geo map looks. The google
visualization library, using Google maps API, tries to plot the geographic locations on the
plot along with the enterprise data. It publishes the output in a browser which can be stored
back as an image to use it further:

> library(googleVis)
> head(state.x77)
Population Income Illiteracy Life Exp Murder HS Grad Frost
Alabama 3615 3624 2.1 69.05 15.1 41.3 20
Alaska 365 6315 1.5 69.31 11.3 66.7 152
Arizona 2212 4530 1.8 70.55 7.8 58.1 15
Arkansas 2110 3378 1.9 70.66 10.1 39.9 65
California 21198 5114 1.1 71.71 10.3 62.6 20
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Colorado 2541 4884 0.7 72.06 6.8 63.9 166
Area
Alabama 50708
Alaska 566432
Arizona 113417
Arkansas 51945
California 156361
Colorado 103766
> states <- data.frame(state.name, state.x77)
> gmap <- gvisGeoMap(states, "state.name", "Area",
+ options=list(region="US", dataMode="regions",
+ width=900, height=600))
> plot(gmap)
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Histogram
This is probably the easiest plot that every data mining professional must be doing. The
following code explains how a histogram can be created using the ggplot library:

> #creating histograms
> histog <- ggplot(Cars93,aes(RPM))+
+ geom_histogram(width = 0.5,fill="firebrick",color="cadetblue2",
+ bins = 20)+
+ ggtitle("Histogram")
> histog

www.allitebooks.com

http://www.allitebooks.org
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Line chart
Line chart is not a preferred chart while showing raw data. However, it is important while 
showing some variations across different categories relating to some metric. Though it is
not a preferred chart, but it depends on the practitioner how he/she wants to display and
tell a story to the reader:

> #creating line charts
> linechart <- ggplot(Cars93,aes(RPM,Price))+
+ geom_line(color="cadetblue4")+
+ ggtitle("Line Charts")
>
> linechart
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Pie chart
A pie chart is a representation of categorical variables when the label for each categorical
variable is less than 10. If it exceeds 10, then it is suggested to look at a histogram or barplot
for comparison. Using the ggplot library, the pie chart can be created. The script is as
follows:

> #creating pie charts
> pp <- ggplot(Cars93, aes(x = factor(1), fill = factor(Type))) +
+ geom_bar(width = 1)
> pp + coord_polar(theta = "y")

> # 3D Pie Chart from data frame
> library(plotrix)
> t <- table(Cars93$Type);par(mfrow=c(1,2))
> pct <- paste(names(t), "\n", t, sep="")
> pie(t, labels = pct, main="Pie Chart of Type of cars")
> pie3D(t,labels=pct,main="Pie Chart of Type of cars")
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Scatterplot
Scatterplot is a very important plot to understand the bivariate relationship that exists in
data. It also shows the pattern in which the data is stored over a period of time. It is also
important to show the data in a proper way while showing it in scatterplots. The following
example shows how a bivariate relationship can be displayed along with some third
dimension dictating the visualization in a bivariate relationship. The third dimension could
be a continuous variable or a categorical variable. Using the gridExtra() library,
additional graphing window can be created where two or more plots can be represented
side by side, with some relationship:

> library(gridExtra)
> sp <- ggplot(Cars93,aes(Horsepower,MPG.highway))+
+ geom_point(color="dodgerblue",size=5)+ggtitle("Basic Scatterplot")+
+ theme(plot.title= element_text(size = 12, face = "bold"))
> sp
> #adding a cantinuous variable Length to scale thee scatterplot points
> sp2<-sp+geom_point(aes(color=Length), size=5)+
+ ggtitle("Scatterplot: Adding Length Variable")+
+ theme(plot.title= element_text(size = 12, face = "bold"))
> sp2
>
> grid.arrange(sp,sp2,nrow=1)
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In the second graph in the preceding plot, the length variable, which is continuous, is
dictating the relationship between the horsepower and the highway mileage per gallon. The
light blue colored dots indicate lengthy cars while the darker dots indicate smaller cars.
Instead of a continuous variable, if we use a factor variable to scale the relationship between
the two variables, we will be able to see a plot like given in first graph in the following plot:

> #adding a factor variable Origin to scale the scatterplot points
> sp3<-sp+geom_point(aes(color=factor(Origin)),size=5)+
+ ggtitle("Scatterplot: Adding Origin Variable")+
+ theme(plot.title= element_text(size = 12, face = "bold"))
> sp3
> #adding custom color to the scatterplot
> sp4<-sp+geom_point(aes(color=factor(Origin)),size=5)+
+ scale_color_manual(values = c("red","blue"))+
+ ggtitle("Scatterplot: Adding Custom Color")+
+ theme(plot.title= element_text(size = 12, face = "bold"))
> sp4
> grid.arrange(sp3,sp4,nrow=1)
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To display the cause and effect relationship, one needs to display a trendline or a regression
line on a scatterplot. Using the ggplot2 library, different regression lines can be plotted,
such as linear, non linear, generalized linear, and so on. When the number of observations
in a dataset is less than 1000, the loess regression method is applied by default. However,
when it is more than 1000, the generalized additive model is applied. The trend lines are
displayed next. The first plot indicates a line graph connecting all the points, and the second
plot indicates the robust linear model:

> sp5<-sp+geom_point(color="blue",size=5)+geom_line()+
+ ggtitle("Scatterplot: Adding Lines")+
+ theme(plot.title= element_text(size = 12, face = "bold"))
> sp5
> #adding regression lines to the scatterplot
> sp6<-sp+geom_point(color="firebrick",size=5)+
+ geom_smooth(method = "lm",se =T)+
+ geom_smooth(method = "rlm",se =T)+
+ ggtitle("Adding Regression Lines")+
+ theme(plot.title= element_text(size = 12, face = "bold"))



Visualize Diamond Dataset

[ 95 ]

> sp6
> grid.arrange(sp5,sp6,nrow=1)

Adding the generalized regression model and loess as a non-linear regression model, we
can modify the scatterplots as follows:

> sp7<-sp+geom_point(color="firebrick",size=5)+
+ geom_smooth(method = "auto",se =T)+
+ geom_smooth(method = "glm",se =T)+
+ ggtitle("Adding Regression Lines")+
+ theme(plot.title= element_text(size = 20, face = "bold"))
> sp7
> #adding regression lines to the scatterplot
> sp8<-sp+geom_point(color="firebrick",size=5)+
+ geom_smooth(method = "gam",se =T)+
+ ggtitle("Adding Regression Lines")+
+ geom_smooth(method = "loess",se =T)+
+ theme(plot.title= element_text(size = 20, face = "bold"))
> sp8
> grid.arrange(sp7,sp8,nrow=1)
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3D scatterplot is another addition to the list of scatterplot functions we are looking at. The
3D scatterplot library enables the users to look at the plot and rotate it, to view the data
points from different angles. Once executed, the following script would open up a new rgl
device window. Just rotate the graph and you would be able to see the data points from
different angles:

> library(scatterplot3d);library(Rcmdr)
> scatter3d(MPG.highway~Length+Width|Origin, data=Cars93,
fit="linear",residuals=TRUE, parallel=FALSE, bg="black", axis.scales=TRUE,
grid=TRUE, ellipsoid=FALSE)
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Stacked bar chart
Stacked bar charts are just another variant of bar charts, where more than two variables can
be plotted with different combinations of color. The following example codes show some
variants of stacked bar charts:

> qplot(factor(Type), data=Cars93, geom="bar", fill=factor(Origin))
>
> #or
>
> ggplot(Cars93, aes(Type, fill=Origin)) + geom_bar()



Visualize Diamond Dataset

[ 98 ]

Stem and leaf plot
A stem and leaf plot is a textual representation of a quantitative variable that segments the
values to their most significant numeric digits. For example, the stem and leaf plot for the
mileage within the  city variable from the Cars93.csv dataset is represented as follows:

> stem(Cars93$MPG.city)
The decimal point is 1 digit(s) to the right of the |
1 | 55666777777778888888888889999999999
2 | 0000000011111122222223333333344444
2 | 5555556688999999
3 | 01123
3 | 9
4 | 2
4 | 6
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To interpret the results of a stem and leaf plot: if we need to know how many observations
are there which are greater than 30, the answer is 8, the digit on the left of pipe indicates
items and the numbers on the right indicate units, hence the respective numbers are 30, 31,
31, 32, 33, 39, 42, 46.

Word cloud
Word cloud is a data visualization method which is preferred when it is required to
represent a textual data. For example, the representation of a bunch of text files with few
words having frequent appearances across those set of documents would summarize the
topic of discussion. Hence, word cloud representation is a visual summary of the textual
unstructured data. This is mostly used to represent social media posts, such as Twitter
tweets, Facebook posts, and so on. There are various pre-processing tasks before arriving to
create a word cloud, the final output from a text mining exercise would be a data frame
with words and their respective frequencies:

#Word cloud representation
library(wordcloud)
words<-c("data","data mining","analytics","statistics","graphs",
"visualization","predictive analytics","modeling","data science",
"R","Python","Shiny","ggplot2","data analytics")
freq<-c(123,234,213,423,142,145,156,176,214,218,213,234,256,324)
d<-data.frame(words,freq)
set.seed(1234)
wordcloud(words = d$words, freq = d$freq, min.freq = 1,c(8,.3),
max.words=200, random.order=F, rot.per=0.35,
colors=brewer.pal(7, "Dark2"))
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Coxcomb plot
The coxcomb chart, which is also known as polar chart or rose chart, is a combination of pie
chart and bar chart. The area of each section is adjusted based on the values of that segment
by changing the radius. Anyone can understand the insights represented using coxcomb
chart and does not require any technical knowledge:

> #coxcomb chart = bar chart + pie chart
> cox<- ggplot(Cars93, aes(x = factor(Type))) +
+ geom_bar(width = 1, colour = "goldenrod1",fill="darkviolet")
> cox + coord_polar()

A new variant of coxcomb plot by changing the coordinate polar measure, which is theta:

> #coxcomb chart = bar chart + pie chart
> cox<- ggplot(Cars93, aes(x = factor(Type))) +
+ geom_bar(width = 1, colour = "goldenrod1",fill="darkred")
> cox + coord_polar()
> #a second variant of coxcomb plot
> cox + coord_polar(theta = "y")
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Using plotly
So far, we have looked at various scenarios of creating plots using the ggplot2 library. In
order to take the plotting to a new level, there are many libraries which can be referred to.
Out of them, one library is plotly, which is designed as an interactive browser-based
charting library built on the JavaScript library. Let's look at a few examples on how it
works.
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Bubble plot
Bubble plot is a nice visualization in which the size of the bubble indicates the weight of
each variable as it is present in the dataset. Let's look at the following plot:

> #Bubble plot using plotly
> plot_ly(Cars93, x = Length, y = Width, text = paste("Type: ", Type),
+ mode = "markers", color = Length, size = Length)

The combination of ggplot2 with the plotly library makes for good visualization, as the
features of both the libraries are embedded with the ggplotly library:

> #GGPLOTLY: ggplot plus plotly
> p <- ggplot(data = Cars93, aes(x = Horsepower, y = Price)) +
+ geom_point(aes(text = paste("Type:", Type)), size = 2,
color="darkorchid4") +
+ geom_smooth(aes(colour = Origin, fill = Origin)) + facet_wrap(~ Origin)
>
> (gg <- ggplotly(p))
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Bar charts using plotly
Bar charts using plotly look smarter than regular bar charts available in R, as a base
functionality, let's have a look at the graph as follows:

> p <- plot_ly(
+ x = Type,
+ y = Price,
+ name = "Price by Type",
+ type = "bar")
> p
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Scatterplot using plotly
Representation of two continuous variables can be shown using a scatterplot. Let's look at
the data represented next:

> # Simple scatterplot
> library(plotly)
> plot_ly(data = Cars93, x = Horsepower, y = MPG.highway, mode = "markers")
> #Scatter Plot with Qualitative Colorscale
> plot_ly(data = Cars93, x = Horsepower, y = MPG.city, mode = "markers",
+ color = Type)

Boxplots using plotly
Following are examples of creating some interesting boxplots using the plotly library:

> #Box Plots
> library(plotly)
> ### basic boxplot
> plot_ly(y = MPG.highway, type = "box") %>%
+ add_trace(y = MPG.highway)
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> ### adding jittered points
> plot_ly(y = MPG.highway, type = "box", boxpoints = "all", jitter = 0.3,
+ pointpos = -1.8)

> ### several box plots
> plot_ly(Cars93, y = MPG.highway, color = Type, type = "box")
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> ### grouped box plots
> plot_ly(Cars93, x = Type, y = MPG.city, color = AirBags, type = "box")
%>%
+ layout(boxmode = "group")



Visualize Diamond Dataset

[ 107 ]

Polar charts using plotly
The polar chart visualization using plotly is more interesting to look at. This is because
when you hover your cursor over the chart, the data values become visible and differences
in pattern can be recognized. Let's look at the example code as given next:

> #Polar Charts in R
> library(plotly)
pc <- plot_ly(Cars93, r = Price, t = RPM, color = AirBags,
mode = "lines",colors='Set1')
layout(pc, title = "Cars Price by RPM", orientation = -90,
font='bold')

Polar scatterplot using plotly
Using the plotly library, there is one additional chart type which a user can create. It's
called polar scatterplot. Instead of a two dimensional scatterplot, the points are plotted in a
circular fashion:
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> #Polar Scatter Chart
pc <- plot_ly(Cars93, r = Price, t = Horsepower, color = Type,opacity =
0.7,
mode = "markers",colors = 'Dark2')
layout(pc, title = "Price of Cars by Horsepower",plot_bgcolor =
toRGB("coral"),
font='bold')

The graph polar scatterplot shows the price of cars by horsepower and the colors indicate
the type of cars, the rings indicate proximity or closeness, one midsize car is very distinctly
different from other variants as observed from the graph.

Polar area chart
The polar area chart, also known as the radar chart or coxcomb chart as renamed in some
other packages, is shown next using a sample code. It shows the relationship between the of
cars and horsepower by car type:

> #Polar Area Chart
pc <- plot_ly(Cars93, r = Price, t = Horsepower, color = Type, type =
"area")
layout(pc,title = "Price of Cars by Horsepower",orientation = 270,
plot_bgcolor = toRGB("tan"),font='bold')
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Creating geo mapping
Geo mapping is a type of chart which is used by data mining experts when the dataset
contains location information. The geo mapping plots are supported by the ggmap library.
The location information can be accessed in three different ways:

By the name of the place, location name, and address
By the latitude and longitude of the place
By exact location, lower left longitude, lower left latitude, upper right longitude,
and upper left latitude

Once the map location is identified, then by using the ggmap function the location can be
identified on a map:

>library(ggmap)
>gc <- geocode("statue of liberty", source = "google")
>googMap <- get_googlemap(center = as.numeric(gc))
>(bb <- attr(googMap, "bb"))
>bb2bbox(bb)
>gc<-get_map(location = c(lon = gc$lon, lat = gc$lat))
>ggmap(gc)
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Summary
In this chapter, we looked at the various types of charts. We briefly discussed the syntax to
create those charts and we also discussed briefly where to use which type of chart. To create
a visual display to explain the insights and message to the audience is a skill. It takes time
and becomes perfect by experience. In this chapter, we only looked at the most important
data visualization methods used in data mining domain. However, there is overabundance
of graphs and charts to be selected to create innovative presentations. So the key take away
from this chapter is that the reader now knows the data visualization rules, the types of
charts and graphs used in data mining to show the relationship between various variables,
and understands the distribution of various variables. At the same time, the reader has got
hands on experience by doing side by side practice on two important data visualization
libraries: ggplot2 and plotly. In the next chapter, we are going to learn about application
of various regression techniques, interpretation of regression results, and visualization of
regression results to understand the relationship between various variables.



4
Regression with Automobile

Data
One of the primary objectives of data mining projects is to understand the relationship
between various variables and establish a cause and effect relationship between the variable
of interest and other explanatory variables. In data mining projects, performing predictive
analytics not only entails insights on hidden messages in datasets but also helps in making
future decisions which might impact the business outcomes. In this chapter, the reader will
get to know the basics of predictive analytics using regression methods, including various
linear and nonlinear regression methods using R programming. The reader will be able to
understand the theoretical background as well as get practical hands-on experience with all
the regression methods using R programming language.

In this chapter, we will cover the following topics:

Regression formulation
Linear regression
Logical regression
Cubic regression
Stepwise regression
Penalized regression
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Regression introduction
Regression methods help in predicting the future outcomes of a target variable. As an
example, here are a few business cases:

In the sales and marketing domain, how can a business achieve a significant
improvement in sales? Can we successfully predict using the if a necessary
amendment is made to the drivers of sales?
In the retail domain, can we predict the number of visitors to a website, so that
necessary tech support can be aligned to help operate the site better?
How can a retail/e-commerce owner predict the number of footfall to their store
in a month/week/year?
In the banking domain, how can a bank predict the number of people applying
for home loans, car loans, and personal loans, so that they can maintain their
liquid capital to support the demand?
In the banking domain, prediction of default probability can be estimated using
regression methods so that a bank can decide whether to approve a loan/credit
card to a customer.
In the automobile manufacturing domain, the sales unit of vehicles is indirectly
proportional to the price of the vehicles and the price of a vehicle is decided by
many factors such as usages of different metals/components, and various vehicle
features such as RPM, mileage, length, width, and others. How can a
manufacturer predict the unit of sales?

There are different methods to perform regression, including both linear as well as non-
linear. Regression-based predictive analytics is being used in different industries in a
different way. Regression methods support the prediction of a continuous variable,
prediction of the probability of a success or failure of a variable, prediction of events based
on features, and so on.

Formulation of regression problem
The formulation of a regression problem is very essential in creating a good regression-
based predictive model. A typical approach in building a good predictive model follows a
process of converting a business problem to a statistical problem, then converting the
statistical problem to a statistical solution, and finally converting the statistical solution to a
business solution. The following steps are required to build a good predictive model using
regression based methods:
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A clear understanding about the background or context is very much required.
Sometimes a good predictive model does not make sense for a business from a
context point of view. However, a contextually relevant predictive model may
not be a good predictive model.
A clear understanding about the objective is needed: what are you predicting and
why are you predicting? Domain expertise is required. Most of the times, non-
relevant features get added to a model, having no practical sense, because they
show a mere correlation.
A clear understanding about correlation and regression is important. It's a
common phenomenon that people misconstrue a mere correlation or association
as regression. “All regression may show causal relationship, but not the
contrary”.
Conversion of a business problem to a statistical problem should be done
carefully, so that assumptions and business understanding can be taken care of in
the model.

Initial exploratory data analysis reveals the relationship between variables so that the
variables can be included in a predictive model. The exploratory data analysis involves
univariate, bivariate, and multivariate data analysis. Missing value imputation, outlier
treatment, and removal of data entry errors are also equally important before proceeding
with regression methods.

Case study
We are going to take two datasets, Cars93_1.csv and ArtPiece_2.csv, to explain 
various regression methods with a detailed analysis of what regression to use where and
under what circumstances. For each regression method, we will take a look at the
assumptions, limitations, mathematical formulations, and interpretation of the results.

Linear regression
The linear regression model is used for explaining the relationship between a single
dependent variable known as Y and one or more X's independent variables known as
input, predictor, or independent variables. The following two equations explain a linear
regression scenario:
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Equation 1 shows the formulation of a simple linear regression equation and equation 2
shows the multiple linear equations where many independent variables can be included.
The dependent variable must be a continuous variable and the independent variables can
be continuous and categorical. We are going to explain the multiple linear regression
analysis by taking the Cars93_1.csv dataset, where the dependent variable is the price of
cars and all the other variables are explanatory variables. The regression analysis includes:

Predicting the future values of the dependent variable, given the values for
independent variables
Assessment of model fit statistics and comparison of various models
Interpreting the coefficients to understand the levers of change in the dependent
variable
The relative importance of the independent variables

The primary objective of a regression model is to estimate the beta parameters and
minimize the error term epsilon:

Let's look at the relationship between various variables using a correlation plot:

#Scatterplot showing all the variables in the dataset
library(car);attach(Cars93_1)
> #12-"Rear.seat.room",13-"Luggage.room" has NA values need to remove them
> m<-cor(Cars93_1[,-c(12,13)])
> corrplot(m, method = "ellipse")
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The preceding figure shows the relationship between various variables. From each ellipse
we can get to know how the relationship: is it positive or negative, and is it strongly
associated, moderately associated, or weakly associated? The correlation plot helps in
taking a decision on which variables to keep for further investigation and which ones to
remove from further analysis. The dark brown colored ellipse indicates perfect negative
correlation and the dark blue colored ellipse indicates the perfect positive correlation. The
narrower the ellipse, the higher the degree of correlation.

Given the number of variables in the dataset, it is quite difficult to read the scatterplot.
Hence the correlation between all the variables can be represented using a correlation
graph, as follows:
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Correlation coefficients represented in bold blue color show higher degree of positive
correlation and the ones with red color show higher degree of negative correlation.

The assumptions of a linear regression are as follows:

Normality: The error terms from the estimated model should follow a normal
distribution
Linearity: The parameters to be estimated should be linear
Independence: The error terms should be independent, hence no-autocorrelation
Equal variance: The error terms should be homoscedastic
Multicollinearity: The correlation between the independent variables should be
zero or minimum

While fitting a multiple linear regression model, it is important to take care of the preceding
assumptions. Let's look at the summary statistics from the multiple linear regression
analysis and interpret the assumptions:

> #multiple linear regression model
> fit<-lm(MPG.Overall~.,data=Cars93_1)
> #model summary
> summary(fit)
Call:
lm(formula = MPG.Overall ~ ., data = Cars93_1)



Regression with Automobile Data

[ 117 ]

Residuals:
Min 1Q Median 3Q Max
-5.0320 -1.4162 -0.0538 1.2921 9.8889
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.808773 16.112577 0.174 0.86213
Price -0.053419 0.061540 -0.868 0.38842
EngineSize 1.334181 1.321805 1.009 0.31638
Horsepower 0.005006 0.024953 0.201 0.84160
RPM 0.001108 0.001215 0.912 0.36489
Rev.per.mile 0.002806 0.001249 2.247 0.02790 *
Fuel.tank.capacity -0.639270 0.262526 -2.435 0.01752 *
Length -0.059862 0.065583 -0.913 0.36459
Wheelbase 0.330572 0.156614 2.111 0.03847 *
Width 0.233123 0.265710 0.877 0.38338
Turn.circle 0.026695 0.197214 0.135 0.89273
Rear.seat.room -0.031404 0.182166 -0.172 0.86364
Luggage.room 0.206758 0.188448 1.097 0.27644
Weight -0.008001 0.002849 -2.809 0.00648 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.835 on 68 degrees of freedom
(11 observations deleted due to missingness)
Multiple R-squared: 0.7533, Adjusted R-squared: 0.7062
F-statistic: 15.98 on 13 and 68 DF, p-value: 7.201e-16

In the previous multiple linear regression model using all the independent variables, we are
predicting the mileage per gallon MPG.Overall variable. From the model summary, it is
observed that few independent variables are statistically significant at 95% confidence level.
The coefficient of determination R2 which is known as the goodness of fit of a regression
model is 75.33%. This implies that 75.33% variation in the dependent variable is explained
by all the independent variables together. The formula for computing multiple R2 is given
next:

The preceding equation 4 calculated the coefficient of determination or percentage of
variance explained by the regression model. The base line score to qualify for a good
regression model is at least 80% as R square value; any R square value more than 80% is
considered to be very good regression model. Since the R2 is now less than 80%, we need to
perform a few diagnostic tests on the regression results.
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The estimated beta coefficients of the model:

> #estimated coefficients
> fit$coefficients
(Intercept) Price EngineSize Horsepower
2.808772930 -0.053419142 1.334180881 0.005005690
RPM Rev.per.mile Fuel.tank.capacity Length
0.001107897 0.002806093 -0.639270186 -0.059861997
Wheelbase Width Turn.circle Rear.seat.room
0.330572119 0.233123382 0.026694571 -0.031404262
Luggage.room Weight
0.206757968 -0.008001444
#residual values
fit$residuals
#fitted values from the model
fit$fitted.values
#what happened to NA
fit$na.action
> #ANOVA table from the model
> summary.aov(fit)
Df Sum Sq Mean Sq F value Pr(>F)
Price 1 885.7 885.7 110.224 7.20e-16 ***
EngineSize 1 369.3 369.3 45.959 3.54e-09 ***
Horsepower 1 37.4 37.4 4.656 0.03449 *
RPM 1 38.8 38.8 4.827 0.03143 *
Rev.per.mile 1 71.3 71.3 8.877 0.00400 **
Fuel.tank.capacity 1 147.0 147.0 18.295 6.05e-05 ***
Length 1 1.6 1.6 0.203 0.65392
Wheelbase 1 35.0 35.0 4.354 0.04066 *
Width 1 9.1 9.1 1.139 0.28969
Turn.circle 1 0.5 0.5 0.060 0.80774
Rear.seat.room 1 0.6 0.6 0.071 0.79032
Luggage.room 1 9.1 9.1 1.129 0.29170
Weight 1 63.4 63.4 7.890 0.00648 **
Residuals 68 546.4 8.0
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
11 observations deleted due to missingness

From the preceding analysis of variance (ANOVA) table, it is observed that the variables
Length, Width, turn circle, rear seat room, and luggage room are not statistically significant
at 5% level of alpha. ANOVA shows the source of variation in dependent variable from any
independent variable. It is important to apply ANOVA after the regression model to know
which independent variable has significant contribution to the dependent variable:
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> #visualizing the model statistics
> par(mfrow=c(1,2))
> plot(fit, col="dodgerblue4")

The residual versus fitted plot shows the randomness in residual values as we move along
the fitted line. If the residual values display any pattern against the fitted values, the error
term is not probably normal. The residual versus fitted graph indicates that there is no
pattern that exists among the residual terms; the residuals are approximately normally
distributed. Residual is basically that part of the model which cannot be explained by the
model. There are few influential data points, for example, 42nd, 39th, and 83rd as it is shown
on the preceding graph, the normal quantile-quantile plot indicates except few influential
data points all other standardized residual points follow a normal distribution. The straight
line is the zero residual line and the red line is the pattern of residual versus fitted
relationship. The scale versus location graph and the residuals versus leverage graph also
validate the same observation that the residual term has no trend. The scale versus location
plot takes the square root of the standardized residuals and plots it against the fitted values:
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The confidence interval of the model coefficients at 95% confidence level can be calculated
using the following code and also the prediction interval at 95% confidence level for all the
fitted values can be calculated using the code below. The formula to compute the
confidence interval is the model coefficient +/- standard error of model coefficient * 1.96:

> confint(fit,level=0.95)
2.5 % 97.5 %
(Intercept) -2.934337e+01 34.960919557
Price -1.762194e-01 0.069381145
EngineSize -1.303440e+00 3.971801771
Horsepower -4.478638e-02 0.054797758
RPM -1.315704e-03 0.003531499
Rev.per.mile 3.139667e-04 0.005298219
Fuel.tank.capacity -1.163133e+00 -0.115407347
Length -1.907309e-01 0.071006918
Wheelbase 1.805364e-02 0.643090600
Width -2.970928e-01 0.763339610
Turn.circle -3.668396e-01 0.420228772
Rear.seat.room -3.949108e-01 0.332102243
Luggage.room -1.692837e-01 0.582799642
Weight -1.368565e-02 -0.002317240
> head(predict(fit,interval="predict"))
fit lwr upr
1 31.47382 25.50148 37.44615
2 24.99014 18.80499 31.17528
3 22.09920 16.09776 28.10064
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4 21.19989 14.95606 27.44371
5 21.62425 15.37929 27.86920
6 27.89137 21.99947 33.78328

The existence of influential data points or outlier values may deviate the model result,
hence identification and curation of outlier data points in the regression model is very
important:

# Deletion Diagnostics
influence.measures(fit)

The function belongs to the stats library, which computes some of the regression
diagnostics for linear and generalized models. Any observation labeled with a star (*)
implies an influential data point, that can be removed to make the model good:

# Index Plots of the influence measures
influenceIndexPlot(fit, id.n=3)

The influential data points are highlighted by their position in the dataset. In order to
understand more about these influential data points, we can write the following command.
The size of the red circle based on the cook's distance value indicates the order of influence.
Cook's distance is a statistical method to identify data points which have more influence
than other data points.
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Generally, these are data points that are distant from other points in the data, either for the
dependent variable or one or more independent variables:

> # A user friendly representation of the above
> influencePlot(fit,id.n=3, col="red")
StudRes Hat CookD
28 1.9902054 0.5308467 0.55386748
39 3.9711522 0.2193583 0.50994280
42 4.1792327 0.1344866 0.39504695
59 0.1676009 0.4481441 0.04065691
60 -2.1358078 0.2730012 0.34097909
77 -0.6448891 0.3980043 0.14074778

If we remove these influential data points from our model, we can see some improvement
in the model goodness of fit and overall error for the model can be reduced. Removing all
the influential points at one go is not a good idea; hence we will take a step-by-step
approach to deleting these influential data points from the model and monitor the
improvement in the model statistics:

> ## Regression after deleting the 28th observation
> fit.1<-lm(MPG.Overall~., data=Cars93_1[-28,])
> summary(fit.1)
Call:
lm(formula = MPG.Overall ~ ., data = Cars93_1[-28, ])
Residuals:
Min 1Q Median 3Q Max
-5.0996 -1.7005 0.4617 1.4478 9.4168
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Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.314222 16.425437 -0.384 0.70189
Price -0.014859 0.063281 -0.235 0.81507
EngineSize 2.395780 1.399569 1.712 0.09156 .
Horsepower -0.022454 0.028054 -0.800 0.42632
RPM 0.001944 0.001261 1.542 0.12789
Rev.per.mile 0.002829 0.001223 2.314 0.02377 *
Fuel.tank.capacity -0.640970 0.256992 -2.494 0.01510 *
Length -0.065310 0.064259 -1.016 0.31311
Wheelbase 0.407332 0.158089 2.577 0.01219 *
Width 0.204212 0.260513 0.784 0.43587
Turn.circle 0.071081 0.194340 0.366 0.71570
Rear.seat.room -0.004821 0.178824 -0.027 0.97857
Luggage.room 0.156403 0.186201 0.840 0.40391
Weight -0.008597 0.002804 -3.065 0.00313 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.775 on 67 degrees of freedom
(11 observations deleted due to missingness)
Multiple R-squared: 0.7638, Adjusted R-squared: 0.718
F-statistic: 16.67 on 13 and 67 DF, p-value: 3.39e-16

Regression output after deleting the most influential data point provides a significant
improvement in the R2 value from 75.33% to 76.38%. Let's repeat the same activity and see
the model's results:

> ## Regression after deleting the 28,39,42,59,60,77 observations
> fit.2<-lm(MPG.Overall~., data=Cars93_1[-c(28,42,39,59,60,77),])
> summary(fit.2)
Call:
lm(formula = MPG.Overall ~ ., data = Cars93_1[-c(28, 42, 39,
59, 60, 77), ])
Residuals:
Min 1Q Median 3Q Max
-3.8184 -1.3169 0.0085 0.9407 6.3384
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 21.4720002 13.3375954 1.610 0.11250
Price -0.0459532 0.0589715 -0.779 0.43880
EngineSize 2.4634476 1.0830666 2.275 0.02641 *
Horsepower -0.0313871 0.0219552 -1.430 0.15785
RPM 0.0022055 0.0009752 2.262 0.02724 *
Rev.per.mile 0.0016982 0.0009640 1.762 0.08307 .
Fuel.tank.capacity -0.6566896 0.1978878 -3.318 0.00152 **
Length -0.0097944 0.0613705 -0.160 0.87372
Wheelbase 0.2298491 0.1288280 1.784 0.07929 .
Width -0.0877751 0.2081909 -0.422 0.67477
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Turn.circle 0.0347603 0.1513314 0.230 0.81908
Rear.seat.room -0.2869723 0.1466918 -1.956 0.05494 .
Luggage.room 0.1828483 0.1427936 1.281 0.20514
Weight -0.0044714 0.0021914 -2.040 0.04557 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.073 on 62 degrees of freedom
(11 observations deleted due to missingness)
Multiple R-squared: 0.8065, Adjusted R-squared: 0.7659
F-statistic: 19.88 on 13 and 62 DF, p-value: < 2.2e-16

Looking at the preceding output, we can conclude that the removal of outliers or influential
data points adds robustness to the R-square value. Now we can conclude that 80.65% of the
variation in the dependent variable is being explained by all the independent variables in
the model.

Now, using studentised residuals against t-quantiles in a Q-Q plot, we can identify some
more outliers data points, if any, to boost the model accuracy:

> # QQ plots of studentized residuals, helps identify outliers
> qqPlot(fit.2, id.n=5)
91 32 55 5 83
1 2 74 75 76



Regression with Automobile Data

[ 125 ]

From the preceding Q-Q plot, it seems that the data is fairly normally distributed, except
few outlier values such as 83rd, 91st, 32nd, 55th, and 5th data points:

> ## Diagnostic Plots ###
> influenceIndexPlot(fit.2, id.n=3)
> influencePlot(fit.2, id.n=3, col="blue")
StudRes Hat CookD
5 2.1986298 0.2258133 0.30797166
8 -0.1448259 0.4156467 0.03290507
10 -0.7655338 0.3434515 0.14847534
83 3.7650470 0.2005160 0.45764995
91 -2.3672942 0.3497672 0.44770173

The problem of multicollinearity, that is, the correlation between predictor variables, needs
to be verified for the final regression model. Variance Inflation Factor (VIF) is the measure
typically used to estimate the multicollinearity. The formula to compute the VIF is 1/ (1-R2 ).
Any independent variable having a VIF value of more than 10 indicates multicollinearity;
hence such variables need to be removed from the model. Deleting one variable at a time
and then again checking the VIF for the model is the best way to do this:

> ### Variance Inflation Factors
> vif(fit.2)
Price EngineSize Horsepower RPM
4.799678 20.450596 18.872498 5.788160
Rev.per.mile Fuel.tank.capacity Length Wheelbase
3.736889 5.805824 15.200301 11.850645
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Width Turn.circle Rear.seat.room Luggage.room
10.243223 4.006895 2.566413 2.935853
Weight
24.977015

Variable weight has the maximum VIF, hence deleting the variable make sense. After
removing the variable, let's rerun the model and calculate the VIF:

## Regression after deleting the weight variable
fit.3<-lm(MPG.Overall~ Price+EngineSize+Horsepower+RPM+Rev.per.mile+
Fuel.tank.capacity+Length+Wheelbase+Width+Turn.circle+
Rear.seat.room+Luggage.room, data=Cars93_1[-c(28,42,39,59,60,77),])
summary(fit.3)
> vif(fit.3)
Price EngineSize Horsepower RPM
4.575792 20.337181 15.962349 5.372388
Rev.per.mile Fuel.tank.capacity Length Wheelbase
3.514992 4.863944 14.574352 11.013850
Width Turn.circle Rear.seat.room Luggage.room
10.240036 3.965132 2.561947 2.935690
## Regression after deleting the Enginesize variable
fit.4<-lm(MPG.Overall~ Price+Horsepower+RPM+Rev.per.mile+
Fuel.tank.capacity+Length+Wheelbase+Width+Turn.circle+
Rear.seat.room+Luggage.room, data=Cars93_1[-c(28,42,39,59,60,77),])
summary(fit.4)
vif(fit.4)
## Regression after deleting the Length variable
fit.5<-lm(MPG.Overall~ Price+Horsepower+RPM+Rev.per.mile+
Fuel.tank.capacity+Wheelbase+Width+Turn.circle+
Rear.seat.room+Luggage.room, data=Cars93_1[-c(28,42,39,59,60,77),])
summary(fit.5)
> vif(fit.5)
Price Horsepower RPM Rev.per.mile
4.419799 8.099750 2.595250 3.232048
Fuel.tank.capacity Wheelbase Width Turn.circle
4.679088 8.231261 7.953452 3.357780
Rear.seat.room Luggage.room
2.393630 2.894959
The coefficients from the final regression model:
> coefficients(fit.5)
(Intercept) Price Horsepower RPM
29.029107454 -0.089498236 -0.014248077 0.001071072
Rev.per.mile Fuel.tank.capacity Wheelbase Width
0.001591582 -0.769447316 0.130876817 -0.047053999
Turn.circle Rear.seat.room Luggage.room
-0.072030390 -0.240332275 0.216155256
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Now we can conclude that there is no multicollinearity in the preceding regression model.
We can write the final multiple linear regression equation as follows:

The estimated model parameters can be interpreted as, for one unit change in the price
variable, the MPG overall is predicted to change by 0.09 unit. Likewise, the estimated model
coefficients can be interpreted for all the other independent variables. If we know the values
of these independent variables, we can predict the likely value of the dependent variable
MPG overall by using the previous equation.

Stepwise regression method for variable
selection
In stepwise regression method, a base regression model is formed using the OLS estimation
method. Thereafter, a variable is added or subtracted to/from the base model depending
upon the Akaike Information Criteria (AIC) value. The standard rule is that a minimum
AIC would guarantee a best fit in comparison to other methods. Taking the Cars93_1.csv
file, let's create a multiple linear regression model by using the stepwise method. There are
three different ways to test out the best model using the step formula:

Forward method
Backward method
Both

In the forward selection method, initially a null model is created and variable is added to
see any improvement in the AIC value. The independent variables is added to the null
model till there is an improvement in the AIC value. In backward selection method, the
complete model is considered to be the base model. An independent variable is deducted
from the model and the AIC value is checked. If there is an improvement in AIC, the
variable would be removed; the process will go on till the AIC value becomes minimum. In
both the methods, alternatively forward and back selection method is used to identify the
most relevant model. Let's look at the model result at first iteration:

> #base model
> fit<-lm(MPG.Overall~.,data=Cars93_1)
> #stepwise regression
> model<-step(fit,method="both")
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Start: AIC=183.52
MPG.Overall ~ Price + EngineSize + Horsepower + RPM + Rev.per.mile +
Fuel.tank.capacity + Length + Wheelbase + Width + Turn.circle +
Rear.seat.room + Luggage.room + Weight
Df Sum of Sq RSS AIC
- Turn.circle 1 0.147 546.54 181.54
- Rear.seat.room 1 0.239 546.64 181.56
- Horsepower 1 0.323 546.72 181.57
- Price 1 6.055 552.45 182.43
- Width 1 6.185 552.58 182.45
- RPM 1 6.686 553.08 182.52
- Length 1 6.695 553.09 182.52
- EngineSize 1 8.186 554.58 182.74
- Luggage.room 1 9.673 556.07 182.96
<none> 546.40 183.52
- Wheelbase 1 35.799 582.20 186.73
- Rev.per.mile 1 40.565 586.96 187.40
- Fuel.tank.capacity 1 47.646 594.04 188.38
- Weight 1 63.400 609.80 190.53

In the beginning, AIC is 183.52. In the final model, AIC is 175.51 and there are six
independent variables, as shown next:

Step: AIC=175.51
MPG.Overall ~ EngineSize + RPM + Rev.per.mile + Fuel.tank.capacity +
Wheelbase + Width + Luggage.room + Weight
Df Sum of Sq RSS AIC
- Luggage.room 1 8.976 568.78 174.82
- Width 1 12.654 572.46 175.34
<none> 559.81 175.51
- EngineSize 1 14.022 573.83 175.54
- RPM 1 19.422 579.23 176.31
- Wheelbase 1 28.477 588.28 177.58
- Rev.per.mile 1 37.873 597.68 178.88
- Fuel.tank.capacity 1 52.516 612.32 180.86
- Weight 1 135.462 695.27 191.28

In the preceding table, “none” entry denotes the stage which is the final model, where
further tuning or variable reduction is not possible. Hence, dropping more variables after
that point would not make sense.
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Logistic regression
The linear regression model based on the ordinary least square method assumes that the
relationship between the dependent variable and the independent variables is linear;
however, the logistic regression model assumes the relationship to be logarithmic. There are
many real-life scenarios where the variable of interest is categorical in nature, such as
buying a product or not, approving a credit card or not, tumor is cancerous or not, and so
on. Logistic regression not only predicts a dependent variable class but it predicts the
probability of a case belonging to a level in the dependent variable. The independent
variables need not be normally distributed and need not have equal variance. Logistic
regression belongs to the family of generalized linear regression. If the dependent variable
has two levels then logistic regression can be applied, but if it has more than two levels,
such as high, medium, and low, then multinomial logistic regression model can be applied.
All the independent variables can be continuous, categorical, or nominal.

The logistic regression model can be explained using the following equation:

Ln (P(Y)/1-P(Y) ) is the log odds of the outcome. The beta coefficients mentioned in the
previous equation explain how the log odds of the outcome variable increase or decrease
for every one unit increase or decrease in the explanatory variable.

Let's take the Artpiece.csv dataset where the dependent variable is a good purchase or
not need to be predicted based on the independent variables.

For a logistic regression model, the dependent variable needs to be a binary variable with
two levels. If it is not then the first task is to convert the dependent variable to binary. For
the independent variables it is important to check the type of the variable as well as the
levels. If some independent variables are categorical then binary conversion (creating
dummy variables for each category) is required. So here you go with data conversion in
necessary format for the logistic regression model:

> #data conversion
> Artpiece$IsGood.Purchase<-as.factor(Artpiece$IsGood.Purchase)
> Artpiece$Is.It.Online.Sale<-as.factor(Artpiece$Is.It.Online.Sale)
> #removing NA, Missing values from the data
> Artpiece<-na.omit(Artpiece)
> ## 75% of the sample size
> smp_size <- floor(0.75 * nrow(Artpiece))
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> ## set the seed to make your partition reproductible
> set.seed(123)
> train_ind <- sample(seq_len(nrow(Artpiece)), size = smp_size)
> train <- Artpiece[train_ind, ]
> test <- Artpiece[-train_ind, ]

The train dataset is used for building the logistic regression model and the test dataset
would be used for testing the model:

> #Logistic regression Model
> model1<-glm(IsGood.Purchase ~.,family=binomial(logit),data=train)
> #Model results/ components
> summary(model1)
Call:
glm(formula = IsGood.Purchase ~ ., family = binomial(logit),
data = train)
Deviance Residuals:
Min 1Q Median 3Q Max
-2.1596 -0.4849 -0.4096 -0.3401 3.8760
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.734e-01 1.250e+00 -0.539 0.58995
Critic.Ratings 1.372e-01 1.119e-02 12.267 < 2e-16 ***
Acq.Cost -7.998e-06 1.867e-06 -4.284 1.83e-05 ***
CurrentAuctionAveragePrice -1.460e-05 1.360e-06 -10.731 < 2e-16 ***
Brush.Size1 -1.378e+00 1.246e+00 -1.107 0.26840
Brush.Size2 -1.684e+00 1.246e+00 -1.352 0.17647
Brush.Size3 -1.128e+00 1.252e+00 -0.902 0.36730
Brush.SizeNULL 1.599e+00 1.246e+00 1.283 0.19946
CollectorsAverageprice -2.420e-05 4.677e-06 -5.175 2.28e-07 ***
Is.It.Online.Sale1 -1.710e-01 9.621e-02 -1.777 0.07552 .
Min.Guarantee.Cost 9.830e-06 3.329e-06 2.953 0.00314 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 40601 on 54500 degrees of freedom
Residual deviance: 34872 on 54490 degrees of freedom
AIC: 34894
Number of Fisher Scoring iterations: 5

From the previous model result, all the independent variables are statistically significant at
5% level except the brush variable, which is a categorical variable. The model automatically
creates dummy variables for each of the levels of a categorical variable. It takes the first
level from the categorical variable and compares with other level, if the row belongs to that
category then 1 else 0. 95% confidence interval for model coefficients and exponentiated
model coefficients can be calculated using the following script. The left hand side equation
contains natural logarithm to remove that we have to make exponentiation of the right
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hand side expression which is the model coefficient:

> # 95% CI for exponentiated coefficients
> exp(confint(model1))
Waiting for profiling to be done...
2.5 % 97.5 %
(Intercept) 0.02301865 5.5660594
Critic.Ratings 1.12226719 1.1725835
Acq.Cost 0.99998833 0.9999957
CurrentAuctionAveragePrice 0.99998274 0.9999881
Brush.Size1 0.02326462 5.5558138
Brush.Size2 0.01714345 4.0948557
Brush.Size3 0.02953703 7.1850301
Brush.SizeNULL 0.45631813 109.1655370
CollectorsAverageprice 0.99996666 0.9999850
Is.It.Online.Sale1 0.69545357 1.0142229
Min.Guarantee.Cost 1.00000327 1.0000163
> confint(model1)
2.5 % 97.5 %
(Intercept) -3.771450e+00 1.716687e+00
Critic.Ratings 1.153509e-01 1.592094e-01
Acq.Cost -1.166650e-05 -4.348562e-06
CurrentAuctionAveragePrice -1.726348e-05 -1.193180e-05
Brush.Size1 -3.760822e+00 1.714845e+00
Brush.Size2 -4.066139e+00 1.409731e+00
Brush.Size3 -3.522110e+00 1.972000e+00
Brush.SizeNULL -7.845651e-01 4.692865e+00
CollectorsAverageprice -3.333576e-05 -1.500118e-05
Is.It.Online.Sale1 -3.631910e-01 1.412267e-02
Min.Guarantee.Cost 3.268054e-06 1.631710e-05

ANOVA can be performed on the results of the logistic regression model using chi-square
test statistics. From the ANOVA which shows analysis of deviance in case of a logistic
regression here, we can conclude that the deviance of model change is statistically
significant when we include more independent variables in the model. The independent
variables are added sequentially to the model and at every iteration the deviance of the
error term is compared with the previous iteration to see if the addition or deletion of any
variable is useful in reducing the error for the model:

> #ANOVA
> anova(model1,test="Chisq")
Analysis of Deviance Table
Model: binomial, link: logit
Response: IsGood.Purchase
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 54500 40601
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Critic.Ratings 1 354.6 54499 40246 < 2.2e-16 ***
Acq.Cost 1 477.8 54498 39768 < 2.2e-16 ***
CurrentAuctionAveragePrice 1 166.4 54497 39602 < 2.2e-16 ***
Brush.Size 4 4690.9 54493 34911 < 2.2e-16 ***
CollectorsAverageprice 1 27.3 54492 34884 1.773e-07 ***
Is.It.Online.Sale 1 3.3 54491 34880 0.067877 .
Min.Guarantee.Cost 1 8.6 54490 34872 0.003417 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
>
> #Plotting the model
> plot(model1$fitted)

The preceding plot displays the fitted versus actual values (index) in a regression model.
The predicted probability from the model can be extracted using the link option and the
class prediction can be extracted using the response option, using the predict function:

> #Predicted Probability
> test$goodP<-predict(model1,newdata=test,type="response")
> test$goodL<-predict(model1,newdata=test,type="link")

Automatic logistic regression model selection can be done in three different ways using the
stepwise regression method via AIC criteria:
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Backward selection method: All the independent variables are part of the initial
model. Using Wald chi-square test of significance, variables with lowest value of
chi-square or highest p-value such that it exceeds 0.05 (given that 95% confidence
interval is used in the model) are removed from the model. The backward
selection process of variable removal stops when it is not possible to find a
variable that fits the Wald test criteria.
Forward selection method: Model starts with a null model. A variable is entered
into the model based on the lowest p-value or highest chi-square test statistic
value. The process stops when there are no such cases found.
Both: The third approach is to apply both backward selection and forward
selection:

    > #auto detection of model
    > fit_step<-stepAIC(model1,method="both")
    Start: AIC=34893.93
    IsGood.Purchase ~ Critic.Ratings + Acq.Cost +
CurrentAuctionAveragePrice +
    Brush.Size + CollectorsAverageprice + Is.It.Online.Sale +
    Min.Guarantee.Cost
    Df Deviance AIC
    <none> 34872 34894
    - Is.It.Online.Sale 1 34875 34895
    - Min.Guarantee.Cost 1 34880 34900
    - Acq.Cost 1 34890 34910
    - CollectorsAverageprice 1 34898 34918
    - CurrentAuctionAveragePrice 1 34988 35008
    - Critic.Ratings 1 35025 35045
    - Brush.Size 4 39554 39568

The method selected for variable selection is both forward and backward. For example, in
the first step forward selection was used, then at the same time backward section was also
applied to check if the said variable could be removed from the model or not.

While applying the stepwise model selection procedure, it is very important to keep in
mind the limitations of the stepwise method. Sometimes model overfitting happens,
sometimes when you have a large number of predictors and mostly the predictors are
highly correlated, then stepwise regression provides higher variability and low accuracy. So
to address this issue, we can apply penalized regression method, which we are going to
discuss in the next section:

> summary(fit_step)
Call:
glm(formula = IsGood.Purchase ~ Critic.Ratings + Acq.Cost +
CurrentAuctionAveragePrice +
Brush.Size + CollectorsAverageprice + Is.It.Online.Sale +
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Min.Guarantee.Cost, family = binomial(logit), data = train)
Deviance Residuals:
Min 1Q Median 3Q Max
-2.1596 -0.4849 -0.4096 -0.3401 3.8760
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.734e-01 1.250e+00 -0.539 0.58995
Critic.Ratings 1.372e-01 1.119e-02 12.267 < 2e-16 ***
Acq.Cost -7.998e-06 1.867e-06 -4.284 1.83e-05 ***
CurrentAuctionAveragePrice -1.460e-05 1.360e-06 -10.731 < 2e-16 ***
Brush.Size1 -1.378e+00 1.246e+00 -1.107 0.26840
Brush.Size2 -1.684e+00 1.246e+00 -1.352 0.17647
Brush.Size3 -1.128e+00 1.252e+00 -0.902 0.36730
Brush.SizeNULL 1.599e+00 1.246e+00 1.283 0.19946
CollectorsAverageprice -2.420e-05 4.677e-06 -5.175 2.28e-07 ***
Is.It.Online.Sale1 -1.710e-01 9.621e-02 -1.777 0.07552 .
Min.Guarantee.Cost 9.830e-06 3.329e-06 2.953 0.00314 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 40601 on 54500 degrees of freedom
Residual deviance: 34872 on 54490 degrees of freedom
AIC: 34894
Number of Fisher Scoring iterations: 5

To check the multicollinearity among the independent variables, the VIF measure is used.
The VIF computed for the step AIC-based final model is as follows:

> library(MASS);library(plyr);library(car)
>
> vif(fit_step)
GVIF Df GVIF^(1/(2*Df))
Critic.Ratings 1.204411 1 1.097457
Acq.Cost 2.582229 1 1.606932
CurrentAuctionAveragePrice 2.527691 1 1.589871
Brush.Size 1.094967 4 1.011405
CollectorsAverageprice 1.084788 1 1.041532
Is.It.Online.Sale 1.007080 1 1.003534
Min.Guarantee.Cost 1.163249 1 1.078540

The probability score for the training dataset is computed using the response option and
the probability score can be used to display the results of classification on an AUC curve,
also known as Receiver Operating Characteristic (ROC) curve:

> train$prob=predict(fit_step,type=c("response"))
> library(pROC)
> g <- roc(IsGood.Purchase ~ prob, data = train)
> g
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Call:
roc.formula(formula = IsGood.Purchase ~ prob, data = train)
Data: prob in 47808 controls (IsGood.Purchase 0) < 6693 cases
(IsGood.Purchase 1).
Area under the curve: 0.7201
> plot(g)

The curve derived from the model shows the area under the curve. The horizontal axis
shows the false positive rate and the vertical axis shows the true positive rate. If the area
under the curve is more than 70%, then the model is considered to be a good model as per
industry standard:

> #Label the prediction result above the certain threshold as Yes and No
> #Change the threshold value and check which give the better result.
> train$prob <- ifelse(prob > 0.5, "Yes", "No")
>
> #print the confusion matrix between the predicted and actual response on
testdata.
> t<-table(train$prob,train$IsGood.Purchase)
>
> #accuracy
> prop.table(t)
0 1
No 0.86407589 0.09229188
Yes 0.01311903 0.03051320
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The threshold for classification table is 0.50 (50%) as probability. If someone wants to
change the percentage of correct classified objects, then he/she can do so by putting a filter
on the probability score. The following code is used to create a confusion matrix using a
different probability value. From the previous classification table, it can be concluded that
90% people correctly classified.

Cubic regression
Cubic regression is another form of regression where the parameters in a linear regression
model are increased up to one or two levels of polynomial calculation. Using the
Cars93_1.csv dataset, let's understand the cubic regression:

> fit.6<-lm(MPG.Overall~ I(Price)^3+I(Horsepower)^3+I(RPM)^3+
+ Wheelbase+Width+Turn.circle, data=Cars93_1[-c(28,42,39,59,60,77),])
> summary(fit.6)
Call:
lm(formula = MPG.Overall ~ I(Price)^3 + I(Horsepower)^3 + I(RPM)^3 +
Wheelbase + Width + Turn.circle, data = Cars93_1[-c(28, 42,
39, 59, 60, 77), ])
Residuals:
Min 1Q Median 3Q Max
-5.279 -1.901 -0.006 1.590 8.433
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 57.078025 12.349300 4.622 1.44e-05 ***
I(Price) -0.108436 0.065659 -1.652 0.1026
I(Horsepower) -0.024621 0.015102 -1.630 0.1070
I(RPM) 0.001122 0.000727 1.543 0.1268
Wheelbase -0.201836 0.079948 -2.525 0.0136 *
Width -0.104108 0.198396 -0.525 0.6012
Turn.circle -0.095739 0.158298 -0.605 0.5470
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.609 on 80 degrees of freedom
Multiple R-squared: 0.6974, Adjusted R-squared: 0.6747
F-statistic: 30.73 on 6 and 80 DF, p-value: < 2.2e-16
> vif(fit.6)
I(Price) I(Horsepower) I(RPM) Wheelbase Width Turn.circle
4.121923 7.048971 2.418494 3.701812 7.054405 3.284228
> coefficients(fit.6)
(Intercept) I(Price) I(Horsepower) I(RPM) Wheelbase Width
57.07802478 -0.10843594 -0.02462074 0.00112168 -0.20183606 -0.10410833
Turn.circle
-0.09573848
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Keeping all other parameters constant, one unit change in the independent variable would
bring a multiplicative change in the dependent variable and the multiplication factor is the
cube of the beta coefficients.

Penalized regression
The problem of maximum likelihood estimation comes into picture when we include large
number of predictors or highly correlated predictors or both in a regression model and its
failure to provide higher accuracy in regression problems gives rise to the introduction of 
penalized regression in data mining. The properties of maximum likelihood cannot be
satisfying the regression procedure because of high variability and improper interpretation.
To address the issue, most relevant subset selection came into picture. However, the subset
selection procedure has some demerits. To again solve the problem, a new method can be
introduced, which is popularly known as penalized maximum likelihood estimation
method. There are two different variants of penalized regression that we are going to
discuss here:

Ridge regression: The ridge regression is known as L2 quadratic penalty and the
equation can be represented as follows:

In comparison to the maximum likelihood estimates, the L1 and L2 method of
estimation shrinks the beta coefficients towards zero. In order to avoid the
problem of multicollinearity and higher number of predictors or both
typically in a scenario when you have less number of observations, the
shrinkage methods reduces the overfitted beta coefficient values.

Taking the Cars93_1.csv dataset, we can test out the model and the results
from it. The lambda parameter basically strikes the balance between penalty
and fit of log likelihood function. The selection of lambda value is very
critical for the model; if it is a small value then the model may overfit the
data and high variance would become evident, and if the lambda chosen is
very large value then it may lead to biased result.

     > #installing the library
     > library(glmnet)
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     > #removing the missing values from the dataset
     > Cars93_2<-na.omit(Cars93_1)
     > #independent variables matrix
     > x<-as.matrix(Cars93_2[,-1])
     > #dependent variale matrix
     > y<-as.matrix(Cars93_2[,1])
     > #fitting the regression model
     > mod<-glmnet(x,y,family = "gaussian",alpha = 0,lambda = 0.001)
     > #summary of the model
     > summary(mod)
     Length Class Mode
     a0 1 -none- numeric
     beta 13 dgCMatrix S4
     df 1 -none- numeric
     dim 2 -none- numeric
     lambda 1 -none- numeric
     dev.ratio 1 -none- numeric
     nulldev 1 -none- numeric
     npasses 1 -none- numeric
     jerr 1 -none- numeric
     offset 1 -none- logical
     call 6 -none- call
     nobs 1 -none- numeric
     #Making predictions
     pred<-predict(mod,x,type = "link")
     #estimating the error for the model.
     mean((y-pred)^2)
     > #Making predictions
     > pred<-predict(mod,x,type = "link")
     > #estimating the error for the model.
     > mean((y-pred)^2)
     [1] 6.663406

Given the preceding background, the regression model was able to show up
with 6.66% error, which implies the model is giving 93.34% accuracy. This is
not the final iteration. The model needs to be tested couple of times and
various subsamples as out of the bag need to be used to conclude the final
accuracy of the model.

Least Absolute Shrinkage Operator (LASSO): The LASSO regression is known
as L1 absolute value penalty (Tibshirani, 1997). The equation for LASSO
regression can be expressed as follows:
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Taking the Cars93_1.csv dataset, we can test out the model and the results
from it. The lambda parameter basically strikes the balance between penalty
and fit of log likelihood function. The selection of the lambda value is very
critical for the model; if it is a small value then the model may over fit the
data and high variance would become evident, and if the lambda chosen is
very large value then it may lead to biased result. Let's try to implement the
model and verify the results:

      > #installing the library
      > library(lars)
      > #removing the missing values from the dataset
      > Cars93_2<-na.omit(Cars93_1)
      > #independent variables matrix
      > x<-as.matrix(Cars93_2[,-1])
      > #dependent variale matrix
      > y<-as.matrix(Cars93_2[,1])
      > #fitting the LASSO regression model
      > model<-lars(x,y,type = "lasso")
      > #summary of the model
      > summary(model)
      LARS/LASSO
      Call: lars(x = x, y = y, type = "lasso")
      Df Rss Cp
      0 1 2215.17 195.6822
      1 2 1138.71 63.7148
      2 3 786.48 21.8784
      3 4 724.26 16.1356
      4 5 699.39 15.0400
      5 6 692.49 16.1821
      6 7 675.16 16.0246
      7 8 634.59 12.9762
      8 9 623.74 13.6260
      9 8 617.24 10.8164
      10 9 592.76 9.7695
      11 10 587.43 11.1064
      12 11 551.46 8.6302
      13 12 548.22 10.2275
      14 13 547.85 12.1805
      15 14 546.40 14.0000
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The type option within the Least Angle Regression (LARS) provides
opportunities to apply various variants of the lars model with "lasso", "lar",
"forward.stagewise", or "stepwise". Using these we can create various
models and compare the results.

From the preceding output of the model we can see the RSS and CP along with
degrees of freedom, at each iterations so we need to find out a best model step
where the RSS for the model is minimum:

   > #select best step with a minin error
   > best_model<-model$df[which.min(model$RSS)]
   > best_model
   14
   > #Making predictions
   > pred<-predict(model,x,s=best_model,type = "fit")$fit
   > #estimating the error for the model.
   > mean((y-pred)^2)
   [1] 6.685669

The best model is available at step 14, where the RSS is minimum and hence using that best
step we can make predictions. Using the predict function at that step, we can generate
predictions and the error for the model chosen is 6.68%. The visualization for the fitted
model can be displayed as shown next. The vertical axis shows the standardized coefficients
and the horizontal axis shows the model coefficient progression for the dependent variable.
The x axis shows the ratio of absolute value of beta coefficients upon the max of the absolute
value of the beta coefficients. The numerator is the estimated beta coefficient current and
the denominator is the beta coefficient for the OLS model. When the shrinkage parameter in
LASSO takes a value of zero, the model will correspond to a OLS regression method. As the
penalized parameter increases the sum of absolute values of the beta coefficients pulled to
zero:
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In the preceding graph, the vertical bars indicate when a variable has been pulled to zero.
Vertical bar corresponding to 15 shows there are 15 predictor variables need to be reduced
to zero, which corresponds to higher penalized parameter lambda value 1.0. When lambda
the penalized parameter is very small, the LASSO would approach the OLS regression and
as lambda increases you will see fewer variables in your model. Hence, after lambda value
of 1.0, there are no variables left in the model.

L1 and L2 are known as regularized regression methods. L1 cannot zero out regression
coefficients; either you will get all the coefficients or none of them. However, L2 does
parameter shrinkage and variable selection automatically.

Summary
In this chapter, we discussed how to create linear regression, logistic regression, and other
nonlinear regression based methods for predicting the outcome of a variable in a business
scenario. Regression methods are basically very important in data mining projects, in order
to create predictive models to know the future values of the unknown independent
variables. We looked at various scenarios where we understood which type of model can be
applied where. In the next chapter, we are going to talk about association rules or market
basket analysis to understand important patterns hidden in a transactional database.



5
Market Basket Analysis with

Groceries Data
Think about a scenario from a retailer or e-commerce store manager when it comes to
recommending the right products to customers. Product recommendation is one important
domain in data mining practice. Product recommendation can happen in three different
ways: by associating customer's behavior with their purchase history, by associating items
that are being purchased on each visit, and lastly by looking at the gross sales in each
category and then using the retailer's past experience. In this chapter, we will be looking at
the second method of product recommendation, popularly known as Market Basket
Analysis (MBA) also known as association rules, which is by associating items purchased at
transaction level and finding out the sub-segments of users having similar products and
hence, recommending the products.

In this chapter, we will cover the following topics:

What is MBA
Where to apply MBA
Assumptions/prerequisites
Modeling techniques
Limitations
Practical project



Market Basket Analysis with Groceries Data

[ 143 ]

Introduction to Market Basket Analysis
Is MBA limited to retail and e-commerce domain only? Now, let's think about the problems
where MBA or association rules can be applied to get useful insights:

In the healthcare sector, particularly medical diagnosis, as an example, having
high blood pressure and being diabetic is a common combination. So it can be
concluded that people having high blood pressure are more likely to be diabetic
and vice versa. Hence, by analyzing the prevalence of medical conditions or
diseases, it can be said what other diseases they may likely get in future.
In retail and e-commerce, promotions and campaigns can be designed once a
merchandiser knows the relationship between the purchase patterns of different
items. MBA provides insights into the relationship between various items so that
product recommendation can be designed.
In banking and financial services also, MBA can be used. Taking into account the
number of products a bank is offering to the customers, such as insurance
policies, mutual funds, loans, and credit cards, is there any association between
buying insurance policies and mutual funds? If yes, that can be explored using
market basket analysis. Before recommending a product, the officer/agent should
verify what all products go together so that the upsell and cross-sell of financial
products can be designed.
In the telecommunication domain, analysis of customer usage and selection of
product options provide insights into effective designing of promotions and
cross-selling of products.
In unstructured data analysis, particularly in text mining, what words go
together in which domain and how the terminologies are related and used by
different people can be extracted using association rules.

What is MBA?
Market Basket Analysis is the study of relationships between various products and
products that are purchased together or in a series of transactions. In standard data mining
literature, the task of market basket analysis is to discover actionable insights in
transactional databases. In order to understand MBA or association rules (arules), it is
important to understand three concepts and their importance in deciding rules:

Support: A transaction can contain a single item or a set of items. Consider the
item set x = {bread, butter, jam, curd}; the support of x implies the
proportion of transactions when all four items are purchased together to the total
number of transactions in the database:
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Support of X = number of transactions involving X / total number of transactions

Confidence: Confidence always refers to the confidence of a rule. It can be
defined as confidence of x => y. Hence, support (x U y) implies the number of
transactions in the database containing both item set x and item y:

Confidence of X => Y = support of (X U Y) / support of (X)

Lift: Lift can be defined as the proportion of observed support to expected
support:

Lift of a rule X => Y = support of (X U Y) / support of (X) * support of (Y)
An association rule stands supported in a transactional database if it satisfies the minimum
support and minimum confidence criteria.

Let's take an example to understand the concepts.

The following is an example from the Groceries.csv dataset from the arules library in
R:

Transaction ID Items

001 Bread, banana, milk, butter

002 Milk, butter, banana

003 Curd, milk, banana

004 Curd, bread, butter

005 Milk, curd, butter, banana

006 Milk, curd, bread

 

The support of item set X where X = {milk, banana} = proportion of transactions where milk and
banana bought together; 4/6 = 0.67, hence, the support of the X item set is 0.67.

Let's assume Y is curd; the confidence of X => Y, which is {milk, banana} => {curd}, is the
proportion of support (X U Y) / support(X); three products–milk, banana, and curd–are
purchased together 2 times. Hence the confidence of the rule = (2/6)/0.67 = 0.5. This implies
that 50% of the transactions containing milk and banana the rule are correct.

Confidence of a rule can be interpreted as a conditional probability of purchasing Y such
that the item set X has already been purchased.
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When we create too many rules in a transactional database, we need a measure to rank the
rules; lift is a measure to rank the rules. From the preceding example, we can calculate the
lift for the rule X to Y. Lift of X => Y = support of (X U Y) / support of (X) * support of (Y) =
0.33/0.66*0.66 = 0.33/0.4356 = 0.7575.

Where to apply MBA?
To understand the relationship between various variables in large databases, it is required
to apply market basket analysis or association rules. It is the simplest possible way to
understand the association. Though we have explained various industries where the
concept of association rule can be applied, the practical implementation depends on the
kind of dataset available and the length of data available. For example, if you want to study
the relationship between various sensors integrated at a power generation plant to
understand which all sensors are activated at a specific temperature level (very high), you
may not find enough data points. This is because very high temperature is a rare event and
to understand the relationship between various sensors, it is important to capture large data
at that temperature level.

Data requirement
Product recommendation rules are generated from the results of the association rule model.
For example, what is the customer going to buy next if he/she has already added a Coke, a
chips packet, and a candle? To generate rules for product recommendation, we need
frequent item sets and hence the retailer can cross-sell products. Therefore the input data
format should be transactional, which in real-life projects sometimes happens and
sometimes does not. If the data is not in transaction form, then a transformation needs to be
done. In R, dataframe is a representation of mixed data. Can we transform the dataframe to
transactional data so that we can apply association rules on that transformed dataset? This
is because the algorithm requires that the input data format be transactional. Let's have a
look at the methods to read transactions from a dataframe.

The arules library in R provides a function to read transactions from a dataframe. This
function provides two options, single and basket. In single format, each line represents a
single item; however, in basket format, each line represents a transaction comprising item
levels and separated by a comma, space, or tab. For example:

> ## create a basket format
> data <- paste(
+ "Bread, Butter, Jam",
+ "Bread, Butter",
+ "Bread",
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+ "Butter, Banana",
+ sep="\n")
> cat(data)
Bread, Butter, Jam
Bread, Butter
Bread
Butter, Banana
> write(data, file = "basket_format")
>
> ## read data
> library(arules)
> tr <- read.transactions("basket_format", format = "basket", sep=",")
> inspect(tr)
items
1 {Bread,Butter,Jam}
2 {Bread,Butter}
3 {Bread}
4 {Banana,Butter}

Now let's look at single format transactional data creation from a dataframe:

> ## create single format
> data <- paste(
+ "trans1 Bread",
+ "trans2 Bread",
+ "trans2 Butter",
+ "trans3 Jam",
+ sep ="\n")
> cat(data)
trans1 Bread
trans2 Bread
trans2 Butter
trans3 Jam
> write(data, file = "single_format")
>
> ## read data
> tr <- read.transactions("single_format", format = "single", cols =
c(1,2))
> inspect(tr)
items transactionID
1 {Bread} trans1
2 {Bread,Butter} trans2
3 {Jam} trans3

The preceding code explains how a typical piece of transactional data received in a tabular
format, just like the spreadsheet format equivalent of R dataframe, can be converted to a
transactional data format as required by the arules input data format.
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Assumptions/prerequisites
Implementation of association rules for performing market basket analysis is based on some
assumptions. Here are the assumptions:

Assume that all data is categorical.
There should not be any sparse data; the sparsity percentage should be
minimum. Sparsity implies a lot of cells in a dataset with no values (with blank
cells).
The number of transactions required to find an interesting relationship between
various products is a function of the number of items or products covered in the
database. In other words, if you include more products with a less number of
transactions, you will get higher sparsity in the dataset and vice versa.
The higher the number of items you want to include in the analysis, the more
number of transactions you will need to validate the rules.

Modeling techniques
There are two algorithms that are very popular for finding frequent item sets that exist in a
retail transactional database:

Apriori algorithm: It was developed by Agrawal and Srikant (1994). It considers
the breadth first and provides counts of transactions.
Eclat algorithm: This was developed by Zaki et. al. (1997b). It considers depth
first; it provides intersection of transactions rather than count of transactions.

In this chapter, we are using the Groceries.csv dataset, which will be used in both the
algorithms.

Limitations
Though association rules are a top choice among practitioners when it comes to
understanding relationships in a large transactional database, they have certain inherent 
limitations:

Association rule mining is a probabilistic approach in the sense that it computes
the conditional probability of a product being purchased, such that a set of other
items has already been purchased/added to the cart by the customer. It only
estimates the likelihood of buying the product. The exact accuracy of the rule



Market Basket Analysis with Groceries Data

[ 148 ]

may or may not be true.
Association rule is a conditional probability estimation method using simple
count of items as a measure.
Association rules are not useful practically, even with a high support, confidence,
and lift; this is because most of the times, trivial rules may sound genuine. There
is no mechanism to filter out the trivial rules from the global set of rules but using
a machine learning framework (which is out of the scope of this book).
The algorithm provides a large set of rules; however, a few of them
are important, and there is no automatic method to identify the number of useful
rules.

Practical project
The Groceries.csv dataset that we are going to use comprises of 1 month of real-world 
point-of-sale (POS) transaction data from a grocery store. The dataset encompasses 9,835
transactions and there are 169 categories. Item sets are defined as a combination of items or
products Pi {i =1…..n} that customers buy on the same visit. To put it in a simpler way, the
item sets are basically the grocery bills that we usually get while shopping from a retail
store. The bill number is considered the transaction number and the items mentioned in that
bill are considered the market basket. A snapshot of the dataset is given as follows:

The columns represent items and the rows represent transactions in the sample snapshot
just displayed. Let's explore the dataset to understand the features:

> # Load the libraries
> library(arules)
> library(arulesViz)
> # Load the data set
> data(Groceries) #directly reading from library
> Groceries<-read.transactions("groceries.csv",sep=",") #reading from local
computer
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The transactional dataframe contains three columns. The first column represents the name
of the product/item, the second column represents the level2 categorization of the
products with 55 levels, and the third variable is the level3 segment of the product with 10
categories. This screenshot makes it clearer:

The summary of a transactional data provides an idea about the total transactions existing
in the database, number of items that are part of the database, sparsity of the data, and also
the frequency of the top few items prominent in the transactional database:

summary(Groceries)
transactions as itemMatrix in sparse format with
9835 rows (elements/itemsets/transactions) and
169 columns (items) and a density of 0.02609146
most frequent items:
whole milk other vegetables rolls/buns soda yogurt
2513 1903 1809 1715 1372
(Other)
34055

There are 9,835 transactions in the dataset; out of 169 items, the most frequent items with
their corresponding frequencies are previously represented. In a matrix of 9,835 cross 169,
only 0.0261 or 2.61% of the cells are filled with values; the rest are empty. This 2.61% is the
sparsity of the dataset.

Element (itemset/transaction) length distribution:

sizes
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
2159 1643 1299 1005 855 645 545 438 350 246 182 117 78 77 55 46 29
18 19 20 21 22 23 24 26 27 28 29 32
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14 14 9 11 4 6 1 1 1 1 3 1
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 2.000 3.000 4.409 6.000 32.000
includes extended item information - examples:
labels
1 abrasive cleaner
2 artif. sweetener
3 baby cosmetics

From the preceding item set length distribution, it can be interpreted that there is one
transaction with 32 products bought together. There are 3 transactions with 29 items
purchased together. Likewise, we can interpret the frequency of other item sets in the
dataset. This can be better understood using the item frequency plot. To know the first three
transactions from the dataset, we can use the following command:

> inspect(Groceries[1:3])
items
1 {citrus fruit,semi-finished bread,margarine,ready soups}
2 {tropical fruit,yogurt,coffee}
3 {whole milk}

To know the proportion of transactions containing each item in the groceries database, we
can use the following command. The first item, frankfurter, is available in 5.89% of the
transactions; sausage is available in 9.39% of the transactions; and so on and so forth:

> cbind(itemFrequency(Groceries[,1:10])*100)
[,1]
frankfurter 5.8973055
sausage 9.3950178
liver loaf 0.5083884
ham 2.6029487
meat 2.5826131
finished products 0.6507372
organic sausage 0.2236909
chicken 4.2907982
turkey 0.8134215
pork 5.7651246

Two important parameters dictate the frequent item sets in a transactional dataset, support
and confidence. The higher the support the lesser would be the number of rules in a dataset,
and you would probably miss interesting relationships between various variables and vice
versa. Sometimes with a higher support, confidence, and lift values also, it is not
guaranteed to get useful rules. Hence, in practice, a user can experiment with different
levels of support and confidence to arrive at meaningful rules. Even at sufficiently good
amounts of minimum support and minimum confidence levels, the rules seem to be quite
trivial.
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To address the issue of irrelevant rules in frequent item set mining, closed item set mining is
considered as a method. An item set X is said to be closed if no superset of it has the same
support as X and X is maximal at % support if no superset of X has at least % support:

> itemFrequencyPlot(Groceries, support=0.01, main="Relative ItemFreq Plot",
+ type="absolute")

In the preceding graph, the item frequency in the absolute count is shown with a minimum
support of 0.01. The following graph indicates the top 50 items with relative percentage
count, showing what percentage of transactions in the database contain those items:

> itemFrequencyPlot(Groceries,topN=50,type="relative",main="Relative Freq
Plot")
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Apriori algorithm
Apriori algorithm uses a downward closure property, which states that any subsets of a
frequent item set and also frequent item sets. The apriori algorithm uses level-wise search
for frequent item sets. This algorithm only creates rules with one item in the right-hand side
of the equation (RHS), which is known as consequent; left-hand side of the equation (LHS)
known as antecedent. This implies that rules with one item in RHS and blank LHS may
appear as valid rules; to avoid these blank rules, the minimum length parameter needs to be
changed from 1 to 2:

> # Get the association rules based on apriori algo
> rules <- apriori(Groceries, parameter = list(supp = 0.01, conf = 0.10))
Parameter specification:
confidence minval smax arem aval originalSupport support minlen maxlen
target ext
0.1 0.1 1 none FALSE TRUE 0.01 1 10 rules FALSE
Algorithmic control:
filter tree heap memopt load sort verbose
0.1 TRUE TRUE FALSE TRUE 2 TRUE
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apriori - find association rules with the apriori algorithm
version 4.21 (2004.05.09) (c) 1996-2004 Christian Borgelt
set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].
sorting and recoding items ... [88 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].
checking subsets of size 1 2 3 4 done [0.00s].
writing ... [435 rule(s)] done [0.00s].
creating S4 object ... done [0.00s].

There are 435 rules with a support value of 1% (proportion of items to be included in rule
creation with a minimum of 1%) and confidence level of 10% using apriori algorithm. There
are 88 items representing those 435 rules. Using the summary command, we can get to know
the length of rules and the distribution of rules:

> summary(rules)
set of 435 rules
rule length distribution (lhs + rhs):sizes
1 2 3
8 331 96
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 2.000 2.000 2.202 2.000 3.000
summary of quality measures:
support confidence lift
Min. :0.01007 Min. :0.1007 Min. :0.7899
1st Qu.:0.01149 1st Qu.:0.1440 1st Qu.:1.3486
Median :0.01454 Median :0.2138 Median :1.6077
Mean :0.02051 Mean :0.2455 Mean :1.6868
3rd Qu.:0.02115 3rd Qu.:0.3251 3rd Qu.:1.9415
Max. :0.25552 Max. :0.5862 Max. :3.3723
mining info:
data ntransactions support confidence
Groceries 9835 0.01 0.1

By looking at the summary of the rules, there are 8 rules with 1 item, including LHS and
RHS, which are not valid rules. Those are given as follows; to avoid blank rules, the
minimum length needs to be two. After using a minimum length of two, the total number of
rules decreased to 427:

> inspect(rules[1:8])
lhs rhs support confidence lift
1 {} => {bottled water} 0.1105236 0.1105236 1
2 {} => {tropical fruit} 0.1049314 0.1049314 1
3 {} => {root vegetables} 0.1089985 0.1089985 1
4 {} => {soda} 0.1743772 0.1743772 1
5 {} => {yogurt} 0.1395018 0.1395018 1
6 {} => {rolls/buns} 0.1839349 0.1839349 1
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7 {} => {other vegetables} 0.1934926 0.1934926 1
8 {} => {whole milk} 0.2555160 0.2555160 1
> rules <- apriori(Groceries, parameter = list(supp = 0.01, conf = 0.10,
minlen=2))
Parameter specification:
confidence minval smax arem aval originalSupport support minlen maxlen
target ext
0.1 0.1 1 none FALSE TRUE 0.01 2 10 rules FALSE
Algorithmic control:
filter tree heap memopt load sort verbose
0.1 TRUE TRUE FALSE TRUE 2 TRUE
apriori - find association rules with the apriori algorithm
version 4.21 (2004.05.09) (c) 1996-2004 Christian Borgelt
set item appearances ...[0 item(s)] done [0.00s].
set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].
sorting and recoding items ... [88 item(s)] done [0.00s].
creating transaction tree ... done [0.00s].
checking subsets of size 1 2 3 4 done [0.00s].
writing ... [427 rule(s)] done [0.00s].
creating S4 object ... done [0.00s].
> summary(rules)
set of 427 rules
rule length distribution (lhs + rhs):sizes
2 3
331 96

How do we identify what is the right set of rules? After squeezing the confidence level, we
can reduce the number of valid rules. Keeping the confidence level at 10% and changing the
support level, we can see how the number of rules is changing. If we have too many rules, it
is difficult to implement them; if we have small number of rules, it will not correctly
represent the hidden relationship between the items. Hence, having right set of valid rules
is a trade-off between support and confidence. The following scree plot shows the number
of rules against varying levels of support, keeping the confidence level constant at 10%:

> support<-seq(0.01,0.1,0.01)
> support
[1] 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
> rules_count<-c(435,128,46,26,14, 10, 10,8,8,8)
> rules_count
[1] 435 128 46 26 14 10 10 8 8 8
> plot(support,rules_count,type = "l",main="Number of rules at different
support %",
+ col="darkred",lwd=3)
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Looking at the support 0.04 and confidence level 10%, the right number of valid rules for
the dataset would be 26, based on the scree-plot result. The reverse can happen too to
identify relevant rules; keeping the support level constant and varying the confidence level,
we can create another scree plot:

> conf<-seq(0.10,1.0,0.10)
> conf
[1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
> rules_count<-c(427,231,125,62,15,0,0,0,0,0)
> rules_count
[1] 427 231 125 62 15 0 0 0 0 0
> plot(conf,rules_count,type = "l",main="Number of rules at different
confidence %",
+ col="darkred",lwd=3)
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Looking at the confidence level of 0.5 and confidence level changing by 10%, the right
number of valid rules for the groceries dataset would be 15, based on the scree plot result.

Eclat algorithm
Eclat algorithm uses simple intersection operations for homogenous class clustering with a
bottom-up approach. The same code can be re-run using the eclat function in R and the
result can be retrieved. The eclat function accepts two arguments, support and maximum
length:

> rules_ec <- eclat(Groceries, parameter = list(supp = 0.05))
parameter specification:
tidLists support minlen maxlen target ext
FALSE 0.05 1 10 frequent itemsets FALSE
algorithmic control:
sparse sort verbose
7 -2 TRUE
eclat - find frequent item sets with the eclat algorithm
version 2.6 (2004.08.16) (c) 2002-2004 Christian Borgelt
create itemset ...
set transactions ...[169 item(s), 9835 transaction(s)] done [0.00s].
sorting and recoding items ... [28 item(s)] done [0.00s].
creating sparse bit matrix ... [28 row(s), 9835 column(s)] done [0.00s].
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writing ... [31 set(s)] done [0.00s].
Creating S4 object ... done [0.00s].
> summary(rules_ec)
set of 31 itemsets
most frequent items:
whole milk other vegetables yogurt rolls/buns frankfurter
4 2 2 2 1
(Other)
23
element (itemset/transaction) length distribution:sizes
1 2
28 3
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.000 1.000 1.000 1.097 1.000 2.000
summary of quality measures:
support
Min. :0.05236
1st Qu.:0.05831
Median :0.07565
Mean :0.09212
3rd Qu.:0.10173
Max. :0.25552
includes transaction ID lists: FALSE
mining info:
data ntransactions support
Groceries 9835 0.05

Using the eclat algorithm, with a support of 5%, there are 31 rules that explain the
relationship between different items. The rule includes items that have a representation in
at least 5% of the transactions.

While generating a product recommendation, it is important to recommend those rules that
have high confidence level, irrespective of support proportion. Based on confidence, the top
5 rules can be derived as follows:

> #sorting out the most relevant rules
> rules<-sort(rules, by="confidence", decreasing=TRUE)
> inspect(rules[1:5])
lhs rhs support confidence lift
36 {other vegetables,yogurt} => {whole milk} 0.02226741 0.5128806 2.007235
10 {butter} => {whole milk} 0.02755465 0.4972477 1.946053
3 {curd} => {whole milk} 0.02613116 0.4904580 1.919481
33 {root vegetables,other vegetables} => {whole milk} 0.02318251 0.4892704
1.914833
34 {root vegetables,whole milk} => {other vegetables} 0.02318251 0.4740125
2.449770
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Rules also can be sorted based on lift and support proportion, by changing the argument in
the sort function. The top 5 rules based on lift calculation are as follows:

> rules<-sort(rules, by="lift", decreasing=TRUE)
> inspect(rules[1:5])
lhs rhs support confidence lift
35 {other vegetables,whole milk} => {root vegetables} 0.02318251 0.3097826
2.842082
34 {root vegetables,whole milk} => {other vegetables} 0.02318251 0.4740125
2.449770
27 {root vegetables} => {other vegetables} 0.04738180 0.4347015 2.246605
15 {whipped/sour cream} => {other vegetables} 0.02887646 0.4028369 2.081924
37 {whole milk,yogurt} => {other vegetables} 0.02226741 0.3974592 2.054131

Visualizing association rules
How the items are related and how the rules can be visually represented is as much
important as creating the rules:

> #visualizign the rules
> plot(rules,method='graph',interactive = T,shading = T)
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The preceding graph is created using apriori algorithm. In maximum number of rules, at
least you would find either whole milk or other vegetables as those two items are well
connected by nodes with other items.

Using eclat algorithm for the same dataset, we have created another set of rules; the
following graph shows the visualization of the rules:

Implementation of arules
Once a good market basket analysis or arules model is built, the next task is to integrate the
model. arules provides a PMML interface, which is a predictive modeling markup language
interface, to integrate with other applications. Other applications can be other statistical
software such as, SAS, SPSS, and so on; or it can be Java, PHP, and Android-based
applications. The PMML interface makes it easier to integrate the model. When it comes to
rule implementation, two important questions a retailer would like to get answer are:

What are customers likely to buy before buying a product?
What are the customers likely to buy if they have already purchased some
product?
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Let's take a product yogurt, and the retailer would like to recommend this to customers.
Which are the rules that can help the retailer? So the top 5 rules are as follows:

> rules<-apriori(data=Groceries, parameter=list(supp=0.001,conf = 0.8),
+ appearance = list(default="lhs",rhs="yogurt"),
+ control = list(verbose=F))
> rules<-sort(rules, decreasing=TRUE,by="confidence")
> inspect(rules[1:5])
lhs rhs support confidence
4 {root vegetables,butter,cream cheese } => {yogurt} 0.001016777 0.9090909
10 {tropical fruit,whole milk,butter,sliced cheese} => {yogurt} 0.001016777
0.9090909
11 {other vegetables,curd,whipped/sour cream,cream cheese } => {yogurt}
0.001016777 0.9090909
13 {tropical fruit,other vegetables,butter,white bread} => {yogurt}
0.001016777 0.9090909
2 {sausage,pip fruit,sliced cheese} => {yogurt} 0.001220132 0.8571429
lift
4 6.516698
10 6.516698
11 6.516698
13 6.516698
2 6.144315
> rules<-apriori(data=Groceries, parameter=list(supp=0.001,conf =
0.10,minlen=2),
+ appearance = list(default="rhs",lhs="yogurt"),
+ control = list(verbose=F))
> rules<-sort(rules, decreasing=TRUE,by="confidence")
> inspect(rules[1:5])
lhs rhs support confidence lift
20 {yogurt} => {whole milk} 0.05602440 0.4016035 1.571735
19 {yogurt} => {other vegetables} 0.04341637 0.3112245 1.608457
18 {yogurt} => {rolls/buns} 0.03436706 0.2463557 1.339363
15 {yogurt} => {tropical fruit} 0.02928317 0.2099125 2.000475
17 {yogurt} => {soda} 0.02735130 0.1960641 1.124368

Using the lift criteria also, product recommendation can be designed to offer to the
customers:

> # sorting grocery rules by lift
> inspect(sort(rules, by = "lift")[1:5])
lhs rhs support confidence lift
1 {yogurt} => {curd} 0.01728521 0.1239067 2.325615
8 {yogurt} => {whipped/sour cream} 0.02074225 0.1486880 2.074251
15 {yogurt} => {tropical fruit} 0.02928317 0.2099125 2.000475
4 {yogurt} => {butter} 0.01464159 0.1049563 1.894027
11 {yogurt} => {citrus fruit} 0.02165735 0.1552478 1.875752
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Finding out the subset of rules based on the availability of some item names can be done
using the following code:

# finding subsets of rules containing any items
itemname_rules <- subset(rules, items %in% "item name")
inspect(itemname_rules[1:5])
> # writing the rules to a CSV file
> write(rules, file = "groceryrules.csv", sep = ",", quote = TRUE,
row.names = FALSE)
>
> # converting the rule set to a data frame
> groceryrules_df <- as(rules, "data.frame")

Summary
In this chapter, we discussed how to create association rules, what all factors determine the
rules' existence, and how rules explain the underlying relationship between different items
or variables. Also we looked at how we can get most compressed rules based on minimum
support and confidence value. The objective of the association rules model was not to come
up with rules but to implement the rules in business use cases for generating
recommendation for cross-selling and upselling products, and designing campaign bundles
based on association. The rules would provide necessary guidance for the store managers to
place products and merchandising design in a retail setup. Having said this, in our next
chapter, we are going to cover various methods of performing clustering for segmentation,
which would provide more insights into product recommendation using clustering
methods.



6
Clustering with E-commerce

Data
In data mining literature, clustering plays an important role in bringing insights from
a dataset that is actionable and provides important business directions. In simple language, 
clustering aims at bringing similar observations such as similar customers, similar patients,
similar users, and so on. Clustering techniques are not limited to the domain of retail but
can be extended to any domain. Segmentation is no more limited to the retail or e-
commerce domain; it is also applicable to all domains and industries.

In this chapter, we are going to learn the following things:

What is segmentation?
How can clustering be applied to perform segmentation?
What are the methods used for clustering?
A comparative view of the various methods
A practical project on segmentation

In this chapter, you will know the basics of segmentation using various clustering methods.
There are different methods used to perform clustering. The following examples clarify
where and how clustering can be used to create segments that can be used to drive business
value:

In the retail/e-commerce industry, it is not possible to understand the behavior of
millions of customers to design the campaign, marketing strategy, and sales
promotion engagements. These customers actually belong to a finite group of
customers displaying similar behavior within a group and dissimilar behavior
between groups.
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In the telecommunications industry, the positioning of towers to optimize user
experience is driven by segmentation exercise. Also the design of telecom plans,
such as custom offers (especially for students, older people, professionals, and so
on), based on the usage of services are also made using clustering methods.
In the healthcare industry, to decide the size of hospital beds for different
departments, such as emergency care, acute care, and so on, clustering exercise
helps. Also, reporting of various diseases across different states can be used to
create a cluster of similar regions or places where a set of procedures can be
adopted.
In governance, law enforcement agencies strengthen their presence in those areas
where crime evidence/instance is more. So clustering techniques are used to
create groups of cities such as high, medium, and low-crime areas. Based on the
data, they can align their forces accordingly.
In insurance, clustering is used to decide differential premiums by grouping
different cities based on parameters such as demographic information,
geolocation, and risk zone.

Understanding customer segmentation
In standard data mining practice, customer segmentation is a way of dividing all customers
into various subgroups relevant to the business and the business problem. That subgroup
creation can be done either by using a subjective approach or by keeping the business
objective in mind. In different industries, customer segmentation has different applications;
for example, in retail, it is important to know the purchase behavior of customers, and
different subgroups displaying unique purchase behavior is relevant to the business.

Why understanding customer segmentation is
important
In the retail and e-commerce industry, offers, campaigns, loyalty programs, and discount
strategies work based on the purchase behavior of the subgroup of customers. In other
industries, sales, marketing strategy, and business plans run keeping in mind the
customer's behavior, and the behavior drives the sales. That unique customer behavior one
can be understood by performing segmentation on the data.
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How to perform customer segmentation?
Having discussed various benefits of performing customer segmentation, it is important to
know how to perform customer segmentation. There are two broad methods used to
perform customer segmentation:

Customer segmentation using clustering-based methods
Customer segmentation using the recency, frequency, and monetary (RFM)
model

In this chapter, we will discuss the clustering-based approach to perform customer
segmentation; the second method is not in the scope of this chapter.

Various clustering methods available
All clustering algorithms can be classified into four groups, as follows:

Hierarchical clustering: Using this method, a number of clusters are prepared
from the dataset, forming a hierarchy, and the clusters are then grouped using a
tree structure so that the entire dataset can be represented as a single tree
structure. The advantage of this method is that unlike partitioning-based
clustering, we don't have to specify the number of clusters to be created from the
dataset.
Partitioning clustering: In this approach, the dataset is divided into a finite
group of clusters based on a distance function in such a way that the within-
cluster similarity is maximum and between-cluster similarity is minimum. K-
means, which is a popular method in data mining practice, falls under this
category.
Model-based clustering: Using the data model, a group of clusters is created
from the dataset; the methods used in the model-based clustering approach can
be divided into two groups:

Maximum likelihood estimation
Bayesian estimation

Other clustering algorithms: There are other clustering techniques available such
as fuzzy clustering, bagged clustering, and so on. Fuzzy clustering uses a fuzzy
logic on the data so that the same data point can be a part of more than one
cluster. In other words, there is no exclusivity in terms of cluster membership.
This method is basically different from the other three forms of clustering, where
a data point belongs to a single cluster. Another algorithm that falls under this
group is known as self-organizing maps (SOM).
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Before analyzing various methods used for clustering of similar objects or observations
from a dataset, it is important to decide on a metric or distance method to measure the
similarity or dissimilarity between the observations. Based on certain predefined
characteristics known as input features, how one observation is different from or close to
another observation can be known by using this metric.

A similarity metric measures the degree of closeness of data points and a distance metric
measures how different the data points are. Both similarity and distance metric calculations
are part of the clustering process. Let's take a look at various similarity/distance measures:

Euclidean distance: The formula to compute the distance between two data
points x and y is as follows:

 

Manhattan distance: This is the formula used to compute the Manhattan
distance:

Cosine similarity: The formula used to compute the cosine similarity is as
follows:
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Now let's start segmenting the dataset using various clustering methods by taking a dataset
from healthcare (PimaIndiansDiabetes.csv [ref: 1]) and a dataset from retail/e-
commerce (Wholesalecustomers.csv [ref: 1]). Before running a clustering exercise,
data sufficiency conditions need to be checked.

K-means clustering
K-means clustering is an unsupervised learning algorithm that tries to combine similar
objects into a group in such a way that the within-group similarity should be maximum and
the between-group object similarity should be minimum. “Object” here implies the data
points that are entered into an algorithm. The within-group similarity is computed based on
a centrality measure called centroid (arithmetic mean) and a distance function
that measures how close the objects within a group are to the center. The “K” in K-means
clustering implies the number of clusters that a user might be interested in. The following
steps need to be followed for k-means clustering. Since the mean is used as a measure of
estimating the centroid, it is not free from the presence of extreme observations or outliers.
Hence, it is required to check the presence of outliers in a dataset before running k-means
clustering.

Checking the presence of outliers: Let's use the boxplot method of identifying1.
the presence of any outliers in the Wholesalecustomers.csv dataset:

    > r_df<-read.csv("Wholesalecustomers.csv")
    > ####Data Pre-processing
    > par(mfrow=c(2,3))
    > apply(r_df[,c(-1,-2)],2,boxplot)

The dotted points after the whisker line in each preceding boxplot for all the
variables indicate that there are lots of outliers in the dataset. The capping
method is mostly used by practitioners to remove the outliers from the
dataset. If any data point exceeds the quantiles, 90th percentile, 95th percentile,
or 99th percentile for each variable, then those data points need to be capped
at the respective percentiles:

        > #computing quantiles
        > quant<-function(x){quantile(x,probs=c(0.95,0.90,0.99))}
        > out1<-sapply(r_df[,c(-1,-2)],quant)
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Now, this quant function computes the three percentiles and the same are
applied to the dataset, excluding the first two variables. The following code is
used to modify the variables:

    > #removing outliers
    > r_df$Fresh<-ifelse(r_df$Fresh>=out1[2,1],out1[2,1],r_df$Fresh)
    > r_df$Milk<-ifelse(r_df$Milk>=out1[2,2],out1[2,2],r_df$Milk)
    > r_df$Grocery<-ifelse(r_df$Grocery>=out1[2,3],out1[2,3],r_df$Grocery)
    > r_df$Frozen<-ifelse(r_df$Frozen>=out1[2,4],out1[2,4],r_df$Frozen)
    > r_df$Detergents_Paper<-
ifelse(r_df$Detergents_Paper>=out1[2,5],out1[2,5],r_df$Detergents_Paper)
    > r_df$Delicassen<-
ifelse(r_df$Delicassen>=out1[2,6],out1[2,6],r_df$Delicassen)

Next, let's check the dataset to find out whether the outliers have
been removed, using the same boxplot method:

      > #Checking outliers after removal
      > apply(r_df[,c(-1,-2)],2,boxplot)

From the preceding graph, we can conclude that all the outliers have been
removed by capping the values at 90th percentile value for all the variables.
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Scaling the dataset: Inclusion of only continuous variables in the K-means2.
clustering exercise does not guarantee that all the variables would be on the same
scale. For example, the age of a customer ranges from 0-100 and the income of a
customer ranges from 0-100,000. Since both units of measurement are different,
they might fall into different clusters, which becomes more complex when we
have more data points to be represented. In order to compare segments in a
clustering process, all the variables need to be standardized on a scale; here we
have applied standard normal transformation (Z-transformation) for all the
variables:

    > r_df_scaled<-as.matrix(scale(r_df[,c(-1,-2)]))
    > head(r_df_scaled)
    Fresh Milk Grocery Frozen Detergents_Paper Delicassen
    [1,] 0.2351056 1.2829174 0.11321460 -0.96232799 0.1722993 0.1570550
    [2,] -0.4151579 1.3234370 0.45658819 -0.30625122 0.4120701 0.6313698
    [3,] -0.4967305 1.0597962 0.13425842 -0.03373355 0.4984496 1.8982669
    [4,] 0.3041643 -0.9430315 -0.45821928 1.66113143 -0.6670924 0.6443648
    [5,] 1.3875506 0.1657331 0.05110966 0.60623797 -0.1751554 1.8982669
    [6,] -0.1421677 0.9153464 -0.30338465 -0.77076036 -0.1681831 0.2794239

Choose initial cluster seeds: The selection of initial random seeds decides the3.
number of iterations required for convergence of the model. Typically, initial
cluster seeds chosen at random are temporary means of the clusters. The objects
closer to the centroid measured by the distance function are assigned the cluster
membership. With the addition of a new member into the cluster, again the
centroid is computed and each seed value is replaced by the respective cluster
centroid. In K-means clustering, this process of adding more objects to the group
and hence updating the centroid goes on until the centroids are not moving and
the objects are not changing the group membership.
Decide the number of cluster K: In the R programming language, there are two 4.
libraries, Rcmdr (R Commander) and stats, that support K-means clustering and
they use two different approaches. The Rcmdr library needs to be loaded to run
the algorithm, but stats is already built into base R. To compute the number of
clusters required to represent the data using K-means algorithm is decided by the
scree plot using the following formula:

    > library(Rcmdr)
    > > sumsq<-NULL
    > #Method 1
    > par(mfrow=c(1,2))
    > for (i in 1:15) sumsq[i] <-
sum(KMeans(r_df_scaled,centers=i,iter.max=500,
    num.seeds=50)$withinss)
    >
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    > plot(1:15,sumsq,type="b", xlab="Number of Clusters",
    + ylab="Within groups sum of squares",main="Screeplot using Rcmdr")
    >
    > #Method 2
    > for (i in 1:15) sumsq[i] <-
sum(kmeans(r_df_scaled,centers=i,iter.max=5000,
        algorithm = "Forgy")$withinss)
    >
    > plot(1:15,sumsq,type="b", xlab="Number of Clusters",
    + ylab="Within groups sum of squares",main="Screeplot using Stats")

The following graph explains the scree plot. Using both approaches, the ideal
number of clusters is 4, decided by looking at the “elbow” point on the scree
plot. The vertical axis shows the within-group sum of squares dropping as
the cluster number increases on the horizontal axis:

Once the number of clusters is decided, the cluster centers and distance can be computed,
and the following code explains the functions to use in K-means clustering. The objective
here is to classify the objects in such a way that they are as much dissimilar as possible from
one group to another group and as much similar as possible within each group. The
following function can be used to compute the within-group sum of squares from the
cluster centers to the individual objects:



Clustering with E-commerce Data

[ 170 ]

The sum of squares from each of the clusters is computed and then added up
to compute the total within-group sum of squares for the dataset. The
objective here is to minimize the within-group sum of squares total.

Grouping based on minimum distance: The K-means syntax and explanation for5.
the arguments are as follows:

    kmeans(x, centers, iter.max = 10, nstart = 1,
    algorithm = c("Hartigan-Wong", "Lloyd", "Forgy",
    "MacQueen"), trace=FALSE)

x Numeric matrix of data, or an object that can be coerced to such a matrix (such
as a numeric vector or a data frame with all numeric columns)

centers Either the number of clusters, say k, or a set of initial (distinct) cluster centers. If
it's a number, a random set of (distinct) rows in x is chosen as the initial centers.

iter.max The maximum number of iterations allowed.

nstart If the center is a number, how many random sets should be chosen?

algorithm Character. This may be abbreviated. Note that "Lloyd" and "Forgy" are
alternative names for one algorithm.

Table 1: The description for the K-means syntax

    > #Kmeans Clustering
    > library(cluster);library(cclust)
    > set.seed(121)
    > km<-kmeans(r_df_scaled,centers=4,nstart=17,iter.max=50000, algorithm
=
    "Forgy",trace = T)

The scaled dataset is used to create clusters, with four clusters and 17 initial
starting points. Given the 50,000 iterations with the Forgy algorithm, the
following results are obtained from the model:

    #checking results
    summary(km)
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    Length Class Mode
    cluster 440 -none- numeric
    centers 24 -none- numeric
    totss 1 -none- numeric
    withinss 4 -none- numeric
    tot.withinss 1 -none- numeric
    betweenss 1 -none- numeric
    size 4 -none- numeric
    iter 1 -none- numeric
    ifault 0 -none- NULL
    > km$centers
    Fresh Milk Grocery Frozen Detergents_Paper Delicassen
    1 0.7272001 -0.4741962 -0.5839567 1.54228159 -0.64696856 0.13809763
    2 -0.2327058 -0.6491522 -0.6275800 -0.44521306 -0.55388881 -0.57651321
    3 0.6880396 0.6607604 0.3596455 0.02121206 -0.03238765 1.33428207
    4 -0.6025116 1.1545987 1.3947616 -0.45854741 1.55904516 0.09763056
    > km$withinss
    [1] 244.3466 324.8674 266.3632 317.5866

The following code explains how to attach cluster information with the
dataset and the profiling of various clusters with their respective group
means:

    > #attaching cluster information
    > Cluster<-cbind(r_df,Membership=km$cluster)
    > aggregate(Cluster[,3:8],list(Cluster[,9]),mean)
    Group.1 Fresh Milk Grocery Frozen Detergents_Paper Delicassen
    1 1 16915.946 2977.868 3486.071 6123.576 558.9524 1320.4940
    2 2 8631.625 2312.926 3231.096 1434.122 799.2500 660.5957
    3 3 16577.977 7291.414 9001.375 2534.643 2145.5738 2425.0954
    4 4 5440.073 9168.309 15051.573 1402.660 6254.0670 1283.1252

Now, let's look at visualization of the groups/clusters using a scatter plot:
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From the preceding graph, we can see that all the four clusters are
overlapping each other to a certain extent; however, the overall objective of a
clustering exercise is to come up with non-overlapping groups. There are six
variables; hence, six dimensions represented in a two-dimensional space
show 65.17% variability explained by two components. This is acceptable
because the degree of overlap is less. If the degree of overlap is more, then
post clustering, the similar groups can be merged as part of a profiling
exercise. Profiling is an exercise performed after K-means clustering to
generate insights for business users; hence, while generating insights, similar
groups can be merged.

Predicting cluster membership for new data: Once the K-means clustering6.
model is created, using that model, cluster membership for a new dataset can be
created by using the following predict function:

    > #Predicting new data for KMeans
    > predict.kmeans <- function(km, r_df_scaled)
    + {k <- nrow(km$centers)
    + d <- as.matrix(dist(rbind(km$centers, r_df_scaled)))[-(1:k),1:k]
    + n <- nrow(r_df_scaled)
    + out <- apply(d, 1, which.min)
    + return(out)}
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For the same dataset, we can predict the cluster membership, and the actual
cluster membership versus the predicted cluster membership can be
represented in the following table:

    > #predicting cluster membership
    > Cluster$Predicted<-predict.kmeans(km,r_df_scaled)
    > table(Cluster$Membership,Cluster$Predicted)
    1 2 3 4
    1 84 0 0 0
    2 0 188 0 0
    3 0 0 65 0
    4 0 0 0 103

Implementing K-means in live applications: For implementation of K-means7.
clustering with any other statistical software and web applications, PMML script
can be used. PMML stands for Predictive Model Markup Language, which is
recognized as an industry standard for deploying predictive models:

    #pmml code
    library(pmml);
    library(XML);
    pmml(km)

When we save a model in PMML format, it prepares an XML script for the
model where the model parameters are embedded in the script. It is written
in such a way that any other external statistical software can read the model.

Hierarchical clustering
There are two different ways of implementing the hierarchical clustering algorithm, but one
thing is common; both use a distance measure to estimate the similarity between cluster
members:

Agglomerative method: Bottom-up approach
Divisive method: Top-down approach
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To perform hierarchical clustering, the input data has to be in a distance matrix form. The
method selected has to be from one of "single", "complete", "average", "mcquitty",
"ward.D", "ward.D2", "centroid", or "median".

The hierarchical algorithm follows these steps:

Start with N singleton clusters (nodes) labeled −1, . . . , −N, which represent the1.
initial set of input points.
Find a pair of nodes / cluster with minimal distance among all pairwise distances2.
using a distance function.
Combine the two nodes into a new node and remove the two old nodes. The new3.
nodes are labeled consecutively 1, 2, . . ..
The distances from the new node to all other nodes are determined by the4.
method parameter.
Repeat N − 1 times from step 2 until there is one big node that contains all5.
original input points.

If the method chosen to perform hierarchical clustering is ward, then the distance measure
to be used for clustering is Euclidean. The following code shows how to perform
agglomerative hierarchical clustering:

> hfit<-hclust(dist(r_df_scaled,method = "euclidean"),method="ward.D2")
> par(mfrow=c(1,2))
> plot(hfit,hang=-0.005,cex=0.7)
> hfit<-hclust(dist(r_df_scaled,method = "manhattan"),method="mcquitty")
> plot(hfit,hang=-0.005,cex=0.7)
> hfit<-hclust(dist(r_df_scaled,method = "minkowski"))
> plot(hfit,hang=-0.005,cex=0.7)
> hfit<-hclust(dist(r_df_scaled,method = "canberra"))
> plot(hfit,hang=-0.005,cex=0.7)

Here is the first dendrogram graph:
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Here is the second dendrogram graph:

Various methods are used to show how to perform agglomerative hierarchical clustering in
the preceding two dendrogram graphs. The parameter method is one of the strings single,
centroid, median, ward, and the argument method is one of the strings single,
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complete, average, mcquitty, centroid, median, ward.D, ward.D2. Each method is
different. Single linkage uses the smallest minimum pairwise distance to merge two
clusters. Complete linkage uses the similarity between the dissimilar objects in two different
clusters. Likewise each method has a unique way to compute the similarity between
different clusters:

> summary(hfit)
Length Class Mode
merge 878 -none- numeric
height 439 -none- numeric
order 440 -none- numeric
labels 0 -none- NULL
method 1 -none- character
call 3 -none- call
dist.method 1 -none- character

Divisive hierarchical clustering can be performed using the diana function from the library
cluster. The syntax is shown as follows:

diana(x, diss = inherits(x, "dist"), metric = "euclidean", stand = FALSE,
keep.diss = n < 100, keep.data = !diss, trace.lev = 0)

To apply the diana function, the input data should be in matrix or dataframe type. The
diana function accepts both a distance matrix as well as a dataframe as an input. There is a
logical flag argument meant to control the input structure to the function. The metric
argument is a character string specifying the metric to be used to calculate distance; it has
two options, "euclidean" and "manhattan". Euclidean distances are root sums of
squares of differences and manhattan distances are the sums of absolute differences, for
which the mathematical formula has already been explained in this chapter. If x, the input
dataset, is already a dissimilarity matrix, then this diss argument will be ignored from
execution. The argument stand if takes the value as true, this implies that the raw dataset is
used and further the distance matrix needs to be created.

The diana function constructs a hierarchy of clusters, as the name suggests, starting with
one large cluster containing all observations. Clusters are divided until each cluster contains
only a single observation. At each hierarchy, the cluster with the largest diameter based on
the distance from the cluster center to the outermost data point as measured by the distance
function is selected:

dfit<-diana(r_df,diss=F,metric = "euclidean",stand=T,keep.data = F)
summary(dfit)
plot(dfit)
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The plot command on divisive clustering provides two graph options, a banner indicating
the divisive coefficient and a dendrogram displaying the tree structure:
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For the hierarchical clustering algorithms, one additional step is to cut the dendrogram tree
structure into a finite group of clusters so that the results from various clustering methods
can be compared. The following function is used to cut the tree structure:

> #cutting the tree into groups
> g_hfit<-cutree(hfit,k=4)
> plot(hfit)
> table(g_hfit)
g_hfit
1 2 3 4
77 163 119 81
> rect.hclust(hfit,k=4,border = "blue")

This graph shows the tree structure:
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Model-based clustering
There is a library in R known as mclust that provides Gaussian finite mixture models fitted
viaEM algorithm for model-based clustering, including Bayesian regularization. In this
section, we discuss the syntax for Mclust and the outcome, and the rest of the results can be
analyzed using profiling information. The model-based approach applies a set of data
models, the maximum likelihood estimation method, and Bayes criteria to identify the
cluster, and the Mclust function estimates the parameters through the expectation
maximization algorithm.

The Mclust package provides various data models based on three parameters: E, V, and I.
The model identifiers use the three letters E, V, and I to code geometric characteristics such
as volume, shape, and orientation of the cluster. E means equal, I implies identity matrix in
specifying the shape, and V implies varying variance. Keeping in mind these three letters,
there is a set of models that is by default run using the mclust library, and those models
can be classified into three groups such as spherical, diagonal and ellipsoidal. The details
are given in the following table:

Model code Description

EII Spherical, equal volume

VII Spherical, unequal volume

EEI Diagonal, equal volume and shape

VEI Diagonal, varying volume, equal shape

EVI Diagonal, equal volume, varying shape

VVI Diagonal, varying volume and shape

EEE Ellipsoidal; equal volume, shape, and orientation

EEV Ellipsoidal, equal volume and shape

VEV Ellipsoidal, equal shape

VVV Ellipsoidal' varying volume, shape, and orientation

Table 2: Model description using finite mixture approach

Now let's use the Mclust method of doing clustering and grouping of observations based
on the E, V, and I parameters:

> clus <- Mclust(r_df[,-c(1,2)])
> summary(clus)
----------------------------------------------------
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Gaussian finite mixture model fitted by EM algorithm
----------------------------------------------------
Mclust VEI (diagonal, equal shape) model with 9 components:
log.likelihood n df BIC ICL
-23843.48 440 76 -48149.56 -48223.43
Clustering table:
1 2 3 4 5 6 7 8 9
165 21 40 44 15 49 27 41 38

From the preceding summary, there are nine clusters created using the VEI model
specification and the BIC is lowest for this model. Let's also plot all other model
specifications using a plot:

From the preceding graph, it is clear that the VEI model specification is the best. Using the
following code, we can print the cluster membership as well as the number of rows in each
of the clusters:

# The clustering vector:
clus_vec <- clus$classification
clus_vec
clust <- lapply(1:3, function(nc) row.names(r_df)[clus_vec==nc])
clust # printing the clusters

Using the summary command with parameter is true, mean, variance and probability for
each variable we can compute:

summary(clus, parameters = T)
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Other cluster algorithms
Self-organizing map (SOM) is another approach to clustering; it uses the visual method of
representing data. SOM is basically used to derive unique nodes. SOM creates a network
structure where the data objects would be connected by nodes and edges. Using those
nodes, the similarity between different objects can be drawn to create clustering solutions.
The kohonen library contains the SOM function:

> library(kohonen)
> som_grid <- somgrid(xdim = 20, ydim=20, topo="hexagonal")
> som_model <- som(r_df_scaled,
+ grid=som_grid,
+ rlen=100,
+ alpha=c(0.05,0.01),
+ keep.data = TRUE,
+ n.hood="circular")
plot(som_model, type="changes",col="blue")

The preceding graph explains how the mean distance to the closest unit changes with
increase in the iteration level:

> plot(som_model, type="count")
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The preceding graph displays the counts plot using the SOM approach. The following
graph displays the neighbor distance plot. The map is colored by different variables and the
circles with colors denote where those input variables fall in n-dimensional space. When the
plot type is counts, it shows the number of objects mapped to individual units. The units in
gray color indicate empty. When the type is distance neighbors, it shows the sum of
distances to all immediate neighbors. This is shown in the following graph:

> plot(som_model, type="dist.neighbours")

> plot(som_model, type="codes")
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Finally, the next graph displays the code using all the variables:

In R, the kohonen library is used to create self-organizing maps using hierarchical
clustering. When the type of graph is codes, as it is shown in the preceding graph, this
shows the code book vectors; each color indicates a feature from the input dataset. The
preceding results and graphs show how to create a clustering solution and how clustering
can be visualized using the SOM plot function. SOM is a data visualization process used to
show similar objects in a dataset based on input data vectors. Hence, the conclusion from
the results would be how clusters or segments can be created by visual inspection.
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Comparing clustering methods
Here are some of the advantages and disadvantages of various clustering methods:

For K-means clustering:

Merits and demerits of K-means
clustering

It is simple to understand and easy to
interpret

It is not based on robust methodology. The big problem
is initial random points

It is more flexible in comparison to
other clustering algorithms

Different random points display different results.
Hence, more iteration is required.

Performs well on a large number of
input features

Since more iteration is required, it may not be efficient
for large datasets from a computational efficiency point
of view. It would require more memory to process.

For SOM:

Merits and Demerits of SOM

Simple to understand visually Only works on continuous data

New data points can be predicted visually Difficult to represent when the dimensions
increase

References
Lichman, M. (2013). UCI Machine Learning Repository (h t t p : / / a r c h i v e . i c s . u c i . e d u / m
l). Irvine, CA: University of California, School of Information and Computer Science.

Summary
In this chapter, we discussed various methods of segmentation for unsupervised data
mining problems and their implementations. Clustering is a subjective segmentation
method and it requires further investigation such as profiling by cluster and calculating
different measures such as mean and median for different variables. If any cluster displays
closeness to another cluster and from business point of view they make sense, then they can
be combined together. We discussed which model to use where and what the data
requirement for each of the models is. In this chapter, we specifically highlighted the
importance of data visualization when it comes to representing clustering solutions.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


7
Building a Retail

Recommendation Engine
In this age of Internet, everything available over the Internet is not useful for everyone.
Different companies and entities use different approaches to find out relevant content for
their audiences. People started building algorithms to construct a relevance score, based on
which recommendations could be built and suggested to the users. In my day to day life,
every time I see an image on Google, 3-4 other images are recommended to me by Google,
every time I look for some videos on YouTube, 10 more videos are recommended to me,
every time I visit Amazon to buy some products, 5-6 products are recommended to me,
and, every time I read one blog or article, a few more articles and blogs are recommended to
me. This is an evidence of algorithmic forces at play to recommend certain things based on
user's preferences or choices, since the user's time is precious and content available over
Internet is unlimited. Hence, recommendation engine helps organizations customize their
offerings based on the user's preferences so that the user does not have to spend time in
exploring what is required.

In this chapter, the reader will learn the following things and their implementation using R
programming language:

What is recommendation and how does that work
Types and methods for performing recommendation
Implementation of product recommendation using R
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What is recommendation?
Recommendation is a method or technique by which an algorithm detects what the user is
looking at. Recommendation can be of products, services, food, videos, audios, images,
news articles, and so on. What recommendation is can be made much clearer if we look
around and note what we observe over the Internet day in and day out. For example,
consider news aggregator websites and how they recommend articles to users. They look at
the tags, timing of the article loaded into Internet, number of comments, likes, and shares
for that article, and of course geolocation, among other details, and then model the
metadata information to arrive at a score. Based on that score, they start recommending
articles to new users. Same thing happens when we watch a video on YouTube. Similarly,
beer recommendation system also works; the user has to select any beer at random and
based on the first product chosen, the algorithm recommends other beers based on similar
users' historical purchase information. Same thing happens when we buy products from
online e-commerce portals.

Types of product recommendation
Broadly, there are four different types of recommendation systems that exist:

Content-based recommendation method
Collaborative filtering-based recommendation method
Demographic segment-based recommendation method
Association rule based-recommendation method

In content-based method, the terms, concepts which are also known as keywords, define the
relevance. If the matching keywords from any page that the user is reading currently are
found in any other content available over Internet, then start calculating the term
frequencies and assign a score and based on that score whichever is closer represent that to
the user. Basically, in content-based methods, the text is used to find the match between two
documents so that the recommendation can be generated.

In collaborative filtering, there are two variants: user-based collaborative filtering and item-
based collaborative filtering.

In user-based collaborative filtering method, the user-user similarity is computed by the
algorithm and then based on their preferences the recommendation is generated. In item
based collaborative filtering, item-item similarity is considered to generate
recommendation.
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In demographic segment based category, the age, gender, marital status, and location of the
users, along with their income, job, or any other available feature, are taken into
consideration to create customer segments. Once the segments are created then at a segment
level the most popular product is identified and recommended to new users who belong to
those respective segments.

Techniques to perform recommendation
To filter out abundant information available online and recommend useful information to
the user at first hand is the prime motivation for creating recommendation engine. So how
does the collaborative filtering work? Collaborative filtering algorithm generates
recommendations based on a subset of users that are most similar to the active user. Each
time a recommendation is requested, the algorithm needs to compute the similarity
between the active user and all the other users, based on their co-rated items, so as to pick
the ones with similar behaviour. Subsequently, the algorithm recommends items to the
active user that are highly rated by his/her most similar users.

In order to compute the similarities between users, a variety of similarity measures have
been proposed, such as Pearson correlation, cosine vector similarity, Spearman correlation,
entropy-based uncertainty measure, and mean square difference. Let's look at the
mathematical formula behind the calculation and implementation using R.

The objective of a collaborative filtering algorithm is to suggest new items or to predict the
utility of a certain item for a particular user based on the user's previous likings and the
opinions of other like-minded users.

Memory-based algorithms utilize the entire user-item database to generate a prediction.
These systems employ statistical techniques to find a set of users, known as neighbours,
who have a history of agreeing with the target user (that is, they either rate the same items
similarly or they tend to buy similar sets of items). Once a neighbourhood of users is
formed, these systems use different algorithms to combine the preferences of neighbours to
produce a prediction or top-N recommendation for the active user. The techniques, also
known as nearest-neighbour or user-based collaborative filtering, are very popular and
widely used in practice.

Model-based collaborative filtering algorithms provide item recommendation by first
developing a model of user ratings. Algorithms in this category take a probabilistic
approach and envision the collaborative filtering process as computing the expected value
of a user prediction, given his/her ratings on other items. The model building process is
performed by different machine learning algorithms, such as Bayesian network, clustering,
and rule-based approaches.
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One critical step in the item-based collaborative filtering algorithm is to compute the
similarity between items and then to select the most similar items. The basic idea in
similarity computation between two items i and j is to first isolate the users who have rated
both of these items and then to apply a similarity computation technique to determine the
similarity S(i,j).

There are a number of different ways to compute the similarity between items. Here we
present three such methods. These are cosine-based similarity, correlation-based similarity,
and adjusted-cosine similarity:

Cosine-based similarity: Two items are thought of as two vectors in the m
dimensional user-space. The similarity between them is measured by computing
the cosine of the angle between these two vectors:

Preceding is the formula for computing cosine similarity between two
vectors. Let's take a numerical example to compute the cosine similarity:

Cos (d1, d2) = 0.44

d1 d2 d1*d2 ||d1|| ||d2|| ||d1||*||d2||

6 1 6 36 1 36

4 0 0 16 0 0

5 3 15 25 9 225

1 2 2 1 4 4

0 5 0 0 25 0

2 0 0 4 0 0

4 6 24 16 36 576

0 5 0 0 25 0

3 0 0 9 0 0

6 1 6 36 1 36
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53 143 101 877

11.95826 10.04988

Table 5: Results of cosine similarity

So cosine similarity between d1 and d2 is 44%.

Cos (d1, d2) = 0.441008707

Correlation-based similarity: Similarity between two items i and j is measured
by computing the Pearson-r correlation corr. To make the correlation
computation accurate, we must first isolate the co-rated cases.
Adjusted cosine similarity: One fundamental difference between the similarity
computation in user-based CF and item-based CF is that in case of user-based CF
the similarity is computed along the rows of the matrix, but in case of the item-
based CF the similarity is computed along the columns, that is, each pair in the
co-rated set corresponds to a different user. Computing similarity using basic
cosine measure in item-based case has one important drawback – the difference
in rating scale between different users is not taken into account. The adjusted
cosine similarity offsets this drawback by subtracting the corresponding user
average from each co-rated pair. The example is given in Table 1, where the co-
rated set belongs to different users, users are in different rows of the table.

Assumptions
The dataset that we are going to use for this chapter contains 100 jokes and 5000 users,
which is a built-in dataset in the library recommenderlab. The dataset contains real ratings
expressed by users in a scale of -10 to +10, with -10 being the worst and +10 being the best
joke. We will implement various recommendation algorithms using this dataset. Using this
dataset, the objective is to recommend jokes to new users based on their past preferences.

What method to apply when
Though there are four different types of recommendation methods, now which one to apply
when. If the products or items are bought in a batch, then it is preferred by practitioners to
apply association rules, which is also known as market basket analysis. In a retail or e-
commerce domain, the items are generally purchased in a lot. Hence, when a user adds a
certain product to his/her cart, other products can be recommended to him/her based on the
aggregate basket component as reflected by majority of the buyers.
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If the ratings or reviews are explicitly given for a set of items or products, it makes sense to
apply user based collaborative filtering. If some of the ratings for few items are missing still
the data can be imputed, once the missing ratings predicted, the user similarity can be
computed and hence recommendation can be generated. For user-based collaborative
filtering, the data would look as follows:

User Item1 Item2 Item3 Item4 Item5 Item6

user1 -7.82 8.79 -9.66 -8.16 -7.52 -8.5

user2 4.08 -0.29 6.36 4.37 -2.38 -9.66

user3 9.03 9.27

user4 8.35 1.8 8.16

user5 8.5 4.61 -4.17 -5.39 1.36 1.6

user6 -6.17 -3.54 0.44 -8.5 -7.09 -4.32

user7 8.59 -9.85

user8 6.84 3.16 9.17 -6.21 -8.16 -1.7

user9 -3.79 -3.54 -9.42 -6.89 -8.74 -0.29

user10 3.01 5.15 5.15 3.01 6.41 5.15

Table 1: User-based item sample dataset

If the binary matrix is given as an input, where the levels represent whether the product is
bought or not, then it is recommended to apply item-based collaborative filtering. The
sample dataset is given next:

User Item1 Item2 Item3 Item4 Item5 Item6

user1 1 1 1 1 1 0

user2 1 1 0 0 1

user3 0 0 1 0 0

user4 0 1 1 1 1

user5 1 0 1 0

user6 0 0 1 0

user7 1 0 0 1 1

user8 1 0 1 1 0
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user9 0 1 0 0 0

user10 1 0 1 1 1 1

Table 2: Item-based collaborative filtering sample dataset

If the product description details and the item description are given and the user search
query is collected, then the similarity can be measured using content-based collaborative
filtering method:

Title Search query

Celestron LAND AND SKY 50TT Telescope good telescope

(S5) 5-Port Mini Fast Ethernet Switch S5 mini switch

(TE-S16)Tenda 10/100 Mbps 16 Ports Et... ethernet ports

(TE-TEH2400M) 24-Port 10/100 Switch ethernet ports

(TE-W300A) Wireless N300 PoE Access P... ethernet ports

(TE-W311M) Tenda N150 Wireless Adapte... wireless adapter

(TE-W311M) Tenda N150 Wireless Adapte... wireless adapter

(TE-W311MI) Wireless N150 Pico USB Ad... wireless adapter

101 Lighting 12 Watt Led Bulb - Pack Of 2 led bulb

101 Lighting 7 Watt Led Bulb - Pack Of 2 led bulb

Table 3: Content-based collaborative filtering sample dataset

Limitations of collaborative filtering
User-based collaborative filtering systems have been very successful in past, but their
widespread use has revealed some real challenges, such as:

Sparsity: In practice, many commercial recommender systems are used to
evaluate large item sets (for example, Amazon.com recommends books and
CDNow.com recommends music albums). In these systems, even active users
may have purchased well under 1% of the items 1%). Accordingly, a
recommender system based on nearest neighbor algorithms may be unable to
make any item recommendations for a particular user. As a result, the accuracy of
recommendations may be poor.
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Scalability: Nearest neighbor algorithms require computation that grows with
both the number of users and the number of items. With millions of users and
items, a typical web-based recommender system running existing algorithms will
suffer serious scalability problems.

Practical project
The dataset contains a sample of 5000 users from the anonymous ratings data from the
Jester Online Joke Recommender System collected between April 1999 and May 2003 (Gold-
berg, Roeder, Gupta, and Perkins 2001). The dataset contains ratings for 100 jokes on a scale
from -10 to 10. All users in the data set have rated 36 or more jokes. Let's load the
recommenderlab library and the Jester5K dataset:

> library("recommenderlab")
> data(Jester5k)
> Jester5k@data@Dimnames[2]
[[1]]
[1] "j1" "j2" "j3" "j4" "j5" "j6" "j7" "j8" "j9"
[10] "j10" "j11" "j12" "j13" "j14" "j15" "j16" "j17" "j18"
[19] "j19" "j20" "j21" "j22" "j23" "j24" "j25" "j26" "j27"
[28] "j28" "j29" "j30" "j31" "j32" "j33" "j34" "j35" "j36"
[37] "j37" "j38" "j39" "j40" "j41" "j42" "j43" "j44" "j45"
[46] "j46" "j47" "j48" "j49" "j50" "j51" "j52" "j53" "j54"
[55] "j55" "j56" "j57" "j58" "j59" "j60" "j61" "j62" "j63"
[64] "j64" "j65" "j66" "j67" "j68" "j69" "j70" "j71" "j72"
[73] "j73" "j74" "j75" "j76" "j77" "j78" "j79" "j80" "j81"
[82] "j82" "j83" "j84" "j85" "j86" "j87" "j88" "j89" "j90"
[91] "j91" "j92" "j93" "j94" "j95" "j96" "j97" "j98" "j99"
[100] "j100"

The following image shows the distribution of real ratings given by 2000 users:

> data<-sample(Jester5k,2000)
> hist(getRatings(data),breaks=100,col="blue")
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The input dataset contains the individual ratings; normalization function reduces the
individual rating bias by centering the row, which is a standard z-score transformation.
Subtracting each element from the mean and then dividing by standard deviation. The
following graph shows normalized ratings for the preceding dataset:

> hist(getRatings(normalize(data)),breaks=100,col="blue4")
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To create a recommender system:

A recommendation engine is created using the recommender() function. A new
recommendation algorithm can be added by the user using the
recommenderRegistry$get_entries() function:

> recommenderRegistry$get_entries(dataType = "realRatingMatrix")
$IBCF_realRatingMatrix
Recommender method: IBCF
Description: Recommender based on item-based collaborative filtering (real
data).
Parameters:
k method normalize normalize_sim_matrix alpha na_as_zero minRating
1 30 Cosine center FALSE 0.5 FALSE NA
$POPULAR_realRatingMatrix
Recommender method: POPULAR
Description: Recommender based on item popularity (real data).
Parameters: None
$RANDOM_realRatingMatrix
Recommender method: RANDOM
Description: Produce random recommendations (real ratings).
Parameters: None
$SVD_realRatingMatrix
Recommender method: SVD
Description: Recommender based on SVD approximation with column-mean
imputation (real data).
Parameters:
k maxiter normalize minRating
1 10 100 center NA
$SVDF_realRatingMatrix
Recommender method: SVDF
Description: Recommender based on Funk SVD with gradient descend (real
data).
Parameters:
k gamma lambda min_epochs max_epochs min_improvement normalize
1 10 0.015 0.001 50 200 1e-06 center
minRating verbose
1 NA FALSE
$UBCF_realRatingMatrix
Recommender method: UBCF
Description: Recommender based on user-based collaborative filtering (real
data).
Parameters:
method nn sample normalize minRating
1 cosine 25 FALSE center NA
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The preceding Registry command helps in identifying the methods available in
recommenderlab, parameters for the model.

There are six different methods for implementing recommender system: popular, item-
based, user based, PCA, random, and SVD. Let's start the recommendation engine using
popular method:

> rc <- Recommender(Jester5k, method = "POPULAR")
> rc
Recommender of type 'POPULAR' for 'realRatingMatrix'
learned using 5000 users.
> names(getModel(rc))
[1] "topN" "ratings"
[3] "minRating" "normalize"
[5] "aggregationRatings" "aggregationPopularity"
[7] "minRating" "verbose"
> getModel(rc)$topN
Recommendations as 'topNList' with n = 100 for 1 users.

The objects such as top N, verbose, aggregation popularity, and others can be printed using
names of the getmodel() command.

recom <- predict(rc, Jester5k, n=5)
recom

To generate recommendation, we can use the predict function against the same dataset
and validate the accuracy of the predictive model. Here we are generating top 5
recommended jokes to each of the users. The result of the prediction is as follows:

> head(as(recom,"list"))
$u2841
[1] "j89" "j72" "j76" "j88" "j83"
$u15547
[1] "j89" "j93" "j76" "j88" "j91"
$u15221
character(0)
$u15573
character(0)
$u21505
[1] "j89" "j72" "j93" "j76" "j88"
$u15994
character(0)

For the same Jester5K dataset, let's try to implement item-based collaborative filtering
(IBCF):

> rc <- Recommender(Jester5k, method = "IBCF")
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> rc
Recommender of type 'IBCF' for 'realRatingMatrix'
learned using 5000 users.
> recom <- predict(rc, Jester5k, n=5)
> recom
Recommendations as 'topNList' with n = 5 for 5000 users.
> head(as(recom,"list"))
$u2841
[1] "j85" "j86" "j74" "j84" "j80"
$u15547
[1] "j91" "j87" "j88" "j89" "j93"
$u15221
character(0)
$u15573
character(0)
$u21505
[1] "j78" "j80" "j73" "j77" "j92"
$u15994
character(0)

Principal component analysis (PCA) method is not applicable for real rating-based dataset
because getting correlation matrix and subsequent eigen vector and eigen value calculation
would not be accurate. Hence, we will not show its application. Next we are going to show
how the random method works:

> rc <- Recommender(Jester5k, method = "RANDOM")
> rc
Recommender of type 'RANDOM' for 'ratingMatrix'
learned using 5000 users.
> recom <- predict(rc, Jester5k, n=5)
> recom
Recommendations as 'topNList' with n = 5 for 5000 users.
> head(as(recom,"list"))
[[1]]
[1] "j90" "j74" "j86" "j78" "j85"
[[2]]
[1] "j87" "j88" "j74" "j92" "j79"
[[3]]
character(0)
[[4]]
character(0)
[[5]]
[1] "j95" "j86" "j93" "j78" "j83"
[[6]]
character(0)
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In recommendation engine, the SVD approach is used to predict the missing ratings so that
recommendation can be generated. Using singular value decomposition (SVD) method,
the following recommendation can be generated:

> rc <- Recommender(Jester5k, method = "SVD")
> rc
Recommender of type 'SVD' for 'realRatingMatrix'
learned using 5000 users.
> recom <- predict(rc, Jester5k, n=5)
> recom
Recommendations as 'topNList' with n = 5 for 5000 users.
> head(as(recom,"list"))
$u2841
[1] "j74" "j71" "j84" "j79" "j80"
$u15547
[1] "j89" "j93" "j76" "j81" "j88"
$u15221
character(0)
$u15573
character(0)
$u21505
[1] "j80" "j73" "j100" "j72" "j78"
$u15994
character(0)

The result from the user-based collaborative filtering is shown next:

> rc <- Recommender(Jester5k, method = "UBCF")
> rc
Recommender of type 'UBCF' for 'realRatingMatrix'
learned using 5000 users.
> recom <- predict(rc, Jester5k, n=5)
> recom
Recommendations as 'topNList' with n = 5 for 5000 users.
> head(as(recom,"list"))
$u2841
[1] "j81" "j78" "j83" "j80" "j73"
$u15547
[1] "j96" "j87" "j89" "j76" "j93"
$u15221
character(0)
$u15573
character(0)
$u21505
[1] "j100" "j81" "j83" "j92" "j96"
$u15994
character(0)
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Now let's compare the results obtained from all the five different algorithms, except PCA,
because PCA requires a binary dataset and does not accept real ratings matrix.

Popular IBCF Random method SVD UBCF

>
head(as(recom,"list"))

>
head(as(recom,"list"))

>
head(as(recom,"list"))

>
head(as(recom,"list"))

>
head(as(recom,”list”))

$u2841 $u2841 [[1]] $u2841 $u2841

[1] "j89" "j72" "j76"
"j88" "j83"

[1] "j85" "j86" "j74"
"j84" "j80"

[1] "j90" "j74" "j86"
"j78" "j85"

[1] "j74" "j71" "j84"
"j79" "j80"

[1] “j81” “j78” “j83”
“j80” “j73”

$u15547 $u15547 [[2]] $u15547 $u15547

[1] "j89" "j93" "j76"
"j88" "j91"

[1] "j91" "j87" "j88"
"j89" "j93"

[1] "j87" "j88" "j74"
"j92" "j79"

[1] "j89" "j93" "j76"
"j81" "j88"

[1] “j96” “j87” “j89”
“j76” “j93”

$u15221 $u15221 [[3]] $u15221 $u15221

character(0) character(0) character(0) character(0) character(0)

$u15573 $u15573 [[4]] $u15573 $u15573

character(0) character(0) character(0) character(0) character(0)

$u21505 $u21505 [[5]] $u21505 $u21505

[1] "j89" "j72" "j93"
"j76" "j88"

[1] "j78" "j80" "j73"
"j77" "j92"

[1] "j95" "j86" "j93"
"j78" "j83"

[1] "j80" "j73" "j100"
"j72" "j78"

[1] “j100” “j81” “j83”
“j92” “j96”

$u15994 $u15994 [[6]] $u15994 $u15994

character(0) character(0) character(0) character(0) character(0)

Table 4: Results comparison between different recommendation algorithms

One thing clear from the table is that for users 15573 and 15221, none of the five methods
generate a recommendation. Hence, it is important to look at methods to evaluate the
recommendation results. To validate the accuracy of the model let's implement accuracy
measures and compare the accuracy of all the models.

For the evaluation of the model results, the dataset is divided into 90 percent for training
and 10 percent for testing the algorithm. The definition of good rating is updated as 5:

> e <- evaluationScheme(Jester5k, method="split",
+ train=0.9,given=15, goodRating=5)
> e
Evaluation scheme with 15 items given
Method: 'split' with 1 run(s).
Training set proportion: 0.900
Good ratings: >=5.000000
Data set: 5000 x 100 rating matrix of class 'realRatingMatrix' with 362106
ratings.
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The following script is used to build the collaborative filtering model, apply it on a new
dataset for predicting the ratings and then the prediction accuracy is computed the error
matrix is shown as follows:

> #User based collaborative filtering
> r1 <- Recommender(getData(e, "train"), "UBCF")
> #Item based collaborative filtering
> r2 <- Recommender(getData(e, "train"), "IBCF")
> #PCA based collaborative filtering
> #r3 <- Recommender(getData(e, "train"), "PCA")
> #POPULAR based collaborative filtering
> r4 <- Recommender(getData(e, "train"), "POPULAR")
> #RANDOM based collaborative filtering
> r5 <- Recommender(getData(e, "train"), "RANDOM")
> #SVD based collaborative filtering
> r6 <- Recommender(getData(e, "train"), "SVD")
> #Predicted Ratings
> p1 <- predict(r1, getData(e, "known"), type="ratings")
> p2 <- predict(r2, getData(e, "known"), type="ratings")
> #p3 <- predict(r3, getData(e, "known"), type="ratings")
> p4 <- predict(r4, getData(e, "known"), type="ratings")
> p5 <- predict(r5, getData(e, "known"), type="ratings")
> p6 <- predict(r6, getData(e, "known"), type="ratings")
> #calculate the error between the prediction and
> #the unknown part of the test data
> error <- rbind(
+ calcPredictionAccuracy(p1, getData(e, "unknown")),
+ calcPredictionAccuracy(p2, getData(e, "unknown")),
+ #calcPredictionAccuracy(p3, getData(e, "unknown")),
+ calcPredictionAccuracy(p4, getData(e, "unknown")),
+ calcPredictionAccuracy(p5, getData(e, "unknown")),
+ calcPredictionAccuracy(p6, getData(e, "unknown"))
+ )
> rownames(error) <- c("UBCF","IBCF","POPULAR","RANDOM","SVD")
> error
RMSE MSE MAE
UBCF 4.485571 20.12034 3.511709
IBCF 4.606355 21.21851 3.466738
POPULAR 4.509973 20.33985 3.548478
RANDOM 7.917373 62.68480 6.464369
SVD 4.653111 21.65144 3.679550

From the preceding result, UBCF has the lowest error in comparison to the other
recommendation methods. Here, to evaluate the results of the predictive model, we are
using k-fold cross validation method; k is assumed to be taken as 4:

> #Evaluation of a top-N recommender algorithm
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> scheme <- evaluationScheme(Jester5k, method="cross", k=4,
+ given=3,goodRating=5)
> scheme
Evaluation scheme with 3 items given
Method: 'cross-validation' with 4 run(s).
Good ratings: >=5.000000
Data set: 5000 x 100 rating matrix of class 'realRatingMatrix' with 362106
ratings.

The results of the models from the evaluation scheme show the runtime versus the
prediction time by different cross validation results for different models, the result is shown
as follows:

> results <- evaluate(scheme, method="POPULAR", n=c(1,3,5,10,15,20))
POPULAR run fold/sample [model time/prediction time]
1 [0.14sec/2.27sec]
2 [0.16sec/2.2sec]
3 [0.14sec/2.24sec]
4 [0.14sec/2.23sec]
> results <- evaluate(scheme, method="IBCF", n=c(1,3,5,10,15,20))
IBCF run fold/sample [model time/prediction time]
1 [0.4sec/0.38sec]
2 [0.41sec/0.37sec]
3 [0.42sec/0.38sec]
4 [0.43sec/0.37sec]
> results <- evaluate(scheme, method="UBCF", n=c(1,3,5,10,15,20))
UBCF run fold/sample [model time/prediction time]
1 [0.13sec/6.31sec]
2 [0.14sec/6.47sec]
3 [0.15sec/6.21sec]
4 [0.13sec/6.18sec]
> results <- evaluate(scheme, method="RANDOM", n=c(1,3,5,10,15,20))
RANDOM run fold/sample [model time/prediction time]
1 [0sec/0.27sec]
2 [0sec/0.26sec]
3 [0sec/0.27sec]
4 [0sec/0.26sec]
> results <- evaluate(scheme, method="SVD", n=c(1,3,5,10,15,20))
SVD run fold/sample [model time/prediction time]
1 [0.36sec/0.36sec]
2 [0.35sec/0.36sec]
3 [0.33sec/0.36sec]
4 [0.36sec/0.36sec]
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The confusion matrix displays the level of accuracy provided by each of the models, we can
estimate the accuracy measures such as precision, recall and TPR, FPR, and so on the result
is shown as follows:

> getConfusionMatrix(results)[[1]]
TP FP FN TN precision recall TPR FPR
1 0.2736 0.7264 17.2968 78.7032 0.2736000 0.01656597 0.01656597 0.008934588
3 0.8144 2.1856 16.7560 77.2440 0.2714667 0.05212659 0.05212659 0.027200530
5 1.3120 3.6880 16.2584 75.7416 0.2624000 0.08516269 0.08516269 0.046201487
10 2.6056 7.3944 14.9648 72.0352 0.2605600 0.16691259 0.16691259
0.092274243
15 3.7768 11.2232 13.7936 68.2064 0.2517867 0.24036802 0.24036802
0.139945095
20 4.8136 15.1864 12.7568 64.2432 0.2406800 0.30082509 0.30082509
0.189489883

Association rules as a method for recommendation engine for building product
recommendation in a retail/e-commerce scenario, is used in Chapter 4, Regression with
Automobile Data.

Summary
In this chapter, we discussed various methods of recommending products. We looked at
different ways of recommending products to users, based on similarity in their purchase
pattern, content, item to item comparison, and so on. As far as the accuracy is concerned,
always the user-based collaborative filtering is giving better result in a real rating-based
matrix as an input. Similarly, the choice of methods for a specific use case is really difficult,
so it is recommended to apply all six different methods and the best one should be selected
automatically and the recommendation should also get updated automatically.



8
Dimensionality Reduction

In this chapter, we are going to discuss about various methods to reduce data dimensions in
performing analysis. In data mining, traditionally people used to apply principal
component analysis (PCA) as a method to reduce the dimensionality in data. Though now
in the age of big data, PCA is still valid, however along with that, many other techniques
are being used to reduce dimensions. With the growth of data in volumes and variety, the
dimension of data has been continuously on the rise. Dimensionality reduction techniques
have many applications in different industries, such as in image processing, speech
recognition, recommendation engines, text processing, and so on. The main problem in
these application areas is not only high dimensional data but also high sparsity. Sparsity
means that many columns in the dataset will have missing or blank values.

In this chapter, we will implement dimensionality reduction techniques such as PCA, 
singular value decomposition (SVD), and iterative feature selection method using a
practical data set and R programming language.

In this chapter, we are going to discuss:

Why dimensionality reduction is a business problem and what impact it may
have on the predictive models
What are the different techniques, with their respective positives and negatives,
and data requirements and more
Which technique to apply and in what situations, with little bit of mathematics
behind the calculation
An R programming based implementation and interpretation of results in a
project
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Why dimensionality reduction?
In various statistical analysis models, especially showing a cause and impact relationship
between dependent variable and a set of independent variables, if the number of
independent variables increases beyond a manageable stage (for example, 100 plus), then it
is quite difficult to interpret each and every variable. For example, in weather forecast,
nowadays low cost sensors are being deployed at various places and those sensors provide
signals and data are being stored in the database. When 1000 plus sensors provide data, it is
important to understand the pattern or at least which all sensors are meaningful in
performing the desired task.

Another example, from a business standpoint, is that if more than 30 features are impacting
a dependent variable (for example, Sales), as a business owner I cannot regulate all 30
factors and cannot form strategies for 30 dimensions. Of course, as a business owner I
would be interested in looking at 3-4 dimensions that should explain 80% of the dependent
variable in the data. From the preceding two examples, it is pretty clear that dimensionality
is still a valid business problem. Apart from business and volume, there are other reasons
such as computational cost, storage cost of data, and more, if a set of dimensions are not at
all meaningful for the target variable or target function why would I store it in my database.

Dimensionality reduction is useful in big data mining applications in performing both
supervised learning and unsupervised learning-based tasks, to:

Identify the pattern how the variables work together
Display the relationship in a low dimensional space
Compress the data for further analysis so that redundant features can be removed
Avoid overfitting as reduced feature set with reduced degrees of freedom does
that
Running algorithms on a reduced feature set would be much more faster than the
base features

Two important aspects of data dimensionality are, first, variables that are highly correlated
indicate high redundancy in the data, and the second, most important dimensions always
have high variance. While working on dimension reduction, it is important to take note of
these aspects and make necessary amendments to the process.

Hence, it is important to reduce the dimensions. Also, it is not a good idea to focus on many
variables to control or regulate the target variable in a predictive model. In a multivariate
study, the correlation between various independent variables affect the empirical likelihood
function and affects the eigen values and eigen vectors through covariance matrix.
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Techniques available for dimensionality
reduction
The dimensionality reduction techniques can be classified into two major groups:
parametric or model-based feature reduction and non-parametric feature reduction. In non-
parametric feature reduction technique, the data dimension is reduced first and then the
resulting data can be used to create any classification or predictive model, supervised or
unsupervised. However, the parametric-based method emphasizes on monitoring the
overall performance of a model and its accuracy by changing the features and hence
deciding how many features are needed to represent the model. The following are the
techniques generally used in data mining literature to reduce data dimensions:

Non-parametric:
PCA method
Parametric method
Forward feature selection
Backward feature selection

We are going to discuss these methods in detail with the help of a dataset using R
programming language. Apart from these techniques mentioned earlier, there are few more
methods but not that popular, such as removing variables with low variance as they don't
add much information to the target variable and also removing variables with many
missing values. The latter comes under the missing value treatment method, but can still be
used to reduce the features in a high dimensional dataset. There are two methods in R,
prcomp() and princomp(), but they use two slightly different methods; princomp() uses
eigen vectors and prcomp() uses SVD method. Some researchers favor prcomp() as a
method over princomp() method. We are going to use two different methods here.

Which technique to apply where?
The usage of the technique actually depends upon the researcher; what he is looking at
from the data. If you are looking at hidden features and want to represent the data in a low
dimensional space, PCA is the method one should choose. If you are looking at building a
good classification or prediction model, then it is not a good idea to perform PCA first; you
should ideally include all the features and remove the redundant ones by any parametric
method, such as forward or backward. Selection of techniques vary based on data
availability, the problem statement, and the task that someone is planning to perform.
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Principal component analysis
PCA is a multivariate statistical data analysis technique applicable for datasets with
numeric variables only, which computes linear combinations of the original variables and
those principal components are orthogonal to each other in the feature space. PCA is a
method that uses eigen values and eigen vectors to compute the principal components,
which is a linear combination of original variables. PCA can be used in regression
modelling in order to remove the problem of multicollinearity in the dataset and can also be
used in clustering exercise in order to understand unique group behaviors or segments
existing in the dataset.

PCA assumes that the variables are linearly associated to form principal components and
variables with high variance do not necessarily represent the best feature. The principal
component analysis is based on a few theorems:

The inverse of an orthogonal matrix is its transpose
The original matrix times the transposed version of the original matrix are both
symmetric
A matrix is symmetric if it is an orthogonally diagonalizable matrix
It uses variance matrix, not the correlation matrix to compute components

Following are the steps to perform principal component analysis:

Get a numerical dataset. If you have any categorical variable, remove it from the1.
dataset so that mathematical computation can happen on the remaining
variables.
In order to make the PCA work properly, data normalization should be done.2.
This is done by deducting the mean of the column from each of the values for all
the variables; ensure that the mean of the variables of the transformed data
should be equal to 0.

We applied the following normalization formula:

Calculate the covariance matrix on the reduced dataset. Covariance is a measure3.
of two variables. A covariance matrix is a display of all the possible covariance
values between all the different dimensions:
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The sign of covariance is more important than its value; a positive covariance
value indicates that both dimensions increase together and vice versa.
Similarly, a negative value of covariance indicates that with an increase in
one dimension, the other dimension decreases. If the covariance value is zero,
it shows that the two dimensions are independent of each other and there is
no relationship.

Calculate the eigen vectors and eigen values from the covariance matrix. All4.
eigen vectors always come from a square matrix but all square matrix do not
always generate an eigen vector. All eigen vectors of a matrix are orthogonal to
each other.
Create a feature vector by taking eigen values in order from largest to smallest.5.
The eigen vector with highest eigen value is the principal component of the
dataset. From the covariance matrix, the eigen vectors are identified and the eigen
values are ordered from largest to smallest:

    Feature Vector = (Eigen1, Eigen2......Eigen 14)

Create low dimension data using the transposed version of the feature vector and6.
transposed version of the normalized data. In order to get the transposed dataset,
we are going to multiply the transposed feature vector and transposed
normalized data.

Let's apply these steps in the following section.

Practical project around dimensionality
reduction
We are going to apply dimensionality reduction procedure, both model-based approach
and principal component-based approach, on the dataset to come up with less number of
features so that we can use those features for classification of the customers into defaulters
and no-defaulters.
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For practical project, we have considered a dataset default of credit card clients.csv,
which contains 30,000 samples and 24 attributes or dimensions. We are going to apply two
different methods of feature reduction: the traditional way and the modern machine
learning way.

Attribute description
The following are descriptions for the attributes from the dataset:

X1: Amount of the given credit (NT dollar). It includes both the individual
consumer credit and his/her family (supplementary) credit.
X2: Gender (1 = male; 2 = female).
X3: Education (1 = graduate school; 2 = university; 3 = high
school; 4 = others).
X4: Marital status (1 = married; 2 = single; 3 = others).
X5: Age (year).
X6 - X11: History of past payment. We tracked the past monthly payment
records (from April to September, 2005) as follows:

X6= the repayment status in September, 2005

X7 = the repayment status in August, 2005; . . .

X11 = the repayment status in April, 2005. The
measurement scale for the repayment status is: -1 =
pay duly; 1 = payment delay for one month; 2 =
payment delay for two months; . . . 8 = payment
delay for eight months; 9 = payment delay for nine
months, and so on.

X12-X17: Amount of bill statement (NT dollar).
X12 = amount of bill statement in September, 2005;

X13 = amount of bill statement in August, 2005; . .
.

X17 = amount of bill statement in April, 2005.

X18-X23: Amount of previous payment (NT dollar).
X18 = amount paid in September, 2005;

X19 = amount paid in August, 2005; . . .

X23 = amount paid in April, 2005.
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Let's get the dataset and do the necessary normalization and transformation:

> setwd("select the working directory")
> default<-read.csv("default.csv")
corrplot::corrplot(cor(df),method="ellipse")

From the preceding correlations matrix, it is clear that there are some strong correlations
between different variables from X12 to X17, which possibly can be clubbed together as
linear combinations using PCA. The following graph shows the correlations between
different variables:

In the previous correlations graph, the strength of the correlation is reflected by the size of
the ellipse and the color varying from red to blue. The blue ellipses indicate positive
correlation and the white ones show no correlation. Variable X12 has a high degree of
positive correlation with variables X13 to X17, with a correlation value of more than 80%.

Row number 1 contains the variable description and there are some columns which are
categorical; we need to remove those from our dataset. Some other variables are shown as
categorical and hence need to be converted back to numeric mode:

> df<-default[-1,-c(1,3:5,7:12,25)]
> func1<-function(x){
+ as.numeric(x)
+ }
> df<-as.data.frame(apply(df,2,func1))
> normalize-function(x){
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+ (x-mean(x))
+ }

Using func1, we convert the non-numeric variables into numeric so that we can apply the
normalization function (normalize), which is doing data normalization. After applying
normalization, the dataset will look like the one as shown next. To apply principal
component analysis, either we can use mean normalized dataset as an input or we can use
the base dataset with correlations or a covariance matrix as an input. If we are not going to
normalize the dataset, the variable with the highest variance will become the first principal
component and hence will dominate other relevant principal components:

> dn<-as.data.frame(apply(df,2,normalize))
> str(dn)
'data.frame': 30000 obs. of 14 variables:
$ X1 : num -147484 -47484 -77484 -117484 -117484 ...
$ X5 : num -11.49 -9.49 -1.49 1.51 21.51 ...
$ X12: num -47310 -48541 -21984 -4233 -42606 ...
$ X13: num -46077 -47454 -35152 -946 -43509 ...
$ X14: num -46324 -44331 -33454 2278 -11178 ...
$ X15: num -43263 -39991 -28932 -14949 -22323 ...
$ X16: num -40311 -36856 -25363 -11352 -21165 ...
$ X17: num -38872 -35611 -23323 -9325 -19741 ...
$ X18: num -5664 -5664 -4146 -3664 -3664 ...
$ X19: num -5232 -4921 -4421 -3902 30760 ...
$ X20: num -5226 -4226 -4226 -4026 4774 ...
$ X21: num -4826 -3826 -3826 -3726 4174 ...
$ X22: num -4799 -4799 -3799 -3730 -4110 ...
$ X23: num -5216 -3216 -216 -4216 -4537 ...

Running principal component analysis:

> options(digits = 2)
> pca1<-princomp(df,scores = T, cor = T)
> summary(pca1)
Importance of components:
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10
Comp.11
Standard deviation 2.43 1.31 1.022 0.962 0.940 0.934 0.883 0.852 0.841
0.514 0.2665
Proportion of Variance 0.42 0.12 0.075 0.066 0.063 0.062 0.056 0.052 0.051
0.019 0.0051
Cumulative Proportion 0.42 0.55 0.620 0.686 0.749 0.812 0.867 0.919 0.970
0.989 0.9936
Comp.12 Comp.13 Comp.14
Standard deviation 0.2026 0.1592 0.1525
Proportion of Variance 0.0029 0.0018 0.0017
Cumulative Proportion 0.9965 0.9983 1.0000
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Principal component (PC) 1 explains 42% variation in the dataset and principal component
2 explains 12% variation in the dataset. This means that first PC has closeness to 42% of the
total data points in the n-dimensional space. From the preceding results, it is clear that the
first 8 principal components capture 91.9% variation in the dataset. Rest 8% variation in the
dataset is explained by 6 other principal components. Now the question is how many
principal components should be chosen. The general rule of thumb is 80-20, if 80% variation
in the data can be explained by 20% of the principal components. There are 14 variables; we
have to look at how many components explain 80% variation in the dataset cumulatively.
Hence, it is recommended, based on the 80:20 Pareto principle, taking 6 principal
components which explain 81% variation cumulatively.

In a multivariate dataset, the correlation between the component and the original variables
is called the component loading. The loadings of the principal components are as follows:

> #Loadings of Principal Components
> pca1$loadings
Loadings:
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10
Comp.11 Comp.12 Comp.13 Comp.14
X1 -0.165 0.301 0.379 0.200 0.111 0.822
X5 0.870 -0.338 -0.331
X12 -0.372 -0.191 0.567 0.416 0.433 0.184 -0.316
X13 -0.383 -0.175 0.136 0.387 -0.345 -0.330 0.645
X14 -0.388 -0.127 -0.114 -0.121 0.123 -0.485 -0.496 -0.528
X15 -0.392 -0.120 0.126 -0.205 -0.523 0.490 0.362 0.346
X16 -0.388 -0.106 0.107 -0.420 0.250 -0.718 -0.227
X17 -0.381 0.165 -0.489 0.513 -0.339 0.428
X18 -0.135 0.383 -0.173 -0.362 -0.226 -0.201 0.749
X19 -0.117 0.408 -0.201 -0.346 -0.150 0.407 -0.280 -0.578 0.110 0.147 0.125
X20 -0.128 0.392 -0.122 -0.245 0.239 -0.108 0.785 -0.153 0.145 -0.125
X21 -0.117 0.349 0.579 -0.499 -0.462 0.124 -0.116
X22 -0.114 0.304 0.609 0.193 0.604 0.164 -0.253
X23 -0.106 0.323 0.367 -0.658 -0.411 -0.181 -0.316
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10
Comp.11 Comp.12 Comp.13 Comp.14
SS loadings 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000
Proportion Var 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071 0.071
0.071 0.071 0.071 0.071
Cumulative Var 0.071 0.143 0.214 0.286 0.357 0.429 0.500 0.571 0.643 0.714
0.786 0.857 0.929 1.000
> pca1
Call:
princomp(x = df, cor = T, scores = T)
Standard deviations:
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10
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2.43 1.31 1.02 0.96 0.94 0.93 0.88 0.85 0.84 0.51
Comp.11 Comp.12 Comp.13 Comp.14
0.27 0.20 0.16 0.15
14 variables and 30000 observations.

The following graph indicates the percentage variance explained by the principal
components:

Following scree plot shows how many principal components we should retain for the
dataset:
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From the preceding scree plot, it is concluded that the first principal component has the
highest variance, then second and third respectively. From the graph, three principal
components have higher variance than the other principal components.

Following biplot indicates the existence of principal components in a n-dimensional space:

The diagonal elements of the covariance matrix are the variances of the variables; the off-
diagonal variables are covariance between different variables:

> diag(cov(df))
X1 X5 X12 X13 X14 X15 X16 X17 X18 X19 X20
1.7e+10 8.5e+01 5.4e+09 5.1e+09 4.8e+09 4.1e+09 3.7e+09 3.5e+09 2.7e+08
5.3e+08 3.1e+08
X21 X22 X23
2.5e+08 2.3e+08 3.2e+08

The interpretation of scores is little bit tricky because they do not have any meaning until
and unless you use them to plot on a straight line as defined by the eigen vector. PC scores
are the co-ordinates of each point with respect to the principal axis. Using eigen values you
can extract eigen vectors which describe a straight line to explain the PCs. The PCA is a
form of multidimensional scaling as it represents data in a lower dimension without losing
much information about the variables. The component scores are basically the linear
combination of loading times the mean centred scaled dataset.
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When we deal with multivariate data, it is really difficult to visualize and build models
around it. In order to reduce the features, PCA is used; it reduces the dimensions so that we
can plot, visualize, and predict the future, in a lower dimension. The principal components
are orthogonal to each other, which means that they are uncorrelated. At the data pre-
processing stage, the scaling function decides what type of input data matrix is required. If
the mean centring approach is used as transformation then covariance matrix should be
used as input data for PCA. If a scaling function does a standard z-score transformation,
assuming standard deviation is equal to 1, then correlation matrix should be used as input
data.

Now the question is where to apply which transformation. If the variables are highly
skewed then z-score transformation and PCA based on correlation should be used. If the
input data is approximately symmetric then mean centring approach and PCA based on
covariance should be applied.

Now, let's look at the principal component scores:

> #scores of the components
> pca1$scores[1:10,]
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10
Comp.11 Comp.12 Comp.13 Comp.14
[1,] 1.96 -0.54 -1.330 0.1758 -0.0175 0.0029 0.013 -0.057 -0.22 0.020
0.0169 0.0032 -0.0082 0.00985
[2,] 1.74 -0.22 -0.864 0.2806 -0.0486 -0.1177 0.099 -0.075 0.29 -0.073
-0.0055 -0.0122 0.0040 0.00072
[3,] 1.22 -0.28 -0.213 0.0082 -0.1269 -0.0627 -0.014 -0.084 -0.28 -0.016
0.1125 0.0805 0.0413 -0.05711
[4,] 0.54 -0.67 -0.097 -0.2924 -0.0097 0.1086 -0.134 -0.063 -0.60 0.144
0.0017 -0.1381 -0.0183 -0.05794
[5,] 0.85 0.74 1.392 -1.6589 0.3178 0.5846 -0.543 -1.113 -1.24 -0.038
-0.0195 -0.0560 0.0370 -0.01208
[6,] 0.54 -0.71 -0.081 -0.2880 -0.0924 0.1145 -0.194 -0.015 -0.58 0.505
0.0276 -0.1848 -0.0114 -0.14273
[7,] -15.88 -0.96 -1.371 -1.1334 0.3062 0.0641 0.514 0.771 0.99 -2.890
-0.4219 0.4631 0.3738 0.32748
[8,] 1.80 -0.29 -1.182 0.4394 -0.0620 -0.0440 0.076 -0.013 0.26 0.046
0.0484 0.0584 0.0268 -0.04504
[9,] 1.41 -0.21 -0.648 0.1902 -0.0653 -0.0658 0.040 0.122 0.33 -0.028
-0.0818 0.0296 -0.0605 0.00106
[10,] 1.69 -0.18 -0.347 -0.0891 0.5969 -0.2973 -0.453 -0.140 -0.74 -0.137
0.0248 -0.0218 0.0028 0.00423

Larger eigen values indicate larger variation in a dimension. The following script shows
how to compute eigen values and eigen vectors from the correlation matrix:

> eigen(cor(df),TRUE)$values
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[1] 5.919 1.716 1.045 0.925 0.884 0.873 0.780 0.727 0.707 0.264 0.071 0.041
0.025 0.023
head(eigen(cor(df),TRUE)$vectors)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] -0.165 0.301 0.379 0.2004 -0.035 -0.078 0.1114 0.0457 0.822 -0.0291
-0.00617 -0.0157 0.00048
[2,] -0.033 0.072 0.870 -0.3385 0.039 0.071 -0.0788 -0.0276 -0.331 -0.0091
0.00012 0.0013 -0.00015
[3,] -0.372 -0.191 0.034 0.0640 -0.041 -0.044 0.0081 -0.0094 -0.010 0.5667
0.41602 0.4331 0.18368
[4,] -0.383 -0.175 0.002 -0.0075 -0.083 -0.029 -0.0323 0.1357 -0.017 0.3868
0.03836 -0.3452 -0.32953
[5,] -0.388 -0.127 -0.035 -0.0606 -0.114 0.099 -0.1213 -0.0929 0.019 0.1228
-0.48469 -0.4957 0.08662
[6,] -0.392 -0.120 -0.034 -0.0748 -0.029 0.014 0.1264 -0.0392 -0.019
-0.2052 -0.52323 0.4896 0.36210
[,14]
[1,] 0.0033
[2,] 0.0011
[3,] -0.3164
[4,] 0.6452
[5,] -0.5277
[6,] 0.3462

The standard deviation of the individual principal components and the mean of all the
principal components is as follows:

> pca1$sdev
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10
Comp.11 Comp.12 Comp.13 Comp.14
2.43 1.31 1.02 0.96 0.94 0.93 0.88 0.85 0.84 0.51 0.27 0.20 0.16 0.15
> pca1$center
X1 X5 X12 X13 X14 X15 X16 X17 X18 X19 X20 X21 X22 X23
-9.1e-12 -1.8e-15 -6.8e-13 -3.0e-12 4.2e-12 4.1e-12 -1.4e-12 5.1e-13
7.0e-14 4.4e-13 2.9e-13 2.7e-13 -2.8e-13 -3.9e-13

Using the normalized data, and with no correlations table as an input, the following result
is obtained. There is no difference in the output as we got the pca2 model in comparison to
pca1:

> pca2<-princomp(dn)
> summary(pca2)
Importance of components:
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10
Comp.11 Comp.12 Comp.13 Comp.14
Standard deviation 1.7e+05 1.2e+05 3.7e+04 2.8e+04 2.1e+04 2.0e+04 1.9e+04
1.7e+04 1.6e+04 1.2e+04 1.0e+04 8.8e+03 8.2e+03 9.1e+00
Proportion of Variance 6.1e-01 3.0e-01 3.1e-02 1.7e-02 9.4e-03 9.0e-03
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7.5e-03 6.4e-03 5.8e-03 3.0e-03 2.4e-03 1.7e-03 1.5e-03 1.8e-09
Cumulative Proportion 6.1e-01 9.1e-01 9.4e-01 9.5e-01 9.6e-01 9.7e-01
9.8e-01 9.9e-01 9.9e-01 9.9e-01 1.0e+00 1.0e+00 1.0e+00 1.0e+00

The next screen plot indicates that three principal components constitute most of the
variation in the dataset. The x axis shows the principal components and the y axis shows the
standard deviation (variance = square of the standard deviation).

The following script shows the plot being created:

> result<-round(summary(pca2)[1]$sdev,0)
> #scree plot
> plot(result, main = "Standard Deviation by Principal Components",
+ xlab="Principal Components",ylab="Standard Deviation",type='o')

Using the prcomp() function, which uses the SVD method to perform dimensionality
reduction can be analysed as follows. prcomp() method accepts raw dataset as input and it
has a built in argument which requires to make the scaling as true:

> pca<-prcomp(df,scale. = T)
> summary(pca)
Importance of components:
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10
Standard deviation 2.433 1.310 1.0223 0.9617 0.9400 0.9342 0.8829 0.8524
0.8409 0.5142
Proportion of Variance 0.423 0.123 0.0746 0.0661 0.0631 0.0623 0.0557
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0.0519 0.0505 0.0189
Cumulative Proportion 0.423 0.545 0.6200 0.6861 0.7492 0.8115 0.8672 0.9191
0.9696 0.9885
PC11 PC12 PC13 PC14
Standard deviation 0.26648 0.20263 0.15920 0.15245
Proportion of Variance 0.00507 0.00293 0.00181 0.00166
Cumulative Proportion 0.99360 0.99653 0.99834 1.00000

From the result we can see that there is little variation in the two methods. The SVD
approach also shows that the first 8 components explain 91.91% variation in the dataset.
From the documentation of prcomp and princomp, there is no difference in the type of
PCA, but there is a difference in the method used to calculate PCA. The two methods are
spectral decomposition and singular decomposition.

In spectral decomposition, as shown in the princomp function, the calculation is done using
eigen on the correlation or covariance matrix. Using the prcomp method, the calculation is
done by the SVD method.

To get the rotation matrix, which is equivalent to the loadings matrix in the princomp()
method, we can use the following script:

> summary(pca)$rotation
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11
X1 0.165 0.301 -0.379 0.2004 -0.035 0.078 -0.1114 -0.04567 0.822 -0.0291
0.00617
X5 0.033 0.072 -0.870 -0.3385 0.039 -0.071 0.0788 0.02765 -0.331 -0.0091
-0.00012
X12 0.372 -0.191 -0.034 0.0640 -0.041 0.044 -0.0081 0.00937 -0.010 0.5667
-0.41602
X13 0.383 -0.175 -0.002 -0.0075 -0.083 0.029 0.0323 -0.13573 -0.017 0.3868
-0.03836
X14 0.388 -0.127 0.035 -0.0606 -0.114 -0.099 0.1213 0.09293 0.019 0.1228
0.48469
X15 0.392 -0.120 0.034 -0.0748 -0.029 -0.014 -0.1264 0.03915 -0.019 -0.2052
0.52323
X16 0.388 -0.106 0.034 -0.0396 0.107 0.099 0.0076 0.04964 -0.024 -0.4200
-0.06824
X17 0.381 -0.094 0.018 0.0703 0.165 -0.070 -0.0079 -0.00015 -0.059 -0.4888
-0.51341
X18 0.135 0.383 0.173 -0.3618 -0.226 -0.040 0.2010 -0.74901 -0.020 -0.0566
-0.04763
X19 0.117 0.408 0.201 -0.3464 -0.150 -0.407 0.2796 0.57842 0.110 0.0508
-0.14725
X20 0.128 0.392 0.122 -0.2450 0.239 0.108 -0.7852 0.06884 -0.153 0.1449
-0.00015
X21 0.117 0.349 0.062 0.0946 0.579 0.499 0.4621 0.07712 -0.099 0.1241
0.11581
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X22 0.114 0.304 -0.060 0.6088 0.193 -0.604 -0.0143 -0.16435 -0.253 0.0601
0.09944
X23 0.106 0.323 -0.050 0.3672 -0.658 0.411 -0.0253 0.18089 -0.316 -0.0992
-0.03495
PC12 PC13 PC14
X1 -0.0157 0.00048 -0.0033
X5 0.0013 -0.00015 -0.0011
X12 0.4331 0.18368 0.3164
X13 -0.3452 -0.32953 -0.6452
X14 -0.4957 0.08662 0.5277
X15 0.4896 0.36210 -0.3462
X16 0.2495 -0.71838 0.2267
X17 -0.3386 0.42770 -0.0723
X18 0.0693 0.04488 0.0846
X19 0.0688 -0.03897 -0.1249
X20 -0.1247 -0.02541 0.0631
X21 -0.0010 0.08073 -0.0423
X22 0.0694 -0.09520 0.0085
X23 -0.0277 0.01719 -0.0083

The rotated dataset can be retrieved by using argument x from the summary result of the
prcomp() method:

> head(summary(pca)$x)
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12
[1,] -1.96 -0.54 1.330 0.1758 -0.0175 -0.0029 -0.013 0.057 -0.22 0.020
-0.0169 0.0032
[2,] -1.74 -0.22 0.864 0.2806 -0.0486 0.1177 -0.099 0.075 0.29 -0.073
0.0055 -0.0122
[3,] -1.22 -0.28 0.213 0.0082 -0.1269 0.0627 0.014 0.084 -0.28 -0.016
-0.1125 0.0805
[4,] -0.54 -0.67 0.097 -0.2924 -0.0097 -0.1086 0.134 0.063 -0.60 0.144
-0.0017 -0.1381
[5,] -0.85 0.74 -1.392 -1.6588 0.3178 -0.5846 0.543 1.113 -1.24 -0.038
0.0195 -0.0560
[6,] -0.54 -0.71 0.081 -0.2880 -0.0924 -0.1145 0.194 0.015 -0.58 0.505
-0.0276 -0.1848
PC13 PC14
[1,] -0.0082 -0.00985
[2,] 0.0040 -0.00072
[3,] 0.0413 0.05711
[4,] -0.0183 0.05794
[5,] 0.0370 0.01208
[6,] -0.0114 0.14273
> biplot(prcomp(df,scale. = T))
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The orthogonal red lines indicate the principal components that explain the entire dataset.

Having discussed various methods of variable reduction, what is going to be the output; the
output should be a new dataset, in which all the principal components will be uncorrelated
with each other. This dataset can be used for any task such as classification, regression, or
clustering, among others. From the results of the principal component analysis how we get
the new dataset; let's have a look at the following script:

> #calculating Eigen vectors
> eig<-eigen(cor(df))
> #Compute the new dataset
> eigvec<-t(eig$vectors) #transpose the eigen vectors
> df_scaled<-t(dn) #transpose the adjusted data
> df_new<-eigvec %*% df_scaled
> df_new<-t(df_new)
> colnames(df_new)<-c("PC1","PC2","PC3","PC4",
+ "PC5","PC6","PC7","PC8",
+ "PC9","PC10","PC11","PC12",
+ "PC13","PC14")
> head(df_new)
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12
[1,] 128773 -19470 -49984 -27479 7224 10905 -14647 -4881 -113084 -2291 1655
2337
[2,] 108081 11293 -12670 -7308 3959 2002 -3016 -1662 -32002 -9819 -295 920
[3,] 80050 -7979 -24607 -11803 2385 3411 -6805 -3154 -59324 -1202 7596 7501
[4,] 37080 -39164 -41935 -23539 2095 9931 -15015 -4291 -92461 12488 -11
-7943
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[5,] 77548 356 -50654 -38425 7801 20782 -19707 -28953 -88730 -12624 -9028
-4467
[6,] 34793 -42350 -40802 -22729 -2772 9948 -17731 -2654 -91543 37090 2685
-10960
PC13 PC14
[1,] -862 501
[2,] -238 -97
[3,] 2522 -4342
[4,] -1499 -4224
[5,] 3331 -9412
[6,] -1047 -10120

Parametric approach to dimension reduction
To some extent, we touched upon model-based dimension reduction in Chapter 4,
Regression with Automobile Data, Logistic regression, where we tried to implement regression
modelling and in that process we tried to reduce the data dimension by applying Akaike
Information Criteria (AIC). Bayesian Information Criteria (BIC) such as AIC can also be
used to reduce data dimensions. As far as the model-based method is concerned, there are
two approaches:

The forward selection method: In forward selection method, one variable at a
time is added to the model and the model goodness of fit statistics and error are
computed. If the addition of a new dimension reduces error and increases the
model goodness of fit, then that dimension is retained by the model, else that
dimension is removed from the model. This is applicable across different
supervised based algorithms, such as random forest, logistic regression, neural
network, and support vector machine-based implementations. The process of
feature selection continues till all the variables get tested.
The backward selection method: In backward selection method, the model starts
with all the variables together. Then one variable is deleted from the model and
the model goodness of fit statistics and error (any loss function pre-defined) is
computed. If the deletion of a new dimension reduces error and increases the
model goodness of fit, then that dimension is dropped from the model, else that
dimension is kept by the model.
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The problem in this chapter we are discussing is a case of supervised learning classification,
where the dependent variable is default or no default. The logistic regression method, as we
discussed in Chapter 4, Regression with Automobile Data, Logistic regression, uses a step wise
dimension reduction procedure to remove unwanted variables from the model. The same
exercise can be done on the dataset we discussed in this chapter.

Apart from the standard methods of data dimension reduction, there are some not so
important methods available which can be considered, such as missing value estimation
method. In a large data set with many dimension sparsity problem will be a common
scenario, before applying any formal process of dimensionality reduction, if we can apply
the missing value percentage calculation method on the dataset, we can drop many
variables. The threshold to drop the variables failing to meet the minimum missing
percentage has to be decided by the analyst.

References
Yeh, I. C., & Lien, C. H. (2009). The comparisons of data mining techniques for the
predictive accuracy of probability of default of credit card clients. Expert Systems with
Applications, 36(2), 2473-2480.

Summary
In this chapter, we discussed various methods of performing dimensionality reduction in a
sample dataset. Removing redundant features not only improves model accuracy, but also
saves computational effort and time. From business user's point of with less number of
dimensions, it is more intuitive to build strategies than to focus on large number of features.
We discussed which technique to use where and what the data requirement for each of the
methods is. The reduction in dimensions also provides meaningful insights into large
datasets. In the next chapter, we are going to learn about neural network methods for
classification, regression, and time series forecasting.



9
Applying Neural Network to

Healthcare Data
Neural-network-based models are gradually becoming the backbone of artificial
intelligence and machine learning implementations. The future of data mining will be
governed by the usage of artificial neural-network-based advanced modeling techniques.
One obvious question: why is neural network gaining so much importance recently though
it was invented in 1950s? Borrowed from the computer science domain, a neural network
can be defined as a parallel information processing system where the inputs are connected
with each other like neurons in the human brain to transmit information so that activities
such as face recognition, image recognition, and so on can be performed. In this chapter, we
are going to learn about application of neural-network-based methods in various data
mining tasks such as classification, regression, time series forecasting, and feature
reduction. Artificial Neural Network (ANN) functions in a way that is similar to the
human brain, where billions of neurons link to each other for information processing and
insight generation.

In this chapter, you will learn about various types of neural networks, methods, and
variants of neural networks with different functions to control the training of artificial
neural networks in performing standard data mining tasks such as:

Prediction of real valued output using regression-based methods
Prediction of output levels in a classification-based task
Forecasting future values of a numerical attribute based on historical data
Compressing features to recognize important ones in order to perform prediction
or classification
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Introduction to neural networks
The brain's biological network provides the basis for connecting elements in a real-life
scenario for information processing and insight generation. It's a hierarchy of neurons
connected through layers, where the output of one layer becomes the input for another
layer; information passes from one layer to another layer as weights. The weights associated
with each neuron contain insights so that the recognition and reasoning become easier for
the next level. Artificial neural network is a very popular and effective method that consists
of layers associated with weights. The association between different layers is governed by a
mathematical equation that passes information from one layer to the other. In fact, a bunch
of mathematical equations are at work inside one artificial neural network model. The
following graph shows the general architecture for a neural-network-based model:

Figure 1

In the preceding graph, there are three layers—Input, Hidden and Output layer—which
are the core of any neural network-based architecture. ANNs are a powerful technique used
to solve many real-world problems such as classification, regression, and feature selection.
ANNs have the ability to learn from new experiences in the form of new input data in order
to improve the performance of classification- or regression-based tasks and to adapt
themselves to changes in the input environment. Each circle in the preceding figure
represents a neuron.

There are different variants of neural networks that are used in multiple different scenarios;
we are going to explain a few of them conceptually in this chapter, and also their usage in
practical applications:

Single hidden layer neural network: This is the simplest form of neural network,
as shown in the preceding figure. In it, there is only one hidden layer.
Multiple hidden layer neural networks: In this form, more than one hidden
layer will connect the input data to the output data. The complexity of calculation
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increases in this form as it requires more computational power in the system to
process information.
Feed forward neural networks: In this form of neural network architecture, the
information passed is one-directional from one layer to another layer; there is no
iteration from the first level of learning.
Back propagation neural networks: In this form of neural network, there are two
important steps. Feed forward works by passing information from the input to
the hidden and from the hidden to the output layer; secondly, it calculates the
error and propagates it back to the previous layers.

The feed-forward neural network model architecture is shown in the following figure, and
backpropagation method is explained in Figure 3:

Figure 2

In the following figure, the red-colored arrows indicate information that has not passed
through the output layer, and is again fed back to the input layer in terms of errors:

Figure 3
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Having displayed the general architecture for different types of neural networks, let's visit
the underlying math behind them.

Understanding the math behind the neural
network
The neurons present in different layers–input, hidden, and output–are interconnected
through a mathematical function called activation function, as displayed in Figure 1. There
are different variants of the activation function, which are explained as follows.
Understanding the activation function will help in implementation of the neural network
model for better accuracy:

Sigmoid function: This is frequently used by professionals in data mining and
analytics, as it is easier to explain and implement too. The equation is mentioned
here:

The sigmoid function, also known as the logistic function, is mostly used to
transform the input data from the input layer to the mapping layer, or the
hidden layer.

Linear function: This is one of the simple functions typically used to transfer
information from the de-mapping layer to the output layer. The formula is as
follows:

                                                                       f(x)=x

Gaussian function: Gaussian functions are bell-shaped curves that are applicable
for continuous variables, where the objective is to classify the output into
multiple classes:
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Hyperbolic tangent function: This is another variant of transformation 
function; it is used to transform information from the mapping layer to the
hidden layer:

Log sigmoid transfer function: The following formula explains the log sigmoid
transfer function used in mapping the input layer to the hidden layer:

Radial basis function: This is another activation function; it is used to transfer
information from the de-mapping layer to the output layer:

Different types of transfer functions, as previously discussed, can be interchangeable in
neural network architectures. They can be used in different stages such as input to hidden,
hidden to output, and so on, to improve the model accuracy.

Neural network implementation in R
R programming for statistical computing provides three different libraries to perform the
neural network model for various tasks. These three are nnet, neuralnet, and rsnns. In
this chapter, we will use ArtPiece_1.csv and two libraries, nnet and neuralnet, to
perform various tasks. The syntax for neural networks in those two libraries can be
explained as follows.
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The neuralnet library depends on two other libraries, grid and mass; while installing
the neuralnet library, you have to make sure that these two dependency libraries are
installed properly. In fitting a neural network model, the desired level of accuracy in a
model defines the required number of hidden layers with the number of neurons in it; the
number of hidden layers increases as the level of complexity increases. This library provides
an option for training of neural networks using backpropagation, resilient backpropagation
with (Riedmiller, 1994) or without weight backtracking (Riedmiller and Braun, 1993), or the
modified globally convergent version by Anastasiadis et al. (2005). The package allows
flexible settings through custom choice of error and activation functions. Now let's look at
the syntax and the components in it that dictate the accuracy of the model:

Formula To define the input and output relationship

Data Dataset with the input and output variables.

Hidden A vector specifying the number of hidden layers in it. For example, (10, 5, 2)
means 10 hidden neurons in the first layer, 5 in the second, and 2 in the
third layer.

Stepmax Maximum number of steps to be used.

Rep Number of iterations.

Startweights Random weights for the connections.

Algorithm The algorithm to be used to fit a neural network object.'backprop'-
refers to backpropagation. The 'rprop+' and 'rprop-' refer to resilient
backpropagation with and without weight backtracking respectively, while
'sag' and 'slr' refer to the smallest absolute gradient and smallest
learning rate.

Err.fct Two methods: sum squared error (SSE) for regression-based prediction and
cross entropy (CE) for classification-based problems.

Act.fct "logistic" and "tanh" are possible for the logistic function and tangent
hyperbolicus.

Linear.output If no activation function is applied to the output layer, it has to be TRUE.

Likelihood If the error function is equal to the negative log-likelihood function, the
information criteria AIC and BIC will be calculated.

Table 1: neuralnet syntax description
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Table 2 shows the syntax of the nnet library, which can also be used to create neural-
network-based models:

Formula A formula defining the input-output relationship

X A matrix or data frame containing the input variables.

Y A matrix or data frame containing the output variables.

Weights Weights.

Size Number of units in the hidden layer.

Data Dataset.

Na.action If NAs found what should be taken.

Entropy Switch for entropy (is equal to maximum conditional likelihood) fitting. Default
by leastsquares.

Softmax Switch for softmax (log-linear model) and maximum conditional likelihood
fitting. Linout, Entropy, Softmax, and Censored are mutually exclusive.

Decay Parameter for weight decay.

Maxit Maximum number of iterations.

Trace Switch for tracing optimization.

Table 2: nnet syntax description

Having discussed the syntax in Table 1 for both the libraries, let's have a look at the dataset
to be used for prediction and classification-based tasks:

> library(neuralnet)
Loading required package: grid
Loading required package: MASS
Warning message:
package 'neuralnet' was built under R version 3.2.3

The structure function for the dataset shows the types of variables and the size of the
dataset we are going to use for this chapter:

> art<- read.csv("ArtPiece_1.csv")
> str(art)
'data.frame': 72983 obs. of 26 variables:
$ Cid : int 1 2 3 4 5 6 7 8 9 10 ...
$ Art.Auction.House : Factor w/ 3 levels "Artnet","Christie",..: 3 3 3 3 3
3 3 3 3 3 ...
$ IsGood.Purchase : int 0 0 0 0 0 0 0 0 0 0 ...
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$ Critic.Ratings : num 8.9 9.36 7.38 6.56 6.94 ...
$ Buyer.No : int 21973 19638 19638 19638 19638 19638 19638 19638 21973
21973 ...
$ Zip.Code : int 33619 33619 33619 33619 33619 33619 33619 33619 33619
33619 ...
$ Art.Purchase.Date : Factor w/ 517 levels "1/10/2012","1/10/2013",..: 386
386 386 386 386 386 386 386 386 386 ...
$ Year.of.art.piece : Factor w/ 10 levels "01-01-1947","01-01-1948",..: 6 4
5 4 5 4 4 5 7 7 ...
$ Acq.Cost : num 49700 53200 34300 28700 28000 39200 29400 31500 39200
53900 ...
$ Art.Category : Factor w/ 33 levels "Abstract Art Type I",..: 1 13 13 13
30 24 31 30 31 30 ...
$ Art.Piece.Size : Factor w/ 864 levels "10in. X 10in.",..: 212 581 68 837
785 384 485 272 485 794 ...
$ Border.of.art.piece : Factor w/ 133 levels " ","Border 1",..: 2 40 48 48
56 64 74 85 74 97 ...
$ Art.Type : Factor w/ 1063 levels "Type 1","Type 10",..: 1 176 287 398 509
620 731 842 731 953 ...
$ Prominent.Color : Factor w/ 17 levels "Beige","Black",..: 14 16 8 15 15
16 2 16 2 14 ...
$ CurrentAuctionAveragePrice: int 52157 52192 28245 12908 22729 32963 20860
25991 44919 64169 ...
$ Brush : Factor w/ 4 levels "","Camel Hair Brush",..: 2 2 2 2 4 2 2 2 2 2
...
$ Brush.Size : Factor w/ 5 levels "0","1","2","3",..: 2 2 3 2 3 3 3 3 3 2
...
$ Brush.Finesse : Factor w/ 4 levels "Coarse","Fine",..: 2 2 1 2 1 1 1 1 1
2 ...
$ Art.Nationality : Factor w/ 5 levels "American","Asian",..: 3 1 1 1 1 3 3
1 3 1 ...
$ Top.3.artists : Factor w/ 5 levels "MF Hussain","NULL",..: 3 1 1 1 4 3 3
4 3 4 ...
$ CollectorsAverageprice : Factor w/ 13193 levels "#VALUE!","0",..: 11433
11808 7802 4776 7034 8536 7707 7355 9836 483 ...
$ GoodArt.check : Factor w/ 3 levels "NO","NULL","YES": 2 2 2 2 2 2 2 2 2 2
...
$ AuctionHouseGuarantee : Factor w/ 3 levels "GREEN","NULL",..: 2 2 2 2 2 2
2 2 2 2 ...
$ Vnst : Factor w/ 37 levels "AL","AR","AZ",..: 6 6 6 6 6 6 6 6 6 6 ...
$ Is.It.Online.Sale : int 0 0 0 0 0 0 0 0 0 0 ...
$ Min.Guarantee.Cost : int 7791 7371 9723 4410 7140 4158 3731 5775 3374
11431 ...
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Neural networks for prediction
The use of neural networks for prediction requires the dependent/target/output variable to
be numeric, and all the input/independent/feature variables can be of any type. From the
ArtPiece dataset, we are going to predict what is going to be the current auction average
price based on all the parameters available. Before applying a neural-network-based model,
it is important to preprocess the data, by excluding the missing values and any
transformation if required; hence, let's preprocess the data:

library(neuralnet)
art<- read.csv("ArtPiece_1.csv")
str(art)
#data conversion for categorical features
art$Art.Auction.House<-as.factor(art$Art.Auction.House)
art$IsGood.Purchase<-as.factor(art$IsGood.Purchase)
art$Art.Category<-as.factor(art$Art.Category)
art$Prominent.Color<-as.factor(art$Prominent.Color)
art$Brush<-as.factor(art$Brush)
art$Brush.Size<-as.factor(art$Brush.Size)
art$Brush.Finesse<-as.factor(art$Brush.Finesse)
art$Art.Nationality<-as.factor(art$Art.Nationality)
art$Top.3.artists<-as.factor(art$Top.3.artists)
art$GoodArt.check<-as.factor(art$GoodArt.check)
art$AuctionHouseGuarantee<-as.factor(art$AuctionHouseGuarantee)
art$Is.It.Online.Sale<-as.factor(art$Is.It.Online.Sale)
#data conversion for numeric features
art$Critic.Ratings<-as.numeric(art$Critic.Ratings)
art$Acq.Cost<-as.numeric(art$Acq.Cost)
art$CurrentAuctionAveragePrice<-as.numeric(art$CurrentAuctionAveragePrice)
art$CollectorsAverageprice<-as.numeric(art$CollectorsAverageprice)
art$Min.Guarantee.Cost<-as.numeric(art$Min.Guarantee.Cost)
#removing NA, Missing values from the data
fun1<-function(x){
ifelse(x=="#VALUE!",NA,x)
}
art<-as.data.frame(apply(art,2,fun1))
art<-na.omit(art)
#keeping only relevant variables for prediction
art<-art[,c("Art.Auction.House","IsGood.Purchase","Art.Category",
"Prominent.Color","Brush","Brush.Size","Brush.Finesse",
"Art.Nationality","Top.3.artists","GoodArt.check",
"AuctionHouseGuarantee","Is.It.Online.Sale","Critic.Ratings",
"Acq.Cost","CurrentAuctionAveragePrice","CollectorsAverageprice",
"Min.Guarantee.Cost")]
#creating dummy variables for the categorical variables
library(dummy)
art_dummy<-
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dummy(art[,c("Art.Auction.House","IsGood.Purchase","Art.Category",
"Prominent.Color","Brush","Brush.Size","Brush.Finesse",
"Art.Nationality","Top.3.artists","GoodArt.check",
"AuctionHouseGuarantee","Is.It.Online.Sale")],int=F)
art_num<-art[,c("Critic.Ratings",
"Acq.Cost","CurrentAuctionAveragePrice","CollectorsAverageprice",
"Min.Guarantee.Cost")]
art<-cbind(art_num,art_dummy)
## 70% of the sample size
smp_size <- floor(0.70 * nrow(art))
## set the seed to make your partition reproductible
set.seed(123)
train_ind <- sample(seq_len(nrow(art)), size = smp_size)
train <- art[train_ind, ]
test <- art[-train_ind, ]
fun2<-function(x){
as.numeric(x)
}
train<-as.data.frame(apply(train,2,fun2))
test<-as.data.frame(apply(test,2,fun2))

In the training dataset, there are 50,867 observations and 17 variables, and in the test
dataset, there are 21,801 observations and 17 variables. The current auction average price is
the dependent variable for prediction, using only four other numeric variables as features:

>fit<- neuralnet(formula = CurrentAuctionAveragePrice ~ Critic.Ratings +
Acq.Cost + CollectorsAverageprice + Min.Guarantee.Cost, data = train,
hidden = 15, err.fct = "sse", linear.output = F)
> fit
Call: neuralnet(formula = CurrentAuctionAveragePrice ~ Critic.Ratings +
Acq.Cost + CollectorsAverageprice + Min.Guarantee.Cost, data = train,
hidden = 15, err.fct = "sse", linear.output = F)
1 repetition was calculated.
Error Reached Threshold Steps
1 54179625353167 0.004727494957 23

A summary of the main results of the model is provided by result.matrix. A snapshot of
the result.matrix is given as follows:

> fit$result.matrix
1
error 54179625353167.000000000000
reached.threshold 0.004727494957
steps 23.000000000000
Intercept.to.1layhid1 -0.100084491816
Critic.Ratings.to.1layhid1 0.686332945444
Acq.Cost.to.1layhid1 0.196864454378
CollectorsAverageprice.to.1layhid1 -0.793174429352
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Min.Guarantee.Cost.to.1layhid1 0.528046199494
Intercept.to.1layhid2 0.973616842194
Critic.Ratings.to.1layhid2 0.839826678316
Acq.Cost.to.1layhid2 0.077798897157
CollectorsAverageprice.to.1layhid2 0.988149246218
Min.Guarantee.Cost.to.1layhid2 -0.385031389636
Intercept.to.1layhid3 -0.008367359937
Critic.Ratings.to.1layhid3 -1.409715725621
Acq.Cost.to.1layhid3 -0.384200569485
CollectorsAverageprice.to.1layhid3 -1.019243809714
Min.Guarantee.Cost.to.1layhid3 0.699876747202
Intercept.to.1layhid4 2.085203047278
Critic.Ratings.to.1layhid4 0.406934874266
Acq.Cost.to.1layhid4 1.121189503896
CollectorsAverageprice.to.1layhid4 1.405748076570
Min.Guarantee.Cost.to.1layhid4 -1.043884892202
Intercept.to.1layhid5 0.862634752109
Critic.Ratings.to.1layhid5 0.814364667751
Acq.Cost.to.1layhid5 0.502879862694

If the error function is equal to the negative log likelihood function, the error refers to the
likelihood as it is used to calculate the Akaike Information Criterion (AIC). We can store the
covariate and response data in a matrix:

> output<-cbind(fit$covariate,fit$result.matrix[[1]])
> head(output)
[,1] [,2] [,3] [,4] [,5]
[1,] 14953 49000 10727 5775 54179625353167
[2,] 35735 38850 9494 12418 54179625353167
[3,] 34751 43750 8738 9611 54179625353167
[4,] 31599 41615 5955 4158 54179625353167
[5,] 10437 34755 8390 4697 54179625353167
[6,] 13177 54670 13024 11921 54179625353167

To compare the results of a neural network model, we can use different tuning factors such
as changing the algorithm, hidden layer, and learning rate. As an example, only four
numeric features were used to generate the prediction; we could have used all the 91
features for prediction of the current auction average price variable. We can also use a
different algorithm from the nnet library, as follows:

> fit<-nnet(CurrentAuctionAveragePrice~Critic.Ratings+Acq.Cost+
+ CollectorsAverageprice+Min.Guarantee.Cost,data=train,
+ size=100)
# weights: 601
initial value 108359809492660.125000
final value 108359250706334.000000
converged
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> fit
a 4-100-1 network with 601 weights
inputs: Critic.Ratings Acq.Cost CollectorsAverageprice Min.Guarantee.Cost
output(s): CurrentAuctionAveragePrice
options were -

Both the libraries provide equal results; there is no difference in the model result, but to
tune the results further, it is important to look at the model tuning parameters such as
learning rate, hidden neurons, and so on. The following graph shows the neural network
architecture:

The model for predicting the unseen data points can be implemented using the compute
function available in the neuralnet library, and the predict function available in
the nnet library.
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Neural networks for classification
For classification-based projects, the dependent variable can be binary or can have multiple
levels, such as credit card fraud detection, classification of customers into different clusters
as far as the marketing is concerned, and so on. In the current scenario from the ArtPiece
dataset, we are trying to predict whether a work of art is a good purchase, or not, by taking
a few business-relevant variables. For demo purposes, we have considered only a few
features, but other features present in the dataset can be used to generate a better result:

> fit<-neuralnet(IsGood.Purchase_1~Brush.Size_1+Brush.Size_2+Brush.Size_3+
+ Brush.Finesse_Coarse+Brush.Finesse_Fine+
+ Art.Nationality_American+Art.Nationality_Asian+
+ Art.Nationality_European+GoodArt.check_YES,data=train[1:2000,],
+ hidden = 25,err.fct = "ce",linear.output = F)
> fit
Call: neuralnet(formula = IsGood.Purchase_1 ~ Brush.Size_1 + Brush.Size_2 +
Brush.Size_3 + Brush.Finesse_Coarse + Brush.Finesse_Fine +
Art.Nationality_American + Art.Nationality_Asian + Art.Nationality_European
+ GoodArt.check_YES, data = train[1:2000, ], hidden = 25, err.fct = "ce",
linear.output = F)
1 repetition was calculated.
Error Reached Threshold Steps
1 666.1522488 0.009864324362 8254
> output<-cbind(fit$covariate,fit$result.matrix[[1]])
> head(output)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 0 0 0 1 0 0 1 0 666.1522488
[2,] 1 0 0 0 1 1 0 0 0 666.1522488
[3,] 1 0 0 0 1 0 0 1 0 666.1522488
[4,] 0 1 0 1 0 0 0 1 0 666.1522488
[5,] 0 1 0 1 0 1 0 0 0 666.1522488
[6,] 1 0 0 0 1 1 0 0 0 666.1522488
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The following graph shows the neural network model for classification:

Using another library, nnet, for classification-based problems, the following result is
derived:

> fit.nnet<-
nnet(factor(IsGood.Purchase_1)~Brush.Size_1+Brush.Size_2+Brush.Size_3+
+ Brush.Finesse_Coarse+Brush.Finesse_Fine+
+ Art.Nationality_American+Art.Nationality_Asian+
+ Art.Nationality_European+GoodArt.check_YES,data=train[1:2000,],
+ size=9)
# weights: 100
initial value 872.587818
iter 10 value 684.034783
iter 20 value 667.751170
iter 30 value 667.027963
iter 40 value 666.337669
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iter 50 value 666.156889
iter 60 value 666.138741
iter 70 value 666.137048
iter 80 value 666.136505
final value 666.136439
converged
> fit.nnet
a 9-9-1 network with 100 weights
inputs: Brush.Size_1 Brush.Size_2 Brush.Size_3 Brush.Finesse_Coarse
Brush.Finesse_Fine Art.Nationality_American Art.Nationality_Asian
Art.Nationality_European GoodArt.check_YES
output(s): factor(IsGood.Purchase_1)
options were - entropy fitting

Neural networks for forecasting
Neural networks can also be used to generate forecasts for a time series variable. There is a
library called forecast in R that deploys feed-forward neural networks with a single
hidden layer, and lagged inputs for forecasting univariate time series. For the forecasting
example, we have taken an inbuilt dataset available in R called “Air Passengers” to apply
the neural network.

The following table reflects the parameter arguments required by the nnetar function with
the corresponding description of how they are being used in the model:

X Univariate time series with a time variable

p Number of non-seasonal lags used as input

P Number of seasonal lags used as input

Size Number of nodes in the hidden layer

Repeats Number of networks to fit with different random settings of weights

Lambda This is known as box-cox transformation parameter

Xreg External regressors used in fitting the model

Mean Point forecasts as mean
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The actual time series looks as follows:

> fit<-nnetar(AirPassengers, p=9,P=,size = 10, repeats = 50,lambda = 0)>
plot(forecast(fit,10))

A neural-network-based forecasting model generates the following results as an output:

> summary(fit)
Length Class Mode
x 144 ts numeric
m 1 -none- numeric
p 1 -none- numeric
P 1 -none- numeric
scale 1 -none- numeric
size 1 -none- numeric
lambda 1 -none- numeric
model 50 nnetarmodels list
fitted 144 ts numeric
residuals 144 ts numeric
lags 10 -none- numeric
series 1 -none- character
method 1 -none- character
call 6 -none- call
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With a forecast of the next 10 periods, the graph looks as follows:

Merits and demerits of neural networks
The neural network method for performing classification, prediction, and forecasting is still
recognized as a black box methodology in different industries. People still provide more
importance to logistic regression than neural network because of its complexity in
explaining the relationship between the dependent and independent variable.

The limitations of the neural network model can be stated as follows:

In contrast to decision trees and rule extraction techniques, the knowledge
(patterns) “discovered” by neural networks is not represented in a form
understandable by humans.
Knowledge in a trained neural network (NN) is encoded in its connection
weights; hence, NN cannot be used for descriptive data mining (exploration).
If NN are used for decision making, it is impossible to explain their decisions.
Often other techniques have to be combined with NN for explanation.
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Here are the merits of neural networks:

Though it is a bit complex to understand and interpret the results, still it is
considered a powerful technique for classification and regression
It is considered a powerful machine learning technique for automatic predictive
modeling
It captures complex relationships in datasets, which a traditional algorithm such
as linear regression or logistic regression fails to understand and interpret
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Summary
In this chapter, we discussed various methods of performing classification, regression, and
forecasting using the neural network model. Be it supervised or unsupervised data mining
problems, neural-network-based implementations are popular not only among users but
also among business stakeholders. We discussed which model to use where and the data
requirement for each of the models. In this chapter, we specifically highlighted the
importance of a powerful technique with better accuracy always for classification- and
regression-based scenarios.
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